
z/VM
7.3

OpenExtensions Callable Services
Reference

IBM

SC24-6296-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
563.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-09-07
© Copyright International Business Machines Corporation 1993, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Where to Find More Information...xiii

Using the Online HELP Facility...xiii
Links to Other Documents and Websites.. xiv

How to provide feedback to IBM... xv

Summary of Changes for z/VM: OpenExtensions Callable Services Reference...... xvii
SC24-6296-73, z/VM 7.3 (September 2023)..xvii
SC24-6296-73, z/VM 7.3 (September 2022)..xvii
SC24-6296-01, z/VM 7.2 (July 2021)... xvii
SC24-6296-01, z/VM 7.2 (March 2021).. xvii
SC24-6296-01, z/VM 7.2 (September 2020)..xvii
SC24-6296-00, z/VM 7.1 (September 2018)..xvii

Chapter 1. Invocation Details for Callable Services...1
Establishing the OpenExtensions Environment.. 1
Syntax Conventions for the Callable Services...1
Linkage Conventions for the Callable Services... 2
Programming Language Binding Files... 2
Invocation from REXX Procedures.. 4
Parameter Descriptions for Callable Services...5

Call Parameter Lists..5
Mapping Macros...10
Examples..10
Callable Service Failures..10
Authorization..10

Chapter 2. Callable Service Descriptions.. 11
accept (BPX1ACP) — Accept a Connection Request from a Client Socket...12
access (BPX1ACC) — Determine If a File Can Be Accessed... 15
alarm (BPX1ALR) — Set an Alarm..18
bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor..20
chaudit (BPX1CHA) — Change Audit Flags for a File by Path Name...23
chdir (BPX1CHD) — Change the Working Directory.. 26
chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name... 28
chown (BPX1CHO) — Change the Owner or Group of a File or Directory...31
close (BPX1CLO) — Close a File or Socket.. 34
closedir (BPX1CLD) — Close a Directory... 36
cmsprocclp (BPX1MPC) — Clean Up Kernel Resources..38
cmssigsetup (BPX1MSS) — Set Up CMS Signals... 40
cmsunsigsetup (BPX1MSD) — Detach the Signal Setup...44
cond_cancel (BPX1CCA) — Cancel Interest in Events.. 46
cond_post (BPX1CPO) — Post a Thread for an Event... 48

 iii

cond_setup (BPX1CSE) — Set Up to Receive Event Notifications.. 50
cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event......................... 52
cond_wait (BPX1CWA) — Suspend a Thread for an Event..55
connect (BPX1CON) — Establish a Connection Between Two Sockets..57
create_external_link (BPX1ELN) — Create a CMS External Link.. 60
create_thread_environment (BPX1CTE) — Create POSIX Thread Environment......................................65
DLL_delete (BPX1DEL) — Delete a Program from Storage... 67
DLL_load (BPX1LOD) — Load a Program into Storage.. 69
exec (BPX1EXC) — Run a Program.. 72
_exit (BPX1EXI) — End a Process and Bypass the Cleanup..79
fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor... 81
fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor... 84
fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by Descriptor.......................86
fcntl (BPX1FCT) — Control Open File Descriptors.. 88
fork (BPX1FRK) — Create a New Process..96
fpathconf (BPX1FPC) — Determine Configurable Path Name Variables Using a Descriptor................... 99
fstat (BPX1FST) -- Get Status Information about a File by Descriptor.. 102
fstatvfs (BPX1FTV) — Get Status Information about File System by Descriptor...................................104
fsync (BPX1FSY) — Write Changes to Direct-Access Storage.. 106
ftruncate (BPX1FTR) — Truncate a File...108
getclientid (BPX1GCL) — Obtain the Calling Program's Identifier..110
getcwd (BPX1GCW) — Get the Path Name of the Working Directory...112
getegid (BPX1GEG) — Get the Effective Group ID.. 114
geteuid (BPX1GEU) — Get the Effective User ID.. 115
getgid (BPX1GID) — Get the Real Group ID..116
getgrgid (BPX1GGI) — Access the Group Database by ID..117
getgrnam (BPX1GGN) — Access the Group Database by Name.. 119
getgroups (BPX1GGR) — Get a List of Supplementary Group IDs... 121
getgroupsbyname (BPX1GUG) — Get a List of Supplementary Group IDs by User Name.................... 123
gethostid/gethostname (BPX1HST) — Get ID or Name Information about a Socket Host................... 126
getlogin (BPX1GLG) — Get the User Login Name..128
getpgrp (BPX1GPG) — Get the Process Group ID...129
getpid (BPX1GPI) — Get the Process ID... 130
getppid (BPX1GPP) — Get the Parent Process ID...131
getpwnam (BPX1GPN) — Access the User Database by User Name... 132
getpwuid (BPX1GPU) — Access the User Database by User ID... 134
getsockname/getpeername (BPX1GNM) — Get the Name of a Socket or Peer.....................................136
getsockopt/setsockopt (BPX1OPT) — Get or Set Socket Options..138
getuid (BPX1GUI) — Get the Real User ID.. 141
givesocket (BPX1GIV) — Give a Socket to Another Program... 142
isatty (BPX1ITY) — Determine If a File Descriptor Represents a Terminal... 145
kill (BPX1KIL) — Send a Signal to a Process... 146
link (BPX1LNK) — Create a Link to a File...149
listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection Requests from Clients 152
lseek (BPX1LSK) — Change the File Offset... 154
lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name......................157
mkdir (BPX1MKD) — Make a Directory..160
mknod (BPX1MKN) — Make a FIFO or Character Special File..163
mount (BPX1MNT) — Make a File System Available...166
msgctl (BPX1QCT) — Perform Message Queue Control Operations.. 169
msgget (BPX1QGT) — Create or Find a Message Queue.. 172
msgrcv (BPX1QRC) — Receive a Message from a Message Queue.. 175
msgsnd (BPX1QSN) — Send a Message to a Message Queue..178
open (BPX1OPN) — Open a File.. 181
opendir (BPX1OPD) — Open a Directory... 185
openvmf (BPX1VM5) — Perform OpenExtensions Platform Functions..187
openvmf7 (BPX1VM7) — Perform z/VM NFS Client Functions...192
pathconf (BPX1PCF) — Determine Configurable Path Name Variables Using Path Name....................194

iv

pause (BPX1PAS) — Suspend a Process Pending a Signal... 197
pipe (BPX1PIP) — Create an Unnamed Pipe...199
pthread_cancel (BPX1PTB) — Cancel a Thread..201
pthread_create (BPX1PTC) — Create a Thread...203
pthread_detach (BPX1PTD) — Detach a Thread...207
pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread.. 209
pthread_join (BPX1PTJ) — Wait on a Thread..212
pthread_kill (BPX1PTK) — Send a Signal to a Thread.. 214
pthread_self (BPX1PTS) — Query Thread ID.. 216
pthread_setintr (BPX1PSI) — Examine and Change Interrupt State... 217
pthread_setintrtype (BPX1PST) — Examine and Change Interrupt Type.. 219
pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur... 221
queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered..223
quiesce_threads (BPX1PTQ) — Quiesce Threads in a Process.. 225
read (BPX1RED) — Read from a File or Socket... 228
readdir (BPX1RDD) — Read an Entry from a Directory... 231
read_external_link (BPX1RXL) — Read the Contents of a CMS External Link....................................... 234
readlink (BPX1RDL) — Read the Value of a Symbolic Link... 236
readv (BPX1RDV) — Read Data and Store It in a Set of Buffers... 238
realpath (BPX1RPH) — Find the Absolute Path Name..241
recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer... 243
recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer....................................... 245
recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in Message Buffers.............. 248
rename (BPX1REN) — Rename a File or Directory... 251
rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning.. 254
rmdir (BPX1RMD) — Remove a Directory..256
select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues................................... 258
semctl (BPX1SCT) — Perform Semaphore Control Operations..264
semget (BPX1SGT) — Create or Find a Set of Semaphores..269
semop (BPX1SOP) — Perform Semaphore Serialization Operations... 273
send (BPX1SND) — Send Data on a Socket...277
sendmsg (BPX2SMS) — Send Messages on a Socket... 280
sendto (BPX1STO) — Send Data on a Socket..283
setegid (BPX1SEG) — Set the Effective Group ID...286
seteuid (BPX1SEU) — Set the Effective User ID... 288
setgid (BPX1SGI) — Set the Group ID...290
setopen (BPX1VM6) — Perform OpenExtensions Platform Set Functions.. 292
setpgid (BPX1SPG) — Set a Process Group ID for Job Control.. 294
setsid (BPX1SSI) — Create a Session and Set the Process Group ID.. 297
setuid (BPX1SUI) — Set User IDs..299
shmat (BPX1MAT) — Attach a Shared Memory Segment... 301
shmctl (BPX1MCT) — Perform Shared Memory Segment Control Operations...................................... 304
shmdt (BPX1MDT) — Detach a Shared Memory Segment..307
shmget (BPX1MGT) — Create or Find a Shared Memory Segment.. 309
shutdown (BPX1SHT) — Shut Down All or Part of a Duplex Socket Connection................................... 313
sigaction (BPX1SIA) — Examine or Change a Signal Action... 315
sigpending (BPX1SIP) — Examine Pending Signals..319
sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask.. 321
sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is

Delivered...324
sigwait (BPX1SWT) — Wait for a Signal...326
sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time..328
socket (BPX1SOC) — Create a Socket... 330
spawn (BPX1SPN) — Spawn a Process... 333
stat (BPX1STA) -- Get Status Information about a File by Path Name.. 340
statvfs (BPX1STV) — Get Status Information about a File System by Path Name................................ 343
symlink (BPX1SYM) — Create a Symbolic Link to a Path Name... 345
sysconf (BPX1SYC) — Determine System Configuration Options.. 348

 v

takesocket (BPX1TAK) — Acquire a Socket from Another Program...350
tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted.. 352
tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal..354
tcflush (BPX1TFH) — Flush Input or Output on a Terminal..356
tcgetattr (BPX1TGA) — Get the Attributes for a Terminal...358
tcgetpfx (BPX1TGX) — Get the Control Sequence Prefix..360
tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID.. 361
tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal...363
tcsetattr (BPX1TSA) — Set the Attributes for a Terminal... 365
tcsetpfx (BPX1TSX) — Set the Control Sequence Prefix...368
tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID... 369
times (BPX1TIM) — Get Process and Child Process Times.. 371
ttyname (BPX1TYN) — Get the Name of a Terminal... 373
umask (BPX1UMK) — Set or Return the File Mode Creation Mask...374
umount (BPX1UMT) — Remove a Virtual File System.. 375
uname (BPX1UNA) — Display the Name of the Current Operating System...377
unlink (BPX1UNL) — Remove a Directory Entry..379
utime (BPX1UTI) -- Set File Access and Modification Times... 382
wait (BPX1WAT) — Wait for a Child Process to End..385
wait-extension (BPX1WTE) — Obtain Status Information for Child Processes..................................... 388
w_getipc (BPX1GET) — Query Interprocess Communications.. 391
w_getpsent (BPX1GPS) -- Get Process Data.. 394
w_ioctl (BPX1IOC) — Control I/O.. 398
write (BPX1WRT) — Write to a File or Socket... 401
writev (BPX1WRV) — Write Data from a Set of Buffers...404
w_statvfs (BPX1STF) — Get Status Information about a File System by File System Name................ 407

Chapter 3. Mapping Macro Descriptions..409
Understanding the Macro Syntax Diagrams..409
Coding Conventions...411
BPXYACC — Map Flag Values for the access Service..412
BPXYAUDT — Map Flag Values for the chaudit and fchaudit Services... 413
BPXYBRLK — Map the Byte Range Lock Request for the fcntl Service.. 414
BPXYCID — Map the Client ID Structure... 415
BPXYCONS — Map Constants.. 417
BPXYCW — Map Serialization Constants...419
BPXYDIRE — Map Directory Entries for the readdir Service...420
BPXYERNO — Map Return Codes and Reason Codes...421
BPXYFCTL — Map Command Values and Flags for the fcntl Service... 422
BPXYFTYP — Map File Type Definitions.. 423
BPXYGIDN — Map the Data Structure Returned for the getpwnam and getpwuid Services.................424
BPXYGIDS — Map the Data Structure Returned for the getgrnam and getgrgid Services.....................425
BPXYINHE — Map the Inheritance Structure for the spawn Service... 426
BPXYIOCC — Map Command Constants for the w_ioctl Service..427
BPXYIOV — Map the I/O Vector Structure.. 430
BPXYIPCP — Map Interprocess Communications Permissions... 431
BPXYIPCQ — Map the Data Structure and Constants for the w_getipc Service.................................... 432
BPXYMNT — Map the File System Parameters for the mount Service...435
BPXYMODE — Map Mode Constants... 437
BPXYMSG — Map Interprocess Communications Message Queues..439
BPXYMSGF — Map the Message Flags.. 441
BPXYMSGH — Map the Message Headers.. 443
BPXYMTM — Map the Modes for the mount and umount Services..445
BPXYOPNF — Map Flag Values for the open and fcntl Services...447
BPXYPCF — Map Command Values for the pathconf and fpathconf Services....................................... 448
BPXYPGPS — Map the Response Structure for the w_getpsent Service... 449
BPXYPPSD — Map the Signal Delivery Data Structure..451

vi

BPXYPTAT — Map Attributes for the pthread_create Service.. 453
BPXYPTXL — Map the Parameter List for the pthread_exit_and_get Service....................................... 454
BPXYSEEK — Map Constants for the lseek Service.. 455
BPXYSEL — Map Options for the select/selectex Service.. 456
BPXYSELT — Map the Timeout Value for the select/selectex Service... 458
BPXYSEM — Map Interprocess Communications Semaphores... 459
BPXYSHM — Map Interprocess Communications Shared Memory Segments...................................... 461
BPXYSIGH — Map Signal Constants..462
BPXYSINF — Map the Siginfo_t Structure for the wait-extensions Service... 464
BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services.................. 465
BPXYSSTF — Map the File System Status Structure...471
BPXYSTAT — Map the File Status Structure for the stat Service.. 473
BPXYTIMS — Map the Processor Time Structure for the times Service...475
BPXYTIOS — Map the termios Structure...477
BPXYUTSN — Map the System Information Structure for the uname Service.......................................480
BPXYVM5 — Map Function Code Values for the openvmf Service... 482
BPXYVM6 — Map the Function Code Values for the setopen Service..483
BPXYVM7 — Map the Function Code Values and Buffer for the openvmf7 Service.............................. 484
BPXYWAST — Map the Wait Status Word..486

Appendix A. Return Codes... 487
OpenExtensions Return Codes Listed by Numeric Value... 487
OpenExtensions Return Codes Listed by Symbolic Name... 490

Appendix B. Reason Codes...495
OpenExtensions Reason Codes Listed by Numeric Value..495
Special CMS File Pool Server and BFS Client Reason Codes..532
OpenExtensions Reason Codes Listed by Symbolic Name.. 534

Appendix C. System Control Offsets to Callable Services.................................... 547

Appendix D. Reentrant and Nonreentrant Linkage Examples............................... 551
Reentrant Entry Linkage.. 551
Reentrant Return Linkage..551
Nonreentrant Entry Linkage.. 553

Appendix E. The Relationship of OpenExtensions Signals to Callable Services..... 557
High-Level-Language Signal Interfaces.. 557

How High-Level Languages Use Signals..557
Signal Setup When Linking to Callable Services... 558

VMERROR Event Handling and the SIGILL, SIGFPE, and SIGSEGV Signals.. 559
When Signals Are Supported and Not Supported... 559

Delayed Signal Delivery... 560
When Signals Cannot Be Delivered... 560
Signals and Multiple Threads Created by ThreadCreate.. 560
Signals and Multiple Threads Created by pthread_create... 561
Signal Defaults...561

Notices..563
Programming Interface Information...564
Trademarks.. 564
Terms and Conditions for Product Documentation.. 564
IBM Online Privacy Statement.. 565

Bibliography.. 567
Where to Get z/VM Information.. 567

 vii

z/VM Base Library..567
z/VM Facilities and Features... 568
Prerequisite Products.. 570
Related Products... 570
Additional Publications..570

Index.. 571

viii

Figures

1. Call Parameter List.. 6

2. Parameter list passed to the module..75

3. Program Flow of cmssigsetup and sigaction with Signal Interface Routine (SIR)..................................558

 ix

x

Tables

1. OpenExtensions Assembler Macros... 3

2. open() Request Access Mode with Characters &&...61

3. Contents of value_or_address Parameter.. 265

4. Formats of the UTSNAMERELEASE and UTSNAMEVERSION Fields... 481

5. OpenExtensions Return Codes by Numeric Value... 487

6. OpenExtensions Return Codes by Symbolic Name..490

7. Location of Return Information.. 495

8. OpenExtensions Reason Codes by Numeric Value.. 496

9. File pool server internal reason codes... 533

10. OpenExtensions Reason Codes by Symbolic Name.. 534

11. Support of Signal Calls..559

 xi

xii

About This Document

This document describes the IBM z/VM OpenExtensions callable services and the mapping macros
related to the callable services. These services are interfaces between the z/VM operating system
and the functions specified in the POSIX.1 standard (ISO/IEC 9945-1:1990[E] IEEE Std 1003.1-1990:
First edition 1990-12-07; Information Technology—Portable Operating System Interface [POSIX] Part
1; System Application Program Interface [API] [C Language]). These functions are used by z/VM POSIX
support. This document also describes callable services that are not specified in the standards.

Intended Audience
This information is for assembler programmers who want to use the z/VM POSIX support interface.

Where to Find More Information
More detailed information on the z/VM POSIX support can be found in the following documents:

• z/VM: OpenExtensions POSIX Conformance Document
• z/VM: OpenExtensions User's Guide
• z/VM: OpenExtensions Commands Reference

Other documents you might need to develop application programs are listed in the “Bibliography” on
page 567.

Using the Online HELP Facility
You can receive online information about the OpenExtensions callable services and macros described
in this book by using the VM HELP Facility. For example, to display a menu of OpenExtensions callable
services, enter:

help oroutine menu

To display a menu of OpenExtensions macros, enter:

help omacro menu

To display information about a specific OpenExtensions service (such as access, BPX1ACC), enter one of
the following commands:

help oroutine access
help oroutine bpx1acc

Because of the length of some of the routine names, typing the first eight characters of a routine's name
(omitting the underscores) may not provide help for the desired routine. For example, entering:

help oroutine pthreadc

could mean you would like help for pthread_cancel or pthread_create. In this case, you can try an
abbreviation for the routine name. For example, to request help on pthread_cancel, enter:

help oroutine pthcance

Of course, you can always request help on a routine by using its BPX name. To request help on
pthread_create (BPX1PTC), enter:

help oroutine bpx1ptc

© Copyright IBM Corp. 1993, 2023 xiii

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp0_v7r3.pdf#nameddest=dmsp0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3

For more information about using the HELP Facility, see the z/VM: CMS User's Guide. To display the main
HELP Task Menu, enter:

help

For more information about the HELP command, see the z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xiv z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1993, 2023 xv

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xvi z/VM: 7.3 OpenExtensions Callable Services Reference

Summary of Changes for z/VM: OpenExtensions Callable
Services Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6296-73, z/VM 7.3 (September 2023)
This edition includes terminology, maintenance, and editorial changes.

SC24-6296-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6296-01, z/VM 7.2 (July 2021)
This edition includes terminology, maintenance, and editorial changes.

SC24-6296-01, z/VM 7.2 (March 2021)
This edition includes terminology, maintenance, and editorial changes.

SC24-6296-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6296-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1993, 2023 xvii

xviii z/VM: 7.3 OpenExtensions Callable Services Reference

Chapter 1. Invocation Details for Callable Services

As an interface between the z/VM operating system and the functions specified in the POSIX.1 standard,
OpenExtensions provides access to a set of assembler callable services known as the OpenExtensions
callable services. These callable services have a standard set of syntax and linkage requirements as well
as parameter specification details necessary for successful invocation.

Establishing the OpenExtensions Environment
The OpenExtensions callable services are provided to enable language run-time environments to
implement the POSIX interface and to provide system programmers access to a language-neutral subset
of the POSIX functions. Because this is essentially an interface for the writer of a language run-time
environment, the following guidelines apply to its use.

The create_thread_environment (BPX1CTE) service should be called before calling any of the other
OpenExtensions callable services. The create_thread_environment (BPX1CTE) service causes the
initialization of the POSIX process environment in the CMS session, including the establishment of a
caller-specified language environment manager to handle language-specific threading conditions.

If any other OpenExtensions callable service is called before create_thread_environment (BPX1CTE),
POSIX process initialization is implicitly performed, but the default assembler language environment
manager is established for the process.

Syntax Conventions for the Callable Services
A callable service is a programming interface that uses the CALL macro to access system services.
To code a callable service, code the CALL macro followed by the name of the callable service and a
parameter list. A syntax diagram for a callable service follows.

function_name
parm_1
parm_2
.
.
return_value
return_code
reason_code

This format does not show the assembler column dependance (columns 1, 10, 16, and 72) or parameter
list options (VL and MF). The exact syntax is shown in the examples in “Reentrant Entry Linkage” on page
551.

Considerations for coding callable services are:

• You must code all the parameters in the parameter list because parameters are positional in a callable
service interface. That is, the function of each parameter is determined by its position with respect
to the other parameters in the list. Omitting a parameter, therefore, assigns the omitted parameter's
function to the next parameter in the list.

• You must place values explicitly into all supplied parameters, because callable services do not set
defaults.

Function_Name
The name that assembler understands is the name of an entry point in the form BPX1xxx, where xxx is
a three-character symbol unique to the service.

Invoking Callable Services

© Copyright IBM Corp. 1993, 2023 1

This entry point is a stub routine, bound into your program at module build time, for a CMS Callable
Services Library (CSL) routine.

Parm Parameters
The parameters parm_1, parm_2, and so on, are placeholders for variables that may be part of a
service's syntax.

Return_Value
The return_value parameter is a common parameter to many callable services. It indicates the
success or failure of the service. If the callable service fails, it returns a -1 in the return_value.
For most successful calls to OpenExtensions services, the return value is set to 0. However, some
services, such as “getgrgid (BPX1GGI) — Access the Group Database by ID” on page 117 and
“getgrnam (BPX1GGN) — Access the Group Database by Name” on page 119, return zeros instead
of -1 when the service fails.

Some callable services, such as spawn (BPX1SPN), return a positive return value to indicate success.
Other services are unique, such as “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on
page 79, in that they do not return when successful.

Some services do not have a return value, because the services do not fail under normal conditions.
System failures, however, may cause those services to fail. In this case, the process that issues the
call abends. See “getegid (BPX1GEG) — Get the Effective Group ID” on page 114 for an example.

Return_Code
The return_code parameter is referred to as the errno in the POSIX C interface. The return_code is
returned only if the service fails.

In the callable service description, some of the possible return codes are listed for services that have
return codes. The return codes are described in each service if they help describe its function.

Reason codes are listed with the return code that they describe.

All the return codes and their descriptions are found in Appendix A, “Return Codes,” on page 487.

Some return_code values may occur for any callable service: the OpenExtensions unique return codes.
They are not always listed under each callable service. See Appendix A, “Return Codes,” on page 487
for a description of each of these.

Reason_Code
The reason_code parameter usually accompanies the return_code value when the callable service
fails. It further defines the return code. Reason codes do not have a POSIX equivalent.

All the reason codes and their descriptions are found in Appendix B, “Reason Codes,” on page 495.
Reason codes are listed both alphabetically by name and numerically by value. The value is the lower
half of the reason code.

Linkage Conventions for the Callable Services
Callers must use the following linkage conventions for all OpenExtensions callable services:

• Register 1 is set up by the CALL macro with the address of a parameter list, which is a list of consecutive
words, each containing the address of a parameter to be passed. The last word in this list must have a 1
in the high-order (sign) bit.

• Register 14 is set up by the CALL macro; it contains the return address.
• Register 15 is set up by the CALL macro; it contains the entry point address of the service stub being

called.

The OpenExtensions callable services do not use the contents of any registers other than 1, 14, and 15.

Programming Language Binding Files
CMS provides language binding files that define function entry points and constants used by the
OpenExtensions callable services.

Invoking Callable Services

2 z/VM: 7.3 OpenExtensions Callable Services Reference

VMASMOVM MACRO is the binding file for Assembler. It contains definitions for the VMPOSGNL system
event and includes the macros listed in Table 1 on page 3.

Table 1. OpenExtensions Assembler Macros

Macro Function

BPXYACC Maps flag values for the access (BPX1ACC) service

BPXYAUDT Maps flag values for the chaudit (BPX1CHA) and fchaudit (BPX1FCA) services

BPXYBRLK Maps the byte range lock request for the fcntl (BPX1FCT) service

BPXYCID Maps the response structure for the getclientid (BPX1GCL) service

BPXYCONS Defines constants used by OpenExtensions services

BPXYCW Defines serialization constants used by OpenExtensions services

BPXYDIRE Maps directory entries for the readdir (BPX1RDD) service

BPXYERNO Defines component return and reason codes

BPXYFCTL Maps command values and flags for the fcntl (BPX1FCT) service

BPXYFTYP Defines file types

BPXYGIDN Maps data returned for the getpwnam (BPX1GPN) and getpwuid (BPX1GPU)
services

BPXYGIDS Maps data returned for the getgrnam (BPX1GGN) and getgrgid (BPX1GGI)
services

BPXYINHE Maps the spawn (BPX1SPN) inheritance structure

BPXYIOCC Maps command constants for the w_ioctl (BPX1IOC) service

BPXYIOV Maps the I/O vector structure used by the readv (BPX1RDV), writev
(BPX1WRV), sendmsg (BPX2SMS), and recvmsg (BPX2RMS) services

BPXYIPCP Maps interprocess communications permissions

BPXYIPCQ Maps the w_getipc (BPX1GET) data structure

BPXYMNT Maps the modes for the mount (BPX1MNT) service

BPXYMODE Maps the mode constants of the file services

BPXYMSG Maps interprocess communications message queues

BPXYMSGF Maps the message flags used by the send (BPX1SND), recv (BPX1RCV),
sendmsg (BPX2SMS), and recvmsg (BPX2RMS) services

BPXYMSGH Maps the message header used by the sendmsg (BPX2SMS) and recvmsg
(BPX2RMS) services

BPXYMTM Maps the modes for the mount (BPX1MNT) and umount (BPX1UMT) services

BPXYOPNF Maps flag values for the fcntl (BPX1FCT) and open (BPX1OPN) services

BPXYPCF Defines command values for the pathconf (BPX1PCF) and fpathconf
(BPX1FPC) services

BPXYPGPS Maps the response structure for the w_getpsent (BPX1GPS) service

BPXYPPSD Maps signal delivery data

BPXYPTAT Maps attributes for the pthread services

BPXYPTXL Maps the parameter list for the pthread services

Invoking Callable Services

Chapter 1. Invocation Details for Callable Services 3

Table 1. OpenExtensions Assembler Macros (continued)

Macro Function

BPXYSEEK Defines constants for the lseek (BPX1LSK) service

BPXYSEL Maps data structures and constants for the select/selectex (BPX1SEL) service

BPXYSELT Maps the timeout value for the select/selectex (BPX1SEL) service

BPXYSEM Maps interprocess communications semaphores

BPXYSHM Maps interprocess communications shared memory segments

BPXYSIGH Defines signal constants

BPXYSINF Maps the wait-extension (BPX1WTE) Siginfo_t structure

BPXYSOCK Maps the SOCKADDR data structure and constants used by socket-related
services

BPXYSSTF Maps the response structure for the fstatvfs (BPX1FTV), statvfs (BPX1STV),
and w_statvfs (BPX1STF) services

BPXYSTAT Maps the response structure for the stat (BPX1STA) service

BPXYTIMS Maps the response structure for the times (BPX1TIM) service

BPXYTIOS Maps the termios structure

BPXYUTSN Maps the response structure for the uname (BPX1UNA) service

BPXYVM5 Defines function code values for the openvmf (BPX1VM5) service

BPXYVM6 Defines function code values for the setopen (BPX1VM6) service

BPXYVM7 Defines function code values for the openvmf7 (BPX1VM7) service

BPXYWAST Maps the wait status word

VMREXOVM COPY is the binding file for REXX. It includes the definitions for the VMPOSGNL system event
as well as the constants defined by the macros listed for VMASMOVM MACRO. However, no equivalent
to the DSECT mappings defined by those macros is provided in VMREXOVM. REXX applications should
use the parse and substr instructions to interpret the contents of buffers returned by OpenExtensions
callable services.

The VMCOVM H file is also provided for C. It contains definitions for the VMPOSGNL system event, but it
does not include bindings for the OpenExtensions callable services. The POSIX bindings can be used for C
applications.

Invocation from REXX Procedures
Callers from REXX must use the REXX mechanism for calling routines from a Callable Services Library
(CSL). A subcommand environment called OPENVM is provided to make invocation of these callable
services look like other requests for host functions. After addressing the OPENVM subcommand
environment, the services are invoked by specifying the routine name followed by the parameters. In
addition, the OPENVM language binding file that defines REXX variables used by the OpenExtensions
services should be included by using the APILOAD function. An example of a REXX invocation of one of
the callable services follows.

 trace R /* *** Show results of each command. *** */
 call apiload 'VMREXOVM'
 /* Change the working directory */
 pathname = '/home/myfiles'
 plength = length(pathname)
 address OPENVM

Invoking Callable Services

4 z/VM: 7.3 OpenExtensions Callable Services Reference

 'BPX1CHD plength pathname return_value' ,
 'return_code reason_code'
 say return_value /* *** Show what happened. *** */

Parameter Descriptions for Callable Services
All the parameters of the OpenExtensions callable services described in this book are required positional
parameters. When you call the service, you must specify all the parameters in the order listed.

Note: Some parameters do not require values and allow you to substitute zeros for the parameter. The
descriptions of the parameters identify those that can be replaced by zeros, and when to do so.

The description of each parameter begins with the three-part notation:

(usage,type,length)

In this notation:
usage

is one of the following, indicating how the variable is used by the called function:
input

You must supply a value for the parameter in the call.
output

The service returns a value in the parameter when the call is finished.
input/output

The same parameter is used to supply a value to the service and return a value from the service.
type

is one of the following, indicating the type of data the parameter contains:
INT

Signed binary integer
CHAR

Character string
PTR

Pointer to the data described by the next parameter
length

is the length of the variable, specified as one of the following:

• The number of bytes or characters (depending on the data type)
• The number of equal-length elements in an array
• The name of another parameter that specifies the number of bytes, characters, or elements.

Call Parameter Lists
Every callable service is called with a parameter list. As shown in Figure 1 on page 6, when a service is
called:

• Register 1 points to a parameter address list.
• Each field in the parameter address list points to a field containing a parameter.
• The "parameter list" is the set of those parameters, however they are arranged in storage. The last

parameter pointer in the list must have the high-order bit set to 1.

Invoking Callable Services

Chapter 1. Invocation Details for Callable Services 5

Figure 1. Call Parameter List

Understanding Byte File System (BFS) Path Name Syntax
All OpenExtensions Byte File System (BFS) objects (files, directories, and so on) are identified through
path names. A path name has an optional beginning slash, followed by one or more path name
components separated by slashes. A path name component is a string of characters used to identify
a BFS object.

A BFS path name may represent a file system accessed through the Network File System (NFS). The NFS
file system may be on a remote or local system, which may be VM or non-VM. The mount (BPX1MNT)
service or the OPENVM MOUNT command links an NFS file system to a BFS path name, enabling it to be
used on most commands and interfaces that accept BFS path names.

The BFS path name identifier is shown as one word, pathname, when it depicts a specific path name
variable.

Format

1

/../VMBFS:  filepoolid : filespaceid /
2

/

pathname_component

/

Notes:
1 The minimum path name is a single slash (/).
2 The ending slash is required only if one or more path name components are also specified.

Parameters
/../VMBFS

is a keyword string that indicates a fully qualified VM byte file system root, which identifies the byte
file system in which the specified object resides. The VMBFS keyword is not case sensitive.

Invoking Callable Services

6 z/VM: 7.3 OpenExtensions Callable Services Reference

: (colon)
is a separator that must be specified following the VMBFS keyword and the filepoolid.

filepoolid
is the name of the file pool that contains the byte file system. The file pool name can be up to
eight characters long. The first character must be alphabetic, but the remaining characters can be
alphabetic or numeric. This name is not case sensitive.

filespaceid
is the name of the file space in which the byte file system resides. The file space ID can be up to eight
characters long. This name is not case sensitive.

/ (slash)
is a separator that must be specified after the filespaceid if path name components are specified. The
slash must also be specified between path name components.

When / is specified as a single-character path name, it indicates the root (top) directory of the
currently-mounted byte file system.

pathname_component
is the name of an object in the BFS hierarchy. A path name component may be 1-255 characters
in length. The slash character (/) and the null character (X'00') are not valid within a path name
component. If multiple path name components are specified, they must be separated by slashes.
All path name components prior to the last one specified are interpreted as directory names in the
hierarchy. The last path name component, if not followed by a slash, may or may not be a directory.
When the last path name component is followed by a slash, it is always interpreted as a directory.

Path name component names are case sensitive.

Usage Notes
1. A byte file system may be enrolled in the same file pool as other byte file systems and SFS users.
2. In the OpenExtensions environment, all byte file systems are uniquely identified with the /../
vmbfs:filepoolid:filespaceid construct.

3. Path names can be specified in several ways:

• When the first character of the path name is not a slash, the path name is known as a relative path
name. The search for the file starts at the working directory. To establish the working directory, use
the chdir (BPX1CHD) service or the OPENVM SET DIRECTORY command. To find the value of the
current working directory, use the getcwd (BPX1GCW) service or the OPENVM QUERY DIRECTORY
command.

• When /../vmbfs:filepoolid:filespaceid is specified at the start of a path name, it is referred to as
a fully qualified path name. The file is searched for in the byte file system, which is defined as file
space filespaceid in file pool filepoolid. The byte file system does not need to be explicitly mounted.

• When the path name starts with a slash (but not /../vmbfs:filepoolid:filespaceid), the path name
is known as an absolute path name. The search for the file starts from the root of the currently
mounted byte file system. The root directory can be established by using the mount (BPX1MNT)
service or the OPENVM MOUNT command, or by the POSIXINFO FSROOT statement in your CP
directory entry. To find the value of the root directory, use the uname (BPX1UNA) service or the
OPENVM QUERY MOUNT command.

See z/VM: OpenExtensions Commands Reference for more information on OPENVM commands.
4. The entire path name must be in the range of 1-1023 characters. Individual path name components

cannot exceed 255 characters. All characters are valid within a path name, with the following
restrictions:

• The null character (X'00') is not permitted within a path name.
• A slash (/) is interpreted as the delineator of a path name component.

For an application to be portable to the broadest set of environments, POSIX standards suggest that
the application restrict the path name as follows:

Invoking Callable Services

Chapter 1. Invocation Details for Callable Services 7

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3

• Do not exceed 14 characters for any path name component.
• Use only these characters:

A-Z
Uppercase alphabetic

a-z
Lowercase alphabetic

0-9
Numeric

.
Period

_
Underscore

-
Dash

5. Path name components are case sensitive. Note that Abc, abC, and ABC are valid unique path name
components.

6. Specifying a path name that begins with exactly two slashes (//) is not permitted; the request will be
rejected. A path name that begins with a single slash or three or more slashes is accepted.

7. There are two path name components (file names) that have special meaning during path name
resolution. These are:
.

The path name component consisting of the single dot character (.). When dot is encountered in
the path name, it refers to the directory specified by the preceding path name component.

Some dot (.) examples:

a. If you specified a path name of:

/joes/recipes/./pie

It would be equivalent to:

/joes/recipes/pie

b. If you specified a path name of:

./joes

It would be equivalent to:

joes

..
The path name component consisting of two dot characters (..). When dot dot is encountered
in the path name, it refers to the parent directory of its predecessor. As a special
case, in the root directory, dot dot refers to the root directory itself. The construct /../
vmbfs:filepoolid:filespaceid, as described above, is the only exception.

Some dot dot (..) examples:

a. If you had previously set your working directory (using chdir or OPENVM SET DIRECTORY) to:

 /joes/recipes/

and you specified a relative path name of ../tools, this would be equivalent to specifying an
absolute path name of:

 /joes/tools

Invoking Callable Services

8 z/VM: 7.3 OpenExtensions Callable Services Reference

b. If you are working in /bin/util/src, and you want to go to /bin/util, you can enter:

openvm set directory ..

c. If you are working in /u/rexx/prog/src, and you want to refer to the file test in the
directory /u/rexx/appl/examples, you could use the following path name to refer to that
file:

../../appl/examples/test

Understanding Network File System (NFS) Path Name Syntax
The Network File System (NFS) path name identifies a file system or directory accessed through NFS. It
may be on a remote or local system, which may be VM or non-VM.

Format

/../NFS:  foreign_host / directory_name

,serveroptions

Parameters
/../NFS

is a keyword string that indicates the specified path name is a fully-qualified remote file system,
accessed by way of a Network File System server. The NFS keyword is not case sensitive.

: (colon)
is a separator that must be specified following the NFS keyword.

foreign_host
identifies the name of the foreign host. Specify foreign_host using an internet host name or a dotted-
decimal address. This name is not case sensitive.

/ (slash)
is a separator that must be specified following the foreign_host.

directory_name
identifies the file system or directory to be mounted. The format of directory_name is dependent upon
the operating system running at the site identified by foreign_host. This name may be case sensitive.

serveroptions
are NFS server MOUNT options, which depend upon the NFS server at foreign_host.

The delimiter between directory_name and serveroptions is defined by the remote host. Typically a
comma is used.

Unexpected results may occur if the user name, UID, or GID information you specify in serveroptions
is not consistent with what the NFS client uses. See the NETRC, USERID, and ANONYMOUS parameters
of the OPENVM MOUNT command in the z/VM: OpenExtensions Commands Reference for information
about how the NFS client determines which UNIX-style credentials are used on the request. If those
credentials are not consistent with what the NFS server is using, you may have problems with some
operations such as file creation.

Usage Notes
1. The directory_name portion of the NFS path name is generally case sensitive. VM's minidisk file system

and Shared File System are exceptions to this rule.

Invoking Callable Services

Chapter 1. Invocation Details for Callable Services 9

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3

Mapping Macros
Mapping macros map the parameter options, constants, and data returned in many OpenExtensions
callable services. Most of the mapping macros can be expanded with or without a DSECT statement. The
invocation operand DSECT=YES is the default. The macros are described in Chapter 3, “Mapping Macro
Descriptions,” on page 409.

Examples
The description of each callable service includes an invocation example. These examples follow the rules
of reentrancy. They use DSECT=NO and place the variables in the program's dynamic storage DSECT,
which is allocated upon entry. The declaration for all local variables used in an example follows the
example.

Reentrant Coding versus Nonreentrant Coding: See “Example” on page 395 for an example of
the w_getpsent (BPX1GPS) service using reentrant code. Compare this example with an example of
nonreentrant code for the same service in “Nonreentrant Entry Linkage” on page 553, and note the
following:

• Placement of the standard 18-word register save area
• Use of program/dynamic storage base registers
• @DYNAM DSECT in the reentrant version
• Different forms of the CALL macro
• Several variables (such as, PGPSCONTTYBLEN) that are initialized by the assembler in the nonreentrant

version (see “BPXYPGPS — Map the Response Structure for the w_getpsent Service” on page 449 for
the DCs), and at execution time with moves and stores in the reentrant version.

Callable Service Failures
When a typical application receives an unexpected return code from a callable service, it usually exits the
application. If an application is written to handle or manage unexpected errors, you need to understand
the following information.

Services can fail for a number of reasons: bugs in the system, user code causing failure return codes, or
abend conditions. Depending on when the failure occurs in the service path, the requested function may
or may not have been performed. For example, if the application provides an address for a file descriptor
that does not exist, the open service (BPX1OPN) completes the open processing and then fails on the
return path when trying to set the file descriptor. If an EFAULT return code is returned, the user may
assume the file was not opened, even though it is.

If the return value parameter is not in valid storage, the services can complete successfully yet not return
normally to the caller. Since the service cannot set the return value, it abends. It is possible for the C
runtime library to convert the return value into a SIGABND or SIGSEGV signal that can be caught and
handled by the user signal action defined in sigaction. The user needs to be aware that functions that
abend in this way may have completed their processing. For example, a call to sigaction could modify the
state of signal information and then fail on the return to the caller; in this case, the caller should not make
any assumptions about the state of the signal environment.

Authorization
Users authorized to perform special functions are defined as having appropriate privileges, and they are
called superusers. This corresponds to the user's process having an effective user ID of zero or the user's
virtual machine having file pool administration authority for the applicable file pool server. For more
information about POSIX user database concepts, see z/VM: OpenExtensions User's Guide.

Invoking Callable Services

10 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3

Chapter 2. Callable Service Descriptions

This section describes each of the OpenExtensions callable services. The services are arranged in
alphabetical order.

If you are unfamiliar with the conventions used to describe the system calls, refer to Chapter 1,
“Invocation Details for Callable Services,” on page 1.

© Copyright IBM Corp. 1993, 2023 11

accept (BPX1ACP) — Accept a Connection Request from a Client
Socket

BPX1ACP
socket_descriptor
sockaddr_length
sockaddr
return_value
return_code
reason_code

Purpose
Use the accept (BPX1ACP) service to allow a server to accept a connection request from a client. The
service extracts the first connection on the queue of pending connections, creates a new socket with
the same properties as the specified socket, and allocates a new descriptor for that socket. If there are
no connections pending, the service either blocks until a connection request is received, or fails with
an EWOULDBLOCK return code, depending on whether the specified socket is marked as blocking or
nonblocking.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the accepting (server) socket.
sockaddr_length

(input/output,INT,4) is a variable for specifying the length of the sockaddr parameter. The length
should be less than 4096 bytes (4KB). On output, the service updates this field with the length of
the client address returned in sockaddr. If you do not want the client address, specify 0 for this
parameter.

sockaddr
(output,CHAR,sockaddr_length) is a variable where the service returns the SOCKADDR structure
containing the socket address of the connecting client. The format of the socket address is
determined by the domain in which the client resides. This field is mapped by the BPXYSOCK macro.
See “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465.

return_value
(output,INT,4) is a variable where the service returns the new socket descriptor if the request is
successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The socket descriptor passed as input refers to a socket that was created with the socket (BPX1SOC)

service, bound to an address with the bind (BPX1BND) service, and has successfully issued a call to
the listen (BPX1LSN) service.

accept (BPX1ACP)

12 z/VM: 7.3 OpenExtensions Callable Services Reference

Before calling accept (BPX1ACP), you can find out if the socket has any connections pending by doing a
read select with the select (BPX1SEL) service.

2. In order for a socket address to be returned for a UNIX domain socket, the client application doing the
connect must bind a unique local name to the socket using the bind (BPX1BND) service before running
the connect (BPX1CON) service.

Example

The following code accepts a connect request from a client. SOCKDESC was previously set by a call to
socket (BPX1SOC). A bind (BPX1BND) and a listen (BPX1LSN) must also have been previously done.
The SOCKADDR structure was built by the call to bind (BPX1BND). This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551. For the data structure, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for
Socket-Related Services” on page 465.

 CALL BPX1ACP, Accept a socket connect request +
 (SOCKDESC, Input: Socket descriptor +
 =A(SOCK#LEN+SOCK_SUN#LEN), Input: Length - Sockaddr +
 SOCKADDR, Output: Sockaddr structure +
 RETVAL, Return value: Socket descr or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 L R2,RETVAL
 ST R2,SOCKDES2 Store the new socket descriptor

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF An incorrect file descriptor was specified. The following reason codes can
accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

ECMSPFSPERM The physical file system encountered a system error. The following reason
code can accompany this return code: JRInvalidVnode.

EINTR A signal interrupted the accept service before any connections were
available. The following reason code can accompany this return code:
JRSignalReceived.

EINVAL One of the input parameters was incorrect. The following reason codes can
accompany this return code: JRNegativeValueInvalid, JRSocketCallParmError.

The socket is not accepting connections. A listen must be done prior to
the accept. The following reason code can accompany this return code:
JRListenNotDone.

EIO There has been a network or transport failure. The following reason code can
accompany this return code: JRPrevSockError.

ENOBUFS A buffer could not be obtained.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EOPNOTSUPP The socket type of the specified socket does not support accepting
connections.

EWOULDBLOCK The socket file descriptor is marked nonblocking, and no connections are
present to be accepted.

accept (BPX1ACP)

Chapter 2. Callable Service Descriptions 13

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor” on page 20
• “connect (BPX1CON) — Establish a Connection Between Two Sockets” on page 57
• “listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection Requests from Clients” on

page 152
• “select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues” on page 258
• “socket (BPX1SOC) — Create a Socket” on page 330

accept (BPX1ACP)

14 z/VM: 7.3 OpenExtensions Callable Services Reference

access (BPX1ACC) — Determine If a File Can Be Accessed

BPX1ACC
pathname_length
pathname
access_mode
return_value
return_code
reason_code

Purpose
Use the access (BPX1ACC) service to determine whether you can access a file. You identify the file by its
path name.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file to be checked for
accessibility. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

access_mode
(input,INT,4) is a variable for specifying the accessibility to be tested. This variable is mapped by the
BPXYACC macro. See “BPXYACC — Map Flag Values for the access Service” on page 412. The values
for the variable are:

Value Meaning

ACC_F_OK Test for file existence.

ACC_R_OK Test for permission to read.

ACC_W_OK Test for permission to write.

ACC_X_OK Test for permission to execute or search.

return_value
(output,INT,4) is a variable where the service returns 0 if the request completes successfully (the file
exists or access is permitted), or -1 if the request is not successful or the file cannot be accessed in
the specified way.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Testing for file permissions is based on the real user ID (UID) and real group ID (GID), not the effective

UID or effective GID of the calling process.
2. The caller can test for the existence of a file, or for access to the file, but not both.

access (BPX1ACC)

Chapter 2. Callable Service Descriptions 15

3. In testing for permission, the caller can test for any combination of read, write, and execute
permission. If the caller is testing a combination of permissions, the return value indicates failure
if any one of the accesses is not permitted.

4. If the caller has appropriate privileges, the access test is successful even if the permission bits are off,
except when testing for execute permission. When the caller tests for execute permission, at least one
of the execute permission bits must be on for the test to be successful.

Example

The following code determines if file /usr/inv/network.t can be accessed. This example follows the rules
of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551. For the data structure, see “BPXYACC — Map Flag Values for the access Service” on page
412.

 MVC BUFFERA(18),=CL18'/usr/inv/network.t'
 MVC BUFLENA,=F'18'
 XC ACC(ACC#LENGTH),ACC
 MVI ACCINTENTFLAGS,ACC_R_OK+ACC_W_OK Read & write access
 SPACE ,
 CALL BPX1ACC, Determine accessibility of a file +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 ACC, Input: Access, BPXYACC +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 ICM R15,B'1111',RETVAL Set condition code for RETVAL
 BZ PSEUDO Branch if RETVAL is zero
 CLC RETCODE,=A(EACCES) Compare RETCODE to EACCES
 BE PSEUDO Branch if access denied

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process does not have appropriate permissions to access the file
in the ways specified by the access_mode parameter, or the process does not
have search permission for some component of the path name.

EINVAL The access_mode parameter is incorrect.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRInvalidAmode.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The path name is longer than 1023 characters, or some component of the
path name is longer than 255 characters. CMS does not support name
truncation.

ENOENT No file named pathname was found, or no path name was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR Some component of the path name is not a directory.

access (BPX1ACC)

16 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EROFS The access_mode parameter is testing for write access to a read-only file
system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “open (BPX1OPN) — Open a File” on page 181
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

access (BPX1ACC)

Chapter 2. Callable Service Descriptions 17

alarm (BPX1ALR) — Set an Alarm

BPX1ALR
seconds
return_value

Purpose
Use the alarm (BPX1ALR) service to generate a SIGALRM signal after a specified number of seconds have
elapsed. The SIGALRM signal delivery is directed to the calling thread.

Parameters
seconds

(input,INT,4) is a variable for specifying an unsigned value which is the minimum number of seconds
to pass between receipt of this request and generation of the SIGALRM signal. If zero is specified, any
outstanding alarm request is canceled; no new alarm interval is set. Processor scheduling delays can
cause the delivery of the SIGALRM signal to occur after the desired time.

return_value
(output,INT,4) is a variable where the service stores an unsigned return value. If there is a previous
alarm request with time remaining, the service returns a nonzero value that is the number of seconds
until the previous request would have generated a SIGALRM signal. The return value is rounded to the
nearest second except when the time remaining is less than a half second. When the remaining time is
less than a half second and greater than zero, the return value is set to 1. If there is no previous alarm
request with time remaining, the return value is set to 0.

Usage Notes
1. The access (BPX1ACC) service is always successful, and no return value is reserved to indicate an

error.
2. An abend is generated when failures are encountered that prevent the access (BPX1ACC) service from

completing successfully.
3. Alarm requests are not stacked; only one SIGALRM generation is scheduled in this manner. If

SIGALRM was not generated, the call reschedules the time that SIGALRM is generated.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code schedules an alarm in 5 seconds. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

alarm (BPX1ALR)

18 z/VM: 7.3 OpenExtensions Callable Services Reference

 MVC SECONDS,=F'5'
 SPACE ,
 CALL BPX1ALR, Schedule Alarm +
 (SECONDS, Input: Time before SIGALRM +
 RETVAL), Return value: 0 or -1 +
 VL,MF=(E,PLIST) ----------------------------------

VM-Related Information
Both the alarm service, BPX1ALR, and the sleep service, BPX1SLP, use CMS Application Multitasking
Timer Services. If the task invokes TimerStopAll, any outstanding timers set by the alarm or sleep service
will also be canceled.

If a timer set by the alarm or sleep service is canceled (using TimerStopAll) or expires, both a SIGALRM
signal is generated and a VMTIMER event is signalled. See z/VM: CMS Application Multitasking for more
information on TimerStopAll and the VMTIMER event.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time” on page 328
• “spawn (BPX1SPN) — Spawn a Process” on page 333.

alarm (BPX1ALR)

Chapter 2. Callable Service Descriptions 19

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

bind (BPX1BND) — Bind a Unique Local Name to a Socket
Descriptor

BPX1BND
socket_descriptor
sockaddr_length
sockaddr
return_value
return_code
reason_code

Purpose
Use the bind (BPX1BND) service to bind a unique local name to a socket descriptor.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket to be bound.
sockaddr_length

(input,INT,4) is a variable for specifying the length of the sockaddr parameter.
sockaddr

(input,CHAR,sockaddr_length) is a variable for specifying the SOCKADDR structure that contains the
name to be bound to the socket descriptor. The format of SOCKADDR is determined by the domain
in which the socket descriptor was created. SOCKADDR is mapped by the BPXYSOCK macro. See
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. An application can retrieve the assigned socket name with the getsockname service.
2. Sockets in the AF_UNIX domain create a name in the file system that must be deleted by the

application (using unlink) when it is no longer needed.
3. For SOCKADDR to be returned on an accept request for an AF_UNIX domain socket, the client

application doing the connect must bind a unique local SOCKADDR to the socket with the bind request
before issuing the connect request.

4. Server applications issue the bind request to register their addresses with the system. Both connection
and connectionless servers must do this before accepting requests from clients.

5. For AF_INET or AF_INET6, the user must have appropriate privileges to bind to a port in the range from
1 to 1023.

bind (BPX1BND)

20 z/VM: 7.3 OpenExtensions Callable Services Reference

6. For AF_IUCV, the local socket name must be unique within the virtual machine. Only one socket can be
bound to a given name. The recommended form of the name contains eight characters, padded with
blanks to the right. The eight characters for a connect call executed by a client must exactly match the
eight characters passed in the bind call executed by the server.

Example

The following code does a bind to associate a name with a socket. SOCKDESC was previously set by a call
to socket (BPX1SOC). This example follows the rules of reentrancy. For linkage information, see Appendix
D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYSOCK
— Map the SOCKADDR Structure and Constants for Socket-Related Services” on page 465.

 SPACE ,
 MVI SOCK_LEN,12 Store the length of the address
 MVI SOCK_FAMILY,AF_UNIX Set the domain to AF_UNIX
 MVC SOCK_SUN_NAME(12),=CL12'/tmp/socket1' Set the name
 CALL BPX1BND, Bind a name to a socket +
 (SOCKDESC, Input: Socket Descriptor +
 SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
 SOCKADDR, Input: Sockaddr structure +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES For AF_UNIX, the process does not have search permission on a component
of the path prefix, or it does not have write access to the directory of the
requested name.

For AF_INET or AF_INET6, permission denied. A user that is not in the obeylist
attempts to bind to a port between 0-1023 when RESTRICTLOWPORTS has
been specified on the ASSORTEDPARMS statement. Or, a user attempts to
bind to a port that has previously been reserved using a PORT statement in
the TCP/IP configuration file or through obeyfile processing.

EADDRINUSE For AF_INET, AF_INET6, and AF_IUCV, the specified address is already in use.

EAFNOSUPPORT The address family specified in the address structure is not supported.

EBADF The socket descriptor is incorrect. The following reason codes can accompany
this return code: JRFileDesNotInUse, JRFileNotOpen.

EDESTADDRREQ A destination address is required. The following reason code can accompany
this return code: JRSocketCallParmError.

EINVAL One of the input parameters is incorrect. The following reason codes can
accompany this return code: JRSocketCallParmError, JRSockNoname.For
AF_UNIX, the following reason codes can accompany this return code:
JREndingSlashExtLink, JRNFSNotallowed, JRInvalidExtLinkLen

EIO There has been a network or transport failure. The following reason code can
accompany this return code: JRPrevSockError.

ENOBUFS A buffer could not be obtained.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EPERM The user is not permitted to bind to the specified port. The following reason
code can accompany this return code: JRUserNotPrivileged.

bind (BPX1BND)

Chapter 2. Callable Service Descriptions 21

The following are for AF_UNIX only:

Return Code Explanation

EEXIST The file or socket already exists. The following reason code can accompany
this return code: JRExtFileAlreadyExists

EIO An I/O error occurred.

ELOOP Too many symbolic links were encountered in translating the path name in
sockaddr.

ENAMETOOLONG A component of a path name exceeded NAME_MAX characters, or an entire
path name exceeded PATH_MAX characters.

ENOENT The AF_UNIX path name is not valid. The following reason code can
accompany this return code: JRFileNotThere

ENOTDIR A component of the path prefix of the path name in sockaddr is not a
directory.

EROFS The name would reside on a read-only file system. The following reason code
can accompany this return code: JRReadOnlyFS

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “accept (BPX1ACP) — Accept a Connection Request from a Client Socket” on page 12
• “connect (BPX1CON) — Establish a Connection Between Two Sockets” on page 57
• “getsockname/getpeername (BPX1GNM) — Get the Name of a Socket or Peer” on page 136
• “listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection Requests from Clients” on

page 152
• “socket (BPX1SOC) — Create a Socket” on page 330

bind (BPX1BND)

22 z/VM: 7.3 OpenExtensions Callable Services Reference

chaudit (BPX1CHA) — Change Audit Flags for a File by Path Name

BPX1CHA
pathname_length
pathname
audit_flags
option_code
return_value
return_code
reason_code

Purpose
Use the chaudit (BPX1CHA) service to change the types of access to a file to be audited for the external
security manager (ESM). You identify the file by its path name.

For the corresponding service using a file descriptor, see “fchaudit (BPX1FCA) — Change Audit Flags for a
File by Descriptor” on page 81.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file for which auditing
is to be changed. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

audit_flags
(input,INT,4) is a variable for specifying the access to be audited. This variable is mapped by the
BPXYAUDT macro. See “BPXYAUDT — Map Flag Values for the chaudit and fchaudit Services” on page
413. Valid values for this variable include any combination of the following:

Value Meaning

AUDTREADFAIL Audit failing read requests.

AUDTREADSUCCESS Audit successful read requests.

AUDTWRITEFAIL Audit failing write requests.

AUDTWRITESUCCESS Audit successful write requests.

AUDTEXECFAIL Audit failing execute or search requests.

AUDTEXECSUCCESS Audit successful execute or search requests.

option_code
(input,INT,4) is a variable for specifying whether you are changing the auditing for the user or for the
security auditor. This variable can have the following values:
0

The user's auditing is being changed.
1

The security auditor's auditing is being changed.

chaudit (BPX1CHA)

Chapter 2. Callable Service Descriptions 23

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Audit flags are stored with every object in the Byte File System. They are intended for use by an

External Security Manager (ESM) and are not used by native BFS server security or auditing functions.
You can use the chaudit (BPX1CHA) service to change any of the audit flags, even when there is
no ESM installed. However, because native BFS does not use the audit flags, they have no effect on
security or auditing if no ESM is installed.

2. When no ESM is installed, the authority required to use this service is defined as follows:

• To change the user audit flags, the user must be either a superuser or the owner of the file.
• To change the auditor audit flags, the user must be a superuser.

3. When an ESM is installed, the authority requirements to use this service are defined by the ESM. For
example, the ESM could define a level of authority called auditor authority, and further declare that
auditor authority is required to change the auditor audit flags.

Example

The following code changes the audit flags for the file identified by path name. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYAUDT — Map Flag Values for the chaudit and
fchaudit Services” on page 413.

 MVC BUFFERA(18),=CL18'/usr/inv/network.t'
 MVC BUFLENA,=F'18'
 MVI AUDTREADACCESS,AUDTREADFAIL
 MVI AUDTWRITEACCESS,AUDTWRITEFAIL
 MVI AUDTEXECACCESS,AUDTEXECFAIL
 MVI AUDTRSRV,0
 SPACE ,
 CALL BPX1CHA, Change audit +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 AUDT, Input: Audit flags, BPXYAUDT +
 =F'0', Input: 0 user, 1 security auditor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process does not have search permission for some component of
the path name.

chaudit (BPX1CHA)

24 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EINVAL The option_code parameter is incorrect.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRBadAuditOption

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The path name is longer than 1023 characters, or a component of the path
name is longer than 255 characters. CMS does not support name truncation.

ENOENT No file named pathname was found, or no path name was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of the path name is not a directory.

EPERM The effective UID of the calling process does not match the file's owner UID;
or the calling process does not have appropriate privileges; or, if option_code
indicated that the auditor audit flags were to be changed, the user does not
have auditor authority.

EROFS The file exists on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor” on page 81
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

chaudit (BPX1CHA)

Chapter 2. Callable Service Descriptions 25

chdir (BPX1CHD) — Change the Working Directory

BPX1CHD
pathname_length
pathname
return_value
return_code
reason_code

Purpose
Use the chdir (BPX1CHD) service to change your working directory from the current one to a new one. The
working directory is the starting point for path searches of path names not beginning with a slash. You
identify the new directory by its path name.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the directory you want to
become your new working directory. See “Understanding Byte File System (BFS) Path Name Syntax”
on page 6.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code changes the working directory for the task. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551.

 MVC BUFFERA(8),=CL8'/usr/inv'
 MVC BUFLENA,=F'8'
 SPACE ,
 CALL BPX1CHD, Change working directory +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

chdir (BPX1CHD)

26 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EACCES The calling process does not have permission to search one of the
components of the path name.

EINVAL The pathname parameter is not valid; it contains nulls.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The path name is longer than 1023 characters, or a component of the path
name is longer than 255 characters. CMS does not support name truncation.

ENOENT No directory named pathname was found, or no path name was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRChdNoEnt and
JRQuiescing.

ENOTDIR Some component of the path name is not a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRChdNotDir.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “closedir (BPX1CLD) — Close a Directory” on page 36
• “getcwd (BPX1GCW) — Get the Path Name of the Working Directory” on page 112
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “opendir (BPX1OPD) — Open a Directory” on page 185
• “readdir (BPX1RDD) — Read an Entry from a Directory” on page 231
• “rmdir (BPX1RMD) — Remove a Directory” on page 256
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

chdir (BPX1CHD)

Chapter 2. Callable Service Descriptions 27

chmod (BPX1CHM) — Change the Mode of a File or Directory by
Path Name

BPX1CHM
pathname_length
pathname
mode
return_value
return_code
reason_code

Purpose
Use the chmod (BPX1CHM) service to modify the permission bits that control the owner access, group
access, and general access to the file. You can use this service to set flags that modify the user ID (UID)
and group ID (GID) of the file when it is executed. You can also use this service to set the sticky bit to
indicate from where the file should be fetched. You identify the file by its path name.

For the corresponding service using a file descriptor, see “fchmod (BPX1FCM) — Change the Mode of a
File or Directory by Descriptor” on page 84.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file whose mode you
want to change. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

mode
(input,INT,4) is a variable for specifying the new mode of the file. This parameter, which is mapped by
the BPXYMODE macro, specifies the file type and the permissions you grant to yourself, to your group,
and to any user. See “BPXYMODE — Map Mode Constants” on page 437 for the parameter options.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. File descriptors that are open when the chmod (BPX1CHM) service is called retain the access

permission they had when the file was opened.
2. For mode bits to be changed, the effective UID of the calling process must match the file's owner UID,

or the caller must have appropriate privileges.
3. When the mode is changed successfully, the file's change time is updated as well.

chmod (BPX1CHM)

28 z/VM: 7.3 OpenExtensions Callable Services Reference

4. Setting the set-group-ID-on-execution permission means that when this file is run, through the exec
service, the effective GID of the caller is set to the file's owner GID, so that the caller seems to be
running under the GID of the file, rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the following are true:

• The caller does not have appropriate privileges.
• The GID of the file's owner does not match the effective GID or one of the supplementary GIDs of the

caller.
5. Setting the set-user-ID-on-execution permission means that when this file is run, the process's

effective UID is set to the file's owner UID, so that the process seems to be running under the UID of
the file's owner, rather than that of the actual invoker.

Example

The following code changes the file mode for the file identified by path name. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYMODE — Map Mode Constants” on page 437.

 MVC BUFFERA(26),=CL26'newprogs/path/eightfold.c'
 MVC BUFLENA,=F'26'
 XC S_MODE,S_MODE
 MVI S_MODE2,S_IRUSR All read and write
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
 SPACE ,
 CALL BPX1CHM, Change File Modes +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 S_MODE, Input: Mode, mapped by BPXYMODE +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process does not have permission to search some component of
the path name.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The path name is longer than 1023 characters, or a component of the
path name is longer than 255 characters. CMS does not support filename
truncation.

ENODEV An attempt was made to use a character special file for a device not
supported by OpenExtensions.

ENOENT No file named pathname was found, or no path name was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR Some component of the path name is not a directory.

EPERM The effective UID of the calling process does not match the owner of the file,
and the calling process does not have appropriate privileges.

chmod (BPX1CHM)

Chapter 2. Callable Service Descriptions 29

Return Code Explanation

EROFS The pathname parameter specifies a file that is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on page 31
• “fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor” on page 84
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “open (BPX1OPN) — Open a File” on page 181
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

chmod (BPX1CHM)

30 z/VM: 7.3 OpenExtensions Callable Services Reference

chown (BPX1CHO) — Change the Owner or Group of a File or
Directory

BPX1CHO
pathname_length
pathname
owner_UID
group_ID
return_value
return_code
reason_code

Purpose
Use the chown (BPX1CHO) service to change a file's owner, group, or both. You identify the file by its path
name.

For the corresponding service using a file descriptor, see “fchown (BPX1FCO) — Change the Owner and
Group of a File or Directory by Descriptor” on page 86.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file for which you wish
to change the owner or group or both. See “Understanding Byte File System (BFS) Path Name Syntax”
on page 6.

owner_UID
(input,INT,4) is a variable for specifying the new owner UID assigned to the file, or the present value if
there is no change. This parameter must be specified.

group_ID
(input,INT,4) is a variable for specifying the new group ID assigned to the file, or the present value if
there is no change. This parameter must be specified.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The chown (BPX1CHO) service changes the owner UID and owner GID of a file. Only a superuser can

change the owner UID of a file.
2. The owner GID of a file can be changed by a caller if the caller has appropriate privileges, or if a caller

meets all of these conditions:

chown (BPX1CHO)

Chapter 2. Callable Service Descriptions 31

• The effective UID of the caller matches the file's owner UID.
• The owner_UID value specified in the change request matches the file's owner UID.
• The group_ID value specified in the change request is the effective GID, or one of the supplementary

GIDs, of the caller.
3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the file mode are

automatically turned off.
4. If the change request is successful, the change time for the file is updated.
5. Values for both owner_UID and group_ID must be specified as they are to be set. If it is desired to

change only one of these values, the other must be set to its present value to remain unchanged.

Example

The following code changes the owner of /somedir/somefile.c from the current owner to that specified
by USERID and GROUPID. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFFERA(20),=CL20'/somedir/somefile.c'
 MVC BUFLENA,=F'20'
 MVC USERID,.. New owner UID from stat
 MVC GROUPID,.. New owner GID from stat
 SPACE ,
 CALL BPX1CHO, Change owner and group of a file +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 USERID, Input: New owner UID +
 GROUPID, Input: New owner GID +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process does not have permission to search some component of
the path name.

EINVAL The owner_UID or group_ID parameter is incorrect

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The path name is longer than 1023 characters, or a component of the path
name is longer than 255 characters. CMS does not support name truncation.

ENODEV An attempt was made to use a character special file for a device not
supported by OpenExtensions.

ENOENT No file named pathname was found, or no path name was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR Some component of the path name is not a directory.

EPERM The calling process does not have appropriate privileges.

EROFS The pathname parameter specifies a file on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

chown (BPX1CHO)

32 z/VM: 7.3 OpenExtensions Callable Services Reference

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by Descriptor” on page 86
• “fstat (BPX1FST) -- Get Status Information about a File by Descriptor” on page 102
• “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

chown (BPX1CHO)

Chapter 2. Callable Service Descriptions 33

close (BPX1CLO) — Close a File or Socket

BPX1CLO
file_descriptor
return_value
return_code
reason_code

Purpose
Use the close (BPX1CLO) service to close a file or socket.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the descriptor of the file or socket you want to close.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Closing a file closes, or frees, the file descriptor by which the file was known to the process. The

system can then reassign the file descriptor to the same file or to another file when it is opened.
2. Closing a file descriptor also unlocks all outstanding byte range locks that a process has on the

associated file.
3. If a file has been opened by more than one process, each process has a file descriptor. When the last

open file descriptor is closed, the file itself is closed. If the file's link count is zero at that time, the file's
space is freed and the file becomes inaccessible. When the last open file descriptor for a pipe or FIFO
special file is closed, any data remaining in the file is discarded.

Example

The following code closes the standard input file. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1CLO, Close a file +
 (=A(STDIN_FILENO), Input: File descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

close (BPX1CLO)

34 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EAGAIN The service did not complete, because the file descriptor specified is currently
in use by another thread in the same process.

EBADF The file_descriptor parameter does not identify a valid, open file.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRClNeedClose
and JRNotForDir.

EINTR The service was interrupted by a signal while it was processing the close
request. The file may or may not be closed.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “fork (BPX1FRK) — Create a New Process” on page 96
• “open (BPX1OPN) — Open a File” on page 181
• “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 199
• “socket (BPX1SOC) — Create a Socket” on page 330
• “spawn (BPX1SPN) — Spawn a Process” on page 333
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

close (BPX1CLO)

Chapter 2. Callable Service Descriptions 35

closedir (BPX1CLD) — Close a Directory

BPX1CLD
directory_file_descriptor
return_value
return_code
reason_code

Purpose
Use the closedir (BPX1CLD) service to close a directory. You identify the directory by its directory file
descriptor.

Parameters
directory_file_descriptor

(input,INT,4) is a variable for specifying the directory file descriptor of the directory you want to close.
This value was returned when the directory was opened.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code closes the directory identified by FILEDESC. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551.

 MVC FILEDESC,.. Directory descriptor from opendir
 SPACE ,
 CALL BPX1CLD, Close a directory +
 (FILEDESC, Input: Directory file descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The directory_file_descriptor parameter does not represent an open directory.

EINTR The service was interrupted by a signal while it was processing the request.
The directory may or may not be closed.

closedir (BPX1CLD)

36 z/VM: 7.3 OpenExtensions Callable Services Reference

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “opendir (BPX1OPD) — Open a Directory” on page 185
• “readdir (BPX1RDD) — Read an Entry from a Directory” on page 231
• “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on page 254.

closedir (BPX1CLD)

Chapter 2. Callable Service Descriptions 37

cmsprocclp (BPX1MPC) — Clean Up Kernel Resources

BPX1MPC
status_field
return_value
return_code
reason_code

Purpose
Use the cmsprocclp (BPX1MPC) service to clean up the OpenExtensions-related resources for an entire
process or on a thread-by-thread basis.

Parameters
status_field

(input,INT,4) is a variable for specifying exit status values. If the invocation of this service causes a
full process cleanup to occur, and the contents of the status field conform to the allowable exit status
values, the contents are made available to the parent when the wait service is issued. For the mapping
of this parameter and a description of the allowable exit status values, see “BPXYWAST — Map the
Wait Status Word” on page 486.

return_value
(output,INT,4) is a variable where the service returns one of the following values:

Value Explanation

0 OpenExtensions thread-related resources were cleaned up for the calling thread.

1 OpenExtensions process-related resources were cleaned up for the calling process.

-1 The service failed to clean up process resources.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The cmsprocclp (BPX1MPC) service normally cleans up just the thread-related data for the calling thread.
The following two situations, however, cause full process cleanup to occur:

• If the call is made from the initial thread of the process and no other threads exist in the process.
• If the call is made from the last thread that is left in the process, and that thread is not the initial thread,

and the initial thread has not performed any OpenExtensions system calls.

In these two cases, both the OpenExtensions thread-related and process-related resources are cleaned
up and OpenExtensions process termination is performed. See the _exit (BPX1EXI) service for a
description of ending an OpenExtensions process.

cmsprocclp (BPX1MPC)

38 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code causes all OpenExtensions related resources to be released for this thread, and if
this is the last OpenExtensions thread in the process, for the process. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551. For the data structure, see “BPXYWAST — Map the Wait Status Word” on page 486.

 XC WAST(WAST#LENGTH),WAST
 MVI WASTEXITCODE,57 User defined exit code
 SPACE ,
 CALL BPX1MPC, CMS Process cleanup +
 (WAST, Input: Ending status code 0-255 +
 RETVAL, Return value: 0, -1 or 1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return
Code

Explanation

ECMSERR The call was unsuccessful due to a CMS environmental or internal error.

Consult the reason code to determine the exact reason the error occurred. The following
reason code can accompany this return code: JRInvTermStat.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 79
• “wait (BPX1WAT) — Wait for a Child Process to End” on page 385.

cmsprocclp (BPX1MPC)

Chapter 2. Callable Service Descriptions 39

cmssigsetup (BPX1MSS) — Set Up CMS Signals

BPX1MSS
signal_interface_routine_address
user_data
default_override_signal_set
default_terminate_signal_set
return_value
return_code
reason_code

Purpose
Use the cmssigsetup (BPX1MSS) service to catch or intercept signals. This service also allows you to
intercept cancellation and quiesce interrupts. Only one cmssigsetup (BPX1MSS) service can be active in
a process. If you must perform a second cmssigsetup (BPX1MSS) service in a process, you must first
use the cmsunsigsetup (BPX1MSD) service on the thread that issued the cmssigsetup (BPX1MSS) service
request before you call the cmssigsetup (BPX1MSS) service again. Both CMS thread termination and the
cmsprocclp (BPX1MPC) service perform the cmsunsigsetup (BPX1MSD) service.

Parameters
signal_interface_routine_address

(input,PTR,4) is a variable for specifying the address of the user-supplied signal interface routine (SIR)
that gets control when a signal handler needs to be invoked. The signal handler is defined by the
sigaction (BPX1SIA) call. You can also invoke the SIR to process a default signal action, depending on
the values specified for default_override_signal_set.

user_data
(input,CHAR,4) is a variable for specifying 4 bytes of user-supplied data to be passed to the signal
interrupt routine on invocation from signal processing.

default_override_signal_set
(input,CHAR,8) is a variable for specifying a 64-bit mask of signals that the SIR processes when their
respective default actions take place. The leftmost bit represents signal number 1 and the rightmost
bit represents signal number 64. The signals SIGKILL and SIGSTOP cannot be intercepted. The
bit positions that represent these signals are ignored. Signal 64 represents cancellation or quiesce
requests.

default_terminate_signal_set
(input,CHAR,8) is a variable for specifying a 64-bit mask of signals specified in the
default_override_signal_set parameter that also causes the process to end. The leftmost bit
represents signal number 1 and the rightmost bit represents signal number 64. When a signal bit
is set to 1, the signal that it represents interrupts a task that is either stopped or in a wait state. It is
up to the signal interrupt routine to end the process. The bit that represents signal 64 of this mask is
reserved.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

cmssigsetup (BPX1MSS)

40 z/VM: 7.3 OpenExtensions Callable Services Reference

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. A process image that results after the exec (BPX1EXC) service is not set up for signals.
2. The signal delivery data structure is mapped by the BPXYPPSD macro. See “BPXYPPSD — Map the

Signal Delivery Data Structure” on page 451.
3. The SIR receives control with the following register interface:

Register Contents

Reg 0 0

Reg 1 Address of standard parameter list. PARM1= address of BPXYPPSD; Reg 1 =
ADDR(PpsdSirPARMS).

Regs 2–12 0

Reg 13 0 No save area for registers is provided to the SIR. The SIR does not save caller's
registers.

Reg 14 0 No return address.

Reg 15 Set to address of the SIR.

4. The SIR receives control in the following system states:
Amode:

31-bit
ASC mode:

Primary mode
Interrupt status:

Enabled for interrupts
Signal Mask:

All signals that may be blocked by the signal mask are blocked.
5. Following are the steps that a user-supplied SIR must perform.

a. The SIR must obtain local storage for a local copy of the BPXYPPSD and copy the BPXYPPSD
information into this local storage.

b. The PPSD contains the information necessary for the SIR to determine the reason for the
interruption. The interruption can be the result of a signal, cancellation, or quiesce request.

c. If the interrupt cannot be processed at this time, possibly due to general register 13 not currently
containing the address of a program stack, or the last service called on the current thread was
cond_setup, then the queue_interrupt (BPX1SPB) service request is issued. (See “queue_interrupt
(BPX1SPB) — Return the Last Interrupt Delivered” on page 223.) Then go to step “5.h” on page
42.

d. If the interrupt is a signal and the default action is to be performed by the SIR, write the
appropriate messages to the terminal and end the process. For more information on how to end
the process, see “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 79.

e. If the interrupt is a cancellation or a terminating quiesce request, cleanup any necessary thread
related resources and end the thread. To end the thread issue the pthread_exit service with
options_field set to PTEXITTHREAD. If the interrupt is because of a cancellation, issue the
pthread_exit service with status_field set to -1. For more information on how to end the thread,
see “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 209. The SIR will
receive these types of interrupts only if bit 64 of default_override_signal_set is set on.

f. Obtain language stack storage for the signal handler.

cmssigsetup (BPX1MSS)

Chapter 2. Callable Service Descriptions 41

g. Set the signal processor mask to the appropriate value before invoking the signal handler. This
mask is formed by taking the union of the current signal mask and the value of sa_mask specified
on the sigaction call for the signal being delivered, and then including the signal being delivered.
The signal processor mask is set by calling the sigprocmask service. Recursive calls to the SIR can
occur after calling the BPX1SPM service here to unblock signals. Therefore, the SIR cannot use the
BPXYPPSD macro after calling the BPX1SPM service.

h. Conform to the language-dependent requirements for invoking signal-handlers.
i. On return from the signal handler, call the BPX1SPM service to set the signal processor mask to

the interrupted value that was saved in the BPXYPPSD macro on entry to this SIR.
j. Use the CSRL16J CMS service to load 16 registers and jump to the address that was interrupted

by the signal.
6. The use of the default_terminate_signal_set is to indicate to the OpenExtensions kernel which signals

intercepted by the SIR cause the process to end. An example of usage might be that a user wishes to
intercept the SIGUSR1 signal, but instead of performing the OpenExtensions default of termination, it
wishes to issue a message and then throw the signal away (ignore it). In this case, the user would turn
the corresponding bit on in the default_override_signal_set and off in the default_terminate_signal_set.
This bit set combination tells the kernel not to interrupt functions that return an EINTR.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code allows the invoker to catch signals. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

* Each bit of the mask represents a signal 1-64.
 MVC INTMASK(8),=XL8'F000000000000000' Default sig 1-4
 MVC TERMMASK(8),=XL8'F000000000000000' Terminate sig 1-4
 LA R15,BUFFERA
 ST R15,USERWORD
 SPACE ,
 CALL BPX1MSS, Register CMS signals, this task +
 (=V(SIRTN), Input: Signal interrupt routine +
 USERWORD, Input: User data +
 INTMASK, Input: Default override signals +
 TERMMASK, Input: Default terminate signals +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

ECMSINITIAL The service failed.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRAlreadySigSetup.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

cmssigsetup (BPX1MSS)

42 z/VM: 7.3 OpenExtensions Callable Services Reference

Related Services
Other callable services related to this service are:

• “alarm (BPX1ALR) — Set an Alarm” on page 18
• “exec (BPX1EXC) — Run a Program” on page 72
• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 201
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered”

on page 324.

cmssigsetup (BPX1MSS)

Chapter 2. Callable Service Descriptions 43

cmsunsigsetup (BPX1MSD) — Detach the Signal Setup

BPX1MSD
signal_interface_routine_address
user_data
default_override_signal_set
default_terminate_signal_set
return_value
return_code
reason_code

Purpose
Use the cmsunsigsetup (BPX1MSD) service to delete the signal setup established by the cmssigsetup
(BPX1MSS) service. The parameters specified in the cmssigsetup (BPX1MSS) service are returned by the
cmsunsigsetup (BPX1MSD) service. The signal actions for all signals in the process set by the sigaction
(BPX1SIA) service are set to default action SIG_DFL.

Parameters
signal_interface_routine_address

(output,PTR,4) is a variable where the signal_interface_routine_address set by the cmssigsetup
(BPX1MSS) service is returned.

user_data
(output,INT,4) is a variable where the user_data set by the cmssigsetup (BPX1MSS) service is
returned.

default_override_signal_set
(output,CHAR,8) is a variable where the default_override_signal_set set by the cmssigsetup
(BPX1MSS) service is returned.

default_terminate_signal_set
(output,CHAR,8) is a variable where the default_terminate_signal_set set by the cmssigsetup
(BPX1MSS) service is returned.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

cmsunsigsetup (BPX1MSD)

44 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code detachs the invoker from being able to catch signals. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551.

 CALL BPX1MSD, Reregister CMS signals, this task +
 (SIRTNA, Signal interface routine address +
 USERWORD User data
 INTMASK, Default override signal set +
 TERMMASK, Default terminate signal set +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

ECMSINITIAL The service failed.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNotSigSetup.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40

cmsunsigsetup (BPX1MSD)

Chapter 2. Callable Service Descriptions 45

cond_cancel (BPX1CCA) — Cancel Interest in Events

BPX1CCA
return_value
return_code
reason_code

Purpose
Use the cond_cancel (BPX1CCA) service to cancel the interest in event notifications. This call cancels the
effects of a previous call to the cond_setup (BPX1CSE) service.

Parameters
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The intended use of cond_cancel is for a program to clean up when it has used the cond_setup service,

but does not call cond_wait or cond_timed_wait. The cond_setup service causes the thread to be
eligible to receive event notifications. If the program running on the thread is no longer interested
in these events, it should call cond_cancel to tell the system that event notifications are no longer
required.

2. If you intend at some later time to call cond_wait or cond_timed_wait to wait until some event occurs,
use the cond_setup service to make your program eligible to receive event notifications. The system
notes that your program will be waiting for some other thread to either send it a signal or else to use
the cond_post service to send an event notification. Both of these require use of CMS services. If CMS
determines that it has become impossible to send a signal or event notification to your program, it
checks whether your program is or will be calling either of the cond_wait or cond_timed_wait services.
If so, CMS abnormally terminates your program to prevent it from waiting for something that cannot
occur. For this reason, if your program uses the cond_setup service but does not subsequently call
either cond_wait or cond_timed_wait, it should use the cond_cancel service to cancel the setup to
receive event notifications.

3. When the program cannot determine whether cond_wait or cond_timed_wait has been called, it
should call cond_cancel to ensure that the thread is not eligible to receive event notifications.

Example

The following code demonstrates how to cancel a program's interest in events that were selected by a
call to the cond_setup service. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1CCA, Cancel cond_setup +
 (RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +

cond_cancel (BPX1CCA)

46 z/VM: 7.3 OpenExtensions Callable Services Reference

 VL,MF=(E,PLIST) ----------------------------------
* The return value (RETVAL) does not matter. When your program
* receives control following the call to cond_cancel, it is no
* longer eligible to receive event notifications using cond_post.

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

ECMSERR The call was unsuccessful due to a CMS environmental or internal error.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cond_setup (BPX1CSE) — Set Up to Receive Event Notifications” on page 50
• “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event” on page 52
• “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 55.

cond_cancel (BPX1CCA)

Chapter 2. Callable Service Descriptions 47

cond_post (BPX1CPO) — Post a Thread for an Event

BPX1CPO
thread_ID
event
return_value
return_code
reason_code

Purpose
Use the cond_post (BPX1CPO) service to notify another thread in the process that an event has occurred.

Parameters
thread_ID

(input,CHAR,8) is a variable for specifying the thread ID for the thread that is to be notified of the
event. The target thread must be in the same process as the caller.

event
(input,INT,4) is a variable for specifying an integer value that determines which event notification is
to be sent to the target thread. This value represents an event for which the thread identified by
thread_ID may be waiting. If the target thread is waiting, the service notifies it that the event has
occurred.

The event parameter must be one of the following two event values, defined by the BPXYCW macro:
CW_CONDVAR

This value causes the target thread to resume processing if it is waiting for a CW_CONDVAR event.
CW_TIMEOUT

This value causes the target thread to resume processing if it is waiting for a timeout notification.

See “BPXYCW — Map Serialization Constants” on page 419.

Notes:

1. You must specify exactly one event.
2. Use of cond_post (BPX1CPO) to send a CW_TIMEOUT notification is restricted to programs that run

in supervisor state with protect key 0.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. When the target thread is not cond_setup, cond_wait, or cond_timed_wait, cond_post does not post

the thread and return_value is set to 0.

cond_post (BPX1CPO)

48 z/VM: 7.3 OpenExtensions Callable Services Reference

2. The cond_post service attempts to send an event notification to the target thread. Event notifications
are delivered to a target thread only when that thread is set up to receive them. A thread that is not
set up to receive an event notification is discarded. The cond_post service does not check whether
the target thread is set up to receive the event, so the cond_post service can return a value of 0
even though the event notification was discarded. Therefore, if you use the cond_wait and cond_post
services to synchronize threads, you must be certain that the target thread is waiting for the event
before you use cond_post to send the notification.

Characteristics and Restrictions
The target thread must be in the same process as the caller.

Example

The following code demonstrates how to send an event notification to a thread waiting in the cond_wait
or cond_timed_wait service. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

The following code notifies thread (THID) that a CW_CONDVAR event
has occurred.
 CALL BPX1CPO, Send condition event notification +
 (THID, Input: Thread ID of target pgm +
 =A(CW_CONDVAR), Input: Event in BPXYCW +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The thread_ID parameter is not valid. It contains a value that is inconsistent
with the thread IDs managed by the system.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRLightWeightThID, JRNoEvents, JRTooMany, JRUndefEvents.

ESRCH The system determined that the thread_ID value does not refer to a thread
that currently exists in the caller's process.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRThreadNotFound, JRAlreadyTerminated.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event” on page 52
• “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 55.

cond_post (BPX1CPO)

Chapter 2. Callable Service Descriptions 49

cond_setup (BPX1CSE) — Set Up to Receive Event Notifications

BPX1CSE
event_list
return_value
return_code
reason_code

Purpose
Use the cond_setup (BPX1CSE) service to make the calling thread eligible to receive event notifications
from other threads.

Parameters
event_list

(input,INT,4) is a variable for specifying a value that indicates which events are of interest to the
thread. This value is the inclusive OR of one or more of the following event values, defined by the
BPXYCW macro:
CW_INTRPT

The program running on the thread needs to know about signals sent to the thread.
CW_CONDVAR

The program running on the thread needs to suspend processing until some other thread uses the
cond_post service to send this thread a notification of a CW_CONDVAR event.

Note: The C/C++ functions pthread_cond_signal() and pthread_cond_broadcast() use this
value to send condition notifications.

You must specify at least one event; you may specify both. See “BPXYCW — Map Serialization
Constants” on page 419.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The scope of the effect of the cond_setup service is just until the next service is requested. The

intended use of cond_setup is to set up for a subsequent call to cond_wait or cond_timed_wait. Other
callable services that the program invokes between cond_setup and cond_wait or cond_timed_wait
may fail with a return value of -1, a reason code of EINVAL, and a reason code of JRNotSetup.

The only exception to this is the queue_interrupt service. You can use the queue_interrupt service to
"put back" the last signal delivered to the signal interrupt routine.

2. If you use cond_setup to specify the events that cause the thread to resume processing, you must
repeat the setup before each call to cond_wait or cond_timed_wait.

cond_setup (BPX1CSE)

50 z/VM: 7.3 OpenExtensions Callable Services Reference

3. If you use cond_setup with cond_timed_wait, do not specify the CW_TIMEOUT condition on the call to
cond_setup. The cond_timed_wait service provides setup for the CW_TIMEOUT event.

4. Calling the cond_setup servide before the cond_wait and cond_timed_wait services is optional.
5. If a thread has called cond_setup but has not called cond_wait or cond_timed_wait, any cond_post

service to it are pending. When the cond_wait or cond_timed_wait service is called, the pending
cond_post prevents the caller from waiting.

Characteristics and Restrictions
The program running on the thread should eventually call one of the cond_wait, cond_timed_wait, or
cond_cancel services.

Example

The following code sets up the invoker to suspend processing until any of the specified events
(CW_INTRPT or CW_CONDVAR) occurs. The BPX1CTW (cond_timed_wait) or BPX1CWA (cond_wait)
service is used to actually suspend processing. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC EVENTLIST,=A(CW_INTRPT+CW_CONDVAR)
 CALL BPX1CSE, Condition setup +
 (EVENTLIST, Input: Event list BPXYCW +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

EINVAL The system determined that the event list passed to the service is in error.

Consult the reason code returned to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRAlreadySetup, JRNoEvents, JRUndefEvents.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 46
• “cond_post (BPX1CPO) — Post a Thread for an Event” on page 48
• “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event” on page 52
• “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 55
• “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 223.

cond_setup (BPX1CSE)

Chapter 2. Callable Service Descriptions 51

cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited
Time or for an Event

BPX1CTW
seconds
nanoseconds
event_list
seconds_remaining
nanoseconds_remaining
return_value
return_code
reason_code

Purpose
Use the cond_timed_wait (BPX1CTW) service to suspend the calling thread until any one of a set of events
has occurred or until a specified amount of time has passed.

Parameters
seconds

(input,INT,4) is a variable for specifying an unsigned integer that is the maximum number of seconds
the calling program is willing to wait for one of the specified events to occur.

Notes:

1. The seconds parameter can be any value from 0 to 4,294,967,295, inclusive.
2. The seconds and nanoseconds values are combined to determine the timeout value.

nanoseconds
(input,INT,8) is a variable for specifying an unsigned integer that is the number of nanoseconds to be
added to the value specified by the seconds parameter.

Notes:

1. The nanoseconds parameter can be any value from 0 to 1,000,000,000, inclusive.
2. The seconds and nanoseconds values are combined to determine the timeout value.

event_list
(input,INT,4) is a variable for specifying a value that determines which events will cause the thread to
resume processing.

The value contained in this variable is the inclusive OR of one or more of the following event values,
defined by the BPXYCW macro:
CW_INTRPT

Suspends processing until a signal is sent to the thread. This is a cancellation point that is
described in the usage notes of “pthread_setintr (BPX1PSI) — Examine and Change Interrupt
State” on page 217.

CW_CONDVAR
Suspends processing until some other thread in the process sends this one a CW_CONDVAR
notification.

See “BPXYCW — Map Serialization Constants” on page 419.

cond_timed_wait (BPX1CTW)

52 z/VM: 7.3 OpenExtensions Callable Services Reference

When the event list is zero, it means the caller has used the cond_setup service to specify the events,
and the thread is already eligible to be notified of events. In this case, the cond_timed_wait service
sets the timer for the specified interval and suspends thread processing until an event occurs, a signal
arrives, or the time limit is reached.

seconds_remaining
(input/output,INT,4) is a variable where the service returns an unsigned value that is the number of
seconds of unexpired time remaining in the time interval.

Note: This value is valid only when return_value is 0, or when return_value is -1 and the return code is
EINTR.

nanoseconds_remaining
(input/output,INT,4) is a variable where the service returns an unsigned value that is the number of
nanoseconds of unexpired time remaining in the time interval.

Notes:

1. The nanoseconds_remaining parameter can be any value from 0 to 1,000,000,000, inclusive.
2. This value is valid only when return_value is 0, or when return_value is -1 and the return code is

EINTR.

return_value
(output,INT,4) is a variable where the service returns a 0 if a CW_CONDVAR event occurred, or -1
otherwise.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The cond_timed_wait service is substantially similar to the POSIX function nanosleep(). (Refer to

the POSIX standard for a description of nanosleep().) If you need the nanosleep() function, you
can use cond_timed_wait to implement your own version.

2. If your program uses cond_timed_wait to wait for events that it specified by calling cond_setup,
it must not call any other CMS services between the calls to cond_setup and cond_timed_wait. If
the program invokes other callable services between cond_setup and cond_timed_wait, then the
cond_timed_wait callable service fails with a return value of -1, a return code of EINVAL, and a reason
code of JRNotSetup.

The only exception to this is the queue_interrupt service. You can use the queue_interrupt service to
"put back" the last signal delivered to the signal interrupt routine. A signal can arrive after the program
running on the thread has called cond_setup and before it gets a chance to call cond_timed_wait. The
program may choose to "put back" the signal to defer handling of it until a later time.

3. If you use cond_setup to specify the events that will cause the thread to resume processing, you must
repeat the setup before each call to cond_wait or cond_timed_wait.

4. If you do not include the CW_INTRPT event when you use cond_timed_wait, some services used by
other threads or processes cannot cause the waiting thread to resume processing. In particular, the
following services do not cause an event notification unless CW_INTRPT is specified in the event list:

• pthread_cancel
• pthread_kill
• pthread_quiesce
• kill.

cond_timed_wait (BPX1CTW)

Chapter 2. Callable Service Descriptions 53

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code suspends the calling thread until a signal arrives (CW_INTRPT) or else 2.5 seconds
have elapsed. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC EVENTLIST,=A(CW_INTRPT) Signals
 CALL BPX1CTW, Wait for condition events +
 (=A(2), Input: Number of seconds +
 =A(500000000), Input: Number of nanoseconds +
 EVENTLIST, Input: Event list BPXYCW +
 SECONDS, Output: Unexpired seconds +
 NANOSECONDS, Output: Unexpired nanoseconds +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN No signal or event notification arrived within the specified timeout period. The
thread resumed processing because the time interval expired.

Note: If you specify a value of 0 for both seconds and nanoseconds and no
event notification is pending when you call cond_timed_wait, it returns this
return code.

EINTR A signal caused the cond_timed_wait service to resume processing of the
thread.

Note: The signal handler has already run.

EINVAL The system determined that one or more of the parameters passed to the
service are in error.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRAlreadySetup,
JRNanoSecondsTooBig, JRNotSetup, JRUndefEvents.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 46
• “cond_post (BPX1CPO) — Post a Thread for an Event” on page 48
• “cond_setup (BPX1CSE) — Set Up to Receive Event Notifications” on page 50
• “cond_wait (BPX1CWA) — Suspend a Thread for an Event” on page 55
• “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 223.

cond_timed_wait (BPX1CTW)

54 z/VM: 7.3 OpenExtensions Callable Services Reference

cond_wait (BPX1CWA) — Suspend a Thread for an Event

BPX1CWA
event_list
return_value
return_code
reason_code

Purpose
Use the cond_wait (BPX1CWA) service to suspend processing on the calling thread until any one of a set
of events has occurred.

Parameters
event_list

(input/output,INT,4) is a variable for specifying a value that determines which events will cause the
thread to resume processing.

This value is the inclusive OR of one or more of the following event values, defined by the BPXYCW
macro:
CW_INTRPT

Suspends processing until a signal is sent to the thread.
CW_CONDVAR

Suspends processing until some other thread in the process sends this one a CW_CONDVAR event
notification.

See “BPXYCW — Map Serialization Constants” on page 419.

An event_list value of 0 means the caller has used the cond_setup (BPX1CSE) service to specify
the events, and the thread is already eligible to be notified of events. In this case, the cond_wait
(BPX1CWA) service suspends thread processing until an event occurs or a signal arrives.

return_value
(output,INT,4) is variable where the service returns a 0 if a CW_CONDVAR event occurred, or -1
otherwise.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If your program uses cond_wait to wait for events that it specified by calling cond_setup, it must not

call any other CMS services between the calls to cond_setup and cond_wait. If the program invokes
other callable services between cond_setup and cond_wait, the cond_wait callable service fails with a
return value of -1, a return code of EINVAL, and a reason code of JRNotSetup.

The only exception to this is the queue_interrupt service. You may use the queue_interrupt service
to "put back" the last signal delivered to the signal interrupt routine. A signal may arrive after the
program running on the thread has called cond_setup and before it gets a chance to call cond_wait.
The program may choose to "put back" the signal to defer handling it until a later time.

cond_wait (BPX1CWA)

Chapter 2. Callable Service Descriptions 55

If you use cond_setup to specify the events that will cause the thread to resume processing, you must
repeat the setup before each call to cond_wait or cond_timed_wait.

2. If you do not include the CW_INTRPT event when you use cond_wait, some services used by
other threads or processes cannot cause the waiting thread to resume processing. In particular, the
following services do not cause an event notification unless CW_INTRPT is specified in the event list:

• pthread_cancel
• pthread_kill
• pthread_quiesce
• kill

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code suspends the calling thread until either of two events occurs. The two events are the
arrival of a signal (CW_INTRPT) or some other thread using the cond_post (BPX1CPO) service to send this
thread a CW_CONDVAR notification. This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC EVENTLIST,=A(CW_INTRPT+CW_CONDVAR)
 CALL BPX1CWA, Wait for condition events +
 (EVENTLIST, Input: Event list BPXYCW +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINTR A signal caused the cond_wait service to resume processing of the thread.

Note: The signal handler has already run.

EINVAL The system determined that one or more of the parameters passed to the
service are in error.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRAlreadySetup,
JRNotSetup, JRUndefEvents.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cond_cancel (BPX1CCA) — Cancel Interest in Events” on page 46
• “cond_post (BPX1CPO) — Post a Thread for an Event” on page 48
• “cond_setup (BPX1CSE) — Set Up to Receive Event Notifications” on page 50
• “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event” on page 52
• “queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 223.

cond_wait (BPX1CWA)

56 z/VM: 7.3 OpenExtensions Callable Services Reference

connect (BPX1CON) — Establish a Connection Between Two
Sockets

BPX1CON
socket_de scriptor
sockaddr_length
sockaddr
return_value
return_code
reason_code

Purpose
For stream sockets, use the connect (BPX1CON) service to establish a connection from a client socket to a
socket at a server. For datagram sockets, use the connect service to specify the peer for a socket.

Stream sockets can call the connect service only once. Datagram sockets can call the connect service
multiple times to change their association.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket to be connected.
sockaddr_length

(input,INT,4) is a variable for specifying the length of the sockaddr parameter.
sockaddr

(input,INT,sockaddr_length) is a variable for specifying the SOCKADDR structure that contains the
address of the socket or the name of the peer to which a connection is to be attempted. The
SOCKADDR structure is mapped by the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR
Structure and Constants for Socket-Related Services” on page 465.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. For connectionless sockets, the connect service may be advantageous because the destination

address need not be specified for every datagram sent. Once a UDP (connectionless) socket is
connected, the read, write, recv, send, readv, and writev system calls can be used for I/O on those
sockets. Otherwise, only the sendto/recvfrom and sendmsg/recvmsg system calls can be used. Once a
UDP socket is connected, only datagrams from the specified sockaddr are received on the socket. To
disconnect a UDP socket from a previous connection, issue the connect system call with an incorrect
sockaddr, such as a null address.

connect (BPX1CON)

Chapter 2. Callable Service Descriptions 57

2. The connect callable service can be used to test whether a target socket is available for the connect. If
the socket is not available, an ECONNREFUSED is returned.

Example

The following code connects to a socket. SOCKDESC was returned by a previous call to socket (BPX1SOC),
and SOCKADDR contains the name of the peer, possibly obtained by a call to getpeername (BPX1GNM).
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYSOCK — Map the
SOCKADDR Structure and Constants for Socket-Related Services” on page 465.

 SPACE ,
 CALL BPX1CON, Connect to a socket +
 (SOCKDESC, Input: Socket Descriptor +
 SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
 SOCKADDR, Input: Sockaddr structure +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EADDRNOTAVAIL The specified address is not available from the local machine.

EAFNOSUPPORT The address family that was specified in the address structure is not
supported.

EALREADY The socket descriptor socket is marked nonblocking, and a previous
connection attempt has not completed.

EBADF The socket descriptor is incorrect. The following reason codes can accompany
this return code: JRFileDesNotInUse, JRFileNotOpen.

ECONNREFUSED The attempt to connect was rejected. The following reason code can
accompany this return code: JRListenNotDone.

EINPROGRESS O_NONBLOCK is set for the file descriptor for the socket, and the connection
cannot be immediately established. The connection will be established
asynchronously. The EINPROGRESS value does not indicate an error
condition.

EINTR A signal interrupted the connect service before this connection was
accepted. The following reason code can accompany this return code:
JRSignalReceived.

EINVAL One of the input parameters is not correct. The following reason codes
can accompany this return code: JRSocketCallParmError, JRSockNoName.For
AF_UNIX, the following reason codes can accompany this return code:
JRRdlBufflenInvalid, JRFileNotExtLink

EIO An I/O error occurred. The following reason code can accompany this return
code: JRPrevSockError.

EISCONN The socket is already connected.

ENETUNREACH For an AF_INET or AF_INET6 connection, this indicates that the network
cannot be reached from this host. For an AF_IUCV connection, this means that
the specified user ID is not logged on or is no longer accepting connections.
For an AF_UNIX connection, this means that the user ID that created the
specified path name is not logged on or is no longer accepting connections.

connect (BPX1CON)

58 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENOBUFS A buffer could not be obtained.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EOPNOTSUPP The socket is ready to accept connections. An accept request was
expected. The following reason code can accompany this return code:
JRListenAlreadyDone.

EPROTOTYPE The address specifies a socket that is not the correct type for this
request. The following reason code can accompany this return code:
JRIncorrectSocketType.

EWOULDBLOCK The socket is marked nonblocking, and the connection cannot be completed
immediately.

The following are for AF_UNIX only:

Return Code Explanation

EACCES The process does not have search permission on a component of the path
prefix, or it does not have write access to the named socket.

EIO An I/O error occurred while reading from or writing to the file system.

ELOOP Too many symbolic links were encountered in translating the path name in
sockaddr.

ENAMETOOLOG A component of a path name exceeded NAME_MAX characters, or an entire
path name exceeded PATH_MAX characters.

ENOENT The AF_UNIX path name is not valid. The following reason code can
accompany the return code: JRFileNotThere

ENOTDIR A component of the path prefix of the path name in sockaddr is not a
directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

connect (BPX1CON)

Chapter 2. Callable Service Descriptions 59

create_external_link (BPX1ELN) — Create a CMS External Link

BPX1ELN
link_contents_length
link_contents
link_name_length
link_name
mode
return_value
return_code
reason_code

Purpose
Use the create_external_link (BPX1ELN) service to create a CMS external link. An external link can be
used to:

• Reference data outside of BFS (data residing on a CMS minidisk or in an SFS directory)
• Create an implicit mount point
• Contain data in an application-defined format

Parameters
link_contents_length

(input,INT,4) is a variable for specifying the length of the link_contents parameter. This must be value
between 1 and 1023.

link_contents
(input,CHAR,link_contents_length) is a variable for specifying the contents of the external link to
be created. The format of the information provided in this parameter depends on the file subtype
specified in the mode parameter. For detailed information on the file subtypes, see the usage notes.

link_name_length
(input,INT,4) is a variable for specifying the length of the link_name parameter. This must be value
between 1 and 1023.

link_name
(input,CHAR,link_name_length) is a variable for specifying the name of the external link being created.

mode
(input,INT,4) is a variable for specifying the mode of the external link. The mode includes the file type,
the file subtype, and the permissions you grant to yourself, to your group, and to any user.

The file type and subtype are identified using the BPXYFTYP macro. Permissions are specified with
the BPXYMODE macro. See “BPXYFTYP — Map File Type Definitions” on page 423 and “BPXYMODE —
Map Mode Constants” on page 437. File subtypes are described in detail in the usage notes.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

create_external_link (BPX1ELN)

60 z/VM: 7.3 OpenExtensions Callable Services Reference

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The BPX1ELN service creates external links, which are BFS objects. External links have different

functions based on their subtype. The subtypes are:
FST_EXEC

The external link identifies a CMS module file that resides on a minidisk or in an SFS directory. The
file is executed when specified on the invocation of the:

• C-Language exec() system call or the exec (BPX1EXC) callable service
• C-Language spawn() system call or the spawn (BPX1SPN) callable service
• OPENVM RUN command

FST_DATA
The external link identifies a non-BFS file residing on a minidisk or in an SFS directory that can be
accessed by C-Language calls, such as open(), read(), write(), close(), and so on.

FST_MEL
The external link identifies a Mount External Link (MEL). When a MEL is encountered during path
name resolution, it is treated as a directory with a file system mounted on it. Path name resolution
continues in the "mounted" file system.

FST_SOCKET
(Reserved for IBM Use Only) The external link identifies a socket. Sockets external links are
created through appropriate C library functions; they should not be explicitly created by user-
written applications.

User Defined
Subtypes in the range of 100-200 (decimal) are reserved for application-defined external links.

2. You can also create external links by using the CMS OPENVM CREATE EXTLINK command. For more
information, see the z/VM: OpenExtensions Commands Reference.

3. No syntax verification is done on the content of a link when an external link is created. The syntax is
verified by the individual functions that refer to the external link.

4. When FST_DATA and FST_EXEC external links are used, authorization checking is done on two levels.
The first authorization is verified based on the mode parameter associated with the external link. This
authorization is done according to the POSIX requirements. The second authorization is based on the
traditional CP and CMS authorization rules for linking and accessing minidisks, SFS directories and
files, and so on.

5. An FST_DATA external link specified on a C-language open() system call is converted into an ANSI
fopen() internally by the C run-time library. The access mode used for the fopen() is coded in the
external link contents as &&& or &&B (or &&b). The characters && are replaced with the access mode
specified on the open() request according to Table 2 on page 61.

Table 2. open() Request Access Mode with Characters &&

Access mode on fopen()
Access mode on open()

with &&& with &&B

O_RDONLY r rb

O_WRONLY r+ r+b

O_RDWR r+ r+b

O_WRONLY + O_APPEND a ab

O_RDWRLY + O_APPEND a+ a+b

create_external_link (BPX1ELN)

Chapter 2. Callable Service Descriptions 61

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3

Table 2. open() Request Access Mode with Characters && (continued)

Access mode on fopen()
Access mode on open()

with &&& with &&B

O_WRONLY + O_TRUNC w wb

O_RDWRLY + O_TRUNC w+ w+b

O_WRONLY + O_APPEND + O_TRUNC - -

O_RDWR + O_APPEND + O_TRUNC - -

Note: O_WRONLY is not strictly supported; it is mapped to O_RDWR. The O_CREAT, O_EXCL,
O_NOCTTY, and O_NONBLOCK flags are ignored.

Example

The following examples follow the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

Example 1: The following code creates an external link named /u/dpt37/payroll with the subtype
FST_DATA. Specifying this external link on a C-program open() system call is like specifying the link
contents on a C-program fopen() system call.

 MVC BUFFERA(20),=CL20'//PAYROLL.FILE.A,&&&'
 MVC BUFLENA,=F'20'
 MVC BUFFERB(16),=CL16'/u/dpt37/payroll'
 MVC BUFLENB,=F'16'
 XC S_MODE,S_MODE
 MVI S_TYPE,FT_EXTLINK External Link
 MVI S_SUBTYPE,FST_DATA sub-type: DATA
 MVI S_MODE2,S_IRUSR Read Wrt Read Wrt Read
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH
 SPACE ,
 CALL BPX1ELN, Create external link +
 (BUFLENA, Input: Link contents length +
 BUFFERA, Input: Link contents +
 BUFLENB, Input: Link name length +
 BUFFERB, Input: Link name +
 MODE, Input: Mode +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

If you later run a C program which has the following statements in it:

 fd = open("/u/dpt37/payroll",O_RDWR);
 read(fd,buffA,n);
 write(fd,buffB,m);

the result would be as if you executed:

 FILE * stream;
 stream = fopen("//PAYROLL.FILE.A","r+ ");
 fread(buffA,1,n,stream);
 fwrite(buffB,1,m,stream);

Example 2: The following code creates an external link named /clearscreen with subtype FST_EXEC.
Specifying this external link on the CMS OPENVM RUN command (or on a C-program exec() or spawn()

create_external_link (BPX1ELN)

62 z/VM: 7.3 OpenExtensions Callable Services Reference

system call) causes the VMFCLEAR MODULE, loaded as a nucleus extension or residing on an accessed
minidisk or SFS directory, to be executed.

 MVC BUFFERA(17),=CL17'VMFCLEAR MODULE *'
 MVC BUFLENA,=F'17'
 MVC BUFFERB(16),=CL16'/bin/clearscreen'
 MVC BUFLENB,=F'16'
 XC S_MODE,S_MODE
 MVI S_TYPE,FT_EXTLINK External Link
 MVI S_SUBTYPE,FST_EXEC sub-type: EXECUTABLE
 MVI S_MODE3,S_IXUSR+S_IXGRP+S_IXOTH
 SPACE ,
 CALL BPX1ELN, Create external link +
 (BUFLENA, Input: Link contents length +
 BUFFERA, Input: Link contents +
 BUFLENB, Input: Link name length +
 BUFFERB, Input: Link name +
 MODE, Input: Mode +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Example 3: The following code creates an external link named /u/gene with subtype FST_MEL.
References to this external link will cause path name resolution to continue at the directory identified
by the contents of the external link (/../VMBFS:VMSYSU:EUGENE/work/).

 MVC BUFFERA(17),=CL29'/../VMBFS:VMSYSU:EUGENE/work/'
 MVC BUFLENA,=F'29'
 MVC BUFFERB(16),=CL17'/u/gene'
 MVC BUFLENB,=F'7'
 XC S_MODE,S_MODE
 MVI S_TYPE,FT_EXTLINK External Link
 MVI S_SUBTYPE,FST_MEL sub-type: MOUNT
 MVI S_MODE2,S_IRUSR Read Wrt Srch Read Srch Read Srch
 MVI S_MODE3,S_IWUSR+S_IXUSR+S_IRGRP+S_IXGRP+S_IROTH+S_IXOTH
 SPACE ,
 CALL BPX1ELN, Create external link +
 (BUFLENA, Input: Link contents length +
 BUFFERA, Input: Link contents +
 BUFLENB, Input: Link name length +
 BUFFERB, Input: Link name +
 MODE, Input: Mode +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The requested operation requires writing in a directory with a mode that
denied write permission.

EEXIST The external link already exists.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRExtFileAlreadyExists.

EINVAL At least one parameter is not valid.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRCompNotDir,
JREndingSlashExtlink, and JRInvalidExtLinkLen.

create_external_link (BPX1ELN)

Chapter 2. Callable Service Descriptions 63

Return Code Explanation

ENAMETOOLONG The link_name argument is longer than 1023 characters, or some component
of that name is longer than 255 characters. CMS does not support name
truncation.

EROFS The requested operation requires writing in a directory on a read-only file
system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on page 31
• “exec (BPX1EXC) — Run a Program” on page 72
• “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “mknod (BPX1MKN) — Make a FIFO or Character Special File” on page 163
• “mount (BPX1MNT) — Make a File System Available” on page 166
• “open (BPX1OPN) — Open a File” on page 181
• “readlink (BPX1RDL) — Read the Value of a Symbolic Link” on page 236
• “rename (BPX1REN) — Rename a File or Directory” on page 251
• “rmdir (BPX1RMD) — Remove a Directory” on page 256
• “spawn (BPX1SPN) — Spawn a Process” on page 333
• “symlink (BPX1SYM) — Create a Symbolic Link to a Path Name” on page 345
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

create_external_link (BPX1ELN)

64 z/VM: 7.3 OpenExtensions Callable Services Reference

create_thread_environment (BPX1CTE) — Create POSIX Thread
Environment

BPX1CTE
module_name
return_value
return_code
reason_code

Purpose
Use the create_thread_environment (BPX1CTE) service to create the language environment necessary to
support POSIX threads.

Parameters
module_name

(input,CHAR,8) is a variable for specifying the name of the language exits module. The name must be
left justified and padded with blanks.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The language exits module should be built in the same way as described for the language environment
manager in the z/VM: CMS Application Multitasking.

Example

The code in this example initializes the POSIX process environment and establishes the assembler
language environment manager. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC LANGMAN(8),=C'DMSHASM ' Assembler Environment Manager
 SPACE ,
 CALL BPX1CTE, +
 (LANGMAN, Input: Language Manager +
 RETVAL, Return value: -1 or not return +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

create_thread_environment (BPX1CTE)

Chapter 2. Callable Service Descriptions 65

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

Return Code Explanation

ECMSINITIAL The maximum number of OpenExtensions processes has already been
reached.

ENOENT The specified language exits module cannot be found or loaded

ENOMEM There is not enough storage to load the specified language exits module.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

create_thread_environment (BPX1CTE)

66 z/VM: 7.3 OpenExtensions Callable Services Reference

DLL_delete (BPX1DEL) — Delete a Program from Storage

BPX1DEL
entrypt_address
return_value
return_code
reason_code

Purpose
Use the DLL_delete (BPX1DEL) service to delete a previously-loaded program from the storage of the
caller's process.

Parameters
entrypt_address

(input,INT,4) is a variable for specifying the entry point address of the program to be deleted. This
value was returned by the DLL_load (BPX1LOD) service when the program was loaded.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Calling DLL_delete (BPX1DEL) to delete a program from storage may not actually result in the program

being removed from storage. If the program has been loaded more than once, the program remains in
storage until DLL_delete is called the exact number of times that the program was loaded.

Example

The program ictasma located at ict/bin is loaded into storage using BPX1LOD, branched to, and then
deleted from storage using BPX1DEL.

 MVC BUFLENA,=F'16'
 MVC BUFFERA(16),=C'/ict/bin/ictasma'
 MVC OPTIONS,=A(0)
 MVC LIBPTHLN,=A(0)
 SPACE ,
 CALL BPX1LOD, Load Program +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 OPTIONS, Input: Options +
 LIBPTHLN, Input: Library Path Length +
 LIBPATH, Input: Library Path +
 EPADDR, Return value: -1 or entry pt addr +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 L R15,EPADDR Load return value
 C R15,=F'-1' Test for -1 return
 BE PSEUDO Branch on error
 SPACE ,

DLL_delete (BPX1DEL)

Chapter 2. Callable Service Descriptions 67

 L R15,EPADDR
 BALR R14,R15 Branch to loaded program
 SPACE ,
 CALL BPX1DEL, Delete program +
 (EPADDR, Input: Entry point address +
 RETVAL, Return value: -1 or 0 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The entrypt_address parameter contains an entry point address that is not
valid. The specified entry point address does not represent a currently loaded
program in the caller's process.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “DLL_load (BPX1LOD) — Load a Program into Storage” on page 69

DLL_delete (BPX1DEL)

68 z/VM: 7.3 OpenExtensions Callable Services Reference

DLL_load (BPX1LOD) — Load a Program into Storage

BPX1LOD
filename_length
filename
flags
libpath_length
libpath
return_value
return_code
reason_code

Purpose
Use the DLL_load (BPX1LOD) service to load an executable program into the caller's process.

