
z/VM
7.3

Language Environment
User's Guide

IBM

SC24-6293-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
121.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-07
© Copyright International Business Machines Corporation 2003, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About this document...xi
Unsupported z/OS functions... xi
Intended audience.. xi
Where to find more information... xii

Links to Other Documents and Websites... xii

How to Send Your Comments to IBM..xiii

Summary of Changes for z/VM: Language Environment User's Guide..................... xv
SC24-6293-73, z/VM 7.3 (September 2022)..xv
SC24-6293-01, z/VM 7.2 (September 2020)..xv
SC24-6293-00, z/VM 7.1 (September 2018)..xv

Part 1. Language Environment Programming Guide.. 1

Chapter 1. Preparing to load and run under Language Environment... 3
Understanding the Basics.. 3

Planning to load and run... 3
Checking Which Run-Time Options Are in Effect...3
PL/I Considerations..4

Replacing PL/I Library Routines in an OS PL/I Executable Program...4

Chapter 2. Loading and Running under z/VM..5
Basic Linking and Running..5

Accepting the Default Run-Time Options...5
Overriding the Default Run-Time Options.. 6

Using the GLOBAL Command...6
Determining the Search Order for Dynamic Routines... 8
Using the LOAD and INCLUDE Commands.. 8

C/C++ Considerations... 9
PL/I Considerations.. 9
Using the LOAD Command..9
CMS LOAD Options..9
Using the INCLUDE Command... 12

Using the GENMOD Command...12
Using the BIND Command... 13
Using the NUCXLOAD Command... 14

Restrictions... 14
Example.. 14

Using FILEDEF to Define Input and Output Files.. 14
Link-Editing with the LKED Command... 14
Using the CMOD EXEC..15
Using the LINKLOAD EXEC...17
Using the START Command... 18
Using the iconv Utility and ICONV EXEC for C/C++... 19

 iii

Using the genxlt Utility and GENXLT EXEC for C/C++..19
Running Your Application...19

Running a Module Produced by the BIND or GENMOD Command... 19
Running a Module Using the OSRUN Command.. 20

Using the VM/CMS Extended Parameter List...20

Chapter 3. Building, Loading, and Running under OpenExtensions ..23
Basic Building and Running C/C++ Applications under OpenExtensions...23
Invoking the OpenExtensions Shell... 23
Using the OpenExtensions c89 Utility to Create Executable Files..23

Prelinker Options.. 24
Specifying Run-Time Options under OpenExtensions.. 25
Running under OpenExtensions.. 25

OpenExtensions Application Program Environments..25
Placing a CMS Application Program Load Module in the File System... 25
Running a CMS Module from the OpenExtensions Shell... 25
Running an OpenExtensions C/C++ Application Executable File from the OpenExtensions

Shell... 25
Basic Building and Running PL/I routines under OpenExtensions... 26

Chapter 4. Initialization and Termination under Language Environment.. 27
How the Language Environment Enclave Return Code Is Calculated.. 27

z/VM Considerations...27

Chapter 5. Using and Handling Messages...29
Creating Messages... 29

Creating a Message Source File..29
Using the CEEBLDTX Utility.. 30
Files Created by CEEBLDTX..30

Run-Time Messages with POSIX..33
Handling Message Output..34

Using Language Environment MSGFILE... 34
Using MSGFILE under OpenExtensions .. 34
Using C or C++ I/O Functions... 35
Using COBOL I/O Statements...36
Using PL/I I/O Statements... 37
MSGFILE Considerations When Using PL/I..38

Chapter 6. Using Run-Time User Exits.. 39
Understanding the Basics.. 39
User Exits Supported under Language Environment.. 39

PL/I and C Compatibility...40
Using Sample Assembler User Exits.. 40

When User Exits Are Invoked...41
CEEBXITA Behavior During Enclave Initialization..42

CEEBXITA Assembler User Exit Interface... 42

Chapter 7. Using Preinitialization Services... 47
Service Routines...47
A Sample Program Invocation of CEEPIPI.. 53

Chapter 8. Using Nested Enclaves.. 57
Understanding the Basics.. 57

XPLINK Considerations.. 57
COBOL Considerations..57

Determining the Behavior of Child Enclaves... 58
Creating Child Enclaves by Calling a Second Main Program..58
Creating Child Enclaves Using SVC LINK or CMSCALL...58

iv

Creating Child Enclaves Using the C system() Function.. 61
Creating Child Enclaves Containing a PL/I Fetchable Main... 62

Other Nested Enclave Considerations... 63
What the Enclave Returns from CEE3PRM...64
Finding the Return and Reason Code from the Enclave.. 65
Assembler User Exit..66
Message File... 66
OpenExtensions Considerations.. 66
AMODE Considerations...66

Part 2. Language Environment Debugging Guide...67

Chapter 9. Debugging C/C++ Routines..69
Debugging C/C++ Input/Output Programs.. 69

__last_op Values...69
Using __errno2() to Diagnose Application Problems...73

Generating a Language Environment Dump of a C/C++ Routine.. 74
cdump()... 74
csnap()...74

Chapter 10. Diagnosing Problems with Language Environment.. 75
Diagnosis Checklist.. 75

Part 3. Language Environment Run-Time Messages.. 77

Chapter 11. C/C++ Run-Time Messages... 79

Chapter 12. COBOL Run-Time Messages..83

Part 4. Customizing Language Environment..85

Chapter 13. Customizing Language Environment...87
Updating Run-Time Options...87
Updating User Exit Options.. 87
C Component Locale Time Information...88
Updating Saved Segments... 88
Updating the COBOL Component Reusable Environment.. 89

Modifying the behavior of the COBOL Reusable Environment.. 90

Appendix A. Prelinking an Application... 91
Which Programs Need to Be Prelinked... 91
What the Prelinker Does.. 91
Prelinking Process..92

Primary Input..92
INCLUDE Control Statements.. 92
References to Currently Undefined Symbols (External References).. 93
Processing the Prelinker Automatic Library Call... 93

Language Environment Prelinker Map...93
Control Statement Processing...96

IMPORT Control Statement..96
INCLUDE Control Statement.. 96
LIBRARY Control Statement.. 97
RENAME Control Statement...97

Mapping L-Names to S-Names..98
Starting the Prelinker...99

Examples.. 99
Prelinker Options... 100

 v

Appendix B. Parameter List Formats.. 103
C and C++ Parameter Passing Considerations... 103

C PLIST and EXECOPS Interactions...105
Parameter Passing Considerations with XPLINK C and C++.. 106

COBOL Parameter Passing Considerations...106
PL/I Main Procedure Parameter Passing Considerations...107

Appendix C. Object Library Utility...109
Creating an Object Library .. 109

The LINKLOAD EXEC.. 110
Object Library Utility Map.. 111

Appendix D. Using the Systems Programming Environment.................................115
Building Freestanding Applications.. 115
Building Freestanding Applications.. 115

Special Considerations for Reentrant Modules...116
Building System Exit Routines...117
Building Persistent C Environments..117
Building User-Server Environments.. 117
Summary..117

Notices..121
Programming Interface Information...122
Trademarks.. 122
Terms and Conditions for Product Documentation.. 122
IBM Online Privacy Statement.. 123

Bibliography.. 125
Where to Get z/VM Information.. 125
z/VM Base Library..125
z/VM Facilities and Features... 126
Prerequisite Products.. 128
Related Products... 128

Index.. 131

vi

Figures

1. Example of a Message Source File..29

2. Location of User Exits..41

3. Interface for CEEBXITA Assembler User Exit...43

4. CEEAUE_FLAGS Format.. 44

5. Format of Service Routine Vector... 47

6. Example of a Routine Using __errno2().. 73

7. Example of a Routine Using _EDC_ADD_ERRNO2... 73

8. Sample Output of a Routine Using _EDC_ADD_ERRNO2...73

9. Customization EXEC - Panel 1.. 87

10. Some Alternate C/C++ Parameter Passing Styles... 103

11. Accessing Parameters Using Macros __R1 and __osplist... 104

12. Examples of Casting and Dereferencing.. 105

13. Object Library Utility Map... 112

14. Specifying Alternate Initialization at Link-Edit...115

15. Simple Freestanding z/VM Routine.. 116

16. Building a Freestanding z/VM Routine... 116

17. Simple Reentrant Freestanding z/VM Routine...116

18. Building a Reentrant Freestanding VM Routine... 116

 vii

viii

Tables

1. Selected CMS LOAD Options... 9

2. CMOD options..15

3. LINKLOAD Options.. 17

4. Condition Tokens with POSIX... 33

5. Operating System, SYSOUT Definitions, MSGFILE Default Attributes...34

6. Defining an I/O Device for a ddname..34

7. C and C++ Message Output...35

8. C/C++ Redirected Stream Output...36

9. Run-time Message and DISPLAY Destinations for OUTDD and MSGFILE ddname Specifications
under VM.. 37

10. User Exits Supported under Language Environment... 39

11. Interaction of Assembler User Exits...40

12. Sample Assembler User Exits for Language Environment...40

13. Return and Reason Codes...48

14. Return and Reason Codes...49

15. Return and Reason Codes...50

16. Return and Reason Codes...50

17. Return and Reason Codes...51

18. Parameters for EXCEPRTN..52

19. Return and Reason Codes...52

20. Return and Reason Codes...53

21. Handling Conditions in Child Enclaves... 59

22. Unhandled Condition Behavior in a C or Assembler Child Enclave, under CMS......................................59

 ix

23. Unhandled Condition Behavior in a COBOL Child Enclave, under z/VM..60

24. Unhandled Condition Behavior in a PL/I Child Enclave, under z/VM...60

25. Unhandled Condition Behavior in a system()-Created Child Enclave, under z/VM.................................61

26. Unhandled Condition Behavior in a Child Enclave That Contains a Fetchable Main, under z/VM..........62

27. Determining the Command-Line Equivalent.. 64

28. Determining the Order of Run-Time Options and Program Arguments...65

29. __last_op Values and Diagnosis Information...69

30. Prelinker Options.. 100

31. Interactions of C PLIST and EXECOPS (#pragma runopts)... 106

32. Interactions of SYSTEM and NOEXECOPS under z/VM..107

33. Summary of Types.. 117

x

About this document

This edition of the z/VM Language Environment® User's Guide is intended to provide z/VM Language
Environment users with information unique to the z/VM platform. This information is a supplement to the
z/OS® 2.5 Language Environment information and should be used in conjunction with it.

This information is organized as follows:

• Part 1 decribes Language Environment programming information unique to the z/VM platform.
For more information regarding Language Environment programming, see z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

• Part 2 describes Language Environment debugging information unique to the z/VM
platform. For more information regarding Language Environment debugging, see z/OS:
Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf).

• Part 3 describes Language Environment run-time information unique to the z/VM platform.
For more information regarding Language Environment run-time messages, see z/OS: Language
Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380686/$file/ceea900_v2r5.pdf).

• Part 4 describes Language Environment customizing information unique to the z/VM platform.
• The various appendixes describe prelinking, using parameter list formats, using the C object library, and

systems programming environments.

Unsupported z/OS functions
z/VM does not support the following z/OS Language Environment functions:

• 64-bit addressing mode (AMODE 64)
• ASCII functions
• IEEE floating-point arithmetic

The following C/C++ compiler option is not supported:

– FLOAT(IEEE)
• The following run-time options are not supported:

– CEEDUMP(60,SYSOUT=*,FREE=END,SPIN=UNALLOC)
– DYNDUMP(*USERID,NODYNAMIC,TDUMP)

• The following run-time parameters are not supported:

– In HEAPCHK(OFF,1,0,0,0), the last parameter (0) is not supported
– In HEAPPOOLS(OFF,8,10,32,10,128,10,256,10,1024,10,2048,10,0,10,0,10,0,10,0,10,0,10,0,10),

the last 12 parameters (0,10,0,10,0,10,0,10,0,10,0,10) are not supported

Other differences in functionality will be noted in the appropriate documentation.

Intended audience
To use this document you should be familiar with the Language Environment product and one or more of
the supported Language Environment-conforming high-level languages listed above. The term C/C++ is
used generically to refer to information that applies to both C and C++.

Previous versions of the Language Environment-conforming language products provided their own
environment and services for running applications, and their associated application programming guides

© Copyright IBM Corp. 2003, 2022 xi

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf

including information on how to link-edit and run applications. Language Environment now provides
the run-time support required to run applications compiled under all of the Language Environment-
conforming HLLs, as well as the facility for interlanguage communication between supported languages.

Where to find more information
For more information about z/VM functions, see the documents listed in the “Bibliography” on page 125.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xii z/VM: 7.3 Language Environment User's Guide

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 2003, 2022 xiii

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xiv z/VM: 7.3 Language Environment User's Guide

Summary of Changes for z/VM: Language Environment
User's Guide

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left
of the change.

SC24-6293-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

Language Environment upgrade
The z/VM Language Environment runtime libraries have been upgraded to z/OS 2.5 equivalence.

The following topics are updated:

• “About this document” on page xi
• Chapter 13, “Customizing Language Environment,” on page 87
• “Updating Saved Segments” on page 88
• “Language Environment Prelinker Map” on page 93
• “Object Library Utility Map” on page 111

Miscellaneous updates for z/VM 7.3
The following topic is updated:

• “Unsupported z/OS functions” on page xi

SC24-6293-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6293-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 2003, 2022 xv

xvi z/VM: 7.3 Language Environment User's Guide

Part 1. Language Environment Programming Guide

© Copyright IBM Corp. 2003, 2022 1

2 z/VM: 7.3 Language Environment User's Guide

Chapter 1. Preparing to load and run under Language
Environment

This chapter discusses z/VM specific information that you need to know before loading and running
applications under Language Environment. After Language Environment is installed on your system,
you should run an existing application under Language Environment. Although you may need to load
different libraries, the procedure is similar to that used in pre-Language Environment versions of C,
COBOL, or PL/I. For more information about running applications under Language Environment, see z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) and the individual language migration guides.

Restriction: Language Environment does not support Fortran applications in the z/VM environment.

Understanding the Basics
Language Environment library routines are divided into two categories: resident routines and dynamic
routines. The resident routines are linked with the application and include such things as initialization/
termination routines and pointers to callable services. The dynamic routines are not part of the
application and are dynamically loaded during run time.

The way Language Environment code is packaged keeps the size of application executable programs
small. When maintaining dynamic library code, you need not reload the application code except under
special circumstances, such as when you use an earlier version of code.

The linkage editor converts an object module into an executable program and stores it in a library. The
executable program can then be run from that library at any time. The load process combines output
from compilers, language translators, load programs and control statements to produce an executable
program (load module or program object) and stores it in a library. The executable program can then be
run from that library. Either the program management binder or linkage editor can be used to perform
the load process. All of the services of the linkage editor can be performed by the binder. In addition, the
binder provides additional functionality and usability improvements. For a complete discussion of services
to create, load, modify, list, read, transport, and copy executable programs, see the z/VM: Program
Management Binder for CMS.

Planning to load and run
There are certain considerations for z/VM that you must be aware of before loading and running
applications under Language Environment. They are:

• Language Environment resident routines, including those for callable services, initialization, and
termination, are located in the following libraries:

– SCEELKED TXTLIB - for non-XPLINK C application programs
– SCEECPP TXTLIB - for non-XPLINK C++ application programs
– SCEEBND2 TXTLIB - for XPLINK C and C++ application programs

• Language Environment dynamic routines are located in relocatable CMS MODULEs and SCEERUN
LOADLIB. The relocatable CMS MODULEs can be installed as nucleus extensions or in shared segments.

Checking Which Run-Time Options Are in Effect
Using the Language Environment run-time option RPTOPTS, you can control whether a run-time options
report is produced; with the Language Environment run-time option MSGFILE, you can control where
report output is directed. RPTOPTS generates a report of all the run-time options that are in effect when

Preparing to Use Language Environment

© Copyright IBM Corp. 2003, 2022 3

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

your application begins to run. The IBM-supplied default for RPTOPTS is OFF, meaning a report is not
generated when your application finishes running. If you override the default setting of RPTOPTS in any of
the ways described below, a report is sent to the default location:

• In a POSIX (ON) application it goes to file descriptor 2.
• In a POSIX(OFF) application if you override the default setting of RPTOPTS, a report is sent to the

FILEDEF specified by SYSOUT unless you override the MSGFILE run-time option to specify a different
location. The default destination for any MSGFILE output is the TERMINAL unless you change it by
issuing a FILEDEF for the file specified in the MSGFILE option.

If you want to change the options report destination, you can alter the default setting of the MSGFILE
run-time option, which specifies where all run-time diagnostics and messages are written. For example,
if you specify MSGFILE(OPTRPRT) and RPTSTG(ON), the storage report is written to a file whose ddname
is OPTRPRT. The default runtime options can also be customized. See “Updating Run-Time Options” on
page 87 for more information.

For the syntax of RPTOPTS and MSGFILE, see z/OS: Language
Environment Programming Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380683/$file/ceea300_v2r5.pdf).

PL/I Considerations
The information that follows is additional for use with z/VM when using z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Replacing PL/I Library Routines in an OS PL/I Executable Program
Under z/VM, you can use the PL/I library replacement tool IBMWRLK TEXT (a member of SCEELKED
TXTLIB) to replace the OS PL/I library routines in your OS PL/I executable programs with the analogous
Language Environment resident routines. The executable programs must be created with the LKED
command and reside in CMS LOADLIBs. It is not possible to replace run-time library routines in a file
of type MODULE created by the GENMOD command.

For further information on library routine replacement, see PL/I for MVS & VM Compiler and Run-Time
Migration Guide (publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf).

Preparing to Use Language Environment

4 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf

Chapter 2. Loading and Running under z/VM

Before you can run a program under z/VM, you must issue one of the following commands:

• LOAD (Stores a copy of the program in virtual storage)
• GENMOD (Stores the program on disk)
• LKED (Stores the program in a LOADLIB)
• BIND (Stores the program on disk using the Program Management binder)

z/VM produces an object module with the file type TEXT when you compile your program. Before you
run the program, external references inserted by the compiler must be resolved. Use one of the following
methods to create an executable application. You can run your application after you complete any of
these steps.

• Create a temporary copy of your program in virtual storage by using LOAD and INCLUDE commands. No
permanent copy of the executable program is made.

• Create a module using one or more of these commands, if appropriate: BIND, GENMOD, INCLUDE, and
LOAD. A module is an executable application that is stored as a file with a file type of MODULE.

• Create a module in a member of a library using the LKED command. This method link-edits an
executable application and stores it as a load module in a member of a CMS LOADLIB.

• Create a module using the CMOD EXEC (C applications only). See “Using the CMOD EXEC” on page 15
for more information.

OpenExtensions has its own section on linking, loading, and running C applications and PL/I routines
in those applications (see Chapter 3, “Building, Loading, and Running under OpenExtensions ,” on page
23).

Restrictions:

• Language Environment does not support Fortran applications in the z/VM environment.
• Enterprise PL/I and VisualAge® PL/I are not supported on z/VM.

Language Environment continues to provide support for PL/I applications under z/VM that are compiled
with PL/I for MVS & VM, and previous, supported levels of the PL/I compiler.

• Enterprise COBOL for z/OS and z/VM restrictions:

– COBOL programs compiled with the DLL or ARITH(EXTEND) compiler options are not supported on
z/VM.

– COBOL programs that use object-oriented constructs, LINE SEQUENTIAL files, or dynamic allocation
using environment variables are not supported on z/VM.

– COBOL multithreaded and multitasking programs are not supported on z/VM.

Basic Linking and Running
This section describes how to accept and to override the default Language Environment run-time options.

Accepting the Default Run-Time Options
Use the following series of CMS GLOBAL, LOAD, and START commands to accept default run-time options:

GLOBAL TXTLIB SCEELKED
GLOBAL LOADLIB SCEERUN
LOAD MYPROG
START *

This series of commands does the following:

Running under z/VM

© Copyright IBM Corp. 2003, 2022 5

• Identifies text libraries that you want z/VM to search to resolve external references in your object code,
including the Language Environment SCEELKED (text) link library, and any libraries where your text files
are located

• Links one or more text files containing object code and loads them into storage
• Runs the image of the application that is assembled in storage by the LOAD command.

Overriding the Default Run-Time Options
If MYPROG is a C/C++ or a PL/I application that uses routines from SCEELKED and MYTXTLB and wants
to send Language Environment MSGFILE output (including the options report) to file OPTRPRT, issue the
following commands:

GLOBAL TXTLIB SCEELKED MYTXTLB
LOAD MYPROG
GLOBAL LOADLIB SCEERUN
FILEDEF OPTRPRT DISK OPTRPRT OUTPUT A
START * RPTOPTS(ON), MSGFILE(OPTRPRT)/

If MYPROG above is a COBOL application, then you need to modify the START command to be:

START * / RPTOPTS(ON), MSGFILE(OPRTPRT)

For more information, see “Using the GLOBAL Command” on page 6, “Using the LOAD and INCLUDE
Commands” on page 8, and “Using the START Command” on page 18 .

Using the GLOBAL Command
You must issue a GLOBAL command before using the CMS LOAD command and before running
applications. The syntax of the GLOBAL command is:

GLOBAL LOADLIB

TXTLIB

other keywords

libname1 ... libname63

LOADLIB
Specifies the load module libraries to be searched for a module that the OSRUN command or the
LINK, LOAD, ATTACH, or XCTL macros refer to. The libraries can be CMS LOADLIBs or OS module
libraries. If you specify an OS data set, issue a FILEDEF command for the data set before you issue the
GLOBAL command.

TXTLIB
Specifies the text libraries to be searched for missing subroutines when the LOAD or INCLUDE
command is issued, when the LKED command is issued, or when a dynamic load occurs (that is,
when an OS SVC 8 or SVC 122 is issued).

Subroutines that are dynamically loaded should contain only VCONs that are resolved within the same
text library member or that are resident in storage throughout the processing of the original CMS
LOAD or INCLUDE command. Otherwise, the entry point is unpredictable.

other keywords
Additional GLOBAL keywords which do not apply to loading or running an application under z/VM and
are, therefore, not shown here.

libname1 - libname63
The file names of up to 63 libraries of the specified file type (LOADLIB or TXTLIB). The libraries are
searched in the order in which they are named. The library list is subject to other system limits, such
as command line length. This command supersedes any previous GLOBAL command for the specified
file type. If no file names are specified, the command cancels any previous GLOBAL command for this
file type.

Running under z/VM

6 z/VM: 7.3 Language Environment User's Guide

Resolving External References to Resident Routines
A GLOBAL TXTLIB command must be issued for the Language Environment text library to resolve external
references to the Language Environment resident routines before a CMS LOAD command is issued. Before
loading an application, issue the following command:

GLOBAL TXTLIB SCEELKED usertxt

SCEEBND2
The Language Environment C++ text library for XPLINK application programs.

SCEECPP
The Language Environment C++ text library for non-XPLINK application programs.

SCEELKED
The Language Environment text library.

usertxt
The name of any user-generated text library or libraries to be searched for text files needed by your
application.

Resolving External References to Dynamic Routines
Before running your application, you must issue a GLOBAL LOADLIB command; this enables the Language
Environment LOADLIB to resolve external references to the Language Environment dynamic routines:

GLOBAL LOADLIB SCEERUN userload

SCEERUN
Identifies the Language Environment load library.

userload
The name of any user-generated load library or libraries to be searched for load modules needed by
your application.

Check with your system administrator to find out where Language Environment dynamic routines are
located at your installation. In addition to a set of relocatable load modules and the load library SCEERUN
LOADLIB, some Language Environment routines might have been installed in a nucleus extension or a
saved segment.

C/C++ Considerations
If your C/C++ application performs long double arithmetic or uses extended-precision arithmetic, you
must also specify the CMSLIB text library in your GLOBAL TXTLIB command. You can combine the
CMSLIB with other TXTLIBs, as follows:

GLOBAL TXTLIB SCEELKED CMSLIB usertxt

In addition to specifying CMSLIB, the C/C++ application must be run with TRAP(ON,SPIE).

COBOL Considerations
To run OS/VS COBOL programs, you must specify the SCEERUN and SCEEILBO libraries on the GLOBAL
LOADLIB command.

PL/I Considerations
The product structure for PL/I has changed from previous versions and most CMS EXECs that load a PL/I
application using the OS PL/I library must be changed to include SCEELKED, SIBMMATH, or SIBMCALL.

• SCEELKED contains the stubs for PL/I library routines, in addition to Language Environment-conforming
languages and Language Environment-provided routines and stubs.

• SIBMMATH contains the stubs for old OS PL/I 2.3 math library routines.

Running under z/VM

Chapter 2. Loading and Running under z/VM 7

• SIBMCALL provides PLICALLA and PLICALLB compatibility for PL/I for MVS & VM applications that use
OS PL/I PLICALLA or PLICALLB as an entry point.

SIBMCALL and SIBMMATH libraries must be concatenated before SCEELKED. They can be concatenated
in any order.

For example, if your PL/I application requires OS PL/I math support, you must specify the SIBMMATH
library. In link-edit steps, this library must precede SCEELKED if old math results are needed in a
particular load module. You can combine the SIBMMATH with other LOADLIBs as follows: GLOBAL
TEXTLIB SIBMMATH SCEELKED usertext
SIBMMATH

The Language Environment load library, containing the stubs for old OS PL/I 2.3 math library routines.
SCEELKED

The Language Environment text library.
usertext

The name of any user-generated text library or libraries to be searched for subroutines needed by
your application.

Determining the Search Order for Dynamic Routines
The search order for dynamically loaded routines is:

1. Nucleus extension
2. Saved segments
3. Relocatable load modules
4. Load modules in LOADLIBs
5. Object modules
6. TXTLIB members

Normal CMS search order prevails when searching for a particular type in the previous list. Files on the
A-disk are searched before files on the B-disk.

In general, the sooner a dynamically loaded routine is found, the better the performance of an application.
For overall system performance gains, it is better to place heavily used dynamically loaded routines into a
saved segment where they can be shared by all users.

Using the LOAD and INCLUDE Commands
The loader is invoked by using the LOAD command, which reads one or more text files (containing
relocatable object code) or members of a text library from a minidisk or directory and loads them into
virtual storage. LOAD establishes proper linkages between the files. The file containing the main routine
should be the first file named in the command, unless you specify the entry point name on the RESET
option.

Note: Use the SET LDRTBLS command to define the initial number of pages of storage to be used for
loader tables. Specify a minimum of 6.

The syntax of the LOAD command is:

LOAD filename1 filename2 ... filename_n [(options

)

]

filename
Name of a file you want to load into storage.

options
List of LOAD options separated by blanks or commas (see Table 1 on page 9 for a list of available
options).

Running under z/VM

8 z/VM: 7.3 Language Environment User's Guide

Specify the RLDSAVE option for the LOAD command if you intend to use GENMOD. For more
information about LOAD and its options, see the z/VM: CMS Commands and Utilities Reference.

C/C++ Considerations
If the main routine is C/C++, specify the following under the options for the LOAD command:

RESET CEESTART

PL/I Considerations
If the main procedure is PL/I for MVS & VM, specify RESET CEESTART under the options for the LOAD
command. For more information about using the LOAD command with PL/I, see PL/I for MVS & VM
Compiler and Run-Time Migration Guide (publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf).

Using the LOAD Command
The following example causes the text library containing Language Environment resident routines,
SCEELKED, and the USERTXT text library to be searched for files that your application needs to run.
The files PROGRAM1 and CEEUOPT are loaded into virtual storage and a load map is written as follows:

GLOBAL TXTLIB SCEELKED USERTXT
LOAD PROGRAM1 CEEUOPT (MAP

CMS LOAD Options
Table 1 on page 9 contains a selection of CMS LOAD options.

Table 1. Selected CMS LOAD Options

Option Function

RESET entry | * RESET sets the starting location for the applications currently
loaded.

The entry name must be an external name (for example, a CSECT
control section or ENTRY) in the loaded applications.

If you specify *, the results are the same as if the RESET option were
omitted. If the RESET option is omitted, the default entry point is
used.

MAP | NOMAP MAP writes a load map to a file in your minidisk or directory named
LOAD MAP A5.

NOMAP specifies that no LOAD MAP file is created.

TYPE | NOTYPE TYPE displays the load map at your terminal and writes it to a file on
minidisk or directory.

NOTYPE does not display the file at your terminal.

LIBE | NOLIBE LIBE searches text libraries for missing subroutines. The text
libraries must be previously defined by a GLOBAL command.

NOLIBE does not search text libraries for unresolved differences.

START Runs the application when loading has completed.

Running under z/VM

Chapter 2. Loading and Running under z/VM 9

http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf

Table 1. Selected CMS LOAD Options (continued)

Option Function

NORLDsav | RLDsave NORLDsav instructs the CMS loader not to save relocation
information from the TEXT files being loaded.

Specify RLDsave if you plan to use the GENMOD command. RLDsave
instructs z/VM to save relocation information from the text files.
The GENMOD command uses relocation information to generate
relocatable CMS modules.

AMODE 24 | 31 | ANY Specifies the addressing mode in which the program will be entered.
The AMODE defined by this option propagates to the GENMOD
process.

This option overrides the AMODE, reflected in the text file ESD
record, that is specified at assembly time. If you specify RMODE/
ORIGIN, but do not specify AMODE, the AMODE for the module is
determined from the following default criteria:

• If you specify RMODE ANY, the AMODE specification defaults to
AMODE 31.

• If you specify ORIGIN yyyyyyyy, and yyyyyyyy is an address above
16Mb, the AMODE defaults to AMODE 31.

• The AMODE defaults to the AMODE of the entry point on the ESD
record if you specify:

– RMODE 24
– ORIGIN xxxxxxxx, and xxxxxxxx is an address below 16Mb
– ORIGIN TRANS

If you specify neither AMODE nor RMODE, the AMODE is determined
by the AMODE defined in the text file ESD for the entry point. The
valid AMODE values and their meanings are:
24

This entry point is to receive control in 24-bit addressing mode.
31

This entry point is to receive control in 31-bit addressing mode.
ANY

This entry point is capable of operating in 24-bit or 31-bit
addressing mode. It will receive control in the addressing mode
of its caller when control is passed to the entry point.

Running under z/VM

10 z/VM: 7.3 Language Environment User's Guide

Table 1. Selected CMS LOAD Options (continued)

Option Function

RMODE 24 | ANY Specifies where the loaded program is to reside.

The RMODE defined by this option propagates to the GENMOD
process.

