
z/VM
7.3

Dump Viewing Facility

IBM

GC24-6284-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
193.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-05
© Copyright International Business Machines Corporation 1991, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Syntax, Message, and Response Conventions..xiii
Using the Online HELP Facility.. xvi
Where to Find More Information...xvi

Links to Other Documents and Websites.. xvi

How to Send Your Comments to IBM... xvii

Summary of Changes for z/VM: Dump Viewing Facility... xix
SC24-6284-73, z/VM 7.3 (September 2022)...xix
GC24-6284-02, z/VM 7.2 (September 2020).. xix
GC24-6284-01, z/VM 7.1 (January 2020)... xix
GC24-6284-00, z/VM 7.1 (September 2018).. xix

Chapter 1. Introduction... 1
Major Functions..1

Interactively Analyzing Dump Data..1
Formatting and Printing Dump Data.. 1
Recognizing Duplicate Problems..1

Types of Dumps the Dump Viewing Facility Processes...2
Requirements for Using the Dump Viewing Facility..2

Storage Requirements..2
Causes for a Dump... 3

Hardware-Initiated Dumps.. 3
Software-Initiated Dumps..3
User-Initiated Dumps... 4

Location of a Dump.. 4
Use of Dump Information.. 4
Problem Determination..5
Problem Source Identification...5

Using Error Messages... 5
Using the Symptom Record to Identify Duplicate Problems...5

Commands Associated with the Dump Viewing Facility... 6
Servicing the Dump Viewing Facility..8
Writing Dump Data to Tape.. 8

Chapter 2. Usage Guide... 9
Preparing a Dump for Use with the Dump Viewing Facility...9
Using Load Maps.. 9
Creating Load Maps..9
Creating Module Maps... 10
Viewing Dumps.. 10

Using the Session File.. 11
Viewing Dumps of Licensed Programs and z/VM Features...12

 iii

Writing DUMPSCAN Macros...12
What Is a DUMPSCAN Macro?..13
Creating a Macro File..13
Using DUMPSCAN Subcommands in a Macro... 13
What Is an Environment?... 13
DUMPSCAN Macro Subcommands.. 14
Communicating between the Editor and the Interpreter..14
Displaying Data on the DUMPSCAN Screen...15
DUMPSCAN Macro Examples...15
DVFXEDIT Profile..17
Assigning Program Function Keys to DUMPSCAN Subcommands..17

Scenario 1: Analyzing a CMS Program Exception... 17
Step 1: Checking the Error Messages.. 17
Step 2: Use DUMPLOAD to Process the Dump.. 18
Step 3: Use DUMPSCAN to Analyze the Dump.. 18
Step 4: Summarizing the DUMP Analysis.. 19

Chapter 3. Command Reference... 21
Using the Online HELP Facility...21
ADDMAP Command... 22
DUMPSCAN Command.. 24
MAP Command.. 26
PRTDUMP Command... 29
VIEWSYM Command..33

Chapter 4. Macro Subcommands.. 39
DRESTORE Subcommand.. 40
DSAVE Subcommand... 41
DVFSTACK Subcommand...42
FINDSTRG Subcommand.. 43
INIT Subcommand...45
NOTE Subcommand...46
READSTRG Subcommand..47
SCAN Subcommand...49

Chapter 5. DUMPSCAN Subcommand Reference...51
Null Line Subcommand..54
+ and - Subcommands...55
&name Subcommand.. 56
? Subcommand.. 58
= Subcommand..59
ACCLIST Subcommand..60
AREGS Subcommand...62
ASID Subcommand..63
BACKWARD Subcommand.. 65
BLOCK Subcommand...66
CHAIN Subcommand...69
CMS Subcommand...73
CMSPOINT Subcommand (CMS Dump).. 74
CMSVIEW Subcommand..76
CMSVIEW TRACE Subcommand..81
CPU Subcommand... 83
CREGS Subcommand...84
DISPLAY Subcommand..85
DOSPOINT Subcommand (CMS Dump).. 88
DUMPID Subcommand.. 89
DUMPSCAN Subcommand...90

iv

END Subcommand...92
FDISPLAY Subcommand (TSAF Dump)...93
FINDMOD Subcommand... 96
FORMAT Subcommand.. 98
FORWARD Subcommand...100
GDISPLAY Subcommand (AVS Dump).. 101
GREGS Subcommand.. 104
HC Subcommand... 105
HELP Subcommand... 108
HX Subcommand... 109
IUCV Subcommand (GCS,AVS,RSCS Dumps)... 110
LOCATE(UP) Subcommand..111
OSPOINT Subcommand (CMS Dump)...113
PRINT Subcommand... 114
QUIT Subcommand... 115
REGS Subcommand...116
SCROLL Subcommand...118
SYMPTOM Subcommand...121
TACTIVE Subcommand (GCS,AVS,RSCS Dumps)... 122
TIMEDIFF Subcommand... 124
TLOADL Subcommand (GCS,AVS,RSCS Dumps)...126
TODCLK Subcommand.. 127
TRACE Subcommand...129
TSAB Subcommand (GCS,AVS,RSCS Dumps)...135
VMLOADL Subcommand (GCS,AVS,RSCS Dumps)... 137
XEDIT Subcommand..138

Appendix A. Using Attachment Interfaces.. 139
MAP Attachment Interface..139

HCSTAB Table...139
Exit Routine Interfaces..140

Extraction Routines..140
Formatting Routines Called from DUMPSCAN.. 141
Formatting Routines Called from PRTDUMP... 143
HCSTBL Table... 144

Block Table Architecture... 145
Creating Block Definition Files...145
Adding Block Definition Files... 146
Block Definitions.. 146
Block Descriptor Record Format..147
Block Descriptor Record – BIT Subrecord Format..149
Default Display Fields.. 149
Tailoring a Block Table File.. 150

Appendix B. Dump Viewing Facility Services.. 153
SVC 199 Services...153
Miscellaneous Services... 159

Appendix C. Dump Viewing Facility Utilities..163
TABENTRY Utility Macro.. 164
TBLENTRY Utility Macro.. 169
BLOCKDEF Utility Command... 171
BLOCKMAP Macro..180

Appendix D. Module Map Architecture (Used by ADDMAP).................................. 189
Module Map File Header..189
Compressed Load Maps.. 190

 v

Notices..193
Programming Interface Information...194
Trademarks.. 194
Terms and Conditions for Product Documentation.. 195
IBM Online Privacy Statement.. 195

Bibliography.. 197
Where to Get z/VM Information.. 197
z/VM Base Library..197
z/VM Facilities and Features... 198
Prerequisite Products.. 200
Related Products... 200

Index.. 203

vi

Figures

1. Command Structure for the Dump Viewing Facility's ADDMAP, DUMPSCAN, MAP, and PRTDUMP
Commands..6

2. Command Structure for the Dump Viewing Facility's VIEWSYM Command..7

3. Example of a DUMPSCAN XEDIT Macro... 15

4. Example of a DUMPSCAN SCAN Macro.. 17

5. VIEWSYM Command Menu... 35

6. VIEWSYM List Display... 36

7. VIEWSYM Individual Item Display..36

8. A Sequence of &name Commands... 57

9. Listing the &name Table..57

10. Executing the DISPLAY Subcommand Using a Symbolic Name..57

11. Sample Output of an AREGS Subcommand... 62

12. Sample Output of the BLOCK Subcommand with the ALL Keyword..67

13. Sample Output of the BLOCK Subcommand with the BITS and OFFSET Keywords...............................68

14. Example of a Chain of Control Blocks...70

15. Sample Output of a CHAIN Subcommand with a Length Specified.. 71

16. Sample Output of a CHAIN Subcommand with LIST and an Offset Specified.. 72

17. Example Output of the CMSPOINT Subcommand... 74

18. Sample Output of a CPU Subcommand..83

19. Sample Output of a CREGS Subcommand... 84

20. Sample Output of a DISPLAY Subcommand without the Length Operand... 86

21. Sample Output of a DISPLAY Subcommand with 31-Bit Indirect Addressing..86

22. Sample Output of a DISPLAY Subcommand with the OFFSET Operand...87

 vii

23. Sample Output of a DISPLAY Subcommand with a Length Specified... 87

24. Sample Output of the FDISPLAY Subcommand (LINKDEF Operand)... 94

25. Sample Output of the FDISPLAY Subcommand (LINKCTL BSC Operand).. 94

26. Sample Output of the FDISPLAY Subcommand (LINKCTL CTCA Operand).. 94

27. Sample Output of the FDISPLAY Subcommand (ROUTING Operand).. 94

28. FINDMOD Output When a Module Name Is Specified...97

29. FINDMOD Output When an Address Is Specified.. 97

30. Sample Output of the GDISPLAY Subcommand (SGB Operand).. 102

31. Sample Output of a GREGS Subcommand...104

32. Order of String Resolution for the HC Subcommand (Macro)..106

33. Sample Output of an HC Subcommand (Macro).. 107

34. Sample Output of the IUCV Subcommand...110

35. Sample Output of a LOCATE Subcommand with the Increment Operand..112

36. Example Output of the OSPOINT Subcommand... 113

37. Sample Output of a REGS Subcommand for a Virtual Machine Dump..117

38. Output Format of a SYMPTOM Subcommand for a VM Dump...121

39. Sample Output of the TACTIVE Subcommand...122

40. Sample Output of a TIMEDIFF Subcommand (macro).. 125

41. Sample Output of a TIMEDIFF Subcommand (macro) entered with addresses...................................125

42. Sample Output for the TLOADL Subcommand...126

43. Sample Output of a TODCLK Subcommand (macro)... 128

44. Sample Output of a TODCLK Subcommand (macro)... 128

45. Sample Output of a TODCLK Subcommand (macro)... 128

46. Sample Output of a TODCLK Subcommand (macro)... 128

47. Example Output of the TRACE Subcommand (HEX Display)...131

viii

48. Sample Output of the TRACE Subcommand (HEX TSAF Display)... 131

49. Sample Output of the TRACE Subcommand (FORMAT TSAF)...132

50. Sample Output of the TRACE Subcommand (SFS Display)... 132

51. DUMPSCAN BLOCK Tables Diagram...145

52. A Block Definition Record: A Single Field within a Control Block..146

53. A Block Definition: The Group of Records Defining a Single Block..147

54. A Block Table File Containing Multiple Block Definitions.. 147

55. The Block Descriptor Record.. 147

56. Alternate Format for Bit Subrecord.. 149

57. Block Header Record with No Default Settings... 150

58. Block Header Record Set to Default of D... 150

59. Field Record Set to Default of D... 150

60. SAMPLE1 COPY Control Block..184

61. Redefinition of Fields.. 185

62. Bit and Code Definition (Part 1 of 2)...186

63. Bit and Code Definition (Part 2 of 2)...186

64. Contents of the Module Map File..189

65. Compressed Load Map Structure... 191

 ix

x

Tables

1. Examples of Syntax Diagram Conventions...xiii

2. Space Requirements in Cylinders & Blocks for the Load Map File...2

3. Space Requirements in Cylinders & Blocks Per 16 MB of Dumped Storage... 3

4. Instructions for Creating Virtual Machine Load Maps.. 10

5. Using Component-Unique DUMPSCAN Subcommands...10

6. Maps Processed by the MAP Command... 27

7. Subcommands Used Only within a MACRO..39

8. Supported Dump Types...51

9. Subcommands for DUMPSCAN...51

10. Block Descriptor Record Format.. 148

11. Block Descriptor Record–BIT Subrecord Format.. 149

12. DMPINREC Control Block... 156

13. HCPDFIR Control Block.. 156

14. Module Map File Header Format.. 189

15. Entry Format... 191

16. Trailer Format..191

 xi

xii

About This Document

This document is designed to assist those who use the IBM® z/VM® Dump Viewing Facility in performing
problem determination (PD) and problem source identification (PSI). It provides a description of the
Dump Viewing Facility usage information and reference material. The Dump Viewing Facility analyzes and
manages system software problems interactively under the conversational monitor system (CMS).

Intended Audience
This document is provided to assist system programmers, service personnel, and those who use the
Dump Viewing Facility to analyze dump data in order to perform problem determination (PD) and problem
source identification (PSI).

This information is written for people who have experience with basic debugging techniques. An
understanding of the z/VM components and other licensed programs is also helpful.

Note: The VM Dump Tool is the only supported way to look at a CP dump, but can also be used to look at
VMDUMPs of other components of VM. See z/VM: VM Dump Tool, for more information.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xiii.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

© Copyright IBM Corp. 1991, 2022 xiii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

xiv About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

About This Document xv

Using the Online HELP Facility
You can receive online information about the commands described in this book using the z/VM HELP
Facility. For example, to display a menu of DUMPVIEW commands, enter:

help dumpview menu

To display information about a specific DUMPVIEW command (ADDMAP in this example), enter:

help dumpview addmap

You can also display information about a message by entering one of the following commands:

help msgid or help msg msgid

For example, to display information about message HCSDSS200I, you can enter one of the following
commands:

help hcsdss200i or help hcs200i or help msg hcs200i

For more information about using the HELP Facility, see the z/VM: CMS User's Guide. To display the main
HELP Task Menu, enter:

help

For more information about the HELP command, see the z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

Where to Find More Information
For information about related publications, see the “Bibliography” on page 197.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xvi z/VM: 7.3 Dump Viewing Facility

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1991, 2022 xvii

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xviii z/VM: 7.3 Dump Viewing Facility

Summary of Changes for z/VM: Dump Viewing Facility

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6284-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

GC24-6284-02, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

GC24-6284-01, z/VM 7.1 (January 2020)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.1.

Improved information about defining crypto resources to z/VM guests
A new chapter has been added to z/VM: CP Planning and Administration to provide improved information
about how to define crypto resources to z/VM guests. See Crypto Planning and Management for more
information.

Crypto terminology in z/VM has changed to eliminate confusion.

GC24-6284-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1991, 2022 xix

xx z/VM: 7.3 Dump Viewing Facility

Chapter 1. Introduction

The Dump Viewing Facility analyzes and manages system software problems interactively under the
conversational monitor system (CMS).

Major Functions
The Dump Viewing Facility assists in the following tasks:

• Interactively analyzing dump data
• Formatting and printing dump data
• Reducing trace tables created by trace service tools
• Recognizing duplicate problems

Interactively Analyzing Dump Data
The Dump Viewing Facility provides a variety of commands and subcommands that allow the user to
interactively locate and display dump data. Use the Dump Viewing Facility to do the following:

• Display real program status words, registers, clocks, and the timer
• Display formatted data from any z/VM control block or data area
• Display data in hexadecimal and EBCDIC
• Display data using 24- or 31-bit indirect addressing
• Display a chain of control block addresses in hexadecimal or display the data within the control blocks
• Locate a hexadecimal or EBCDIC string in the dump
• Print output from any DUMPSCAN subcommand
• Determine a module entry point and displacement, given an address
• Determine an address, given a module or entry-point name
• Scroll forward or backward while viewing hexadecimal data
• Create a load map of module names and their entry points with addresses and displacements
• Assign symbolic names to subcommands
• Format, reduce, and scroll through trace tables within a dump dumps

Formatting and Printing Dump Data
The Dump Viewing Facility uses a dump file created by the DUMPLOAD utility to print summary reports.
The summary reports available are as follows:

• Module load maps
• Symptom records
• General processor information
• Dump ID (for virtual machine dumps only)

Using the PRTDUMP command, you can print all pages of dumped storage in hexadecimal.

Recognizing Duplicate Problems
The Dump Viewing Facility provides the VIEWSYM command to help you identify duplicate problems.
Whenever a dump is requested, a symptom record is created. A symptom recording virtual machine can
retrieve these symptom records and place them in a repository. You can then use the VIEWSYM command
to examine the repository for duplicate symptom records.

Introduction

© Copyright IBM Corp. 1991, 2022 1

Types of Dumps the Dump Viewing Facility Processes
You can use the Dump Viewing Facility to process any of the following kinds of dumps:

• VM (virtual machine) dumps include the following:

– CMS (conversational monitor system)
– GCS (group control system)
– Pass-Through. In this document, Pass-Through refers to both the VM/Remote 3270 Display Option

and the Pass-Through Virtual Machine (PVM).
– RSCS (Remote Spooling Communications Subsystem)
– SFS (shared file system)

Note: The Coordinated Resource Recovery (CRR) server uses SFS facilities to take a dump. All
discussions of SFS dumps in this manual therefore include CRR dumps.

– TSAF (transparent services access facility).

For information about processing CP dumps, see z/VM: VM Dump Tool.

Requirements for Using the Dump Viewing Facility
To use all the functions the Dump Viewing Facility provides to examine a dump, you need the following:

• The Dump Viewing Facility installed on your system.

For more information about installing the Dump Viewing Facility, see z/VM: Installation Guide.
• A copy of the dump or dumps you want to examine that have been processed by DUMPLOAD.
• In some instances, a copy of the load map that describes the system from which your dump was taken.

For more information on when the Dump Viewing Facility requires a load map and how one is created
and processed, see “Using Load Maps” on page 9.

Storage Requirements
The disk storage requirements for the Dump Viewing Facility include space for the dump and the load map
when it is used.

Table 2 on page 2 shows the space requirements in cylinders for CKD/ECKD™ devices or blocks for FBA
devices for the CMS file containing the load map.

Table 2. Space Requirements in Cylinders & Blocks for the Load Map File

BLKSIZE 3380 3390 FBA

512 16 15 23,040

1024 14 13 18,720

2048 12 10 14,400

4096 11 9 12,960

After processing with the Dump Viewing Facility MAP command, the Dump Viewing Facility module map
fits on 1 cylinder of CKD/ECKD devices or 1440 blocks of FBA disk space.

Table 3 on page 3 shows the space requirements in cylinders for CKD/ECKD devices or blocks for
FBA devices for each 16 MB of dumped storage with the Dump Viewing Facility module map appended
dynamically or appended by the ADDMAP command. (For DASD types other than 3380 or 3390, you must
calculate an equivalent amount of space.)

Introduction

2 z/VM: 7.3 Dump Viewing Facility

Table 3. Space Requirements in Cylinders & Blocks Per 16 MB of Dumped Storage

BLKSIZE 3380 3390 FBA

512 34 36 52,700

1024 36 34 48,960

2048 31 27 38,880

4096 28 23 33,120

Causes for a Dump
In z/VM, dumps can be initiated by hardware, software, or a user. The cause of the dump determines the
type of dump: CP, virtual machine, or stand-alone. For instance, if a machine check occurs, a CP dump
results. If a user enters the CP VMDUMP command in a CMS virtual machine, a virtual machine dump
results. For more information on CP dump, see z/VM: VM Dump Tool.

Note: If CP is unable to take an abend dump, you can initiate a stand-alone dump.

To take a stand-alone dump, use the stand-alone dump utility. For more information on creating the
stand-alone dump utility, see z/VM: CP Planning and Administration, and for more information on running
the stand-alone dump utility program see z/VM: System Operation.

Hardware-Initiated Dumps
Not all hardware errors result in a dump being taken. Some examples of hardware errors that do result in
dumps are:

• Machine checks in the central processor
• Storage checks in main storage
• Channel checks in the I/O channels

Some hardware errors cause a dump to be taken immediately as a result of a machine check condition.
Other errors may alter the condition of the hardware (for example, a processor or main storage) in a
manner that eventually will cause CP to detect an abnormal condition and take an abend dump.

If a dump is taken, it may contain symptoms of the hardware error. You may find additional symptoms
by examining the hardware error log in the error-recording cylinders, using the environmental recording,
editing, and printing (EREP) facility, and by examining messages sent to the system operator's console.

Software-Initiated Dumps
Generally, a software error occurs when a sequence of instructions executed by a processor results in a
condition that is incompatible with the design of the software system. Software errors have a variety of
symptoms. Some typical symptoms are
Symptom

Software Error
Loop

A sequence of instructions is executed over and over again, infinitely.
Wait

The software system cannot find work to do, or it encounters a condition that cannot be resolved.
Lockout

A user ID has become disabled, nondispatchable, or has no work-tasks to be run.
Storage overlay

A program has stored data in the wrong location in real storage.
Invalid data

A system control block or data area contains data that is inconsistent or erroneous.

Introduction

Chapter 1. Introduction 3

Invalid address
A control block or data area contains an address that is outside the storage areas to which the
program has access; or, a control block or data area points to a nonexistent control block. Because
some addresses are generated by programs from data in control blocks, an invalid address can be
generated if the data is in error.

Invalid instructions
An instruction is found that does not conform to the system architecture, possibly because it has been
modified in main storage.

Invalid addresses and instructions result in program checks. The other kinds of software errors are
usually detected by CP as abnormal conditions. Both result in abnormal termination of CP and a dump
being taken.