Parameters
filename_length

(input,INT,4) is a variable for specifying the length of the filename parameter. The length can be a
value in the range 1 to 1023.

filename
(input,CHAR,filename_length) is a variable for specifying the name of the file to be loaded:

• If filename does not contain a / (slash), it is treated as a base name, and should be in one of the
directories listed in the supplied libpath parameter. If the libpath parameter is null, the file must be
in the current directory.

• If filename is not a base name (it contains at least one / (slash)), the name is used "as is" without
using the libpath parameter to locate the file.

• If filename is a base name, it can be up to 255 characters long.
• If filename is a path name, see “Understanding Byte File System (BFS) Path Name Syntax” on page

6.

flags
(input,INT,4) is a variable for specifying option flags that indicate what optional processing is to be
performed on behalf of the caller. The only valid values for this parameter are: X'00000000'.

libpath_length
(input,INT,4) is a variable for specifying the length of the libpath parameter. If the value of this
parameter is zero, the libpath parameter is ignored.

libpath
(input,CHAR,libpath_length) is a variable for specifying the library path to be searched in determining
the fully-qualified path name of the file specified in the filename parameter. The library path consists
of a series of path names separated by colons. The path names in the list are searched one at a time
until the specified file name is located. If the list of path names begins with a colon or ends with a
colon, the working directory of the calling process is used to locate the file. Each path name in the list
can have a maximum length of 1024 bytes.

The following is an example of a valid library path:

/usr1/bin:/grp1/bin:/bin

DLL_load (BPX1LOD)

Chapter 2. Callable Service Descriptions 69

return_value
(output,INT,4) is a variable where the service returns the entry point address of the program that was
loaded into storage if the request is successful, or -1 if the request is not successful.

If the loaded program is an AMODE(31) program, the high order bit of the return value is turned on.
For this reason, applications testing for a failure condition must explicitly check for a -1 value. Simply
checking for a value of less than zero will not produce the desired results.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If the specified file name represents an external link, the program is loaded from the caller's CMS

search order. The external name is used only if the name is eight characters or less; otherwise, the
caller receives an error from the DLL_load service.

2. When running from a pthread_created thread (pthread) the specified file is loaded into storage and
associated with the Initial Pthread Creating Task (IPT) to allow the sharing of a program across
multiple threads without the problem of the program disappearing unexpectedly when a thread
terminates.

3. Because this service does not cause the specified program to be executed, the set-user-ID and
set-group-ID flags have no impact on the process.

4. If a program that is loaded into storage with this service is not deleted from storage, then the program
remains in storage until the calling task terminates, if it is not a pthread, or when the Initial Pthread
Creating Task (IPT) terminates, if the caller is a pthread.

Characteristics and Restrictions
There are no restrictions on the use of DLL_load.

Example

The program ictasma located at ict/bin is loaded into storage and then branched to.

 MVC BUFLENA,=F'16'
 MVC BUFFERA(16),=C'/ict/bin/ictasma'
 MVC OPTIONS,=A(0)
 MVC LIBPTHLN,=A(0)
 SPACE ,
 CALL BPX1LOD, Load program +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 OPTIONS, Input: Options +
 LIBPTHLN, Input: Library Path Length +
 LIBPATH, Input: Library Path +
 EPADDR, Return value: -1 or entrypt addr +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 L R15,EPADDR Load return value
 C R15,=F'-1' Test for -1 return
 BE PSEUDO Branch on error
 SPACE ,
 L R15,EPADDR
 BALR R14,R15 Branch to loaded program

Return Codes and Reason Codes
This service can return the following return codes:

DLL_load (BPX1LOD)

70 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EACCES The caller does not have appropriate permissions to run the specified file. It
may lack permission to search a directory named in the pathname parameter;
or it may lack execute permission for the file to be run; or the file to be run is
not a regular file, and the system cannot run files of that type.

ENAMETOOLONG The filename argument is longer than 1023 characters, or some component
of the file name is longer than 255 characters. CMS does not support name
truncation.

ENOENT No file name was specified, or one or more of the components of the specified
filename were not found.

ENOEXEC The specified file has execute permission, but is not in the proper format to be
a process image file.

ENOMEM The file to be loaded requires more memory than is permitted by the
hardware or the operating system.

ENOTDIR A directory component of filename is not a directory.

EINVAL The flags parameter specified contains an unsupported value.

EMFILE Too many open files. An attempt was made to open more than the maximum
number of file descriptors (OPEN_MAX) allowed in this process.

ENFILE Too many files are open in the system. The system reached its predefined
limit for simultaneously open files and temporarily could not accept requests
to open another one.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “DLL_delete (BPX1DEL) — Delete a Program from Storage” on page 67

DLL_load (BPX1LOD)

Chapter 2. Callable Service Descriptions 71

exec (BPX1EXC) — Run a Program

BPX1EXC
pathname_length
pathname
argument_count
argument_length_list
argument_list
environment_count
environment_data_length
environment_data_list
exit_routine_address
exit_parameter_list_address
return_value
return_code
reason_code

Purpose
Use the exec (BPX1EXC) service to run a CMS module file. You identify the file by its path name. This
service replaces the current process image that calls the service with a new process image for the
executable file being run.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file to be run. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6.

The name specified in this parameter is case-sensitive (not automatically uppercased), whether the
file resides in BFS or outside of BFS. For information on how the exec service searches for the
specified file, see usage notes “11” on page 74 and “12” on page 74.

argument_count
(input,INT,4) is a variable for specifying the number of 4-byte pointers in the arrays specified in the
argument_length_list and argument_list parameters. If the program needs no arguments, specify 0.

argument_length_list
(input,INT,argument_count) is a variable for specifying an array of 4-byte pointers, each of which is the
address of a fullword containing the length of an argument to be passed to the specified program. If
the program needs no arguments, specify 0.

argument_list
(input,INT,argument_count) is a variable for specifying an array of 4-byte pointers, each of which is
the address of a character string to be passed to the specified program as an argument. The length
of each argument is specified by the corresponding element in the argument_length_list parameter. If
the program needs no arguments, specify 0.

exec (BPX1EXC)

72 z/VM: 7.3 OpenExtensions Callable Services Reference

environment_count
(input,INT,4) is a variable for specifying the number of 4-byte pointers in the arrays specified in the
environment_data_length and environment_data parameters. If the program needs no environment
data, specify 0.

environment_data_length
(input,INT,environment_count) is a variable for specifying an array of 4-byte pointers, each of which
is the address of a fullword containing the length of an environment variable to be passed to the
specified program. If the program does not use environment variables, specify 0.

environment_data_list
(input,INT,environment_count) is a variable for specifying an array of 4-byte pointers, each of which
is the address of a character string to be passed to the specified program as an environment
variable. The length of each environment variable is specified by the corresponding element in the
environment_data_length parameter. If the program does not use environment variables, specify 0.

exit_routine_address
(input,INT,4) is a variable for specifying the address of the user's exit routine. If a user exit is not to be
invoked, specify 0.

exit_parameter_list_address
(input,INT,4) is a variable for specifying the address of the user exit parameter list. This value is in
register 1 when the user exit receives control. If the user exit is not to be invoked or does not require
parameters, specify 0.

return_value
(output,INT,4) is a variable where the service returns -1 if it is not successful. If successful, the
service does not return.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. This call is not supported from REXX. If BPX1EXC is called from REXX, results are unpredictable. If

you want to invoke a BFS file from REXX, consider using the spawn (BPX1SPN) service.
2. The following characteristics of the calling process are changed when the service gives control to the

new executable file:

• The current process image is replaced with a new process image for the executable file to be run.
• All open file descriptors remain open unless the FCTLCLOEXEC flag is set.
• Signals set to be caught are reset to their default.
• If the set-user-ID mode bit of the new executable file is set and the invoker is authorized, the

effective user ID and saved set-user-ID of the process are set to the owner user ID of the new
executable file. See “BPXYMODE — Map Mode Constants” on page 437. The effective user ID of the
process is always saved as the saved set-user-ID.

• If the set-group-ID mode bit of the new executable file is set and the invoker is authorized, the
effective group ID and saved set-group-ID of the process are set to the group ID of the new
executable file. See “BPXYMODE — Map Mode Constants” on page 437. The effective group ID of
the process is always saved as the saved set-group-ID.

3. The S_ISVTX (sticky) mode bit of the executable file is not supported by OpenExtensions and is
ignored.

4. The new process image inherits the following from the calling process image:

• Process ID
• Parent process ID

exec (BPX1EXC)

Chapter 2. Callable Service Descriptions 73

• The time left until an alarm signal is generated
• File mode creation mask
• Process signal mask
• Pending signals
• Time accounting information.

For more information, see “times (BPX1TIM) — Get Process and Child Process Times” on page 371
and “BPXYTIMS — Map the Processor Time Structure for the times Service” on page 475.

5. All open files and directories that are not in the byte file system will remain open.
6. There is no return to the caller on a successful invocation of the exec service. Any storage subpools

associated with the svc level of the caller are released.
7. The register usage on entry to the user exit is:

• R0: Undefined.
• R1: Address of the user exit parameter list, as specified by the caller of the exec service.
• R2–R12: Undefined.
• R13: Address of a 96-byte work area in user storage.
• R14: The return address from the user exit to the exec service. This address must be preserved by

the user exit.
• R15: Address of the user exit.

8. The user exit receives control with the following attributes:

• Supervisor state
• PSW key of the invoker of exec
• Amode=31
• Enabled for interrupts

9. BFS authorization checking is performed on the module to be executed. The file permissions must
specify execute authority for the file class to which the caller belongs (file owner class, file group
class or file other class).

10. If the file to be executed resides in a file pool that is accessed through TSAF or AVS, it cannot be
invoked if either the set-group-ID mode bit or the set-user-ID mode bit is on and either the effective
UID or the effective GID of the caller does not match that of the file.

11. Unlike the C/C++ execlp() and execvp() functions, BPX1EXC does not use the environment
variable PATH to construct a search order.

12. The file to be invoked must be a relocatable executable CMS module created by the GENMOD
command, the BIND command, the c89 utility, or the cxx utility. The file type does not have to be
MODULE. (If the file is not relocatable, results are unpredictable.)

The file can reside in the byte file system or in the CMS record file system. The exec service first looks
for an executable file in the byte file system. If this fails, the service looks for an external link with a
subtype of FST_EXEC. If the file is not an external link, the service parses the path name into a CMS
file ID and looks for the file in the record file system.

If the file is an external link or a CMS file ID and the file type is not specified, MODULE is assumed. If
the file mode is not specified, * is assumed. If the file type is MODULE or *, and the file mode is *, the
exec service searches for a nucleus extension.

To ensure that a nucleus extension is run in the calling process, it must have been established in the
CMS Commands process or in the same CMS process that invokes this service. If a nucleus extension
is run in a process other than the calling process, and it uses OpenExtensions services, results are
unpredictable.

exec (BPX1EXC)

74 z/VM: 7.3 OpenExtensions Callable Services Reference

If the file is not a nucleus extension, or no search was made for a nucleus extension because the file
ID criteria described above were not met, the exec service then searches for the file on the accessed
minidisks and directories.

13. If the CMS module file to be executed contains MAP information, it is copied into the loader tables.
However, because the loader tables are shared among all the processes in the virtual machine, the
information in the loader tables cannot safely be relied upon in a multitasking environment.

14. The executable file to be run receives control with the same attributes as if it were invoked by
CMSCALL, except that register 1 contains the address of an exec style parameter list, and the
contents of register 0 are not defined. The parameter list consists of the following parameter
addresses. In the last parameter address, the high-order bit is 1.

Figure 2. Parameter list passed to the module

The last parameter passed to the executable file identifies the parameter list as a POSIX style
parameter list.

Register 13 contains a pointer to a user save area that you can use to save the calling program's
registers. Note, however, that saving the caller's registers is optional, because CMS does it
automatically. The user save area also contains a call type flag (USECTYP) that is set to X'10' to
indicate that register 1 points to an exec style parameter list. The user save area can be mapped
using the USERSAVE macro.

15. Exec performs preliminary error checking before removing the caller from storage. Control will return
to the caller if an error is detected at this time. If an error is encountered after the caller is cleaned
up, an abend will occur.

16. If the set-user-ID or set-group-ID mode bit of the executable file is set and will result in a change
to the effective user ID or effective group ID, then the requestor must be authorized to have its IDs
changed, and the file server on which the file resides must be authorized to change the IDs of another
user.

The following authorization applies to the requestor:

• The External Security Manager (ESM) must grant the requestor authority to have its IDs changed, or
• An ESM must not be installed or must defer authorization to CP, and:

– The effective UID of the active process must be 0, or
– The requesting VM user ID must have the attribute POSIXOPT EXEC_SETIDS ALLOW set, either

through a statement in its CP directory entry or through a specified or defaulted setting in the
system configuration file that is not overridden in the directory entry.

The following authorization applies to the file server on which the file resides:

exec (BPX1EXC)

Chapter 2. Callable Service Descriptions 75

• The ESM must have identified to CP that the file server is authorized to change the IDs of another
user when the file server logged on, or

• An ESM must not be installed or must defer authorization to CP, and the file server must have the
attribute POSIXOPT SETIDS ALLOW set through a statement in its CP directory entry.

Characteristics and Restrictions
The user exit is given control while the exec (BPX1EXC) service is still in progress. The user exit should
not attempt to use any OpenExtensions service that alters or terminates the current process (that is, the
exec, exit, and kill services). If such services are attempted, the results are unpredictable. Signals cannot
be delivered while in the user exit, because the exec service is still in progress and signal delivery is
inhibited.

Example

The program ictasma located at ict/bin gets control and is passed arguments WK18, DEPT37A, and
RATE(STD,NOEXC,NOSPEC). No environment arguments are passed. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551.

 MVC BUFLENA,=F'15'
 MVC BUFFERA(15),=C'ict/bin/ictasma'
 MVC ARGCNT,=F'3'
* First
 LA R15,4 Length
 ST R15,ARGLLST+00 Length parm list
 LA R15,=CL4'WK18' Argument
 ST R15,ARGSLST+00 Argument address parm list
* Second
 LA R15,7 Length
 ST R15,ARGLLST+04 Length parm list
 LA R15,=CL7'DEPT37A' Argument
 ST R15,ARGSLST+04 Argument address parm list
* Third
 LA R15,22 Length
 ST R15,ARGLLST+08 Length parm list
 LA R15,=CL22'RATE(STD,NOEXC,NOSPEC)' Argument
 ST R15,ARGSLST+08 Argument address parm list
*
 MVC ENVCNT,=F'0' Number of env. data items passed
 MVC ENVLENS,=F'0' Addr of end. data length list
 MVC ENVPARMS,=F'0' Add of env. data
*
 MVC EXITRTNA,=V(EXITRTN) ->exit routine
* MVC EXITPLA,=A(exit parameter list as expected by EXITRTN)
 SPACE ,
 CALL BPX1EXC, +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 ARGCNT, Input: Argument count +
 ARGLLST, Input: Argument length list +
 ARGSLST, Input: Argument address list +
 ENVCNT, Input: Environment count +
 ENVLENS, Input: Environment length list +
 ENVPARMS, Input: Environment address list +
 EXITRTNA, Input: Exit routine address or 0 +
 EXITPLA, Input: Exit Parm list address or 0+
 RETVAL, Return value: -1 or not return +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

exec (BPX1EXC)

76 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EACCES The caller does not have appropriate permissions to run the specified file. It
may lack permission to search a directory named in the pathname parameter;
or it may lack execute permission for the file to be run; or the file to be run is
not a regular file, and the system cannot run files of its type.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRExecNotRegFile.

EAGAIN Resources were temporarily unavailable.

ECMSERR An internal error occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNoStorage.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

EMFILE The process has reached the maximum number of file descriptors it can have
open.

ENAMETOOLONG The path name is longer than 1023 characters, or some component of the
path name is longer than 255 characters. CMS does not support name
truncation.

ENFILE CMS has reached the maximum number of file descriptors it can have open.

ENOENT No file named pathname was found, or no path name was specified.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRExecNmLenZero, JRFileNotThere, JRLinkNotFound, JRNoFileNoCreatFlag,
and JRQuiescing.

ENOEXEC The specified file has execute permission, but is not in the proper format to be
a process image file.

ENOMEM The new process requires more memory than is permitted by the hardware or
the operating system.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRExecFileTooBig.

ENOTDIR Some component of the path name is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “alarm (BPX1ALR) — Set an Alarm” on page 18
• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “create_external_link (BPX1ELN) — Create a CMS External Link” on page 60
• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “fork (BPX1FRK) — Create a New Process” on page 96

exec (BPX1EXC)

Chapter 2. Callable Service Descriptions 77

• “sigpending (BPX1SIP) — Examine Pending Signals” on page 319
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “spawn (BPX1SPN) — Spawn a Process” on page 333
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340
• “umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page 374.

exec (BPX1EXC)

78 z/VM: 7.3 OpenExtensions Callable Services Reference

_exit (BPX1EXI) — End a Process and Bypass the Cleanup

BPX1EXI
status_field

Purpose
Use the _exit (BPX1EXI) service to end the calling process, with the specified status being reported to its
parent.

Parameters
status_field

(input,INT,4) is a variable for specifying the status of the ending process. If the contents of this
parameter conform to the allowable exit status values, the service provides the contents to the parent
when the wait (BPX1WAT) service is called. For a mapping of the this parameter and a description of
the conforming status values, see “BPXYWAST — Map the Wait Status Word” on page 486.

Usage Notes
1. If the parent of the ending process has issued a wait call and is waiting for the ending process to end,

the status is returned to the parent at once.

If the parent of the ending process is not waiting, the status is saved. It is returned to the parent if the
parent later issues a wait call for the now-ended child.

If the parent of the ending process does not later wait for the ending process, the ending process's
ID (PID) remains in use until the parent ends. Because the number of process IDs is a limited system
resource, user and system availability for process IDs may be affected.

2. If the ending process is a session leader, the controlling terminal is disassociated from the session.
The controlling terminal can then be acquired by a new controlling process.

3. Child processes of a process that ends are assigned the parent process ID of the init process (whose
process ID is 1). The status of these child processes are reported to the init process that frees the PID
and system resources associated with the ending process.

4. A SIGCHLD signal is sent to the parent of the ending process.
5. Ending a process does not end its child processes directly, however; under the following

circumstances a SIGHUP signal is sent to a child process that can cause a child process to end:

• If the ending process is a controlling process, a SIGHUP signal is sent to each process in the
foreground process group of the controlling terminal belonging to the caller.

• If ending a process leaves a process group orphaned and any member of that process group is
stopped, each member of the process group is sent a SIGHUP signal followed by a SIGCONT signal.

6. The _exit service does not return to the caller. If it cannot complete its processing successfully, the
caller receives an abend.

Characteristics and Restrictions
If the _exit (BPX1EXI) service is invoked with a normal exit status completion code, a normal return to the
operating system results.

For a detailed description of the conforming exit status values, see “BPXYWAST — Map the Wait Status
Word” on page 486.

_exit (BPX1EXI)

Chapter 2. Callable Service Descriptions 79

Example

The following code ends the program and returns an exit code of 44 to the waiting parent process.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

 XC WAST(WAST#LENGTH),WAST
 MVI WASTEXITCODE,44 User defined exit code
 SPACE
 CALL BPX1EXI, End a process +
 (WAST), Input: Status field +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “close (BPX1CLO) — Close a File or Socket” on page 34
• “cmsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 38
• “wait (BPX1WAT) — Wait for a Child Process to End” on page 385.

Note: The _exit (BPX1EXI) service is not related to the exit shell command and is different from the
exit() ANSI C routine.

_exit (BPX1EXI)

80 z/VM: 7.3 OpenExtensions Callable Services Reference

fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor

BPX1FCA
file_descriptor
audit_flags
option_code
return_value
return_code
reason_code

Purpose
Use the fchaudit (BPX1FCA) service to change the types of access to a file to be audited for the security
product. You identify the file by its file descriptor.

For the corresponding service using a path name, see “chaudit (BPX1CHA) — Change Audit Flags for a File
by Path Name” on page 23.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file to be changed.
audit_flags

(input,INT,4) is a variable for specifying the access to be audited. This parameter is mapped by the
BPXYAUDT macro. See “BPXYAUDT — Map Flag Values for the chaudit and fchaudit Services” on page
413. Values for this parameter include any combination of the following:

Value Description

AUDTREADFAIL Audit failing read requests.

AUDTREADSUCCESS Audit successful read requests.

␢ ␢
AUDTWRITEFAIL Audit failing write requests.

AUDTWRITESUCCESS Audit successful write requests.

␢ ␢
AUDTEXECFAIL Audit failing execute or search requests.

AUDTEXECSUCCESS Audit successful execute or search requests.

option_code
(input,INT,4) is a variable for specifying whether you are changing the auditing for the user or for the
security auditor. This variable can have the following values:
Value

Meaning
0

The user's auditing is being changed.
1

The security auditor's auditing is being changed.

fchaudit (BPX1FCA)

Chapter 2. Callable Service Descriptions 81

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Audit flags are stored with every object in the Byte File System. They are intended for use by an

External Security Manager (ESM) and are not used by native BFS server security or auditing functions.
You can use the fchaudit (BPX1FCA) service to change any of the audit flags, even when there is
no ESM installed. However, because native BFS does not use the audit flags, they have no effect on
security or auditing if no ESM is installed.

2. When no ESM is installed, the authority required to use this service is defined as follows:

• To change the user audit flags, the user must be either a superuser or the owner of the file.
• To change the auditor audit flags, the user must be a superuser.

3. When an ESM is installed, the authority requirements to use this service are defined by the ESM. For
example, the ESM could define a level of authority called auditor authority, and further declare that
auditor authority is required to change the auditor audit flags.

Example

The following code changes the audit for the standard input file to ReadFail, WriteFail and ExecFail.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYAUDT — Map Flag Values
for the chaudit and fchaudit Services” on page 413.

 MVI AUDTREADACCESS,AUDTREADFAIL
 MVI AUDTWRITEACCESS,AUDTWRITEFAIL
 MVI AUDTEXECACCESS,AUDTEXECFAIL
 MVI AUDTRSRV,X'00'
 SPACE ,
 CALL BPX1FCA, Change audit +
 (=A(STDIN_FILENO), Input: File descriptor +
 AUDT, Input: Audit flags, BPXYAUDT +
 =A(0), Input: 0 user, 1 security auditor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter is not a valid file descriptor.

EINVAL The option_code parameter is incorrect, or the file descriptor refers to an
unnamed pipe and this service is not allowed on such a file.

EPERM The effective user ID of the calling process does not match the owner of
the file; or the calling process does not have appropriate privileges; or, if
option_code indicated that the auditor audit flags were to be changed, then
the user may not have had auditor authority.

fchaudit (BPX1FCA)

82 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EROFS The specified file is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chaudit (BPX1CHA) — Change Audit Flags for a File by Path Name” on page 23
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

fchaudit (BPX1FCA)

Chapter 2. Callable Service Descriptions 83

fchmod (BPX1FCM) — Change the Mode of a File or Directory by
Descriptor

BPX1FCM
file_descriptor
mode
return_value
return_code
reason_code

Purpose
Use the fchmod (BPX1FCM) service to modify the permission bits that control the owner access, group
access, and general access to the file. You can use this service to set flags that modify the user ID (UID)
and group ID (GID) of the file when it is executed. You can also use this service to set the sticky bit to
indicate from where the file should be fetched. You identify the file by its file descriptor.

For the corresponding service using a path name, see “chmod (BPX1CHM) — Change the Mode of a File or
Directory by Path Name” on page 28.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file whose mode you want to change.
mode

(input,INT,4) is a variable for specifying the new mode of the file. This parameter, which is mapped by
the BPXYMODE macro, identifies the file type and the permissions you grant to yourself, to your group,
and to any user. See “BPXYMODE — Map Mode Constants” on page 437 for the parameter options.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. File descriptors open at the time of the call to the fchmod (BPX1FCM) service retain the access

permission they had at the time the file was opened.
2. For mode bits to be changed, the effective UID of the calling process must match the file's owner UID,

or the process must have appropriate privileges.
3. When the mode is changed successfully, the file's change time is updated as well.
4. Setting the set-group-ID-on-execution permission means that when this file is run, through the exec

call, the effective GID of the process is set to the file's owner GID, so that the process seems to be
running under the GID of the file, rather than that of the actual invoker.

The set-group-ID-on-execution permission is suppressed (the bit is turned off) if both of the following
are true:

fchmod (BPX1FCM)

84 z/VM: 7.3 OpenExtensions Callable Services Reference

• The calling process does not have appropriate privileges.
• The file's owner GID does not match the effective GID or one of the supplementary GIDs of the

calling process.
5. Setting the set-user-ID-on-execution permission means that when this file is run the process's

effective UID will be set to the file's owner UID, so that the process seems to be running under the UID
of the file's owner, rather than that of the actual invoker.

Example

The following code changes the permissions for the standard input file. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551. For the data structure, see “BPXYMODE — Map Mode Constants” on page 437 and “BPXYFTYP
— Map File Type Definitions” on page 423.

 XC S_MODE,S_MODE
 MVI S_MODE2,S_IRUSR All permissions
 MVI S_MODE3,S_IRWXU2+S_IRWXG+S_IRWXO
 SPACE ,
 CALL BPX1FCM, Change file modes +
 (=A(STDIN_FILENO), Input: File descriptor +
 S_MODE, Input: Mode, BPXYMODE, BPXYFTYP +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter is not a valid file descriptor.

EPERM The effective UID of the calling process does not match the owner of the file,
and the calling process does not have appropriate privileges.

EROFS The specified file is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on page 31
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “open (BPX1OPN) — Open a File” on page 181
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

fchmod (BPX1FCM)

Chapter 2. Callable Service Descriptions 85

fchown (BPX1FCO) — Change the Owner and Group of a File or
Directory by Descriptor

BPX1FCO
file_descriptor
owner_UID
group_ID
return_value
return_code
reason_code

Purpose
Use the fchown (BPX1FCO) service to change the owner, group, or both of a file. You identify the file by its
file descriptor.

For the corresponding service using a path name, see “chown (BPX1CHO) — Change the Owner or Group
of a File or Directory” on page 31.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file for which you wish to change the
owner, group, or both.

owner_UID
(input,INT,4) is a variable for specifying the new owner UID assigned to the file, or the present value if
there is no change. This parameter must be specified.

group_ID
(input,INT,4) is a variable for specifying the new group ID assigned to the file, or the present value if
there is no change. This parameter must be specified.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The fchown (BPX1FCO) service changes the owner UID and group ID of a file. Only a process with

superuser authority can change the owner UID of a file.
2. The group ID of a file can be changed by a process if the process has appropriate privileges, or if a

process meets all of the following conditions:

• The effective UID of the process matches the file's owner UID.
• The owner_UID value specified in the change request also matches the file's owner UID.

fchown (BPX1FCO)

86 z/VM: 7.3 OpenExtensions Callable Services Reference

• The group_ID value specified in the change request is the effective GID,or one of the supplementary
GIDs, of the calling process.

3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the file mode are
automatically turned off.

4. If the change request is successful, the change time for the file is updated.
5. Values for both owner_UID and group_ID must be specified as they are to be set. Ifit is desired to

change only one of these values, the other must be set to its present value to remain unchanged.

Example

The following code changes the owner and group for the standard input file. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC GROUPID,.. Group ID
 MVC USERID,.. User ID
 SPACE ,
 CALL BPX1FCO, Change the owner and group of file+
 (=A(STDIN_FILENO), Input: File descriptor +
 USERID, Input: New user ID for file +
 GROUPID, Input: New group ID for file +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter is not a valid file descriptor.

EINVAL The owner_UID or group_ID parameter is incorrect, or file_descriptor refers to
an unnamed pipe and this service is not allowed on such a file.

EPERM The calling process does not have appropriate privileges.

EROFS The specified file is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on page 31
• “fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor” on page 84
• “fstat (BPX1FST) -- Get Status Information about a File by Descriptor” on page 102.

fchown (BPX1FCO)

Chapter 2. Callable Service Descriptions 87

fcntl (BPX1FCT) — Control Open File Descriptors

BPX1FCT
file_descriptor
action
argument
return_value
return_code
reason_code

Purpose
Use the fcntl (BPX1FCT) service to perform general control functions for open files and sockets. This
service retrieves or sets the file descriptor flags, file status flags, and locking information.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the descriptor for a file or socket.

This parameter must specify an opened file descriptor, except when the action parameter is
F_CLOSFD. In that case, this file descriptor is not expected to be in use.

action
(input,INT,4) is a variable for specifying the action to be performed. This parameter is mapped by the
BPXYFCTL macro. For a list of action values, see “BPXYFCTL — Map Command Values and Flags for
the fcntl Service” on page 422.

argument
(input/output,INT,4) is a variable for specifying either an argument or zero. The type of argument you
can use depends upon the action requested in the previous parameter:

Action Argument

F_CLOSFD file_descriptor_2

F_DUPFD file_descriptor_2

F_DUPFD2 file_descriptor_2

F_GETFD 0

F_GETFL 0

F_GETLK lock_information

F_SETFD file_descriptor_flags

F_SETFL file_status_flags

F_SETLK lock_information

F_SETLKW lock_information

Argument Descriptions:
file_descriptor_2

is the name of a fullword containing a file descriptor. The function performed by the service
depends on the specified action:

fcntl (BPX1FCT)

88 z/VM: 7.3 OpenExtensions Callable Services Reference

Action
Function Performed

F_DUPFD
The service returns the lowest file descriptor equal to or greater than file_descriptor_2 not
already associated with an open file.

F_DUPFD2
The service returns a file descriptor equal to file_descriptor_2. If the file identified by
file_descriptor_2 is already in use, the file is closed and file_descriptor is duplicated. If
file_descriptor is equal to file_descriptor_2, file_descriptor_2 is returned without closing it.

F_CLOSFD
The file_descriptor_2 argument specifies the upper limit for the range of file descriptors to be
closed, and file_descriptor specifies the lower limit. If a -1 is specified for file_descriptor_2, all
file descriptors greater than or equal to the lower limit are closed.

file_descriptor_flags
is the name of a fullword containing the file descriptor flags to be set or retrieved for
file_descriptor.

To get file_descriptor_flags, specify action F_GETFD. If successful, return_value maps to the bit
settings of file_descriptor_flags.

Similarly, to set file_descriptor_flags, specify action F_SETFD and use the mapping to set or reset
file_descriptor_flags to the desired value.

Note: After the FCTLCLOFORK flag has been set on, it cannot be set off again.

File descriptor flags are mapped by the BPXYFCTL macro. See “BPXYFCTL — Map Command
Values and Flags for the fcntl Service” on page 422.

file_status_flags
is the name of a fullword containing the file status flags to be set or retrieved for file_descriptor.

To get file_status_flags, specify action F_GETFL. If successful, return_value maps to the bit
settings of file_status_flags.

Similarly, to set file_status_flags, specify action F_SETFL and use the mapping to set or reset
file_status_flags to the desired value. Only the O_APPEND, O_NONBLOCK, and O_SYNC flags are
set when the action is F_SETFL; any other flags specified are ignored.

File status flags are used to set some of the open flags that are mapped by the BPXYOPNF macro.
For the mapping of the file status flags, see “BPXYOPNF — Map Flag Values for the open and fcntl
Services” on page 447.

Two masks are available for use with the return value from an F_GETFL request. You can extract
the file access mode flags from the return value using the O_ACCMODE mask, or use the O_GETFL
mask to extract both the file access mode and file status flags.

lock_information
is the name of a fullword containing a pointer to a structure containing information on a file
segment for which locks are to be set, cleared, or queried.

The lock_information argument is mapped by the BPXYBRLK macro as follows:

Word Description

0 L_TYPE field: Bytes 0–1 specify the type of lock being set, cleared, or queried.

0 L_WHENCE field: Bytes 2–3 specify how the lock offset is to be determined.

1–2 L_START field specifies the starting byte offset of the lock to be set, cleared, or queried.
This is a doubleword value.

3–4 L_LEN field specifies the length of the byte range to be set, cleared, or queried. This is a
doubleword value.

fcntl (BPX1FCT)

Chapter 2. Callable Service Descriptions 89

Word Description

5 L_PID field, upon return from a F_GETLK request, contains the process ID of the process
holding the blocking lock, provided that one was found.

See “BPXYBRLK — Map the Byte Range Lock Request for the fcntl Service” on page 414. For more
information about these fields, see "File Locking" in “Usage Notes” on page 90.

return_value
(output,INT,4) is a variable where, if the request is successful, the service returns one of the following
values, according to the specified action and argument. If the request is not successful, a -1 is
returned.

Action Argument Return Value

F_CLOSFD file_descriptor_2 0

F_DUPFD file_descriptor_2 file_descriptor

F_DUPFD2 file_descriptor_2 file_descriptor

F_GETFD 0 file_descriptor_flags

F_GETFL 0 file_status_flags

F_GETLK lock_information lock_information

F_SETFD file_descriptor_flags 0

F_SETFL file_status_flags 0

F_SETLK lock_information 0

F_SETLKW lock_information 0

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes

Closing Files: A process can use the BPX1FCT service to close a range of file descriptors. The
file_descriptor_2 argument must be greater than or equal to file_descriptor, or it can also be -1, which
indicates that all file descriptors greater than or equal to file_descriptor are to be closed.

Use of F_CLOSFD is meant to be consistent with the close service. You cannot close file descriptors that
could not also be closed using the close service, BPX1CLO.

If a file descriptor cannot be closed, it is considered an error, but the request continues with the next file
descriptor in the range. File descriptors that are not in use are ignored.

File Locking: A process can use the fcntl (BPX1FCT) service to lock out other cooperating processes from
part of a file, so that the process can read or write to that part of the file without interference from others.
This can ensure data integrity when several processes have a file accessed concurrently.

Requests to lock files in NFS-mounted directories are ignored.

Locking operations are controlled with a structure mapped by BPXYBRLK, whose format is described
under the lock_information parameter. This structure is needed whether the request be for setting a lock,

fcntl (BPX1FCT)

90 z/VM: 7.3 OpenExtensions Callable Services Reference

releasing a lock, or querying a particular byte range for a lock. The following is a more detailed description
of the BPXYBRLK structure.

L_TYPE Field — This field specifies the type of lock to be set, cleared, or queried. Valid values for L_TYPE
are as follows:
Value

Description
F_RDLCK

Indicates a read lock. Specified as a halfword integer value of 1, this is also known as a shared lock.
This type of lock specifies that the process can read the locked part of the file, and other processes
cannot write on that part of the file in the meantime. A process can change a held write lock, or any
part of it, to a read lock, thereby making it available for other processes to read. Multiple processes
can have read locks on the same part of a file simultaneously. To establish a read lock, a process must
have the file accessed for reading.

F_WRLCK
Indicates a write lock. Specified as a halfword integer value of 2, this is also know as an exclusive
lock. This type of lock indicates that the process can write on the locked part of the file, without
interference from other processes. If one process puts a write lock on part of a file, no other process
can establish a read lock or write lock on that same part of the file. A process cannot put a write lock
on part of a file if there is already a read lock on an overlapping part of the file, unless that process is
the only owner of that overlapping read lock. In such a case, the read lock on the overlapping section
is replaced by the write lock being requested. To establish a write lock, a process must have the file
accessed for writing.

F_UNLCK
Indicates unlock. Specified as a halfword integer value of 3, this is used to unlock all locks held on the
given range by the requesting process.

L_WHENCE Field — This field specifies how the byte range offset is to be found within the file. The use
of this field for the fcntl (BPX1FCT) service parallels its processing for the lseek (BPX1LSK) service. See
“lseek (BPX1LSK) — Change the File Offset” on page 154 for more information.

Valid values for L_WHENCE are as follows:
Value

Description
SEEK_SET

Indicates the start of the file. It is specified as a halfword integer value of 0.
SEEK_CUR

Indicates the current file offset in the file. It is specified as a halfword integer value of 1.
SEEK_END

Indicates the end of the file. It is specified as a halfword integer value of 2.

L_START Field — This field identifies the part of the file to be locked, unlocked, or queried. The part
of the file affected by the lock begins at this offset from the location specified by the L_WHENCE field.
For example, if L_WHENCE is SEEK_CUR and L_START is 10, a F_SETLK request attempts to set a lock
beginning 10 bytes past the current cursor position. The L_START value may be negative, provided that
when added to the offset indicated by the L_WHENCE position, the resulting offset does not extend
beyond the beginning of the file.

Note: Though you cannot request a byte range that begins or extends beyond the beginning of the file,
you can request a byte range that starts or extends beyond the end of the file.

The use of the L_START field for the fcntl (BPX1FCT) service parallels its processing for the lseek
(BPX1LSK) service. See “lseek (BPX1LSK) — Change the File Offset” on page 154 for more information.

L_LEN Field — This field gives the size of the locked part of the file, in bytes. The area affected begins at
L_START and ends at L_START+L_LEN-1. The value specified for L_LEN cannot be negative. If a negative
value is specified for L_LEN, a return value of -1 and a return code of EINVAL are returned. If L_LEN is

fcntl (BPX1FCT)

Chapter 2. Callable Service Descriptions 91

zero, the locked part of the file begins at the position specified by L_WHENCE and L_START, and extends
to the end of the file.

L_PID Field — This field identifies the process ID of the process that holds the lock found on an F_GETLK
request, if one was found.

Obtaining Locks: Locks can be set by specifying F_SETLK as the action parameter for the fcntl (BPX1FCT)
service. If the lock cannot be obtained, a return_value of -1 is returned along with an appropriate
return_code and reason_code. You can also use F_SETLK to release locks already held, by setting L_TYPE
to F_UNLCK.

You can also set locks by specifying F_SETLKW as the action parameter. If the lock cannot be obtained
because another process has a lock on all or part of the requested range, the F_SETLKW request waits
until the specified range becomes free and the request can be completed. You can also use F_SETLKW to
release locks already held, by setting L_TYPE to F_UNLCK.

If a signal interrupts a call to the fcntl (BPX1FCT) service while it is waiting in a F_SETLKW operation, the
function returns with a return_value of -1, and a return_code of EINTR.

F_SETLKW operations have the potential for encountering deadlocks. This happens when process A is
waiting for process B to unlock a region, and B is waiting for A to unlock a different region. If the system
detects that a F_SETLKW might cause a deadlock, the fcntl (BPX1FCT) service returns with a return_value
of -1 and a return_code of EDEADLK.

Determining Lock Status: A process can determine locking information about a file using F_GETLK as the
action parameter for the fcntl (BPX1FCT) service. In this case, the argument parameter should specify a
pointer to a structure mapped by the BPXYBRLK macro. This structure should describe a lock operation
that the caller would like to perform. When the service returns, the structure is modified to describe the
first lock found that would prevent the proposed lock operation from completing successfully.

If a lock is found that would prevent the proposed lock from being set, the F_GETLK request returns a
modified structure whose:

• L_WHENCE value is always SEEK_SET
• L_START value gives the offset of the locked portion from the beginning of the file
• L_LEN value is set to the length of the locked portion of the file
• L_PID value is set to the process ID of the process that is holding the lock.

If there are no locks that would prevent the proposed lock operation from completing successfully, the
returned structure is modified to have an L_TYPE of F_UNLCK, but otherwise remains unchanged.

Multiple Lock Requests: A process can have several locks on a file simultaneously, but can have only
one type of lock set on any given byte. Therefore, if a process puts a new lock on part of a file that it had
previously locked, the process has only one lock on that part of the file and the lock type is the one given
by the most recent locking operation.

Releasing Locks: When an F_SETLK or F_SETLKW request is made to unlock a byte region of a file, all
locks held by that process within the specified region are released. In other words, each byte specified on
an unlock request is freed from any lock that is held against it by the requesting process.

All of a process's locks on a file are removed when the process closes a file descriptor for that file. Locks
are not inherited by a child process created with the spawn (BPX1SPN) service. For more information, see
“spawn (BPX1SPN) — Spawn a Process” on page 333.

fcntl (BPX1FCT)

92 z/VM: 7.3 OpenExtensions Callable Services Reference

Important Note:

All locks are advisory only. Processes can use locks to inform each other that they want to protect parts
of a file, but locks don't prevent I/O on the locked parts. A process that has appropriate permissions on a
file can perform whatever I/O it chooses, regardless of what locks are set. Therefore, file locking is only
a convention, and it works only when all processes respect the convention.

Example

The code for the first example duplicates the standard error file descriptor to a file descriptor greater than
or equal to FILEDES2. The code for the second example set a shared byte range lock. These examples
follow the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551. For the data structure, see “BPXYFCTL — Map Command Values and
Flags for the fcntl Service” on page 422, “BPXYBRLK — Map the Byte Range Lock Request for the fcntl
Service” on page 414, and “BPXYOPNF — Map Flag Values for the open and fcntl Services” on page 447.

* for 2nd parm F_DUPFD, F_DUPFD2 3rd parm file desc no..
* for 2nd parm F_GETFD, F_GETFL 3rd parm 0
* for 2nd parm F_SETFD 3rd parm BPXYFCTL
* for 2nd parm F_GETLK, F_SETLK, F_SETLKW 3rd parm BPXYBRLK
* for 2nd parm F_SETFL 3rd parm BPXYOPNF
 SPACE ,
* Example 1 - duplicate file descriptor
 MVC FILEDES2,=F'20' Get free file descriptor >= 20
 SPACE ,
 CALL BPX1FCT, General purpose file control +
 (=A(STDERR_FILENO), Input: File descriptor +
 =A(F_DUPFD), Input: Action, BPXYFCTL +
 FILEDES2, Input: Argument #/0/FCTL/BRLK/OPNF+
 RETVAL, Return value: 0, -1 or action +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
* Example 2 - duplicate file descriptor
 MVC FILEDES2,=F'20' Get next higher file descriptor
 LA R15,BRLK
 ST R15,BRLKA
 XC BRLK(BRLK#LENGTH),BRLK Null out BRLK
 MVC L_TYPE,=AL2(F_RDLCK) Lock type = shared
 MVC L_WHENCE,=AL2(SEEK_CUR) Whence = from current cursor
 SPACE ,
 CALL BPX1FCT, General purpose file control +
 (=A(STDERR_FILENO), Input: File descriptor +
 =A(F_SETLK), Input: Action, BPXYFCTL +
 BRLKA, Input: Argument #/0/FCTL/BRLK/OPNF+
 RETVAL, Return value: 0, -1 or action +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process asked to set a lock, but the lock conflicts with a lock on an
overlapping part of the file already set by another process.

fcntl (BPX1FCT)

Chapter 2. Callable Service Descriptions 93

Return Code Explanation

EBADF The request was not accepted, for one of these reasons:

• The file_descriptor parameter does not specify a valid, open file descriptor.
• The request was to set a read lock, but the file is open for writing only.
• The request was to set a write lock, but the file is open for reading only.
• The file_descriptor was opened with an opendir request. Many of the other

requests are rejected for an opendir filedes.
• If the action requested was F_DUPFD2, this error indicates that
file_descriptor_2 was negative, or was equal to or greater than the highest
file descriptor value allowed for the process.

The following reason codes can accompany this return code: JRFdTooBig,
JRNegFileDes.

EDEADLK The action requested was F_SETLKW; the potential for deadlock was
detected.

EINTR The service was interrupted by a signal while processing a F_SETLKW request.

EINVAL The request was not accepted, for one of these reasons:

• If the action requested was F_DUPFD, this error indicates that
file_descriptor_2 was negative, or was equal to or greater than the highest
file descriptor value allowed for the process.

• If the action requested was F_SETLK or F_SETLKW, the file specified by
file_descriptor does not support locking, or the lock_information parameter
contains incorrect values.

• The action requested was F_CLOSFD and the file descriptor specified by
file_descriptor_2 was less than file_descriptor, but was not equal to -1.

• An incorrect action was requested.

The following reason codes can accompany this return
code: JRBrlmBadFileType, JRBrlmBadL_Type, JRBrlmBadL_Whence,
JRBrlmInvalidRange, JRFdTooBig, JRFd2TooSmall, JRNegFileDes.

EMFILE The action requested was F_DUPFD. The process has already reached its
maximum number of file descriptors, or there is no file descriptor available
greater than file_descriptor_2.

ENOTSOCK file_descriptor does not refer to a valid socket descriptor. The following reason
code can accompany this return code: JRMustBeSocket.

EPERM The action requested was F_CLOSFD, and at least one of the file descriptors in
the specified range remains open. For a description of the file descriptors that
cannot be closed with F_CLOSFD, see the usage notes.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “close (BPX1CLO) — Close a File or Socket” on page 34
• “exec (BPX1EXC) — Run a Program” on page 72
• “fork (BPX1FRK) — Create a New Process” on page 96

fcntl (BPX1FCT)

94 z/VM: 7.3 OpenExtensions Callable Services Reference

• “lseek (BPX1LSK) — Change the File Offset” on page 154
• “open (BPX1OPN) — Open a File” on page 181
• “spawn (BPX1SPN) — Spawn a Process” on page 333.

fcntl (BPX1FCT)

Chapter 2. Callable Service Descriptions 95

fork (BPX1FRK) — Create a New Process

BPX1FRK
process_ID
return_code
reason_code

Purpose
Use the fork (BPX1FRK) service to create a new process. The new process (known as the child process) is
a duplicate of the process that calls fork (known as the parent process).

Note: The OpenExtensions implementation of the fork (BPX1FRK) service has some limitations not found
in other implementations (see “Characteristics and Restrictions” on page 97). In certain situations, you
may need to modify your application to accommodate these limitations. To avoid the limitations of fork
(BPX1FRK), you should consider modifying your application to use spawn (BPX1SPN). For information
about converting fork() usage in a C/C++ program to spawn(), see the z/VM: CMS Application
Development Guide.

Parameters
process_ID

(output,INT,4) is a variable where the service returns a process ID, 0, or -1:

• Upon successful completion, fork returns the process ID of the newly-created child to the calling
(parent) process.

• Because the child is a duplicate, it contains the same call to fork that was in the parent. Execution
of the child process begins with the fork call in the child returning a process_ID of 0. The child then
proceeds with normal execution.

• If process_ID is returned as -1 to the calling process, the fork request was not successful, and no
child process was created.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
process_ID is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
process_ID is -1.

Usage Notes
1. Although the child process is a duplicate of the parent process, there are the following differences:

• The child has a unique process ID (PID) that does not match any active process group ID.
• The child has a different parent process ID (namely, the process ID of the process that called fork).
• The child has its own copy of the parent's file descriptors. Each file descriptor in the child refers to

the same open file as the corresponding file descriptor in the parent.
• The child has its own copy of the parent's open directory streams. Each open directory stream in the

child can share directory stream positioning with the corresponding directory stream of the parent.
• The process and system utilization times for the child are set to zero.
• Any file locks previously set by the parent are not inherited by the child.

fork (BPX1FRK)

96 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

• The child process has no interval timers set (similar to the results of a call to the alarm service with
the seconds parameter specified as zero).

• The child has no pending signals.

In other respects, the child is identical to the parent.
2. The child process inherits all shared memory attachments attached to the calling process. The internal

values of the number of processes attached to each shared memory segment (SHM_NATTCH field of
the SHMID_DS data structure in the BPXYSHM macro) will be incremented.

Characteristics and Restrictions
1. You must issue the CMS command OPENVM SET FORK ON before running an application that uses the
fork() function. If the CMS FORK flag is not turned on, the application will receive a return value of
-1, a return code of ENOSYS, and a reason code of JRFunctNotSupported.

2. You must run the application as a POSIX(ON) application. If this flag is not turned on, the application
will receive a return value of -1, a return code of ENOSYS, and a reason code of JRFunctNotSupported.

3. The child process is not allowed to issue an exit() call or to call any function that will invoke exit()
before the child process issues the exec() function. Any attempt to exit the child process before the
exec() is issued will result in a X'AE5' abnormal end code.

4. The child process is not allowed to issue any function that will cause the child process to be blocked
(for example, a pipe read() or a pause()), before the child issues the exec() function. Any attempt
to exit the child process before the exec() is issued will result in a X'AE6' abnormal end code.

5. Any local variables in the application that are changed in the child process before the exec() is issued
will be changed in the parent process as well. This is because the child and parent processes are still
using the same program storage. The exec() function causes the child process to begin using its own
program storage.

6. Any global or environment variables in the application that are changed in the child process before the
exec() is issued will be changed in the parent process as well. This is because the child and parent
processes are still using the same program storage. The exec() function causes the child process to
begin using its own program storage.

Example

The following code creates a new process. The next sequential instruction gets control from both the
parent process (RETVAL=child process ID) and from the child process (RETVAL=0). If RETVAL=-1, the
fork failed.

 CALL BPX1FRK, Create a new process (fork) +
 (RETVAL, Return value: -1, 0, child's PID +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN One of the following conditions is true:

• You have already reached the maximum number of processes you are
allowed to run.

The following reason code can accompany this return code: JRMaxProc.

fork (BPX1FRK)

Chapter 2. Callable Service Descriptions 97

Return Code Explanation

ENOSYS The CMS OPENVM FORK option is not enabled. Issue the OPENVM SET FORK
ON command to turn on the CMS OPENVM FORK option.

The following reason code can accompany this return code:
JRFuncNotSupported.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “spawn (BPX1SPN) — Spawn a Process” on page 333

fork (BPX1FRK)

98 z/VM: 7.3 OpenExtensions Callable Services Reference

fpathconf (BPX1FPC) — Determine Configurable Path Name
Variables Using a Descriptor

BPX1FPC
file_descriptor
name
return_value
return_code
reason_code

Purpose
Use the fpathconf (BPX1FPC) service to determine the current value of a configurable limit or option
(variable) associated with a file or directory identified by its file descriptor.

For the corresponding service using a path name, see “pathconf (BPX1PCF) — Determine Configurable
Path Name Variables Using Path Name” on page 194.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file.
name

(input,INT,4) is a variable for specifying the path name variable to be returned. Use the BPXYPCF
macro. See “BPXYPCF — Map Command Values for the pathconf and fpathconf Services” on page 448.
The path name variables you can specify are:

Path Name Variable Description

PC_CHOWN_RESTRICTED The change ownership service, chown (BPX1CHO), is restricted to
a process with appropriate privileges, and to changing the group
ID (GID) of a file to only the effective group ID of the process or
one of its supplementary group IDs.

PC_LINK_MAX Maximum value of a file's link count.

PC_MAX_CANON Maximum number of bytes in a terminal canonical input line.

PC_MAX_INPUT Minimum number of bytes for which space will be available in a
terminal input queue; therefore, the maximum number of bytes
a portable application may require to be typed as input before
reading them.

PC_NAME_MAX Maximum number of bytes in a file name (not a string length;
count excludes a terminating null).

PC_NO_TRUNC Path name components longer than 255 bytes generate an error.

PC_PATH_MAX Maximum number of bytes in a path name (not a string length;
count excludes a terminating null).

PC_PIPE_BUF Maximum number of bytes that can be written atomically when
writing to a pipe.

fpathconf (BPX1FPC)

Chapter 2. Callable Service Descriptions 99

Path Name Variable Description

PC_VDISABLE Terminal special characters maintained by the system can be
disabled using this character value. For information on querying
and setting these special characters, see “tcgetattr (BPX1TGA)
— Get the Attributes for a Terminal” on page 358 or “tcsetattr
(BPX1TSA) — Set the Attributes for a Terminal” on page 365.

return_value
(output,INT,4) is a variable where the service returns the current value of the path name variable
specified in the name parameter, or -1 if the request is not successful.

If the path name variable is PC_CHOWN_RESTRICTED and this option is active, the return value is set
to 1. If this option is not active, the return value is set to 0.

If the path name variable is PC_NO_TRUNC and this option is active, the return value is set to 1. If this
option is not active, the return value is set to 0.

If the path name variable does not have a limit for the specified file, the return value is set to -1 and
the return code and reason code remain unchanged.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only
if return_value is -1. If the path name variable does not have a limit for the specified file, the return
value is set to -1 and the return code is unchanged.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only
if return_value is -1. If the path name variable does not have a limit for the specified file, the return
value is set to -1 and the reason code is unchanged.

Usage Notes
1. If name is PC_MAX_CANON, PC_MAX_INPUT, or PC_VDISABLE, and file_descriptor does not refer to a

terminal file, the service returns return value -1 and return code EINVAL.
2. If name is PC_NAME_MAX, PC_PATH_MAX, or PC_NO_TRUNC, and file_descriptor does not refer to a

directory, the service still returns the requested information using the parent directory of the specified
file.

3. If name is PC_PIPE_BUF:

• If file_descriptor refers to a pipe or a FIFO, the return value applies to the referred-to object.
• If file_descriptor refers to a directory, the return value applies to any FIFOs that exist or can be

created within the directory.
• If file_descriptor refers to any other type of file, the service returns return value -1 and return code

EINVAL.
4. If name is to PC_LINK_MAX and file_descriptor refers to a directory, the return value applies to the

directory.

Example

The following code obtains the configurable option associated with the pipe buffer. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYPCF — Map Command Values for the pathconf
and fpathconf Services” on page 448.

 MVC FILEDESC,.. From opendir
 SPACE ,
 CALL BPX1FPC, Get configurable pathname variable+
 (FILEDESC, Input: Directory file descriptor +
 =A(PC_PIPE_BUF), Input: Configurables BPXYPCF +
 RETVAL, Return value: 0, -1 or variable +
 RETCODE, Return code +

fpathconf (BPX1FPC)

100 z/VM: 7.3 OpenExtensions Callable Services Reference

 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument is not a valid file descriptor.

EINVAL Refer to the Usage Notes for situations where this return code is returned.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “pathconf (BPX1PCF) — Determine Configurable Path Name Variables Using Path Name” on page 194.

fpathconf (BPX1FPC)

Chapter 2. Callable Service Descriptions 101

fstat (BPX1FST) -- Get Status Information about a File by
Descriptor

BPX1FST
file_descriptor
status_area_length
status_area
return_value
return_code
reason_code

Purpose
Use the fstat (BPX1FST) service to obtain status information about a file identified by its file descriptor.

For the corresponding service using a path name, see “stat (BPX1STA) -- Get Status Information about a
File by Path Name” on page 340.

To obtain status information about a symbolic link, rather than for a file to which it refers, see “lstat
(BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor for the file.
status_area_length

(input,INT,4) is a variable for specifying the length of the status_area parameter. To determine
the value of status_area_length, use the BPXYSTAT macro. See “BPXYSTAT — Map the File Status
Structure for the stat Service” on page 473.

status_area
(output,CHAR,length of BPXYSTAT or status_area_length, whichever is less.) is a variable for the area
where the service returns the status information for the file. The status area is mapped by the
BPXYSTAT macro. See “BPXYSTAT — Map the File Status Structure for the stat Service” on page 473.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. All the modified data in the file specified by file_descriptor is written to permanent storage when this

service is requested. See “fsync (BPX1FSY) — Write Changes to Direct-Access Storage” on page 106.
2. All time fields in the status_area are in POSIX format, which is the number of seconds since

January 1, AD 1970, 00:00:00 UTC. If you need to perform conversions on POSIX times, see the
DateTimeSubtract CSL routine in the z/VM: CMS Application Multitasking or the DATECONVERT stage in
the z/VM: CMS Pipelines User's Guide and Reference.

fstat (BPX1FST)

102 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf

3. The file mode field in the status area is mapped by the BPXYMODE macro, and the file type field within
the mode area is mapped by the BPXYFTYP macro. See “BPXYMODE — Map Mode Constants” on page
437 and “BPXYFTYP — Map File Type Definitions” on page 423.

Example

The following code gets the file status for the file opened as FILEDESC. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551. For the data structure, see “BPXYSTAT — Map the File Status Structure for the stat Service” on
page 473.

 MVC FILEDESC,.. File descriptor from open
 SPACE ,
 CALL BPX1FST, Get file status of file descriptor+
 (FILEDESC, Input: File descriptor +
 STATL, Input: Length of buffer needed +
 STAT, Buffer, mapped by BPXYSTAT +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter does not identify a known file.

ECMSERR An internal error occurred.

EINVAL Parameter error. For example, a zero-length buffer was passed.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRBuffTooSmall.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “open (BPX1OPN) — Open a File” on page 181
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

fstat (BPX1FST)

Chapter 2. Callable Service Descriptions 103

fstatvfs (BPX1FTV) — Get Status Information about File System by
Descriptor

BPX1FTV
file_descriptor
status_area_length
status_area
return_value
return_code
reason_code

Purpose
Use the fstatvfs (BPX1FTV) service to obtain status information about a file system by its file descriptor.

For the corresponding service using a path name, see “statvfs (BPX1STV) — Get Status Information about
a File System by Path Name” on page 343. For the corresponding service using a file system name, see
“w_statvfs (BPX1STF) — Get Status Information about a File System by File System Name” on page 407.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor for a file.
status_area_length

(input,INT,4) is a variable for specifying the length of the status_area parameter.
status_area

(output,CHAR,status_area_length) is a variable for the area where the service returns the status
information for the file system. This area is mapped by the BPXYSSTF macro. See “BPXYSSTF — Map
the File System Status Structure” on page 471.

return_value
(output,INT,4) is a variable where the service returns the length of the data returned in status_area if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If the passed status_area_length is not less than or equal to zero, it is not considered an error for

the status_area_length to be insufficient to hold the requested information. (In other words, future
expansion is allowed for.) As much information as can fit is written to status_area, and this amount is
returned.

2. The amount of valid data returned in the status_area is indicated by the return_value. This allows for
differences in the release levels of OS/390® UNIX and the physical file systems.

fstatvfs (BPX1FTV)

104 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code requests status information about the target file system. This example follows the
rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYMTM — Map the Modes for the mount and
umount Services” on page 445.

 MVC FILEDESC,.. File descriptor from open
 SPACE ,
 CALL BPX1FTV, Get file system status +
 (FILEDESC, Input: File descriptor +
 SSTFL, Input: Length of BPXYSSTF +
 SSTF, Buffer, BPXYSSTF +
 RETVAL, Return value: Status length or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN Information is temporarily unavailable. This can occur because the mount
process for the file system is incomplete.

EBADF The file_descriptor argument is not a valid file descriptor.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “statvfs (BPX1STV) — Get Status Information about a File System by Path Name” on page 343.
• “w_statvfs (BPX1STF) — Get Status Information about a File System by File System Name” on page

407.

fstatvfs (BPX1FTV)

Chapter 2. Callable Service Descriptions 105

fsync (BPX1FSY) — Write Changes to Direct-Access Storage

BPX1FSY
file_descriptor
return_value
return_code
reason_code

Purpose
Use the fsync (BPX1FSY) service to make changes to a file permanent by writing the changes on the
direct-access storage device that holds the file. You identify the file by its file descriptor.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file for which changes are to be
written to permanent storage.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return codes is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The fsync (BPX1FSY) service causes all modified data in the specified file to be written to the direct-
access storage device that holds the file. On return from a successful call, all updates have been saved on
the direct-access storage that holds the file.

Characteristics and Restrictions
The file identified by file_descriptor must be open for writing when the fsync (BPX1FSY) service is called.

Example

The following code writes file descriptor changes to permanent storage. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551.

 MVC FILEDESC,.. File descriptor from open
 SPACE ,
 CALL BPX1FSY, Write changes to permanent storage+
 (FILEDESC, Input: File descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

fsync (BPX1FSY)

106 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter does not specify a valid, open file.

ECMSERR An internal error occurred.

EINVAL The file is not a regular file.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “open (BPX1OPN) — Open a File” on page 181
• “write (BPX1WRT) — Write to a File or Socket” on page 401.

fsync (BPX1FSY)

Chapter 2. Callable Service Descriptions 107

ftruncate (BPX1FTR) — Truncate a File

BPX1FTR
file_descriptor
file_length
return_value
return_code
reason_code

Purpose
Use the ftruncate (BPX1FTR) service to make a file shorter. You identify the file by its file descriptor.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file to be truncated.
file_length

(input,INT,8) is a variable for specifying the number of bytes to remain in the file after truncation.

This variable is a doubleword to accommodate large files. For processing with a singleword value,
propagate the sign bit through the second word, so the final doubleword value has as valid sign. This
service accepts only positive values.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The ftruncate (BPX1FTR) service truncates the file to file_length bytes, beginning at the first byte of the

file. All data from file_length to the original end of the file is removed.
2. Full blocks are returned to the file system so that they can be used again, and the file size is changed

to the lesser of file_length or the current length of the file. The file offset is not changed.
3. If the ftruncate (BPX1FTR) service completes successfully, it clears the set-user-ID, set-group-ID, and

save-text (sticky bit) attributes of the file unless the caller has authority to access the root.

Characteristics and Restrictions
The file specified must be a regular file, open for writing.

ftruncate (BPX1FTR)

108 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code truncates the file described by FILEDESC after 512 bytes. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC FILEDESC,.. File descriptor from open
 MVC NEWLEN(8),=D'512'
 SPACE ,
 CALL BPX1FTR, Truncate a file +
 (FILEDESC, Input: File descriptor +
 NEWLEN, Input: Length to keep +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter does not specify a valid, open file.

EINVAL The file is not a regular file, or it is opened read-only, or the file_length
specified is negative.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRTrNegOffset,
JRTrNotRegFile, and JRTrOpenedRO.

EROFS The specified file is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRTrMountedRO.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “open (BPX1OPN) — Open a File” on page 181.

ftruncate (BPX1FTR)

Chapter 2. Callable Service Descriptions 109

getclientid (BPX1GCL) — Obtain the Calling Program's Identifier

BPX1GCL
function_code
domain
client_ID
return_value
return_code
reason_code

Purpose
Use the getclientid (BPX1GCL) service to obtain the calling program's identifier.

Parameters
function_code

(input,INT,4) is a variable for specifying the function to be performed:
1

Return the caller's name and task identifiers
domain

(input,INT,4) is a variable for specifying a value that represents the communications domain in which
the sockets are to be given and taken. This must be AF_INET or AF_INET6. This value is defined
in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-
Related Services” on page 465.

client_ID
(output,CHAR,length of BPXYCID) is a variable where the service returns a structure containing the
requested data:

For function code 1, the returned client_ID is filled in as follows:
CIdDomain

Input Domain
CIdName

Calling program's VM user ID, left-justified and padded with blanks
CIdTask

Calling program's subtask identifier
CIdReserved

Binary zeros

This field is mapped by the BPXYCID macro. See “BPXYCID — Map the Client ID Structure” on page
415.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

getclientid (BPX1GCL)

110 z/VM: 7.3 OpenExtensions Callable Services Reference

Usage Note
The client ID output of getclientid is intended to be used as the input client ID of the givesocket
(BPX1GIV) and takesocket (BPX1TAK) services.

Example

The following code obtains the client ID information for caller. This information is used on givesocket
(BPX1GIV) and takesocket (BPX1TAK). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the
data structure, see “BPXYCID — Map the Client ID Structure” on page 415.

 CALL BPX1GCL, get clientid information +
 (=F'2', Input: Function code of 2 +
 =A(AF_INET), Input: Domain of AF_INET +
 CID, Output: Clientid information +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family is not supported.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “givesocket (BPX1GIV) — Give a Socket to Another Program” on page 142
• “takesocket (BPX1TAK) — Acquire a Socket from Another Program” on page 350

getclientid (BPX1GCL)

Chapter 2. Callable Service Descriptions 111

getcwd (BPX1GCW) — Get the Path Name of the Working Directory

BPX1GCW
buffer_length
buffer
return_value
return_code
reason_code

Purpose
Use the getcwd (BPX1GCW) service to get the path name of the working directory.

Parameters
buffer_length

(input,INT,4) is a variable for specifying the length of the buffer where the service returns the path
name of the working directory. The buffer_length must be large enough to accommodate the actual
length of the path name plus one (for the terminating null).

buffer
(output,CHAR,buffer_length) is a variable for the buffer where the service returns the path name of the
directory.

return_value
(output,INT,4) is a variable where the service returns the length of the path name in the buffer if the
request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code gets the working directory for the caller. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFLENA,=F'1024' Max directory name return area
 SPACE ,
 CALL BPX1GCW, Get working directory name +
 (BUFLENA, Input: Length directory work area +
 BUFFERA, Buffer +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

getcwd (BPX1GCW)

112 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EACCES The process did not have permission to read or search a component of the
working directory's path name.

EINVAL The buffer_length was specified as zero.

EIO An input/output error occurred.

ENAMETOOLONG The path name obtained by the routine is longer than 1023 characters.

ENOENT A component of a path name does not exist. This will be returned if a
component of the working directory path name was deleted.

ERANGE The specified buffer_length is less than the length of the path name of the
working directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “chdir (BPX1CHD) — Change the Working Directory” on page 26

getcwd (BPX1GCW)

Chapter 2. Callable Service Descriptions 113

getegid (BPX1GEG) — Get the Effective Group ID

BPX1GEG
effective_group_ID

Purpose
Use the getegid (BPX1GEG) service to get the effective group ID (GID) of the calling process.

Parameters

effective_group_ID
(output,INT,4) is a variable where the service returns the effective group ID of the calling process.

Usage Note
If this service fails, the process abends.

Example

The following code gets the effective group ID of the caller. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GEG, Get the effective group ID +
 (RETVAL), Return value: effective group ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “geteuid (BPX1GEU) — Get the Effective User ID” on page 115
• “getgid (BPX1GID) — Get the Real Group ID” on page 116
• “getuid (BPX1GUI) — Get the Real User ID” on page 141
• “setegid (BPX1SEG) — Set the Effective Group ID” on page 286
• “seteuid (BPX1SEU) — Set the Effective User ID” on page 288
• “setgid (BPX1SGI) — Set the Group ID” on page 290
• “setuid (BPX1SUI) — Set User IDs” on page 299.

getegid (BPX1GEG)

114 z/VM: 7.3 OpenExtensions Callable Services Reference

geteuid (BPX1GEU) — Get the Effective User ID

BPX1GEU
effective_user_ID

Purpose
Use the geteuid (BPX1GEU) service to get the effective user ID (UID) of the calling process.

Parameters

effective_user_ID
(output,INT,4) is a variable where the service returns the effective user ID of the calling process.

Usage Note
If this service fails, the process abends.

Example

The following code gets the effective user ID of the caller. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GEU, Get the effective user ID +
 (RETVAL), Return value: effective user ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “getuid (BPX1GUI) — Get the Real User ID” on page 141
• “seteuid (BPX1SEU) — Set the Effective User ID” on page 288
• “setuid (BPX1SUI) — Set User IDs” on page 299.

geteuid (BPX1GEU)

Chapter 2. Callable Service Descriptions 115

getgid (BPX1GID) — Get the Real Group ID

BPX1GID
real_group_ID

Purpose
Use the getgid (BPX1GID) service to get the real group ID (GID) of the calling process.

Parameters
real_group_ID

(output,INT,4) is a variable where the service returns the real group ID.

Usage Note
If this service fails, the process abends.

Example

The following code gets the real group ID of the caller. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GID, Get the real group ID +
 (RETVAL), Return value: real group ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “getegid (BPX1GEG) — Get the Effective Group ID” on page 114
• “setegid (BPX1SEG) — Set the Effective Group ID” on page 286
• “setgid (BPX1SGI) — Set the Group ID” on page 290.

getgid (BPX1GID)

116 z/VM: 7.3 OpenExtensions Callable Services Reference

getgrgid (BPX1GGI) — Access the Group Database by ID

BPX1GGI
group_ID
return_value
return_code
reason_code

Purpose
Use the getgrgid (BPX1GGI) service to get information about a group and its members. You specify the
group by the group ID (GID).

Parameters
group_ID

(input,INT,4) is a variable for specifying the ID of the group you want information about.
return_value

(output,INT,4) is a variable where the service returns an address, or 0.

If an entry for the specified group ID is found, return_value is set to the address of the BPXYGIDS
macro. See “BPXYGIDS — Map the Data Structure Returned for the getgrnam and getgrgid Services”
on page 425.

If no entry for the group ID is found, then return_value is set to 0.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is zero.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is zero.

Usage Notes
1. The return value points to data that may change or go away after the next getgrgid (BPX1GGI) or

getgrnam (BPX1GGN) service request from this thread. Move data to the program's storage if it is
needed for future reference.

2. If the same group ID is assigned to more than one group name, this function cannot distinguish which
group is meant. Data is returned for one of the groups, but which group is unpredictable.

3. When called from REXX, only the first 500 members of a group are returned. A REXX exec must check
the member count in the returned data structure to see if the data was truncated.

4. If multiple groups exist with the same group ID, one of the groups is selected, but which one is
unpredictable.

5. To be authorized to obtain a group database entry, one of the following must be true:

• The External Security Manager (ESM) grants the requestor authority to read the entry, or
• An ESM is either not installed or defers authorization to CP, and:

– The effective UID of the active process is 0, or
– The real or effective GID of the active process matches the GID of the selected group, or
– The requesting user is a member of the selected group, or

getgrgid (BPX1GGI)

Chapter 2. Callable Service Descriptions 117

– The requesting VM user ID has the attribute POSIXOPT QUERYDB ALLOW set, either through
a statement in its CP directory entry or through a specified or defaulted setting in the system
configuration file that is not overridden in the directory entry.

Example

The following code accesses the group database by the ID of the caller and returns a structure identifying
the groups by ID. The group ID value is set to 5. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structure, see “BPXYGIDS — Map the Data Structure Returned for the getgrnam and getgrgid Services” on
page 425.

 MVC GROUPID,=XL4'00000005' Value of group ID
 SPACE ,
 CALL BPX1GGI, Access the group database +
 (GROUPID, Input: Group ID +
 RETVAL, Return value: 0 or ->BPXYGIDS +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 ICM R8,B'1111',RETVAL
 BZ NOGIDS
 USING GIDS,R8
* access the group structure
 DROP R8
NOGIDS EQU *

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR An internal error occurred during CMS processing.

Consult the reason code to determine the exact reason the error occurred. For
an out of storage condition, the reason code will be set to JrUnexpectedError.
If the request to CP to obtain the group database information failed because
no POSIX communication area was identified to CP, or the active PID in
the POSIX communication area was not a PID allocated to this virtual
configuration, or the buffer address provided to CP was invalid or protected
against storing, the reason code will be JrInternalError.

ECPERR An error occurred while retrieving information from CP.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrCPNotFound,
JrCPNotAvail, JrCPNotAuthorized and JrCPInternalError.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “getgrnam (BPX1GGN) — Access the Group Database by Name” on page 119
• “getlogin (BPX1GLG) — Get the User Login Name” on page 128.

getgrgid (BPX1GGI)

118 z/VM: 7.3 OpenExtensions Callable Services Reference

getgrnam (BPX1GGN) — Access the Group Database by Name

BPX1GGN
group_name_length
group_name
return_value
return_code
reason_code

Purpose
Use the getgrnam (BPX1GGN) service to get information about a group and its members. You specify the
group by name.

Parameters
group_name_length

(input,INT,4) is a variable for specifying the length of the group_name parameter.
group_name

(input,CHAR,group_name_length) is a variable for specifying the name of the group you want
information about.

return_value
(output,INT,4) is a variable where the service returns an address, or 0.

If an entry for the specified group name is found in the group database, return_value is set to the
address of the BPXYGIDS macro, which contains information about the group. See “BPXYGIDS — Map
the Data Structure Returned for the getgrnam and getgrgid Services” on page 425.

If no entry for the group name is found, return_value is set to 0.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is zero.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is zero.

Usage Notes
1. The return value points to data that can change or go away after the next getgrnam (BPX1GGN) or

getgrgid (BPX1GGI) call from this thread. Move data to your own dynamic storage if you need it for
future reference.

2. When called from REXX, only the first 500 members of a group are returned. A REXX exec must check
the member count in the returned data structure to see if the data was truncated.

3. To be authorized to obtain a group database entry, one of the following must be true:

• The External Security Manager (ESM) grants the requestor authority to read the entry, or
• An ESM is either not installed or defers authorization to CP, and

– The effective UID of the active process is 0, or
– The real or effective GID of the active process matches the GID of the designated group, or
– The requesting user is a member of the designated group, or

getgrnam (BPX1GGN)

Chapter 2. Callable Service Descriptions 119

– The requesting VM user ID has the attribute POSIXOPT QUERYDB ALLOW set, either through
a statement in its CP directory entry or through a specified or defaulted setting in the system
configuration file that is not overridden in the directory entry.

Example

The following code accesses the group database by the name of the caller and returns a structure
identifying the groups by ID. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see
“BPXYGIDS — Map the Data Structure Returned for the getgrnam and getgrgid Services” on page 425.

 MVC GRNAMELN,=F'7'
 MVC GRPGMNAME(7),=CL7'EXTSERV'
 SPACE ,
 CALL BPX1GGN, Access the group database +
 (GRNAMELN, Input: Length of group name +
 GRPGMNAME, Input: Name of group +
 RETVAL, Return value: 0 or ->BPXYGIDS +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR An internal error occurred during CMS processing.

Consult the reason code to determine the exact reason the error occurred. For
an out of storage condition, the reason code will be set to JrUnexpectedError.
If the request to CP to obtain the group database information failed because
no POSIX communication area was identified to CP, or the active PID in
the POSIX communication area was not a PID allocated to this virtual
configuration, or the buffer address provided to CP was invalid or protected
against storing, the reason code will be JrInternalError.

ECPERR An error occurred while retrieving information from CP.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrCPNotFound,
JrCPNotAvail, JrCPNotAuthorized, and JrCPInternalError.

EINVAL The group_name_length parameter is not valid.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “getgrgid (BPX1GGI) — Access the Group Database by ID” on page 117
• “getlogin (BPX1GLG) — Get the User Login Name” on page 128.

getgrnam (BPX1GGN)

120 z/VM: 7.3 OpenExtensions Callable Services Reference

getgroups (BPX1GGR) — Get a List of Supplementary Group IDs

BPX1GGR
group_ID_list_size
group_ID_list_pointer_address
return_value
return_code
reason_code

Purpose
Use the getgroups (BPX1GGR) service to get the number of supplementary group IDs (GIDs) for the
calling process. Optionally, you can also get a list of those supplementary group IDs.

Parameters
group_ID_list_size

(input,INT,4) is a variable for specifying the number of fullword entries in the group ID list. This
number must be at least as great as the total number of group IDs for the process, or 0.

Specifying 0 means that you want to receive only a count of the actual number of group IDs for the
calling process and not the list of those IDs.

group_ID_list_pointer_address
(input,INT,4) is a variable for specifying the address of the storage area in which the service is to
place the list of supplementary group IDs. If the request is successful, the storage area is an array of
fullwords, each containing a supplementary group ID for the calling process.

If group_ID_list_size is specified as 0, group_ID_list_pointer_address is ignored and does not have to
be set to a valid address.

return_value
(output,INT,4) is a variable where the service returns a count of supplementary group IDs, or -1:

• If group_ID_list_size is specified as 0, this is the total number of supplementary group IDs for the
process.

• If group_ID_list_size is specified as greater than 0, this is the actual number of group IDs put into
the area specified by group_ID_list_pointer_address.

• If an error is detected, a -1 is returned.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code provides the caller with a list of supplementary group IDs. The code sets BUFW size
to 256. The actual BUFW size is determined from the previous BPX1GGR RETVAL when BUFW was 0.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

* MVC BUFW,=XL4'00000256' Value of buffer BUFW
 LA R15,BUFFERA Space for BUFW words

getgroups (BPX1GGR)

Chapter 2. Callable Service Descriptions 121

 ST R15,BUFA ->Array for group IDs
 SPACE ,
 CALL BPX1GGR, Get list of supplementary grp IDs +
 (BUFW, Input: Group ID list size +
 BUFA, ->Buffer for Group ID list address+
 RETVAL, Return value: -1, 0, ID count +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR An internal error occurred during CMS processing.

Consult the reason code to determine the exact reason the error occurred.
If the request to CP to obtain the group membership information failed
because no POSIX communication area was identified to CP, or the active
PID in the POSIX communication area was not a PID allocated to this virtual
configuration, the reason code will be JrInternalError.

ECPERR An error occurred while retrieving information from CP.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JrCPNotAuthorized and JrCPInternalError.

EINVAL The group_ID_list_size parameter was not equal to 0 and was less than the
number of supplementary group IDs, or the group_ID_list_pointer_address
was not valid.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrBuffTooSmall
and JrBadAddress.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “setgid (BPX1SGI) — Set the Group ID” on page 290.

getgroups (BPX1GGR)

122 z/VM: 7.3 OpenExtensions Callable Services Reference

getgroupsbyname (BPX1GUG) — Get a List of Supplementary Group
IDs by User Name

BPX1GUG
user_name_length
user_name
group_ID_list_size
group_ID_list_pointer_address
return_value
return_code
reason_code

Purpose
Use the getgroupsbyname (BPX1GUG) service to get the number of supplementary group IDs (GIDs) for a
specified user name. Optionally, you can also get a list of those supplementary group IDs.

Parameters
user_name_length

(input,INT,4) is a variable for specifying the length of the user_name parameter.
user_name

(input,CHAR,user_name_length) is a variable for specifying the name of the user you want information
about.

group_ID_list_size
(input,INT,4) is a variable for specifying the number of fullword entries in the group ID list. This
number must be at least as great as the total number of group IDs for the process, or 0.

Specifying 0 means that you want to receive only a count of the actual number of group IDs for the
calling process and not the list of those IDs.

group_ID_list_pointer_address
(input,INT,4) is a variable for specifying the address of the storage area where the service is to place
the list of supplementary group IDs as specified in the user database. If the request is successful,
the storage is an array of fullwords, each containing a supplementary group ID for the specified user
name.

If group_ID_list_size is specified as 0, group_ID_list_pointer_address is ignored and does not have to
be set to a valid address.

return_value
(output,INT,4) is a variable where the service returns the number of supplementary group IDs, or -1:

• If group_ID_list_size is specified as 0, this is the total number of supplementary group IDs for the
user.

• If group_ID_list_size is specified as greater than 0, this is the actual number of group IDs put into
the area specified by group_ID_list_pointer_address.

• If an error is detected, a -1 is returned.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

getgroupsbyname (BPX1GUG)

Chapter 2. Callable Service Descriptions 123

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The getgroupsbyname (BPX1GUG) service is not sensitive to the case of the user_name specified on

input. This means that a user_name of BRIAN is considered the same as a user_name of brian.
2. To be authorized to obtain a supplementary group list for a user name, one of the following must be

true:

• The External Security Manager (ESM) grants the requestor authority to obtain the list, or
• An ESM is either not installed or defers authorization to CP, and:

– The UID of the specified user name matches the real or effective UID of the active process, or
– The effective UID of the active process is 0, or
– The requesting VM user ID has the attribute POSIXOPT QUERYDB ALLOW set, either through

a statement in its CP directory entry or through a specified or defaulted setting in the system
configuration file that is not overridden in the directory entry.

Example

The following code returns the number of supplementary group IDs, up to 9, for user Pebbles. This
example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

 MVC USERNLEN,=F'7'
 MVC USERNAME(07),=CL07'Pebbles'
 MVC BUFLENA,=F'9'
 LA R15,BUFFERA
 ST R15,BUFA
 SPACE ,
 CALL BPX1GUG, Get list of groups by user name +
 (USERNLEN, Input: User name length +
 USERNAME, Input: User name +
 BUFLENA, Input: Group ID list size +
 BUFA, Group ID list address +
 RETVAL, Return value: -1, or # of grp IDs +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR An internal error occurred during CMS processing.

Consult the reason code to determine the exact reason the error occurred. If
the request to CP to obtain the group database information failed because
no POSIX communication area was identified to CP, or the active PID in
the POSIX communication area was not a PID allocated to this virtual
configuration, the reason code will be JrInternalError.

ECPERR An error occurred while retrieving information from CP.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JrCPBadAddress, JrCPUserNotFound, JrCPNotAvail, JrCPNotAuthorized, and
JrCPInternalError.

getgroupsbyname (BPX1GUG)

124 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EINVAL The group_ID_list_size parameter was not equal to 0 and was less than the
number of supplementary group IDs; or the user_name or user_name_length
fields were incorrect; or the group_ID_list_pointer_address was not valid.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrOK,
JrBuffTooSmall and JrBadAddress.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “setgid (BPX1SGI) — Set the Group ID” on page 290.

getgroupsbyname (BPX1GUG)

Chapter 2. Callable Service Descriptions 125

gethostid/gethostname (BPX1HST) — Get ID or Name Information
about a Socket Host

BPX1HST
domain
name_length
name
return_value
return_code
reason_code

Purpose
Use the gethostid/gethostname (BPX1HST) service to obtain the ID or name of the socket host.

Parameters
domain

(input,INT,4) is a variable for specifying a value that represents a communications domain. This must
be AF_INET or AF_INET6. This value is defined in the BPXYSOCK macro. See “BPXYSOCK — Map the
SOCKADDR Structure and Constants for Socket-Related Services” on page 465.

name_length
(input/output,INT,4) is a variable for specifying the length of the name parameter, which also indicates
the type of request:

• If 0 is specified on input, the service returns the host ID in the return_value parameter. This is only
supported for AF_INET sockets.

• If a nonzero value is specified on input, it represents the maximum length of the host name that is to
be returned in the name parameter. The length should be less than 4096 bytes (4KB). On return, the
service updates this field with the length of the name returned in name, including the trailing null.

name
(output,CHAR,name_length) is a variable where the service returns the host name, if a nonzero value
was specified for name_length. This name is null-terminated if there is sufficient room in the buffer.

return_value
(output,INT,4) is a variable where the service returns one of the following:

• The host ID, if 0 was specified for name_length.
• 0, if a nonzero name_length was specified and the name is successfully returned.
• -1, if the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Characteristics and Restrictions
These functions work only for AF_INET and AF_INET6 sockets, not AF_UNIX sockets or AF_IUCV sockets.
These functions are not supported for IPv6 hosts.

gethostid/gethostname (BPX1HST)

126 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code requests the host ID and the host name for an AF_INET domain. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYSOCK — Map the SOCKADDR Structure and
Constants for Socket-Related Services” on page 465.

 XC BUFLENA,BUFLENA
 CALL BPX1HST, Request host id +
 (=A(AF_INET), Input: Domain - AF_INET +
 BUFLENA, Input: Length - No buffer - get id+
 BUFFERA, Output: (not used with Length=0) +
 RETVAL, Return value: hostid or 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

 MVC BUFLENA,=A(L'BUFFERA)
 CALL BPX1HST, Request host name +
 (=A(AF_INET), Input: Domain - AF_INET +
 BUFLENA, Input: Length - for output name +
 BUFFERA, Output: Buffer for host name +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family is not supported.

EAGAIN The physical file system was unavailable. The following reason code can
accompany this return code: JRPfsSuspend.

EIO An I/O error occurred. The following reason code can accompany this return
code: JRPfsDead.

ENOENT The domain that was specified was found to be not active. The following
reason code can accompany this return code: JRDomainNotSupported.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

gethostid/gethostname (BPX1HST)

Chapter 2. Callable Service Descriptions 127

getlogin (BPX1GLG) — Get the User Login Name

BPX1GLG
return_value

Purpose
Use the getlogin (BPX1GLG) service to get the user login name associated with the current process.

Parameters
return_value

(output,INT,4) is a variable where the service returns a pointer to a login name field, or 0.

If a login name is found, return_value is set to the address of a field containing the login name length
followed by the login name. The login name length is a fullword. For example:

 ┌──────┬──────────────┐
Return_value──→│ 0008 │ MCBRIDE │
 └──────┴──────────────┘

If a login name is not found, return_value is set to 0.

Usage Note
This service returns a pointer to static data that will not be overwritten by a subsequent call. You should
not store data into this area.

Example

The following code gets the login name of the caller. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GLG, Get the login name +
 (RETVAL), Returns value, 0 or ->login name +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “geteuid (BPX1GEU) — Get the Effective User ID” on page 115
• “getpwnam (BPX1GPN) — Access the User Database by User Name” on page 132
• “getpwuid (BPX1GPU) — Access the User Database by User ID” on page 134
• “getuid (BPX1GUI) — Get the Real User ID” on page 141.

getlogin (BPX1GLG)

128 z/VM: 7.3 OpenExtensions Callable Services Reference

getpgrp (BPX1GPG) — Get the Process Group ID

BPX1GPG
group_ID

Purpose
Use the getpgrp (BPX1GPG) service to get the process group ID (PGID) of the calling process.

Parameters
group_ID

(output,INT,4) is a variable where the service places the caller's process group ID.

Example

The following code gets the process group ID of the caller. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GPG, Get the process group ID +
 (RETVAL), Return value: group ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 294
• “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on page 297.

getpgrp (BPX1GPG)

Chapter 2. Callable Service Descriptions 129

getpid (BPX1GPI) — Get the Process ID

BPX1GPI
process_ID

Purpose
Use the getpid (BPX1GPI) service to get the process ID (PID) of the calling process.

Parameters
process_ID

(output,INT,4) is a variable where the service places the caller's process ID.

Example

The following code gets the process ID of the caller. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GPI, Get the process ID +
 (RETVAL), Returns value, Process ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “getppid (BPX1GPP) — Get the Parent Process ID” on page 131
• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “spawn (BPX1SPN) — Spawn a Process” on page 333.

getpid (BPX1GPI)

130 z/VM: 7.3 OpenExtensions Callable Services Reference

getppid (BPX1GPP) — Get the Parent Process ID

BPX1GPP
parent_process_ID

Purpose
Use the getppid (BPX1GPP) service to get the parent process ID (PPID) of the calling process.

Parameters
parent_process_ID

(output,INT,4) is a variable where the service returns the parent process ID of the calling process.

Example

The following code gets the process ID of the caller's parent. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GPP, Get PID of the parent process +
 (RETVAL), Returns value, parent's process ID+
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “getpid (BPX1GPI) — Get the Process ID” on page 130
• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “spawn (BPX1SPN) — Spawn a Process” on page 333.

getppid (BPX1GPP)

Chapter 2. Callable Service Descriptions 131

getpwnam (BPX1GPN) — Access the User Database by User Name

BPX1GPN
user_name_length
user_name
return_value
return_code
reason_code

Purpose
Use the getpwnam (BPX1GPN) service to get information about a user identified by name.

Parameters
user_name_length

(input,INT,4) is a variable for specifying the length of the user_name parameter.
user_name

(input,CHAR,user_name_length) is a variable for specifying the name of the user you want information
about. This name is specified in the CP directory entry that defines the user to the system.

return_value
(output,INT,4) is a variable where the service returns an address, or 0:

• If an entry for the specified user name is found in the user database, return_value is set to the
address of the BPXYGIDN macro, which contains information about the user. See “BPXYGIDN — Map
the Data Structure Returned for the getpwnam and getpwuid Services” on page 424.

• If no entry for the user name is found, return_value is set to 0.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is zero.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is zero.

Usage Notes
1. The return_value points to data that may change or go away after the next getpwnam (BPX1GPN) or

getpwuid (BPX1GPU) service request from this thread. Move data to your own dynamic storage if you
need it for future reference.

2. The default initial user program is /bin/sh.
3. The default initial working directory is /.
4. The getpwnam (BPX1GPN) service is not sensitive to the case of the user_name specified on input.

This means that a user_name of MEGAN is considered the same as a user_name of megan. However
the user name returned in the database entry is in lower case.

5. To be authorized to obtain a user database entry, one of the following must be true:

• The External Security Manager (ESM) grants the requestor authority to read the entry, or
• An ESM is either not installed or defers authorization to CP, and:

– The real or effective UID of the active process matches the UID of the designated user, or

getpwnam (BPX1GPN)

132 z/VM: 7.3 OpenExtensions Callable Services Reference

– The effective UID of the active process is 0, or
– The requesting VM user ID has the attribute POSIXOPT QUERYDB ALLOW set, either through

a statement in its CP directory entry or through a specified or defaulted setting in the system
configuration file that is not overridden in the directory entry.

Example

The following code accesses the user database by the user ID of the caller and returns a structure
identifying the user. This example follows the rules of reentrancy. For linkage information, see Appendix
D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYGIDN
— Map the Data Structure Returned for the getpwnam and getpwuid Services” on page 424.

 MVC USERNLEN,=F'8'
 MVC USERNAME(8),=CL8'Pebbles'
 SPACE ,
 CALL BPX1GPN, Access the user database +
 (USERNLEN, Input: Length of user name +
 USERNAME, Input: Name of user +
 RETVAL, Return value 0 or ->BPXYGIDN +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR An internal error occurred during CMS processing.

Consult the reason code to determine the exact reason the error occurred. For
an out of storage condition, the reason code will be set to JrUnexpectedError.
If the request to CP to obtain the user database information failed because
no POSIX communication area was identified to CP, or the active PID in
the POSIX communication area was not a PID allocated to this virtual
configuration, or the buffer address provided to CP was invalid or protected
against storing, the reason code will be JrInternalError.

ECPERR An error occurred while retrieving information from CP.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrCPNotFound,
JrCPNotAuthorized, JrCPNotAvail, and JrCPInternalError.

EINVAL The user_name_length parameter is incorrect.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “getlogin (BPX1GLG) — Get the User Login Name” on page 128
• “getpwuid (BPX1GPU) — Access the User Database by User ID” on page 134.

getpwnam (BPX1GPN)

Chapter 2. Callable Service Descriptions 133

getpwuid (BPX1GPU) — Access the User Database by User ID

BPX1GPU
user_ID
return_value
return_code
reason_code

Purpose
Use the getpwuid (BPX1GPU) service to get information about a user identified by user ID (UID).

Parameters
user_ID

(input,INT,4) is a variable for specifying the user ID of the user you want information about.
return_value

(output,INT,4) is a variable where the returns an address, or 0:

• If an entry for the specified user ID is found in the user database, return_value is set to the address
of the BPXYGIDN macro, which contains information about the user. See “BPXYGIDN — Map the
Data Structure Returned for the getpwnam and getpwuid Services” on page 424.

• If no entry for the user ID is found, return_value is set to 0.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is zero.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is zero.

Usage Notes
1. The return_value points to data that can change or go away after the next getpwuid (BPX1GPU) or

getpwnam (BPX1GPN) service request from this thread. Move data to the program's dynamic storage if
the program needs it for future reference.

2. If the same user ID is defined for more than one VM user in the directory, this service cannot
distinguish which one is meant. Data is returned about one of the users, but which one is
unpredictable.

3. The default initial user program is /bin/sh.
4. The default initial working directory is /.
5. To be authorized to obtain a user database entry, one of the following must be true:

• The External Security Manager (ESM) grants the requestor authority to read the entry, or
• An ESM is either not installed or defers authorization to CP, and:

– The real or effective UID of the active process matches the UID of the designated user, or
– The effective UID of the active process is 0, or
– The requesting VM user ID has the attribute POSIXOPT QUERYDB ALLOW set, either through

a statement in its CP directory entry or through a specified or defaulted setting in the system
configuration file that is not overridden in the directory entry.

getpwuid (BPX1GPU)

134 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code accesses the user database by the user name of the caller and returns a structure
identifying the user. The code sets the user ID value to 1. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For
the data structure, see “BPXYGIDN — Map the Data Structure Returned for the getpwnam and getpwuid
Services” on page 424.

 MVC USERID,=XL4'00000001 Value of user ID
 SPACE ,
 CALL BPX1GPU, Access database by user ID +
 (USERID, Input: User ID +
 RETVAL, Return value 0 or ->BPXYGIDN +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR An internal error occurred during CMS processing.

Consult the reason code to determine the exact reason the error occurred. For
an out of storage condition, the reason code will be set to JrUnexpectedError.
If the request to CP to obtain the user database information failed because
no POSIX communication area was identified to CP, or the active PID in
the POSIX communication area was not a PID allocated to this virtual
configuration, or the buffer address provided to CP was invalid or protected
against storing, the reason code will be JrInternalError.

ECPERR An error occurred while retrieving information from CP.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrCPNotFound,
JrCPNotAuthorized, JrCPNotAvail, and JrCPInternalError.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “getpwnam (BPX1GPN) — Access the User Database by User Name” on page 132
• “getuid (BPX1GUI) — Get the Real User ID” on page 141.

getpwuid (BPX1GPU)

Chapter 2. Callable Service Descriptions 135

getsockname/getpeername (BPX1GNM) — Get the Name of a
Socket or Peer

BPX1GNM
socket_descriptor
operation
sockaddr_length
sockaddr
return_value
return_code
reason_code

Purpose
Use the getsockname/getpeername (BPX1GNM) service to obtain the name of a socket or the name of a
peer connected to a socket.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
operation

(input,INT,4) is a variable for specifying a value that indicates the operation to be performed. These
values are defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and
Constants for Socket-Related Services” on page 465.

sockaddr_length
(input/output,INT,4) is a variable for specifying the length of the sockaddr parameter. This value must
be large enough to accommodate the maximum length of the SOCKADDR structure to be returned in
sockaddr, but less than 4096 bytes (4KB). On output, the service updates this field with the size of the
data returned in sockaddr.

sockaddr
(output,INT,sockaddr_length) is a variable where the service returns the SOCKADDR structure
containing the socket name or peer name. This field is mapped by the BPXYSOCK macro. See
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code gets the peer name, and then requests the socket name. SOCKDESC was returned by a
previous call to socket (BPX1SOC). This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure,

getsockname/getpeername (BPX1GNM)

136 z/VM: 7.3 OpenExtensions Callable Services Reference

see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465.

 SPACE ,
 CALL BPX1GNM, Get peername +
 (SOCKDESC, Input: Socket Descriptor +
 SOCK#GNMOPTGETPEERNAME, Input: Indicate getpeername +
 SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
 SOCKADDR, Output: Sockaddr structure +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 CALL BPX1GNM, Get sockname +
 (SOCKDESC, Input: Socket Descriptor +
 SOCK#GNMOPTGETSOCKNAME, Input: Indicate getsockname +
 SOCK#LEN+SOCK_SUN#LEN, Input: Length - Sockaddr +
 SOCKADDR, Output: Sockaddr structure +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The socket descriptor is incorrect. The following reason codes can accompany
this return code: JRFileDesNotInUse, JRFileNotOpen.

EINVAL The length specified by the sockaddr_length parameter is too small to allow
the name to be returned. The following reason code can accompany this
return code: JRSocketCallParmError.

ENOBUFS Unable to obtain a buffer.

ENOTCONN The getpeername operation was specified and the socket is not connected.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

getsockname/getpeername (BPX1GNM)

Chapter 2. Callable Service Descriptions 137

getsockopt/setsockopt (BPX1OPT) — Get or Set Socket Options

BPX1OPT
socket_descriptor
operation
level
option_name
option_data_length
option_data
return_value
return_code
reason_code

Purpose
Use the getsockopt/setsockopt (BPX1OPT) service to get or set the options that are associated with an
AF_INET or AF_INET6 socket.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
operation

(input,INT,4) is a variable for specifying a value that indicates the operation to be performed. These
values are defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and
Constants for Socket-Related Services” on page 465.

level
(input,INT,4) is a variable for specifying the level for which the option is set or being set. These values
are defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and Constants
for Socket-Related Services” on page 465.

option_name
(input,INT,4) is a variable for specifying a value that indicates the option name. These values are
defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and Constants for
Socket-Related Services” on page 465.

option_data_length
(input/output,INT,4) is a variable for specifying the length of the option_data parameter. This value
should be the maximum length that option_data could be on output, but less than 4096 bytes
(4KB). On return from getsockopt, the service updates this field with the size of the data returned in
option_data.

option_data
(input/output,CHAR,option_data_length) is a variable where, for getsockopt, the service returns the
data associated with the socket. For setsockopt, this is a variable for specifying the data to be
associated with the socket.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

getsockopt/setsockopt (BPX1OPT)

138 z/VM: 7.3 OpenExtensions Callable Services Reference

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The socket descriptor must refer to an open socket.
2. The level of support for this service depends on the particular socket stack you have installed. Some

options might not be defined by the BPXYSOCK macro. Refer to the documentation for the product you
are using to determine the socket options it supports.

Example

The following code gets and then sets socket options. SOCKDESC was returned on a previous call to
the socket (BPX1SOC) service. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page 465.

 MVC BUFLENA,=A(L'BUFFERA)
 CALL BPX1OPT, Get socket options +
 (SOCKDESC, Input: Socket Descriptor +
 =A(SOCK#OPTOPTGETSOCKOPT), Input: Indicate Get socket +
 SOCK#SOL_SOCKET, Input: Level +
 SOCK#SO_TYPE, Input: Option name +
 BUFLENA, Input: Length - option value +
 BUFFERA, Output: Option value +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 MVC BUFLENA,=A(4) SO_OOBINLINE has length=4
 CALL BPX1OPT, Set socket options +
 (SOCKDESC, Input: Socket Descriptor +
 =A(SOCK#OPTOPTSETSOCKOPT), Input: Indicate set socket +
 SOCK#SOL_SOCKET, Input: Level +
 SOCK#SO_TYPE, Input: Option name +
 BUFLENA, Input: Length - option value +
 SOCK#SO_OOBINLINE, Input: Option value +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family is not supported.

EBADF The socket_descriptor is not a valid file descriptor.

EINVAL An incorrect argument was supplied on the call. The following reason codes
can accompany this return code: JRLevelNotSupp and JRBuffLenInvalid.

ENOBUFS A buffer could not be obtained.

ENOPROTOOPT The protocol or socket option is not available.

ENOSYS The function is not implemented.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

getsockopt/setsockopt (BPX1OPT)

Chapter 2. Callable Service Descriptions 139

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

getsockopt/setsockopt (BPX1OPT)

140 z/VM: 7.3 OpenExtensions Callable Services Reference

getuid (BPX1GUI) — Get the Real User ID

BPX1GUI
user_ID

Purpose
Use the getuid (BPX1GUI) service to get the real user ID (UID) of the calling process.

Parameters
user_ID

(output,INT,4) is a variable where the service returns the real user ID of the calling process.

Usage Note
If this service fails, the process abends.

Example

The following code gets the invoker's real user ID. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1GUI, Get the real user ID +
 (RETVAL), Return value: real user ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “geteuid (BPX1GEU) — Get the Effective User ID” on page 115
• “seteuid (BPX1SEU) — Set the Effective User ID” on page 288
• “setuid (BPX1SUI) — Set User IDs” on page 299.

getuid (BPX1GUI)

Chapter 2. Callable Service Descriptions 141

givesocket (BPX1GIV) — Give a Socket to Another Program

BPX1GIV
socket_descriptor
client_ID
return_value
return_code
reason_code

Purpose
Use the givesocket (BPX1GIV) service to make a specified socket available to a takesocket (BPX1TAK) call
to be issued by another program.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket to be given.
client_ID

(input/output,CHAR,length of BPXYCID macro) is a variable for specifying a data structure that
contains client ID information identifying the program to which the socket is to be given. This
information is typically obtained by the taking program with the getclientid (BPX1GCL) service and
then passed to the server.

Client ID input may be as follows:
CIdDomain

Domain of the socket being given. These values are defined in the BPXYSOCK macro. See
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465.

CIdName
The VM user ID of the virtual machine that is running the target program, left-justified and padded
with blanks. The target program can run in the same virtual machine as your program, in which
case your program sets this field to its own VM user ID.

CIdTask
The "subtaskname" used by the target program when it established its IUCV connection with the
TCP/IP server virtual machine. Alternatively, 8 blank characters may be specified to indicate that
any application running in the target virtual machine can do the takesocket() call. If blanks are
specified, the first application in the target virtual machine that issues the takesocket() call with
the proper client ID of the giving program and proper socket number will become the new owner
of the socket. Otherwise, only the application with the specified subtaskname will be authorized to
take the socket.

CIdReserved
All binary zeros.

The client ID data structure is mapped by the BPXYCID macro. See “BPXYCID — Map the Client ID
Structure” on page 415.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

givesocket (BPX1GIV)

142 z/VM: 7.3 OpenExtensions Callable Services Reference

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Only the program identified by the client ID input of the givesocket service is allowed to take the

socket using the takesocket (BPX1TAK) service.
2. The client ID output of getclientid (BPX1GCL) (issued by the secondary program and passed to the

server) is intended to be used as the input client ID of the givesocket service.
3. If the given socket is not closed, it can still be used, even after the takesocket (BPX1TAK) has been

done. The socket can be shared between the giver and taker in the same way that an inherited socket
can be shared between parent and child after an exec (BPX1EXC) has been issued.

4. If the caller of givesocket issues the close (BPX1CLO) some time later, it may be necessary to
coordinate with the caller of takesocket (BPX1TAK). The close itself does not interfere with takesocket,
but if additional sockets are accepted, given away, and closed before takesocket is called, there
can be several given sockets with the same descriptor that are waiting to be taken. This can cause
unpredictable results.

To avoid this problem, you can issue the select (BPX1SEL) service for a given socket, and the program
can find out from select when the takesocket (BPX1TAK) call has been issued and it is safe to call close
(BPX1CLO). For a general server, though, this is a very poorly performing design. Selecting on the main
socket and having all given sockets wait for another connection or for one of the given sockets to be
taken is very expensive, and should be avoided.

Example

The following code gives a socket to the program identified by CID (client ID). The target program may
then use the takesocket (BPX1TAK) service to take the socket. SOCKDESC was previously set by a call
to the accept (BPX1ACP) service. CID is set by the getclientid (BPX1GCL) service. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYCID — Map the Client ID Structure” on page
415.

 CALL BPX1GIV, give a socket to another program +
 (SOCKDESC, Input: Socket descriptor +
 CID, Input: Clientid of recipient +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family is not supported.

EBADF The socket descriptor is not valid, or the socket has already been given. The
following reason code can accompany this return code: JRFileDesNotInUse.

EBUSY Listen() has been called for the socket (that is, it is not an active socket).

ECMSERR A CMS environmental or internal error has occurred. The following reason
code can accompany this return code: JRLockErr.

givesocket (BPX1GIV)

Chapter 2. Callable Service Descriptions 143

Return Code Explanation

EINVAL The client_ID parameter does not specify a valid client identifier, or the
CIdDomain in the client_ID parameter does not match the actual domain of
the input socket descriptor. The following reason code can accompany this
return code: JRSocketCallParmError.

ENOTCONN The socket is not in the connected state.

ENOTSOCK The descriptor is for a file, not for a socket.

EOPNOTSUPP The operation is not supported for the socket protocol.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “getclientid (BPX1GCL) — Obtain the Calling Program's Identifier” on page 110
• “takesocket (BPX1TAK) — Acquire a Socket from Another Program” on page 350

givesocket (BPX1GIV)

144 z/VM: 7.3 OpenExtensions Callable Services Reference

isatty (BPX1ITY) — Determine If a File Descriptor Represents a
Terminal

BPX1ITY
file_descriptor
return_value

Purpose
Use the isatty (BPX1ITY) service to determine if a file is a terminal. You identify the file by file descriptor.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file.
return_value

(output,INT,4) is a variable where the service returns 1 if file_descriptor is a terminal, or 0 if it is not a
terminal.

Usage Note
This function does not return a return value of -1. If the file descriptor is not valid, a zero is returned. If
the service fails for other reasons, the process abends.

Example

The following code determines if the standard output device is a terminal. This example follows the rules
of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551.

 CALL BPX1ITY, Determine if device is a TTY +
 (=A(STDOUT_FILENO), Input: File descriptor +
 RETVAL), Return value: 0 isn't, 1 is +
 VL,MF=(E,PLIST) ----------------------------------
 ICM R15,B'1111',RETVAL Test RETVAL
 BZ PSEUDO RETVAL=0 means device not terminal

Related Services
Another callable service related to this service is:

• “ttyname (BPX1TYN) — Get the Name of a Terminal” on page 373.

isatty (BPX1ITY)

Chapter 2. Callable Service Descriptions 145

kill (BPX1KIL) — Send a Signal to a Process

BPX1KIL
process_ID
signal
signal_options
return_value
return_code
reason_code

Purpose
Use the kill (BPX1KIL) service to send a signal to a process or a process group.

Parameters
process_ID

(input,INT,4) is a variable for specifying the process ID (PID) of the process or process group you want
to send a signal to:

• If process_ID is greater than 0, it is assumed to be a process ID. The signal is sent to the process
with that specific process ID.

• If process_ID is 0, the signal is sent to all processes having a process group ID equal to that of the
caller, and for which the caller has permission to send a signal.

• If process_ID is -1, the service returns a return value of -1 and return code ESRCH.
• If process_ID is less than -1, its absolute value is assumed to be a process group ID. The signal

is sent to all processes having a process group ID equal to that absolute value, and for which the
sender has permission to send a signal.

For more information, see “Characteristics and Restrictions” on page 147.

signal
(input,INT,4) is a variable for specifying the signal number to be sent to the processes indicated by the
process_ID parameter. The signal number must be defined in the BPXYSIGH macro, or 0. The possible
signals are shown in “Signal Defaults” on page 561.

If the signal is 0, error checking takes place but no signal is sent. Use a signal value of 0 to verify that
the process_ID parameter is correct before actually sending a signal. However, this method does not
verify permission to send the signal to the specified process ID.

signal_options
(input,INT,4) is a variable for specifying the binary flags that describe how the signal is to be handled
by OpenExtensions and the user-supplied signal interface routine (SIR). This byte of user information
is passed to the SIR in a data structure mapped by the BPXYPPSD macro. See “BPXYPPSD — Map the
Signal Delivery Data Structure” on page 451. The signal_options parameter is mapped as follows:
First 2 bytes

User-defined bytes delivered with the signal to the SIR in the signal information control block.
These bytes are mapped by PPSDKILDATA.

Last 2 bytes
Reserved

return_value
(output,INT,4) is a variable where the service returns 0 if it has permission to send the specified signal
to any of the processes specified by the process_ID parameter. A return value of 0 means that the

kill (BPX1KIL)

146 z/VM: 7.3 OpenExtensions Callable Services Reference

signal was sent (or could have been sent, if the signal value was 0) to at least one of the specified
processes.

If the signal could not be sent, -1 is returned.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Characteristics and Restrictions
1. The range of a signal is limited to processes in the same virtual machine as the caller; signals may not

be sent to processes in other virtual machines.
2. A caller can send a signal if the real or saved set user ID of the caller is the same as the real or saved

set user ID of the intended recipient. A caller can also send signals if the caller is a superuser.
3. Regardless of user ID, a caller can always send a SIGCONT signal to a process that is a member of the

same session as the sender.
4. A caller can also send a signal to itself. If the signal is not blocked, at least one pending unblocked

signal is delivered to the sender before the service returns control. Provided that no other unblocked
signals are pending, the signal delivered is the signal sent. See Appendix E, “The Relationship of
OpenExtensions Signals to Callable Services,” on page 557 for more information.

Example

The following code sends a signal (SIGUSR1) to all processes (for which access is allowed) in the invoker's
process group. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYSIGH —
Map Signal Constants” on page 462.

 MVC PROCID,=A(0) Invoker's process group
 CALL BPX1KIL, Send a signal to a process +
 (PROCID, Input: Process ID +
 =A(SIGUSR1#), Input: Signal BPXYSIGH +
 =A(0), Input: Signal options +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The value of signal is incorrect or is not the number of a supported signal.

EPERM The caller does not have permission to send the signal to any process
specified by the process_ID parameter.

ESRCH No processes or process groups corresponding to process_ID were found.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

kill (BPX1KIL)

Chapter 2. Callable Service Descriptions 147

Related Services
Other callable services related to this service are:

• “getpid (BPX1GPI) — Get the Process ID” on page 130
• “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 294
• “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on page 297
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315.

kill (BPX1KIL)

148 z/VM: 7.3 OpenExtensions Callable Services Reference

link (BPX1LNK) — Create a Link to a File

BPX1LNK
filename_length
filename
link_name_length
link_name
return_value
return_code
reason_code

Purpose
Use the link (BPX1LNK) service to create a link to a file. A link is a new name identifying an existing file.
The new name does not replace the old one, but provides an additional way to refer to the file. To rename
an existing file, see “rename (BPX1REN) — Rename a File or Directory” on page 251.

Parameters
filename_length

(input,INT,4) is a variable for specifying the length of the filename parameter.
filename

(input,CHAR,filename_length) is a variable for specifying the name of the existing file to which a link is
to be established.

link_name_length
(input,INT,4) is a variable for specifying the length of the link_name parameter.

link_name,
(input,CHAR,link_name_length) is a variable for specifying the name of the link.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The link (BPX1LNK) service creates a link named link_name to an existing file named filename. This

provides an alternate path name for the existing file, so the file can be accessed by the old name or the
new name. The link can be stored in the same directory as the original file, or in a different directory.

2. If the link is created successfully, the service increments the link count of the file. The link count
shows how many links exist for a file. (If the link is not created successfully, the link count is not
incremented.)

3. Links are allowed only to files, not to directories.
4. If the link is created successfully, the change time of the linked-to file is updated. The change and

modification times of the directory that holds the link are also updated.

link (BPX1LNK)

Chapter 2. Callable Service Descriptions 149

Example

The following code creates a new way for usr/dataproc.next.t to link to an existing file, usr/user05/
yearrecs.t. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFLENA,=F'21'
 MVC BUFFERA(21),=CL21'usr/user05/yearrecs.t'
 MVC BUFLENB,=F'19'
 MVC BUFFERB(19),=CL19'usr/dataproc.next.t'
 SPACE ,
 CALL BPX1LNK, Create a link to a file +
 (BUFLENA, Input: Name length: existing +
 BUFFERA, Input: Name of existing file +
 BUFLENB, Input: Name length: link +
 BUFFERB, Input: Name of link to file +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process did not have appropriate permissions to create the link. Possible
reasons include:

• No search permission for a path name component of filename or link_name
• No write permission for the directory intended to contain the link
• No permission to access filename.

EEXIST A file, directory, or symbolic link named link_name already exists.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRLnkNewPathExists.

EINVAL The filename or link_name parameter is incorrect because it contains a null.

ELOOP A loop exists in symbolic links encountered during resolution of the filename
or link_name argument. This error is issued if more than 8 symbolic links are
detected in the resolution of the file name or link name.

EMLINK The file specified by filename already has its maximum number of links.
The maximum number is LINK_MAX. The value of LINK_MAX can be
determined through the pathconf (BPX1PCF) or fpathconf (BPX1FPC) service.
See “pathconf (BPX1PCF) — Determine Configurable Path Name Variables
Using Path Name” on page 194 or “fpathconf (BPX1FPC) — Determine
Configurable Path Name Variables Using a Descriptor” on page 99.

ENAMETOOLONG The filename or link_name parameter is longer than 1023 characters, or some
component of the path name is longer than 255 characters. CMS does not
support name truncation.

ENOENT A component of the path name specified by filename or link_name was not
found; or the file specified by filename was not found; or one of the two
arguments is missing.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRLnkNoEnt.

ENOSPC The directory intended to contain the link cannot be extended to contain
another entry.

link (BPX1LNK)

150 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENOTDIR A path name component of one of the arguments is not a directory.

EPERM The filename parameter contains the name of a directory, and links to
directories are not allowed.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRLnkDir.

EROFS Creating the link would require writing on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRLnkROFileset.

EXDEV The filename and link_name are on different file systems. CMS does not
support links between file systems.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRLnkAcrossFilesets.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “rename (BPX1REN) — Rename a File or Directory” on page 251
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

link (BPX1LNK)

Chapter 2. Callable Service Descriptions 151

listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming
Connection Requests from Clients

BPX1LSN
socket_descriptor
backlog
return_value
return_code
reason_code

Purpose
Use the listen (BPX1LSN) service to create a connection request queue for a server socket to queue
incoming connection requests from a client.

Listen is used for connection-oriented sockets only. If a connection request arrives with the backlog
queue full, the client may receive an ECONNREFUSED return code.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the server socket.
backlog

(input,INT,4) is a variable for specifying the maximum length of the connection queue. For AF_INET
and AF_INET6 sockets, if the backlog is greater than SOMAXCONN, this field is set to SOMAXCONN. If
backlog is less than 0, backlog is set to 0.

For AF_UNIX and AF_IUCV sockets, this parameter is ignored.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
If a bind (BPX1BND) is not called before the listen request, listen returns an EINVAL return code.

Example

The following code issues a listen on a socket that was previously created with socket (BPX1SOC) and
given a unique local name with bind (BPX1BND). SOCKDESC was returned from the call to BPX1SOC.
Set the backlog count to 5. This example follows the rules of reentrancy. For linkage information, see
Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page 465.

 CALL BPX1LSN, Listen on a socket +
 (SOCKDESC, Input: Socket Descriptor +
 =A(5), Input: Backlog count of 5 +

listen (BPX1LSN)

152 z/VM: 7.3 OpenExtensions Callable Services Reference

 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The socket descriptor is incorrect. The following reason codes can accompany
this return code: JRFileDesNotInUse, JRFileNotOpen.