This option is mutually exclusive with the ORIGIN option and
overrides the RMODE, reflected in the TEXT(s) ESD record, that is
specified at assembly time.

If you specify ORIGIN, the RMODE is determined by the ORIGIN
definition.

If you specify neither RMODE nor ORIGIN, the RMODE for
the program is determined from the most restrictive RMODE
encountered in text file ESD processing for this load.

Note: An AMODE value specified without an RMODE option defaults
to RMODE 24 for the module.

If specified, RMODE will cause the file to load above or below the
16MB line of a virtual machine starting at the beginning of the largest
contiguous area available.

If you specify neither AMODE nor RMODE, the RMODE is determined
by the RMODE defined in the text file ESD for the entry point. The
valid RMODE values and their meanings are:
24

The load resides below the 16MB line, overriding the RMODE
definitions encountered on the text file ESD records during this
load. An RMODE 24 definition is propagated to the GENMOD
process.

ANY
The load resides above the 16MB line, overriding the RMODE
definitions encountered on the text file ESD records during this
load. An RMODE ANY definition is propagated to the GENMOD
process.

HOBSET | HOBSETSD |
NOHOBSET

Specifies if the high-order bit for V-type constants (VCONs) of SD
(CSECTs) or LD (ENTRYs) types is to be turned on or left unchanged.
This option only applies to PL/I applications.

HOBSET, HOBSETSD, and NOHOBSET PL/I Options
PL/I programs that execute with the CMS LOAD and INCLUDE commands can specify the HOBSET,
HOBSETSD, or NOHOBSET option. The default is NOHOBSET.

HOBSETSD and HOBSET
PL/I programs that execute with the CMS LOAD and INCLUDE commands can contain entry addresses
whose high-order bit is set if the referenced name has the AMODE 31/ANY attribute. This applies to:

• Both external CSECT and external label names, if the HOBSET option is in effect
• External CSECT names only, if the HOBSETSD option is in effect

The following considerations apply when using the HOBSETSD or HOBSET options:

• Entry variables and constants generated by compiled code can have entry addresses whose high-order
bit is set. A PL/I program can access such addresses by using:

Running under z/VM

Chapter 2. Loading and Running under z/VM 11

– The ENTRYADDR or UNSPEC builtin/pseudovariable
– The PL/I BASED or DEFINED language construct that allows entry variables to be overlaid
– Assembler routines that receive or pass the addresses

• Entry addresses that have the high-order bit set should be used with care, such as in the following
situations:

– Because the high-order bit can be set in such addresses, comparison to the PL/I NULL() value should
be avoided.

– It might be necessary to preserve the high-order bit of entry addresses to ensure that entry variables
are built correctly using the ENTRYADDR pseudovariable.

– If an external procedure entry name is referenced within the external procedure itself, comparisons
involving these entry references might produce unexpected results. This constraint applies only to
the HOBSET option.

NOHOBSET
The high-order bit of entry addresses is always zero with this option. You can use this option without any
of the restrictions and precautions described in “HOBSETSD and HOBSET” on page 11.

Using the INCLUDE Command
The LOAD command loads a TEXT file or member of a text library into virtual storage. The INCLUDE
command loads additional TEXT files or members of a text library that make up your executable
application.

The INCLUDE and LOAD commands have similar formats and option lists. The main difference is that
if you issue two LOAD commands in succession, the second command replaces the first. The INCLUDE
command, on the other hand, cannot be used unless you have just issued a LOAD. You can specify as
many INCLUDE commands as necessary following the LOAD command to load files into storage. The files
specified in the INCLUDE command must refer to subroutines. See Table 1 on page 9 for a list of available
options.

The syntax of the INCLUDE command is:

INCLUDE filename1 filename2 ... filename_n [(options

)

]

filename
Name of a file you want to include into storage.

options
List of INCLUDE options separated by blanks or commas (for a list of available options, see Table 1 on
page 9).

For more information about INCLUDE and its options, see the z/VM: CMS Commands and Utilities
Reference.

The following example loads a TEXT file from the USERTXT text library and includes another TEXT file
from another text library into the load module. A load map is also written.

GLOBAL TXTLIB SCEELKED USERTXT USERTXT2
LOAD PROGRAM1
INCLUDE PROGRAM2 (MAP

Using the GENMOD Command
Use the GENMOD command with the LOAD and INCLUDE commands to create application modules, that
is, relocatable files whose external references have been resolved. In z/VM, these files must have a file
type of MODULE. The syntax of the GENMOD command is:

Running under z/VM

12 z/VM: 7.3 Language Environment User's Guide

GENMOD filename [(options

)

]

The GENMOD command takes a copy of the executable module in virtual storage and stores it onto a disk
with a filename that you specify. In the following example, PROGRAM1, PROGRAM2, and PROGRAM3 are
TEXT generated from C source files that are put into a module with a file name of PROGRAM1 and a file
type of MODULE:

GLOBAL SCEELKED USERTXT
LOAD PROGRAM1 PROGRAM2 PROGRAM3 (RLDSAVE RESET CEESTART
GENMOD PROGRAM1 (NOMAP

If you use the name of an existing module, the previous version of the module is replaced. If you do
not specify in filename the name of the file where you want the load module to be stored, the GENMOD
command processor defaults to the first entry point in the load map.

If the main entry point module is a PL/I or C application, load the object modules into storage using the
RLDSAVE option and issue the GENMOD COMMAND using the FROM CEESTART option.

For ILC applications that dynamically load or fetch other programs, you must specify the RLDSAVE option
of the LOAD statement and the NOMAP option of the GENMOD statement.

After you create the module with GENMOD, run the application composed of the source files PROGRAM1,
PROGRAM2, and PROGRAM3 by entering:

PROGRAM1

Using the BIND Command
Use the BIND command to create application modules, that is, relocatable files whose external
references have been resolved. In VM, these files must have a file type of MODULE. The syntax of the
BIND command is:

BIND filename [(options

)

]

The BIND command takes a copy of the executable module in virtual storage and stores it onto a disk with
a filename that you specify. In the following example, PROGRAM1, PROGRAM2, and PROGRAM3 are TEXT
files that are put into a module with a file name of PROGRAM1 and a file type of MODULE:

GLOBAL TXTLIB SCEELKED USERTXT
BIND PROGRAM1 PROGRAM2 PROGRAM3

If you use the name of an existing module, the previous version of the module is replaced. If you do not
specify in filename the name of the file where you want the load module to be stored, the BIND command
processor defaults to the first entry point in the load map.

After you create the module with BIND, run the application composed of the source files PROGRAM1,
PROGRAM2, and PROGRAM3 by entering:

PROGRAM1

Running under z/VM

Chapter 2. Loading and Running under z/VM 13

Using the NUCXLOAD Command
Use NUCXLOAD to load the modules into storage and install them as nucleus extensions. You can use the
NUCXLOAD command if the RLD information has been saved during the CMS LOAD command using the
RLDSAVE option.

Restrictions
Only reentrant modules can be installed as nucleus extensions. In PL/I for MVS & VM, use the
REENTRANT procedure option; in COBOL for OS/390 & VM, COBOL for MVS & VM, COBOL/370, or VS
COBOL II, use the RENT compiler option to ensure that a module can be installed as a nucleus extension.
OS/VS COBOL modules cannot be installed as nucleus extensions because OS/VS COBOL cannot generate
reentrant code.

C/C++ object modules that contain L-names or that are not naturally reentrant must be compiled with the
RENT option and prelinked before being installed as nucleus extensions.

Example
In the following example, a CMS MODULE is created from a PL/I program, PROGRAM1. The TEXT file is
loaded into storage and the RLD information is saved during the CMS LOAD using the RLDSAVE option. For
PL/I, the GENMOD command requires the FROM CEESTART option as shown below:

GLOBAL TXTLIB SCEELKED
LOAD PROGRAM1 (RLDSAVE RESET CEESTART
GENMOD PROGRAM1 (NOMAP FROM CEESTART
NUCXLOAD PROGRAM1
PROGRAM1

For more information about the GENMOD, LOAD, and NUCXLOAD commands, see the z/VM: CMS
Commands and Utilities Reference and the z/VM: CMS User's Guide.

Using FILEDEF to Define Input and Output Files
If your program requires input and/or output files, you must define these files using the CMS FILEDEF
command prior to executing the module. The FILEDEF command relates the ddname of the input or
output file specified in your program with an I/O device. For example, if PROGRAM1 contains a ddname of
an input file stored on your A disk as MYDATA INPUT, issue the following command (infile is the ddname of
the input file specified in PROGRAM1):

FILEDEF infile DISK MYDATA INPUT A

For more information about the GENMOD and FILEDEF commands, see the z/VM: CMS Commands and
Utilities Reference.

Link-Editing with the LKED Command
The LKED command is used to create a member of a CMS load library. CMS load libraries, like
text libraries, are in CMS partitioned data set format. Text libraries contain applications that contain
unresolved external references to other routines. Load libraries, on the other hand, contain applications
with external references that have already been resolved, thus saving overhead every time the application
is loaded.

Your TEXT file is input to the LKED command. If your application calls a subroutine with object code
stored as a separate TEXT file or as a member of a text library, you must define the files that contain the
subroutines used by your application with a FILEDEF command.

After you issue the appropriate FILEDEF commands, issue the LKED command.

Running under z/VM

14 z/VM: 7.3 Language Environment User's Guide

LKED filename

(NAME membname

)

(NAME membname LIB libname

)

(LIB libname

)

filename
Name of the TEXT file that contains your object code, linkage editor control cards, or both.

NAME membname
Member name to be used for the load module that is created.

LIB libname
Name of the LOADLIB file where the resulting load module is placed.

The following example causes the automatic call library to search SCEELKED to resolve external
references, creates a load library member named PROGRAM1, and stores it in a CMS load library with
the name USERLOAD.

FILEDEF SYSLIB DISK SCEELKED TXTLIB E
LKED PROGRAM1 (NAME PROGRAM1 LIB USERLOAD

For more information about the LKED command and a complete list of options, see VM/ESA: CMS
Command Reference.

Using the CMOD EXEC
The IBM-supplied CMOD EXEC invokes the loader or the binder (depending on the parameters passed or
the compiler being used), which loads one or more object modules into virtual storage, resolves external
references, and creates an executable module with the file type of MODULE. This EXEC can be used by
C/C++ applications only. The syntax of the CMOD EXEC is:

CMOD textdeck

(option

)

textdeck
Name of the input text decks; the file type must be TEXT.

options
Options you want to apply as the executable module is being generated. The options are listed in
Table 2 on page 15.

Table 2. CMOD options

Option Description

Binder specific options

BINDOPTS(options) Specifies options for the Binder. These options may be any of the options
supported by the Binder.

Running under z/VM

Chapter 2. Loading and Running under z/VM 15

Table 2. CMOD options (continued)

Option Description

C++ Specifies that at least one of the text decks is C++. This must be specified
for C++ code to be correctly linked.

DLL(side file name(s)) If a side file name is not specified, this just passes the DYNAM DLL option
to the Binder. It is the same as specifying BINDOPTS(DYNAM DLL),
which enables the module for dynamic linking. A definition side file will
be produced with the same name as the first text deck name, and a file
type of SYSDEFSD.

If a side file name is specified, the DYNAM DLL option is still passed to the
Binder, but also the Binder will process the definition side file specified.
An 8 character CMS file name is specified. CMOD will look for that file
name with a file type of SYSDEFSD. Multiple names can be specified,
separated by blanks.

XPLINK Specifies that the text deck(s) has been compiled with the XPLINK option.
Generally speaking, XPLINK text decks cannot be bound with non-XPLINK
text decks.

LOAD/GENMOD/Prelinker specific options

AMODE Specifies the addressing mode in which the program will be entered in a
virtual machine. For a complete description of AMODE, refer to the LOAD
command in the CMS command reference manual.

AUTO|NOAUTO Specifies that your disks are to be searched for TEXT files for use in
resolving undefined references.

CPLINK(options) Specifies options for the Prelinker.

DUP|NODUP Specifies that an error message is to be generated if duplicate CSECT
names are encountered. If you want to ensure that only one copy of a
object module is loaded, use the NODUP option.

GENMOD(options) Passes any options to the GENMOD command.

INV|NOINV Specifies that invalid card images are not to be included in the load map.

LET|NOLET Specifies that all LOAD errors for the load module are to be ignored and an
attempt to generate a module will be made.

ORIGIN Specifies where CMS loads the program. This location must be in the CMS
transient area or in any free CMS storage.

RLD|NORLD Specifies that relocation directory information is to be saved in the load
module.

STR|NOSTR Specifies that storage is to be initialized during the generation of the
executable module.

RMODE Specifies where the program is to reside in a virtual machine with greater
than 16MB of storage. For a complete description of RMODE, refer to the
LOAD command in the CMS command reference manual.

Running under z/VM

16 z/VM: 7.3 Language Environment User's Guide

Table 2. CMOD options (continued)

Option Description

Common options

MAP|NOMAP The specified option is passed to the Binder or the LOAD command. For
MAP (which is the default), the Binder will incorporate a module map into
the SYSPRINT output; the LOAD command will generate a load map file
on your A disk with the name LOAD MAP A.

MODNAME modulename The default is to generate an executable module having the same file
name as the first object module specified, a file type of MODULE, and
a file mode of A. The MODNAME option allows you to give a specific
name to the executable module. Specify the module name (modulename)
immediately following the MODNAME keyword, and the CMOD EXEC creates
an executable module named modulename MODULE A.

Using the LINKLOAD EXEC
Use the IBM-supplied LINKLOAD EXEC to produce the fetchable C/C++ members in a CMS load
library. For more information, see z/OS: XL C/C++ Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf). The LINKLOAD EXEC is
used only by C/C++. The syntax of the LINKLOAD EXEC is:

LINKLOAD textdeck (

LIB

libname

option

)

textdeck
Name of input text decks. The file type of the text decks must be TEXT and the source code must
contain a #pragma linkage(name,FETCHABLE) preprocessor directive.

Do not specify the file type or file mode when using this EXEC.

option
Options you want to apply as the fetchable load module is being generated. The options are listed in
Table 3 on page 17.

Table 3. LINKLOAD Options

Option Function

LIB libname A keyword used to indicate that the next argument, libname, is
the name of the library where the load member is to be stored.
The library name parameter must be specified, but if it is the first
parameter, the keyword LIB is optional.

CPLINK (options) Allows you to pass options to the prelinker. CPLINK is called if it
is required by the text decks or if a CPLINK option is given. See
Appendix A, “Prelinking an Application,” on page 91 for more
information.

Running under z/VM

Chapter 2. Loading and Running under z/VM 17

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

Table 3. LINKLOAD Options (continued)

Option Function

MBR memname A keyword specifying that the next argument, memname, is the name
of the member within the load library that is to be generated. If you
do not specify a memname, the name of the text deck containing the
fetchable code is used.

ADD | REPLACE | NEW One of these options can be specified on a given invocation of
LINKLOAD:
ADD

Specifies that the load member generated by LINKLOAD is to be
added to the load library. If a member by the same name already
exists, the new member is not added.

REPLACE
Specifies that the load member generated by LINKLOAD is to
replace a member by the same name in the load library. If the
member does not already exist, the new member is added.

NEW
Specifies that an existing load library of the same name
containing only the named member is created. The existing load
library is replaced by the new library containing only the named
member.

LKED (options) Allows you to pass options to the LKED command. For more
information on the LKED command, see “Link-Editing with the LKED
Command” on page 14.

Using the START Command
After you load your application into virtual storage with the LOAD command and issue the appropriate
GLOBAL commands, use the CMS START command to execute your application. The syntax of the START
command is:

START

*

program_parameter_string

*
Specifies that control passes to the application's default entry point at execution time. This option
is required if program parameters are passed. (For information about how the default entry point
is determined, see z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).) You can also indicate
an entry point whose name you specify in the application.

program_parameter_string
Specifies the run-time options and program parameters passed to the main routine in the application.
The run-time options and program parameters are normally separated by a slash but C/C++ and PL/I
users must omit the slash (unless it is part of a program parameter) if the NOEXECOPS run-time
option is in effect.

In the following example, the compiled program PROGRAM1 is loaded and run with the RPTSTG(ON) and
RPTOPTS(ON) run-time options specified:

GLOBAL TXTLIB SCEELKED USERTXT
LOAD PROGRAM1
GLOBAL LOADLIB SCEERUN
START * RPTSTG(ON),RPTOPTS(ON)/

Running under z/VM

18 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Note: For COBOL programs, the "/" must be specified first by default.

In the case of an application for which you do not supply any run-time options or parameters, you can
load and execute by using the START option of the LOAD command: LOAD PROGRAM1 (START

In C/C++, you can use EXECOPS in the #pragma runopts directive to enable the passing of run-time
options in the START command. If NOEXECOPS is similarly specified, any run-time options specified
on the command line are treated as program parameters. For more information on how to specify
run-time options, see z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Using the iconv Utility and ICONV EXEC for C/C++
The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to convert the
input file records from the coded character set definition for the input code page to the output code page.
There is one record in the output file for each record in the input file. No padding or truncation of records
is performed.

When conversions are performed between single-byte code pages, the output records are the same
length as the input records. When conversions are performed between double-byte code pages, the
output records can be longer or shorter than the input records because the shift-out and shift-in
characters could be added or removed.

The ICONV EXEC invokes the iconv utility, which copies the input file to the output file and converts the
characters from the input code page to the output code page. It can be invoked under VM/CMS or z/VM
batch.

For information about the iconv utility, see the XL C/C++ for z/VM: User's Guide.

Using the genxlt Utility and GENXLT EXEC for C/C++
The genxlt utility reads character conversion information from the input file and writes the compiled
version to the output file. The input file contains directives that are acted upon by the genxlt utility to
produce the compiled version of the conversion table.

The GENXLT EXEC invokes the genxlt utility, which reads the character conversion information and
produces the conversion table. It can be invoked under VM/CMS or z/VM batch. For information about the
genxlt utility, see the XL C/C++ for z/VM: User's Guide.

Running Your Application
You can run an application under z/VM after you have issued one of the following commands:

• BIND — Stores the program on disk using the Program Management binder
• GENMOD — Stores the program on disk
• LKED — Stores the program in a LOADLIB
• LOAD — Stores a copy of the program in virtual storage.

Running a Module Produced by the BIND or GENMOD Command
After you create a module using the GENMOD command and have issued the GLOBAL LOADLIB SCEERUN
command, you can execute the module. Enter the module name on the command line and, optionally,
pass the module both run-time options and parameters, as shown in the syntax below.

modname

program_parameter_string

Running under z/VM

Chapter 2. Loading and Running under z/VM 19

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

program_parameter_string
Specifies the run-time options and program parameters passed to the main routine in the
application. The run-time options and parameters that are passed to the main routine are normally
separated by a slash. Run-time options and program parameters are discussed in z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

In the following example, the GENMOD command is extended to show run-time options. In this example,
PROGRAM1, PROGRAM2, and PROGRAM3 are TEXT files that are put into a module with a file name of
PROGRAM1 and a file type of MODULE. PROGRAM1 is executed by typing its name on the CMS command
line with a list of run-time options that you want to pass to it as follows:

GLOBAL TXTLIB SCEELKED USERTXT
LOAD PROGRAM1 PROGRAM2 PROGRAM3 (RLDSAVE RESET CEESTART
GENMOD PROGRAM1 (NOMAP
GLOBAL LOADLIB SCEERUN
PROGRAM1 RPTSTG(ON),RPTOPTS(ON)/

To use the GENMOD command, the LOAD is performed using the RLDSAVE option in this example. PL/I
and C require the RESET CEESTART option of the LOAD command and the FROM CEESTART option of the
GENMOD command. The slash at the end of the last line of this example is required for C/C++ or PL/I,
except when NOEXECOPS is in effect. The slash needs to be at the beginning of the line for COBOL.

Running a Module Using the OSRUN Command
After you create a module and store it in a LOADLIB using the LKED command, you can run it using
the OSRUN command. Before running your module, you must issue a GLOBAL command to identify to
z/VM the LOADLIB containing the module, plus the Language Environment LOADLIB to identify Language
Environment load modules that are called by your application. The syntax of the OSRUN command is:

OSRUN membname

PARM= program_parameter_string

membname
Member name containing the load module you created using LKED. The member name is in turn
located in the load library that you identified to z/VM using the GLOBAL command.

program_parameter_string
Specifies the run-time options and program parameters passed to the main routine in the application.
The run-time options and program parameters are normally separated by a slash but C/C++ and PL/I
users must omit the slash (unless it is part of a program parameter) if the NOEXECOPS run-time
option is in effect.

Program parameters should be enclosed in single quotation marks since run-time parameters pass
special characters.

For example, if you wanted to run a C or PL/I program named PROGRAM1, and you wanted to specify the
RPTSTG(ON) and RPTOPTS(ON) run-time options, you would issue the following commands:

FILEDEF SYSLIB DISK SCEELKED TXTLIB E
LKED PROGRAM1 (NAME PROGRAM1 LIBE USERLOAD
GLOBAL LOADLIB SCEERUN USERLOAD
OSRUN PROGRAM1 PARM='RPTSTG(ON),RPTOPTS(ON)/'

Using the VM/CMS Extended Parameter List
When z/VM transfers control to an application, the CMS extended parameter list is used
to construct the main routine’s parameters and get run-time options. Language Environment
repackages the CMS extended parameter list according to the format indicated in z/OS:

Running under z/VM

20 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf). Under Language Environment:

• An application with a COBOL main program receives the CMS extended parameter list as a halfword-
prefixed string.

• An application with a C/C++ main routine receives the CMS extended parameter list in an argc, argv
format.

• If your PL/I application specifies SYSTEM(CMS), you receive the CMS extended parameter. If your
application specifies SYSTEM(CMSTPL), however, it receives the CMS tokenized parameter list.

Running under z/VM

Chapter 2. Loading and Running under z/VM 21

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Running under z/VM

22 z/VM: 7.3 Language Environment User's Guide

Chapter 3. Building, Loading, and Running under
OpenExtensions

The interface to the CMS module build facilities for OpenExtensions C/C++ applications is the
OpenExtensions c89 utility. You can use c89 to compile and build an OpenExtensions C/C++ program
in one step, or bind application object modules after the compilation. You can run the c89 utility from
either the OpenExtensions shell or directly from CMS. For more information on using the c89 utility, see
the z/VM: OpenExtensions Commands Reference.

Note: VisualAge PL/I routines are not supported under OpenExtensions. Therefore the PL/I information in
this chapter applies only to earlier versions of PL/I.

PL/I for MVS & VM routines are supported under OpenExtensions. PL/I for MVS & VM routines can run in
the IPT without any unique restrictions other than those described in PL/I for MVS & VM Compiler and
Run-Time Migration Guide (publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf). PL/I routines can run
in the non-initial thread (non-IPTs) created by C routines with some restrictions. Limited PL/I – C ILC is
supported in non-IPTs.

Basic Building and Running C/C++ Applications under
OpenExtensions

OpenExtensions supports the following environments for running your OpenExtensions C/C++
applications:

• OpenExtensions shell
• CMS

Using the OpenExtensions-supplied utility c89, you can compile and build an OpenExtensions C/C++
application in one step, or bind application object modules separately. To produce an executable file,
invoke c89 and pass it object modules (file.o BFS files or CMS native files) without using the -c option.
For information about the c89 utility, see the z/VM: OpenExtensions Commands Reference.

Invoking the OpenExtensions Shell
To begin a shell session, you first log on to z/VM as a CMS user and then invoke the shell with the
OPENVM SHELL command. The shell and all processes and process groups running under it are typically
in the same session. For more information about starting a shell session, see the z/VM: OpenExtensions
Commands Reference.

Using the OpenExtensions c89 Utility to Create Executable Files
To build an OpenExtensions C/C++ application program's object files to produce an executable file,
specify the c89 utility and pass it object files (file.o BFS (byte file system) files or CMS native files). The
c89 utility recognizes that these are object files produced by previous C/C++ compilations and does not
invoke the compiler for them.

To compile source files without binding them, use the c89 -c option to create object files only. You
can use the -o option with the command to specify the name and location of the application program
executable file to be created.

• To build an application program object file to create the default executable file a.out in the working
directory, specify:

c89 usersource.o

Running under OpenExtensions Services

© Copyright IBM Corp. 2003, 2022 23

http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf

• To build an application object file to create the mymod.out executable file in the app/bin directory,
relative to your working directory, specify:

c89 -o app/bin/mymod.out usersource.o

where usersource.o is the object file created by compilation with c89.
• To build several application object files to create the mymod.out executable file in the app/bin

directory, relative to your working directory, specify:

c89 -o app/bin/mymod.out usersrc.o othersrc.o

• To build an application object file to create the myloadmd module file on the A disk specify:

c89 -o //myloadmd.module usersource.o

• To compile and build an application source file with several zinfo in the approg/lib subdirectory,
relative to your working directory, specify:

c89 -o approg/lib/zinfo usersrc.c existobj.o //pgmobj.module

The c89 utility specifies default values for some prelinker and module build options. It also passes
prelinker and module build options by using the -W option. For more information on using the c89 options,
see the z/VM: OpenExtensions Commands Reference.

Prelinker Options
With the exception of the OE option described below, the other prelinker options are the same as
described in Appendix A, “Prelinking an Application,” on page 91.

OE|NOOE
The OE option causes the prelinker to change its processing of INCLUDE and LIBRARY control statements.

Object files and object libraries from c89 are passed to the prelinker via INCLUDE and LIBRARY control
statements, respectively, in its primary input. Only LIBRARY control statements included in primary input
are accepted by the prelinker. Their syntax is:

LIBRARY libname

where libname is a ddname that defines a library. The library can be either an archive file created
through the OpenExtensions ar utility, or a C370LIB text library with object modules as members.
Object libraries from c89 are passed to the prelinker using such statements. This provides a capability
that is best described as named SYSLIBs. These statements are used like SYSLIBs to resolve symbols
through autocalls, but they do not all have to be concatenated together as a SYSLIB. BFS files cannot be
concatenated.

When the OE option is specified, the prelinker accepts BFS files and CMS files on INCLUDE and LIBRARY
control statements.

The OE option causes the prelinker to use POSIX rules for processing its primary input; the order of
passed object files and object libraries and their interspersion is significant. The prelinker's primary input
is processed sequentially. When a primary input INCLUDE control statement is processed, the prelinker
accepts new defined and unresolved symbols occurring in the passed object file. When a primary input
LIBRARY control statement is processed, only currently unresolved symbols are searched for in the
passed object library. A library is processed once only even if it contains definitions of unresolved symbols
that are accepted during later processing.

RENAME control statements are processed on output from the prelinker, after all of its input has been
processed. Because a library can be processed once only, the SEARCH option on the RENAME control
statement has no effect.

Running under OpenExtensions Services

24 z/VM: 7.3 Language Environment User's Guide

Specifying Run-Time Options under OpenExtensions
If you have an OpenExtensions C/C++ application program executable file in the byte file system (BFS),
you cannot run the executable file by simply entering its name as you would a traditional CMS C/C++
application program. Instead, execute the C/C++ application by specifying its name on the CMS command
OPENVM RUN. However, OPENVM RUN does not support the specification of run-time options.

Run-time options needed for the OpenExtensions application program residing in the byte file system can
be passed from a #pragma runopts preprocessor directive at compile time. When run-time options are
specified in this way, a CEEUOPT control section (CSECT) is created and is linked with the application
program by the c89 utility. Because only one CEEUOPT CSECT can be linked with an application program,
you should code a #pragma runopts directive in the compilation unit for the main() function.

Also, you can create a CEEUOPT CSECT as a separate step using the CEEXOPT macro, and bind the CSECT
with the application program object files using c89.

Running under OpenExtensions
This section discusses how to run your OpenExtensions C/C++ application program executable files on
the z/VM system.

OpenExtensions Application Program Environments
OpenExtensions for z/VM supports the following environments, from which you can run your
OpenExtensions C/C++ application programs:

• OpenExtensions shell
• CMS

Placing a CMS Application Program Load Module in the File System
If you have an OpenExtensions C/C++ application program executable file as a CMS native file and want
to place it in the BFS, use the following OpenExtensions CMS command to copy the file into a BFS
file: openvm putbfs. For a description of this command, see the z/VM: OpenExtensions Commands
Reference. For examples of using commands to copy CMS files into BFS, see the z/VM: OpenExtensions
User's Guide.

Running a CMS Module from the OpenExtensions Shell
If your OpenExtensions C/C++ program is a CMS module file on a minidisk or in the shared file system, the
only way you can invoke it from the shell is by creating an external link in BFS that points to the file. For
example, if you need to execute PROG1 MODULE A, you can create a file in BFS that represents it by using
the following command:

openvm create extlink /u/mydir/prog cmsexec prog1 module a

You can then invoke the module directly from the shell by entering prog assuming that /u/mydir is in
the current PATH.

See the z/VM: OpenExtensions Commands Reference for more information about creating external links.

Running an OpenExtensions C/C++ Application Executable File from the
OpenExtensions Shell

If the application executable file is a BFS file, you must either run it from the shell interactively, or invoke
it indirectly through the CMS command OPENVM RUN.

Running under OpenExtensions Services

Chapter 3. Building, Loading, and Running under OpenExtensions 25

Issuing the Executable File Name from the Shell
Before a BFS program can be run in the OpenExtensions shell, it must be given the appropriate mode
authority for a user or group of users to run it. You can update the mode authority for an executable
program file by using the chmod command, which is described in the z/VM: OpenExtensions Commands
Reference.

After you have update mode authority, enter the program name from the OpenExtensions shell command
line. For example, if you want to run the program data_crunch from your working directory, you have
the directory where the program resides defined in your search path, and you are authorized to run the
program, enter:

data_crunch

When running such programs, you can specify invocation run-time options only by setting the
environment variable _CEE_RUNOPTS before invoking the program. For example, under the shell you
can use the following EXPORT command:

EXPORT _CEE_RUNOPTS="rpto(on)…"

To further update the run-time options, you need to issue another EXPORT.

Issuing a Setup Shell Script File Name from the Shell
To run an OpenExtensions shell script that sets up an OpenExtensions executable file and then runs
the program, give the appropriate mode authority for a user or group of users to run it. You can update
the mode authority for a shell script file by using the chmod command (see the z/VM: OpenExtensions
Commands Reference). After mode authority has been given, enter the script file name from the
OpenExtensions shell command line.