User-Initiated Dumps

System Restarts
A system restart is typically initiated by the system operator and results in a dump being taken. The
system is usually restarted when a problem in the hardware or software results in a wait, loop, or lockout
of one or more important user IDs, or in degraded performance. In these situations, it is generally
desirable to reinitialize CP. System restart can perform this reinitializing and capture the circumstances of
the problem in the dump.

VMDUMP Command
The CP command, VMDUMP, produces a dump of all or selected pages of storage that appear real to your
virtual machine (second-level storage), including VM data spaces. In order for the resulting dump to be
usable by the Dump Viewing Facility, you must use the DUMPLOAD command to load the dump into a CMS
file. The dump includes selected information for the virtual processor on which you entered the VMDUMP
command.

SNAPDUMP Command
The CP command, SNAPDUMP, will produce a dump of the entire z/VM system and is identical, in format,
to a hard abend dump but will not result in system termination. This type of dump might be especially
helpful when trying to debug a "hung user" type of problem or when it is impossible to shut the system
down for dump generation and analysis. The SNAPDUMP command value settings can be altered by the
CP SET ABEND and SET DUMP commands. For more information on the exact syntax of the SNAPDUMP
and VMDUMP commands, see z/VM: CP Commands and Utilities Reference.

Location of a Dump
The dump taken is sent to a tape or to the virtual reader of a specific virtual machine (user ID). If a dump
is to be analyzed using the Dump Viewing Facility, it must be directed to tape or to a virtual reader. The
destination of the dump is determined by using the CP SET DUMP command. For more information on the
SET DUMP command, see z/VM: CP Commands and Utilities Reference.

Use of Dump Information
You can use data from a dump to help locate the source of the problem that caused the dump. As
previously discussed, in z/VM a dump may result from any of the following:

• A hardware error
• A software error
• The system operator initiating a system restart
• A user issuing either the CP SNAPDUMP or VMDUMP commands

Introduction

4 z/VM: 7.3 Dump Viewing Facility

Use the following two main steps to narrow your search for the cause of the dump:
Problem determination

Finding out whether the problem is caused by hardware or software.
Problem source identification

Isolating the problem in a particular component of the software system.

After you locate the error in the software, you can use error messages and the symptom record to refine
your analysis of the problem further.

Problem Determination
The goal of problem determination is to discover whether the dump was the result of a hardware or
software error. Sometimes the clues are obvious. For example, if a machine check, channel check, or
storage check preceded the dump, the problem is likely to be a hardware error. If the dump is a CP abend
dump, the cause is more likely to be a software error. When a restart dump has been taken, you will
probably have to examine the conditions of both the hardware and software to make the determination.

After you have determined whether the problem is hardware or software, problem determination is
complete. The discussion in this document focuses on problem source identification for software.

Problem Source Identification
Problem source identification is the second step in analyzing a software problem. It consists of isolating
the cause of a problem to a particular component of the software system. z/VM has eight components:

• Control program (CP)
• Conversational monitor system (CMS)
• Service EXECs (VMSES/E)
• Dump Viewing Facility
• Procedures language (VM/REXX)
• Group control system (GCS)
• Transparent services access facility (TSAF)
• APPC/VM VTAM® support (AVS)

In addition to these components, there are several program products that can run in the z/VM
environment. Problem source identification is complete when you have determined the particular
component or program in which the error occurred.

Using Error Messages
One method of determining where the problem occurred is to examine any error messages. These
messages usually identify the immediate cause of the dump. For example, a CP abend dump is identified
as such by a message. CMS and the Dump Viewing Facility also issue messages when they detect errors.
Similar messages may be sent to the system operator's console. You can look at CP, CMS, and Dump
Viewing Facility messages in z/VM: Other Components Messages and Codes. The message descriptions
identify the failing component and briefly describe the error conditions encountered.

If a message indicates that an error occurred in CP, you can use the message code to determine which
module in CP encountered the error. The scenarios in this chapter describe this in more detail.

Using the Symptom Record to Identify Duplicate Problems
When a virtual machine is dumped by the VMDUMP command, a symptom record is created and
included in the dump. In addition, a copy of this symptom record is sent to the Symptom Record
Recording virtual machine. The symptom record summarizes data about the state of the system when
the dump was taken. The Dump Viewing Facility can format the symptom record for display and
printing. For additional information on symptom records, see the SYMPTOM subcommand in Chapter

Introduction

Chapter 1. Introduction 5

5, “DUMPSCAN Subcommand Reference,” on page 51, and the VIEWSYM command in Chapter 3,
“Command Reference,” on page 21.

You can use the keywords and formatted data from the symptom record to determine whether the
problem has occurred on your system before. You can compare the symptom record data in a new dump
to symptom records in dumps that already exist, keyword by keyword. A match on all the data indicates
that the new problem may be a duplicate.

You can identify duplicate problems by using the VIEWSYM command to search the repository of
symptom records. You can also ask the IBM Support Center to search the IBM database. This database
contains information about all the problems reported to IBM by z/VM users.

Commands Associated with the Dump Viewing Facility
You can use the following commands with the Dump Viewing Facility: ADDMAP, DUMPSCAN, MAP,
PRTDUMP, and VIEWSYM.

Figure 1. Command Structure for the Dump Viewing Facility's ADDMAP, DUMPSCAN, MAP, and PRTDUMP
Commands

Introduction

6 z/VM: 7.3 Dump Viewing Facility

Note: The following information on the MAP and ADDMAP commands is required for non-CP dumps.
For more information on when you do and do not need to use the MAP and ADDMAP commands, see
“Creating Load Maps” on page 9.

1. The MAP command compresses the z/VM load map created at system generation time into a format
that the Dump Viewing Facility can process. The compressed module map correlates module and
entry-point names with addresses in the dump.

2. Use the ADDMAP command to append the compressed module map to the CMS file containing the
dump processed by the DUMPLOAD command. For more information on the DUMPLOAD command,
see z/VM: CP Commands and Utilities Reference.

3. Use the DUMPSCAN command to interactively view virtual machine dumps. The DUMPSCAN
subcommands are described in Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51 of
this manual. Use the VM Dump Tool to process CP and stand-alone dumps.

4. Use the PRTDUMP command to print the summary reports available through the Dump Viewing
Facility. Each summary report contains data the problem solver most frequently requires.

PRTDUMP can also print dumped storage.
5. Use the VIEWSYM command to help you identify duplicate problems. Whenever a dump is requested,

a symptom record is created. A symptom-recording virtual machine can retrieve these symptom
records and place them in a repository. You can then use the VIEWSYM command to examine the
repository for duplicate symptom records.

Besides searching for duplicate symptom records, the VIEWSYM command also permits you to create
a summary list of symptom records and to examine individual symptom records.

Figure 1 on page 6 illustrates the command structure for the ADDMAP, DUMPSCAN, MAP, and PRTDUMP
commands. Figure 2 on page 7 illustrates the command structure for the VIEWSYM command.

Figure 2. Command Structure for the Dump Viewing Facility's VIEWSYM Command

Introduction

Chapter 1. Introduction 7

Servicing the Dump Viewing Facility
Corrective and preventive maintenance of the Dump Viewing Facility is performed using standard z/VM
procedures. For more information on these maintenance procedures, see z/VM: Service Guide.

Writing Dump Data to Tape
Use the following commands to write dump data to tape:

1. Enter the DUMPLOAD command to place the dump on your A-disk.
2. Rename the dump file name with the CMS RENAME command. For example, when you enter the

DUMPLOAD command, the dump file can be named PRB00001 DUMP0001 A. You may rename this file
by issuing the following command:

rename prb00001 dump0001 a cpdump01 dump0001 A

3. Finally, copy the dump to tape using the CMS TAPE DUMP command. The format for this command is:

tape dump filename filetype filemode

For more information on the CMS commands, see z/VM: CMS Commands and Utilities Reference.

Introduction

8 z/VM: 7.3 Dump Viewing Facility

Chapter 2. Usage Guide

This chapter describes how to create and use different dumps.

Preparing a Dump for Use with the Dump Viewing Facility
If you wish to use the Dump Viewing Facility to analyze a dump, you first have to prepare the dump by
following these steps:

1. Log on with the appropriate user ID.

This user ID must:

• Be the user ID to which the dump was sent, if the dump was sent to a virtual reader
• Have enough unused space on its A-disk to hold the dump file.

For the amount of storage required for dumps, see the “Storage Requirements” on page 2
2. Use the DUMPLOAD command to load the dump into a CMS file.

Issuing the DUMPLOAD command puts the dump in a CMS file on the A-disk, PRBxxxxx DUMPnnnn A,
where xxxxx is a number from 00000 to 99999, and nnnn is a number from 0001 to 9999, depending
on the IDs of the dump files already on the A-disk.

If you wish to print summary information about a dump, use the PRTDUMP command (see “PRTDUMP
Command” on page 29).

3. If dump files PRB00000 through PRB99999 already exist, DUMPLOAD erases all the PRB00000 files
and uses the file name for the current dump. If you wish, rename the dump file by using the CMS
RENAME command.

For more information on the CMS RENAME command, see z/VM: CMS Commands and Utilities
Reference.

When renaming the file, keep the general format of filename DUMPnnnn A. The Dump Viewing Facility
allows file names in the form xxxxxxxx, where xxxxxxxx is a 1- to 8-character string that may consist of
the characters 0-9, A-Z, @ (at sign), # (pound sign), - (hyphen), _ (underscore), + (plus sign), : (colon),
and $ (dollar sign).

4. Create and append a module map to the dump you want to examine as follows:

• Use the MAP and ADDMAP commands.

The MAP command creates a module map from a load map. The ADDMAP command appends the
newly created module map to the dump. For additional information on using of these commands, see
“Creating Load Maps” on page 9 and “Creating Module Maps” on page 10 in this chapter.

Using Load Maps
The Dump Viewing Facility does not dynamically generate module maps for virtual machine dumps.
Therefore, it requires a virtual machine load map.

Creating Load Maps
You should create and save a load map whenever you generate a new system. This load map is required
for generation of the Dump Viewing Facility module map for virtual machine dumps.

Virtual Machine Load Maps Table 4 on page 10 identifies the publication that describes the procedure
for creating the specific virtual machine load map.

Usage Guide

© Copyright IBM Corp. 1991, 2022 9

Table 4. Instructions for Creating Virtual Machine Load Maps

Load Map Reference

CMS z/VM: Service Guide

GCS z/VM: Service Guide

PVM VM/SP™ Pass-Through Guide and Reference.

RSCS z/VM: RSCS Networking Diagnosis

Note: SFS (including CRR), AVS, and TSAF do not have nuclei, so you cannot create load maps for them.
Consult the CMS load map.

Creating Module Maps
1. For virtual machine dumps, use the following two-step method, which employs the MAP and ADDMAP

commands with the required virtual machine load map(s):

a. Use the MAP command to convert the load map into a module map.
b. Use the ADDMAP command to append the module map to the dump you specify in the command.

For more information on using these commands, see Chapter 3, “Command Reference,” on page
21.

This method requires that the dump type is supported by an entry in the HCSTAB table. Entries
can be added to this table, or existing entries can be modified, by using the procedure described in
Appendix A, “Using Attachment Interfaces,” on page 139 under “Modifying the HCSTAB Table” on
page 139.

The dump file is now ready for viewing by using the Dump Viewing Facility.

Viewing Dumps
To view a dump, use the Dump Viewing Facility DUMPSCAN command. For example, if the dump you wish
to analyze is in the file named HUNGUSER DUMP0001 A, you can enter the command:

dumpscan hunguser

When the dump file has been accessed, you are notified by the READY status message. You are in an
XEDIT environment ready to enter DUMPSCAN subcommands on the command line.

Use the subcommands of the DUMPSCAN command to view the data in the dump file. These
subcommands are explained in Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51.

Some types of dumps have component-unique DUMPSCAN subcommands. Table 5 on page 10 shows
where to find information about using these subcommands.

Table 5. Using Component-Unique DUMPSCAN Subcommands

Virtual Machine
Dump Type

Reference

CMS Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51

GCS Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51

TSAF Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51

AVS Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51

SFS Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51

PVM VM/SP Pass-Through Facility Logic

Usage Guide

10 z/VM: 7.3 Dump Viewing Facility

Table 5. Using Component-Unique DUMPSCAN Subcommands (continued)

Virtual Machine
Dump Type

Reference

RSCS z/VM: RSCS Networking Diagnosis

Using the Session File
The Dump Viewing Facility uses full-screen XEDIT functions so that you can scroll back and forth through
dump data in full-screen mode. You can scroll through any data previously viewed without reentering
the command to display the data. You can edit your session file while in the Dump Viewing Facility. This
annotation feature lets you make comments within a dump session file before passing the dump on to the
next level of problem determination.

The dump viewing session can be filed on your A-disk with the XEDIT FILE subcommand. When you view
the same dump later, the saved file is reactivated and the new session is appended to the dumpname
VIEWnnnn file containing the previous sessions.

Virtual Machine Dumps in an XC Environment
Dumps of address spaces produce a separate dump file for each address space. All such related XC dump
files have the same file name; their file types are numbered sequentially from "DUMP0001". (See the
VMDUMP and DUMPLOAD commands in the z/VM: CP Commands and Utilities Reference for more details
on how dumps are created for XC virtual machines and how the CMS dump files are named.)

You can use the ASID subcommand of DUMPSCAN to list all the related dumps (see “ASID Subcommand”
on page 63). Output from the DUMPSCAN subcommands ASID and ACCLIST (which display XC
architecture related information) is dependent on DUMPSCAN having access to these related address
space dumps, therefore:

• The file types for these CMS dump files should not be changed.
• Changes to the file name should be made consistently for all the files. The Dump Viewing Facility uses

the file name to relate files from the same dump. Conversely, you should not have duplicate file names
for different dumps, even when the two sets of dump files are accessed at different file modes.

ASID and ACCLIST issue error messages when any dump file containing this special information cannot be
accessed.

For XC virtual machine dumps only, the output from the SYMPTOM subcommand of DUMPSCAN displays
a count of the total number of address spaces that were dumped by the CP VMDUMP command or by
DIAGNOSE code X'94'. With this information, you can determine what other CMS dump files to look for,
because the virtual machine dump files created by DUMPLOAD have sequentially numbered file types,
beginning with DUMP0001.

Like the SYMPTOM subcommand, the VIEWSYM command displays a count of the number of address
spaces dumped by the CP VMDUMP command or by DIAGNOSE code X'94'. See “VIEWSYM Command”
on page 33 for the VIEWSYM Command Menu.

Use the CMS FILELIST command to locate dump files. Search on the file name to list the related dumps.

Viewing Several Dump Files at a Time
The DUMPSCAN session file has the same file name as the dump file. The file type is VIEWnnnn where
nnnn is the number from the dump file type, DUMPnnnn.

The DUMPSCAN subcommand of the DUMPSCAN command works in a manner similar to that of the
XEDIT subcommand of XEDIT. When the DUMPSCAN subcommand is issued with an operand specifying
the name of an additional dump file to be viewed, the new file is added to the current DUMPSCAN
command file ring, and the current screen is updated to reflect the new dump being viewed. If the user is
in a split-screen mode, only the screen where the subcommand was issued is updated.

Usage Guide

Chapter 2. Usage Guide 11

If the DUMPSCAN subcommand is entered with no operands, it switches to the next VIEWnnnn file in the
current DUMPSCAN command file ring. If there are no other VIEWnnnn files, DUMPSCAN remains at the
current dump file.

If the DUMPSCAN XEDIT subcommand is entered with an operand of XEDIT, then the next file in the
XEDIT command file ring is displayed.

Now that the DUMPSCAN command and subcommand share the same name, the user needs to be aware
of which DUMPSCAN has been issued when viewing multiple dumps. For example, if "CMS DUMPSCAN
fn ft" is issued from a DUMPSCAN command line, then the DUMPSCAN command is invoked, resulting
in the creation of a new DUMPSCAN command file ring that is independent of the existing ring. It is
therefore possible to view the same dump from two separate file rings, which can lead to some confusion.
If "DUMPSCAN fn ft" is issued from a DUMPSCAN command line, then the DUMPSCAN subcommand gets
control and the new dump file is added to the existing DUMPSCAN ring if it does not already exist in the
ring; otherwise, the DUMPSCAN subcommand positions the user at the existing dump view file.

Virtual Machine Dump Formats
The format, or "type", of a virtual machine dump (specified with the FORMAT option on the CP VMDUMP
command) may not be known at the time the dump is taken. You may have to tell the Dump Viewing
Facility the type of VMDUMP that is being viewed before these Dump Viewing Facility functions can be
performed:

• Adding module maps via the ADDMAP command
• Invoking extraction and formatting routines
• Using the BLOCK subcommand table interface.

The FORMAT subcommand of DUMPSCAN allows the user to change the type of the virtual machine dump
being viewed (see the description for the FORMAT subcommand in Chapter 5, “DUMPSCAN Subcommand
Reference,” on page 51). If the STORAGE option of the PRTDUMP command is used to print the storage
from the dump, and if the format or type of virtual machine dump had previously been set either by
the CP VMDUMP command or by a previous invocation of the DUMPSCAN FORMAT subcommand, then
the dump type must be changed to the default value "FILE" by reissuing the FORMAT subcommand
of DUMPSCAN prior to issuing PRTDUMP. To return to the original dump type environment, enter the
FORMAT subcommand again and specify the desired virtual machine dump type.

Viewing Dumps of Licensed Programs and z/VM Features
The Dump Viewing Facility provides additional support for viewing data particular to specific virtual
machine dumps. With this support, a user is able to find and format data in licensed programs' virtual
machine dumps and display it using the Dump Viewing Facility.

The Dump Viewing Facility provides this support for dumps taken from the following:

• Conversational Monitor System (CMS)
• Data Facility Storage Management Subsystem for VM (DFSMS/VM)
• Group Control System (GCS)
• Pass-Through Virtual Machine (PVM)
• Remote Spooling Communications System (RSCS)

See Appendix A, “Using Attachment Interfaces,” on page 139 for more information regarding this support.

Writing DUMPSCAN Macros
The DUMPSCAN subcommands help you to analyze dump data interactively, and in most situations there
is a subcommand that will give you the needed data in a usable format. However, you can write macros
to customize and automate the powers of DUMPSCAN, creating your own powerful tools to analyze dump
data. By writing macros, you can:

• Expand the basic subcommand set

Usage Guide

12 z/VM: 7.3 Dump Viewing Facility

• Tailor the basic subcommand output for

– Dump data summary reports in a specific format
– A more readable form, such as changing technical jargon to English
– Additional annotations
– Additional time/date/tracking information.

• Eliminate repetitive tasks.

This section explains how to write scan macros using DUMPSCAN subcommands and describes the
DVFXEDIT profile. You should be familiar with the REstructured eXtended eXecutor (REXX) language. See
the z/VM: REXX/VM User's Guide and the z/VM: REXX/VM Reference for more information on REXX. You
should also be familiar with XEDIT. See the z/VM: XEDIT User's Guide for more information on XEDIT.

This section describes how to use some XEDIT subcommands, but it is not intended to give you a
complete guide to writing macros. For more examples on writing and using DUMPSCAN macros, refer to
the README SAMPLE file which is shipped as part of the Dump Viewing Facility product.

What Is a DUMPSCAN Macro?
A DUMPSCAN macro is a file you invoke from the DUMPSCAN environment. This environment exists
whenever DUMPSCAN is being used.

You execute a macro the same way you execute a DUMPSCAN subcommand. Type the macro name on
the command line and press Enter or invoke the macro by using a PF-key. See the “SCAN Subcommand”
on page 49 for further information on PF-key assignments. A macro can be executed by entering only its
name or its name and any parameters needed for its execution.

A macro file can contain:

• DUMPSCAN subcommands
• XEDIT subcommands
• REXX instructions
• REXX or EXEC2 EXECS
• CMS and CP commands.

Attention: A DUMPSCAN macro file must never contain a command or subcommand with the
same name as the macro. If it does, the macro will invoke itself recursively. To avoid recursion,
change the name of the DUMPSCAN macro file.

Creating a Macro File
A macro is a normal CMS file. It may be created in any of the ways that CMS provides for file creation. Like
any CMS file, a macro is identified by file name, file type, and file mode. The macro must conform to these
rules:

• File name may be 1 to 8 alphabetic characters in length
• File type must be SCAN, EXEC, or XEDIT
• File mode can be any of the disks to which you have write access, usually your A disk.

Using DUMPSCAN Subcommands in a Macro
A macro can contain any DUMPSCAN subcommand. Most subcommands look for specific data in the
dump, format it, and write it to the session record. However, the DUMPSCAN macro subcommands are
meaningful only from within a macro, because they pass information to VM/REXX.