EINVAL An incorrect argument was supplied. The socket is not named (a bind has not
been done), or the socket is ready to accept connections (a listen has already
been done).

ENOBUFS A buffer could not be obtained.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EOPNOTSUPP The socket descriptor specified a datagram socket. The listen service is valid
only for stream sockets.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

listen (BPX1LSN)

Chapter 2. Callable Service Descriptions 153

lseek (BPX1LSK) — Change the File Offset

BPX1LSK
file_descriptor
offset
reference_point
return_value
return_code
reason_code

Purpose
Use the lseek (BPX1LSK) service to change the file offset to a new position. The file offset is the position
in a file from which data is next read, or to which data is next written. The file is identified by its file
descriptor.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor for the file whose offset you want to change.
The file descriptor is returned from the open (BPX1OPN) service.

offset
(input/output,INT,8) is a variable for specifying a signed number to indicate the offset change. The
numeric part of the value is the amount (number of bytes) by which you want to change the offset; the
sign indicates whether you want the offset to be moved forward in the file or backward.

This parameter is a doubleword to accommodate large files. For processing a singleword value,
propagate the sign bit through the second word, so the final doubleword value has a valid sign.

On successful completion, the service returns the new file offset.

reference_point
(input,INT,4) is a variable for specifying the point where the offset is calculated from. The possible
values are mapped by the BPXYSEEK macro. See “BPXYSEEK — Map Constants for the lseek Service”
on page 455.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

If the request is successful, the new file offset is returned in the offset parameter.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The offset parameter gives the length and direction of the offset change. The reference_point

parameter states where the change is to start. For example, assume that a file is 2000 bytes long,
and that the current file offset is 1000:

lseek (BPX1LSK)

154 z/VM: 7.3 OpenExtensions Callable Services Reference

Offset Specified Reference Point New File Offset

80 SEEK_CUR 1080

1200 SEEK_SET 1200

-80 SEEK_END 1920

132 SEEK_END 2132

2. The file offset can be moved beyond the end of the file. If data is written at the new file offset, there
will be a gap between the old end of the file and the start of the new data. A request to read data from
anywhere within that gap completes successfully, and returns bytes with the value of zero in the buffer
and the actual number of bytes read.

Seeking alone, however, does not extend the file. Only if data is written at the new offset does the
length of the file change.

Example

The following code changes the file (FILEDESC) offset to 80 bytes past the current offset. This example
follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551. For the data structure, see “BPXYSEEK — Map Constants for the lseek
Service” on page 455.

 MVC FILEDESC,.. File descriptor from open
 MVC OFFSET(08),=D'80' Forward 80 Bytes
 MVC REFPT,=A(SEEK_CUR) Current offset of the file
 SPACE ,
 CALL BPX1LSK, Change a file's offset +
 (FILEDESC, File descriptor +
 OFFSET, I/O: Offset in file +
 REFPT, Input: Reference point, BPXYSEEK +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor parameter does not specify a valid, open file.

EINVAL The reference_point parameter contained something other than one of the
three options, or the combination of the offset and reference_point parameters
would have placed the file offset before the beginning of the file.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRLskOffsetInvalid and JRLskWhenceIsInvalid.

ESPIPE The file_descriptor refers to a pipe or a FIFO special file.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRLskOnPipe.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

lseek (BPX1LSK)

Chapter 2. Callable Service Descriptions 155

• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “open (BPX1OPN) — Open a File” on page 181
• “read (BPX1RED) — Read from a File or Socket” on page 228
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “write (BPX1WRT) — Write to a File or Socket” on page 401.

lseek (BPX1LSK)

156 z/VM: 7.3 OpenExtensions Callable Services Reference

lstat (BPX1LST) — Get Status Information about a File or Symbolic
Link by Path Name

BPX1LST
pathname_length
pathname
status_area_length
status_area
return_value
return_code
reason_code

Purpose
Use the lstat (BPX1LST) service to obtain status information about a file identified by its path name. This
service is identical to the stat (BPX1STA) service, except when the specified path name is a symbolic
link, which is a pointer to another file or directory. In this case, the status information returned by lstat
(BPX1LST) relates to the symbolic link, rather than the file the symbolic link refers to. The stat service is
explained in “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

For the corresponding service using a file descriptor, see “fstat (BPX1FST) -- Get Status Information about
a File by Descriptor” on page 102.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file for which you want
to obtain status. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

status_area_length
(input,INT,4) is a variable for specifying the length of the status_area parameter. To determine
the value of status_area_length, use the BPXYSTAT macro. See “BPXYSTAT — Map the File Status
Structure for the stat Service” on page 473. If the specified length is too small, the data returned in
status_area is truncated.

status_area
(input,CHAR,length of BPXYSTAT macro or status_area_length, whichever is less) is a variable for
the area where the service returns the status information for the file. This area is mapped by the
BPXYSTAT macro. See “BPXYSTAT — Map the File Status Structure for the stat Service” on page 473.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(input,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

lstat (BPX1LST)

Chapter 2. Callable Service Descriptions 157

Usage Notes
1. All modified data in the file identified by pathname is written to permanent storage when this service is

requested. See “fsync (BPX1FSY) — Write Changes to Direct-Access Storage” on page 106.
2. All time fields in status_area are in POSIX format.
3. The File Mode field in status_area is mapped by the BPXYMODE macro. See “BPXYMODE — Map Mode

Constants” on page 437. For information on the values for file type, see “BPXYFTYP — Map File Type
Definitions” on page 423.

Characteristics and Restrictions
To obtain information about a file, you need not have permissions for the file itself; however, you must
have search permission for all of the directory components of the path name.

Example

The following code obtains the file status for the file described by the symbolic name labrec/sym.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYSTAT — Map the File
Status Structure for the stat Service” on page 473.

* symbolic name established using symlink (BPX1SYM) system call
 MVC BUFFERA(10),=CL10'labrec/sym'
 MVC BUFLENA,=F'10'
 SPACE ,
 CALL BPX1LST, Get file status +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 STATL, Input: Length of buffer needed +
 STAT, Buffer, mapped by BPXYSTAT +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process does not have permission to search some component of the
pathname parameter.

ECMSERR An internal error occurred.

EINVAL Parameter error—for example, a zero-length buffer.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRBuffTooSmall.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The pathname parameter is longer than 1023 characters, or some component
of the path name is longer than 255 characters. This could be as a result
of encountering a symbolic link during resolution of pathname, and the
substituted string is longer than 1023 characters.

ENODEV An attempt was made to use a character special file for a device not
supported by OpenExtensions.

lstat (BPX1LST)

158 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENOENT No file named pathname was found, or a path name was not specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of the path name is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “exec (BPX1EXC) — Run a Program” on page 72
• “fpathconf (BPX1FPC) — Determine Configurable Path Name Variables Using a Descriptor” on page 99
• “fstat (BPX1FST) -- Get Status Information about a File by Descriptor” on page 102
• “link (BPX1LNK) — Create a Link to a File” on page 149
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “open (BPX1OPN) — Open a File” on page 181
• “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 199
• “read (BPX1RED) — Read from a File or Socket” on page 228
• “symlink (BPX1SYM) — Create a Symbolic Link to a Path Name” on page 345
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379
• “utime (BPX1UTI) -- Set File Access and Modification Times” on page 382
• “write (BPX1WRT) — Write to a File or Socket” on page 401.

lstat (BPX1LST)

Chapter 2. Callable Service Descriptions 159

mkdir (BPX1MKD) — Make a Directory

BPX1MKD
pathname_length
pathname
mode
return_value
return_code
reason_code

Purpose
Use the mkdir (BPX1MKD) service to create a new, empty directory.

Parameters
pathname_length

(input,CHAR,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the full path name of the directory to be
created. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

mode
(input,INT,4) is a variable for specifying the mode of the directory, which includes the file type and the
permissions you grant to yourself, to your group, and to any user.

The file type is identified using the BPXYFTYP macro. Permissions are specified with the BPXYMODE
macro. See “BPXYFTYP — Map File Type Definitions” on page 423 and “BPXYMODE — Map Mode
Constants” on page 437.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The file permission bits specified through the mode parameter are modified by the file creation mask

of the calling process. (See “umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page
374). They are then used to set the file permission bits of the new directory.

2. The new directory's owner ID is set to the effective user ID (UID) of the calling process.
3. The mkdir (BPX1MKD) service sets the access, change, and modification times for the new directory. It

also sets the change and modification times for the directory that contains the new directory.

Example

The following code creates a new and empty directory path name of /usr/newprots/ with user read-
execute, group write, other read-execute permissions. This example follows the rules of reentrancy. For

mkdir (BPX1MKD)

160 z/VM: 7.3 OpenExtensions Callable Services Reference

linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For
the data structure, see “BPXYFTYP — Map File Type Definitions” on page 423 and “BPXYMODE — Map
Mode Constants” on page 437.

 MVC BUFFERA(14),=CL14'/usr/newprots/'
 MVC BUFLENA,=F'14'
 XC S_MODE,S_MODE
 MVI S_MODE2,S_IRUSR Read search write read search
 MVI S_MODE3,S_IXUSR+S_IWGRP+S_IROTH+S_IXOTH
 SPACE ,
 CALL BPX1MKD, Make a directory +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 S_MODE, Input: BPXYMODE and BPXYFTYP +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process did not have search permission on some component of
pathname, or did not have write permission on the parent directory of the
directory to be created.

EEXIST There is already a file or directory with the specified path name.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRMkDirExist.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

EMLINK The link count of the parent directory has already reached the maximum
defined for the system. Refer to the LINK_MAX in “pathconf (BPX1PCF) —
Determine Configurable Path Name Variables Using Path Name” on page 194,
or to “fpathconf (BPX1FPC) — Determine Configurable Path Name Variables
Using a Descriptor” on page 99.

ENAMETOOLONG The pathname parameter contains more than 1023 characters, or a
component of the path name is longer than 255 characters.

ENOENT Some component of pathname does not exist, or the pathname parameter is
blank.

ENOSPC The file system does not have enough space to contain a new directory, or the
parent directory cannot be extended.

ENOTDIR A component of the path name is not a directory.

EROFS The parent directory of the directory to be created is on a read-only file
system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRMkDirROnly.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

mkdir (BPX1MKD)

Chapter 2. Callable Service Descriptions 161

Related Services
Other callable services related to this service are:

• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340
• “umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page 374.

mkdir (BPX1MKD)

162 z/VM: 7.3 OpenExtensions Callable Services Reference

mknod (BPX1MKN) — Make a FIFO or Character Special File

BPX1MKN
pathname_length
pathname
mode
device_identifier
return_value
return_code
reason_code

Purpose
Use the mknod (BPX1MKN) service to create a new character special file or FIFO special file (named
pipe).

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the pathname of the special file to be
created. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

mode
(input,INT,4) is a variable for specifying the mode of the file, which includes the file type and
the permissions you grant to yourself, to your group, and to any user. Specify the file type with
the BPXYFTYP mapping macro and specify permissions with the BPXYMODE mapping macro. See
“BPXYFTYP — Map File Type Definitions” on page 423 and “BPXYMODE — Map Mode Constants” on
page 437.

device_identifier
(input,INT,4) is a variable for specifying a device identifier, or 0. Specify device_identifier if you are
creating a character special file. If a FIFO file is being created (mode file type specified as 4), then
device_identifier is ignored.

The high-order 16 bits of device_identifier is the device major number. The device major number
corresponds to a device driver supporting a class of devices—for example, interactive terminals.
The low-order 16 bits of device_identifier is the device minor number. The device minor number
corresponds to a specific device within the class of devices referred to by the device major number.

The device major numbers currently defined for use by OpenExtensions services are:

3. /dev/tty
4. /dev/null

For device major numbers 3 and 4, the device minor number is ignored.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

mknod (BPX1MKN)

Chapter 2. Callable Service Descriptions 163

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The file permission bits of mode are modified by the process's file creation mask and then used to

set the file permission bits of the file being created. (See “umask (BPX1UMK) — Set or Return the File
Mode Creation Mask” on page 374.)

2. The file's owner ID is set to the process's effective user ID (UID). The group ID is set to the group ID
(GID) of the directory containing the file.

3. The mknod (BPX1MKN) service sets the access, change, and modification times for the new file. It also
sets the change and modification times for the directory that contains the new file.

Characteristics and Restrictions
When the mknod (BPX1MKN) service is invoked to create a character special file, it is a privileged
operation and requires superuser authority.

Example

The following code creates a FIFO (pipe) named /u/fifos/fifio1 and user read-write, group read, other
read permissions. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYFTYP —
Map File Type Definitions” on page 423 and “BPXYMODE — Map Mode Constants” on page 437.

 MVC BUFFERA(14),=CL14'/u/fifos/fifo1'
 MVC BUFLENA,=F'14'
 XC S_MODE,S_MODE
 MVI S_TYPE,FT_FIFO First in - first out
 MVI S_MODE2,S_IRUSR Read write read read
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IROTH
 SPACE ,
 CALL BPX1MKN, Create FIFO or character special f+
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 S_MODE, Input: BPXYMODE and BPXYFTYP +
 =A(0), Input: Device id not used here +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process does not have permission to search some component of
pathname, or does not have write permission for the directory of the file to be
created.

EEXIST A file or directory named pathname already exists.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRSpFileExists.

EINVAL The file type specified in the mode parameter is not 2 or 4.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRMknodInvalidType.

mknod (BPX1MKN)

164 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the pathname.

ENAMETOOLONG The pathname parameter is longer than 1023 characters, or a component of
the pathname is longer than 255 characters.

ENOENT A component of pathname was not found, or no pathname was specified.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JREndingSlashMknod.

ENOTDIR A component of pathname is not a directory.

EROFS The directory of the file is on a read-only file system.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRReadOnlyFilesetMknodReq.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “exec (BPX1EXC) — Run a Program” on page 72
• “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 199
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340
• “umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page 374.

mknod (BPX1MKN)

Chapter 2. Callable Service Descriptions 165

mount (BPX1MNT) — Make a File System Available

BPX1MNT
mountpoint_length
mountpoint_name
file_system_name_length
file_system_name
file_system_type
mount_mode
parm_length
parm
return_value
return_code
reason_code

Purpose
Use the mount (BPX1MNT) service to mount a local or remote file system, making the files in it available
for use.

Parameters
mountpoint_length

(input,INT,4) is a variable for specifying the length of the mountpoint_name parameter.
mountpoint_name

(input,CHAR,mountpoint_length) is a variable for specifying the name of the mount point.
file_system_name_length

(input,INT,4) is a variable for specifying the length of the file_system_name parameter.
file_system_name

(input,CHAR,file_system_name_length) is a variable for specifying the name of the file system that is
to be mounted. The file system name can be a Byte File System (BFS) path name or a Network File
System (NFS) path name. See usage note “3” on page 167.

file_system_type
(input,CHAR,8) is a variable for specifying the file system type. For a byte file system, use VMBFS. For
a network file system, use BPXFSNFS.

mount_mode
(input,INT,4) is a variable for specifying binary flags that show the mount mode (read or read/write).

This parameter is mapped by the BPXYMTM macro. See “BPXYMTM — Map the Modes for the mount
and umount Services” on page 445.

parm_length
(input,INT,4) is a variable for specifying the length of the parm parameter.

parm
(input,CHAR,parm_length) is a variable for specifying file-system-specific parameters. These have a
maximum length of 1024 bytes. See usage note “3” on page 167.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

mount (BPX1MNT)

166 z/VM: 7.3 OpenExtensions Callable Services Reference

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The mount service effectively creates a virtual file system. After a file system is mounted, references to

the file system name that is mounted refer to the root directory on the mounted file system.
2. A file system can be mounted at only one point.
3. The file_system_name can represent a BFS path name or an NFS path name:

• To mount a BFS file system:

– The file_system_name value must be a fully-qualified BFS path name. See “Understanding Byte
File System (BFS) Path Name Syntax” on page 6.

– The parm operand is not used.
• To mount an NFS file system:

– The file_system_name value must be a fully-qualified NFS path name. See “Understanding
Network File System (NFS) Path Name Syntax” on page 9.

– The parm operand is used to specify local NFS mount options. These options are mapped by the
BPXYMNT macro. See “BPXYMNT — Map the File System Parameters for the mount Service” on
page 435.

4. An NFS file system cannot be mounted as the root directory.

Example

The following code requests that file system /../VMBFS:BFS:USERS/ be mounted and readied for use.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYMTM — Map the Modes
for the mount and umount Services” on page 445.

 XC MTM(MTM#LENGTH),MTM
 MVI MTM1,MTMRDWR Mount mode - read-write
 MVC BUFLENA,=F'2' Max 1023
 MVC BUFFERA(02),=CL02'/u'
 LA R6,LFSTOMNT
 ST R6,FSLEN
 MVC FSNAME(LFSTOMNT),FSTOMNT
 MVC FSTYPE(8),=CL08'VMBFS'
 SPACE ,
 CALL BPX1MNT, Ready a file system for use +
 (BUFLENA, Input: Mount point length +
 BUFFERA, Input: Mount point name +
 FSLEN, Input: File system name length +
 FSNAME, Input: File system name +
 FSTYPE, Input: File system type (8 char) +
 MTM, Input: Mount mode BPXYMTM +
 =A(0), Input: Parm length, future +
 =A(0), Input: Parm, future +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
⋮
FSTOMNT DC C'/../VMBFS:BFS:USERS/'
LFSTOMNT EQU L'FSTOMNT

Return Codes and Reason Codes
This service can return the following return codes:

mount (BPX1MNT)

Chapter 2. Callable Service Descriptions 167

Return Code Explanation

EBUSY The file system to mount is quiesced, or no more locks are available.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JROutOfLocks,
JRQuiesced.

ECMSERR An internal error occurred.

ECMSSTORAGE You have reached the maximum number of mounts (10) for your virtual
machine.

EINVAL Parameter error. Verify the mount_mode and file_system_type parameter
values. Other reasons for this error include: the mount point is a root of a file
system; the file system is already mounted; the parm_length is too long; parm
contains invalid values; parm specified that NETRC DATA should be used, but
the file was not found or did not contain username or password information
for the remote host. The specified translation table (fn TCPXLBIN) was not
found, or the default translation table, POSIX TCXLBIN, was not found.

Consult the reason code to determine the exact reason the error occurred.

EIO An I/O error occurred.

ELOOP A loop exists in symbolic links encountered during resolution of the
file_system_name argument. This error is issued if more than 8 symbolic links
are detected in the resolution of the file system name.

ENOENT The mount point does not exist.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRMountPt.

ENOTDIR The mount point is not a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRMountPt.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “umount (BPX1UMT) — Remove a Virtual File System” on page 375.

mount (BPX1MNT)

168 z/VM: 7.3 OpenExtensions Callable Services Reference

msgctl (BPX1QCT) — Perform Message Queue Control Operations

BPX1QCT
message_queue_ID
command
buffer_address
return_value
return_code
reason_code

Purpose
Use the msgctl (BPX1QCT) service to do various message queue control operations, including getting
status, changing variables, and removing a message queue from the system.

Parameters
message_queue_ID

(input,INT,4) is a variable for specifying the message queue identifier. This value is returned by the
msgget (BPX1QGT) service.

command
(input,INT,4) is a variable for specifying a command that identifies the operation to be performed.
The command constants are defined in the BPXYIPCP macro. See “BPXYIPCP — Map Interprocess
Communications Permissions” on page 431. The possible commands are:
Command

Operation
IPC_STAT

Obtains status information about message_queue_ID, if the current process has read permission.
This information is stored in the area pointed to by the buffer_address parameter and mapped by
the MSQID_DS data structure in the BPXYMSG macro.

IPC_SET
Sets the values of IPC_UID, IPC_GID, IPC_MODE, and MSG_QBYTES for message_queue_ID. The
values to be set are taken from the MSQID_DS data structure pointed to by the buffer_address
parameter. You can specify any values for IPC_UID and IPC_GID. For IPC_MODE, you can specify
only the mode bits defined for the message_flags parameter of the msgget (BPX1QGT) service.

Note: The IPC_ values set with this command are defined in the BPXYIPCP macro and mapped
into the MSG_PERM field of the MSQID_DS structure in the BPXYMSG macro. In addition, the
IPC_MODE field in BPXYIPCP is mapped by the BPXYMODE macro.

IPC_RMID
Removes message_queue_ID from the system. This operation removes the identifier and destroys
the message queue and the MSQID_DS data structure associated with it.

The IPC_SET and IPC_RMID operations can be performed only by a process that has either
appropriate privileges or an effective user ID equal to the value of IPC_CUID or IPC_UID in the
MSQID_DS data structure associated with message_queue_ID.

For the MSQID_DS data structure, see “BPXYMSG — Map Interprocess Communications Message
Queues” on page 439.

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer to be used for message queue
information. The buffer is mapped by the MSQID_DS data structure in the BPXYMSG macro.

msgctl (BPX1QCT)

Chapter 2. Callable Service Descriptions 169

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Changing the access permissions affects only message queue service invocations that occur after

msgctl (BPX1QCT) has returned. Both msgsnd (BPX1QSN) and msgrcv (BPX1QRC), which are waiting
while the permission bits are changed by msgctl (BPX1QCT), are not affected.

2. The IPC_SET operation can change permissions, which may affect the ability of a thread to use the
message queue callable services.

3. Quiescing a message queue will stop additional messages from being added, while allowing existing
messages to be received. A message queue can be quiesced by using the IPC_SET command to clear
write permission bits.

4. A message queue can also be quiesced by using the IPC_SET command to reduce MSG_QBYTES
to zero. (Note that it would take a superuser to raise the limit again.) Requesters would receive an
EAGAIN return code or would wait.

5. When an IPC_RMID command is processed, all waiting threads regain control with a return value of -1,
a return code of EIDRM, and a reason code of JRIpcRemoved.

6. If you do not wish to change all the fields in the MSQID_DS data structure, first call the msgctl
(BPX1QCT) service with the IPC_STAT command to initialize the buffer, then call the service again with
the IPC_SET command to make your changes.

7. For an IPC_RMID operation, the removal of the message queue ID will be complete by the time control
is returned to the caller.

Characteristics and Restrictions
The invoker is restricted by the ownership, read, and read-write permissions defined by the msgget
(BPX1QGT) and msgctl (BPX1QCT) services.

Example

The following code removes a message queue from the system. For the data structure, see “BPXYMSG —
Map Interprocess Communications Message Queues” on page 439.

 CALL BPX1QCT, Message queue control (msgctl) +
 (MSG_ID, Input: MessageQueueID +
 =A(IPC_RMID), Input: Action to take BPXYIPCP+
 =A(0), Input: ->MSGID_DS or 0 BPXYMSG +
 RETVAL, Return value: 0, -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

msgctl (BPX1QCT)

170 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EACCES The IPC_STAT command was specified, but the calling process does not have
read permission.

The following reason code can accompany this return code: JRIpcDenied.

EINVAL One of the following conditions is true:

• message_queue_ID is not a valid message queue identifier.
• command is not a valid command.
• The mode bits set by the IPC_SET command were not valid.

The following reason codes can accompany this return code: JRIpcBadFlags,
JRMsqQBytes, JRIpcBadID.

EPERM One of the following conditions is true:

• The IPC_SET or IPC_RMID command was specified, but the caller has
neither appropriate privileges nor an effective user ID equal to the value
of IPC_CUID or IPC_UID in the MSQID_DS data structure associated with
message_queue_ID.

• The IPC_SET command was specified, and an attempt was made to
increase the MSG_QBYTES value, but the caller does not have appropriate
privileges.

The following reason codes can accompany this return code: JRIpcDenied,
JRMsqQBytes.

EFAULT The buffer_address parameter specified an address that caused the service to
program check.

The following reason code can accompany this return code: JRBadAddress.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “msgget (BPX1QGT) — Create or Find a Message Queue” on page 172
• “msgrcv (BPX1QRC) — Receive a Message from a Message Queue” on page 175
• “msgsnd (BPX1QSN) — Send a Message to a Message Queue” on page 178

msgctl (BPX1QCT)

Chapter 2. Callable Service Descriptions 171

msgget (BPX1QGT) — Create or Find a Message Queue

BPX1QGT
key
message_flags
return_value
return_code
reason_code

Purpose
Use the msgget (BPX1QGT) service to create a new message queue or find an existing message queue (if
the user is allowed to access it). The service returns a system-assigned message queue identifier.

Parameters
key

(input,INT,4) is a variable for specifying a user-defined value that identifies a message queue. The key
serves as a lookup value to determine if an associated message queue identifier already exists. If an
associated message queue identifier does not already exist, the key value becomes associated with
the message queue identifier created by this request.

The reserved key value IPC_PRIVATE may also be specified. IPC_PRIVATE is sometimes used when a
process does not want to share a message queue or when it wants to privately control access to the
message queue by other processes. The IPC_PRIVATE constant is defined in the BPXYIPCP macro.
See “BPXYIPCP — Map Interprocess Communications Permissions” on page 431.

message_flags
(input,INT,4) is a variable for specifying the type of action to be performed and the permissions to
be assigned. Valid values for this parameter include any combination of the following flags (additional
bits will cause an EINVAL return code):

• These flags are defined in the BPXYIPCP macro and the values are mapped onto the S_TYPE field in
the BPXYMODE macro:
IPC_CREAT

Creates a message queue if the specified key is not associated with a message queue identifier.
IPC_CREAT is ignored when the IPC_PRIVATE reserved key is specified.

IPC_EXCL
Causes the service to fail if the specified key has an associated message queue identifier.
IPC_EXCL is ignored when the IPC_PRIVATE reserved key is specified or the IPC_CREAT flag is
not set.

• These flags are defined in the BPXYMODE macro and are a subset of the access permissions that
apply to files:
S_IRUSR

Permits the process that owns the message queue to read it.
S_IWUSR

Permits the process that owns the message queue to alter it.
S_IRGRP

Permits the group associated with the message queue to read it.
S_IWGRP

Permits the group associated with the message queue to alter it.

msgget (BPX1QGT)

172 z/VM: 7.3 OpenExtensions Callable Services Reference

S_IROTH
Permits others to read the message queue.

S_IWOTH
Permits others to alter the message queue.

See “BPXYIPCP — Map Interprocess Communications Permissions” on page 431 and “BPXYMODE —
Map Mode Constants” on page 437.

return_value
(output,INT,4) is a variable where the service returns the message queue identifier associated with
key if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. As long as a thread knows the message queue identifier and access is permitted, the thread can

issue msgctl (BPX1QCT), msgsnd (BPX1QSN), or msgrcv (BPX1QRC) calls for that message queue, and
msgget is not needed.

2. This service creates a data structure defined by MSQID_DS, if either of the following is true:

• IPC_PRIVATE is specified in the key parameter.
• The IPC_CREAT flag is set, and the specified key value does not already have a message queue
identifier associated with it.

The MSQID_DS data structure is defined in the BPXYMSG macro, and some values are mapped into it
from the BPXYIPCP macro. See “BPXYMSG — Map Interprocess Communications Message Queues” on
page 439 and “BPXYIPCP — Map Interprocess Communications Permissions” on page 431.

3. Upon creation, the MSQID_DS data structure is initialized as follows:

• IPC_CUID and IPC_UID are set to the effective user ID of the calling task.
• IPC_CGID and IPC_GID are set to the effective group ID of the calling task.
• The low-order 9-bits of IPC_MODE are equal to the low-order 9-bits of the message_flags parameter.
• MSG_QBYTES is set to the system limit defined by parmlib.

4. The message queue is removed from the system by calling the msgctl (BPX1QCT) service with the
IPC_RMID command.

5. Users of message queues are responsible for removing them when they are no longer needed. Failure
to do so will tie up system resources.

Characteristics and Restrictions
1. There is a maximum number of message queues allowed in the system.
2. The invoker is restricted by the ownership, read, and read-write permissions for the specified message

queue as defined by the msgget (BPX1QGT) and msgctl (BPX1QCT) services.

Example

The following code creates a private message queue. For the data structure, see “BPXYMSG — Map
Interprocess Communications Message Queues” on page 439.

 MVI S_TYPE,IPC_CREAT+IPC_EXCL Error if exists
 MVI S_MODE1,0 Not used
 MVI S_MODE2,S_IRUSR All read and write permissions
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH

msgget (BPX1QGT)

Chapter 2. Callable Service Descriptions 173

 SPACE ,
 CALL BPX1QGT, Create a message queue +
 (=A(IPC_PRIVATE), Input: Key +
 S_MODE, Input: Creation flags BPXYMODE/IPC+
 RETVAL, Return value: -1 or semaphore ID +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 ICM R15,B'1111',RETVAL Test return value
 BNP PSEUDO Branch on msgget failure
 ST R15,MSG_ID Store MSG_ID associated with key

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES A message queue identifier exists for the specified key, but access
permission, as specified by the low-order 9-bits of the message_flags
parameter (the S_ flags), is not granted.

The following reason code can accompany this return code: JRIpcDenied.

EEXIST A message queue identifier exists for the specified key, and the IPC_CREAT
and IPC_EXCL flags are both set.

The following reason code can accompany this return code: JRIpcExists.

EINVAL The message_flags parameter included bits not supported by this service.

The following reason code can accompany this return code: JRIpcBadFlags.

ENOENT A message queue identifier does not exist for the specified key, and the
IPC_CREAT flag was not set.

The following reason code can accompany this return code: JRIpcNoExist.

ENOSPC A message queue is to be created, but the system-imposed limit on the
maximum number of message queue identifiers allocated system-wide would
be exceeded.

The following reason code can accompany this return code: JRIpcMaxIDs.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “msgctl (BPX1QCT) — Perform Message Queue Control Operations” on page 169
• “msgrcv (BPX1QRC) — Receive a Message from a Message Queue” on page 175
• “msgsnd (BPX1QSN) — Send a Message to a Message Queue” on page 178
• “w_getipc (BPX1GET) — Query Interprocess Communications” on page 391

msgget (BPX1QGT)

174 z/VM: 7.3 OpenExtensions Callable Services Reference

msgrcv (BPX1QRC) — Receive a Message from a Message Queue

BPX1QRC
message_queue_ID
message_address
message_ALET
message_size
message_type
message_flag
return_value
return_code
reason_code

Purpose
Use the msgrcv (BPX1QRC) service to receive a message from a message queue.

Parameters
message_queue_ID

(input,INT,4) is a variable for specifying the message queue identifier.
message_address

(input,INT,4) is a variable for specifying the address of a buffer mapped by the MSGBUF or MSGXBUF
data structure in the BPXYMSG macro. See “BPXYMSG — Map Interprocess Communications Message
Queues” on page 439.

message_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for message_address that
identifies the address space or data space where the buffer resides:

• 0 indicates the buffer resides in the user's primary address space.
• All other values are ignored.

message_size
(input,INT,4) is a variable for specifying the length of the message text to be placed into the buffer
pointed to by the message_address parameter.

If the MSG_INFO flag is set, the buffer should be 20 bytes longer than message_size. Otherwise, the
buffer should be 4 bytes longer than message_size. It is the responsibility of the caller to ensure that
the buffer is large enough to hold the message to be received.

The message may be truncated by setting the MSG_NOERROR flag. Specifying a message_size of 0
with the MSG_NOERROR flag is useful for receiving the message type without the message text.

message_type
(input,INT,4) is a variable for specifying the type of message to be received:

• If message_type is zero, the first message on the queue is received.
• If message_type is greater than zero, the first message of that message type is received.
• If message_type is less than zero, the first message of the lowest type that is less than or equal to

the absolute value of message_type is received.

message_flag
(input,INT,4) is a variable for specifying receive options:

msgrcv (BPX1QRC)

Chapter 2. Callable Service Descriptions 175

MSG_NOERROR
The received message is to be truncated to message_size (mapped in the BPXYMSG macro). The
truncated part of the message is lost and no indication of the truncation is given to the caller.

MSG_INFO
The received message is to be of the MSGXBUF format mapped in the BPXYMSG macro, not the
MSGBUF format.

IPC_NOWAIT
Indicates the action to be taken if a message of the desired type is not on the queue, as follows:

• If IPC_NOWAIT is specified, the caller will return immediately with an error (ENOMSG).
• If IPC_NOWAIT is not specified, the calling thread will suspend execution until one of the

following occurs:

– A message of the desired type is placed on the queue.
– The message queue is removed from the system (EIDRM).
– The caller receives a signal (EINTR).

The MSG_NOERROR and MSG_INFO flags are defined in the BPXYMSG macro. The IPC_NOWAIT flag
is defined in the BPXYIPCP macro.

return_value
(output,INT,4) is a variable where the service returns the number of bytes of message text received
(MSG_MTEXT) if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Within the type specifications, the longest waiting thread will be reactivated first (FIFO). For example,

if a message send for type 3 occurs when there are two threads waiting on message type 3 and one
thread waiting on message type 2, the oldest waiter for message type 3 receive will be posted first.

2. Read access to the specified message queue is required.

Characteristics and Restrictions
The invoker is restricted by the ownership, read, and read-write permissions defined by the msgget
(BPX1QGT) and msgctl (BPX1QCT) services.

Example

The following code receives a message from the message queue identified by MSG_ID. For the data
structure, see “BPXYMSG — Map Interprocess Communications Message Queues” on page 439.

 LA R15,BUFFERA R15 -> Utility buffer
 ST R15,BUFA
 USING MSGBUF,R15
 MVC MSG_TYPE(4),=A(0)
 MVC BUFLENA(4),=A(MSQ#LENGTH)
 MVC FLAGS(4),=A(0) Wait for message
 DROP R15
 SPACE ,
 CALL BPX1QRC, Receive a message (msgrcv) +
 (MSG_ID, Input: MessageQueueID +
 BUFA, Input: ->MSGBUF BPXYMSG +
 PRIMARYALET, Input: ALET of message buffer +
 BUFLENA, Input: Length MSGBUF +
 =A(0), Input: Message Type BPXYMSG +
 FLAGS, Input: Flags BPXYIPCP+

msgrcv (BPX1QRC)

176 z/VM: 7.3 OpenExtensions Callable Services Reference

 RETVAL, Return value: 0, -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

E2BIG The length of the message text (MSG_MTEXT) is greater than the specified
message_size, and the MSG_NOERROR flag is not set.

The following reason code can accompany this return code: JRMsq2Big.

EACCES Operation permission is denied to the calling task.

The following reason code can accompany this return code: JRIpcDenied.

EIDRM message_queue_ID was removed from the system while the invoker was
waiting.

The following reason code can accompany this return code: JRIpcRemoved.

EINTR The function was interrupted by a signal.

The following reason code can accompany this return code: JRIpcSignaled.

EINVAL message_queue_ID is not a valid message queue identifier, or message_size is
less than 0.

The following reason codes can accompany this return code: JRIpcBadID,
JRMsqBadSize.

EFAULT The message_address parameter specified an address that caused the service
to program check.

The following reason code can accompany this return code: JRBadAddress.

ENOMSG The queue does not contain a message of the desired type, and the
IPC_NOWAIT flag is set.

The following reason codes can accompany this return code: JRMsqNoMsg.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “msgctl (BPX1QCT) — Perform Message Queue Control Operations” on page 169
• “msgget (BPX1QGT) — Create or Find a Message Queue” on page 172
• “msgsnd (BPX1QSN) — Send a Message to a Message Queue” on page 178

msgrcv (BPX1QRC)

Chapter 2. Callable Service Descriptions 177

msgsnd (BPX1QSN) — Send a Message to a Message Queue

BPX1QSN
message_queue_ID
message_address
message_ALET
message_size
message_flag
return_value
return_code
reason_code

Purpose
Use the msgsnd (BPX1QSN) service to send a message to a message queue.

Parameters
message_queue_ID

(input,INT,4) is a variable for specifying the message queue identifier.
message_address

(input,INT,4) is a variable for specifying the address of a buffer that contains the message to be sent.
The buffer is mapped by the MSGBUF data structure in the BPXYMSG macro. See “BPXYMSG — Map
Interprocess Communications Message Queues” on page 439. The message type (MSG_TYPE field) is
the first word of the message and must be greater than zero.

message_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for message_address that
identifies the address space or data space where the buffer resides:

• O indicates the buffer resides in the user's primary address space.
• All other values are ignored.

message_size
(input,INT,4) is a variable for specifying the length of the message text contained in the buffer pointed
to by the message_address parameter. This length does not include the 4-byte MSG_TYPE field that
precedes the message text field (MSG_MTEXT). For example, a message with a MSG_TYPE and no
MSG_MTEXT would have a message_size of 0.

message_flag
(input,INT,4) is a variable that specifies the action to be taken if one or more of the following
conditions are true:

• Placing the message on the message queue would cause the current number of bytes on the
message queue (msg_cbytes) to be greater than the maximum number of bytes allowed on the
message queue (msg_qbytes).

• The total number of messages on the message queue (msg_qnum) is equal to the system-imposed
limit.

The actions are as follows:

• If IPC_NOWAIT is specified, the caller will return immediately with an error (EAGAIN).
• If IPC_NOWAIT is not specified, the calling thread will suspend execution until one of the following

occurs:

msgsnd (BPX1QSN)

178 z/VM: 7.3 OpenExtensions Callable Services Reference

– The message is sent.
– The message queue is removed from the system (EIDRM).
– The caller receives a signal (EINTR).

The IPC_NOWAIT flag is defined in the BPXYIPCP macro.

return_value
(output,INT,4) is a variable where the service returns a value of 0 if the request is successful, or -1 if it
is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
Write access to the specified message queue is required.

Characteristics and Restrictions
The invoker is restricted by the ownership, read, and read-write permissions defined by the msgget
(BPX1MGT) and msgctl (BPX1MCT) services.

Example

The following code adds a message to the message queue identified by MSG_ID. For the data structure,
see “BPXYMSG — Map Interprocess Communications Message Queues” on page 439.

 LA R15,BUFFERA R15 -> Utility buffer
 ST R15,BUFA
 USING MSGBUF,R15
 MVC MSG_TYPE(4),=A(0)
 MVC MSG_MTEXT(11),=CL11'QSN MSG TEXT'
 MVC BUFLENA(4),=A(15)
 MVC FLAGS(4),=A(IPC_NOWAIT) Don't wait on queue full
 DROP R15
 SPACE ,
 CALL BPX1QSN, Send a message (msgsnd) +
 (MSG_ID, Input: MessageQueueID +
 BUFA, Input: ->MSGBUF BPXYMSG +
 PRIMARYALET, Input: ALET of message buffer +
 BUFLENA, Input: Length MSGBUF +
 FLAGS, Input: Flags BPXYIPCP+
 RETVAL, Return value: 0, -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Operation permission is denied to the calling task.

The following reason code can accompany this return code: JRIpcDenied.

EAGAIN The message cannot be sent, and message_flag is set to IPC_NOWAIT.

The following reason codes can accompany this return code:
JRMsqQueueFullMessages, JRMsqQueueFullBytes.

msgsnd (BPX1QSN)

Chapter 2. Callable Service Descriptions 179

Return Code Explanation

EIDRM message_queue_ID was removed from the system while the invoker was
waiting.

The following reason code can accompany this return code: JRIpcRemoved.

EINTR The function was interrupted by a signal, and the message was not sent.

The following reason code can accompany this return code: JRIpcSignaled.

EINVAL One of the following conditions is true:

• message_queue_ID is not a valid message queue identifier.
• The MSG_TYPE field of the message is less than 1.
• message_size is less than zero or greater than the system-imposed limit.

The following reason codes can accompany this return code: JRIpcBadID,
JRMsqBadSize, JRMsqBadType.

EFAULT The message_address parameter specified an address that caused the service
to program check.

The following reason code can accompany this return code: JRBadAddress.

ENOMEM There are not enough system storage exits to send the message, and the
message was not sent.

The following reason code can accompany this return code: JRSmNoStorage.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “msgctl (BPX1QCT) — Perform Message Queue Control Operations” on page 169
• “msgget (BPX1QGT) — Create or Find a Message Queue” on page 172
• “msgrcv (BPX1QRC) — Receive a Message from a Message Queue” on page 175

msgsnd (BPX1QSN)

180 z/VM: 7.3 OpenExtensions Callable Services Reference

open (BPX1OPN) — Open a File

BPX1OPN
pathname_length
pathname
options
mode
return_value
return_code
reason_code

Purpose
Use the open (BPX1OPN) service to gain access to a file and create a file descriptor for it. You identify the
file by its path name.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file to be opened. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6.

options
(input,INT,4) is a variable for specifying the binary flags that describe how the file is to be opened. For
descriptions of the options, see “Usage Notes” on page 181.

This parameter is mapped by the BPXYOPNF macro. See “BPXYOPNF — Map Flag Values for the open
and fcntl Services” on page 447.

mode
(input,INT,4) is a variable for specifying the permissions the caller grants to itself, to its groups, and
to any user. This parameter is mapped by the BPXYMODE macro. See “BPXYMODE — Map Mode
Constants” on page 437.

If create or exclusive create is not specified on the options parameter, the mode parameter is ignored.

return_value
(output,INT,4) is a variable where the service stores the file descriptor if the file was opened
successfully, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
When a file is created with the Create or Exclusive_create options of the Options parameter, the file
permission bits as specified in the Mode parameter are modified by the process's file creation mask (see
“umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page 374) and then used to set the
file permission bits of the file being created.

open (BPX1OPN)

Chapter 2. Callable Service Descriptions 181

Exclusive Create Option: If the exclusive create bit is set and the create bit is not set, the exclusive
create bit is ignored.

Truncate Option: Turning on the truncate bit opens the file as though it had been created earlier, but
never written into. The mode and owner of the file do not change (although the change time and
modification time do); but the file's contents are discarded. The file offset, which indicates where the
next write is to occur, points to the first byte of the file.

Nonblock Option: A FIFO special file is a shared file from which the first data written is the first data
read. The Nonblock option is a way of coordinating write and read requests between processes sharing
a FIFO special file. It works this way, provided that no other conditions interfere with opening the file
successfully:

• If a file is opened read-only and Nonblock is specified, the open request succeeds. Control returns to
the caller immediately.

• If a file is opened write-only and Nonblock is specified, the open request completes successfully,
provided that another process has the file open for reading. If another process does not have the file
open for reading, the request ends with return_value set to -1.

• If a file is opened read-only and Nonblock is omitted, the request is blocked (control is not returned to
the caller) until another process opens the file for writing.

• If a file is opened write-only and Nonblock is omitted, the request is blocked (control is not returned to
the caller) until another process opens the file for reading.

Example

The following code opens file usr/inv/nov.d with user read-write, group read and other read. A file
descriptor (FILEDESC) is returned. This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure
see “BPXYOPNF — Map Flag Values for the open and fcntl Services” on page 447 and “BPXYMODE — Map
Mode Constants” on page 437.

 MVC BUFFERA(13),=CL13'usr/inv/nov.d'
 MVC BUFLENA,=F'13'
 XC S_MODE,S_MODE
 MVI S_MODE2,S_IRUSR User read/write, group read,
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IROTH other read
 XC O_FLAGS(OPNF#LENGTH),O_FLAGS
 MVI O_FLAGS4,O_CREAT+O_RDWR Create, open for read and write
 SPACE ,
 CALL BPX1OPN, Open a file +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 O_FLAGS, Input: Access BPXYOPNF +
 S_MODE, Input: Mode BPXYMODE +
 RETVAL, Return value:-1 or file descriptor+
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 ICM R15,B'1111',RETVAL Test RETVAL
 BL PSEUDO Branch if negative (-1 = failure)
 ST R15,FILEDESC Store the file descriptor

VM-Related Information
The Execution access requested bit is used by the exec service (see “exec (BPX1EXC) — Run a Program”
on page 72) to verify that the process has permission to run the specified file. When open succeeds, the
specified file is treated as read-only for this case.

Return Codes and Reason Codes
This service can return the following return codes:

open (BPX1OPN)

182 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EACCES Reasons for being denied access include these:

• The calling process does not have permission to search one of the
directories specified in the pathname parameter.

• The calling process does not have permission to open the file in the way
specified by options parameter.

• The file does not exist, and the calling process does not have permission to
write into files in the directory the file would have been created in.

• The truncate option was specified, but the process does not have write
permission for the file.

EAGAIN Resources were temporarily unavailable.

EBUSY Typical causes:

• An attempt was made to open a terminal which is already in use by another
process.

• The process has already opened one terminal.

Consult the reason code to determine the exact reason the error occurred.

EEXIST The exclusive create option was specified, but the file already exists.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRFileExistsExclFlagSet.

EINTR The open operation was interrupted by a signal.

EINVAL The options parameter does not specify a valid combination of the O_RDONLY,
O_WRONLY and O_TRUNC bits, or the file type specified in the mode
parameter is not valid.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRInvOpenFlags
and JROpenFlagConflict.

EISDIR The file specified by pathname is a directory and the options parameter
specifies write or read/write access.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRDirWriteRequest.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

EMFILE The process has reached the maximum number of file descriptors it can have
open.

ENAMETOOLONG The pathname parameter is longer than 1023 characters, or a component of
the path name is longer than 255 characters. (CMS does not support file name
truncation.)

ENFILE CMS has reached the maximum number of file descriptors it can have open.

open (BPX1OPN)

Chapter 2. Callable Service Descriptions 183

Return Code Explanation

ENODEV Typical causes:

• An attempt was made to open a character special file for a device not
supported by CMS.

• An attempt was made to open a character special file for a device which is
not yet initialized.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNoCTTY.

ENOENT Typical causes:

• The request did not specify that the file was to be created, but the file
named by pathname was not found.

• The request asked for the file to be created, but some component of
pathname was not found, or the pathname parameter was blank.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JREndingSlashOCreat, JRNoFileNoCreatFlag, and JRQuiescing.

ENOSPC The directory or file system intended to hold a new file has insufficient space.

ENOTDIR A component of pathname is not a directory.

ENXIO The open request specified write-only and nonblock for a FIFO special file,
but no process has the file open for reading. For terminals, it can mean that
the major number associated with the path name is not valid.

EROFS The pathname parameter names a file on a read-only file system, but options
that would allow the file to be altered were specified: write-only, read/write,
truncate, or—for a new file—create.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRReadOnlyFileSetWriteReq and JRReadOnlyFileSetCreatReq.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
• “close (BPX1CLO) — Close a File or Socket” on page 34
• “exec (BPX1EXC) — Run a Program” on page 72
• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “lseek (BPX1LSK) — Change the File Offset” on page 154
• “read (BPX1RED) — Read from a File or Socket” on page 228
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340
• “write (BPX1WRT) — Write to a File or Socket” on page 401
• “umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page 374.

open (BPX1OPN)

184 z/VM: 7.3 OpenExtensions Callable Services Reference

opendir (BPX1OPD) — Open a Directory

BPX1OPD
directory_name_length
directory_name
return_value
return_code
reason_code

Purpose
Use the opendir (BPX1OPD) service to open a directory so that it can be read with the readdir (BPX1RDD)
service.

Parameters
directory_name_length

(input,INT,4) is a variable for specifying the length of the directory_name parameter.
directory_name

(input,CHAR,directory_name_length) is a variable for specifying the name of the directory to be
opened. Each component (subdirectory) of the directory name can be up to 255 characters. The
complete directory name can be up to 1023 characters and does not require an ending null character.

return_value
(output,INT,4) is a variable where the service stores a directory file descriptor describing the specified
directory, if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason codes is returned only
if return_value is -1.

Usage Notes
1. The opendir (BPX1OPD) service opens a directory so that the first readdir (BPX1RDD) service call

starts reading at the first entry in the directory.
2. The return_value parameter contains a file descriptor for a directory only. It can be used only as input

to services that expect a directory file descriptor. These services are closedir (BPX1CLD), rewinddir
(BPX1RWD), and readdir (BPX1RDD).

Example

The following code opens directory /etc/passwd so that it can be read by readdir. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC BUFLENA,=F'11'
 MVC BUFFERA(11),=CL11'/etc/passwd'
 SPACE ,
 CALL BPX1OPD, Open a directory +
 (BUFLENA, Input: Directory name length +
 BUFFERA, Input: Directory name +
 RETVAL, Return value:-1 or directory f.d. +
 RETCODE, Return code +

opendir (BPX1OPD)

Chapter 2. Callable Service Descriptions 185

 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 ICM R15,B'1111',RETVAL Test RETVAL
 BL PSEUDO Branch if negative (-1 = failure)
 ST R15,DIRECTDES Store the directory descriptor

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process does not have permission to search some component of the
name specified as directory_name, or does not have permission to work with
the directory itself.

ELOOP A loop exists in symbolic links encountered during resolution of the
directory_name argument. This error is issued if more than 8 symbolic links
are detected in the resolution of the directory name.

EMFILE Too many other files are already open for the process.

ENAMETOOLONG The directory_name parameter is longer than 1023 bytes, or a component of
the directory name is longer than 255 bytes.

ENFILE Too many files are already open in CMS.

ENOENT The specified directory was not found.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JROpenDirNotFound and JRQuiescing.

ENOTDIR Some component of the directory name is not a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRTargetNotDir.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “closedir (BPX1CLD) — Close a Directory” on page 36
• “readdir (BPX1RDD) — Read an Entry from a Directory” on page 231
• “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on page 254.

opendir (BPX1OPD)

186 z/VM: 7.3 OpenExtensions Callable Services Reference

openvmf (BPX1VM5) — Perform OpenExtensions Platform
Functions

BPX1VM5
function_code
buffer_length
buffer
return_value
return_code
reason_code

Purpose
Use the openvmf (BPX1VM5) service to perform functions specific to the OpenExtensions platform.

Parameters
function_code

(input,INT,4) is a variable for specifying the function to be performed. This variable is mapped by the
BPXYVM5 macro. See “BPXYVM5 — Map Function Code Values for the openvmf Service” on page 482.
The possible function codes are:

Function Code Meaning

VM5_RELEASE_TOKEN Directs the Byte File System (BFS) to release any
BFS file tokens that may have been manipulated
by the caller.

VM5_FILEPOOL_ADMIN_RESPECT Directs BFS to respect file pool administration
authority when determining whether a file can be
accessed.

BFS file access is based on the user's UID
and GID values, but if the user is a file
pool administrator, the user is also given
the additional privileges given to a file pool
administrator.

VM5_FILEPOOL_ADMIN_IGNORE Directs BFS to ignore file pool administration
authority when determining whether a file can be
accessed.

BFS file access is based only on the user's UID
and GID values.

VM5_RESOLVE_INO Resolves an INO into a fully-qualified BFS path
name.

Note: This function is intended for IBM use only.

VM5_RESOLVE_PATH Resolves a partially- or fully-qualified BFS path
name, which may contain symbolic links or
mount external links, to its fully-qualified BFS
system root (FQR). The FQR takes the form, /../
VMBFS:filepoolid:filespaceid.

openvmf (BPX1VM5)

Chapter 2. Callable Service Descriptions 187

Function Code Meaning

VM5_SET_SGID Receives a pointer to an array of supplementary
group IDs (sGIDs) and resets the sGID list.

VM5_SET_ALL_IDS Receives a pointer to an array that contains
supplementary group IDs (sGIDs), an effective
GID (eGID), and an effective UID (eUID) and then
resets the eGID, resets the sGID list, and resets
the eUID, in that order.

VM5_GET_FILESYS_TYPE Obtains the file system type for a given path
name.

buffer_length
(input/output,INT,4) is a variable for specifying the length of the buffer parameter. For some functions,
the service may return a value. See the Usage Notes.

buffer
(input/output,CHAR,buffer_length) is a variable to provide information that is dependent upon the
function code specified. For some functions, the service may return a value. See the Usage Notes.

return_value
(output,INT,4) is a variable where the service returns 0 if the request completes successfully, or -1 if
the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The buffer is not used for function codes VM5_RELEASE_TOKEN, VM5_FILEPOOL_ADMIN_RESPECT,

and VM5_FILEPOOL_ADMIN_IGNORE. In these cases, the buffer length and buffer parameters are
ignored.

2. OpenExtensions services make use of CMS Multitasking services. An application that uses
OpenExtensions services cannot issue OpenExtensions calls from interrupt handlers and cannot use
non-CMS Multitasking wait services. However, if these conditions cannot be met, then some problems
can be avoided by calling openvmf (BPX1VM5) with function code VM5_RELEASE_TOKEN to release
BFS file tokens immediately before entering any kind of non-CMS Multitasking wait state.

3. For function code VM5_RESOLVE_INO, the buffer length and buffer parameters are used as follows:

• Input

– buffer_length must be greater than or equal to 1200 bytes. This is PATH_MAX (1023 bytes) plus
null plus the maximum system root length (FQR = 27 bytes) plus the BPXYSTAT length.

– buffer must contain the following values:

file pool ID (CHAR,8)
file space ID (CHAR,8)
INO (INT,4)

• Output

– buffer_length contains the length of the BFS path name.
– buffer contains the attributes of the BFS object followed by the fully-qualified BFS path name.

The caller can tell where the path name starts because the caller knows the length of the attribute
section (it is mapped by BPXYSTAT). The caller can tell whether attributes are being returned (they

openvmf (BPX1VM5)

188 z/VM: 7.3 OpenExtensions Callable Services Reference

were not returned prior to VM/ESA® 2.4.0) by the very last byte of the buffer. If the last byte is
X'FF', then attributes are being returned; otherwise, the last byte is 0.

In resolving the INO, this function does not traverse mount points or resolve symbolic links.
4. For function code VM5_RESOLVE_PATH, the buffer length and buffer parameters are used as follows:

• Input

– buffer_length must be greater than or equal to 1024 bytes (PATH_MAX + null).
– buffer must contain a null-terminated BFS path name.

• Output

– buffer_length contains the length of the fully-qualified BFS system root (FQR).
– buffer contains the FQR. The FQR may include an ending slash and is null-terminated.

5. For function code VM5_SET_SGID, the buffer length and buffer parameters are used as follows:

• Input

– buffer_length must be greater than or equal to the length of the buffer contents described below.
– buffer contains the sGID count (first 4 bytes) and a pointer to a list of sGIDs (second 4 bytes).

If the sGID count is zero, the sGID pointer is ignored and the sGID list for the active process is
cleared.

• Output

– None.
6. For function code VM5_SET_ALL_IDS, the buffer length and buffer parameters are used as follows:

• Input

– buffer_length must be greater than or equal to the length of the buffer contents described below.
– buffer must contain the following fields:

eUID (INT,4)
eGID (INT,4)
sGID count (INT,4)
pointer to an sGID list (INT,4)
failed-call word (INT,4)

If the sGID count is zero, the sGID pointer is ignored and the sGID list for the active process is
cleared. The failed-call word is an output field.

• Output

– If a failure occurs, buffer contains a value in the failed-call word that indicates which of the
subfunctions failed:

openvmf (BPX1VM5)

Chapter 2. Callable Service Descriptions 189

Word
Failure

1
Setting the sGID list

2
Setting the eGID

3
Setting the eUID

7. For function code VM5_GET_FILESYS_TYPE, the buffer length and buffer parameters are used as
follows:

• Input

– buffer_length is the length of the buffer, which is a minimum of 8, or the length of the null-
terminated BFS path name provided in buffer.

– buffer must contain a null-terminated BFS path name.
• Output

– buffer contains the file system type as defined by BPXYVM5. For example, if the path name
represents a file residing in an NFS-mounted file system, BPXFSNFS is returned.

Example

The following code forces BFS to release any file tokens that may be held by the application. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structure, see “BPXYVM5 — Map Function Code Values for the openvmf Service” on page 482.

 MVC BUFLENA,=F'0'
 LA R15,VM5_RELEASE_TOKEN
 ST R15,VMFUNC
 SPACE ,
 CALL BPX1VM5, Perform z/VM Platform function +
 (VMFUNC, Input: openvmf, BPXYVM5 +
 BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

The following code forces BFS to ignore file pool administration authority when determining whether a file
can be accessed.

 MVC BUFLENA,=F'0'
 LA R15,VM5_FILEPOOL_ADMIN_IGNORE
 ST R15,VMFUNC
 SPACE ,
 CALL BPX1VM5, Perform z/VM Platform function +
 (VMFUNC, Input: openvmf, BPXYVM5 +
 BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The function_code, buffer, or buffer_length parameter is incorrect.

ENOENT The BFS object does not exist.

openvmf (BPX1VM5)

190 z/VM: 7.3 OpenExtensions Callable Services Reference

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

openvmf (BPX1VM5)

Chapter 2. Callable Service Descriptions 191

openvmf7 (BPX1VM7) — Perform z/VM NFS Client Functions

BPX1VM7
function_code
foreign_host_length
foreign_host
buffer_length
buffer
return_value
return_code
reason_code

Purpose
Use the openvmf7 (BPX1VM7) service to perform functions specific to the Network File System (NFS)
Client for the z/VM platform.

Parameters
function_code

(input,INT,4) is a variable for specifying the function to be performed. This variable is mapped by
the BPXYVM7 macro. See “BPXYVM7 — Map the Function Code Values and Buffer for the openvmf7
Service” on page 484. The possible function codes are:

Function Code Meaning

VM7_GET_EXPORT_LIST Obtain the list of file systems exported by
foreign_host, and the list of clients allowed to
mount each one.

VM7_GET_DUMP_LIST Obtain the list of file systems mounted at
foreign_host.

VM7_PCNFS_AUTH Authenticate user ID at foreign_host, and retrieve
UID and GID information in effect there.

foreign_host_length
(input,INT,4) is a variable specifying the length of the foreign_host parameter.

foreign_host
(input,CHAR,foreign_host_length) is a variable specifying the name of the remote host.

buffer_length
(input,INT,4) is a variable for specifying the length of the buffer parameter. See the Usage Notes.

buffer
(input/output,CHAR,buffer_length) is a variable for providing information that is dependent upon the
function code specified. For some functions, the service may return a value. See the Usage Notes. The
buffer is mapped by the BPXYVM7 macro. See “BPXYVM7 — Map the Function Code Values and Buffer
for the openvmf7 Service” on page 484.

return_value
(output,INT,4) is a variable where the service returns 0 if the request completes successfully, or -1 if
the request is not successful.

openvmf7 (BPX1VM7)

192 z/VM: 7.3 OpenExtensions Callable Services Reference

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The buffer is used for all function codes.
2. For function code VM7_GET_EXPORT_LIST, the buffer length and buffer parameters are used as

follows:

• Input

– buffer_length must be 4 bytes or greater.
• Output

– buffer contains the number of entries (VM7E_ENTRY_COUNT) in the first word and as much of
the remaining information as will fit. See the mapping for VM7E_EXPORT_LIST in the BPXYVM7
macro.

3. For function code VM7_GET_DUMP_LIST, the buffer length and buffer parameters are used as follows:

• Input

– buffer_length must be 4 bytes or greater.
• Output

– buffer contains the number of entries (VM7D_ENTRY_COUNT) in the first word and as much of the
remaining information as will fit. See the mapping for VM7D_DUMP_LIST in the BPXYVM7 macro.

4. For function code VM7_PCNFS_AUTH, the buffer length and buffer parameters are used as follows:

• Input

– buffer_length contains the size of the input buffer. A minimum size of VM7P_OUTPUT_LENGTH
bytes is required.

– buffer must contain the user name and password information. See the mapping for
VM7P_PCNFS_INPUT in the BPXYVM7 macro.

• Output

– buffer contains the UID and GID information. See the mapping for VM7P_PCNFS_OUTPUT in the
BPXYVM7 macro.

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The function_code parameter is incorrect.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code when the
STANDARD TCPXLBIN file is not available: JRNFSCMntTCPXLBIN

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

openvmf7 (BPX1VM7)

Chapter 2. Callable Service Descriptions 193

pathconf (BPX1PCF) — Determine Configurable Path Name
Variables Using Path Name

BPX1PCF
pathname_length
pathname
name
return_value
return_code
reason_code

Purpose
Use the pathconf (BPX1PCF) service to determine the current value of a configurable limit or option
(variable) associated with a file or directory identified by its path name.

For the corresponding service using a file descriptor, see “fpathconf (BPX1FPC) — Determine Configurable
Path Name Variables Using a Descriptor” on page 99.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6.

name
(input,INT,4) is a variable for specifying the path name variable to be returned. Use the BPXYPCF
macro. See “BPXYPCF — Map Command Values for the pathconf and fpathconf Services” on page 448.
The path name variables you can specify are:

Path Name Variable Description

PC_CHOWN_RESTRICTED The change ownership service, chown (BPX1CHO), is restricted to
a process with appropriate privileges, and to changing the group
ID (GID) of a file only to the effective group ID of the process or to
one of its supplementary group IDs.

PC_LINK_MAX Maximum value of a file's link count.

PC_MAX_CANON Maximum number of bytes in a terminal canonical input line.

PC_MAX_INPUT Minimum number of bytes for which space will be available in a
terminal input queue; therefore, the maximum number of bytes
a portable application may require to be typed as input before
reading them.

PC_NAME_MAX Maximum number of bytes in a file name (not a string length;
count excludes a terminating null).

PC_NO_TRUNC Path name components longer than 255 bytes generate an error.

PC_PATH_MAX Maximum number of bytes in a path name (not a string length;
count excludes a terminating null).

pathconf (BPX1PCF)

194 z/VM: 7.3 OpenExtensions Callable Services Reference

Path Name Variable Description

PC_PIPE_BUF Maximum number of bytes that can be written atomically when
writing to a pipe.

PC_VDISABLE Terminal special characters maintained by the system can be
disabled using this character value. For information on querying
and setting these special characters, see “tcgetattr (BPX1TGA)
— Get the Attributes for a Terminal” on page 358 or “tcsetattr
(BPX1TSA) — Set the Attributes for a Terminal” on page 365.

return_value
(output,INT,4) is a variable where the service returns the current value of the path name variable
specified in the name parameter, or -1 if the request is not successful.

If the path name variable is PC_CHOWN_RESTRICTED and this option is active, the return value is set
to 1. If this option is not active, the return value is set to 0.

If the path name variable is PC_NO_TRUNC and this option is active, the return value is set to 1. If this
option is not active, the return value is set to 0.

If the path name variable does not have a limit for the specified file, the return value is set to -1 and
the return code and reason code remain unchanged.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

If the path name variable does not have a limit for the specified file, the return value is set to -1 and
the return code is unchanged.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

If the path name variable does not have a limit for the specified file, the return value is set to -1 and
the reason code is unchanged.

Usage Notes
1. If name is PC_MAX_CANON, PC_MAX_INPUT, or PC_VDISABLE, and pathname does not refer to a

terminal file, the service returns return value -1 and return code EINVAL.
2. If name is PC_NAME_MAX, PC_PATH_MAX, or PC_NO_TRUNC, and pathname does not refer to a

directory, the service still returns the requested information using the parent directory of the specified
file.

3. If name is PC_PIPE_BUF:

• If pathname refers to a pipe or a FIFO, the return value applies to the referred-to object.
• If pathname refers to a directory, the return value applies to any FIFOs that exist or can be created

within the directory.
• If pathname refers to any other type of file, the service returns return value -1 and return code

EINVAL.
4. If name is PC_LINK_MAX and pathname refers to a directory, the return value applies to the directory.

Example

The following code extracts the current value for the configurable maximum number of bytes in a file
name associated with /usr/inv/network.t. This example follows the rules of reentrancy. For linkage

pathconf (BPX1PCF)

Chapter 2. Callable Service Descriptions 195

information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structure, see “BPXYPCF — Map Command Values for the pathconf and fpathconf Services” on page 448.

 MVC BUFFERA(18),=CL18'/usr/inv/network.t'
 MVC BUFLENA,=F'18'
 SPACE ,
 CALL BPX1PCF, Get configurable pathname variable+
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 =A(PC_NAME_MAX), Input: Options BPXYPCF +
 RETVAL, Return value: 0, -1 or variable +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return one of the following return codes:

Return Code Explanation

EACCES Search permission is denied for a component of the path name.

EINVAL Refer to the Usage Notes for situations where this return code is returned.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRNotSupportedForFileType.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The pathname argument is longer than 1023 characters, or some component
of the path name is longer than 255 characters. CMS does not support name
truncation.

ENOENT The named file does not exist, or the pathname argument points to an empty
string.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of the path name is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “fpathconf (BPX1FPC) — Determine Configurable Path Name Variables Using a Descriptor” on page 99.

pathconf (BPX1PCF)

196 z/VM: 7.3 OpenExtensions Callable Services Reference

pause (BPX1PAS) — Suspend a Process Pending a Signal

BPX1PAS
return_value
return_code
reason_code

Purpose
Use the pause (BPX1PAS) service to suspend execution of the calling thread until delivery of a signal
whose action is either to execute a signal-catching function or to end the thread.

Parameters
return_value

(output,INT,4) is a variable where the service returns -1 if completion of a signal-handling function
causes control to be returned. The service does not otherwise return to the caller.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. A thread that calls pause (BPX1PAS) does not resume processing until a signal is delivered with an

action to either process a signal-handling function or to end the thread. Some signals can be blocked
by the thread's signal mask. See “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal
Mask” on page 321 for details.

2. If an incoming unblocked signal ends the thread, pause (BPX1PAS) never returns to the caller.
3. If the signal action is to process a signal-catching function, the signal interface routine (SIR), defined

by the cmssigsetup call, is given control when the pause (BPX1PAS) service returns.
4. A return code is set when any failures are encountered that prevent this function from completing

successfully.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code suspends execution of the invoker's thread until a signal is delivered. This example
follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551.

 CALL BPX1PAS, Suspend execution +
 (RETVAL, Return value: -1 or not return +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

pause (BPX1PAS)

Chapter 2. Callable Service Descriptions 197

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR A CMS environmental or internal error has occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRWrongSsave.

EINTR A signal was received and handled successfully.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “alarm (BPX1ALR) — Set an Alarm” on page 18
• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered”

on page 324
• “wait (BPX1WAT) — Wait for a Child Process to End” on page 385.

pause (BPX1PAS)

198 z/VM: 7.3 OpenExtensions Callable Services Reference

pipe (BPX1PIP) — Create an Unnamed Pipe

BPX1PIP
read_file_descriptor
write_file_descriptor
return_value
return_code
reason_code

Purpose
Use the pipe (BPX1PIP) service to create a pipe. A pipe is an I/O channel that a process can use to
communicate with another process, another thread (in this same process or another process), or in some
cases with itself. Data can be written into one end of the pipe and read from the other.

Parameters
read_file_descriptor

(output,INT,4) is a variable where the service stores the file descriptor for the read end of the pipe if
the pipe is created successfully.

write_file_descriptor
(output,INT,4) is a variable where the service stores the file descriptor for the write end of the pipe if
the pipe is created successfully.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Processes can read from the read_file_descriptor and write to the write_file_descriptor. Data written

will be read first-in, first-out (FIFO).
2. When the pipe (BPX1PIP) call creates a pipe, the O_NONBLOCK and FD_CLOEXEC flags are turned

off on both ends of the pipe. You can turn these flags on with the fcntl (BPX1FCT) call. See “fcntl
(BPX1FCT) — Control Open File Descriptors” on page 88.

Example

The following code creates a pipe. This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PIP, Create a pipe +
 (READFD, Output: Read file descriptor +
 WRITEFD, Output: Write file descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

pipe (BPX1PIP)

Chapter 2. Callable Service Descriptions 199

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EMFILE Opening the pipe would exceed the limit on the number of file descriptors that
the process may have open.

ENFILE Opening the pipe would exceed the number of files that the system can have
open simultaneously.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “open (BPX1OPN) — Open a File” on page 181
• “read (BPX1RED) — Read from a File or Socket” on page 228
• “write (BPX1WRT) — Write to a File or Socket” on page 401.

pipe (BPX1PIP)

200 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_cancel (BPX1PTB) — Cancel a Thread

BPX1PTB
thread_ID
return_value
return_code
reason_code

Purpose
Use the pthread_cancel (BPX1PTB) service to generate a cancellation request for the target thread.

Parameters
thread_ID

(input,CHAR,8) is a variable for specifying the ID of the thread to be canceled.
return_value

(output,INT,4) is a variable where the service returns 0 if the thread is canceled or the cancel is
pending, or -1 if a failure occurs.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. A successful call to pthread_cancel (BPX1PTB) generates a cancellation request for the target thread.
2. Delivery of the cancellation request caused either a nonretryable 422 abend (with reason code 01A0)

or causes the signal interface routine (established with BPX1MSS) to receive control.

Example

The following code cancels the target thread. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PTB, pthread_cancel +
 (THID, Input: Thread ID +
 RETVAL, Return Value: 0, -1, or Buf length+
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR The service was unsuccessful due to a CMS environmental or internal error.

pthread_cancel (BPX1PTB)

Chapter 2. Callable Service Descriptions 201

Return Code Explanation

EINVAL The thread_ID parameter is not valid. It does not contain a value that is
consistent with thread IDs managed by the system.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRLightWeightThID.

ESRCH The system has detected that the value specified by thread_ID does not refer
to a thread that currently exists.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRThreadNotFound and JRAlreadyTerminated.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_create (BPX1PTC) — Create a Thread” on page 203
• “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 209
• “pthread_join (BPX1PTJ) — Wait on a Thread” on page 212
• “pthread_kill (BPX1PTK) — Send a Signal to a Thread” on page 214
• “pthread_self (BPX1PTS) — Query Thread ID” on page 216.

pthread_cancel (BPX1PTB)

202 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_create (BPX1PTC) — Create a Thread

BPX1PTC
init_rtn_addr
work_area_addr
attribute_area_addr
thread_ID
return_value
return_code
reason_code

Purpose
Use the pthread_create (BPX1PTC) service to create a new thread in the calling process. Each new thread
that is created represents a single flow of control within the process with its own unique attributes.

Parameters
init_rtn_addr

(input,INT,4) is a variable for specifying the address of the initialization routine for the thread to be
created. This routine is given control first when a new thread task is created to run the thread.

work_area_addr
(input,INT,4) is a variable for specifying the address of a user-supplied work area that is later passed
to the initialization routine. This address is in the parameter list returned by the pthread_exit_and_get
(BPX1PTX) service on a PTGETNEWTHREAD request. This parameter list is mapped by the BPXYPTXL
macro. See “BPXYPTXL — Map the Parameter List for the pthread_exit_and_get Service” on page 454.

attribute_area_addr
(input,INT,4) is a variable for specifying the address of the pthread attribute area used to define
the attributes of the thread to be created. If a zero address is specified, the attributes are set to
their default value. For the mapping of the pthread attribute area and the definition and defaults
of the supported attributes, see “BPXYPTAT — Map Attributes for the pthread_create Service”
on page 453. The address of the pthread attribute area is in the parameter list returned by
the pthread_exit_and_get (BPX1PTX) service on a PTGETNEWTHREAD request. This parameter
list is mapped by the BPXYPTXL macro. See “BPXYPTXL — Map the Parameter List for the
pthread_exit_and_get Service” on page 454.

thread_ID
(output,CHAR,8) is a variable where the service returns the thread ID for the thread that is created.
This field is valid only if the service returns successfully with a return value of 0.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
the return value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
the return value is -1.

pthread_create (BPX1PTC)

Chapter 2. Callable Service Descriptions 203

Usage Notes
Thread Initialization Routine:

1. The purpose of the thread initialization routine is to have a user-specified routine initialize the
user environment for each new task that is created to process thread requests, and to control the
processing of each thread that is to be run on that task.

2. The thread initialization routine is first given control when a new CMS task is created to process a
thread request. At this point, the initialization routine should set up the user environment for the new
task. After performing its initialization, the initialization routine can retrieve the first thread to process
by invoking the pthread_exit_and_get (BPX1PTX) service.

3. This routine performs its own initialization and cleanup processing for each thread that is to be
processed.

4. When this routine gains control, signals and cancellation requests are blocked.
5. Upon entry to the initialization routine, the register contents are as follows:

R1
Contains the address of a Type 1 parameter list. The parameter list consists of the following
parameters:

a. The address of an initial work area for use by the initialization routine during its setup
processing.

b. The address of a fullword field that contains the length of the initial work area.

R2–R12
Unspecified.

R13
Contains the address of a 144-byte save area for use by the initialization routine to allow it to
perform standard save area linkage.

R14
Contains the return address for the initialization routine to return control to the system. This
address must be preserved by the initialization routine. The high-order bit (bit 0) of this address is
always ON. This bit indicates the addressing mode, which must always be AMODE(31).

R15
Contains the address of the initialization routine.

6. After the first thread request is received, the most efficient mechanism for the initialization routine
to process subsequent thread requests is for it to call the pthread_exit_and_get (BPX1PTX) service
within a loop, which causes an exit of the previous thread and the obtaining of a new thread to process.

7. To provide the most efficient interface with the high-level-language environment, the following
characteristics apply to the thread initialization routine:

a. Only one thread initialization routine is allowed per process image. When a process image is
cleaned up after an invocation of the exec (BPX1EXC) service, this address can be changed. If the
specified address is different within a given process image, the pthread_create (BPX1PTC) request
fails with a return value of -1, a return code of EINVAL, and a reason code of JRInitRtn.

b. The work area and pthread attribute area are passed through from pthread_create (BPX1PTC)
to the caller of pthread_exit_and_get (BPX1PTX) without each being copied. Thus the caller of
pthread_create (BPX1PTC) must ensure that the storage provided for these items is not released or
modified prior to the use of these items by the caller of pthread_exit_and_get (BPX1PTX).

Thread IDs:

1. Threads created by pthread_create (BPX1PTC) are represented by 8-character thread IDs. A thread ID
is unique only for a given process; in other words, it is possible for multiple processes to have threads
represented by the same thread ID.

2. Threads to be managed by a user application should represent their threads with 8-character values,
as well. To distinguish between thread IDs managed by the system and those managed by a user

pthread_create (BPX1PTC)

204 z/VM: 7.3 OpenExtensions Callable Services Reference

application, the high-order bit of the thread ID indicates the origination of the thread ID. A thread ID
managed by a user application must have its high-order bit turned on. A thread ID managed by the
system has the high-order bit turned off.

3. Because thread IDs managed by the system can represent only mediumweight or heavyweight
threads, those managed by a user application are considered to be lightweight threads. Any
OpenExtensions service that expects a thread ID as input fails if the thread ID represents a user-
application-managed, or lightweight, thread.

Other Usage Notes:

1. The pthread attribute area is passed as input to the pthread_create (BPX1PTC) service to describe
the attributes of the thread to be created. The area is split into two sections. The first section is the
system attribute area used by the system to build the new thread. The second section is the user area,
intended for use by the thread initialization routine that receives the address of the entire pthread
attribute area from pthread_exit_and_get (BPX1PTX).

2. The system offset and user offset fields indicate where the start of each area begins. The system offset
field (PTATSYSOFFSET) must be set to (PTATSYSOFFVAL), or pthread_create (BPX1PTC) fails with a -1
return value, a return code of EINVAL, and a reason code indicating the exact error. The user offset
field PTATUSEROFFSET must be set to 0 if no user attributes are specified.

3. The system length and user length fields indicate the length of each area. The system length field
(PTATSYSLENGTH) must be set to PTATSYSLENVAL. If not, pthread_create (BPX1PTC) fails with a
-1 return value, a return code of EINVAL, and a reason code indicating the exact error. The user
length field PTATUSERLENGTH can be set to any length. However, if the sum of PTATUSERLENGTH +
PTATSYSLENGTH does not equal PTATLENGTH, pthread_create (BPX1PTC) fails with a -1 return value,
a return code of EINVAL, and a reason code indicating the exact error.

4. The following describes the characteristics of each thread attribute and its impact to the
pthread_create (BPX1PTC) service:

• Detach state specifies the detach state of the thread to be created. A thread created in a DETACHED
state cannot be joined (with the pthread_join callable service) by other threads and has its system-
obtained storage freed when it exits. A thread created in an UNDETACHED state can be joined by
other threads and does not have its system-obtained storage freed until it has been detached with
pthread_detach. If the pthread attribute area is not specified on a pthread_create invocation, the
default value is UNDETACHED.

• Weight specifies the weight of the thread to be created. Both MEDIUMWEIGHT and HEAVYWEIGHT
attributes result in the creation of a new CMS thread, so currently these attributes are identical.

• Sync type specifies the synchronous processing type of the thread to be created. The only supported
sync type is SYNCHRONOUS. A SYNCHRONOUS thread is one that is created only if the resources
are immediately available to create it. An EAGAIN return code is received from a pthread_create
invocation for a SYNCHRONOUS thread, if the resources are not available. If the pthread attribute
area is not specified on a pthread_create invocation, the default value is SYNCHRONOUS.

Example

The following code creates a new thread. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structure, see “BPXYPTAT — Map Attributes for the pthread_create Service” on page 453.

 LA R15,BUFFERA Work area
 ST R15,BUFA ->above
 LA R15,PTAT Area mapped by BPXYPTAT
 ST R15,PTATA ->above
 MVC PTATEYE,=C'BPXYPTAT' Set the eye-catcher
 MVC PTATLENGTH,=A(PTATUSEROFFVAL) Length of structure
 MVC PTATSYSOFFSET,=A(PTATSYSOFFVAL) Sys attr offset
 MVC PTATSYSLENGTH,=A(PTATSYSLENVAL) Sys attr length
 MVC PTATUSEROFFSET,=A(0) User attr offset
 MVC PTATUSERLENGTH,=A(0) User attr length
 LOAD EP=INITRTN Get address of Init Rtn
 ST R0,INITRTNA
 SPACE ,

pthread_create (BPX1PTC)

Chapter 2. Callable Service Descriptions 205

 CALL BPX1PTC, +
 (INITRTNA, Input: Init routine address +
 BUFA, Input: Work area address +
 PTATA, Input: Attr area Address BPXYPTAT +
 THID, Thread ID, if Return value = 0 +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN The system lacked the necessary resources to create the new
thread.

ECMSERR The service was unsuccessful due to a CMS environmental or
internal error.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return
code: JRNotAuthorized.

EFAULT One of the parameters specified contained an address of a storage
area that is not accessible to the caller.

EINVAL One of the parameters contains a value that is not correct.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return
code:

JRPtatEye
JRPtatSysLen
JRPtatSysOff
JRPtatLen
JRPtatDetachState
JRPtatSyncType.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 201
• “pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread” on page 209
• “pthread_join (BPX1PTJ) — Wait on a Thread” on page 212
• “pthread_kill (BPX1PTK) — Send a Signal to a Thread” on page 214
• “pthread_self (BPX1PTS) — Query Thread ID” on page 216.

pthread_create (BPX1PTC)

206 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_detach (BPX1PTD) — Detach a Thread

BPX1PTD
thread_ID
return_value
return_code
reason_code

Purpose
Use the pthread_detach (BPX1PTD) service to detach a thread in the calling process. When a thread is
detached, its system storage can be reclaimed when the thread exits.

Parameters
thread_ID

(input,CHAR,8) is a variable for specifying the thread ID for the thread to be detached.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code detaches a thread. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PTD, pthread_detach +
 (THID, Input: Thread ID +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR The service was unsuccessful due to a CMS environmental or
internal error.

EINVAL The value specified by thread ID is not valid, it does not contain a
value that is consistent with thread IDs managed by the system.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return
code: JRLightWeightThid.

pthread_detach (BPX1PTD)

Chapter 2. Callable Service Descriptions 207

Return Code Explanation

ESRCH The system has detected that the value specified by thread_ID
refers to a thread that is already detached or cannot be found.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return
code: JRThreadNotFound and JRAlreadyDetached.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_create (BPX1PTC) — Create a Thread” on page 203
• “pthread_join (BPX1PTJ) — Wait on a Thread” on page 212.

pthread_detach (BPX1PTD)

208 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread

BPX1PTX
status_field
options_field
signal_setup_userdata
return_value
return_code
reason_code

Purpose
Use the pthread_exit_and_get (BPX1PTX) service to exit a thread, get a new thread request to process, or
both. To start a new thread request, use the pthread_create (BPX1PTC) service.

Parameters
status_field

(input,INT,4) is a variable for specifying the status of the exiting thread. This status is available to any
other thread that uses the pthread_join (BPX1PTJ) service to wait for the termination of this thread.

options_field
(input,INT,4) is a variable for specifying one of the following option values:
PTEXITTHREAD

Exit the calling thread. This causes the cleanup of system related resources for the calling thread.
PTGETNEWTHREAD

Exit the last obtained thread and get the next available thread to process. The first invocation of
pthread_exit_and_get (BPX1PTX) from the thread initialization routine must specify this option.

PTFAILIFLASTTHREAD
Exit the calling thread only if it is not the last thread in the process.

The default option value is PTEXITTHREAD. The option values are defined in the BPXYCONS macro.
See “BPXYCONS — Map Constants” on page 417. These options can be combined by specifying them
with a plus between them.

signal_setup_userdata
(input,CHAR,4) is a variable for specifying 4 bytes of user data normally supplied on the signal
setup service, cmssigsetup (BPX1MSS). This field is used only when the PTGETNEWTHREAD option
is specified. If this field contains a zero address, the signal setup user data is not changed for this
thread. This field is ignored when the PTEXITTHREAD option is specified.

return_value
(output,INT,4) is a variable where the service stores the return value, which varies depending on the
options specified, as follows:

• PTEXITTHREAD option specified:
-1

The caller asked to exit the calling thread, but the thread could not be exited. For an explanation
of the error, see the return code and reason code.

0
The thread was successfully exited.

• PTGETNEWTHREAD option specified:

pthread_exit_and_get (BPX1PTX)

Chapter 2. Callable Service Descriptions 209

-1
The caller asked for a new thread to process, but the thread request could not be satisfied. No
new thread requests can be handled by the calling task. For an explanation of the error, see the
return code and reason code.

>0
The address of the parameter list for the new thread request to be processed. The parameter list
consists of the following:

– The user work area address specified on the pthread_create (BPX1PTC) call.
– The user attribute area address specified on the pthread_create (BPX1PTC) call.
– The address of an 8-byte field that contains the thread ID of the thread request.
– The address of a 4-byte thread run status field.

This parameter list is mapped by the BPXYPTXL macro. See “BPXYPTXL — Map the Parameter
List for the pthread_exit_and_get Service” on page 454. The storage for the list is supplied
by the system and should not be modified or freed by the caller of pthread_exit_and_get
(BPX1PTX).

• PTFAILIFLASTTHREAD option specified:
-1

The caller asked to edit the calling thread only if it was not the last thread, but the thread could
not be exited. See the return code and reason code for an explication of the error.

0
The thread was successfully exited.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The first call to pthread_exit_and_get (BPX1PTX) from the thread initialization routine must specify the

PTGETNEWTHREAD option. On this first call, a thread request is retrieved without causing a thread exit
to occur. All subsequent calls to the service result in a thread exit and then obtaining the next available
thread request. If the PTGETNEWTHREAD option is not specified on the first call, the service fails with
a -1 return value, an EINVAL return code, and a JRGetFirst reason code.

2. Using the PTGETNEWTHREAD option can cause failure if the process is being quiesced. If this
happens, the pthread_exit_and_get (BPX1PTX) service fails with a -1 return value, an EINVAL return
code, and a JRQuiesceInProgress reason code.. At this point, the caller should perform its own
cleanup and return to the operating system to allow the task to terminate.

3. If the PTFAILIFLASTTHREAD option is specified, and pthread_exit_and_get (BPX1PTX) is issued from
the last thread, the thread is not exited. The service fails with a -1 return value, an EINVAL return
code, and a JrLastThread reason code. Any thread that has never issued a pthread_create or was
not created with pthread_create is considered the last thread when using the PTFAILIFLASTTHREAD
option.

4. When pthread_exit_and_get (BPX1PTX) is used to get a new thread request, the signal environment
is inherited from the creator of the thread. The signal state for the newly created thread is roughly
analogous to that of a newly created process after the spawn service has been performed. The one
exception is that the new thread inherits the setup state from the creator.

5. A successful call to pthread_exit_and_get (BPX1PTX) awakens a thread that has used the
pthread_join (BPX1PTJ) service to wait for the exiting thread. The thread exit status specified on
the pthread_exit_and_get (BPX1PTX) call is made available to the waiting thread.

pthread_exit_and_get (BPX1PTX)

210 z/VM: 7.3 OpenExtensions Callable Services Reference

6. If pthread_exit_and_get (BPX1PTX) fails for any reason (with a return value of -1), the caller should
perform cleanup and return to the operating system to allow the task to end.

7. When this service is called from the initial pthread, it waits for all threads created with pthread_create
to end.

8. For information about the pthread attribute area, see “pthread_create (BPX1PTC) — Create a Thread”
on page 203.

Example

The following code exits a thread. This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PTX, pthread_exit_and_get +
 (STATFLD, Input: Status field +
 OPTIONS, Input: Options field +
 SIGNALREG, Input: Signal setup usrdata+
 RETVAL, Return value: 0 or -1 ->BPXYPTXL +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR The service was unsuccessful due to a CMS environmental or internal error.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRAlreadyExited.

EINVAL One of the parameters contains a value that is not valid.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRInvOption,
JRGetFirst, and JRHeavyWeight.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_create (BPX1PTC) — Create a Thread” on page 203
• “pthread_join (BPX1PTJ) — Wait on a Thread” on page 212.

pthread_exit_and_get (BPX1PTX)

Chapter 2. Callable Service Descriptions 211

pthread_join (BPX1PTJ) — Wait on a Thread

BPX1PTJ
thread_ID
status_field_address
return_value
return_code
reason_code

Purpose
Use the pthread_join (BPX1PTJ) service to obtain the termination status for a specific thread. This service
waits only if the thread has not ended, is not in a detached state, and is not currently joined by another
thread.

Parameters
thread_ID

(input,CHAR,8) is a variable for specifying the thread ID for the thread to be waited upon.
status_field_addr

(input,INT,4) is a variable for specifying the address of a status field where the service returns the exit
status of the thread specified by the thread_ID parameter. If this field is zero, the thread exit status is
not returned. This field is mapped by the BPXYWAST macro. See “BPXYWAST — Map the Wait Status
Word” on page 486.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The pthread_join (BPX1PTJ) service can be called repeatedly for a thread until it is detached. However, a
thread can be the target of only one pthread_join call at a time.

Example

The following code waits on a thread. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PTJ, pthread_join +
 (THID, Input: Thread ID +
 =A(0), Input: ->Status Field or 0 +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

pthread_join (BPX1PTJ)

212 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR The service was unsuccessful due to a CMS environmental or internal error.

EDEADLK A deadlock was detected, or the value specified by thread_ID refers to the
calling thread.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRJoinLoop and
JRJoinToSelf.

EFAULT One of the parameters specified contained an address of a storage area that is
not accessible to the caller.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRJoinExitStatPtr.

EINTR The calling process received a signal prior to the completion of an
event that would cause the pthread_join (BPX1PTJ) service to return. The
service was interrupted by a signal. In this case, the value contained in
status_field_address is undefined.

EINVAL The value specified by thread ID is not valid; it does not contain a value that is
consistent with thread IDs managed by the system.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRLightWeightThread.

ESRCH The value specified by thread_ID does not refer to a thread that is
undetached.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRThreadNotFound, JRAlreadyJoined, and JRAlreadyDetached.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_create (BPX1PTC) — Create a Thread” on page 203
• “pthread_detach (BPX1PTD) — Detach a Thread” on page 207.

pthread_join (BPX1PTJ)

Chapter 2. Callable Service Descriptions 213

pthread_kill (BPX1PTK) — Send a Signal to a Thread

BPX1PTK
thread_ID
signal
signal_options
return_value
return_code
reason_code

Purpose
Use the pthread_kill (BPX1PTK) service to target a signal to a particular thread. This service is limited to
interthread communication within a process.

Parameters
thread_ID

(input,CHAR,8) is a variable for specifying the thread ID for the thread to receive the signal.
signal

(input,INT,4) is a variable for specifying the signal number to be sent to the thread indicated by the
thread_ID parameter. This must be one of the signals defined in the BPXYSIGH macro, or 0.

If the signal is 0, error checking takes place but no signal is sent. You can call the pthread_kill
(BPX1PTK) service with a signal value of 0 to verify the thread_ID parameter is correct before you
actually send the signal.

signal_options
(input,BINARY,4) is a variable for specifying the binary flags that describe how the signal is to be
handled by both the OpenExtensions kernel and the user-supplied signal interface routine (SIR).
The signaling options are passed to the SIR in the signal information control block mapped by the
BPXYPPSD macro. See “BPXYPPSD — Map the Signal Delivery Data Structure” on page 451. The
signal_options parameter is mapped as follows:
First 2 bytes

User-defined bytes delivered with the signal to the SIR in the signal information control block.
These bytes are mapped by the BPXYPPSD macro.

Last 2 bytes
Reserved

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

pthread_kill (BPX1PTK)

214 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code signals a thread. This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

* MVC SIGNAL,=A(SIGALRM#) Input: SIGALRM BPXYSIGH
* MVC SIGNALOPTIONS,=XL4'00000000' Input: Signal options
* CALL BPX1PTK, pthread_kill +
 (THID, Input: Thread ID +
 SIGNAL, Input: Signal or 0 BPXYSIGH +
 SIGNALOPTIONS, Input: Signal options +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

VM-Related Information
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR The service was unsuccessful due to a CMS environmental or internal error.
Consult the reason code to determine the exact reason the error occurred.

EINVAL One of the following conditions causes this return code:

• The value of signal is not valid or is not the number of a supported signal.
• The thread corresponding to thread_ID was not found, is not valid, or has

ended.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRInvalidSignal,
JRLightWeightThid, JRThreadNotFound, and JRThreadTerm.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315.

pthread_kill (BPX1PTK)

Chapter 2. Callable Service Descriptions 215

pthread_self (BPX1PTS) — Query Thread ID

BPX1PTS
thread_ID

Purpose
Use the pthread_self (BPX1PTS) service to get the thread ID of the calling thread.

Parameters
thread_ID

(output,CHAR,8) is a variable where the service returns the thread ID of the calling thread.

Usage Notes
1. The caller should invoke this service only once when needing the thread ID of the active thread. It

should save a copy of the thread ID in its own storage for repetitive usage.
2. If this service fails, the calling thread abends.

Example

The following code gets the thread ID of the calling thread. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PTS, pthread_self +
 (THID), Output: Thread ID +
 VL,MF=(E,PLIST) ----------------------------------

Related Service
Another callable service related to this service is:

• “pthread_create (BPX1PTC) — Create a Thread” on page 203.

pthread_self (BPX1PTS)

216 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_setintr (BPX1PSI) — Examine and Change Interrupt State

BPX1PSI
interrupt_state
return_value
return_code
reason_code

Purpose
Use the pthread_setintr (BPX1PSI) service to set the interruptibility state of the calling thread and
atomically return the previous interruptibility state.

Parameters
interrupt_state

(input,INT,4) is a variable for specifying the interrupt state to be set. The following constants defined
in the BPXYCONS macro define the valid states. See “BPXYCONS — Map Constants” on page 417.
Constant

Description
PTHREAD_INTR_ENABLE#

Enables interruptibility, so new or pending cancellation requests against the target thread are
acted upon according to the interruptibility type set by the pthread_setintrtype (BPX1PST) service.

PTHREAD_INTR_DISABLE#
Disables interruptibility, so cancellation requests against the target thread are held pending.

return_value
(output,INT,4) is a variable where the service returns the previous interrupt state, or -1 if the service
did not complete successfully.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Setting the interruptibility state allows a user to control when cancellation requests sent by the

BPX1PTB service are handled.
2. BPX1PSI and BPX1PST establish three interruptibility states:

Disabled
Cancellation requests are left pending.

Controlled
Cancellation requests are left pending until the next cancellation point is reached. Cancellation
points are defined as:

• When the pthread_testintr (BPX1PTI) service is invoked.
• When a thread is placed in an unbounded wait during a call of an OpenExtensions service. Some

examples of these types of calls are

pthread_setintr (BPX1PSI)

Chapter 2. Callable Service Descriptions 217

– “cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event” on
page 52

– “pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 197
– “sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time” on page 328
– “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is

Delivered” on page 324
– “sigwait (BPX1SWT) — Wait for a Signal” on page 326.

Asynchronous
Cancellation requests can be delivered any time.

3. The default interrupt state for newly created threads and the initial thread is
PTHREAD_INTR_ENABLE#.

4. The default interrupt type for newly created threads and the initial thread is
PTHREAD_INTR_CONTROLLED#.

5. The interrupt types of controlled and asynchronous are set with the pthread_setintrtype (BPX1PST)
service. See “pthread_setintrtype (BPX1PST) — Examine and Change Interrupt Type” on page 219.
These states are acted upon only if thread interruption is enabled. If a cancellation request is pending
and the interrupt state or type is set to allow asynchronous cancellation requests, the thread is
canceled before control is returned to the invoker.

Example

The following code examines and changes the interrupt state of the calling thread. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 CALL BPX1PSI, Examine and change interrupt state+
 (INTRSTATE, Input: Interrupt state BPXYCONS +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

EINVAL One of the parameters contains a value that is not valid.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 201
• “pthread_setintrtype (BPX1PST) — Examine and Change Interrupt Type” on page 219
• “pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur” on page 221.

pthread_setintr (BPX1PSI)

218 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_setintrtype (BPX1PST) — Examine and Change Interrupt
Type

BPX1PST
interrupt_type
return_value
return_code
reason_code

Purpose
Use the pthread_setintrtype (BPX1PST) service to set the interruptibility type of the calling thread and
atomically return the previous interruptibility type.

Parameters
interrupt_type

(input,INT,4) is a variable for specifying the interrupt type to be set. The following constants defined in
the BPXYCONS macro define the valid states.
Constant

Description
PTHREAD_INTR_ASYNCHRONOUS#

When interruptibility is enabled, cancellation requests can be acted upon any time.
PTHREAD_INTR_CONTROLLED#

When interruptibility is enabled, cancellation requests are held pending until a cancellation point
is reached. See the usage notes for the definition of cancellation points.

return_value
(output,INT,4) is a variable where the service returns the previous interrupt type, or -1 if the service
did not complete.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The default interrupt type for newly created threads and the initial thread is

PTHREAD_INTR_CONTROLLED#. If a cancellation request is pending and the interrupt state is set to
PTHREAD_INTR_ASYNCHRONOUS#, the cancellation request is acted upon before control is returned
to the invoker.

2. For more information on controlling cancellation requests, see the usage notes for “pthread_setintr
(BPX1PSI) — Examine and Change Interrupt State” on page 217.

pthread_setintrtype (BPX1PST)

Chapter 2. Callable Service Descriptions 219

Example

The following code examines and changes the interrupt type of the calling thread. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 CALL BPX1PST, Examine and change interrupt type +
 (INTRTYPE, Input: Interrupt type BPXYCONS +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

EINVAL One of the parameters contains a value that is not valid.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 201
• “pthread_setintr (BPX1PSI) — Examine and Change Interrupt State” on page 217
• “pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur” on page 221.

pthread_setintrtype (BPX1PST)

220 z/VM: 7.3 OpenExtensions Callable Services Reference

pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur

BPX1PTI
return_value
return_code
reason_code

Purpose
Use the pthread_testintr (BPX1PTI) service to cause a cancellation point to occur. If a cancellation
request is pending, the pending request is acted upon before this service returns.

Parameters
return_value

(output,INT,4) is a variable where the service returns a 0 if the thread did not have any pending
cancellation requests, or -1 if the service did not complete (the cancellation request was not tested).

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If a cancellation request is pending at the time of the invocation of this service, control is not returned.
2. Invoking the pthread_testintr service does not affect the interrupt state or type.
3. For more information on using this service, see the usage notes for “pthread_setintr (BPX1PSI) —

Examine and Change Interrupt State” on page 217.

Example

The following code causes a cancellation point to occur. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1PTI, Cause an interrupt point to occur +
 (RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 201
• “pthread_setintr (BPX1PSI) — Examine and Change Interrupt State” on page 217

pthread_testintr (BPX1PTI)

Chapter 2. Callable Service Descriptions 221

• “pthread_setintrtype (BPX1PST) — Examine and Change Interrupt Type” on page 219.

pthread_testintr (BPX1PTI)

222 z/VM: 7.3 OpenExtensions Callable Services Reference

queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered

BPX1SPB
return_value
return_code
reason_code

Purpose
Use the queue_interrupt (BPX1SPB) service to return the last interrupt delivered to the signal interface
routine (SIR) back to the OpenExtensions kernel. The interrupt can be a signal, a cancellation request, or
a quiesce request.

Parameters
return_value

(output,INT,4) is a variable where the function returns 0 if it has permission to return the specified
interrupt for delivery at the next kernel call. If no interrupt is returned, -1 is returned.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The the data mapped by the PPSD will be used by the queue_interrupt service and, therefore, should

not be modified by the invoker as this may result in an EINVAL.
2. The queue_interrupt service will return the interrupt back to the OpenExtensions kernel and restore

the signal blocking mask to its pre-interrupt state. The interrupt will then be delivered to this thread
upon the next syscall invocation.

Characteristics and Restrictions
The intended use of the queue_interrupt (BPX1SPB) service is from the signal interface routine
specified on “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40. Although the queue_interrupt
service can be used anywhere, all signals must be blocked and the task must have setup signals by
invoking the cmssigsetup service before calling queue_interrupt. See Appendix E, “The Relationship of
OpenExtensions Signals to Callable Services,” on page 557.

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The value of Signal in the PPSD at the time this service was invoked was an
unsupported signal. Either there was a storage overlay in the PPSD, or no
signal was ever delivered to this task.

queue_interrupt (BPX1SPB)

Chapter 2. Callable Service Descriptions 223

Return Code Explanation

EPERM The caller does not have permission to return the interrupt now. All signals
must be blocked, and the task must invoke cmssigsetup (BPX1MSS) before
the queue_interrupt service is invoked.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRSignalsNotBlocked and JRNotSigsetup.

The following code uses the queue_interrupt to return the last signal delivered to the signal interface
routine (SIR). This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1SPB, Queue the signal +
 (RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40
• “pthread_cancel (BPX1PTB) — Cancel a Thread” on page 201.

queue_interrupt (BPX1SPB)

224 z/VM: 7.3 OpenExtensions Callable Services Reference

quiesce_threads (BPX1PTQ) — Quiesce Threads in a Process

BPX1PTQ
quiesce_type
user_data
return_value
return_code
reason_code

Purpose
Use the quiesce_threads (BPX1PTQ) service to perform one of the following functions:

• Synchronously quiesce the initial thread of the process and all threads created with the pthread_create
(BPX1PTC) service

• Query the thread environment in the current process

Parameters
quiesce_type

(input,INT,4) is a variable for specifying one of the following values to indicate the type of function to
be performed:
QUIESCE_TERM

Quiesce the initial thread and all threads created with pthread_create, allowing the signal
interface routine to receive control when the quiesce request is delivered.

QUIESCE_FORCE
Quiesce the initial thread and all threads created with pthread_create, not allowing the signal
interface routine to receive control when the quiesce request is delivered.

QUIESCE_QUERY
Count the number of POSIX threads in the current process, which includes the initial thread of the
process and all threads created with pthread_create, and return the count in return_value.

The quiesce_type values are defined in the BPXYCONS macro. See “BPXYCONS — Map Constants” on
page 417.

user_data
(input,CHAR,4) is a variable for specifying user data to be passed to the signal interface routine when
the quiesce request is delivered.

return_value
(output,INT,4) is a variable where the service returns a value that depends on the quiesce_type
specified:

• For QUIESCE_TERM or QUIESCE_FORCE:
-1

The caller asked to quiesce all threads in the current process, but all threads may not have been
quiesced. For an explanation of the error, see the return code and reason code.

0
All threads in the current process are successfully quiesced.

• For QUIESCE_QUERY:
-1

The caller asked to query the number of threads in the process, but the request could not be
completed. For an explanation of the error, see the return code and reason code.

quiesce_threads (BPX1PTQ)

Chapter 2. Callable Service Descriptions 225

1
The calling thread is the initial thread, and no threads created with pthread_create exist in the
current process.

>1
This is the count of all the POSIX threads in the current process (the initial thread plus all
threads created with pthread_create).

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Invoking quiesce_threads (BPX1PTQ) delivers a quiesce request to the initial thread and all threads

created with pthread_create in the process. When quiesce_type is QUIESCE_TERM, the request is
delivered to each thread by the signal interface routine (SIR), if the process is set up to intercept the
quiesce request. If the process is not set up for quiesce request interception, or if quiesce_type is
QUIESCE_FORCE, the CMS OpenExtensions kernel performs the quiesce request for each thread. For
details on how to intercept quiesce requests, see “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on
page 40.

2. When quiescing threads before an exec (BPX1EXC) call, the quiesce_threads service should be invoked
from the exec user exit. This invocation allows the probable success of the exec to be determined
before all other threads in the process are quiesced.

3. The quiesce_threads service should be invoked before an _exit (BPX1EXI) call to prevent the other
threads in the process from receiving an asynchronous abend. The quiesce_threads service ends
the other threads in the CMS OpenExtensions kernel, preventing them from being asynchronously
abended at an unknown point.

4. The quiesce_threads service posts all threads that are in pthread_exit_and_get (BPX1PTX) waiting
for more work. The pthread_exit_and_get service returns to the invoker with a -1 return value. The
invoker can then clean up the related resources before the normal end of the thread.

Example

The following code terminates all other pthreads in the caller's process. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551. For the data structure, see “BPXYCONS — Map Constants” on page 417.

 CALL BPX1PTQ, pthread_quiesce +
 (=A(QUIESCE_TERM), Input: Quiesce type BPXYCONS +
 =A(0), Input: User data - Catch data PPSD+
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return one of the following return codes:

Return Code Explanation

ECMSERR A CMS environment or internal error has occurred.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRQuiesceInProgress.

quiesce_threads (BPX1PTQ)

226 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EINTR The quiesce was interrupted by a signal before all threads were quiesced.

EINVAL The value specified for quiesce_type was incorrect.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRQuiesceTypeInvalid.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pthread_create (BPX1PTC) — Create a Thread” on page 203
• “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40.

quiesce_threads (BPX1PTQ)

Chapter 2. Callable Service Descriptions 227

read (BPX1RED) — Read from a File or Socket

BPX1RED
file_descriptor
buffer_address
buffer_ALET
read_count
return_value
return_code
reason_code

Purpose
Use the read (BPX1RED) service to read a specified number of bytes from a file or socket into a buffer that
you provide.

Note: The read service is not related to the read shell command.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the file or socket to be read. The file must
be open.

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer into which data is to be read.

buffer_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for the buffer.

Note: This parameter is ignored.

read_count
(input,INT,4) is a variable for specifying the number of bytes you want to read from the file or socket.
This number must be less than or equal to the length of the buffer you provide for data to be read into.

return_value
(output,INT,4) is a variable where the service returns the number of bytes actually read (may be 0) if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
Access Time — A successful read updates the access time of the file read.

Origin of Bytes Read — If the file specified by file_descriptor is a regular file, or any other type of file
where a seek operation is possible, bytes are read from the file offset associated with the file descriptor. A
successful read increments the file offset by the number of bytes read.

For files where no seek operation is possible, there is no file offset associated with the file descriptor.
Reading begins at the current position in the file.

read (BPX1RED)

228 z/VM: 7.3 OpenExtensions Callable Services Reference

Number of Bytes Read — The value of read_count is not checked against any system limit, although a
limit can be imposed by a high-level-language POSIX implementation.

When a read request completes, the return_value field shows the number of bytes actually read—a
number less than or equal to the number specified as read_count. The following are some reasons why
the number of bytes read might be less than the number of bytes requested:

• Fewer than the requested number of bytes remained in the file; the end of file was reached before
read_count bytes were read.

• The service was interrupted by a signal after some but not all of the requested bytes were read. (If no
bytes were read, the return value is set to -1 and an error is reported.)

• The file is a pipe, FIFO, or special file and fewer bytes than read_count specified were available for
reading.

There are several reasons why a read request may complete successfully with no bytes read — that is,
with return_value set to 0. For example, zero bytes are read in these cases:

• The service specified a read_count of zero.
• The starting position for the read was at or beyond the end of the file.
• The file being read is a FIFO file or a pipe, and no process has the pipe open for writing.
• The file being read is a terminal and a zero-length canonical file was read.

Nonblocking — If a process has a pipe open for writing with nonblocking specified, a request to read
from the file ends with a return value of -1 and a "Resource temporarily unavailable" return code. But if
nonblocking was not specified, the read request is blocked (does not return) until some data is written or
the pipe is closed by all other processes that have the pipe open for writing.

Terminals operate this way too, except how they act depends on how they were opened. If the terminal is
opened blocking, the reads are blocked if there is no data. If it is opened nonblocking, EAGAIN is returned
if there is no data.

SIGTTIN Processing — This service causes signal SIGTTIN to be sent if all the following conditions are
met:

• The process is attempting to read from its controlling terminal.
• The process is running in a background process group.
• The SIGTTIN signal is not blocked or ignored.
• The process group of the process is not orphaned.

If SIGTTIN has a handler, the handler gets control and the read ends with a return code of EINTR. If
SIGTTIN is set to default, the process stops in the read and continues when the process is moved to the
foreground.

Characteristics and Restrictions
If the file was opened by an authorized program, all subsequent reads and writes against the file must be
issued from an authorized state.

Example

The following code reads 80 bytes from the specified file (FILEDESC) and place them in the area provided
(BUFFERA). This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC FILEDESC,.. File descriptor
 LA R15,BUFFERA Buffer
 ST R15,BUFA Buffer address
 MVC BUFLENA,=F'80' Read buffer length
 SPACE ,
 CALL BPX1RED, Read from a file +
 (FILEDESC, Input: File descriptor +
 BUFA, ->Buffer to read into +

read (BPX1RED)

Chapter 2. Callable Service Descriptions 229

 PRIMARYALET, Input: Buffer ALET +
 BUFLENA, Input: Number of bytes to read +
 RETVAL, Return value: 0, -1, or char count+
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN The file was opened with the nonblock option and data is not available to be
read.

EBADF The file_descriptor parameter does not contain the descriptor of an open file,
or the file is not opened for read. The following reasons codes can accompany
this return code: JRFileDesNotInUse, JRFileNotOpen.

EINTR The service was interrupted by a signal before it could read any data.

EINVAL The read_count parameter contains a value that is less than
zero. The following reason code can accompany this return code:
JRSocketCallParmError.

EIO The process is in a background process group and is attempting to read from
its controlling terminal. Either the process is ignoring or blocking the SIGTTIN
signal, or the process group is orphaned.

ENOBUFS A buffer could not be obtained.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “lseek (BPX1LSK) — Change the File Offset” on page 154
• “open (BPX1OPN) — Open a File” on page 181
• “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 199
• “write (BPX1WRT) — Write to a File or Socket” on page 401

read (BPX1RED)

230 z/VM: 7.3 OpenExtensions Callable Services Reference

readdir (BPX1RDD) — Read an Entry from a Directory

BPX1RDD
directory_file_descriptor
buffer_address
buffer_ALET
buffer_length
return_value
return_code
reason_code

Purpose
Use the readdir (BPX1RDD) service to read multiple name entries from a directory.

Parameters
directory_file_descriptor

(input,INT,4) is a variable for specifying the directory file descriptor for the directory from which
entries are to be read. This value was returned by the opendir (BPX1OPD) callable service when the
directory was opened.

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer in which the service is to write the
directory entries. The directory entries are mapped by the BPXYDIRE macro. See “BPXYDIRE — Map
Directory Entries for the readdir Service” on page 420.

buffer_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for buffer_address that
identifies the address space or data space where the buffer resides.

Note: This parameter is ignored in the OpenExtensions implementation.

buffer_length
(input,INT,4) is a variable for specifying the length in bytes of the buffer pointed to by buffer_address.

return_value
(output,INT,4) is a variable where the service returns the number of directory entries read into the
buffer if the service is successful, or -1 if unsuccessful. A value of 0 indicates the end of the directory.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. This interface differs from the POSIX C high-level-language interface in that it returns more than one

directory entry, and it also returns the entries in the caller's buffer.
2. The buffer contains a variable number of variable-length directory entries. Only full entries are placed

in the buffer, up to the buffer size specified, and the number of entries is returned.
3. Each directory entry returned has the following format:

readdir (BPX1RDD)

Chapter 2. Callable Service Descriptions 231

entry_length
A 2-byte field that specifies the total length of the entry, including this field.

name_length
A 2-byte field that specifies the length of the following member_name field.

member_name
A character field of length name_length. This name is not null-terminated.

file_system_specific_data
If name_length + 4 = entry_length, this field is not present.

The entries are packed together, and the length fields are not aligned on any particular boundary.
4. The buffer returned by one call to the readdir (BPX1RDD) service must be used again on the next

call to the readdir service to continue reading entries from where you left off. The buffer must not be
altered between calls, unless the directory has been rewound.

5. The end of the directory is indicated in either of two ways:

• A return_value of 0 entries is returned.
• Some physical file systems may return a null name entry as the last entry in the caller's buffer. A null

name entry has an entry_length of 4 and a name_length of 0.

Both conditions should be checked for by the caller of the readdir (BPX1RDD) service.

Example

The following code reads multiple name entries from the specified directory (DIRECTDES). This example
follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551. For the data structure, see “BPXYDIRE — Map Directory Entries for the
readdir Service” on page 420.

 MVC DIRECTDES,.. Directory descriptor from opendir
 LA R15,BUFFERA
 ST R15,BUFA
 MVC BUFLENA,=F'1023'
 CALL BPX1RDD, Read entries from a directory +
 (DIRECTDES, Input: Directory file descriptor +
 BUFA, Output: ->buffer BPXYDIRE +
 PRIMARYALET, Input: buffer ALET +
 BUFLENA, Input: buffer size +
 RETVAL, Return value: 0, -1, entries read +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The directory_file_descriptor argument does not refer to an open directory.

EINVAL The buffer is too small to contain any entries.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “closedir (BPX1CLD) — Close a Directory” on page 36
• “opendir (BPX1OPD) — Open a Directory” on page 185

readdir (BPX1RDD)

232 z/VM: 7.3 OpenExtensions Callable Services Reference

• “rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning” on page 254.

readdir (BPX1RDD)

Chapter 2. Callable Service Descriptions 233

read_external_link (BPX1RXL) — Read the Contents of a CMS
External Link

BPX1RXL
link_name_length
link_name
buffer_length
buffer_address
return_value
return_code
reason_code

Purpose
Use the read_external_link (BPX1RXL) service to read the contents of a CMS external link into a buffer
that you provide. The external link contains the data that was specified when the external link was defined
by the create_external_link (BPX1ELN) service.

Parameters
link_name_length

(input,INT,4) is a variable for specifying the length of the link_name parameter.
link_name

(input,CHAR,link_name_length) is a variable for specifying the name of the external link to be read.
buffer_length

(input,INT,4) is a variable for specifying the length in bytes of the buffer pointed to by the
buffer_address parameter.

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer where the service is to return the
contents of the external link.

return_value
(output,INT,4) is a variable where the service returns a count of the number of characters placed in
the buffer if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If the buffer supplied to BPX1RXL is too small to hold the contents of the external link, the contents

are truncated to the length of the buffer (buffer_length). If the value returned in return_value is the
length of the buffer, you can use the lstat (BPX1LST) service to determine the actual length of the
external link. See “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path
Name” on page 157.

2. If buffer_length is specified as 0, the value returned in return_value is the number of bytes in the
external link, and the buffer remains unchanged.

read_external_link (BPX1RXL)

234 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code reads the contents of an external link named /u/dpt37/payroll into the buffer
provided. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFFERB(19),=CL16'/u/dpt37/payroll'
 MVC BUFLENB,=F'16'
 LA R15,BUFFERA
 ST R15,BUFA
 MVC BUFLENA,=F'1023'
 SPACE ,
 CALL BPX1RXL, Read contents of an external link +
 (BUFLENB, Input: Linkname length +
 BUFFERB, Input: Link name +
 BUFLENA, Input: Buffer size - 1023 +
 BUFA, ->Buffer for external link +
 RETVAL, Return value: 0, -1 or char count +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Search permission is denied for a component of the specified external link.

EINVAL The file identified by link_name is not an external link, or there was a problem
with the supplied buffer.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRFileNotExtLink and JRRd1BuffLenInvalid.

ELOOP A loop exists in the Mount External Links (MELs) encountered during
resolution of the link_name argument, if more than eight MELs are detected.

ENAMETOOLONG The link_name parameter is longer than 1023 characters, or some
component of the link name is longer than 255 characters. CMS does not
support name truncation.

ENOENT No file named link_name was found.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of the path prefix is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service is:

• “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157
• “symlink (BPX1SYM) — Create a Symbolic Link to a Path Name” on page 345
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

read_external_link (BPX1RXL)

Chapter 2. Callable Service Descriptions 235

readlink (BPX1RDL) — Read the Value of a Symbolic Link

BPX1RDL
link_name_length
link_name
buffer_length
buffer_address
return_value
return_code
reason_code

Purpose
Use the readlink (BPX1RDL) service to read the contents of a symbolic link into a buffer that you provide.
The symbolic link contains the path name that was specified when the symbolic link was defined by the
symlink (BPX1SYM) service.