Basic Building and Running PL/I routines under OpenExtensions
When the run-time option POSIX(ON) is specified, PL/I routines in the Initial Process Thread (IPT) follow
the same rules and behave in the same way they do when POSIX(ON) is not in effect.

PL/I routines in non-IPTs, however, must follow the rules described in z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf). No run-time diagnosis is provided to enforce those rules.

Running under OpenExtensions Services

26 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Chapter 4. Initialization and Termination under
Language Environment

This chapter describes z/VM considerations when calculating the Language Environment enclave
return code. For additional information regarding initialization and termination under Language
Environment, see z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

How the Language Environment Enclave Return Code Is Calculated
When an enclave terminates, Language Environment provides a Language Environment enclave return
code and an enclave reason code (sometimes called a return code modifier). The Language Environment
enclave return code is calculated by summing the user return code generated by the HLL and the enclave
reason code as follows:

Language Environment enclave return code = user return code + enclave reason code

The Language Environment enclave return code is placed in register 15, and the enclave reason code is
placed in register 0.

For information on setting and altering user return codes and calculating the enclave reason
code, see z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

z/VM Considerations
The CMS Ready(nnnnn); prompt displays only the last 5 digits of the enclave return code. Under z/VM,
some enclave return codes containing more than 5 digits (for example, 2,000,000 or 3,000,000) are not
displayed. In this case, the CMS Ready prompt indicates the following:

Ready(00000);

When a negative number is returned that is greater than 4 digits, only the last 4 digits are displayed. For
example, if the return code is -65280, only -5280 is displayed.

You can write a simple REXX EXEC to retrieve the complete enclave return code. The following example
extracts the return code and issues a message based on its value:

/* */
'LEMOD' /* Run the Language Environment program */
LE_RC = Rc /* Save the Language Environment enclave return code */
If LE_RC ^= 0 Then Do
 Say 'Nonzero Language Environment enclave return code: ' LE_RC
 Exit 16
 End /* nonzero rc from Language Environment */
Else
 Exit 0

Initialization and Termination

© Copyright IBM Corp. 2003, 2022 27

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Initialization and Termination

28 z/VM: 7.3 Language Environment User's Guide

Chapter 5. Using and Handling Messages

This chapter describes z/VM considerations for using Language Environment message services to create,
issue, and handle messages for Language Environment-conforming applications.

For more information on using and handling Language Environment messages, see z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Creating Messages
The following sections explain how to create messages to use in your routines. To create a message, you:

1. Create a message source file
2. Convert the message source file to an ASSEMBLE file with the CEEBLDTX utility
3. Assemble the new message ASSEMBLE file
4. Create a message module table
5. Assign values to message inserts
6. Use messages in code to get message output

Creating a Message Source File
The message source file contains the message text and information associated with each message.
Standard tags and format are used for message text and different types of message information. The tags
and format of the message source files are used by the CEEBLDTX utility to transform the source file into
an ASSEMBLE file.

A file type of SCRIPT is assumed for the source file and the file mode defaults to A. The message source
file should have a fixed record format with a record length of 80.

When creating a message file, make sure your sequential numbering attribute is turned off in the editor so
that trailing sequence numbers are not generated. Trailing blanks in columns 1–72 are ignored. At least
one message file is required for each national language version of your messages.

All tags used to create the source file begin with a colon(:), followed by a keyword and a period(.). All tags
must begin in column 1, except where noted. Comments in the message source file must begin with a
period asterisk (.*) in the leftmost position of the input line.

Figure 1 on page 29 shows an example of a message source file with a facility ID of XMP.

:facid.XMP
:msgno.10
:msgsubid.0001
:msgname.EXMPLMSG
:msgclass.I
:msg.This is an example of an insert,
:tab.+1
:ins 1.a simple insert
:msg., within a message.
:xpl.This is a simple example of how to put an insert into a message.
:presp.No programmer response required.
:sysact.No system action is taken.

Figure 1. Example of a Message Source File

For more information on creating Language Environment messages, see z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

© Copyright IBM Corp. 2003, 2022 29

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Using the CEEBLDTX Utility
CEEBLDTX is a utility that transforms the message source file into an ASSEMBLE file that can then be
assembled and loaded. The syntax of the CEEBLDTX invocation is shown below.

This utility only runs in a reqular CMS environment, not in the the OpenExtensions Shell & Utilities
environment.

CEEBLDTX in_file out_file options

in_file
The file name of the SCRIPT file containing the message text source.

out_file
The file name of the resulting ASSEMBLE file containing the text version of the messages.

options
Can be omitted or be any of the following:

• C370(filename)
• COBOL(filename)
• PLI(filename)
• BAL(filename)
• COBOL options only:

– APOST
– QUOTE

APOST/QUOTE specifies which COBOL delimiter to use. APOST is the default.

filename

Specifies the name of the file to contain the condition tokens for the messages supplied in in_file in
the format requested by the option(s) specified above. Filename has the following default file types
based on the specified language:
H

For C
COPY

For COBOL
COPY

For PL/I
COPY

For BAL

Usage Notes:

1. Each parameter is positional. Every parameter, except the options parameter, is required.
2. Under z/VM an equal sign (=) can be substituted for any parameter, except for in_file. Parameters

represented by an equal sign (=) are equated with the corresponding parameter previously used.

Files Created by CEEBLDTX
The CEEBLDTX utility creates several files. The ASSEMBLE file can be assembled into a loadable text file.
When the name of this file is placed in a message module table, the Language Environment message
services can dynamically access the file. See z/OS: Language Environment Programming Guide (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) for
more information about creating a message module table.

The COPY or INCLUDE file contains the declarations for the condition tokens associated with each
message in the message source file. When this file is included in the source routine, the condition tokens

30 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

can be used to reference the message. The :msgname. tag indicates the symbolic name of the condition
token.

To use the CEEBLDTX utility with the sample file shown in Figure 1 on page 29 you would issue:

CEEBLDTX example exmplasm pli(exmplcop)

The in_file is EXAMPLE SCRIPT, the out_file is EXMPLASM ASSEMBLE, and the PL/I COPY file is
EXMPLCOP COPY.

Use High Level Assembler to assemble the ASSEMBLE file into a loadable TEXT file; for example, on z/VM
you can issue the command:

HLASM exmplasm

CEEBLDTX Error Messages
The following is a list of Language Environment CEEBLDTX errors. For more information on CEEBLDTX
errors, see z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Return
Code=0004

syntax error

Explanation:
The command entered contained a syntax error.

Programmer response:
Correct the syntax error and reissue the command.

Return
Code=0028

ssssssss SCRIPT not found on any
accessed disk.

Explanation:
The SCRIPT file with the name ssssssss does not exist.

Programmer response:
Make sure the name is given correctly and is
accessible.

Return
Code=0036

Disk A must be accessed as Read/
Write.

Explanation:
On VM, the A-disk must be writable to write the outfile
files.

Programmer response:
Specify an A-disk that is write accessible.

Return
Code=0040

Error on line nnn in message
nnnn - insert number greater than
mmmm.

Explanation:
An insert number greater than the allowable maximum
was specified. The current maximum allowable insert
number is 9.

Programmer response:
Specify an insert number of 9 or less.

Return
Code=0044

Error on line nnn -
Duplicate :FACID. tags found
within the given script file.

Explanation:
Only one facility ID can be specified in the SCRIPT file.

Programmer response:
Specify only one facility ID in the SCRIPT file.

Return
Code=0048

No :FACID. found within the given
script file.

Explanation:
A 3-character facility ID must be specified in the
SCRIPT file with the :facid. 31 tag.

Programmer response
Specify a 3-character facility ID with the :facid. 33 tag.

Return
Code=0052

Error on line nnn - Message
number nnnn found out of range
mmmm to mmmm.

Explanation:
A message was found with a number outside the valid
range. 36 The current valid range is 0 to 9999.

Programmer response:
Correct the invalid message number on the given line
of the SCRIPT file.

Return
Code=0056

Error on line nnn in message
mmmm - number of hex digits not
divisible by 2

Explanation:
Hexadecimal strings must contain an even number of
digits.

Programmer response:
Specify an even number of digits for the hexadecimal
string.

Return
Code=0060

Error on line nnn in message
mmmm - invalid hexadecimal
digits

Chapter 5. Using and Handling Messages 31

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Explanation:
Valid hexadecimal digits are 0-9 and A-F. Invalid digits
were detected.

Programmer response:
Specify only digits 0-9 and A-F within a hexadecimal
string.

Return
Code=0064

Error on line nnn in message
mmmm - number of DBCS bytes
not divisible by 2

Explanation:
Doublebyte character strings must contain an even
number of bytes.

Programmer response:
Specify an even number of bytes for the doublebyte
character string.

Return
Code=0068

ASSEMBLE out_file name must be
longer than the message facid
pppp.

Explanation:
The ASSEMBLE file name must be greater than 3
characters.

Programmer response:
Specify an ASSEMBLE out_file name of greater than 3
characters.

Return
Code=0072

Error on line nnn - message facid
pppp longer than 4 characters.

Explanation:
Facility ID must be exactly 3 characters long, with no
blanks.

Programmer response:
Specify a 3-character facility ID.

Return
Code=0076

Error on line nnn - message class
class is not a valid message class
type: IWESCFA.

Explanation:
Message class must be one of the valid message
classes.

Programmer response:
Specify a valid message class.

Return
Code=0080

Error on line nnn - tag not
recognized

Explanation:
A tag that was not recognized was encountered.

Programmer response:
Check the tag for proper spelling and use.

Return
Code=0084

Error on line nnn - first tag
not :FACID.

Explanation:

The first tag of the SCRIPT file must be the facility ID
tag.

Programmer response:
Specify the facility ID tag as the first tag in the SCRIPT
file.

Return
Code=0088

Error on line nnn - unexpected tag.

Explanation:
A valid tag was found in an unexpected location in the
SCRIPT file; it is likely out of order.

Programmer response:
Check the order of the tags in the SCRIPT file.

Return
Code=0092

Error on line nnn in message
mmmm - duplicate errortag tags

Explanation:
Duplicate :msgname., :msgclass., or :msgsubid. tags
were found for a single message.

Programmer response:
Remove the extra tag from the message script.

Return
Code=0096

No :MSGNO. tags found within the
given script file.

Explanation:
A message file must have at least one message in it,
and it must be denoted by a :msgno. tag.

Programmer response:
Specify at least one message in the message file.

Return
Code=0100

Error on line nnn in message
mmmm - insert number not
provided or less than 1

Explanation:
A positive insert number must be provided for each
insert.

Programmer response:
Specify a positive insert number of 9 or less for the
insert.

Return
Code=0104

Error on line nnn in message
mmmm - subid msgkey found out
of range of mmmm to mmmm.

Explanation:
A message subid was found with a number outside the
valid range. The current valid range is 0 to 9999.

Programmer response:
Correct the invalid message subid on the given line of
the SCRIPT file.

Return
Code=0108

Existing filename COPY file found,
but not on A-disk.

Explanation:
A feedback token file was found with the given name,
but it is not on the A-disk, and will not be replaced.

32 z/VM: 7.3 Language Environment User's Guide

Programmer response:
Specify a different feedback token file name, or
release the disk on which the file currently resides

Return
Code=0112

Current ADDRESS environment not
CMS or TSO.

Explanation:
The command was entered on a system other than
CMS or TSO/E.

Programmer response:
Issue the command on a supported system.

Return
Code=nnn

Undefined error number nnn
issued.

Explanation:
An undefined error was encountered.

Programmer response:
Contact your service representative.

Run-Time Messages with POSIX
When your C application is running with POSIX(ON), some messages have changed both facility ID
and message number. Messages that had a facility ID of EDC and ranged from message number 6000
through 6008 prior to running with POSIX(ON) now have a facility ID of CEE and use message numbers
5201 through 5209. Messages 5210 through 5233 are new for POSIX(ON) and thus do not have a
corresponding POSIX(OFF) message number, except for message 5223, which has a facility ID of EDC
and a message number of 6009 while running with POSIX(OFF). When your C application is running with
POSIX(OFF), facility ID EDC is still used for message numbers 6000 through 6009.

If your C application is coded to respond to specific facility IDs or specific message numbers for
processing, you must specify POSIX(OFF) to receive the facility ID of EDC and message numbers 6000
through 6009.

Table 4 on page 33 shows the conditions, their condition numbers, and facility IDs.

Table 4. Condition Tokens with POSIX

Condition Token
Facility ID with
POSIX(ON)

Message Number
with POSIX(ON)

Facility ID with
POSIX(OFF)

Message Number
with POSIX(OFF)

SIGFPE CEE 5201 EDC 6000

SIGILL CEE 5202 EDC 6001

SIGSEGV CEE 5203 EDC 6002

SIGABND CEE 5204 EDC 6003

SIGTERM CEE 5205 EDC 6004

SIGINT CEE 5206 EDC 6005

SIGABRT CEE 5207 EDC 6006

SIGUSR1 CEE 5208 EDC 6007

SIGUSR2 CEE 5209 EDC 6008

SIGHUP CEE 5210 na na

SIGSTOP CEE 5211 na na

SIGKILL CEE 5212 na na

SIGPIPE CEE 5213 na na

SIGALRM CEE 5214 na na

SIGCONT CEE 5215 na na

SIGCHLD CEE 5216 na na

SIGTTIN CEE 5217 na na

SIGTTOU CEE 5218 na na

Run-Time Messages with POSIX

Chapter 5. Using and Handling Messages 33

Table 4. Condition Tokens with POSIX (continued)

Condition Token
Facility ID with
POSIX(ON)

Message Number
with POSIX(ON)

Facility ID with
POSIX(OFF)

Message Number
with POSIX(OFF)

SIGIO CEE 5219 na na

SIGQUIT CEE 5220 na na

SIGTSTP CEE 5221 na na

SIGTRAP CEE 5222 na na

SIGIOERR CEE 5223 EDC 6009

SIGDCE CEE 5224 na na

Handling Message Output
The following sections provide information about directing message output and displaying messages
under Language Environment, C, C++, COBOL, and PL/I.

For information about handling message output in ILC applications, see z/OS: Language
Environment Writing Interlanguage Communication Applications (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf).

Using Language Environment MSGFILE
Run-time messages are directed to a common Language Environment message file. You can use the
MSGFILE run-time option to specify the ddname of this file. If a message file ddname is not declared,
messages are written to the IBM-supplied default ddname SYSOUT.

Table 5 on page 34 lists the SYSOUT definitions and MSGFILE default attributes for CMS:

Table 5. Operating System, SYSOUT Definitions, MSGFILE Default Attributes

Operating System SYSOUT Definition MSGFILE Default Attributes

CMS FILEDEF SYSOUT TERMINAL LRECL 121, BLKSIZE 121, RECFM
FBA*, NOCHANGE

* When output is directed to the
terminal, ASA control characters are
replaced by a single space.

When you direct run-time messages to an I/O device, the method you should use also depends on the
operating system. Table 6 on page 34 lists methods for directing run-time messages to an I/O device
under CMS and provides references for additional information on this topic.

Table 6. Defining an I/O Device for a ddname

Operating System Method to Define I/O Device For additional information, see:

CMS Use a FILEDEF statement to define a
ddname for a file.

“Using FILEDEF to Define Input and
Output Files” on page 14

Note: You can specify the same message file across nested enclaves.

Using MSGFILE under OpenExtensions
If your application is running under the OpenExtensions shell or any environment that has file descriptor 2
(FD2) open, MSGFILE output is directed to the FD2 print destination. Under the shell, this is typically your

Handling Message Output

34 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf

terminal. If FD2 is closed when your application is invoked (via exec() or spawn()), no message file is
created.

For dump services, the resulting file name has the following format:

/path/Fname.Date.Time.Pid

path
The current working directory (unless it is the working directory, in which case it is then /tmp).

Fname
The name specified in the FNAME parameter on the call to CEE3DMP (the default is CEEDUMP).

Date
The date the dump is taken, appearing in the format YYYYMMDD (such as 20220325 for March 25,
2022).

Time
The time the dump is taken, appearing in the format HHMMSS (such as 175501 for 05:55:01 PM).

Pid
The process ID the application is running in when the dump is taken.

Using C or C++ I/O Functions
C and C++ make a distinction between types of error output, and whether the output is directed to the
MSGFILE destination or to one of the standard stream output devices, stderr or stdout.

Run-time messages and perror() messages are directed to the stderr standard stream output device.
The default destination for stderr output is the MSGFILE ddname; you can change this default as
discussed below.

Message output issued by a call to the printf() function is directed to stdout. For CMS interactive,
stdout defaults to the terminal.

You can change the destination of printf() output by redirection. For example, 1>&2 on the command
line at routine invocation redirects stdout to the stderr destination.

Table 7 on page 35 lists the types of C/C++ output, the types of messages associated with them, and the
destination of the message output.

Table 7. C and C++ Message Output

Type of Output Type of Message Produced By Default Destination

MSGFILE output Language Environment
messages (CEExxxx)

Language Environment
unhandled conditions

MSGFILE ddname

C library messages C/C++ unhandled
conditions (EDCxxxx)

MSGFILE ddname

stderr messages perror() messages
(EDCxxx)

Issued by a call to
perror()

MSGFILE ddname

User output sent
explicitly to stderr

Issued by a call to
fprintf()

MSGFILE ddname

stdout messages User output sent
explicitly to stdout

Issued by a call to
printf()

stdout

You can control the destination of stderr and stdout output by using the Language Environment
MSGFILE run-time option, the C freopen() function, or by invoking redirection services at run time.

Table 8 on page 36 lists the possible destinations of redirected stderr and stdout standard stream
output.

Handling Message Output

Chapter 5. Using and Handling Messages 35

Table 8. C/C++ Redirected Stream Output

stderr not redirected

stderr redirected to
destination other than
stdout

stderr redirected to
stdout

stdout not redirected stdout to itself stdout to itself Both to stdout

stderr to MSGFILE stderr to its other
destination

stdout redirected to
destination other than
stderr

stdout to its other
destination

stdout to its other
destination

Both to the other
stdout destination

stderr to MSGFILE stderr to its other
destination

stdout redirected to
stderr

Both to MSGFILE Both to the other
stderr destination

When stderr and
stdout are redirected
to each other (this is not
recommended), output
from both is directed to
whichever was specified
first.

For more information about redirecting standard streams in C or C++, see XL C/C++ for z/VM: User's Guide.

Using COBOL I/O Statements
Language Environment manages all COBOL output directed to the system-logical output device. This
includes output from:

• DISPLAY ... UPON SYSOUT
• READY TRACE (OS/VS COBOL only)
• EXHIBIT (OS/VS COBOL only)

For COBOL programs, the DISPLAY statement sends output to MSGFILE(SYSOUT), the default ddname for
the Language Environment message file. You can use the COBOL OUTDD compiler option to change the
destination of DISPLAY output. The CMS file to which the run-time messages are written depends on the
combination of ddnames specified in the OUTDD compiler option and the MSGFILE run-time option.

If the ddname in OUTDD matches the ddname specified in the MSGFILE run-time option, the output is
synchronized with the run-time messages and placed in the CMS file designated by the MSGFILE run-time
option.

If the ddname in OUTDD does not match the ddname specified in the MSGFILE run-time option, the
output from the DISPLAY statement is directed to the OUTDD ddname destination.

If the file designated by MSGFILE has not been defined (associated with an I/O device) when the output
is delivered, Language Environment dynamically allocates the file with ddname and attributes as shown in
Table 5 on page 34.

If the file designated by OUTDD has not been defined when the output is delivered, Language
Environment dynamically allocates the file with ddname and attributes as shown in Table 5 on page
34.

The possible ddname specification combinations for OUTDD and MSGFILE and the locations where
display output and run-time messages are routed are summarized in Table 9 on page 37.

Handling Message Output

36 z/VM: 7.3 Language Environment User's Guide

Table 9. Run-time Message and DISPLAY Destinations for OUTDD and MSGFILE ddname Specifications
under VM

ddname Specification FILEDEFs Issued? Destination

MSGFILE(SYSOUT)
OUTDD(SYSOUT)

Yes, for SYSOUT Messages and DISPLAY data are routed to
the destination defined for SYSOUT.

No Language Environment dynamically
allocates FILEDEF SYSOUT TERM for
messages and DISPLAY data.

MSGFILE(SYSOUT)
OUTDD(ddname)

Yes, for SYSOUT Messages are routed to the destination
defined for SYSOUT.

Yes, for ddname DISPLAY data is routed to the destination
defined for ddname.

No Language Environment dynamically
allocates SYSOUT to FILEDEF SYSOUT
TERM, the message destination.

Language Environment dynamically
allocates ddname to FILEDEF ddname
DISK FILE ddname A1, the DISPLAY data
destination.

MSGFILE(ddname)
OUTDD(SYSOUT)

Yes, for ddname Messages are routed to the destination
defined for ddname.

Yes, for SYSOUT Display data is routed to the destination
defined for SYSOUT.

No Language Environment dynamically
allocates ddname to FILEDEF ddname
TERM, the message destination.

Language Environment dynamically
allocates SYSOUT to FILEDEF SYSOUT
DISK FILE SYSOUT A1, the DISPLAY data
destination.

For more information about directing COBOL output, refer to COBOL for OS/390 & VM Programming Guide
or COBOL for MVS & VM Programming Guide.

Using PL/I I/O Statements
Run-time messages in PL/I routines are directed to the file specified by the Language Environment
MSGFILE run-time option, instead of to the PL/I SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file by default. To direct this
output to the Language Environment MSGFILE file, specify the run-time option MSGFILE(SYSPRINT).

When you use MSGFILE(SYSPRINT):

• Any file constant declaration that includes SYSPRINT STREAM PRINT file attributes is ignored.
• File attributes specified in the SYSPRINT DD card or FILEDEF are used.
• If SYSPRINT DD or FILEDEF is not present at first file reference, Language Environment dynamically

allocates a file with IBM-supplied attributes. See Table 5 on page 34 for MSGFILE file default attributes.
• Any OPENs and CLOSEs to the PL/I SYSPRINT STREAM PRINT file are ignored.
• Synchronization between the types of output (messages and user-specified output) is not provided, so

the order of the output is unpredictable.

Handling Message Output

Chapter 5. Using and Handling Messages 37

MSGFILE Considerations When Using PL/I
If MSGFILE(SYSPRINT) is in effect, use SYSPRINT only to direct output to the PL/I SYSPRINT STREAM
PRINT file.

Because performance is slower with the MSGFILE(SYSPRINT) option, it is recommended only for
debugging purposes. For production applications, direct user-created output to the PL/I SYSPRINT
STREAM PRINT file.

In a nested enclave environment, you can specify MSGFILE(SYSPRINT) for all enclaves in the application
or only for those enclaves containing PUT statements. Multiple enclaves in a Language Environment
process can use the PL/I SYSPRINT STREAM PRINT. In this instance, you cannot open the file until it is
referenced, and it is closed by Language Environment at process termination.

For more information about directing PL/I output, see z/OS: Language Environment Writing
Interlanguage Communication Applications (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf) or PL/I for MVS & VM Programming Guide.

Handling Message Output

38 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf

Chapter 6. Using Run-Time User Exits

Language Environment provides user exits that you can use for functions at your installation. You can
use the assembler user exit (CEEBXITA) or the HLL user exit (CEEBINT). This chapter provides z/VM
specific information about using these run-time user exits. For more information on using run-time user
exits, see z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Understanding the Basics
User exits are invoked under Language Environment to perform enclave initialization functions and both
normal and abnormal termination functions. User exits offer you a chance to perform certain functions at
a point where you would not otherwise have a chance to do so. In an assembler initialization user exit, for
example, you can specify a list of run-time options that establish characteristics of the environment. This
is done prior to the actual execution of any of your application code.

In most cases, you do not need to modify any user exit in order to run your application. Instead, you can
accept the IBM-supplied default versions of the exits, or the defaults as defined by your installation. To do
so, run your application in the normal manner and the default versions of the exits are invoked. You might
also want to read the sections “User Exits Supported under Language Environment” on page 39 and
“When User Exits Are Invoked” on page 41, which provide an overview of the user exits and describe
when they are invoked.

If you plan to modify either of the user exits to perform some specific function, you
must link the modified exit to your application before running. In addition, the z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) describes the respective user exit interfaces to which
you must adhere in order to change an assembler or HLL user exit.

User Exits Supported under Language Environment
Language Environment provides two user exit routines, one written in assembler (CEEBXITA), and the
other in a Language Environment-conforming language (CEEBINT). You can find sample jobs containing
these user exits in the SCEESAMP sample library.

The user exits supported by Language Environment are shown in Table 10 on page 39.

Table 10. User Exits Supported under Language Environment

Name Type of User Exit When Invoked

CEEBXITA Assembler user exit Enclave initialization
Enclave termination
Process termination

CEEBINT HLL user exit. CEEBINT can be written in C, C++ (with
C linkage), PL/I or Language Environment-conforming
assembler.

Enclave initialization

When CEEBXITA or CEEBINT is linked with the Language Environment initialization/termination library
routines during installation, it functions as an installation-wide user exit. When CEEBXITA is linked in your
load module, it functions as an application-specific user exit. The application-specific exit is used only
when you run that application. The installation-wide assembler user exit is not executed.

When your version of CEEBINT is linked with the Language Environment library routines during
installation, this version is automatically used at link-edit time for newly built or relinked applications.
A new version of CEEBINT will require you to relink your application.

Run-Time User Exits

© Copyright IBM Corp. 2003, 2022 39

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

To use an application-specific user exit, you must explicitly include it at link-edit time in the application
load module using a CMS INCLUDE command (see “Using the INCLUDE Command” on page 12 for
more information). Any time that the application-specific exit is modified, it must be relinked with the
application.

For a description of the assembler user exit interface and the HLL user exit interface, see z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

PL/I and C Compatibility
The following OS PL/I 2.3 user exit is supported for compatibility under Language Environment:

• IBMBXITA (z/VM version)

For information about IBMBXITA and IBMBINT, see PL/I for MVS & VM Compiler
and Run-Time Migration Guide (publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf), and z/OS:
XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

Default versions of these user exits are not supplied under Language Environment; instead, Language
Environment supplies a default version of CEEBXITA.

Table 11 on page 40 describes the order of precedence if the IBMBXITA and IBMFXITA user exits are
found in the same root load module with CEEBXITA.

Table 11. Interaction of Assembler User Exits

CEEBXITA
Present

IBMBXITA Present under z/OS batch or z/VM,
IBMFXITA Present under CICS®

Exit Driven

No No Default version of CEEBXITA

Yes No CEEBXITA

No Yes IBMBXITA

Yes Yes CEEBXITA

Using Sample Assembler User Exits
You can use the sample assembler user exit programs distributed with Language Environment to modify
the code for the requirements of your application. Choose a sample program appropriate for your
application. The following assembler user exit programs are delivered with Language Environment:

Table 12. Sample Assembler User Exits for Language Environment

Example User
Exit

Operating System Where Found Language (if Language-Specific)

CEEBXITB z/VM (default) CEEBXITB ORIGINAL

If you install Language Environment at your site without modifying it, your system default is CEEBXITB.
You can find the source code for CEEBXITB on the z/VM disk where Language Environment is installed
with the name CEEBXITB ORIGINAL.

The assembler user exit CEEBXITA performs functions for enclave initialization, normal and abnormal
enclave termination, and process termination. CEEBXITA must be written in assembler language, because
an HLL environment might not be established when the exit is invoked.

You can set up user exits for tasks such as:

• Installation accounting and charge back
• Installation audit controls

Run-Time User Exits

40 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf
http://publibfp.boulder.ibm.com/epubs/pdf/ibm3m101.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

• Programming standard enforcement
• Common application run-time support

When User Exits Are Invoked
Figure 2 on page 41 shows the timing of the invocations of the user exits at initialization and termination
processing.

Figure 2. Location of User Exits

In Figure 2 on page 41, run-time user exits are invoked in the following sequence:

Run-Time User Exits

Chapter 6. Using Run-Time User Exits 41

1. Assembler user exit is invoked for enclave initialization.
2. Environment is established.
3. HLL user exit is invoked.
4. Main routine is invoked.
5. Main routine returns control to caller.
6. Assembler user exit is invoked for termination of the enclave. CEEBXITA is invoked for enclave

termination processing after all application code in the enclave has completed, but prior to any enclave
termination activity.

7. Environment is terminated.
8. Assembler user exit is invoked for termination of the process. CEEBXITA is invoked again when the

Language Environment process terminates.

Language Environment provides the CEEBXITA assembler user exit for termination but does not provide a
corresponding HLL termination user exit.

CEEBXITA behaves differently, depending upon when it is invoked, as described in the following sections.

CEEBXITA Behavior During Enclave Initialization
The CEEBXITA assembler user exit is invoked before enclave initialization is performed. You can use
CEEBXITA to help establish your application run-time environment. For example, in the assembler user
exit you can specify the stack and heap run-time options and allocate data sets. You can also use the
user exit to interrogate program parameters and change them if you want. In addition, you can specify
run-time options in the user exit by using the CEEAUE_A_OPTIONS field of the assembler interface.

z/VM Considerations
The behavior of the IBM-supplied version of CEEBXITA differs, depending upon whether you are running
your application under z/VM or z/OS.

• Under z/OS, CEEBXITA returns control to Language Environment initialization.
• z/VM only — CEEBXITA issues FILEDEFs for ddnames CEEDUMP, SYSOUT, and SYSIN, then returns

control to Language Environment initialization.

Note for C-Specific Installations:

This set of FILEDEFs differs from the ones in IBMBXITA that the pre-AD/Cycle version of C used.

CEEBXITA Assembler User Exit Interface
You can modify CEEBXITA to perform any function you need, but the exit must have the following
attributes after you modify it at installation:

• The user-supplied exit must be named CEEBXITA.
• The exit must be reentrant.
• The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).
• The exit must be relinked with Language Environment initialization/termination routines after
modification.

If a user exit is modified, you are responsible for conforming to the interface shown in Figure 3 on page
43. Note that this user exit must be written in assembler. You cannot code CEEBINT as an XPLINK
application. However, since CEEBINT is called directly by Language Environment and not the application,
a non-XPLINK CEEBINT can be statically bound in the same program object with an XPLINK application.

Run-Time User Exits

42 z/VM: 7.3 Language Environment User's Guide

Figure 3. Interface for CEEBXITA Assembler User Exit

When the user exit is called, register 1 points to a word that contains the address of the CEEAUE control
block. The high-order bit is on.

The CEEAUE control block contains the following fullwords:
CEEAUE_LEN (input parameter)

A fullword integer that specifies the total length of this control block. For Language Environment, the
length is 48 bytes.