What Is an Environment?
When you write a macro, you need to know which command processor is interpreting your command. The
interpreter looks at the instructions first within a macro. If the instructions are not XEDIT instructions,

Usage Guide

Chapter 2. Usage Guide 13

they are passed to the environment for interpretation. The environment is the command processor that
gets the instructions after VM/REXX has done any symbolic substitution.

You can specify the environment with the REXX instruction ADDRESS:

• ADDRESS SCAN causes the macro to be passed to DUMPSCAN.
• ADDRESS XEDIT causes the macro to be passed to XEDIT.
• ADDRESS CMS causes the macro to be passed to CMS.
• ADDRESS by itself causes the macro to be passed to the default environment.

When you use XEDIT as the file type for your macro, XEDIT is the default environment. When you use
EXEC as the file type for your macro, CMS is the default environment. When you use SCAN as the file type
for your macro, DUMPSCAN is the default environment.

DUMPSCAN Macro Subcommands
FINDSTRG and READSTRG are subcommands that you can use only from within a macro. READSTRG lets
you read from the dump and place that data directly into a REXX variable. FINDSTRG lets you locate data
in the dump and put the address of the matching data into a REXX variable. With these two commands,
you can extract and format any addressable data within the dump.

NOTE is a subcommand for annotating the session file. It can also be used to annotate the print file
produced by DUMPSCAN subcommands when the PRINT ON subcommand is used.

The remaining DUMPSCAN subcommands can be used in a macro, but the formatted output from those
subcommands is placed in the session file. If you need this subcommand output, you can do either of the
following:

• Use the DVFSTACK macro subcommand to get the formatted output into the program stack. For more
information, see “DVFSTACK Subcommand” on page 42.

• Use XEDIT subcommands to get the formatted output into the program stack or into REXX variables.

See “DUMPSCAN Macro Examples” on page 15 for an example of how the output of the CPU
subcommand is taken from the session file. Not all DUMPSCAN subcommands are used in the examples,
but the technique is the same.

Communicating between the Editor and the Interpreter
The READ and EXTRACT subcommands of XEDIT can supply the macro with data from the DUMPSCAN
command line or from the session file. READ takes information from the screen and places it in the
program stack. The information in the stack can be the command line, changed lines, prefix area, and
program function key definitions (PF keys). The macro gets the information from the program stack with
the REXX PULL instruction. EXTRACT can supply a macro with information about internal XEDIT variables
or about file data. The information is returned in one or more REXX variables, which can be examined or
used by the macro.

READ Subcommand
When a READ subcommand is entered from a macro, the editor redisplays the current screen and waits
for the user to press Enter or a PF key. After a key is pressed, the requested data is placed in the program
stack.

READ operands can be used to specify how much information is placed in the program stack. A
subsequent REXX PULL instruction assigns the data to program variables, and the macro continues.

EXTRACT Subcommand
EXTRACT is issued from a macro. The information is returned in REXX variables. EXTRACT returns
information about editor variable settings. These are needed when the macro changes an XEDIT variable
and restores it before ending. The example under "DUMPSCAN Macro Examples" uses EXTRACT to get
records from the data file and to determine data-file parameters such as the number of records in the file

Usage Guide

14 z/VM: 7.3 Dump Viewing Facility

and the position of the current line. EXTRACT has many options. For a complete discussion of the options,
read the z/VM: XEDIT Commands and Macros Reference.

Displaying Data on the DUMPSCAN Screen
To move prompts and messages from the macro to the DUMPSCAN screen you can use the XEDIT
subcommands MSG, EMSG, CMSG, and INPUT.
MSG

Displays a message on the message line.
EMSG

Displays a message on the message line and sounds the alarm.
CMSG

Displays a message on the command line.
INPUT

Puts the message or text in the session file following the current line and makes the new line the
current line.

DUMPSCAN Macro Examples
The following examples show you how to use a combination of XEDIT subcommands and DUMPSCAN
subcommands to create a new DUMPSCAN function. In Figure 3 on page 15, a new DUMPSCAN
subcommand is created by a macro that displays 16 bytes from a specified offset within the prefix page.
To get the same information using DUMPSCAN subcommands from the command line would require you
to enter the CPU subcommand, write down the prefix page address, add the offset to that address, then
enter the DISPLAY subcommand.

00001 /* DUMPSCAN Subcommand Macro */
00002 /* Display the data at the specified offset from */
00003 /* the failing processor prefix page. */
00004 /* */
00005 Parse arg offset .
00006 Parse source . . macroname .
00007 'EXTRACT/LINE/MSGMODE'
00008 If offset = '' Then Do
00009 Emsg 'Command format is:' macroname 'offset'
00010 Cmsg macroname
00011 exit
00012 end
00013 'EXTRACT/SIZE/'
00014 Address SCAN 'CPU'
00015 ':'size.1+1 'EXTRACT/CURLINE/'
00016 parse var curline.3 pfxpgad .
00017 'SET MSGMODE OFF'
00018 ':'size.1+1 'DEL *'
00019 'SET MSGMODE' MSGMODE.1 MSGMODE.2
00020 ':'line.1
00021 Address SCAN 'Display' d2x(x2d(pfxpgad)+x2d(offset)) 'F OFFSET'
00022 exit

Figure 3. Example of a DUMPSCAN XEDIT Macro

A description of how the macro works follows:

00001 /* DUMPSCAN Subcommand Macro */
00002 /* Display the data at the specified offset from */
00003 /* the failing processor prefix page. */
00004 /* */

An interpreter comment. The first line must be a comment.
00005 Parse arg offset .

Take the first operand and assign it to the variable offset. The period says to disregard any other
operands.

Usage Guide

Chapter 2. Usage Guide 15

00006 Parse source . . macroname .
Get the macro name from CMS. Again, the periods mean that any other file information is not needed.

00007 'EXTRACT/LINE/MSGMODE'
Return the line number at the XEDIT current line and the XEDIT message settings.

00008 If offset = '' Then Do
Check for the required operand. If it was not entered, issue an error message to the user. DO is the
first statement of a series of instructions. This set of statements ends at line 00012.

00009 Emsg 'Command format is:' macroname 'offset'
Tell the user the correct way to use this macro.

00010 Cmsg macroname
Put the macro name back on the command line in case the user wants to try the macro again.

00011 exit
Return control to the caller, because the macro cannot do anything.

00012 end
End the DO statement started at line 00008.

00013 'EXTRACT/SIZE/'
Use the XEDIT EXTRACT subcommand to find the size of the current file.

00014 Address SCAN 'CPU'
Change the environment to SCAN for the following subcommand. SCAN is the name of the DUMPSCAN
environment. CPU is a DUMPSCAN subcommand that lists the CPU names and the prefix page address
of all CPUs contained in the dump.

00015 ':'size.1+1 'EXTRACT/CURLINE/'
Reset the current line to the CPU subcommand first output line and EXTRACT the line into the
CURLINE.3 variable.

00016 parse var curline.3 pfxpgad .
Break the curline variable into its parts and, ignoring some parts, assign the prefix page address to the
pfxpgad variable.

00017 'SET MSGMODE OFF'
Use XEDIT SET to suppress any messages.

00018 ':'size.1+1 'DEL *'
Remove the CPU subcommand output from the file.

00019 'SET MSGMODE' MSGMODE.1 MSGMODE.2
Turn the messages back to their previous settings.

00020 ':'line.1
Reset the current line to its position when you started.

00021 Address SCAN ‘Display’ d2x(x2d(pfxpgad)+x2d(offset)) ‘F OFFSET’
Switch to the DUMPSCAN environment, and after the interpreter works through the calculation, enter
the DUMPSCAN DISPLAY subcommand with the OFFSET operand for 15 bytes.

00022 exit
Indicate that the macro is finished.

Figure 4 on page 17 shows a macro that does the same thing as the one in Figure 3 on page 15, but in a
SCAN environment.

Usage Guide

16 z/VM: 7.3 Dump Viewing Facility

00001 /* DUMPSCAN Subcommand Macro */
00002 /* Display the data at the specified offset from */
00003 /* the failing processor prefix page. */
00004 /* */
00005 Parse arg offset .
00006 Parse source . . macroname .
00007 If offset = '' Then Do
00008 Address 'XEDIT'
00009 Emsg 'Command format is:' macroname 'offset'
00010 Cmsg macroname
00011 exit
00012 end
00013 Address SCAN 'DVFSTACK ON'
00014 Address SCAN 'CPU'
00015 pull pfxpgad .
00016 Address SCAN 'DVFSTACK OFF'
00017 Address SCAN 'Display' d2x(x2d(pfxpgad)+x2d(offset)) 'F OFFSET'
00018 exit

Figure 4. Example of a DUMPSCAN SCAN Macro

DVFXEDIT Profile
DVFXEDIT XEDIT is a macro available with the Dump Viewing Facility that modifies a standard XEDIT
session to the special DUMPSCAN format. This macro can be modified to change the session format to
your preference. You should not change the definition of ENTER.

Assigning Program Function Keys to DUMPSCAN Subcommands
The PF keys default to XEDIT functions in the DUMPSCAN environment, and are assumed to be for XEDIT
functions. You can assign keys to DUMPSCAN subcommands or DUMPSCAN subcommand macros by
putting an XEDIT SET command in a copy of the DVFXEDIT XEDIT macro that you keep on your A-disk.

For example, you may want to assign PF keys 4 and 5 to the DUMPSCAN FORWARD and BACKWARD
subcommands. You would put the XEDIT subcommands SET PF04 SCAN BACKWARD and SET PF05
SCAN FORWARD in your DVFXEDIT XEDIT macro. SET is an XEDIT subcommand name that changes
XEDIT system variables. PF04 is the name of an XEDIT system variable. SCAN is the CMS command that
gives you access to DUMPSCAN subcommand processing. BACKWARD is the name of the DUMPSCAN
subcommand that displays addresses lower than the last addresses displayed.

Scenario 1: Analyzing a CMS Program Exception
In this scenario, CMS has terminated abnormally with an operation exception at address 80000002. The
steps that follow suggest one way that this problem could be analyzed.

Step 1: Checking the Error Messages
The user was notified of the problem by the messages:

 DMSITP143T Operation exception occurred at 80000002 in
 system routine EXEC; re-IPL CMS
 DMSABE2047I AUTODUMP dump started; please wait
 DMSABE1297I Dump has been taken
 DMSDIE3550I All APPC/VM and IUCV paths have been severed.

DMS in the messages indicates that the messages are from CMS. The ITP, ABE, and DIE indicate that
DMSITP, DMSABE, and DMSDIE issued the messages.

The message numbers are 143T, 2047I, 1297I, and 3550I. For more information on these messages, see
the z/VM: Other Components Messages and Codes. Also, online help can be used by issuing:

HELP DMSITP143T or HELP DMS143T or HELP MSG DMS143T

Note: Always start with the first message because this is usually the best indication of the problem.

Usage Guide

Chapter 2. Usage Guide 17

Step 2: Use DUMPLOAD to Process the Dump
Re-IPL CMS and order the reader before issuing the DUMPLOAD command. In the following output, the x
is the version and y.z is the release of your z/VM system.

 dumpload
 HCPEDZ8183I DUMPLOAD z/VM VERSION x RELEASE y.z
 HCPEDZ8150I PROCESSING z/VM DUMP PRB00000 DUMP0001 A
 HCPEDZ8167I VIRTUAL MACHINE DUMP FROM z/VM V0xR0yMz
 HCPEDZ8168I VIRTUAL MACHINE DUMP, FORMAT=CMS,
 DUMPID=
 HCPEDZ8156A DO YOU WANT TO PROCESS THIS DUMP? (YES/NO)
 yes

Step 3: Use DUMPSCAN to Analyze the Dump
The format of the DUMPSCAN command is:

 dumpscan prb00000

 HCSDSS200I PROCESSING FILE PRB00000 DUMP0001 A1 09/22/00 16:56:00
 HCSDSS401I READY, DUMP TYPE IS VM

The DVF session that follows will be contained in an XEDIT file called PRB00000 VIEW0000 A1. This can
be saved at the end of the DVF session by issuing FILE. Because DVF uses XEDIT, the function keys F7
and F8 can be used to scroll backward and forward in the file.

CMS Data Areas and Control Blocks contains the mapping for NUCON (CMS's Nucleus Constant Area)
and PGMSECT (CMS's Program Interrupt Work Area). NUCON is always at address 0 in a CMS dump. The
address of PGMSECT is pointed to by APGMSECT in NUCON, which is at X'654'. The first DVF command
entered is REGS:

----> regs
REGS
CPU ADDRESS - 0000 PREFIX REGISTER - 00000000
GENERAL REGS 0 - 15
 00001000 000081F4 0000001B 00008070 00F53BB8 0000820F 00000001 0000000E
 00000000 00EF0000 00F53960 00EE6748 80F075D2 00EFD268 80F53AD2 00000000
CONTROL REGS 0 - 15
 000110E2 00000000 00000000 00000000 00000000 00000000 FF000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 C2000000 00000000
ACCESS REGS 0 - 15
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
FLOATING POINT REGS 0 - 6
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

TOD CLOCK B4AF5ED0 31C3E701 PSW 00080000 80F53AE2
CLOCK COMPARATOR 00000000 00000000
CPU TIMER FFFFFE1D 034F2419

EXT OLD 030C1000 8107D94C INT CODE 0080 EXT NEW 00080000 80F2 2D88
SVC OLD 00081000 80F19E90 INT CODE 00CC ILC 0002 SVC NEW 000C0000 80F1120E
PGM OLD 000C0000 80000002 INT CODE 0001 ILC 0002 PGM NEW 00080000 813A99F8
MCH OLD 000C2000 80F12130 MCH NEW 00080000 80F3E390
I/O OLD FFFFFFFF FFFFFFFF I/O NEW 00080000 80F10910

According to this dump, the program old PSW (PGM OLD) is 000C0000 80000002 and the INT CODE is
0001, which indicates an operation exception occurred at 0.

Next, the DISPLAY command, (minimum abbreviation is d), is used to look at offset X'654' to determine
the address of PGMSECT:

----> d 654.20
DISPLAY 654
 00000650 00F24B34 000078C8 00001378 00F14180 F6 *.2.....H.....1..*
 00000660 00004F78 00F51A42 0000AB18 00F142DC *..|..5.......1..*
 00000670 00F0F44C 00001000 00F152E4 00F1DA00 *.04<.....1.U.1..*

To obtain only one line of output, enter:

Usage Guide

18 z/VM: 7.3 Dump Viewing Facility

----> d 654.08
DISPLAY 654
 00000650 00F24B34 000078C8 00001378 00F14180 F6 *.2.....H.....1..*

The address of PGMSECT is at 78C8. CMS Data Areas and Control Blocks contains the mapping for
PGMSECT (CMS's Program Interrupt Work Area). Of particular interest is offset 60 which contains the
instruction length and interrupt code and beginning at offset 7C in PGMSECT is PSAVE, which contains the
registers at the time of the program interrupt. To look at the offsets for this control block, it is convenient
to use the DVF Display command with the OFFSET option. Since PGMSECT starts at 78C8, use the DVF
command D 78C8 OFFSET to display the offsets.

----> d 78c8 offset
DISPLAY 78C8 OFFSET
 0000 00000000 00000000 00000000 00000000 F6 *................*
 0010 C5D7C9C5 00000000 00001000 01069FDD *EPIE............*
 0020 00000000 00000001 00000000 00EFD104 *..............J.*
 0030 00EFD420 00EE3D70 00003AC0 0106AB0C *..M.............*
 0040 01069B0D 00000000 81068B0E 00EFD268 *........a.....K.*
 0050 8106A00A 00000000 000C0000 80000002 *a...............*
 0060 00020001 00000000 00000000 00000000 *................*
 0070 00000000 00000000 00000000 00001000 *................*
 0080 01069FDD 00000000 00000001 00000000 *................*
 0090 00EFD104 00EFD420 00EE3D70 00003AC0 *..J...M.........*
 00A0 0106AB0C 01069B0D 00000000 81068B0E *............a...*
 00B0 00EFD268 8106A00A 00000000 00000000 *..K.a...........*
 00C0 00000000 00000000 00000000 00000000 *................*
 00D0 00000000 00000000 00000000 00000000 *................*
 00E0 00000000 00000000 00000000 00000000 *................*
 00F0 00000000 00000000 00000000 00000000 *................*
 0100 00000000 00000000 00000000 00000000 *................*
 0110 00000000 00000000 00000000 00000000 *................*
 0120 40404040 40404040 40404040 40404040 * *
 0130 40404040 40404040 00000000 00000000 * *
 0140 00000000 00000000 00000000 00000000 *................*

Offset 60 in PGMSECT is 00020001: ILC 0002 and INT CODE 0001. Beginning at offset 7C in PGMSECT
are registers 0-15. Because this operation exception occurred at low core 0, it is suspicious that register
15 contains a 0. CMS most often uses a BALR 14,15. If Register 15 contains a zero, then CMS probably
branched and linked there, and Register 14 will probably contain the return address of the BALR, in this
case, 8106A00A.

----> d 106a00a.40
DISPLAY 106A000
 0106A000 41110001 58F00328 05EF12FF 4780A51B F4 *.....0........v.*
 0106A010 9110D22E 4780A513 41600006 45E09264 *j.K...v..-....k.*
 0106A020 41600019 47F0A849 5010D200 BF6FD1BC *.-...0y.&;K..?J.*
 0106A030 4780A61D 95E7D22C 4780A61D 5010D350 *..w.nXK...w...L.*

At address 106A008 is 05EF (BALR 14,15).

The previous instruction at 106A004 is 58F00328 (L instruction of register 15 with the contents at
X'328'). From NUCON, low core 328 is NUCAFROC that is the address of DMSFROBC, which should
contain an address in the CMS nucleus. Displaying 328 shows that this contains 0.

----> d 328.30
DISPLAY 328
 00000320 00000000 00000000 00000000 00F1406C F6 *.............1 %*
 00000330 00F14078 00F14084 00000000 00000000 *.1 ..1 d........*
 00000340 0000B3A0 00009170 00000000 00003C60 *......j........-*
 00000350 00003C60 00000000 00000000 00000000 *...-............*

Step 4: Summarizing the DUMP Analysis
The operation exception occurred when a BALR to storage management module DMSFROBC failed
because the address in NUCON is zero. There are two possible causes for this problem. One possibility
is that the CMS nucleus was built incorrectly. If IPL CMS followed by D 328 does not show the correct
nucleus address of DMSFROBC, then the systems programmer needs to rebuild CMS properly. The more
likely possibility is that DMSFROBC was overlayed. The dump does not indicate how NUCON 328 became
zero, but because DMSFROBC is a nucleus constant, the CP trace command:

Usage Guide

Chapter 2. Usage Guide 19

 CP TRACE STORE INTO 328

would indicate how the overlay occurred.

Usage Guide

20 z/VM: 7.3 Dump Viewing Facility

Chapter 3. Command Reference

In this chapter, the Dump Viewing Facility commands are described in alphabetic order. The description of
each command includes format, operands, return codes, options, and responses, if any. Where applicable,
usage notes further describe the characteristics of the command. For more information on messages,
see z/VM: Other Components Messages and Codes. You enter Dump Viewing Facility commands from a
terminal attached to a CMS virtual machine.

Using the Online HELP Facility
You can receive online information about the commands described in this document using the z/VM HELP
Facility. For example, to display a menu of DUMPVIEW commands, enter:

help dumpview menu

To display information about a specific DUMPVIEW command (ADDMAP in this example), enter:

help dumpview addmap

You can also display information about a message by entering one of the following commands:

help msgid or help msg msgid

For example, to display information about message HCSDSS200I, you can enter one of the following
commands:

help hcsdss200i or help hcs200i or help msg hcs200i

For more information about using the HELP Facility, see the z/VM: CMS User's Guide. To display the main
HELP Task Menu, enter:

help

For more information about the HELP command, see the z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

© Copyright IBM Corp. 1991, 2022 21

ADDMAP Command

ADDMAP mapfile

fn
DUMP0001 *

ft
*

fm

Purpose
Use the ADDMAP command to append virtual machine module maps.

Operands
mapfile

is the file name, file type, and file mode of the input CMS file containing the module map.
fn

is the file name of a CMS file containing the dump to which you want the module map appended.
ft

is the file type of a CMS file containing the dump to which you want the module map appended. The
default is DUMP0001.

*
fm

is the file mode of the CMS file containing the dump to which the module map will be appended. The *
is the default.

Usage Notes
1. If you add an incorrect map to a dump, you can start ADDMAP again to add the correct map to the

dump.
2. In order to use the ADDMAP command, the load map must first have been processed by the MAP

command. For more information, see the “MAP Command” on page 26.
3. If you do not specify a dump file name, ADDMAP prompts you for one. If you do not specify the file

mode, or if you specify *, the system uses the standard CMS search sequence.