Parameters
link_name_length

(input,INT,4) is a variable for specifying the length of the link_name parameter.
link_name

(input,CHAR,link_name_length) is a variable for specifying the link name of the symbolic link to be
read.

buffer_length
(input,INT,4) is a variable for specifying the length in bytes of the buffer pointed to by the
buffer_address parameter.

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer where the service is to return the
value of the symbolic link. The value of the symbolic link is actually the path name that was specified
when the symbolic link was created. The buffer must reside in the process's address space.

return_value
(output,INT,4) is a variable where the service returns a count of the number of characters placed in
the buffer if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If the buffer supplied to readlink (BPX1RDL) is too small to contain the value of the symbolic link, the

value is truncated to the length of the buffer (buffer_length). If the value returned is the length of the
buffer, you can use the lstat (BPX1LST) service to determine the actual length of the symbolic link. See
“lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157.

2. If the buffer_length is 0, the value returned is the number of bytes in the symbolic link and the buffer
remains unchanged.

readlink (BPX1RDL)

236 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code reads the contents of symbolic link /personnel/templink into the buffer provided.
This will be the path name that was specified when the symbolic link was defined. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC BUFFERB(19),=CL19'/personnel/templink'
 MVC BUFLENB,=F'19'
 LA R15,BUFFERA
 ST R15,BUFA
 MVC BUFLENA,=F'1023'
 SPACE ,
 CALL BPX1RDL, Read the value of a symbolic link +
 (BUFLENB, Input: Linkname length +
 BUFFERB, Input: Link name +
 BUFLENA, Input: Buffer size - 1023 +
 BUFA, ->Buffer for symbolic link +
 RETVAL, Return value: 0, -1 or char count +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCESS Search permission is denied for a component of the path prefix.

EINVAL The file named by link_name is not a symbolic link or there was a problem
with the supplied buffer.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRFileNotSymLink, and JRRdlBuffLenInvalid.

ELOOP A loop exists in symbolic links encountered during resolution of the link_name
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of link_name.

ENAMETOOLONG The link_name parameter is longer than 1023 characters, or some
component of the link name is longer than 255 characters. CMS does not
support name truncation.

ENOENT No file with the name specified by link_name was found.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of the path prefix is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157
• “symlink (BPX1SYM) — Create a Symbolic Link to a Path Name” on page 345
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

readlink (BPX1RDL)

Chapter 2. Callable Service Descriptions 237

readv (BPX1RDV) — Read Data and Store It in a Set of Buffers

BPX1RDV
socket_descriptor
IOV_count
IOV_structures
IOV_ALET
IOV_buffer_ALET
return_value
return_code
reason_code

Purpose
Use the readv (BPX1RDV) service to read data from a socket and store it in a set of buffers.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
IOV_count

(input,INT,4) is a variable for specifying the number of buffers that are pointed to by IOV_structure.
IOV_structures

(input,CHAR,IOV_count times length of BPXYIOV) is a variable for specifying the IOV structures that
contain information about the buffers in which data is to be stored. The IOV structure is mapped by
the BPXYIOV macro. See “BPXYIOV — Map the I/O Vector Structure” on page 430.

IOV_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for IOV_structures.

Note: This parameter is ignored.

IOV_buffer_ALET
(input,INT,4) is a variable for specifying the ALET for the buffers that are pointed to by IOV_structures.

Note: This parameter is ignored.

return_value
(output,INT,4) is a variable where the service returns the number of bytes that were read into the
buffers if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
Socket Files — When used for datagram sockets, this service returns the entire datagram that was sent,
providing that the datagram fits into the specified buffers. The excess is discarded. For stream sockets,
data is not discarded. Multiple invocations of readv may be needed to return all the data.

Access Time — A successful read updates the access time of the socket read.

readv (BPX1RDV)

238 z/VM: 7.3 OpenExtensions Callable Services Reference

Number of Bytes Read — The number of bytes requested for reading is not checked against any system
limit, although a limit can be imposed by a high-level-language POSIX implementation.

When a read request completes, the return_value field shows the number of bytes actually read — a
number less than or equal to the number of bytes that were requested. The following are some reasons
why the number of bytes read might be less than the number of bytes requested:

• Fewer than the requested number of bytes remained in the socket; the end of socket was reached
before all requested bytes were read.

• The service was interrupted by a signal after some but not all of the requested bytes were read. (If no
bytes were read, the return value is set to -1 and an error is reported.)

A read request may complete successfully with no bytes read — that is, with return_value set to 0. This
can occur if the service specified that zero bytes are to be read.

SIGTTIN Processing — This service causes signal SIGTTIN to be sent if all the following conditions are
met:

• The process is running in a background process group.
• The SIGTTIN signal is not blocked or ignored.
• The process group of the process is not orphaned.

If SIGTTIN has a handler, the handler gets control and the read ends with a return code of EINTR. If
SIGTTIN is set to default, the process stops in the read and continues when the process is moved to the
foreground.

Example

The following code issues a readv for a socket. SOCKDESC was returned previously from a call to
either socket (BPX1SOC) or accept (BPX1ACP). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structures, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465 and “BPXYIOV — Map the I/O Vector Structure” on page 430.

 SPACE ,
 LA R2,BUFFERA
 ST R2,IOV_BASE
 LA R2,L'BUFFERA
 ST R2,IOV_LEN
 CALL BPX1RDV, Read into a vector of buffers +
 (SOCKDESC, Input: Socket Descriptor +
 =A(1), Input: Number of elements in iov +
 IOV, Input: Iov containing info +
 PRIMARYALET, Input: Alet where iov resides +
 PRIMARYALET, Input: Alet of buffers for data +
 RETVAL, Return value: Num bytes or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN The socket is marked nonblocking, and no data is waiting to be read.

EBADF An incorrect file descriptor was specified. The following reason codes
can accompany this return code: JRFileDesNotInUse, JRFileNotOpen,
JRRFileWrOnly, JRWFileRdOnly.

EINTR A signal interrupted the readv function before any data was available.

readv (BPX1RDV)

Chapter 2. Callable Service Descriptions 239

Return Code Explanation

EINVAL One of the input parameters was incorrect. The following reason
codes can accompany this return code: JRBytes2RWZero, JROutOfRange,
JRSocketCallParmError.

EIO The process is in a background process group and is attempting to read
from its controlling terminal. However, TOSTOP is set, the process is neither
ignoring nor blocking SIGTTIN signals, and the process group of the process
is orphaned. This can happen, for example, if a background job tries to write
to the terminal after the user has logged off.

ENOBUFS A buffer could not be obtained.

ENOTSOCK socket_descriptor is a valid file descriptor, but not a socket.

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.
For AF_INET or AF_INET6, 0 is returned instead of recognizing this error.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “writev (BPX1WRV) — Write Data from a Set of Buffers” on page 404

readv (BPX1RDV)

240 z/VM: 7.3 OpenExtensions Callable Services Reference

realpath (BPX1RPH) — Find the Absolute Path Name

BPX1RPH
relative_pathname_length
relative_pathname_buffer
absolute_pathname_length
absolute_pathname_buffer
return_value
return_code
reason_code

Purpose
Use the realpath (BPX1RPH) service to determine the absolute path name for a relative path name. Any
dot (.) or dot dot (..) components, symbolic links, or mount external links included in the relative path
name input are resolved in the absolute path name output.

Parameters

relative_pathname_length
(input,INT,4) is a variable for specifying the length of the relative_pathname_buffer parameter.

relative_pathname_buffer
(input,CHAR,relative_pathname_length) is a variable for specifying a relative path name. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6.

absolute_pathname_length
(input/output,INT,4) is a variable for specifying, on input, the length of the absolute_pathname_buffer
parameter. If 0 is specified, the length of the buffer is assumed to be PATH_MAX plus null (1024
bytes).

On output, this parameter contains the length of the path name returned in the
absolute_pathname_buffer parameter.

absolute_pathname_buffer
(output,CHAR,absolute_pathname_length) is a variable where the service returns the absolute path
name.

return_value
(output,INT,4) is a variable where the service returns 0 if the request completes successfully, or -1 if
the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code finds the absolute path name for relative path name ../symlink1/data.file. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFLENA,=F'21'
 MVC BUFFERA(11),=CL21'../symlink1/data.file'

realpath (BPX1RPH)

Chapter 2. Callable Service Descriptions 241

 MVC BUFLENB,=F'0' Buffer length = PATH_MAX + null
 SPACE ,
 CALL BPX1RPH, Find absolute pathname +
 (BUFLENA, Input: Relative pathname length +
 BUFFERA, Input: Relative pathname +
 BUFLENB, Input/output: Abs. pathname length+
 BUFFERB, Output: Absolute pathname +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL One of the input parameters is not valid.

ENOENT The BFS object does not exist.

ERANGE The output buffer is too small to hold the absolute path name.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

realpath (BPX1RPH)

242 z/VM: 7.3 OpenExtensions Callable Services Reference

recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer

BPX1RCV
socket_descriptor
buffer_length
buffer
buffer_ALET
flags
return_value
return_code
reason_code

Purpose
Use the recv (BPX1RCV) service to receive data on a socket and store it in a buffer. If no messages are
available at the socket, the service either waits for a message to arrive, or fails with the EWOULDBLOCK
return code, depending on whether the socket has been defined as blocking or nonblocking.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
buffer_length

(input,INT,4) is a variable for specifying the length of the buffer parameter.
buffer

(output,CHAR,buffer_length) is a variable where the service stores the received data.
buffer_ALET

(input,INT,4) is a variable for specifying the access list entry token (ALET) for buffer.

Note: This parameter is ignored.

flags
(input,INT,4) is a variable for specifying information about how the data is to be received. This field is
mapped by the BPXYMSGF macro. See “BPXYMSGF — Map the Message Flags” on page 441.

return_value
(output,INT,4) is a variable where the service returns one of the following:

• The number of bytes received into the buffer, if the request is successful.
• 0, indicating the connection is closed.
• -1, if the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

recv (BPX1RCV)

Chapter 2. Callable Service Descriptions 243

Usage Note
The recv callable service applies only to connected sockets. It can be used with datagram or stream
sockets. For datagram sockets, the recv service returns the entire datagram that was sent, providing that
the datagram fits into the specified buffers. The excess is discarded. For stream sockets, data is not
discarded. Multiple invocations of the recv service may be needed to return all the data.

Example

The following code issues a recv for a socket. SOCKDESC was returned previously from a call to either
socket (BPX1SOC) or accept (BPX1ACP). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structures, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465 and “BPXYMSGF — Map the Message Flags” on page 441.

 SPACE ,
 CALL BPX1RCV, Receive data on from a socket +
 (SOCKDESC, Input: Socket Descriptor +
 =A(L'BUFFERA), Input: Length of input buffer +
 BUFFERA, Input: Address of input buffer +
 PRIMARYALET, Input: Alet of input buffer +
 MSG_FLAGS, Input: Flags +
 RETVAL, Return value: Num bytes, 0, or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF An incorrect file descriptor was specified. The following reason codes can
accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

EINTR A signal interrupted the service before any data was available.

EINVAL The socket is marked shutdown for read.

EIO There has been a network or transport failure. The following reason code can
accompany this return code: JRPrevSockError.

ENOBUFS A buffer could not be obtained.

ENOTCONN A receive was attempted on a connection-oriented socket that is not
connected. For AF_INET or AF_INET6, 0 is returned instead of recognizing
this error.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.
For AF_INET or AF_INET6, 0 is returned instead of recognizing this error.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be received.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “send (BPX1SND) — Send Data on a Socket” on page 277

recv (BPX1RCV)

244 z/VM: 7.3 OpenExtensions Callable Services Reference

recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in
a Buffer

BPX1RFM
socket_descriptor
buffer_length
buffer
buffer_ALET
flags
sockaddr_length
sockaddr
return_value
return_code
reason_code

Purpose
Use the recvfrom (BPX1RFM) service to receive data on a socket and store it in a buffer. It can be used by
an application program to receive data from sockets. When no data is available at the socket, the service
either waits for data to arrive, or returns an EWOULDBLOCK return code, depending on whether the socket
is defined as blocking or nonblocking.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
buffer_length

(input,INT,4) is a variable for specifying the length of the buffer parameter.
buffer

(output,CHAR,buffer_length) is a variable for the buffer where the service stores the received data.
buffer_ALET

(input,INT,4) is a variable for specifying the access list entry token (ALET) for buffer.

Note: This parameter is ignored.

flags
(input,INT,4) is a variable for specifying information about how the data is to be received. This field is
mapped by the BPXYMSGF macro. See “BPXYMSGF — Map the Message Flags” on page 441.

sockaddr_length
(input/output,INT,4) is a variable for specifying the length of the sockaddr parameter. This value
should be large enough to accommodate the maximum length of the SOCKADDR structure to be
returned in sockaddr, but less than 4096 bytes (4KB). On output, the service updates this field with
the size of the data returned in sockaddr.

sockaddr
(output,INT,sockaddr_length) is a variable where the service returns the SOCKADDR structure
containing the socket address of the sender of the data. This field is mapped by the BPXYSOCK
macro. See “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465.

recvfrom (BPX1RFM)

Chapter 2. Callable Service Descriptions 245

return_value
(output,INT,4) is a variable where the service returns the number of bytes received into the buffer if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The recvfrom callable service can be used with datagram or stream sockets. For datagram sockets, it
returns the entire datagram that was sent, providing that the datagram fits into the specified buffer. The
excess is discarded. For stream sockets, data is not discarded. Multiple invocations of recvfrom may be
needed to return all the data.

Example

The following code issues a recv from a socket. SOCKDESC was returned from a previous call to either
socket (BPX1SOC) or accept (BPX1ACP). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structures, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465 and “BPXYMSGF — Map the Message Flags” on page 441.

 SPACE ,
 MVC MSG_FLAGS4,MSG_PEEK
 CALL BPX1RFM, Read from a socket +
 (SOCKDESC, Input: Socket Descriptor +
 =A(L'BUFFERA), Input: Length of the buffer +
 BUFFERA, Output: The data buffer +
 PRIMARYALET, Input: Alet of the buffer +
 MSG_FLAGS, Input: Flags +
 =A(L'SOCKADDR), Input: Length of the socket addr +
 SOCKADDR, Output: The socket address +
 RETVAL, Return value: Num bytes or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF An incorrect file descriptor was specified. The following reason codes can
accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

EINTR A signal interrupted the recvfrom function before any data was available.

EINVAL One of the input parameters was incorrect. The following reason code can
accompany this return code: JRSocketCallParmError.

EIO There was an I/O error. The following reason code can accompany this return
code: JRPrevSockError.

ENOBUFS A buffer could not be obtained.

ENOTCONN A receive was attempted on a connection-oriented socket that is not
connected. For AF_INET, 0 is returned instead of recognizing this error.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

recvfrom (BPX1RFM)

246 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.
For AF_INET or AF_INET6, 0 is returned instead of recognizing this error.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be read.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another callable service related to this service is:

• “sendto (BPX1STO) — Send Data on a Socket” on page 283

recvfrom (BPX1RFM)

Chapter 2. Callable Service Descriptions 247

recvmsg (BPX2RMS) — Receive Messages on a Socket and Store
Them in Message Buffers

BPX2RMS
socket_descriptor
message_header
flags
IOV_ALET
IOV_buffer_ALET
return_value
return_code
reason_code

Purpose
Use the recvmsg (BPX2RMS) service to receive messages on a socket and store them in a set of buffers.
The socket can be either connected or unconnected. If no messages are available at the socket, the
service either waits for a message to arrive or returns an EWOULDBLOCK return code, depending on
whether the socket has been defined as blocking or nonblocking.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
message_header

(input,CHAR,length of BPXYMSGH) is a variable for specifying the message header. This field is
mapped by the BPXYMSGH macro. A message header contains a pointer to an I/O vector structure,
which contains information about the buffers into which the messages are to be received, and a
pointer to a SOCKADDR structure containing the socket address of the sender of the data. The I/O
vector structure is mapped by the BPXYIOV macro. See “BPXYMSGH — Map the Message Headers”
on page 443 and “BPXYIOV — Map the I/O Vector Structure” on page 430. The SOCKADDR structure
is mapped by the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and Constants
for Socket-Related Services” on page 465 for information on the BPXYSOCK macro.

flags
(input,INT,4) is a variable for specifying information about how the data is to be received. This field is
mapped by the BPXYMSGF macro. See “BPXYMSGF — Map the Message Flags” on page 441.

IOV_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for the I/O vector (IOV)
structure specified in message_header.

Note: This parameter is ignored.

IOV_buffer_ALET
(input,INT,4) is a variable for specifying the ALET for the buffers that are pointed to by the IOV
structure in message_header.

Note: This parameter is ignored.

return_value
(output,INT,4) is a variable where the service returns the number of bytes read into the buffers if the
request is successful, or -1 if it is not successful.

recvmsg (BPX2RMS)

248 z/VM: 7.3 OpenExtensions Callable Services Reference

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The BPX2RMS call supersedes the BPX1RMS call, which is still available for migration purposes only.

Example

The following code issues a recvmsg for a socket. SOCKDESC was returned from a previous call to
either socket (BPX1SOC) or accept (BPX1ACP). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structures, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465, “BPXYMSGF — Map the Message Flags” on page 441, “BPXYMSGH — Map the Message
Headers” on page 443, and “BPXYIOV — Map the I/O Vector Structure” on page 430.

 SPACE ,
 XC MSGH,MSGH Clear msgh
 LA R2,SOCKADDR
 ST R2,MSGHNAMEPTR Store the address of sockaddr
 LA R2,SOCK#LEN+SOCK_SUN#LEN
 ST R2,MSGHNAMELEN
 LA R2,IOV
 ST R2,MSGHIOVPTR
 MVI MSGHIOVNUM,1
 LA R2,BUFFERA
 ST R2,IOV_BASE
 LA R2,L'BUFFERA
 ST R2,IOV_LEN
*
 CALL BPX2RMS, Receive a message from a socket +
 (SOCKDESC, Input: Socket Descriptor +
 MSGH, Input: Address of BPXYMSGH +
 MSG_FLAGS, Input: Flags +
 PRIMARYALET, Input: Alet of the iov +
 PRIMARYALET, Input: Alet of the buffers in iov +
 RETVAL, Return value: Num bytes or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF An incorrect file descriptor was specified. The following reason codes can
accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

EINTR A signal interrupted the recvmsg service before any data was available.

EINVAL One of the input parameters was incorrect. The following reason codes can
accompany this return code: JROutOfRange, JRSocketCallParmError.

EIO There was an I/O error. The following reason code can accompany this return
code: JRPrevSockError.

ENOBUFS A buffer could not be obtained.

ENOTCONN A receive was attempted on a connection-oriented socket that is not
connected. For AF_INET, 0 is returned instead of recognizing this error.

recvmsg (BPX2RMS)

Chapter 2. Callable Service Descriptions 249

Return Code Explanation

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.
For AF_INET or AF_INET6, 0 is returned instead of recognizing this error.

EWOULDBLOCK The socket is marked nonblocking, and no data is waiting to be read.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “sendmsg (BPX2SMS) — Send Messages on a Socket” on page 280

recvmsg (BPX2RMS)

250 z/VM: 7.3 OpenExtensions Callable Services Reference

rename (BPX1REN) — Rename a File or Directory

BPX1REN
old_name_length
old_name
new_name_length
new_name
return_value
return_code
reason_code

Purpose
Use the rename (BPX1REN) service to change the name of a file or directory.

Parameters
old_name_length

(input,INT,4) is a variable for specifying the length of the current path name of the file or directory to
be renamed.

old_name
(input,CHAR,old_name_length) is a variable for specifying the current path name of the file or
directory.

new_name_length
(input,INT,4) is a variable for specifying the length of the new path name of the file or directory.

new_name
(input,CHAR,new_name_length) is a variable for specifying the new path name of the file or directory.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
The rename (BPX1REN) service changes the name of a file or directory from old_name to new_name.
When renaming completes successfully, the change and modification times for the parent directories of
old_name and new_name are updated.

For renaming to succeed, the calling process needs write permission for the directory containing
old_name and the directory containing new_name. If old_name and new_name are the names of
directories, the caller does not need write permission for the directories themselves.

Renaming Files: If old_name and new_name are links referring to the same file, rename (BPX1REN)
simply returns successfully.

If old_name is the name of a file, new_name must also name a file, not a directory. If new_name is an
existing file, it is unlinked. Then the file specified as old_name is renamed to new_name. The path name

rename (BPX1REN)

Chapter 2. Callable Service Descriptions 251

new_name always stays in existence; at the beginning of the operation, new_name refers to its original
file, and at the end, it refers to the file that used to be old_name.

Renaming Directories: If old_name is the name of a directory, new_name must also name a directory,
not a file. If new_name is an existing directory, it must be empty, containing no files or subdirectories. If
empty, it is removed, as described in “rmdir (BPX1RMD) — Remove a Directory” on page 256.

The new_name directory cannot be a directory under old_name; that is, the old directory cannot be part
of the path name prefix of the new one.

Example

The following code change the directory name of a file from usr/sam to usr/samantha. This example
follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551.

 MVC BUFFERB(07),=CL07'usr/sam'
 MVC BUFLENB,=F'07'
 MVC BUFFERA(12),=CL12'usr/samantha'
 MVC BUFLENA,=F'12'
 SPACE ,
 CALL BPX1REN, Rename a file +
 (BUFLENB, Input: Old name length +
 BUFFERB, Input: Old name +
 BUFLENA, Input: New name length +
 BUFFERA, Input: New name +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process did not have search permission on some component of the old or
new path name, or did not have write permission on the parent directory of
the file or directory to be renamed.

EBUSY The old_name and new_name parameters specify directories, but one of them
cannot be renamed because it is in use as a root or a mount point.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRIsFSRoot.

EINVAL This error is returned for one of the following reasons:

• The old_name value is part of the path name prefix of new_name.
• The old_name value is either . (dot) or .. (dot-dot).
• The new_name value is either . (dot) or .. (dot-dot).

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRDotOrDotDot
and JROldPartOfNew.

EISDIR The new_name parameter identifies a directory, but the old_name parameter
is not a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNewIsDir.

ELOOP A loop exists in symbolic links encountered during resolution of the old_name
or new_name argument. This error is issued if more than 8 symbolic links are
detected in the resolution of old_name or new_name.

rename (BPX1REN)

252 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENAMETOOLONG The old_name or new_name parameter is longer than 1023 bytes, or a
component of those names is longer than 255 bytes. CMS does not support
name truncation.

ENOENT No file or directory named old_name was found, or either old_name or
new_name was not specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JROldNoExist.

ENOSPC The directory intended to contain new_name cannot be extended.

ENOTDIR A component of either path name prefix is not a directory, or old_name is a
directory and new_name is a file that is not a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNewNotDir.

ENOTEMPTY The new_name parameter identifies a directory, but the directory is not
empty. It contains files or subdirectories.

EROFS Performing the requested service would make it necessary to write on a
read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

EXDEV The old_name and new_name parameters identify files or directories on
different file systems. CMS does not support renaming across file systems.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRDiffFileSets.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “link (BPX1LNK) — Create a Link to a File” on page 149
• “rmdir (BPX1RMD) — Remove a Directory” on page 256
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

rename (BPX1REN)

Chapter 2. Callable Service Descriptions 253

rewinddir (BPX1RWD) — Reposition a Directory Stream to the
Beginning

BPX1RWD
directory_file_descriptor
return_value
return_code
reason_code

Purpose
Use the rewinddir (BPX1RWD) service to "rewind", or reset to the beginning, an open directory. The next
call to the readdir (BPX1RDD) service reads the first entry in the directory.

Parameters
directory_file_descriptor

(input,INT,4) is a variable for specifying the directory file descriptor of the directory to be "rewound".
This value was returned by the opendir (BPX1OPD) service when the directory was opened.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
If the contents of the directory you specify have changed since the directory was opened, a call to the
rewinddir (BPX1RWD) service updates the directory and a subsequent call to the read service reads the
new contents.

Example

The following code resets the open directory to the beginning. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551.

 MVC DIRECTDES,.. File descriptor from opendir
 CALL BPX1RWD, Reposition directory at beginning +
 (DIRECTDES, Input: Directory file descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

rewinddir (BPX1RWD)

254 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EBADF The directory_file_descriptor parameter does not represent an open directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRRwdFileNotDir.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “closedir (BPX1CLD) — Close a Directory” on page 36
• “opendir (BPX1OPD) — Open a Directory” on page 185
• “readdir (BPX1RDD) — Read an Entry from a Directory” on page 231.

rewinddir (BPX1RWD)

Chapter 2. Callable Service Descriptions 255

rmdir (BPX1RMD) — Remove a Directory

BPX1RMD
directory_name_length
directory_name
return_value
return_code
reason_code

Purpose
Use the rmdir (BPX1RMD) service to remove a directory. The directory must be empty.

Parameters
directory_name_length

(input,INT,4) is a variable for specifying the length of the directory_name parameter.
directory_name

(input,CHAR,directory_name_length) is a variable for specifying the path name of the directory to be
removed.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The directory must be empty.
2. If the directory is successfully removed, the change and modification times for the parent directory are

updated.
3. If the link count of the directory becomes zero and no process has the directory open, the directory

itself is deleted. The space occupied by the directory is freed for new use and the contents of the file
are lost.

4. If any process has the directory open when the last link is removed, the directory itself is not removed
until the last process closes the directory. New files cannot be created under a directory after the last
link is removed, even if the directory is still open.

Example

The following code removes directory applib/user02. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFFERA(13),=CL13'applib/user02'
 MVC BUFLENA,=F'13'
 SPACE ,
 CALL BPX1RMD, Remove a directory +
 (BUFLENA, Input: Directory name length +
 BUFFERA, Input: Directory to be removed +

rmdir (BPX1RMD)

256 z/VM: 7.3 OpenExtensions Callable Services Reference

 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process did not have search permission for some component of
directory_name, or did not have write permission for the directory containing
the directory to be removed.

EBUSY The directory cannot be removed, because it is being used by a process.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRRootNode.

ECMSERR An internal error occurred.

EINVAL The argument supplied was incorrect. Examples of incorrect arguments are .
(dot) and .. (dot-dot).

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRDotOrDotDot.

ELOOP A loop exists in symbolic links encountered during resolution of the
directory_name argument. This error is issued if more than 8 symbolic links
are detected in the resolution of directory_name.

ENAMETOOLONG The name of the directory is longer than 1023 characters, or some component
of the path name is longer than 255 characters. This could be as a result
of encountering a symbolic link during resolution of directory_name, and the
substituted string is longer than 1023 characters.

ENOENT The directory specified by directory_name was not found, or no
directory_name parameter was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR Some component of directory_name is not a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRPathNotDir.

ENOTEMPTY The directory contains files or subdirectories.

EROFS The directory to be removed is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

rmdir (BPX1RMD)

Chapter 2. Callable Service Descriptions 257

select/selectex (BPX1SEL) — Select on File Descriptors and
Message Queues

BPX1SEL
msgfd_count
read_list_length
read_list
write_list_length
write_list
exception_list_length
exception_list
timeout_pointer
ECB_pointer
user_option_field
return_value
return_code
reason_code

Purpose
Use the select/selectex (BPX1SEL) service to check the I/O status of multiple open file descriptors and
message queues. The file descriptors can be for character special files, pipes, sockets, or files.

Parameters
msgfd_count

(input,INT,4) is a variable for specifying the number of items to be checked. The first halfword (the
high-order 16 bits) indicates the number of message queues. The second halfword (the low-order 16
bits) indicates the number of file descriptors.

The number of message queues indicates the number of elements (queue IDs) in each of the arrays
contained in read_list, write_list, and exception_list. For example, if you specify a value of 10 in the
first halfword of msgfd_count, it is expected that read_list, write_list, and exception_list each contain
an array of 10 elements. If you specify a value of 0, it is assumed that no arrays are given and no
message queues are to be checked. The maximum number of message queues that you can specify is
32 767.

The number of file descriptors is the highest file descriptor that is being checked for status, plus 1.
For example, if you are interested in the I/O status of file descriptors 5 and 8, the second halfword of
msgfd_count should be 9. (Numbering of file descriptors begins with 0, so fd 8 is actually the 9th file
descriptor.) If you want to check file descriptors for status along with message queues, the highest file
descriptor you can specify is 2046.

read_list_length
(input,INT,4) is a variable for specifying the length of the read_list parameter. This length is the sum
of the length of the bit set specifying file descriptors, rounded up to a multiple of 4 bytes, and the
length of the array of message queue identifiers. When both file descriptors and message queues are
specified, this field should contain a value greater than 256 bytes. If 0 is specified, the read_list is not
checked by the service. The value can be in the range from 0 to 5000.

select/selectex (BPX1SEL)

258 z/VM: 7.3 OpenExtensions Callable Services Reference

read_list
(input/output,CHAR,read_list_length) is a variable for specifying a structure that contains the bit set
for the specified file descriptors and the array of message queue identifiers.

The bit set must be padded with extra bytes, if necessary, to round up its length to the next multiple of
4 bytes. The bits in the bit set should be turned on for the corresponding descriptors to be checked for
reading. The format of the bits can be specified with the user_option_field parameter. On return, the
service sets the bits for those descriptors that are ready for reading.

If read_list contains both a bit set and an array of message queue identifiers, the bit set must be 256
bytes in length. If only file descriptors are to be checked, the bit set can have any valid size.

Each element of the array of message queue identifiers is 4 bytes in length. Elements with a value of
-1 are acceptable and are ignored. On return, the service replaces message queue identifiers that do
not meet the criterion with a value of -1.

write_list_length
(input,INT,4) is a variable for specifying the length of the write_list parameter. This length is the sum
of the length of the bit set specifying file descriptors, rounded up to a multiple of 4 bytes, and the
length of the array of message queue identifiers. When both file descriptors and message queues are
specified, this field should contain a value greater than 256 bytes. If 0 is specified, the write_list is not
checked by the service. The value can be in the range from 0 to 5000.

write_list
(input/output,CHAR,write_list_length) is a variable for specifying a structure that contains the bit set
for the specified file descriptors and the array of message queue identifiers.

The bit set must be padded with extra bytes, if necessary, to round up its length to the next multiple
of 4 bytes. The bits in the bit set should be turned on for the corresponding descriptors to be checked
for writing. The format of the bits can be specified with the user_option_field parameter. On return, the
service sets the bits for those descriptors that are ready for writing.

If write_list contains both a bit set and an array of message queue identifiers, the bit set must be 256
bytes in length. If only file descriptors are to be checked, the bit set can have any valid size.

Each element of the array of message queue identifiers is 4 bytes in length. Elements with a value of
-1 are acceptable and are ignored. On return, the service replaces message queue identifiers that do
not meet the criterion with a value of -1.

exception_list_length
(input,INT,4) is a variable for specifying the length of the exception_list parameter. This length is the
sum of the length of the bit set specifying file descriptors, rounded up to a multiple of 4 bytes, and the
length of the array of message queue identifiers. When both file descriptors and message queues are
specified, this field should contain a value greater than 256 bytes. If 0 is specified, the exception_list
is not checked by the service. The value can be in the range from 0 to 5000.

exception_list
(input/output,CHAR,exception_list_length) is a variable for specifying a structure that contains the bit
set for the specified file descriptors and the array of message queue identifiers.

The bit set must be padded with extra bytes, if necessary, to round up its length to the next multiple
of 4 bytes. The bits in the bit set should be turned on for the corresponding descriptors to be checked
for exceptions. The format of the bits can be specified with the user_option_field parameter. On return,
the service sets the bits for those descriptors that have had exceptions.

If exception_list contains both a bit set and an array of message queue identifiers, the bit set must be
256 bytes in length. If only file descriptors are to be checked, the bit set can have any valid size.

Each element of the array of message queue identifiers is 4 bytes in length. Elements with a value of
-1 are acceptable and will be ignored. On return, the service replaces message queue identifiers that
do not meet the criterion with a value of -1.

timeout_pointer
(input,PTR,4) is a variable for specifying a pointer to a timeout value that controls how the file
descriptors are checked:

select/selectex (BPX1SEL)

Chapter 2. Callable Service Descriptions 259

0
Wait indefinitely. If the pointer is zero, the service waits (indefinitely) until one of the selected
descriptors is ready.

>0
Wait for a specified period of time. If timeout_pointer is greater than zero, it points to the
location of the timeout value. The service waits the amount of time specified in the timeout value
for one of the conditions to occur before returning to the caller. The timeout value is mapped by
the BPXYSELT macro (see “BPXYSELT — Map the Timeout Value for the select/selectex Service”
on page 458) and consists of two fields, seconds and microseconds:

• Microseconds can be a value in the range from 0 to 1,000,000. (1,000,000 microseconds equal
1 second.)

• Seconds can be a value in the range from 0 to 2,147,483. (2,147,483 seconds equal
approximately 24.85 days.)

Notes:

1. Microseconds and seconds are added together to determine the timeout value.
2. If the timeout value is more than 0 and less than 300 microseconds, the value is rounded up to

300 microseconds.
3. The maximum time that can be specified is 2,147,483 seconds and 647,000 microseconds

(231-1 microseconds).
4. A timeout value of 0 means Do not wait. The service returns immediately after checking the

selected descriptors; no waiting is done.

ECB_pointer
(input,PRT,4) is a variable for specifying one of the following:

• A pointer to a user event control block (ECB). The high-order bit in ECB_pointer must be set to B'0'.
• A pointer to a list of ECBs. The high-order bit in ECB_pointer must be set to B'1'.
• 0, indicating no ECBs are specified.

user_option_field
(input/output,INT,4) is a variable for specifying the format of the read, write, and exception bit lists.

On input, specify one of the following (the values are defined in the BPXYSEL macro; “BPXYSEL — Map
Options for the select/selectex Service” on page 456):

• SEL#BITSBACKWARD – Bit-backward order by word

Bits are read from right to left within each word, with the low-order bit on the right and the
high-order bit on the left. For example:

 Word 1 Word 2 Word 3
 ------------------- ----------------------- ----------------------
 31 30 29...3 2 1 0 63 62 61...35 34 33 32 95 94 93...67 66 65 64
 ------------------- ----------------------- ----------------------

Note: In this example, file descriptor 0 is represented by the last bit on the right in Word 1.
• SEL#BITSFORWARD – Bit-forward order by word

Bits are read from left to right within each word, with the low-order bit on the left and the high-order
bit on the right. For example:

 Word 1 Word 2 Word 3
------------------- ----------------------- ----------------------
0 1 2 3...29 30 31 32 33 34 35...61 62 63 64 65 66.67...93 94 95
------------------- ----------------------- ----------------------

Note: In this example, file descriptor 0 is represented by the first bit on the left in Word 1.

On output, the service returns one of the following:

select/selectex (BPX1SEL)

260 z/VM: 7.3 OpenExtensions Callable Services Reference

• -1, indicating that all the selected file descriptors supported the select service.
• The first selected file descriptor that did not support the select service.

return_value
(output,INT,4) is a variable where the service returns one of the following:

• The number of read, write, and exceptional conditions that were found among the specified
message queues and file descriptors. The first halfword indicates the number of exceptions in the
messages queues; the second halfword indicates the number of exceptions in the file descriptors. If
the value for the message queues exceeds 32 767, only 32 767 is reported. This is to ensure that
return_value does not appear to be negative. Should the value for the file descriptors be greater than
65 535, only 65 535 is reported.

• 0, if the timeout value expired before any of the conditions were met.
• -1, if the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The bit set for the read_list, write_list, and exception_list is a string of bits such that if X is an element

of the set, the bit that represents X is set to 1. For example, if descriptor 1 is to be checked, bit 1
should be turned on in the bit set. Here is how that byte would look:

• Bit-forward order: B'01000000'.
• Bit-backward order: B'00000010'.

2. When a positive value is specified for the number of file descriptors:

• At least one bit set (read, write, or exception) must be specified, and its length must be large enough
(rounded up to the next multiple of 4) to contain the bit that represents the largest descriptor you
specified.

• If more than one bit set is specified, each bit set must be the same length.

For example, if you want to check the read status for file descriptor 59 and the write status for file
descriptor 6:

a. Number of fds = 60 (the largest fd plus 1)
b. read_list_length = 8
c. read_list = the bit representing fd 59 is set on (see user_option_field to determine which bit that

would be)
d. write_list_length = 8
e. write_list = the bit representing fd 6 is set on (see user_option_field to determine which bit that

would be)
f. exception_list_length = 0

3. When both the first and second halfwords of msgsfd_count contain a positive value, read_list,
write_list, and exception_list must each contain both a bit set and an array of message queue
identifiers, unless a value of 0 is specified for its length. The following example illustrates what you
must do.

Suppose you want to check the read status for file descriptors 3 and 5 and the write status for
message queues whose identifiers are 7 and 8:

a. Number of fds = 6 (the largest fd plus 1)

select/selectex (BPX1SEL)

Chapter 2. Callable Service Descriptions 261

b. Number of message queues = 2
c. read_list_length = 264 (256 byte bit set length + 8 byte array length)
d. read_list = the 256-byte bit set with appropriate bits set on for fds 3 and 5, followed by a two-

element array that contains the value of -1 in both elements.
e. write_list_length = 264 (same length as for read)
f. write_list = the 256-byte bit set with all its bits set off followed by the two-element array that

contains the numbers 7 and 8.
g. exception_list_length = 0

4. You can use the select service as a timer-only function by specifying zero for either or both of the
following:

• msgfd_count
• read_list_length, write_list_length, and exception_list_length

and by specifying timeout_pointer and a timeout value. If you specify zero for timeout_pointer, the
select service blocks forever. If you specify a timeout value of zero, no blocking is done, and the select
service returns immediately to the caller.

5. You can also specify ECB_pointer with the timer-only function.
6. Regular files are always ready for reading and writing.

Example

The following code issues a select for a previously connected socket. SOCKDESC was returned when the
socket was created. In this case, the select is for a single socket for read, write and exception. Do not
request waiting. There are no ECBs. This example follows the rules of reentrancy. For linkage information,
see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structures,
see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465 and “BPXYSEL — Map Options for the select/selectex Service” on page 456.

 SPACE ,
*
 MVC SELLIST(4),=XL4'80000000' +
 Turn on the bit representing sd 0
*
 CALL BPX1SEL, Select on a set of sockets +
 (SOCKDESC+1, Input: Number of file descriptors +
 =A(4), Input: Length of read list +
 SELLIST, Input: Address of read list +
 =A(4), Input: Length of write list +
 SELLIST, Input: Address of write list +
 =A(4), Input: Length of exception list +
 SELLIST, Input: Address of exception list +
 =A(0), Input: Timeout value +
 =A(0), Input: ECB pointer +
 =A(SEL#BITSFORWARD), Input: Option - bits forward +
 RETVAL, Return value: Num found, 0, or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return_code Explanation

ECANCELED The asynchronous I/O request was canceled. The following reason code can
accompany this return code: JREcbError.

ECMSERR A CMS environmental or internal error has occurred. The following reason
code can accompany this return code: JRInternalError.

select/selectex (BPX1SEL)

262 z/VM: 7.3 OpenExtensions Callable Services Reference

Return_code Explanation

ECMSSTORAGE There was a storage management error. The following reason codes can
accompany this return code: JRStorageObtainErr, JRStorageReleaseErr.

EINTR The select service request was interrupted by a signal for the caller.

EINVAL One of the input parameters was not correct. The following reason
codes can accompany this return code: JREcbError2, JRInvUserOp,
JRListLenBad, JRListTooShort, JRMsOutOfRange, JRNoFdsTooManyQIds,
JRNoLists, JRSecOutOfRange, JRTooManyFds.

EIO There was an I/O error.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

select/selectex (BPX1SEL)

Chapter 2. Callable Service Descriptions 263

semctl (BPX1SCT) — Perform Semaphore Control Operations

BPX1SCT
semaphore_set_ID
semaphore_number
command
value_or_address
return_value
return_code
reason_code

Purpose
Use the semctl (BPX1SCT) service to do various semaphore control operations, including getting status,
changing variables, and removing a semaphore set from the system.

Parameters
semaphore_set_ID

(input,INT,4) is a variable for specifying the semaphore set identifier. This value is returned by the
semget (BPX1SGT) service.

semaphore_number
(input,INT,4) is a variable for specifying the number of a particular semaphore in semaphore_set_ID.
This value can range from zero to one less than the number of semaphores in the semaphore set. Use
this parameter with the SEM_GETVAL, SEM_SETVAL, SEM_GETNCNT, or SEM_GETZCNT command.
The parameter is ignored for all other commands.

command
(input,INT,4) is a variable for specifying a command that identifies the operation to be performed.
The SEM_ command constants are defined in the BPXYSEM macro. The IPC_ command constants are
defined in the BPXYIPCP macro. See “BPXYSEM — Map Interprocess Communications Semaphores”
on page 459 and “BPXYIPCP — Map Interprocess Communications Permissions” on page 431. The
possible commands are:
SEM_GETVAL

Gets the value of semval for the specified semaphore_number. The current process must have
read permission.

SEM_SETVAL
Sets the value of semval for the specified semaphore_number to the value contained in the
value_or_address parameter. The current process must have alter permission.

When the service completes successfully, the semadj values corresponding to the specified
semaphore_number for all processes are cleared.

SEM_GETPID
Gets the process ID of the most recent process to update the specified semaphore_number. The
current process must have read permission.

SEM_GETNCNT
Gets the number of threads waiting for the semval of the specified semaphore_number to become
greater than the current value. The current process must have read permission.

SEM_GETZCNT
Gets the number of threads waiting for the semval of the specified semaphore_number to become
zero. The current process must have read permission.

semctl (BPX1SCT)

264 z/VM: 7.3 OpenExtensions Callable Services Reference

SEM_GETALL
Gets the semval for all the semaphores in semaphore_set_ID and stores them into the array of
halfwords pointed to by the address contained in the value_or_address parameter. The current
process must have read permission.

It is the responsibility of the caller to ensure that the storage allocated for the array is large
enough to hold all the semaphore elements. The number of semaphore values stored into the
array is equal to the value contained in the SEM_NSEMS field of the SEMID_DS data structure in
the BPXYSEM macro.

SEM_SETALL
Sets the semval for all the semaphores in semaphore_set_ID, according to the values contained
in the array pointed to by the value_or_address parameter. The current process must have alter
permission. Each value specified in the array must be either zero or positive. When this command
is successfully executed, the semadj values corresponding to each of the semaphores in this
semaphore set in all processes are cleared.

It is the responsibility of the caller to ensure that the storage allocated for the array is large
enough for all the semaphore elements. The number of semaphore values read from the array
is equal to the value contained in the SEM_NSEMS field of the SEMID_DS data structure in the
BPXYSEM macro.

IPC_STAT
Obtains status information about semaphore_set_ID. The current process must have read
permission. This information is stored in the buffer pointed to by the value_or_address parameter
and mapped by the SEMID_DS data structure in the BPXYSEM macro.

IPC_SET
Sets the values of IPC_UID, IPC_GID, and IPC_MODE for semaphore_set_ID. The values to be
set are taken from the SEMID_DS data structure in the buffer pointed to by the value_or_address
parameter. You can specify any value for IPC_UID and IPC_GID. For IPC_MODE, you can specify
only the mode bits defined for the semaphore_flags parameter of the semget (BPX1SGT) service.

Note: The IPC_ values set with this command are defined in the BPXYIPCP macro and mapped
into the SEM_PERM field of the SEMID_DS structure in the BPXYSEM macro. In addition, the
IPC_MODE field in BPXYIPCP is mapped by the BPXYMODE macro.

IPC_RMID
Removes semaphore_set_ID from the system. This operation removes the identifier and destroys
the set of semaphores and the SEMID_DS data structure associated with it.

The IPC_SET and IPC_RMID operations can be performed only by a process that has either
appropriate privileges or an effective user ID equal to the value of IPC_CUID or IPC_UID in the
SEMID_DS data structure associated with semaphore_set_ID.

For the SEMID_DS data structure, see “BPXYSEM — Map Interprocess Communications Semaphores”
on page 459.

value_or_address
(input,INT,4) is a variable for specifying a value, an address, or a null, depending on the
specified command. Table 3 on page 265 shows the relationship of the semaphore_number,
command, value_or_address, and return_value parameters. (The return value shown is for successful
completion.) A dash "—" in the table means the parameter is ignored.

Table 3. Contents of value_or_address Parameter

semaphore_number command value_or_address return_value

semaphore number GETVAL — current semval

semaphore number SETVAL new semval 0

semaphore number GETPID — last sempid

semaphore number GETNCNT — semncnt

semctl (BPX1SCT)

Chapter 2. Callable Service Descriptions 265

Table 3. Contents of value_or_address Parameter (continued)

semaphore_number command value_or_address return_value

semaphore number GETZCNT — semzcnt

— GETALL address of array 0

— SETALL address of array 0

— STAT address of buffer 0

— SET address of buffer 0

— RMID — 0

return_value
(output,INT,4) is a variable where the service returns a value or 0 (see Table 3 on page 265) if the
request is successful, or -1 if it is unsuccessful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Each semaphore in the semaphore set is represented by an anonymous data structure defined as

follows:
semval

unsigned halfword semaphore value
sempid

process ID of the last operation
semncnt

unsigned halfword number of processes waiting for semval to become greater than the current
value

semzcnt
unsigned halfword number of processes waiting for semval to become zero

2. A semadj variable is maintained by the process for all of its threads. This adjustment value allows the
kernel to restore semaphore values in the event a process terminates before it can issue a semop
(BPX1SOP) call. Maintaining semadj values for process termination is the application's responsibility.

3. The IPC_SET operation can change permissions, which may affect the ability of a thread to use the
semaphore callable services.

4. When an IPC_RMID command is processed, all waiting threads regain control with a return value of -1,
a return code of EIDRM, and a reason code of JRIpcRemoved.

5. For an IPC_RMID operation, the removal of the semaphore set will be complete by the time control is
returned to the caller.

Characteristics and Restrictions
The invoker is restricted by the ownership, read, and read-write permissions defined by the semget
(BPX1SGT) and semctl (BPX1SCT) services.

semctl (BPX1SCT)

266 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code retrieves the PID of the last process to update semaphore 4 from the
SEM_ID semaphore set. For the data structure, see “BPXYSEM — Map Interprocess Communications
Semaphores” on page 459.

 LA R15,BUFFERA
 ST R15,BUFA
 MVC SEM_NUMBER(4),4 Semaphore number 4 in set
 SPACE ,
 CALL BPX1SCT, Semaphore control operations +
 (SEM_ID, Input: Semaphore set ID +
 SEM_NUMBER, Input: Semaphore number (0 based) +
 =A(SEM_GETPID), Input: Action to take BPXYSEM +
 BUFA, Input: Value | Buffer | Array | 0 +
 RETVAL, Return value: 0, -1 or value +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Operation permission (read or alter) is denied to the calling process.

The following reason code can accompany this return code: JRIpcDenied.

EFAULT The value_or_address parameter specified an address that caused the service
to program check.

The following reason code can accompany this return code: JRBadAddress.

EINVAL One of the following conditions is true:

• semaphore_set_ID is not a valid semaphore set identifier.
• semaphore_number is less than zero, or greater than or equal to the number

of semaphores in this set.
• command is not a valid command.
• The mode bits set by the IPC_SET command were not valid.

The following reason codes can accompany this return code: JRIpcBadFlags,
JRIpcBadID, JRSema4BadSemN, JRBadEntryCode.

EPERM The IPC_SET or IPC_RMID command was specified, but the caller has
neither appropriate privileges nor an effective user ID equal to the value
of IPC_CUID or IPC_UID in the SEMID_DS data structure associated with
semaphore_set_ID.

The following reason code can accompany this return code: JRIpcDenied.

ERANGE The value specified in the value_or_address parameter with the SEM_SETVAL
or SEM_SETALL command exceeds the system-imposed maximum defined by
SEM#MAX_VAL in the BPXYSEM macro.

The following reason code can accompany this return code:
JRSema4BadValue.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

semctl (BPX1SCT)

Chapter 2. Callable Service Descriptions 267

Related Services
Other callable services related to this service are:

• “cmsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 38
• “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 269
• “semop (BPX1SOP) — Perform Semaphore Serialization Operations” on page 273

semctl (BPX1SCT)

268 z/VM: 7.3 OpenExtensions Callable Services Reference

semget (BPX1SGT) — Create or Find a Set of Semaphores

BPX1SGT
key
number_of_semaphores
semaphore_flags
return_value
return_code
reason_code

Purpose
Use the semget (BPX1SGT) service to create a new semaphore set or find an existing semaphore set (if
the user is allowed to access it). The service returns a system-assigned semaphore set identifier.

Parameters
key

(input,INT,4) is a variable for specifying a user-defined value that identifies a semaphore set. The key
serves as a lookup value to determine if an associated semaphore set identifier already exists. If an
associated semaphore set identifier does not already exist, the key value becomes associated with the
semaphore set identifier created by this request.

The reserved key value IPC_PRIVATE may also be specified. IPC_PRIVATE is sometimes used when a
process does not want to share a semaphore set or when it wants to privately control access to the
semaphore set by other processes. The IPC_PRIVATE constant is defined in the BPXYIPCP macro. See
“BPXYIPCP — Map Interprocess Communications Permissions” on page 431.

number_of_semaphores
(input,INT,4) is a variable for specifying the number of semaphores to be allocated to this set. The
maximum value for this variable is controlled by the installation. If the application knows that the
semaphore set associated with key already exists, a value of zero may be specified; this value must
not be greater than the number of semaphores in the existing set. A value of zero is not allowed with
the IPC_PRIVATE key or the IPC_CREAT flag.

semaphore_flags
(input,INT,4) is a variable for specifying the type of action to be performed and the permissions to
be assigned. Valid values for this parameter include any combination of the following flags (additional
bits will cause an EINVAL return code):

• These flags are defined in the BPXYIPCP macro and the values are mapped onto the S_TYPE field in
the BPXYMODE macro:
IPC_CREAT

Creates a semaphore set if the specified key is not associated with a semaphore set identifier.
IPC_CREAT is ignored when the IPC_PRIVATE reserved key is specified.

IPC_EXCL
Causes the service to fail if the specified key has an associated semaphore set identifier.
IPC_EXCL is ignored when the IPC_PRIVATE reserved key is specified or the IPC_CREAT flag
is not set.

• These flags are defined in the BPXYMODE macro and are a subset of the access permissions that
apply to files:
S_IRUSR

Permits the process that owns the semaphore set to read it.

semget (BPX1SGT)

Chapter 2. Callable Service Descriptions 269

S_IWUSR
Permits the process that owns the semaphore set to alter it.

S_IRGRP
Permits the group associated with the semaphore set to read it.

S_IWGRP
Permits the group associated with the semaphore set to alter it.

S_IROTH
Permits others to read the semaphore set.

S_IWOTH
Permits others to alter the semaphore set.

See “BPXYIPCP — Map Interprocess Communications Permissions” on page 431 and “BPXYMODE —
Map Mode Constants” on page 437.

return_value
(output,INT,4) is a variable where the service returns the semaphore set identifier associated with key
if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Each semaphore in the semaphore set is represented by an anonymous data structure defined as

follows:
semval

unsigned halfword semaphore value
sempid

process ID of the last operation
semncnt

unsigned halfword number of processes waiting for semval to become greater than the current
value

semzcnt
unsigned halfword number of processes waiting for semval to become zero

2. When a semaphore set is created, the value of semval for all semaphores is set to zero.
3. As long as a thread knows the semaphore set identifier and access is permitted, the thread can issue

semctl (BPX1SCT) or semop (BPX1SOP) calls for that semaphore set, and semget is not needed.
4. This service creates a data structure defined by SEMID_DS and an array containing the number of

semaphores specified, if either of the following is true:

• IPC_PRIVATE is specified in the key parameter.
• The IPC_CREAT flag is set, and the specified key value does not already have a semaphore set
identifier associated with it.

The SEMID_DS data structure is defined in the BPXYSEM macro, and some values are mapped into
it from the BPXYIPCP macro. See “BPXYSEM — Map Interprocess Communications Semaphores” on
page 459 and “BPXYIPCP — Map Interprocess Communications Permissions” on page 431.

5. Upon creation, the SEMID_DS data structure is initialized as follows:

• IPC_CUID and IPC_UID are set to the effective user ID of the calling process.
• IPC_CGID and IPC_GID are set to the effective group ID of the calling process.

semget (BPX1SGT)

270 z/VM: 7.3 OpenExtensions Callable Services Reference

• The low-order 9-bits of IPC_MODE are equal to the low-order 9-bits of the semaphore_flags
parameter.

• SEM_NSEMS is set equal to the value of the number_of_semaphores parameter.
• SEM_OTIME is set to 0 and SEM_CTIME is set to the current time.

6. If the key parameter is not IPC_PRIVATE, and the IPC_EXCL flag is not set, and a semaphore set
identifier already exists for the specified key, the value of the number_of_semaphores parameter may
not exceed the number of semaphores specified on the semget request that created the semaphore
set.

7. The semaphore set is removed from the system by calling the semctl (BPX1SCT) service with the
IPC_RMID command.

8. Users of semaphore sets are responsible for removing them when they are no longer needed. Failure
to do so will tie up system resources.

Characteristics and Restrictions
There is a maximum number of semaphore sets and semaphores allowed in the system.

The invoker is restricted by the ownership, read, and read-write permissions for the specified semaphore
set as defined by the semget (BPX1SGT) and semctl (BPX1SCT) services.

Example

The following code creates a private set of 10 semaphores. For the data structure, see “BPXYSEM — Map
Interprocess Communications Semaphores” on page 459.

 MVC KEY(4),=A(IPC_PRIVATE) Local to this family
 MVI S_TYPE,IPC_CREAT+IPC_EXCL Must not already exist
 MVI S_MODE1,0 Not used
 MVI S_MODE2,S_IRUSR All read and write permissions
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
 MVC NUMB_SEMS(4),=A(10) 10 semaphores this set
 SPACE ,
 CALL BPX1SGT, Create a set of semaphores +
 (KEY, Input: Semaphore key +
 NUMB_SEMS, Input: Number semaphores in set +
 S_MODE, Input: Flags BPXYMODE/BPXYIPCP +
 RETVAL, Return value: -1 or Semaphore ID +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 ICM R15,B'1111',RETVAL Test return value
 BNP PSEUDO Branch on semget failure
 ST R15,SEM_ID Store SEM_ID associated with key

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES A semaphore set identifier exists for the specified key, but access permission,
as specified by the low-order 9-bits of the semaphore_flags parameter (the S_
flags) is not granted.

The following reason code can accompany this return code: JRIpcDenied.

EEXIST A semaphore set identifier exists for the specified key, and the IPC_CREAT
and IPC_EXCL flags are both set.

The following reason code can accompany this return code: JRIpcExists.

semget (BPX1SGT)

Chapter 2. Callable Service Descriptions 271

Return Code Explanation

EINVAL One or more of the following conditions exist:

• number_of_semaphores is not valid because:

– A semaphore set identifier exists for the specified key, and
number_of_semaphores exceeds the number of semaphores previously
defined.

– number_of_semaphores is zero.
– number_of_semaphores exceeds the system limit.

• semaphore_flags includes bits not supported by this service.

The following reason codes can accompany this return
code: JRSema4BadNSems, JRSema4ZeroNSems, JRSema4BigNSems,
JRIpcBadFlags.

ENOENT A semaphore set identifier does not exist for the specified key, and the
IPC_CREAT flag is not set.

The following reason code can accompany this return code: JRIpcNoExists.

ENOSPC A semaphore set is to be created, but the system-imposed limit on the
maximum number of semaphore set identifiers allocated system-wide would
be exceeded.

The following reason code can accompany this return code: JRIpcMaxIDs.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “w_getipc (BPX1GET) — Query Interprocess Communications” on page 391
• “semctl (BPX1SCT) — Perform Semaphore Control Operations” on page 264
• “semop (BPX1SOP) — Perform Semaphore Serialization Operations” on page 273

semget (BPX1SGT)

272 z/VM: 7.3 OpenExtensions Callable Services Reference

semop (BPX1SOP) — Perform Semaphore Serialization Operations

BPX1SOP
semaphore_set_ID
semaphore_operations
number_of_semaphore_operations
return_value
return_code
reason_code

Purpose
Use the semop (BPX1SOP) service to perform a group of semaphore operations atomically.

Parameters
semaphore_set_ID

(input,INT,2) is a variable for specifying the semaphore set identifier.
semaphore_operations

(input,INT,4) is a variable for specifying the address of an array of data structures mapped
by SEM_BUF_ELE in the BPXYSEM macro. See “BPXYSEM — Map Interprocess Communications
Semaphores” on page 459. Each SEM_BUF_ELE element contains the following:
SEM_NUM

This is a halfword semaphore number in the set identified by semaphore_set_ID. References
to the semval, sempid, semncnt, and semzcnt values are to this element in the semaphore set.
(See usage note “1” on page 274 for definitions of these terms.) SEM_NUM can range from 0 to
number_of_semaphores - 1.

SEM_OP
This is a signed halfword with three different operations for modifying the semval for the
semaphore identified by SEM_NUM:
SEM_OP < 0

Evaluates semval + SEM_OP (remember that SEM_OP is negative in this case). If the operation
yields a negative number, the operation either returns to the caller (EAGAIN) or suspends
execution of the calling thread until the operation yields a non-negative number. The semncnt
will be incremented for each thread waiting and decremented when waiting is complete. When
complete, semval = semval + SEM_OP.

SEM_OP > 0
Sets semval = semval + SEM_OP.

SEM_OP = 0
Tests the semval. If it is not zero, the operation either returns to the caller (EAGAIN) or
suspends execution of the calling thread until semval=0. The semzcnt will be incremented for
each thread waiting and decremented when waiting is complete.

All updates to the semval for all of the semaphores in the set are made atomically when this
service completes successfully. Partial updates to the semval are not performed.

SEM_FLGS
This field contains the IPC_NOWAIT and SEM_UNDO bits. IPC_NOWAIT causes SEM_OP=0 and
SEM_OP<0 to return immediately with a return code of EAGAIN if the condition cannot be met;
otherwise, processing is suspended. SEM_UNDO instructs the process to maintain an adjustment
value for SEM_OP ¬= 0.

semop (BPX1SOP)

Chapter 2. Callable Service Descriptions 273

number_of_semaphore_operations
(input,INT,4) is a variable for specifying the number of SEM_BUF_ELE elements in the array located at
semaphore_operations. A value of zero up to the maximum allowed by the system may be specified.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful (all of the
SEM_OP operations were performed), or -1 if it is unsuccessful (none of the SEM_OP operations
were performed).

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Each semaphore in the semaphore set is represented by an anonymous data structure defined as

follows:
semval

unsigned halfword semaphore value
sempid

process ID of the last operation
semncnt

unsigned halfword number of processes waiting for semval to become greater than the current
value

semzcnt
unsigned halfword number of processes waiting for semval to become zero

2. A nonzero SEM_OP value requires write permission (or an EACCES return code results).
3. A zero SEM_OP value requires read permission (or an EACCES return code results).
4. Upon successful completion, sempid will equal the process ID of the calling process.
5. Waiters will be served on a FIFO basis.
6. Waiting is done on a thread basis. Multiple threads (even within a single process) could be waiting on

the same semaphore.
7. Adjustments are maintained on a process basis and can be changed by threads outside or within the

process.
8. Within an array of semaphore operations, either all of the operations or none of the operations will be

performed.
9. Incorrect usage of semaphores may result in the application being deadlocked and waiting forever.

Techniques such as designing semaphore hierarchy so that the semaphores are obtained in a specific
order will avoid deadlocks.

10. If the number_of_semaphore_operations is zero, the service returns successfully with no semaphore
operation being performed.

Characteristics and Restrictions
The invoker is restricted by ownership, read, and read-write permissions defined by the semget
(BPX1SGT) and semctl (BPX1SCT) services.

semop (BPX1SOP)

274 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code retrieves the PID of the last process to update semaphore 4 from the
SEM_ID semaphore set. For the data structure, see “BPXYSEM — Map Interprocess Communications
Semaphores” on page 459.

 LA R5,BUFFERA ->Utility buffer
 ST R5,BUFA
 USING SEM_BUF_ELE,R5 ->1st SEM_BUF_ELE
 MVC SEM_NUM(2),=AL2(0) Semaphore number 0
 MVC SEM_OP(2),=AL2(-1) take the resource
 MVC SEM_FLG(2),=AL2(SEM_UNDO) flags (undo,wait)
 LA R5,SEM#BUFLEN(,R5) ->next SEM_BUF_ELE
 MVC SEM_NUM(2),=AL2(2) number 2
 MVC SEM_OP(2),=AL2(1) release the resource
 MVC SEM_FLG(2),=AL2(IPC_NOWAIT) flags (nowait)
 LA R5,SEM#BUFLEN(,R5) ->next SEM_BUF_ELE
 MVC SEM_NUM(2),=AL2(8) number 8
 MVC SEM_OP(2),=AL2(0) test for no resource
 MVC SEM_FLG(2),=AL2(0) flags (wait)
 SPACE ,
 MVC NUMB_SEM_OPS(4),=AL2(3) number of SEM_BUF_ELE in BUFFERA
 SPACE ,
 CALL BPX1SOP, Semaphore control operations +
 (SEM_ID, Input: Semaphore set ID +
 BUFA, Input: ->SEM_BUF_ELE BPXYSEM +
 NUMB_SEM_OPS, Input: Action to take +
 RETVAL, Return value: 0, -1 or value +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCESS Permission is denied.

The following reason code can accompany this return code: JRIpcDenied.

EAGAIN The operation would result in suspension of the calling process, but the
NOWAIT flag was specified.

The following reason code can accompany this return code: JRIpcRetry.

EDEADLK The combination of operations can never be satisfied. This condition is
detected by analyzing the operations requested and the system maximums;
it does not include interactions with other threads. For example, an operation
could add 1 to a semaphore, and a later operation in the same SEM_BUF
could test it for zero.

The following reason code can accompany this return code: JRDeadlock.

EFAULT The semaphore_operations parameter specified an address that caused the
service to program check.

The following reason code can accompany this return code: JRBadAddress.

EFBIG SEM_NUM exceeds number_of_semaphores - 1.

The following reason code can accompany this return code:
JRSema4BadSemN.

EIDRM semaphore_set_ID was removed from the system while the invoker was
waiting.

The following reason code can accompany this return code: JRIpcRemoved.

semop (BPX1SOP)

Chapter 2. Callable Service Descriptions 275

Return Code Explanation

EINTR The service was interrupted by a signal.

The following reason code can accompany this return code: JRIpcSignaled.

EINVAL The semaphore_set_ID does not represent a semaphore set.

The following reason code can accompany this return code: JRIpcBadID.

ENOSPC The space allotted for all semaphore data would be exceeded by the addition
of the UNDO structure for this request.

The following reason code can accompany this return code:
JRSemStorageLimit.

ERANGE An operation would cause semval or semadj to overflow the system-
imposed limit. These system limits are defined in the SEM#MAX_VAL and
SEM#MAX_ADJ fields of the BPXYSEM macro.

The following reason codes can accompany this return code:
JRSema4BadValue, JRSema4BadAdj.

E2BIG number_of_semaphore_operations exceeds the maximum allowed by the
system.

The following reason code can accompany this return code:
JRSema4BadNOps.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “cmsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 38
• “semctl (BPX1SCT) — Perform Semaphore Control Operations” on page 264
• “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 269

semop (BPX1SOP)

276 z/VM: 7.3 OpenExtensions Callable Services Reference

send (BPX1SND) — Send Data on a Socket

BPX1SND
socket_descriptor
buffer_length
buffer
buffer_ALET
flags
return_value
return_code
reason_code

Purpose
Use the send (BPX1SND) service to send data on a socket.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
buffer_length

(input,INT,4) is a variable for specifying the length of the buffer parameter.
buffer

(input,CHAR,buffer_length) is a variable for specifying the data to be sent.
buffer_ALET

(input,INT,4) is a variable for specifying the access list entry token (ALET) for buffer.

Note: This parameter is ignored.

flags
(input,INT,4) is a variable for specifying information about how the data is to be sent. This field is
mapped by the BPXYMSGF macro. See “BPXYMSGF — Map the Message Flags” on page 441.

return_value
(output,INT,4) is a variable where the service returns one of the following:

• The number of bytes sent from the buffer, if the request is successful.
• 0, indicating the connection is closed.
• -1, if the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The socket must be connected.

send (BPX1SND)

Chapter 2. Callable Service Descriptions 277

2. If there is not enough room to write the data to the output buffer, the service either blocks waiting
for room, or returns an EWOULDBLOCK, depending on whether the socket is marked as blocking or
nonblocking.

Example

The following code issues a send for a socket. SOCKDESC was returned previously from a call to socket
(BPX1SOC). This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structures, see “BPXYSOCK
— Map the SOCKADDR Structure and Constants for Socket-Related Services” on page 465 and
“BPXYMSGF — Map the Message Flags” on page 441.

 MVC BUFLENA,=F'16'
 MVC BUFFERA(16),=CL16'Here is the data'
 SPACE ,
 CALL BPX1SND, Send data on a socket +
 (SOCKDESC, Input: Socket Descriptor +
 =A(L'BUFFERA), Input: Length of input buffer +
 BUFFERA, Input: Address of input buffer +
 PRIMARYALET, Input: Alet of input buffer +
 MSG_FLAGS, Input: Flags +
 RETVAL, Return value: Num bytes, 0, or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF socket_descriptor does not refer to a valid descriptor. The following reason
codes can accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer.

EINTR A signal interrupted the send before any data was written.

EIO There has been a network or transport failure. The following reason code can
accompany this return code: JRPrevSockError.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENOBUFS A buffer could not be obtained.

ENOTCONN The socket is not connected. The following reason code can accompany this
return code: JRSocketNotCon.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EPIPE An attempt was made to send to a socket that is shut down or closed.

This error also generates a SIGPIPE signal.

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.

EWOULDBLOCK The socket is marked nonblocking, and no space is available for data to be
written.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

send (BPX1SND)

278 z/VM: 7.3 OpenExtensions Callable Services Reference

Related Services
Other callable services related to this service are:

• “read (BPX1RED) — Read from a File or Socket” on page 228
• “readv (BPX1RDV) — Read Data and Store It in a Set of Buffers” on page 238
• “recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer” on page 243
• “recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer” on page 245
• “recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in Message Buffers” on page

248
• “sendmsg (BPX2SMS) — Send Messages on a Socket” on page 280
• “sendto (BPX1STO) — Send Data on a Socket” on page 283
• “write (BPX1WRT) — Write to a File or Socket” on page 401
• “writev (BPX1WRV) — Write Data from a Set of Buffers” on page 404

send (BPX1SND)

Chapter 2. Callable Service Descriptions 279

sendmsg (BPX2SMS) — Send Messages on a Socket

BPX2SMS
socket_descriptor
message_headers
flags
IOV_ALET
IOV_buffer_ALET
return_value
return_code
reason_code

Purpose
Use the sendmsg (BPX2SMS) service to send messages on a socket.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
message_headers

(input,CHAR,length of BPXYMSGH) is a variable for specifying the message headers. This field is
mapped by the BPXYMSGH macro. Each message header contains a pointer to an I/O vector structure,
which contains information about the buffers from which the messages are to be sent. The I/O vector
structure is mapped by the BPXYIOV macro. See “BPXYMSGH — Map the Message Headers” on page
443 and “BPXYIOV — Map the I/O Vector Structure” on page 430.

flags
(input,INT,4) is a variable for specifying information about how the data is to be sent. This field is
mapped by the BPXYMSGF macro. See “BPXYMSGF — Map the Message Flags” on page 441.

IOV_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for the I/O vector (IOV)
structure specified in message_headers.

Note: This parameter is ignored.

IOV_buffer_ALET
(input,INT,4) is a variable for specifying the ALET for the buffers that are pointed to by the IOV
structure in message_headers.

Note: This parameter is ignored.

return_value
(output,INT,4) is a variable where the service returns the number of bytes sent from the buffers if the
request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

sendmsg (BPX2SMS)

280 z/VM: 7.3 OpenExtensions Callable Services Reference

Usage Notes
1. The socket can be either connected or unconnected. For connected sockets, the sockaddr portion of

the msghdr structure is ignored.
2. If there is not enough room to write the data to an output buffer, the service either blocks waiting for

an output buffer to become available, or returns an EWOULDBLOCK, depending on whether the socket
is marked as blocking or nonblocking.

3. When sending IPv6 Raw packets to an IPv4 mapped address, the data must be a valid IPv4 datagram,
including the IPv4 header.

Example

The following code sends a message on a socket. SOCKDESC was returned from a previous call to
socket (BPX1SOC). This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structures, see “BPXYSOCK
— Map the SOCKADDR Structure and Constants for Socket-Related Services” on page 465, “BPXYIOV —
Map the I/O Vector Structure” on page 430, and “BPXYMSGF — Map the Message Flags” on page 441.

 XC MSGH,MSGH Clear msgh
 LA R2,SOCKADDR
 ST R2,MSGHNAMEPTR Store the address of sockaddr
 LA R2,SOCK#LEN+SOCK_SUN#LEN
 ST R2,MSGHNAMELEN
 LA R2,IOV
 ST R2,MSGHIOVPTR
 MVI MSGHIOVNUM,1
*
 LA R2,BUFFERA
 ST R2,IOV_BASE
 LA R2,16
 ST R2,IOV_LEN
 MVC BUFFERA(16),=CL16'Here is the data'
*
 CALL BPX2SMS, Send a message on a socket +
 (SOCKDESC, Input: Socket Descriptor +
 MSGH, Input: Address of BPXYMSGH +
 MSG_FLAGS, Input: Flags +
 PRIMARYALET, Input: Alet of the iov +
 PRIMARYALET, Input: Alet of the buffers in iov +
 RETVAL, Return value: Num bytes or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family that was specified in the message header is not the same
as the address family that owns the socket.

EBADF A file descriptor that was not valid was supplied. The following reason codes
can accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer.

EINTR A signal interrupted the sendmsg service before any data was written.

EINVAL One of the input parameters was incorrect. The following reason codes
can accompany this return code: JROutOfRange, JRSocketCallParmError,
JRSockNoName.

EIO There was an I/O error. The following reason code can accompany this return
code: JRPrevSockError.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

sendmsg (BPX2SMS)

Chapter 2. Callable Service Descriptions 281

Return Code Explanation

ENOBUFS A buffer could not be obtained.

ENOTCONN The socket was not connected. The following reason code can accompany this
return code: JRSocketNotCon.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EPIPE An attempt was made to send a message to a socket that is shut down or
closed.

This error also generates a SIGPIPE signal.

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.

EWOULDBLOCK The socket is marked nonblocking, and no space is available for data to be
written.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in Message Buffers” on page
248

sendmsg (BPX2SMS)

282 z/VM: 7.3 OpenExtensions Callable Services Reference

sendto (BPX1STO) — Send Data on a Socket

BPX1STO
socket_descriptor
buffer_length
buffer
buffer_ALET
flags
sockaddr_length
sockaddr
return_value
return_code
reason_code

Purpose
Use the sendto (BPX1STO) service to send data on a socket.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
buffer_length

(input,INT,4) is a variable for specifying the length of the buffer parameter.
buffer

(input,CHAR,buffer_length) is a variable for specifying the buffer from which the data is to be sent.
buffer_ALET

(input,INT,4) is a variable for specifying the access list entry token (ALET) for buffer.

Note: This parameter is ignored.

flags
(input,INT,4) is a variable for specifying information about how the data is to be sent. This field is
mapped by the BPXYMSGF macro. See “BPXYMSGF — Map the Message Flags” on page 441.

sockaddr_length
(input,INT,4) is a variable for specifying the length of the sockaddr parameter. This value should be
less than 4096 bytes (4KB).

sockaddr
(input,INT,sockaddr_length) is a variable for specifying the SOCKADDR structure containing the socket
address to which the data is to be sent. This field is mapped by the BPXYSOCK macro. See
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465. For connected sockets, this address is ignored.

return_value
(output,INT,4) is a variable where the service returns the number of bytes sent on the socket if the
request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

sendto (BPX1STO)

Chapter 2. Callable Service Descriptions 283

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. A datagram socket can be unconnected.
2. If the sending socket has no space to hold the message that is to be transmitted, the sendto

service either blocks waiting for an output buffer to become available, or returns an EWOULDBLOCK,
depending on whether the socket is marked blocking or nonblocking.

3. When sending IPv6 Raw packets to an IPv4 mapped address, the data must be a valid IPv4 datagram,
including the IPv4 header.

Example

The following code issues a sendto for a socket. SOCKDESC was returned from a previous call to
either socket (BPX1SOC) or accept (BPX1ACP). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structures, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465 and “BPXYMSGF — Map the Message Flags” on page 441.

 MVC BUFFERA(16),=CL16'Here is the data'
 LA R2,BUFFERA
 ST R2,IOV_BASE
 MVI IOV_LEN,16
 SPACE ,
 CALL BPX1STO, Send data to a socket +
 (SOCKDESC, Input: Socket Descriptor +
 =A(L'BUFFERA), Input: Length of the input buffer +
 BUFFERA, Input: Address of the input buffer+
 PRIMARYALET, Input: Alet of the input buffer +
 MSG_FLAGS, Input: Flags +
 =A(L'SOCKADDR), Input: Length of the socket addr +
 SOCKADDR, Input: The socket address +
 RETVAL, Return value: Num bytes or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family that was specified in the sockaddr is not the same address
family as the socket.

EBADF A file descriptor that was not valid was specified.The following reason codes
can accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer. The following reason code can accompany this
return code: JRSocketNotCon.

EINTR A signal interrupted the sendto service before any data was written.

EINVAL One of the input parameters was incorrect. The following reason codes can
accompany this return code: JRSocketCallParmError, JRSockNoName.

EIO There was an I/O error. The following reason code can accompany this return
code: JRPrevSockError.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENOBUFS A buffer could not be obtained.

sendto (BPX1STO)

284 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENOTCONN The socket was not connected. The following reason code can accompany this
return code: JRSocketNotCon.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EPIPE An attempt was made to send to a socket that is shut down or closed.

This error also generates a SIGPIPE signal.

EPROTOTYPE The address specifies a socket that is not the correct type for this request.

ESHUTDOWN There is no data to read on the socket, and it has been shut down for reading.

EWOULDBLOCK The socket is marked nonblocking, and no space is available for data to be
written.

The following are for AF_UNIX only:

Return Code Explanation

EACCES The process does not have search permission on a
component of the path prefix, or it does not have
write access to the named socket.

EIO An I/O error occurred while reading from or writing
to the file system.

ELOOP Too many symbolic links were encountered in
translating the path name in the socket address.

ENAMETOOLONG A component of a path name exceeded NAME_MAX
characters, or an entire path name exceeded
PATH_MAX characters.

ENOENT A component of the path name does not name an
existing file, or the path name is an empty string.

ENOTDIR A component of the path prefix of the path name in
the socket address is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “read (BPX1RED) — Read from a File or Socket” on page 228
• “readv (BPX1RDV) — Read Data and Store It in a Set of Buffers” on page 238
• “recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer” on page 243
• “recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer” on page 245
• “recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in Message Buffers” on page

248
• “send (BPX1SND) — Send Data on a Socket” on page 277
• “sendmsg (BPX2SMS) — Send Messages on a Socket” on page 280
• “write (BPX1WRT) — Write to a File or Socket” on page 401
• “writev (BPX1WRV) — Write Data from a Set of Buffers” on page 404

sendto (BPX1STO)

Chapter 2. Callable Service Descriptions 285

setegid (BPX1SEG) — Set the Effective Group ID

BPX1SEG
group_ID
return_value
return_code
reason_code

Purpose
Use the setegid (BPX1SEG) service to set the effective group ID (GID) of a process.

Parameters
group_ID

(input,INT,4) is a variable for specifying the group ID the calling process wishes to assume.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If group_ID is equal to the real group ID or saved set-group-ID of the process, the effective group ID is

set to group_ID.
2. If the calling process has the appropriate privileges, the effective group ID is set to group_ID. Refer to

“Authorization” on page 10 for information on appropriate privileges.
3. The setegid (BPX1SEG) service does not change any supplementary group IDs of the calling process.

Example

The following code sets the effective group ID of the invoker to 1. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551.

 MVC GROUPID,=XL4'00000001' Value of new effective ID
 SPACE ,
 CALL BPX1SEG, Set effective group ID +
 (GROUPID, Input: Group ID +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

setegid (BPX1SEG)

286 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ECMSERR A CMS error was detected during CP processing.

Either the POSIX communication area was not previously defined to CP, or the
active PID in the POSIX communication area was not allocated to the caller.
The following reason code can accompany this return code: JrInternalError.

ECPERR An error was detected during CP processing.

Either the parameter list passed to CP contained incorrect values, the
specified group ID was not found in the group database, or the group
database contained invalid data or was inaccessible. Consult the reason code
to determine the exact reason the error occurred. The following reason code
can accompany this return code: JrCPInternalError.

EINVAL The group_ID specified is invalid or undefined.

EPERM The process does not have the appropriate privileges to set the group ID.
Refer to “Authorization” on page 10 for information on appropriate privileges.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “getegid (BPX1GEG) — Get the Effective Group ID” on page 114
• “getgid (BPX1GID) — Get the Real Group ID” on page 116
• “setgid (BPX1SGI) — Set the Group ID” on page 290
• “setuid (BPX1SUI) — Set User IDs” on page 299.

setegid (BPX1SEG)

Chapter 2. Callable Service Descriptions 287

seteuid (BPX1SEU) — Set the Effective User ID

BPX1SEU
user_ID
return_value
return_code
reason_code

Purpose
Use the seteuid (BPX1SEU) service to set the effective user ID (UID) of a process.

Parameters
user_ID

(input,INT,4) is a variable for specifying the user ID the calling process wishes to assume.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
If user_ID is the same as the process's real user ID or saved set-user-ID, or the user has the appropriate
privilege, the seteuid (BPX1SEU) service sets the effective user ID to be the same as user_ID. See
“Authorization” on page 10.

Example

The following code sets the effective user ID of the invoker to 1. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551.

 MVC USERID,=XL4'00000001' Value of new effective user ID
 SPACE ,
 CALL BPX1SEU, Set effective user ID +
 (USERID, Input: User ID +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

seteuid (BPX1SEU)

288 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ECMSERR A CMS error was detected during CP processing.

Either the POSIX communication area was not previously defined to CP, or the
active PID in the POSIX communication area was not allocated to the caller.
The following reason code can accompany this return code: JrInternalError.

ECPERR An error was detected during CP processing.

Either the parameter list passed to CP contained incorrect values, the
specified user ID was not found in the user database, or the user database
contained invalid data or was inaccessible. Consult the reason code to
determine the exact reason the error occurred. The following reason code
can accompany this return code: JrCPInternalError.

EINVAL The user_ID specified is invalid or undefined.

EPERM The process does not have the appropriate privileges to set the user ID. See
“Authorization” on page 10.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “geteuid (BPX1GEU) — Get the Effective User ID” on page 115
• “getuid (BPX1GUI) — Get the Real User ID” on page 141
• “setuid (BPX1SUI) — Set User IDs” on page 299.

seteuid (BPX1SEU)

Chapter 2. Callable Service Descriptions 289

setgid (BPX1SGI) — Set the Group ID

BPX1SGI
group_ID
return_value
return_code
reason_code

Purpose
Use the setgid (BPX1SGI) service to set the real, effective, and saved-set group IDs (GIDs) for the calling
process.

Parameters
group_ID

(input,INT,4) is a variable for specifying the group ID the calling process wishes to assume.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If group_ID is equal to the real group ID or saved set-group-ID of the process, the effective group ID is

set to group_ID.
2. If the calling process has the appropriate privileges, then the real, saved set, and effective group IDs

are set to group_ID. See “Authorization” on page 10.
3. The setgid (BPX1SGI) service does not change any supplementary group IDs of the calling process.

Example

The following code sets the real, effective, and save group IDs to 1. The caller has an effective user UD of
0. This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

 MVC USERID,=XL4'00000001' Value of new group user ID
 SPACE ,
 CALL BPX1SGI, Set group ID +
 (GROUPID, Input: Group ID +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

setgid (BPX1SGI)

290 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ECMSERR A CMS error was detected during CP processing.

Either the POSIX communication area was not previously defined to CP, or the
active PID in the POSIX communication area was not allocated to the caller.
The following reason code can accompany this return code: JRInternalError.

ECPERR An error was detected during CP processing.

Either the parameter list passed to CP contained incorrect values, the
specified group ID was not found in the group database, or the group
database contained invalid data or was inaccessible.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRCPInternalError.

EINVAL The group_ID specified is invalid or undefined.

EPERM The process does not have the appropriate privileges to set the group ID. See
“Authorization” on page 10.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “getegid (BPX1GEG) — Get the Effective Group ID” on page 114
• “getgid (BPX1GID) — Get the Real Group ID” on page 116
• “setegid (BPX1SEG) — Set the Effective Group ID” on page 286
• “setuid (BPX1SUI) — Set User IDs” on page 299.

setgid (BPX1SGI)

Chapter 2. Callable Service Descriptions 291

setopen (BPX1VM6) — Perform OpenExtensions Platform Set
Functions

BPX1VM6
function_code
return_value
return_code
reason_code

Purpose
Use the setopen (BPX1VM6) service to set certain flags specific to the OpenExtensions platform without
creating a new POSIX process in the virtual machine.

Parameters
function_code

(input,INT,4) is a variable for specifying the function to be performed. This variable is mapped by the
BPXYVM6 macro. See “BPXYVM6 — Map the Function Code Values for the setopen Service” on page
483. The possible function codes are:

Function Code Meaning

VM6_EXECLEVEL_OFF Turn off the exec level processing flag so CMS will create a new
POSIX process when invoking an OpenExtensions service.

VM6_EXECLEVEL_ON Turn on the exec level processing flag so CMS will not create a new
POSIX process when invoking an OpenExtensions service.

return_value
(output,INT,4) is a variable where the service returns 0 if the request completes successfully, or -1 if
the request is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. OpenExtensions services make use of CMS Multitasking services. An application that uses

OpenExtensions services cannot issue OpenExtensions calls from interrupt handlers and cannot use
non-CMS Multitasking wait services.

Example

For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.
For the data structure, see “BPXYVM6 — Map the Function Code Values for the setopen Service” on page
483.

 LA R15,VM6_EXECLEVEL_ON
 ST R15,VMFUNC
 SPACE ,
 CALL BPX1VM6, Perform OpenExtensions set func +

setopen (BPX1VM6)

292 z/VM: 7.3 OpenExtensions Callable Services Reference

 (VMFUNC, Input: setopen, BPXYVM6 +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL The function_code parameter is incorrect.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

setopen (BPX1VM6)

Chapter 2. Callable Service Descriptions 293

setpgid (BPX1SPG) — Set a Process Group ID for Job Control

BPX1SPG
process_ID
process_group_ID
return_value
return_code
reason_code

Purpose
Use the setpgid (BPX1SPG) service to place the calling process or a child process of the calling process
in a process group. You identify the group by specifying a process group ID. You can assign a process to a
different group, or you can start a new group with that process as its leader.

Parameters
process_ID

(input,INT,4) is a variable for specifying the ID of the process to be placed in the process group. If the
ID is specified as 0, the system uses the process ID of the calling process.

process_group_ID
(input,INT,4) is a variable for specifying the ID of the process group where process_ID is assigned. If
the ID is specified as 0, the system uses the process group ID indicated by the process_ID parameter.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The process group ID to be assigned to the group must be within the calling process's session.
2. The process identified by the process_ID parameter:

• Must be the calling process or a child process of the calling process
• If it is a child process of the calling process, must not have successfully issued one of the exec()

functions or must not have been created by one of the spawn() functions
• Must be in the same session as the process that issued the service
• Cannot be the session leader.

3. You cannot use the setpgid service to set the process group ID for a child process created by the
spawn service, because spawn automatically invokes the exec service for the child. If you want to set
a process group ID for the child process that is different from the process group ID of the parent, you
must specify the process group ID for the child when you invoke spawn.

setpgid (BPX1SPG)

294 z/VM: 7.3 OpenExtensions Callable Services Reference

Characteristics and Restrictions
See the conditions described under return_code.

Example

The following code places the invoking process in its own process group (zeros indicate that the process
group ID is to be set to the process ID). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC PROCID,=A(0) Process ID - current to leader
 MVC GROUP,=A(0) Group ID - current to leader
 SPACE ,
 CALL BPX1SPG, Set process group ID for Job Ctl +
 (PROCID, Input: Process to be placed in grp+
 GROUP, Input: Target group +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The value of process_ID matches the process ID of a child of the calling
process, but the child either has successfully invoked one of the exec()
functions or was created by one of the spawn() functions.

Access to the target process was denied.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRSetpgidAfterSpawn.

EINVAL The process_group_ID parameter is less than zero or has some other
unsupported value.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNoSuchPid.

EPERM The calling process cannot change the process group ID of the specified
process.

Consult the reason code to determine the exact reason the error
occurred. The following reason codes can accompany this return code:
JRPidEQSessLeader, JRPidDifferentSession, and JrPgidDifferentSession.

ESRCH The specified process_ID is not that of the calling process nor of any of its
children.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRNoSuchPid
and JRNotDescendant.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

setpgid (BPX1SPG)

Chapter 2. Callable Service Descriptions 295

• “exec (BPX1EXC) — Run a Program” on page 72
• “getpgrp (BPX1GPG) — Get the Process Group ID” on page 129
• “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on page 297
• “tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID” on page 369.

setpgid (BPX1SPG)

296 z/VM: 7.3 OpenExtensions Callable Services Reference

setsid (BPX1SSI) — Create a Session and Set the Process Group ID

BPX1SSI
process_group_ID
return_code
reason_code

Purpose
Use the setsid (BPX1SSI) service to create a new session with the calling process as its session leader.
The caller becomes the process group leader of a new process group.

Parameters
process_group_ID

(output,INT,4) is a variable where, if successful, the service returns the process group ID of the new
group. The new process group ID is the same as the process ID of the caller.

If not successful in creating a new session, the service returns -1 as the process_group_ID value.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
process_group_ID is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
process_group_ID is -1.

Usage Note
The calling process does not have a controlling terminal.

Characteristics and Restrictions
The calling process must not already be a process group leader.

Example

The following code creates a session and a process group (and is the leader of both). This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 CALL BPX1SSI, Create session, set process grp ID+
 (RETVAL, Return value: -1 or new session ID+
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

setsid (BPX1SSI)

Chapter 2. Callable Service Descriptions 297

Return Code Explanation

EPERM The caller is already a process group leader, or the caller's process ID
matches the process group ID of some other process.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRCallerIsPgLeader.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 79
• “getpid (BPX1GPI) — Get the Process ID” on page 130
• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 294
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “spawn (BPX1SPN) — Spawn a Process” on page 333.

setsid (BPX1SSI)

298 z/VM: 7.3 OpenExtensions Callable Services Reference

setuid (BPX1SUI) — Set User IDs

BPX1SUI
user_ID
return_value
return_code
reason_code

Purpose
Use the setuid (BPX1SUI) service to set the real, effective, and saved set user IDs for the current process.

Parameters
user_ID

(input,INT,4) is a variable for specifying the user ID the process wants to assume.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If user_ID is the same as the process's real user ID or saved-set user ID, the setuid (BPX1SUI) service

sets the effective user ID to be the same as user_ID.
2. If the calling process has appropriate privileges, then the real, effective, and saved-set user IDs are set

to user_ID. See “Authorization” on page 10.

Example

The following code sets the effective user ID to 1. The calling process has an effective UID of 3 and
a real UID of 1. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC USERID,=XL4'00000001' Value of new user ID
 MVC USERID,.. User ID to be set from a getuid
 SPACE ,
 CALL BPX1SUI, Set user ID +
 (USERID, Input: User ID to be set +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

setuid (BPX1SUI)

Chapter 2. Callable Service Descriptions 299

Return Code Explanation

ECMSERR A CMS error was detected during CP processing.

Either the POSIX communication area was not previously defined to CP, or
the active PID in the POSIX communication area was not a PID allocated
to the caller. The following reason codes can accompany this return code:
JrInternalError.

ECPERR An error was detected during CP processing.

Either the parameter list passed to CP contained incorrect values, the
specified user ID was not found in the user database, or the user database
contained invalid data or was inaccessible. Consult the reason code to
determine the exact reason the error occurred. The following reason code
can accompany this return code: JrCPInternalError.

EINVAL The user ID specified is invalid or undefined.

EPERM The process does not have the appropriate privileges to set the user ID. See
“Authorization” on page 10.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “geteuid (BPX1GEU) — Get the Effective User ID” on page 115
• “getuid (BPX1GUI) — Get the Real User ID” on page 141
• “seteuid (BPX1SEU) — Set the Effective User ID” on page 288
• “setgid (BPX1SGI) — Set the Group ID” on page 290.

setuid (BPX1SUI)

300 z/VM: 7.3 OpenExtensions Callable Services Reference

shmat (BPX1MAT) — Attach a Shared Memory Segment

BPX1MAT
shared_memory_ID
shared_memory_address
shared_memory_flag
return_value
return_code
reason_code

Purpose
Use the shmat (BPX1MAT) service to attach a shared memory segment.

Parameters
shared_memory_segment_ID

(input,INT,4) is a variable for specifying the shared memory segment identifier. This value is obtained
by the shmget (BPX1MGT) service.

shared_memory_address
(input,INT,4) is a variable for specifying the address in the caller's address space where storage is
to be obtained and the shared memory segment is to be attached. This must be 0, which specifies
that the segment is to be attached at the first available address selected by the system on a page
boundary.

shared_memory_flag
(input,INT,4) is a variable for specifying additional characteristics:
SHM_RDONLY

Specifies that the segment is to be attached for read only. Otherwise, the segment is attached for
read and write.

SHM_RND
Causes the storage address specified in shared_memory_address to be truncated to a page
boundary (that is, the last 12 bits will be zero).

These flags are defined in the BPXYSHM macro. See “BPXYSHM — Map Interprocess Communications
Shared Memory Segments” on page 461.

return_value
(output,INT,4) is a variable where the service returns the address of the segment if the request is
successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If an attempt is made to access memory outside the shared memory segment, normal address space

storage is accessed.

shmat (BPX1MAT)

Chapter 2. Callable Service Descriptions 301

2. It is the application's responsibility to determine the length of the shared memory segment that is
attached.

3. If the SHM_RDONLY flag is set, read-only access is enforced only for subsequent calls to shared
memory segment (shmxxx) services. It cannot be enforced to prevent actual updating of the shared
memory segment. It is the responsibility of the application to behave correctly.

4. Because of the nature of mapping a shared memory segment to different addresses within the
multiple processes it is attached to, relative addresses should be used as pointers within the shared
memory segment.

Characteristics and Restrictions
The invoker is restricted by ownership, read, and read-write permissions defined by the shmget
(BPX1MGT) and shmctl (BPX1MCT) services.

Example

The following code attaches a shared memory segment. For the data structure, see “BPXYSHM — Map
Interprocess Communications Shared Memory Segments” on page 461.

 CALL BPX1MAT, Shared memory segment control +
 (SHM_ID, Input: Shared memory segment ID +
 SEGADDR, Input: ST loc for seg address +
 =A(0), Input: Flags BPXYSHM +
 RETVAL, Return value: 0, -1 or value +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Operation permission is denied to the caller. The combination of
shared_memory_flag and permissions denies the requester access.

The following reason code can accompany this return code: JRIpcDenied.

EINVAL One or more of the following conditions exist:

• shared_memory_segment_ID is not a valid shared memory segment
identifier.

• shared_memory_address is not zero.
• shared_memory_address is not on a page boundary, and SHM_RND was not
specified.

The following reason codes can accompany this return code: JRIpcBadID,
JRBadAddress, JRNotKey8.

EMFILE The number of shared memory segments attached to the caller's process
exceeds the system-imposed maximum.

The following reason code can accompany this return code:
JRShmMaxAttach.

ENOMEM The available system storage is not large enough to accommodate the shared
memory segment.

The following reason codes can accompany this return code:
JRNoUserStorage, JRSMNoStorage, JRIarvserv, JRShrStgShortage.

shmat (BPX1MAT)

302 z/VM: 7.3 OpenExtensions Callable Services Reference

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “shmctl (BPX1MCT) — Perform Shared Memory Segment Control Operations” on page 304
• “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 307
• “shmget (BPX1MGT) — Create or Find a Shared Memory Segment” on page 309

shmat (BPX1MAT)

Chapter 2. Callable Service Descriptions 303

shmctl (BPX1MCT) — Perform Shared Memory Segment Control
Operations

BPX1MCT
shared_memory_segment_ID
command
buffer_address
return_value
return_code
reason_code

Purpose
Use the shmctl (BPX1MCT) service to do various shared memory segment control operations, including
getting status, changing variables, and removing a segment from the system.

Parameters
shared_memory_segment_ID

(input,INT,4) is a variable for specifying the shared memory segment identifier. This value is returned
by the shmget (BPX1MGT) service.

command
(input,INT,4) is a variable for specifying a command that identifies the operation to be performed.
The command constants are defined in the BPXYIPCP macro. See “BPXYIPCP — Map Interprocess
Communications Permissions” on page 431. The possible commands are:
Command

Operation
IPC_STAT

Obtains status information about shared_memory_segment_ID, if the current process has read
permission. This information is stored in the area pointed to by the buffer_address parameter and
mapped by the SHMID_DS data structure in the BPXYSHM macro.

IPC_SET
Sets the values of IPC_UID, IPC_GID, and IPC_MODE for shared_memory_segment_ID. The values
to be set are taken from the SHMID_DS data structure pointed to by the buffer_address parameter.
You can specify any values for IPC_UID and IPC_GID. For IPC_MODE, you can specify only the
mode bits defined for the shared_memory_flags parameter of the shmget (BPX1MGT) service.

Note: The IPC_ values set with this command are defined in the BPXYIPCP macro and mapped
into the SHM_PERM field of the SHMID_DS structure in the BPXYSHM macro. In addition, the
IPC_MODE field in BPXYIPCP is mapped by the BPXYMODE macro.

IPC_RMID
Removes shared_memory_segment_ID from the system. This operation removes the identifier and
destroys the segment and the data structure associated with it.

The IPC_SET and IPC_RMID operations can be performed only by a process that has either
appropriate privileges or an effective user ID equal to the value of IPC_CUID or IPC_UID in the
SHMID_DS data structure associated with shared_memory_segment_ID.

For the SHMID_DS data structure, see “BPXYSHM — Map Interprocess Communications Shared
Memory Segments” on page 461.

shmctl (BPX1MCT)

304 z/VM: 7.3 OpenExtensions Callable Services Reference

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer to be used for shared memory
segment information. The buffer is mapped by the SHMID_DS data structure in the BPX1SHM macro.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The shmctl (BPX1MCT) service assumes that the size of the buffer pointed to by the buffer_address

parameter is at least as large as the SHMID_DS data structure.
2. The IPC_SET operation can change permissions, which may affect the ability of a thread to use the

shared memory segment callable services.
3. The IPC_MODE permissions in effect at the time a process attaches a segment will remain even if the

permissions are changed by the IPC_SET operation.
4. When an IPC_RMID command is processed, no further attaches are allowed. The shared memory

segment is not removed from the system until all users have called the shmdt (BPX1MDT) service to
detach the segment or have terminated.

5. If an IPC_RMID command is processed before a call to the fork (BPX1FRK) service, the child is not
attached to the shared memory segment.

Characteristics and Restrictions
The invoker is restricted by the ownership, read, and read-write permissions for the specified shared
memory segment as defined by the shmget (BPX1MGT) and shmctl (BPX1MCT) services.

Example

The following code retrieves the size of the shared memory segment. For the data structure, see
“BPXYSHM — Map Interprocess Communications Shared Memory Segments” on page 461.

 LA R15,BUFFERA
 ST R15,BUFA
 SPACE ,
 CALL BPX1MCT, Shared memory segment control +
 (SHM_ID, Input: Shared memory segment ID +
 =A(IPC_STAT), Input: Command BPXYIPCP+
 BUFA, Input: ->SHMID_DS or 0 BPXYSHM +
 RETVAL, Return value: 0, -1 or value +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The IPC_STAT command was specified, but the calling process does not have
read permission.

The following reason code can accompany this return code: JRIpcDenied.

shmctl (BPX1MCT)

Chapter 2. Callable Service Descriptions 305

Return Code Explanation

EFAULT The buffer_address parameter specified an address that caused the service to
program check.

The following reason code can accompany this return code: JRBadAddress.

EINVAL One of the following conditions is true:

• shared_memory_segment_ID is not a valid shared memory segment
identifier.

• command is not a valid command.
• The mode bits set by the IPC_SET command were not valid.

The following reason codes can accompany this return code: JRIpcBadFlags,
JRIpcBadID, JRBadEntryCode.

EPERM The IPC_RMID or IPC_SET command was specified, but the caller has
neither appropriate privileges nor an effective user ID equal to the value
of IPC_CUID or IPC_UID in the SHMID_DS data structure associated with
shared_memory_segment_ID.

The following reason code can accompany this return code: JRIpcDenied.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “w_getipc (BPX1GET) — Query Interprocess Communications” on page 391
• “shmat (BPX1MAT) — Attach a Shared Memory Segment” on page 301
• “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 307
• “shmget (BPX1MGT) — Create or Find a Shared Memory Segment” on page 309

shmctl (BPX1MCT)

306 z/VM: 7.3 OpenExtensions Callable Services Reference

shmdt (BPX1MDT) — Detach a Shared Memory Segment

BPX1MDT
shared_memory_address
return_value
return_code
reason_code

Purpose
Use the shmdt (BPX1MDT) service to detach a shared memory segment.

Parameters
shared_memory_address

(input,INT,4) is a variable for specifying the starting address of a shared memory segment. This is the
return value from the shmat (BPX1MAT) service.

return_value
(output,INT,4) is a variable where the service returns 0 if the request was successful, or -1 if it was
unsuccessful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Characteristics and Restrictions
The invoker is restricted by ownership, read, and read-write permissions defined by the shmget
(BPX1MGT) and shmctl (BPX1MCT) services.

Example

The following code detaches a shared memory segment. For the data structure, see “BPXYSHM — Map
Interprocess Communications Shared Memory Segments” on page 461.

 CALL BPX1MDT, Shared memory segment detach +
 (SEGADDR, Input: Shared memory segment addr +
 RETVAL, Return value: 0, -1 or value +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL shared_memory_address is not the data segment start address of a shared
memory segment attached to the caller's process.

The following reason code can accompany this return code: JRBadAddress.

shmdt (BPX1MDT)

Chapter 2. Callable Service Descriptions 307

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “shmat (BPX1MAT) — Attach a Shared Memory Segment” on page 301
• “shmctl (BPX1MCT) — Perform Shared Memory Segment Control Operations” on page 304
• “shmget (BPX1MGT) — Create or Find a Shared Memory Segment” on page 309

shmdt (BPX1MDT)

308 z/VM: 7.3 OpenExtensions Callable Services Reference

shmget (BPX1MGT) — Create or Find a Shared Memory Segment

BPX1MGT
key
shared_memory_size
shared_memory_flags
return_value
return_code
reason_code

Purpose
Use the shmget (BPX1MGT) service to create a new shared memory segment or find an existing shared
memory segment (if the user is allowed to access it). The service returns a system-assigned shared
memory segment identifier.

Parameters
key

(input,INT,4) is a variable for specifying a user-defined value that identifies a shared memory
segment. The key serves as a lookup value to determine if an associated shared memory segment
identifier already exists. If an associated shared memory segment identifier does not already exist,
the key value becomes associated with the shared memory segment identifier created by this request.

The reserved key value IPC_PRIVATE may also be specified. IPC_PRIVATE is sometimes used when a
process does not want to share a memory segment or when it wants to privately control access to the
memory segment by other processes. The IPC_PRIVATE constant is defined in the BPXYIPCP macro.
See “BPXYIPCP — Map Interprocess Communications Permissions” on page 431.

shared_memory_size
(input,INT,4) is a variable for specifying the number of bytes of shared memory that are required.

shared_memory_flags
(input,INT,4) is a variable for specifying the type of action to be performed and the permissions to
be assigned. Valid values for this parameter include any combination of the following flags (additional
bits will cause an EINVAL return code):

• These flags are defined in the BPXYIPCP macro and the values are mapped onto the S_TYPE field in
the BPXYMODE macro:
Value

Action
IPC_CREAT

Creates a shared memory segment if the specified key is not associated with a shared memory
segment identifier. IPC_CREAT is ignored when the IPC_PRIVATE reserved key is specified.

IPC_EXCL
Causes the service to fail if the specified key has an associated shared memory segment
identifier. IPC_EXCL is ignored when the IPC_PRIVATE reserved key is specified or the
IPC_CREAT flag is not set.

• These values are defined in the BPXYMODE macro and are a subset of the access permissions that
apply to files:
S_IRUSR

Permits the process that owns the memory segment to read it.

shmget (BPX1MGT)

Chapter 2. Callable Service Descriptions 309

S_IWUSR
Permits the process that owns the memory segment to alter it.

S_IRGRP
Permits the group associated with the memory segment to read it.

S_IWGRP
Permits the group associated with the memory segment to alter it.

S_IROTH
Permits others to read the memory segment.

S_IWOTH
Permits others to alter the memory segment.

See “BPXYIPCP — Map Interprocess Communications Permissions” on page 431 and “BPXYMODE —
Map Mode Constants” on page 437.

return_value
(output,INT,4) is a variable where the service returns the shared memory segment identifier
associated with key if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. When a shared memory segment has been created, subsequent shmget (BPX1MGT) calls to find the

existing shared memory segment must request a size that is less than or equal to the value specified
when the shared memory segment was created.

2. As long as a thread knows the shared memory segment identifier and access is permitted, the thread
can issue shmat (BPX1MAT), shmctl (BPX1MCT), or shmdt (BPX1MDT) calls for that segment, and
shmget is not needed.

3. This service creates a data structure defined by SHMID_DS, if either of the following is true:

• IPC_PRIVATE is specified in the key parameter.
• The IPC_CREAT flag is set, and the specified key value does not already have a shared memory

segment identifier associated with it.

The SHMID_DS data structure is defined in the BPXYSHM macro, and some values are mapped into
it from the BPXYIPCP macro. See “BPXYSHM — Map Interprocess Communications Shared Memory
Segments” on page 461 and “BPXYIPCP — Map Interprocess Communications Permissions” on page
431.

4. Upon creation, the SHMID_DS data structure is initialized as follows:

• IPC_CUID and IPC_UID are set to the effective user ID of the calling process.
• IPC_CGID and IPC_GID are set to the effective group ID of the calling process.
• The low-order 9-bits of IPC_MODE are equal to the low-order 9-bits of the shared_memory_flags

parameter.
• SHM_OTIME is set to 0 and SHM_CTIME is set to the current time.
• The storage will be initialized to nulls when the segment is created.

5. The shared memory segment is removed from the system when the shmctl (BPX1MCT) service is
called with the IPC_RMID command and all users have used the shmdt (BPX1MDT) service to detach
the segment or have terminated.

shmget (BPX1MGT)

310 z/VM: 7.3 OpenExtensions Callable Services Reference

Characteristics and Restrictions
There is a maximum number of shared memory segments allowed in the system.

The invoker is restricted by the ownership, read, and read-write permissions for the specified shared
memory segment as defined by the shmget (BPX1MGT) and shmctl (BPX1MCT) services.

Example

The following code creates a private shared memory segment of 500 bytes. For the data structure, see
“BPXYSEM — Map Interprocess Communications Semaphores” on page 459.

 MVC KEY(4),=A(IPC_PRIVATE) Local to this family
 MVI S_TYPE,IPC_CREAT+IPC_EXCL Must not already exist
 MVI S_MODE1,0 Not used
 MVI S_MODE2,S_IRUSR All read and write permissions
 MVI S_MODE3,S_IWUSR+S_IRGRP+S_IWGRP+S_IROTH+S_IWOTH
 SPACE ,
 CALL BPX1MGT, Create a set of semaphores +
 (KEY, Input: Shared memory segment KEY +
 =A(500), Input: Segment size +
 S_MODE, Input: Creation flags BPXYIPCP+
 RETVAL, Return value: -1 or MessageQue ID +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 ICM R15,B'1111',RETVAL Test return value
 BNP PSEUDO Branch on shmget failure
 ST R15,SHM_ID Store SHM_ID associated with key

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EINVAL One or more of the following conditions exist:

• A shared memory segment identifier does not exist for the specified key,
and the shared_memory_size parameter is either zero or greater than the
system-imposed maximum.

• A shared memory segment identifier exists for the specified key, but the
size of the segment associated with it is less than the shared_memory_size
parameter, and the shared_memory_size parameter is not equal to 0.

• The shared_memory_flags parameter includes bits not supported by this
function.

The following reason codes can accompany this return code: JRShmBadSize,
JRIpcBadFlags.

EACCES A shared memory segment identifier exists for the specified key, but access
permission, as specified by the low-order 9-bits of the shared_memory_flags
parameter (the S_ flags) is not granted.

The following reason code can accompany this return code: JRIpcDenied.

EEXIST A shared memory segment identifier exists for the specified key, and the
IPC_CREAT and IPC_EXCL flags are both set.

The following reason code can accompany this return code: JRIpcExists.

ENOENT A shared memory segment identifier does not exist for the specified key, and
the IPC_CREAT flag is not set.

The following reason code can accompany this return code: JRIpcNoExists.

shmget (BPX1MGT)

Chapter 2. Callable Service Descriptions 311

Return Code Explanation

ENOMEM A shared memory segment is to be created, but the amount of system storage
would exceed the system-imposed limit.

The following reason code can accompany this return code:
JRShmMaxSpages.

ENOSPC A shared memory segment is to be created, but the system-imposed limit
on the maximum number of shared memory segment identifiers allocated
system-wide would be exceeded.

The following reason code can accompany this return code: JRIpcMaxIDs.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “shmat (BPX1MAT) — Attach a Shared Memory Segment” on page 301
• “shmctl (BPX1MCT) — Perform Shared Memory Segment Control Operations” on page 304
• “shmdt (BPX1MDT) — Detach a Shared Memory Segment” on page 307
• “w_getipc (BPX1GET) — Query Interprocess Communications” on page 391

shmget (BPX1MGT)

312 z/VM: 7.3 OpenExtensions Callable Services Reference

shutdown (BPX1SHT) — Shut Down All or Part of a Duplex Socket
Connection

BPX1SHT
socket_descriptor
how
return_value
return_code
reason_code

Purpose
Use the shutdown (BPX1SHT) service to shut down all or part of a duplex socket connection.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
how

(input,INT,4) is a variable for specifying a value that indicates the condition of the shutdown:
SOCK#SHUTDOWNREAD

Ends communication from the socket (Read)
SOCK#SHUTDOWNWRITE

Ends communication to the socket (Write)
SOCK#SHUTDOWNBOTH

Ends communication both to and from the socket
Equates for these values are defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR
Structure and Constants for Socket-Related Services” on page 465.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
• A shutdown for read means that future write operations from the other end of this socket are rejected.

Any data that was already written before the shutdown occurred are available for the application that
issued the shutdown to read. The data is read until a read is done that returns zero bytes, indicating that
there is no more data for that socket.

• A shutdown for write means that any future writes by the application that issued the shutdown request
are rejected.

• Regardless of the How option specified, reads are not rejected.

shutdown (BPX1SHT)

Chapter 2. Callable Service Descriptions 313

Example

The following code issues a shutdown to stop socket writes to this socket connection. SOCKDESC was
returned from a previous call to socket (BPX1SOC). This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 SPACE ,
 CALL BPX1SHT, Shutdown communication +
 (SOCKDESC, Input: Socket Descriptor +
 SOCK#SHUTDOWNWRITE, Input: How - shutdown writes +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF An incorrect file descriptor was supplied. The following reason codes can
accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

EINVAL The how parameter is incorrect. It is not SOCK#SHUTDOWNREAD,
SOCK#SHUTDOWNWRITE, or SOCK#SHUTDOWNBOTH. The following reason
code can accompany this return code: JRBadEntryCode.

ENOBUFS A buffer could not be obtained.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

shutdown (BPX1SHT)

314 z/VM: 7.3 OpenExtensions Callable Services Reference

sigaction (BPX1SIA) — Examine or Change a Signal Action

BPX1SIA
signal
new_sa_handler_address
new_sa_mask
new_sa_flags
old_sa_handler_address
old_sa_mask
old_sa_flags
user_data
return_value
return_code
reason_code

Purpose
Use the sigaction (BPX1SIA) service to examine, change, or both examine and change the action
associated with a specific signal. You can use this service in a multithreaded process to establish actions
to take when the signal is received.

Note: The signal handlers, a set of additional signals to be masked, and flags specified by this service are
shared by all threads within a process.

Parameters
signal

(input,INT,4) is a variable for specifying the number of the signal you want to examine, change, or both
examine and change the action for.

new_sa_handler_address
(input,INT,4) is a variable for specifying either zero or the address of a fullword containing the new
signal action:

• If zero, no new action is set for this signal.
• If not zero, the signal action is set using the options described below and in the BPXYSIGH macro.

See “BPXYSIGH — Map Signal Constants” on page 462.

Constant Description

SIG_DFL# Take the default action for this signal.

SIG_IGN# Ignore this signal.

Address Address of the signal catcher function.

new_sa_mask
(input,CHAR,8) is a variable for specifying a 64-bit mask of the signals to be blocked during execution
of the signal-catching function. The leftmost bit represents signal number 1, and the rightmost bit
represents signal number 64. Bits set to 1 represent signals that are blocked.

You must always provide this parameter, even though it is not used when new_sa_handler_address is
specified as 0.

sigaction (BPX1SIA)

Chapter 2. Callable Service Descriptions 315

new_sa_flags
(input,INT,4) is a variable for specifying the signal action flags.

You must always provide this parameter, even though it is not used when new_sa_handler_address is
specified as 0.

You can set this parameter to the following constants defined in the BPXYSIGH macro:

Constant Description

SA_FLAGS_DFT# None of the following functions.

SA_NOCLDSTOP# Do not generate SIGCHLD signals to the calling process when its children
stop (used only when signal is set to SIGCHLD).

SA_OLD_STYLE# This is provided for the C Compiler Runtime Library to implement old-style
signal callable service functions.

old_sa_handler_address
(input,INT,4) is a variable for specifying either zero or the address of a fullword where the service
returns the old (current) signal action. If you specify this parameter as 0, the old signal action,
old_sa_mask, and old_sa_flags are not returned.

old_sa_mask
(output,CHAR,8) is a variable where the service returns the old (current) value of the 64-bit mask of
signals blocked during execution of the signal-catching function. Bits set to 1 represent signals that
are blocked.

You must always provide this parameter, even though a value is not returned when
old_sa_handler_address is specified as 0.

old_sa_flags
(output,INT,4) is a variable where the service returns the old (current) signal action flags.

You must always provide this parameter, even though a value is not returned when
old_sa_handler_address is specified as 0.

user_data
(input,CHAR,4) is a variable for specifying user-supplied data that is passed to the signal interface
routine when the signal is delivered.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If new_sa_handler_address value is set to the action SIG_DFL for a signal that cannot be caught or

ignored, the sigaction (BPX1SIA) request is ignored and return_value is set to 0.
2. Setting a signal action to ignore for a signal that is pending causes the pending signal to be discarded.
3. Setting signal action SIG_IGN or catch for signals SIGSTOP or SIGKILL is not allowed.
4. Setting signal action SIG_IGN for SIGCHLD or SIGIO is not allowed.
5. The user data is delivered on a per singal basis for the specific signal specified on this invocation. This

field must be respecified if user data is desired for the next signal.

sigaction (BPX1SIA)

316 z/VM: 7.3 OpenExtensions Callable Services Reference

6. The sigaction (BPX1SIA) caller's thread must be registered for signals. This occurs by calling the
cmssigsetup (BPX1MSS) service or by being created with the pthread_create (BPX1PTC) service after
signals are set up. If neither of these conditions exist, the sigaction (BPX1SIA) service fails with a
return code of EINVAL and a reason code of JRNotSigSetup. See “cmssigsetup (BPX1MSS) — Set Up
CMS Signals” on page 40.