CEEAUE_FUNC (input parameter)
A fullword integer that specifies the function code. Language Environment supports the following
function codes:
1

Initialization of the first enclave within a process.
2

Termination of the first enclave within a process.

Run-Time User Exits

Chapter 6. Using Run-Time User Exits 43

3
Nested enclave initialization.

4
Nested enclave termination.

5
Process termination.

The user exit should ignore function codes other than those numbered from 1 through 5.
CEEAUE_RETC (input/output parameter)

A fullword integer that specifies the return or abend code. CEEAUE_RETC has different meanings,
depending on CEEAUE_ABND:

• If the flag CEEAUE_ABND (see below) is off, this fullword is interpreted as the Language
Environment return code placed in register 15.

• If the flag CEEAUE_ABND is on, CEEAUE_RETC is interpreted as an abend code used when an abend
is issued. (This could be either an EXEC CICS ABEND or an SVC13.)

CEEAUE_RSNC (input/output parameter)
A fullword integer that specifies the reason code for CEEAUE_RETC:

• If the flag CEEAUE_ABND (see below) is off, this word is interpreted as the Language Environment
reason code placed in register 0.

• If the flag CEEAUE_ABND is on, CEEAUE_RETC is interpreted as an abend reason code used when
an abend is issued.

This field is ignored when an EXEC CICS ABEND is issued.

CEEAUE_FLAGS
Contains four 1-byte flags. CEEBXITA uses only the first byte but reserves the remaining flags. All
unspecified bits and bytes must be 0. The layout of these flags is shown in Figure 4 on page 44:

Byte 0
 x... CEEAUE_ABTERM
 0... Normal termination
 1... Abnormal termination
 .x.. CEEAUE_ABND
 .0.. Terminate with CEEAUE_RETC
 .1.. ABEND with CEEAUE_RETC and CEEAUE_RSNC given
 ..x. CEEAUE_DUMP
 ..0. If CEEAUE_ABND=0, ABEND with no dump
 ..1. If CEEAUE_ABND=1, ABEND with a dump
 ...x CEEAUE_STEPS
 ...0 ABEND the task
 ...1 ABEND the step
 0000 Reserved (must be zero)
Byte 1
 0000 0000 Reserved for future use
Byte 2
 0000 0000 Reserved for future use
Byte 3
 0000 0000 Reserved for future use

Figure 4. CEEAUE_FLAGS Format

Byte 0 (CEEAUE_FLAG1) has the following meaning:
CEEAUE_ABTERM (input parameter)

OFF
Indicates that the enclave is terminating normally (severity 0 or 1 condition).

Run-Time User Exits

44 z/VM: 7.3 Language Environment User's Guide

ON
Indicates that the enclave is terminating with an Language Environment return code modifier of 2
or greater. This could, for example, indicate that a severity 2 or greater condition was raised but
not handled.

CEEAUE_ABND (input/output parameter)
OFF

Indicates that the enclave should terminate without an abend being issued. Thus, CEEAUE_RETC
and CEEAUE_RSNC are placed into register 15 and register 0 and returned to the enclave creator.

ON
Indicates that the enclave terminates with an abend. Thus, CEEAUE_RETC and CEEAUE_RSNC are
used by Language Environment in the invocation of the abend. During running in CICS, an EXEC
CICS ABEND command is issued.

The TRAP run-time option does not affect the setting of CEEAUE_ABND.

When the ABTERMENC(ABEND) run-time option is specified, the enclave always terminates
with an abend when there is an unhandled condition of severity 2 or greater, regardless of
the setting of the CEEAUE_ABND flag. For a detailed explanation of how the CEEAUE_ABND
parameter can affect the behavior of the ABTERMENC run-time option, see z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

CEEAUE_DUMP (output parameter)

OFF
Indicates that when you request an abend, an abend is issued without requesting a dump.

ON
Indicates that when you request an abend, an abend requesting a dump is issued.

z/VM currently honors the dump request on an abend if you specify the destination in one of the
following FILEDEF statements:

• FILEDEF SYSABEND PRINTER
• FILEDEF SYSUDUMP PRINTER

CEEAUE_STEPS (output parameter)

OFF
Indicates that when you request an abend, an abend is issued to abend the entire TASK.

ON
This parameter is ignored under z/VM.

CEEAUE_A_CC_PLIST (input/output parameter)
A fullword pointer to the parameter address list of the application program.

If the parameter is not a character string, CEEAUE_A_CC_PLIST contains the register 1 value as
passed by the calling program or operating system at the time of program entry.

If the parameter inbound to the MAIN routine is a character string, CEEAUE_A_CC_PLIST contains the
address of a fullword address that points to a halfword prefixed string. If this string is altered by the
user exit, the string must not be extended in place.

CEEAUE_WORK (input parameter)
A fullword pointer to a 256-byte work area that the exit can use. On entry it contains binary zeros and
is doubleword-aligned.

This area does not persist across exits.

Run-Time User Exits

Chapter 6. Using Run-Time User Exits 45

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

CEEAUE_A_OPTIONS (output parameter)
Upon return, this field contains a fullword pointer to the address of a halfword-length prefixed
character string that contains run-time options. These options are honored only during the
initialization of an enclave. When invoked for enclave termination, this field is ignored.

These run-time options override all other sources of run-time options except those that are specified
as NONOVR in the installation default run-time options.

The LIBRARY and VERSION run-time options cannot be specified in the CEEAUE_A_OPTIONS output
string. When the assembler user exit is invoked, it is too late to change any of these options.

CEEAUE_USERWD (input/output parameter)
A fullword whose value is maintained without alteration and passed to every user exit. Upon entry to
the enclave initialization user exit, it is zero. Thereafter, the value of the user word is not altered by
Language Environment or any member libraries. The user exit might change the value of this field, and
Language Environment maintains that value. This allows the user exit to acquire a work area, initialize
it, and pass it to subsequent user exits. The work area might be freed by the termination user exit.

CEEAUE_A_AB_CODES (output parameter)
During the initialization exit, this field contains a fullword address of a table of abend codes that
the Language Environment condition handler percolates while in the (E)STAE exit. Therefore, the
application does not have the chance to address the abend. This table is honored prior to shunt
routines. The table consists of:

• A fullword count of the number of abend codes that are to be percolated
• A fullword for each of the particular abend codes that are to be percolated

The abend codes might be either user abend codes or system abend codes. User abend codes are
specified by F'uuu'. For example, if you want to percolate user ABEND 777, a F'777' would be coded.
System abend codes are specified by X'00sss000'.

CEEAUE_FBCODE (input parameter)
Contains a fullword address of the condition token with which the enclave terminated. If the enclave
terminates normally (that is, not due to a condition), the condition token is zero.

CEEAUE_PAGE (input parameter)
This parameter indicates whether PL/I BASED variables that are allocated storage outside of AREAs
are allocated on a 4K-page boundary. You can specify in the field the minimum number of bytes of
storage that must be allocated. Your allocation request must be an exact multiple of 4K.

The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other than 4K-page
boundaries.

CEEAUE_PAGE is honored only during enclave initialization, that is, when CEEAUE_FUNC is 1 or 3.

The offset of CEEAUE_PAGE under Language Environment is different than under OS PL/I 2.3.

Run-Time User Exits

46 z/VM: 7.3 Language Environment User's Guide

Chapter 7. Using Preinitialization Services

You can use preinitialization to enhance the performance of your application. Preinitialization lets an
application initialize an HLL environment once, perform multiple executions using that environment,
and then explicitly terminate the environment. Because the environment is initialized only once (even if
you perform multiple executions), you free up system resources and allow for faster responses to your
requests.

This topic describes z/VM-specific considerations for Language Environment preinitialization
service routines. For more information about preinitialization, see z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Restriction: XPLINK programs are not supported in the PreInit environment.

Service Routines
Under Language Environment, you can specify several service routines to execute a main routine or
subroutine in the preinitialized environment. To use the routines, specify a list of addresses of the routines
in a service routine vector as shown in Figure 5 on page 47.

Figure 5. Format of Service Routine Vector

The service routine vector is composed of a list of fullword addresses of routines that are used instead of
Language Environment service routines. The list of addresses is preceded by the number of the addresses
in the list, as specified in the count field of the vector. The service_rtns parameter that you specify in calls
to CEEPIPI(init_main) and CEEPIPI(init_sub) contains the address of the vector itself. If this pointer is

Preinitialization Services

© Copyright IBM Corp. 2003, 2022 47

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

specified as zero (0), Language Environment routines are used instead of the service routines shown in
Figure 5 on page 47.

The @GETSTORE and @FREESTORE service routines must be specified together; if one is zero, the other
is automatically ignored. The same is true for the @LOAD and @DELETE service routines. If you specify
the @GETSTORE and @FREESTORE service routines, you must also specify the @LOAD and @DELETE
service routines.

The service routines may be AMODE(31) / RMODE(ANY) if the application has no AMODE(24) programs.
Otherwise the service routines must be AMODE(ANY) / RMODE(24).
Count

A fullword binary number representing the number of fullwords that follow. The count does not
include itself. In Figure 5 on page 47, the count is 9. For each vector slot, a zero represents the
absence of the routine, a nonzero represents the presence of a routine.

User Word
A fullword that is passed to the service routines. The user word is provided as a means for your routine
to communicate to the service routines.

@WorkArea
An address of a work area of at least 256 bytes that is doubleword aligned. The first word of the area
contains the length of the area provided. This parameter is required if service routines are present in
the service routine vector.

@LOAD
This routine loads named routines for application management. Under VM, this routine can load
modules from nucleus extension, saved segment, or relocatable load library members. The search
sequence is in the same order. The parameter that is passed contains the following:
Name_addr

The fullword address of the name of the module to load (input parameter).
Name_length

A fixed binary(31) length of the module name (input parameter).
User_word

A fullword user field (input parameter).
Load_point

Either zero (0), or the address where the @LOAD routine is to store the load point address of the
loaded routine (input and output parameter).

Entry_point
The fullword entry point address of the loaded routine (output parameter).

Module_size
The fixed binary(31) size of the module that was loaded (output parameter).

Return code
The fullword return code from load (output).

Reason code
The fullword reason code from load (output).

The return and reason codes are listed in Table 13 on page 48.

Table 13. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

0 4 Successful — found as a CMS nucleus extension

0 8 Successful — loaded as a CMS shared segment

0 12 Successful — loaded using SVC8

Preinitialization Services

48 z/VM: 7.3 Language Environment User's Guide

Table 13. Return and Reason Codes (continued)

Return Code Reason Code Description

4 4 Unsuccessful — module loaded above the line when in AMODE(24)

8 4 Unsuccessful — load failed

16 4 Unsuccessful — uncorrectable error occurred

@DELETE
This routine deletes routines for application management. Under VM, this routine can load modules
from nucleus extension, saved segment, or relocatable load modules. The search sequence is in the
same order. The parameter that is passed contains the following:
Name_addr

The fullword address of the module name to be deleted (input parameter).
Name_length

A fixed binary(31) length of module name (input parameter).
User_word

A fullword user field (input parameter).
Rsvd_word

A fullword reserved for future use (input parameter); must be zero.
Return code

The return code from delete service (output).
Reason code

The reason code from delete service (output).

The return and reason codes are listed in Table 14 on page 49.

Table 14. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

8 4 Unsuccessful — delete failed

16 4 Unsuccessful — uncorrectable error occurred

@GETSTORE
This routine allocates storage on behalf of the storage manager. This routine can rely on the caller
to provide a save area, which can be the @Workarea. The parameter list that is passed contains the
following:
Amount

A fixed binary(31) amount of storage requested (input parameter).
Subpool_no

A fixed binary(31) subpool number 0-127 (input parameter). Language Environment allocates
storage from the process-level storage pools.

User word
A fullword user field (input parameter).

Flags
A fullword flag area (input parameter).

Bit zero in Flags is ON if the storage is required below the 16M line. The remaining bits are
reserved for future use and must be zero. Bit zero in Flags is OFF if the storage required can be
allocated anywhere.

Stg_address
The fullword address of the storage obtained or zero (output parameter).

Preinitialization Services

Chapter 7. Using Preinitialization Services 49

Obtained
A fixed binary(31) number of bytes obtained (output parameter).

Return code
The return code from @GETSTORE service (output parameter).

Reason code
The reason code from the @GETSTORE service (output parameter).

The return and reason codes are listed in Table 15 on page 50.

Table 15. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

@FREESTORE
This routine frees storage on behalf of the storage manager. The parameter list passed contains the
following:
Amount

The fixed binary(31) amount of storage to free (input parameter).
Subpool_no

The fixed binary(31) subpool number 0-127 (input parameter). Language Environment allocates
storage from the process-level storage pools.

User word
A fullword user field (input parameter).

Stg_address
The fullword address of the storage to free (input parameter).

Return code
The return code from the @FREESTORE service (output).

Reason code
The reason code from the @FREESTORE service (output).

The return and reason codes are listed in Table 16 on page 50.

Table 16. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

@EXCEPRTN
This routine traps program interruptions and abends for condition management. The parameter list
passed contains the following:
Handler_addr

During an initialization call, this parameter contains the address of the CEL condition handler.
During a termination call, this parameter contains a pointer to a fullword field containing zeroes.

Environment_token
A fullword Recovery Environment token (input). (Note that this token is different from the PIPI
environment token used with CEEPIPI calls.)

User_word
A fullword user field (input parameter)

Abend_flags
A fullword flag area containing abend flags (input)

Preinitialization Services

50 z/VM: 7.3 Language Environment User's Guide

Check_flags
A fullword flag area containing program check flags (input)

Return code
The return code from the @EXCEPRTN service (output).

Reason code
The reason code from the @EXCEPRTN service (output).

The exception router is responsible for trapping and routing exceptions. These are the services
typically obtained via the ESTAE and ESPIE macros.

During initialization, if the TRAP option is in effect the common library puts the address of
the Language Environment exception in the first field of the above parameter list, and sets the
environment token field to a value that will be passed on to the exception handler. It also sets abend
and check flags as appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following declare:

 dcl
 1 abendflags,
 2 system,
 3 abends bit(1), /* control for system abends desired */
 3 rsrv1 bit(15), /* reserved */
 2 user,
 3 abends bit(1), /* control for user abends desired */
 3 rsrv2 bit(15); /* reserved */

The meaning of the bits in the check flags is given by the following declare:

 1 checkflags,
 2 type,
 3 reserved3 bit(1),
 3 operation bit(1),
 3 privileged_operation bit(1),
 3 execute bit(1),
 3 protection bit(1),
 3 addressing bit(1),
 3 specification bit(1),
 3 data bit(1),
 3 fixed_overflow bit(1),
 3 fixed_divide bit(1),
 3 decimal_overflow bit(1),
 3 decimal_divide bit(1),
 3 exponent_overflow bit(1),
 3 exponent_underflow bit(1),
 3 significance bit(1),
 3 float_divide bit(1),
 2 reserved4 bit(16);

The return and reason codes that the exception router must use are listed in Table 17 on page 51.

Table 17. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

4 4 Unsuccessful — the exit could not be established or removed

16 4 Unsuccessful — unrecoverable error occurred

When an exception occurs, the exception router must determine if the established exception handler
is interested in the exception (by examining abend and check flags). If the exception handler is not
interested in the exception, the exception router must treat the program as in error, but can assume
the environment for the thread to be functional and reusable. If the exception handler is interested in
the exception, the exception router must invoke the exception handler, passing the parameters listed
in Table 18 on page 52.

Preinitialization Services

Chapter 7. Using Preinitialization Services 51

Table 18. Parameters for EXCEPRTN

Parameter Attibutes Type

Environment Token Pointer Input

SDWA Pointer Input

Return Code Fixed Bin(31) Output

Reason Code Fixed Bin(31) Output

The return and reason codes upon return from the exception handler are listed in Table 19 on page
52.

Table 19. Return and Reason Codes

Return Code Reason Code Description

0 0 Continue with the exception.

Percolate the exception taking whatever action would have been
taken had it not been handled at all. In this case, your exception
router can assume the environment for the thread to be functional
and reusable.

0 4 Continue with the exception.

Percolate the exception taking whatever action would have been
taken had it not been handled at all. In this case, the environment
for the thread is probably unreliable and not reusable. A forced
termination is suggested.

4 0 Resume execution using the updated SDWA.

The invoked exception handler will have already used the SETRP RTM
macro to set the SDWA for correct resumption.

During termination, the exception router is invoked with the exception handler address (first
parameter) set to zero to de-establish the exit (if it was established during initialization).

When a nested enclave is created, the Language Environment exception handler calls the exception
router to establish another exception handler exit, and then makes a call to de-establish it when the
nested enclave terminates. If an exception occurs while the second exit is active, special processing is
performed. Depending on what this second exception is, either the first exception will not be retried,
or processing will continue on the first exception by requesting retry for the second exception.

If the Language Environment exception handler determines that execution should resume for an
exception, it will set the SDWA with SETRP and return with return/reason codes 4/0. Execution will
resume in library code or in user code, depending on what the exception was.

The exception router must be capable of restoring all the registers from the SDWA when control is
given to the retry routine. The ESPIE and ESTAE services are capable of accomplishing this.

In using the exception router service:

• The exception router should not invoke the Language Environment exception handler if active I/O
has been halted and is not restorable.

• This service requires an XA or ESA environment.
• This service is not supported under CMS.

If an exception occurs while the exception handler is in control before another exception handler exit
has been stacked, the exception router should assume that the exception could not be handled and

Preinitialization Services

52 z/VM: 7.3 Language Environment User's Guide

that the environment for the program (thread) is damaged. In this case, the exception router should
force termination of the preinitialized environment.

@MSGRTN
This routine allows error messages to be processed by the caller of the application.

If the message pointer is zero, your message routine is expected to return the size of the line to which
messages are written (in the line_length field). This allows messages to be formatted correctly — that
is, broken at places such as blanks.
Message

A pointer to the first byte of text that is printed, or zero (input parameter).
Msg_len

The fixed binary(31) length of the message (input parameter).
User word

A fullword user field (input parameter).
Line_length

The fixed binary(31) size of the output line length. This is used when Message is zero (output
parameter).

Return and reason codes
Two fullwords containing the return and reason codes listed in Table 20 on page 53 (output
parameters).

Table 20. Return and Reason Codes

Return Code Reason Code Description

0 0 Successful

16 4 Unsuccessful — uncorrectable error occurred

A Sample Program Invocation of CEEPIPI
In the following example, assembler program ASMPIPI ASSEMBLE invokes CEEPIPI to:

• Initialize a subroutine environment under Language Environment
• Load and call a reentrant HLL subroutine
• Terminate the Language Environment environment

For examples of the program HLLPIPI written in C, COBOL, and PL/I, see the z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

When using HLLPIPI C under z/VM, enter these commands:

LOAD HLLPIPI (RLDSAVE RESET HLLPIPI
GENMOD HLLPIPI

*COMPILATION UNIT: LEASMPIP

* *
* Function : CEEPIPI - Initialize the PIPI environment, *
* call a PIPI HLL program, and terminate *
* the environment. *
* *
* 1.Call CEEPIPI to initialize a subroutine environment under LE. *
* 2.Call CEEPIPI to load and call a reentrant HLL subroutine. *
* 3.Call CEEPIPI to terminate the LE PIPI environment. *
* *
* Note: ASMPIPI is not reentrant. *
* *

*
* ===
* Standard program entry conventions.

Preinitialization Services

Chapter 7. Using Preinitialization Services 53

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

* ===
ASMPIPI CSECT
 STM R14,R12,12(R13) Save caller's registers
 LR R12,R15 Get base address
 USING ASMPIPI,R12 Identify base register
 ST R13,SAVE+4 Back-chain the save area
 LA R15,SAVE Get addr of this routine's save area
 ST R15,8(R13) Forward-chain in caller's save area
 LR R13,R15 R13 -> save area of this routine
*
* Load LE CEEPIPI service routine into main storage.
*
 COMPSWT ON Set flag to load MODULEs
 LOAD EP=CEEPIPI Load CEEPIPI routine dynamically
 COMPSWT OFF Reset flag to load MODULEs
 ST R0,PPRTNPTR Save the addr of CEEPIPI routine
*
* Initialize an LE PIPI subroutine environment.
*
INIT_ENV EQU *
 LA R5,PPTBL Get address of PIPI Table
 ST R5,@CEXPTBL Ceexptbl-addr -> PIPI Table
 L R15,PPRTNPTR Get address of CEEPIPI routine
* Invoke CEEPIPI routine
 CALL (15),(INITSUB,@CEXPTBL,@SRVRTNS,RUNTMOPT,TOKEN)
* Check return code:
 LTR R2,R15 Is R15 = zero?
 BZ CSUB Yes (success).. go to next section
* No (failure).. issue message

 WTO 'ASMPIPI : call to CEEPIPI(INIT_SUB) failed',ROUTCDE=11
 C R2,=F'8' Check for partial initialization
 BE TSUB Yes.. go do PIPI termination
* No.. issue message & quit
 WTO 'ASMPIPI : INIT_SUB failure RC is not 8.',ROUTCDE=11
 ABEND (R2),DUMP Abend with bad RC and dump memory
*
* Call the subroutine, which is loaded by LE
*
CSUB EQU *
 L R15,PPRTNPTR Get address of CEEPIPI routine
 CALL (15),(CALLSUB,PTBINDEX,TOKEN,PARMPTR, X
 SUBRETC,SUBRSNC,SUBFBC) Invoke CEEPIPI routine
* Check return code:
 LTR R2,R15 Is R15 = zero?
 BZ TSUB Yes (success).. go to next section
* No (failure).. issue message & quit
 WTO 'ASMPIPI : call to CEEPIPI(CALL_SUB) failed',ROUTCDE=11
 ABEND (R2),DUMP Abend with bad RC and dump memory
*
* Terminate the environment
*
TSUB EQU *
 L R15,PPRTNPTR Get address of CEEPIPI routine
 CALL (15),(TERM,TOKEN,ENV_RC) Invoke CEEPIPI routine
* Check return code:
 LTR R2,R15 Is R15 = zero ?
 BZ DONE Yes (success).. go to next section
* No (failure).. issue message & quit
 WTO 'ASMPIPI : call to CEEPIPI(TERM) failed',ROUTCDE=11
 ABEND (R2),DUMP Abend with bad RC and dump memory
*
* Standard exit code.
*
DONE EQU *
 LA R15,0 Passed return code for system
 L R13,SAVE+4 Get address of caller's save area
 L R14,12(R13) Reload caller's register 14
 LM R0,R12,20(R13) Reload caller's registers 0-12
 BR R14 Branch back to caller
*
* ===
* CONSTANTS and SAVE AREA.
* ===
SAVE DC 18F'0'
PPRTNPTR DS A Save the address of CEEPIPI routine
*
* Parameters passed to a CEEPIPI(INIT_SUB) call.
*
INITSUB DC F'3' Function code to initialize for subr
@CEXPTBL DC A(PPTBL) Address of PIPI Table

Preinitialization Services

54 z/VM: 7.3 Language Environment User's Guide

@SRVRTNS DC A(0) Addr of service-rtns vector, 0 = none
RUNTMOPT DC CL255' ' Fixed length string of runtime optns
TOKEN DS F Unique value returned (output)
*
* Parameters passed to a CEEPIPI(CALL_SUB) call.
*
CALLSUB DC F'4' Function code to call subroutine
PTBINDEX DC F'0' The row number of PIPI Table entry
PARMPTR DC A(0) Pointer to @PARMLIST or zero if none
SUBRETC DS F Subroutine return code (output)
SUBRSNC DS F Subroutine reason code (output)
SUBFBC DS 3F Subroutine feedback token (output)
*

* Parameters passed to a CEEPIPI(TERM) call.
*
TERM DC F'5' Function code to terminate
ENV_RC DS F Environment return code (output)
*
* ===
* PIPI Table.
* ===
PPTBL CEEXPIT , PIPI Table with index
 CEEXPITY HLLPIPI,0 0 = dynamically loaded routine
*
 CEEXPITS , End of PIPI table
*
*
 LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END ASMPIPI

Preinitialization Services

Chapter 7. Using Preinitialization Services 55

Preinitialization Services

56 z/VM: 7.3 Language Environment User's Guide

Chapter 8. Using Nested Enclaves

An enclave is a logical run-time structure that supports the execution of a collection
of routines (for a detailed description of Language Environment enclaves, see z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf)).

Language Environment explicitly supports the execution of a single enclave within a Language
Environment process. However, by using the system services and language constructs described in this
chapter, you can create an additional, or nested, enclave and initiate its execution within the same
process.

The enclave that issues a call to system services or language constructs to create a nested enclave is
called the parent enclave. The nested enclave that is created is called the child enclave. The child must
be a main routine; a link to a subroutine by commands and language constructs is not supported under
Language Environment.

If a process contains nested enclaves, none or only one enclave can be running with POSIX(ON).

Understanding the Basics
In Language Environment, you can use the following methods to create a child enclave:

• The SVC LINK or CMSCALL commands (for more information about SVC LINK and CMSCALL, see your
system reference)

• The C system() function (for more information about system(), see z/OS:
XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf))

• The PL/I FETCH and CALL to any of the following PL/I routines with PROC OPTIONS(MAIN) specified:

– PL/I for MVS & VM
– OS PL/I 2
– OS PL/I 1.5.1
– Relinked OS PL/I 1.3 - 5.1

Such a routine, called a fetchable main in this information, can only be introduced by a FETCH and CALL
from a PL/I routine. COBOL cannot dynamically call a PL/I main and C cannot issue a fetch() against a
PL/I main. In addition, a fetchable main cannot be dynamically loaded using the CEELOAD macro.

The routine performing the FETCH and CALL must be compiled with the PL/I for MVS & VM compiler, or
be a relinked OS PL/I routine.

If the target routine of any of these commands is not written in a Language Environment-conforming HLL
or Language Environment-conforming assembler, no nested enclave is created.

XPLINK Considerations
A nested enclave situation where the parent enclave is running in an XPLINK(OFF) environment and the
child enclave requires XPLINK(ON) is not supported. A parent enclave running XPLINK(ON) will support a
nested child enclave of either XPLINK(ON) or XPLINK(OFF). In the latter case, the application in the child
enclave will go through compatibility glue code when calling the C RTL (that is, the child enclave will run
with an environment with the XPLINK run-time option forced ON).

COBOL Considerations
OS/VS COBOL programs are supported in a single enclave only.

Using Nested Enclaves

© Copyright IBM Corp. 2003, 2022 57

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

Determining the Behavior of Child Enclaves
If you want to create a child enclave, you need to consider the following factors:

• The language of the main routine in the child enclave
• The sources from which each type of child enclave gets run-time options
• The default condition handling behavior of each type of child enclave
• The setting of the TRAP run-time option in the parent and the child enclave

All of these interrelated factors affect the behavior, particularly the condition handling, of the created
enclave. The sections that follow describe how the child enclaves created by each method (SVC LINK,
CMSCALL, C system() function, and PL/I FETCH and CALL of a fetchable main) will behave.

Creating Child Enclaves by Calling a Second Main Program
The behavior of a child enclave created by calling a second main program is determined by the language
of its main or initializing routine: C, C++, COBOL, PL/I, or Language Environment-conforming assembler
(generated by use of the CEEENTRY and associated macros).

How Run-Time Options Affect Child Enclaves
Run-time options will be processed in the normal manner for enclaves created because of a call to a
second main, that is, programmer defaults present in the load module will be merged, options in the
command line equivalent will also be processed, as will options passed by the assembler user exit if
present.

How Conditions Arising in Child Enclaves Are Handled
The command-line equivalent is determined in the same manner as for a SVC LINK.

Creating Child Enclaves Using SVC LINK or CMSCALL
The behavior of a child enclave created by an SVC LINK or CMSCALL is determined by the language of its
main routine: C, C++, COBOL, PL/I, or Language Environment-conforming assembler (generated by use of
the CEEENTRY and associated macros).

If you want to issue a LINK to a routine, you must first either use the LKED command to put the target
routine's object module into a LOADLIB or use the LOAD command with the RLDSAVE option and the
GENMOD command with the NOMAP option to create a relocatable load module. For more information
about the LKED command, see “Link-Editing with the LKED Command” on page 14.

If you want to issue a CMSCALL to a routine, you must first use either the LOAD and GENMOD commands
or the BIND command to put the target routine's object code into a CMS MODULE. For more information
about these commands see “Using the LOAD and INCLUDE Commands” on page 8, “Using the GENMOD
Command” on page 12, and “Using the BIND Command” on page 13.

How Run-Time Options Affect Child Enclaves
Child enclaves created by an SVC LINK or CMSCALL get run-time options differently, depending on the
language that the main routine of the child enclave is written in.

Child Enclave Has a C, C++, PL/I, or Language Environment-Conforming Assembler
Main Routine
If the main routine of the child enclave is written in C, C++, PL/I, or in Language Environment-conforming
assembler, the child enclave gets its run-time options through a merge from the usual sources (see z/OS:
Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) for more information). Therefore, you can set run-time
options on an enclave-by-enclave basis.

Using Nested Enclaves

58 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Child Enclave Has a COBOL Main Program
If the main program of the child enclave is written in COBOL, the child enclave inherits the run-time
options of the creating enclave. Therefore, you cannot set run-time options on an enclave-by-enclave
basis.

How Conditions Arising in Child Enclaves Are Handled
If a Language Environment or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs in a child enclave created by SVC LINK or CMSCALL, regardless of the language
of its main, the entire process is terminated.

Condition handling in child enclaves created by SVC LINK or CMSCALL varies, depending on the language
of the child's main routine, the setting of the TRAP run-time option in the parent and child enclaves, and
the type of condition. Refer to one of the following tables to see what happens when a condition remains
unhandled in a child enclave.

Table 21. Handling Conditions in Child Enclaves

If the Child Enclave Was Created By: See:

An SVC LINK or CMSCALL under CMS and has a C or Language Environment-
conforming assembler main routine

Table 22 on page
59

An SVC LINK or CMSCALL under CMS and has a COBOL main program Table 23 on page
60

An SVC LINK or CMSCALL under CMS and has a PL/I main routine Table 24 on page
60

You should always run your applications with TRAP(ON) or your results might be unpredictable.

Child Enclave Has a C, C++, or Language Environment-Conforming Assembler Main
Routine
Table 22 on page 59 shows the unhandled condition behavior under CMS.