Examples

1. You have a processed module map with the default name for a CMS dump (CMSDVF MAP A1). To
resolve the module map and append it to dump DUMPUSER DUMP0001 A1, enter:

addmap cmsdvf map a1 DUMPUSER dump0001 a1

For more information on default map names, see the MAP command.

Messages and Return Codes
Return Code

Explanation
0

Successful completion

ADDMAP

22 z/VM: 7.3 Dump Viewing Facility

20
Invalid file ID

24
Command line error

28
Nonexistent CMS file

32
Invalid data in file

36
Disk not accessed

41
Insufficient storage

50
CP dumps are not supported. Use VM Dump Tool

100
FSREAD/PRINTL error

104
Internal processing error

ADDMAP

Chapter 3. Command Reference 23

DUMPSCAN Command

DUMPSCAN

filename
DUMP0001 *

DUMP nnnn
*

fm

Purpose

Use DUMPSCAN for interactively analyzing and debugging problems in a dump. After you start a
session, you can use the DUMPSCAN subcommands described in Chapter 5, “DUMPSCAN Subcommand
Reference,” on page 51.

Operands
filename

is the file name of the CMS file containing a dump to be processed.
DUMPnnnn

is the file type of the dump to be processed. The file type must be eight characters long, consisting of
the string DUMP and a four-digit number, nnnn. The default file type is DUMP0001.

*
fm

is the file mode of the dump file. If you do not specify the file mode, or if you specify an asterisk,
DUMPSCAN uses the standard CMS search sequence.

Usage Notes
1. The DUMPSCAN session file has the same file name as the dump file. The file type is VIEWnnnn where

nnnn is the number from the dump file type, DUMPnnnn.
2. DUMPSCAN modifies and re-records the symptom record to contain the dump name. Any modification

made by the guest through user exits is also recorded.
3. If the dump is in one of the supported formats and the corresponding extraction routine is available,

DUMPSCAN runs the routine to update information in the dump's symptom record and information
record. See Appendix A, “Using Attachment Interfaces,” on page 139 for information about exit
routines and supported dump types.

4. If you enter DUMPSCAN without operands, you are prompted for the dump file name, file type, and file
mode.

5. The dump viewing session can be filed on your A-disk with the XEDIT FILE subcommand. When
you view the same dump later, the saved file is reactivated and the new session is appended to
the dumpname DUMPnnnn file containing the previous sessions. See the usage guide section under
“Viewing Several Dump Files at a Time” on page 11 as well as the description of the DUMPSCAN
subcommand in Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51 for an explanation on
how to view multiple dump files from the DUMPSCAN command environment.

Messages/Return Codes
Return Code

Explanation

DUMPSCAN

24 z/VM: 7.3 Dump Viewing Facility

0
Successful completion

20
Invalid file ID

24
Command line error

28
Nonexistent CMS file

32
Invalid data in file

36
Disk not accessed

41
Insufficient storage

50
CP dumps are not supported. Use VM Dump Tool

100
FSREAD/PRINTL error

104
Internal processing error

DUMPSCAN

Chapter 3. Command Reference 25

MAP Command

MAP

PROmpt

NOPrompt

infile1

infile2

outfile (type

)

Purpose

Use the MAP command to convert a load map into a format that the Dump Viewing Facility can process.
The converted load map, which is called the module map, serves as input to the ADDMAP command.
ADDMAP appends the converted load map to the dump file. The Dump Viewing Facility requires primary
and secondary load maps to create certain types of module maps.

When you invoke MAP, you may request or suppress prompting. You may specify the files or accept the
default files for processing.

Operands
PROmpt

requests prompting. PROMPT is the default. Prompting occurs in the following sequence:

1. The Dump Viewing Facility asks first for one of the following:
type

specifies the type of module map to create. See Table 6 on page 27 for a list of types.
null line

accepts the default type: CMS.
SUBSET

invokes CMS subset mode.
HX

terminates the MAP command.
2. You may then supply output and input files:

fn

ft

fm

specifies each file to process. You are prompted for the output file ID, the primary input file ID,
and the secondary input file ID (if necessary). If you do not specify the file type or file mode, the
file type defaults to MAP, and the file mode defaults to *.

null line
accepts a predefined file ID. See Table 6 on page 27 for default input and output map file IDs.

SUBSET
invokes CMS subset mode.

HX
terminates the MAP command.

MAP

26 z/VM: 7.3 Dump Viewing Facility

NOPrompt
suppresses prompting altogether. The Dump Viewing Facility uses the default input and output file IDs
for the module map type that you specify. Table 5 shows the file IDs associated with each type.

Note: SFS includes coordinated resource recovery facility.

infile1
indicates the file name, file type, and file mode of the input CMS file containing the primary load map.

infile2
indicates the file name, file type, and file mode of the input CMS file containing the secondary load
map required to create certain types of module maps. To create a module map for a supported type
that requires a secondary load map, MAP processes the CMS nucleus load map (infile1) and then the
secondary load map (infile2).

outfile
is the file name, file type, and file mode of the resulting CMS file containing the module map, which is
used as input to the ADDMAP command.

Options
type

specifies a type of module map for the MAP command to create. You may specify one of the module
map types listed below. If you do not specify a module map type, type defaults to CMS.

The following table lists the module maps which may be created using the Dump Viewing Facility. If
you wish to create another type of module map see, Appendix A, “Using Attachment Interfaces,” on
page 139.

Table 6. Maps Processed by the MAP Command

Module Map Type Module Map
Component

Load Map Type Nucleus Default Input Map
File

Default Output Map
File

CMS Primary CMS Yes CMSNUC MAP * CMSDVF MAP A

DFSMS
Primary CMS Yes CMSNUC MAP *

DFSMSDVF MAP A
Secondary DFSMS No FSMDFSMS MAP *

GCS Primary GCS Yes GCSNUC MAP * GCSDVF MAP A

PVM
Primary CMS Yes CMSNUC MAP *

PVMDVF MAP A
Secondary PVM No PVM MAP *

SECP
Primary GCS Yes GCSNUC MAP *

SECPDVF MAP A
Secondary SECP No SECP MAP *

TSAF
Primary CMS Yes CMSNUC MAP *

TSAFDVF MAP A
Secondary TSAF No TSAF MAP *

Usage Notes
1. MAP requires primary and secondary load maps for certain module map types (see Table 6 on page

27). If you specify a file ID for one of these types on the command line, you must specify infile2. If you
do not specify infile2, you receive an error message and command processing terminates.

Other map types do not require secondary maps. If you specify infile2 for one of these types, you
receive an error message and command processing terminates.

2. MAP does not issue prompting messages when you specify file IDs or enter NOPROMPT on the
command line. If an error occurs or you do not specify a required file ID, you receive an error message
and command processing terminates.

3. AVS, RSCS, and SFS do not have separate maps. AVS and RSCS require that the GCS NUCLEUS map be
added to their dumps. SFS requires a CMSNUC map be added to the dump.

MAP

Chapter 3. Command Reference 27

Messages and Return Codes
Return Code

Explanation
0

Successful completion
20

Invalid file ID
24

Command line error
28

Missing files or file already exists
32

Invalid data in file
36

Disk not accessed
41

Insufficient storage
50

CP dumps are not supported. Use VM Dump Tool
100

FSREAD/PRINTL failure
104

Internal processing error

MAP

28 z/VM: 7.3 Dump Viewing Facility

PRTDUMP Command

PRTDUMP

fn
DUMP0001 *

ft
*

fm

(ALL

)

(Options

)
1

Options
ALL

DUMPID MAP

STORage

Notes:
1 You can enter Options in any order between the parentheses.

Purpose

Use the PRTDUMP command to print summary information about the major system control blocks and
data areas of the dumped system.

Use the summary reports to assist in problem analysis. Each summary report is designed as a reference
to information in the dump. You refer to it when interactively viewing a dump using the DUMPSCAN
command.

The printed summary information for control blocks includes key fields rather than the entire block. The
data and flags are interpreted, and a text description is provided wherever possible. Only control block
data that is used most often for debugging is presented. The formats for the printed dumps are described
in “Printed Dump Format” on page 31.

Using the Dump Viewing Facility PRTDUMP command, you can print these summary reports:

• Symptom Records

The dump symptom record contains information that indicates the state of the system when the dump
is taken. The printed information is in the same format as output obtained through the SYMPTOM
subcommand of DUMPSCAN.

• General Processor Information

This report contains information that describes the processors associated with the dump. This report
includes:

– Registers
– Clocks and timer
– CPU address and prefix register
– Program status words (PSWs).

For 370-mode virtual machine dumps, the general processor summary report also includes:

– Channel status word (CSW)
– Channel address word (CAW)

PRTDUMP

Chapter 3. Command Reference 29

– Interval timer
– Current PSW.

• Dump Viewing Facility Module Map

Module and entry point names and their addresses in the dump are printed for all modules in real
storage when the dump is taken.

• DUMPID

– Valid only for virtual machine dumps.
• Virtual Machine Dump Specific Summary Reports

Operands
fn

is the file name of the CMS file containing the dump to be processed. It is a 1- to 8-character string
containing any combination of the characters 0–9, A–Z, @, #, -, _, +, :, and $.

ft
is the file type of the dump file. The default is DUMP0001.

fm
*

is the file mode of the CMS dump file. If the file mode is not specified or an asterisk (*) is specified,
PRTDUMP uses the standard CMS search sequence.

Options
(

indicates that PRTDUMP options follow. If the (is specified with no options following, ALL is the
default. If (is not specified and options follow the file mode, they are treated as invalid options. If
nothing follows the file mode, ALL is the default.

STORage
causes all the storage in the dump to be printed. If the CP option is specified, only the control program
pages in the dump are printed.

ALL
specifies that all applicable reports should be printed for the dump type.

Specifying ALL does not cause storage pages to be printed. You must specify the STORAGE option on a
separate invocation of PRTDUMP in order to print dumped storage.

For virtual machine dumps, ALL specifies that symptom record data, general processor information,
DUMPID, and the module map be printed. ALL is equivalent to specifying MAP and DUMPID on the
command line. If no operands are specified, ALL is the default.

DUMPID
specifies that the identifier of the virtual dump should be printed. This option applies only to virtual
machine dumps.

MAP
specifies that the Dump Viewing Facility module map that is appended to the dump should be printed.
However, the dump file must be on a CMS disk to which you have write access.

Usage Notes
1. If you enter the PRTDUMP command without any operands, you are prompted to enter the dump file

name and the file mode, or HX to end processing. After you respond to the prompt, the summary
reports is printed.

This is equivalent to entering the ALL option, which is the default.

PRTDUMP

30 z/VM: 7.3 Dump Viewing Facility

The STORAGE option must be used separately from the ALL option. In order to print storage from
the dump, specify the STORAGE option on a separate invocation of PRTDUMP. If the STORAGE option
was used to print the storage from the dump, and if the format or type of virtual machine dump had
previously been set either by the CP VMDUMP command or by a previous invocation of the DUMPSCAN
FORMAT subcommand, then the dump type must be changed to the default value "FILE" by re-issuing
the FORMAT subcommand of DUMPSCAN prior to issuing PRTDUMP. To return to the original dump
type environment, enter the FORMAT subcommand again and specify the desired virtual machine
dump type.

2. If the file mode is not specified or an asterisk (*) is specified, the system uses the standard CMS search
sequence.

3. The symptom record summary and general-processor information summary reports are printed for
every valid invocation of the PRTDUMP command. They are the first reports to be printed.

4. For virtual machine dumps, PRTDUMP formats the crypto domain index register for ESA virtual
machines that have the Integrated Cryptographic Facility defined.

5. If the dump symptom record is missing or not readable, an error message is issued, and you are
prompted to continue dump processing.

Messages and Return Codes
Return Code

Explanation
0

Successful completion
20

Invalid file ID
24

Command line error
28

CMS file does not exist
32

Invalid data in file
36

Disk not accessed
41

Insufficient storage
50

CP dumps are not supported. Use VM Dump Tool
100

FSREAD/PRINTL error
104

Internal processing error

Printed Dump Format
The first page of a printed virtual machine dump contains the format and dump ID of the dump (from
the VMDUMP command line). The following information for the virtual processor on which the VMDUMP
command was issued is also printed on the first page of the dump:

• CPU address
• General-purpose registers
• Control registers
• Floating-point registers

PRTDUMP

Chapter 3. Command Reference 31

• Access registers (if the virtual machine was an XA, ESA or XC virtual machine)
• TOD clock
• TOD clock comparator
• CPU timer
• Prefix register (for the virtual machine)
• Program status word (PSW)
• Crypto Domain Index Register (if the mode of the virtual machine is ESA and a virtual ICRF was defined).

The prefix page of the virtual processor on which the VMDUMP command was issued is printed, followed
by the remainder of storage pages. Each line of the printed dump contains the following:

• Guest real address of the data
• Eight fullwords of hexadecimal data
• EBCDIC translation of the hexadecimal data
• Storage key (if the guest real address lies on a 4 KB boundary).

Note: Access registers are dumped only if the virtual machine is an XA, ESA or XC virtual machine.

Because the prefix page is the first storage page printed, when it is encountered a second time, the
following line is printed:

SKIPPING PREFIX AREA

Storage pages that are not included in the dump are indicated by the line:

nn TO mm SUPPRESSED NON-CONTROL-PROGRAM PAGE(S)

where nn and mm are the addresses of the pages not included in the dump.

Duplicate lines are suppressed and are indicated by the line:

nn TO mm SUPPRESSED LINE(S) SAME AS ABOVE

where nn and mm are the addresses of the data that is not included in the dump.

Page ejects are performed when necessary, and when all of storage has been dumped, the printed dump
ends with the line:

*** END OF DUMP ***

PRTDUMP

32 z/VM: 7.3 Dump Viewing Facility

VIEWSYM Command

VIEWSYM

INCident filename ftypeSYM

From

To

COMPonent comp

CPUserial cpus

MODule name

SYMptom sym1,sym2

From

FROM mm /

 -

dd /

 -

1

yyyy

19

20

yy

2

hh :
.

mm :
.

ss

To

TO mm /

 -

dd /

 -

1

yyyy

19

20

yy

3

hh :
.

mm :
.

ss

Notes:
1 The default is the earliest found.
2 The default is the beginning of the day.
3 The default is the end of the day.

Purpose

Use the VIEWSYM command to select and view CMS symptom record files created by the RETRIEVE
SYMPTOM command. These are located on the A-disk of the virtual machine that issued the RETRIEVE

VIEWSYM

Chapter 3. Command Reference 33

SYMPTOM command. The symptom record files may then be erased to recover space on the symptom
record recording virtual machine's A-disk.

Symptom records can be selected for viewing through a number of criteria such as over a period of time,
by processor ID, by incident number, or by symptom string. A collection of symptom records satisfying the
specified criteria is placed in a separate CMS file as a result of this command.

Operands
(blank - no entry)

indicates that no operands are specified. When this happens, a command menu is displayed. You can
then specify selection criteria from this menu. See VIEWSYM Command Menu for a description of the
command menu.

INCident filename ftypeSYM
is the file name and file type of the desired symptom record. When INCIDENT is specified, the
VIEWSYM subcommand will search for the specific symptom record and display it if found. The
INCIDENT keyword and the other VIEWSYM keywords are mutually exclusive.

Since the last three characters of the file type are always SYM, they do not have to be specified and
can be allowed to default.

FROM date time
indicates that symptom records that have a date falling on or after this date and time are selected for
viewing. The date is specified as mm/dd/yy; if not specified it defaults to the earliest symptom record
found.

Either (/) or (-) can be used to separate the months, days, and years. Leading zeros are not required
but can be specified. The year can be entered as either a four-digit or two-digit number or allowed to
default to the earliest found. For example, 01/08/87, 1/8/87, 1/8-87, and 1-08/1987 are all valid. A
two-digit year will be interpreted within a window of 100 years centered on the current date.

For example, if the year is 1997, the 100-year window spans from 1947 to 2046. Any two-digit year in
the range 47-99 will be interpreted as 1947-1999, and any two-digit year in the range 00-46 will be
interpreted as 2000-2046. Likewise, if the year is 2003, the 100-year window spans from 1953-2052.
Any two-digit year in the range 53-99 will be interpreted as 1953-1999, and any two-digit year in the
range 00-52 will be interpreted as 2000-2052.

The time is specified as hh.mm.ss; if not specified, it defaults to start when the day begins. Various
combinations are allowed. Either (:) or (.) can be used to separate the hours, minutes, and seconds. If
24:00:00 is specified it is assumed that you mean the next day. Hours, minutes, or seconds need not
be specified; they can be allowed to default.

TO date time
indicates that symptom records that have a date falling on or before this date and time are selected
for viewing. If the date is not specified, it defaults to the latest symptom record found. If the time
is not specified, it defaults to the end of the day. If 24:00:00 is specified, it is assumed to mean the
beginning of the day. The TO date and time must be later than the FROM date and time.

COMPonent comp
is the 9-character component ID not counting any hyphens or blanks.

CPUserial cpus
is the six-digit CPU serial number for the selected CPU.

MODule name
is a string, from 1 to 10 characters in length, which is the name identifying the module associated with
the failure.

SYMptom sym1,sym2
is a string, from 1 to 15 characters in length, which contains a symptom string.

For example: AB/SPRG001

VIEWSYM

34 z/VM: 7.3 Dump Viewing Facility

Usage Notes
1. The maximum size of the input line—132 characters—determines the number of symptoms that can be

searched for at one time (with 10 strings being the maximum).
2. If MODule is specified, the VIEWSYM command will look for the specified value in any RIDS/

nnnnnnnnnn symptom string in Section 3.
3. Symptom strings are from 1 to 15 characters in length and contain a Structured Database identifier

(SDB ID) followed by a symptom string. The SDB ID is separated from the symptom string by a /.
The component and module can be specified as SYMPTOMS by using the SDB ID. The SDB ID for
component is PIDS and the SDB ID for module is RIDS.

For more information on symptom strings and symptom records, see z/VM: System Operation.
4. Searching for symptom records uses the following procedure:

a. Selected symptom records must have a TOD value within the date and time range specified.
b. Selected symptom records must have the same CPU number if the CPU number is specified.
c. Selected symptom records must have all the primary symptom strings specified but may contain

additional strings. The primary symptom strings may appear in any order.

The VIEWSYM command passes the following return codes to CMS in register 15.

Return Code
Explanation

0
Successful completion

8
Error

VIEWSYM Command Menu: If you do not enter any operands with the VIEWSYM command, the following
command menu will be displayed. You can then fill in the selection criteria and press ENTER to invoke the
command.

 Symptom Viewing Facility - Command Menu

 Enter INCIDENT ____ __SYM to look at a specific incident

 OR any of the following search arguments:

 DATE TIME

 FROM mm / dd / 19yy hh : mm : ss
 TO mm / dd / 19yy hh : mm : ss

 CPU SERIAL . . . nnnnnn

 COMPONENT ID . . ___________
 MODULE ___________
 SYMPTOM _______________ SYMPYOM __________
 SYMPTOM _______________ SYMPYOM __________
 SYMPTOM _______________ SYMPYOM __________
 SYMPTOM _______________ SYMPYOM __________
 SYMPTOM _______________ SYMPYOM __________

Figure 5. VIEWSYM Command Menu

Command Menu Usage Notes:

1. If an incident filename ftypeSYM is entered along with any other selection criteria, an error message is
displayed on the message line.

2. If any of the fields in the command menu are filled in, they are used as selection criteria.
3. If both fields in the command menu are filled in and the command line has data other than QUIT or

END, a search will be done and the command line data will be ignored.

VIEWSYM

Chapter 3. Command Reference 35

4. If you enter QUIT or END, the command terminates and control is passed back to CMS.

List of Matches: An example of an incident list is shown in Figure 6 on page 36. If more than one
match is found as a result of a specified search operand, a list of these matches is created in a temporary
in-storage file.

 Symptom Viewing Facility - List 10 Matches

 INC : FBD00378 BAB44SYM COMP: 566419601 RIDS/HCPEND RIDS/HCPEOD
 DATE: 12/12/87 14:01:19 CPU : 23456 AB/SPRG0001 REGS/0E248

 INC : FBD04276 FDB56SYM COMP: 566419601 RIDS/HCPBAD AB/SPRG0004
 DATE: 12/13/87 14:05:23 CPU : 23456 REGS/02002 REGS/0311C

 INC : FBD04D66 3AD46SYM COMP: 566419601 RIDS/HCPEND RIDS/HCPEOD
 DATE: 12/14/87 13:59:18 CPU : 23456 AB/SPRG0001 REGS/0E248

 INC : FBD05378 B3366SYM COMP: 566419601 RIDS/HCPDED AB/SPRG0002
 DATE: 12/15/87 14:03:22 CPU : 23456

 INC : FBD06422 BA324SYM COMP: 566419601 RIDS/HCPXXX RIDS/HCPEOF
 DATE: 12/16/87 14:03:35 CPU : 23456 AB/SPRG0006

Figure 6. VIEWSYM List Display

List Display Usage Notes:

1. Primary Symptom Strings - These symptoms are called primary because they are intended to contain
a set of symptom database keywords that will be most valuable in uniquely identifying the failure or
event.