7. Constants used for this callable service are defined in the BPXYSIGH macro. See “BPXYSIGH — Map
Signal Constants” on page 462.

Characteristics and Restrictions
In a multithreaded process, the new signal action set by the sigaction (BPX1SIA) service changes the
signal action for all threads in the process.

Example

The following code sets new action for SIGALRM to default processing and returns the previous action
for SIGALARM. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYSIGH —
Map Signal Constants” on page 462.

 XC NEWMASK,NEWMASK Don't block additional signals
 LA R15,NCATCHER New catcher (NCATCHER=0,1 | ->)
 ST R15,NEWHANDL
 LA R15,OCATCHER Old catcher (NCATCHER=0,1 | ->)
 ST R15,OLDHANDL
 SPACE ,
 CALL BPX1SIA, Examine or change signal action +
 (=A(SIGALRM#), Input: Signal constant BPXYSIGH +
 NEWHANDL, Input: 0, ->0, ->1 or ->catcher +
 NEWMASK, Input: 64Bit mask of signals +
 =A(0), Input: Action, BPXYSIGH +
 OLDHANDL, 0, ->XL4 (return 0, 1 ->catcher) +
 OLDMASK, 64 bit mask of signals +
 OLDFLAGS, Action, BPXYSIGH +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR A CMS environmental or internal error has occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRNotSigSetUp
and JRWrongSsave.

EFAULT The specified address for new_sa_handler_address or
old_sa_handler_address was incorrect.

EINVAL The specified signal value is incorrect or is an unsupported signal number, or
an attempt was made to catch a signal that cannot be caught, or an attempt
was made to ignore a signal that can not be ignored.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRInvalidSignal
and JRInvalidSigact.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

sigaction (BPX1SIA)

Chapter 2. Callable Service Descriptions 317

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered”

on page 324.

sigaction (BPX1SIA)

318 z/VM: 7.3 OpenExtensions Callable Services Reference

sigpending (BPX1SIP) — Examine Pending Signals

BPX1SIP
signal_pending_mask
return_value
return_code
reason_code

Purpose
Use the sigpending (BPX1SIP) service to return the union of the set of signals pending on the thread and
the set of signals pending on the process. Pending signals at the process level are moved to the thread
that called this service.

Parameters
signal_pending_mask

(output,CHAR,8) is a variable where the service returns a 64-bit signal pending mask. Each bit set
on (set to 1) represents a signal that is 1) currently pending at either the process level or the thread
level and 2) blocked by the current thread's signal mask. The leftmost bit represents signal 1, and the
rightmost bit represents signal 64.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code retrieves the mask used for pending and blocked signals. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 CALL BPX1SIP, Determine pending signals +
 (SIGRET, Signal mask return area (XL8) +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

sigpending (BPX1SIP)

Chapter 2. Callable Service Descriptions 319

Return_code Explanation

ECMSERR A CMS environmental or internal error has occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRWrongSsave.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Another service related to this service is:

• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321.

sigpending (BPX1SIP)

320 z/VM: 7.3 OpenExtensions Callable Services Reference

sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal
Mask

BPX1SPM
how
new_signal_mask
old_signal_mask
return_value
return_code
reason_code

Purpose
Use the sigprocmask (BPX1SPM) service to examine, change, or both examine and change the calling
thread's signal mask.

Parameters
how

(input,INT,4) is a variable for specifying a value that identifies the action to be taken on the thread's
signal mask. The following constants defined in the BPXYSIGH macro define the possible actions. See
“BPXYSIGH — Map Signal Constants” on page 462.

Constant Description

SIG_BLOCK# Add the signals in new_signal_mask to those to be blocked for this thread.

SIG_UNBLOCK# Delete the signals in new_signal_mask from those blocked for this thread.

SIG_SETMASK# Replace the thread's signal mask with new_signal_mask.

new_signal_mask
(input,INT,4) is a variable for specifying either 0 or the address of an 8-byte area that contains
the 64-bit new signal mask. The new signal mask is applied to the thread's current signal mask as
specified by the how parameter. The leftmost bit of the signal mask represents signal number 1, and
the rightmost bit represents signal number 64. Mask bits set to 1 represent signals that are blocked. If
this parameter is set to 0, the signal mask is not changed and the how parameter is ignored.

old_signal_mask
(input,INT,4) is a variable for specifying either 0 or the address of an 8-byte area where the service
returns the signal mask that was in effect prior to the call, showing the signals that were blocked. The
leftmost bit in the signal mask represents signal number 1, and the rightmost bit represents signal
number 64. Mask bits set to 1 represent signals that were blocked. If this parameter is set to 0, no
signal mask is returned.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

sigprocmask (BPX1SPM)

Chapter 2. Callable Service Descriptions 321

Usage Notes
1. The sigprocmask (BPX1SPM) service examines, changes, or both examines and changes the signal

mask for the calling thread. This mask is called the thread's signal mask. If there are any pending
unblocked signals, either at the process level or at the current thread's level after changing the signal
mask, at least one of the signals is delivered to the thread before the sigprocmask (BPX1SPM) service
returns.

2. In a multithreaded process, the sigprocmask (BPX1SPM) service is used to control to which thread in
the process a signal generated by the kill (BPX1KIL) service is delivered. For example, if two threads in
a process have SIGUSR1 signals blocked and one thread does not, the SIGUSR1 signal generated by
the kill (BPX1KIL) service from another process is delivered to the thread that does not have the signal
blocked.

3. You cannot block the SIGKILL and the SIGSTOP signals. If you call the sigprocmask (BPX1SPM)
service with a request that would block those signals, that part of your request is ignored and no error
is indicated.

4. A request to block signals that are not supported is accepted, and a return value of zero is returned.
5. All pending unblocked signals are moved from the process level to the current thread.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code changes the signal mask to block signals 1 through 16. This example follows the rules
of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551. For the data structure, see “BPXYSIGH — Map Signal Constants” on page 462.

 LA R15,=XL8'FFFF000000000000' Block signals 1 thru 16
 ST R15,NEWMASKA New mask address
 LA R15,OLDMASK Old signal mask
 ST R15,OLDMASKA Old mask address
 SPACE ,
 CALL BPX1SPM, Examine or change signal mask +
 (=A(SIG_BLOCK#), Input: How parameter BPXYSIGH +
 NEWMASKA, Input: 0, ->CL8 +
 OLDMASKA, Input: 0 | ->returned mask +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR A CMS environmental or internal error occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRWrongSsave.

EINVAL The value of the how parameter is not one of the allowed values.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

sigprocmask (BPX1SPM)

322 z/VM: 7.3 OpenExtensions Callable Services Reference

• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “sigpending (BPX1SIP) — Examine Pending Signals” on page 319
• “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered”

on page 324.

sigprocmask (BPX1SPM)

Chapter 2. Callable Service Descriptions 323

sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the
Thread Until a Signal Is Delivered

BPX1SSU
signal_mask
return_value
return_code
reason_code

Purpose
Use the sigsuspend (BPX1SSU) service to replace a thread's current signal mask with a new signal mask.
The thread is then suspended until delivery of a signal whose action is either to process a signal-catching
service or to end the thread.

Parameters
signal_mask

(input,CHAR,8) is a variable for specifying the 64-bit signal mask that is set before waiting for a signal
and during the execution of any signal catcher. The leftmost bit represent signals 1 and the rightmost
bit represents signal 64. Bits set to 1 represent signals that are blocked.

return_value
(output,INT,4) is a variable where the service returns a -1 if it returns to its caller.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The caller's thread starts running again when it receives one of the signals not blocked by the mask set

by this call, or a system failure occurs that sets return_code to some value other than EINTR.
2. The signal mask represents a set of signals that will be blocked. Blocked signals do not "wake up"

the suspended service. The signals SIGSTOP and SIGKILL cannot be blocked or ignored; they are
delivered to the program no matter what the signal mask specifies.

3. If the signal action is to end the thread, the sigsuspend service does not return.
4. If the signal action is to process a signal-catching service, the signal interface routine (SIR), defined by

the cmssigsetup (BPX1MSS) service, is given control with the signal mask that is used during handler
processing (the PpsdSaMask field of control block BPXYPPSD). The PpsdSaMask field is set to the
value specified by the Signal_mask parameter and the current signal mask (the PpsdCurrentMask field
of control block BPXYPPSD) is set to the signal mask that existed prior to the sigsuspend service.

5. All pending unblocked signals are moved from the process level to the current thread.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

sigsuspend (BPX1SSU)

324 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code replaces the invoker's current mask to block signals 1 through 16 and suspend until a
signal is delivered. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC WAITMASK(8),=XL8'FFFF000000000000' Blocks 1 thru 16
 SPACE ,
 CALL BPX1SSU, Wait for a signal +
 (WAITMASK, Input: Wait mask, XL8 +
 RETVAL, Return value: -1 or not returned +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR A CMS environmental or internal error occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRWrongSsave.

EINTR A signal was received and handled successfully.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 197
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “sigpending (BPX1SIP) — Examine Pending Signals” on page 319
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321.

sigsuspend (BPX1SSU)

Chapter 2. Callable Service Descriptions 325

sigwait (BPX1SWT) — Wait for a Signal

BPX1SWT
signal_mask
return_value
return_code
reason_code

Purpose
Use the sigwait (BPX1SWT) service to wait for an asynchronous signal. If a signal specified in the signal
set is sent to the caller of this service, the value of that signal is returned to the caller and the service
ends.

Parameters
signal_mask

(input,CHAR,8) is a variable for specifying a 64-bit signal mask that contains the set of signals this
task is to wait on. The leftmost bit represent signal 1, and the rightmost bit represents signal 64. Bits
set to 1 represent signals that are waited on.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If any signals specified in signal_mask are pending when the sigwait (BPX1SWT) service is called, the

value of one of those signals is returned to the caller and that signal is cleared from the set of pending
signals.

2. If none of the signals specified in signal_mask are pending, the sigwait (BPX1SWT) service waits until
a signal specified in signal_mask is generated. If the signal mask is zero (no bit set on), the sigwait
(BPX1SWT) service waits forever (that is, until the thread is terminated).

3. If sigwait (BPX1SWT) is called for a SIGKILL or SIGSTOP signal and a SIGKILL or SIGSTOP signal
arrives, the value of the signal is not returned to the caller. Rather, the SIGKILL or SIGSTOP action
occurs.

4. The current sigaction associated with a signal that is returned is not performed. (See “sigaction
(BPX1SIA) — Examine or Change a Signal Action” on page 315.) This action also remains unchanged by
the use of the sigwait (BPX1SWT) service.

5. If multiple threads in a process issue a sigwait (BPX1SWT) call for the same signal, only one of these
threads shall return from sigwait (BPX1SWT) with the signal number if the signal was directed at the
process.

sigwait (BPX1SWT)

326 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code causes the caller to wait for a signal. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC WAITMASK(8),=XL8'000400000000000000'
SPACE,
 CALL BPX1SWT, Wait for asynchronous signal +
 (WAITMASK, Input: Signal mask SIGALRM +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

EINVAL The signal_mask argument had a signal specified that represents an incorrect
signal number.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRInvalidSignal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “kill (BPX1KIL) — Send a Signal to a Process” on page 146
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321.

sigwait (BPX1SWT)

Chapter 2. Callable Service Descriptions 327

sleep (BPX1SLP) — Suspend Execution of a Process for an Interval
of Time

BPX1SLP
seconds
return_value

Purpose
Use the sleep (BPX1SLP) service to suspend running of the calling thread (process) until either the
number of seconds specified on the call has elapsed or a signal is delivered to the calling thread to either
invoke a signal-catching function or end the thread.

Parameters
seconds

(input,INT,4) is a variable for specifying the number of seconds for the calling thread to sleep.
Because of processor delays, the calling thread may sleep slightly longer than this specified time.

return_value
(output,INT,4) is a variable where the service returns the "remaining sleep time" value, which is
the difference between seconds and the number of seconds that elapsed before the thread was
awakened. The return value is rounded to the nearest second. (If the thread was awakened by the
ending of the elapsed time specified by seconds, the return value is 0.) If a signal arrives and the
remaining time left in the sleep is less than a half second, a value of 0 is returned.

Usage Notes
1. The suspension can actually be longer than the requested time due to the scheduling of other activity

by the system.
2. An unblocked signal received during the suspension prematurely "wakes up" the thread. The

appropriate signal-handling function is then invoked to handle the signal. When that signal-handling
function returns, the sleep (BPX1SLP) service returns immediately even if there is "sleep time"
remaining.

3. The sleep (BPX1SLP) service returns a zero if it slept for the number of seconds specified. If the time
specified by the seconds parameter has not elapsed when the service is interrupted due to delivery
of a signal, the sleep (BPX1SLP) service returns the unslept amount of time (the requested time
minus the time actually slept before the signal was delivered) in seconds. Any time consumed by
signal-catching functions is not reflected in the value returned by the sleep (BPX1SLP) service.

4. The following lists usage notes for a SIGALRM signal generated by the alarm (BPX1ALR) or kill
(BPX1KIL) calls during the execution of the sleep (BPX1SLP) call:

• If the calling thread has SIGALRM blocked prior to calling the sleep (BPX1SLP) service, the sleep
(BPX1SLP) service does not return when SIGALRM is generated and the SIGALRM signal is left
pending when sleep (BPX1SLP) returns.

• If the calling process has SIGALRM ignored when the SIGALRM signal is generated, then the sleep
(BPX1SLP) service does not return and the SIGALRM signal is ignored.

• If the calling process has SIGALRM set to a signal-catching function, that function interrupts the
sleep (BPX1SLP) service and receives control. The sleep (BPX1SLP) service returns any unslept
amount of time, as it does for any other type of signal.

sleep (BPX1SLP)

328 z/VM: 7.3 OpenExtensions Callable Services Reference

5. If a signal-catching function interrupts the sleep (BPX1SLP) service and either examines or changes
the time a SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal is
the same as when the signal-catching function interrupts any other function.

6. If a signal-catching function interrupts the sleep (BPX1SLP) service and restores a previously saved
environment and does not return, the action associated with the SIGALRM signal that was saved prior
to the sleep (BPX1SLP) service is the same as when the signal-catching function interrupts any other
function.

7. When the sleep (BPX1SLP) service returns, any previous alarm time that has not elapsed is restored
before any signal-catcher gets control. Signal catchers can change this alarm setting. See “alarm
(BPX1ALR) — Set an Alarm” on page 18.

Characteristics and Restrictions
See Appendix E, “The Relationship of OpenExtensions Signals to Callable Services,” on page 557.

Example

The following code suspends running for 8 seconds or until a signal is delivered (whichever comes first).
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

 MVC SECONDS,=F'8' 8 seconds
 SPACE ,
 CALL BPX1SLP, Temporarily suspend execution +
 (SECONDS, Input: Sleep interval in seconds +
 RETVAL), Return value: 0 or sleep time +
 VL,MF=(E,PLIST) ----------------------------------

VM-Related Information
Both the alarm (BPX1ALR) service and the sleep (BPX1SLP) service use CMS Timer Services. If the
process invokes TimerStopAll, any outstanding timers set by the alarm or sleep service are also canceled.

If a timer set by the alarm or sleep service is canceled by TimerStopAll or expires, a SIGALRM signal is
generated and a VMTIMER event is signalled. For more information on TimerStopAll and the VMTIMER
event, see z/VM: CMS Application Multitasking.

Related Services
Other callable services related to this service are:

• “alarm (BPX1ALR) — Set an Alarm” on page 18
• “sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered”

on page 324.

sleep (BPX1SLP)

Chapter 2. Callable Service Descriptions 329

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

socket (BPX1SOC) — Create a Socket

BPX1SOC
domain
type
protocol
dimension
socket_vector
return_value
return_code
reason_code

Purpose
Use the socket (BPX1SOC) service to create a socket for communication. A descriptor is returned for the
socket that identifies the socket in subsequent operations.

Parameters
domain

(input,INT,4) is a variable for specifying the socket domain (address family) for the socket. Values for
this field are defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and
Constants for Socket-Related Services” on page 465.

type
(input,INT,4) is a variable for specifying the type of socket to be created. Some of the socket types are:
SOCK#_STREAM

Provides sequenced, two-way byte streams that are reliable and connection-oriented. They
support out-of-band data. This type is supported in the AF_INET, AF_INET6, AF_IUCV, and
AF_UNIX domains.

SOCK#_DGRAM
Provides datagrams, which are connectionless messages of a fixed maximum length whose
reliability is not guaranteed. Datagrams can be corrupted, received out of order, lost, or delivered
multiple times. This type is supported in only the AF_INET and AF_INET6 domains.

SOCK#_RAW
Supports AF_INET and AF_INET6. You must be a superuser to use this type.

Values for this field are defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR
Structure and Constants for Socket-Related Services” on page 465.

protocol
(input,INT,4) is a variable for specifying the communication protocol. Values for this field are defined
in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-
Related Services” on page 465.

dimension
(input,INT,4) is a variable for specifying a value that indicates the number of sockets to be created.
The only supported value is:
SOCK#DIM_SOCKET

This invokes the socket service to create a single socket.
This value is defined in the BPXYSOCK macro. See “BPXYSOCK — Map the SOCKADDR Structure and
Constants for Socket-Related Services” on page 465.

socket (BPX1SOC)

330 z/VM: 7.3 OpenExtensions Callable Services Reference

socket_vector
(output,INT,8) is a variable where the service stores the socket descriptor. (The first four bytes contain
the socket descriptor; the second four bytes are undefined.)

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Characteristics and Restrictions
Protocols 0, 41, 43, 50, 51, 59, and 60 are not valid for AF_INET6 raw sockets.

Example

The following code creates a stream socket in the AF_UNIX domain. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551. For the data structure, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for
Socket-Related Services” on page 465.

 CALL BPX1SOC, Create a socket +
 (=A(AF_UNIX), Input: Domain of AF_UNIX +
 =A(SOCK#_STREAM), Input: Type of socket stream +
 =A(IPPROTO_IP), Input: Default protocol +
 =A(SOCK#DIM_SOCKET), Input: Dimension for single +
 SOCKET, Output: Socket descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Permission is denied.

EAFNOSUPPORT The address family that was specified with the domain parameter is not
supported. The following reason code can accompany this return code:
JRSocketCallParmError.

EAGAIN The resource is temporarily unavailable. The following reason code can
accompany this return code: JRPfsSuspend.

ECMSPFSPERM The physical file system encountered a system error. The following reason
code can accompany this return code: JRInvalidVnode.

EINVAL The value for dimension is not valid. Only SOCK#DIM_SOCKET can be
specified for this parameter. The following reason code can accompany this
return code: JRInvalidParms.

EIO There was an I/O error. The following reason code can accompany this return
code: JRPfsDead.

ENOBUFS A buffer could not be obtained.

socket (BPX1SOC)

Chapter 2. Callable Service Descriptions 331

Return Code Explanation

EPROTOTYPE The socket type is incorrect. The following reason codes can accompany this
return code: JRSocketCallParmError, JRSocketTypeNotSupported.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

socket (BPX1SOC)

332 z/VM: 7.3 OpenExtensions Callable Services Reference

spawn (BPX1SPN) — Spawn a Process

BPX1SPN
pathname_length
pathname
argument_count
argument_length_list
argument_list
environment_count
environment_data_length
environment_data_list
filedesc_count
filedesc_list
inherit_area_length
inherit_area
return_value
return_code
reason_code

Purpose
Use the spawn (BPX1SPN) service to create a child process to run the specified executable file. This
service combines the semantics of the fork (BPX1FRK) and exec (BPX1EXC) services.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file to be run. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6.

The name specified in this parameter is case-sensitive (not automatically uppercased), whether the
file resides in BFS or outside of BFS. For information on how the spawn service searches for the
specified file, see usage note “3” on page 335.

argument_count
(input,INT,4) is a variable for specifying the number of elements in the arrays specified in the
argument_length_list and argument_list parameters. If the program needs no arguments, specify 0.

argument_length_list
(input,INT,argument_count) is a variable for specifying an array of 4-byte pointers, each of which is the
address of a fullword containing the length of an argument to be passed to the specified program. If
the program needs no arguments, specify 0.

argument_list
(input,INT,argument_count) is a variable for specifying an array of 4-byte pointers, each of which is
the address of a character string to be passed to the specified program as an argument. The length
of each argument is specified by the corresponding element in the argument_length_list parameter. If
the program needs no arguments, specify 0.

spawn (BPX1SPN)

Chapter 2. Callable Service Descriptions 333

environment_count
(input,INT,4) is a variable for specifying the number of elements in the arrays specified in
the environment_data_length and environment_data_list parameters. If the program needs no
environment data, specify 0.

environment_data_length
(input,INT,environment_count) is a variable for specifying an array of 4-byte pointers, each of which
is the address of a fullword containing the length of an environment variable to be passed to the
specified program. If the program does not use environment variables, specify 0.

environment_data_list
(input,INT,environment_count) is a variable for specifying an array of 4-byte pointers, each of which
is the address of a character string to be passed to the specified program as an environment
variable. The length of each environment variable is specified by the corresponding element in the
environment_data_length parameter. If the program does not use environment variables, specify 0.

filedesc_count
(input,INT,4) is a variable for specifying the number of file descriptors the child process shall inherit.
This is also the number of elements in the array specified in the filedesc_list parameter. Values from
0 to OPEN_MAX are valid. If you specify 0, all file descriptors from the parent are inherited without
remapping by the child, and the filedesc_list parameter is ignored.

filedesc_list
(input,INT,filedesc_count) is a variable for specifying an array of 4-byte values, each of which indicates
how one of the child's file descriptors is to be remapped from one of the caller's (parent's) file
descriptors. Except for those file descriptors designated by SPAWN_FDCLOSED in the supplied array,
the child's file descriptor 0 is remapped using the first value in the filedesc_list array, the child's file
descriptor 1 is remapped using the second value in the filedesc_list array, and so on. For example,
assume the caller supplies an array of 3 entries with the values 7, 5, and 4. This would cause the
child's file descriptor 0 to be remapped to the parent's file descriptor 7, the child's file descriptor 1 to
be remapped to the parent's file descriptor 5, and the child's file descriptor 2 to be remapped to the
parent's file descriptor 4. The constant SPAWN_FDCLOSED is defined in the BPXYCONS macro.

inherit_area_length
(input,INT,4) is a variable for specifying the length of the inheritance structure that is to follow. If you
specify 0, the inherit_area parameter is ignored.

inherit_area
(input,CHAR,INHE#LENGTH) is a variable for a data area that contains the inheritance structure for
the child process. See “BPXYINHE — Map the Inheritance Structure for the spawn Service” on page
426 for the details of the inheritance structure, including the definition of INHE#LENGTH.

return_value
(output,INT,4) is a variable where the service returns the process ID of the newly created child
process if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The new process (called the child) inherits the following attributes from the process that calls spawn

(called the parent):

• Session membership
• Real user ID
• Real group ID
• Supplementary group IDs

spawn (BPX1SPN)

334 z/VM: 7.3 OpenExtensions Callable Services Reference

• Priority
• Working directory
• Root directory
• File creation mask
• The process group ID of the parent is inherited by the child, unless the INHESETGROUP flag in

the inheritance structure is set on, which indicates that the value specified in the INHEPGROUP
field is to be used to determine the child's process group. If the value in INHEPGROUP is set to
INHE#NEWPGROUP, the child is placed into a new process group with a process group ID set to the
child's process ID. Otherwise, the child is placed into the process group represented by the value
specified in INHEPGROUP.

• Signals set to be ignored in the parent are set to be ignored in the child, unless the INHESETSIGDEF
flag in the inheritance structure is set on and the INHESIGDEF field specifies an overriding value.

• The signal mask is inherited from the parent, unless the INHESETSIGMASK flag in the inheritance
structure is set on and the INHESIGMASK field specifies an overriding value.

2. The new child process has the following differences from the parent process:

• The child process has a unique process ID (PID) that does not match any active process group ID.
• The child has a different parent process ID (namely, the process ID of the process that called

spawn).
• If the filedesc_count parameter is specified as 0, the child has its own copy of the parent's
file descriptors except for those files that are marked FCTLCLOEXEC or FCTLCLOFORK. The files
marked FCTLCLOEXEC or FCTLCLOFORK are not inherited by the child. If a value greater than 0 is
specified for filedesc_count, the parent's file descriptor's are remapped for the child as specified
in the filedesc_list array. Those file descriptors from filedesc_count through OPEN_MAX in the
parent are closed in the child, as are any elements in the filedesc_list array that are designated
SPAWN_FDCLOSED. See the BPXYCONS macro for the definition of the SPAWN_FDCLOSED constant.
The FCTLCLOFORK and FCTLCLOEXEC flags have no effect on inheritance when the filedesc_list is
used to map the child's file descriptors.

• The FCTLCLOEXEC and FCTLCLOFORK flags are not inherited from the parent's file descriptors to the
child's.

• If the INHESETTCPGRP flag is set in the inheritance structure, INHECTLTTYFD must be set to the
file descriptor associated with the controlling terminal for this session. The foreground process group
for this session will be set to the PGID of this child process, thus placing the child process in the
foreground process group. (This is done by issuing a tcsetpgrp() syscall as part of spawn processing.)

• If INHESETTCPGRP is not set, the foreground process group of the session remains unchanged.
• The process and system utilization times for the child are set to zero.
• Any file locks previously set by the parent are not inherited by the child.
• The child process has no alarms set (similar to the results of a call to the alarm service with

Wait_time specified as zero) and has no interval timers set.
• The child has no pending signals.
• The child gets a new process image to run the executable file, which is not a copy of the parent's.
• Signals set to be caught are reset to their default action.
• If the set-user-ID mode bit of the new executable file is set, the effective user ID and saved

set-user-ID mode of the process are set to the group ID of the new executable file. See “BPXYMODE
— Map Mode Constants” on page 437.

• If the set-group-ID mode bit of the new executable file is set, the effective group ID and saved set-
group-ID bit of the process are set to the owner user ID of the new executable file. See “BPXYMODE
— Map Mode Constants” on page 437.

3. The file to be invoked must be a relocatable executable CMS module created by the GENMOD
command, the BIND command, the c89 utility, or the cxx utility. The file type does not have to be
MODULE. If the file is not relocatable, results are unpredictable.

spawn (BPX1SPN)

Chapter 2. Callable Service Descriptions 335

The file can reside in the byte file system or in the CMS record file system. The spawn service first
looks for an executable file in the byte file system. If this fails, the service looks for an external link
with a subtype of FST_EXEC. If the file is not an external link, the service parses the path name into a
CMS file ID and looks for the file in the record file system.

If the file is either an external link or a CMS file ID and the file type is not specified, MODULE is
assumed. If the file mode is not specified, * is assumed. If the file type is MODULE or *, and the file
mode is *, the spawn service searches for a nucleus extension.

To ensure that a nucleus extension is run in the calling process, it must have been established in the
CMS Commands process. Otherwise, if the nucleus extension uses OpenExtensions services, results
are unpredictable.

If the file is not a nucleus extension, or no search was made for a nucleus extension because the file
ID criteria described above were not met, the spawn service then searches for the file on the accessed
minidisks and directories.

4. If the CMS module file to be executed contains MAP information, it is copied into the loader tables.
However, because the loader tables are shared among all the processes in the virtual machine, the
information in the loader tables cannot safely be relied upon in a multitasking environment.

5. The information that the service passes to the executable file to be run is a parameter list, which is
pointed to by register 1. The parameter list consists of the following parameter addresses. In the last
parameter address, the high-order bit is 1.

The last parameter that spawn passed to the executable file identifies the caller of the file as the exec
or spawn service.

6. The child process will share the address space with its parent.
7. If the set-user-ID or set-group-ID mode bit of the executable file is set and will result in a change

to the effective user ID or effective group ID, then the requestor must be authorized to have its IDs
changed, and the file server on which the file resides must be authorized to change the IDs of another
user.

The following authorization applies to the requestor:

• The External Security Manager (ESM) must grant the requestor authority to have its IDs changed, or
• An ESM must not be installed or must defer authorization to CP, and:

– The effective UID of the active process must be 0, or

spawn (BPX1SPN)

336 z/VM: 7.3 OpenExtensions Callable Services Reference

– The requesting VM user ID must have the attribute POSIXOPT EXEC_SETIDS ALLOW set, either
through a statement in its CP directory entry or through a specified or defaulted setting in the
system configuration file that is not overridden in the directory entry.

The following authorization applies to the file server on which the file resides:

• The ESM must have identified to CP that the file server is authorized to change the IDs of another
user when the file server logged on, or

• An ESM must not be installed or must defer authorization to CP, and the file server must have the
attribute POSIXOPT SETIDS ALLOW set through a statement in its CP directory entry.

Example

The following code gives control to program ictasma located at ict/bin as a child process of the caller
and passes arguments WK18, DEPT37A, and RATE(STD,NOEXC,NOSPEC). No environment arguments
are passed. The file descriptor count is set to 0 indicating that the child shall inherit all of the parent's
file descriptors. The inheritance area that is passed is set to indicate that the child process will be the
process group leader of a new process group, and this process group is to be put in the foreground, with
file descriptor 0 as the controlling terminal. This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structure, see “BPXYINHE — Map the Inheritance Structure for the spawn Service” on page 426.

 MVC BUFLENA,=F'15'
 MVC BUFFERA(15),=C'ict/bin/ictasma'
 MVC ARGCNT,=F'3'
* First
 LA R15,4 Length
 ST R15,ARGLLST+00 Length parm list
 LA R15,=CL4'WK18' Argument
 ST R15,ARGSLST+00 Argument address parm list
* Second
 LA R15,7 Length
 ST R15,ARGLLST+04 Length parm list
 LA R15,=CL7'DEPT37A' Argument
 ST R15,ARGSLST+04 Argument address parm list
* Third
 LA R15,22 Length
 ST R15,ARGLLST+08 Length parm list
 LA R15,=CL22'RATE(STD,NOEXC,NOSPEC)' Argument
 ST R15,ARGSLST+08 Argument address parm list
*
 MVC ENVCNT,=F'0' Number of env. data items passed
 MVC ENVLENS,=F'0' Addr of end. data length list
 MVC ENVPARMS,=F'0' Add of env. data
*
 MVC FDCNT,=F'0' Zero file descriptors passed
 MVC FDLST,=F'0' File descriptor list
*
 MVC INHEEYE,=C'INHE' Move eye catcher
 LA R15,INHE#LENGTH Get length of structure
 STH R15,INHELENGTH Put it in structure
 LA R15,INHE#VER Get version
 STH R15,INHEVERSION Put it in structure
* Put child in new process group in foreground
 XC INHEFLAGS,INHEFLAGS Clear the flags
 OI INHEFLAGS0,INHESETPGROUP+INHESETTCPGRP
 LA R15,INHE#NEWPGROUP Put child in new process group
 ST R15,INHEPGROUP Put it in structure
 LA R15,0 File descriptor 0
 ST R15,INHECTLTTYFD Controlling terminal file desc.
*
 SPACE ,
 CALL BPX1SPN, +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 ARGCNT, Input: Argument count +
 ARGLLST, Input: Argument length list +
 ARGSLST, Input: Argument address list +
 ENVCNT, Input: Environment count +
 ENVLENS, Input: Environment length list +
 ENVPARMS, Input: Environment address list +
 FDCNT, Input: File descriptor count +
 FDLST, Input: File descriptor list +
 =A(INHE#LENGTH), Input: Length of Inheritance area +

spawn (BPX1SPN)

Chapter 2. Callable Service Descriptions 337

 INHE, Input: Inheritance area +
 RETVAL, Return value: -1 or not return +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The caller does not have appropriate permissions to run the specified file:

• The caller may lack permission to search a directory named in the
pathname parameter.

• The caller may lack execute permission for the file to be run.
• The file to be run is not a regular file, and the system cannot run files of its

type.

EAGAIN The resources required to let another process be created are not available
now; or you have already reached the maximum number of processes you are
allowed to create.

Consult the reason code to determine the exact reason the error occurred.

EBADF An entry in the file descriptor list is not a valid file descriptor, or the controlling
terminal file descriptor specified in the inheritance structure is not valid.

ECMSERR An internal error occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRNoStorage.

EINVAL The process group ID specified in the inheritance structure is less than zero or
has some other unsupported value.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

EMFILE The process has reached the maximum number of file descriptors it can have
open.

ENAMETOOLONG The pathname parameter is longer than 1023 characters, or some component
of the path name is longer than 255 characters. CMS does not support name
truncation.

ENFILE CMS has reached the maximum number of file descriptors it can have open.

ENOENT No path name was specified, or one or more of the components of the
specified path name were not found.

Consult the reason code to determine the exact reason the error occurred.

ENOEXEC The specified file has execute permission, but is not in the proper format to be
a process image file.

ENOMEM The new process requires more memory than is permitted by the hardware or
the operating system.

Consult the reason code to determine the exact reason the error occurred.

ENOTDIR A directory component of pathname is not a directory.

spawn (BPX1SPN)

338 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENOTTY The tcsetpgrp failed for the specified controlling terminal file descriptor in
the inheritance structure. The failure occurred because the calling process
does not have a controlling terminal, or the specified file descriptor is not
associated with the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

EPERM The tcsetpgrp failed because the spawned process is not a process group
leader.

ESRCH The specified process group ID in the inheritance structure is not that of a
process group in the calling process's session.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “alarm (BPX1ALR) — Set an Alarm” on page 18
• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “exec (BPX1EXC) — Run a Program” on page 72
• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “fork (BPX1FRK) — Create a New Process” on page 96
• “sigpending (BPX1SIP) — Examine Pending Signals” on page 319
• “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 294
• “sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340
• “tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID” on page 369
• “umask (BPX1UMK) — Set or Return the File Mode Creation Mask” on page 374

spawn (BPX1SPN)

Chapter 2. Callable Service Descriptions 339

stat (BPX1STA) -- Get Status Information about a File by Path
Name

BPX1STA
pathname_length
pathname
status_area_length
status_area
return_value
return_code
reason_code

Purpose
Use the stat (BPX1STA) service to obtain status information about a file identified by its path name. If the
specified path name refers to a symbolic link, the symbolic link name is resolved to a file and the status
information for that file is returned.

For the corresponding service using a file descriptor, see “fstat (BPX1FST) -- Get Status Information about
a File by Descriptor” on page 102.

To obtain status information about a symbolic link, rather than for a file to which it refers, see “lstat
(BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file for which you want
to obtain status. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

status_area_length
(input,INT,4) is a variable for specifying the length of the status_area parameter. To determine
the value of status_area_length, use the BPXYSTAT macro. See “BPXYSTAT — Map the File Status
Structure for the stat Service” on page 473.

status_area
(input/output,CHAR,status_area_length) is a variable for a buffer where the the service returns the
status information for the file. The status area is mapped by the BPXYSTAT macro. See “BPXYSTAT —
Map the File Status Structure for the stat Service” on page 473.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

stat (BPX1STA)

340 z/VM: 7.3 OpenExtensions Callable Services Reference

Usage Notes
1. All modified data in the file identified by the pathname parameter is written to permanent storage

when this service is requested. See “fsync (BPX1FSY) — Write Changes to Direct-Access Storage” on
page 106.

2. All time fields in the status_area are in POSIX format, which is the number of seconds since
January 1, AD 1970, 00:00:00 UTC. If you need to perform conversions on POSIX times, see the
DateTimeSubtract CSL routine in the z/VM: CMS Application Multitasking or the DATECONVERT stage in
the z/VM: CMS Pipelines User's Guide and Reference.

3. The File Mode field in the status_area is mapped by the BPXYMODE macro. See “BPXYMODE — Map
Mode Constants” on page 437. For information on the values for file type, see “BPXYFTYP — Map File
Type Definitions” on page 423.

Characteristics and Restrictions
To obtain information about a file, you need not have permissions for the file itself; however, you must
have search permission for all the directory components of the path name.

Example

The following code obtains status about file labrec/qual/current. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551. For the data structure, see “BPXYSTAT — Map the File Status Structure for the stat Service” on
page 473.

 MVC BUFFERA(19),=CL19'labrec/qual/current'
 MVC BUFLENA,=F'19'
 SPACE ,
 CALL BPX1STA, Get file status +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 STATL, Input: Length of buffer needed +
 STAT, Buffer, BPXYSTAT +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The process does not have permission to search some component of the path
name prefix.

ECMSERR An internal error occurred.

EINVAL Parameter error—for example, a zero-length buffer.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRBuffTooSmall.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The pathname argument is longer than 1023 characters, or some component
of the path name is longer than 255 characters. This could be as a result
of encountering a symbolic link during resolution of pathname, and the
substituted string is longer than 1023 characters.

stat (BPX1STA)

Chapter 2. Callable Service Descriptions 341

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf

Return Code Explanation

ENODEV An attempt was made to use a character special file for a device not
supported by OpenExtensions.

ENOENT No file named pathname was found, or a path name was not specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of the path name prefix is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name” on page 28
• “exec (BPX1EXC) — Run a Program” on page 72
• “fpathconf (BPX1FPC) — Determine Configurable Path Name Variables Using a Descriptor” on page 99
• “fstat (BPX1FST) -- Get Status Information about a File by Descriptor” on page 102
• “link (BPX1LNK) — Create a Link to a File” on page 149
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “open (BPX1OPN) — Open a File” on page 181
• “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 199
• “read (BPX1RED) — Read from a File or Socket” on page 228
• “symlink (BPX1SYM) — Create a Symbolic Link to a Path Name” on page 345
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379
• “utime (BPX1UTI) -- Set File Access and Modification Times” on page 382
• “write (BPX1WRT) — Write to a File or Socket” on page 401.

stat (BPX1STA)

342 z/VM: 7.3 OpenExtensions Callable Services Reference

statvfs (BPX1STV) — Get Status Information about a File System by
Path Name

BPX1STV
pathname_length
pathname
status_area_length
status_area
return_value
return_code
reason_code

Purpose
Use the statvfs (BPX1STV) service to obtain status information about a file system identified by its path
name.

For the corresponding service using a file descriptor, see “fstatvfs (BPX1FTV) — Get Status Information
about File System by Descriptor” on page 104. For the corresponding service using a file system name,
see “w_statvfs (BPX1STF) — Get Status Information about a File System by File System Name” on page
407.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file system. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6 and “Understanding Network
File System (NFS) Path Name Syntax” on page 9.

status_area_length
(input,INT,4) is a variable for specifying the length of the status_area parameter.

status_area
(output,CHAR,status_area_length) is a variable for the area where the service returns the status
information for the file system. This area is mapped by the BPXYSSTF macro. See “BPXYSSTF — Map
the File System Status Structure” on page 471.

return_value
(output,INT,4) is a variable where the service returns the length of the data returned in status_area if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

statvfs (BPX1STV)

Chapter 2. Callable Service Descriptions 343

Usage Notes
1. It is not considered an error if the passed status_area_length is not sufficient to hold all the returned

information. (In other words, future expansion is allowed for.) As much information as will fit is written
to status_area, and this amount is returned.

2. The amount of valid data returned in the status_area is indicated by the return_value. This allows for
differences in the release levels of z/VM and the physical file systems.

Example

The following code requests information about file system containing the file identified by pathname.

 MVC BUFFERA(8),CL8'/usr/inv'
 MVC BUFLENA,=F'8'
 SPACE ,
 CALL BPX1STV, Get file system status +
 (BUFLENA Input: Pathname length +
 BUFFERA, Input: Pathname +
 SSTFL, Input: Length of BPXYSSTF +
 SSTF, Buffer, BPXYSSTF +
 RETVAL, Return value: Status length or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process does not have permission to search some component of
the path name prefix.

EAGAIN Information is temporarily unavailable. This can occur because the mount
process for the file system is incomplete.

EINVAL Parameter error. For example, status_area_length is too small.

The following reason code can accompany this return code: JRBuffTooSmall.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 24 symbolic links are detected in
the resolution of path name.

ENAMETOOLONG The pathname parameter is longer than 1023 characters, or a component of
the path name is longer than 255 characters.

ENOENT A component of pathname was not found, or no path name was specified.

The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR A component of pathname is not a directory.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fstatvfs (BPX1FTV) — Get Status Information about File System by Descriptor” on page 104.
• “w_statvfs (BPX1STF) — Get Status Information about a File System by File System Name” on page

407.

statvfs (BPX1STV)

344 z/VM: 7.3 OpenExtensions Callable Services Reference

symlink (BPX1SYM) — Create a Symbolic Link to a Path Name

BPX1SYM
pathname_length
pathname
link_name_length
line_name
return_value
return_code
reason_code

Purpose
Use the symlink (BPX1SYM) service to create a symbolic link to a path name. A file of type "symbolic link"
is created.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name for which you are creating a
symbolic link. See “Understanding Byte File System (BFS) Path Name Syntax” on page 6.

link_name_length
(input,INT,4) is a variable for specifying the length of the link_name parameter.

link_name
(input,CHAR,link_name_length) is a variable for specifying the symbolic link being created.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
The symlink (BPX1SYM) service creates a symbolic link (link_name) with the file you specify (pathname).

Like a hard link (described in “link (BPX1LNK) — Create a Link to a File” on page 149), a symbolic link
allows a file to have more than one name. The presence of a hard link guarantees the existence of a file,
even after the original name has been removed. A symbolic link, however, provides no such assurance;
in fact, the file identified by pathname need not exist when the symbolic link is created. In addition, a
symbolic link can cross file system boundaries.

When a component of a path name refers to a symbolic link rather than to a directory, the path name
contained in the symbolic link is resolved. If the path name in the symbolic link begins with / (slash), the
symbolic link path name is resolved relative to the process root directory. If the path name in the symbolic

symlink (BPX1SYM)

Chapter 2. Callable Service Descriptions 345

link does not begin with /, the symbolic link path name is resolved relative to the directory that contains
the symbolic link.

If the symbolic link is not the last component of the original path name, remaining components of the
original path name are resolved from there.

When a symbolic link is the last component of a path name, it may or may not be resolved. Resolution
depends on the function using the path name. For example, a rename request does not have a symbolic
link resolved when it appears as the final component of either the new or old path name. However, an
open request does have a symbolic link resolved when it appears as the last component.

When a slash is the last component of a path name, and it is preceded by a symbolic link, the symbolic
link is always resolved.

Because the mode of a symbolic link cannot be changed, its mode is ignored during the lookup process.
Any files and directories to which a symbolic link refers are checked for access permission.

Example

The following code creates a symbolic link /sysaccts for path name /sys12/acctn. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC BUFFERA(12),=CL12'/sys12/acctn'
 MVC BUFLENA,=F'12'
 MVC BUFFERB(09),=CL09'/sysaccts'
 MVC BUFLENB,=F'09'
 SPACE ,
 CALL BPX1SYM, Create symbolic link to pathname +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 BUFLENB, Input: Link name length +
 BUFFERB, Input: Link name +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The requested operation requires writing in a directory with a mode that
denies write permission.

EEXIST The link name already exists.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRSymFileAlreadyExists.

EINVAL This return code may be returned for any of the following reasons:

• A component of the path prefix of the path name or the entire path name
exceeds the maximum allowed.

• The value of pathname_length is less than or equal to zero.
• A null character appears in pathname.
• The link_name has a slash as its last component, which indicates that the

preceding component is a directory. A symbolic link cannot be a directory.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JRCompNotDir,
JRInvalidSymLinkCom, JRInvalidSymLinkLen, and JRNullInPath.

symlink (BPX1SYM)

346 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ELOOP A loop exists in symbolic links encountered during resolution of the link_name
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the link name.

ENAMETOOLONG The pathname or link_name argument is longer than 1023 characters, or
some component of that name is longer than 255 characters. CMS does not
support name truncation.

ENOSPC The directory in which the entry for the symbolic link is being placed cannot
be extended; not enough space remains in the file system.

ENOTDIR A component of the path prefix of link_name is not a directory.

EROFS The requested operation requires writing in a directory on a read-only file
system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFS.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “chown (BPX1CHO) — Change the Owner or Group of a File or Directory” on page 31
• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “mknod (BPX1MKN) — Make a FIFO or Character Special File” on page 163
• “lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name” on page 157
• “open (BPX1OPN) — Open a File” on page 181
• “readlink (BPX1RDL) — Read the Value of a Symbolic Link” on page 236
• “rename (BPX1REN) — Rename a File or Directory” on page 251
• “rmdir (BPX1RMD) — Remove a Directory” on page 256
• “unlink (BPX1UNL) — Remove a Directory Entry” on page 379.

symlink (BPX1SYM)

Chapter 2. Callable Service Descriptions 347

sysconf (BPX1SYC) — Determine System Configuration Options

BPX1SYC
sysconf_name
return_value
return_code
reason_code

Purpose
Use the sysconf (BPX1SYC) service to get the value of a configurable system variable.

Parameters
sysconf_name

(input,INT,4) is a variable for specifying the configurable system variable to be retrieved. Each
configurable system variable is mapped to a specific value as defined in the BPXYCONS macro. See
“BPXYCONS — Map Constants” on page 417.

Constant Configurable System Variable Returned

SC_ARG_MAX The constant for ARG_MAX

SC_CHILD_MAX The constant for CHILD_MAX

SC_CLK_TCK The constant for CLK_TCK

SC_JOB_CONTROL The constant for _POSIX_JOB_CONTROL

SC_NGROUPS_MAX The constant for NGROUPS_MAX

SC_OPEN_MAX The constant for OPEN_MAX

SC_SAVED_IDS The constant for _POSIX_SAVED_IDS

SC_TZNAME_MAX The constant for TZNAME_MAX

SC_VERSION The constant for _POSIX_VERSION

SC_2_CHAR_TERM The constant for CHAR_TERM

SC_THREAD_TASKS_MAX_NP The constant for _THREAD_TASKS_MAX_NP

return_value
(output,INT,4) is a variable where the service returns the actual value of the configurable system
variable if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
If the variable corresponding to sysconf_name exists but is not supported by the system, the sysconf
service sets the return value to -1 but does not change the value of the return code.

sysconf (BPX1SYC)

348 z/VM: 7.3 OpenExtensions Callable Services Reference

Example

The following code gets the maximum number of children allowed by the configuration variable. This
example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYCONS — Map Constants”
on page 417.

 CALL BPX1SYC, Get configuration variable +
 (=A(SC_CHILD_MAX), Input: Config variable BPXYCONS +
 RETVAL, Return value: -1 or variable +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

EINVAL The value of the sysconf_name argument is not valid.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “pathconf (BPX1PCF) — Determine Configurable Path Name Variables Using Path Name” on page 194.

sysconf (BPX1SYC)

Chapter 2. Callable Service Descriptions 349

takesocket (BPX1TAK) — Acquire a Socket from Another Program

BPX1TAK
client_ID
socket_ID
return_value
return_code
reason_code

Purpose
Use the takesocket (BPX1TAK) service to acquire a specified socket from a specified program. A new
socket descriptor is returned.

Parameters
client_ID

(input,INT,length of BPXYCID) is a variable for specifying a structure that identifies the (server)
program from which the socket is to be taken. This information is typically obtained with the
getclientid (BPX1GCL) service, issued by the server and passed to the taking program.

The client ID structure is mapped by the BPXYCID macro. See “BPXYCID — Map the Client ID
Structure” on page 415. The structure may contain the following:
CIdDomain

Domain of the socket to be taken. Values for this field are defined in the BPXYSOCK macro. See
“BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services” on page
465.

CIdName
The server virtual machine's user ID, left-justified and padded with blanks.

CIdTask
The server program's subtask name.

CIdReserved
Binary zeros.

socket_ID
(input,INT,4) is a variable for specifying an identifier for the socket being taken. This is supplied by the
server program. It is the socket descriptor obtained from an accept (BPX1ACP) call.

return_value
(output,INT,4) is a variable where the service returns the new socket descriptor if the request is
successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

takesocket (BPX1TAK)

350 z/VM: 7.3 OpenExtensions Callable Services Reference

Usage Notes
1. The client ID output of getclientid (BPX1GCL) that is issued by the server program and passed to the

secondary is intended to be used as the input client ID of the takesocket service. This identifies the
program from which the socket is to be taken.

Example

The following code takes a socket that was given by the program identified by CID (client ID). SOCKDESC
and CID information are passed by the program that did the givesocket (BPX1GIV). SOCKDESC is
the giver's descriptor. When takesocket completes successfully, RETVAL will contain the taker's new
socket descriptor. This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYCID —
Map the Client ID Structure” on page 415.

 CALL BPX1TAK, Take a socket from another program+
 (CID, Input: Clientid of giver +
 SOCKDESC, Input: Giver's socket descriptor +
 RETVAL, Return value: -1 or new descriptor+
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 L R2,RETVAL
 ST R2,SOCKDES2 Store the new socket descriptor

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Permission is denied. The following reason code can accompany this return
code: JRUserNotAuthorized.

EAFNOSUPPORT The address family is not supported.

EBADF socket_ID does not specify a valid socket that is owned by the other
application, or the socket has already been taken.

ECMSSTORAGE There was a storage management error. The following reason code can
accompany this return code: JRStorageReleaseErr.

EINVAL The client_ID parameter does not specify a valid client identifier: either the
client's process cannot be found, or the client's process was found, but it has
no outstanding givesockets. The following reason code can accompany this
return code: JRSocketCallParmError.

EMFILE The socket descriptor table is already full.

EPFNOSUPPORT The domain field of the client_ID parameter is not AF_INET or AF_INET6.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “accept (BPX1ACP) — Accept a Connection Request from a Client Socket” on page 12
• “getclientid (BPX1GCL) — Obtain the Calling Program's Identifier” on page 110
• “givesocket (BPX1GIV) — Give a Socket to Another Program” on page 142

takesocket (BPX1TAK)

Chapter 2. Callable Service Descriptions 351

tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted

BPX1TDR
file_descriptor
return_value
return_code
reason_code

Purpose
Use the tcdrain (BPX1TDR) service to wait until all output sent to a device has actually been sent.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor that represents the output device.
return_value

(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. Data is considered written when it is transmitted to the terminal from the output queue.
2. The following table defines the processing of the SIGTTOU signal when the tcdrain (BPX1TDR) service

is called from a background session against a controlling terminal:

SIGTTOU Processing Expected Behavior

Default or signal handler The SIGTTOU signal is generated.
The function is not performed.
The return_value is set to -1,
and the return_code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Example

The following code waits until all output sent to the standard output file has been transmitted. This
example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1TDR, Wait for output transmittal +
 (=A(STDOUT_FILENO), Input: File descriptor +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +

tcdrain (BPX1TDR)

352 z/VM: 7.3 OpenExtensions Callable Services Reference

 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument does not describe a valid open file.

EINTR A signal interrupted the service before all output had been sent.

ENOTTY The specified file descriptor is not associated with a terminal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal” on page 354
• “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on page 356
• “tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal” on page 363.

tcdrain (BPX1TDR)

Chapter 2. Callable Service Descriptions 353

tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal

BPX1TFW
file_descriptor
action
return_value
return_code
reason_code

Purpose
Use the tcflow (BPX1TFW) service to suspend or resume data flow on a terminal.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor for the terminal device.
action

(input,INT,4) is a variable for specifying an indicator of the action to be taken. The possible constants
are mapped in the BPXYTIOS macro. See “BPXYTIOS — Map the termios Structure” on page 477.

Constant Description

TCIOFF Send a STOP character to the terminal to stop the terminal from sending
any further input.

TCION Send a START character to the terminal to start the terminal sending input.

TCOOFF Suspend output to the terminal.

TCOON Resume output to the terminal.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The following table defines the processing of the SIGTTOU signal when the tcflow (BPX1TFW) service is
called from a background session against a controlling terminal:

SIGTTOU Processing Expected Behavior

Default or signal handler The SIGTTOU signal is generated.
The function is not performed.
The return_value is set to -1,
and the return_code is set to EINTR.

tcflow (BPX1TFW)

354 z/VM: 7.3 OpenExtensions Callable Services Reference

SIGTTOU Processing Expected Behavior

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Example

The following code resumes data flow (TCION transmits a START character) on the standard input file.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYTIOS — Map the termios
Structure” on page 477.

 CALL BPX1TFW, Suspend or resume data flow +
 (=A(STDIN_FILENO), Input: File descriptor +
 =A(TCION), Input: Action BPXYTIOS +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument does not describe a valid open file.

EINTR A signal interrupted the call.

EINVAL The action parameter does not contain one of the expected values.

ENOTTY The specified file descriptor is not associated with a terminal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on page 352
• “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on page 356
• “tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal” on page 363.

tcflow (BPX1TFW)

Chapter 2. Callable Service Descriptions 355

tcflush (BPX1TFH) — Flush Input or Output on a Terminal

BPX1TFH
file_descriptor
queue_selector
return_value
return_code
reason_code

Purpose
Use the tcflush (BPX1TFH) service to flush all data sent to a device. Depending on the value of the
queue_selector parameter, any data written but not sent, or any data received but not read, is discarded.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the terminal.
queue_selector

(input,INT,4) is a variable for specifying the queues to be flushed. The constants are mapped in the
BPXYTIOS macro. See “BPXYTIOS — Map the termios Structure” on page 477.

Constant Description

TCIFLUSH Flush data received but not read

TCOFLUSH Flush data written but not sent

TCIOFLUSH Flush both data received but not read and data written but not sent

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
The following table defines the processing of the SIGTTOU signal when the tcflush (BPX1TFH) service is
called from a background session against a controlling terminal:

SIGTTOU Processing Expected Behavior

Default or signal handler The SIGTTOU signal is generated.
The function is not performed.
The return_value is set to -1,
and the return_code is set to EINTR.

tcflush (BPX1TFH)

356 z/VM: 7.3 OpenExtensions Callable Services Reference

SIGTTOU Processing Expected Behavior

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

Example

The following code flushes all the data in the standard input file. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551. For the data structure, see “BPXYTIOS — Map the termios Structure” on page 477.

 CALL BPX1TFH, Line control flush +
 (=A(STDIN_FILENO), Input: File descriptor +
 =A(TCIFLUSH), Input: Queue selector BPXYTIOS +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument is not a valid open file descriptor.

EINTR A signal interrupted the call.

EINVAL The queue_selector specified was incorrect.

ENOTTY The file associated with the file descriptor is not a terminal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on page 352
• “tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal” on page 354
• “tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal” on page 363.

tcflush (BPX1TFH)

Chapter 2. Callable Service Descriptions 357

tcgetattr (BPX1TGA) — Get the Attributes for a Terminal

BPX1TGA
file_descriptor
termios_structure
return_value
return_code
reason_code

Purpose
Use the tcgetattr (BPX1TGA) service to get control information for a terminal and store it in a termios data
area that you provide.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the terminal for which you want
attributes.

termios_structure
(output,CHAR,BPXYTIOS#LENGTH field in BPXYTIOS macro) is a variable for an area where the
service returns a structure that contains the terminal control modes, input modes, output modes,
local modes, and special control characters as defined by the POSIX standard. This structure is
mapped by the BPXYTIOS macro. See “BPXYTIOS — Map the termios Structure” on page 477.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The BPXYTIOS macro should be used to map the termios structure and define the equates for bits and

values. Note the following about BPXYTIOS:

• BPXYTIOS generates standard POSIX-defined names, with the exception that all names are
uppercase. In addition, all names can have a user-specified prefix.

• When testing or setting bits in flag fields, you should use an offset name to define which byte in the
flag field contains the bit. For instance: TM C_CFLAG+HUPCL_O,HUPCL.

• CS5 through CS8 values can be contained in CSIZE. CSIZE is essentially a 2-bit integer that can
contain decimal values 0 through 3, as defined by CS5 through CS8.

• BPXYTIOS can be used to define either a DSECT or an inline structure. This is determined by the
DSECT= keyword.

• The C_CC field is an array of 1-byte fields, indexed by the various special character equates. These
equates can be used as offsets into C_CC, or can be put into a register to be used with indexing
instructions. For instance:

tcgetattr (BPX1TGA)

358 z/VM: 7.3 OpenExtensions Callable Services Reference

MVC C_CC+VSUSP,NEWVAL To set a new value
LA R10,VSUSP To set an register to use as an index
 in a later IC or STC instructions

2. You can run the tcgetattr (BPX1TGA) service either in a foreground or in a background process.
However, if the process is in the background, a foreground process can later change the attributes that
you obtained.

Example

The following code retrieves control information about the standard input file. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYTIOS — Map the termios Structure” on page
477.

 CALL BPX1TGA, Get a terminal control structure +
 (=A(STDIN_FILENO), Input: File descriptor +
 TIOS, Termio structure, BPXYTIOS +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument is not a valid open file descriptor.

ENOTTY The file associated with the file descriptor is not a terminal, or the process
does not have a controlling terminal, or the file is not the controlling terminal
for the process.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “tcsetattr (BPX1TSA) — Set the Attributes for a Terminal” on page 365.

tcgetattr (BPX1TGA)

Chapter 2. Callable Service Descriptions 359

tcgetpfx (BPX1TGX) — Get the Control Sequence Prefix

BPX1TGX
control_character_prefix

Purpose
Use the tcgetpfx (BPX1TGX) service to obtain the control sequence prefix for the terminal associated with
the calling process.

Parameters
control_sequence_prefix

(output,CHAR,1) is a variable where the service returns the control sequence prefix.

Example

The following code retrieves the prefix for the terminal. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 CALL BPX1TGX, Determine prefix +
 (PREFIX), Output: Prefix +
 VL,MF=(E,PLIST) ----------------------------------

Related Service
Another callable service related to this service is:

• “tcsetpfx (BPX1TSX) — Set the Control Sequence Prefix” on page 368

tcgetpfx (BPX1TGX)

360 z/VM: 7.3 OpenExtensions Callable Services Reference

tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID

BPX1TGP
file_descriptor
return_value
return_code
reason_code

Purpose
Use the tcgetpgrp (BPX1TGP) service to get the process group ID of the foreground process group
associated with a terminal identified by its file descriptor.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor for the terminal.
return_value

(output,INT,4) is a variable where the service returns the process group ID of the foreground process
group associated with the terminal if the request is successful, or -1 if it is not successful. If there is
no foreground process group, a positive value, not equal to any existing process group, is returned.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code gets the foreground process group ID associated with the controlling terminal. For this
example to work, STDIN must be associated with the controlling terminal. This example follows the rules
of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551.

 CALL BPX1TGP, Get the foreground process grp ID +
 (=A(STDIN_FILENO), Input: File descriptor +
 RETVAL, Return value -1, fgrd proc grp ID +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument does not specify a valid open file descriptor.

ENOTTY The file descriptor is not associated with a terminal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

tcgetpgrp (BPX1TGP)

Chapter 2. Callable Service Descriptions 361

Related Services
Other callable services related to this service are:

• “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 294
• “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on page 297
• “tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID” on page 369.

tcgetpgrp (BPX1TGP)

362 z/VM: 7.3 OpenExtensions Callable Services Reference

tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal

BPX1TSB
file_descriptor
duration
return_value
return_code
reason_code

Purpose
Use the tcsendbreak (BPX1TSB) service to send a BREAK signal to a terminal that uses asynchronous
serial data transmission.

Note: Because OpenExtensions terminals do not use asynchronous serial data transmission, this function
does not send a BREAK signal. Instead, it returns without any action.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor for the terminal device to which the break is
to be sent.

duration
(input,INT,4) is a variable for specifying the duration of the break transmission.

Note: Because this service has no effect on OpenExtensions terminals, the duration value is ignored.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The following table defines the processing of the SIGTTOU signal when the tcsendbreak (BPX1TSB)

service is called from a background session against a controlling terminal:

SIGTTOU Processing Expected Behavior

Default or signal handler The SIGTTOU signal is generated.
The function is not performed.
The return value is set to -1,
and the return code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent.
The function continues normally.

tcsendbreak (BPX1TSB)

Chapter 2. Callable Service Descriptions 363

Example

The following code requests sending a break to the standard input file. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on
page 551.

 CALL BPX1TSB, Send break condition to terminal +
 (=A(STDIN_FILENO), Input: File descriptor +
 =A(0), Duration, not used in OpenExtensions+
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument is not a valid open file descriptor.

EINTR The service was called from a background job, and the SIGTTOU signal had
either a default action or a signal handler. The function was not performed.

ENOTTY The specified file descriptor is not associated with a terminal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted” on page 352
• “tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal” on page 354
• “tcflush (BPX1TFH) — Flush Input or Output on a Terminal” on page 356.

tcsendbreak (BPX1TSB)

364 z/VM: 7.3 OpenExtensions Callable Services Reference

tcsetattr (BPX1TSA) — Set the Attributes for a Terminal

BPX1STA
file_descriptor
actions
termios_structure
return_value
return_code
reason_code

Purpose
Use the tcgetattr (BPX1TSA) service to set control information for a terminal from a termios data area that
you provide.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the terminal for which you want to set
attributes.

actions
(output,INT,4) is a variable where the service returns a value that indicates how the attributes are
to be set. The following possible values for this parameter are defined in the BPXYTIOS macro. See
“BPXYTIOS — Map the termios Structure” on page 477.

Constant Description

TCSANOW Change the terminal attributes immediately.

TCSADRAIN Change the terminal attributes when all output to the terminal has been sent.

TCSAFLUSH Change the terminal attributes when all output to the terminal has been sent, and
all input that has been received but not read is to be discarded.

termios_structure
(input,CHAR,BPXYTIOS#LENGTH field in BPXYTIOS macro) is a variable for an area containing a
termios structure in which you specify the attributes you want to set. The termios structure contains
the terminal control modes, input modes, output modes, local modes, and special control characters
as defined by the POSIX standard. The structure is mapped by the BPXYTIOS macro. See “BPXYTIOS
— Map the termios Structure” on page 477.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

tcsetattr (BPX1TSA)

Chapter 2. Callable Service Descriptions 365

Usage Notes
1. A program should always issue the tcsetattr (BPX1TSA) callable service using a termios structure

returned from a previous call to the tcgetattr (BPX1TGA) service, with appropriate changes to the
various fields.

2. The BPXYTIOS macro should be used to map the termios structure and define the equates for bits and
values. Note the following about BPXYTIOS:

• BPXYTIOS generates standard POSIX-defined names, with the exception that all names are
uppercase. In addition, all names can have a user-specified prefix.

• When testing or setting bits in flag fields, you should use an offset name to define which byte in the
flag field contains the bit. For instance: TM C_CFLAG+HUPCL_O,HUPCL.

• CS5 through CS8 values can be contained in CSIZE. CSIZE is essentially a 2-bit integer that can
contain decimal values 0 through 3, as defined by CS5 through CS8.

• BPXYTIOS can be used to define either a DSECT or an inline structure. This is determined by the
DSECT= keyword.

• The C_CC field is an array of 1-byte fields, indexed by the various special character equates. These
equates can be used as offsets into C_CC, or can be put into a register to be used with indexing
instructions. For instance:

MVC C_CC+VSUSP,NEWVAL To set a new value
LA R10,VSUSP To set an register to use as an index
 in a later IC or STC instructions

3. The following table defines the processing of the SIGTTOU signal when the tcsetattr (BPX1TSA)
service is called from a background session against a controlling terminal:

SIGTTOU Processing Expected Behavior

Default or signal
handler

The SIGTTOU signal is generated. The function is not performed. The return
value is set to -1, and the return code is set to EINTR.

Ignored or blocked The SIGTTOU signal is not sent. The function continues normally.

Example

The following code turns off the HUPCL (hang up on last close) bit for the standard input file. This example
follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551. For the data structure, see “BPXYTIOS — Map the termios Structure” on
page 477.

 NI C_CFLAG+HUPCL_O,X'FF'-HUPCL Turn off HUPCL
* termios was retrieved by a prior tcgetattr
 CALL BPX1TSA, Set terminal attributes +
 (=A(STDIN_FILENO), Input: File descriptor +
 =A(TCSADRAIN), Input: Action BPXYTIOS +
 TIOS, Input: Terminos struct BPXYTIOS +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument is an incorrect open file descriptor.

EINTR A signal interrupted the call.

EINVAL An action or value specified was incorrect.

tcsetattr (BPX1TSA)

366 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

ENOTTY The file associated with the file descriptor is not a terminal.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “tcgetattr (BPX1TGA) — Get the Attributes for a Terminal” on page 358.

tcsetattr (BPX1TSA)

Chapter 2. Callable Service Descriptions 367

tcsetpfx (BPX1TSX) — Set the Control Sequence Prefix

BPX1TSX
control_character_prefix

Purpose
Use the tcsetpfx (BPX1TSX) service to set the control sequence prefix for the terminal associated with the
calling process.

Parameters
control_sequence_prefix

(input,CHAR,1) is a variable for specifying the new control sequence prefix.

Example

The following code sets the prefix for the terminal. This example follows the rules of reentrancy. For
linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC PREFIX,C'!' Put the desired prefix into var.
 SPACE ,
 CALL BPX1TSX, Set prefix +
 (PREFIX), Input: Prefix +
 VL,MF=(E,PLIST) ----------------------------------

Related Service
Another callable service related to this service is:

• “tcgetpfx (BPX1TGX) — Get the Control Sequence Prefix” on page 360

tcsetpfx (BPX1TSX)

368 z/VM: 7.3 OpenExtensions Callable Services Reference

tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID

BPX1TSP
file_descriptor
process_group_id
return_value
return_code
reason_code

Purpose
Use the tcsetpgrp (BPX1TSP) service to move the requested process group into the foreground,
replacing the current foreground process group. The current foreground process group then becomes
the background process group.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the terminal device.
process_group_ID

(input,INT,4) is a variable for specifying the ID of the process group you want to have associated with
the controlling terminal.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. The terminal identified by the file_descriptor parameter must be the controlling terminal of the calling

process, and must be currently associated with the session of the calling process. The file descriptor
can be any of the descriptors representing the controlling terminal (such as standard input [stdin],
standard output [stdout], and standard error [stderr]). This service affects future access from any file
descriptor in use for the terminal.

Note: You must consider redirection when choosing the file descriptor to specify.
2. The process_group_ID must represent a process group in the same session as the calling process.
3. After the foreground process group is set, reads by the process group formerly in the foreground fail

or cause the process group to stop from a SIGTTIN signal. Writes can also cause the process to stop
(from a SIGTTOU signal) or can succeed, depending upon the current setting of TOSTOP (set by the
tcsetattr (BPX1TSA) service) and the signal options for SIGTTOU.

Example

The following code sets the controlling terminal's foreground process group to a new value. For this
example to work, STDIN must be associated with the controlling terminal. This example follows the rules

tcsetpgrp (BPX1TSP)

Chapter 2. Callable Service Descriptions 369

of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551.

 MVC PROCID,.. Process group ID set by setpgrp
 SPACE ,
 CALL BPX1TSP, Set foreground process group ID +
 (=A(STDIN_FILENO), Input: File descriptor +
 PROCID, Input: Foreground process group ID+
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF The file_descriptor argument is not a valid open file descriptor.

EINVAL The process_group_ID argument is not a process group ID supported by this
implementation.

ENOTTY The calling process does not have a controlling terminal, or file_descriptor is
not associated with the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

EPERM The process_group_ID argument does not match the process group ID of any
process in the same session as the calling process.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “setpgid (BPX1SPG) — Set a Process Group ID for Job Control” on page 294
• “setsid (BPX1SSI) — Create a Session and Set the Process Group ID” on page 297
• “tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID” on page 361.

tcsetpgrp (BPX1TSP)

370 z/VM: 7.3 OpenExtensions Callable Services Reference

times (BPX1TIM) — Get Process and Child Process Times

BPX1TIM
time_data
return_value
return_code
reason_code

Purpose
Use the times (BPX1TIM) service to gather information about processor time used by the current process
or related processes.

Parameters
time_data

(output,CHAR,16) is a variable for an area where the service returns information about processor
time used. This area is mapped by the BPXYTIMS macro. See “BPXYTIMS — Map the Processor Time
Structure for the times Service” on page 475.

return_value
(output,INT,4) is a variable where the service returns the number of clock ticks (hundredths of a
second) that have elapsed since the current address space became a POSIX process. If this value
cannot be determined, the service returns -1.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
Processor times for a child process that has ended are not added to the TIMSCUTIME and TIMSCSTIME of
the parent process until the parent issues a wait or waitpid for that child process. See “wait (BPX1WAT) —
Wait for a Child Process to End” on page 385 for more information on this subject.

Example

The following code gathers selected times about the invoker's CPU utilization. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551. For the data structure, see “BPXYTIMS — Map the Processor Time Structure for
the times Service” on page 475.

 CALL BPX1TIM, Process CPU times +
 (TIMS, Input: Buffer BPXYTIMS +
 RETVAL, Return value: -1 or clock_t +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

VM-Related Information
The TIMSSTIME value returned by the times (BPX1TIM) service is the portion of time spent in the CMS
root process and is accumulated from the most recent time the CMS session became a POSIX process.

times (BPX1TIM)

Chapter 2. Callable Service Descriptions 371

The TIMSUTIME value is the portion of time spent in the CMS user process and is accumulated from the
most recent time the CMS session became a POSIX process.

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

ERANGE An overflow occurred computing time values.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “exec (BPX1EXC) — Run a Program” on page 72
• “cmsprocclp (BPX1MPC) — Clean Up Kernel Resources” on page 38
• “spawn (BPX1SPN) — Spawn a Process” on page 333
• “wait (BPX1WAT) — Wait for a Child Process to End” on page 385.

times (BPX1TIM)

372 z/VM: 7.3 OpenExtensions Callable Services Reference

ttyname (BPX1TYN) — Get the Name of a Terminal

BPX1TYN
file_descriptor
terminal_name_length
terminal_name

Purpose
Use the ttyname (BPX1TYN) service to obtain the path name of the terminal associated with the file
descriptor.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the file descriptor of the terminal.
terminal_name_length

(input,INT,4) is a variable for specifying the size in bytes of the buffer referred to by the
terminal_name parameter.

This length should be 1024 bytes (PATH_MAX+1), unless you know the path name is shorter.

terminal_name
(output,CHAR,terminal_name_length) is a variable for a buffer where the service returns either of the
following:

• The path name of the terminal, terminated by a X'00'
• A single byte of X'00' (null string) if the file descriptor is not valid or does not represent a terminal.

Usage Notes
1. This service does not return -1 to indicate a failure (there is no return value parameter). If the file

descriptor is incorrect, a null string is returned.
2. If the terminal_name buffer is smaller than the actual path name of the terminal, the name is

truncated.

Example

The following code retrieves the path name for the standard error output file. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC BUFLENA,=A(1023) Maximum pathname
 CALL BPX1TYN, Determine terminal name +
 (=A(STDERR_FILENO), Input: File descriptor +
 BUFLENA, Length of buffer for pathname +
 BUFFERA), Buffer for pathname of terminal +
 VL,MF=(E,PLIST) ----------------------------------

Related Service
Another callable service related to this service is:

• “isatty (BPX1ITY) — Determine If a File Descriptor Represents a Terminal” on page 145

ttyname (BPX1TYN)

Chapter 2. Callable Service Descriptions 373

umask (BPX1UMK) — Set or Return the File Mode Creation Mask

BPX1UMK
file_mode_creation_mask
return_value

Purpose
Use the umask (BPX1UMK) service to change the file mode creation mask of your process. The file mode
creation mask is used to turn off permission bits in the mode parameter specified. Bit positions that are
set in the file mode creation mask are cleared in the mode of the created file.

Parameters
file_mode_creation_mask

(input,INT,4) is a variable for specifying the file mode creation mask. This mask turns off permission
bits in the mode of files created by the process. The mask is mapped by the BPXYMODE macro. See
“BPXYMODE — Map Mode Constants” on page 437.

return_value
(output,INT,4) is a variable where the service returns the previous value of the file mode creation
mask. This fullword has the same mapping as the file_mode_creation_mask parameter.

Usage Notes
1. File permission bits turned ON in the file creation mask are turned OFF in the mode of files created by

the process. For example, if a call to the open (BPX1OPN) service specifies a mode argument with file
permission bits, any of those bits that have been set on in the file creation mask are turned off in the
mode argument, and therefore in the mode of the created file.

2. Only the file permission bits of the new mask are used. For example, the type of file field in file_mode
cannot be masked.

Example

The following code changes the process's file mode creation mask (to user read, group execute,
other execute). This example follows the rules of reentrancy. For linkage information, see Appendix D,
“Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYMODE —
Map Mode Constants” on page 437.

 XC S_MODE,S_MODE
 MVI S_MODE3,S_IXUSR+S_IXGRP+S_IXOTH Search permission
 SPACE
 CALL BPX1UMK, Set file creation mask +
 (S_MODE, Input: Mode BPXYMODE +
 RETVAL), Return value: previous mode mask +
 VL,MF=(E,PLIST) ----------------------------------

Related Services
Other callable services related to this service are:

• “mkdir (BPX1MKD) — Make a Directory” on page 160
• “open (BPX1OPN) — Open a File” on page 181.

umask (BPX1UMK)

374 z/VM: 7.3 OpenExtensions Callable Services Reference

umount (BPX1UMT) — Remove a Virtual File System

BPX1UMT
file_system_name_length
file_system_name
flags
return_value
return_code
reason_code

Purpose
Use the umount (BPX1UMT) service to unmount a virtual file system (remove the virtual file system from
the file tree).

Parameters
file_system_name_length

(input,INT,4) is a variable for specifying the length of the file_system_name parameter.
file_system_name

(input,CHAR,file_system_name_length) is a variable for a printable-character field that contains the
name of the file system to be unmounted. The name must be left-justified and padded with blanks.
The file system name can be a Byte File System (BFS) path name or a Network File System (NFS) path
name. See usage note “2” on page 375.

flags
(input,INT,4) is a variable for a field containing binary flags that specify the unmount options. This
field is mapped by the BPXYMTM macro. See “BPXYMTM — Map the Modes for the mount and umount
Services” on page 445.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. When a file system is unmounted, all file systems mounted below it in the hierarchy are also

unmounted.
2. The file_system_name can represent a BFS path name or an NFS path name:

• To unmount a BFS file system, file_system_name must be a BFS path name. See “Understanding
Byte File System (BFS) Path Name Syntax” on page 6.

• To unmount an NFS file system, file_system_name must be a fully-qualified NFS path name. See
“Understanding Network File System (NFS) Path Name Syntax” on page 9.

umount (BPX1UMT)

Chapter 2. Callable Service Descriptions 375

Example

The following code removes the virtual file system previously mounted at directory /u from the file tree.
This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551. For the data structure, see “BPXYMTM — Map the Modes
for the mount and umount Services” on page 445.

 LA R6,2
 ST R6,LFSNAME
 MVC FSNAME(2),=CL02'/u'
 XC MTM(MTM#LENGTH),MTM
 MVI MTM1,MTMUMOUNT Unmount request
 SPACE ,
 CALL BPX1UMT, Remove a virtual file system +
 (LFSNAME, Input: File system name length +
 FSNAME, Input: File system name +
 MTM, Input: Flags, BPXYMTM +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return code:

Return Code Explanation

EINVAL An incorrect parameter was specified. The file_system_name value is not the
name of a mounted file system.

Consult the reason code to determine the exact reason the error occurred.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “mount (BPX1MNT) — Make a File System Available” on page 166

umount (BPX1UMT)

376 z/VM: 7.3 OpenExtensions Callable Services Reference

uname (BPX1UNA) — Display the Name of the Current Operating
System

BPX1UNA
data_area_length
data_area_address
return_value
return_code
reason_code

Purpose
Use the uname (BPX1UNA) service to obtain information about the OpenExtensions system you are
running on.

Parameters
data_area_length

(input,INT,4) is a variable for specifying the length of the data area pointed to by the
data_area_address parameter. The area must be at least the size specified in the UTSN#LENGTH field
of the BPXYUTSN macro. See “BPXYUTSN — Map the System Information Structure for the uname
Service” on page 480.

data_area_address
(input,INT,4) is a variable for specifying the address of the buffer where the service is to return the
system information. This data area is mapped by the BPXYUTSN macro. See “BPXYUTSN — Map the
System Information Structure for the uname Service” on page 480.

return_value
(output,INT,4) is a variable where the service returns a nonnegative value if the request is successful,
or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Example

The following code obtains information about the system on which the invoker is running. This example
follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant
Linkage Examples,” on page 551. For the data structure, see “BPXYUTSN — Map the System Information
Structure for the uname Service” on page 480.

 LA R15,UTSN
 ST R15,UTSNA
 LA R15,UTSN#LENGTH
 ST R15,UTSNL
 SPACE
 CALL BPX1UNA, Identify system +
 (UTSNL, Input: Length of required buffer +
 UTSNA, Output: ->UTSN BPXYUTSN +
 RETVAL, Return value: -1 or >-1 +
 RETCODE, Return code +

uname (BPX1UNA)

Chapter 2. Callable Service Descriptions 377

 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECMSERR A CMS environmental or internal error occurred.

Consult the reason code to determine the exact reason the error occurred.
The following reason codes can accompany this return code: JrIdentifyErr,
JrStackReadErr, and JrQEFLErr.

EINVAL The passed length of the invoker UTSN is not valid.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JROK.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

uname (BPX1UNA)

378 z/VM: 7.3 OpenExtensions Callable Services Reference

unlink (BPX1UNL) — Remove a Directory Entry

BPX1UNL
name_length
name
return_value
return_code
reason_code

Purpose
Use the unlink (BPX1UNL) service to remove a directory entry. A directory entry could be identified by a
path name to a file, a link name to a file, or a symbolic link.

If a link to a file is removed, and the link count becomes zero, and no other process has the file open, the
file itself is deleted.

Parameters
name_length

(input,INT,4) is a variable for specifying the length of the name parameter.
name

(input,CHAR,name_length) is a variable for specifying the name of the directory entry to be removed.
This name can be a path name to a file, a link name to a file, or a symbolic link name. The path name
was specified when the file was created. (See “open (BPX1OPN) — Open a File” on page 181.) The link
name was specified when a link to the file was created or when the symbolic link was created. (See
“link (BPX1LNK) — Create a Link to a File” on page 149 or “symlink (BPX1SYM) — Create a Symbolic
Link to a Path Name” on page 345.)

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If name refers to a symbolic link, then the symbolic link file named by name is deleted.
2. If a file is deleted—that is, if the unlink service request is successful and the link count becomes

zero—the file is deleted. The contents of the file are discarded, and the space it occupied is freed for
reuse. However, if another process (or more than one) has the file open when the last link is removed,
the file is not removed until the last process closes it.

3. When the unlink (BPX1UNL) service is successful in removing the directory entry and decrementing
the link count, whether or not the link count becomes zero, it returns control to the caller with
return_value set to 0. It updates the change and modification times for the parent directory, and the
change time for the file itself (unless the file is deleted).

4. Directories cannot be removed using unlink (BPX1UNL). To remove a directory, refer to “rmdir
(BPX1RMD) — Remove a Directory” on page 256.

unlink (BPX1UNL)

Chapter 2. Callable Service Descriptions 379

Example

The following code removes path name usr/dataproc/next.t from the system. This example follows
the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage
Examples,” on page 551.

 MVC BUFFERA(19),=CL19'usr/dataproc/next.t'
 MVC BUFLENA,=F'19'
 SPACE ,
 CALL BPX1UNL, Remove a directory entry +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES The calling process does not have permission to search some component of
the path name, or did not have write permission for the directory containing
the link to be removed.

EBUSY The file cannot be unlinked because it is being used by the system.

EINVAL The name parameter is incorrect. It contains a null character.

ELOOP A loop exists in symbolic links encountered during resolution of the name
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of name.

ENAMETOOLONG The name argument is longer than 1023 characters, or some component
of the name is longer than 255 characters. CMS does not support name
truncation.

ENOENT The name entry was not found, or no name was specified.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRUnlNoEnt.

ENOTDIR Some component of the path name prefix is not a directory.

EPERM The name argument refers to a directory. Directories cannot be removed using
this service.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRUnlDir.

EROFS The link to be removed is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRUnlMountRO.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “close (BPX1CLO) — Close a File or Socket” on page 34

unlink (BPX1UNL)

380 z/VM: 7.3 OpenExtensions Callable Services Reference

• “link (BPX1LNK) — Create a Link to a File” on page 149
• “open (BPX1OPN) — Open a File” on page 181
• “rename (BPX1REN) — Rename a File or Directory” on page 251
• “rmdir (BPX1RMD) — Remove a Directory” on page 256.

unlink (BPX1UNL)

Chapter 2. Callable Service Descriptions 381

utime (BPX1UTI) -- Set File Access and Modification Times

BPX1UTI
pathname_length
pathname
newtimes
return_value
return_code
reason_code

Purpose
Use the utime (BPX1UTI) service to set the access and modification times of a file.

Parameters
pathname_length

(input,INT,4) is a variable for specifying the length of the pathname parameter.
pathname

(input,CHAR,pathname_length) is a variable for specifying the path name of the file. See
“Understanding Byte File System (BFS) Path Name Syntax” on page 6.

newtimes
(input,CHAR,8) is a variable for specifying the access and modification times for the file. The first
fullword contains the new access time, and the second fullword contains the new modification time.
These times can be retrieved with “stat (BPX1STA) -- Get Status Information about a File by Path
Name” on page 340 or “fstat (BPX1FST) -- Get Status Information about a File by Descriptor” on page
102.

• Times are specified in POSIX format, which is the number of seconds since January 1, AD 1970,
00:00:00 UTC. The times must be specified as nonnegative values other than -1 (see below for the
special case of -1).

• To request that the current time be used for both access and modification times, specify
X'FFFFFFFF' (-1) in either or both words of this field. The current time in the file's status is also
updated.

return_value
(input,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(input,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Note
If you need to perform conversions on POSIX times, see the DateTimeSubtract CSL routine in the z/VM:
CMS Application Multitasking or the DATECONVERT stage in the z/VM: CMS Pipelines User's Guide and
Reference.

utime (BPX1UTI)

382 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf

Example

The following code changes the access and modification times of /usr/private/workfile.t to the current
time. This example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant
and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFFERA(23),=CL23'/usr/private/workfile.t'
 MVC BUFLENA,=F'23'
 MVC NEWTIMES,=D'-1' Current time
 SPACE ,
 CALL BPX1UTI, Set file access and modify times +
 (BUFLENA, Input: Pathname length +
 BUFFERA, Input: Pathname +
 NEWTIMES, Input: Access & Modification time +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES One of the following is true:

• The process does not have search permission for some component of the
path name prefix.

• The newtimes value equals the current time, the effective ID does not match
the file's owner, the process does not have write permission for the file, and
the process does not have appropriate privileges.

EINVAL The argument supplied is incorrect.

Consult the reason code to determine the exact reason the error
occurred. The following reason code can accompany this return code:
JRNegativeValueInvalid.

ELOOP A loop exists in symbolic links encountered during resolution of the pathname
argument. This error is issued if more than 8 symbolic links are detected in
the resolution of the path name.

ENAMETOOLONG The length of pathname is greater than 1023 bytes, or some component of
the fully qualified name is longer than 255 bytes. This could be as a result
of encountering a symbolic link during resolution of the path name, and the
substituted string is longer than 1023 characters.

ENODEV An attempt was made to use a character special file for a device not
supported by OpenExtensions.

ENOENT No file named pathname was found, or the pathname parameter was blank.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRFileNotThere.

ENOTDIR Some component of the path name prefix is not a directory.

EPERM The newtimes value did not specify the current time, the effective user ID
of the calling process does not match the owner of the file, and the calling
process does not have appropriate privileges.

EROFS The pathname file is on a read-only file system.

Consult the reason code to determine the exact reason the error occurred.
The following reason code can accompany this return code: JRReadOnlyFs.

utime (BPX1UTI)

Chapter 2. Callable Service Descriptions 383

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fstat (BPX1FST) -- Get Status Information about a File by Descriptor” on page 102
• “stat (BPX1STA) -- Get Status Information about a File by Path Name” on page 340.

utime (BPX1UTI)

384 z/VM: 7.3 OpenExtensions Callable Services Reference

wait (BPX1WAT) — Wait for a Child Process to End

BPX1WAT
process_ID
options
status_field_address
return_value
return_code
reason_code

Purpose
Use the wait (BPX1WAT) service to obtain the status of a child process that has ended or stopped. The
term child refers to a process created by the spawn (BPX1SPN) service.

Parameters
process_ID

(input,INT,4) is a variable for specifying a value that indicates the event to be waited on:

• A value greater than zero is assumed to be a process ID. The caller waits for the child with that
specific process ID to end or stop.

• A value of zero indicates the caller is waiting for any children with a process group ID equal to the
caller's to end or stop.

• A value of -1 indicates the caller is waiting for any of its children to end or stop.
• If the value is negative and less than -1, its absolute value is assumed to be a process group ID. The

caller waits for any children with that process group ID to end or stop.

options
(input,INT,4) is a variable for specifying the wait options for this invocation. These options affect
the actions taken by the service as described below. The options can be specified separately or in
combination. A zero value for this parameter implies that the service performs its default processing—
that is, it waits for a child process to end or stop.

The following flags defined in the BPXYCONS macro are the allowed wait options. See “BPXYCONS —
Map Constants” on page 417.

Constant Description

WNOHANG The service does not suspend execution of the calling process
if status is not immediately available for one of the child
processes specified by process_ID.

WUNTRACED The service also returns the status of any child processes
specified by process_ID that are stopped, and whose status
have not yet been reported since they stopped.

status_field_address
(input,INT,4) is a variable for specifying the address of a fullword where the service returns the
status value for the child process that ended or stopped. The status value can be analyzed using the
BPXYWAST macro. See “BPXYWAST — Map the Wait Status Word” on page 486. The status value is
returned only if status is available for a child process.

wait (BPX1WAT)

Chapter 2. Callable Service Descriptions 385

return_value
(output,INT,4) is a variable where the service returns the process ID of the child the status
information applied to if the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
The wait (BPX1WAT) service suspends execution of the calling thread until one of the requested child
processes ends or until it obtains information about the process. If a child has already ended but its
status has not been reported when wait (BPX1WAT) is called, the routine immediately returns with that
status information to the caller.

The wait service always returns status for the stopped processes, even if WUNTRACED is not specified.

If status is available for one or more processes, the order the status is reported is unspecified.

If the wait (BPX1WAT) service is invoked simultaneously from multiple threads within the same process,
the following behavior should be noted:

• When multiple threads issue a spawn call followed by a call to the wait (BPX1WAT) service to wait for
any child process to end, the status received by each thread may not be the status of the child created
by that thread. If a thread wishes to receive the status of the child it created, the thread should specify
the returned child Process Id when calling the wait (BPX1WAT) service to wait for the child process to
end or stop.

• If the wait (BPX1WAT) service is called from multiple threads requesting status for the same process,
which thread receives the status is not specified. The thread that does not receive the status is returned
to with a return value of -1 and a return code of ECHILD.

Example

The following code waits for any of its children to end or stop. This example follows the rules of
reentrancy. For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,”
on page 551. For the data structure, see “BPXYWAST — Map the Wait Status Word” on page 486 and
“BPXYCONS — Map Constants” on page 417.

 LA R15,WAST Resolve address of STATUS
 ST R15,WASTA Save address of STATUS
 MVC PROCID,=F'-1' Wait for any child
 SPACE ,
 CALL BPX1WAT, Wait for a child process to end +
 (PROCID, Input: PID being waited on +
 =A(WNOHANG), Input: options BPXYCONS +
 WASTA, ->Exit status field, BPXTWAST +
 RETVAL, Return value: -1, 0, child PID +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECHILD The caller has no appropriate child process; that is, no child process whose
status has not already been obtained through earlier calls to the wait
(BPX1WAT) service meets the criteria for waiting.

wait (BPX1WAT)

386 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EINTR The calling process received a signal prior to the completion of an
event that would cause the wait (BPX1WAT) service to return. The
service was interrupted by a signal. In this case, the value contained in
status_field_address is undefined.

EINVAL The value of the option is not valid.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “_exit (BPX1EXI) — End a Process and Bypass the Cleanup” on page 79
• “pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 197
• “spawn (BPX1SPN) — Spawn a Process” on page 333.

wait (BPX1WAT)

Chapter 2. Callable Service Descriptions 387

wait-extension (BPX1WTE) — Obtain Status Information for Child
Processes

BPX1WTE
function_code
ID_type
ID
stat_loc_ptr
options
info_area_ptr
return_value
return_code
reason_code

Purpose
Use the wait-extension (BPX1WTE) service to obtain status information about child processes of the
parent that calls the routine.

Parameters
function_code

(input,INT,4) is a variable for specifying a value that indicates the function to be performed:
Value

Description
#WAITID

The waitid() function is performed.

The #WAITID constant is defined in the BPXYCONS macro. See “BPXYCONS — Map Constants” on
page 417.

ID_type
(input,INT,4) is a variable for specifying a value that indicates what type of child processes to wait for.
The ID_type can be one of the following values:
Value

Description
P_PID

The waitid() function will wait for the child process whose process ID is equal to the value
specified in the id parameter.

P_PGID
The waitid() function will wait for the child processes whose process group ID is equal to the value
specified in the id parameter.

P_ALL
The waitid() function will wait for all child processes. The ID parameter is ignored.

The P_ constants are defined in the BPXYCONS macro.

ID
(input,INT,4) is a variable for specifying the process ID or process group ID of the child processes to
wait for. Together with ID_type, ID is used to determine which child processes will be waited for.

wait-extension (BPX1WTE)

388 z/VM: 7.3 OpenExtensions Callable Services Reference

stat_loc_ptr
(input,INT,4) is a variable for specifying the address of a fullword where this service can place the
status value (wait status word) for the child process, if status is available. This parameter is not valid
for the #WAITID function code and is ignored.

options
(input,INT,4) is a variable for specifying the wait options for this call:

• For function code #WAITID, this parameter specifies which state changes to wait for:
Option

Description
WEXITED

Wait for child processes that have exited.
WSTOPPED

Status will be returned for any child that has stopped upon receipt of a signal.
WCONTINUED

Status will be returned for any child that has stopped and has been continued.
WHOHANG

Return immediately if there are no children to wait for.
WHOWAIT

Keep the process whose status is returned in the info_area_ptr parameter in a waitable state.
This will not affect the state of the process; the process may be waited for again after this call
completes.

These option constants are defined in the BPXYCONS macro.

info_area_ptr
(input,INT,4) is a variable for specifying the address where the service returns information into a data
structure:

• For function code #WAITID, this is the address of a Siginfo_t structure. The Siginfo_t structure
type is defined in the BPXYSINF macro. See “BPXYSINF — Map the Siginfo_t Structure for the
wait-extensions Service” on page 464. If this field is null, no information is returned.

return_value
(output,INT,4) is a variable where the service returns the following value if the request is successful:

• For function code #WAITID, the service returns 0.

If the request is not successful, the service returns -1.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. When the Siginfo_t structure is returned, the following applies:

• SI_SIGNO is always set to SIGCHLD.
• SI_ERRNO is always set to 0.
• SI_CODE is set to CLD_EXITED, CLD_KILLED, CLD_DUMPED, CLD_TRAPPED, CLD_STOPPED, or

CLD_CONTINUED. The CLD_ constants are defined in the BPXYSIGH macro. See “BPXYSIGH — Map
Signal Constants” on page 462.

• SI_PID is set to the process ID of the child status is being returned for.
• SI_UID is set to the user ID of the child status is being returned for.

wait-extension (BPX1WTE)

Chapter 2. Callable Service Descriptions 389

• SI_ADDR is set to the faulting instruction if the child process terminated because of a SIGILL,
SIGFPE, or SIGSEGV signal; otherwise, SI_ADDR is set to 0.

• SI_STATUS is set to the child's exit status. The exit status is mapped by the BPXYWAST macro.
• SI_BAND is always set to 0.

2. If the options parameter is set to 0, the wait-extension (BPX1WTE) service waits for processes that
have exited.

Example

The following code uses the #WAITID function to wait for any of its children to end or stop. For the data
structures, see “BPXYWAST — Map the Wait Status Word” on page 486, “BPXYSINF — Map the Siginfo_t
Structure for the wait-extensions Service” on page 464, “BPXYCONS — Map Constants” on page 417, and
“BPXYSIGH — Map Signal Constants” on page 462.

 LA R15,WAST Resolve address of WAST
 ST R15,WASTA Save address of WAST
 LA R15,SIGINFO_T Resolve address of SIGINFO_T
 ST R15,SIGINFO_TA Save address of SIGINFO_T
 SPACE ,
 CALL BPX1WTE, Wait for a child process to end +
 (=A(#WAITID), Input: function BPXYCONS +
 P_ALL, Input: id type (any child) +
 0, Input: id +
 WASTA, ->Exit status field, BPXYWAST +
 =A(WNOHANG), Input: options BPXYCONS +
 SIGINFO_T, ->Siginfo structure, BPXYSINF +
 RETVAL, Return value: -1, 0, child PID +
 RETCODE, Return code +
 RSNCODE); Reason code +

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT The address of a returned parameter is not valid.

The following reason codes can accompany this return code:
JRBadExitStatusAddr, JRBadSiginfoAddr, or JRBadRusageAddr.

EINTR The function was interrupted because of the receipt of a signal by the calling
process.

EINVAL The specified option, idtype, or function_code was not valid.

The following reason codes can accompany this return code: JRBadOptions,
JRBadIdType, or JRBadEntryCode.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

wait-extension (BPX1WTE)

390 z/VM: 7.3 OpenExtensions Callable Services Reference

w_getipc (BPX1GET) — Query Interprocess Communications

BPX1GET
token_or_ID
buffer_address
buffer_length
command
return_value
return_code
reason_code

Purpose
Use the w_getipc (BPX1GET) service to query message queues, shared memory segments, and
semaphore sets for a specified member or the next member to which the caller has read access.

Parameters
token_or_ID

(input,INT,4) is a variable for specifying one of the following:

• A token that corresponds to one member of a group that includes all the message queues, shared
memory segments, and semaphore sets to which the caller has read access. That is, the member
is a message queue, shared memory segment, or semaphore set in the group. (The command
parameter indicates whether all of the members of the group are to be queried, or only the message
queues, or only the shared memory segments, or only the semaphore sets.) A token of 0 represents
the first member of the group to be queried. The token to be used in the next invocation of this
service (to query the next member of the group) is passed back in the return_value parameter.

• The identifier of a specific message queue, shared memory segment, or semaphore set to be
queried.

This parameter is ignored when the IPC_OVER command is specified.

buffer_address
(input,INT,4) is a variable for specifying the address of a buffer mapped by the IPCQ data structure
in the BPXYIPCQ macro. See “BPXYIPCQ — Map the Data Structure and Constants for the w_getipc
Service” on page 432.

buffer_length
(input,INT,4) is a variable for specifying the size of the buffer pointed to by the buffer_address
parameter. This is set to IPCQ#LENGTH, which is defined in IPCQ. The IPCQLENGTH field of IPCQ
will differ from IPCQ#LENGTH when the system call is at a different level than the included IPCQ. An
error is returned if buffer_length is less than 4. The buffer will be filled to the lesser of IPCQ#LENGTH
or the value specified here.

command
(input,INT,4) is a variable for specifying a command constant that identifies the type of query to be
performed. The following command constants are defined in the BPXYIPCQ macro:
IPCQ#ALL

Retrieves data about the next message queue, shared memory segment, or semaphore set from
the group.

IPCQ#MSG
Retrieves data about the next message queue from the group.

w_getipc (BPX1GET)

Chapter 2. Callable Service Descriptions 391

IPCQ#SEM
Retrieves data about the next semaphore set from the group.

IPCQ#SHM
Retrieves data about the next shared memory segment from the group.

IPCQ#OVER
Obtains an overview of system variables. When this command is specified, the token_or_ID
parameter is ignored.

return_value
(output,INT,4) is a variable where:

• If a token is specified in the token_or_ID parameter, the service returns one of the following:

– The token (a negative number other than -1) for the next member of the group to be queried
– A value of 0, which indicates end of file (no more members to be queried)
– A value of -1, which indicates the request failed

• If an identifier is specified in the token_or_ID parameter, the service returns a value of 0 if the
request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. If a token is specified for token_or_ID, the return_value should be tested for 0 (end of file) or -1 (error).

Any other value is negative and is the token to be used in the next invocation of the service.
2. If an identifier is specified for token_or_ID, the return_value should be tested for -1 (error).
3. A member's accessibility can change if the permissions are changed.
4. A token may not always retrieve the same member. If a specific member has been found by using a

token, subsequent requests may place the member at that token or later, but never earlier.

Characteristics and Restrictions
There are no restrictions on the use of the w_getipc service.

Example

The following code retrieves information on the first semaphore defined to the system to which the caller
has read access. For the data structure, see “BPXYIPCQ — Map the Data Structure and Constants for the
w_getipc Service” on page 432.

 XC TOKEN,TOKEN Zero, token for 1st member
 LA R5,BUFFERA Area for query IPC return data
 ST R5,BUFA R5 -> IPCQ
 SPACE ,
 CALL BPX1GET, Interprocess Communications +
 (TOKEN, Input: member token +
 BUFA, Input: ->IPCQ BPXYIPCQ+
 =A(IPCQ#LENGTH), Input: Length of IPCQ BPXYIPCQ+
 =A(IPCQ#SEM), Input: Request BPXYIPCQ+
 RETVAL, Return value: 0, -1 or value +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE ,
 L R15,RETVAL Load return value
 C R15,=F'-1' Test for -1 return
 BE PSEUDO Branch on error

w_getipc (BPX1GET)

392 z/VM: 7.3 OpenExtensions Callable Services Reference

 LTR R15,R15 Test for 0 return
 BZ PSEUDO Branch on end of file
 ST R15,TOKEN Save token for next w_semipc

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EACCES Operation permission (read) is denied to the calling process for the specified
message queue identifier, shared memory segment identifier, or semaphore
set identifier.

The following reason code can accompany this return code: JRIpcDenied.

EINVAL One of the following conditions is true:

• The specified message queue identifier, shared memory segment identifier,
or semaphore set identifier is not valid for the specified command.

• command is not a valid command.
• buffer_address is zero, or buffer_length is less than 4.

The following reason codes can accompany this return code: JRBuffTooSmall,
JRIpcBadID, JRBadEntryCode.

EFAULT An input parameter specified an address that caused the callable service to
program check.

The following reason code can accompany this return code: JRBadAddress.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “msgget (BPX1QGT) — Create or Find a Message Queue” on page 172
• “semget (BPX1SGT) — Create or Find a Set of Semaphores” on page 269
• “shmget (BPX1MGT) — Create or Find a Shared Memory Segment” on page 309

w_getipc (BPX1GET)

Chapter 2. Callable Service Descriptions 393

w_getpsent (BPX1GPS) -- Get Process Data

BPX1GPS
process_token
buffer_length
buffer_address
return_value
return_code
reason_code

Purpose
Use the w_getpsent (BPX1GPS) service to get data describing the status of a process. This data includes,
but is not limited to, running time, user IDs (UIDs), groups IDs (GIDs), and invocation parameters. Data is
returned for the processes the caller can access.

Parameters
process_token

(input,INT,4) is a variable for specifying a process token that identifies the relative position of a
process in the system. Zero represents the first process in the system.

buffer_length
(input,INT,4) is a variable for specifying the size of the buffer, which is specified in the PGPS#LENGTH
field of the BPXYPGPS macro.

buffer_address
(input,INT,4) is a variable for specifying the address of the buffer where the service is to return
the process data. These options are mapped by the BPXYPGPS macro. See “BPXYPGPS — Map the
Response Structure for the w_getpsent Service” on page 449. Several fields in this buffer should be
initialized as follows:

PGPSCONTTYBLEN Length of PGPSCONTTYBUF
PGPSCONTTYPTR Address of PGPSCONTTYBUF(Len¬=0)
PGPSPATHBLEN Length of PGPSPATHBUF
PGPSPATHPTR Address of PGPSPATHBUF (Len¬=0)
PGPSCMDBLEN Length of PGPSCMDBUF
PGPSCMDPTR Address of PGPSCMDBUF (Len¬=0)

return_value
(output,INT,4) is a variable where the service returns one of the following values:

Value Explanation

Process Token The process token of the next logical process in the system.

0 End of file. There are no active processes at or following the requested
process which the user is allowed access.

-1 Error. See the return code for an explanation.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

w_getpsent (BPX1GPS)

394 z/VM: 7.3 OpenExtensions Callable Services Reference

Usage Notes
1. Information is returned only for processes in the caller's virtual machine.
2. Generally, the user starts with process_token at zero, and continues calling the w_getpsent (BPX1GPS)

service with the process token returned as the return_value of the previous call until the value of 0, end
of file, is reached.

3. The PGPSSTARTTIME field in the buffer is in POSIX format, which is the number of seconds since
January 1, AD 1970, 00:00:00 UTC. If you need to perform conversions on POSIX times, see the
DateTimeSubtract CSL routine in the z/VM: CMS Application Multitasking or the DATECONVERT stage in
the z/VM: CMS Pipelines User's Guide and Reference.

4. PGPSUSERTIME and PGPSSYSTIME are task-elapsed times in 1/100ths of seconds.
5. The CONTTY, PATH, and CMD input fields are initialized by the BPXYPGPS macro when it is expanded

in the program CSECT for a non-reentrant program.
6. If buffer_length does not match that used by the callable service, the service sets PGPSLENERR on.

This can reflect a change in BPXYPGPS caused by the addition of functions in later releases. This could
be intentional. Data is returned up to the length specified in buffer_length. If the length specified is
less than the offset of PGPSCONTTYBLEN, BPX1GPS treats the request as if the three BLEN fields were
zero.

Example

The following example starts with the first process (relative process zero) and reports the status for all
processes for which the invoker is allowed access (by the security access facility).

This example follows the rules of reentrancy. For a nonreentrant example of this service, see
“Nonreentrant Entry Linkage” on page 553.

BOOKSAM4 CSECT , Reentrant linkage
BOOKSAM4 AMODE 31
BOOKSAM4 RMODE ANY
 USING *,R15 Program addressability
@BEGIN0 B @BEGIN1 Branch around program header
 DROP R15
 DC C'Sequential w_getpsent'
 DS 0H
@BEGIN1 STM R14,12,12(13) Save caller's registers
 LR R2,13 Hold address of caller's area
 LR R3,R1 Hold parameter register
 LR 12,R15 R12 program base register
 USING @BEGIN0,12 Program addressability
 L R0,@SIZEDAT Size this program's dynamic area
 GETMAIN RU,LV=(0) Getmain dynamic storage
 LR 13,R1 R13 -> this program's dynamic/save
 USING @DYNAM,13 Dynamic addressability
 ST R2,@BACK Save caller's save area pointer
 ST 13,8(,R2) Give caller out save area
 LR R1,R3 Restore parameter register
@BEGIN2 EQU * * * * * * * End of the entry linkage code
 SPACE ,
 MVC WTOHEAD,WTOCONS Initialize WTO line
 MVI DOT,C'.'
* If BPX1GPS has been link-edited with this program, the V-CON will be
* resolved; if not, BPX1GPS must be loaded. In either case, the address
* of the module is stored.
 ICM R0,B'1111',GPSVCON BPX1GPS address if link edited
 BNZ STGPSEP Branch to store GPS entry point
 LOAD EP=BPX1GPS Load w_getpsent stub
STGPSEP ST R0,GPSENTRY Store BPX1GPS entry point
* Initialize the variables and enter the loop.
 XC PROCTOKEN,PROCTOKEN Start with 1st process
 MVC PGPSCONTTYBLEN,=A(L'PGPSCONTTYBUF) Controlling TTY
 LA R2,PGPSCONTTYBUF
 ST R2,PGPSCONTTYPTR
 MVC PGPSPATHBLEN,=A(L'PGPSPATHBUF) Path name
 LA R2,PGPSPATHBUF
 ST R2,PGPSPATHPTR
 MVC PGPSCMDBLEN,=A(L'PGPSCMDBUF) Command
 LA R2,PGPSCMDBUF
 ST R2,PGPSCMDPTR
 LA R2,PGPS Address of PGPS buffer

w_getpsent (BPX1GPS)

Chapter 2. Callable Service Descriptions 395

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf

 ST R2,PGPSA
 SPACE ,
GETPS L R15,GPSENTRY Address of BPX1GPS load module
 CALL (15), Get process data +
 (PROCTOKEN, Relative process token +
 PGPSL, Length of buffer +
 PGPSA, Buffer, mapped by BPXYPGPS +
 RETVAL, Return value (next, eof or error) +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------
 SPACE , * * * * * * Test for end of file
 ICM R2,B'1111',RETVAL Load return value, set CCode
 BZ RETURN 0 is end of file
 BL RETURNRC -1 is error
 ST R2,PROCTOKEN Store the next process token
 SPACE , * * * * * * Initialize WTO area and message
 MVI XPID,C' ' Blank variable portion of line
 MVC XPID+1(WTO#BLANK-1),XPID
* Convert the process ID to printable hex.
 L R8,PGPSPID R8 = process ID
 LA R9,XPID To be placed at message start
 LA R15,8 8 nibbles to convert (4 bytes)
 LA R10,9 For 0-9 / A-F compare
NIBBLE LR R11,R8 Target bits in 0-3 XYYYYYYZ
 SRL R11,28 Bits 0-3 to 28-31 0000000X
 SLL R8,4 Drop bits 0-3 off end YYYYYYZ0
 CLR R11,R10 Are 4 bits 0-9 or A-F
 BC B'0010',AF Branch if A-F
 LA R11,57(,R11) Add for 0-9 (57+183=240 or F0)
AF LA R11,183(,R11) Add for 0-F (183+10=193 or C1)
 STC R11,0(,R9) Store to results location
 LA R9,1(,R9) Increment R9 to next location
 BCT R15,NIBBLE Decrement half byte counter, loop
* Go after the state of the process
 MVI THREAD,C'1' Assume single task thread
 TM PGPSSTATUS1,PGPSMULTHREAD if multithread process
 BZ NOTMULT
 MVI THREAD,C'M'
NOTMULT TM PGPSSTATUS1,PGPSPTHREAD if pthread_create task(s)
 BZ NOTIPT
 MVI THREAD,C'H'
NOTIPT MVC STATE,PGPSSTATUS3 Z, W, X, S, C, F, K, R
 TM PGPSSTATUS0,PGPSSWAP if swapped out
 BZ NOTSWAP
 MVC SWAPA,=CL4'SWAP'
NOTSWAP TM PGPSSTATUS1,PGPSSTOPPED if stopped
 BZ NOTSTOP
 MVC STOPA,=CL4'STOP'
NOTSTOP EQU *
 SPACE , * * * * * * Display message to operator
 WTO MF=(E,WTOAREA) Write to Operator
 SPACE , * * * * * * Loop back
 B GETPS for the next Process data
 SPACE ,
* * * * *.* * *.* * * * * * * * * * *.* * * * * * * * * * * * * * * * *
RETURN XR R15,R15 Zero return code
RETURNRC L R0,@SIZEDAT Size this program's dynamic area
 LR R1,13 R1 -> this program's dynamic area
 L 13,@BACK R2 -> caller's save area
 DROP 13
 FREEMAIN RU,LV=(0),A=(1)
 L R14,12(,13) Restore caller's R14
 LM R0,12,20(13) Restore caller's R0-R12
 BSM 0,R14 Branch back to caller
@SIZEDAT DC A(@ENDYN-@DYNAM) Size of dynamic storage
 SPACE , * * * * * * * * * *.* Program constants * * * * * * *
PGPSL DC A(PGPS#LENGTH) Length of process data buffer
 WXTRN BPX1GPS Weak to allow link edit or not
GPSVCON DC V(BPX1GPS) Get Process data module
WTOCONS DS 0CL8 Constant value for WTOHEAD
 DC AL2(WTO#LENGTH) Length of area
 DC AL2(0) WTO flags
 DC CL4'PID=' Process ID =
 SPACE , * * * * * * Dynamic storage variables
@DYNAM DSECT ,
@SAVE00 DS 0D Standard save area - 72 Bytes
 DS A
@BACK DS A Backwards savearea pointer
@FORWARD DS A Forwards savearea pointer
 DS 15A Regs 14,15,0-12
 SPACE ,

w_getpsent (BPX1GPS)

396 z/VM: 7.3 OpenExtensions Callable Services Reference

WTOAREA DS 0F WTO message
WTOHEAD DS CL8 Mapped by WTOCONS
XPID DS CL8 Hex of process ID
 DS CL1
THREAD DS CL1 1, M or H
 DS CL1
STATE DS CL1 Z, W, X, S, C, F, K, R
 DS CL1
SWAPA DS CL4 SWAP or blank
 DS CL1
STOPA DS CL4 STOP or blank
 DS CL1
TRACA DS CL4 TRAC or blank
WTO#BLANK EQU *-XPID Length to blank
DOT DS CL1
WTO#LENGTH EQU *-WTOAREA Length of WTO area
 SPACE ,
GPSENTRY DS A Address of BPX1GPS
PROCTOKEN DS F Relative process token
PLIST DS 6A Calling parameter list
RETVAL DS F Return value - next PROCTOKEN
RETCODE DS F Return code
RSNCODE DS F Reason code
 SPACE ,
PGPSA DC A(PGPS) ->Process data buffer
 BPXYPGPS DSECT=NO, Place in current dsect +
 VARLEN=(0,0,0) ConTty=0,Path=0,Cmd=0
@ENDYN EQU * End of dynamic storage
 SPACE 3 * * * * * * * * * *.* Register equates * * * * * * *
R0 EQU 0
R1 EQU 1 Parameter list pointer
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
* 12 Program base register
* 13 Savearea and dynamic storage base
R14 EQU 14 Return address
R15 EQU 15 Branch location
 SPACE ,
 END

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EFAULT An input parameter contained the address of storage where the invoker is not
authorized.

EINVAL The specified process_token is not in the valid range.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

w_getpsent (BPX1GPS)

Chapter 2. Callable Service Descriptions 397

w_ioctl (BPX1IOC) — Control I/O

BPX1IOC
file_descriptor
command
argument_length
argument
return_value
return_code
reason_code

Purpose
Use the w_ioctl (BPX1IOC) service to convey a command to a device. The specific actions performed by
this service vary by device, and are defined by the device driver.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the descriptor of an open file or socket.
command

(input,INT,4) is a variable for specifying the ioctl command to be passed to the device driver. The
values for this field are defined in the BPXYIOCC macro. See “BPXYIOCC — Map Command Constants
for the w_ioctl Service” on page 427.

argument_length
(input/output,INT,4) is a variable for specifying the length of the argument parameter. This value must
be an integer in the range 0–1024. On return from w_ioctl, the service updates this field with the
length of the command output returned in the argument parameter.

argument
(input/output,INT,argument_length) is a variable for specifying the argument to be passed to the
device driver. On return from w_ioctl, the service updates this field with the command output, if any.

return_value
(output,INT,4) is a variable where the service returns 0 if the request is successful, or -1 if it is not
successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. AF_UNIX domain sockets support the following commands:

• FIONBIO
• FIONREAD
• SECIGET
• SIOCATMARK

w_ioctl (BPX1IOC)

398 z/VM: 7.3 OpenExtensions Callable Services Reference

2. AF_INET and AF_INET6 sockets pass the ioctl command to TCP/IP. For the commands supported, refer
to the XL C/C++ for z/VM: Runtime Library Reference.

3. Remote terminals support the TIOCGWINSZ and TIOCSWINSZ command to get and set the window
size.

4. The pipe file system does not support ioctl.

Characteristics and Restrictions
The argument is limited to 1024 bytes.

Example

The following code conveys a command to the standard output device. To run properly, this example
needs a command defined by the user for the COMMAND parameter. This command must be understood
by the device driver providing support for the output device. This example follows the rules of reentrancy.
For linkage information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551.

 MVC BUFLENA,=F'1024'
 MVC COMMAND,=F'123' User defined command
 SPACE ,
 CALL BPX1IOC, I/O Control +
 (=A(STDOUT_FILENO), Input: File descriptor +
 COMMAND, Input: Command +
 BUFLENA, Input: Argument length +
 BUFFERA, Argument buffer name +
 RETVAL, Return value: 0 or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAFNOSUPPORT The address family is not supported.

EALREADY An attempt was made to unregister a file that is not registered.

EBADF file_descriptor is not a valid socket descriptor.

EINVAL One of the following occurred:

• argument_length was not valid. The correct argument length range is 0 to
1024.

• command was not valid.

The following reason codes can accompany this return code: JRInvIoctlCmd,
JRIOBufLengthInvalid.

EIO One of the following occurred:

• The process group of the process that is issuing the function is an orphaned,
background process group, and the process that is issuing the function is
not ignoring or blocking SIGTTOU.

• There has been a network or transport failure.

The following reason codes can accompany this return code:
JRPrevSockError.