Table 22. Unhandled Condition Behavior in a C or Assembler Child Enclave, under CMS

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(ON)

Child Enclave
TRAP(OFF)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled condition severity
2 or above

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Non-Language Environment
abend

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Program check Resume parent
enclave, and
ignore condition

Process
terminated with
abend U4036,
Reason Code=2

Resume parent
enclave, and
ignore condition

Process
terminated with
CMS message

Using Nested Enclaves

Chapter 8. Using Nested Enclaves 59

Child Enclave Has a COBOL Main Program
Child enclaves created by SVC LINK or CMSCALL that have a COBOL main program inherit the run-time
options of the parent enclave that created them. Therefore, the TRAP setting of the parent and child
enclaves is always the same.

Table 23 on page 60 shows unhandled condition behavior under z/VM.

Table 23. Unhandled Condition Behavior in a COBOL Child Enclave, under z/VM

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity 0 or 1 Resume child enclave Resume child enclave

Unhandled condition severity 2 or above Process terminated
with abend U4094
RC=40

Process terminated
with abend U4094
RC=40

Non-Language Environment abend Process terminated
with original abend
code

Process terminated
with original abend
code

Program check Process terminated
with abend U4094
RC=40

Process terminated
with CMS message

Child Enclave Has a PL/I Main Routine
Table 24 on page 60 lists unhandled condition behavior under z/VM.

Table 24. Unhandled Condition Behavior in a PL/I Child Enclave, under z/VM

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(ON)

Child Enclave
TRAP(OFF)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Unhandled condition severity
2 or above

Process
terminated with
abend U4094
RC=40

Process
terminated with
abend U4094
RC=40

Process
terminated with
abend U4094
RC=40

Process
terminated with
abend U4094
RC=40

Non-Language Environment
abend

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Program check Process
terminated with
abend U4094
RC=40

Process
terminated with
abend U4036
RC=2

Process
terminated with
abend U4094
RC=40

Process
terminated with
CMS message

Using Nested Enclaves

60 z/VM: 7.3 Language Environment User's Guide

Creating Child Enclaves Using the C system() Function
Child enclaves created by the C system() function get run-time options through
a merge from the usual sources (for more information, see z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf)). Therefore, you can set run-time options on an enclave-by-
enclave basis. For information on the system() function when running with POSIX(ON), see the XL C/C++
for z/VM: Runtime Library Reference.

Run-time options specified in the PARM= portion of the system() function are ignored when you perform
a system() function to a COBOL program in the following form:

system("PGM=program_name,PARM='...'")

However, run-time options are merged from CEEDOPT, CEEUOPT, and the CEEAUE_A_OPTIONS from the
assembler user exit.

OpenExtensions Considerations
To create a nested enclave under Open Extensions, you must either:

• Be running with POSIX(OFF) and issue system(), or
• Be running with POSIX(ON) and have set the environment variables to signal that you want to establish

a nested enclave. You can use the __POSIX_SYSTEM environment variable to cause a system() to
establish a nested enclave instead of performing a spawn(). __POSIX_SYSTEM can be set to NO, No, or
no.

The system() function is not thread safe. It cannot be called simultaneously from more than one thread.
A multi-threaded application must ensure that no more than one system() call is ever outstanding from
the various threads. If this restriction is violated, unpredictable results may occur. In a multiple enclave
environment, the first enclave must be running with POSIX(ON) and all other nested enclaves must be
running with POSIX(OFF).

How Conditions Arising in Child Enclaves Are Handled
If a Language Environment- or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs in a child enclave created by a call to system(), the entire process is
terminated.

Depending on what the settings of the TRAP run-time option are in the parent and child enclave, the
following might cause the child enclave to terminate:

• Unhandled user abend
• Unhandled program check

TRAP(ON | OFF) Effects for Enclaves Created by system()
Table 25 on page 61 describes the effects of TRAP(ON|OFF) for enclaves that are created by the
system() function on a z/VM system.

Table 25. Unhandled Condition Behavior in a system()-Created Child Enclave, under z/VM

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(ON)

Child Enclave
TRAP(OFF)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Using Nested Enclaves

Chapter 8. Using Nested Enclaves 61

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Table 25. Unhandled Condition Behavior in a system()-Created Child Enclave, under z/VM (continued)

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(ON)

Child Enclave
TRAP(OFF)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity
2 or above

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Non-Language Environment
abend

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Program check Resume parent
enclave, and
ignore condition

Process
terminated with
abend U4036,
Reason Code=2

Resume parent
enclave, and
ignore condition

Process
terminated with
CMS message

Creating Child Enclaves Containing a PL/I Fetchable Main
Under z/VM, the target load module can only be a member of a LOADLIB or be in a saved segment or
relocatable load module. The target load module cannot be on a text deck or be a member of a TXTLIB.

Additional fetch and call considerations of PL/I fetchable mains are discussed in “Special Fetch and Call
Considerations” on page 63.

How Run-Time Options Affect Child Enclaves
Child enclaves created when you issue a FETCH and CALL of a fetchable main get run-time options
through a merge from the usual sources (see z/OS: Language Environment Programming Guide (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) for
more information). Therefore, you can set run-time options on an enclave-by-enclave basis.

How Conditions Arising in Child Enclaves Are Handled
If a Language Environment or CEEBXITA-initiated (generated by setting the CEEAUE_ABND field of
CEEBXITA) abend occurs in a child enclave that contains a fetchable main, the entire process is
terminated.

Depending on what the settings of the TRAP run-time option are in the parent and child enclave, the
following might cause the child enclave to terminate:

• Unhandled user abend
• Unhandled program check

Table 26 on page 62 describes the unhandled condition behavior in a child enclave that is created under
z/VM.

Table 26. Unhandled Condition Behavior in a Child Enclave That Contains a Fetchable Main, under z/VM

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(ON)

Child Enclave
TRAP(OFF)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity
0 or 1

Resume child
enclave

Resume child
enclave

Resume child
enclave

Resume child
enclave

Using Nested Enclaves

62 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Table 26. Unhandled Condition Behavior in a Child Enclave That Contains a Fetchable Main, under z/VM
(continued)

Condition Parent Enclave
TRAP(ON)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(ON)

Child Enclave
TRAP(OFF)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(ON)

Parent Enclave
TRAP(OFF)

Child Enclave
TRAP(OFF)

Unhandled condition severity
2 or above

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Resume parent
enclave, and
ignore condition

Non-Language Environment
abend

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Process
terminated with
original abend
code

Program check Resume parent
enclave, and
ignore condition

Process
terminated with
U4036 RC=2

Resume parent
enclave, and
ignore condition

Process
terminated with
CMS message

Special Fetch and Call Considerations
You should not recursively fetch and call the fetchable main from within the child enclave; results are
unpredictable if you do.

The load module that is the target of the FETCH and CALL is reentrant if all routines in the load module
are reentrant. (See z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) for more information on
reentrancy.)

Language Environment relies on the underlying operating system for the management of load module
attributes. In general, multiple calls of the same load module are supported for load modules that are any
of the following:

• Reentrant

It is recommended that your target load module be reentrant.
• Nonreentrant but serially reusable

You should ensure that the main procedure of a nonreentrant but serially reusable load module is
self-initializing. Results are unpredictable otherwise.

• Nonreentrant and non-serially reusable

If a nonreentrant and non-serially reusable load module is called multiple times, each new call brings
in a fresh copy of the load module. That is, there are two copies of the load module in storage: one
from FETCH and one from CALL. Even though there are two copies of the load module in storage, you
need only one PL/I RELEASE statement because upon return from the created enclave the load module
loaded by CALL is deleted by the operating system. You need only release the load module loaded by
FETCH.

Other Nested Enclave Considerations
The following sections contain other information you might need to know when creating nested enclaves.
The topics include:

• The string that CEE3PRM returns for each type of child enclave (for more information about
the CEE3PRM callable service, see z/OS: Language Environment Programming Reference (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf))

Using Nested Enclaves

Chapter 8. Using Nested Enclaves 63

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf

• The return and reason codes that are returned on termination of the child enclave
• How the assembler user exit handles nested enclaves
• Whether the message file is closed on return from a child enclave
• z/OS UNIX considerations
• AMODE considerations

What the Enclave Returns from CEE3PRM
CEE3PRM returns to the calling routine the user parameter string that was specified at program
invocation. Only program arguments are returned.

See Table 27 on page 64 to determine whether a user parameter string was passed to your routine,
and where the user parameter string is found. This depends on the method you used to create the child
enclave, the language of the routine in the child enclave, and the PLIST, TARGET, or SYSTEM setting of
the main routine in the child enclave. If a user parameter string was passed to your routine, the user
parameter string is extracted from the command-line equivalent for your routine (shown in Table 28 on
page 65) and returned to you.

Table 27. Determining the Command-Line Equivalent

Language Option Suboption

CMSCALL or
SVC LINK on
z/VM

system() on
z/VM

FETCH/CALL of
a PL/I main

C #pragma
runopts(PLIST
)

HOST, CMS, MVS CMS extended
argument list
(R0)

PARM=, or the
parameter string
from the
command string
passed to
system()

Not allowed

C++ PLIST and
TARGET compiler
options

Default Not allowed Not allowed Not allowed

PLIST(OS) or
TARGET(IMS)

Not allowed Not allowed Not allowed

COBOL N/A CMS extended
argument list
(R0)

CMS extended
argument list
(R0)

Null

PL/I SYSTEM compiler
option

MVS Halfword
length-prefixed
string pointed to
R1

Halfword length-
prefixed string
pointed to by R1

User
parameters
passed through
CALL

CMS CMS extended
argument list

PARM= or the
parameter string
from the
command string
passed to
system()

User
parameters
passed through
CALL

CICS, CMSTPL,
IMS, TSO

Not available Not available SYSTEM(CICS)
not supported;
others not
available.

Using Nested Enclaves

64 z/VM: 7.3 Language Environment User's Guide

Table 27. Determining the Command-Line Equivalent (continued)

Language Option Suboption

CMSCALL or
SVC LINK on
z/VM

system() on
z/VM

FETCH/CALL of
a PL/I main

Language
Environment-
conforming
assembler

CEENTRY PLIST= HOST, CMS, MVS CMS extended
argument list
(R0)

PARM=, or the
parameter string
from the
command string
passed to
system()

Not allowed

If Table 27 on page 64 indicates that a parameter string was passed to your routine at invocation, the
string is extracted from the command-line equivalent listed in the right-hand column of Table 28 on page
65. The command-line equivalent depends on the language of your routine and the run-time options
specified for it.

Table 28. Determining the Order of Run-Time Options and Program Arguments

Language of
Routine Run-Time Options in Effect?

Order of Run-Time Options and Program
Arguments

C #pragma runopts(EXECOPS) run-time options / user parms

#pragma runopts(NOEXECOPS) entire string is user parms

C++ Compiled with EXECOPS (default) run-time options / user parms

Compiled with NOEXECOPS entire string is user parms

COBOL CBLOPTS(ON) user parms / run-time options

CBLOPTS(OFF) run-time options / user parms

PL/I PROC OPTIONS(NOEXECOPS) or
SYSTEM(CICS | IMS | TSO) is not specified.

run-time options / user parms

PROC OPTIONS(NOEXECOPS) is specified,
or NOEXECOPS is not specified but
SYSTEM (CICS | IMS | TSO) is. See
“PL/I Main Procedure Parameter Passing
Considerations” on page 107 for more
information on the SYSTEM compile
option.

entire string is user parms

Language
Environment-
conforming
assembler

CEENTRY EXECOPS=ON run-time options / user parms

CEENTRY EXECOPS=OFF entire string is user parms

Finding the Return and Reason Code from the Enclave
The following list tells where to look for the return and reason codes that are returned to the parent
enclave when a child enclaves terminates:

• SVC LINK or CMSCALL to a child enclave with a main routine written in any Language Environment-
conforming language

If the process was not terminated, the return code is reported in R15. (See “How the Language
Environment Enclave Return Code Is Calculated” on page 27 for more information.) The reason code is
discarded.

• C's system() function

Using Nested Enclaves

Chapter 8. Using Nested Enclaves 65

If the target command or program of system() cannot be started, the system load service return code
is returned as the function value of system(). Otherwise, the return code of the created enclave is
reported as the function value of system(), and the reason code is discarded.

• FETCH and CALL of a fetchable main

Normally, the enclave return code and reason code are discarded when control returns to a parent
enclave from a child enclave. However, in the parent enclave, you can specify the OPTIONS(ASSEMBLER
RETCODE) option of the entry constant for the main procedure of the child enclave. This causes the
enclave return code of the child enclave to be saved in R15 as the PL/I return code. You can then
interrogate that value by using the PLIRETV built-in function in the parent enclave.

Assembler User Exit
An assembler user exit (CEEBXITA) is driven for enclave initialization and enclave termination regardless
of whether the enclave is the first enclave created in the process or a nested enclave. The assembler user
exit differentiates between first and nested enclave initialization.

Message File
If the child enclave opens a message file, the file is closed when that enclave terminates.

OpenExtensions Considerations
The following restrictions must be considered when running with POSIX(OFF) or POSIX(ON):

• In Language Environment, a process can have only one enclave that is running with POSIX(ON), and that
enclave must be the first enclave if that process contains multiple enclaves. All nested enclaves must
be enclaves with POSIX(OFF).

• The spawn() function is only allowed from a POSIX(ON) enclave. This applies to implicit spawn()
resulting from a system() mapped to a spawn(), and to explicit spawn() functions.

• C exec() can be issued only from a single-thread enclave.

Any violations of the above restrictions result in a severity 3 condition being generated.

AMODE Considerations
ALL31 should have the same setting for all enclaves within a process. You cannot invoke a nested enclave
that requires ALL31(OFF) from an enclave running with ALL31(ON).

Using Nested Enclaves

66 z/VM: 7.3 Language Environment User's Guide

Part 2. Language Environment Debugging Guide

© Copyright IBM Corp. 2003, 2022 67

68 z/VM: 7.3 Language Environment User's Guide

Chapter 9. Debugging C/C++ Routines

The information that follows is additional for use with z/VM when using z/OS:
Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf).

This chapter provides specific information to help you debug applications that contain one or more C/C++
routines.

Debugging C/C++ Input/Output Programs
You can use C/C++ conventions such as __amrc and perror() when you debug I/O operations.

__last_op Values
The __last_op field is the most important of the __amrc fields. It defines the last I/O operation C/C++
was performing at the time of the I/O error. You should note that the structure is neither cleared nor
set by non-I/O operations, so querying this field outside of a SIGIOERR handler should only be done
immediately after I/O operations. Table 29 on page 69 lists __last_op values you could receive and
where to look for further information.

Table 29. __last_op Values and Diagnosis Information

Value Further Information

__IO_INIT Will never be seen by SIGIOERR exit value given at initialization.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_READ No return code (either __abend (errno == 92) or __msg (errno == 66)
filled in).

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg (errno == 65)
filled in).

__BSAM_CLOSE_T Sets __error with return code from OS CLOSE TYPE=T.

__BSAM_BLDL Sets __error with return code from OS BLDL macro.

__BSAM_STOW Sets __error with return code from OS STOW macro.

__TGET_READ Sets __error with return code from TSO TGET macro.

__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

__IO_DEVTYPE Sets __error with return code from I/O DEVTYPE macro.

__IO_RDJFCB Sets __error with return code from I/O RDJFCB macro.

__IO_TRKCALC Sets __error with return code from I/O TRKCALC macro.

__IO_OBTAIN Sets __error with return code from I/O CAMLST OBTAIN.

__IO_LOCATE Sets __error with return code from I/O CAMLST LOCATE.

© Copyright IBM Corp. 2003, 2022 69

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf

Table 29. __last_op Values and Diagnosis Information (continued)

Value Further Information

__IO_CATALOG Sets __error with return code from I/O CAMLST CAT. The associated
macro is CATALOG.

__IO_UNCATALOG Sets __error with return code from I/O CAMLST UNCAT. The associated
macro is CATALOG.

__IO_RENAME Sets __error with return code from I/O CAMLST RENAME.

__SVC99_ALLOC Sets __alloc structure with info and error codes from SVC 99 allocation.

__SVC99_ALLOC_NEW Sets __alloc structure with info and error codes from SVC 99 allocation of
NEW file.

__SVC99_UNALLOC Sets __unalloc structure with info and error codes from SVC 99
unallocation.

__C_TRUNCATE Set when C or C++ truncates output data. Usually this is data written to
a text file with no newline such that the record fills up to capacity and
subsequent characters cannot be written. For a record I/O file this refers
to an fwrite() writing more data than the record can hold. Truncation is
always rightmost data. There is no return code.

__C_FCBCHECK Set when C or C++ FCB is corrupted. This is due to a pointer corruption
somewhere. File cannot be used after this.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there is no room left
in a physical record for anymore double byte characters. A new-line is not
acceptable at this point. Truncation will continue to occur until an SI is
written or the file position is moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to start any DBCS
string or else when a redundant SO is written to the file before an SI.
Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a DBCS string
and data was written anyways, with an SI to end it. Cannot happen if
MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double byte character
is completed, thereby forcing C or C++ to fill in the last byte of the DBCS
string with a padding byte X'FE'. Cannot happen if MB_CUR_MAX is 1.

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that allows writing,
but cannot be extended. Typically this is a member of a partitioned data
set being opened for update.

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and __fdbk fields in the
__amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM OPEN succeeds,
and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM OPEN succeeds,
and the file type is ESDS.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM OPEN succeeds,
and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM OPEN succeeds,
and the file type is ESDS.

70 z/VM: 7.3 Language Environment User's Guide

Table 29. __last_op Values and Diagnosis Information (continued)

Value Further Information

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM OPEN succeeds,
and the file type is ESDS.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc and __fdbk
fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc and __fdbk
fields in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets __rc and __fdbk
fields in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc and __fdbk
fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET; if the GET fails, sets __rc
and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT fails, sets __rc
and __fdbk in the __amrc struct.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the POINT fails, sets
__rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the ERASE fails, sets
__rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if the ENDREQ fails,
sets __rc and __fdbk in the __amrc struct.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the CLOSE fails, sets
__rc and __fdbk in the __amrc struct.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set, otherwise if
read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set, otherwise if
write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an I/O abend
occurred.

__QSAM_FREEPOOL This is an intermediate operation. You will only see this if an I/O abend
occurred.

__QSAM_CLOSE Sets __error to result of OS CLOSE macro.

__QSAM_OPEN Sets __error to result of OS OPEN macro.

__CMS_OPEN Sets __error to result of FSOPEN.

__CMS_CLOSE Sets __error to result of FSCLOSE.

__CMS_READ Sets __error to result of FSREAD.

__CMS_WRITE Sets __error to result of FSWRITE.

__CMS_STATE Sets __error to result of FSSTATE.

__CMS_ERASE Sets __error to result of FSERASE.

__CMS_RENAME Sets __error to result of CMS RENAME command.

__CMS_EXTRACT Sets __error to result of DMS EXTRACT call.

Chapter 9. Debugging C/C++ Routines 71

Table 29. __last_op Values and Diagnosis Information (continued)

Value Further Information

__CMS_LINERD Sets __error to result of LINERD macro.

__CMS_LINEWRT Sets __error to result of LINEWRT macro.

__CMS_QUERY __error is not set.

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a
hiperspace for a hiperspace memory file. If CREATE fails, stores
abend code in __amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a hiperspace
for a hiperspace memory file during termination. If DELETE fails,
stores abend code in __amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a hiperspace. If READ fails,
stores abend code in __amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace. If WRITE fails,
stores abend code in __amrc__code__abend__syscode, reason code in
__amrc__code__abend__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write to a hiperspace.
If EXTEND fails, stores abend code in __amrc__code__abend__syscode,
reason code in __amrc__code__abend__rc.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ TD.

__LFS_OPEN Sets __error with reason code from HFS services. Reason code from
HFS services must be broken up. The low order 2 bytes can be
looked up in z/OS UNIX System Services Programming: Assembler
Callable Services Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf).

__LFS_CLOSE Sets __error with reason code from HFS services. Reason code from
HFS services must be broken up. The low order 2 bytes can be
looked up in z/OS UNIX System Services Programming: Assembler
Callable Services Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf).

__LFS_READ Sets __error with reason code from HFS services. Reason code from
HFS services must be broken up. The low order 2 bytes can be
looked up in z/OS UNIX System Services Programming: Assembler
Callable Services Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf).

__LFS_WRITE Sets __error with reason code from HFS services. Reason code from
HFS services must be broken up. The low order 2 bytes can be
looked up in z/OS UNIX System Services Programming: Assembler
Callable Services Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf).

__LFS_LSEEK Sets __error with reason code from HFS services. Reason code from
HFS services must be broken up. The low order 2 bytes can be
looked up in z/OS UNIX System Services Programming: Assembler
Callable Services Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf).

72 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf

Table 29. __last_op Values and Diagnosis Information (continued)

Value Further Information

__LFS_FSTAT Sets __error with reason code from HFS services. Reason code from
HFS services must be broken up. The low order 2 bytes can be
looked up in z/OS UNIX System Services Programming: Assembler
Callable Services Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf).

Using __errno2() to Diagnose Application Problems
Use __errno2() when diagnosing problems in a z/OS UNIX or z/VM OpenExtentions application. This
function enables C/C++ application programs to access diagnostic information returned to the C/C++
run-time library from an underlying kernel callable service. __errno2() returns the reason code of the
last failing kernel callable service called by the C/C++ run-time library. The returned value is intended for
diagnostic display purposes only. The function call is always successful.

Note: Since the __errno2() function returns the reason code of the kernel callable service that last
failed, and not all function calls invoke the kernel, the value returned by __errno2() may be misleading.

Figure 6 on page 73 is an example of a routine using __errno2().

#include <stdio.h>
#include <errno.h>
FILE *myfopen(const char *fn, const char *mode) {
 FILE *f;
 f = fopen(fn,mode);
 if (f==NULL) {
 perror("fopen() failed");
 printf("__errno2 = %08x\n", __errno2());
 }
 return(f);
}

Figure 6. Example of a Routine Using __errno2()

Figure 7 on page 73 is an example of a routine using the environment variable _EDC_ADD_ERRNO2, and
Figure 8 on page 73 shows the sample output from that routine.

#include <stdio.h>
#include <errno.h>

int main(void) {
 FILE *fp;

 /* add errno2 to perror message */
 setenv("_EDC_ADD_ERRNO2","1",1);

 fp = fopen("testfile.dat", "r");
 if (fp == NULL)
 perror("fopen error");

 }

Figure 7. Example of a Routine Using _EDC_ADD_ERRNO2

fopen error: EDC5129I No such file or directory.
(errno2=0x05620062)

Figure 8. Sample Output of a Routine Using _EDC_ADD_ERRNO2

Chapter 9. Debugging C/C++ Routines 73

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa232281/$file/bpxb100_v2r5.pdf

Generating a Language Environment Dump of a C/C++ Routine
You can use either the CEE3DMP callable service or the cdump(), csnap(), and ctrace() C/C++
functions to generate a Language Environment dump of C/C++ routines. These C/C++ functions call
CEE3DMP with specific options.

cdump()
You can generate useful diagnostic information by using the cdump() function. cdump() produces a main
storage dump with the activation stack. This is equivalent to calling CEE3DMP with the option string:
TRACEBACK BLOCKS VARIABLES FILES STORAGE STACKFRAME(ALL) CONDITION ENTRY.

When cdump() is invoked from a user routine, the C/C++ library issues an OS SNAP macro to obtain
a dump of virtual storage. The first invocation of cdump() results in a SNAP identifier of 0. For each
successive invocation, the ID is increased by one to a maximum of 256, after which the ID is reset to 0.

Under z/VM, the definition statement is:

FILEDEF CEESNAP PRINTER (NOCHANGE PER

If the data set is not defined, or is not usable for any reason, cdump() returns a failure code of 1. This
occurs even if the call to CEE3DMP is successful.

If the SNAP is not successful, the CEE3DMP DUMP file displays the following message:

Snap was unsuccessful

If the SNAP is successful, CEE3DMP displays this message:

Snap was successful; snap ID = nnn

Where nnn corresponds to the SNAP identifier described above. An unsuccessful SNAP does not result in
an incrementation of the identifier.

Because cdump() returns a code of 0 only if the SNAP was successful or 1 if it was unsuccessful, you
cannot distinguish whether a failure of cdump() occurred in the call to CEE3DMP or SNAP. A return code
of 0 is issued only if both SNAP and CEE3DMP are successful.

A successful SNAP results in a large quantity of output. In addition to a SNAP dump, an Language
Environment formatted dump is also taken.

csnap()
The csnap() function produces a condensed storage dump. csnap() is equivalent to calling
CEE3DMP with the option string: TRACEBACK FILES BLOCKS VARIABLES NOSTORAGE STACKFRAME(ALL)
CONDITION ENTRY.

To use these functions, you must add #include <ctest.h> to your C/C++ code. The dump is directed
to output dumpname, which is specified in a FILEDEF CEEDUMP command in z/VM.

cdump(), csnap(), and ctrace() all return a 1 code in the SPC environment because they are not
supported in SPC.

For more details about the syntax of these functions, refer to the XL C/C++ for z/VM: Runtime Library
Reference.

74 z/VM: 7.3 Language Environment User's Guide

Chapter 10. Diagnosing Problems with Language
Environment

The information that follows is additional for use with z/VM when using z/OS:
Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf).

This chapter provides information for diagnosing problems in the Language Environment product. It helps
you determine if a correction for a product failure similar to yours has been previously documented. If the
problem has not been previously reported, it tells you how to open a Problem Management Record (PMR)
to report the problem to IBM, and if the problem is with an IBM product, what documentation you need
for an Authorized Program Analysis Report (APAR).

Diagnosis Checklist
Step through each of the items in the diagnosis checklist below to see if they apply to your problem. The
checklist is designed to either solve your problem or help you gather the diagnostic information required
for determining the source of the error. It can also help you confirm that the suspected failure is not a user
error; that is, it was not caused by incorrect usage of the Language Environment product or by an error in
the logic of the routine.

1. If your failing application contains programs that were changed since they last ran successfully,
review the output of the compile or assembly (listings) for any unresolved errors.

2. If there have not been any changes in your applications, check the output (console logs) for any
messages from the failing run.

3. Check the message prefix to identify the component that issued the message. This can help you
determine the cause of the problem. Following are some of the prefixes and their respective origins.
EDC

The prefix for C/C++ messages. The following series of messages are from the C/C++ run-time
component of Language Environment: 5000 (except for 5500, which are from the DSECT utility),
6000, and 7000.

IGZ
The prefix for messages from the COBOL run-time component of Language Environment.

IBM
The prefix for messages from the PL/I run-time component of Language Environment.

CEE
The prefix for messages from the common run-time component of Language Environment.

4. For any messages received, check for recommendations in the "Programmer Response" sections of
the messages in this manual.

5. Verify that abends are caused by product failures and not by program errors. See the appropriate
chapters in this manual for a list of Language Environment-related abend codes.

6. Your installation may have received an IBM Program Temporary Fix (PTF) for the problem. Verify that
you have received all issued PTFs and have installed them, so that your installation is at the most
current maintenance level.

7. The preventive service planning (PSP) bucket, an online database available to IBM customers through
IBM service channels, gives information about product installation problems and other problems.
Check to see whether it contains information related to your problem.

8. Narrow the source of the error.

• If a Language Environment dump is available, locate the traceback in the Language Environment
dump for the source of the problem.

© Copyright IBM Corp. 2003, 2022 75

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf

• If a system dump is taken on z/VM, follow the save area chain to find out the name of
the failing module and whether IBM owns it. For information on finding the routine name,
see z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf).

9. After you identify the failure, consider writing a small test case that re-creates the problem. The test
case could help you determine whether the error is in a user routine or in the Language Environment
product. Do not make the test case larger than 75 lines of code. The test case is not required, but it
could expedite the process of finding the problem.

If the error is not a Language Environment failure, refer to the diagnosis procedures for the product
that failed.

10. Record the conditions and options in effect at the time the problem occurred. Compile your program
with the appropriate options to obtain an assembler listing and data map. If possible, obtain the
LOAD/GENMOD map if running on z/VM. Note any changes from the previous successful compilation
or run. For an explanation of compiler options, refer to the compiler-specific programming guide.

11. If you are experiencing a no-response problem, try to force a dump. Under z/VM in the CP mode,
enter the DUMP command.

12. Record the sequence of events that led to the error condition and any related programs or files. It is
also helpful to record the service level of the compiler associated with the failing program.

76 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf

Part 3. Language Environment Run-Time Messages

© Copyright IBM Corp. 2003, 2022 77

78 z/VM: 7.3 Language Environment User's Guide

Chapter 11. C/C++ Run-Time Messages

The information that follows is additional for use with z/VM when using z/OS:
Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf).

The following run-time messages pertain to C/C++. Each message is followed by an explanation
describing the condition that caused the message, a programmer response suggesting how you might
prevent the message from occurring again, and a system action indicating how the system responds to the
condition that caused the message.

The messages also contain a symbolic feedback code, which represents the first 8 bytes of a 12-byte
condition token. You can think of the symbolic feedback code as the nickname for a condition. As
such, the symbolic feedback code can be used in user-written condition handlers to screen for a given
condition, even if it occurs at different locations in an application.

The messages in this section contain alphabetic suffixes that have the following meaning:
I

Informational message
W

Warning message
E

Error message
S

Severe error message
C

Critical error message

EDC5230I ESM error.

Explanation:
An internal External Security Manager (ESM) error
occurred. This message is equivalent to the OS/390
UNIX System Services errno ECMSESMERR.

System action:
Messages are displayed on the file pool server
operator console indicating the error and z/VM
processing continues.

Programmer response:
Report this problem to your system programmer.

Problem determination:
EDC53E

EDC6000E The raise() function was issued for
the signal SIGFPE.

Explanation:
The program has invoked the raise() function with
the SIGFPE signal specified and the default action
specified.

System action:
The program is terminated and a traceback or dump
is issued, depending on the TERMTHDACT run-time
option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RG

EDC6001E The raise() function was issued for
the signal SIGILL.

Explanation:
The program has invoked the raise() function with
the SIGILL signal specified and the default action
specified.

System action:
The program is terminated and a traceback or dump
is issued, depending on the TERMTHDACT run-time
option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RH

EDC6002E The raise() function was issued for
the signal SIGSEGV.

Explanation:

© Copyright IBM Corp. 2003, 2022 79

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf

The program has invoked the raise() function with
the SIGSEGV signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RI

EDC6003E The raise() function was issued for
the signal SIGABND.