2. Secondary Symptom Strings - These symptoms are intended to allow a function to store more
characteristics of the event without modifying the primary symptom strings.

3. You have the ability to select any one of the matches by either placing the cursor on any line for that
record and using the Enter key, or entering the incident fname ftype on the command line. If you enter
an incorrect incident filename ftypeSYM on the command line, a message is displayed.

4. If more matches are found than can fit on one screen, you can scroll forward and backward to see
other matches.

5. If you press Enter and the cursor is between matches on the screen, a message is displayed informing
you how to select a match.

6. If the cursor is on a valid match and the command line or PF key has data other than QUIT or END, the
appropriate match is displayed and the data on the command line is ignored.

Individual Symptom Record Display: If you specify an individual symptom record or there is only one
match for the search operand, the record itself will be displayed. An example of an individual symptom
record is shown in Figure 7 on page 36.

 SYMPTOM RECORD FOR INCIDENT B410EB3F 4832ESYM

 TOD CLOCK . . B410EB3F4832EF02 DATE. 05/19/00
 TIME ZONE . . -04:00:00 TIME. 20:15:48

 CPU MODEL . . 9672 BASE SCP. . . 5654
 CPU SERIAL. . 026452 NODEID. . . . GDLVMK4

 SPOOLID: 7785 DUMP TYPE . . VMDUMP
 --
 SECTION 5 DATA:
 USERID DUMPED: NAMESRV
 DUMP RECEIVER: NAMESRV
 SPOOLID: 7785

Figure 7. VIEWSYM Individual Item Display

Individual Symptom Record Display Usage Notes:

VIEWSYM

36 z/VM: 7.3 Dump Viewing Facility

1. In the same manner that it presents a match list, VIEWSYM will invoke XEDIT and create a temporary
file, VIEWSYM SESSION, in storage. It will then place the formatted output in that file.

2. If the output spans more than a screen's worth of data, XEDIT provides the scrolling function to enable
you to view the entire record.

3. The output consists of the header section, followed by the symptom strings in sections 3 and 4. If you
provided any preformatted data in section 5, it will also be displayed.

4. For VM dumps only, an additional line of output is displayed for the Section 5 Data: the number
of address spaces, including the primary, that were dumped by the CP VMDUMP command or by
DIAGNOSE code X'94'. For CP dump types, this additional line of output is not displayed, because only
a single CMS dump file is created by DUMPLOAD.

The actual number of accessible related CMS dump files may be less than the total displayed if
DUMPLOAD processing failed while building the CMS dump files, or if any of the related dump files
were renamed. See “Virtual Machine Dumps in an XC Environment” on page 11 for more information.

5. You also have the capability (END) to back up to the previous screen (list of matches or Command
input menu) in order to look at another record.

Subcommands:
QUIT

This subcommand returns control to CMS or the previous command environment.
END

This subcommand returns control to the previous level either a list of matches or the command menu.
If you return to the command menu, the previous selection criteria is blanked out, and you can enter a
new search criteria.

Search
This subcommand extracts the primary symbol strings from the current record and uses them as
search criteria for duplicate records. Only the primary symbol strings are used; the date and time
range and CPU serial number are defaulted to blank. The new list contains the selected symptom
record identified by an asterisk to the left of the screen.

Respecify
This subcommand returns to the command menu and lets you either broaden or narrow the previous
search criteria. The previous search operand will be filled in as the default, and you can respecify the
search operands.

Forward
This subcommand scrolls the file toward the end of the file.

Backward
This subcommand scrolls the file toward the beginning of the file.

VIEWSYM

Chapter 3. Command Reference 37

VIEWSYM

38 z/VM: 7.3 Dump Viewing Facility

Chapter 4. Macro Subcommands

 PI

This chapter describes the DUMPSCAN subcommands that can only be used within a macro. The function
of these subcommands is summarized in Table 7 on page 39. The syntax and usage information for
these subcommands is presented following the table.

Table 7. Subcommands Used Only within a MACRO

Subcommand Description

DRESTORE Use the DRESTORE subcommand to restore the settings of the DUMPSCAN
variables to the values they had when the DSAVE subcommand was last
entered.

DSAVE Use the DSAVE subcommand to save the settings of various DUMPSCAN
variables until a subsequent DRESTORE subcommand is entered.

DVFSTACK Use the DVFSTACK subcommand to direct DUMPSCAN subcommand output
to the program stack.

FINDStrg Search for a particular string of data in the dump.

INIT Puts the name of the dump and the dumptype into the session file.

NOTE Send text output to the Dump Viewing Facility to be displayed on the terminal,
printer, or both

READStrg Read data from the dump, through a direct or indirect address.

SCAN Process a PF key assignment or command string to the system product
interpreter.

© Copyright IBM Corp. 1991, 2022 39

DRESTORE Subcommand

DRESTORE
n

Purpose
Use the DRESTORE subcommand to restore the settings of the DUMPSCAN variables to the values that
existed when the DSAVE subcommand was last entered.

Operands
n

is an integer greater than 0 indicating the number of the saved variable buffer to restore. If not
specified, the DUMPSCAN settings from the last DSAVE are used.

Usage Notes
1. If the number of the saved variable buffer requested is not in the stack of saved settings, the

DUMPSCAN settings remain unchanged.
2. All numbers of settings after the requested number are deleted.
3. Refer to the DSAVE subcommand for a list of settings affected by the DRESTORE subcommand.

Messages and Return Codes
Return Code

Explanation
0

Successful completion
4

No DSAVE has been issued
8

The requested buffer was not found
16

Invalid operand, no extra operands are allowed
32

Internal error

DRESTORE

40 z/VM: 7.3 Dump Viewing Facility

DSAVE Subcommand

DSAVE

Purpose
Use the DSAVE subcommand to save the settings of various DUMPSCAN variables until a subsequent
DRESTORE subcommand is entered.

Usage Notes
The following are saved:

1. DVFSTACK setting
2. Address of the last addresses displayed
3. SELECT subcommand settings
4. TRACE subcommand, first and last addresses of the last display
5. The last character strings used as an operand in the LOCATE subcommand
6. Whether PRINT was ON or OFF

Messages and Return Codes
Return Code

Explanation
0

Unable to complete request, out of storage, or an invalid operand was specified.
n

Number of the saved variables buffer just created.

DSAVE

Chapter 4. Macro Subcommands 41

DVFSTACK Subcommand

DVFSTACK ON

OFF

QUERY

Purpose
Use the DVFSTACK subcommand to direct DUMPSCAN subcommand output to the program stack.

Operands
ON

is a keyword operand that directs DUMPSCAN subcommand output to be put in the program stack.
OFF

is a keyword operand that resets the DVFSTACK ON invocation, so DUMPSCAN subcommand output
is directed to the session VIEWnnnn file. This setting is always restored when control returns to the
DUMPSCAN command line.

QUERY
is the keyword operand that does not change the current DVFSTACK setting but returns the setting of
DVFSTACK as a return code.

Usage Notes
1. This macro (subcommand) can only be executed from a macro. An error message will be displayed if

entered from the command line.
2. When DVFSTACK ON is in effect, all messages issued by DUMPSCAN subcommands are directed to the

program stack.
3. When DVFSTACK ON is in effect, and a DUMPSCAN subcommand is issued, the redisplay line (--->) is

neither returned to the program stack nor displayed in the VIEWnnnn file.
4. When DVFSTACK ON is in effect, and the macro issues a subsequent DVFSTACK ON, the setting is

unchanged and a return code is set for the calling macro. The same scenario applies for DVFSTACK
OFF.

5. It is the responsibility of the macro to manage its own program stack resources; otherwise,
unpredictable or erroneous results may occur during the DUMPSCAN session.

Messages and Return Codes
Return Code

Explanation
0

Successful execution, the state of DVFSTACK was changed to ON or OFF
2

You issued DVFSTACK QUERY or DVFSTACK ON; and DVFSTACK ON was previously set; The setting is
unchanged

4
You issued DVFSTACK QUERY or DVFSTACK OFF; and DVFSTACK OFF was previously set; The setting
is unchanged

8
Invalid operand or required operand missing

DVFSTACK

42 z/VM: 7.3 Dump Viewing Facility

FINDSTRG Subcommand

FINDStrg string
0 7FFFFFFF 1

fromaddr
7FFFFFFF 1

toaddr
1

increment

(VAR
RESULT

name)

Purpose
Use the FINDSTRG subcommand to search for a particular string of data in the dump while you are still in
an EXEC. If found, the address of the string is returned in a REXX variable.

Operands
string

is a 1- to 128-character (1- to 64-byte) hexadecimal string for which you are searching.
fromaddr

is the 31-bit (1- to 4-byte) hexadecimal starting address for the search. If not specified, this defaults
to start at location 0. Leading zeros are not required.

toaddr
is the 31-bit (1- to 4-byte) hexadecimal ending address for the search. If not specified, this defaults to
end at location 7FFFFFFF. Leading zeros are not required.

increment
is a 1- to 4-digit hexadecimal number to change the current address after each match attempt.

Options
VAR

is a keyword operand indicating that the following is the user-specified REXX variable name.
RESULT

is the default name of the REXX variable if you do not specify a name.
name

is a 1- to 8-character user-specified name of a REXX variable where the results of the FINDSTRG
subcommand will be placed.

Usage Notes
1. This subcommand can only be executed from a macro. An error message is issued if entered from the

command line.
2. Unlike the LOCATE subcommand which accepts either EBCDIC characters or hexadecimal digits, the

FINDSTRG subcommand accepts only hexadecimal digits. If EBCDIC data such as a user ID needs to
be located, it must be converted to hex first.

FINDSTRG

Chapter 4. Macro Subcommands 43

3. The start of the string must be within the address range specified by the fromaddr and toaddr
addresses. If the fromaddr and toaddr addresses are not specified, they will default to the beginning
and ending of the dump.

4. In order to specify an increment, both the fromaddr and toaddr addresses must be specified.
5. The address of the first byte of the string, if found, is placed in a REXX variable (RESULT or the

user-specified name).
6. If you want to look for multiple occurrences of a string within a dump, you must update the fromaddr

after each match. The reuse or = subcommands do not apply to this subcommand.
7. The valid increment range is from X'1' to X'1000'.

Messages and Return Codes
Return Code

Explanation
0

Successful execution
8

String not found
16

Invalid operands
20

Internal error

FINDSTRG

44 z/VM: 7.3 Dump Viewing Facility

INIT Subcommand

INIT

Purpose
Use the INIT subcommand to put the name of the dump and the dump type into the session file.

Usage Notes
1. INIT is only valid from within a macro.
2. A macro can use this subcommand to obtain the dump type.
3. Messages 200 and 401 are put into the session file.

Messages and Return Codes
HCSDSS200I

PROCESSING FILE filename filetype fm1
HCSDSS401I

READY, DUMP TYPE IS dumptype
Return Code

Explanation
0

Successful execution

INIT

Chapter 4. Macro Subcommands 45

NOTE Subcommand

NOTE

' text '

NOPRINT TERMINAL

PRINT
TERMINAL

NOTERMINAL

Purpose
Use the NOTE subcommand to send text output to the Dump Viewing Facility to be displayed on the
terminal, the printer, or both.

Operands
text

is the output to be displayed. This includes any leading blanks. The maximum length of the text is 80
bytes. If no text is specified, a blank line is printed or displayed according to the options selected or
defaulted to. Beginning and ending quotation marks are mandatory if text is specified.

PRINT
indicates that the text should be sent to the virtual printer. This operand may not be specified in
conjunction with the NOPRINT operand.

NOPRINT
indicates that the text should not be sent to the virtual printer. This operand may not be specified in
conjunction with the PRINT or NOTERMINAL operands. This operand is the default.

TERMINAL
indicates that the text should be displayed on the terminal. This operand may not be specified with
the NOTERMINAL operand. This operand is the default.

NOTERMINAL
indicates that the text should not be displayed on the terminal. This operand may not be specified in
conjunction with the TERMINAL or NOPRINT operands.

Usage Notes
1. This subcommand is only valid when issued from a macro.
2. Text longer than 80 bytes will result in a return code of 8.

Messages and Return Codes
Return Code

Explanation
0

Successful execution
8

Invalid conditions such as conflicting operands, a missing quotation mark, or text longer than 80 bytes
500

Virtual printer error (A message indicating this error is displayed on the terminal.)

NOTE

46 z/VM: 7.3 Dump Viewing Facility

READSTRG Subcommand

READStrg address
1

%

?

4

length

(VAR
RESULT

name)

Notes:
1 Do not put blanks between the operands and special characters.

Purpose
Use the READSTRG subcommand to read data from the dump while you are in a macro. You can specify
the actual or an indirect address. The data at that address is returned in a REXX variable.

Operands
address

is the 31-bit (1- to 4-byte) hexadecimal address from which the data is to be retrieved in the dump.
Leading zeros are not required.

%
specifies a 24-bit indirect address. A word (4 bytes) of storage at the specified address is read from
the dump and used as the basis for a second read. The data at the second address is returned to the
macro.

?
specifies a 31-bit indirect address. A word (4 bytes) of storage at the specified address is read from
the dump and used as the basis for a second read. The data at the second address is returned to the
macro.

length
is an optional operand. It is a 1- to 4-digit nonzero hexadecimal number indicating the length in bytes
to be returned to the macro. The valid range is from X'1' to X'1000'. Four is the default length of the
data to be returned.

Options
VAR

is a keyword operand indicating that the following is the user-specified REXX variable name.
RESULT

is the default name of the REXX variable that is used if the user does not specify a name.
name

is a 1- to 8-character user-specified name of a REXX variable where the results of the READSTRG
subcommand are placed.

Usage Notes
1. This subcommand can only be executed from a macro. An error message is issued if it is entered from

the command line.

READSTRG

Chapter 4. Macro Subcommands 47

2. The dump data is translated to EBCDIC and then returned to the macro in a REXX variable (that is, in
the parameter RESULT or the user-specified name).

3. If only partial data is available in the dump, READSTRG returns only the available data, in which case
the user should check the length of REXX variable being used.

Messages and Return Codes
Return Code

Explanation
0

Successful execution
4

Partial data returned
8

Page not dumped
16

Invalid operand
20

Internal error

READSTRG

48 z/VM: 7.3 Dump Viewing Facility

SCAN Subcommand

SCAN subcommand

operands

Purpose
Use the SCAN subcommand to process a PF-key assignment or a command string from the system
product interpreter.

Operands
subcommand

is any valid DUMPSCAN subcommand.
operands

includes any operands for the DUMPSCAN subcommand you requested.

Usage Notes
1. Use the SCAN service to assign Dump Viewing Facility functions to PF keys. For more information, see

“Assigning Program Function Keys to DUMPSCAN Subcommands” on page 17.
2. Use the system product interpreter command ADDRESS to affect a temporary or permanent

change to the destination of commands. The SCAN environment is addressable from any system
product interpreter macro during the DUMPSCAN session. For more information, see “What Is an
Environment?” on page 13. For more information, see “What Is an Environment?” in z/VM: Dump
Viewing Facility.

3. DUMPSCAN initializes SCAN by loading DVSCAN SCAN as SCAN EXEC into storage using EXECLOAD.
For further information on EXECLOAD see z/VM: CMS Commands and Utilities Reference.

 PI■end

SCAN

Chapter 4. Macro Subcommands 49

SCAN

50 z/VM: 7.3 Dump Viewing Facility

Chapter 5. DUMPSCAN Subcommand Reference

This chapter contains reference information for the DUMPSCAN subcommands used to interactively view
data from a dump. The DUMPSCAN macro services are described in Chapter 4, “Macro Subcommands,”
on page 39.

Table 9 on page 51 lists all the subcommands for DUMPSCAN and the functional category of each. The
minimum truncation for each command is indicated by the uppercase letters in the subcommand column.
The definition of the functional categories is:
COMMON

All dumps
VM

Virtual machine dump
CMS

CMS dump
GCS

GCS dump
TSAF

TSAF dump
AVS

AVS dump
SFS

SFS dump
RSCS

RSCS dump

Note: SFS includes the coordinated resource recovery facility.

The following table identifies the supported dump types that can have component unique DUMPSCAN
subcommands which are not described in this document issued against them and where you can find
more information on how to use them:

Table 8. Supported Dump Types

VM Dump Type Reference

PVM VM/SP Pass-Through Facility Logic

RSCS z/VM: RSCS Networking Diagnosis

CICS/VM CICS/VM Problem Determination Guide

Table 9. Subcommands for DUMPSCAN

Subcommand Functional
Category

Description

(null line) COMMON Continues the previous CHAIN, LOCATE, LOCATEUP, BACKWARD,
or FORWARD subcommand.

+ (plus symbol) -
(minus symbol)

COMMON Moves you forward through hexadecimal; moves you backward
through hexadecimal.

& (ampersand) or
&name

COMMON Assigns symbolic names to subcommands.

? (question mark) COMMON Displays the last subcommand entered.

© Copyright IBM Corp. 1991, 2022 51

Table 9. Subcommands for DUMPSCAN (continued)

Subcommand Functional
Category

Description

= (equal symbol) COMMON Re-executes the previous DUMPSCAN subcommand.

ACClist VM Displays information about the VM data spaces that contributed
data to the dump.

Aregs COMMON Displays access registers for a specified processor.

ASid VM Identifies which address space contributed information to a dump
file.

Backward COMMON Scrolls backward through hexadecimal data or trace entries.

BLock COMMON Formats control blocks within a dump.

CHain COMMON Displays the chain of control block addresses.

CMS COMMON Allows an application to enter the CMS subset mode.

CMSPoint CMS Displays the formatted contents of pointers from CMS NUCON.

CMSVIEW CMS Displays CMS control blocks, chains, and trace data.

CMSVIEW TRACE CMS Displays the CMS trace data.

CPU COMMON Displays the address and prefix register values for each
processor.

Cregs COMMON Displays the control registers for a specific processor.

Display COMMON Displays dump data in both hexadecimal and EBCDIC.

DOSPoint CMS Displays the formatted contents of five pointers used by DOS
simulation.

DUMPID VM Displays the dump identifier.

DUMPScan COMMON Changes DUMPSCAN display to a different dump file.

END COMMON Ends DUMPSCAN execution and returns the application to CMS.

FDISPlay TSAF Displays data control blocks, tables, and arrays important to the
TSAF virtual machine.

FINDMod COMMON Displays the displacement and module name or entry point, given
an address; or displays an address, given a module name or entry
point.

Forward COMMON Scrolls forward through hexadecimal data or trace entries.

FORMAT VM Displays or changes the dump type (that is, format) of a dump file.

GDISPLAY AVS Displays control blocks important to the AVS virtual machine, and
the module name and module address for APPC/VM VTAM.

Gregs COMMON Displays general-purpose registers for the specified processor.

HC COMMON Resolves hexadecimal calculations and algebraic expressions.

HELP COMMON Displays individual DUMPSCAN help files or the menu that lists all
the DUMPSCAN help files.

HX COMMON Ends that particular dump viewing session.

IUcv GCS, AVS, RSCS Displays all entries in the IUCV path table.

52 z/VM: 7.3 Dump Viewing Facility

Table 9. Subcommands for DUMPSCAN (continued)

Subcommand Functional
Category

Description

Locate COMMON Locates the next occurrence of a hexadecimal or character string
in a dump.

LocateUp COMMON Locates the previous occurrence of a hexadecimal or character
string in a dump.

OSPoint CMS Displays the formatted contents of three pointers used in OS
simulation.

Print or PRT COMMON Directs output of the subcommand to the printer.

QUIT COMMON Ends that particular dump viewing session.

Regs COMMON Displays registers, clocks, timer, and program status words for a
specific processor.

Scroll U or ScrollU COMMON Repeats the most recent TRACE subcommand with an adjusted
address.

SYMPtom COMMON Displays symptom record data.

TACtive GCS, AVS, RSCS Displays a task's active program list.

TIMediff COMMON Displays the difference in time between two TOD clock values.

TLoadl GCS, AVS, RSCS Displays the task load list.

TODCLK COMMON Displays the date and time for a specified hexadecimal TOD clock
value.

Trace AVS, SFS, TSAF Displays trace table entries.

TSab GCS, AVS, RSCS Displays the subpool map and storage owned by a task.

VMLoadl GCS, AVS, RSCS Displays information about all programs loaded in a virtual
machine.

Xedit COMMON Passes the command line to XEDIT for execution.

Each of the following subcommand descriptions include the subcommand syntax, keywords, operands,
and options. Where applicable, the descriptions also include usage notes, responses, messages, and
examples of the output to be expected from each subcommand.