ENODEV The device is incorrect. The function is not supported by the device driver. The
following reason code can accompany this return code: JRFuncNotSupported.

w_ioctl (BPX1IOC)

Chapter 2. Callable Service Descriptions 399

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3

Return Code Explanation

ENOTTY file_descriptor is incorrect. The file type is not character special. The following
reason code can accompany this return code: JRNotSupportedForFileType.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

w_ioctl (BPX1IOC)

400 z/VM: 7.3 OpenExtensions Callable Services Reference

write (BPX1WRT) — Write to a File or Socket

BPX1WRT
file_descriptor
buffer_address
buffer_ALET
write_count
return_value
return_code
reason_code

Purpose
Use the write (BPX1WRT) service to write data from a buffer to an open file or socket.

Note: The write service is not related to the write shell command.

Parameters
file_descriptor

(input,INT,4) is a variable for specifying the descriptor of the open file or socket. where data is to be
written.

buffer_address
(input,INT,4) is a variable for specifying the starting address of a buffer containing the data to be
written to the file or socket.

buffer_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for buffer_address.

Note: This parameter is ignored.

write_count
(input,INT,4) is a variable for specifying the number of bytes of data to be written to the file.

return_value
(output,INT,4) is a variable where the service returns the actual number of bytes written to the file if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
File Offset — If the file_descriptor parameter identifies a regular file or any other type of file on which
you can seek, the service begins writing at the file offset associated with that file descriptor. A successful
write operation increments the file offset by the number of bytes written. If the incremented file offset is
greater than the previous length of the file, the file is extended; that is, the length of the file is set to the
new file offset.

If the file descriptor refers to a file on which you cannot seek, the service begins writing at the current
position. No file offset is associated with such a file.

write (BPX1WRT)

Chapter 2. Callable Service Descriptions 401

If the file was opened with the "append" option, the service sets the file offset to the end of the file before
writing output.

Number of Bytes Written — Ordinarily, the number of bytes written to the output file is the number you
specify in the write_count parameter. The value of write_count is not checked against any system limit,
although a limit can be imposed by a high-level-language POSIX implementation.

If you specify a write count of zero bytes, the service returns a return value of zero without attempting any
other action.

If you specify a write count that is greater than the space remaining on the output device, fewer bytes
than you requested are written. When at least 1 byte is written, the write is considered successful. The
return value shows the number of bytes actually written. An attempt to write again to the same file,
however, causes an ENOSPC error unless you are using a terminal. With a terminal, if there is not enough
room in the buffer for the whole write, the number of bytes that fit are written and the number of bytes
actually written is returned in the return value. However, on the next write attempt (assuming the buffer is
still full), the write is blocked or EAGAIN is returned, depending on whether the file was opened blocking
or nonblocking.

Similarly, fewer bytes than requested are written if the service is interrupted by a signal after some but
not all the specified number of bytes are written. The return value shows the number of bytes written. But
if no bytes were written before the routine was interrupted, the return value is -1 and an EINTR error is
reported.

SIGTTOU Processing — This service causes signal SIGTTOU to be sent if all the following conditions are
met:

• The process is attempting to write to its controlling terminal.
• TOSTOP is set as a terminal attribute (see “tcgetattr (BPX1TGA) — Get the Attributes for a Terminal” on

page 358 or “tcsetattr (BPX1TSA) — Set the Attributes for a Terminal” on page 365).
• The process is running in a background process group.
• The SIGTTOU signal is not blocked or ignored.
• The process is not an orphan.

Characteristics and Restrictions
If the file was opened by an authorized program, all subsequent reads and writes against the file must be
issued from an authorized state.

Example

The following code writes 80 bytes from the specified buffer to the file specified (FILEDESC). This
example follows the rules of reentrancy. For linkage information, see Appendix D, “Reentrant and
Nonreentrant Linkage Examples,” on page 551.

* MVC FILEDESC, File descriptor from open
 MVC BUFLENA,=F'80'
 LA R15,BUFFERA
 ST R15,BUFA
 SPACE ,
 CALL BPX1WRT, Write to a file +
 (FILEDESC, Input: File descriptor +
 BUFA, Input: ->Buffer +
 PRIMARYALET, Input: Buffer ALET +
 BUFLENA, Input: Number of bytes to write +
 RETVAL, Return value: -1 or bytes written +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

write (BPX1WRT)

402 z/VM: 7.3 OpenExtensions Callable Services Reference

Return Code Explanation

EAGAIN Blocking is not in effect for the specified file, and output cannot be written
immediately.

EBADF The file_descriptor parameter does not contain the descriptor of an open file,
or that file is not opened for write services. The following reason codes can
accompany this return code: JRFileDesNotInUse, JRFileNotOpen.

ECONNRESET Connection reset by peer. The following reason code can accompany this
return code: JRSocketNotCon.

EFBIG Writing to the specified file would exceed the maximum file size supported.

EINTR The service was interrupted by a signal before it could write any data.

EINVAL The write_count parameter contains a value that is less than
zero. The following reason code can accompany this return code:
JRSocketCallParmError.

EIO The process is in a background process group and is attempting to write
to its controlling terminal. However, TOSTOP is set, the process is neither
ignoring nor blocking SIGTTOU signals, and the process group of the process
is orphaned. For example, this can happen if a background job tries to write to
the terminal after the user has logged off.

EMSGSIZE The message was too large to be sent all at once, as socket protocol requires.

ENOBUFS A buffer could not be obtained.

ENOSPC There is no space left on the output device.

ENOTCONN The socket was not connected. The following reason code can accompany this
return code: JRSocketNotCon.

EPIPE The request is for a write to a pipe that is not open for reading by any other
process.

This error also generates a SIGPIPE signal.

EWOULDBLOCK A write was requested that would have caused a nonblocking socket to block.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fcntl (BPX1FCT) — Control Open File Descriptors” on page 88
• “lseek (BPX1LSK) — Change the File Offset” on page 154
• “open (BPX1OPN) — Open a File” on page 181
• “pipe (BPX1PIP) — Create an Unnamed Pipe” on page 199
• “read (BPX1RED) — Read from a File or Socket” on page 228
• “socket (BPX1SOC) — Create a Socket” on page 330.

write (BPX1WRT)

Chapter 2. Callable Service Descriptions 403

writev (BPX1WRV) — Write Data from a Set of Buffers

BPX1WRV
socket_descriptor
IOV_count
IOV_structures
IOV_ALET
IOV_buffer_ALET
return_value
return_code
reason_code

Purpose
Use the writev (BPX1WRV) service to write data from a set of buffers to a socket.

Parameters
socket_descriptor

(input,INT,4) is a variable for specifying the descriptor of the socket.
IOV_count

(input,INT,4) is a variable for specifying the number of buffers that are pointed to by IOV_structures.
IOV_structures

(input,CHAR,IOV_count times length of BPXYIOV) is a variable for specifying the IOV structures that
contain information about the buffers from which data is to be retrieved. The IOV structure is mapped
by the BPXYIOV macro. See “BPXYIOV — Map the I/O Vector Structure” on page 430.

IOV_ALET
(input,INT,4) is a variable for specifying the access list entry token (ALET) for IOV_structures.

Note: This parameter is ignored.

IOV_buffer_ALET
(input,INT,4) is a variable for specifying the ALET for the buffers that are pointed to by IOV_structures.

Note: This parameter is ignored.

return_value
(output,INT,4) is a variable where the service returns the number of bytes written from the buffers if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
Number of Bytes Written — Ordinarily, the number of bytes written to the output file is the number you
request for writing. The number of bytes requested for writing is not checked against any system limit,
although a limit can be imposed by a high-level-language POSIX implementation.

If you request zero bytes, the service returns a return value of zero without attempting any other action.

writev (BPX1WRV)

404 z/VM: 7.3 OpenExtensions Callable Services Reference

If you request a number of bytes that is greater than the remaining space on the output device, or greater
than the file size limit of the physical file system, fewer bytes than you requested are written. When at
least 1 byte is written, the write is considered successful. The return value shows the number of bytes
actually written. An attempt to write again to the same file, however, causes an error. An error of ENOSPC
is returned if there is no remaining space on the output device. An error of EFBIG is returned if the file size
limit for the physical file system is exceeded.

Similarly, fewer bytes that requested are written if the service is interrupted by a signal after some but not
all of the specified number of bytes are written. The return value shows the number of bytes written. But
if no bytes were written before the routine was interrupted, the return value is -1 and an EINTR error is
reported.

SIGTTOU Processing — This service causes signal SIGTTOU to be sent if all the following conditions are
met:

• TOSTOP is set as a terminal attribute (see “tcgetattr (BPX1TGA) — Get the Attributes for a Terminal” on
page 358 or “tcsetattr (BPX1TSA) — Set the Attributes for a Terminal” on page 365).

• The process is running in a background process group.
• The SIGTTOU signal is not blocked or ignored.
• The process is not an orphan.

Example

The following code issues a writev for a socket. SOCKDESC was returned from a previous call to either
socket (BPX1SOC) or accept (BPX1ACP). This example follows the rules of reentrancy. For linkage
information, see Appendix D, “Reentrant and Nonreentrant Linkage Examples,” on page 551. For the data
structures, see “BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services”
on page 465 and “BPXYIOV — Map the I/O Vector Structure” on page 430.

 MVC BUFFERA(16),=CL16'Here is the data'
 LA R2,BUFFERA
 ST R2,IOV_BASE
 MVI IOV_LEN,16
*
 CALL BPX1WRV, Write from a vector of buffers +
 (SOCKDESC, Input: Socket Descriptor +
 =A(1), Input: Single element in iov +
 IOV, Input: Iov containing info +
 PRIMARYALET, Input: Alet where iov resides +
 PRIMARYALET, Input: Alet of buffers for data +
 RETVAL, Return value: Num bytes or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EBADF An incorrect file descriptor was specified. The following reason codes
can accompany this return code: JRFileDesNotInUse, JRFileNotOpen,
JRRFileWrOnly, JRWFileRdOnly.

ECONNRESET Connection reset by peer. The following reason code can accompany this
return code: JRSocketNotCon.

EINTR A signal interrupted the writev service before any data was written.

EINVAL One of the input parameters was incorrect. The following reason
codes can accompany this return code: JRBytes2RWZero, JROutofRange,
JRSocketCallParmError.

writev (BPX1WRV)

Chapter 2. Callable Service Descriptions 405

Return Code Explanation

EIO The process is in a background process group and is attempting to write
to its controlling terminal. However, TOSTOP is set, the process is neither
ignoring nor blocking SIGTTOU signals, and the process group of the process
is orphaned. This can happen, for example, if a background job tries to write
to the terminal after the user has logged off.

EMSGSIZE The message is too large to be sent all at once, as the socket requires.

ENOBUFS A buffer could not be obtained.

ENOTCONN The socket was not connected. The following reason code can accompany this
return code: JRSocketNotCon.

ENOTSOCK socket_descriptor does not refer to a valid socket descriptor. The following
reason code can accompany this return code: JRMustBeSocket.

EPIPE An attempt was made to write to a socket that is shut down or closed.

This error also generates a SIGPIPE signal.

EPROTOTYPE An incorrect socket type was supplied. The following reason code can
accompany this return code: JRIncorrectSocketType.

EWOULDBLOCK A write was requested that would have caused a nonblocking socket to block.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Service
Another callable service related to this service is:

• “readv (BPX1RDV) — Read Data and Store It in a Set of Buffers” on page 238

writev (BPX1WRV)

406 z/VM: 7.3 OpenExtensions Callable Services Reference

w_statvfs (BPX1STF) — Get Status Information about a File System
by File System Name

BPX1STF
file_system_name
status_area_length
status_area
return_value
status_area
return_code
reason_code

Purpose
Use the w_statvfs (BPX1STF) service to obtain status information about a file system by its file system
name.

For the corresponding service using a file descriptor, see “fstatvfs (BPX1FTV) — Get Status Information
about File System by Descriptor” on page 104. For the corresponding service using a path name, see
“statvfs (BPX1STV) — Get Status Information about a File System by Path Name” on page 343.

Parameters
file_system_name

(input,INT,4) is a variable for specifying the file system name whose status is to be returned.
status_area_length

(input,INT,4) is a variable for specifying the length of the status_area parameter.
status_area

(output,CHAR,status_area_length) is a variable for the area where the service returns the status
information for the file system. This area is mapped by the BPXYSSTF macro. See “BPXYSSTF — Map
the File System Status Structure” on page 471.

return_value
(output,INT,4) is a variable where the service returns the length of the data returned in status_area if
the request is successful, or -1 if it is not successful.

return_code
(output,INT,4) is a variable where the service stores the return code. A return code is returned only if
return_value is -1.

reason_code
(output,INT,4) is a variable where the service stores the reason code. A reason code is returned only if
return_value is -1.

Usage Notes
1. It is not considered an error if the passed status_area_length is not sufficient to hold all the returned

information. (In other words, future expansion is allowed for.) As much information as will fit is written
to status_area, and this amount is returned.

2. If a buffer of length of zero is passed to this service, no data is returned and the return value is zero.
You can check for the existence of a file system by passing such a length.

3. The amount of valid data returned in the status_area is indicated by the return_value. This allows for
differences in the release levels of VM and the physical file systems.

w_statvfs (BPX1STF)

Chapter 2. Callable Service Descriptions 407

Example

The following code requests information about file system TESTLIB.FILESYS1.

 MVC FSNAME(44),=CL44'TESTLIB.FILESYS1'
 SPACE ,
 CALL BPX1STF, Get file system status +
 (FSNAME, Input: File system name (44 char) +
 SSTFL, Input: Length of BPXYSSTF +
 SSTF, Buffer, BPXYSSTF +
 RETVAL, Return value: Status length or -1 +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL,MF=(E,PLIST) ----------------------------------

Return Codes and Reason Codes
This service can return the following return codes:

Return Code Explanation

EAGAIN Information is temporarily unavailable. This can occur because the mount
process for the file system is incomplete.

EINVAL Parameter error. For example, file_system_name was not found.

The following reason code can accompany this return code:
JRFileSysNotThere.

For a complete list of return codes for OpenExtensions callable services, see Appendix A, “Return Codes,”
on page 487. For a complete list of reason codes for OpenExtensions callable services, with explanations
and required actions, see Appendix B, “Reason Codes,” on page 495.

Related Services
Other callable services related to this service are:

• “fstatvfs (BPX1FTV) — Get Status Information about File System by Descriptor” on page 104.
• “statvfs (BPX1STV) — Get Status Information about a File System by Path Name” on page 343.

w_statvfs (BPX1STF)

408 z/VM: 7.3 OpenExtensions Callable Services Reference

Chapter 3. Mapping Macro Descriptions

The Mapping macros described in this chapter map the parameter options, constants, and data returned
in many OpenExtensions callable services. If a macro field contains the comment "Reserved for IBM Use"
or similar words, that field is not a programming interface for customer use.

Most of the mapping macros can be expanded with or without a DSECT statement. The invocation
parameter DSECT=YES (the default) can be used with either reentrant or nonreentrant programs with the
appropriate rules governing the storage backed by the USING statement.

Many of the mapping macros exploit the fact that DC expands as a DS in a DSECT and as a DC with
its initialized value in a CSECT. When these fields are expanded as or within DSECTs, the program is
responsible for initializing the necessary fields.

To assemble a program using any of these macros, you must issue the GLOBAL command specifying
MACLIB DMSGPI. This macro library is usually located on the system disk.

Understanding the Macro Syntax Diagrams
This section describes how to read the macro syntax diagrams in this chapter.

Getting Started: To read a syntax diagram, follow the path of the line. Read from left to right and top to
bottom.

• The ►►─── symbol indicates the beginning of a syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram continues on the next line.
• The ►─── symbol, at the beginning of a line, indicates that a syntax diagram continues from the

previous line.
• The ───►◄ symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

• Directly on the line (required)
• Above the line (default)
• Below the line (optional).

Syntax Diagram Description Example

Abbreviations: Uppercase letters denote the shortest acceptable
abbreviation. If an item appears entirely in uppercase letters, it
cannot be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any
combination.

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any
combination of uppercase and lowercase letters.

KEYWOrd

© Copyright IBM Corp. 1993, 2023 409

Syntax Diagram Description Example

Symbols: You must code these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables: Highlighted lowercase items (like this) denote variables.

In this example, var_name represents a variable you must specify
when you code the KEYWORD command.

KEYWOrd var_name

Repetition: An arrow returning to the left means that the item can be
repeated.

A character within the arrow means you must separate repeated
items with that character.

A footnote (1) by the arrow references a limit that tells how many
times the item can be repeated.

repeat

,

repeat

1
repeat

Notes:
1 Specify repeat up to 5 times.

Required Choices: When two or more items are in a stack and one of
them is on the line, you must specify one item.

In this example, you must choose A, B, or C.

A

B

C

Optional Choice: When an item is below the line, the item is
optional. In this example, you can choose A or nothing at all.

When two or more items are in a stack below the line, all of them are
optional. In this example, you can choose A, B, C, or nothing at all.

A

A

B

C

410 z/VM: 7.3 OpenExtensions Callable Services Reference

Syntax Diagram Description Example

Defaults: Defaults are above the line. The system uses the default
unless you override it. You can override the default by coding an
option from the stack below the line.

In this example, A is the default. You can override A by choosing B or
C.

A

B

C

Repeatable Choices: A stack of items followed by an arrow returning
to the left means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or C.
A

B

C

Syntax Fragments: Some diagrams, because of their length, must
fragment the syntax. The fragment name appears between vertical
bars in the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Coding Conventions
Coding conventions for OpenExtensions macros are the same as those for all assembler language macros.
The macro format descriptions show optional parameters in the format:

, parameter

indicating that if you are going to use this parameter, it must be preceded by a comma (unless it is the first
parameter coded). If a macro statement overflows to a second line, you must use a continuation character
in column 72.

Note: No blanks may appear between parameters.

When a macro offers a choice of parameters, one and only one of which must be specified, the
parameters are stacked one per line and shown below the line of the syntax diagram.

Many operands can be specified with an argument in the form of either an expression or a register
containing a value. When this is the case, the macro expects a register designation to begin with a
left parenthesis. Therefore, specifying an expression that starts with a left parenthesis will produce
unpredictable results, just as specifying a register without parentheses would.

Incorrect coding of any macro may result in assembler errors and MNOTEs. MNOTES are unnumbered
responses that can result from executing system generation macroinstructions or service programs. They
are documented in logic listings only.

Chapter 3. Mapping Macro Descriptions 411

BPXYACC — Map Flag Values for the access Service

label

BPXYACC

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYACC macro to map flag values for the access (BPX1ACC) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYACC mapping macro expands as follows:

 BPXYACC ,
ACC DSECT ,
ACCRSRV DS CL3 Reserved for IBM use
ACCINTENTFLAGS DS XL1 Access Intent Flags
* EQU X'F0' Reserved for IBM use
ACC_F_OK EQU X'08' Check for file existence
ACC_R_OK EQU X'04' Check for read access to file
ACC_W_OK EQU X'02' Check for write access to file
ACC_X_OK EQU X'01' Check for execute access to file
ACC#LENGTH EQU *-ACC Length of this structure

BPXYACC

412 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYAUDT — Map Flag Values for the chaudit and fchaudit
Services

label

BPXYAUDT

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYAUDT macro to map flag values for the chaudit (BPX1CHA) and fchaudit (BPX1FCA) callable
services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYAUDT mapping macro expands as follows:

 BPXYAUDT ,
AUDT DSECT ,
AUDTREADACCESS DS XL1 Read Access Auditing Flags
AUDTREADFAIL EQU X'02' 1 = audit failing read accesses
AUDTREADSUCC EQU X'01' 1 = audit successful read accesses
AUDTWRITEACCESS DS XL1 Write Access Auditing Flags
AUDTWRITEFAIL EQU X'02' 1 = audit failing write accesses
AUDTWRITESUCC EQU X'01' 1 = audit successful write accesses
AUDTEXECACCESS DS XL1 Execute/Search Auditing Flags
AUDTEXECFAIL EQU X'02' 1 = audit failing exec or search
AUDTEXECSUCC EQU X'01' 1 = audit successful exec or search
AUDTRSRV DS XL1 Flag byte 4 -Reserved for IBM use
AUDT#LENGTH EQU *-AUDT Length of this structure

BPXYAUDT

Chapter 3. Mapping Macro Descriptions 413

BPXYBRLK — Map the Byte Range Lock Request for the fcntl
Service

label

BPXYBRLK

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYBRLK macro to map the byte range lock request for the fcntl (BPX1FCT) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYBRLK mapping macro expands as follows:

 BPXYBRLK ,
BRLK DSECT ,
L_TYPE DS H Requested lock type:
F_RDLCK EQU 1 Shared or read lock
F_WRLCK EQU 2 Exclusive or write lock
F_UNLCK EQU 3 Unlock
L_WHENCE DS H Flag for starting offset
L_START DS 0CL8 Relative offset in bytes
L_START_H DS F High word of relative offset
L_START_L DS F Low word of relative offset
L_LEN DS 0CL8 Size of lock in bytes
L_LEN_H DS F High word of size of lock in bytes
L_LEN_L DS F Low word of size of lock in bytes
L_PID DS F Process ID of process holding lock
BRLK#LENGTH EQU *-BRLK Length of this area

BPXYBRLK

414 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYCID — Map the Client ID Structure

label

BPXYCID

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYCID macro to map the client ID data structure returned by the getclientid (BPX1GCL)
callable service and used by the givesocket (BPX1GIV) and takesocket (BPX1TAK) callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYCID macro expands as follows:

 BPXYCID ,
*
CID DSECT , ClientId structure
CIDBEGIN DS 0D
*
CIDDOMAIN DS F Domain
CIDNAME DS CL8 Address space name
CIDTASK DS CL8 Subtask name
CIDRESERVED DS CL20 Reserved
*
CID#LENGTH EQU *-CID Constant - Fixed length of CID
*
 ORG CIDNAME
CIDNAMEUPPER DS F Binary zeroes
CIDPID DS F Process Id
*
 ORG CIDRESERVED
CIDTYPE DS X Type of request
CIDSPECIFIC DS CL19
*
 ORG CIDSPECIFIC
 DS CL3
CIDSOCKTOKEN DS F Returned token
 ORG ,
*
CID#CLOSE EQU 1 Close socket
CID#SELECT EQU 2 Giver will do select

BPXYCID

Chapter 3. Mapping Macro Descriptions 415

*
*
*
** BPXYCID End

BPXYCID

416 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYCONS — Map Constants

label

BPXYCONS

,LIST=YES

,LIST=NO

Purpose
Use the BPXYCONS macro to map the constants used by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYCONS macro expands as follows:

 BPXYCONS ,
DFLT_ARG_MAX EQU 1048576 Constant for default ARG_MAX (1 MEG)
DFLT_CHILD_MAX EQU 32 Constant for default CHILD_MAX
*
DFLT_CLK_TCK EQU 100 Constant for default CLK_TCK
* (100 ticks per second)
DFLT_OPEN_MAX EQU 65536 Constant for default OPEN_MAX
* (_POSIX_OPEN_MAX)
DFLT_TZNAME_MAX EQU 5 Constant for default TZNAME_MAX
DFLT_JOB_CONTROL EQU 1 Constant for default JOB_CONTROL
DFLT_SAVED_IDS EQU 1 Constant for default SAVED_IDS
DFLT_VERSION EQU 199009 Constant for default VERSION
DFLT_THREAD_TASKS_MAX_NP EQU -1 Constant default THREAD_TASKS_MAX_NP
DFLT_2_CHAR_TERM EQU -1 Constant default THREAD_TASKS_MAX_NP
* items from sysconf()
SC_ARG_MAX EQU 1 Constant for querying ARG_MAX
SC_CHILD_MAX EQU 2 Constant for querying CHILD_MAX
SC_CLK_TCK EQU 3 Constant for querying CLK_TCK
SC_JOB_CONTROL EQU 4 Constant for querying JOB_CONTROL
SC_NGROUPS_MAX EQU 5 Constant for querying NGROUPS_MAX
SC_OPEN_MAX EQU 6 Constant for querying OPEN_MAX
SC_SAVED_IDS EQU 7 Constant for querying SAVED_IDS
SC_TZNAME_MAX EQU 9 Constant for querying TZNAME_MAX
SC_VERSION EQU 10 Constant for querying VERSION
SC_THREAD_TASKS_MAX_NP EQU 11 Constant to query THREAD_TASKS_MAX_NP
SC_2_CHAR_TERM EQU 12 Constant for querying VERSION
* wait function code
#WAITID EQU 2 waitid() function code
* items from wait()
WNOHANG EQU 1 Wait, do not suspend execution
WUNTRACED EQU 2 Wait, return status of stopped child
WCONTINUED EQU 4 Wait, return status of continued child
WEXITED EQU 8 Wait for processes that have exited
WSTOPPED EQU 16 Wait, return status of stopped child
WNOWAIT EQU 32 Wait, return status of a child without
* changing the state. The child can be
* waited for again.
* waitid() id type options

BPXYCONS

Chapter 3. Mapping Macro Descriptions 417

P_PID EQU 0 Wait for the child with a process ID
P_PGID EQU 1 Wait for any child with a process
* group ID
P_ALL EQU 2 Wait for any child
*
SPAWN_FDCLOSED EQU -1 Do not inherit this file descriptor
PTEXITTHREAD EQU 0 Pthread exit
PTGETNEWTHREAD EQU 1 Pthread get new
PTFAILIFLASTTHREAD EQU 2 Pthread fail if last thread
QUIESCE_TERM EQU 1 quiesce_threads type = term
QUIESCE_FORCE EQU 2 quiesce_threads type = force
QUIESCE_QUERY EQU 3 Alias of pthread_query
PTHREAD_QUERY EQU 3 quiesce_threads type = query
PTHREAD_INTR_ENABLE# EQU 0 Cancel request type = enabled
PTHREAD_INTR_DISABLE# EQU 1 Cancel request type = disabled
PTHREAD_INTR_CONTROLLED# EQU 0 Cancel request type = controlled
PTHREAD_INTR_ASYNCHRONOUS# EQU 1 Cancel request type = Asynchronous
STDIN_FILENO EQU 0 Standard input value, file descriptor
STDOUT_FILENO EQU 1 Standard output value, file descriptor
STDERR_FILENO EQU 2 Standard error value, file descriptor
* The high-order two bytes of the reason codes returned by
* OpenExtensions services contains a value that is used to
* qualify the contents of the low order two bytes. If the contents
* of the high-order two bytes are within the range of #CMID_LO to
* #CMID_HI, the error represented by the reason code is defined
* by OpenExtensions. If the contents of the high-order two bytes
* lie outside the range, the error represented by the reason code
* is not an OpenExtensions reason code.
#CMID_LOW EQU 0000 Low range
#CMID_HI EQU 8447 High range

BPXYCONS

418 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYCW — Map Serialization Constants

label

BPXYCW

,LIST=YES

,LIST=NO

Purpose
Use the BPXYCW macro to map the serialization constants used by OpenExtensions callable services.

Parameters
label

is an optional assembler label for the statement.
LIST=YES

causes the expansion of the macro to appear in the listing. This is the default.
LIST=NO

removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYCW macro expands as follows:

 BPXYCW ,
CW_INTRPT EQU 1 Thread interrupted by a signal
* (x'0000 0001')
CW_CONDVAR EQU 32 Thread notified that some condition
* has been met (x'0000 0020')
CW_TIMEOUT EQU 64 Timeout occurred (x'0000 0040')
*

BPXYCW

Chapter 3. Mapping Macro Descriptions 419

BPXYDIRE — Map Directory Entries for the readdir Service

label

BPXYDIRE

,DSECT=YES ,LIST=YES

,LIST=NO

Purpose
Use the BPXYDIRE macro to map directory entries for the readdir (BPX1RDD) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. DSECT=NO is not allowed. The basing for the PFSOTHER data is not known, as it depends on the

length of the name.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYDIRE mapping macro expands as follows:

 BPXYDIRE ,
* LA RegOne,buffer RegOne->BPX1RDD buffer and 1st DIRE
* USING DIRE,RegOne Addressability to DIRE
DIRE DSECT ,
DIRENTINFO DS 0X Fixed length information
DIRENTLEN DS H Entry length
DIRENTNAML DS H Name length
DIRENTNAME DS 0C Name
* LR RegTwo,RegOne RegTwo->DIRE
* A RegTwo,=F'4' RegTwo->start of name
* A RegTwo,DIRENTNAML RegTwo->end of name+1
* USING DIRENTPFSDATA,RegTwo Addressability to DIRENTPFSDATA
DIRENTPFSDATA DSECT , Physical file system-specific data
DIRENTPFSINO DS CL4 File Serial Number = st_ino
DIRENTPFSOTHER DS 0C Other PFS specific data
* A RegOne,DIRENTLEN RegOne->Next DIRE in buffer
* BCT Return_Value,Back_to_process_next_DIRE

BPXYDIRE

420 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYERNO — Map Return Codes and Reason Codes

label

BPXYERNO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYERNO macro to map the values for the return codes and reason codes generated by
OpenExtensions callable services. BPXYERNO consists only of equates.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. For information on the return codes and reason codes defined in the BPXYERNO macro, see Appendix

A, “Return Codes,” on page 487 and Appendix B, “Reason Codes,” on page 495.

BPXYERNO

Chapter 3. Mapping Macro Descriptions 421

BPXYFCTL — Map Command Values and Flags for the fcntl Service

label

BPXYFCTL

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYFCTL macro to map command values and flags for the fcntl (BPX1FCT) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYFCTL mapping macro expands as follows:

 BPXYFCTL ,
FCTL DSECT ,
* External file descriptor flags
FCTLFDFL1 DS B
FCTLRS01 EQU X'80' Reserved for IBM use
* FCTLFDFLAGS must never be < 0
FCTLFDFL2 DS B Reserved for IBM use
FCTLFDFL3 DS B Reserved for IBM use
FCTLFDFL4 DS B
FCTLCLOFORK EQU X'02' 1= close_on_fork
FCTLCLOEXEC EQU X'01' 1= close_on_exec
* Command value definitions
F_DUPFD EQU 0 Duplicate file descriptor
F_GETFD EQU 1 Get file descriptor flags
F_SETFD EQU 2 Set file descriptor flags
F_GETFL EQU 3 Set file status flags
F_SETFL EQU 4 Set file status flags
F_GETLK EQU 5 Get record locking information
F_SETLK EQU 6 Set record locking information
F_SETLKW EQU 7 Set record locking information,
* wait if blocked
F_DUPFD2 EQU 8 Duplicate file descriptor, option 2
F_CLOSFD EQU 9 Close file descriptors
FCTL#LENGTH EQU *-FCTL Length of this structure
** BPXYFCTL End

BPXYFCTL

422 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYFTYP — Map File Type Definitions

label

BPXYFTYP

,LIST=YES

,LIST=NO

Purpose
Use the BPXYFTYP macro to map the file type definitions for OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYFTYP mapping macro expands as follows:

 BPXYFTYP ,
FT_DIR EQU 1 Directory File
FT_CHARSPEC EQU 2 Character Special File
FT_REGFILE EQU 3 Regular File
FT_FIFO EQU 4 Named Pipe (FIFO) File
FT_SYMLINK EQU 5 Symbolic link
FT_BLKSPEC EQU 6 Reserved for Block Special
FT_SOCKET EQU 7 Sockets
FT_EXTLINK EQU 254 External Link
**
** External Link Subtypes
FST_EXEC EQU 1 Executable
FST_DATA EQU 2 Data
FST_MEL EQU 3 Mount
FST_SOCKET EQU 4 Socket

BPXYFTYP

Chapter 3. Mapping Macro Descriptions 423

BPXYGIDN — Map the Data Structure Returned for the getpwnam
and getpwuid Services

label

BPXYGIDN

,DSECT=YES ,LIST=YES

,LIST=NO

Purpose
Use the BPXYGIDN macro to map the data structure returned for the getpwnam (BPX1GPN) and getpwuid
(BPX1GPU) callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. DSECT=NO is not allowed. The storage belongs to the service and a pointer is returned to the invoker.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYGIDN mapping macro expands as follows:

 BPXYGIDN ,
GIDN DSECT , USING on Return_value of GPN
GIDN_U_LEN DS F Length of GIDN_U_NAME
GIDN_U_NAME DS 0C User name
* Add GIDN_U_LEN to Index or base to access next field
 DS F Length of user ID 4
GIDN_USERID DS F User ID
 DS F Length of group ID 4
GIDN_GROUPID DS F Group ID
GIDN_D_LEN DS F Length of GIDN_D_NAME 0-1023
GIDN_D_NAME DS 0C Initial working directory name
* Add GIDN_D_LEN to Index or base to access next field
GIDN_P_LEN DS F Length of GIDN_P_NAME 0-1023
GIDN_P_NAME DS 0C Initial user program name
GIDN_F_LEN DS F Length of GIDN_F_NAME 0-1023
GIDN_F_NAME DS 0C FSROOT pathid
GIDN#LENGTH EQU *-GIDN Length less U_LEN, D_LEN and P_LEN

BPXYGIDN

424 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYGIDS — Map the Data Structure Returned for the getgrnam
and getgrgid Services

label

BPXYGIDS

,DSECT=YES ,LIST=YES

,LIST=NO

Purpose
Use the BPXYGIDS macro to map the data structure returned for the getgrnam (BPX1GGN) and getgrgid
(BPX1GGI) callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. DSECT=NO is not allowed. The storage belongs to the service and a pointer is returned to the invoker.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYGIDS mapping macro expands as follows:

 BPXYGIDS ,
GIDS DSECT ,
GIDS_G_LEN DS F Length of GIDS_G_NAME
GIDS_G_NAME DS 0C Group name
* Add GIDS_G_LEN to index or base to access following fields
 DS F Length of group ID, always 4
GIDS_GROUPID DS F Group ID
GIDS_COUNT DS F Count of array elements
* Make a local copy of GIDS_COUNT
* Test: if local copy of GIDS_COUNT zero, quit
GIDS_M_LEN DS F Length of GIDS_M_NAME
GIDS_M_NAME DS 0C Member name
* Add GIDS_M_LEN+4 to index or base
* Decrement local copy of GIDS_COUNT, goto test.
GIDS#LENGTH EQU *-GIDS Length less all variable fields

BPXYGIDS

Chapter 3. Mapping Macro Descriptions 425

BPXYINHE — Map the Inheritance Structure for the spawn Service

label

BPXYINHE

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYINHE macro to map the inheritance structure used by the spawn (BPX1SPN) service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYINHE macro expands as follows:

 BPXYINHE ,
** BPXYINHE: Inheritance Area
** Used By: spawn() callable service
INHE DSECT ,
INHEBEGIN DS 0D
*
INHEEYE DC C'INHE' Eye catcher
INHELENGTH DC AL2(INHE#LENGTH)
 Length of this structure
INHEVERSION DC AL2(INHE#VER)
INHE#VER EQU 1 Version of this structure
INHEFLAGS DS 0BL4 Flags indicating contents of structure
INHEFLAGS0 DS XL1 1st byte
INHESETPGROUP EQU X'80' Set Process Group using INHEPGROUP
INHESETSIGMASK EQU X'40' Set Signal Mask using INHESIGMASK
INHESETSIGDEF EQU X'20' Set Signal Defaults using INHESIGDEF
INHESETTCPGRP EQU X'10' Set Cntl TTY Pgrp using INHECTLTTYFD
INHEFLAGS1 DS XL1 2nd byte
INHEFLAGS2 DS XL1 3rd byte
INHEFLAGS3 DS XL1 4th byte
INHEPGROUP DS F Process Group for child
INHE#NEWPGROUP EQU 0 Put child in a new proc grp of its own
INHESIGMASK DS BL8 Signal Mask for child
INHESIGDEF DS BL8 Set of default signals for child
INHECTLTTYFD DS F Cntl TTY FD for tcsetgrp() in child
INHE#LENGTH EQU *-INHE
** BPXYINHE End

BPXYINHE

426 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYIOCC — Map Command Constants for the w_ioctl Service

label

BPXYIOCC

,LIST=YES

,LIST=NO

Purpose
Use the BPXYIOCC macro to map command constants for the w_ioctl (BPX1IOC) callable service.
BPXYIOCC consists only of equates.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYIOCC macro expands as follows:

 BPXYIOCC ,
** BPXYIOCC: Ioctl Command Constant Definitions
** Used By: Ioctl syscalls
* Ioctl command constants - Range 1-255 reserved for VM
* Authorized/Tcpip CMD values
IOCC#TCI EQU 5000 Cmd for Tcpip Initialization
IOCC#TCC EQU 5001 Cmd for Complete Tcpip Initialization
IOCC#TCS EQU 5002 Cmd for Tcpip Path Sever
IOCC#TCR EQU 5003 Cmd for Tcpip Reply/Post call
IOCC#TCG EQU 5004 Cmd for Tcpip SiGnal call
IOCC#TCCE EQU 5006 Cmd for Tcpip End Registration
SIOCMSDELRT EQU 5007 Cmd for Delete Route
* (Pre-Router wrap)
SIOCMSADDRT EQU 5008 Cmd for Add Route
* (Pre-Router wrap)
SIOCMSSIFADDR EQU 5009 Cmd for Set Interface address
* (Pre-Router wrap)
SIOCMSSIFFLAGS EQU 5010 Cmd for Set Interface Flags
* (Pre-Router wrap)
SIOCMSSIFDSTADDR EQU 5011 Cmd for Set point-to-point interface
* address (Pre-Router wrap)
SIOCMSSIFBRDADDR EQU 5012 Cmd for Set Broadcast address
* (Pre-Router wrap)
SIOCMSSIFNETMASK EQU 5013 Cmd for Set interface network
* mask for an Internet address
* (Pre-Router wrap)
SIOCMSSIFMETRIC EQU 5014 Cmd for Set Interface routing metric
* (Pre-Router wrap)
SIOCMSRBRTTABLE EQU 5015 Cmd for Set Routing table required
* required request
* (Pre-Router wrap)
SIOMSMETRIC1RT EQU 5016 Cmd for Set metric1
* (Pre-Router wrap)
SIOCMSICMPREDIRECT EQU 5017 Cmd for Propagating ICMP redirects
* (Pre-Router wrap)
SIOCSETTKN EQU X'8008139A' 5018 Set Tcp/Ip master Tkn
*

BPXYIOCC

Chapter 3. Mapping Macro Descriptions 427

* Ioctl Command Constants - terminal control
TIOCGWINSZ EQU X'4008A368' get window size
TIOCSWINSZ EQU X'8008A367' set window size
TIOCNOTIFY EQU X'8001A364' notify master by packet
* Constants for argument when TIOCNOTIFY is specified
IOCC#PWBEGIN EQU 1 Begin secure data
IOCC#PWEND EQU 2 End secure data
*
* Ioctl command constants - for Router query
SIOCGRTTABLE EQU X'C008C980' Gets Network Routing
* Table
SIOCSETRTTD EQU X'8008C981' Set Socket to be attached to
* 1 TD
*
FIONBIO EQU X'8004A77E' set/reset nonblock I/O
FIONREAD EQU X'4004A77F' get number of readable bytes
* available
FIOASYNC EQU X'8004A77D' set/clear async I/O
FIOSETOWN EQU X'8004A77C' set owner
FIOGETOWN EQU X'4004A77B' get owner
SECIGET EQU X'4010E401' get security information
SIOCADDRT EQU X'8030A70A' IBM use only, Add routing
* table entry
SIOCATMARK EQU X'4004A707' Is current location pointing
* to out-of-band data?
SIOCDELRT EQU X'8030A70B' IBM use only, Delete routing
* table entry
SIOMETRIC1RT EQU X'8030A70C' IBM use only, Set metric1
SIOCSIFADDR EQU X'8020A70C' Set Network interface addr
SIOCGIFADDR EQU X'C020A70D' Get Network interface address
SIOCGIFBRDADDR EQU X'C020A712' Get Network interface
* Broadcast Address
SIOCSIFBRDADDR EQU X'8020A713' Sets Network interface
* Broadcast Address
SIOCGIFCONF EQU X'C008A714' Get Network interface
* Configuration
SIOCGIFDSTADDR EQU X'C020A70F' Get Network interface
* Destination Address
SIOCGIFFLAGS EQU X'C020A711' Get Network interface Flags
SIOCGIFMETRIC EQU X'C020A717' IBM use only, Gets Network
* Interface Routing Metric
SIOCGIFNETMASK EQU X'C020A715' Get Network interface
* Network Mask
SIOCSIFNETMASK EQU X'8020A716' Set Network interface
* Network Mask
SIOCSIFDSTADDR EQU X'8020A70E' IBM use only, Sets Network
* Interface Destination Address
SIOCSIFFLAGS EQU X'8020A710' IBM use only, Sets Network
* Interface Flags
SIOCSIFMETRIC EQU X'8020A718' IBM use only, Sets Network
* Interface Routing Metric
SIOCSARP EQU X'8024A71E' IBM use only, Sets ARP
* Entry
SIOCGARP EQU X'C024A71F' IBM use only, Gets ARP
* Entry
SIOCDARP EQU X'8024A720' IBM use only, Deletes ARP
* Entry
SIOCSHIWAT EQU X'8004A700' Set High Water Mark
* (Not Supported)
SIOCGHIWAT EQU X'4004A701' Get High Water Mark
* (Not Supported)
SIOCSLOWAT EQU X'8004A702' Set Low Water Mark
* (Not Supported)
SIOCGLOWAT EQU X'4004A703' Get Low Water Mark
* (Not Supported)
FIOFCTLNBIO EQU X'0000E402' change blocking/nonblocking
*
IOCC#EDITACL EQU X'2000C100' Edit ACL
IOCC#ILINK EQU X'4004E21A' I_LINK
* Constants for argument when FIONBIO is specified
IOCC#BLOCK EQU X'00000000' Allow blocking to occur
IOCC#NONBLOCK EQU X'00000001' Do not allow blocking to occur

* Packet mode or Extended Packet mode data record control data.
* *
* Returned on master read when no control information is pending. *
* In packet mode one byte is returned. In extended packet mode, four *
* bytes are returned. Data follows the control data. *

TIOC_DATA EQU X'00' Data packet

* Packet mode control byte - returned on master read()

BPXYIOCC

428 z/VM: 7.3 OpenExtensions Callable Services Reference

* *
* A single control byte is returned in packet mode. In extended *
* packet mode, four bytes are returned, with the non-extended bits *
* in the fourth byte. The equates below can be used against the *
* fourth byte (with TM, OI and NI) or against all four bytes (with *
* OC, NC, etc.). *

TIOCPKT_FLUSHREAD EQU X'01' Input was flushed
TIOCPKT_FLUSHWRITE EQU X'02' Output was flushed
TIOCPKT_STOP EQU X'04' Stop output
TIOCPKT_START EQU X'08' Start output
TIOCPKT_NOSTOP EQU X'10' STOP/START not standard
TIOCPKT_DOSTOP EQU X'20' STOP/START standard

* Extended Packet mode control byte - returned on master read()

TIOCXPKT_PASSTHRU EQU X'00000100' 3270 Passthrough mode
TIOCXPKT_NOPASSTHRU EQU X'00000200' Not 3270 Passthrough mode
TIOCXPKT_ECHO EQU X'00000400' ECHO set on
TIOCXPKT_NOECHO EQU X'00000800' ECHO set off
TIOCXPKT_CHCP EQU X'00001000' Code page change
TIOCXPKT_PWBEGIN EQU X'00002000' Begin secure data
TIOCXPKT_PWEND EQU X'00004000' End secure data
**
* UPDTOFTE
**
IOCC#UPDTOFTE EQU 20 UPDATE OFTE CMD
IOCUOFTE DSECT , ARGUMENT BUFFER
IOCUOCMD DS F SUBCMD
IOCUO#READ EQU 1 READ
IOCUO#WRITE EQU 2 WRITE
IOCUO#CS EQU 3 COMPARE & SWAP
IOCUOVALUEBUFF DS 0F VALUE TO/FROM STATE AREA
IOCUOVOFFSET DS F OFFSET (>=0)
IOCUOVLEN DS F LENGTH (>0)
IOCUOVDATA DS 0C DATA
IOCUOCSBUFF DSECT , COMPARE VALUE FOR CS SUBCMD
IOCUOCSOFFSET DS CL4 OFFSET (BYTE BDY)
IOCUOCSLEN DS CL4 LENGTH (BYTE BDY)
IOCUOCSDATA DS 0C DATA
*
IOCC#REGFILEINT EQU 21 REGISTER FILE INTR
IOCC#FASTPATH EQU 22 Set FastPath Ops
** BPXYIOCC End

BPXYIOCC

Chapter 3. Mapping Macro Descriptions 429

BPXYIOV — Map the I/O Vector Structure

label

BPXYIOV

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYIOV macro to map the socket I/O vector structure used by the readv (BPX1RDV), writev
(BPX1WRV), sendmsg (BPX2SMS), and recvmsg (BPX2RMS) callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYIOV macro expands as follows:

 BPXYIOV ,
** BPXYIOV: Socket I/O Vectors
** Used By: FCT OPN
IOV DSECT ,
IOV_ENTRY DS 0F
IOV_BASE DS A Address of buffer
IOV_LEN DS F Length of buffer
* MSG_FLAGS must never be < 0
IOV#LENGTH EQU *-IOV_ENTRY Length of this structure
** BPXYIOV End

BPXYIOV

430 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYIPCP — Map Interprocess Communications Permissions

label

BPXYIPCP

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYIPCP macro to map the data structure for interprocess communications permissions and
other constants used by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYIPCP macro expands as follows:

 BPXYIPCP ,
** BPXYIPCP: Interprocess Communications Permission
** Used By: MCT, MGT, SCT, SGT, QCT, QGT
IPC_PERM DSECT , Interprocess Communications
IPC_UID DS F Owner's effective user ID
IPC_GID DS F Owner's effective group ID
IPC_CUID DS F Creator's effective user ID
IPC_CGID DS F Creator's effective group ID
IPC_MODE DS XL4 Mode, mapped by BPXYMODE
IPC#LENGTH EQU *-IPC_PERM Length of Interprocess Control block
* Key:
IPC_PRIVATE EQU 0 Private key.
* Mode bits: Map over S_TYPE in BPXYMODE
IPC_CREAT EQU 1 Create entry if key does not exist.
IPC_EXCL EQU 2 Fail if key exists.
* Flag bits - semop, msgrcv, msgsnd:
IPC_NOWAIT EQU 1 Error if request must wait.
* Control Command:
IPC_RMID EQU 1 Remove identifier.
IPC_SET EQU 2 Set options.
IPC_STAT EQU 3 Access status.
* CONSTANTS WHICH MAP OVER BYTE S_TYPE, SEE BPXYMODE
** BPXYIPCP End

BPXYIPCP

Chapter 3. Mapping Macro Descriptions 431

BPXYIPCQ — Map the Data Structure and Constants for the
w_getipc Service

label

BPXYIPCQ

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYIPCQ macro to map the data structure and constants used by the w_getipc (BPX1GET)
callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYIPCQ macro expands as follows:

 BPXYIPCQ ,
** BPXYIPCQ: w_getipc interface mapping
** Used By: GET
IPCQ DSECT , Interprocess Communications - Query
IPCQLENGTH DS F IPCQ#LENGTH used by system call. If not
* equal, check BPXYIPCQ and system levels.
IPCQTYPE DS CL4 "IMSG", "ISEM", "ISHM", "OVER"
IPCQOVER DS 0F OVERVIEW MAPPING STARTS HERE
IPCQMID DS FL4 MEMBER ID
IPCQKEY DS XL4 KEY
IPCQIPCP DS CL20 MAPPED BY BPXYIPCP
IPCQGTIME DS XL4 TIME_T OF LAST ...GET()
IPCQCTIME DS XL4 TIME_T OF LAST ...CTL()
IPCQTTIME DS XL4 TIME_T CHANGED BY TERMINATION
IPCQREST DS 0C IPCQMSG, IPCQSHM, IPCQSEM
 ORG IPCQREST Message Queue unique data
 DS 0F
IPCQBYTES DS F # BYTES OF MESSAGES ON QUEUE
IPCQQBYTES DS F MAX # BYTES OF MESSAGES ALLOWED ON QUEUE
IPCQLSPID DS F PID OF LAST MSGSND()
IPCQLRPID DS F PID OF LAST MSGRCV()
IPCQSTIME DS F TIME_T OF LAST MSGSND()
IPCQRTIME DS F TIME_T OF LAST MSGRCV()
IPCQNUM DS F # OF MESSAGES ON QUEUE

BPXYIPCQ

432 z/VM: 7.3 OpenExtensions Callable Services Reference

IPCQRCNT DS F COUNT OF WAITING MSGRCV
IPCQSCNT DS F COUNT OF WAITING MSGSND
 DS 0CL16 MSGRCV AND MSGSND WAITERS
 DS 0CL8 MSGRCV - WAIT FOR TYPE
IPCQQRPID DS F PROCESS ID
IPCQQRMSGTYPE DS F MESSAGE TYPE
 DS 0CL8 MSGSND - WAIT FOR ROOM TO SEND
IPCQQSPID DS F PROCESS ID
IPCQQSMSGLEN DS F MESSAGE LENGTH
 DS 9CL16 MSGSND AND MSGRCV WAITERS
 ORG IPCQREST Semaphore Unique data
 DS 0F
IPCQLOPID DS XL4 PID OF LAST SEMOP
IPCQOTIME DS F TIME_T LAST SEMOP
IPCQADJBADCNT DS F TERMINATION BUMPS SEM_VAL LIMITS
IPCQNSEMS DS FL2 NUMBER OF SEMAPHORES IN THIS SET
IPCQADJCNT DS FL2 NUMBER OF UNDO STRUCTURES
IPCQNCNT DS FL2 COUNT OF WAITERS FOR >0
IPCQZCNT DS FL2 COUNT OF WAITERS FOR =0
 DS 0CL16 WAITERS AND ADJUSTERS
 DS 0CL8 WAITER
IPCQSWPID DS F PROCESS ID
IPCQSWNUM DS H SEMAPHORE NUMBER
IPCQSWOP DS H SEMAPHORE OPERATION
 DS 0CL8 ADJUSTER
IPCQSAPID DS F PROCESS ID
IPCQSANUM DS H SEMAPHORE NUMBER
IPCQSAADJ DS H SEMAPHORE OPERATION
 DS 9CL16 WAITERS AND ADJUSTERS
 ORG IPCQREST Shared Memory unique data
 DS 0F
IPCQACNT DS F USE COUNT (#SHMAT - #SHMDT)
IPCQSEGSZ DS F MEMORY SEGMENT SIZE
IPCQDTIME DS F TIME_T OF LAST SHMDT()
IPCQATIME DS F TIME_T OF LAST SHMAT()
IPCQLPID DS F PID OF LAST SHMAT() OR SHMDT()
IPCQCPID DS XL4 PID OF CREATOR
IPCQATPID DS F ATTACHED PROCESS ID
IPCQATADDRESS DS F SEGMENT ADDRESS FOR PROCESS
 DS 18F MORE ATTACHED PROCESS IDS AND
* SEGMENT ADDRESS
 ORG IPCQOVER Overview
 DS 0F MESSAGE QUEUES
IPCQOMSGNIDS DS F Maximum number MSQs allowed
IPCQOMSGHIGHH2O DS F Most MSQs at one time
IPCQOMSGFREE DS F Number MSQs available
IPCQOMSGPRIVATE DS F Number MSQs with Ipc_PRIVATE
IPCQOMSGKEYED DS F Number MSQs with KEYs
IPCQOMSGREJECTS DS F TIMES MSGGET DENIED
IPCQOMSGQBYTES DS F MAX BYTES PER QUEUE
IPCQOMSGQMNUM DS F MAX NUMBER MESSAGES PER QUEUE
IPCQOMSGNOALC DS F # MSGSNDS THAT RETURNED ENOMEM
 DS F
 DS 0F SEMAPHORE
IPCQOSEMNIDS DS F Maximum number SEMs allowed
IPCQOSEMHIGHH2O DS F Most SEMs at one time
IPCQOSEMFREE DS F Number SEMs available
IPCQOSEMPRIVATE DS F Number SEMs with Ipc_PRIVATE
IPCQOSEMKEYED DS F Number SEMs with KEYs
IPCQOSEMREJECTS DS F TIMES SEMGET DENIED
IPCQOSEMSNSEMS DS F MAX NUMBER OF SEMAPHORES PER SET
IPCQOSEMSNOPS DS F MAX NUMBER OPERATION IN SEMOP
IPCQOSEMSBYTES DS F STORAGE LIMIT
IPCQOSEMCBYTES DS F STORAGE COUNT
 DS F
 DS 0F SHARED MEMORY
IPCQOSHMNIDS DS F Maximum number SHMs allowed
IPCQOSHMHIGHH2O DS F Most SHMs at one time
IPCQOSHMFREE DS F Number SHMs available
IPCQOSHMPRIVATE DS F Number SHMs with Ipc_PRIVATE
IPCQOSHMKEYED DS F Number SHMs with KEYs
IPCQOSHMREJECTS DS F TIMES SHMGET DENIED
IPCQOSHMSPAGES DS F MAX # PAGES PER SYSTEM LIMIT
IPCQOSHMMPAGES DS F MAX # PAGES PER SEGMENT LIMIT
IPCQOSHMNSEGS DS F MAX # SEGMENTS PER PROCESS LIMIT
IPCQOSHMCPAGES DS F CURRENT # BYTES SYSTEM WIDE
IPCQOSHMBIGGEST DS F LARGEST SEGMENT ALLOCATED
 ORG ,
IPCQ#LENGTH EQU *-IPCQ Storage needed for w_getipc function
* w-getipc Command:
IPCQ#MSG EQU 1 Retrieve next message queue
IPCQ#SHM EQU 2 Retrieve next shared memory segment

BPXYIPCQ

Chapter 3. Mapping Macro Descriptions 433

IPCQ#SEM EQU 3 Retrieve next semaphore set
IPCQ#ALL EQU 4 Retrieve next member, all mechanisms
IPCQ#OVER EQU 5 Retrieve overview
** BPXYIPCQ End

BPXYIPCQ

434 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYMNT — Map the File System Parameters for the mount Service

label

BPXYMNT

,DSECT=YES

,DSECT=NO

Purpose
Use the BPXYMNT macro to map file-system-specific parameters for the mount (BPX1MNT) callable
services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

Usage Notes
1. The BPXYMNT mapping macro expands as follows:

 BPXYMNT ,
MNT DSECT ,
MNT_MAP_VERSION DC AL2(MNTMAPVER) Version number
MNT_NETRC_FLAG DS XL1 NETRC file usage flag
MNT_NETRC EQU 0
MNT_NONETRC EQU 1
*
MNT_TRANS_FLAG DS XL1 Translation Flag Byte
MNT_TRANS_LIST EQU 0 File Extension List translation
MNT_TRANS_ALL EQU 1 Translate all file data
MNT_TRANS_NO EQU 2 Do not translate file data
*
MNT_TRANS_TABLE DS CL8 Translation table name
* X'0000000000000000' for default
*
MNT_ATTRCACHE DS XL1 Attribute caching
MNT_ATTRCACHE_YES EQU 0
MNT_ATTRCACHE_NO EQU 1
*
MNT_VERSION DS F Protocol Version to use.
MNT_VERSION_NOT_SPEC EQU 0
MNT_VERSION_2 EQU 2
MNT_VERSION_3 EQU 3
*
MNT_PROTOCOL DS XL1 Communication Protocol
MNT_PROTOCOL_TCP EQU 0 TCP
MNT_PROTOCOL_UDP EQU 1 UDP
*
MNT_PAD1 DS XL1 Padding
*
MNT_USER_LEN DS F Mount User ID Length
MNT_USER_PTR DS A(MNT_USERID) Mount User ID
*
MNT_PASSWD_LEN DS F Mount Password Length
MNT_PASSWD_PTR DS A(MNT_PASSWD) Mount Password

BPXYMNT

Chapter 3. Mapping Macro Descriptions 435

*
MNT_ATTRMAX DS F Maximum lifetime of cached
* attributes in seconds.
MNT_ATTRMAX_DEFAULT EQU 60
MNT_READ_AHEAD DS F Maximum number of disk blocks
* to read ahead
MNT_READ_AHEAD_DEFAULT EQU 1
*
MNT_RETRY DS F Number of times to resend to
* NFS server. Specify -1 to
* retry forever.
MNT_RETRY_DEFAULT EQU 3
*
MNT_TIMEOUT DS F Time to wait for response from
* NFS server, in tenths of second.
MNT_TIMEOUT_DEFAULT EQU 7
*
MNT_PORT_ANY EQU 0 Port any
 DS XL6 Pad to doubleword
MNTMAPVER EQU MNTMAPVER02 Current version
MNTMAPVER01 EQU 1
MNTMAPVER02 EQU 2 Current version

BPXYMNT

436 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYMODE — Map Mode Constants

label

BPXYMODE

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYMODE macro to map the mode constants used by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYMODE mapping macro expands as follows:

 BPXYMODE ,
S_MODE DSECT ,
 DS 0F
*
S_TYPE DS B File types, mapped by BPXYFTYP
* Flag bytes
S_SUBTYPE DS B Subtype for external links
*
S_MODE2 DS B Flag byte 2
S_RES02 DS 0BL4 Reserved for IBM use
* Set ID flags
S_ISUID EQU X'08' Set user ID on execution
S_ISGID EQU X'04' Set group ID on execution
S_ISVTX EQU X'02' Keep loaded executable in
 storage (sticky bit)
* Owner flags
S_IRWXU1 EQU X'01' All permissions for user - part I
S_IRUSR EQU X'01' Read permission
*
S_MODE3 DS B Flag byte 3
* Owner flags - continued
S_IRWXU2 EQU X'C0' All permissions for user - Part II
S_IWUSR EQU X'80' Write permission
S_IXUSR EQU X'40' Search (if a directory) or
* execute (otherwise) permission
* Group flags
S_IRWXG EQU X'38' All permissions for group
S_IRGRP EQU X'20' Read permission

BPXYMODE

Chapter 3. Mapping Macro Descriptions 437

S_IWGRP EQU X'10' Write permission
S_IXGRP EQU X'08' Search (if a directory) or
* execute (otherwise) permission
* Other flags
S_IRWXO EQU X'07' All permissions for other
S_IROTH EQU X'04' Read permission
S_IWOTH EQU X'02' Write permission
S_IXOTH EQU X'01' Search (if a directory) or
* execute (otherwise) permission
S_MODE#LENGTH EQU *-S_MODE Length this structure

BPXYMODE

438 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYMSG — Map Interprocess Communications Message Queues

label

BPXYMSG

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYMSG macro to map the data structures and constants for the OpenExtensionscallable
services that create and control interprocess communications message queues.

Parameters
label

is an optional assembler label for the statement.
DSECT=YES

creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The MSGBUF DSECT is generated with either DSECT=YES or DSECT=NO. If you specify DSECT=NO, you

may need an additional DSECT or CSECT statement to return to the current DSECT or CSECT.
3. The BPXYMSG macro expands as follows:

 BPXYMSG ,
** BPXYMSG: Interprocess Communication Message Queue Structure
** Used By: msgctl
MSQID_DS DSECT , message queue structure
MSG_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPCP
MSG_QNUM DS F # of messages on queue
MSG_QBYTES DS F max bytes allowed on queue
MSG_LSPID DS F process ID of last msgsnd()
MSG_LRPID DS F process ID of last msgrcv()
MSG_STIME DS F time of last msgsnd()
MSG_RTIME DS F time of last msgrcv()
MSG_CTIME DS F time of last change get/ctl
MSQ#LENGTH EQU *-MSQID_DS Length of this DSECT
MSGBUF DSECT , Message buffer - msgsnd, msgrcv
MSG_TYPE DS F Message type
MSG_MTEXT DS CL100 Message text
MSGB#LENGTH EQU *-MSGBUF Length of this DSECT
MSGXBUF DSECT , Message buffer - msgxrcv
MSGX_MTIME DS F time message sent
MSGX_UID DS F sender's effective UID
MSGX_GID DS F sender's effective GID
MSGX_PID DS F sender's PID
MSGX_TYPE DS F Message type
MSGX_MTEXT DS CL100 Message text

BPXYMSG

Chapter 3. Mapping Macro Descriptions 439

MSGX#LENGTH EQU *-MSGXBUF Length of this DSECT
* Flag bits - msgrcv (also IPC_NOWAIT
MSG_NOERROR EQU 4 No error if big message.
MSG_INFO EQU 8 Use MSGXBUF not MSGBUF format
** BPXYMSG End

BPXYMSG

440 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYMSGF — Map the Message Flags

label

BPXYMSGF

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYMSGF macro to map the message flags used by the send (BPX1SND), recv (BPX1RCV),
sendto (BPX1STO), recvfrom (BPX1RFM), sendmsg (BPX2SMS), and recvmsg (BPX2RMS) callable
services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYMSGF macro expands as follows:

 BPXYMSGF ,
** BPXYMSGF: Socket access flags
** Used By: FCT OPN
MSG_FLAGS DSECT ,
MSG_FLAGS1 DS B I_flags - byte 1
MSGFHIGH EQU X'80' DO NOT USE THIS BIT!
* MSG_FLAGS must never be < 0
MSG_ACK_GEN EQU X'40' Generate a UDP 'ACK packet'
* automatically to the originator
* if an incoming UDP packet arrives
*
MSG_ACK_TIMEOUT EQU X'20' The caller expects an incoming UDP
* packet within the "standard ACK
* time interval". Return to caller
* with an EINTR return code if no
* incoming UDP packet arrives
* within this time interval.
MSG_ACK_EXPECTED EQU X'10' (Used along with MSG_ACK_TIMEOUT)
* The incoming packet is expected to
* be an ACK. If the ACK arrives,
* the caller does not need to be
* activated to process it.
* Instead, the protocol will just
* cancel the timeout and let the
* application wait for the real data

BPXYMSGF

Chapter 3. Mapping Macro Descriptions 441

* to arrive.
MSG_FLAGS2 DS B MSG_flags - byte 2
*
MSG_FLAGS3 DS B MSG_flags - byte 3
MSG_EOF EQU X'80' Close after send
MSG_FLAGS4 DS B MSG_flags - byte 4
MSG_WAITALL EQU X'40' Wait until all data returned
MSG_CTRUNC EQU X'20' Control data truncated
MSG_TRUNC EQU X'10' Normal data truncated
MSG_EOR EQU X'08' Terminate a record
MSG_DONTROUTE EQU X'04' Send without network routing
MSG_PEEK EQU X'02' Peek at incoming data
MSG_OOB EQU X'01' Receive out of band data
MSG#LENGTH EQU *-MSG_FLAGS Length of this structure
** BPXYMSGF End

BPXYMSGF

442 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYMSGH — Map the Message Headers

label

BPXYMSGH

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYMSGH macro to map the message headers used by the sendmsg (BPX2SMS) and recvmsg
(BPX2RMS) callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYMSGH macro expands as follows:

 BPXYMSGH ,
** BPXYMSGH: MSGH system call structure
** Used By: SendMsg / RecvMsg
MSGH DSECT ,
MSGHBEGIN DS 0D
*
MSGHNAMEPTR DS A(0) Pointer to a structure that contains
* the recipient's address.
MSGHNAMELEN DS F'0' Buffer length.
MSGHIOVPTR DS A(0) Pointer to an array of IOVEC buffers.
MSGHIOVNUM DS F'0' Number of elements in IOVEC array.
MSGHCONTROLPTR DS 0AL4 Pointer to ancillary data buffer
MSGHACCRIGHTSPTR DS A(0) Pointer to access rights buffer.
MSGHCONTROLLEN DS 0FL4 Length of ancillary data buffer
MSGHACCRIGHTSLEN DS F'0' Access rights buffer length.
MSGHFLAGS DS F'0' Output flags on received message
*
* Constants
*
MSGH#LENGTH EQU *-MSGH Length of MsgH
*
CMSGPTR DS A(0) CMsg pointer
*
CMSGHDR DSECT ,
CMSGLEN DS F'0' Length, including header
CMSGLEVEL DS F'0' Level
CMSGTYPE DS F'0' Type

BPXYMSGH

Chapter 3. Mapping Macro Descriptions 443

CMSGDATA DS 0C Data
*
* Constants
*
SCM_RIGHTS EQU 1 Access Rights
*
** BPXYMSGH End

BPXYMSGH

444 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYMTM — Map the Modes for the mount and umount Services

label

BPXYMTM

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYMTM macro to map the modes for the mount (BPX1MNT) and umount (BPX1UMT) callable
services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYMTM mapping macro expands as follows:

 BPXYMTM ,
MTM DSECT ,
MTM1 DS B Flag byte 1
MTMRO EQU X'80' Mount file set read-only
MTMRDWR EQU X'40' Mount file set read/write
MTM1RES20 EQU X'20' Must not be used
MTMUMOUNT EQU X'10' This is a normal unmount request.
* If no one is using any of the files
* in the named filesystem, the unmount
* is done. Otherwise, the request is
* rejected.
MTM1RES08 EQU X'08' Must not be used
MTM1RES04 EQU X'04' Must not be used
MTM1RES02 EQU X'02' Must not be used
MTM1RES01 EQU X'01' Must not be used
MTM2 DS B Flag byte 2
MTM2RES80 EQU X'80' Must not be used
MTM2RES40 EQU X'40' Must not be used
MTM2RES20 EQU X'20' Must not be used
MTM2RES10 EQU X'10' Must not be used
MTM2RES08 EQU X'08' Must not be used
MTM2RES04 EQU X'04' Must not be used
MTM2RES02 EQU X'02' Must not be used
MTM2RES01 EQU X'01' Must not be used
MTM3 DS B Flag byte 3 - Reserved for IBM use
MTM3RES80 EQU X'80' Must not be used
MTM3RES40 EQU X'40' Must not be used

BPXYMTM

Chapter 3. Mapping Macro Descriptions 445

MTM4 DS B Flag byte 4 - Reserved for IBM use
MTM#LENGTH EQU *-MTM Length of this structure

BPXYMTM

446 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYOPNF — Map Flag Values for the open and fcntl Services

label

BPXYOPNF

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYOPNF macro to map flag values for the open (BPX1OPN) and fcntl (BPX1FCT) callable
services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYOPNF mapping macro expands as follows:

 BPXYOPNF ,
O_FLAGS DSECT ,
O_FLAGS1 DS B Open flags - byte 1
OPNFHIGH EQU X'80' DO NOT USE THIS BIT!
* O_FLAGS must never be < 0
O_FLAGS2 DS B Open flags - byte 2
OPNFEXEC EQU X'80' Execute access requested -
* authorization required for use
O_FLAGS3 DS B Open flags - byte 3
O_ASYNCSIG EQU X'02' An asynchronous signal may occur
O_SYNC EQU X'01' Force synchronous updates
O_FLAGS4 DS B Open flags - byte 4
O_CREXCL EQU X'C0' Create file only if non-existent
O_CREAT EQU X'80' Create file
O_EXCL EQU X'40' Exclusive flag
O_NOCTTY EQU X'20' Not a controlling terminal
O_TRUNC EQU X'10' Truncate flag
O_APPEND EQU X'08' Set offset to EOF on write
O_NONBLOCK EQU X'04' Don't block this file
O_RDWR EQU X'03' Open for Read and Write
O_RDONLY EQU X'02' Open for Read Only
O_WRONLY EQU X'01' Open for Write Only
O_ACCMODE EQU X'03' Mask for file access modes
O_GETFL EQU X'0F' Mask for file access modes and
* file status flags together
OPNF#LENGTH EQU *-O_FLAGS Length of this structure

BPXYOPNF

Chapter 3. Mapping Macro Descriptions 447

BPXYPCF — Map Command Values for the pathconf and fpathconf
Services

label

BPXYPCF

,LIST=YES

,LIST=NO

Purpose
Use the BPXYPCF macro to map the command values for the pathconf (BPX1PCF) and fpathconf
(BPX1FPC) callable services.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYPCF mapping macro expands as follows:

 BPXYPCF ,
PC_CHOWN_RESTRICTED EQU 1 _POSIX_CHOWN_RESTRICTED option
PC_LINK_MAX EQU 2 LINK_MAX option
PC_MAX_CANON EQU 3 _POSIX_MAX_CANON option
PC_MAX_INPUT EQU 4 _POSIX_MAX_INPUT option
PC_NAME_MAX EQU 5 NAME_MAX option
PC_NO_TRUNC EQU 6 _POSIX_NO_TRUNC option
PC_PATH_MAX EQU 7 PATH_MAX option
PC_PIPE_BUF EQU 8 PIPE_BUF option
PC_VDISABLE EQU 9 _POSIX_VDISABLE option

BPXYPCF

448 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYPGPS — Map the Response Structure for the w_getpsent
Service

label

BPXYPGPS VARLEN=( tty , path , cmd)

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYPGPS macro to map the response structure for the w_getpsent (BPX1GPS) callable service.

Parameters

label
is an optional assembler label for the statement.

VARLEN=(tty,path,cmd)
describes the number of bytes needed to map:

• The controlling TTY name and its length
• The path name and its length
• The command and its length

If a parameter is omitted, it defaults to the maximum (1028 bytes). Specify 0 if the associated field is
not needed.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYPGPS macro expands as follows:

 BPXYPGPS VARLEN=(1028,1028,1028)
PGPS DSECT ,
PGPSSTATUS0 DS B CMS status
PGPSSWAP EQU X'80' Swapped out
* EQU X'7F' Not used
PGPSSTATUS1 DS B Process status
PGPSSTOPPED EQU X'80' Stopped process

BPXYPGPS

Chapter 3. Mapping Macro Descriptions 449

PGPSTRACE EQU X'40' Reserved
PGPSMULTHREAD EQU X'20' 0=One OpenExtensions active
PGPSPTHREAD EQU X'10' 0=No pthread task in process
* EQU X'0F' Not used
PGPSSTATUS2 DS B System Call Status
PGPSLENERR EQU X'80' PGPSLENGTH conflict
* EQU X'7F' Not used
PGPSSTATUS3 DS CL1 State of reported task - with
* PGPSPTHREAD=0 the most recent created thread
* PGPSPTHREAD=1 the initial pthread task (IPT)
PGPSZOMBIE EQU C'Z' Process canceled
PGPSCHILD EQU C'W' Waiting for child
PGPSFORK EQU C'X' spawn a new process
PGPSSLEEP EQU C'S' sleep issued
PGPSWAITC EQU C'C' Communication kernel wait
PGPSWAITF EQU C'F' File System kernel wait
PGPSWAITO EQU C'K' Other kernel wait
PGPSRUN EQU C'R' Not in kernel wait, running
PGPSPID DS F Process ID
PGPSPPID DS F Parent ID
PGPSSID DS F Session ID (leader)
PGPSPGPID DS F Process Group
PGPSFGPID DS F Foreground Process Group
PGPSEUID DS F Effective User ID
PGPSRUID DS F Real User ID
PGPSSUID DS F Saved Set User ID
PGPSEGID DS F Effective Group ID
PGPSRGID DS F Real Group ID
PGPSSGID DS F Saved Set Group ID
PGPSTSIZE DS F Total size
PGPSSTARTTIME DS F Starting time, GMT since EPOCH
PGPSUSERTIME DS F User CPU time (clock_t)
PGPSSYSTIME DS F System CPU time (clock_t)
PGPSCONTTYBLEN DC A(1028) L'PGPSCONTTYBUF
PGPSCONTTYPTR DC A(PGPSCONTTYBUF) ->PGPSCONTTYBUF
PGPSPATHBLEN DC A(1028) L'PGPSPATHBUF
PGPSPATHPTR DC A(PGPSPATHBUF) ->PGPSPATHBUF
PGPSCMDBLEN DC A(1028) L'PGPSCMDBUF
PGPSCMDPTR DC A(PGPSCMDBUF) ->PGPSCMDBUF
PGPS#LENGTH EQU *-PGPS Length of this structure
* Variable portion - Controlling terminal buffer
PGPSCONTTYBUF DS 0CL1028 ConTty Len+Buf
PGPSCONTTYLEN DS FL4 Length ConTty returned
PGPSCONTTY DS CL1024 ConTty
PGPSPATHBUF DS 0CL1028 Pathname Len+Buf
PGPSPATHLEN DS FL4 Length Pathname returned
PGPSPATH DS CL1024 Pathname
PGPSCMDBUF DS 0CL1028 Command Len+Buf
PGPSCMDLEN DS FL4 Length Command returned
PGPSCMD DS CL1024 Command
PGPS#STORAGE EQU *-PGPS Length, total area used

BPXYPGPS

450 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYPPSD — Map the Signal Delivery Data Structure

label

BPXYPPSD

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYPPSD macro to map the signal delivery data structure passed to a signal interface routine
(SIR) by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYPPSD mapping macro expands as follows:

 BPXYPPSD ,
PPSD DSECT ,
PPSDID DC C'PPSD' Eye-catcher
PPSD#ID EQU C'PPSD' Control Block Acronym
PPSDSP DS FL1 Subpool number of this PPSD
PPSD#SP EQU 230 Subpool for the PPSD
PPSDLEN DC AL3(PPSD#LENGTH) Length this structure
*
* ***
* PpsdSIRParms is used to set up a parameter list to the
* signal interface routine (SIR). When the SIR is invoked, the
* address of PpsdSIRParms field is set in Register 1. The
* PpsdAddrPpsd contains the address of the Ppsd.
* ***
*
PPSDSIRPARMS DS 0A SIR Parameters
PPSDADDRPPSD DC A(PPSD) Pointer to the top of the Ppsd
PPSDSIRPARMEND EQU X'80' End of Parameters flag set on
 DS F Reserved for IBM use
PPSDSIGNUM DS F Signal number
 DS FL2 Reserved for IBM use
PPSDACTION DS B Action for this signal
* EQU 4 catch
* EQU 5 SIR determines
PPSDFLAGS DS B X'0F' Reserved for IBM use
PPSDASYNC EQU X'80' Signal is asynchronous
PPSDDUMP EQU X'40' Dump for terminating signals

BPXYPPSD

Chapter 3. Mapping Macro Descriptions 451

PPSDPTHREADKILL EQU X'20' Signal sent via BPX1PTK
PPSDTHISTHREADGEN EQU X'10' Sending=Receiving thread
PPSDSAHANDLER DS A Addr of catcher function
PPSDSAMASK DS XL8 Signal mask to be used during
* handler execution
PPSDSAFLAGS DS XL4 X'3FFFFFFF' Reserved for IBM use
PPSDNOCLDSTOP EQU X'80' Do not generate SIGCHLD on stops
PPSDOLDSTYLE EQU X'40' Signal defined by signal function
PPSDCURRENTMASK DS XL8 Current signal mask
PPSDSIR DS A Addr Signal interrupt routine
PPSDUSERDATA DS A User data field
PPSDGENREGS DS CL64 Users general regs at interrupt
PPSDPSW DS XL8 Users PSW
PPSDARREGS DS 16F Users AR regs
PPSDKILDATA DS FL2 User specified data on BPX1KIL
PPSDKILOPTS DS XL2 X'7FFF' Reserved for IBM use
* User specified options on BPX1KIL
PPSDPTBYPASS EQU X'80' Reserved
PPSDEND DS 0D End of PPSD on double word
PPSD#LENGTH EQU *-PPSD Length of this structure

BPXYPPSD

452 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYPTAT — Map Attributes for the pthread_create Service

label

BPXYPTAT VARLEN=  number
,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYPTAT macro to map the attributes for the pthread_create (BPX1PTC) callable service.

Parameters

label
is an optional assembler label for the statement.

VARLEN=number
defines the number of bytes set aside to define the pthread attributes.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYPTAT mapping macro expands as follows:

 BPXYPTAT VARLEN=1024
PTAT DSECT ,
PTATEYE DC C'BPXYPTAT' Eye Catcher
PTATLENGTH DC A(PTAT#LENGTH) Length of PTAT
PTATSYSOFFSET DC A(PTATSYSOFFVAL) Offset of SYSATTRS
PTATSYSLENGTH DC A(PTATSYSLENVAL) Length of SYSATTRS
PTATUSEROFFSET DC A(PTATUSEROFFVAL) Offset of USERATTRS
PTATUSERLENGTH DC A(L'PTATUSERATTRS) Length of USERATTRS
PTATSYSOFFVAL EQU *-PTAT Offset value of System Attribute Area
PTATSYSATTRS DS 0F System attributes
PTATDETACHSTATE DS F Detach State of thread to be created:
PTATUNDETACHED EQU 0
PTATDETACHED EQU 1
PTATWEIGHT DS F Weight of thread to be created:
PTATHEAVY EQU 0
PTATMEDIUM EQU 1
PTATSYNCTYPE DS F Synchronous processing type of thread:
PTATSYNCHRONOUS EQU 0
 DS CL32 Reserved for IBM use
PTATSYSLENVAL EQU *-PTATSYSATTRS Length of System Attributes
PTATUSEROFFVAL EQU *-PTAT Offset of user attribute area
PTATUSERATTRS DS CL1024 User attributes area
PTAT#LENGTH EQU *-PTAT Length of this structure

BPXYPTAT

Chapter 3. Mapping Macro Descriptions 453

BPXYPTXL — Map the Parameter List for the pthread_exit_and_get
Service

label

BPXYPTXL

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYPTXL macro to map the parameter list returned by the pthread_exit_and_get (BPX1PTX)
callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYPTXL mapping macro expands as follows:

 BPXYPTXL ,
PTXL DSECT , Parameter List returned by BPX1PTX
PTXLWORKAREAPTR DS A Pointer to User Work Area
PTXLATTRIBUTEPTR DS A Pointer to User Attributes
PTXLTHIDPTR DS A Pointer to Thread ID
PTXLSTATUSPTR DS A Pointer to Thread Run Status
PTXL#LENGTH EQU *-PTXL
PTXLRS DSECT , Thread Run Status
 DS 0F
PTXLRSFLAGS DS 0BL4 Thread Run Status Flags
PTXLRSFLAGS0 DS B 1st byte
PTXLRSREADY EQU X'80' Thread is ready to run
PTXLRSFLAGS1 DS B 2nd byte
PTXLRSFLAGS2 DS B 3rd byte
PTXLRSFLAGS3 DS B 4th byte
PTXLRS#LENGTH EQU *-PTXLRS

BPXYPTXL

454 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYSEEK — Map Constants for the lseek Service

label

BPXYSEEK

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSEEK macro to map the constants used by the lseek (BPX1LSK) callable service.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYSEEK mapping macro expands as follows:

 BPXYSEEK ,
SEEK_SET EQU 0 Set file offset to offset
SEEK_CUR EQU 1 Set file offset to current + offset
SEEK_END EQU 2 Set file offset to EOF + offset

BPXYSEEK

Chapter 3. Mapping Macro Descriptions 455

BPXYSEL — Map Options for the select/selectex Service

label

BPXYSEL

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSEL macro to map the options used by the select/selectex (BPX1SEL) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSEL macro expands as follows:

 BPXYSEL ,
** BPXYSEL: Select Options
** Used By: SEL
SEL DSECT ,
SELBEGIN DS 0F
*
SELBITS DS 0XL4 Flag Bits.8F FF FF FF Reserved
SELPOLLFLAGS DS XL2 Select flags / Poll (r)events
*---
* Select flags
*---
SELFLAGS ORG SELPOLLFLAGS
 DS XL1
* EQU X'80' Never use this bit
SELREAD EQU X'40' Descriptor ready for read.
SELWRITE EQU X'20' Descriptor ready for write.
SELXCEPT EQU X'10' Descriptor ready for exception.
 DS XL1 Available byte
*---
* Poll Events/Returned Events
*---
SELPOLLEVENTS ORG SELPOLLFLAGS
 DS XL2 Mapped by PollEvents(BPXYPOLL)
SELPOLLREVENTS ORG SELPOLLFLAGS
 DS XL2 Mapped by PollRevents(BPXYPOLL)
*
 DS XL1 Available byte
 DS XL1 Reserved for internal use

BPXYSEL

456 z/VM: 7.3 OpenExtensions Callable Services Reference

*
* Constants
*
SEL#LENGTH EQU *-SEL Length of SEL
SEL#QUERY EQU 1 Query function
SEL#CANCEL EQU 2 Cancel function
SEL#BATSELQ EQU 3 Batch-Select Query function
SEL#BATSELC EQU 4 Batch-Select Cancel function
SEL#POLLQUERY EQU 5 Poll Query function
SEL#BATPOLLQ EQU 6 Batch-Poll Query function
SEL#BATPOLLC EQU 7 Batch-Poll Cancel function
SEL#POLLCANCEL EQU 8 Poll Cancel function
SEL#BITSBACKWARD EQU 0 Bit Backward Order by word
SEL#BITSFORWARD EQU 1 Bit Forward Order by word
SEL#TYPES EQU 3 3 TYPES (Read Write Except)
SEL#RBIT EQU 64 Read bit position in byte
SEL#WBIT EQU 32 Write bit position in byte
SEL#XBIT EQU 16 Xcept bit position in byte
** BPXYSEL End

BPXYSEL

Chapter 3. Mapping Macro Descriptions 457

BPXYSELT — Map the Timeout Value for the select/selectex Service

label

BPXYSELT

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSELT macro to map the timeout value for the select/selectex (BPX1SEL) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSELT macro expands as follows:

 BPXYSELT ,
** BPXYSELT: Select Time Structure
** Used By: Select Syscall
SELT DSECT ,
SELTBEGIN DS 0D
*
TV_SEC DS F'0' Seconds
TV_USEC DS F'0' Microseconds
*
* Constants
*
SELT#LENGTH EQU *-SELT Length of SELT
** BPXYSELT End

BPXYSELT

458 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYSEM — Map Interprocess Communications Semaphores

label

BPXYSEM

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSEM macro to map the data structures and constants for the OpenExtensionscallable
services that create and control interprocess communications semaphores.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The SEMID_DS, SEM_ARRAY, and SEM_BUF_ELE DSECTs are generated with either DSECT=YES or

DSECT=NO. If you specify DSECT=NO, you may need an additional DSECT or CSECT statement to
return to the current DSECT or CSECT.

3. The BPXYSEM macro expands as follows:

 BPXYSEM ,
** BPXYSEM: Interprocess Communications Permission
** Used By: XSO, XSC
SEMID_DS DSECT , semctl structure
SEM_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPCP
SEM_NSEMS DS H number of semaphores in set
 DS H spacer
SEM_OTIME DS FL4 last semop() time
SEM_CTIME DS FL4 last time changed by semctl()
SEM#LENGTH EQU *-SEMID_DS Length of this DSECT
* SETVAL - a one element array for Semaphore_Number
* SETALL, GETALL - an array with Number_of_Semaphore elements
SEM_ARRAY DSECT , SETALL, GETALL, SETVAL
SEM_ARRAY_VAL DS FL2 semaphore value
SEM_BUF_ELE DSECT , sembuf element - semop
SEM_NUM DS FL2 semaphore number (0 to n-1)
SEM_OP DS FL2 semaphore operation
SEM_FLG DS H operation flags
SEM#BUFLEN EQU *-SEM_BUF_ELE
* Flag bits - semop (also IPC_NOWAIT
SEM_UNDO EQU 2 Set up adjust on exit entry.
* Control Commands - (also IPC_RMID, IPC_SET, IPC_STAT):

BPXYSEM

Chapter 3. Mapping Macro Descriptions 459

SEM_GETVAL EQU 21 Get the current semaphore value
SEM_SETVAL EQU 22 Change the semaphore value
SEM_GETPID EQU 23 Get PID last process to alter sem
SEM_GETNCNT EQU 24 Get count tasks waiting for val>0
SEM_GETZCNT EQU 25 Get count tasks waiting for val=0
SEM_GETALL EQU 26 Get the current semaphore values
SEM_SETALL EQU 27 Change the semaphore values
* Maximum and minimum values
SEM#MAX_VAL EQU 32767 Maximum sem_val (min = 0)
SEM#MAX_ADJ EQU 16383 Maximum sem_adj (min = -MAX)
** BPXYSEM End

BPXYSEM

460 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYSHM — Map Interprocess Communications Shared Memory
Segments

label

BPXYSHM

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSHM macro to map the data structure and constants for the OpenExtensionscallable
services that create and control interprocess communications shared memory segments.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSHM macro expands as follows:

 BPXYSHM ,
** BPXYSHM: Interprocess Communications Permission
** Used By: XMC
SHMID_DS DSECT , SHMID_DS - shmctl structure
SHM_PERM DS CL(IPC#LENGTH) Mapped by BPXYIPCP
SHM_SEGSZ DS F size of segment in bytes
SHM_LPID DS F process ID of last operation
SHM_CPID DS F process ID of creator
SHM_NATTCH DS F number of current attaches
SHM_ATIME DS F time of last shmat
SHM_DTIME DS F time of last shmdt
SHM_CTIME DS F time of last change shmget/shmctl
* Mode bits (mapped over S_TYPE in BPXYMODE):
SHM_RDONLY EQU 1 Attach read-only (else read-write)
SHM_RND EQU 2 Round attach address to SHMLBA
SHMLBA EQU 4096 Rounding boundary
SHM#LENGTH EQU *-SHMID_DS Length of this DSECT
** BPXYSHM End

BPXYSHM

Chapter 3. Mapping Macro Descriptions 461

BPXYSIGH — Map Signal Constants

label

BPXYSIGH

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSIGH to map the signal constants used by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The DSECT= parameter is allowed but ignored.
2. The PRINT OFF assembler statement overrides LIST=YES.
3. The BPXYSIGH mapping macro expands as follows:

 BPXYSIGH ,

* Signals with default action ABNORMAL TERMINATION
SIGHUP# EQU 1 Hangup detected on controlling terminal
SIGINT# EQU 2 Interactive attention
SIGABRT# EQU 3 Abnormal termination
SIGILL# EQU 4 Detection of an incorrect hardware instruction
SIGFPE# EQU 8 Erroneous arithmetic operation, such as division
* by zero of an operation resulting in overflows
SIGKILL# EQU 9 Termination (cannot be caught or ignored)
SIGSEGV# EQU 11 Detection of an incorrect memory reference
SIGPIPE# EQU 13 Write on a pipe with no readers
SIGALRM# EQU 14 Timeout
SIGTERM# EQU 15 Termination
SIGUSR1# EQU 16 Reserved as application-defined signal 1
SIGUSR2# EQU 17 Reserved as application-defined signal 2
SIGABND# EQU 18 Abend
SIGQUIT# EQU 24 Interactive termination
SIGTRAP# EQU 26 Reserved
* Signals with default action IGNORE THE SIGNAL
SIGNULL# EQU 0 Null - no signal sent
SIGCHLD# EQU 20 Child process terminated or stopped
SIGIO# EQU 23 Completion of input or output
* Signals with default action STOP
SIGSTOP# EQU 7 Stop (cannot be caught or ignored)
SIGTTIN# EQU 21 Read from a control terminal attempted by a
* member of a background process group
SIGTTOU# EQU 22 Write from a control terminal attempted by a
* member of a background process group
SIGTSTP# EQU 25 Interactive stop
* Signals with default action CONTINUE IF IT IS CURRENTLY STOPPED,
* OTHERWISE IGNORE THE SIGNAL
SIGCONT# EQU 19 Continue if stopped

** Equates that define sa_handler values on Sigaction

SIG_DFL# EQU 0 Default signal action
SIG_IGN# EQU 1 Ignore signal action

BPXYSIGH

462 z/VM: 7.3 OpenExtensions Callable Services Reference

** Constants that define sa_flags values on Sigaction

SA_FLAGS_DFT# EQU X'00000000' Default sa_flags
SA_NOCLDSTOP# EQU X'80000000' No SIGCHLD when children stop
SA_OLD_STYLE# EQU X'40000000' Old style signal function

** Constants that define How parameter on sigprocmask

SIG_BLOCK# EQU 0 Block signals set on in New_signal_mask
SIG_UNBLOCK# EQU 1 Unblock signals set on in New_signal_mask
SIG_SETMASK# EQU 2 Set signal mask to New_signal_mask

BPXYSIGH

Chapter 3. Mapping Macro Descriptions 463

BPXYSINF — Map the Siginfo_t Structure for the wait-extensions
Service

label

BPXYSINF

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSINF macro to map the Siginfo_t structure used by the wait-extensions (BPX1WTE) callable
service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSINF macro expands as follows:

 BPXYSINF ,
SIGINFO_T DSECT , Siginfo_t structure
SI_SIGNO DS F signal number
SI_ERRNO DS F error number
SI_CODE DS F signal code
SI_PID DS F sending process ID
SI_UID DS F real user ID of sending process
SI_ADDR DS A address of faulting instruction
SI_STATUS DS F exit value or signal
SI_BAND DS F band event for SIGPOLL
SIGINFO#LENGTH EQU *-SIGINFO_T Length of this DSECT

BPXYSINF

464 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYSOCK — Map the SOCKADDR Structure and Constants for
Socket-Related Services

label

BPXYSOCK

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSOCK macro to map the SOCKADDR data structure and constants used by the socket-
related OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSOCK macro expands as follows:

 BPXYSOCK ,
*

** BPXYSOCK: OpenVM Socket Address Structure *
** Used By: Sockets PFS *

*
SOCKADDR DSECT ,
SOCKBEGIN DS 0F
*
SOCK_LEN DS X Address Length - Length of *X
 either SOCK_SIN (for AF_INET *X
 sockets) or of the name supplied*X
 in SOCK_SUN_NAME (for AF_UNIX *X
 sockets)
SOCK_FAMILY DS X Address Family
SOCK_DATA DS 0C Protocol specific area
*
SOCK#LEN EQU *-SOCKADDR Constant - Fixed length of SOCK
*

* *
* AF_Inet Socket Address Structure *
* *

BPXYSOCK

Chapter 3. Mapping Macro Descriptions 465

*
 ORG SOCK_DATA Start of AF_Inet unique area
SOCK_SIN DS 0C
SOCK_SIN_PORT DS H Port number used by the appl
SOCK_SIN_ADDR DS CL4 INET address (netid)
 DS CL8 Reserved area not used
*
SOCK_SIN#LEN EQU *-SOCK_SIN Constant - Fixed length of
* AF_Inet unique area
*
*

* *
* AF_Unix Socket Address Structure *
* *

*
 ORG SOCK_DATA Start of AF_Unix unique area
SOCK_SUN DS 0C
SOCK_SUN_NAME DS CL108 Path name of the socket
* Length 108 matches RS/6000
*
SOCK_SUN#LEN EQU *-SOCK_SUN Constant - Fixed length of
* AF_Unix unique area
*

* *
* AF_Inet6 Socket Address Structure *
* *

*
 ORG SOCK_DATA Start of AF_Inet6 area
SOCK_SIN6 DS 0C
SOCK_SIN6_PORT DS H Port number used by the appl
SOCK_SIN6_FLOWINFO DS CL4 FLOW INFORMATION
SOCK_SIN6_ADDR DS CL16 INET address (netid)
SOCK_SIN6_SCOPE_ID DS CL4 SCOPE ID
*
SOCK_SIN6#LEN EQU *-SOCK_SIN6 Length of AF_INET6 area
*

* *
* Equates for Address Families *
* *

*
AF_UNSPEC EQU 0 Unspecified
AF_UNIX EQU 1 Unix Domain
AF_INET EQU 2 Internetwork: UDP TCP
AF_IMPLINK EQU 3 Arpanet imp addresses
AF_PUP EQU 4 pup protocols: BSP
AF_CHAOS EQU 5 mit CHAOS protocols
AF_NS EQU 6 XEROX NS protocols
AF_NBS EQU 7 nbs protocols
AF_ECMA EQU 8 European computer man.
AF_DATAKIT EQU 9 datakit protocols
AF_CCITT EQU 10 CCITT protocols: X.25
AF_SNA EQU 11 IBM SNA
AF_DECNET EQU 12 DECNet
AF_DLI EQU 13 Direct data link interface
AF_LAT EQU 14 LAT
AF_HYLINK EQU 15 NSC hyperchannel
AF_APPLETALK EQU 16 Apple Talk
AF_IUCV EQU 17 IBM IUCV
AF_ESCON EQU 18 ESCON UDP
AF_INET6 EQU 19 IPv6
AF_ROUTE EQU 20 Routing Sockets
AF_MAX EQU 21
*
**/
* Equates for protocol
**/
*
IPPROTO_IP EQU 0 DEFAULT PROTOCOL
IPPROTO_TCP EQU 6 TCP
IPPROTO_UDP EQU 17 USER DATAGRAM
IPPROTO_IPV6 EQU 41 IPv6
IPPROTO_ICMPV6 EQU 58 IPv6 ICMP
*
IPPROTO_HOPOPTS EQU 0
IPPROTO_ROUTING EQU 43

BPXYSOCK

466 z/VM: 7.3 OpenExtensions Callable Services Reference

IPPROTO_FRAGMENT EQU 44
IPPROTO_ESP EQU 50
IPPROTO_AH EQU 51
IPPROTO_NONE EQU 59
IPPROTO_DSTOPTS EQU 60
*

* *
* Equates for setpeer options *
* *

*
SOCK#SO_SET DC X'00000200'
SOCK#SO_UNSET DC X'00000400'
*

* *
* Equates for socket types *
* *

*
SOCK#_STREAM EQU 1
SOCK#_DGRAM EQU 2
SOCK#_RAW EQU 3
SOCK#_RDM EQU 4
SOCK#_SEQPACKET EQU 5
*

* *
* Equates for Dimension (socket syscall) *
* *

*
SOCK#DIM_SOCKET EQU 1
SOCK#DIM_SOCKETPAIR EQU 2
*

* *
* Equates for getname option *
* *

*
SOCK#GNMOPTGETPEERNAME EQU 1
SOCK#GNMOPTGETSOCKNAME EQU 2
*

* *
* Equates for sockopt *
* *

*
SOCK#OPTOPTGETSOCKOPT EQU 1
SOCK#OPTOPTSETSOCKOPT EQU 2
SOCK#OPTOPTSETIBMSOCKOPT EQU 3
*

* *
* Equates for Shutdown options *
* *

*
SOCK#SHUTDOWNREAD EQU 0
SOCK#SHUTDOWNWRITE EQU 1
SOCK#SHUTDOWNBOTH EQU 2
*
*

* *
* Equate for Level Number for socket options *
* *

*
SOCK#SOL_SOCKET DC X'0000FFFF'
*
*

* *
* Equate for InAddrAny for bind requests *
* *

*
INADDR_ANY DC X'00000000'

BPXYSOCK

Chapter 3. Mapping Macro Descriptions 467

*
INADDR_LOOPBACK DC X'7F000001'
IN6ADDR_ANY DC X'00000000000000000000000000000000'
IN6ADDR_LOOPBACK DC X'00000000000000000000000000000001'
IN6ADDR_MAPPEDV4 DC X'00000000000000000000FFFF'
IN6ADDR_COMPATV4 DC X'000000000000000000000000'
*

* *
* Equates for Socket options *
* *

*
SOCK#SO_DEBUG DC X'00000001'
SOCK#SO_ACCEPTCONN DC X'00000002'
SOCK#SO_REUSEADDR DC X'00000004'
SOCK#SO_KEEPALIVE DC X'00000008'
SOCK#SO_DONTROUTE DC X'00000010'
SOCK#SO_BROADCAST DC X'00000020'
SOCK#SO_USELOOPBACK DC X'00000040'
SOCK#SO_LINGER DC X'00000080'
SOCK#SO_OOBINLINE DC X'00000100'
*
SOCK#SO_SNDBUF DC X'00001001'
SOCK#SO_RCVBUF DC X'00001002'
SOCK#SO_SNDLOWAT DC X'00001003'
SOCK#SO_RCVLOWAT DC X'00001004'
SOCK#SO_SNDTIMEO DC X'00001005'
SOCK#SO_RCVTIMEO DC X'00001006'
SOCK#SO_ERROR DC X'00001007'
SOCK#SO_TYPE DC X'00001008'
*
* Non-standard sockopts
*
SO_PROPAGATEID DC X'00004000' /*
SO_CLUSTERCONNTYPE DC X'00004001'
SO_SECINFO DC X'00004002'
*
* SO_CLUSTERCONNTYPE Output Values
*
SO_CLUSTERCONNTYPE_NOCONN EQU 0
SO_CLUSTERCONNTYPE_NONE EQU 1
SO_CLUSTERCONNTYPE_SAME_CLUSTER EQU 2
SO_CLUSTERCONNTYPE_SAME_IMAGE EQU 4
SO_CLUSTERCONNTYPE_INTERNAL EQU 8
*
*
* IPPROTO_IP Options
*
IP_TOS EQU 2 /*
IP_MULTICAST_TTL EQU 3 /*
IP_MULTICAST_LOOP EQU 4 /*
IP_ADD_MEMBERSHIP EQU 5 /*
IP_DROP_MEMBERSHIP EQU 6 /*
IP_MULTICAST_IF EQU 7 /*
IP_DEFAULT_MULTICAST_TTL EQU 1 /*
IP_DEFAULT_MULTICAST_LOOP EQU 1 /*
IP_MAX_MEMBERSHIPS EQU 20 /*
*
* setibmsockopt options
*
SOCK#SO_BULKMODE DC X'00008000'
SOCK#SO_IGNOREINCOMINGPUSH DC X'00000001'
SOCK#SO_NONBLOCKLOCAL DC X'00008001'
SOCK#SO_IGNORESOURCEVIPA DC X'00000002'
* Toggles the use of non-VIPA addresses. When
* enabled, non-VIPA addresses will be used for
* outbound IP packets.
SOCK#SO_OPTMSS DC X'00008003'
* Toggles the use of optimal TCP segment size.
* When enabled, the TCP segment size may be optimally
* increased on outbound data transfers. This may
* reduce the amount of TCP outbound and inbound
* acknowledgement packet processing; therefore,
* minimizing CPU consumption.
SOCK#SO_OPTACK DC X'00008004' Optimize Acks
SOCK#SO_EIOIFNEWTP DC X'00000005' Notify of new tp

* *
* Equates for So_ option values *
* *

BPXYSOCK

468 z/VM: 7.3 OpenExtensions Callable Services Reference

SOCK#SO_SETOPTIONON DC X'00000001'
SOCK#SO_SETOPTIONOFF DC X'00000000'

* *
* Equates for IPPROTO_TCP options *
* *

SOCK#TCP_NODELAY DC X'00000001'
SOCK#TCP_KEEPALIVE DC X'00000008'
*

* *
* Equates for Socket Port Constant *
* *

*
SOCK#LASTRESERVEPORT EQU 1023
*
*
IP_MREQ DSECT ,
IMR_MULTIADDR DS CL4 IP MULTICAST ADDR OF GROUP
IMR_INTERFACE DS CL4 LOCAL IP ADDR OF INTERFACE
*

* *
* Structure for So_Linger *
*

*
SOCK_LINGER_STRUCT DSECT ,
SOCK_L_ONOFF DS F On/Off indicator
SOCK_L_LINGER DS F Length of time to linger

* *
* Equates for IPPROTO_IPV6 Options
* *

SOCK#IPV6_UNICAST_HOPS EQU 3
SOCK#IPV6_MULTICAST_LOOP EQU 4
SOCK#IPV6_JOIN_GROUP EQU 5
SOCK#IPV6_LEAVE_GROUP EQU 6
SOCK#IPV6_MULTICAST_IF EQU 7
SOCK#IPV6_MULTICAST_HOPS EQU 9
SOCK#IPV6_V6ONLY EQU 10
SOCK#IPV6_HOPLIMIT EQU 11 /* ANC DATA ONLY */
SOCK#IPV6_PKTINFO EQU 13
SOCK#IPV6_RECVHOPLIMIT EQU 14
SOCK#IPV6_RECVPKTINFO EQU 15
SOCK#IPV6_REACHCONF EQU 17
SOCK#IPV6_USE_MIN_MTU EQU 18
SOCK#IPV6_CHECKSUM EQU 19

* The following are not currently supported by TCPIP

SOCK#IPV6_PATHMTU EQU 12
SOCK#IPV6_RECVPATHMTU EQU 16
SOCK#IPV6_NEXTHOP EQU 20
SOCK#IPV6_RTHDR EQU 21
SOCK#IPV6_HOPOPTS EQU 22
SOCK#IPV6_DSTOPTS EQU 23
SOCK#IPV6_RTHDRDSTOPTS EQU 24
SOCK#IPV6_RECVRTHDR EQU 25
SOCK#IPV6_RECVHOPOPTS EQU 26
SOCK#IPV6_RECVRTHDRDSOPTS EQU 27
SOCK#IPV6_RECVDSTOPTS EQU 28
SOCK#IPV6_RTHDR_TYPE_0 EQU 0 IPv6 Routing hdr type 0

* *
* Equates for IPPROTO_ICMPV6 options
* *

SOCK#ICMP6_FILTER EQU 1

* *
* Structure for Packet Source/Destination Information
* *

*
IN6_PKTINFO DSECT ,
IPI6_ADDR DS CL16 IPv6 Addr
IPI6_IFINDEX DS F Interface Index

BPXYSOCK

Chapter 3. Mapping Macro Descriptions 469

* *
* Structure for Multicast Mreq
* *

*
IPV6_MREQ DSECT ,
IPV6MR_MULTIADDR DS CL16 IPv6 Addr
IPV6MR_INTERFACE DS F Interface index

* *
* Structure for CInet Interface Index
* *

*
IFINDEX DSECT ,
IFI_TDX DS H Cinet Td Index
IFI_INDEX DS H Stacks Interface Index

* *
* Structure for Icmp6 Filtering
* *

*
ICMP6_FILTER DSECT ,
ICMP6_FILT DS 8F 8*32 = 256 bits
*
** BPXYSOCK End

BPXYSOCK

470 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYSSTF — Map the File System Status Structure

label

BPXYSSTF

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSSTF macro to map the file system status structure returned by the fstatvfs (BPX1FTV),
statvfs (BPX1STV), and w_statvfs (BPX1STF) callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSSTF mapping macro expands as follows:

 BPXYSSTF ,
** BPXYSSTF: file system status response structure
** Used By: STF STV FTV VSF
SSTF DSECT ,
SSTFID DC C'SSTF' EBCDIC ID - SSTF (f_OEcbid)
SSTFLEN DC A(SSTF#LENGTH) Length of SSTF (f_OEcblen
SSTFBLOCKSIZE DS F Block size (f_bsize)
 DS F Reserved
SSTFDBLTOTSPACE DS 0D Name of dblword field - total
 DS F Reserved
SSTFTOTALSPACE DS F Total space. The total number of
 blocks on file system in units of
 f_frsize (f_blocks)
SSTFDBLUSEDSPACE DS 0D Name of dblword field - used
 DS F Reserved
SSTFUSEDSPACE DS F Allocated space in block size unit
 (f_OEusedspace)
SSTFDBLFREESPACE DS 0D Name of dblword field - free
 DS F Reserved
SSTFFREESPACE DS F Space available to unprivileged
 users in block size units
 (f_bavail)
SSTFENDVER1 EQU * End of Version 1 SSTF
SSTFFSID DS F File system ID (f_fsid)
 Set by LFS
SSTFFLAG DS 0BL.32 Bit mask of f_flag vals
SSTFFLAGB1 DS XL1 byte 1

BPXYSSTF

Chapter 3. Mapping Macro Descriptions 471

SSTFEXPORTED EQU X'40' Filesys is exported
 (ST_OEEXPORTED)
 Set by LFS
SSTFV3PROP DS XL1 NFS V3 Properties
SSTFFSF_V3RET EQU X'80' V3 Prop Returned
SSTFFSF_CANSETTIME EQU X'10' time_delta accuracy
SSTFFSF_HOMOGENEOUS EQU X'08' Pathconf same for all
SSTFFSF_SYMLINK EQU X'02' Supports Symlinks
SSTFFSF_LINK EQU X'01' Supports Hard Links
SSTFFLAGB3 DS XL1 byte 3
SSTFFLAGB4 DS XL1 byte 4
SSTFNOSEC EQU X'04' No Security checks enforced
SSTFNOSUID EQU X'02' SetUID/SetGID not supported
 (ST_NOSUID)
 Set by LFS
SSTFRDONLY EQU X'01' Filesys is read only
 (ST_RDONLY)
 Set by LFS
SSTFMAXFILESIZE DS 0D Name of dblword field - maximum
 file size
 May be set by LFS
SSTFMAXFILESIZEHW DS F High word of max file size
 (f_OEmaxfilesizehw)
SSTFMAXFILESIZELW DS F Low word of max file size
 (f_OEmaxfilesizelw)
 DS CL16 Reserved
SSTFENDLFSINFO EQU * End of LFS information
SSTFFRSIZE DS F Fundamental filesystem block size
 (f_frsize)
 DS F Reserved
SSTFDBLBFREE DS 0D Name of dblword field -
 total number of free blocks
 DS F Reserved
SSTFBFREE DS F Total number of free blocks
 (f_bfree)
SSTFFILENODES DS 0CL12 File nodes
SSTFFILES DS F Total number of file nodes
 in the file system (f_files)
SSTFFFREE DS F Total number of free file nodes
 (f_ffree)
SSTFFAVAIL DS F Number of free file nodes available
 to unprivileged users (f_favail)
SSTFNAMEMAX DS F Maximum file name len (f_namemax)
SSTFINVARSEC DS F Number of seconds file system
 will remain unchanged
 (f_OEinvarsec)
SSTFTIME_DELTA DS 0CL8 Set file time granularity
SSTFTIME_DELTA_SEC DS F Seconds
SSTFTIME_DELTA_NS DS F Nano-seconds
 DS CL12 Reserved
SSTF#LENGTH EQU *-SSTF Length of this structure
SSTF#MINLEN EQU SSTFENDVER1-SSTF
SSTF#LFSLEN EQU SSTFENDLFSINFO-SSTF
** BPXYSSTF End

BPXYSSTF

472 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYSTAT — Map the File Status Structure for the stat Service

label

BPXYSTAT

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYSTAT macro to map the file status structure returned by the stat (BPX1STA) callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYSTAT mapping macro expands as follows:

 BPXYSTAT ,
STAT DSECT ,
ST_BEGIN DS 0D
*
ST_EYE DC C'STAT' Eye-catcher
ST_LENGTH DC AL2(STAT#LENGTH) X
 Length of this structure
ST_VERSION DC AL2(ST#VER) X
 Version of this structure
ST_MODE DS F File Mode, mapped by BPXYMODE
ST_INO DS F File Serial Number
ST_DEV DS F Device ID of the file
ST_NLINK DS F Number of links
ST_UID DS F User ID of the owner of the file
ST_GID DS F Group ID of the Group of the file
ST_SIZE DS 0D File Size in bytes, for regular
* files. Unspecified, for others
ST_SIZE_H DS F First word of size
ST_SIZE_L DS F Second word of size
ST_ATIME DS F Time of last access
ST_MTIME DS F Time of last data modification
ST_CTIME DS F Time of last file status change
* Time is in seconds since
* 00:00:00 GMT, Jan. 1, 1970
ST_RDEV DS 0F Device Information
ST_MAJORNUMBER DS H Major number for this file, if it
* is a character special file.
ST_MINORNUMBER DS H Minor number for this file, if it

BPXYSTAT

Chapter 3. Mapping Macro Descriptions 473

* is a character special file.
ST_AUDITORAUDIT DS F Area for auditor audit info
ST_USERAUDIT DS F Area for user audit info
ST_BLKSIZE DS F File Block size
ST_CREATETIME DS F File Creation Time
ST_AUDITID DS 4F RACF File ID for auditing
ST_RES01 DS F
ST_CHARSETID DS 3F Coded Character Set ID
ST_BLOCKS_D DS 0D Double word number - blocks allocated
ST_RES02 DS F
ST_BLOCKS DS F Number of blocks allocated
ST_RES03 DS 9F Area for future expansion
*
* Constants
*
ST#VER EQU ST#VER01 Current version
ST#VER01 EQU 1 Version 1 of this structure
STAT#LENGTH EQU *-STAT Length of STAT
ST#LEN EQU STAT#LENGTH Length of STAT

BPXYSTAT

474 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYTIMS — Map the Processor Time Structure for the times
Service

label

BPXYTIMS

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYTIMS macro to map the processor time structure returned by the times (BPX1TIM) callable
service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYTIMS mapping macro expands as follows:

 BPXYTIMS ,
TIMS DSECT ,
TIMSBEGIN DS 0F
TIMSUTIME DS F User CPU time of current process
* in hundredths of a second.
* This includes time spent in the
* user CMS process.
TIMSSTIME DS F System CPU time of current process
* in hundredths of a second.
* This includes the time spent in
* the root CMS process
TIMSCUTIME DS F Sum of user CPU time values (as
* defined in TIMSUTIME) and child user
* CPU time values (as defined in
* TIMSCUTIME) for all waited-for
* child processes. Zero if the
* current process has no waited-for
* children.
TIMSCSTIME DS F Sum of system CPU time values (as
* defined in TIMSSTIME) and child
* system CPU time values (as defined in
* TIMSCSTIME) for all waited-for
* child processes. Zero if the
* current process has no waited-for

BPXYTIMS

Chapter 3. Mapping Macro Descriptions 475

* children.
TIMS#LENGTH EQU *-TIMS Length of this structure

BPXYTIMS

476 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYTIOS — Map the termios Structure

label

BPXYTIOS

,PREFIX=  prefix

,DSECT=YES

,DSECT=NO

,LIST=YES

, LIST = NO

Purpose
Use the BPXYTIOS macro to map the termios structure used by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

PREFIX=prefix
makes the labels unique. The characters specified on this parameter will be appended before each
label.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYTIOS macro expands as follows:

 BPXYTIOS , PREFIX=
BPXYTIOS DSECT , Define DSECT
* baud rate values
B0 EQU 0 0 baud (hang-up)
B50 EQU 1 50 baud
B75 EQU 2 75 baud
B110 EQU 3 110 baud
B134 EQU 4 134.5 baud
B150 EQU 5 150 baud
B200 EQU 6 200 baud
B300 EQU 7 300 baud
B600 EQU 8 600 baud
B1200 EQU 9 1200 baud
B1800 EQU 10 1800 baud
B2400 EQU 11 2400 baud
B4800 EQU 12 4800 baud
B9600 EQU 13 9600 baud

BPXYTIOS

Chapter 3. Mapping Macro Descriptions 477

B19200 EQU 14 19200 baud
B38400 EQU 15 38400 baud
* Values for c_cflag field are bitwise distinct except for
* character size bits, which form a number.
CLOCAL EQU X'01' Ignore modem status lines
CREAD EQU X'02' Enable receiver
CSIZE EQU X'30' Character size bits
CS5 EQU X'00' B'00' - 5 bits/character
CS6 EQU X'10' B'01' - 6 bits/character
CS7 EQU X'20' B'10' - 7 bits/character
CS8 EQU X'30' B'11' - 8 bits/character
CSTOPB EQU X'80' Send two stop bits, else one
HUPCL EQU X'01' Hang up on last close
PARENB EQU X'02' Parity enable
PARODD EQU X'04' Odd parity, else even
* c_cflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_cflag. For
* instance, "TM C_CFLAG+HUPCL_O,HUPCL".
CLOCAL_O EQU 3
CREAD_O EQU 3
CSIZE_O EQU 3
CS5_O EQU 3
CS6_O EQU 3
CS7_O EQU 3
CS8_O EQU 3
CSTOPB_O EQU 3
HUPCL_O EQU 2
PARENB_O EQU 2
PARODD_O EQU 2
* Values for c_lflag field are bitwise-distinct.
ECHO EQU X'01' Enable echo
ECHOE EQU X'02' Echo ERASE as error correcting X
 backspace
ECHOK EQU X'04' Echo KILL
ECHONL EQU X'08' Echo new line
ICANON EQU X'10' Canonical input
IEXTEN EQU X'20' Enable extended functions
ISIG EQU X'40' Enable signals
NOFLSH EQU X'80' Disable flush after interrupt, X
 quit, or suspend
TOSTOP EQU X'01' Send SIGTTOU for background X
 output
* c_lflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_lflag. For
* instance, "TM C_LFLAG+TOSTOP_O,TOSTOP".
ECHO_O EQU 3
ECHOE_O EQU 3
ECHOK_O EQU 3
ECHONL_O EQU 3
ICANON_O EQU 3
IEXTEN_O EQU 3
ISIG_O EQU 3
NOFLSH_O EQU 3
TOSTOP_O EQU 2* Values for c_iflag field are bitwise-distinct.
BRKINT EQU X'01' Signal interrupt on break
ICRNL EQU X'02' Map CR to NL on input
IGNBRK EQU X'04' Ignore break condition
IGNCR EQU X'08' Ignore CR
IGNPAR EQU X'10' Ignore characters with parity X
 errors
INLCR EQU X'20' Map NL to CR in input
INPCK EQU X'40' Enable input parity check
ISTRIP EQU X'80' Strip character
IXOFF EQU X'01' Enable start/stop input X
 control
IXON EQU X'02' Enable start/stop output X
 control
PARMRK EQU X'04' Mark parity errors
* c_iflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_iflag. For
* instance, "TM C_IFLAG+BRKINT_O,BRKINT".
BRKINT_O EQU 3
ICRNL_O EQU 3
IGNBRK_O EQU 3
IGNCR_O EQU 3
IGNPAR_O EQU 3
INLCR_O EQU 3
INPCK_O EQU 3
ISTRIP_O EQU 3
IXOFF_O EQU 2
IXON_O EQU 2
PARMRK_O EQU 2

BPXYTIOS

478 z/VM: 7.3 OpenExtensions Callable Services Reference

* Values for c_oflag are bitwise distinct.
OPOST EQU X'01' Perform output processing
*
* c_oflag offsets for bits defined above. These values are
* used to refer to the correct byte within c_oflag. For
* instance, "TM C_OFLAG+OPOST_O,OPOST".
*
OPOST_O EQU 3
* Optional actions used by tcsetattr
TCSANOW EQU 0 Change occurs immediately
TCSADRAIN EQU 1 Change occurs after all output X
 has been written
TCSAFLUSH EQU 2 Change occurs after all output X
 has been written and input X
 has been discarded
* queue selector values for tcflush
TCIFLUSH EQU 0 Flush data received but not read
TCOFLUSH EQU 1 Flush data written but not sent
TCIOFLUSH EQU 2 Flush both data received but not X
 read and data written but not sent
* action values for tcflow
TCOOFF EQU 0 Suspend output
TCOON EQU 1 Restart suspended output
TCIOFF EQU 2 Transmit STOP character
TCION EQU 3 Transmit START character
* Special Control Characters subscripts for cc_c
* field
VINTR EQU 0 INTR character
VQUIT EQU 1 QUIT character
VERASE EQU 2 ERASE character
VKILL EQU 3 KILL character
VEOF EQU 4 EOF character
VEOL EQU 5 EOL character
VMIN EQU 6 MIN value
VSTART EQU 7 START character
VSTOP EQU 8 STOP character
VSUSP EQU 9 SUSP character
VTIME EQU 10 TIME value
NCCS EQU 11 Number of special control chars
C_CFLAG DC F'0' Control modes
C_IFLAG DC F'0' Input modes
C_LFLAG DC F'0' Local modes
C_OFLAG DC F'0' Output modes
C_CC DC (NCCS)X'0' Control characters and values
BPXYTIOS#LENGTH EQU *-BPXYTIOS Length of this structure

BPXYTIOS

Chapter 3. Mapping Macro Descriptions 479

BPXYUTSN — Map the System Information Structure for the uname
Service

label

BPXYUTSN

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYUTSN macro to map the system information structure returned by the uname (BPX1UNA)
callable service.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYUTSN mapping macro expands as shown below.
3. The formats of the UTSNAMERELEASE and UTSNAMEVERSION fields are described in Table 4 on page

481.