Explanation:
The program has invoked the raise() function with
the SIGABND signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RJ

EDC6004E The raise() function was issued for
the signal SIGTERM.

Explanation:
The program has invoked the raise() function with
the SIGTERM signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RK

EDC6005E The raise() function was issued for
the signal SIGINT.

Explanation:
The program has invoked the raise() function with
the SIGINT signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RL

EDC6006E The raise() function was issued for
the signal SIGABRT.

Explanation:
The program has invoked the raise() function with
the SIGABRT signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 2000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RM

EDC6007E The raise() function was issued for
the signal SIGUSR1.

Explanation:
The program has invoked the raise() function with
the SIGUSR1 signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RN

EDC6008E The raise() function was issued for
the signal SIGUSR2.

Explanation:
The program has invoked the raise() function with
the SIGUSR2 signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RO

EDC6009E The raise() function was issued for
the signal SIGIOERR.

Explanation:

80 z/VM: 7.3 Language Environment User's Guide

The program has invoked the raise() function with
the SIGIOERR signal specified and the default action
specified.

System action:
The program will be terminated and a traceback or
dump is issued, depending on the TERMTHDACT run-
time option. A return code of 3000000 is returned.

Programmer response:
None.

Problem determination:
EDC5RP

Chapter 11. C/C++ Run-Time Messages 81

82 z/VM: 7.3 Language Environment User's Guide

Chapter 12. COBOL Run-Time Messages

The information that follows is additional for use with z/VM when using z/OS:
Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf).

The following messages pertain to COBOL. Each message is followed by an explanation describing the
condition that caused the message, a programmer response suggesting how you might prevent the
message from occurring again, and a system action indicating how the system responds to the condition
that caused the message.

The messages also contain a symbolic feedback code, which represents the first 8 bytes of a 12-byte
condition token. You can think of the symbolic feedback code as the nickname for a condition. As
such, the symbolic feedback code can be used in user-written condition handlers to screen for a given
condition, even if it occurs at different locations in an application.

The messages in this section contain alphabetic suffixes that have the following meaning:
I

Informational message
W

Warning message
E

Error message
S

Severe error message
C

Critical error message

For more COBOL run-time messages, see z/OS: Language Environment Runtime Messages (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf)

IGZ0189S Program pgmname cannot be run in this operating system environment.

Explanation
The program contains features that are not supported in this operating system environment. For example, when
running on CMS, the following features are not supported:

• programs compiled with the DLL compiler option
• programs compiled with the ARITH(EXTEND) compiler option
• programs compiled with Enterprise COBOL for z/OS and OS/390 V3R1 and later

System action:
The application was terminated.

Programmer response:
Modify the program to use supported features for the environment or run the program in the appropriate
environment.

Problem determination:
IGZ05T

© Copyright IBM Corp. 2003, 2022 83

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf

84 z/VM: 7.3 Language Environment User's Guide

Part 4. Customizing Language Environment

© Copyright IBM Corp. 2003, 2022 85

86 z/VM: 7.3 Language Environment User's Guide

Chapter 13. Customizing Language Environment

After Language Environment has been installed, you can customize it using the CUSTLE EXEC. This EXEC
does the following:

1. Prompts you for the area you wish to customize:

• Runtime Options
• User Exit Options
• 'C' Component Locale Time Information
• Saved Segments Components
• COBOL Reusable environment

2. Invokes an XEDIT session for the specific customization component requested
3. Reassembles, if required, the customized component
4. Rebuilds required modules using the specific VMSES/E part handler.

Note: The CUSTLE EXEC requires that the High Level Assembler program (HLASM) be available. It
must be on a disk that you have accessed as A, B, C, D, S or Y.

To run the CUSTLE EXEC, you must be on a user ID that has access to the VMSES/E code (the default
disk is the MAINT 5E5 disk). If you are logged on to the MAINT userid, the 5E5 is normally accessed as
filemode B. Specify a PPF name (such as SERVP2P) and the LE component name (usually LE or LESFS).
The screen shown in Figure 9 on page 87 is displayed:

 Language Environment for z/VM
 Version 7 Release 3 Mod 0

 1) Run Time Options
 2) User Exits
 3) "C" Locale Time Info
 4) Named Saved Segments (NSS)
 5) COBOL Reusable Environment

 Enter number of option you wish to change or

 Enter "END or QUIT" to Exit the customization.

Figure 9. Customization EXEC - Panel 1

The screen offers menu choices for run time options, user exits, and other information.

Updating Run-Time Options
Run-time options are updated by invoking the customization EXEC which puts you into an XEDIT session
of CEEDOPT ASSEMBLE. After you update and file CEEDOPT, the EXEC assembles it (using HLASM) and
if the assembly is successful, will then rebuild the modules in which it is included. Modules which will
be rebuilt are CEEBINIT, CEEBPICI, CEEPIPI, and CEEPLPKA, all of which are in Build List "CEEBLMOD".
See z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf) for more information. Once the modules
have been rebuilt, you will be reminded to rebuild the SCEE/SCEEX segments.

Updating User Exit Options
The assembler user exit is updated by invoking the customization EXEC which puts you into an XEDIT
session of CEEBXITB ASSEMBLE. After you update and file CEEBXITB, the EXEC assembles it (using
HLASM) and if the assembly is successful, will then rebuild the component in which it is included.
Modules which will be rebuilt are CEEBINIT, CEEBPICI and CEEPIPI all of which are in Build List

© Copyright IBM Corp. 2003, 2022 87

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf

"CEEBLMOD". Once the modules have been rebuilt, you will be reminded to rebuild the SCEE/SCEEX
segments.

C Component Locale Time Information
Note: Due to the size and having to rebuild the SCEERUN LOADLIB for this option, your "A" disk, which
z/VM uses as an interim work disk during the rebuild, must have at least 20 cylinders on a 3390, or
equivalent, of unused (free) space.

C locale time information is used for options such as Time Zone name and Daylight Savings Time starting
dates.

Locale time is updated by editing a file named 'EDCLOCI'. The EXEC will put you into an XEDIT session of
EDCLOCI ASSEMBLE and after updates are completed it is filed and then assembled using HLASM. Once
successfully assembled, the EXEC will rebuild the required components and the C locale time is updated.
Once the modules have been rebuilt, you will be reminded to rebuild the SCEE/SCEEX segments.

Updating Saved Segments
After successfully installing Language Environment, you can load certain routines into Saved Segments on
z/VM. Placing routines into Saved Segments reduces overall system storage requirements by making the
routines sharable. Also, initiation/termination (init/term) time is reduced for each application, since load
time decreases.

LE includes two build lists, CEEBLSGA and CEEBLSGB, plus the necessary LSEG files required to install
specific routines of LE into segments. By selecting option 4 in the customization exec, these individual
build lists can be tailored to load only specific routines of the LE component (for example, commonly used
COBOL, PL/I, or C routines) into segments. Each build list contains comments that identify these routines
and help tailor the segment install.

Customizing can be accomplished by either commenting or uncommenting the appropriate LOADFUNC
component statement(s) or by adding new LOADFUNC statements into the build list. An asterisk (*)
inserted in the first column of any LOADFUNC statement will eliminate that component from being
included while deleting one from the first column will include the component. In the following example,
the PL/I routines (IBMRLIB1, IBMRCOMP, and IBMRPTLA) which are normally installed below the line,
and thus included in the CEEBLSGB build list, will be eliminated from the saved segment environment.

88 z/VM: 7.3 Language Environment User's Guide

Sample PL/I routines (IBMRLIB1, IBMRCOMP, and IBMRPTLA)

* LANGUAGE ENVIRONMENT for z/VM *
* Version 7 Release 3 Modification 0 *
* *
* Licensed Materials -- Property of IBM *
* 5741-A09 (C) Copyright IBM Corporation 1997, 2022 *
* All Rights Reserved *

* Build List for 'SCEE PSEG' Saved Segment (Below line) *
* "LE/370" Environment *

*
:FORMAT. 2
*
:OBJNAME. SCEE.SEGMENT
:BLDREQ. CEEBLMOD.CEEBINIT.MODULE
 CEEBLMOD.CEEBLIIA.MODULE
 CEEBLMOD.CEEPIPI.MODULE
 CEEBLMOD.CEEBPICI.MODULE
 EDCBLSP2
* IBMBLMOD.IBMRCOMP.MODULE
* IBMBLMOD.IBMRLIB1.MODULE
* IBMBLMOD.IBMRPTLA.MODULE
:GLOBAL. TXTLIB SCEESPC
:OPTIONS. LOADFUNC (LSEG CEEBINIT)
 LOADFUNC (LSEG CEEBLIIA)
 LOADFUNC (LSEG CEEPIPI)
 LOADFUNC (LSEG CEEBPICI)
* LOADFUNC (LSEG IBMRLIB1)
* LOADFUNC (LSEG IBMRCOMP)
* LOADFUNC (LSEG IBMRPTLA)
:EOBJNAME.
*

To reinstate routines in the saved segments, remove the asterisk and regenerate the segments. To include
other routines in saved segments, add the appropriate LOADFUNC statement into the respective build list.

Updating the COBOL Component Reusable Environment
COBOL's reusable environment behavior is updated by invoking the customization EXEC which puts you
into an XEDIT session of IGZERREO ASSEMBLE. After you update and file IGZERREO, the EXEC assembles
it (using HASM) and if the assembly is successful, will then prompt you to see if you want to rebuild
the component in which it is included. The module that will be rebuilt is CEEEV005 which is in build list
IGZBLMOD.

The COBOL reusable environment behavior can be modified to control how program checks are handled
when they occur in a non-Language Environment-conforming driver. The COBOL reusable environment is
established with the RTEREUS run-time option or a call to either ILBOSTP0 or IGZERRE INIT.

With the IBM-supplied default setting for COBOL's reusable environment behavior (IGZERREO with
REUSENV=COMPAT), when a program check occurs while the reusable environment is dormant (that
is, between a GOBACK from a top level COBOL program to the non-Language Environment conforming
assembler driver and the next call to a COBOL program), a S0Cx abend will occur. This behavior
is compatible with the VS COBOL II and OS/VS COBOL run-times, but it significantly impacts the
performance when a COBOL/370 or COBOL for MVS & VM program is invoked repeatedly in a COBOL
reusable environment. The performance degradation is caused by Language Environment issuing an
ESPIE RESET when the reusable environment becomes dormant and then an ESPIE SET upon reentering
the reusable environment.

COBOL's reusable environment behavior can be modified (IGZERREO with REUSENV=OPT) so that all
program checks will be intercepted by Language Environment, even those that occur while the reusable
environment is dormant. In this case, a program check that occurs while the reusable environment is
dormant will result in a 4036 abend from Language Environment. However, since Language Environment
does not have to issue the ESPIE RESET and ESPIE SET between invocations of the COBOL program, this
can be faster than using REUSENV=COMPAT.

Chapter 13. Customizing Language Environment 89

Modifying the behavior of the COBOL Reusable Environment
Modify the IGZRREOP macro invocation, depending on the function that you want. To run with VS COBOL
II and OS/VS COBOL run-time compatibility mode (that is, the user has control of program checks that
occur when the COBOL reusable environment is dormant, resulting in an additional performance cost),
use:

IGZRREOP REUSENV=COMPAT

To run with optimum performance (Language Environment intercepts all program checks that occur when
the COBOL reusable environment is dormant and converts them to a 4036 abend, resulting in improved
performance), use:

IGZRREOP REUSENV=OPT

90 z/VM: 7.3 Language Environment User's Guide

Appendix A. Prelinking an Application

This appendix describes how to prelink your programs under Language Environment. Unless otherwise
indicated, the prelinking process applies to C and COBOL in z/VM.

The Language Environment prelinker performs mapping of names, manages writable static areas, collects
initialization information, and combines the object modules that form an application into a single object
module that can be link-edited or loaded for execution.

Note: The prelink step in creating an executable program can be eliminated. The binder is available to be
able to directly receive the output of the C, COBOL, and PL/I compilers, thus eliminating the requirement
for the prelink step. The advantage of using the binder is that the resulting executable program is fully
rebindable. For information on how to use the binder, see z/VM: Program Management Binder for CMS.

For information on how to build and use DLLs, see z/OS: Language
Environment Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sa380682/$file/ceea200_v2r5.pdf).

Which Programs Need to Be Prelinked
The prelink step is required when an executable program is built on z/VM, or if it utilizes the system
programming facilities of C. The prelink step may be eliminated since the binder can handle the output
of the C and COBOL compilers. If the link-edit process is performed by the linkage editor then the prelink
step is required.

You should not use the pre-linker with XPLINK programs because XPLINK programs require the GOFF
binder format and GOFF is not supported by the pre-linker. Also, the C compiler creates GOFF object code
when the XPLINK compiler option is specified.

The following list identifies programs which may need to be prelinked before the link-edit step of creating
an executable program.

• Modules which must be processed with the linkage editor rather than the binder
• Programs which utilize the system programming facilities of C.
• Non-XPLINK C programs compiled with any of the following compiler options:

– RENT
– LONGNAME
– DLL

• COBOL programs compiled with any of the following compiler options:

– PGMNAME(LONGMIXED)
– PGMNAME(LONGUPPER)

• C programs compiled to run under OpenExtensions for z/VM

Only C object modules that do not refer to writable static, do not contain the LONGNAME option, and
do not contain DLL code can be processed by the linkage editor. You do not need to prelink naturally
reentrant programs. For more information, see z/OS: Language Environment Programming Guide (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf).

If you need to link-edit together object modules and load modules, prelink the object modules through
the prelinker in a single step, and then link-edit with the load modules in a separate link-edit step. This is
because the prelinking process can only process object modules.

What the Prelinker Does
The prelinker performs the following functions:

Prelinking Applications

© Copyright IBM Corp. 2003, 2022 91

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

• Collects information for run-time initialization, including data initialization for C and DLL initialization
information.

• For C object modules compiled with RENT, the prelinker:

– Combines writable static initialization information
– Assigns relative offsets to objects in writable static storage
– Removes writable static name and relocation information

• For programs containing longnames, such as C programs compiled with LONGNAME and COBOL
programs compiled with PGMNAME(LONGMIXED) or PGMNAME(LONGUPPER), the prelinker maps
LONGNAME option to SHORTNAME option on output.

• For programs that use DLLs, the prelinker:

– Generates a function descriptor in writable static for each DLL referenced function
– Generates a variable descriptor for each DLL referenced variable
– Generates an IMPORT control statement for each exported function and variable
– Generates internal information for the load module that describes symbols that are exported to and

imported from other load modules
– Combines static DLL initialization information
– Uses longnames to resolve exported and imported symbols

Prelinking Process
Input to the prelinker includes the following:

• Primary input: those object modules specified on the command line
• Secondary input: input from automatic library calls
• Input specified in one or more INCLUDE control statements processed in primary and secondary input

The process of resolving or including input from these sources depends on the type of the source, and the
current input and prelink options.

Primary Input
When an object module name SNAME is specified on the command line, the following process occurs:

• If it exists, it is immediately resolved by reading SNAME TEXT.
• If the LIBE option is in effect, then SNAME is immediately resolved by reading the member of the first

TXTLIB found in the GLOBAL list that has the same member name, or alias name.
• If SNAME is still unresolved, it could be subsequently resolved if a defined function or variable called
SNAME is encountered in input.

INCLUDE Control Statements
For the INCLUDE ddname() and INCLUDE ddname(member) forms, an attempt is made to read the
ddname or member of the ddname (whichever is specified). This request is resolved if the read is
successful.

For the INCLUDE SNAME form, the input is resolved using the same algorithm as for primary input.

See “INCLUDE Control Statement” on page 96 for a description of the INCLUDE control statement.

Prelinking Applications

92 z/VM: 7.3 Language Environment User's Guide

References to Currently Undefined Symbols (External References)
If, during the automatic library call, the symbol was not found to be the name of an existing TXTLIB library
routine or TEXT file, then the symbol can subsequently be defined if a function or variable with the same
name is encountered.

If the symbol is an L-name that was not resolved by automatic library call and for which a RENAME
statement with the SEARCH option exists, the symbol is resolved under the S-name on the RENAME
statement by automatic library call. See “RENAME Control Statement” on page 97 for a complete
description of the RENAME control statement.

C only: If the symbol is an L-name that was not resolved by previous automatic library call and also
corresponds to a C library function or object, the symbol is resolved under the S-name of the symbol. For
example, if you do not supply a version of printf(), an attempt would be made to find and use PRINTF in its
place as the C library only ships PRINTF.

Unresolved requests generate error or warning messages to the terminal or to the prelinker map.

Writable static references which are not resolved by the prelinker cannot be resolved later. Only the
prelinker can be used to resolve writable static. The output object module of the prelinker cannot be used
as input to another prelink.

Unresolved references or undefined writable static objects often result if the prelinker is given input
object modules produced with a mixture of RENT/NORENT or LONGNAME/NOLONGNAME options.

Processing the Prelinker Automatic Library Call
The following hierarchy is used to resolve a referenced and currently undefined symbol. In all cases, the
symbol is only defined if it is contained in the input from this process or in other future input.

• The undefined name is an S-name, for example SNAME.

– If the AUTO command option is in effect and the reference is not to static external data, SNAME TEXT
is read.

– If the LIBE command option is in effect, the GLOBAL TXTLIBs are searched in order as follows:

1. If the TXTLIB contains a C370LIB-directory created using the Object Library Utility, and the
C370LIB-directory indicates that a defined symbol by that name exists, the member of the TXTLIB
containing that symbol is read.

2. If the TXTLIB does not contain a C370LIB-directory created using the Object Library Utility and
the reference is not to static external data, the member or alias, with the same name as SNAME is
read.

• The undefined name is an L-name.

– If the LIBE command option is in effect, the GLOBAL TXTLIBs are searched. If the TXTLIB contains a
C370LIB-directory created using the Object Library Utility, and the C370LIB-directory indicates that
a defined symbol by that name exists, the member of the TXTLIB indicated as containing that symbol
is read.

Language Environment Prelinker Map
The Language Environment prelinker produces a listing file called the prelinker map when you use the
MAP prelinker option (which is the default). As the following example shows, the prelinker map contains
several individual sections that are only generated if they are applicable.

==
| Prelinker Map 1 |
| |
| PLINK:5741A09 V7 R3 M00 IBM z/VM 2022/09/20 13:45:16 |
==

Command Options. : NONCAL NOMEMORY ER DUP MAP
 : NOOMVS NOUPCASE

Prelinking Applications

Appendix A. Prelinking an Application 93

==
| Object Resolution Warnings 2 |
==

WARNING EDC4015: Unresolved references are detected:
CEESTART @@TRGLOR CEESG003

==
| File Map 3 |
==

*ORIGIN FILE ID FILE NAME

 P 00001 DD:SYSIN
 IN 00002 *** DESCRIPTORS ***

*ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE
 A=automatic call R=RENAME card L=C Library
 IN=internal

==
| Writable Static Map 4 |
==

 OFFSET LENGTH FILE ID INPUT NAME

 0 4 00001 this_int_is_in_writable_static
 8 10 00002 <year>

==
| Load Module Map 5 |
==

MODULE ID MODULE NAME

 00001 EXPONLY

==
| Import Symbol Map 6 |
==

*TYPE FILE ID MODULE ID NAME

 D 00001 00001 year

*TYPE: D=imported data C=imported code

==
| Export Symbol Map 7 |
==

*TYPE FILE ID NAME

 C 00001 get_year
 C 00001 next_year
 D 00001 this_int_is_in_writable_static
 C 00001 Name_Collision_In_First_Eight
 C 00001 Name_Collision_In_First8

*TYPE: D=exported data C=exported code

==
| ESD Map of Defined and Long Names 8 |
==

 OUTPUT
*REASON FILE ID ESD NAME INPUT NAME

 P CEESTART CEESTART
 D 00001 @ST00002 Name_Collision_In_First_Eight
 D 00001 @ST00001 Name_Collision_In_First8
 D 00001 NEXT@YEA next_year
 D 00001 GET@YEAR get_year
 D 00001 THIS@INT this_int_not_in_writable_static
 P @@TRGLOR @@TRGLOR

Prelinking Applications

94 z/VM: 7.3 Language Environment User's Guide

 P CEESG003 CEESG003

*REASON: P=#pragma or reserved S=matches short name R=RENAME card
 L=C Library U=UPCASE option D=Default

============ E N D O F P R E - L I N K A G E M A P =============

The numbers in the following text correspond to the numbers shown in the map.
 1 Heading

The heading is always generated and contains the product number, the library release number, the
library version number, the date and the time the prelink step began, followed by a list of the prelinker
options in effect for the step.

 2 Object Resolution Warnings
This section is generated if objects remained undefined at the end of the prelink step or if duplicate
objects were detected during the step. The names of the applicable objects are listed.

 3 File Map
This section lists the object modules that were included in input. An object module consisting only of
RENAME control statements, for example, is not shown. Also provided in this section are source origin
(*ORIGIN), name (FILE NAME), and identifier (FILE ID) information. *ORIGIN indicates that the
object module came from primary input because of:

• An INCLUDE control statement in primary or secondary input.
• A RENAME control statement.
• The resolution of L-name library references.
• The object module was internal and self-generated by the prelink step.

The FILE ID can be found in other sections and is used as a cross-reference to the object module.

The FILE NAME can be either the data set name and, if applicable, the member name, or the ddname
and, if applicable, the member name.

If you are prelinking an application that imports variables or functions from a DLL, the variable
descriptors and function descriptors are defined in a file called *** DESCRIPTORS ***. This file has
an origin of internal.

 4 Writable Static Map
This section is generated if an object module was encountered that contains defined static external
data. This area also contains variable descriptors for any imported variables and, if required, function
descriptors. This section lists the names of such objects, their lengths, their relative offset within the
writable static area, and a FILE ID for the file containing the object's definition.

Imported variables and DLL-referenced functions have angular brackets (<>) around their names in
this section.

 5 Load Module Map
This section is generated if the application imports symbols from other load modules. This section
lists the names of the load modules.

 6 Import Symbol Map
This section lists the symbols that are imported from other load modules. These otherwise unresolved
DLL references are resolved through IMPORT control statements. It describes the type of symbol,
that is, D (variable) or C (function). It also lists the file ID of the object module containing the
corresponding IMPORT control statements, the module ID of the load module on that control
statement, and the symbol name.

A DLL application would generate this section.

 7 Export Symbol Map
This section lists the symbols generated by an object module that exports symbols. It describes the
type of symbol, that is, D (variable) or C (function). It also lists the file ID of the object where the
symbol is defined and the symbol name. Only externally defined data objects in writable static or
externally defined functions can be exported.

Prelinking Applications

Appendix A. Prelinking an Application 95

Code that is compiled with the C, or COBOL EXPORTALL compiler option or C/C++ code containing the
#pragma export directive generates an object module that exports symbols.

 8 ESD Map of Defined and Longnames
This section lists the names of external symbols that are not in writable static. It also shows a
mapping of input L-names to output S-names.

If the object is defined, the FILE ID indicates the file that contains the definition. Otherwise, this
field is left blank. For any name, the input name and output S-name are listed. If the input name is an
L-name, the rule used to map the L-name to the S-name is applied. If the name is not an L-name, this
field is left blank.

Control Statement Processing
The only control statements processed by the prelinker are IMPORT, INCLUDE, LIBRARY, and RENAME.
The remaining control statements are left unchanged until the link-edit step.

The control statements can be placed in the input stream or stored in a CMS file.

Note: If you cannot fit all of the information on one control statement, you can use one or more
continuations. The L-name, for example, can be split across more than one statement. Continuations
are enabled by placing a nonblank character in column 72 of the statement that is to be continued. They
must begin in column 16 of the next statement.

IMPORT Control Statement
The prelinker processes IMPORT statements, but does not pass them on to the link step. The IMPORT
control statement, which is supported only under z/OS, has the following syntax:

IMPORT CODE dll-name function

DATA dll-name variable

dll-name
The name or alias of the load module for the DLL. The maximum length of an alias is 8 characters. The
dll-name can also be an HFS name; it must be enclosed in apostrophes if special characters, such as
apostrophes or blanks, appear in the dll-name.

variable
An exported variable name; it is a mixed-case longname. Use a nonblank character in column 72 of
the card to indicate a continuation and begin the next line in column 16.

function
An exported function name; it is a mixed-case longname. Use a nonblank character in column 72 of
the card to indicate a continuation and begin the next line in column 16.

INCLUDE Control Statement
The INCLUDE control statement has the following syntax:

INCLUDE filename
,

ddname (member)

filename
The name of the file to be included.

ddname
A ddname associated with a file to be included.

member
The member of the DD to be included.

Prelinking Applications

96 z/VM: 7.3 Language Environment User's Guide

The prelinker processes INCLUDE statements like the DFSMS linkage editor does with the following
exceptions:

• INCLUDEs of identical member names are not allowed.
• INCLUDEs of both a ddname and a member from the same ddname are not allowed. The prelinker

ignores the second INCLUDE.

LIBRARY Control Statement
The LIBRARY control statement has the following syntax:

LIBRARY name (

member

) (external)

name
The ddname defining a loadlib. The ddname can point to an archive file in the BFS if the OE option is
specified, or a CMS loadlib.

member
The name or alias of a member of the specified library. Because both S-names and L-names can be
specified, case distinction is significant.

external
An external reference that could be unresolved after primary input processing. This external reference
will not be resolved by an automatic library call. Because both S-names and L-names can be
specified, case distinction is significant.

The LIBRARY control statement is removed and not placed in the prelinker output object module; the
system linkage editor does not see the LIBRARY control statement.

RENAME Control Statement
The RENAME control statement has the following syntax:

RENAME L-name S-name

SEARCH

L-name
The name of the input L-name to be renamed on output. All occurrences of this L-name are renamed.

S-name
The name of the output S-name to which the L-name will be changed. This name can be at most 8
characters and case is respected.

SEARCH
An optional parameter specifying that if the S-name is undefined, the prelinker searches by an
automatic library call for the definition of the S-name.

The RENAME control statement is processed by the prelinker and can be used for several purposes:

• To explicitly override the default name given to an L-name when an L-name is mapped to an S-name.

You can explicitly control the names presented to the system linkage editor so that external variable
and function names are consistent from one linkage editor run to the next. This consistency makes it
easier to recognize control section and label names that appear in system dumps and linkage editor
listings. Another mapping rule (described in “Mapping L-Names to S-Names” on page 98) can provide
the suitable name, but if you need to replace the linkage editor control section, you need to maintain
consistent names.

Prelinking Applications

Appendix A. Prelinking an Application 97

• To explicitly bind an L-name to an S-name. This binding might be necessary when communicating
with objects from other language and assembler processors, because these processors generate only
S-names.

• A RENAME control statement cannot be used to rename a writable static object because its name is not
contained in the output from the prelinker.

RENAME control statements can be placed before, between, or after other control statements or object
modules. An object module can contain only RENAME statements. Also, RENAME statements can be
placed in input that is included because of other RENAME statements.

Usage Notes
• A RENAME statement is ignored if the L-name is not encountered in the input.
• A RENAME statement for an L-name is valid provided all of the following are true:

– The L-name was not already mapped because of a rule that preceded the RENAME statement rule in
the hierarchy described in “Mapping L-Names to S-Names” on page 98.

– The L-name was not already mapped because of a previous valid RENAME statement for the L-name.
– The S-name is not itself an L-name. This rule holds true even if the S-name has its own RENAME

statement.
– A previous valid RENAME statement did not rename another L-name to the same S-name.
– Either the L-name or the S-name is not defined. Either the L-name or the S-name can be defined, but

not both. This rule holds true even if the S-name has its own RENAME statement.

Mapping L-Names to S-Names
The output object module of the prelinker can be used as input to a system linkage editor.

Because system linkage editors accept only S-names, the Language Environment prelinker maps L-names
to S-names on output. S-names are not changed. L-names can be up to 160 (COBOL for OS/390 & VM and
COBOL for MVS & VM), 255 (z/OS XL C/C++), or 1024 (z/OS XL C++) characters in length; truncation of the
L-names to the 8-character S-name limit is therefore not sufficient because collisions can occur.

The Language Environment prelinker maps a given L-name to a S-name according to the following
hierarchy:

1. C/C++ only: If any occurrence of the L-name is a reserved run-time name, or was caused by a
#pragma map or #pragma CSECT directive, then that same name is chosen for all occurrences of the
name. This name must not be changed, even if a RENAME control statement for the name exists. For
information on the RENAME control statement, see “RENAME Control Statement” on page 97.

2. If the L-name was found to have a corresponding S-name, the same name is chosen. For example,
DOTOTALS is coded in both a C and assembler program. This name must not be changed, even if a
RENAME statement for the name exists. This rule binds the L-name to its S-name.

3. If a valid RENAME statement for the L-name is present, the S-name specified on the RENAME
statement is chosen.

4. If the name corresponds to a Language Environment function or library object for which you did not
supply a replacement, the name chosen is the truncated, uppercased version of the L-name library
name (with _ mapped to @).

The S-name is not chosen, if either:

• A valid RENAME statement renames another L-name to this S-name. For example, the RENAME
statement RENAME mybigname PRINTF would make the library printf() function unavailable if
mybigname is found in input.

• Another L-name is found to have the same name as the S-name. For example, explicitly coding
and referencing SPRINTF in the C source program would make the library sprintf() function
unavailable.

Prelinking Applications

98 z/VM: 7.3 Language Environment User's Guide

Avoid such practices to ensure that the appropriate Language Environment function is chosen.
5. If the UPCASE option is specified, names that are 8 characters or fewer are changed to uppercase

(with _ mapped to @). Names that begin with IBM or CEE will be changed to IB$, and CE$,
respectively. Because of this rule, two different names can map to the same name. You should
therefore use the UPCASE option carefully. A warning message is issued if a collision is found, but the
names are still mapped.

6. If none of the above rules apply, a default mapping is performed. This mapping is the same as the one
the compiler option NOLONGNAME uses for external names, taking collisions into account. That is, the
name is truncated to 8 characters and changed to uppercase (with _ mapped to @). Names that begin
with IBM or CEE will be changed to IB$ and CE$, respectively. If this name is the same as the original
name, it is always chosen. This name is also chosen if a name collision does not occur. A name collision
occurs if either

• The S-name has already been seen in any input, that is, the name is not new.
• After applying this default mapping, the same name is generated for at least two, previously

unmapped, names.

If a collision occurs, a unique name is generated for the output name. For example, the name
@ST00033 is manufactured.