The same notational conventions apply to the DUMPSCAN subcommands as described in Chapter 3,
“Command Reference,” on page 21.

General Usage Notes:

1. All addresses in this chapter refer to real addresses unless otherwise specified.
2. All dump storage addresses are 31-bit, 4-byte addresses containing up to eight hexadecimal

characters unless otherwise specified. Leading zeros can be omitted. For example, if you want to
enter address 00012F31, you may enter 00012F31 or 12F31.

3. All processor addresses (cpuaddr) are 1- to 4-byte hexadecimal digits.
4. All device numbers are up to four hexadecimal digits.
5. Logical real device numbers are up to four hexadecimal digits and are prefixed with the letter L.
6. Unless otherwise specifically noted, wherever the term CP abend dump is mentioned, it can be

assumed that the command output will be the same for a snapdump because the two dumps are
identical in content.

Chapter 5. DUMPSCAN Subcommand Reference 53

Null Line Subcommand

Purpose
Use the null line subcommand to reissue the previous CHAIN, LOCATE, LOCATEUP, BACKWARD, or
FORWARD subcommands.

Usage Notes
1. Pressing Enter with no data entered repeats the previous CHAIN, LOCATE, LOCATEUP, FORWARD, or

BACKWARD subcommands with an updated address.
2. Entering a null line is valid for the CHAIN subcommand only if the number of control blocks exceeds

4096. A message is issued when there are more than 4096 control blocks. Entering a null line
continues the chain presentation starting with the last address displayed.

3. The running total of all members found is displayed in the output of the reissued CHAIN subcommand.

Responses
Using the null line command re-executes the CHAIN, LOCATE, LOCATEUP, BACKWARD, or FORWARD
commands; a full screen of the appropriate data is displayed.

Null Line

54 z/VM: 7.3 Dump Viewing Facility

+ and - Subcommands

 + increment

 - decrement

Purpose
Use the + and - subcommands to adjust the address pointer and reissue the DISPLAY subcommand.

Operands
increment

is the hexadecimal number to be added to the address pointer of the last displayed subcommand
entered.

decrement
is the hexadecimal number to be subtracted from the address pointer of the last displayed
subcommand entered.

Usage Notes
1. Use the + and - subcommands after entering the displaying and scrolling subcommands of the Dump

Viewing Facility: BACKWARD, DISPLAY, FINDMOD, FORWARD, LOCATE, and LOCATEUP.
2. The increment value has no upper limit. If the resulting address is outside the dump's range, the

system displays an error message.
3. These subcommands do not wrap the screen.
4. If you specified the OFFSET operand on the previous DISPLAY subcommand, entering the + or -

subcommand results in continued display of offsets.

Responses
If enough data remains in the dump, the system displays an entire screen of dump data. The current line
position moves to the calculated address.

+ and -

Chapter 5. DUMPSCAN Subcommand Reference 55

&name Subcommand

& name

subcommand

&

Purpose
Use the &name subcommand to create a table of frequently used subcommands that may be invoked by
another name, or to invoke a subcommand by its other name.

Operands
name

is the symbolic name you give to the subcommand expression entered in the &name table. The
name portion of this subcommand may be up to 7 characters in length and must be preceded by the
ampersand.

subcommand
is the entire syntax of the subcommand including any operands specified. Entering &name without
any operands invokes the subcommand.

&
Entering an ampersand (&) alone lists all the table entries.

Usage Notes
1. When entering data into the &name table, you may not enter another &name subcommand. For

example,

&name1 &name2

is not allowed.
2. If you try to invoke an &name that is not in the table, DUMPSCAN displays an error message.
3. The subcommand in the table is not checked for validity until it is invoked by entering &name. Only

then are errors detected by the appropriate subcommand processor.
4. The PRINT subcommand is not allowed in the &name table.
5. All entries into the &name table are limited to 8 characters for each operand. The &name

subcommand plus eight operands may be entered, that is, &VM VMDBK operand2 operand3......
operand8.

6. Up to 64 operands, including the symbolic names (&name), may be contained in the &name table
at any one time. The number of symbolic names you are limited to is determined by the number of
operands used per subcommand. You can assign more subcommands with three operands (21) than
you can with seven operands (nine).

7. If the LOCATE subcommand is placed in the &name table, the maximum string of 8 characters includes
the hexadecimal identifier X, the hexadecimal characters, and the quotation marks (for example,
X'13AB4').

Examples

The &name subcommand is useful for command strings that are used constantly. It lets you shorten a
command string to one symbolic name.

&name

56 z/VM: 7.3 Dump Viewing Facility

Figure 8 on page 57 illustrates a sequence of six &name entries being made in the &name table from the
command line.

====> &dn -1000
====> &up +1000
====> &lo locate feibm 0 7fffffff
====> &d display 6a000 100 offset
====> &ch chain 1000 600 f4000
====> &d display 6000 100

Figure 8. A Sequence of &name Commands

After all six entries are made, you can check the &name table by entering the &name table list
subcommand &. This displays the &name table as shown in Figure 9 on page 57. The subcommand
entered is:

&

&DN -1000
&UP +1000
&LO LOCATE FEIBM 0 7FFFFFFF
&D DISPLAY 6A000 100 OFFSET
&CH CHAIN 1000 600 F4000
&D DISPLAY 6000 100

Figure 9. Listing the &name Table

Any time you wish to execute a command string in the &name table, enter the symbolic name
corresponding to the desired command. The command in the &name table is processed as if it were
just entered manually.

Figure 10 on page 57 shows the symbolic command &d being entered, and the resulting display of the
corresponding subcommand, DISPLAY 6000 100.

The subcommand entered to produce the output shown in Figure 10 on page 57 is:

&d

DISPLAY 6000 100 OFFSET
 0000 00000000 00000000 00000000 00000000 F6 *................*
 0010 00000000 00000000 00000000 00000000 *................*
 0020 00000000 00000000 00000000 00000000 *................*
 0030 00000000 00000000 00000000 00000000 *................*
 0040 00004040 40400000 00000000 00000000 *.. *
 0050 00000000 00000000 00000000 00000000 *................*
 0060 00000000 00000000 C4D4E2D4 D4D4D5D5 *........DMSMMMNN*
 0070 D5D34040 40404040 40404040 40404040 *NL *
 0080 40404040 40404040 40404040 40404040 * *
 0090 40404040 40404040 40404040 40404040 * *
 00A0 40404040 40404040 40404040 40404040 * *

Figure 10. Executing the DISPLAY Subcommand Using a Symbolic Name

Responses
1. If &name is entered, the response is from the subcommand executed.
2. If & is entered, a list of the current entries in the &name table is displayed.
3. If &name subcommand is entered, the ready response indicates the subcommand has been added to

the &name table.

&name

Chapter 5. DUMPSCAN Subcommand Reference 57

? Subcommand

?

Purpose
Use the ? subcommand to display the last subcommand entered.

Usage Notes
1. The subcommand displayed as a result of a question mark (?) can be re-executed by pressing Enter.

You can also modify the command before entering it again.
2. Successive execution of the ? subcommand will display the previous subcommands.
3. A synonym cannot be defined for the ? subcommand.
4. The ? subcommand can be assigned to a PF or a PA key.
5. Anything following a ? is ignored except another ?. Multiple question marks can be specified to retrieve

previous subcommands.
6. The results of the execution of the equal (=) subcommand may not be identical with the results of

combining the ? subcommand and the Enter key. The = subcommand executes the last valid Dump
Viewing Facility subcommand.

Responses
The system displays the last command line entered from the terminal.

? Subcommand

58 z/VM: 7.3 Dump Viewing Facility

= Subcommand

=

Purpose
Use the = subcommand to re-execute the last successful DUMPSCAN subcommand.

= Subcommand

Chapter 5. DUMPSCAN Subcommand Reference 59

ACCLIST Subcommand

ACClist

Purpose
Use the ACCLIST subcommand to display information about the VM data spaces that contributed data to
the dump.

Usage Notes
1. This subcommand is valid for virtual machine dumps.
2. ALET X'00000000', which indicates the primary address space, is not displayed by the ACCLIST

subcommand.
3. ACCLIST searches the accessed disks for a file with a file name matching the current dump file’s and a

file type of DUMP0001. Renaming files or using duplicate names can cause ACCLIST to fail or to return
information about the wrong dump. See “Virtual Machine Dumps in an XC Environment” on page 11 for
notes on renaming dump files from XC virtual machines.

Responses
The response to the ACCLIST subcommand looks like this:

OWNING ADDRESS SPACE IDENTIFIER = USER1:BASE

ALET ACC ASIT SPACE IDENTIFICATION
01000002 R/W 007D730000000004 USER1:USER1SP1
01000003 R/W 007D734000000004 USER1:USER1SP2
01000004 R/O **REVOKED**
01000005 R/O 007D738000000004 USER1:USER1SP3
01000006 R/O 007D73C000000004 USER1:USER1SP4
01000007 R/W 007D72C000000004 USER2:USER2SP1

6 TOTAL ENTRIES: 5 VALID, 1 REVOKED, 1017 UNUSED

ACCLIST returns information in these fields:
OWNING ADDRESS SPACE IDENTIFIER

is the identifier of the address space in which the access lists reside.
ALET

is the access list entry token corresponding to the access list entry. It is eight hexadecimal digits long.
ACC

indicates the access permitted by the ALET, either read/write or read-only.
ASIT

is the address space identification token. It is specified as 16 hexadecimal digits.

When the value in the ASIT field is **REVOKED**, the ALET previously designated an address space,
but access to that address space has been revoked.

SPACE IDENTIFICATION
is the space identifier for the data space, in the form owner:space_name, where owner: is the user ID
that owns the address space and space_name is the name of the address space. The space name is a
string of alphanumeric and national characters, 1 to 24 characters long.

The SPACE IDENTIFICATION field is left empty for revoked ALETs.

TOTAL ENTRIES
is the total number of valid or revoked entries in the access list.

ACCLIST

60 z/VM: 7.3 Dump Viewing Facility

VALID
is the number of ALETs that designate address spaces and that can be used to access data in those
address spaces.

REVOKED
is the number of ALETs that previously designated available address spaces but that can no longer be
used to access data.

UNUSED
is the number of entries in the access list that remain available for use.

Messages and Return Codes
Return Code

Explanation
0

Successful completion
8

Access list entries are in DUMP0001, which is not accessed
12

Access list is empty
16

Access list is not available for SPACE owner:space_name
104

Internal processing error

ACCLIST

Chapter 5. DUMPSCAN Subcommand Reference 61

AREGS Subcommand

Aregs

cpuaddr

Purpose
Use the AREGS subcommand to display access registers for a specified processor.

Operands
cpuaddr

is a 1-to-4-digit hexadecimal number specifying the physical CPU address for which the general
registers are to be displayed.

Usage Notes
1. If the cpuaddr operand is not specified, it defaults to the CPU on which the CP VMDUMP command was

entered for the virtual machine.
2. Use the CPU subcommand to obtain the CPU addresses in the dump.

Examples

Figure 11 on page 62 shows the output of an AREGS subcommand. The subcommand entered is:

Aregs

CPU ADDRESS - 0000
ACCESS REGS 0 - 15
 00000000 00010000 00000036 803E8088 003E7F30 00FCD298 00000037 00FD0748
 0031CD90 00379900 00FCE1F8 00F8C000 00378900 00FC9E80 8037901C 00000000

Figure 11. Sample Output of an AREGS Subcommand

AREGS

62 z/VM: 7.3 Dump Viewing Facility

ASID Subcommand

ASid

ALL

Purpose
Use the ASID subcommand to display address space information.

Operands
ALL

causes address space information from all related dump files to be displayed. The default is to display
information about the current dump file.

Usage Notes
1. This subcommand is valid for virtual machine dumps.
2. If ALL is specified, an attempt is made to read the information in other dump files with the same file

name and a file type of DUMPnnnn.
3. ASID searches the accessed disks for a file with a file name matching the current dump files and a

file type of DUMPnnnn. Renaming files or using duplicate names can cause ASID to fail or to return
information about the wrong dump. See “Virtual Machine Dumps in an XC Environment” on page 11 for
notes on renaming dump files from XC virtual machines.

Responses
If six data spaces were dumped, the response to

ASID ALL

might look like this:

FILETYPE ASIT SPACEID FORMAT
DUMP0001 007D724000000001 USER1:BASE CMS
DUMP0002 007D730000000004 USER1:USER1SP1 CMS
DUMP0003 007D734000000004 USER1:USER1SP2 CMS
DUMP0004 007D738000000004 USER1:USER1SP3 CMS
 (DUMP NOT AVAILABLE)
DUMP0006 007D73C000000004 USER1:USER1SP5 CMS

ASID returns information in these fields:

FILETYPE
The file type of the dump file containing this information. It is eight characters long.

ASIT
is the address space identification token. It is 16 hexadecimal digits long.

(DUMP NOT AVAILABLE) is displayed in the ASIT field for each of the related dumps that is not
accessible to the Dump Viewing Facility.

(ADDRESS SPACE INFORMATION NOT AVAILABLE) is displayed in the ASIT field for any of the
related dumps when the address space information is not accessible to the Dump Viewing Facility.

SPACEID
is the address space identifier in the form owner:space_name, where owner: is the user ID that owns
the address space and space_name is the name of the address space. The space name is a string of

ASID

Chapter 5. DUMPSCAN Subcommand Reference 63

alphanumeric and national characters, 1 to 24 characters long. The SPACEID field is empty when the
dump or the address space information is not available.

FORMAT
The type of virtual machine dump. It is 1 to 8 characters long. The FORMAT field is empty when the
dump or the address space information is not available.

Messages and Return Codes
Return Code

Explanation
0

Successful completion
4

An unrecognized operand was specified
104

Internal processing error

ASID

64 z/VM: 7.3 Dump Viewing Facility

BACKWARD Subcommand

Backward

Purpose
The BACKWARD subcommand scrolls backward toward the lowest address in the dump.

Usage Notes
1. The BACKWARD subcommand can be used after you enter the DISPLAY, LOCATE, FINDMOD, TRACE, or

other scrolling subcommands.
2. The BACKWARD subcommand may be reentered by pressing Enter (null line subcommand).
3. For scrolling forward to the highest address in the dump, see the FORWARD subcommand later in this

chapter.
4. If you entered the OFFSET operand on the previous DISPLAY subcommand, then the BACKWARD

subcommand continues to display data using the specified offsets. Your terminal screen continues to
display the original storage address requested.

5. The BACKWARD subcommand does not wrap the screen.
6. You cannot display data with offsets below 0.

Responses
One full screen of data is presented in both hexadecimal and EBCDIC. For example, if your screen displays
19 lines, the data at the top of the screen (first line) is hexadecimal 130 bytes from the last address
displayed.

When scrolling after the TRACE subcommand, the format of the next screen is identical with the screen
when TRACE was entered. For example, if the previous TRACE subcommand was for FORMAT output,
scrolling continues with formatted output.

BACKWARD

Chapter 5. DUMPSCAN Subcommand Reference 65

BLOCK Subcommand

BLock name address

BITS OFFSET PROMPT

ALL

Purpose
Use the BLOCK subcommand to format control blocks within a dump. You can format the entire block or
selected fields. You can also request that a predefined subset of high-interest fields be formatted.

Use the BLOCKDEF utility command to generate control block format files used by the DUMPSCAN
BLOCK subcommand, and to generate control block information print files for users. For more detailed
information regarding this utility, see the “BLOCKDEF Utility Command” on page 171 in Appendix C,
“Dump Viewing Facility Utilities,” on page 163.

For an example which illustrates the necessary steps needed to set up a control block file for the
BLOCK subcommand see “Adding Block Definition Files” on page 146 in Appendix A, “Using Attachment
Interfaces,” on page 139.

Operands
name

is the 1- to 8-character name of the control block to be formatted.
address

is a 1- to 8-digit hexadecimal address indicating the storage location of the control block.
BITS

is a keyword indicating that the bits within a byte should be formatted when possible.

Note: If not specified, then only information down to the byte level is formatted.

OFFSET
is a keyword indicating that the display should be formatted using relative offsets from the start of the
control block, instead of actual addresses.

PROMPT
is a keyword indicating that the user would like to be prompted for the field names to be displayed.

ALL
is a keyword indicating that all fields within the control block are to be formatted.

Usage Notes
1. The Dump Viewing Facility BLOCK subcommand is capable of mapping any control block for any type

of dump. See section “Block Table Architecture” on page 145 in Appendix A, “Using Attachment
Interfaces,” on page 139 for information concerning how to do this.

2. If you do not specify either ALL or PROMPT, only fields that are marked as “default” in the table for the
control block are displayed.

3. BLOCK does not verify that the control block name provided is valid for the address given. If the user
gives BLOCK the wrong address, BLOCK simply maps the storage into the control block definition as if
the address were correct.

4. When using the PROMPT function of BLOCK, you can display a selected group of fields and then
discover that additional fields need to be displayed. In this instance you need not retype all of the
fields entered previously. When prompted for the fields to be displayed, you have the option of reusing
the old fields and having the new fields added to the display. This is accomplished by entering an equal

BLOCK

66 z/VM: 7.3 Dump Viewing Facility

sign (=) followed by the name of the new fields. BLOCK redisplays the previous fields, followed by the
new ones. The following is an example of the use of PROMPT with an equal sign.

On a prompt for field names to be displayed, you have entered the following:

field1 field2 field3 field4

You now want to add fields 5 and 6 to the display. After reentering the BLOCK command with the
PROMPT keyword, you are again prompted for the field names to be displayed, and enter the following:

= field5 field6

BLOCK displays the fields in the order that you entered them. The program does not try to order the
fields, nor does it check for duplicate fields. BLOCK only verifies that a name entered by the user
actually exists in the control block definition.

5. You can flag any field as a default field with the exception of BIT subrecord fields. If a BIT field is
flagged as a default field and the BITS keyword was specified, the bits are displayed. If just the BIT
subrecord field is flagged, the flag is ignored.

Examples

The following examples demonstrate how the various BLOCK operand and keyword combinations provide
you with the control block data you need.

If you enter block userblok 20000 all, the response is as shown in Figure 12 on page 67.

 BLOCK USERBLOK AT LOCATION 00020000

 ADDR/OFF NAME CONTENTS DESCRIPTION

 00020000 USERFLGA A2 EVENT STATUS FLAGS
 00020001 USERFLGB 3E EVENT STATUS FLAGS #2
 00020002 * 0000 RESERVED
 00020004 USERLINK 00389008 LINK POINTER
 00020008 USERCBID 'USBK' CONTROL BLOCK IDENTIFIER
 0002000C USERREGF 00023810 SAVED RETURN CODE FROM CALL
 00020010 USERREGE 00650101 SAVED REGE FROM PRIOR CALL
 00020014 USERTIME 6DFC83E94AA3CB13 TIME OF DISPATCH TO CPU 1
 DISPATCHER/SCHEDULER ROUTINE
 0002001C USERFLGC A1 LOCK FLAGS

Figure 12. Sample Output of the BLOCK Subcommand with the ALL Keyword

If you enter block userblok 20000 bits offset, the response is as shown in Figure 13 on page
68.

BLOCK

Chapter 5. DUMPSCAN Subcommand Reference 67

 BLOCK USERBLOK AT LOCATION 00020000

 ADDR/OFF NAME CONTENTS DESCRIPTION

 00000000 USERFLGA A2 EVENT STATUS FLAGS
 USERBIT1 1... I/O IN PROGRESS
 USERBIT2 .0.. DEACTIVATE STARTED
 USERBIT3 ..1. SESSION ENDED
 USERBIT4 ...0 PURGE Q REQUESTED
 00000001 USERFLGB 3E EVENT STATUS FLAGS #2
 00000002 * 0000 RESERVED
 00000004 USERLINK 00389008 LINK POINTER
 00000008 USERCBID 'USBK' CONTROL BLOCK IDENTIFIER
 0000000C USERREGF 00023810 SAVED RETURN CODE
 FROM CALL
 00000010 USERREGE 00650101 SAVED REGE FROM
 PRIOR CALL
 00000014 USERTIME 6DFC83E94AA3CB13 TIME OF DISPATCH TO
 CPU 1 DISPATCHER/
 SCHEDULER ROUTINE
 0000001C USERFLGC A1 LOCK FLAGS
 USERLOC2 1..0 .00. DISPATCH STATUS FLAGS FOR
 THE PRIMARY CPU DISPATCHER

Figure 13. Sample Output of the BLOCK Subcommand with the BITS and OFFSET Keywords

BLOCK

68 z/VM: 7.3 Dump Viewing Facility

CHAIN Subcommand

CHain address linkdisp
1

?

%

endval
LIST 0

LIST
0

offset

COUNT
500

increment

length

Notes:
1 Do not put blanks between the operands and special characters.