 BPXYUTSN ,
UTSN DSECT ,
UTSNAMESYSNAMELEN DS F Length of UTSNAMESYSNAME string
UTSNAMESYSNAME DS CL16 Name of this implementation of the
* operating system (CMS)
UTSNAMENODENAMELEN DS F Length of UTSNAMENODENAME string
UTSNAMENODENAME DS CL32 Name of this node within the
* communications network
UTSNAMERELEASELEN DS F Length of UTSNAMERELEASE string
UTSNAMERELEASE DS CL64 Current CMS release level of this
* implementation
UTSNAMEVERSIONLEN DS F Length of UTSNAMEVERSION string
UTSNAMEVERSION DS CL64 Current version level of this release
UTSNAMEMACHINELEN DS F Length of UTSNAMEMACHINE string
UTSNAMEMACHINE DS CL16 Name of the hardware type on which
* the system is running
UTSN#LENGTH EQU *-UTSN Length of this structure

BPXYUTSN

480 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 4. Formats of the UTSNAMERELEASE and UTSNAMEVERSION Fields

Field Description

UTSNAMERELEASE The level of CMS in use, expressed as the string CMS_l_s_f, where:
l

is the CMS level as returned by QUERY CMSLEVEL.
s

is the 4-digit CMS service level as it appears in DMSLVLTB.
f

is the CMS level code returned by DMSQEFL in its output
parameter cms_level.

For example, the release (CMS) information for z/VM Version 3
Release 1.0 is: CMS_16_0000_44.

UTSNAMEVERSION The level of CP in use, expressed as the string CP_v.r.m_s_f, where:
v

is the CP version number returned by QUERY CPLEVEL.
r

is the CP release number returned by QUERY CPLEVEL.
m

is the CP modification level returned by QUERY CPLEVEL.
s

is the 4-digit CP service level as it appears in the output of
QUERY CPLEVEL.

f
is the CP level code returned by DMSQEFL in its output
parameter cp_level.

For example, the version (CP) information for z/VM Version 3 Release
1.0 is: CP_3.1.0_0000_40.

BPXYUTSN

Chapter 3. Mapping Macro Descriptions 481

BPXYVM5 — Map Function Code Values for the openvmf Service

label

BPXYVM5

,LIST=YES

,LIST=NO

Purpose
Use the BPXYVM5 macro to map the function code values for the openvmf (BPX1VM5) callable service.
BPXYVM5 consists only of equates.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYVM5 macro expands as follows:

 BPXYVM5 ,
**
* The following values can be used to set the function_code
* parameter.
*
VM5_RELEASE_TOKEN EQU 1 Release BFS file tokens
VM5_FILEPOOL_ADMIN_RESPECT EQU 2 Respect file pool admin authority
VM5_FILEPOOL_ADMIN_IGNORE EQU 3 Ignore file pool admin authority
VM5_RESOLVE_INO EQU 4 Resolve INO into BFS path.
VM5_RESOLVE_PATH EQU 5 Resolve path with links.
VM5_SET_SGID EQU 6 Set supplementary GID.
VM5_SET_ALL_IDS EQU 7 Set eUID, eGID, sGID.
VM5_GET_FILESYS_TYPE EQU 8 Get file system type.
VM5_FSTYPE_BFS EQU C'BFS '
VM5_FSTYPE_CSI EQU C'CSI '
VM5_FSTYPE_PIP EQU C'PIP '
VM5_FSTYPE_SOC EQU C'SOC '
VM5_FSTYPE_NFS EQU C'NFS '
VM5_FSTYPE_LENGTH EQU 4

BPXYVM5

482 z/VM: 7.3 OpenExtensions Callable Services Reference

BPXYVM6 — Map the Function Code Values for the setopen Service

label

BPXYVM6

,LIST=YES

,LIST=NO

Purpose
Use the BPXYVM6 macro to map the function code values for the setopen (BPX1VM6) callable service.
BPXYVM6 consists only of equates.

Parameters

label
is an optional assembler label for the statement.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYVM6 macro expands as follows:

 BPXYVM6 ,

* The following values can be used to set the function_code
* parameter.
VM6_EXECLEVEL_OFF EQU 0 Turn exec svc level off
VM6_EXECLEVEL_ON EQU 1 Turn exec svc level on

BPXYVM6

Chapter 3. Mapping Macro Descriptions 483

BPXYVM7 — Map the Function Code Values and Buffer for the
openvmf7 Service

label

BPXYVM7

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYVM7 macro to map the function code values and buffer contents for the openvmf7
(BPX1VM7) callable service.

Parameters
label

is an optional assembler label for the statement.
DSECT=YES

creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The BPXYVM7 mapping macro expands as follows:

VM7_VERSION1 EQU 1
VM7_GET_EXPORT_LIST EQU 1
VM7_GET_DUMP_LIST EQU 2
VM7_PCNFS_AUTH EQU 3
VM7P_MAXGIDSIZE EQU 16
VM7P_PCNFS_VERSION1 EQU 1
VM7P_PCNFS_VERSION2 EQU 2
VM7_MAXPATHLEN EQU 1024
VM7_MAXNAMELEN EQU 256
VM7_MAXCOMMENTLEN EQU 256
VM7E_EXPORT_LIST DS 0F
VM7E_VERSION DS F
VM7E_ENTRY_COUNT DS F
VM7E_ENTRY_TOTAL DS F
VM7E_ENTRY DS 0F
VM7E_FILE_SYSTEM_LENGTH DS F
VM7E_WHO_COUNT DS F
VM7E_WHO_TOTAL DS F
VM7E_FILE_SYSTEM DS 0C * Variable length
VM7E_WHO_LIST DS 0C
VM7E_WHO_LENGTH DS F
VM7E_WHO DS 0C * Variable length
VM7E_LENGTH EQU *-VM7E_EXPORT_LIST
VM7D_DUMP_LIST DS 0F
VM7D_VERSION DS F
VM7D_ENTRY_COUNT DS F
VM7D_ENTRY_TOTAL DS F

BPXYVM7

484 z/VM: 7.3 OpenExtensions Callable Services Reference

VM7D_ENTRY DS 0F
VM7D_HOST_LENGTH DS F
VM7D_HOST DS 0C * Variable length
VM7D_FILE_SYSTEM_LENGTH DS F
VM7D_FILE_SYSTEM DS 0C * Variable length
VM7D_LENGTH EQU *-VM7D_DUMP_LIST
VM7P_PCNFS_INPUT DS 0F
VM7P_USERNAME_LENGTH DS F
VM7P_USERNAME DS CL(VM7_MAXCOMMENTLEN)
VM7P_PASSWORD_LENGTH DS F
VM7P_PASSWORD DS CL(VM7_MAXCOMMENTLEN)
VM7P_CMI_LENGTH DS F
VM7P_CMI DS CL(VM7_MAXCOMMENTLEN)
VM7P_INPUT_LENGTH EQU *-VM7P_PCNFS_INPUT
VM7P_PCNFS_OUTPUT DS 0F
VM7P_VERSION DS F
VM7P_UID DS F
VM7P_GID DS F
VM7P_VERSION2_DATA DS 0F
VM7P_GIDLIST_COUNT DS F
VM7P_GID_LIST DS CL(VM7P_MAXGIDSIZE*4)
VM7P_HOME_LENGTH DS F
VM7P_HOME DS CL(VM7_MAXPATHLEN)
VM7P_DEF_UMASK DS F
VM7P_CMO_LENGTH DS F
VM7P_CMO DS CL(VM7_MAXCOMMENTLEN)
VM7P_OUTPUT_LENGTH EQU *-VM7P_PCNFS_OUTPUT

2. In the VM7P_PCNFS_OUTPUT section, the information following VM7P_VERSION2_DATA is returned
only when the foreign_host specified on the openvmf7 call supports Version 2 SUN PC-NFS requests
(that is, when VM7P_VERSION is equal to VM7P_PCNFS_VERSION2).

BPXYVM7

Chapter 3. Mapping Macro Descriptions 485

BPXYWAST — Map the Wait Status Word

label

BPXYWAST

,DSECT=YES

,DSECT=NO

,LIST=YES

,LIST=NO

Purpose
Use the BPXYACC macro to map the wait status word used by OpenExtensions callable services.

Parameters

label
is an optional assembler label for the statement.

DSECT=YES
creates a DSECT for the macro. This is the default. Addressability requires a USING statement and a
register pointing to storage.

DSECT=NO
allocates space for the macro in the current DSECT or CSECT. In a reentrant program, DSECT=NO
places the macro in the current DSECT, and addressability is accomplished without the individual
USING statement required by DSECT=YES. In a nonreentrant program, DSECT=NO places the macro
in the current CSECT, and addressability is obtained through the program base registers.

LIST=YES
causes the expansion of the macro to appear in the listing. This is the default.

LIST=NO
removes the macro expansion from the listing.

Usage Notes
1. The PRINT OFF assembler statement overrides LIST=YES.
2. The BPXYWAST mapping macro expands as follows:

 BPXYWAST ,
WAST DSECT ,
 DS XL2 Reserved for IBM use - Set to zeros
WASTEXITSTATUS DS 0XL2 Exit Status value passed on the
* BPX1EXI or BPX1MPC system calls
WASTEXITCODE DS 0XL1 Exit return code for ending process
WASTSIGSTOP DS XL1 Signal that stopped process
WASTSIGTERM DS 0XL1 Signal that terminated process
WASTSTOPFLAG DS XL1 Special flag value that qualifies the
* reason for the process being stopped.
* * WASTSTOPFLAG Values *
WASTDUMP EQU X'80' Bit 0 of WASTSTOPFLAG on, a core dump
* was taken when the process terminated
WASTSTOPFLAGSIG EQU X'7F' Process stopped for a signal
WASTSTOPFLAGFORK EQU X'7E' Process stopped for a fork
* (not currently supported)
WASTSTOPFLAGEXEC EQU X'7D' Process stopped for an exec
* (not currently supported)
WAST#LENGTH EQU *-WAST Length of this structure

BPXYWAST

486 z/VM: 7.3 OpenExtensions Callable Services Reference

Appendix A. Return Codes

This appendix describes the return codes returned by OpenExtensions callable services. Two lists are
provided. The first list is arranged by value and contains a description of each return code. The second list,
in Table 6 on page 490, is arranged alphabetically and contains a cross-reference to the corresponding
values.

OpenExtensions Return Codes Listed by Numeric Value
Table 5. OpenExtensions Return Codes by Numeric Value

Dec
Value

Hex
Value

Return Code Description

1 0001 EDOM Error in the domain

2 0002 ERANGE Result is too large

111 006F EACCES Permission is denied

112 0070 EAGAIN The resource is temporarily unavailable

113 0071 EBADF The file descriptor is incorrect

114 0072 EBUSY The resource is busy

115 0073 ECHILD No child process exists

116 0074 EDEADLK A resource deadlock is avoided

117 0075 EEXIST The file or socket exists

118 0076 EFAULT The address is incorrect

119 0077 EFBIG The file is too large

120 0078 EINTR A function call is interrupted

121 0079 EINVAL The parameter is incorrect

122 007A EIO An I/O error occurred

123 007B EISDIR The file specified is a directory

124 007C EMFILE Too many files are open for this process

125 007D EMLINK Too many links occurred

126 007E ENAMETOOLONG The filename is too long

127 007F ENFILE Too many files are open in the system

128 0080 ENODEV No such device exists

129 0081 ENOENT No such file or directory exists

130 0082 ENOEXEC The exec call contained a format error

131 0083 ENOLCK No locks are available

132 0084 ENOMEM Not enough space is available

133 0085 ENOSPC No space is left on the device

134 0086 ENOSYS The function is not implemented

Return Codes

© Copyright IBM Corp. 1993, 2023 487

Table 5. OpenExtensions Return Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Return Code Description

135 0087 ENOTDIR Not a directory

136 0088 ENOTEMPTY The directory is not empty

137 0089 ENOTTY The I/O control operator is inappropriate

138 008A ENXIO No such device or address exists

139 008B EPERM The operation is not permitted

140 008C EPIPE The pipe is broken

141 008D EROFS The specified file system is read only

142 008E ESPIPE The seek is incorrect

143 008F ESRCH No such process or thread exists

144 0090 EXDEV A link to a file on another file system was attempted

145 0091 E2BIG The parameter list is too long

146 0092 ELOOP A loop is encountered in symbolic links

147 0093 EILSEQ The byte sequence is illegal

151 0097 ECMSSTORAGE Storage management error

156 009C ECMSINITIAL Process Initialization error

157 009D ECMSERR A CMS environmental or internal error has occurred

159 009F ECMSPFSFILE The physical file system encountered a permanent file
error

162 00A2 ECMSPFSPERM The physical file system encountered a system error

227 00E3 EBUFLEN Buffer not long enough for path name

228 00E4 EEXTLINK The target of the operation is an external link

229 00E5 ENODD No pathdef for the ddname in effect

230 00E6 ECMSESMERR CMS ESM error

231 00E7 ECPERR CP DIAGNOSE error

1002 03EA EIBMSOCKOUTOFRANGE The socket number assigned by the client interface
code is out of range.

1003 03EB EIBMSOCKINUSE The socket number assigned by the client interface
code is already in use.

1005 03ED EOFFLOADboxERROR Offload box error.

1008 03F0 EIBMCONFLICT A conflicting call is already outstanding on the socket.

1009 03F1 EIBMCANCELLED The request has been cancelled by a SOCKcallCANCEL
request.

1100 044C ENOTBLK A block device is required.

1101 044D ETXTBSY The text file is busy.

Return Codes

488 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 5. OpenExtensions Return Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Return Code Description

1102 044E EWOULDBLOCK The descriptor is marked nonblocking, and the
requested function cannot complete immediately.

1103 044F EINPROGRESS The operation is now in progress.

1104 0450 EALREADY An operation is already in progress.

1105 0451 ENOTSOCK A socket operation has been requested on a
nonsocket.

1106 0452 EDESTADDRREQ A destination address is required.

1107 0453 EMSGSIZE The message is too large to be sent all at once, as
required.

1108 0454 EPROTOTYPE The socket type is incorrect.

1109 0455 ENOPROTOOPT The protocol or socket option is not available.

1110 0456 EPROTONOSUPPORT The protocol is not supported.

1111 0457 ESOCKTNOSUPPORT The socket type is not supported.

1112 0458 EOPNOTSUPP The referenced socket is not a type that supports the
requested function.

1113 0459 EPFNOSUPPORT The protocol family is not supported.

1114 045A EAFNOSUPPORT The address family is not supported.

1115 045B EADDRINUSE The address is already in use.

1116 045C EADDRNOTAVAIL Cannot assign the requested address.

1117 045D ENETDOWN The network is down.

1118 045E ENETUNREACH The network is unreachable.

1119 045F ENETRESET The network dropped the connection on reset.

1120 0460 ECONNABORTED The software caused the connection to abort.

1121 0461 ECONNRESET The connection was reset by the peer.

1122 0462 ENOBUFS Insufficient buffer space is available.

1123 0463 EISCONN The socket is already connected.

1124 0464 ENOTCONN The socket is not connected.

1125 0465 ESHUTDOWN Cannot send after a socket shutdown.

1126 0466 ETOOMANYREFS Tthere are too many references — cannot splice.

1127 0467 ETIMEDOUT The connection timed out.

1128 0468 ECONNREFUSED The connection attempt was rejected.

1129 0469 EHOSTDOWN The host is down.

1130 046A EHOSTUNREACH There is no route to the host.

1131 046B EPROCLIM There are too many processes.

1132 046C EUSERS There are too many users.

Return Codes

Appendix A. Return Codes 489

Table 5. OpenExtensions Return Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Return Code Description

1133 046D EDQUOT The disk quota has been exceeded.

1134 046E ESTALE The NFS file handle is stale.

1135 046F EREMOTE There are too many remote levels in the path.

1136 0470 ENOSTR The device is not a stream.

1137 0471 ETIME The timer has expired.

1138 0472 ENOSR There are no streams resources.

1139 0473 ENOMSG No message of the desired type

1140 0474 EBADMSG Trying to read an unreadable message.

1141 0475 EIDRM The identifier has been removed.

1142 0476 ENONET The machine is not on the network.

1143 0477 ERREMOTE The object is remote.

1144 0478 ENOLINK The link has been severed.

1145 0479 EADV Advertise error.

1146 047A ESRMNT srmount error.

1147 047B ECOMM Communication error on send.

1148 047C EPROTO Protocol error.

1149 047D EMULTIHOP Protocol error.

1150 047E EDOTDOT Cross mount point.

1151 047F EREMCHG Remote address change.

1152 0480 ECANCELED The asynchronous I/O request has been canceled.

1160 0488 ENOREUSE Socket descriptor reuse is not supported.

28672 7000 EBindModError Error code issued by the DMSBX2WR CMS Binder
routine that is invoked by DMSBX1WR, the intercept
routine to BPX1WRT. This routine will write either
a standard or extended format CMS module file or
invoke the real BPX1WRT routine to write a BFS
program object.

28928 7100 EBindNXError Error code issued by the DMSBX2WX CMS Binder
routine that is invoked by DMSBX2WR to check if a
non-executable linear program object can replace an
existing module file.

OpenExtensions Return Codes Listed by Symbolic Name
Table 6. OpenExtensions Return Codes by Symbolic Name

Return Code Decimal Hex

EACCES 111 006F

EADDRINUSE 1115 045B

Return Codes

490 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 6. OpenExtensions Return Codes by Symbolic Name (continued)

Return Code Decimal Hex

EADDRNOTAVAIL 1116 045C

EADV 1145 0479

EAFNOSUPPORT 1114 045A

EAGAIN 112 0070

EALREADY 1104 0450

EBADF 113 0071

EBADMSG 1140 0474

EBindModError 28672 7000

EBindNXError 28928 7100

EBUFLEN 227 00E3

EBUSY 114 0072

ECANCELED 1152 0480

ECHILD 115 0073

ECMSSTORAGE 151 0097

ECMSERR 157 009D

ECMSESMERR 230 00E6

ECMSINITIAL 156 009C

ECMSPFSFILE 159 009F

ECMSPFSPERM 162 00A2

ECOMM 1147 047B

ECONNABORTED 1120 0460

ECONNREFUSED 1128 0468

ECONNRESET 1121 0461

ECPERR 231 00E7

EDEADLK 116 0074

EDESTADDRREQ 1106 0452

EDOM 1 0001

EDOTDOT 1150 047E

EDQUOT 1133 046D

EEXIST 117 0075

EEXTLINK 228 00E4

EFAULT 118 0076

EFBIG 119 0077

EHOSTDOWN 1129 0469

Return Codes

Appendix A. Return Codes 491

Table 6. OpenExtensions Return Codes by Symbolic Name (continued)

Return Code Decimal Hex

EHOSTUNREACH 1130 046A

EIBMCANCELLED 1009 03F1

EIBMCONFLICT 1008 03F0

EIBMSOCKINUSE 1003 03EB

EIBMSOCKOUTOFRANGE 1002 03EA

EIDRM 1141 0475

EILSEQ 147 0093

EINPROGRESS 1103 044F

EINTR 120 0078

EINVAL 121 0079

EIO 122 007A

EISCONN 1123 0463

EISDIR 123 007B

ELOOP 146 0092

EMFILE 124 007C

EMLINK 125 007D

EMSGSIZE 1107 0453

EMULTIHOP 1149 047D

ENAMETOOLONG 126 007E

ENETDOWN 1117 045D

ENETRESET 1119 045F

ENETUNREACH 1118 045E

ENFILE 127 007F

ENOBUFS 1122 0462

ENODD 229 00E5

ENODEV 128 0080

ENOENT 129 0081

ENOEXEC 130 0082

ENOLCK 131 0083

ENOLINK 1144 0478

ENOMEM 132 0084

ENOMSG 1139 0473

ENONET 1142 0476

ENOPROTOOPT 1109 0455

Return Codes

492 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 6. OpenExtensions Return Codes by Symbolic Name (continued)

Return Code Decimal Hex

ENOREUSE 1160 0488

ENOSPC 133 0085

ENOSR 1138 0472

ENOSTR 1136 0470

ENOSYS 134 0086

ENOTBLK 1100 044C

ENOTCONN 1124 0464

ENOTDIR 135 0087

ENOTEMPTY 136 0088

ENOTSOCK 1105 0451

ENOTTY 137 0089

ENXIO 138 008A

EOFFLOADboxERROR 1005 03ED

EOPNOTSUPP 1112 0458

EPERM 139 008B

EPFNOSUPPORT 1113 0459

EPIPE 140 008C

EPROCLIM 1131 0459

EPROTO 1148 047C

EPROTONOSUPPORT 1110 0456

EPROTOTYPE 1108 0454

ERANGE 2 0002

EREMCHG 1151 047F

EREMOTE 1135 046F

EROFS 141 008D

ERREMOTE 1143 0477

ESHUTDOWN 1125 0465

ESOCKTNOSUPPORT 1111 0457

ESPIPE 142 008E

ESRCH 143 008F

ESRMNT 1146 047A

ESTALE 1134 046E

ETIME 1137 0471

ETIMEDOUT 1127 0467

Return Codes

Appendix A. Return Codes 493

Table 6. OpenExtensions Return Codes by Symbolic Name (continued)

Return Code Decimal Hex

ETOOMANYREFS 1126 0466

ETXTBSY 1101 044D

EUSERS 1132 046C

EWOULDBLOCK 1102 044E

EXDEV 144 0090

E2BIG 145 0091

Return Codes

494 z/VM: 7.3 OpenExtensions Callable Services Reference

Appendix B. Reason Codes

This appendix describes the reason codes returned by OpenExtensions callable services. Only the
character value is intended as an interface for programmers.

This appendix contains three sections:

• “OpenExtensions Reason Codes Listed by Numeric Value” on page 495. This list describes the action
required to correct each error.

• “Special CMS File Pool Server and BFS Client Reason Codes” on page 532.
• “OpenExtensions Reason Codes Listed by Symbolic Name” on page 534. In this list, reason code names

are cross-referenced to reason code values.

OpenExtensions Reason Codes Listed by Numeric Value
The reason code is made up of 4 bytes in the format ccccrrrr, where:
cccc

is a halfword reason code qualifier
rrrr

is the halfword reason code

The two high-order bytes of the reason codes returned by OpenExtensions services contain a value that
is used to qualify the contents of the two low-order bytes. If the contents of the two high-order bytes is
within the range 0000 to X'21FF', the error represented by the reason code is defined by OpenExtensions.
If the contents of the two high-order bytes is outside the range, the error represented by the reason code
is not an OpenExtensions reason code.

Use Table 7 on page 495 to determine where you can find information on the reason codes returned by
callable services.

Table 7. Location of Return Information

Return Code Reason Code Qualifier Reason Code Returned By

A3 0000–21FF External security manager (ESM). See the specific
ESM service for the meaning of these reason codes.

A2 5B00–5BFF File pool server and BFS client. See “Special CMS
File Pool Server and BFS Client Reason Codes” on
page 532 for descriptions of these reason codes.

7000, 7100 8300 z/VM: Program Management Binder for CMS
utilizes POSIX callable services to process program
object data. When errors are detected an error
message is generated, and then the following
z/OS® MVS™ Program Management Binder message
(containing the OpenExtensions reason code, rsn)
is issued:
IEW2796S

DF16 FILE ASSOCIATED WITH DDNAME /fd
CANNOT BE WRITTEN. HFS WRITE ISSUED
RETURN CODE rc AND REASON CODE rsn.

The following table contains descriptions of these
reason codes.

Reason Codes

© Copyright IBM Corp. 1993, 2023 495

Table 7. Location of Return Information (continued)

Return Code Reason Code Qualifier Reason Code Returned By

All (except A2, A3) 0000–21FF OpenExtensions. The following table contains
descriptions of these reason codes.

Table 8. OpenExtensions Reason Codes by Numeric Value

Dec
Value

Hex
Value

Description

0 0000 JROK: The return code value describes the error.

Action: Refer to the return code for information on the error.

37 0025 JRUnexpectedErr: An unexpected error occurred.

Action: See your IBM service representative.

40 0028 JRMaxProc: The maximum number of processes was exceeded.

Action: Retry after some processes have ended.

46 002E JRFilesysNotThere: The file system named does not exist.

Action: The file system specified on the service could not be found.

48 0030 JRNegativeValueInvalid: A negative value cannot be supplied for one of the parameters.

Action: Enter the call again after changing the offending parameter to a valid value.

50 0032 JrUnlMountRO: The unlink call was on a read-only file system.

Action: For the file to be unlinked, the file system must be mounted in read/write mode.

51 0033 JRRFileWrOnly: A call tried to read a file opened as write-only.

Action: Reopen the file for read or read/write access.

52 0034 JRWFileRdOnly: A call tried to write to a file opened as read-only.

Action: Reopen the file for write or read/write access.

54 0036 JRNegFileDes: A negative file descriptor was requested.

Action: Reissue the request with a nonnegative file descriptor.

55 0037 JRFileDesNotInUse: The requested file descriptor is not in use.

Action: Reissue the request with an open file descriptor.

56 0038 JRMkDirExist: The requested file directory already exists.

Action: A directory by this name exists. The MKDIR request cannot be processed. Correct the
name and retry the operation.

57 0039 JRPathTooLong: The path name is too long.

Action: The path name was found to be larger than PATH_MAX (1023). Either the name
specified was too long, or the name generated as a result of using symbolic links was too long.
Correct the name and retry the operation.

58 003A JRNullInPath: The path name contains a null.

Action: Check the path name specified to find and remove the embedded null. If the request
was for a symbolic link, there must be no nulls within the contents of the symbolic link.

Reason Codes

496 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

59 003B JRNotSysRoot: A relative path name is allowed only for processes.

Action: See your IBM service representative.

60 003C JRCompNotDir: A node in the path name is not a directory.

Action: One of the components of the path name was found to not be a directory. All but
the final component of the name must be directories. Correct the path name and retry the
operation.

61 003D JRDirNotFound: A directory in the path name was not found.

Action: One of the directories specified was not found. Verify that the name specified is
spelled correctly.

62 003E JRCompNameTooLong: A component in the path name was too long.

Action: One of the components of the path name was found to be larger than NAME_MAX
(255). Correct the path name and retry the operation.

63 003F JRInvOpenFlags: The open call detected incorrect open flags.

Action: The OPEN request cannot be processed. Correct the open flags and retry the
operation.

65 0041 JRTrNotRegFile: The ftruncate call is valid only on a regular file.

Action: To be able to truncate a file, you must specify the File_descriptor for a file, not for a
directory or a FIFO.

66 0042 JRClNeedClose: The closedir call was for a file that was opened with the open call.

Action: Retry the request, using CLOSE.

67 0043 JRPfsDead: The file system owning the file is no longer active.

Action: See your IBM service representative.

68 0044 JRMkDir: The mkdir service is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

69 0045 JRClose: Vnode operation CLOSE is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

70 0046 JRRdwr: Vnode operation RDWR is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

71 0047 JRLookup: Lookup is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

73 0049 JRVnodGet: A cell pool get for a vnode failed.

Action: See your IBM service representative.

Reason Codes

Appendix B. Reason Codes 497

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

75 004B JROpen: The open service is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

76 004C JRCreate: The create service is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

77 004D JRNoPath: The path length is not greater than 0.

Action: There must be a positive length passed for the path name length.

79 004F JRChdNotDir: The chdir service is valid only for directory files.

Action: Reissue the chdir service specifying, the name of a directory file.

80 0050 JRChdNoEnt: The chdir service was invoked with the name of a nonexisting file.

Action: Reissue the chdir service, specifying the name of an existing directory file.

85 0055 JRMkDirROnly: The directory cannot be created in a read-only file system.

Action: The file system was mounted read-only. The mkdir service request cannot be
processed.

86 0056 JRLnkDir: Hard links cannot be made to directory files.

Action: Use the symlink service to create a symbolic link to the desired directory.

87 0057 JRLskOnPipe: The lseek service cannot be performed on a pipe.

Action: The lseek service must be performed on either a regular file or a directory.

88 0058 JRLskOffsetIsInvalid: The offset given for lseek service is incorrect.

Action: The final cursor value on an lseek call cannot be a negative number. If the
Reference_point specified "Set" the offset must be nonnegative. If the Reference_point
specified "Current", then the sum of the input offset and the current cursor value must be
nonnegative. If the Reference_point specified "End", then the sum of the input offset and the
cursor value of the end of the file must be nonnegative.

89 0059 JRLskWhenceIsInvalid: The whence given for the lseek service is incorrect.

Action: The lseek operation can specify a Reference_point of either "Set", "Current", or "End".

90 005A JRFSNotStart: The specified file system type is not supported.

Action: The file_system_type specified on a mount request must be VMBFS.

91 005B JRIsMounted: The file system is already mounted.

Action: If the file system must be mounted on the specified mountpoint, first unmount it, and
then reissue the request.

Reason Codes

498 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

92 005C JRMountPt: A problem was found with the mount point specified.

Action: The problem found depends on the return code received with this reason code.

• If the return code is ENOENT, the path name specified could not be found.
• If the return code is ENOTDIR, the path name did not specify a directory.
• If the return code is EINVAL, the path name specified refers to the root of an already

mounted file system.

93 005D JRUnlNoEnt: The file to unlink does not exist.

Action: The file has either already been unlinked, or it never existed. Verify that the path name
was correct.

94 005E JRUnlDir: The unlink service was requested on a directory file.

Action: To remove a directory, use the rmdir service.

95 005F JROutOfOfteCells: The system was unable to obtain a cell from the OFTE cell pool.

Action: See your IBM service representative.

96 0060 JRReadOnlyFileSetWriteReq: An open request for write was entered for a file system that
was mounted read-only.

Action: The open service request cannot be processed. Mount the file system for read-write
access and reissue the open request.

97 0061 JRReadOnlyFileSetCreatReq: A file cannot be created in a read-only file system.

Action: The file system was mounted read-only. The open create service request cannot be
processed.

98 0062 JRNoFileNoCreatFlag: A service tried to open a nonexistent file without O_CREAT.

Action: The open service request cannot be processed. Correct the name or the open flags,
and retry the operation.

99 0063 JRFileExistsExclFlagSet: The file exists, but O_EXCL is specified on the open call.

Action: The open service request cannot be processed. Correct the name or the open flags,
and retry the operation.

100 0064 JRDirWriteRequest: The service tried to open a directory for write access.

Action: The open service request cannot be processed. Correct the name or the open flags,
and retry the operation.

101 0065 JROpenFlagConflict: The call tried to open a file with O_RDONLY and O_TRUNC specified.

Action: The open service request cannot be processed. Correct the open flags and retry the
operation.

103 0067 JRParmTooLong: On the mount, a parameter field longer than 1024 was specified.

Action: Specify a parameter length not be longer than 1024 bytes.

Reason Codes

Appendix B. Reason Codes 499

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

104 0068 JRRemove: Vn_Remove is not supported by the physical file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

105 0069 JRBothMode: On the mount service, both read and read/write were specified.

Action: The Mount_mode on a mount service cannot specify both read-write and read-only.

106 006A JRNeitherMode: On the mount service, neither read nor read/write were specified.

Action: The Mount_mode on a mount service must specify either read-write and read-only.

107 006B JRBuffTooSmall: The buffer for return information is too small.

Action: The length of the buffer specified on the service was not large enough to contain the
data to be returned.

108 006C JRFileNotThere: The requested file does not exist.

Action: The service cannot be performed unless the named file exists.

109 006D JRReadDir: The readdir service vnode operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

110 006E JRGetAttr: GetAttr is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

112 0070 JRRddFileNotDir: The readdir service request was on a file that was not opened as a
directory.

Action: Use the opendir service to open the directory.

113 0071 JRTargetNotDir: The opendir service did not specify a directory.

Action: The opendir service request cannot be processed. Correct the name and retry the
operation.

114 0072 JROpenDirNotFound: The directory specified on the opendir service did not exist.

Action: The opendir service request cannot be processed. Correct the name and retry the
operation.

117 0075 JRSpFileExists: The file specified on the mknod service already existed.

Action: A file by this name exists. The mknod service request cannot be processed. Correct
the name and retry the operation.

118 0076 JRReadOnlyFileSetMknodReq: A special file cannot be created on a read-only file system.

Action: Specify another file system or unmount and remount the current file system.

119 0077 JRRmDir: The rmdir service vnode operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

Reason Codes

500 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

120 0078 JRPathNotDir: The path name does not specify a directory.

Action: The service requested requires a directory, but the path name passed is not for a
directory.

121 0079 JRReadOnlyFS: This operation does not work on a read-only file system.

Action: The service was requested for a file system that was mounted read-only. The service
requires that the file system be mounted read/write.

123 007B JRDiffFileSets: The rename service is not supported across file systems.

Action: The rename service cannot be performed across file systems. Rename the file,
specifying a new name within the same file system.

124 007C JRNewNotDir: The new name specified on the rename service is not a directory.

Action: If a directory is to be renamed to an existing file name, that file name must refer to a
directory file.

125 007D JRNewIsDir: The new name specified on the rename service is a directory.

Action: If a nondirectory is to be renamed to an existing file name, that file name must not
refer to a directory file.

126 007E JROldNoExist: The old name specified on the rename service does not exist.

Action: The file to be renamed does not exist. Reissue the request with an existing file name.

127 007F JRIsFSRoot: The name specified is in use as a file system root.

Action: The function cannot be performed on the root of the file system.

128 0080 JRRename: The rename service vnode operation is not supported.

Action: See your IBM service representative.

130 0082 JRDotOrDotDot: The requested function cannot be performed against . or ...

Action: Neither . nor .. can be specified for this operation.

132 0084 JRInternalError: An internal error was detected.

Action: See your IBM service representative.

134 0086 JRBadEntryCode: An incorrect entry code was specified on this request.

Action: A command code or entry code specified on the request is not correct. Reissue the
command using a valid command code.

136 0088 JRFdAllocErr: An error occurred while trying to allocate a filedes page.

Action: Close any file descriptors that are no longer needed.

138 008A JRBytes2RWZero: The number of bytes requested to read or write is negative.

Action: Specify a positive number for the number of bytes to be read or written.

139 008B JRRwdFileNotDir: The rewinddir service was on a file that is not a directory.

Action: The rewinddir service requires that the file descriptor passed on input refer to a
directory.

Reason Codes

Appendix B. Reason Codes 501

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

140 008C JRRootNode: The requested operation cannot be done on a root.

Action: The function was requested for a file system root, but it cannot be done on a root.

141 008D JRInvalidSignal: A signal number specified is incorrect.

Action: Reissue the request with a valid signal number.

142 008E JRInvalidSigAct: The action is incorrect for the specified signal.

Action: Reissue the request with a valid signal action.

143 008F JRInvalidSigHow: The how operand specified is incorrect.

Action: Reissue the request with a valid how operand.

144 0090 JRNotForDir: The system cannot perform the requested function on a directory.

Action: The file descriptor specified refers to a directory file, and the request is not valid for
such a file descriptor. Reissue the request specifying a nondirectory file descriptor.

145 0091 JROldPartOfNew: The old name specified on the rename service is part of the new name.

Action: Reissue the rename request, specifying a new name that does not contain the old
name.

156 009C JRTrOpenedRO: The ftruncate service was for a file opened in read-only mode.

Action: To be able to truncate a file, you must open it for write.

157 009D JRTrMountedRO: The ftruncate service was for a file on a file system mounted in read-only
mode.

Action: For you to be able to truncate a file, it must not be on a file system that has been
mounted in read-only mode.

158 009F JRTrNegOffset: A negative offset was given to the ftruncate service.

Action: To truncate a file, specify a nonnegative File_length.

160 00A0 JROutOfLocks: The file system has run out of locks.

Action: When a file system lock was requested, there were no more left in the system. Try
again later.

161 00A1 JRMount: The mount service VFS operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

162 00A2 JRUMount: The unmount service VFS operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

164 00A4 JRRoot: The Root VFS operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

Reason Codes

502 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

168 00A8 JRInvalidVnode: The vnode returned is not valid.

Action: See your IBM service representative.

169 00A9 JRInvalidParms: An incorrect combination of parameters was specified.

Action: The actual problem depends on the service.

• For a mount service, Mount_mode must not specify any values unrelated to a mount
service.

• For an unmount service, Flags must not specify any values unrelated to an unmount service,
and must not specify mutually exclusive requests.

• For all others, correct the specified parameters and reissue the request.

175 00AF JRLockErr: The file system had a lock error.

Action: See your IBM service representative.

176 00B0 JRUserNotPrivileged: The requester of the service is not privileged.

Action: The requested service required a privileged user. Check the documentation for the
service to understand what privilege is required.

177 00B1 JRUnexpectedError: An unexpected return value was received.

Action: See your IBM service representative.

180 00B4 JRQuiesced: There was a previous quiesce request.

Action: The file system required for the current function has been quiesced. After the file
system has been unquiesced, retry this service.

182 00B6 JRPfsSuspend: The physical file system needs to be restarted.

Action: Contact your IBM service representative.

184 00B8 JRNoStorage: Error obtaining free storage.

Action: You must either free some virtual storage or increase the size of your virtual machine.
To increase the size of your virtual machine, use the DEFINE command; then reIPL CMS and
enter the original command again.

256 0100 JRTrunc: Vnode operation trunc is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

257 0101 JRFsync: Vnode operation fsync is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

258 0102 JRSetAttr: Vnode operation setattr is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

Reason Codes

Appendix B. Reason Codes 503

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

259 0103 JRSymFileAlreadyExists: The file requested for creation as a symbolic link already exists.

Action: The link name specified on a symlink service request is an existing file name. Reissue
the request specifying a link name that does not already exist.

260 0104 JRSymlink: The symbolic link vnode operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

261 0105 JRFileNotSymLink: The file requested for readlink service is not a symbolic link.

Action: Reissue the readlink service request specifying the name of a file other than a
symbolic link.

262 0106 JRReadlink: The readlink vnode operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

263 0107 JRMknodInvalidType: The mknod service invoked with incorrect file type parameter.

Action: The type specified in the mknod service is not supported. The service cannot be
processed. The mknod service accepts only FT_CHARSPEC and FT_FIFO. See BPXYFTYP.
Correct the type parameter and retry the operation.

264 0108 JREndingSlashMknod: The path name ended with slash on the mknod service.

Action: The path name specified for a mknod service request ended with a slash. The service
request cannot be processed. Correct the name and retry the operation.

265 0109 JREndingSlashOCreat: The path name ended with slash on the open o_creat service.

Action: The open service request cannot be processed. Correct the name and retry the
operation.

266 010A JRLnkNoEnt: The service tried to link to nonexistent file.

Action: Use the open service to create the file, or reissue the request specifying an existing file
name.

267 010B JRLnkNewPathExists: The service tried to add a link whose name already exists.

Action: Reissue the request, specifying a new path name that does not already exist.

268 010C JRLnkAcrossFilesets: The service tried to link across file systems.

Action: Reissue the request, specifying a new path name that is within the same file system as
the existing path name.

269 010D JRLnkROFileset: The service tried to add a directory entry on a read-only file system.

Action: For you to create a link to the existing path name, the file system must be mounted in
read-write mode.

270 010E JRLink: Vn_Link is not supported by this physical file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

Reason Codes

504 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

271 010F JRExecNmLenZero: The length of the executable name passed was zero.

Action: The parameter specifying the length of the program name to be run contained zero.
Correct the program name length and resubmit the job.

274 0112 JRFsFailStorage: Spawn failed, due to unavailable file system storage.

Action: See your IBM service representative.

276 0114 JRNotPermitted: You are not permitted to signal to the specified process ID (PID).

Action: Reissue the request specifying a PID that you are authorized to send a signal to, or
reissue the request from a superuser ID.

277 0115 JRBuffLenInvalid: The length of the buffer is less than or equal to zero.

Action: The buffer length specified for this request was either a negative number, or was zero.
Retry the request specifying a valid buffer length parameter.

281 0119 JRNotSupportedForFileType: The requested service is not supported for this file type.

Action: Reissue the request, specifying a file of the correct type for the request.

282 011A JRInvalidSymLinkLen: The contents specified for the symbolic link has an incorrect length.

Action: Reissue the symlink request specifying a path length greater than or equal to zero, but
less than 1023.

283 011B JRInvalidSymLinkComp: The contents specified for symbolic link has an incorrect
component.

Action: The contents of a symbolic link must consist of components whose length cannot
exceed 255 characters.

284 011C JRFileNotOpen: The file is not opened.

Action: Reissue the request specifying an open file descriptor.

285 011D JRTooManySymlinks: Too many symbolic links were encountered in the path name.

Action: While attempting to resolve the input path name, more than POSIX_SYMLOOP (8)
symbolic links were found.

287 011F JRExecNotRegFile: The file name specified on the exec is not a regular file.

Action: The exec service detected that the file name specified by the path name argument is
not a regular type file. Correct the path name argument and resubmit the job.

290 0122 JRInactive: The vnode operation inactive is not supported by the file system.

Action: See your IBM service representative.

291 0123 JRInvalidMajorNumber: Character special file system detected an incorrect device major
number.

Action: This character special file is not supported by any device drivers installed on this
system. The request cannot be processed. Correct the path name and retry the request.

293 0125 JRRdandWRTforPipe: The open call on a pipe was for read/write.

Action: The request cannot be processed. Correct the open flags and retry the request.

Reason Codes

Appendix B. Reason Codes 505

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

296 0128 JROpenforWriteNoReaders: Open for write was done before any open for read.

Action: Open for write was requested while file flags indicated O_NONBLOCK and before any
open for read. The request cannot be processed. An open for read request must precede an
open for write request.

297 0129 JRNoReaders: The service tried to write before any open for reads.

Action: An open for read must be performed.

301 012D JRSyscallAbend: An abend occurred in a system call.

Action: See your IBM service representative.

302 012E JRBadAddress: An incorrect address was encountered when the system tried to move data.

Action: An error occurred while the system was accessing the user data. Check for incorrect
input parameters passed to the system call.

304 0130 JRSigDuringWait: A signal occurred during a wait.

Action: While the service was waiting for a to be performed, a signal was received to interrupt
it.

307 0133 JRRdnorWRTforPipe: The open service on a pipe was for neither read nor write.

Action: The request cannot be processed. Correct the open flags and retry the service.

309 0135 JRNoData: There is no data in this pipe.

Action: Try this service again later.

310 0136 JRUserNotAuthorized: The user is not authorized for the requested file descriptor.

Action: When the specified file descriptor was opened, the user was executing in an
authorized state. However, the user is now no longer authorized to use this file descriptor.
Reissue the request, specifying a file descriptor to which the user has authority.

312 0138 JRFileIsBlocked: The file is blocked.

Action: The request cannot be processed. Try again later.

313 0139 JRIoctl: The ioctl service is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

314 013A JRInvalidPid: The process ID (PID) was not found, and the signal was not sent.

Action: The target PID was either ended, or it never existed. Retry the function with an existing
PID.

319 013F JRInvTermStat: An incorrect process termination status was passed to BPX1MPC.

Action: Structure BPXYWAST describes the valid terminating status.

324 0144 JRSignalsNotBlocked: The service is not completed, and signals are not blocked.

Action: This service can be run only if all signals are blocked.

Reason Codes

506 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

325 0145 JRFdTooBig: The requested file descriptor exceeds the DFLT_OPEN_MAX limit.

Action: Reissue the request, specifying a file descriptor that does not exceed the
DFLT_OPEN_MAX limit.

326 0146 JROpenMax: The maximum number of open files for this process was reached.

Action: Close any file descriptors that are no longer needed.

329 0149 JRIOBufLengthInvalid: The input argument to the buffer length was incorrect.

Action: The argument length specified for this request was either a negative number, or was
greater than 1024. Retry the request specifying a valid argument length parameter.

330 014A JRInvalidAmode: An incorrect access mode was specified on the access service.

Action: The access mode specified on the access service either had none of the valid flags
turned on, or it had unsupported bits turned on. Reissue the request specifying a valid access
mode.

331 014B JRAccess: The access vnode operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

336 0150 JRBadAuditOption: An incorrect option code was specified for the chaudit service.

Action: Reissue the request specifying a valid audit option code.

337 0151 JRExecFileTooBig: The size of the specified file exceeds the available virtual machine
storage.

Action: The exec service has detected that the size of the executable to be run exceeds the
available virtual machine storage.

342 0156 JRSignalReceived: The call was interrupted by a signal.

Action: A signal was received while this callable service was blocked. Retry the service, if
appropriate.

359 0167 JRFuncNotSupported: The function is not supported by device driver.

Action: See your IBM service representative.

391 0187 JRChowntoPipe: The fchown service was issued against a pipe.

Action: This request cannot be performed against a pipe. Select a file descriptor that refers to
a nonpipe file and reissue the request.

392 0188 JRChaudtoPipe: The fchaudit service was issued against a pipe.

Action: This request cannot be performed against a pipe. Select a file descriptor that refers to
a nonpipe file and reissue the request.

394 018A JRWrongSsave: The caller's SVC level was incorrect.

Action: A function was requested that requires the user to be running at the SVC level at
which the thread was created or at which the cmssigsetup (BPX1MSS) service was issued.
The condition is probably the result of issuing a service sensitive to SVC level after performing
an operation such as CMSCALL or LINK that creates a new SVC level.

Reason Codes

Appendix B. Reason Codes 507

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

399 018F JRQuiescing: The call did not complete. The file system is unmounting.

Action: The requested function cannot be performed while an unmount is in progress for a file
system. Retry when the file system is mounted again.

408 0198 JRInvIoctlCmd: The w_ioctl (BPX1IOC) service was invoked with an incorrect command.

Action: The command is not supported. Correct the program and rerun.

425 01A9 JRNoCTTY: There is no controlling terminal for this process.

Action: The open request cannot be processed.

430 01AE JRBrlmNotActive: The byte range lock manager is not active.

Action: The byte range lock manager is trying to recycle. Reissue the request after the recycle
has completed.

431 01AF JRBrlmFileLockRecycling: File lock is being recycled; do not use until the file is closed by all
users.

Action: The requested file can no longer be used for byte range locking. The file cannot be
locked until it has been recycled. To recycle the file, close all file descriptors open for this file.
After all users have closed this file, it will be recycled. It may be some time before all open file
descriptors for this file have been closed.

432 01B0 JRBrlmBadFileType: Byte range locking can be performed only on regular files.

Action: Reissue the request specifying the file descriptor for a regular file.

433 01B1 JRBrlmNoReadAccess: Shared byte range locks are only for files open for read.

Action: To set a read lock on a file, it must be opened with read access. Reissue the request
specifying a file descriptor that has read access to the file.

434 01B2 JRBrlmNoWriteAccess: Exclusive byte range locks are only for files open for write.

Action: To set a write lock on a file, it must be opened with write access. Reissue the request
specifying a file descriptor that has write access to the file.

435 01B3 JRBrlmBadL_Type: A byte range lock request specified an l_type that is not valid.

Action: The value specified for l_type must be one of the following, found in BPXYBRLK:

• F_RDLCK to set a read lock
• F_WRLCK to set a write lock
• F_UNLCK to unlock a range

436 01B4 JRBrlmInvalidRange: A byte range lock extends to before the start of the file.

Action: The range specified by the l_start, l_whence, and l_len must not extend beyond the
beginning of the file. Reissue the request specifying a valid range.

Reason Codes

508 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

437 01B5 JRBrlmBadL_Whence: A byte range lock request specified an l_whence that is not valid.

Action: The value specified for l_whence must be one of the following, found in BPXYSEEK:

• SEEK_SET
• SEEK_CUR
• SEEK_END

439 01B7 JRBrlmRangeNotAvailable: All or part of requested range is held by another user.

Action: Issue a set lock with wait request to obtain the requested lock when all current users
and waiters have freed it.

440 01B8 JRBrlmDeadLockDetected: Waiting on the specified range will cause a deadlock.

Action: To avoid deadlock, release the locks being held before requesting a new range.
All users should obtain locks in the same order to maintain a lock hierarchy and avoid
deadlocking.

441 01B9 JRBrlmSignalPosted: While the process was waiting for a byte range lock, a signal was
posted.

Action: A signal was posted while the process was waiting for a lock. The lock is not obtained.

445 01BD JRBrlmBadL_Len: A byte range lock request specified an incorrect l_len.

Action: The l_len value cannot be less than zero. Reissue the request specifying an l_len that
is greater than or equal to zero.

450 01C2 JRBrlmAlreadyWaiting: Request includes a range already being waited on.

Action: The process is already waiting for a byte range lock that intersects with the requested
range. Wait until the first request is honored before issuing another.

451 01C3 JRBrlmPromotePending: Another user is waiting to promote the requested range.

Action: Another user has already requested promotion of the requested range. That promotion
will not be granted until all other users unlock their shared locks on that range. Unlock the
range in conflict and issue a set-lock-wait request for the exclusive lock desired.

453 01C5 JRBrlmProcessBroken: This process has been marked broken for byte locking.

Action: The process may no longer issue byte range locking requests.

457 01C9 JRBrlmUnlockWhileWait: The unlock service is not valid while the process is waiting for a
lock.

Action: The process is presently waiting for a lock. No unlock requests will be accepted while
the process is waiting.

458 01CA JRBrlmObjAndProcBroken: The object and process are marked broken for byte locking.

Action: The process can no longer issue byte-range-locking requests.

461 01CD JRFd2TooSmall: The second file descriptor cannot be smaller than the first.

Action: The specified request requires that the second file descriptor be greater than or equal
to the first file descriptor.

Reason Codes

Appendix B. Reason Codes 509

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

462 01CE JRPtCreateError: An unexpected error occurred in the BPX1PTC service.

Action: See your IBM service representative.

464 01D0 JRPtExitError: An unexpected error occurred in the BPXPTEXT service.

Action: See your IBM service representative.

465 01D1 JRPtCancelError: An unexpected error occurred in the BPX1PTB service.

Action: See your IBM service representative.

467 01D3 JRPtatEye: The pthread attribute area contains an incorrect eyecatcher.

Action: The eyecatcher value must be BPXYPTAT. Reissue the BPX1PTC callable service with
the corrected eyecatcher value.

470 01D6 JRAllFilesNotClosed: All requested files were not closed.

Action: Some of the file descriptors within the specified range remain open. Use closedir to
close any directory file descriptors. Any other file descriptors that remain open may have
been opened while the process was executing in an authorized state, and the process may no
longer be authorized to use them.

472 01D8 JRThreadTerm: The service rejected, and the requesting thread is in termination.

Action: The BPX1PTX callable service should be issued to complete the termination of the
thread and to obtain a new thread to process. All other OpenExtensions callable services are
not supported while a thread is in this state.

474 01DA JRLightWeightThid: The thread specified is a lightweight thread.

Action: The thread specified by the caller is for a lightweight thread. Lightweight threads are
not managed by OpenExtensions.

475 01DB JRAlreadyDetached: The thread specified is already detached.

Action: The thread specified by the caller is already detached. The requested service cannot
be performed on a detached thread.

476 01DC JRThreadNotFound: The thread specified was not found.

Action: The thread specified by the caller is not a thread in the current process known by
OpenExtensions.

478 01DE JRHeavyWeight: The new thread was not started, and the exiting thread is a heavyweight
thread.

Action: The existing task is a heavyweight thread and cannot be reused using the
PTGetNewThread option.

479 01DF JRGetFirst: The first call did not specify PTGetNewThread.

Action: The first call to this service from a newly created thread must specify the
PTGetNewThread option.

480 01E0 JRAlreadyJoined: The thread specified was already joined by another thread.

Action: The thread specified by the caller of the pthread_join service is currently joined by
another thread. The target thread of a pthread_join can be joined by only one thread at a time.

Reason Codes

510 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

483 01E3 JRJoinToSelf: The thread attempted to join to itself.

Action: The thread specified by the caller and the thread calling the pthread_join service are
the same. A thread is not allowed to join to itself.

488 01E8 JRAlreadyTerminated: The calling thread has already ended.

Action: The thread specified by the caller of the pthread_cancel service has already been
canceled or exited and is in the process of being ended.

490 01EA JRBrokenBrlmRecycling: The byte-range-lock manager is broken and is currently recycling.

Action: The byte range lock manager is trying to recycle. Reissue the request when the recycle
has completed.

491 01EB JRPtatSysOff: The system offset value in the pthread attribute area is incorrect.

Action: The system offset value must be set to the value provided with the BPXYPTAT
mapping, PTATSYSOFFVAL. Reissue the BPX1PTC callable service with the corrected system
offset value.

492 01EC JRPtatSysLen: The system length value in the pthread attribute area is incorrect.

Action: The system length value must be set to the value provided with the BPXYPTAT
mapping, PTATSYSLENVAL. Reissue the BPX1PTC callable service with the corrected system
length value.

493 01ED JRPtatLen: The total length value in the pthread attribute area is incorrect.

Action: The total length value must be set to the sum of PTAT#LENGTH and
PTATUSERLENGTH. Use the BPXYPTAT mapping to correct this error. Reissue the BPX1PTC
callable service with the corrected total length value.

495 01EF JRInvOption: Incorrect option specified on call to BPX1PTX.

Action: The option specified is either not a supported option or is a supported option that was
specified in an unsupported environment. Examples of the latter error are:

• The PTGETNEWTHREAD option is specified from a thread that was not created through the
BPX1PTC callable service. The PTEXITTHREAD option is supported only from this type of
thread.

• The PTEXITTHREAD option is specified on the first invocation of BPX1PTX from the thread
initialization routine. The first invocation of BPX1PTX must specify the PTGETNEWTHREAD
option to obtain the first thread to process.

Reissue the BPX1PTX callable service with the corrected option value.

498 01F2 JRPtatSyncType: The pthread attribute area contains an incorrect Sync Type value.

Action: The pthread sync type attribute value must be set to PTATSYNCHRONOUS. Use the
BPXYPTAT mapping for the definition of this value. Reissue the BPX1PTC callable service with
the corrected pthread sync type attribute value.

499 01F3 JRPtatDetachState: The pthread attribute area contains an incorrect detach state value.

Action: The pthread detach state attribute value must be set to PTATUNDETACHED or
PTATDETACHED. Use the BPXYPTAT mapping for the definition of these values. Reissue the
BPX1PTC callable service with the corrected pthread detach state attribute value.

Reason Codes

Appendix B. Reason Codes 511

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

500 01F4 JRNoSuchPid: The process ID is incorrect.

Action: Choose a process ID that is known to OpenExtensions.

501 01F5 JRPidEQSessLeader: The process ID is a session leader.

Action: Choose a process ID that is not a session group leader.

502 01F6 JRTooMany: The event list specified for cond_post contained more than one event.

Action: The event list specified for the BPX1CPO callable service contained more than one
event. Reissue the BPX1CPO callable service with an event list that contains only one event.

503 01F7 JRPidDifferentSession: The process ID is in a session different from the caller.

Action: Choose a process ID that is in the same session as the caller.

504 01F8 JRSetpgidAfterSpawn: The process ID specified on SETPGID is child process created using
the spawn service.

Action: Choose a process ID that does not belong to a process that has been started with
spawn, or specify the process group on the spawn call.

506 01FA JRNotDescendant: The process ID is not a descendant of the caller.

Action: Choose a process ID that is a descendant of the caller (that is, not a child or child of a
child).

507 01FB JRPgidDifferentSession: Process group ID is in a session different from the caller, or does
not exist.

Action: Choose a process group ID that is in the same session as the caller.

508 01FC JRCallerIsPgLeader: The caller is already a process group leader.

Action: Choose a process ID that is not already a process group leader.

510 01FE JRRdlBuffLenInvalid: The length of the buffer is less than zero.

Action: The readlink service requires that the specified buffer length be greater than or equal
to zero.

513 0201 JRAlreadySigSetUp: BPX1MSS found the process already set up for signals.

Action: Only one task can be set up for signals at any one time. Issue the signal unset
(BPX1MSD) service on the task that did the last setup and then reissue this service.

514 0202 JRNotSigSetUp: The service found the current task was not set up for signals.

Action: Issue the signal setup service BPX1MSS and then reissue this service.

515 0203 JREndingSlashSymlink: The path name ended with slash on the symlink service.

Action: The link name specified on a symlink request contained a trailing slash. Reissue the
request omitting the trailing slash.

516 0204 JRUndefEvents: The specified event list contains undefined events.

Action: Only specify events defined in BPXYCW for the BPX1CSE, BPX1CWA, or BPX1CTW
callable services. For the BPX1CPO service, the only event allowed is CW_CONDVAR.

Reason Codes

512 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

517 0205 JRNoEvents: The specified event list is zero.

Action: Specify one or more events defined in BPXYCW for the BPX1CSE, BPX1CWA, or
BPX1CTW callable services. For the BPX1CPO service, specify the CW_CONDVAR event.

519 0207 JRNotSetup: The thread is not set up for cond_wait or cond_timed_wait.

Action: Specify one or more events defined in BPXYCW for the BPX1CWA or BPX1CTW
callable services, or use the BPX1CSE callable service prior to BPX1CWA or BPX1CTW.

520 0208 JRAlreadySetup: The thread is already set up for cond_setup, cond_wait, or
cond_timed_wait.

Action: Use the BPX1CCA callable service to cancel a condition wait before setting up for a
new condition wait.

522 0210 JRNanoSecondsTooBig: The value specified for nanoseconds is outside the allowable range.

Action: Change the value specified for nanoseconds to be less than 1 000 000 000 (1,000
million).

529 0211 JRTimeOut: The time for the service to wait has expired.

Action: While the process was waiting for signals or a condition to occur, the wait time
specified expired.

530 0212 JRDup2Error: A problem has occurred with the requested file descriptor.

Action: Try the request again.

546 0222 JRNoSocket: The requested operation cannot be performed on a on a socket file descriptor.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

547 0223 JRMustBeSocket: The requested operation is valid only on a socket file descriptor.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

549 0225 JRQuiesceTypeInvalid: The quiescetype specified by the caller is invalid.

Action: Reissue the quiesce_threads service with the corrected quiescetype.

550 0226 JRQuiesceInProgress: Another thread in the process has already requested quiescing of all
threads.

Action: See your IBM service representative.

551 0227 JRLastThread: The last pthread is exiting when the PTFAILIFLASTTHREAD option is
specified.

Action: Reissue the BPX1PTX call without this option to cause the thread to be exited.

552 0228 JRDomainNotSupported: The requested domain is not supported.

Action: The domain must be AF_INET, AF_UNIX, or AF_IUCV.

Reason Codes

Appendix B. Reason Codes 513

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

553 0229 JRNetwork: VFS operation NETWORK is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

593 0251 JROutofSocketsNodeCells: The system was unable to obtain a cell from the sockets node
cell pool.

Action: See your IBM service representative.

596 0254 JRSocketNamed: A bind request was received for a socket that was previously named.

Action: Do not specify bind for a named socket.

606 025E JRSocketCallParmError: A socket call contains incorrect parameters.

Action: Correct the parameters and retry the request.

608 0260 JRInvalidRoutine: An invalid routine address was passed.

Action: Reissue the BPX1IPT service specifying a non-zero routine address.

609 0261 JRRoutineError: An error occurred while the user provided routine was in control.

Action: Refer to the provided diagnostic information to resolve the problem.

612 0264 JRListTooShort: The read, write, or exception list is too short to contain the specified number
of file descriptors and message queue identifiers.

Action: Reissue the request and specify a larger list.

613 0265 JRMSOutOfRange: The value specified for microseconds is outside the allowable range.

Action: Reissue the request and specify a value for microseconds in the range 0 to 1000000
(one second), inclusive.

614 0266 JRSecOutOfRange: The value specified for seconds is outside the allowable range.

Action: Reissue the request and specify a value for seconds in the range 0 to 2,147,483
(approximately 24.85 days).

617 0269 JRIncorrectSocketType: The socket type is incorrect for the request.

Action: Reissue the request with a different socket type.

617 0269 JRIncorrectSocketType: The socket type is incorrect for the request.

Action: Reissue the request with a different socket type.

626 0272 JRSocketNotCon: The requested socket is not connected.

Action: Make sure the socket is connected and reissue the request.

626 0272 JRSocketNotCon: The requested socket is not connected.

Action: Make sure the socket is connected and reissue the request.

632 0278 JRSockNoName: The request requires a socket name structure.

Action: Specify a socket name.

Reason Codes

514 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

636 027C JRSockShutDown: The socket has been shut down.

Action: The request cannot complete on this socket. Use a different socket.

649 0289 JRListenNotDone: The socket is not ready to accept connections.

Action: Issue a listen (BPX1LSN) request for the socket and then reissue the accept
(BPX1ACP) request.

653 028D JRListenAlreadyDone: A listen request has already been completed.

Action: Issue an accept (BPX1ACP) request to begin accepting connections.

664 0298 JRECBerror: The last ECB pointer in the list of ECB pointers does not have the high-order bit
(X'80000000') set on to indicate that it is the last ECB pointer in the list.

Action: Probable user programming error. Ensure that the service was called with the correct
number of ECB pointers and that the last ECB pointer has the high-order bit set on.

668 029C JRSocketTypeNotSupported: The requested socket type is not supported.

Action: Reissue the request with a different socket type.

669 029D JREcbWaitBitOn: The wait (high-order) bit was on in the specified event control block (ECB).

Action: Initialize the ECB to zero, then reissue the request.

770 0302 JRIpcBadID: The ID is not valid or has been removed from the system.

Action: The specified ID does not represent an active IPC member. Reissue the call with a
valid ID.

771 0303 JRIpcDenied: Access was denied because the caller does not have the correct permission.

Action: Access was denied based on the permissions flags set for this IPC member ID on a
previous xxxget or xxxctl call, and on the effective UID and effective GID of the process. Verify
that the correct permissions have been set and that the process is running under the correct
effective UID and effective GID. Then reissue the request.

772 0304 JRIpcExists: The IPC_CREAT and IPC_EXCL flags were set on the call, and the specified key
was already defined to Interprocess Communications.

Action: The flags indicate that a new member should be created, but a member already exists
for the specified key. If you are trying to get the existing member associated with this key,
turn off the IPC_EXCL flag and reissue the request. If you are trying to create a new member,
reissue the request with a different key.

773 0305 JRIpcMaxIDs: The number of IDs exceeds the system limit, and the create failed.

Action: Remove any IPC members not needed by using the appropriate msgctl, semctl, or
shmctl call with the IPC_RMID command. Then reissue the original request.

774 0306 JRIpcNoExist: No member exists for the specified key.

Action: No IPC member is associated with the specified key, and the IPC_CREAT flag is off,
indicating that creation of a new member is not allowed. If you are trying to get an existing
member, verify that you are using the correct key. Then reissue the request with the correct
key. If you are trying to create a new member to be associated with the specified key, turn on
the IPC_CREAT flag and reissue the request.

Reason Codes

Appendix B. Reason Codes 515

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

775 0307 JRIpcRetry: NOWAIT was specified, but the operation could not be performed immediately.

Action: The request would have caused the process to wait for completion, but the
IPC_NOWAIT flag specified on the call indicated that the process was not allowed to wait.
If the process should wait for the operation to complete, set the IPC_NOWAIT flag off and
reissue the request. If the process must never wait, the request can be issued in a loop.

776 0308 JRIpcSignaled: An IPC wait was interrupted by a signal.

Action: The request caused the process to wait (allowed because the IPC_NOWAIT flag was
set off), and that wait was interrupted by a signal before the operation could complete.
Reissue the request if appropriate.

777 0309 JRIpcBadFlags: Extraneous bits were set in the flags parameter or in the mode flag bit field.

Action: Only those mode flag bits defined for this request may be set on. All other bits must be
set off. Verify the bit settings and reissue the request.

778 030A JRMsqBadType: Message type must be greater than zero.

Action: Use a message type greater than zero and reissue the request.

779 030B JRMsqBadSize: The message length exceeds the system limit or is less than zero.

Action: Adjust the message length so that it is 0 or greater, but less than the system limit, and
reissue the request.

780 030C JRMsqNoMsg: No message of the type requested was found.

Action: The specified message queue does not contain a message of the desired type, and the
IPC_NOWAIT flag was set on. If you expected such a message to exist, verify that the correct
message_queue_ID and message_type were used on the request. If you want to wait for such a
message to arrive, reissue the request with the IPC_NOWAIT flag set off.

781 030D JRMsq2Big: The message to receive was too large for the buffer, and the MSG_NOERROR flag
was not specified.

Action: The requested message is too large to fit within the requested length (as specified by
the message_size) parameter. The MSG_NOERROR flag was set off, which did not allow the
message to be truncated to fit within that length. If truncation of the message is desired, set
MSG_NOERROR on and reissue the request. If the entire message is desired, increase the size
of the buffer and the message_size parameter accordingly and reissue the request.

782 030E JRSema4BadAdj: The value specified would exceed the system limit for semadj.

Action: The operation would cause the semval or semadj value to overflow the system-
imposed limit defined in the BPXYSEM macro. Adjust the operation and reissue the request.

783 030F JRSema4BadNOps: The specified number of semaphore operations exceeds the system
limit.

Action: Decrease the number of semaphore operations requested and reissue the request.

Reason Codes

516 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

784 0310 JRSema4BadNSems: A semaphore ID exists for the specified key, but the number of
semaphores is not valid.

Action: A semaphore set ID exists for the specified key, but the number of semaphores
requested exceeds the number of semaphores that were defined when this semaphore set
was created. Adjust the number of semaphores on this request to be less than or equal to the
maximum number of semaphores in the set and reissue the request.

786 0312 JRSema4BadSemN: The semaphore number is not valid.

Action: The specified semaphore number is less than zero or greater than the number of
semaphores in the set. Correct the semaphore number to fall within these limits and reissue
the request.

787 0313 JRSema4BadValue: The value specified would exceed the system limit.

Action: The value of semval specified in the value_or_address parameter or in the array
pointed to by the value_or_address parameter exceeds the system-imposed maximum
defined in the BPXYSEM macro. Correct the value and reissue the request.

788 0314 JRSema4BigNSems: The number of semaphores exceeds the system maximum.

Action: The number of semaphores requested to be allocated to the set exceeds the system-
defined limit. Correct the value and reissue the request.

789 0315 JRSema4ZeroNSems: The number of semaphores requested was zero, and the semaphore
set does not exist.

Action: Specifying zero as the number of semaphores is allowed only if the key is associated
with an existing semaphore set. However, the specified key is not associated with any existing
semaphore set. If you are trying to get an existing semaphore set, verify that you are using
the correct key and reissue the request with the correct key. If you want to create a new
semaphore set to be associated with this key, specify the number of semaphores to be
defined for the set and reissue the request.

790 0316 JRShmBadSize: The shared memory segment size is incorrect or outside the system-defined
range of valid segment sizes.

Action: The requested shared memory size for the existing shared memory segment
associated with the specified key cannot be greater than the shared memory size that was
defined when the shared memory segment was created. Verify that the correct key was
specified. If so, adjust the requested shared memory size appropriately and reissue the
request.

791 0317 JRShmMaxAttach: The number of shared memory segments attached for the current
process exceeds the system-defined maximum.

Action: Use shmdt (BPX1MDT) to detach some shared memory segments and then reissue the
request.

792 0318 JRIpcRemoved: During a wait, the IPC member ID was removed from the system.

Action: A request caused the process to wait (allowed by the IPC_NOWAIT flag being set off),
and during that wait the IPC member was removed from the system. This IPC member is no
longer available.

Reason Codes

Appendix B. Reason Codes 517

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

793 0319 JRMsqQBytes: Not permitted to increase the MSG_QBYTES value, or an attempt by a
superuser to set the MSG_QBYTES exceeds the system limit.

Action: You must be a superuser to issue a msgctl (BPX1QCT) request to increase the number
of bytes allowed on a queue (MSG_QBYTES), and that value must not exceed the system-
defined maximum.

796 031C JRMsqQueueFullMessages: IPC_NOWAIT was specified, but the operation was not done
because there was no room in the message queue due to the number of messages in the
message queue.

Action: Use the msgrcv (BPX1QRC) service to receive some messages off the queue, or set the
IPC_NOWAIT flag off to wait for room on the queue, and reissue the request.

797 031D JRMsqQueueFullBytes: IPC_NOWAIT was specified, but the operation was not done because
there was no room in the message queue due to the number of bytes in the message queue.

Action: Use the msgrcv (BPX1QRC) service to receive some messages off the queue, or set the
IPC_NOWAIT flag off to wait for room on the queue, or have the MSG_QBYTES limit increased
(by a superuser), and reissue the request.

799 031F JRSemStorageLimit: The semget or semop call failed because the semaphore storage limit
was reached.

Action: Release some system storage by cleaning up unneeded resources within the
application or outside the application, and then reissue the request.

804 0324 JRSmNoStorage: There is no storage available to allocate.

Action: Release some system storage by cleaning up unneeded resources within the
application or outside the application, and then reissue the request.

829 033D JRInvalidResource: The input resource value is not valid.

Action: Reissue the request with a valid resource value.

837 0345 JRPathconf: The pathconf service vnode operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

870 0366 JRWriteBeyondLimit: Cannot write beyond the file size limit.

Action: Write less data to the file.

880 0370 JRBadIDType: The ID type passed on the call was not valid.

Action: Reissue the request with a valid ID type.

881 0371 JRBadOptions: The options parameter contained options that were not valid.

Action: Reissue the request with valid options.

897 0381 JRPrevSockError: A previous error caused this socket to become unusable.

Action: Close the socket.

926 039E JRTooManyFds: Too many file descriptors were specified.

Action: Reduce the number of Fds specified to a number that is supported by the service.

Reason Codes

518 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

942 03AE JRBatSel: The batch-select VFS operation is not supported.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

945 03B1 JRCMSLoadFailure: A call to the DLL_load (BPX1LOD) service caused a failure in the CMS
LOADMOD routine.

Action: Make sure that the specified file is a relocatable, executable CMS MODULE created by
the GENMOD command, the BIND command, the c89 utility, or the cxx utility.

953 03B9 JRWaitForever: A timeout pointer value of 0 (wait forever) was specified, but there were no
events to wait for.

Action: Reissue the request and specify at least one event or change the timeout pointer value
to point to a timeout value.

954 03BA JRInvalidNfds: The NFDS parameter was larger than the number of open files for the
process.

Action: Reissue the request, specifying a value for the NFDS parameter that is less than
DFLT_OPEN_MAX.

961 03C1 JRNoFdsTooManyQIds: The number of Fds specified was negative, or too many message
queue IDs were specified on the select service.

Action: Reissue the select request, specifying a non-negative number of Fds, or reduce the
number of message queue IDs to be processed to below the maximum supported by the
system.

978 03D2 JRBadID: An incorrect ID value was passed to the wait_extension (BPX1WTE) service.

Action: Reissue the call with a valid ID.

1026 0402 JRCancel: Vnode operation CANCEL is not supported by this file system.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

1027 0403 JRDuplicateCancel: A cancel operation is already in progress for the target asyncio request.

Action: Wait for the previous cancel request to complete.

1045 0415 JRAsyncOpNotSupp: The asyncio operation cannot be performed because the socket
transport does not support asynchronous I/O, or asyncio select included a PFS that could
not support this operation.

Action: Verify that the operation was performed on a physical file system that supports the
operation.

1123 0463 JRAnr: Vnode operation ACCEPT_AND_RECEIVE is not supported by this file system.

Action: Issue separate accept and receive operations with this socket.

1124 0464 JRSrx: Vnode operation SR_CSM is not supported by this file system.

Action: Use regular send and receive operations with this socket.

Reason Codes

Appendix B. Reason Codes 519

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

1500 05DC JREcbError2: If an ECB pointer is used on selectex, the timeout pointer must be 0 (wait
forever).

Action: Correct the inputs and reissue the request.

1503 05DF JRTransportError: The sockets transport layer returned the error. For AF_INET sockets, the
transport layer is the TCP/IP stack. For AF_IUCV and AF_UNIX, the transport layer is IUCV.

Action: Refer to the return code for information on the error.

1504 05E0 JRIPv6NotEnabled: IPv6 is not enabled on the TCP/IP stack.

Action: Ensure you are using the correct stack (check TCPIPUSERID entry of TCPIP DATA file)
and ensure that the stack is correctly configured for IPv6.

2000 07D0 JRCPNotFound: Name or ID is not found.

Action: Reissue the request specifying a valid user ID, user name, group Id, or group name.

2001 07D1 JRCPNotAuthorized: Not authorized for search.

Action: Contact your system administrator to obtain the proper authority to issue the request
to query the user data base.

2002 07D2 JRCPNotAvail: User data base not available.

Action: Contact your system administrator to find out the status of the user data base.

2006 07D6 JRCPInternalError: Internal CP/CMS error.

Action: See your IBM service representative.

2007 07D7 JRCPUserNotFound: User not found.

Action: Reissue the request specifying a valid user name.

2008 07D8 JRIdentifyErr: Call to Identify failed.

Action: See your IBM service representative.

2009 07D9 JRStackReadErr: Call to StackRead failed.

Action: See your IBM service representative.

2010 07DA JRQEFLErr: Call to DMSQEFL failed.

Action: See your IBM service representative.

2011 07DB JRInvFilePoolID: The filepool identifier in the fully-qualified path name is not valid.

Action: Reissue the request specifying a valid file pool id.

2012 07DC JRInvFileSpaceID: The file space identifier in the fully-qualified path name is not valid.

Action: Reissue the request specifying a valid file space id.

2013 07DD JRNoMoreVFSs: All Virtual File System (VFS) control blocks in the FSSM are allocated.

Action: The maximum number of concurrent mounts has been reached. Issue OPENVM
UNMOUNT for any unneeded mount points.

Reason Codes

520 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2014 07DE JRNoMoreMtabs: All Mount Table Entry (MTAB) control blocks in the FSSM are allocated.

Action: The maximum number of concurrent mounts has been reached. Issue OPENVM
UNMOUNT for any unneeded mount points.

2015 07DF JRNoMoreVnods: All VNODEs in the FSSM are allocated.

Action: Try to free references to active objects by closing files or directories and reissue the
request. Or, logoff or reIPL CMS.

2018 07E2 JRCtyConnectionInop: The Cty connection is inoperative.

Action: An incorrect action code was specified. Correct the program and rerun.

2019 07E3 JRCtyInvalidAction: The action code is incorrect.

Action: See your IBM service representative.

2020 07E4 JRCtyNoCntlTerm: The caller has no controlling terminal.

Action: The caller has no controlling terminal. Correct the program or rerun in an environment
where the file is for the controlling terminal.

2021 07E5 JRCtyDiffSession: This is not the callers controlling terminal.

Action: The specified file descriptor is not for the callers controlling terminal. Correct the
program or rerun in an environment where the file is for the controlling terminal.

2022 07E6 JRCtyInvalidPgid: The requested process group ID is not valid.

Action: The specified process group ID is not a valid OpenVM process group ID. Correct the
program and rerun.

2023 07E7 JRCtyNotInSession: The process group ID (PGID) does not exist in the callers session.

Action: The callers session does not have a process group with the specified process group ID.
The process group may have already completed. Correct the program and rerun.

2024 07E8 JRCtyNotPGLeader: The process is not a process group leader.

Action: The specified process group ID does not represent a process group leader. Correct the
program or rerun in an environment where the process is a process group leader.

2025 07E9 JRCtyBgCall: This is a background process.

Action: The service requested is not allowed from the background. Rerun the program in the
foreground.

2026 07EA JRCtyBadQueSel: The queue selector is not valid.

Action: An incorrect queue selector was specified. Correct the program and rerun.

2027 07EB JRCtyOrphanedWrite: The write service is processing in a background orphaned process
group.

Action: This condition most likely occurs when a process that is spawned from the session
leader attempts to write to the terminal after the session leader process has ended. The
process cannot read from or write to the terminal once the session leader process ends. This
terminal session is no longer usable. Restart the application from another session.

Reason Codes

Appendix B. Reason Codes 521

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2028 07EC JRCtySIGTTINBlocked: The process is in a background process group and SIGTTIN is
blocked or ignored.

Action: If the SIGTTIN signal is either blocked or ignored, the read call can be issued only
from a process that is running in a foreground process group.

2029 07ED JRCtyInputStopped: Nonblocked read failed, because input is stopped.

Action: Input has been stopped by a tcflow service. Issue a tcflow to start input, and reissue
the read.

2030 07EE JRCtyOutputStopped: Nonblocked write failed, because output is stopped.

Action: Output has been stopped by a tcflow service. Issue a tcflow to start output, and
reissue the write.

2031 07EF JRCtyOrphanedRead: The read service is processing in a background orphaned process
group.

Action: This condition most likely occurs when a process that is spawned from the session
leader attempts to write to the terminal after the session leader process has ended. The
process cannot read from or write to the terminal once the session leader process ends. This
terminal session is no longer usable. Restart the application from another session.

2032 07F0 JRCtyNoData: Data or room is not available on the queue.

Action: Non-blocking read was issued, but there is no data on the input queue. Reissue the
request again later.

2033 07F1 JRCtyDeviceError: I/O error occurred during terminal read or write.

Action: An I/O error occurred when process was trying to read from or write to a terminal.
Reissue the request again.

2034 07F2 JRCtyAlreadyActive: The process has already opened a terminal file.

Action: An attempt was made to open another terminal file. Close an opened terminal, then
retry.

2035 07F3 JRInvDeviceId: The fully-qualified root contains the reserved POSIX device ID, but the
qualifying path name is unsupported or invalid.

Action: Reissue the request specifying a valid path name.

2036 07F4 JRLinkNotFound: The data associated with the external link cannot be found.

Action: Use the OPENVM QUERY LINK command to verify the external link. Also, check your
search order to make sure you have the necessary directories and minidisks accessed.

2049 0801 JRBindBadState: FSSTATE macro returned an unexpected return code while checking the
existence of a CMS module file on a CMS minidisk.

Action: Message DMS1745S contains the FSSTATE return code. More information on FSSTATE
can be found in z/VM: CMS Macros and Functions Reference.

Reason Codes

522 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2050 0802 JRBindNotOpenedI: FSOPEN failed to open the CMS module file for input. The CMS Binder
checks an existing module to determine if it is executable before replacing it with a non-
executable extended format CMS module.

Action: Message DMS1262S contains the FSOPEN return code. More information on FSOPEN
can be found in z/VM: CMS Macros and Functions Reference.

2051 0803 JRBindNotOpenedO: FSOPEN failed to open the CMS module file for output. The CMS Binder
is unable to open the required CMS module to write the new CMS module file.

Action: Message DMS1262S contains the FSOPEN return code. More information on FSOPEN
can be found in z/VM: CMS Macros and Functions Reference.

2051 0803 JRChmodFiletype: Mode (file type) mismatch on chmod.

Action: Reissue the request specifying a valid mode.

2052 0804 JRBindNotClosed: FSCLOSE failed to close the CMS module file.

Action: Message DMS1262S or DMS1740E contains the FSCLOSE return code. More
information on FSCLOSE can be found in z/VM: CMS Macros and Functions Reference.

2052 0804 JRInvalidAttr: Invalid Attr input to vnode operation.

Action: See your IBM service representative.

2053 0805 JRBindBadRead: The FSREAD macro returned an unexpected return code while reading a
record from a CMS module file on a CMS minidisk.

Action: Message DMS104S contains the FSREAD return code. More information on FSREAD
can be found in z/VM: CMS Macros and Functions Reference.

2053 0805 JRInvalidCjar: Invalid Cjar input to vnode operation.

Action: See your IBM service representative.

2054 0806 JRBindBadWrite: FSWRITE macro returned an unexpected return code while writing a record
to a CMS module file on a CMS minidisk.

Action: Message DMS105S contains the FSWRITE return code. More information on FSWRITE
can be found in z/VM: CMS Macros and Functions Reference.

2055 0807 JRInvalidFileType: Invalid file type for current operation.

Action: Reissue the request specifying a valid type of file.

2056 0808 JRInvalidForSymlink: This operation is invalid for symbolic links.

Action: Reissue the request specifying a symbolic link.

2057 0809 JRInvalidMtab: Invalid mount table entry.

Action: See your IBM service representative.

2058 080A JRInvalidIName: Input name (terminal pathname component) invalid.

Action: See your IBM service representative.

2059 080B JRInvalidToken: Invalid Token Manager token.

Action: See your IBM service representative.

Reason Codes

Appendix B. Reason Codes 523

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2060 080C JRInvalidUIO: Invalid UIO input to vnode operation.

Action: See your IBM service representative.

2061 080D JRLockRetryLim: Number of lock retries exceeded; reissue request.

Action: This should be a transient condition. Retry the service. If the problem persists, contact
the system programmer or system administrator to diagnose the problem.

2062 080E JRNotBFS: Not a Byte File Space.

Action: Reissue the request, specifying the name of a Byte File System.

2063 080F JRObjectInUse: Byte-Range/Object/Directory/File Space/Storage Group is in use.

Action: A lock or object token conflict was detected that may involve extensive delay. Issue
the request again. If it still fails, determine if the object is locked explicitly using QUERY
FILEPOOL DISABLE or QUERY LOCK. Or, in the case where the conflict is for an object token
and reissuing the request does not resolve this, your system administrator should determine if
a client virtual machine is in a loop or other condition where it does not respond.

2064 0810 JRBindNoStorage: CMSSTOR macro returned an unexpected return code while attempting to
obtain storage to generate a CMS module file on a CMS minidisk.

Action: Refer to the associated messages issued by CMSSTOR for the CMSSTOR return code
and error description. More information on CMSSTOR can be found in z/VM: CMS Macros and
Functions Reference.

2064 0810 JRRemoveTopDir: Cannot remove top directory.

Action: The BFS top directory cannot be removed with this request. Ask your file pool
administrator to issue the DELETE USER command or DMSDEUSR CSL routine to remove the
file system.

2065 0811 JRSoftLinkError: Soft link creation error.

Action: See your IBM service representative.

2066 0812 JRStorageObtainErr: Error obtaining free storage.

Action: You must either free some virtual storage or increase the size of your virtual machine.
To increase the size of your virtual machine, use the DEFINE command; then reIPL CMS and
enter the original command again.

2067 0813 JRStorageReleaseErr: Error releasing free storage.

Action: ReIPL and reissue the command. If the problem persi ensure that the application you
are using is not corrupting storage. If that doesn't help, contact system support personnel to
correct the problem.

2071 0817 JRInvalidAuthStruc: Invalid authorization structure on MakeCatRow.

Action: See your IBM service representative.

2072 0818 JRInvalidInputBuf: Invalid input buffer on MakeCatRow.

Action: See your IBM service representative.

Reason Codes

524 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2073 0819 JRInvalidOutputBuf: Invalid output buffer on MakeCatRow.

Action: See your IBM service representative.

2074 081A JRUDCError1: User Data Cache error (buffer header management).

Action: See your IBM service representative.

2075 081B JRUDCError2: User Data Cache error (block header management).

Action: See your IBM service representative.

2076 081C JRUDCError3: User Data Cache error (LRU queue management).

Action: See your IBM service representative.

2077 081D JRNoRecall: File is migrated, but RECALL is off.

Action: SET RECALL ON and enter the request again, or enter the DFSMS RECALL command to
explicitly recall the file.

2078 081E JRFsNotRegFile: The fsync() call is supported only for regular files.

Action: Reissue the request specifying the name of a regular file.

2079 081F JRNothingMounted: The umount service was issued, but nothing was mounted.

Action: The requested service cannot be processed.

2080 0820 JRBindNegativeLength: A negative length for the linear program object was passed in the
parameter list to the BPX1WRT CMS Binder interface

Action: There is a program logic error in CMS Binder processing. Collect any relevant
information and report the problem to your IBM service representative.

2080 0820 JRGetFQName: The GetFQName vnode operation is not supported.

Action: See your IBM service representative.

2081 0821 JRDuplicateMEL: There can only be 1 reference to a target of a mount external link (MEL) at a
time.

Action: Unlink the original MEL or reIPL CMS and retry the request.

2082 0822 JRFileSpaceUnknown: The specified file spaces does not exist, or is not a BFS file space.

Action: Reissue the request specifying a valid BFS file space id.

2083 0823 JRMountNotFQName: The file system to be mounted must be a fully-qualified path name.

Action: Reissue the request specifying a fully-qualified path name.

2084 0824 JRNoExtLink: The requested operation cannot be performed on an external link.

Action: Reissue the request specifying a file that is not an external link.

2095 082F JRExtFileDoesNotExist: The CMS file referenced by the specified external link does not exist.

Action: An external link of subtype FST_EXEC or subtype FST_DATA was created, and a
command was entered against the external link that required the CMS file referenced by the
external link to exist. Reissue the request, specifying a link name that references an existing
file.

Reason Codes

Appendix B. Reason Codes 525

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2096 0830 JRExtFileAlreadyExists: The file requested for creation as an external link already exists.

Action: The link name specified on an extlink service request is an existing file name. Reissue
the request specifying a link name that does not already exist.

2097 0831 JRBindBadPOdata: A program object does not contain the required eyecatcher

Action: If you are trying to replace an existing extended format CMS module file on the output
CMS minidisk, delete it and retry the operation. If the problem still persists, collect any
relevant information and report the problem to your IBM service representative.

2097 0831 JRExtlink: The external link vnode operation is not supported.

Action: See your IBM service representative.

2098 0832 JRBindDuplicatePOKey: A duplicate key has been detected in the linear program object
header.

Action: There is a program logic error in the CMS Binder processing. Collect any relevant
information and report the problem to your IBM service representative.

2098 0832 JRFileNotExtLink: The file requested for readlink service is not an external link.

Action: Reissue the readlink service request specifying the name of an external link.

2099 0833 JRBindInvalidPOKey: An invalid key has been detected in the linear program object header.

Action: There is a program logic error in the CMS Binder processing. Collect any relevant
information and report the problem to your IBM service representative.

2099 0833 JRInvalidExtLinkLen: The contents specified for an external link has an incorrect length.

Action: Reissue the extlink request specifying a path length greater than or equal to zero, but
less than 1023.

2100 0834 JRBindMissingPOKey: A required key field is missing from the linear program object header.

Action: There is a program logic error in CMS Binder processing. Collect any relevant
information and report the problem to your IBM service representative.

2100 0834 JREndingSlashExtlink: The path name ended with slash on the extlink service.

Action: The link name specified on an extlink request contained a trailing slash. Reissue the
request omitting the trailing slash.

2101 0835 JRNoMorePNEs: All path name cache entries are taken.

Action: There are no free path name cache entries in the FSSM. Logoff or reIPL CMS.

2102 0836 JRInvCWD: The working directory as defined cannot be resolved.

Action: Examine your current working directory using the OPENVM QUERY DIRECTORY
command to ensure that the path name is qualified the way you want it to be.

2103 0837 JRInvRoot: The root directory as defined cannot be resolved.

Action: Examine your file system root using the OPENVM QUERY MOUNT command to ensure
that the path name is qualified the way you want it to be.

Reason Codes

526 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2104 0838 JRStorageGroupFull: The storage group containing the file space is full.

Action: Remove some regular files from your file space or ask the file pool administrator to
issue the MODIFY USER command to increase the size of your file space.

2105 0839 JRFileSpaceFull: The file space is full.

Action: Remove some regular files from your file space or ask the file pool administrator to
issue the FILEPOOL MINIDISK command to increase the size of the storage group.

2106 083A JRNoDFSMS: DFSMS not active or SEND or RECALL exit not active.

Action: Contact your file pool administrator to determine why DFSMS is not available for your
file pool.

2107 083B JRBRMCancel: Canceled by the BRM cancel request.

Action: Retry the request or contact your system administrator to determine why your request
was canceled.

2108 083C JRPipeProcErr: Generic pipe processor errors.

Action: See your IBM service representative.

2110 083E JRRenameTopDir: Cannot rename top directory.

Action: The BFS top directory cannot be renamed with this request. Ask your file pool
administrator to issue the FILEPOOL RENAME command to rename the file system.

2111 083F JRSerStorageObtainErr: Error obtaining free storage in file pool server.

Action: You must either increase the size of the file pool server virtual machine or use a
different file pool server. Contact your file pool administrator and inform him of the problem.

2112 0840 JRBindDuplicateModule: A CMS module with the same file name already exists on the
output disk and the REPLACE=NO option has been specified.

Action: Refer to message DMS1905S for the output module name. Specify the REPLACE
option on the name statement or SAVEW API parameter list and retry the operation to replace
the module.

2112 0840 JRMaxconnExceeded: APPC/VM maxconn exceeded for this virtual machine.

Action: If your user ID limit was reached, logoff or reIPL CMS to remove the existing
connections. Or contact the administrator ofr the CP directory entry for your user ID to
increase the MAXCONN value.

2113 0841 JRBindNXstdModule: The generated linear program object is non-executable and cannot be
stored as a standard format CMS module. This only occurs when either a COMPAT(PM1) or
COMPAT(LKED) option has been specified.

Action: Refer to the associated CMS Binder messages to determine why the module is
non-executable and either remedy the reported error or specify a LET option value so the
program module is not marked non- executable. Otherwise, specify either COMPAT(PM2) or
COMPAT(PM3) to generate an extended format CMS module, which can be non-executable.

Reason Codes

Appendix B. Reason Codes 527

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2113 0841 JRFilePoolUnknown: Unknown or unavailable file pool.

Action: The file pool ID is part of the the fully-qualified path name. If you are not using a
fully-qualified path name, use OPENVM QUERY MOUNT to determine your root and the name
of the file pool. Once you have determined the file pool ID used, contact your system support
personnel to determine the status of the file pool.

2114 0842 JRBindNoStoreNXstd: The generated linear program Object is non-executable and cannot
replace an existing standard CMS module on the same output CMS minidisk.

Action: Refer to the associated CMS Binder messages to determine why the module is non-
executable and either remedy the reported error or specify a LET option value so the program
module is not marked non- executable. Otherwise, specify the STORENX=YES option and
retry the operation to permit the non-executable module to replace the existing module file.

2114 0842 JRFilePoolSever: Connection to file pool has been severed.

Action: Notify system support personnel or the file pool administrator that the file pool is
unavailable.

2115 0843 JRBindNoStoreNXext: The generated linear program object is non-executable and cannot
replace an existing executable extended format CMS module on the same output CMS
minidisk.

Action: Refer to the associated CMS Binder messages to determine why the module is non-
executable and either remedy the reported error or specify a LET option value so the program
module is not marked non- executable. Otherwise, specify the STORENX=YES option and
retry the operation to permit the non-executable module to replace the existing module file.

2115 0843 JRSvrMaxconnExceeded: APPC/VM maxconn exceeded for file pool server.

Action: Contact the file pool administrator. The administrator should either increase the
MAXCONN value for the server machine or somehow decrease the number of users accessing
the file pool at any one time.

2116 0844 JRNoMoreIOCache: I/O cache (user data cache) buffers are all in use.

Action: See your IBM service representative.

2117 0845 JRConnectAuthFailure: Not authorized to connect to file pool.

Action: Contact the file pool administrator. The administrator should either enroll you by name
into the file pool, ENROLL PUBLIC for the file pool, or assign a POSIXINFO UID statement to
your CP directory entry.

2118 0846 JRNFSCBranchFail: LFS error communicating with NFS client.

Action: See your IBM service representative.

2119 0847 JRNFSCInitFail: General NFS Client initialization failure.

Action: See your IBM Service Representative.

2120 0848 JRNFSCInitFail1: SCREERUN load error during NFS Client LFS session initialization.

Action: See your IBM service representative.

2121 0847 JRNFSCInitFail2: NFS MODULE load error during NFS Client LFS session initialization.

Action: See your IBM service representative.

Reason Codes

528 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2122 084A JRNFSCInitFail3: CMS MT init error during NFS Client LFS session initialization.

Action: See your IBM service representative.

2123 084B JRNFSCInitFail4: Queue failure during NFS Client LFS session initialization.

Action: See your IBM service representative.

2124 084C JRNFSCInitFail5: Root thread failure during NFS Client LFS session initialization.

Action: See your IBM service representative.

2125 084D JRNFSCInitFail6: Queue failure during NFS Client process initialization.

Action: See your IBM Service Representative.

2126 084E JRNFSCInitFail7: Queue failure during NFS Client local initialization.

Action: See your IBM Service Representative.

2127 084F JRNFSCInitFail8: PFS init failure during NFS Client local initialization.

Action: See your IBM service representative.

2128 0850 JRBindPSGMUnsupported: The generated linear program object contains unsupported
overlay segment information.

Action: Overlay segments are not supported by CMS. Modify the source program to remove
the overlay segments. Then recompile and BIND to generate a module that does not use
overlay segments.

2128 0850 JRNFSCReqFail: General failure during NFS request.

Action: See your IBM service representative.

2129 0851 JRBindBadLIDXsegment: A loader data segment that is not valid has been detected in the
linear program object while building a standard format CMS module.

Action: Collect any relevant information and report the problem to your IBM service
representative.

2129 0851 JRNFSCReqFail1: Queue failure during NFS Client request processing.

Action: See your IBM Service Representative.

2130 0852 JRBindBadSegmentId: An segment ID that is not valid was detected in the relocation data of
the linear program object while building a standard format CMS module.

Action: To circumvent, specify either COMPAT(PM2) or COMPAT(PM3) to build an extended
format CMS module. Otherwise, collect any relevant information and report the problem to
your IBM service representative.

2130 08520 JRNFSCReqFail2: Thread create failure during NFS request processing.

Action: See your IBM Service Representative.

2131 0853 JRBindBadRDTFormat: Relocation data contains an incorrect or unsupported format.

Action: To circumvent, specify either COMPAT(PM2) or COMPAT(PM3) to build an extended
format CMS module. Otherwise, collect any relevant information and report the problem to
your IBM service representative.

Reason Codes

Appendix B. Reason Codes 529

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2131 0853 JRNFSCMntTCPIPDATA: TCPIP DATA file not found.

Action: Access the disk containing the TCPIP DATA file.

2132 0854 JRBindRDT1outsideText: A format 1 relocation data entry contains an incorrect relocation
offset.

Action: To circumvent, specify either COMPAT(PM2) or COMPAT(PM3) to build an extended
format CMS module. Otherwise, collect any relevant information and report the problem to
your IBM service representative.

2132 0854 JRNFSCMntTCPXLBIN: POSIX TCPXLBIN or other TCPXLBIN file not found.

Action: Access the disk containing the TCPXLBIN file specified in the mount operation.

2133 0855 JRBindRDT2outsideText: A format 2 relocation data entry contains an incorrect relocation
offset.

Action: To circumvent, specify either COMPAT(PM2) or COMPAT(PM3) to build an extended
format CMS module. Otherwise, collect any relevant information and report the problem to
your IBM service representative.

2133 0855 JRNFSCInitFail9: Error getting socket during NFS client init..

Action: See your IBM Service Representative.

2134 0856 JRBindRDT3outsideText: A format 3 relocation data entry contains an incorrect relocation
offset.

Action: To circumvent, specify either COMPAT(PM2) or COMPAT(PM3) to build an extended
format CMS module. Otherwise, collect any relevant information and report the problem to
your IBM service representative.

2134 0856 JRNFSCInitFail10: Queue failure during NFS Client local init.

Action: See your IBM Service Representative.

2135 0857 JRBindRDT3BadFormat: The processing of a format 3 relocation data entry has detected
incorrect relocation offset.

Action: To circumvent, specify either COMPAT(PM2) or COMPAT(PM3) to build an extended
format CMS module. Otherwise, collect any relevant information and report the problem to
your IBM service representative.

2135 0857 JRPfsCtl: PFSCTL function not supported by file system.

Action: See your IBM service representative.

2136 0858 JRBindBad24BitAddress: Processing a 24 bit relocation data entry has generated an address
greater than X'00FFFFFF'.

Action: Revise the program structure to utilize 31 bit programming techniques.

2136 0858 JRNFSC2ManyRestart: Too many restart attempts have been made in error.

Action: See your IBM Service Representative.

Reason Codes

530 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2137 0859 JRBindAliasUnsupported: Alias Information has been detected while building either a
standard or extended format CMS module on a CMS minidisk. Alias information is not
supported in this environment.

Action: Remove ALIAS statements from the CMS Binder input commands and statements.
Then retry the CMS BIND operation.

2137 0859 JRNFSError: Error reported by NFS client.

Action: Examine the return code to determine the reason for the error.

2138 085A JRNFSNamNotAllowed: Error fully-qualified name not allowed.

Action: Retry the operation specifying a name that does not represent an object in any
NFS-mounted file system.

2139 085B JRGetHostNameError: Error on Gethostname call.

Action: Check the host name specification in the TCPIP DATA file.

2140 085C JRPCNFSNotAvail: PCNFS protocol not available at server.

Action: Retry the request without specifying user ID.

2141 085D JRPCNFSError: Error calling PCNFS.

Action: Retry the request without specifying user ID.

2142 085E JRBadNFSpathname: Invalid NFS pathname.

Action: Retry the request specifying a fully-qualified NFS path name in the correct format.

2143 085F JRBadTCPIPDATA: Error using TCPIP DATA file.

Action: Determine why the TCPIP DATA file cannot be read.

2144 0860 JRBadNETRCFile: Error using NETRC DATA file.

Action: Determine why the NETRC DATA file cannot be read.

2145 0861 JRNETRCFileNotFound: NETRC DATA file not found.

Action: Create an NETRC DATA file, or specify user ID and password, or ANONYMOUS, on the
mount request.

2146 0862 JRMntNoPassword: User ID provided, but no password.

Action: Specify a password on the mount request or in the NETRC DATA file.

2147 0863 JRStatVFS: StatVFS function not supported by file system.

Action: None.

2148 0864 JRNFSVerNotSupp: Requested version of NFS not supported.

Action: Retry the mount request specifying a different version.

2149 0865 JRNFSDecodeFail: NFS server option is not valid.

Action: Correct the NFS server options specified as part of the Network File System path name
and retry the request.

Reason Codes

Appendix B. Reason Codes 531

Table 8. OpenExtensions Reason Codes by Numeric Value (continued)

Dec
Value

Hex
Value

Description

2150 0866 JRBadTCPXLBIN: Error using TCPXLBIN file.

Action: Determine why the TCPXLBIN file cannot be read.

2151 0867 JRNFSNotAllowed: Operation not allowed for an object in an NFS-mounted file system.

Action: Retry the request specifying a path name that does not represent an object in an
NFS-mounted file system.

2152 0868 JRGIDLimitExceeded: GID Supplemental List limit exceeded.

Action: Decrease the number of entries in the supplemental GID list.

2154 086A JRNFSCSocketFailed: Failure on a socket being used to communicate with a remote NFS
server.

Action: Retry the request.

2155 086B JRNFSCNoPermMount The export list at the remote NFS server does not contain an entry
that allows you to mount the directory, you do not have permission for the directory, or the
NFS server requires that the NFS client use a low port number (in the range 0 to 1023).

Action: Contact the system administrator for the remote host to ask that the export list be
updated.

If the NFS server allows mounting of non-exported file systems, contact the owner of the file
system to update permissions.

If the NFS server allows mounting of only exported systems and the export list contains
an entry allowing you to mount, it may be that the NFS server requires the use of a low
port number (in the range 0 to 1023). Contact the system administrator for the remote
host to ask that the remote NFS server configuration be changed to permit clients to use
any port number. The system administrator should consult the NFS server documentation to
determine how this is done. The documentation may make reference to "secure" or "insecure"
port numbers.

2156 086C JRNFSMountError Error during NFS mount.

Action: Use the OPENVM FORMAT command to display information about why the mount
attempt failed.

2157 086D JRPortMapperError Error calling port mapper.

Action: Contact the TCP/IP administrator for the foreign host to determine why the port
mapper function is not available.

2158 086E JRConnectSSIFailure The only connections to the file pool that are allowed are those from
within the SSI cluster.

Action: Retry connecting to the file pool from within the SSI cluster.

Special CMS File Pool Server and BFS Client Reason Codes
The following is a list of file pool server internal reason codes. They may be displayed when the return
code is X'A2' and the reason code qualifier is in the range X'5B00' to X'5BFF'. (Reason code qualifier
X'5B01' is for BFS client internal reason codes, which are not listed here.) All of these codes represent a
system error for which you should see your IBM service representative.

Reason Codes

532 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 9. File pool server internal reason codes

Dec Value Hex Value Description

200 0C8 Object already exists or duplicate key violation in catalog

450 1C2 Invalid input type for BFS server request

466 1D2 File space is not a BFS file space

469 1D5 Invalid token passed in BRMIN. The token could not be
resolved to a BFCB (by read, write, or close) or to a DCB (by
readdir or closedir).

470 1D6 File not open for write (detected by write) or proper token not
held

471 1D7 No file space found (no SPACECAT row)

474 1DA Invalid number of buffers passed in the BRMIN or invalid
filesize (for write).

478 1DE Attempted to unlink a directory or attempted to open a
directory using a BRM OPEN request or attempted to do a pipe
open for an object that is not a named pipe.

484 1E4 Invalid length on pipe read (< 0 | > 16K)

485 1E5 Mismatch in code levels among the server modules.

499 1F3 Overflow in the HIGHINO or HIGHNID

561 231 Required lock not in effect.

713 2C9 An unexpected error was returned on the call to SAC lock
functions.

716 2CC An unexpected error was returned on a call to an SC Function

729 2D9 A call was attempted for an unsupported request.

730 2DA System error in DAC. This could occur when DAC modules
detect input parameters that are no supposed to occur or
when control blocks contain data that's inconsistent or should
not be there.

733 2DD System error in file pool server data access component.

734 2DE Sliver condition in BRM Space Management.

740 2E4 Inconsistent Catalogs.

760 2F8 File pool server commit processing error. Commit is not done
and an implicit rollback is performed.