C++: A program that is compiled with the NOLONGNAME compiler option and link-edited, except for
collisions, library renames, and user renames, presents the linkage editor with the same names as when
the program is compiled with the LONGNAME option and processed by the prelinker.

Starting the Prelinker
Use the CPLINK EXEC to start the prelinker. The syntax for the CPLINK EXEC is:

CPLINK textdeck

(option)

textdeck
The file name of an input file to the prelinker. You can specify more than one file as input to the
CPLINK EXEC. Each input file must be a COBOL object module or a C object module with the file
type TEXT (that is, a program compiled with the RENT option or a compiled program with no writable
static). If you previously used the z/VM GLOBAL TXTLIB command, you can specify the name of
a TXTLIB member as the file name. The first text deck must contain the function's main, or the
fetchable routine.

options
An option or list of options to be passed to the prelinker. The prelinker is started with CMOD EXEC if
you specify options for the prelinker by using the option CPLINK(options) or if you have specified the
LONGNAME or RENT compiler option. See “Prelinker Options” on page 100 for a list of prelink options.

Output from the prelinker is placed in the file CPOBJ TEXT A. The prelinker map is placed in the file
CPOBJ RMAP A.

Examples
The following example prelinks the text decks ROUTER, SENDMSG and REPLYMSG and places the
output text deck in CPOBJ TEXT A. A writable static map is generated and placed in CPOBJ RMAP
A. Unresolved references are not processed.

CPLINK ROUTER SENDMSG REPLYMSG (NOLIBE

Prelinking Applications

Appendix A. Prelinking an Application 99

The following example prelinks the text decks SORT, MERGE and READFILE and displays only warning
and error messages at the terminal. A prelink listing is not generated. All external references are resolved
from ACCNT TXTLIB and a disk search.

GLOBAL TXTLIB ACCNT
CPLINK SORT MERGE READFILE (NOMAP NOER NODUP LIBE AUTO

To use CMOD to invoke the prelinker with the prelink options AUTO and the CMOD option AUTO specify:

CMOD PGM (CPLINK(AUTO) AUTO

The following example shows you how to quickly link and prelink using CMOD while keeping the CPOBJ
TEXT text deck generated by the prelinker, without generating either a LOAD or a CPLINK MAP.

CMOD MYMAIN MYPROCS (CPLINK(KEEP) NOMAP

Prelinker Options
The following table describes the Language Environment prelinker options.

Table 30. Prelinker Options

Option Description

AUTO | NOAUTO AUTO specifies that the prelinker should try to resolve unresolved short name
references by searching all virtual disks for TEXT files of the same name. Use
NOAUTO when using the CPOBJ file as input to the LINKLOAD EXEC.

DLLNAME(dll-name) If you do not specify DLLNAME, the DLL name is set to the name that appeared on
the last NAME control statement that was processed. If there are no NAME control
statements, and the output object module of the prelinker is a PDS member, the
DLL name is set to the name of that member. Otherwise the DLL name is set to the
value TEMPNAME, and the prelinker issues a warning.

DUP | NODUP DUP specifies that if duplicate symbols are detected, the symbol names should
be directed to stdout, and the return code minimally set to a warning level of 4.
NODUP does not affect the return code setting when duplicates are detected.

ER | NOER ER specifies that if there are unresolved references, a message and list of
unresolved symbols are written to the console. For unresolved references, the
return code is minimally set to warning level 4. For unresolved writable static
references, the return code is minimally set to error level 8.

NOER specifies that a list of unresolved symbols is not written to the console.
For unresolved references, the return code is unaffected. For unresolved writable
static references, the return code is minimally set to warning level 4.

LIBE | NOLIBE LIBE specifies that the prelinker should search TEXT libraries (specified previously
with the z/VM GLOBAL command) to resolve unresolved references.

MAP | NOMAP The MAP option specifies that the prelinker should generate a prelink listing. See
“Language Environment Prelinker Map” on page 93 for a description of the map.

MEMORY | NOMEMORY The MEMORY option specifies that the prelinker will buffer (retain in storage), for
the duration of the prelink step, those object modules that are read and processed.

The MEMORY option is used to increase prelinker speed. To use this option,
however, additional memory may be required. If you use this option and the prelink
fails due to a storage error, you must increase your storage size or use the prelinker
without the MEMORY option.

Prelinking Applications

100 z/VM: 7.3 Language Environment User's Guide

Table 30. Prelinker Options (continued)

Option Description

NCAL | NONCAL The NCAL option specifies that the prelinker should not use automatic library call
to resolve unresolved references.

NONCAL specifies that an automatic library call is performed, which applies to
a library of user routines. The data set must be partitioned and must contain
object modules. An automatic library call cannot apply to a library containing load
modules.

OE | NOOE The OE option causes the prelinker to change its processing of INCLUDE and
LIBRARY control statements. OE causes the prelinker to accept HFS or BFS files
and data set names on INCLUDE and LIBRARY statements.

UPCASE | NOUPCASE The UPCASE option enforces the uppercase mapping of those L-names that are 8
characters or fewer and have not been explicitly mapped by another mechanism.
These L-names will be uppercased (with _ mapped to @), and names that begin
with IBM or CEE will be changed to IB$ and CE$, respectively.

The UPCASE option is useful when calling routines written in languages other than
C. For example, PL/I and assembler each uppercases all of its external names. So,
if the names are coded in lowercase in the C program and the LONGNAME option
is used, the names will not match by default. The UPCASE option can be used to
enforce this matching. The RENAME control statement can also be used for this
purpose.

Prelinking Applications

Appendix A. Prelinking an Application 101

Prelinking Applications

102 z/VM: 7.3 Language Environment User's Guide

Appendix B. Parameter List Formats

This appendix describes the various formats of parameters passed to and from operating systems and
subsystems. In most cases you do not need to know these formats in order to pass or receive parameters
in your application. For cases in which you want to directly access the parameter list that is passed, the
format and contents of the parameter list are shown below.

There are additional considerations depending on whether the main routine is in the C, C++, COBOL, or
PL/I language. For information about parameter passing in these languages, see:

• “C and C++ Parameter Passing Considerations” on page 103
• “COBOL Parameter Passing Considerations” on page 106
• “PL/I Main Procedure Parameter Passing Considerations” on page 107

C and C++ Parameter Passing Considerations
C and C++ generally support a single character string as a parameter to a main routine. They parse the
string into tokens that are accessed by the argc and argv parameters of the main function.

In addition, there are alternate styles of passing a set of parameters to the main routine, for example: as
a single value, a pointer to a value, or a pointer to a list of values. In these cases, the set of parameters
is not parsed. It is assumed that the invoker of the application (for example, the operating system) has
stored the address of the set of parameters in register 1 prior to entry into the main routine. Depending on
how the parameters are passed, register 1 points on entry to the entities illustrated in Figure 10 on page
103:

Figure 10. Some Alternate C/C++ Parameter Passing Styles

The first arrangement in Figure 10 on page 103 can be used only for parameters that are integers.

Operating System and Subsystem Parameter Lists

© Copyright IBM Corp. 2003, 2022 103

A C main routine elects to use one of the styles shown in Figure 10 on page 103 by specifying the
PLIST(OS) run-time option in #pragma runopts (see “C PLIST and EXECOPS Interactions” on page
105); a C++ routine elects to use one of the styles with the PLIST(OS) compiler option. The main routine
must know which parameter style to expect. When PLIST(OS) is specified, C or C++ makes the parameter
list available through a pair of macros; code them in your main routine to determine which parameter list
style your routine receives:
__R1 of type void *

__R1 contains the value that is in register 1 on entry into the main routine. It provides access to the
parameters when they are passed according to the first two styles shown in Figure 10 on page 103.

__osplist of type void **
__osplist acts as an array of pointers to parameters. It is derived from __R1 and provides access
to the parameters when they are passed according to the third style shown in Figure 10 on page 103.
You must include the header file stdlib.h when using __osplist.

The third style is also currently supported for certain macros and functions (for example, __pcblist
and __csplist for invokers IMS and Cross System Product). __osplist is a generalization of the more
specialized __pcblist and __csplist macros; it can be used in their place or in cases where they do
not apply.

Figure 11 on page 104 illustrates how these macros can be used to access items in the three alternate
parameter arrangements.

Figure 11. Accessing Parameters Using Macros __R1 and __osplist

Suitable casting and dereferencing are required when using these macros, as shown in Figure 12 on page
105, according to the parameter passing style in use.

Operating System and Subsystem Parameter Lists

104 z/VM: 7.3 Language Environment User's Guide

Figure 12. Examples of Casting and Dereferencing

C PLIST and EXECOPS Interactions
You can use C #pragma runopts to specify to the C compiler a list of options to be used at run time. Two
of the options of #pragma runopts affect the format of the argument list passed to the application on
initialization: EXECOPS and PLIST.

EXECOPS allows you to specify run-time options on the command line at application invocation.
NOEXECOPS indicates that run-time options cannot be so specified. When the EXECOPS run-time
option is specified under MVS, Language Environment alters the MVS parameter list format: Language
Environment removes any run-time options that are present.

PLIST indicates in what form the invoked routine should expect the argument list. You can specify PLIST
with the following values under Language Environment:
HOST

The argument list is assumed to be a character string. The string is located differently under various
systems as follows:

• If invoked by OSRUN, Language Environment uses the string presented in an MVS-like format
located by the pointer held in register 1.

• If not invoked by OSRUN, Language Environment uses the CMS extended parameter list.

OS
The inbound parameter list is assumed to be in an MVS linkage format in which register 1 points to a
parameter address list. No run-time options are available. Register 1 is not interrogated by Language
Environment.

The PLIST(HOST) setting permits portability of source code between MVS and z/VM. PLIST(HOST) allows
the object to execute under z/VM (using either the MVS-format argument list for OSRUN or the extended
argument list), under MVS (assuming a halfword-prefixed string), or under TSO (using the CPPL or the
MVS-format parameter list). Specify PLIST(HOST) to default to the argument list format for the operating
system under which your application is running.

Although Language Environment supports the MVS, CMS, IMS, and TSO suboptions of PLIST for
compatibility, use of PLIST(HOST) is recommended. There are some exceptions to this guideline:
Preinitialization

In the previous C interface to preinitialization, it was necessary to specify PLIST(MVS) in order to flag
preinitialized routines. PLIST(MVS) is therefore still supported for compatibility.

Operating System and Subsystem Parameter Lists

Appendix B. Parameter List Formats 105

The EXECOPS, NOEXECOPS, and PLIST options can alter the format of the argument list passed to your
application, depending on the combination of options specified. The setting of EXECOPS determines
whether Language Environment looks for run-time parameters in the inbound parameter list. The effects
of the interactions of these options under the various operating systems and subsystems are summarized
in Table 31 on page 106:

Table 31. Interactions of C PLIST and EXECOPS (#pragma runopts)

Method of
Invocation

PLIST
Suboption

EXECOPS
(default)

argc/argv __R1/__osplist and
PCBs

LKED, OSRUN

Call module on
command line
passing <run-time
options> / <user
args>

HOST Yes. <run-time
options>
honored

argc = number of
tokenized user args.

argv[0…argc-1] =
tokenized user args

LKED, OSRUN

Call module on
command line
passing <run-time
options> / <user
args>

HOST No. <run-time
options>
ignored

argc = number of
tokenized user args in
both run-time options
and user args

argv[0…argc-1] =
tokenized args in both
run-time options and
user args

Assembler calls
C module
with pre-Language
Environment
preinitialization PLIST
with run-time options
specified in the PLIST

MVS Yes. <run-time
options>
honored

argc/argv =
<argc,argv> structure
specified for pre-
Language Environment
preinitialization

Assembler calls
C module
with pre-Language
Environment
preinitialization PLIST
with run-time options
specified in the PLIST

MVS No. <run-time
options>
ignored

argc/argv =
<argc,argv> structure
specified for pre-
Language Environment
preinitialization

Parameter Passing Considerations with XPLINK C and C++
C and C++ code compiled with the XPLINK option builds parameter lists using the same
logical format. However, the compiler may optimize some of the parameters into registers. For
more information, see z/OS Language Environment Vendor Interfaces (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zOSV2R5SA380688/$file/ceev100_v2r5.pdf).

COBOL Parameter Passing Considerations
COBOL users cannot explicitly set the PLIST and EXECOPS run-time options for an enclave containing a
COBOL main program. When COBOL is the main program, Language Environment sets the argument list
passed to the application on initialization as follows:

• If the COBOL main is invoked by OSRUN, run-time options are removed. An adjusted string (without
run-time options) is passed to the application.

Operating System and Subsystem Parameter Lists

106 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5SA380688/$file/ceev100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R5SA380688/$file/ceev100_v2r5.pdf

• If the COBOL main is not invoked by OSRUN, register 0 points to a CMS extended parameter list.
Run-time options are removed and repackaged as a halfword-prefixed string.

• If the COBOL main is invoked from an assembler routine using standard assembler linkage conventions,
then register 1 and the argument list are passed without change.

PL/I Main Procedure Parameter Passing Considerations
The format of the parameter list passed to a PL/I main procedure from the operating system is controlled
by the SYSTEM compiler option and also by options on the main PROCEDURE statement.

The SYSTEM compiler option specifies the format used to pass parameters to the PL/I main procedure,
and indicates the host system under which the program runs: MVS, CMS (or CMSTPL for compatibility),
CICS, IMS, or TSO. The SYSTEM option allows a program compiled under one system to run under
another.

The NOEXECOPS procedure option indicates that run-time options are not present in the operating
system parameter list. The NOEXECOPS option can be explicitly specified or implicitly defaulted.
Otherwise, it is assumed that run-time options might be present in the operating system parameter list.
If present, these run-time options are removed by run-time initialization before the PL/I main procedure
gains control.

In order for run-time options to be passed in the operating system parameter list for SYSTEM(MVS) or
SYSTEM(CMS), the PL/I main procedure must receive no parameters or receive a single parameter that is
a varying character string. If this is not the case, NOEXECOPS is always defaulted.

The OPTIONS(BYVALUE) or OPTIONS(BYADDR) procedure options indicate if the main procedure
parameters are passed directly or indirectly. If SYSTEM(IMS) or SYSTEM(CICS) is specified for a PL/I
for MVS & VM main procedure, the OPTIONS(BYVALUE) procedure option is defaulted at compilation
time, OPTIONS(BYADDR) is not permitted. When SYSTEM(CICS) and SYSTEM(IMS) is specified, Language
Environment remaps the parameters to match the OPTIONS attribute BYADDR or BYVALUE of the
main procedure. See z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf) for additional information
about Language Environment parameter passing.

The following tables describe the interaction of the PL/I SYSTEM and NOEXECOPS options. Their effect
is described in terms of the parameters that are coded on the MAIN procedure statement and also the
incoming system, subsystem, or assembler parameter list as initially received by Language Environment.

Table 32. Interactions of SYSTEM and NOEXECOPS under z/VM

SYSTEM Setting No Run-Time Options (NOEXECOPS) Run-Time Options Can Be Present

SYSTEM(CMS) If the main procedure parameter is a single
varying character string, a CMS extended
parameter list is assumed and repackaged
so the main procedure receives a halfword-
prefixed string, without looking for run-time
options.

Otherwise, the parameter list is passed
without change.

If the main procedure parameter is a
single varying character string, a CMS
extended parameter list is assumed and
repackaged so the main procedure receives
a halfword-prefixed string. Any run-time
options are removed from the string, and
the (potentially) altered string is passed.

Otherwise, the parameter list is passed
without change.

Operating System and Subsystem Parameter Lists

Appendix B. Parameter List Formats 107

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf

Table 32. Interactions of SYSTEM and NOEXECOPS under z/VM (continued)

SYSTEM Setting No Run-Time Options (NOEXECOPS) Run-Time Options Can Be Present

SYSTEM(MVS) If the main procedure parameter is a
single varying character string, an MVS
parameter list is assumed and repackaged
so the main procedure receives a halfword-
prefixed string. The entire string is passed to
the main procedure without change.

Otherwise, the parameter list is passed
without change.

If the main procedure parameter is a single
varying character string, an MVS parameter
list is assumed and repackaged so the main
procedure receives a halfword-prefixed
string. Any run-time options are removed
from the string, and the (potentially) altered
string is passed.

Otherwise, the parameter list is passed
without change.

Note: When Language Environment is directed to use the CMS extended parameter list, and Language
Environment determines that R0 is not pointing to a CMS extended parameter list, Language Environment
issues user ABEND 4093, reason code X'60' (96).

Operating System and Subsystem Parameter Lists

108 z/VM: 7.3 Language Environment User's Guide

Appendix C. Object Library Utility

The Object Library Utility is used to update libraries of object modules. A library is a text library (TXTLIB)
with object modules as members.

Object libraries provide for convenient packaging of object modules. With the Object Library Utility, a
library can contain object modules with L-names, object modules with S-names, and object modules with
writable static data. The Object Library Utility is used to create information, such as which members
contain defined L-names, S-names, or writable static data. This information is stored in a special member
of the library that will be referred to as the Object Library Utility directory.

Note:

1. The TXTLIB command also creates object libraries but it does not allow you to include external names
greater than 8 characters long. The syntax for the Object Library Utility is similar to the TXTLIB
command.

2. Because C generates private code if you do not include a #pragma csect(code) directive in your
source or if you do not create a NAME control statement using the ALIAS compiler option, you should
use the FILENAME option on either the TXTLIB or C370LIB commands.

Commands to add object modules to a library, to delete object modules from a library, or to build the
Object Library Utility directory for a library are available. Use the DIR command to build the Object Library
Utility directory for a library of object modules. Use the MAP command to list the contents of the Object
Library Utility directory.

Creating an Object Library
Use the C370LIB EXEC to create an object library:

C370LIB

GEN libname

.

fn

(FILENAME

ADD libname

.

fn

(FILENAME

DEL libname

.

membername

MAP libname

DIR libname

GEN
Creates a TXTLIB on your A-disk. If a TXTLIB with the same name already exists, it is replaced.

libname
Specifies the file name of a file of type TXTLIB that is to be created or listed, or from which members
are to be added or deleted, or for which a Object Library Utility directory is to be built.

fn
Specifies the name of file of type TEXT that you want to add to a TXTLIB.

Object Library Utility

© Copyright IBM Corp. 2003, 2022 109

FILENAME
Indicates that all the file names specified (fn1) should be used as the member names for their
respective entries in the TXTLIB file.

ADD
Adds TEXT files as members to an existing TXTLIB on a read/write disk. No checking is done for
duplicate names, entry points, or CSECTs.

DEL
Deletes members from a TXTLIB on a read/write disk and compresses the TXTLIB to remove unused
space. If more than one member exists with the same name, only the first entry is deleted.

membername
Specifies the name of a TXTLIB member that you want to delete.

MAP
Lists the names (entry points) of TXTLIB members. MAP produces a file, libname MAP, on your A-disk.
For more information about the map, see the XL C/C++ for z/VM: User's Guide.

DIR
Builds the TXTLIB Object Library Utility directory. The Object Library Utility directory contains the
names (entry points) of library members. The DIR function is only necessary if TEXT files were
previously added or deleted from the TXTLIB without using C370LIB.

C370LIB must be used to update a TXTLIB with TEXT files produced by compiling C programs with the
LONGNAME option. The z/VM TXTLIB command cannot be used to do this directly and an error can result
if this is attempted.

When a TEXT file is added to a library, its member name is selected according to the following hierarchy:

1. From the file name, if the FILENAME option is specified
2. From the NAME control statement, if present, in the TEXT file
3. From the file name

The CMS TXTLIB command's GEN, ADD, and DEL functions are used as part of the C370LIB GEN,
ADD, and DEL functions. Thus, any TXTLIB restrictions apply also to C370LIB unless otherwise stated.
Members must be deleted by their member name. Any attempt to delete using a name other than the
member name results in a warning message.

In the following example, the C programs SUB1 C and SUB2 C are compiled for L-names. The function
library SUBLIB TXTLIB A is created with SUB1 TEXT using the GEN command of C370LIB; the Object
Library Utility SUB2 TEXT is added to the library using the ADD command.

CC SUB1 (LO
CC SUB2 (LO
C370LIB GEN SUBLIB SUB1
C370LIB ADD SUBLIB SUB2

The LINKLOAD EXEC
The following IBM-supplied EXEC generates a fetchable member of a z/VM load library:

LINKLOAD textdeck (

LIB

libname

option

textdeck
Specifies the name of the input text decks. The file type of the object modules must be TEXT, and
the source programs must have contained a #pragma linkage (name, FETCHABLE) preprocessor
directive. Note that you do not specify the file type or the file mode when using the LINKLOAD EXEC.

Object Library Utility

110 z/VM: 7.3 Language Environment User's Guide

libname
Specifies the name of the library where the load member is to be stored. The library name parameter
must be specified, but if it is the first parameter, the keyword LIB is optional.

option
Specifies any options you want to apply when you are generating the fetchable load library member:
CPLINK

Allows you to pass options to the prelinker. The format of the CPLINK options is CPLINK (prelinker
options). CPLINK is called if it is required by the text decks, or if a CPLINK option is given. For more
information see Appendix A, “Prelinking an Application,” on page 91.

MBR
Indicates that the next argument, memname, is the name of the member within the load library
that is to be generated. If you do not specify a member name, the name of the text deck
containing the fetchable code is used.

LKED
Indicates that the options following it are to be passed to LKED. If you do not use this option,
default options are used. The format of the LKED keyword is LKED (link-edit options). For more
information on the LKED command, see “Link-Editing with the LKED Command” on page 14

Only one of the following options can be specified on a given invocation of LINKLOAD:
ADD

Indicates that the load member generated by the LINKLOAD EXEC is to be added to the load
library. If a member by the same name already exists, the new member is not added.

REPLACE
Indicates that the load member generated by the LINKLOAD EXEC is to replace the member
having the same name in the load library. If a member by the same name does not exist, the new
member is added.

NEW
Indicates that an existing load library of the same name containing only the named member
should be created.

Object Library Utility Map
The Object Library Utility produces a listing for a given library when the MAP command is specified. The
listing contains information on each member of the library. A representative example is shown in Figure
13 on page 112.

Object Library Utility

Appendix C. Object Library Utility 111

==
| Object Library Utility Map | 1
| |
|C370LIB:5741A09 V7 R3 M00 IBM z/VM 2022/09/28 21:19:26|
|==

 Library Name: TS41949.A.OBJECT 2022/09/28 21:19:26

--
* Member Name: ASMSTUFF (D) 2022/09/28 21:19:26 * 2
* 569623400 R01 M01 *
--

 (S) External Name: CSECT1
 (S) External Name: ENTRY1

--
* Member Name: CSTUFF (D) 2022/09/28 21:19:26 * 2
* 5694A01 V1 R02 *
--

 (L) Function Name: foo
 (WL) External Name: this_int_is_in_writable_static_and_its_name_will
 _wrap_because_it_is_too_long

--
* Member Name: CXXSTUFF (D) 2022/09/28 21:19:26 * 2
* 5694A01 V1 R02 *
--

 3 User Comment: This is a user comment in CXXSTUFF

 4 (L) Function Name: testeh()
 (L) Function Name: f1()
 (L) Function Name: operator++(U&)
 (WL) External Name: i1
 (WL) External Name: i2

========= E N D O F O B J E C T L I B R A R Y M A P ==========

Figure 13. Object Library Utility Map

 1 Map Heading
The heading contains the product number, the compiler release number, the compiler version number,
and the date and time the Object Library Utility step commenced. The name of the library immediately
follows the heading. To the right of the name of the library is the start time of the last Object Library
Utility step that updated the Object Library Utility directory.

 2 Member Heading
The name of the object module member is immediately followed by the ID of the processor that
produced the object module. The processor ID is based on the presence of an END record in the
object module having the processor information in the appropriate format. If this information is not
present, the Processor ID field is not listed.

The Timestamp field is presented in yyyy/mm/dd format. The meaning of the timestamp is enclosed in
parentheses. That is, the Object Library Utility retains a timestamp for each member and selects the
time according to the following hierarchy:
(P)

Indicates that the timestamp is extracted from the object module from the date form of #pragma
comment or from the timestamp form of #pragma comment, whichever comes first.

(D)
Indicates that the timestamp is based on the time that the Object Library Utility DIR command
was last issued.

(F)
Indicates that the timestamp is the date of the object module file at the time the ADD or GEN
command was issued for the member. This is applicable to z/VM only.

Object Library Utility

112 z/VM: 7.3 Language Environment User's Guide

(T)
Indicates that the timestamp is the time that the ADD command was issued for the member. This
is applicable to MVS only.

 3 User Comments
The user form of comments generated by #pragma comment is displayed. These comments
are extracted from the END record. It is possible to manually add such comments on multiple
END records and have them displayed in the listing. For more information on the END record,
see z/OS: XL C/C++ Language Reference (https://www.ibm.com/servers/resourcelink/svc00100.nsf/
pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf).

 4 Symbol Information
Immediately following the Member Heading (and user comments, if any) is a list of the defined objects
contained within that member. Each symbol is prefixed by Type information enclosed in parentheses
and either External Name or Function Name. Function Name appears provided the object
module was compiled with the LONGNAME option and the symbol is the name of a defined external
function. In all other cases External Name is displayed. The Type field gives additional information
on each symbol. That is:
(L)

Indicates that the name is an L-name.
(S)

Indicates that the name is an S-name.
(W)

Indicates that this is a writable static object. If no W is present, this is not a writable static object.
(WL)

Indicates that this is an L-name and in writable static.

Object Library Utility

Appendix C. Object Library Utility 113

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147308/$file/cbclx01_v2r5.pdf

Object Library Utility

114 z/VM: 7.3 Language Environment User's Guide

Appendix D. Using the Systems Programming
Environment

Note: This topic applies to C applications only.

As a C routine executes, facilities from the Language Environment common library are invoked to set up
the execution environment in order to handle termination activities and provide storage management,
error handling, run-time options parsing, ILC, and debugging support. In addition, the C library functions
are in the Language Environment common library.

For situations in which not all of these services are needed, the system programming facilities of C can
provide a limited environment.

System programming facilities allow you to run applications without using the Language Environment
common library, or with just the C library functions, and to:

• Develop C applications that do not require the Language Environment common library on the machines
on which they run.

• Develop applications featuring:

– A persistent C environment, in which a C environment is created once and used repeatedly for C
function execution from any language.

– Co-routines that use a two-stack model, as in client-server style applications. In this style, the user
application calls on the applications server to perform services independently of the user and then
return to the user.

For more information on the system programming facilities of C, see z/OS:
XL C/C++ Programming Guide (https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosv2r5sc147315/$file/cbcpx01_v2r5.pdf).

This chapter discusses how to build these applications once you have compiled them with the C compiler.
Note that you must compile these programs with the NOSTART option.

Building Freestanding Applications
Freestanding applications need to be linked with specific alternate initialization routines. This is
accomplished differently depending on which operating system you compiled your application under.

To explicitly include an alternative initialization routine under z/VM, include the TEXT file for the alternate
entry point first in the LOAD commands. To include the alternate initialization routines described in this
chapter, you must include SCEESPC in the GLOBAL TXTLIB list. For example, the commands in Figure 14
on page 115 can be used to specify EDCXSTRT as an alternate initialization routine.

LOAD EDCXSTRT main-function (RESET EDCXSTRT …
GENMOD module-name (FROM EDCXSTRT

Figure 14. Specifying Alternate Initialization at Link-Edit

Building Freestanding Applications
When building freestanding applications under z/VM, SCEESPC TXTLIB must be made available (by the
GLOBAL command) when issuing LOAD or INCLUDE commands. In addition to making SCEESPC TXTLIB
available, you must specify NOSTART compiler option when compiling the file that contains the main
function. This TXTLIB is not required at execution time.

The routines to support this function (EDCXSTRT and EDCXSTRL) are CEESTART replacements in your
module. Therefore, the appropriate EDCXSTRn TEXT file must be explicitly included first in the module.

Systems Programming Environment

© Copyright IBM Corp. 2003, 2022 115

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc147315/$file/cbcpx01_v2r5.pdf

A simple freestanding routine that does not require the Language Environment common library is shown
in Figure 15 on page 116. An example that requires the use of the Language Environment prelinker is
shown in Figure 17 on page 116.

int main() {
 return 54321;
}

Figure 15. Simple Freestanding z/VM Routine

The z/VM commands required to build and run this routine are shown in Figure 16 on page 116.

GLOBAL LOADLIB SCEERUN
CC RET54321 (NOSTART
GLOBAL TXTLIB SCEESPC
LOAD EDCXSTRT RET54321 (RESET EDCXSTRT
GENMOD RET54321 (FROM EDCXSTRT
RET54321

Figure 16. Building a Freestanding z/VM Routine

Special Considerations for Reentrant Modules
A simple freestanding routine that does not require the Language Environment common library is shown
in Figure 17 on page 116. This routine uses the exit() library function which, like sprintf(), is
available to freestanding routines without requiring the Language Environment common library. This
routine is not naturally reentrant, but the resulting load module is reentrant.

#include <stdlib.h>

int main() {
 static int i[5]={0,1,2,3,4};
 exit(4320+i[1]);
}

Figure 17. Simple Reentrant Freestanding z/VM Routine

The commands required to build this routine are shown in Figure 18 on page 116. The bracketed numbers
in the figure refer to the comments that follow.

CC RETS4321 (NOSTART RENT …
GLOBAL TXTLIB SCEESPC SCEELKED CMSLIB
[Figure 18 on page 116-1]
CPLINK EDCXSTRT RETS4321 EDCRCINT EDCXEXIT (MAP
[Figure 18 on page 116-2]
GLOBAL TXTLIB
[Figure 18 on page 116-3]
LOAD CPOBJ (MAP RESET EDCXSTRT
[Figure 18 on page 116-4]
GENMOD RETS4321 (FROM EDCXSTRT

Figure 18. Building a Reentrant Freestanding VM Routine

Notes
[Figure 18 on page 116-1]

The TXTLIB CMSLIB is needed because CPLINK is a C program. The TXTLIB SCEESPC and
SCEELKED are used to resolve external references.

[Figure 18 on page 116-2]
The alternate initialization routine (EDCXSTRT in this example) must be included explicitly in the
module. This should be the first CSECT in the module.

The routine EDCRCINT must be explicitly included in the module because the RENT compiler option
is used. No error is detected at load time if this routine is not explicitly included. At run time, abend
2106, reason code 7205, results if EDCRCINT is required but not included.