Purpose
Use the CHAIN subcommand to do any of the following:

• Display the addresses for the control blocks on a chain
• Display the data in the control blocks on a chain
• Display a count of the number of control blocks on a chain
• Detect any loops in a chain of control blocks.

This subcommand accepts a 24- or 31-bit qualifier for the address.

Operands
address

is a 1- to 8-digit hexadecimal address specifying the starting address of the first control block on the
chain.

linkdisp
is a 1- to 6-digit hexadecimal operand specifying the displacement into the current control block
where a pointer to the next control block in the chain is located. The valid range of the linkdisp
operand is from hexadecimal 0 to FFFFFF.

?
specifies a 31-bit indirect address. A word (4 bytes) of storage at the specified address is read from
the dump. This operand is the default.

%
specifies a 24-bit indirect address. A word (4 bytes) of storage at the specified address is read from
the dump.

endval
is a 1- to 8-digit hexadecimal operand specifying the value of the pointer in the last block of the chain.

LIST
directs that only a list of control block addresses and a decimal count of the control blocks be
displayed. The control blocks themselves are not to be displayed. LIST is the default for the
command.

CHAIN

Chapter 5. DUMPSCAN Subcommand Reference 69

offset
is a 1- to 6-digit hexadecimal offset indicating the starting address from which 4 contiguous bytes of
data are to be displayed. The valid range of the offset operand is from X'0' to X'FFFFFF'. The default is
0.

COUNT
is a keyword specifying that only a count of the total number of control blocks on the chain and not the
addresses or control blocks themselves be displayed.

increment
is a 1- to 4-digit decimal number designating how often the following message is issued: “nnnn
ENTRIES - PROCESSING CONTINUES.” The default is 500 entries.

length
is a 1- to 4-digit hexadecimal operand indicating the number of bytes to be displayed. The valid range
of the length operand is from X'0' to X'1000'. However, the control block itself may be larger.

Usage Notes
1. The default indirect addressing mode is ? (question mark), which is 31-bit addressing mode. You can

override the default addressing by specifying a percent sign (%) for 24-bit addressing mode.
2. If the number of control blocks on the chain exceeds 4096, a message is issued. Entering a null line

continues the chain presentation starting with the last address displayed.
3. If you restart chain processing with the null line, the last address displayed becomes the first on the

new chain.
4. If the address of the next control block in the chain has already been found in the current group of

4096 blocks, an error message is issued and processing ends.
5. If a loop of greater than 4096 entries exists, it is not detected.

Examples

Figure 14 on page 70 shows an example of a chain of control blocks.

Figure 14. Example of a Chain of Control Blocks

Assume you know the following about the chain of control blocks:

• All the blocks in the chain have the same format.
• The address of the first block is 00123400.
• The pointer to the next block in the chain is at offset X'10' into the block.
• The last block in the chain contains a pointer value of zero.

If you wanted to view the addresses of the control blocks, you would enter this subcommand:

chain 123400 10 0

The output displayed appears in a list format:

CHAIN 123400 10 0
CB # 0001 AT 00123400
CB # 0002 AT 010A80B0
CB # 0003 AT 00002460
CB # 0004 AT 04020080

CHAIN

70 z/VM: 7.3 Dump Viewing Facility

0004 ENTRIES WERE FOUND IN THE CHAIN

If you wanted to view the addresses of a chain of control blocks, but with 24-bit addressing specified, you
would enter this command:

chain 203010 4% 0

The output displayed appears in a list format:

CHAIN 203010 4% 0
CB # 0001 AT 00203010
CB # 0002 AT 00203330
CB # 0003 AT 00203120
CB # 0004 AT 00203110
CB # 0005 AT 00203100
CB # 0006 AT 002030F0
CB # 0007 AT 002030E0
CB # 0008 AT 002030D0
 .
 .

The list would continue until all the blocks on the chain are listed. As with the example for 31-bit
addressing, the total number of blocks on the chain are listed for 24-bit addressing requests. Figure 15
on page 71 shows an example of the output from the CHAIN subcommand when the length operand is
specified.

The subcommand entered is:

chain 900818 0 0 50

CB #(0001) ADDR(00900818?) LINKDISP(00000000) ENDV(00000000) LEN(00000050)
 0000 01F2C008 00000008 00000000 00000000 06 *.2..............*
 0010 00000000 00000000 00000000 00000000 *................*
 0020 00000000 00000000 00000000 00000000 *................*
 0030 00000000 00000000 C5D9C5D7 40404040 *........EREP *
 0040 00000000 00000000 00000000 00000000 *................*

CB #(0002) ADDR(01F2C008?) LINKDISP(00000000) ENDV(00000000) LEN(00000050)
 0000 00000000 00000000 E2E8E2E3 C5D44040 06 *........SYSTEM *
 0010 01C47650 00000028 00000000 00000000 *.D.&;...........*
 0020 00000000 00000000 00000000 00000000 *................*
 0030 4CE5D4C3 4C4C4C4C 80000458 00E5D4C3 *<VMC<<<<.....VMC*
 0040 00000006 6E6E6E6E 00000000 00000000 *....>>>>........*

0002 ENTRIES WERE FOUND IN THE CHAIN

Figure 15. Sample Output of a CHAIN Subcommand with a Length Specified

Figure 16 on page 72 shows an example of the output from the CHAIN subcommand when LIST and an
offset are specified. The subcommand entered is:

chain 362b000 600 0 list 540

CHAIN

Chapter 5. DUMPSCAN Subcommand Reference 71

CB # 0001 AT 0362B000 DATA => 00010000
CB # 0002 AT 03622000 DATA => 00010000
CB # 0003 AT 03615000 DATA => 00010000
CB # 0004 AT 03602000 DATA => 00010000
CB # 0005 AT 035F9000 DATA => 00010000
CB # 0006 AT 035F0000 DATA => 00010000
CB # 0007 AT 035E7000 DATA => 00020000
CB # 0008 AT 035B8000 DATA => 00010000
CB # 0009 AT 035AF000 DATA => 00010000
CB # 0010 AT 035A6000 DATA => 00010000
CB # 0011 AT 0359C000 DATA => 00010000
CB # 0012 AT 03767000 DATA => 00020000
CB # 0013 AT 0375A000 DATA => 00010000
CB # 0014 AT 03E2A000 DATA => 00010000

0014 ENTRIES WERE FOUND IN THE CHAIN

Figure 16. Sample Output of a CHAIN Subcommand with LIST and an Offset Specified

Responses
The hexadecimal address of each block found in the chain and a decimal count of the number of blocks
found is displayed.

CHAIN

72 z/VM: 7.3 Dump Viewing Facility

CMS Subcommand

CMS

command

Purpose
Use the CMS subcommand to enter the CMS subset environment.

Operands
command

is any valid CMS command.

Usage Notes
1. If you enter the CMS subcommand without an operand, you enter CMS subset mode.
2. If you try to execute a CMS command that terminates abnormally, changes during the dump viewing

session can be lost. You should try to save the current session file before using the CMS subcommand.
3. Any CMS command should be prefaced with CMS to prevent the Dump Viewing Facility or XEDIT from

decoding the subcommand. This should be done to prevent cases where a CMS command can be
interpreted as a Dump Viewing Facility or XEDIT subcommand.

CMS

Chapter 5. DUMPSCAN Subcommand Reference 73

CMSPOINT Subcommand (CMS Dump)

CMSPoint

Purpose
Use the CMSPOINT subcommand to display the formatted contents of pointers from CMS NUCON.

Examples

Figure 17 on page 74 is an example of the output of the CMSPOINT subcommand.

LASTCMND= BEGIN 0
PREVCMND= FILELIST
LASTEXEC= PF
PREVEXEC= PROFILE
CURRSAVE= 0000C748
PGMSECT = 00002600
IOSECT = 00002570
EXTSECT = 000024A0
ADTSECT = 000015F0
DEVTAB = 00001390
DIOSECT = 00002940
SVCSECT = 000026A0
TAXEADDR= 000036B0
ALDRTBLS= 00100000
PGMOPSW = 00000001 60000002
PSAVE R0-R3= 00000000 00000000 00000000 00000000
PSAVE R4-R7= 00000000 00000000 00000000 00000848
PSAVE R8-R11= 000002A2 00000000 00000000 00000000
PSAVE R12-R15= 00020101 00000000 00020000 0001FA34

Figure 17. Example Output of the CMSPOINT Subcommand

Responses
CMSPOINT displays the formatted contents of the following CMS NUCON pointers:

Pointer Formatted Contents

LASTCMND Last command executed

PREVCMND Previous command executed

LASTEXEC Last exec executed

PREVEXEC Previous exec executed

CURRSAVE Address of the current system SVC save area

PGMSECT Address of the program interrupt save area

IOSECT Address of the I/O interrupt save area

EXTSECT Address of the external interrupt save area

ADTSECT Address of the first active disk table

DEVTAB Address of the CMS device table

DIOSECT Address of the disk I/O work area

SVCSECT Address of the SVC handler control block used by DMSITS

TAXEADDR Address of the terminal attention interrupt exit

CMSPOINT

74 z/VM: 7.3 Dump Viewing Facility

Pointer Formatted Contents

ALDRTBLS Address of the loader tables

PGMOPSW Program old PSW

PSAVE Contents of 16 general registers at time of abend from PGMSECT

Messages and Return Codes
DMSDDP2017I

PAGE 'page' NOT FOUND IN DUMP
DMSDFR2017E

INVALID OPERAND - operand

CMSPOINT

Chapter 5. DUMPSCAN Subcommand Reference 75

CMSVIEW Subcommand

CMSVIEW

FORMAT blocktype

address

OFFSET blocktype fieldname

SIZE blocktype

TRACE

FOrmat (Options

)

Options
1

FRom number FOr number

TO number

LAST number

Purpose
Use the CMSVIEW subcommand (macro) to format CMS control blocks, traverse CMS control block chains,
and display CMS trace data.

Operands
FORMAT blocktype

formats a CMS control block and displays it on your screen. If the block is a one-of-a-kind block (for
example, the KGA), you need not supply an address.

OFFSET blocktype fieldname
shows you the offset within a block to a given field.

SIZE blocktype
shows you the size of a block.

TRACE
shows you the accumulated trace data.
FOrmat

indicates that the TRACE subcommand output should be formatted before being displayed. If
the FORMAT option is not specified, the output is not formatted before being displayed. See
“CMSVIEW TRACE Subcommand” on page 81 for more information.

Options
FROM number

specifies the first trace entry to display. number is an integer trace entry number. The default is 1.
FOR number

specifies how many trace entries are to be displayed, where number is an integer from 1 to the
number of entries in the trace table. The default is to display all trace entries starting with the FROM
value.

CMSVIEW

76 z/VM: 7.3 Dump Viewing Facility

TO number
specifies the last trace entry to be displayed, where number is an integer from 1 to the number of
entries in the trace table. The default is to display all trace entries starting with the FROM value.

LAST number
specifies how many trace table entries are to be displayed starting from the end or most recent
("last") entries, where number is an integer from 1 to the number of entries in the trace table. LAST
overrides all other specified operands.

Usage Notes
1. Dumps to be analyzed by CMSVIEW should be taken with the VMDUMP 0-END FORMAT CMS

command.
2. If you specify no command when you start CMSVIEW, a window will appear on the screen and you will

be asked to enter a CMSVIEW command.
3. When CMSVIEW draws a formatted control block, the PF keys are set to allow certain convenient

functions:

Note: Switch among PF key sets with PF10.

PF Keys (Set 1)
PF1

Displays the HELP information for CMSVIEW
PF2

Formats the block indicated by the cursor position
PF3

Return to previous CMSVIEW window
PF4

Displays the KGA
PF5

Displays the PLD for CPU 0
PF6

Displays the TSD of the thread running on CPU 0
PF7

Scrolls backward through the displayed window
PF8

Scrolls forward through the displayed window
PF9

Displays storage pointed to by contents at cursor
PF10

Swaps to the next PF key set
PF11

Displays the PSD of the root process
PF12

Displays the PSD of the commands process

PF Keys (Set 2)
PF1

Display a prompt for a CMSVIEW command
PF2

Display a prompt for a CMS command
PF3

Return to previous CMSVIEW window

CMSVIEW

Chapter 5. DUMPSCAN Subcommand Reference 77

PF4

PF5

PF6

PF7
Scrolls backward through the displayed window

PF8
Scrolls forward through the displayed window

PF9

PF10
Swaps to the next PF key set

PF11

PF12

PF Keys (Set 3)
PF1

PF2

PF3

Return to previous CMSVIEW window
PF4

PF5

PF6

PF7

Scrolls backward through the displayed window
PF8

Scrolls forward through the displayed window
PF9

PF10

Swaps to the next PF key set
PF11

PF12

Examples

1. The output received for CMSVIEW FORMAT KGA might look like this (where the v, r, and m displayed
will be the version, release, and modification of your z/VM system):

CMSVIEW

78 z/VM: 7.3 Dump Viewing Facility

 z/VM VvRr.m - Dumpscan DUMP DUMP0001 F1 Type=VM Format=CMS
 HCSDSS200I PROCESSING FILE DUMP DUMP0001 F1
H + --- +
* | In KGA at address 005DD000 (length X'6B0'), you find... |
 | |
 | Offset Field_Name What Contents |
 | ------ ---------- ---- -------- |
 | 0000 kga_abn_anch *KABNE 005DD6B0 |
 | 0004 kga_abn_len 00000010 |
 | 0008 kga_act_anch *KACTE 005DD6C0 |
 | 000C kga_act_len 00000020 |
 | 0010 kga_cpu_anch *KCPUE 005DD6E0 |
 | 0014 kga_cpu_len 00000228 |
 | 0018 kga_evn_anch *KEVNE 005DD908 |
 | 001C kga_evn_len 00000050 |
 | 0020 kga_ipc_anch *KIPCE 005DD958 |
 | 0024 kga_ipc_len 000003E8 |
 | |
 | PF1=Help 2=ToBlk 3=Quit 4=KGA 5=PLD.0 6=TSD.0 |
 | PF7=Bkwd 8=Fwd 9=AsStg 10=SwPF 11=Root 12=Cmds |
 + --- +

 ====> cmsview format kga

2. The output received for CMSVIEW OFFSET KGA KGA_ACT_LEN might look like this:

Offset within KGA to kga_act_len is X'C'.

3. The output received for CMSVIEW SIZE KGA might look like this:

Size of KGA is X'6B0' bytes.

Messages and Return Codes
The following messages may be returned by the CMSVIEW subcommand:
DMSSB$002E

File fn ft not found
DMSSB$2551E

No block to format specified
DMSSB$2552E

No block name to search specified
DMSSB$2553E

No field to find specified
DMSSB$2554E

No block to size specified
DMSSB$2555E

Address of block could not be determined
DMSSB$2556E

Address addr is not a likely place to find a block
DMSSB$2557E

Offset of field within block could not be determined
DMSSB$2558I

Offset within block to field is hexdisp
DMSSB$2559E

Size of block could not be determined
DMSSB$2560E

Size of block is X'xx' bytes
DMSSB$2561E

There is a block at address addr, but its format is not known. filename BLOCKDEF file is probably
incorrect

CMSVIEW

Chapter 5. DUMPSCAN Subcommand Reference 79

DMSSB$2562E
Error returncode loading filename BLOCKDEF *

DMSSB$2564E
Error on READSTRG command (rc=rc). Trace data processing stopped (address=vaddr)

DMSSB$2565E
No trace data could be found

DMSSB$2566E
Unknown error

DMSSB$2567W
FOR number is not a positive whole number. Set to n

DMSSB$2567W
FROM number is not a positive whole number. Set to 1

DMSSB$2567W
FROM number too big. Set to 1

DMSSB$2567W
LAST number is not a positive whole number. Set to n

DMSSB$2567W
TO number is not a positive whole number. Set to n

DMSSB$2567W
TO/FOR value too big. Set to n

CMSVIEW

80 z/VM: 7.3 Dump Viewing Facility

CMSVIEW TRACE Subcommand

CMSVIEW TRACE

FOrmat (Options

)

Options
1

FRom number FOr number

TO number

LAST number

Purpose
Use the CMSVIEW TRACE subcommand to display the CMS trace data.

Operands
FOrmat

indicates that the TRACE subcommand output should be formatted before being displayed. If the
FORMAT option is not specified, the output is not formatted before being displayed.

Options
FROM number

specifies the first trace entry to display. number is an integer trace entry number. The default is 1.
FOR number

specifies how many trace entries are to be displayed, where number is an integer from 1 to the
number of entries in the trace table. The default is to display all trace entries starting with the FROM
value.

TO number
specifies the last trace entry to be displayed, where number is an integer from 1 to the number of
entries in the trace table. The default is to display all trace entries starting with the FROM value.

LAST number
specifies how many trace table entries are to be displayed starting from the end or most recent
("last") entries, where number is an integer from 1 to the number of entries in the trace table. LAST
overrides all other specified operands.

Usage Notes
1. The trace table is not a reserved area of storage, but a set of signals of the Trace event. The trace table

cannot be examined effectively without the help of the CMSVIEW TRACE subcommand.
2. Each trace entry is identified by a number that orders the entries in time, trace entry number one being

the oldest in the trace table. Trace entries are displayed "youngest" to "oldest".
3. The trace code is given in two parts: the first identifies the type of trace event and the second gives the

more specific subtype. For trace entry 99 in the example, "02 02" indicates a dispatching event (02)
which is specifically a subtype of 02, or promote thread event.

CMSVIEW TRACE

Chapter 5. DUMPSCAN Subcommand Reference 81

Examples

1. The output received for CMSVIEW TRACE FORMAT (FROM 99 TO 100 might look like this:

Num CPU TOD Clock Code Account-id Pid Tid
100 00 A467257D4405CE03 02 002 CLIENTU4 02 01
 Promote by 00442A50 dcd 004421A0 chose 00442A50 called by 80325394

Num CPU TOD Clock Code Account-id Pid Tid
99 00 A467257D43FF6503 02 004 CLIENTU4 02 01
 Sched by 00442A50 who 002F4320 called by 80327862

2. The output received for CMSVIEW TRACE (FROM 99 TO 100 might look like this:

100 00000044 00000002 00000002 00000000
 00000000 00000000 00000000 E2C8E4D3
 E3E9F240 00000002 00000001 00000000
 A467257D 4405CE03 40404040 40404040
 00000010 00442A50 00442A50 004421A0
 80325394

99 00000044 00000002 00000004 00000000
 00000000 00000000 00000000 E2C8E4D3
 E3E9F240 00000002 00000001 00000000
 A467257D 43FF6503 40404040 40404040
 0000000C 00442A50 002F4320 80327862

Messages and Return Codes
The following messages may be returned by the CMSVIEW TRACE subcommand:
DMSSB$002E

File fn ft not found
DMSSB$2564E

Error on READSTRG command (rc=rc). Trace data processing stopped (address=vaddr)
DMSSB$2565E

No trace data could be found
DMSSB$2566E

Unknown error
DMSSB$2567W

FOR number is not a positive whole number. Set to n
DMSSB$2567W

FROM number is not a positive whole number. Set to 1
DMSSB$2567W

FROM number too big. Set to 1
DMSSB$2567W

LAST number is not a positive whole number. Set to n
DMSSB$2567W

TO number is not a positive whole number. Set to n
DMSSB$2567W

TO/FOR value too big. Set to n

CMSVIEW TRACE

82 z/VM: 7.3 Dump Viewing Facility

CPU Subcommand

CPU

Purpose
Use this subcommand to display the CPU address and the prefix register value for each processor in the
dump.

Usage Notes
1. This subcommand does not clear the screen before displaying information.
2. The failing processor is always listed first.
3. For more information about any processor in the system, use the REGS, CREGS, or GREGS

subcommands.

Examples

Figure 18 on page 83 illustrates the output you receive after entering the CPU subcommand. The
subcommand entered is:

cpu

CPU ADDRESS IS 0000 PREFIX REGISTER IS 0095E000 (FAILING)
CPU ADDRESS IS 0001 PREFIX REGISTER IS 01CB0000

Figure 18. Sample Output of a CPU Subcommand

CPU

Chapter 5. DUMPSCAN Subcommand Reference 83

CREGS Subcommand

Cregs

cpuaddr

Purpose
Use the CREGS subcommand to display the control registers for a specified CPU address.

Operands
cpuaddr

is a 1- to 4-digit hexadecimal number specifying the processor address for which the information is to
be displayed.

Usage Notes
1. If the cpuaddr operand is not specified, it defaults to processor on which the CP VMDUMP command

was issued for the virtual machine.
2. Use the CPU subcommand to obtain the processor addresses in the dump.