790 316 Invalid input - should not occur situations

791 317 Search key does not resolve to an object (internal token mgr
error)

792 318 Invalid object pointer (internal token mgr error)

972 3CC System error in Byte File Linkage Component

Reason Codes

Appendix B. Reason Codes 533

OpenExtensions Reason Codes Listed by Symbolic Name
Table 10. OpenExtensions Reason Codes by Symbolic Name

Reason Code Decimal Hex

JRAccess 331 014B

JRAllFilesNotClosed 470 01D6

JRAlreadyDetached 475 01DB

JRAlreadyJoined 480 01E0

JRAlreadySetup 520 0208

JRAlreadySigSetUp 513 0201

JRAlreadyTerminated 488 01E8

JRAnr 1123 0463

JRAsyncOpNotSupp 1045 0415

JRBadAddress 302 012E

JRBadAuditOption 336 0150

JRBadEntryCode 134 0086

JRBadID 978 03D2

JRBadIDType 880 0370

JRBadNETRCFile 2144 0860

JRBadNFSpathname 2142 085E

JRBadOptions 881 0371

JRBadTCPIPDATA 2143 085F

JRBadTCPXLBIN 2150 0866

JRBatSel 942 03AE

JRBindAliasUnsupported 2137 0859

JRBindBad24BitAddress 2136 0858

JRBindBadLIDXsegment 2129 0851

JRBindBadPOdata 2097 0831

JRBindBadRDT1outsideText 2132 0854

JRBindBadRDT2outsideText 2133 0855

JRBindBadRDT3BadFormat 2135 0857

JRBindBadRDT3outsideText 2134 0856

JRBindBadRDTFormat 2131 0853

JRBindBadRead 2053 0805

JRBindBadSegmentID 2130 0852

JRBindBadState 2049 0801

JRBindBadWrite 2054 0806

Reason Codes

534 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRBindDuplicateModule 2112 0840

JRBindDuplicatePOKey 2098 0832

JRBindInvalidPOKey 2099 0833

JRBindMissingPOKey 2100 0834

JRBindNegativeLength 2080 0820

JRBindNoStorage 2064 0810

JRBindNoStoreNXext 2115 0843

JRBindNoStoreNXstd 2114 0842

JRBindNotClosed 2052 0804

JRBindNotOpenedI 2050 0802

JRBindNotOpenedO 2051 0803

JRBindNXstdModule 2113 0841

JRBindPSGMUnsupported 2128 0850

JRBothMode 105 0069

JRBrlmAlreadyWaiting 450 01C2

JRBrlmBadFileType 432 01B0

JRBrlmBadL_Len 445 01BD

JRBrlmBadL_Type 435 01B3

JRBrlmBadL_Whence 437 01B5

JRBrlmDeadLockDetected 440 01B8

JRBrlmFileLockRecycling 431 01AF

JRBrlmInvalidRange 436 01B4

JRBrlmNoReadAccess 433 01B1

JRBrlmNotActive 430 01AE

JRBrlmNoWriteAccess 434 01B2

JRBrlmObjAndProcBroken 458 01CA

JRBrlmProcessBroken 453 01C5

JRBrlmPromotePending 451 01C3

JRBrlmRangeNotAvailable 439 01B7

JRBrlmSignalPosted 441 01B9

JRBrlmUnlockWhileWait 457 01C9

JRBRMCancel 2107 083B

JRBrokenBrlmRecycling 490 01EA

JRBuffLenInvalid 277 0115

Reason Codes

Appendix B. Reason Codes 535

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRBuffTooSmall 107 006B

JRBytes2RWZero 138 008A

JRCallerIsPgLeader 508 01FC

JRCancel 1026 0402

JRChaudtoPipe 392 0188

JRChdNoEnt 80 0050

JRChdNotDir 79 004F

JRChmodFiletype 2051 0803

JRChowntoPipe 391 0187

JRClNeedClose 66 0042

JRClose 69 0045

JRCMSLoadFailure 945 03B1

JRCompNameTooLong 62 003E

JRCompNotDir 60 003C

JRConnectAuthFailure 2117 0845

JRConnectSSIFailure 2158 086E

JRCPInternalError 2006 07D6

JRCPNotAuthorized 2001 07D1

JRCPNotAvail 2002 07D2

JRCPNotFound 2000 07D0

JRCPUserNotFound 2007 07D7

JRCreate 76 004C

JRCtyAlreadyActive 2034 07F2

JRCtyBadQueSel 2026 07EA

JRCtyBgCall 2025 07E9

JRCtyConnectionInop 2018 07E2

JRCtyDeviceError 2033 07F1

JRCtyDiffSession 2021 07E5

JRCtyInputStopped 2029 07ED

JRCtyInvalidAction 2019 07E3

JRCtyInvalidPgid 2022 07E6

JRCtyNoCntlTerm 2020 07E4

JRCtyNoData 2032 07F0

JRCtyNotInSession 2023 07E7

Reason Codes

536 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRCtyNotPGLeader 2024 07E8

JRCtyOrphanedRead 2031 07EF

JRCtyOrphanedWrite 2027 07EB

JRCtyOutputStopped 2030 07EE

JRCtySIGTTINBlocked 2028 07EC

JRDiffFileSets 123 007B

JRDirNotFound 61 003D

JRDirWriteRequest 100 0064

JRDomainNotSupported 552 0228

JRDotOrDotDot 130 0082

JRDuplicateCancel 1027 0403

JRDuplicateMEL 2081 0821

JRDup2Error 530 0212

JRECBerror 664 0298

JREcbError2 1500 05DC

JREcbWaitBitOn 669 029D

JREndingSlashExtlink 2100 0834

JREndingSlashMknod 264 0108

JREndingSlashOCreat 265 0109

JREndingSlashSymlink 515 0203

JRExecFileTooBig 337 0151

JRExecNmLenZero 271 010F

JRExecNotRegFile 287 011F

JRExtFileAlreadyExists 2096 0830

JRExtlink 2097 0831

JRFdAllocErr 136 0088

JRFdTooBig 325 0145

JRFd2TooSmall 461 01CD

JRFileDesNotInUse 55 0037

JRFileExistsExclFlagSet 99 0063

JRFileIsBlocked 312 0138

JRFileNotExtLink 2098 0832

JRFileNotOpen 284 011C

JRFileNotSymLink 261 0105

Reason Codes

Appendix B. Reason Codes 537

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRFileNotThere 108 006C

JRFilePoolSever 2114 0842

JRFilePoolUnknown 2113 0841

JRFileSpaceFull 2105 0839

JRFileSpaceUnknown 2082 0822

JRFilesysNotThere 46 002E

JRFsFailStorage 274 0112

JRFsNotRegFile 2078 081E

JRFSNotStart 90 005A

JRFsync 257 0101

JRFuncNotSupported 359 0167

JRGetAttr 110 006E

JRGetFirst 479 01DF

JRGetFQName 2080 0820

JRGetHostNameError 2139 085B

JRGIDLimitExceeded 2152 0868

JRHeavyWeight 478 01DE

JRIdentifyErr 2008 07D8

JRInactive 290 0122

JRIncorrectSocketType 617 0269

JRInternalError 132 0084

JRInvalidAmode 330 014A

JRInvalidAttr 2052 0804

JRInvalidAuthStruc 2071 0817

JRInvalidCjar 2053 0805

JRInvalidExtLinkLen 2099 0833

JRInvalidFileType 2055 0807

JRInvalidForSymlink 2056 0808

JRInvalidIName 2058 080A

JRInvalidInputBuf 2072 0818

JRInvalidMajorNumber 291 0123

JRInvalidMtab 2057 0809

JRInvalidNfds 954 03BA

JRInvalidOutputBuf 2073 0819

Reason Codes

538 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRInvalidParms 169 00A9

JRInvalidPid 314 013A

JRInvalidResource 829 033D

JRInvalidRoutine 609 0261

JRInvalidSigAct 142 008E

JRInvalidSigHow 143 008F

JRInvalidSignal 141 008D

JRInvalidSymLinkComp 283 011B

JRInvalidSymLinkLen 282 011A

JRInvalidToken 2059 080B

JRInvalidUIO 2060 080C

JRInvalidVnode 168 00A8

JRInvCWD 2102 0836

JRInvDeviceId 2035 07F3

JRInvFilePoolID 2011 07DB

JRInvFileSpaceID 2012 07DC

JRInvOpenFlags 63 003F

JRInvOption 495 01EF

JRInvRoot 2103 0837

JRInvTermStat 319 013F

JRInvUserOp 642 0282

JRIOBufLengthInvalid 329 0149

JRIoctl 313 0139

JRIpcBadFlags 777 0309

JRIpcBadID 770 0302

JRIpcDenied 771 0303

JRIpcExists 772 0304

JRIpcMaxIDs 773 0305

JRIpcNoExist 774 0306

JRIpcRemoved 792 0318

JRIpcRetry 775 0307

JRIpcSignaled 776 0308

JRIsFSRoot 127 007F

JRIsMounted 91 005B

Reason Codes

Appendix B. Reason Codes 539

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRJoinToSelf 483 01E3

JRLastThread 551 0227

JRLightWeightThid 474 01DA

JRLink 270 010E

JRLinkNotFound 2036 07F4

JRListenAlreadyDone 653 028D

JRListenNotDone 649 0289

JRListLenBad 641 0281

JRListTooShort 612 0264

JRLnkAcrossFilesets 268 010C

JRLnkDir 86 0056

JRLnkNewPathExists 267 010B

JRLnkNoEnt 266 010A

JRLnkROFileset 269 010D

JRLockErr 175 00AF

JRLockRetryLim 2061 080D

JRLookup 71 0047

JRLskOffsetIsInvalid 88 0058

JRLskOnPipe 87 0057

JRLskWhenceIsInvalid 89 0059

JRMaxconnExceeded 2112 0840

JRMaxProc 40 0028

JRMkDir 68 0044

JRMkDirExist 56 0038

JRMkDirROnly 85 0055

JRMknodInvalidType 263 0107

JRMntNoPassword 2146 0862

JRMount 2083 0823

JRMountNotFQName 2083 0823

JRMountPt 161 00A1

JRMSOutOfRange 613 0265

JRMsq2Big 781 030D

JRMsqBadSize 779 030B

JRMsqBadType 778 030A

Reason Codes

540 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRMsqNoMsg 780 030C

JRMsqQBytes 793 0319

JRMsqQueueFullBytes 797 031D

JRMsqQueueFullMessages 796 031C

JRMustBeSocket 547 0223

JRNanoSecondsTooBig 528 0210

JRNegativeValueInvalid 48 0030

JRNegFileDes 54 0036

JRNeitherMode 106 006A

JRNETRCFileNotFound 2145 0861

JRNetwork 553 0229

JRNewIsDir 125 007D

JRNewNotDir 124 007C

JRNFSCBranchFail 2118 0846

JRNFSCDecodeFail 2149 0865

JRNFSCInitFail 2119 0847

JRNFSCInitFail1 2120 0848

JRNFSCInitFail2 2121 0849

JRNFSCInitFail3 2122 084A

JRNFSCInitFail4 2123 084B

JRNFSCInitFail5 2124 084C

JRNFSCInitFail6 2125 084D

JRNFSCInitFail7 2126 084E

JRNFSCInitFail8 2127 084F

JRNFSCInitFail9 2133 0855

JRNFSCInitFail10 2134 0856

JRNFSCMntTCPIPDATA 2131 0853

JRNFSCMntTCXLBIN 2132 0854

JRNFSCNoPermMount 2155 086B

JRNFSCReqFail 2128 0850

JRNFSCReqFail1 2129 0851

JRNFSCReqFail2 2130 0852

JRNFSCSocketFail 2154 086A

JRNFSC2ManyRestart 2136 0858

Reason Codes

Appendix B. Reason Codes 541

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRNFSError 2137 0859

JRNFSMountError 2156 086C

JRNFSNamNotAllowed 2138 085A

JRNFSNotAllowed 2151 0867

JRNFSVerNotSupp 2148 0864

JRNoCTTY 425 01A9

JRNoData 309 0135

JRNoDFSMS 2106 083A

JRNoEvents 517 0205

JRNoExtLink 2084 0824

JRNoFdsTooManyQIds 961 03C1

JRNoFileNoCreatFlag 98 0062

JRNoMoreIOCache 2116 0844

JRNoMoreMtabs 2014 07DE

JRNoMorePNEs 2101 0835

JRNoMoreVFSs 2013 07DD

JRNoMoreVnods 2015 07DF

JRNoPath 77 004D

JRNoReaders 297 0129

JRNoRecall 2077 081D

JRNoSocket 546 0222

JRNoStorage 184 00B8

JRNoSuchPid 500 01F4

JRNotBFS 2062 080E

JRNotDescendant 506 01FA

JRNotForDir 144 0090

JRNothingMounted 2079 081F

JRNotPermitted 276 0114

JRNotSetup 519 0207

JRNotSigSetUp 514 0202

JRNotSupportedForFileType 281 0119

JRNotSysRoot 59 003B

JRNullInPath 58 003A

JRObjectInUse 2063 080F

Reason Codes

542 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JROK 0 0000

JROldNoExist 126 007E

JROldPartOfNew 145 0091

JROpen 75 004B

JROpenDirNotFound 114 0072

JROpenFlagConflict 101 0065

JROpenforWriteNoReaders 296 0128

JROpenMax 326 0146

JROutOfLocks 160 00A0

JROutOfOfteCells 95 005F

JROutofSocketNodeCells 593 0251

JRParmTooLong 103 0067

JRPathconf 837 0345

JRPathNotDir 120 0078

JRPathTooLong 57 0039

JRPCNFSError 2141 085D

JRPfsCtl 2135 0857

JRPfsDead 67 0043

JRPfsSuspend 182 00B6

JRPgidDifferentSession 507 01FB

JRPidDifferentSession 503 01F7

JRPidEQSessLeader 501 01F5

JRPipeProcErr 2108 083C

JRPortMapperError 2157 086D

JRPrevSockError 897 0381

JRPtatDetachState 499 01F3

JRPtatEye 467 01D3

JRPtatLen 493 01ED

JRPtatSyncType 498 01F2

JRPtatSysLen 492 01EC

JRPtatSysOff 491 01EB

JRPtCancelError 465 01D1

JRPtCreateError 462 01CE

JRPtExitError 464 01D0

Reason Codes

Appendix B. Reason Codes 543

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRQEFLErr 2010 07DA

JRQuiesced 180 00B4

JRQuiesceInProcess 550 0226

JRQuiesceTypeInvalid 549 0225

JRQuiescing 399 018F

JRRdandWRTforPipe 293 0125

JRRddFileNotDir 112 0070

JRRdlBuffLenInvalid 510 01FE

JRRdnorWRTforPipe 307 0133

JRRdwr 70 0046

JRReadDir 109 006D

JRReadlink 262 0106

JRReadOnlyFileSetCreatReq 97 0061

JRReadOnlyFileSetMknodReq 118 0076

JRReadOnlyFileSetWriteReq 96 0060

JRReadOnlyFS 121 0079

JRRemove 104 0068

JRRemoveTopDir 2064 0810

JRRename 128 0080

JRRenameTopDir 2110 083E

JRRFileWrOnly 51 0033

JRRmDir 119 0077

JRRoot 164 00A4

JRRootNode 140 008C

JRRoutineError 609 0261

JRRwdFileNotDir 139 008B

JRSecOutOfRange 614 0266

JRSema4BadAdj 782 030E

JRSema4BadNOps 783 030F

JRSema4BadNSems 784 0310

JRSema4BadSemN 786 0312

JRSema4BadValue 787 0313

JRSema4BigNSems 788 0314

JRSema4ZeroNSems 789 0315

Reason Codes

544 z/VM: 7.3 OpenExtensions Callable Services Reference

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRSemStorageLimit 799 031F

JRSerStorageObtainErr 2111 083F

JRSetAttr 258 0102

JRSetpgidAfterSpawn 504 01F8

JRShmBadSize 790 0316

JRShmMaxAttach 791 0317

JRSigDuringWait 304 0130

JRSignalReceived 342 0156

JRSignalsNotBlocked 324 0144

JRSocketCallParmError 606 025E

JRSocketNamed 596 0254

JRSocketNotCon 626 0272

JRSocketTypeNotSupported 668 029C

JRSockNoName 632 0278

JRSockShutDown 636 027C

JRSoftLinkError 2065 0811

JRSpFileExists 117 0075

JRSrx 1124 0464

JRStackReadErr 2009 07D9

JRStatVFS 2147 0863

JRStorageGroupFull 2104 0838

JRStorageObtainErr 2066 0812

JRStorageReleaseErr 2067 0813

JRSvrMaxconnExceeded 2115 0843

JRSymFileAlreadyExists 259 0103

JRSymlink 260 0104

JRSyscallAbend 301 012D

JRTargetNotDir 113 0071

JRThreadNotFound 476 01DC

JRThreadTerm 472 01D8

JRTimeOut 529 0211

JRTooMany 502 01F6

JRTooManyFds 926 039E

JRTooManySymlinks 285 011D

Reason Codes

Appendix B. Reason Codes 545

Table 10. OpenExtensions Reason Codes by Symbolic Name (continued)

Reason Code Decimal Hex

JRTransportError 1503 05DF

JRTrMountedRO 157 009D

JRTrNegOffset 159 009F

JRTrNotRegFile 65 0041

JRTrOpenedRO 156 009C

JRTrunc 256 0100

JRUDCError1 2074 081A

JRUDCError2 2075 081B

JRUDCError3 2076 081C

JRUmount 162 00A2

JRUndefEvents 516 0204

JRUnexpectedErr 37 0025

JRUnexpectedError 177 00B1

JRUnlDir 94 005E

JrUnlMountRO 50 0032

JRUnlNoEnt 93 005D

JRUserNotAuthorized 310 0136

JRVnodGet 73 0049

JRWaitForever 953 03B9

JRWFileRdOnly 52 0034

JRWriteBeyondLimit 870 0366

JRWrongSsave 394 018A

Reason Codes

546 z/VM: 7.3 OpenExtensions Callable Services Reference

Appendix C. System Control Offsets to Callable
Services

An alternative to loading or link-editing the service stub is to include in the code the system control offset
to the callable service.

When using the offsets, set the registers up as follows:
Register 0

To contain the service offset. For access (BPX1ACC), use 52 (decimal) for the offset. Another register
can be used instead of register 0.

Register 1
To contain the address of your parameter list. Set bit 0 of the last address in the list on.

Register 14
To contain the return address in the invoking module.

Register 15
To contain the address of the callable service code.

The following is an example of code specifying the offset. Replace offset with the appropriate value from
the following offset table:

LA 0,offset Offset value
L 15,16 CVT - common vector table
L 15,544(,15) CSRTABLE
L 15,24(,15) OpenExtensions CSR slot
ALR 15,0 Add offset to base
L 15,0(,15) Address of the service
BALR 14,15 Branch and link

Service Offset Function
BPX1ACC 52 access
BPX1ALR 224 alarm
BPX1CCA 480 cond_cancel
BPX1CHA 84 chaudit
BPX1CHD 56 chdir
BPX1CHM 60 chmod
BPX1CHO 64 chown
BPX1CLD 68 closedir
BPX1CLO 72 close
BPX1CPO 484 cond_post
BPX1CSE 488 cond_setup
BPX1CTE 237 create_thread_environment
BPX1CTW 492 cond_timed_wait
BPX1CWA 496 cond_wait
BPX1DEL 888 DLL_delete
BPX1EXC 228 exec
BPX1EXI 232 _exit
BPX1FCA 140 fchaudit
BPX1FCM 88 fchmod
BPX1FCO 92 fchown
BPX1FCT 96 fcntl
BPX1FPC 100 fpathconf
BPX1FRK 240 fork
BPX1FST 104 fstat
BPX1FSY 108 fsync
BPX1FTR 112 ftruncate
BPX1FTV 848 fstatvfs
BPX1GCW 116 getcwd
BPX1GEG 244 getegid
BPX1GET 736 w_getipc
BPX1GEU 248 geteuid
BPX1GGI 252 getgrgid
BPX1GGN 256 getgrnam
BPX1GGR 260 getgroups
BPX1GID 264 getgid
BPX1GLG 268 getlogin
BPX1GPG 272 getpgrp

System Control Offsets

© Copyright IBM Corp. 1993, 2023 547

BPX1GPI 276 getpid
BPX1GPN 280 getpwnam
BPX1GPP 284 getppid
BPX1GPS 428 w_getpsent
BPX1GPU 288 getpwuid
BPX1GUG 292 getgroupsbyname
BPX1GUI 296 getuid
BPX1ITY 12 isatty
BPX1KIL 308 kill
BPX1LNK 124 link
BPX1LOD 880 DLL_load
BPX1LSK 128 lseek
BPX1LST 132 lstat
BPX1MAT 720 shmat
BPX1MCT 724 shmctl
BPX1MDT 728 shmdt
BPX1MGT 732 shmget
BPX1MKD 136 mkdir
BPX1MKN 144 mknod
BPX1TFW 28 tcflow
BPX1MNT 148 mount
BPX1MPC 408 cmsprocclp
BPX1MSD 336 cmsunsigsetup
BPX1MSS 312 cmssigsetup
BPX1OPD 152 opendir
BPX1OPN 156 open
BPX1PAS 316 pause
BPX1PCF 160 pathconf
BPX1PIP 164 pipe
BPX1PSI 460 pthread_setintr
BPX1PST 472 pthread_setintrtype
BPX1PTB 448 pthread_cancel
BPX1PTC 432 pthread_create
BPX1PTD 444 pthread_detach
BPX1PTI 476 pthread_testintr
BPX1PTJ 440 pthread_join
BPX1PTK 464 pthread_kill
BPX1PTQ 412 quiesce_threads
BPX1PTS 452 pthread_self
BPX1PTX 436 pthread_exit_and_get
BPX1QCT 692 msgctl
BPX1QGT 696 msgget
BPX1QRC 700 msgrcv
BPX1QSN 704 msgsnd
BPX1RDD 168 readdir
BPX1RDL 172 readlink
BPX1RED 176 read
BPX1REN 180 rename
BPX1RMD 188 rmdir
BPX1RWD 184 rewinddir
BPX1SCT 708 semctl
BPX1SGT 712 semget
BPX1SOP 716 semop
BPX1SEG 424 setegid
BPX1SEU 420 seteuid
BPX1SGI 328 setgid
BPX1SIA 324 sigaction
BPX1SIP 340 sigpending
BPX1SLP 344 sleep
BPX1SPB 416 queue_interrupt
BPX1SPG 348 setpgid
BPX1SPM 352 sigprocmask
BPX1SPN 760 spawn
BPX1SSI 356 setsid
BPX1SSU 360 sigsuspend
BPX1STA 192 stat
BPX1STF 80 w_statfs
BPX1STV 844 statvfs
BPX1SUI 364 setuid
BPX1SWT 468 sigwait
BPX1SYC 368 sysconf
BPX1SYM 196 symlink
BPX1TDR 24 tcdrain
BPX1TFH 20 tcflush
BPX1TGA 32 tcgetattr
BPX1TGP 36 tcgetpgrp
BPX1TIM 372 times
BPX1TSA 40 tcsetattr
BPX1TSB 44 tcsendbreak
BPX1TSP 48 tcsetpgrp
BPX1TYN 16 ttyname
BPX1UMK 204 umask

System Control Offsets

548 z/VM: 7.3 OpenExtensions Callable Services Reference

BPX1UMT 208 umount
BPX1UNA 376 uname
BPX1UNL 212 unlink
BPX1UTI 216 utime
BPX1WAT 380 wait
BPX1WRT 220 write
BPX1WTE 840 'wait-extension'

System Control Offsets

Appendix C. System Control Offsets to Callable Services 549

System Control Offsets

550 z/VM: 7.3 OpenExtensions Callable Services Reference

Appendix D. Reentrant and Nonreentrant Linkage
Examples

This appendix shows examples of reentrant and nonreentrant linkage.

Reentrant Entry Linkage
This entry linkage is reentrant and saves the caller's registers, allocates a save area and dynamic storage,
and establishes program and dynamic storage base registers. This entry linkage is paired with the return
linkage that is located at the end of the executable program. See “Reentrant Return Linkage” on page
551.

 TITLE 'Alphabetical Invocation of OpenExtensions Callable Services'
BOOKSAM1 CSECT , Reentrant entry linkage
BOOKSAM1 AMODE 31
BOOKSAM1 RMODE ANY
 USING *,R15 Program addressability
@ENTRY0 B @ENTRY1 Branch around program header
 DROP R15 R15 not needed for addressability
 DC C'BOOKSAM1 - Reentrant callable service examples'
 DS 0H Ensure half word boundary
@ENTRY1 STM R14,R12,12(R13) Save caller's registers
 LR R2,R13 Hold address of caller's area
 LR R3,R1 Hold parameter register
 LR R12,R15 R12 program base register
 LA R11,2048(,R12) Second program base register
 LA R11,2048(,R11) Second program base register
 USING @ENTRY0,R12,R11 Program addressability
 L R0,@SIZEDAT Size this program's getmain area
 GETMAIN RU,LV=(0) Getmain storage
 LR R13,R1 R13 -> this program's save area
 LA R10,2048(,R13) Second getmain base register
 LA R10,2048(,R10) Second getmain base register
 USING @STORE,R13,R10 Getmain addressability
 ST R2,@BACK Save caller's save area pointer
 ST R13,8(,R2) Give caller our save area
 LR R1,R3 Restore parameter register
@ENTRY2 EQU * * * * * * * End of the entry linkage code
 SPACE ,
PSEUDO EQU * Dummy label used throughout

Reentrant Return Linkage
 XR R15,R15 Zero return code
 L R0,@SIZEDAT Size this program's getmain area
 LR R1,R13 R1 -> this program's getmain area
 L R13,@BACK R2 -> caller's save area
 DROP R13
 FREEMAIN RU,LV=(0),A=(1)
 L R14,12(,R13) Restore caller's R14
 LM R0,R12,20(R13) Restore caller's R0-R12
 BSM 0,R14 Branch back to caller
 SPACE , * * * * * * * * * *.* Program constants * * * * * * *
@SIZEDAT DC A(@ENDSTOR-@STORE) Size of this getmain storage
MNTEL DC A(MNTE#LENGTH+MNTEH#LENGTH)
* Length of MNTEH and 1 MNTE area
PGPSL DC A(PGPS#LENGTH) Length of PGPS structure
RMONL DC A(RMON#LENGTH) Length of RMON structure
SSTFL DC A(SSTF#LENGTH) Length of SSTF structure
STATL DC A(STAT#LENGTH) Length of STAT structure
UTSNL DC A(UTSN#LENGTH) Length of UTSN structure
 SPACE ,
PRIMARYALET DC A(0) Primary ALET
* * * * * * * * * * * * * * * * * * *.* Structures requiring a USING *
 BPXYDIRE DSECT=YES Dictionary for readdir
 BPXYGIDN DSECT=YES Group names
 BPXYGIDS DSECT=YES Group IDs and member names
 BPXYOSMF DSECT=YES Job step accounting for BPXESMF

Linkage Examples

© Copyright IBM Corp. 1993, 2023 551

 BPXYPPSD DSECT=YES Signal data area (R1 in SIR)
* * * * * * * * * * * * * * * * * * *.* OpenExtensions EQUates * * * * * * *
* With EQUate only macros, DSECT= is allowed but is ignored
 BPXYCONS , OpenExtensions constants
 BPXYCW , Serialization constants
 BPXYERNO LIST=NO Errno, Errnojr constants
 BPXYFTYP , File type constants
 BPXYPCF , Command, pathconf constants
 BPXYSEEK , lseek constants
 BPXYSIGH , Signal constants

* * * * * * * * * * * * * * * * * * *.* Standard linkage save area * *
@STORE DSECT ,
@SAVE00 DS 0D Standard 72-byte save area
 DS A
@BACK DS A Back to caller's save area
@FORWARD DS A Forwards to callee's save area
 DS 15A Regs 14,15,0-12

 SPACE 2 * * * * * * * * * *.* Getmain for mappings * * * * *
 BPXYACC DSECT=NO Access intent flags
 BPXYAUDT DSECT=NO Audit flage values for chaudit
BRLKA DS A ->BPXYBRLK
 BPXYBRLK DSECT=NO Byte range locking for fcntl
 BPXYFCTL DSECT=NO Flags and commands for fcntl
 BPXYMODE DSECT=NO Mode constants
 BPXYMTM DSECT=NO Mount/unmount modes
 BPXYOPNF DSECT=NO File open constants
PGPSA DS A ->BPXYPGPS
 BPXYPGPS DSECT=NO, Process slot data, w_getpsent +
 VARLEN=(,0,0) Contty=Default, Path=0, Cmd=0
PTATA DS A ->BPXYPTAT
 BPXYPTAT DSECT=NO,VARLEN=512 Pthreat attributes
PTXLA DS A ->BPXYPTXL
 BPXYPTXL DSECT=NO Pthread attribute area
 BPXYRMON DSECT=NO Resource monitor
 BPXYSTAT DSECT=NO Get file the status for stat
 BPXYTIMS DSECT=NO times callable service structure
TIOS BPXYTIOS DSECT=NO Termios structure
UTSNA DS A ->BPXYUTSN
 BPXYUTSN DSECT=NO uname structure
WASTA DS A ->BPXYWAST
 BPXYWAST DSECT=NO Status word for wait

* * * * * * * * * * * * * * * * * * *.* Program getmain variables * * *
 DS 0D
ARGCNT DS F Argument count
ARGLLST DS 3A Argument lengths list
ARGSLST DS 3A Arguments list
BUFA DS F ->buffer
BUFFERA DS CL1024 Utility buffer A, length 1024
BUFLENA DS F Number of bytes used in buffer A
BUFFERB DS CL1024 Utility buffer B, length 1024
BUFLENB DS F Number of bytes used in buffer B
BUFW DS F Number of words used in BUF
COMMAND DS F User defined command
DIRECTDES DS F Directory descriptor
ENVCNT DS F Number of environment variables
ENVLENS DS F Length of environment variables
ENVPARMS DS F Environment variables
EVENTLIST DS A Event list for thread posting
EXITRTNA DS A Exit routine address
EXITPLA DS A Exit Parm list address
FILEDESC DS F File descriptor
FILEDES2 DS F File descriptor
FSNAME DS CL44 File system name
FSTYPE DS CL8 File system type
GRNAMELN DS F Group name length
GROUP DS F Group
GROUPCNT DS F Group count
GROUPID DS F Group ID (PID of group leader)
GRPGMNAME DS CL8 Group program name
INTMASK DS XL8 Signal mask
INITRTNA DS A ->Initialization routine
INTRSTATE DS A Interrupt state
INTRTYPE DS A Interrupt type
NANOSECONDS DS F Count of nanoseconds
NCATCHER DS A New catcher
NEWFLAGS DS F New flags

Linkage Examples

552 z/VM: 7.3 OpenExtensions Callable Services Reference

NEWHANDL DS F New Handler
NEWLEN DS XL8 Length file
NEWMASK DS XL8 New mask for signals
NEWMASKA DS A ->New mask
NEWTIMES DS D New access/modification time
OCATCHER DS A Old catcher
OFFSET DS CL8 File offset
OLDHANDL DS F Old handler
OLDFLAGS DS F Old flags
OLDMASK DS CL8 Old signal mask
OLDMASKA DS A ->Old mask
OPTIONS DS F Options
PGMNAME DS CL8 Program name
PGMNAMEL DS F Length PGMNAME
PLIST DS 13A Max number of parms
PROCID DS F Process ID
PROCTOK DS F Relative process number
READFD DS F File descriptor - input file
REFPT DS F File reference point
RETCODE DS F Return code (ERRNO)
RETVAL DS F Return value (0, -1 or other)
RSNCODE DS F Reason code (ERRNOJR)
SECONDS DS F Time in seconds
SIGNAL DS A Signal
SIGNALREG DS A Signal setup, user data
SIGNALOPTIONS DS A Signal options
SIGRET DS CL8 Signal return mask
SIRTNA DS A Signal interrupt routine
STATFLD DS A Status field
STATUS DS F Status
STATUSA DS A ->STATUS
TERMMASK DS XL8 Signal termination mask
THID DS XL8 Thread ID
USERID DS F User ID
USERNAME DS CL8 User name
USERNLEN DS F Length USERNAME
USERWORD DS F User data
WAITMASK DS F Mast for signal waits
WRITEFD DS F File descriptor - output file
 SPACE ,
@ENDSTOR EQU * End of getmain storage
 SPACE 3 * * * * * * * * * *.* Register equates * * * * * * *
 SPACE ,
R0 EQU 0
R1 EQU 1 Parameter list pointer
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10 Second getmain storage register
R11 EQU 11 Second program base register
R12 EQU 12 Program base register
R13 EQU 13 Savearea & getmain storage base
R14 EQU 14 Return address
R15 EQU 15 Branch location
 END

Nonreentrant Entry Linkage
This example shows the function for the w_getpsent (BPX1GPS) service in a nonreentrant program. For a
reentrant example of this service, see “w_getpsent (BPX1GPS) -- Get Process Data” on page 394.

BOOKSAM3 CSECT , Nonreentrant linkage
BOOKSAM3 AMODE 31
BOOKSAM3 RMODE ANY
 USING *,R15 Program addressability
@BEGIN0 B @BEGIN1 Branch around program header
 DC C'BOOKSAM3 - nonreentrant w-getpsent invoker'
 DS 0H
@BEGIN1 STM R14,12,12(R13) Save caller's registers
 ST R13,@BACK Save ->Caller's save area
 LA R13,@SAVE00 R13 program and save area base
 DROP R15
 USING @SAVE00,R13 Program addressability

Linkage Examples

Appendix D. Reentrant and Nonreentrant Linkage Examples 553

 B @BEGIN2
@SAVE00 DS 0D Standard save area - 72 Bytes
 DS A
@BACK DS A Backwards save area pointer
@FORWARD DS A Forwards save area pointer
 DS 15A Regs 14,15,0-12
RETURN XR R15,R15 Zero return code
RETURNRC L R13,@BACK Restore caller's R13
 L R14,12(,R13) Restore caller's R14
 LM R0,R12,20(R13) Restore caller's R0-R12
 BSM 0,R14 Branch back to caller
R0 EQU 0
R1 EQU 1 Parameter list pointer
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13 Program and save area base
R14 EQU 14 Return address
R15 EQU 15 Branch location
@BEGIN2 EQU * * * * * * * End of the entry linkage code

Fields PGPSCONTTYBLEN, PGPSCONTTYPTR, PGPSPATHBLEN, PGPSPATHPTR, PGPSCMDBLEN and
PGPSCMDPTR are initialized by the expansion of the BPXYPGPS macro when expanded in a CSECT.
Likewise fields PGPSA and PGPSA can also be initialized before the program runs. Contrast this with the
reentrant example where these fields must be set by the program while it runs. These fields could also be
initialized during execution in this, the nonreentrant example.

GETPS L R15,=V(BPX1GPS) Address of BPX1GPS load module
 CALL (15), Get process data +
 (PROCTOKEN, Relative process token +
 PGPSL, Length of buffer +
 PGPSA, Buffer, mapped by BPXYPGPS +
 RETVAL, Return value (next, eof or error) +
 RETCODE, Return code +
 RSNCODE), Reason code +
 VL ----------------------------------
 SPACE , * * * * * * Test for end of file
 ICM R15,B'1111',RETVAL Load return value, set CCode
 BZ RETURN 0 is end of file
 BL RETURNRC -1 is error
 ST R15,PROCTOKEN Store the next process token
 SPACE , * * * * * * Initialize WTO area & message
 MVI XPID,C' ' Blank out variable portion message
 MVC XPID+1(WTO#BLANK-1),XPID
 SPACE , * * * * * * Process ID to printable hex
 L R8,PGPSPID R8 = process ID
 LA R9,XPID To be placed at message start
 LA R15,8 8 nibbles to convert (4 bytes)
 LA R10,9 For 0-9 / A-F compare
NIBBLE LR R11,R8 Target bits in 0-3 XYYYYYYZ
 SRL R11,28 Bits 0-3 to 28-31 0000000X
 SLL R8,4 Drop bits 0-3 off end YYYYYYZ0
 CLR R11,R10 Are 4 bits 0-9 or A-F
 BC B'0010',AF Branch if A-F
 LA R11,57(,R11) Add for 0-9 (57+183=240 or F0)
AF LA R11,183(,R11) Add for 0-F (183+10=193 or C1)
 STC R11,0(,R9) Store to results location
 LA R9,1(,R9) Increment R9 to next location
 BCT R15,NIBBLE Decrement half byte counter, loop
 SPACE , * * * * * * Test status bits
* Go after the state of the process
 MVI THREAD,C'1' Assume single task thread
 TM PGPSSTATUS1,PGPSMULTHREAD if multithread process
 BZ NOTMULT
 MVI THREAD,C'M'
NOTMULT TM PGPSSTATUS1,PGPSPTHREAD if pthread_create tasks
 BZ NOTIPT
 MVI THREAD,C'H'
NOTIPT MVC STATE,PGPSSTATUS3 Z, W, X, S, C, F, K, R
 TM PGPSSTATUS0,PGPSSWAP if swapped out
 BZ NOTSWAP

Linkage Examples

554 z/VM: 7.3 OpenExtensions Callable Services Reference

 MVC SWAPA,=CL4'SWAP'
NOTSWAP TM PGPSSTATUS1,PGPSSTOPPED if stopped
 BZ NOTSTOP
 MVC STOPA,=CL4'STOP'
NOTSTOP EQU *
 SPACE , * * * * * * Display message to operator
 LA R2,WTOAREA R2->WTO message area
 WTO TEXT=(R2) Write to Operator
 SPACE , * * * * * * Loop back
 B GETPS for the next Process data
 SPACE ,
WTOAREA DS 0F WTO message
 DC AL2(WTO#LENGTH) Length of area
 DC CL4'PID=' Process ID =
XPID DS CL8 Hex of process ID
 DS CL1
THREAD DS CL1 1, M or H
 DS CL1
STATE DS CL1 Z, W, X, S, C, F, K, R
 DS CL1
SWAPA DS CL4 SWAP or blank
 DS CL1
STOPA DS CL4 STOP or blank
 DS CL1
TRACA DS CL4 TRAC or blank
WTO#BLANK EQU *-XPID Length to blank
 DC C'.'
WTO#LENGTH EQU *-WTOAREA Length of WTO area
 SPACE ,
GPSENTRY DS A Address of BPX1GPS
PROCTOKEN DC A(0) Relative process token init to 0
RETVAL DS F Return value - next PROCTOKEN
RETCODE DS F Return code
RSNCODE DS F Reason code
 SPACE ,
PGPSL DC A(PGPS#LENGTH) Length of PGPS buffer
PGPSA DC A(PGPS) ->Process data buffer
 BPXYPGPS DSECT=NO, Place in current CSECT / DSECT +
 VARLEN=(0,0,0) ConTty, Path, Cmd not needed
 END

Linkage Examples

Appendix D. Reentrant and Nonreentrant Linkage Examples 555

Linkage Examples

556 z/VM: 7.3 OpenExtensions Callable Services Reference

Appendix E. The Relationship of OpenExtensions
Signals to Callable Services

Before reading this information, you should read the signal information in the POSIX .1 standard and
z/VM: OpenExtensions POSIX Conformance Document. The signal information in this appendix is the
information needed by compiler writers implementing POSIX in a high-level language.

Signals support the following callable services:

“alarm (BPX1ALR) — Set an Alarm” on page 18
“kill (BPX1KIL) — Send a Signal to a Process” on page 146
“cmsunsigsetup (BPX1MSD) — Detach the Signal Setup” on page 44
“cmssigsetup (BPX1MSS) — Set Up CMS Signals” on page 40
“pause (BPX1PAS) — Suspend a Process Pending a Signal” on page 197
“pthread_kill (BPX1PTK) — Send a Signal to a Thread” on page 214
“sigaction (BPX1SIA) — Examine or Change a Signal Action” on page 315
“sigpending (BPX1SIP) — Examine Pending Signals” on page 319
“sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time” on page 328
“queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered” on page 223
“sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask” on page 321
“sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered”
on page 324
“sigwait (BPX1SWT) — Wait for a Signal” on page 326.

High-Level-Language Signal Interfaces
In addition to the signal interface callable services defined by POSIX, OpenExtensions provides the
following signal interface services:
cmssigsetup service

Sets up and defines the signal interface routine (SIR). The SIR is a routine provided by the high-level
language. For information on how to write the SIR and the interface to it, see “3” on page 41.

cmsunsigsetup service

Detaches the interface to the SIR and returns the parameters set up in cmssigsetup. See
“cmsunsigsetup (BPX1MSD) — Detach the Signal Setup” on page 44.

queue_interrupt service

Returns the last signal delivered. See “queue_interrupt (BPX1SPB) — Return the Last Interrupt
Delivered” on page 223.

These interfaces allow a runtime library (RTL) for a high-level language to control the flow of signals. Each
high-level language defines its own linkage interface between callable procedures; for example, the C
language has a linkage stack and register interface between function procedures, which are unique to C.

Delivery of signals involves:

• Interrupting a currently running procedure
• Saving the status of the code that was interrupted
• Invoking a callable procedure known as the signal catcher, or signal handler.

How High-Level Languages Use Signals
Invoking a callable service involves setting up registers unique to the high-level language.

OpenExtensions Signals

© Copyright IBM Corp. 1993, 2023 557

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp0_v7r3.pdf#nameddest=dmsp0_v7r3

1. The RTL, using these callable services, sets up a SIR to receive control when a signal occurs.
2. The SIR procedure performs the necessary language linkages and POSIX functions to call the signal

catcher procedure.
3. The signal catcher may return to the SIR. Information passed to the SIR procedure is mapped by the

BPXYPPSD macro.
4. The SIR performs the necessary language and POSIX functions to return to the interrupted procedure

after the signal catcher returns.
5. The CSRL16J system service is used to load all registers and the PSW condition code and to jump to

the instruction that was interrupted by the signal.

Signal Setup When Linking to Callable Services
When a CMS thread invokes the first OpenExtensions call, the containing CMS process and session (i.e.
the virtual configuration) is implicitly set up for OpenExtensions callable services. This setup operation
may also be performed explicitly by invoking the BPX1CTE service. The setup operation causes a new
POSIX process to be created and assigned a unique POSIX process ID. Each thread in a POSIX process
is additionally assigned an 8-character thread ID. This thread ID is unique within the process, though
threads in different processes could have the same thread ID.

The first OpenExtensions call in a POSIX(ON) program invokes the cmssigsetup service. This establishes
the POSIX environment and sets up the thread for signals at its current CMS SVC level.

Figure 3 on page 558 shows the flows for the various signal functions when a synchronous signal
SIGPIPE is generated with the kill service.

Figure 3. Program Flow of cmssigsetup and sigaction with Signal Interface Routine (SIR)

For more information on the set up and use of SIRs, see “cmssigsetup (BPX1MSS) — Set Up CMS Signals”
on page 40. For more information on signal catchers, see “sigaction (BPX1SIA) — Examine or Change a
Signal Action” on page 315.

OpenExtensions Signals

558 z/VM: 7.3 OpenExtensions Callable Services Reference

VMERROR Event Handling and the SIGILL, SIGFPE, and SIGSEGV
Signals

High-level languages generate the SIGILL, SIGFPE, and SIGSEGV signals. In OpenExtensions, the kill
service is invoked to generate these signals. A VMERROR event handler may also use the kill service to
generate SIGILL, SIGFPE, and SIGSEGV. High-level languages can define a VMERROR event handling
routine to receive control after an incorrect hardware instruction, arithmetic operation, and memory
reference.

Since OpenExtensions does not generate or process the signals SIGILL, SIGFPE, and SIGSEGV, it is the
responsibility of the high-level language's RTL to define what happens when a signal catcher is defined for
these signals and the signal catcher returns to the failing instruction.

When Signals Are Supported and Not Supported
All signal functions are supported when the thread is set up for signals, and the thread's current CMS
SVC level is the same as when the thread was set up for signals. When this is not the case, some signal
functions are not supported or they function differently. Table 11 on page 559 defines these signal
functions.

The cmssigsetup columns in Table 11 on page 559 describe a thread that is set up with the cmssigsetup
service. When a thread invokes the cmssigsetup service, the current SVC level is recorded for future signal
delivery. When a thread has been set up for signals by cmssigsetup, signals are delivered to it only when
the thread's current SVC level is the same as the SVC level at which it called cmssigsetup.

Table 11. Support of Signal Calls

Service

Thread cmssigsetup Thread Not cmssigsetup

Current SVC Level
Called cmssigsetup

Current SVC Level
Did Not Call
cmssigsetup

Current SVC Level
Called BPX1CTE

Current SVC Level
Did Not Call

BPX1CTE

BPX1ALR RV=Seconds Abend RV=Seconds Abend

BPX1KIL RV=0 RV=0 RV=0 RV=0

BPX1MSD RV=0 RV=0 RV=-1 RV=-1

BPX1MSS RV=-1 RV=-1 RV=0 RV=0

BPX1PAS RV=0 RV=-1 RV=0 RV=0

BPX1SIA RV=0 RV=-1 RV=-1 RV=-1

BPX1SIP RV=0 RV=-1 RV=0 RV=0

BPX1SLP RV=Seconds RV=Abend RV=Seconds RV=Seconds

BPX1SPB RV=0 N/A N/A N/A

BPX1SPM RV=0 RV=-1 RV=0 RV=0

BPX1SSU RV=0 RV=-1 RV=0 RV=0

OpenExtensions Signals

Appendix E. The Relationship of OpenExtensions Signals to Callable Services 559

Table 11. Support of Signal Calls (continued)

Service

Thread cmssigsetup Thread Not cmssigsetup

Current SVC Level
Called cmssigsetup

Current SVC Level
Did Not Call
cmssigsetup

Current SVC Level
Called BPX1CTE

Current SVC Level
Did Not Call

BPX1CTE

Note:
SVC level

CMS SVC levels are created by the CMSCALL service and also by simulated MVS system services such as
LINK.

RV
Return value returned in the service.

N/A
Not applicable

Delayed Signal Delivery
Asynchronous signals are generated from a process or thread different from the thread the signal is being
delivered to. Delivery of asynchronous signals is not always possible immediately and may experience
some delay. In particular, a signal may not be delivered to a thread which is executing in the CMS kernel
or with PSW key 0; in that case, signal delivery is delayed until the thread exits from the kernel. Signals
that must be delayed are delivered later, when signals are permitted and an opportunity for signal delivery
arises.

Additionally, when a thread that is set up for signals by a cmssigsetup service issues a CMSCALL or
other system service call (for example, LINK) that creates another CMS SVC level, delivery of signals to
that thread is delayed until the thread returns to the registered SVC level and issues an OpenExtensions
system call.

When Signals Cannot Be Delivered
Compilers and applications that enter states when signals cannot be delivered should invoke
OpenExtensions callable services after returning to a state where signal delivery is possible. This action
ensures prompt delivery of signals. For example, a program may invoke a CMSSTOR OBTAIN and getpid
service. After returning from the getpid service, OpenExtensions delivers any asynchronous signals that
were generated during the CMSSTOR OBTAIN.

When the SIR is unable to deliver a signal to a signal catcher routine for environmental reasons, the
queue_interrupt service is invoked from a signal interface routine (SIR). The queue_interrupt service also
delays signal delivery until the next OpenExtensions callable service. OpenExtensions callable services
should be performed shortly after a queue_interrupt call to ensure prompt signal delivery.

Signals and Multiple Threads Created by ThreadCreate
The first POSIX thread in a process can be created either explicitly with the spawn (BPX1SPN), exec
(BPX1EXC), or create_thread_environment (BPX1CTE) callable service, or implicitly by the first call to any
other OpenExtensions callable service from any thread in that CMS session. Subsequent CMS threads can
be created in the process with the ThreadCreate callable service.

The cmssigsetup and sigaction services allow only one thread in a process to set up a signal interface
routine (SIR) and signal catchers. When a process contains two threads with signals unblocked, the signal
is delivered to the thread that called cmssigsetup.

If signal action on delivery of a signal specifies termination, stop, or continue, the entire process is
terminated, stopped, or continued. Delivery of a signal for default signal action occurs for any of the
following conditions:

OpenExtensions Signals

560 z/VM: 7.3 OpenExtensions Callable Services Reference

1. None of the threads is set up for signals by cmssigsetup and one or more threads do not have the
signal blocked.

2. One of the threads is set up for signals by cmssigsetup and the signal is not blocked by the thread that
called cmssigsetup.

Signals and Multiple Threads Created by pthread_create
The pthread_create service creates POSIX threads within the process. A thread created by
pthread_create also inherits any signal setup information established by a prior cmssigsetup call in the
creating thread. If the caller of pthread_create had previously called cmssigsetup successfully, the thread
created is also set up for signals. The cmssigsetup and pthread_create services can be used to create
multiple threads that are set up for signals in the same process.

When a signal is generated by a kill service request to a process that has some threads which are set
up for signals and other threads which are not set up for signals, OpenExtensions signal processing must
determine which thread has the most interest in the signal. The following is a list of signal interest rules
for a signal generated by a kill call from most to least interested:

1. When threads are found in a sigwait for this signal, the signal is delivered to the first thread found in a
sigwait.

2. When all threads are blocking this signal, the signal is left pending at the process level. The sigpending
service moves blocked pending signals at the process level to the thread level.

3. When the default terminating signal action (not ignore and not catch) is to take place, that action is
performed for all threads in the process.

4. When all of the following are true:

• One or more threads are set up for signals.
• All threads set up for signals have the signal blocked.
• A thread not set up for signals has not blocked the signal.

The signal is left pending on the first thread set up for signals, and remains pending on that thread until
the thread unblocks the signal.

5. When one or more threads are set up for signals and at least one of the threads set up for signals has
the signal unblocked, the signal is delivered to the first thread that is set up for signals that also has
the signal unblocked.

Signal Defaults
This section contains information on the signals supported by OpenExtensions. These signals are mapped
by the BPXYSIGH mapping macro; see “BPXYSIGH — Map Signal Constants” on page 462. The following
table lists the signals supported by OpenExtensions and their default actions:

Constant Value Default
Action

Description

SIGABRT# 3 1 Abnormal termination

SIGALRM# 14 1 Timeout

SIGFPE# 8 1 Erroneous arithmetic operation, such as division by zero or an
operation resulting in overflow

SIGHUP# 1 1 Hangup detected on controlling terminal

SIGILL# 4 1 Detection of an incorrect hardware instruction

SIGINT# 2 1 Interactive attention

SIGKILL# 9 1 Termination (cannot be caught or ignored)

SIGPIPE# 13 1 Write on a pipe with no readers

OpenExtensions Signals

Appendix E. The Relationship of OpenExtensions Signals to Callable Services 561

Constant Value Default
Action

Description

SIGQUIT# 24 1 Interactive termination

SIGSEGV# 11 1 Detection of an incorrect memory reference

SIGTERM# 15 1 Termination

SIGUSR1# 16 1 Reserved as application-defined signal 1

SIGUSR2# 17 1 Reserved as application-defined signal 2

SIGCHLD# 20 2 Child process terminated or stopped

SIGCONT# 19 4 Continue if stopped

SIGSTOP# 7 3 Stop (cannot be caught or ignored)

SIGTSTP# 25 3 Interactive stop

SIGTTIN# 21 3 Read from a controlling terminal attempted by a member of a
background process group

SIGTTOU# 22 3 Write from a controlling terminal attempted by a member of a
background process group

SIGNULL# 0 2 Null; no signal sent (cannot be caught or ignored)

SIGIO# 23 2 Completion of input or output

SIGABND# 18 1 Abend

The default actions are:

1. Abnormal termination.
2. Ignore the signal.
3. Stop the process.
4. Continue if it is currently stopped; otherwise, ignore the signal.

OpenExtensions Signals

562 z/VM: 7.3 OpenExtensions Callable Services Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1993, 2023 563

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

564 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 565

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

566 z/VM: 7.3 OpenExtensions Callable Services Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1993, 2023 567

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/i1343772.pdf#nameddest=i1343772
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa2_v7r3.pdf#nameddest=hcpa2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpf2_v7r3.pdf#nameddest=hcpf2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa4_v7r3.pdf#nameddest=hcpa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa3_v7r3.pdf#nameddest=hcpa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl0_v7r3.pdf#nameddest=hcpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa7_v7r3.pdf#nameddest=hcpa7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpg4_v7r3.pdf#nameddest=hcpg4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcps0_v7r3.pdf#nameddest=hcps0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb2_v7r3.pdf#nameddest=dmsb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

568 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb1_v7r3.pdf#nameddest=hcpb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb2_v7r3.pdf#nameddest=hcpb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb6_v7r3.pdf#nameddest=dmsb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb5_v7r3.pdf#nameddest=dmsb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb5_v7r3.pdf#nameddest=hcpb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ceeb7_v7r3.pdf#nameddest=ceeb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp1_v7r3.pdf#nameddest=dmsp1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp0_v7r3.pdf#nameddest=dmsp0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsl0_v7r3.pdf#nameddest=dmsl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsk7_v7r3.pdf#nameddest=dmsk7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb0_v7r3.pdf#nameddest=dmsb0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw0_v7r3.pdf#nameddest=hcpw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc1_v7r3.pdf#nameddest=hcpc1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc3_v7r3.pdf#nameddest=hcpc3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe5_v7r3.pdf#nameddest=hcpe5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt1_v7r3.pdf#nameddest=hcpt1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt5_v7r3.pdf#nameddest=hcpt5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt2_v7r3.pdf#nameddest=hcpt2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt0_v7r3.pdf#nameddest=hcpt0_v7r3

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580
• Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?

topic=osa-icc-3215-support), SA23-2247
• Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/ioa2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

• z/VM: Performance, SC24-6301. See z/VM Performance Data Pump.
• z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 569

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt3_v7r3.pdf#nameddest=hcpt3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt4_v7r3.pdf#nameddest=hcpt4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk4_v7r3.pdf#nameddest=hcpk4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk2_v7r3.pdf#nameddest=hcpk2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk3_v7r3.pdf#nameddest=hcpk3_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl8_v7r3.pdf#nameddest=hcpl8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl7_v7r3.pdf#nameddest=hcpl7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha8_v7r3.pdf#nameddest=icha8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha4_v7r3.pdf#nameddest=icha4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichb2_v7r3.pdf#nameddest=ichb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha1_v7r3.pdf#nameddest=icha1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha3_v7r3.pdf#nameddest=icha3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha6_v7r3.pdf#nameddest=icha6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha7_v7r3.pdf#nameddest=icha7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha2_v7r3.pdf#nameddest=icha2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta7_v7r3.pdf#nameddest=dmta7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta4_v7r3.pdf#nameddest=dmta4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta3_v7r3.pdf#nameddest=dmta3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta2_v7r3.pdf#nameddest=dmta2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta1_v7r3.pdf#nameddest=dmta1_v7r3

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf), GC35-0152
• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/

docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf), GC35-0151

Related Products

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

z/OS
IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

Additional Publications
XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
XL C/C++ for z/VM: User's Guide, SC09-7625

570 z/VM: 7.3 OpenExtensions Callable Services Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kdpl0_v7r3.pdf#nameddest=kdpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kldl0_v7r3.pdf#nameddest=kldl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kinl0_v7r3.pdf#nameddest=kinl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kiml0_v7r3.pdf#nameddest=kiml0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/vmcug_v7r3.pdf#nameddest=vmcug_v7r3
https://www.ibm.com/docs/en/zos
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/vmcug_v7r3.pdf#nameddest=vmcug_v7r3

Index

Special Characters
_exit (BPX1EXI) routine 79

A
absolute path name, finding 241
accept (BPX1ACP) routine 12
access

BFS file, checking 15
access (BPX1ACC) routine

description 15
flag values, mapping 412

access times of a BFS file, setting 382
accessing the POSIX group database

by GID 117
by group name 119

accessing the POSIX user database
by UID 134
by user name 132

acquiring a socket from another program 350
alarm (BPX1ALR) routine 18
alarm, setting 18
appropriate privileges 10
attaching a shared memory segment 301
attributes for a terminal in an OpenExtensions process

getting 358
setting 365

attributes for the pthread_create (BPX1PTC) callable service,
mapping 453
audit flags for a BFS file, changing

by descriptor 81
by path name 23

authorization 10

B
BFS (Byte File System)

adding a file system to the file tree 166
character special file

creating 163
directory

closing 36
configurable path name variables, determining by
descriptor 99
configurable path name variables, determining by
path name 194
creating 160
descriptor, creating 185
entry, reading 231
entry, removing 379
group, changing by descriptor 86
group, changing by path name 31
mode, changing by descriptor 84
mode, changing by path name 28
opening 185
owner, changing by descriptor 86

BFS (Byte File System) (continued)
directory (continued)

owner, changing by path name 31
path name of the working directory, getting 112
removing 256
renaming 251
rewinding 254
working directory, changing 26

FIFO
creating 163

file
status, getting by descriptor 104
status, getting by file system name 407
status, getting by path name 343

file system
access times, setting 382
access, checking 15
audit flags, changing by descriptor 81
audit flags, changing by path name 23
changes, writing to direct-access storage 106
closing 34
configurable path name variables, determining by
descriptor 99
configurable path name variables, determining by
path name 194
descriptor, creating 181
group, changing by descriptor 86
group, changing by path name 31
link to, creating 149
mode, changing by descriptor 84
mode, changing by path name 28
modification times, setting 382
offset, changing 154
open file descriptors, controlling 88
opening 181
owner, changing by descriptor 86
owner, changing by path name 31
reading 228
renaming 251
status, getting by descriptor 102
status, getting by path name 340
status, getting for file or symbolic link by path name
157
symbolic link, creating 345
symbolic link, reading the value of 236
symbolic link, removing from a directory 379
truncating 108
writing changes to direct-access storage 106
writing to 401

mounting 166
removing from the file tree 375
unmounting 375

bind (BPX1BND) routine 20
binding files, programming language 2
BPX1ACC (access) routine

description 15
flag values, mapping 412

Index 571

BPX1ACP (accept) routine 12
BPX1ALR (alarm) routine 18
BPX1BND (bind) routine 20
BPX1CCA (cond_cancel) routine 46
BPX1CHA (chaudit) routine

description 23
flag values, mapping 413

BPX1CHD (chdir) routine 26
BPX1CHM (chmod) routine 28
BPX1CHO (chown) routine 31
BPX1CLD (closedir) routine 36
BPX1CLO (close) routine 34
BPX1CON (connect) routine 57
BPX1CPO (cond_post) routine 48
BPX1CSE (cond_setup) routine 50
BPX1CTE (create_thread_environment) routine 65
BPX1CTW (cond_timed_wait) routine 52
BPX1CWA (cond_wait) routine 55
BPX1DEL (DLL_delete) routine 67
BPX1ELN (create_external_link) routine 60
BPX1EXC (exec) routine 72
BPX1EXI (_exit) routine 79
BPX1FCA (fchaudit) routine

description 81
flag values, mapping 413

BPX1FCM (fchmod) routine 84
BPX1FCO (fchown) routine 86
BPX1FCT (fcntl) routine

byte range lock request, mapping 414
closing files 90
command values and flags, mapping 422
description 88
determining lock status 92
file locking 90
flag values, mapping 447
multiple lock requests 92
obtaining locks 92
releasing locks 92

BPX1FPC (fpathconf) routine
command values, defining 448
description 99

BPX1FRK (fork) routine 96
BPX1FST (fstat) routine 102
BPX1FSY (fsync) routine 106
BPX1FTR (ftruncate) routine 108
BPX1FTV (fstatvfs) routine

description 104
response structure, mapping 471

BPX1GCL (getclientid) routine
description 110
response structure, mapping 415

BPX1GCW (getcwd) routine 112
BPX1GEG (getegid) routine 114
BPX1GET (w_getipc) routine

constants, defining 432
data structure, mapping 432
description 391

BPX1GEU (geteuid) routine 115
BPX1GGI (getgrgid) routine

data returned, mapping 425
description 117

BPX1GGN (getgrnam) routine
data returned, mapping 425
description 119

BPX1GGR (getgroups) routine 121
BPX1GID (getgid) routine 116
BPX1GIV (givesocket) routine 142
BPX1GLG (getlogin) routine 128
BPX1GNM (getsockname/getpeername) routine 136
BPX1GPG (getpgrp) routine 129
BPX1GPI (getpid) routine 130
BPX1GPN (getpwnam) routine

data returned, mapping 424
description 132

BPX1GPP (getppid) routine 131
BPX1GPS (w_getpsent) routine

description 394
response structure, mapping 449

BPX1GPU (getpwuid) routine
data returned, mapping 424
description 134

BPX1GUG (getgroupsbyname) routine 123
BPX1GUI (getuid) routine 141
BPX1HST (gethostid/gethostname) routine 126
BPX1IOC (w_ioctl) routine

command values, defining 427
description 398

BPX1ITY (isatty) routine 145
BPX1KIL (kill) routine 146
BPX1LNK (link) routine 149
BPX1LOD (DLL_load) routine 69
BPX1LSK (lseek) routine

constants defined by the BPXYSEEK macro 455
description 154

BPX1LSN (listen) routine 152
BPX1LST (lstat) routine 157
BPX1MAT (shmat) routine 301
BPX1MCT (shmctl) routine 304
BPX1MDT (shmdt) routine 307
BPX1MGT (shmget) routine 309
BPX1MKD (mkdir) routine 160
BPX1MKN (mknod) routine 163
BPX1MNT (mount) routine

description 166
modes, mapping 445

BPX1MPC (cmsprocclp) routine 38
BPX1MSD (cmsunsigsetup) routine 44
BPX1MSS (cmssigsetup) routine

description 40
program flow of cmssigsetup and sigaction with an SIR
558

BPX1OPD (opendir) routine 185
BPX1OPN (open) routine

description 181
flag values, mapping 447

BPX1OPT (getsockopt/setsockopt) routine 138
BPX1PAS (pause) routine 197
BPX1PCF (pathconf) routine

command values, defining 448
description 194

BPX1PIP (pipe) routine 199
BPX1PSI (pthread_setintr) routine 217
BPX1PST (pthread_setintrtype) routine 219
BPX1PTB (pthread_cancel) routine 201
BPX1PTC (pthread_create) routine

attributes, mapping 453
description 203
multiple CMS threads and signals 561

572 z/VM: 7.3 OpenExtensions Callable Services Reference

BPX1PTD (pthread_detach) routine 207
BPX1PTI (pthread_testintr) routine 221
BPX1PTJ (pthread_join) routine 212
BPX1PTK (pthread_kill) routine 214
BPX1PTQ (quiesce_threads) routine 225
BPX1PTS (pthread_self) routine 216
BPX1PTX (pthread_exit_and_get) routine

description 209
parameter list, mapping 454

BPX1QCT (msgctl) routine 169
BPX1QGT (msgget) routine 172
BPX1QRC (msgrcv) routine 175
BPX1QSN (msgsnd) routine 178
BPX1RCV (recv) routine

description 243
flags, mapping 441

BPX1RDD (readdir) routine
description 231
directory entries, mapping 420

BPX1RDL (readlink) routine 236
BPX1RDV (readv) routine

description 238
I/O vector structure, mapping
430

BPX1RED (read) routine 228
BPX1REN (rename) routine 251
BPX1RFM (recvfrom) routine 245
BPX1RMD (rmdir) routine 256
BPX1RPH (realpath) routine 241
BPX1RWD (rewinddir) routine 254
BPX1RXL (read_external_link) routine 234
BPX1SCT (semctl) routine 264
BPX1SEG (setegid) routine 286
BPX1SEL (select/selectex) routine

data structures, mapping 456
description 258
timeout value, mapping 458

BPX1SEU (seteuid) routine 288
BPX1SGI (setgid) routine 290
BPX1SGT (semget) routine 269
BPX1SHT (shutdown) routine 313
BPX1SIA (sigaction) routine

description 315
program flow of cmssigsetup and sigaction with an SIR
558

BPX1SIP (sigpending) routine 319
BPX1SLP (sleep) routine 328
BPX1SND (send) routine

description 277
flags, mapping 441

BPX1SOC (socket/socketpair) routine 330
BPX1SOP (semop) routine 273
BPX1SPB (queue_interrupt) routine 223
BPX1SPG (setpgid) routine 294
BPX1SPM (sigprocmask) routine 321
BPX1SPN (spawn) routine

description 333
inheritance structure

mapping 426
BPX1SSI (setsid) routine 297
BPX1SSU (sigsuspend) routine 324
BPX1STA (stat) routine

description 340
response structure, mapping 473

BPX1STF (w_statvfs) routine
description 407
response structure, mapping 471

BPX1STO (sendto) routine 283
BPX1STV (statvfs) routine

description 343
response structure, mapping 471

BPX1SUI (setuid) routine 299
BPX1SWT (sigwait) routine 326
BPX1SYC (sysconf) routine 348
BPX1SYM (symlink) routine 345
BPX1TAK (takesocket) routine 350
BPX1TDR (tcdrain) routine 352
BPX1TFH (tcflush) routine 356
BPX1TFW (tcflow) routine 354
BPX1TGA (tcgetattr) routine 358
BPX1TGP (tcgetpgrp) routine 361
BPX1TGX (tcgetpfx) routine 360
BPX1TIM (times) routine

description 371
response structure, mapping 475

BPX1TSA (tcsetattr) routine 365
BPX1TSB (tcsendbreak) routine 363
BPX1TSP (tcsetpgrp) routine 369
BPX1TSX (tcsetpfx) routine 368
BPX1TYN (ttyname) routine 373
BPX1UMK (umask) routine 374
BPX1UMT (umount) routine

description 375
modes, mapping 445

BPX1UNA (uname) routine
description 377
response structure, mapping 480

BPX1UNL (unlink) routine 379
BPX1UTI (utime) routine 382
BPX1VM5 (openvmf) routine

description 187
function code values defined by the BPXYVM5 macro
482

BPX1VM6 (setopen) routine
description 292
function code values defined by the BPXYVM6 macro
483

BPX1VM7 (openvmf7) routine
description 192
function code values defined by the BPXYVM7 macro
484

BPX1WAT (wait) routine 385
BPX1WRT (write) routine 401
BPX1WRV (writev) routine

description 404
I/O vector structure, mapping
430

BPX1WTE (wait-extension) routine 388
BPX1xxx routines

invoking 1
invoking from REXX 4
notation used in parameter descriptions 5
reason code parameter, definition of 2
reason codes, list of

by numeric value 495
by symbolic name 534
special CMS file pool server and BFS client 532

reentrant coding versus nonreentrant coding 10

Index 573

BPX1xxx routines (continued)
return code parameter, definition of 2
return codes, list of

by numeric value 487
by symbolic name 490

return value parameter, definition of 2
signal setup 558
syntax conventions 1
system control offsets 547

BPX2RMS (recvmsg) routine
description 248
flags, mapping 441
I/O vector structure, mapping
430
message header, mapping 443

BPX2SMS (sendmsg) routine
description 280
flags, mapping 441
I/O vector structure, mapping
430
message header, mapping 443

BPXYACC macro 412
BPXYAUDT macro 413
BPXYBRLK macro 414
BPXYCID macro 415
BPXYCONS macro 417
BPXYCW macro 419
BPXYDIRE macro 420
BPXYERNO macro 421
BPXYFCTL macro 422
BPXYFTYP macro 423
BPXYGIDN macro 424
BPXYGIDS macro 425
BPXYINHE macro 426
BPXYIOCC macro 427
BPXYIOV macro 430
BPXYIPCP macro 431
BPXYIPCQ macro 432
BPXYMODE macro 435, 437
BPXYMSG macro 439
BPXYMSGF macro 441
BPXYMSGH macro 443
BPXYMTM macro 445
BPXYOPNF macro 447
BPXYPCF macro 448
BPXYPGPS macro 449
BPXYPPSD macro 451
BPXYPTAT macro 453
BPXYPTXL macro 454
BPXYSEEK macro 455
BPXYSEL macro 456
BPXYSELT macro 458
BPXYSEM macro 459
BPXYSHM macro 461
BPXYSIGH macro 462
BPXYSINF macro 464
BPXYSOCK macro 465
BPXYSSTF macro 471
BPXYSTAT macro 473
BPXYTIMS macro 475
BPXYTIOS macro 477
BPXYUTSN macro 480
BPXYVM5 macro 482
BPXYVM6 macro 483

BPXYVM7 macro 484
BPXYWAST macro 486
BPXYxxx macros

coding conventions 411
understanding syntax diagrams 409

break condition, sending to a terminal in an OpenExtensions
process 363
buffer

writing to a BFS file or socket 401
byte range lock request, mapping for the fcntl (BPX1FCT)
callable service 414

C
callable service failures 10
calling program's identifier, obtaining 110
canceling a POSIX thread 201
canceling interest in events 46
cancellation point on a POSIX thread, causing 221
causing a cancellation point on a POSIX thread 221
changing a POSIX thread's signal mask 321
changing a POSIX thread's signal mask and suspending the
thread 324
changing a signal action in OpenExtensions 315
changing audit flags for a BFS file

by descriptor 81
by path name 23

changing the BFS file offset 154
changing the BFS working directory 26
changing the file mode creation mask of an OpenExtensions
process 374
changing the interrupt state of a POSIX thread 217
changing the interrupt type of a POSIX thread 219
changing the mode of a BFS file or directory

by descriptor 84
by path name 28

changing the owner or group of a BFS file or directory
by descriptor 86
by path name 31

CHAR notation in parameter descriptions 5
character special file (BFS object)

creating 163
chaudit (BPX1CHA) routine

description 23
flag values, mapping 413

chdir (BPX1CHD) routine 26
checking BFS file access 15
checking I/O status of multiple open file descriptors and
message queues 258
child process, OpenExtensions

attributes inherited from the parent 334
creating

using fork (BPX1FRK) 96
using spawn (BPX1SPN) 333

differences from the parent 335
status of a child that ended or stopped, getting 385
status, getting 388

chmod (BPX1CHM) routine 28
chown (BPX1CHO) routine 31
cleaning up OpenExtensions resources 38
close (BPX1CLO) routine 34
closedir (BPX1CLD) routine 36
closing a BFS directory 36
closing a BFS file or socket 34

574 z/VM: 7.3 OpenExtensions Callable Services Reference

CMS (Conversational Monitor System)
external link

creating 60
reading the contents of 234

CMS signals in OpenExtensions
defaults 561
delayed delivery 560
detaching the signal setup 44
high level language signal interfaces 557
last interrupt delivered to an SIR, returning to
OpenExtensions 223
multiple threads created by pthread_create 561
multiple threads created by ThreadCreate 560
pending signals, examining 319
relationship to callable services 557
sending a signal to a POSIX thread 214
setting up 40
signal action, examining or changing 315
thread's signal mask

examining or changing 321
replacing 324

waiting for a signal 326
when signals cannot be delivered 560
when supported and not supported 559

cmsprocclp (BPX1MPC) routine 38
cmssigsetup (BPX1MSS) routine

description 40
program flow of cmssigsetup and sigaction with an SIR
558

cmsunsigsetup (BPX1MSD) routine 44
coding conventions, macro 411
command values for OpenExtensions callable services,

defining
for fcntl (DMSP1FCT) 422
for pathconf (BPX1PCF) and fpathconf (BPX1FPC) 448
for w_ioctl (BPX1IOC) 427

cond_cancel (BPX1CCA) routine 46
cond_post (BPX1CPO) routine 48
cond_setup (BPX1CSE) routine 50
cond_timed_wait (BPX1CTW) routine 52
cond_wait (BPX1CWA) routine 55
configurable BFS path name variables, determining

by descriptor 99
by path name 194

configurable system variables for OpenExtensions services,
getting the values of 348
connect (BPX1CON) routine 57
connection between two sockets, establishing 57
connection request from a client socket, accepting 12
connection request queue for server socket, creating 152
constants for OpenExtensions callable services, defining 417
constants for the lseek (BPX1LSK) callable service, defining
455
constants for the w_getipc (BPX1GET) service, defining 432
control information for a terminal in an OpenExtensions

process
control sequence prefix

getting 360
setting 368

getting and storing in the termios data area 358
setting 365

controlling a message queue 169
controlling a semaphore set 264
controlling a shared memory segment 304

controlling I/O 398
controlling open BFS file descriptors 88
conventions, macro coding 411
create_external_link (BPX1ELN) routine 60
create_thread_environment (BPX1CTE) routine 65
creating a BFS character special file 163
creating a BFS directory 160
creating a BFS FIFO 163
creating a BFS file descriptor

for directory 185
for file 181

creating a CMS external link 60
creating a link to a BFS file 149
creating a message queue 172
creating a new (child) process

using fork (BPX1FRK) 96
using spawn (BPX1SPN) 333

creating a new session in an OpenExtensions process 297
creating a POSIX thread 203
creating a semaphore set 269
creating a shared memory segment 309
creating a socket 330
creating a symbolic link to a BFS path name 345
creating an unnamed pipe (OpenExtensions I/O channel)
199
creating the POSIX thread environment 65

D
data flow on a terminal in an OpenExtensions process

flushing 356
resuming 354
suspending 354

data structure for the w_getipc (BPX1GET) service, mapping
432
defining command values for the pathconf (BPX1PCF) and
fpathconf (BPX1FPC) callable services 448
defining constants for interprocess communications
message queues 439
defining constants for the lseek (BPX1LSK) callable service
455
defining constants for the w_getipc (BPX1GET) service 432
defining file type definitions for OpenExtensions callable
services 423
defining function code values for the openvmf (BPX1VM5)
callable service 482
defining function code values for the openvmf7 (BPX1VM7)
callable service 484
defining function code values for the setopen (BPX1VM6)
callable service 483
defining return and reason code values for OpenExtensions
callable services 421
defining serialization constants 419
defining signal constants used by OpenExtensions callable
services 462
delayed signal delivery 560
deleting a program from the caller's process 67
deleting the signal setup 44
descriptor, BFS file, creating

for directory 185
for file 181

detaching a POSIX thread 207
detaching a shared memory segment 307
detaching the signal setup 44

Index 575

determining configurable BFS path name variables
by descriptor 99
by path name 194

directory entries for the readdir (BPX1RDD) callable service,
mapping 420
directory, BFS

closing 36
configurable path name variables, determining

by descriptor 99
by path name 194

creating 160
descriptor, creating 185
entry

reading 231
removing 379

group, changing
by descriptor 86
by path name 31

mode, changing
by descriptor 84
by path name 28

opening 185
owner, changing

by descriptor 86
by path name 31

path name of the working directory, getting 112
removing 256
renaming 251
rewinding 254
working directory, changing 26

displaying the name of the current OpenExtensions
operating system 377
DLL_delete (BPX1DEL) routine 67
DLL_load (BPX1LOD) routine 69

E
effective group ID, POSIX

getting 114
setting 286, 290

effective user ID, POSIX
getting 115
setting 288, 299

ending an OpenExtensions process 79
entry linkage for OpenExtensions callable services,

example of
nonreentrant 553
reentrant 551

establishing the OpenExtensions environment 1
event notification

canceling interest 46
posting a thread 48
setting up to receive 50

examining a POSIX thread's signal mask 321
examining a signal action in OpenExtensions 315
examining pending signals in OpenExtensions 319
examining the interrupt state of a POSIX thread 217
examining the interrupt type of a POSIX thread 219
exec (BPX1EXC) routine 72
executable file

how the file is located by the exec (BPX1EXC) callable
service 74
how the file is located by the spawn (BPX1SPN) callable
service 335

executable file (continued)
running from an OpenExtensions process 72
running in a new (child) process 333

exit (BPX1EXI) routine 79
exiting a POSIX thread 209
external link, CMS

creating 60
reading the contents of 234

F
failures, callable service 10
fchaudit (BPX1FCA) routine

description 81
flag values, mapping 413

fchmod (BPX1FCM) routine 84
fchown (BPX1FCO) routine 86
fcntl (BPX1FCT) routine

byte range lock request, mapping 414
closing files 90
command values and flags, mapping 422
description 88
determining lock status 92
file locking 90
flag values, mapping 447
multiple lock requests 92
obtaining locks 92
releasing locks 92

FIFO (BFS object)
creating 163

file mode creation mask of an OpenExtensions process,
changing 374
file system, BFS

status, getting
by descriptor 104
by file system name 407
by path name 343

file system, virtual, adding to the file tree in an
OpenExtensions process 166
file system, virtual, removing from the file tree in an
OpenExtensions process 375
file tree in an OpenExtensions process

adding a virtual file system 166
removing a virtual file system 375

file type definitions for OpenExtensions callable services,
defining 423
file, BFS

access times, setting 382
access, checking 15
audit flags, changing

by descriptor 81
by path name 23

changes, writing to direct-access storage 106
character special file

creating 163
closing 34
configurable path name variables, determining

by descriptor 99
by path name 194

descriptor flags, controlling 88
descriptor, creating 181
FIFO

creating 163
group, changing

576 z/VM: 7.3 OpenExtensions Callable Services Reference

file, BFS (continued)
group, changing (continued)

by descriptor 86
by path name 31

link to, creating 149
locking information, controlling 88
mode, changing

by descriptor 84
by path name 28

modification times, setting 382
offset, changing 154
opening 181
owner, changing

by descriptor 86
by path name 31

reading 228
renaming 251
status flags, controlling 88
status, getting

by descriptor 102
by path name 157, 340

symbolic link
creating 345
removing from a directory 379
status, getting 157
value of, reading 236

terminal, determining if a file represents a 145
truncating 108
writing changes to direct-access storage 106
writing to 401

file, executable
how the file is located by the exec (BPX1EXC) callable
service 74
how the file is located by the spawn (BPX1SPN) callable
service 335
running from an OpenExtensions process 72
running in a new (child) process 333

finding a message queue 172
finding a semaphore set 269
finding a shared memory segment 309
finding the absolute path name 241
flags

audit (BFS file access)
changing by descriptor 81
changing by path name 23

file descriptor, controlling 88
file status, controlling 88
values for OpenExtensions callable services, mapping

for access (BPX1ACC) 412
for chaudit (BPX1CHA) 413
for fchaudit (BPX1FCA) 413
for fcntl (BPX1FCT) 447
for fcntl (DMSP1FCT) 422
for open (BPX1OPN) 447
for recv (BPX1RCV) 441
for recvmsg (BPX2RMS) 441
for send (BPX1SND) 441
for sendmsg (BPX2SMS) 441

flushing data on a terminal in an OpenExtensions process
356
foreground process group associated with a terminal in an

OpenExtensions process
getting PGID 361
setting PGID 369

fork (BPX1FRK) routine 96
fpathconf (BPX1FPC) routine

command values, defining 448
description 99

fstat (BPX1FST) routine 102
fstavfs (BPX1FTV) routine

description 104
response structure, mapping 471

fsync (BPX1FSY) routine 106
ftruncate (BPX1FTR) routine 108
function code values for the openvmf (BPX1VM5) callable
service, defining 482
function code values for the openvmf7 (BPX1VM7) callable
service, defining 484
function code values for the setopen (BPX1VM6) callable
service, defining 483

G
getclientid (BPX1GCL) routine

description 110
response structure, mapping 415

getcwd (BPX1GCW) routine 112
getegid (BPX1GEG) routine 114
geteuid (BPX1GEU) routine 115
getgid (BPX1GID) routine 116
getgrgid (BPX1GGI) routine

data returned, mapping 425
description 117

getgrnam (BPX1GGN) routine
data returned, mapping 425
description 119

getgroups (BPX1GGR) routine 121
getgroupsbyname (BPX1GUG) routine 123
gethostid (BPX1HST) routine 126
gethostname (BPX1HST) routine 126
getlogin (BPX1GLG) routine 128
getpeername (BPX1GNM) routine 136
getpgrp (BPX1GPG) routine 129
getpid (BPX1GPI) routine 130
getppid (BPX1GPP) routine 131
getpwnam (BPX1GPN) routine

data returned, mapping 424
description 132

getpwuid (BPX1GPU) routine
data returned, mapping 424
description 134

getsockname (BPX1GNM) routine 136
getsockopt (BPX1OPT) routine 138
getting a message queue 172
getting a new POSIX thread request to process 209
getting a semaphore set 269
getting a shared memory segment 309
getting attributes for a terminal in an OpenExtensions
process 358
getting BFS file status

by descriptor 102
by path name 157, 340

getting BFS file system status
by descriptor 104
by file system name 407
by path name 343

getting OpenExtensions process information
PGID (process group ID) 129

Index 577

getting OpenExtensions process information (continued)
PGID of the foreground process group associated with a
terminal 361
PID (process ID) 130
PPID (parent process ID) 131

getting POSIX group database information
by GID 117
by group name 119
effective GID 114
effective UID 115
real GID 116
real UID 141
supplementary GIDs, number and list of

for a specific user name 123
for the calling process 121

getting POSIX user database information
by UID 134
by user name 132

getting processor times for current and related
OpenExtensions processes 371
getting system configuration values for OpenExtensions
services 348
getting the control sequence prefix for a terminal in an
OpenExtensions process 360
getting the path name of a terminal in an OpenExtensions
process 373
getting the path name of the BFS working directory 112
getting the PGID of the foreground process group associated
with a terminal in an OpenExtensions process 361
getting the status of a child process 388
getting the status of an child process that ended or stopped
385
getting the status of an OpenExtension process 394
getting the termination status for a POSIX thread 212
getting the user login name for an OpenExtensions process
128
getuid (BPX1GUI) routine 141
GID (group ID), POSIX

effective
getting 114
setting 286, 290

real
getting 116
setting 290

saved-set
setting 290

supplementary GIDs, getting the number and list of
for a specific user name 123
for the calling process 121

givesocket (BPX1GIV) routine 142
giving a socket to another program 142
group database, POSIX, accessing

by GID 117
by group name 119

group of a BFS file or directory, changing
by descriptor 86
by path name 31

H
HELP facility, using xiii
high level language signal interfaces, OpenExtensions 557

I
I/O channel in an OpenExtensions process, creating 199
I/O status of multiple open file descriptors and message
queues, checking 258
I/O to a terminal in an OpenExtensions

process
flushing data 356
resuming data flow 354
suspending data flow 354

I/O vector structure for sockets, mapping 430
I/O, controlling 398
ID of POSIX thread, querying 216
ID of socket host, getting 126
inheritance structure for the spawn (BPX1SPN) callable

service
mapping 426

input data on a terminal in an OpenExtensions process,
flushing 356
INT notation in parameter descriptions 5
interprocess communications

message queue
controlling 169
creating 172
finding 172
receiving a message 175
sending a message 178

permissions, mapping 431
querying 391
semaphore set

constants, defining 459
controlling 264
creating 269
data structures, mapping 459
finding 269
serialization operations 273

shared memory segment
attaching 301
constants, defining 461
controlling 304
creating 309
data structure, mapping 461
detaching 307
finding 309

interrupt
last interrupt delivered to an SIR, returning to
OpenExtensions 223
state of a POSIX thread, examining and changing 217
type of a POSIX thread, examining and changing 219

invoking OpenExtensions callable services 1
isatty (BPX1ITY) routine 145

K
kill (BPX1KIL) routine 146

L
last interrupt delivered to an SIR, returning to
OpenExtensions 223
link

to a BFS file, creating 149
link (BPX1LNK) routine 149

578 z/VM: 7.3 OpenExtensions Callable Services Reference

linkage conventions for callable services 2
listen (BPX1LSN) routine 152
loading a program into the caller's process 69
local name, binding to a socket descriptor 20
login name for a user in an OpenExtensions process, getting
128
lseek (BPX1LSK) routine

constants defined by the BPXYSEEK macro 455
description 154

lstat (BPX1LST) routine 157

M
macro coding conventions 411
making a BFS character special file 163
making a BFS directory 160
making a BFS FIFO 163
making a virtual file system available in an OpenExtensions
process 166
mapping for OpenExtensions callable services

attributes for pthread_create (BPX1PTC) 453
byte range lock request for fcntl (BPX1FCT) 414
command values

for fcntl (DMSP1FCT) 422
for pathconf (BPX1PCF) and fpathconf (BPX1FPC)
448
for w_ioctl (BPX1IOC) 427

data returned for getgrnam (BPX1GGN) and getgrgid
(BPX1GGI) 425
data returned for getpwnam (BPX1GPN) and getpwuid
(BPX1GPU) 424
data structure for w_getipc (BPX1GET) 432
data structures for message queues 439
data structures for select/selectex (BPX1SEL) 456
directory entries for readdir (BPX1RDD) 420
flag values

for access (BPX1ACC) 412
for chaudit (BPX1CHA) 413
for fchaudit (BPX1FCA) 413
for fcntl (BPX1FCT) 447
for fcntl (DMSP1FCT) 422
for open (BPX1OPN) 447
for recv (BPX1RCV) 441
for recvmsg (BPX2RMS) 441
for send (BPX1SND) 441
for sendmsg (BPX2SMS) 441

I/O vector structure for sockets 430
inheritance structure for spawn (BPX1SPN) 426
interprocess communications

data structure for shared memory segments 461
data structures for semaphores 459
message queues 439
permissions 431

message header for sendmsg (BPX2SMS) and recvmsg
(BPX2RMS) 443
mode constants 437
modes for mount (BPX1MNT) and umount (BPX1UMT)
445
mount service parameter structure 435
parameter list

for pthread_exit_and_get (BPX1PTX) 454
parameter list for pthread_exit_and_get (BPX1PTX) 454
permissions for interprocess communications 431
response structure

mapping for OpenExtensions callable services (continued)
response structure (continued)

for fstatvfs (BPX1FTV) 471
for stat (BPX1STA) 473
for statvfs (BPX1STV) 471
for times (BPX1TIM) 475
for uname (BPX1UNA) 480
for w_getpsent (BPX1GPS) 449
for w_statvfs (BPX1STF) 471

signal delivery data structure 451
SOCKADDR structure for socket services 465
termios structure 477
timeout value for select (BPX1SEL) 458
wait status word 486

message queue
constants, defining 439
controlling 169
creating 172
data structure, mapping 439
finding 172
I/O status of multiple open queues, checking
258
querying 391
receiving a message 175
sending a message 178

mkdir (BPX1MKD) routine 160
mknod (BPX1MKN) routine 163
mode constants of OpenExtensions callable services,
mapping 437
mode of a BFS file or directory, changing

by descriptor 84
by path name 28

modes for the mount (BPX1MNT) and umount (BPX1UMT)
callable services, mapping 445
modification times of a BFS file, setting 382
mount (BPX1MNT) routine

description 166
modes, mapping 445

mounting a virtual file system in an OpenExtensions process
166
msgctl (BPX1QCT) routine 169
msgget (BPX1QGT) routine 172
msgrcv (BPX1QRC) routine 175
msgsnd (BPX1QSN) routine 178

N
name of a socket, getting 136
name of socket host, getting 126
NFS client functions, performing 192
nonreentrant entry linkage for OpenExtensions callable
services, example of 553
notation used in callable service parameter descriptions 5

O
offset, BFS file, changing 154
online HELP facility, using xiii
open (BPX1OPN) routine

description 181
flag values, mapping 447

opendir (BPX1OPD) routine 185
OpenExtensions

Index 579

OpenExtensions (continued)
child process

attributes inherited from the parent 334
creating with fork (BPX1FRK) 96
creating with spawn (BPX1SPN) 333
differences from the parent 335

cleaning up resources 38
environment, establishing 1
name of the operating system, displaying 377
NFS client functions, performing 192
platform functions, performing 187, 292
signals, relationship to callable services 557

OpenExtensions callable services
invoking 1
invoking from REXX 4
notation used in parameter descriptions 5
reason code parameter, definition of 2
reason codes, list of

by numeric value 495
by symbolic name 534
special CMS file pool server and BFS client 532

reentrant coding versus nonreentrant coding 10
return code parameter, definition of 2
return codes, list of

by numeric value 487
by symbolic name 490

return value parameter, definition of 2
signal setup 558
syntax conventions 1
system control offsets 547

OpenExtensions macros
coding conventions 411
understanding syntax diagrams 409

opening a BFS directory 185
opening a BFS file 181
openvmf (BPX1VM5) routine

description 187
function code values defined by the BPXYVM5 macro
482

openvmf7 (BPX1VM7) routine
description 192
function code values defined by the BPXYVM7 macro
484

operating system name, OpenExtensions, displaying 377
options associated with a socket, getting or setting 138
output data on a terminal in an OpenExtensions process,
flushing 356
owner of a BFS file or directory, changing

by descriptor 86
by path name 31

P
parameter lists for OpenExtensions callable services,

mapping
for pthread_exit_and_get (BPX1PTX) 454

parameter structure for mount service, mapping 435
path name

absolute, finding 241
BFS syntax 6
NFS syntax 9
of a terminal, getting 373
of the working directory, getting 112

pathconf (BPX1PCF) routine

pathconf (BPX1PCF) routine (continued)
command values, defining 448
description 194

pause (BPX1PAS) routine 197
peer name, getting 136
permissions for interprocess communications, mapping 431
PGID (process group ID)

getting 129
of the foreground process group associated with a

terminal
getting 361
setting 369

setting 294
setting by creating a new session 297

PID (process ID)
getting 130

pipe (BPX1PIP) routine 199
platform functions, performing 187, 292
POSIX

effective GID
getting 114
setting 286, 290

effective UID
getting 115
setting 288, 299

group database, accessing
by GID 117
by group name 119

real GID
getting 116
setting 290

real UID
getting 141
setting 299

saved-set GID
setting 290

saved-set UID
setting 299

thread
canceling 201
cancellation point, causing 221
creating 203
detaching 207
environment, creating 65
exiting and getting a new thread 209
ID, querying 216
interrupt state, examining and changing 217
interrupt type, examining and changing 219
quiescing 225
signal mask, examining or changing 321
signal mask, replacing 324
signal to, sending 214
termination status, getting 212
waiting 212

user database, accessing
by UID 134
by user name 132

posting a thread for an event 48
PPID (parent process ID)

getting 131
process, OpenExtensions

break condition, sending to a terminal 363
child

attributes inherited from the parent 334

580 z/VM: 7.3 OpenExtensions Callable Services Reference

process, OpenExtensions (continued)
child (continued)

creating with fork (BPX1FRK) 96
creating with spawn (BPX1SPN) 333
differences from the parent 335
status of a child that ended or stopped, getting 385
status, getting 388

deleting a program from the caller's process 67
ending 79
file mode creation mask, changing 374
foreground process group associated with a terminal

getting PGID 361
setting PGID 369

I/O to terminal
flushing data 356
resuming data flow 354
suspending data flow 354

loading a program into the caller's process 69
path name of a terminal, getting 373
PGID (process group ID)

for the foreground process group associated with a
terminal, getting 361
for the foreground process group associated with a
terminal, setting 369
getting 129
setting 294
setting by creating a new session 297

PID (process ID)
getting 130

PPID (parent process ID)
getting 131

processor times for current and related processes,
getting 371
sending a signal to 146
status, getting 394
suspending

until a signal is delivered 197
until a specified interval has elapsed or a signal is
delivered 328
until output is sent to a terminal 352

processor times for current and related OpenExtensions
processes, getting 371
program

deleting from the caller's process 67
loading into the caller's process 69
running from an OpenExtensions process 72
running in a new (child) process 333

programming language binding files 2
pthread_cancel (BPX1PTB) routine 201
pthread_create (BPX1PTC) routine

attributes, mapping 453
description 203
multiple CMS threads and signals 561

pthread_detach (BPX1PTD) routine 207
pthread_exit_and_get (BPX1PTX) routine

description 209
parameter list, mapping 454

pthread_join (BPX1PTJ) routine 212
pthread_kill (BPX1PTK) routine 214
pthread_self (BPX1PTS) routine 216
pthread_setintr (BPX1PSI) routine 217
pthread_setintrtype (BPX1PST) routine 219
pthread_testintr (BPX1PTI) routine 221
PTR notation in parameter descriptions 5

Q
querying a POSIX thread ID 216
querying interprocess communications 391
queue_interrupt (BPX1SPB) routine 223
quiesce_threads (BPX1PTQ) routine 225
quiescing POSIX threads 225

R
read (BPX1RED) routine 228
read_external_link (BPX1RXL) routine 234
readdir (BPX1RDD) routine

description 231
directory entries, mapping 420

reading a BFS directory entry 231
reading data from a socket and storing it in buffers 238
reading from a BFS file or socket 228
reading the contents of a CMS external link 234
reading the value of a symbolic link 236
readlink (BPX1RDL) routine 236
readv (BPX1RDV) routine

description 238
I/O vector structure, mapping
430

real group ID, POSIX
getting 116
setting 290

real user ID, POSIX
getting 141
setting 299

realpath (BPX1RPH) routine 241
reason code values for OpenExtensions callable services,
defining 421
reason codes list

by numeric value 495
by symbolic name 534

receiving a message from a message queue 175
receiving data on a socket and storing it in a buffer

recv (BPX1RCV) 243
recvfrom (BPX1RFM) 245

receiving event notifications
canceling 46
setting up 50

receiving messages on a socket and storing them in buffers
248
recv (BPX1RCV) routine

description 243
flags, mapping 441

recvfrom (BPX1RFM) routine 245
recvmsg (BPX2RMS) routine

description 248
flags, mapping 441
I/O vector structure, mapping
430
message header, mapping 443

reentrant coding versus nonreentrant coding 10
reentrant linkage for OpenExtensions callable services,

example of
entry 551
return 551

register usage for callable services 2
removing a BFS directory 256
removing a BFS directory entry 379

Index 581

removing a virtual file system from the file tree in an
OpenExtensions process 375
rename (BPX1REN) routine 251
renaming a BFS file or directory 251
resetting a BFS directory to the beginning 254
response structures for OpenExtensions callable services,

mapping
for fstatvfs (BPX1FTV) 471
for getclientid (BPX1GCL) 415
for stat (BPX1STA) 473
for statvfs (BPX1STV) 471
for times (BPX1TIM) 475
for uname (BPX1UNA) 480
for w_getpsent (BPX1GPS) 449
for w_statvfs (BPX1STF) 471

resuming data flow on a terminal in an OpenExtensions
process 354
return code values for OpenExtensions callable services,
defining 421
return codes list

by numeric value 487
by symbolic name 490

return linkage for OpenExtension callable services, example
of 551
returning the last interrupt delivered to an SIR back to
OpenExtensions 223
rewinddir (BPX1RWD) routine 254
rewinding a BFS directory to the beginning 254
rmdir (BPX1RMD) routine 256
running a program

from an OpenExtensions process 72
in a new (child) process 333

S
saved-set group ID, POSIX

setting 290
saved-set user ID, POSIX

setting 299
select/selectex (BPX1SEL) routine

data structures, mapping 456
description 258
timeout value, mapping 458

semaphore set
atomic operations 273
constants, defining 459
controlling 264
creating 269
data structures, mapping 459
finding 269
querying 391
serialization operations 273

semctl (BPX1SCT) routine 264
semget (BPX1SGT) routine 269
semop (BPX1SOP) routine 273
send (BPX1SND) routine

description 277
flags, mapping 441

sending a break condition to a terminal in an
OpenExtensions process 363
sending a message to a message queue 178
sending a signal to a POSIX thread 214
sending a signal to an OpenExtensions process 146
sending data on a socket 277, 283

sending messages on a socket 280
sendmsg (BPX2SMS) routine

description 280
flags, mapping 441
I/O vector structure, mapping
430
message header, mapping 443

sendto (BPX1STO) routine 283
serialization constants, defining 419
server options, NFS 9
session in an OpenExtensions process

creating 297
setegid (BPX1SEG) routine 286
seteuid (BPX1SEU) routine 288
setgid (BPX1SGI) routine 290
setopen (BPX1VM6) routine

description 292
function code values defined by the BPXYVM6 macro
483

setpgid (BPX1SPG) routine 294
setsid (BPX1SSI) routine 297
setsockopt (BPX1OPT) routine 138
setting access and modification times of a BFS file 382
setting an alarm 18
setting attributes for a terminal in an OpenExtensions
process 365
setting OpenExtensions process information

PGID (process group ID) 294
PGID by creating a new session 297
PGID of the foreground process group associated with a
terminal 369

setting POSIX group database information
effective GID 286
real, effective, and saved-set GIDs 290

setting POSIX user database information
effective UID 288
real, effective, and saved-set UIDs 299

setting the control sequence prefix for a terminal in an
OpenExtensions process 368
setting the file mode creation mask of an OpenExtensions
process 374
setting the interrupt state of a POSIX thread 217
setting the interrupt type of a POSIX thread 219
setting the PGID of the foreground process group associated
with a terminal in OpenExtensions process 369
setting up CMS signals from OpenExtensions 40
setting up to receive event notifications 50
setuid (BPX1SUI) routine 299
shared memory segment

attaching 301
constants, defining 461
controlling 304
creating 309
data structure, mapping 461
detaching 307
finding 309
querying 391

shmat (BPX1MAT) routine 301
shmctl (BPX1MCT) routine 304
shmdt (BPX1MDT) routine 307
shmget (BPX1MGT) routine 309
shutdown (BPX1SHT) routine 313
shutting down a duplex socket connection 313
sigaction (BPX1SIA) routine

582 z/VM: 7.3 OpenExtensions Callable Services Reference

sigaction (BPX1SIA) routine (continued)
description 315
program flow of cmssigsetup and sigaction with an SIR
558

signal constants used by OpenExtensions callable services,
defining 462
signal delivery data structure for OpenExtensions callable
services, mapping 451
signal setup for linking to OpenExtensions callable services
558
signals in OpenExtensions

defaults 561
delayed delivery 560
detaching the signal setup 44
high level language signal interfaces 557
last interrupt delivered to an SIR, returning to
OpenExtensions 223
multiple threads created by pthread_create 561
multiple threads created by ThreadCreate 560
pending signals, examining 319
relationship to callable services 557
sending a signal to a POSIX thread 214
setting up 40
signal action, examining or changing 315
thread's signal mask

examining or changing 321
replacing 324

waiting for a signal 326
when signals cannot be delivered 560
when supported and not supported 559

sigpending (BPX1SIP) routine 319
sigprocmask (BPX1SPM) routine 321
sigsuspend (BPX1SSU) routine 324
sigwait (BPX1SWT) routine 326
SIR (signal interface routine)

address specified in the cmssigsetup (BPX1MSS)
callable service 40
last interrupt delivered to an SIR, returning to
OpenExtensions 223
program flow of cmssigsetup and sigaction with an SIR
558
register contents when the SIR receives control 41
signal delivery data structure, mapping 451
steps the SIR must perform 41
system states when the SIR receives control 41

sleep (BPX1SLP) routine 328
SOCKADDR structure, mapping 465
socket/socketpair (BPX1SOC) routine 330
sockets

acquiring a socket from another program 350
calling program's identifier, obtaining 110
closing a socket 34
connection between two sockets, establishing 57
connection request from a client socket, accepting 12
connection request queue for server socket, creating
152
controlling open file descriptors 88
creating 330
giving a socket to another program 142
I/O status of multiple open file descriptors and message
queues, checking 258
I/O vector structure, mapping 430
ID of socket host, getting 126
local name, binding to a socket descriptor 20

sockets (continued)
name of a socket, getting 136
name of socket host, getting 126
options, getting or setting 138
peer name, getting 136
reading data from a socket and storing it in buffers 238
reading from a socket 228
receiving data and storing it in a buffer

recv (BPX1RCV) 243
recvfrom (BPX1RFM) 245

receiving messages on a socket and storing them in
buffers 248
sending data 277, 283
sending messages on a socket 280
shutting down a duplex socket connection 313
SOCKADDR structure, mapping 465
writing data to a socket from a set of buffers 404
writing to a socket from a buffer 401

spawn (BPX1SPN) routine
description 333
inheritance structure

mapping 426
special CMS file pool server and BFS client reason codes 532
stat (BPX1STA) routine

description 340
response structure, mapping 473

status of a BFS file system, getting
by descriptor 104
by file system name 407
by path name 343

status of a BFS file, getting
by descriptor 102
by path name 157, 340

status of a child process that ended or stopped, getting 385
status of a child process, getting 388
status of an OpenExtensions process, getting 394
stavfst (BPX1STV) routine

description 343
response structure, mapping 471

superuser, definition of 10
supplementary POSIX group IDs (GIDs), getting the

number and list
for a specific user name 123
for the calling process 121

suspending a thread for a limited time or an event 52
suspending a thread for an event 55
suspending an OpenExtensions process

until a signal is delivered 197
until a specified interval has elapsed or a signal is
delivered 328
until output is sent to a terminal 352

suspending data flow on a terminal in an OpenExtensions
process 354
suspending OpenExtensions processing until output is sent
to a terminal 352
symbolic link to a BFS file

creating 345
removing from a directory 379
status information, getting 157
value of, reading 236

symlink (BPX1SYM) routine 345
syntax conventions for callable services 1
syntax diagrams, understanding 409
syntax, path name

Index 583

syntax, path name (continued)
BFS 6
NFS 9

sysconf (BPX1SYC) routine 348
system configuration values for OpenExtensions services,
getting 348
system control offsets to OpenExtensions callable services
547

T
takesocket (BPX1TAK) routine 350
tcdrain (BPX1TDR) routine 352
tcflow (BPX1TFW) routine 354
tcflush (BPX1TFH) routine 356
tcgetattr (BPX1TGA) routine 358
tcgetpfx (BPX1TGX) routine 360
tcgetpgrp (BPX1TGP) routine 361
tcsendbreak (BPX1TSB) routine 363
tcsetattr (BPX1TSA) routine 365
tcsetpfx (BPX1TSX) routine 368
tcsetpgrp (BPX1TSP) routine 369
terminal in an OpenExtensions process

attributes
getting 358
setting 365

break condition, sending 363
control sequence prefix

getting 360
setting 368

data flow, suspending or resuming 354
file represents a terminal, determining if 145
flushing data 356
path name, getting 373
suspending the process until output is sent to a terminal
352

termination status for a POSIX thread, getting 212
termios data area, OpenExtensions callable services

mapping 477
storing terminal attributes 358
using to set terminal attributes 365

thread, POSIX
canceling 201
cancellation point, causing 221
creating 203
detaching 207
environment, creating 65
exiting and getting a new thread 209
ID, querying 216
interrupt state, examining and changing 217
interrupt type, examining and changing 219
posting for an event 48
quiescing 225
signal mask, examining or changing 321
signal mask, replacing 324
signal to, sending 214
suspending for a limited time or an event 52
suspending for an event 55
termination status, getting 212
waiting 212

ThreadCreate routine
multiple CMS threads and signals 560

times (BPX1TIM) routine
description 371

times (BPX1TIM) routine (continued)
response structure, mapping 475

times for current and related OpenExtensions processes,
getting 371
truncating a BFS file 108
ttyname (BPX1TYN) routine 373

U
UID (user ID), POSIX

effective
getting 115
setting 288, 299

real
getting 141
setting 299

saved-set
setting 299

umask (BPX1UMK) routine 374
umount (BPX1UMT) routine

description 375
modes, mapping 445

uname (BPX1UNA) routine
description 377
response structure, mapping 480

understanding syntax diagrams 409
unlink (BPX1UNL) routine 379
unmounting a virtual file system in an OpenExtensions
process 375
unnamed pipe (OpenExtensions I/O

channel)
creating 199

user database, POSIX, accessing
by UID 134
by user name 132

user login name for an OpenExtensions process, getting 128
using the online HELP facility xiii
utime (BPX1UTI) routine 382

V
virtual file system in an OpenExtensions process

adding to the file tree 166
removing from the file tree 375

VMASMOVM MACRO 3
VMCOVM H 4
VMERROR event handling 559
VMREXOVM COPY 4

W
w_getipc (BPX1GET) routine

constants, defining 432
data structure, mapping 432
description 391

w_getpsent (BPX1GPS) routine
description 394
response structure, mapping 449

w_ioctl (BPX1IOC) routine
command values, defining 427
description 398

w_statvfs (BPX1STF) routine
description 407

584 z/VM: 7.3 OpenExtensions Callable Services Reference

w_statvfs (BPX1STF) routine (continued)
response structure, mapping 471

wait (BPX1WAT) routine 385
wait status word used by OpenExtensions callable services,
mapping 486
wait-extension (BPX1WTE) routine 388
waiting for a signal in an OpenExtensions process 326
waiting on a POSIX thread 212
waiting until OpenExtensions process output is sent to a
terminal 352
when signals cannot be delivered 560
working directory, BFS

changing 26
path name, getting 112

write (BPX1WRT) routine 401
writev (BPX1WRV) routine

description 404
I/O vector structure, mapping
430

writing BFS file changes to direct-access storage 106
writing data to a socket from a set of buffers 404
writing to a BFS file or socket 401

Index 585

586 z/VM: 7.3 OpenExtensions Callable Services Reference

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6296-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Using the Online HELP Facility
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: OpenExtensions Callable Services Reference
	SC24-6296-73, z/VM 7.3 (September 2023)
	SC24-6296-73, z/VM 7.3 (September 2022)
	SC24-6296-01, z/VM 7.2 (July 2021)
	SC24-6296-01, z/VM 7.2 (March 2021)
	SC24-6296-01, z/VM 7.2 (September 2020)
	SC24-6296-00, z/VM 7.1 (September 2018)

	Chapter 1. Invocation Details for Callable Services
	Establishing the OpenExtensions Environment
	Syntax Conventions for the Callable Services
	Linkage Conventions for the Callable Services
	Programming Language Binding Files
	Invocation from REXX Procedures
	Parameter Descriptions for Callable Services
	Call Parameter Lists
	Understanding Byte File System (BFS) Path Name Syntax
	Understanding Network File System (NFS) Path Name Syntax

	Mapping Macros
	Examples
	Callable Service Failures
	Authorization

	Chapter 2. Callable Service Descriptions
	accept (BPX1ACP) — Accept a Connection Request from a Client Socket
	access (BPX1ACC) — Determine If a File Can Be Accessed
	alarm (BPX1ALR) — Set an Alarm
	bind (BPX1BND) — Bind a Unique Local Name to a Socket Descriptor
	chaudit (BPX1CHA) — Change Audit Flags for a File by Path Name
	chdir (BPX1CHD) — Change the Working Directory
	chmod (BPX1CHM) — Change the Mode of a File or Directory by Path Name
	chown (BPX1CHO) — Change the Owner or Group of a File or Directory
	close (BPX1CLO) — Close a File or Socket
	closedir (BPX1CLD) — Close a Directory
	cmsprocclp (BPX1MPC) — Clean Up Kernel Resources
	cmssigsetup (BPX1MSS) — Set Up CMS Signals
	cmsunsigsetup (BPX1MSD) — Detach the Signal Setup
	cond_cancel (BPX1CCA) — Cancel Interest in Events
	cond_post (BPX1CPO) — Post a Thread for an Event
	cond_setup (BPX1CSE) — Set Up to Receive Event Notifications
	cond_timed_wait (BPX1CTW) — Suspend a Thread for a Limited Time or for an Event
	cond_wait (BPX1CWA) — Suspend a Thread for an Event
	connect (BPX1CON) — Establish a Connection Between Two Sockets
	create_external_link (BPX1ELN) — Create a CMS External Link
	create_thread_environment (BPX1CTE) — Create POSIX Thread Environment
	DLL_delete (BPX1DEL) — Delete a Program from Storage
	DLL_load (BPX1LOD) — Load a Program into Storage
	exec (BPX1EXC) — Run a Program
	_exit (BPX1EXI) — End a Process and Bypass the Cleanup
	fchaudit (BPX1FCA) — Change Audit Flags for a File by Descriptor
	fchmod (BPX1FCM) — Change the Mode of a File or Directory by Descriptor
	fchown (BPX1FCO) — Change the Owner and Group of a File or Directory by Descriptor
	fcntl (BPX1FCT) — Control Open File Descriptors
	fork (BPX1FRK) — Create a New Process
	fpathconf (BPX1FPC) — Determine Configurable Path Name Variables Using a Descriptor
	fstat (BPX1FST) -- Get Status Information about a File by Descriptor
	fstatvfs (BPX1FTV) — Get Status Information about File System by Descriptor
	fsync (BPX1FSY) — Write Changes to Direct-Access Storage
	ftruncate (BPX1FTR) — Truncate a File
	getclientid (BPX1GCL) — Obtain the Calling Program's Identifier
	getcwd (BPX1GCW) — Get the Path Name of the Working Directory
	getegid (BPX1GEG) — Get the Effective Group ID
	geteuid (BPX1GEU) — Get the Effective User ID
	getgid (BPX1GID) — Get the Real Group ID
	getgrgid (BPX1GGI) — Access the Group Database by ID
	getgrnam (BPX1GGN) — Access the Group Database by Name
	getgroups (BPX1GGR) — Get a List of Supplementary Group IDs
	getgroupsbyname (BPX1GUG) — Get a List of Supplementary Group IDs by User Name
	gethostid/gethostname (BPX1HST) — Get ID or Name Information about a Socket Host
	getlogin (BPX1GLG) — Get the User Login Name
	getpgrp (BPX1GPG) — Get the Process Group ID
	getpid (BPX1GPI) — Get the Process ID
	getppid (BPX1GPP) — Get the Parent Process ID
	getpwnam (BPX1GPN) — Access the User Database by User Name
	getpwuid (BPX1GPU) — Access the User Database by User ID
	getsockname/getpeername (BPX1GNM) — Get the Name of a Socket or Peer
	getsockopt/setsockopt (BPX1OPT) — Get or Set Socket Options
	getuid (BPX1GUI) — Get the Real User ID
	givesocket (BPX1GIV) — Give a Socket to Another Program
	isatty (BPX1ITY) — Determine If a File Descriptor Represents a Terminal
	kill (BPX1KIL) — Send a Signal to a Process
	link (BPX1LNK) — Create a Link to a File
	listen (BPX1LSN) — Prepare a Server Socket to Queue Incoming Connection Requests from Clients
	lseek (BPX1LSK) — Change the File Offset
	lstat (BPX1LST) — Get Status Information about a File or Symbolic Link by Path Name
	mkdir (BPX1MKD) — Make a Directory
	mknod (BPX1MKN) — Make a FIFO or Character Special File
	mount (BPX1MNT) — Make a File System Available
	msgctl (BPX1QCT) — Perform Message Queue Control Operations
	msgget (BPX1QGT) — Create or Find a Message Queue
	msgrcv (BPX1QRC) — Receive a Message from a Message Queue
	msgsnd (BPX1QSN) — Send a Message to a Message Queue
	open (BPX1OPN) — Open a File
	opendir (BPX1OPD) — Open a Directory
	openvmf (BPX1VM5) — Perform OpenExtensions Platform Functions
	openvmf7 (BPX1VM7) — Perform z/VM NFS Client Functions
	pathconf (BPX1PCF) — Determine Configurable Path Name Variables Using Path Name
	pause (BPX1PAS) — Suspend a Process Pending a Signal
	pipe (BPX1PIP) — Create an Unnamed Pipe
	pthread_cancel (BPX1PTB) — Cancel a Thread
	pthread_create (BPX1PTC) — Create a Thread
	pthread_detach (BPX1PTD) — Detach a Thread
	pthread_exit_and_get (BPX1PTX) — Exit and Get a New Thread
	pthread_join (BPX1PTJ) — Wait on a Thread
	pthread_kill (BPX1PTK) — Send a Signal to a Thread
	pthread_self (BPX1PTS) — Query Thread ID
	pthread_setintr (BPX1PSI) — Examine and Change Interrupt State
	pthread_setintrtype (BPX1PST) — Examine and Change Interrupt Type
	pthread_testintr (BPX1PTI) — Cause a Cancellation Point to Occur
	queue_interrupt (BPX1SPB) — Return the Last Interrupt Delivered
	quiesce_threads (BPX1PTQ) — Quiesce Threads in a Process
	read (BPX1RED) — Read from a File or Socket
	readdir (BPX1RDD) — Read an Entry from a Directory
	read_external_link (BPX1RXL) — Read the Contents of a CMS External Link
	readlink (BPX1RDL) — Read the Value of a Symbolic Link
	readv (BPX1RDV) — Read Data and Store It in a Set of Buffers
	realpath (BPX1RPH) — Find the Absolute Path Name
	recv (BPX1RCV) — Receive Data on a Socket and Store It in a Buffer
	recvfrom (BPX1RFM) — Receive Data from a Socket and Store It in a Buffer
	recvmsg (BPX2RMS) — Receive Messages on a Socket and Store Them in Message Buffers
	rename (BPX1REN) — Rename a File or Directory
	rewinddir (BPX1RWD) — Reposition a Directory Stream to the Beginning
	rmdir (BPX1RMD) — Remove a Directory
	select/selectex (BPX1SEL) — Select on File Descriptors and Message Queues
	semctl (BPX1SCT) — Perform Semaphore Control Operations
	semget (BPX1SGT) — Create or Find a Set of Semaphores
	semop (BPX1SOP) — Perform Semaphore Serialization Operations
	send (BPX1SND) — Send Data on a Socket
	sendmsg (BPX2SMS) — Send Messages on a Socket
	sendto (BPX1STO) — Send Data on a Socket
	setegid (BPX1SEG) — Set the Effective Group ID
	seteuid (BPX1SEU) — Set the Effective User ID
	setgid (BPX1SGI) — Set the Group ID
	setopen (BPX1VM6) — Perform OpenExtensions Platform Set Functions
	setpgid (BPX1SPG) — Set a Process Group ID for Job Control
	setsid (BPX1SSI) — Create a Session and Set the Process Group ID
	setuid (BPX1SUI) — Set User IDs
	shmat (BPX1MAT) — Attach a Shared Memory Segment
	shmctl (BPX1MCT) — Perform Shared Memory Segment Control Operations
	shmdt (BPX1MDT) — Detach a Shared Memory Segment
	shmget (BPX1MGT) — Create or Find a Shared Memory Segment
	shutdown (BPX1SHT) — Shut Down All or Part of a Duplex Socket Connection
	sigaction (BPX1SIA) — Examine or Change a Signal Action
	sigpending (BPX1SIP) — Examine Pending Signals
	sigprocmask (BPX1SPM) — Examine or Change a Thread's Signal Mask
	sigsuspend (BPX1SSU) — Change the Signal Mask and Suspend the Thread Until a Signal Is Delivered
	sigwait (BPX1SWT) — Wait for a Signal
	sleep (BPX1SLP) — Suspend Execution of a Process for an Interval of Time
	socket (BPX1SOC) — Create a Socket
	spawn (BPX1SPN) — Spawn a Process
	stat (BPX1STA) -- Get Status Information about a File by Path Name
	statvfs (BPX1STV) — Get Status Information about a File System by Path Name
	symlink (BPX1SYM) — Create a Symbolic Link to a Path Name
	sysconf (BPX1SYC) — Determine System Configuration Options
	takesocket (BPX1TAK) — Acquire a Socket from Another Program
	tcdrain (BPX1TDR) — Wait Until Output Has Been Transmitted
	tcflow (BPX1TFW) — Suspend or Resume Data Flow on a Terminal
	tcflush (BPX1TFH) — Flush Input or Output on a Terminal
	tcgetattr (BPX1TGA) — Get the Attributes for a Terminal
	tcgetpfx (BPX1TGX) — Get the Control Sequence Prefix
	tcgetpgrp (BPX1TGP) — Get the Foreground Process Group ID
	tcsendbreak (BPX1TSB) — Send a Break Condition to a Terminal
	tcsetattr (BPX1TSA) — Set the Attributes for a Terminal
	tcsetpfx (BPX1TSX) — Set the Control Sequence Prefix
	tcsetpgrp (BPX1TSP) — Set the Foreground Process Group ID
	times (BPX1TIM) — Get Process and Child Process Times
	ttyname (BPX1TYN) — Get the Name of a Terminal
	umask (BPX1UMK) — Set or Return the File Mode Creation Mask
	umount (BPX1UMT) — Remove a Virtual File System
	uname (BPX1UNA) — Display the Name of the Current Operating System
	unlink (BPX1UNL) — Remove a Directory Entry
	utime (BPX1UTI) -- Set File Access and Modification Times
	wait (BPX1WAT) — Wait for a Child Process to End
	wait-extension (BPX1WTE) — Obtain Status Information for Child Processes
	w_getipc (BPX1GET) — Query Interprocess Communications
	w_getpsent (BPX1GPS) -- Get Process Data
	w_ioctl (BPX1IOC) — Control I/O
	write (BPX1WRT) — Write to a File or Socket
	writev (BPX1WRV) — Write Data from a Set of Buffers
	w_statvfs (BPX1STF) — Get Status Information about a File System by File System Name

	Chapter 3. Mapping Macro Descriptions
	Understanding the Macro Syntax Diagrams
	Coding Conventions
	BPXYACC — Map Flag Values for the access Service
	BPXYAUDT — Map Flag Values for the chaudit and fchaudit Services
	BPXYBRLK — Map the Byte Range Lock Request for the fcntl Service
	BPXYCID — Map the Client ID Structure
	BPXYCONS — Map Constants
	BPXYCW — Map Serialization Constants
	BPXYDIRE — Map Directory Entries for the readdir Service
	BPXYERNO — Map Return Codes and Reason Codes
	BPXYFCTL — Map Command Values and Flags for the fcntl Service
	BPXYFTYP — Map File Type Definitions
	BPXYGIDN — Map the Data Structure Returned for the getpwnam and getpwuid Services
	BPXYGIDS — Map the Data Structure Returned for the getgrnam and getgrgid Services
	BPXYINHE — Map the Inheritance Structure for the spawn Service
	BPXYIOCC — Map Command Constants for the w_ioctl Service
	BPXYIOV — Map the I/O Vector Structure
	BPXYIPCP — Map Interprocess Communications Permissions
	BPXYIPCQ — Map the Data Structure and Constants for the w_getipc Service
	BPXYMNT — Map the File System Parameters for the mount Service
	BPXYMODE — Map Mode Constants
	BPXYMSG — Map Interprocess Communications Message Queues
	BPXYMSGF — Map the Message Flags
	BPXYMSGH — Map the Message Headers
	BPXYMTM — Map the Modes for the mount and umount Services
	BPXYOPNF — Map Flag Values for the open and fcntl Services
	BPXYPCF — Map Command Values for the pathconf and fpathconf Services
	BPXYPGPS — Map the Response Structure for the w_getpsent Service
	BPXYPPSD — Map the Signal Delivery Data Structure
	BPXYPTAT — Map Attributes for the pthread_create Service
	BPXYPTXL — Map the Parameter List for the pthread_exit_and_get Service
	BPXYSEEK — Map Constants for the lseek Service
	BPXYSEL — Map Options for the select/selectex Service
	BPXYSELT — Map the Timeout Value for the select/selectex Service
	BPXYSEM — Map Interprocess Communications Semaphores
	BPXYSHM — Map Interprocess Communications Shared Memory Segments
	BPXYSIGH — Map Signal Constants
	BPXYSINF — Map the Siginfo_t Structure for the wait-extensions Service
	BPXYSOCK — Map the SOCKADDR Structure and Constants for Socket-Related Services
	BPXYSSTF — Map the File System Status Structure
	BPXYSTAT — Map the File Status Structure for the stat Service
	BPXYTIMS — Map the Processor Time Structure for the times Service
	BPXYTIOS — Map the termios Structure
	BPXYUTSN — Map the System Information Structure for the uname Service
	BPXYVM5 — Map Function Code Values for the openvmf Service
	BPXYVM6 — Map the Function Code Values for the setopen Service
	BPXYVM7 — Map the Function Code Values and Buffer for the openvmf7 Service
	BPXYWAST — Map the Wait Status Word

	Appendix A. Return Codes
	OpenExtensions Return Codes Listed by Numeric Value
	OpenExtensions Return Codes Listed by Symbolic Name

	Appendix B. Reason Codes
	OpenExtensions Reason Codes Listed by Numeric Value
	Special CMS File Pool Server and BFS Client Reason Codes
	OpenExtensions Reason Codes Listed by Symbolic Name

	Appendix C. System Control Offsets to Callable Services
	Appendix D. Reentrant and Nonreentrant Linkage Examples
	Reentrant Entry Linkage
	Reentrant Return Linkage
	Nonreentrant Entry Linkage

	Appendix E. The Relationship of OpenExtensions Signals to Callable Services
	High-Level-Language Signal Interfaces
	How High-Level Languages Use Signals
	Signal Setup When Linking to Callable Services

	VMERROR Event Handling and the SIGILL, SIGFPE, and SIGSEGV Signals
	When Signals Are Supported and Not Supported

	Delayed Signal Delivery
	When Signals Cannot Be Delivered
	Signals and Multiple Threads Created by ThreadCreate
	Signals and Multiple Threads Created by pthread_create
	Signal Defaults

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Additional Publications

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