EDCXEXIT must be explicitly included if the exit() function is used in the application.

Systems Programming Environment

116 z/VM: 7.3 Language Environment User's Guide

[Figure 18 on page 116-3]
No TXTLIB is required for further processing or execution of this module because no C library
functions are needed.

[Figure 18 on page 116-4]
EDCXSTRT must be specified as the module entry point.

Building System Exit Routines
There are no special considerations for building system exit routines. These routines can be linked with
their callers or dynamically loaded and invoked. SCEESPC TXTLIB must be available at link-edit. If C
library functions are required by the exit routines, the libraries SCEELKED must also be made available
after SCEESPC. If the routines were compiled with OPT(2), the entry point must be explicitly identified
using the RESET option on the LOAD command.

Note: You must compile these programs with the NOSTART option.

Building Persistent C Environments
There are no special considerations for building applications that use persistent C environments. The LIBE
option of the LOAD command causes the proper object modules to be included from SCEESPC TXTLIB.

If C library functions are required by any routine called in this environment, the library stub routines
should also be made available at link time after SCEESPC.

Note: You must compile these programs with the NOSTART option.

Building User-Server Environments
To build your server application, follow the rules for building a freestanding application as described in
“Building Freestanding Applications” on page 115.

There are no special considerations for building user applications. The LIBE option of the load command
causes the proper object modules to be included from SCEESPC TXTLIB. The automatic call facility
causes the right routines from the TXTLIB (using the LIBE option) to be included.

Note: You must compile servers with the NOSTART option.

Summary
Table 33. Summary of Types

Type of Application How It Is Called Module Entry
Point

Data Sets
Required at
Execution Time

Run-Time Options and
Other Considerations

A mainline function
that requires no
C-specific library
functions.

From the command
line, or an EXEC or
CLIST.

EDCXSTRT must be
explicitly included
at bind time.

None. Run-time options are
specified by #pragma
runopts in the
compilation unit for the
main() function. The
HEAP and STACK options
are honored. STACK
defaults to above the 16M
line.

Systems Programming Environment

Appendix D. Using the Systems Programming Environment 117

Table 33. Summary of Types (continued)

Type of Application How It Is Called Module Entry
Point

Data Sets
Required at
Execution Time

Run-Time Options and
Other Considerations

A mainline function
that requires C library
functions.

From the command
line, or an EXEC or
CLIST.

EDCXSTRL must be
explicitly included
at bind time.

C library
functions.

Run-time options are
specified by #pragma
runopts in the
compilation unit for the
main() function. The
TRAP, HEAP and STACK
options are honored, but
the stack defaults to
above the 16M line.

A mainline function
that uses storage
pre-allocated by the
caller.

From Assembler
code.

C library
functions are
optional; the
caller must load
these functions
and pass their
addresses to
EDCXSTRX, if
required to by
the application.

Run-time options are
specified by #pragma
runopts in the main()
function. The TRAP option
is honored if C library
functions are required.

An exit. Typically from
assembler code,
with a structured
parameter list.

C library
functions, if
required.

Run-time options are
specified by #pragma
runopts in the compile
unit for the entry point.
The HEAP and STACK
options are honored, but
the stack defaults to be
above the 16M line. The
TRAP option is honored
if C library functions are
required.

Systems Programming Environment

118 z/VM: 7.3 Language Environment User's Guide

Table 33. Summary of Types (continued)

Type of Application How It Is Called Module Entry
Point

Data Sets
Required at
Execution Time

Run-Time Options and
Other Considerations

A C subroutine called
from Assembler
language using
a pre-established
persistent
environment.

A handle, the
address of the
subroutine, and
a parameter list
are passed to
EDCXHOTU.

C library
functions are
optional,
depending on the
way the handle
was set up.

Run-time options are
specified by #pragma
runopts in any compile
unit. The HEAP and
STACK options are
honored, but the stack
defaults to above the 16M
line. The TRAP option
is honored if C library
functions are called for.
The runopts in the first
object module in the link-
edit that contains runopts
prevails, even if this
compilation unit is part of
the calling application.

The environment is
established by calling
EDCXHOTC or EDCXHOTL
(if library functions
are required). These
functions return a value
(the handle), which is
used to call functions that
use the environment.

A server. User code includes
a stub routine that
calls EDCXSRVI.
This causes the
server to be loaded
and control to be
passed to its entry
point.

EDCXSTRT or
EDCXSTRL,
depending on
whether the server
needs C library
functions.

C library
functions, if
required by the
server code.

Run-time options are the
same as for EDCXSTRL or
EDCXSTRT.

The author of the server
must supply stub routines
that call EDCXSRVI and
EDCXSRVN to initialize
and communicate with
the server. These are
bound with the user
application.

A user of an
application server.

The server and C
library functions,
if required by the
server.

The author of the server
must supply stub routines
which call EDCXSRVI and
EDCXSRVN to initialize
and communicate with
the server.

Systems Programming Environment

Appendix D. Using the Systems Programming Environment 119

Systems Programming Environment

120 z/VM: 7.3 Language Environment User's Guide

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2003, 2022 121

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to write programs to
obtain the services of Language Environment in z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

122 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 123

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

124 z/VM: 7.3 Language Environment User's Guide

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 2003, 2022 125

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

126 z/VM: 7.3 Language Environment User's Guide

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 127

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

128 z/VM: 7.3 Language Environment User's Guide

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 129

130 z/VM: 7.3 Language Environment User's Guide

Index

Special Characters
__csplist macro 104
__osplist macro 104
__pcblist macro 104
__R1 macro 104
@DELETE service routine for preinitialization

components of 49
return/reason codes for 49

@EXCEPRTN service routine for preinitialization
return/reason codes for 51, 52

@FREESTORE service routine for preinitialization
return/reason codes for 50

@GETSTORE service routine for preinitialization
return/reason codes for 50

@LOAD service routine for preinitialization
components of 48
return/reason codes for 48, 49

@MSGRTN service routine for preinitialization
components of 53
return/reason codes for 53

A
abend codes

abend 2106, reason code 7205 116
abend 4093, reason code 60 108
CEEAUE_RETC field of CEEBXITA and 44

abends
CICS

assembler user exit and EXEC CICS ABEND 45
dump, requesting in CEEBXITA assembler user exit 45
nested enclaves and

created by C system() 62
created by CMSCALL 59
created by SVC LINK 59

abnormal termination, See abends
ACCEPT statement 36
addressing mode

specifying on CMS LOAD command 9
AMODE

for CEEBXITA user exit 42
application

building using c89 23
See also enclave

argc parameter for C
C parameter passing styles and 106

argument
list format

EXECOPS run-time option and 105, 106
how interactions of EXECOPS and PLIST run-time
options affect 106
PLIST run-time option and 105

passing
C passing for operating systems and subsystems
103

argument (continued)
specifying to an invoked routine which format to expect
(C) 105

argv parameter for C
C parameter passing styles and 106

ASSEMBLE file 29
assembler language

COBOL parameter list format 106
system programming C considerations 117–119
user exit, See CEEBXITA assembler user exit

AUTO | NOAUTO prelinker option 93

B
BIND command for CMS 19
binder interface

c 89 utility 23
building freestanding applications

including alternate initialization routines for 115
VM/CMS 115

BYVALUE compiler option
required if SYSTEM(CICS) specified 107

C
C

#pragmas, See pragma
building system exit routines 117
examples

freestanding VM routines 116
exit() function

EDCXEXIT routine and 116
functions, See main routine
L-names, See L-names
LONGNAME compiler option 91
NOSTART compiler option 115
OPTIMIZE(2) compiler option 117
parameter passing, for operating systems and

subsystems
PLIST and EXECOPS interactions 105
styles 103

prelinker, See prelinker
S-names, See S-names
stderr

default destinations of 35
interleaving output with other output 35
redirecting output from 35

system programming facilities, See system programming
facility, C

c 89 utility
interface to the linkage editor 23

C370LIB EXEC 109
c89 utility

build object modules 23
See also OpenExtensions, c89 utility

CALL statement
for PL/1, See FETCH statement

Index 131

casting, when using R1 and osplist macros 104
CC EXEC

creating object library 109
CEEAUE_A_AB_CODES

description 46
CEEAUE_A_CC_PLIST 45
CEEAUE_A_OPTIONS 46
CEEAUE_ABND 45
CEEAUE_ABTERM 44
CEEAUE_DUMP 45
CEEAUE_FBCODE 46
CEEAUE_FLAGS

CEEAUE_ABND field of 45
CEEAUE_ABTERM field of 44
CEEAUE_DUMP field of 45
CEEAUE_STEPS field of 45
format 44

CEEAUE_FUNC 43
CEEAUE_LEN 43
CEEAUE_RETC

description 44
relationship to CEEAUE_ABND 44, 45
relationship to CEEAUE_RSNC 44, 45

CEEAUE_RSNC
description 44
relationship to CEEAUE_ABND 45
relationship to CEEAUE_RETC 45

CEEAUE_STEPS 45
CEEAUE_USERWD 46
CEEAUE_WORK 45
CEEBINT HLL user exit

when invoked 42
CEEBLDTX utility

error messages 31
using to create message files 29

CEEBXITA assembler user exit
AMODE/RMODE considerations 42
application-specific 39
behavior of

during enclave initialization 42
during enclave termination 42

functions 39
installation-wide 39
interface to

diagram of 42
See also CXIT control block

modifications to, rules for making 42
specifying run-time options in 46
when invoked 42
work area for 45

CEECXITA assembler user exit, See CEEBXITA assembler
user exit
CEEDUMP default dump file

CEEBXITA assembler user exit and 42
CEESTART

LOAD command and 11
specify RESET CEESTART for C main routines 9

CEEXOPT macro 25
CESE transient data queue

message handling and 34
CICS

COBOL parameter list formats 106
PLIST and EXECOPS interactions 105
SYSTEM setting 107

CICS (continued)
See also exec CICS command

CLISTs for TSO
CPLINK 99

CMOD EXEC
C prelinker and 99
syntax description 15

CMS
building freestanding applications 115, 117–119
building persistent C environments 117
building system exit routines 117
CMOD 15, 99
COBOL parameter list formats 106
CPLINK

example using 99
syntax description 99

dynamically loaded routines
search order for 8
where installed 3

EXECs 27
See also CMS, return code considerations
LINKLOAD EXEC 17
loading for

basics 5
FILEDEF command and 14
GENMOD command and 12, 14
INCLUDE command and 12
LKED command and 14
methods of 5

OSRUN command 27
See also OSRUN command for CMS
PLIST and EXECOPS interactions 105, 106
prelinking for

automatic library call processing 93
invoking the prelinker 99
prelinker input 92
prelinking options 100

running for
basics 5
GENMOD command and 12, 19
GLOBAL command and 6
LKED command and 20
START command and 18

SYSTEM setting 107
using system programming facilities 115, 117–119
where library routines are stored 3

CMS LOAD command
options 9

CMS return codes
considerations 27

CMSTPL SYSTEM setting 107
COBOL

non-CICS OS/VS COBOL programs supported in single
enclave only 57
parameter list formats 106
STOP RUN statement

CEEBXITA assembler user exit and 40
code packaging 3
command processor parameter list (CPPL)

PLIST, EXECOPS and 106
condition

nested 60
severity

CEEBXITA assembler user exit and 44

132 z/VM: 7.3 Language Environment User's Guide

condition handling
nested enclaves

created by C system() 61, 62
created by CMSCALL 59, 60
created by SVC LINK 59, 60
with a PL/I fetchable main 62, 63

constructed reentrancy, See prelinker
COPY file 29
CPLINK EXEC

example using 116
syntax description 99

CPPL (command processor parameter list), See command
processor parameter list (CPPL)
cross system product (CSP) 104
csplist macro 104
CXIT control block

CEEAUE_A_CC_PLIST field of 45
CEEAUE_A_OPTIONS field of 46
CEEAUE_FBCODE field of 46
CEEAUE_FLAGS field of

CEEAUE_DUMP field of 45
CEEAUE_STEPS field of 45
format of the 44

CEEAUE_FUNC field of 43
CEEAUE_LEN field of 43
CEEAUE_WORK field of 45

D
DELETE service routine for preinitialization

components of 49
return/reason codes for 49

dereferencing 104
diagnosis checklist 75
DISPLAY statement

default file for 36
dump

CEEBXITA assembler user exit and 45
dynamic routines 3

E
EDC5230I 79
EDC6000E 79
EDC6001E 79
EDC6002E 79
EDC6003E 80
EDC6004E 80
EDC6005E 80
EDC6006E 80
EDC6007E 80
EDC6008E 80
EDC6009E 80
enclave

nested
created by C system() function 57, 61
created by CMSCALL 57, 58, 60
created by SVC LINK 58, 60
enclave with a PL/I fetchable main routine 62, 63

termination
with abend 45

entry point
running default entry point under CMS 18

ESD map of defined and longnames 95
examples

CMOD EXEC 99
freestanding C MVS routine 116
freestanding C VM routine 115
GENMOD command for CMS

building freestanding VM routine 116
including alternate initialization routines 115

GLOBAL command
building freestanding routine 115

including alternate initialization routines
CMS 115

invoking the prelinker
from CMS 99

linking and running under CMS 5
LOAD command for CMS

building freestanding VM routine 116
including alternate initialization routines 117

relinking PL/I applications 4
using PL/I routine as nucleus extension 14

EXCEPRTN service routine for preinitialization
return/reason codes for 51, 52

EXEC CICS command
ABEND 45

EXECOPS run-time option
CMS START command and 18, 19
interaction with PLIST run-time option, under CMS 106
MVS argument list format and 105

EXECs for CMS 27
See also CMS, return code considerations

EXECs, IBM-supplied
C370LIB 109
LINKLOAD 110

EXHIBIT for OS/VS COBOL
default output file of 36
no support for, under CICS 36

exit() function
system programming facilities and 116

extended parameter list for CMS 20

F
FETCH statement

fetchable main
discussion of 62, 63
reentrancy considerations of 63

FILEDEF command for CMS
during enclave initialization 42
example of 14, 15
SYSABEND PRINTER 45
SYSMDUMP PRINTER 45
SYSUDUMP PRINTER 45
using to relate a ddname to an I/O device
14

FILENAME option
TXTLIB command 109

fprintf function 35
freestanding application

alternate initialization routines for 115
building

VM 115, 117
FREESTORE service routine for preinitialization

return/reason codes for 50
freopen 35

Index 133

G
GENMOD command for CMS

example 13, 115, 116
executing module produced by 19
link-editing process and 5, 12
syntax description 12

genxlt
EXEC 19
utility

CMS 19
GETSTORE service routine for preinitialization

return/reason codes for 50
global assembler user exit 39
GLOBAL command for CMS

alternate initialization routines and 115
freestanding C applications and 115
GENMOD command and 19
LOAD command and 6
START command and 18

global error table, See condition handling

H
header files

stdlib.h and the __R1 and __osplist macros 104

I
I/O, See input/output
iconv

EXEC 19
utility

CMS 19
IGZ0189S 83
IMS (Information Management System)

C considerations 104
PLIST considerations

PLIST and EXECOPS interactions 106
SYSTEM(IMS) compiler option and

how parameters are passed under 107, 108
INCLUDE command for CMS

application-specific assembler user exit and 40
example using 12
options for 9–11
syntax description 12
using multiple times 12

INCLUDE file 29
INCLUDE statement

for MVS
application-specific assembler user exit and 40
C prelinker and 92

Information Management System (IMS), See IMS
(Information Management System)
initializing

alternate initialization routines 115
initialization routines 3
nested enclave

CEEBXITA's function code for 44
using CEEBXITA assembler user exit for

function code for 43
input/output

FILEDEF statement and 4, 14

input/output (continued)
Language Environmentdefault message file attributes 34

installation-wide assembler user exit 39
interleaved

output 35

L
L-names

LIBRARY control statement and 97
mapping to S-names 98
RENAME control statement and 97
resolving undefined 93
unresolved 93
UPCASE prelink option and 100

library call processing
prelinker and 93

LIBRARY statement
prelinker and 97

link-editing
for TSO

basics of linking and running 4
linkage editor

function 3
LINKLOAD EXEC

#pragma linkage and 17
options 110
options for 17, 18
syntax description 17

LKED command for CMS
example using 15
FILEDEF command and 14
running module produced by 20
syntax description 14

LOAD command for CMS
alternate initialization routines and 115
C System Exit routines and 117
example using 9
freestanding applications and 116
GLOBAL commands and 6
options for 9–11
persistent C environment and 117
syntax description 8
using multiple times 12

LOAD command, CMS
options 9

LOAD service routine for preinitialization
components of 48
return/reason codes for 48, 49

LOADLIB for CMS
LKED command and 15
running under CMS and 19, 20
search order of 8

LONGNAME compiler option 91
longname support 109

M
macro

__csplist 104
__osplist 104
__pcblist 104
__R1 104

134 z/VM: 7.3 Language Environment User's Guide

main routine
nested enclave considerations 57

map heading 112
mapping

L-names to S-names 98
member heading 112
message

directing to an I/O device
34
using in your application 34

message file
C stderr and stdout output and 36
CICS considerations 34
COBOL DISPLAY statement and 37
Language Environment's default destinations 34
nested enclave considerations 66
PL/I I/O statements 37
specifying ddname of 34
using CEEBLDTX to assemble 29

message handling
specifying ddname of message file 34

message module table 29
MSGFILE run-time option

default destinations under different operating systems
34
under OpenExtensions 34

MSGRTN service routine for preinitialization
components of 53
return/reason codes for 53

N
naming convention for object library members 110
nested enclave, See enclave, nested
nonoverrideable 46
NOOE prelinker option 24
nucleus extension

Language Environment library routines and 3
routine search order in CMS running procedure 8

O
object library utility

adding object modules 109
deleting object modules 109
example 110
listing the contents 109

Object Library Utility 109
OE prelinker option 24
OpenExtensions

building and running, basic 23
building C applications 23
building PL/I applications 26
c89 utility

-c option 23
-o option 23
-W option 24
default prelinker settings 24
forced prelinker settings 24
OE option 24

environments supported 23, 25
MSGFILE run-time option and 34
prelinking under 24

OpenExtensions (continued)
run-time options under 25
running

C applications 25
from z/OS UNIX shell
25

OPTIONS(BYADDR)
assembler calling PL/I under IMS 107
SYSTEM(CICS) and 107

OPTIONS(BYVALUE)
IMS considerations 107
SYSTEM(CICS) and 107

osplist macro 104
OSRUN command for CMS

GLOBAL command and 20
LKED command and 20
PLIST and EXECOPS run-time options and 106
PLIST run-time option and 105, 106
syntax description 20

overrideable/nonoverrideable 46

P
parameter

list format
effect of EXECOPS run-time option on 105, 106
how interaction of EXECOPS and PLIST run-time
options affects 106
PLIST run-time option and 105

passing
C passing styles 103

pcblist macro 104
persistent C environment 117
PL/I

BYADDR 107
BYVALUE

must be specified if SYSTEM(IMS) or SYSTEM(CICS)
specified 107

nucleus extension, using PL/I routine as 14
SYSTEM compiler option

interactions with NOEXECOPS 107, 108
PLIST run-time option

argument list format and 105, 106
HOST setting and portability 105
interaction with EXECOPS run-time option, under CMS
106

pragma
#pragma linkage 17
#pragma runopts

affecting argument list format with 105, 106
preinitialization facility 47
prelinker

functions 91
how it maps L-names to S-names 98
how it resolves undefined symbols 93
INCLUDE statement and 96
input 92
invoking

for VM/CMS 99
LIBRARY statement and 97
prelink options 100
prelinker map 93
RENAME statement and 97
when it has to be used 91

Index 135

preventive service planning (PSP) bucket 75
printf() function

default destination 35
interspersing messages into an application 35

process
assembler user exit for termination of 44

program
building using c89 23

PSP (preventive service planning) bucket 75

R
R1 macro 104
reason code

in user exits 44
reentrancy

C Systems Programming Environment and 116
modified CEEBXITA must be reentrant 42

relocatable load module 3, 8
RENAME control statement

how prelinkage utility maps L-names to S-names 98
syntax and usage notes 97

RENT compiler option
prelinker must be used when C source file compiled with
91

resident routines 3
return code

CEEAUE_RETC field of CEEBXITA and 44
in user exits 44

Return Code=0004 31
Return Code=0028 31
Return Code=0036 31
Return Code=0040 31
Return Code=0044 31
Return Code=0048 31
Return Code=0052 31
Return Code=0056 31
Return Code=0060 31
Return Code=0064 32
Return Code=0068 32
Return Code=0072 32
Return Code=0076 32
Return Code=0080 32
Return Code=0084 32
Return Code=0088 32
Return Code=0092 32
Return Code=0096 32
Return Code=0100 32
Return Code=0104 32
Return Code=0108 32
Return Code=0112 33
Return Code=nnn 33
return codes, CMS

considerations 27
RTLS run-time option

with CEEAUE_A_OPTIONS output string 46
run-time options

EXECOPS--let run-time options be specified on
command line, See EXECOPS run-time option
how nested enclaves get

enclaves created by C system() 61
enclaves created by CMSCALL 58
enclaves created by SVC LINK 58

in the user exit 42, 46

run-time options (continued)
MSGFILE--specify ddname of diagnostic file, See
MSGFILE run-time options
PLIST--specify format of C arguments, See PLIST run-
time option
RTLS--modify search order when modules are loaded,
See RTLS run-time option
TRAP--handle abends and programs interrupts, See
TRAP run-time option

S
S-names

prelinker and
how L-names are mapped to S-names 98
how S-names found in input are handled 92
how unresolved S-names are handled 93

saved segments
Language Environment library routines and 3
routine search order in CMS running procedure 8

SCEELKED link library
C system programming facility of C and 116
CMS load procedures and 7, 15
code packaging and 3

SCEERUN load library
CMS load/run procedures and 19
code packaging and 3

search order
dynamically loaded routines for CMS 8

severity
of a condition

CEEBXITA assembler user exit and 44
signal(), See condition handling
standard streams 36
START command for CMS 18
stderr

default destinations of 35
subroutine

restriction regarding nested enclaves 57
SVC LINK 58
symbol information 113
SYSABEND PRINTER 45
SYSIN 42
SYSMDUMP PRINTER 45
SYSOUT

CEEBXITA assembler user exit and 42
default destinations of MSGFILE run-time option 34
destination when inserting messages in your application
37

system programming facility, C
building freestanding applications 115
persistent C environments 117
reentrant modules 116
summary of functions 117
system exit routines 117
user-server environments 117

SYSUDUMP PRINTER 45

T
termination

enclave

136 z/VM: 7.3 Language Environment User's Guide

termination (continued)
enclave (continued)

as indicated in CEEAUE_ABND field of
CEEAUE_FLAGS 45
as indicated in CEEAUE_ABTERM field of
CEEAUE_FLAGS 44
CEEBXITA function codes for 43

process
CEEBXITA function code for 44

TRAP run-time option
how CEEAUE_ABND is affected by 45
nested enclaves and

enclaves created by C system() 61
enclaves with a C or assembler main, created by
CMSCALL 59
enclaves with a C or assembler main, created by
SVC LINK 59
enclaves with a COBOL main, created by CMSCALL
60
enclaves with a COBOL main, created by SVC LINK
60
enclaves with a PL/I fetchable main 62, 63

TXTLIB
creating 109

TXTLIB command
FILENAME option 109

TXTLIB for CMS 8, 14

U
unsupported z/OS functions xi
user

exit
assembler 42
for initialization 42
for termination 42
system exits in C Systems Programming
Environment 117
under CICS 44–46

return code, See return code
user comments 113
user-server environment 117

W
writable static

handled by prelinker 91
writable static map 93

X
XITPTR 42

Z
z/OS functions

unsupported xi

Index 137

138 z/VM: 7.3 Language Environment User's Guide

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6293-73

	Contents
	Figures
	Tables
	About this document
	Unsupported z/OS functions
	Intended audience
	Where to find more information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: Language Environment User's Guide
	SC24-6293-73, z/VM 7.3 (September 2022)
	SC24-6293-01, z/VM 7.2 (September 2020)
	SC24-6293-00, z/VM 7.1 (September 2018)

	Part 1. Language Environment Programming Guide
	Chapter 1. Preparing to load and run under Language Environment
	Understanding the Basics
	Planning to load and run

	Checking Which Run-Time Options Are in Effect
	PL/I Considerations
	Replacing PL/I Library Routines in an OS PL/I Executable Program

	Chapter 2. Loading and Running under z/VM
	Basic Linking and Running
	Accepting the Default Run-Time Options
	Overriding the Default Run-Time Options

	Using the GLOBAL Command
	Determining the Search Order for Dynamic Routines
	Using the LOAD and INCLUDE Commands
	C/C++ Considerations
	PL/I Considerations
	Using the LOAD Command
	CMS LOAD Options
	HOBSET, HOBSETSD, and NOHOBSET PL/I Options

	Using the INCLUDE Command

	Using the GENMOD Command
	Using the BIND Command
	Using the NUCXLOAD Command
	Restrictions
	Example

	Using FILEDEF to Define Input and Output Files
	Link-Editing with the LKED Command
	Using the CMOD EXEC
	Using the LINKLOAD EXEC
	Using the START Command
	Using the iconv Utility and ICONV EXEC for C/C++
	Using the genxlt Utility and GENXLT EXEC for C/C++
	Running Your Application
	Running a Module Produced by the BIND or GENMOD Command
	Running a Module Using the OSRUN Command

	Using the VM/CMS Extended Parameter List

	Chapter 3. Building, Loading, and Running under OpenExtensions
	Basic Building and Running C/C++ Applications under OpenExtensions
	Invoking the OpenExtensions Shell
	Using the OpenExtensions c89 Utility to Create Executable Files
	Prelinker Options
	OE|NOOE

	Specifying Run-Time Options under OpenExtensions
	Running under OpenExtensions
	OpenExtensions Application Program Environments
	Placing a CMS Application Program Load Module in the File System
	Running a CMS Module from the OpenExtensions Shell
	Running an OpenExtensions C/C++ Application Executable File from the OpenExtensions Shell
	Issuing the Executable File Name from the Shell
	Issuing a Setup Shell Script File Name from the Shell

	Basic Building and Running PL/I routines under OpenExtensions

	Chapter 4. Initialization and Termination under Language Environment
	How the Language Environment Enclave Return Code Is Calculated
	z/VM Considerations

	Chapter 5. Using and Handling Messages
	Creating Messages
	Creating a Message Source File
	Using the CEEBLDTX Utility
	Files Created by CEEBLDTX
	CEEBLDTX Error Messages

	Run-Time Messages with POSIX
	Handling Message Output
	Using Language Environment MSGFILE
	Using MSGFILE under OpenExtensions
	Using C or C++ I/O Functions
	Using COBOL I/O Statements
	Using PL/I I/O Statements
	MSGFILE Considerations When Using PL/I

	Chapter 6. Using Run-Time User Exits
	Understanding the Basics
	User Exits Supported under Language Environment
	PL/I and C Compatibility
	Using Sample Assembler User Exits

	When User Exits Are Invoked
	CEEBXITA Behavior During Enclave Initialization
	z/VM Considerations

	CEEBXITA Assembler User Exit Interface

	Chapter 7. Using Preinitialization Services
	Service Routines
	A Sample Program Invocation of CEEPIPI

	Chapter 8. Using Nested Enclaves
	Understanding the Basics
	XPLINK Considerations
	COBOL Considerations

	Determining the Behavior of Child Enclaves
	Creating Child Enclaves by Calling a Second Main Program
	How Run-Time Options Affect Child Enclaves
	How Conditions Arising in Child Enclaves Are Handled

	Creating Child Enclaves Using SVC LINK or CMSCALL
	How Run-Time Options Affect Child Enclaves
	How Conditions Arising in Child Enclaves Are Handled

	Creating Child Enclaves Using the C system() Function
	OpenExtensions Considerations
	How Conditions Arising in Child Enclaves Are Handled
	TRAP(ON | OFF) Effects for Enclaves Created by system()

	Creating Child Enclaves Containing a PL/I Fetchable Main
	How Run-Time Options Affect Child Enclaves
	How Conditions Arising in Child Enclaves Are Handled
	Special Fetch and Call Considerations

	Other Nested Enclave Considerations
	What the Enclave Returns from CEE3PRM
	Finding the Return and Reason Code from the Enclave
	Assembler User Exit
	Message File
	OpenExtensions Considerations
	AMODE Considerations

	Part 2. Language Environment Debugging Guide
	Chapter 9. Debugging C/C++ Routines
	Debugging C/C++ Input/Output Programs
	__last_op Values
	Using __errno2() to Diagnose Application Problems

	Generating a Language Environment Dump of a C/C++ Routine
	cdump()
	csnap()

	Chapter 10. Diagnosing Problems with Language Environment
	Diagnosis Checklist

	Part 3. Language Environment Run-Time Messages
	Chapter 11. C/C++ Run-Time Messages
	Chapter 12. COBOL Run-Time Messages

	Part 4. Customizing Language Environment
	Chapter 13. Customizing Language Environment
	Updating Run-Time Options
	Updating User Exit Options
	C Component Locale Time Information
	Updating Saved Segments
	Updating the COBOL Component Reusable Environment
	Modifying the behavior of the COBOL Reusable Environment

	Appendix A. Prelinking an Application
	Which Programs Need to Be Prelinked
	What the Prelinker Does
	Prelinking Process
	Primary Input
	INCLUDE Control Statements
	References to Currently Undefined Symbols (External References)
	Processing the Prelinker Automatic Library Call

	Language Environment Prelinker Map
	Control Statement Processing
	IMPORT Control Statement
	INCLUDE Control Statement
	LIBRARY Control Statement
	RENAME Control Statement

	Mapping L-Names to S-Names
	Starting the Prelinker
	Examples

	Prelinker Options

	Appendix B. Parameter List Formats
	C and C++ Parameter Passing Considerations
	C PLIST and EXECOPS Interactions
	Parameter Passing Considerations with XPLINK C and C++

	COBOL Parameter Passing Considerations
	PL/I Main Procedure Parameter Passing Considerations

	Appendix C. Object Library Utility
	Creating an Object Library
	The LINKLOAD EXEC

	Object Library Utility Map

	Appendix D. Using the Systems Programming Environment
	Building Freestanding Applications
	Building Freestanding Applications
	Special Considerations for Reentrant Modules

	Building System Exit Routines
	Building Persistent C Environments
	Building User-Server Environments
	Summary

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Z