Examples

Figure 19 on page 84 illustrates the output of the CREGS subcommand for the failing processor. The
subcommand entered is:

Cregs

CPU ADDRESS - 0000
CONTROL REGS 0 - 15
 90B0FE40 00800001 00000000 00000000 00000000 00000000 80000000 00000000
 00000000 00000000 00000000 00000000 01FA8681 00000000 5F000000 00000000

Figure 19. Sample Output of a CREGS Subcommand

CREGS

84 z/VM: 7.3 Dump Viewing Facility

DISPLAY Subcommand

Display

T

1
address

1

%

?

1

.length OFFSET

Notes:
1 Do not put blanks between the operands and special characters.

Purpose
Use the DISPLAY subcommand to display areas of the dump. You can specify an address, an indirect
address, or request data to be displayed by offsets from an address.

Operands
address

is the 31-bit (4-byte) hexadecimal address from which the data is to be displayed.
%

specifies a 24-bit indirect address. A word (4 bytes) of storage at the specified address is read from
the dump. The low-order 24 bits are used to compute the address that is displayed.

?
specifies a 31-bit indirect address. A word (4 bytes) of storage at the specified address is read in from
the dump. The low-order 31 bits are used to compute the address displayed.

.length
is an optional operand. It is a 1- to 4-digit nonzero hexadecimal number indicating the length in bytes
to be displayed. The valid range is from X'1' to X'FFFF'. If this is specified, the screen is not cleared. If
it is not specified, the screen is cleared and the output is displayed.

One screen of dump data is presented in both hexadecimal and EBCDIC.

OFFSET
is an optional operand. If you specify it, the leftmost column of the output contains the offsets from
the input address instead of the storage address of the data. The data is displayed to the right of the
column of offsets.

Usage Notes
1. A period (.) used as a delimiter between the address and the length is acceptable. If the indirect

addressing qualifier is specified, the delimiter should follow the qualifier.
2. A T preceding the address operand (for example, Taddress) is used to provide compatibility with the

CP DISPLAY command. The DISPLAY subcommand always provides the EBCDIC translation whether T
is specified or not.

3. If you specified an indirect address, the resulting address appears in parentheses in the output as part
of the command line.

4. The minimum output is one 16-byte line with EBCDIC translation.
5. If you specify the length operand, the resulting display is rounded to start and end on a 10-byte

(hexadecimal) boundary (see Figure 23 on page 87).
6. Each line includes 16 bytes of hexadecimal data with the EBCDIC translation. In addition, the key

of the page is displayed on the first line and subsequent page boundaries. It appears between the
hexadecimal data and its EBCDIC translation.

7. OFFSET and length are operands that may be specified in any order.

DISPLAY

Chapter 5. DUMPSCAN Subcommand Reference 85

8. If you specify the OFFSET keyword operand, the leftmost column of the output contains the
hexadecimal offset from the starting address instead of the 31-bit storage address.

9. If only partial data is available in the dump, DISPLAY presents all of the available data, and then an
error message is displayed.

Examples

Figure 20 on page 86 illustrates the results of the command DISPLAY 11A9D0. Notice that the left-most
column contains the storage address of the data. The subcommand entered is:

Display 11a9f0

DISPLAY 11A9F0
 0011A9F0 F14BF4F7 D9C50000 05C04BC0 C0064700 *1.47RE..........*
 0011AA00 002A41C0 C0009180 728A47E0 C29A58E0 *......j.....B...*
 0011AA10 868818FE 89F00001 58100974 88100002 *fh..i0......h...*
 0011AA20 18D15BD0 07508DE0 100089E0 0001185E *.J$..&;...i....;*
 0011AA30 41400005 186407F0 9514089A 4770C0AE *.0n.......*
 0011AA40 58F0B520 12FF4770 C2085820 C2381733 *.0......B...B...*
 0011AA50 18134333 20031233 4780C0AE 58A32000 *.............t..*
 0011AA60 12AA47B0 C0AE54A0 07B45890 A60C4190 *............w...*
 0011AA70 96589101 90034780 C21847F0 C0805820 *o.j.....B..0....*
 0011AA80 08049180 20004710 C2081733 18134333 *..j.....B.......*
 0011AA90 20031233 4780C0EA 58A32000 12AA47B0 *.........t......*
 0011AAA0 C0EA54A0 07B45890 A60C4190 96589101 *........w...o.j.*
 0011AAB0 90034780 C21847F0 C0BC4110 00144610 *....B..0........*
 0011AAC0 C0EE91C0 08024770 C2924660 C0664940 *..j.....Bk.-... *
 0011AAD0 C2504740 C1164940 C25247B0 C11A4140 *B&; A.. B...A.. *
 0011AAE0 400247F0 C11A8940 00011864 951E089A * ..0A.in...*
 0011AAF0 4780C1CE 41202080 41DD0001 5520C23C *..A...........B.*
 0011AB00 4770C13A 5820C240 17DD8950 00011255 *..A...B ..i&;...*
 0011AB10 4780C1CE 47B0C124 45E02004 95002003 *..A...A.....n...*
 0011AB20 4780C124 17331813 43332003 12334780 *..A.............*
 0011AB30 C12458A3 200012AA 47B0C124 54A007B4 *A..t......A.....*
 0011AB40 58F0A530 12FF4770 C1565890 A60C4190 *.0v.....A...w...*
 0011AB50 96589101 90034770 C1561892 1E939108 *o.j.....A..k.lj.*
 0011AB60 90024710 C1565890 A5205690 A5245490 *....A...v...v...*
 0011AB70 C2444770 C20E5890 A5285490 A52C4770 *B...B...v...v...*
 0011AB80 C1565890 C2485E90 09745890 90005490 *A...B.;.........*
 0011AB90 A5285590 A5284770 C15647F0 C20E17FF *v...v...A..0B...*
 0011ABA0 BFF80832 57F00748 54F00834 17114120 *.8...0...0......*
 0011ABB0 09D012FF 4720C1F4 4780C066 B23F0000 *......A4........*
 0011ABC0 4740C200 89F00001 41101001 47F0C1E2 *. B.i0.......0AS*
 0011ABD0 41F00008 47F0C21A 17FF47F0 C22A186D *.0...0B....0B...*
 0011ABE0 41F00004 47F0C21A 17FF58E0 C24C58E0 *.0...0B.....B<..*
 0011ABF0 E00056E0 86504770 C2548200 C2300000 *....f&;.B.b.B...*
 0011AC00 000C0000 800638A6 00063A80 00064A80 *.......w........*

Figure 20. Sample Output of a DISPLAY Subcommand without the Length Operand

Figure 21 on page 86 illustrates the display generated using 31-bit indirect addressing with a length. The
subcommand entered is:

display 9f0080? 40

DISPLAY 9F0080 ? 40 (00800000)
 00800000 80000020 80000020 80000020 80000020 06 *................*
 00800010 80000020 80000020 80000020 80000020 *................*
 00800020 80000020 80000020 80000020 80000020 *................*
 00800030 80000020 80000020 80000020 80000020 *................*

Figure 21. Sample Output of a DISPLAY Subcommand with 31-Bit Indirect Addressing

Figure 22 on page 87 illustrates the DISPLAY command using the OFFSET operand. Note that the
left-hand column is the offset from the address entered. The subcommand entered is:

d fca5f4? offset

DISPLAY

86 z/VM: 7.3 Dump Viewing Facility

DISPLAY FCA5F4 ? (00FD9C80) OFFSET
 0000 00FD9D00 00000000 00000000 00026000 06 *..............-.*
 0010 00000000 000E85E2 E4C94040 00000041 *......eSUI *
 0020 00001000 00F88238 00121028 00000000 *.....8b.........*
 0030 00001000 00FDA700 00014000 00000000 *......x...*
 0040 00F88238 00001000 0005FF30 00000018 *.8b.............*
 0050 8006003C 00121028 00000000 00000000 *................*
 0060 00000000 00000000 00000000 00000000 *................*
 0070 00000000 00000000 00000000 00000000 *................*
 0080 00FD9400 00000000 00000000 00026000 *..m...........-.*
 0090 00000000 000E85E2 00E4E1C0 00FDA9D8 *......eS.U....zQ*
 00A0 00000001 00000000 A1C186C7 8BD46412 *.........AfG.M..*
 00B0 00000000 00FDAAE0 00FDA700 80D41AA8 *..........x..M.y*
 00C0 00FDAAE0 00001000 00D41000 00FD9C80 *.........M......*
 00D0 80D41BAC 000EFCE8 00000000 00000000 *.M.....Y........*
 00E0 00000000 00000000 00000000 00000000 *................*
 00F0 00000000 00000000 00000000 00000000 *................*
 0100 00FD9380 00000000 00000000 00026000 *..l...........-.*
 0110 00000000 000E85E2 A1C18738 00000000 *......eS.Ag.....*
 0120 000F1274 000F0FB8 000F11E0 00A7E030 *.............x..*
 0130 80082C74 000F1274 00016B80 0007DDA0 *..........,.....*
 0140 00FD85F8 00001000 00082C20 00FD9400 *..e8..........m.*
 0150 80082EA6 000FFBF8 00000000 00000000 *...w...8........*
 0160 00000000 00000000 00000000 00000000 *................*
 0170 00000000 00000000 00000000 00000000 *................*
 0180 00000000 00000000 00000000 00026000 *..............-.*
 0190 00800000 000E8348 00000000 0C500020 *......c......&;.*
 01A0 42424048 0038F720 00003A10 00000000 *.. ...7.........*
 01B0 000F4F80 00000398 00016400 0007DDA0 *..|....q........*
 01C0 00FD8138 00001000 0007CDA0 00000038 *..a.............*
 01D0 8007D28C 0006E810 00000000 00000000 *..K...Y.........*
 01E0 00000000 00000000 00000000 00000000 *................*
 01F0 00000000 00000000 00000000 00000000 *................*
 0200 00000000 00000000 00000000 00026000 *..............-.*
 0210 00800000 000E85E2 0000000B 00000001 *......eS........*
 0220 00000014 00000003 00000000 00000000 *................*
 0230 00FD9268 00014000 00016400 00000000 *..k...*

Figure 22. Sample Output of a DISPLAY Subcommand with the OFFSET Operand

Figure 23 on page 87 illustrates the DISPLAY subcommand specified with a length. Note that the data
displayed begins and ends on a 10-byte (hexadecimal) boundary. The subcommand entered is:

display 9efff6 c

DISPLAY 9EFFF6 C
 009EFFF0 5810D038 58001C24 18185410 0B0C8910 04 *................*
 009F0000 000A1E01 1FEE1FFF 1F225810 2C1CBB0E 06 *................*

Figure 23. Sample Output of a DISPLAY Subcommand with a Length Specified

DISPLAY

Chapter 5. DUMPSCAN Subcommand Reference 87

DOSPOINT Subcommand (CMS Dump)

DOSPoint

Purpose
Use the DOSPOINT subcommand to display the formatted contents of five pointers used by DOS
simulation.

Usage Notes
1. If the DOSPOINT subcommand is invoked and DOS simulation is not in effect, an error message is

displayed.

Examples

DMSDDP2017I DOS SIMULATION NOT IN EFFECT
BGCOM = 00000DB8
SYSCOM = 00000CA0
LTASAVE= 00001180
ACBLIST= 00000000
DOSSECT= 00000000

Responses
DOSPOINT displays the formatted contents of the following DOS simulation pointers:

Pointer Formatted Contents

BGCOM Address of the background communications area

SYSCOM Address of the systems communication area

LTASAVE Address of the logical transient save area

ACBLIST Address of the ACB list built by OPEN/CLOSE

DOSSECT Address of the first DOSCB control block

Messages and Return Codes
DMSDDP2017I

DOS SIMULATION NOT IN EFFECT
DMSDDP2017I

Page 'page' NOT FOUND IN DUMP
DMSDFR2017I

INVALID OPERAND - operand

DOSPOINT

88 z/VM: 7.3 Dump Viewing Facility

DUMPID Subcommand

DUMPID

Purpose
Use the DUMPID subcommand to display the dump identifier.

Usage Notes
1. This subcommand is valid for virtual machine dumps. For VM dumps the identifier is assigned with the

VMDUMP command. For more information on the VMDUMP command, see the z/VM: CP Commands
and Utilities Reference.

DUMPID

Chapter 5. DUMPSCAN Subcommand Reference 89

DUMPSCAN Subcommand

DUMPSCAN

fn
DUMP0001 *

DUMP nnnn
*

fm

Purpose
Use the DUMPSCAN subcommand to view a different dump file without leaving the DUMPSCAN command
environment.

Operands
fn

is the name of the dump file to be processed.
DUMPnnnn

is the file type of the dump file, where nnnn is 4-digit number. The default file type is DUMP0001.
fm

is the file mode of the dump file. If it is omitted, or is an asterisk, DUMPSCAN uses the standard CMS
search sequence.

Usage Notes
1. The DUMPSCAN file has the same file name as the dump file. The file type is VIEWnnnn where nnnn

is the number from the dump file type, DUMPnnnn. The new file is added to the current DUMPSCAN
command file ring, or if the file is already in the file ring, then the DUMPSCAN subcommand switches
to it and the current screen is updated to reflect the new dump file being viewed.

2. Because the DUMPSCAN command and subcommand share the same name, the user needs to know
which DUMPSCAN was invoked in order to avoid possible confusion when viewing multiple dumps.
See the Usage Guide section under “Viewing Several Dump Files at a Time” on page 11 for further
information on viewing multiple dump files.

3. If the dump is on a writable disk, the session file uses the file mode of the dump file. Otherwise the file
mode is "A".

4. If the DUMPSCAN subcommand is entered with no operands, it switches to the next VIEWnnnn file in
the current DUMPSCAN command file ring. If there are no other VIEWnnnn files, DUMPSCAN remains
at the current dump file.

5. The session file uses the file mode A.
6. The dump viewing session can be filed with the XEDIT FILE subcommand. When you view the same

dump later, the saved file is reactivated and the new session is appended to the dumpname VIEWnnnn
file containing the previous sessions.

Messages and Return Codes
Return Code

Explanation
0

Successful completion

DUMPSCAN

90 z/VM: 7.3 Dump Viewing Facility

4
An error message has been issued

8
Error trying to add a file to the ring

50
CP dumps are not supported. Use VM Dump Tool

104
Internal processing error

DUMPSCAN

Chapter 5. DUMPSCAN Subcommand Reference 91

END Subcommand

END

Purpose
Use the END subcommand to end the session.

Usage Notes
1. The END subcommand is equivalent to the XEDIT QQUIT subcommand.
2. If you enter the END subcommand and you have changed the session file, you must enter the XEDIT

FILE subcommand to save the session file. If you do not wish to save the session file, enter the
DUMPSCAN QUIT or DUMPSCAN HX subcommand.

END

92 z/VM: 7.3 Dump Viewing Facility

FDISPLAY Subcommand (TSAF Dump)

FDISPlay ALL

COLLect

LINKCtl APPC

BSC

CTCa

ELAN

TLAN

LINKDef

NEIGhbor

PATH

RESOurce

ROUTing

SERVice

Purpose
Use the FDISPLAY (Formatted Display) subcommand to display data control blocks, tables, and arrays
important to the TSAF virtual machine.

Operands
ALL

displays all of the information produced by the operands of this subcommand; this is useful when you
want a hard copy of the information.

COLLect
displays the collection control block.

LINKCtl
displays the link control blocks for the following types of links:
APPC

logical advanced program-to-program communications links.
BSC

bisynchronous communications links.
CTCa

channel-to-channel adapter links, which include channel-to-channel adapters and 3088 drivers.
ELAN

IBM 9370 IEEE 802.3 local area network (LAN) subsystem links.
TLAN

IBM 9370 Token Ring LAN subsystem links.
LINKDef

displays the link definition array.
NEIGhbor

displays the neighbor table.
PATH

displays the path array.

FDISPLAY

Chapter 5. DUMPSCAN Subcommand Reference 93

RESOurce
displays the resource table.

ROUTing
displays the routing array.

SERVice
displays the service table.

Usage Notes
1. To produce a SPOOL file with the data, enter the following commands (nnn is the number of trace

entries; the maximum is 999):

 print fdisplay all
 print trace format for nnn
 print close

Examples

Figure 24 on page 94, Figure 25 on page 94, Figure 26 on page 94, and Figure 27 on page 94 are
examples of the output of the FDISPLAY subcommand.

 *** TSAF Link-Definition Table ***

Entry number: 1
Symdest Name: APPCLINK ATSLINKS FILE record number: 1
Number of bytes read: 365232 Number of bytes sent: 448136
Time link came up: 0 Link delay: 54
Driver index: 6 Link control block address: 0099A828
Link state: 1 Link flags: 'A02000'X

Read/Write units: 03E0/03E0 ATSLINKS FILE record number: 4
Number of bytes read: 16560 Number of bytes sent: 18040
Time link came up: 0 Link delay: 154
Driver index: 1 Link control block address: 003F9D40
Link state: 1 Link flags: 'A00000'X

Figure 24. Sample Output of the FDISPLAY Subcommand (LINKDEF Operand)

 *** BiSync Link Control Blocks ***

 ATSZBD096I THE DATA STRUCTURE IS EMPTY

Figure 25. Sample Output of the FDISPLAY Subcommand (LINKCTL BSC Operand)

 *** CTC/3088 Link Control Blocks ***

Write CCW: 01032F90 20000004 Read CCW: 022C0408 200001F8
Sense CCW: 043F9D65 20000001 Link number: 1
Send queue front pointer: 00000000 Send queue rear pointer: 00000000
Link state: 0 Sense byte: '40'X

Figure 26. Sample Output of the FDISPLAY Subcommand (LINKCTL CTCA Operand)

 *** TSAF Routing Table ***

Destination processor: GDLVMA Via link number: 2
Entry flags: '80000000'X Path version number: 9
Link weight: 50 Hop count: 0

Destination processor: VMB Via link number: 1
Entry flags: '80000000'X Path version number: 9
Link weight: 50 Hop count: 0

Figure 27. Sample Output of the FDISPLAY Subcommand (ROUTING Operand)

FDISPLAY

94 z/VM: 7.3 Dump Viewing Facility

Messages and Return Codes

ATSZTD078E
OPERAND MISSING OR INVALID

ATSZTD084I
PAGE 'page' NOT FOUND IN DUMP

ATSZTD089E
UNABLE TO LOCATE GLOBAL CONTROL BLOCK (ATSCGM)

ATSZ5D094I
THE POINTER TO THE SPECIFIED STRUCTURE IS ZERO

ATSZ5D095I
THE LINK WAS NOT FOUND IN THE LINK-TYPE TABLE

ATSZ5D096I
THE DATA STRUCTURE IS EMPTY

FDISPLAY

Chapter 5. DUMPSCAN Subcommand Reference 95

FINDMOD Subcommand

FINDMod ' module_name '

' entry_point_name '

address

Purpose
Use this subcommand either to locate a specified module or entry point in the dump or to locate the
module and the entry point that resides at a specified address.

Operands
module_name

is an alphanumeric string of 1 to 8 characters that specifies a module name. Place this variable within
single quotation marks.

entry_point_name
is an alphanumeric string of 1 to 8 characters that specifies an entry point name. Place this variable
within single quotation marks.

address
is a 31-bit (4-byte) hexadecimal address.

Usage Notes
1. The FINDMOD subcommand requires that a module map of the dump be appended to the dump.
2. If the module name or entry point name operands are entered, the starting address of the module or

entry point is displayed on the first line of the screen.
3. If the requested module is not in storage, an error message is displayed.
4. A string in quotation marks is processed as a module or entry point name. A string not in quotation

marks is handled first as an address. If the string is not a valid hexadecimal number, it is then
processed as a module or entry point name. If the string is not a module and is not a valid hexadecimal
address, an error message is displayed indicating the string is not a valid hexadecimal address.

5. The output displays the name and hexadecimal location of the next lowest entry point and the
displacement of the address from that entry point address, as well as the name of the module
containing that entry point and the displacement from its start.

6. Scrolling subcommands—BACKWARD, FORWARD, + (increment), - (decrement)—can be used after the
module is found.

7. If the specified address is not in the dump, an error message is displayed.
8. If the operand entered is either a module name or an entry point name and it exits in the dump, the

screen is cleared before the information is displayed.
9. If the operand entered is an address, the screen is not cleared prior to display of the information.

Examples

Figure 28 on page 97 illustrates the data displayed when the FINDMOD subcommand is issued to locate
module DMSWMI. The subcommand entered is:

findmod 'DMSWMI'

FINDMOD

96 z/VM: 7.3 Dump Viewing Facility

 01102600 47F0F066 00BC10C4 D4E2E6D4 C9404040 *.00....DMSWMI *
 01102610 40F9F74B F3F4F700 47F0F04E 00A447F0 * 97.347..00+.u.0*
 01102620 F04801EE 47F0F042 026047F0 F03C02D2 *0....00..-.00..K*
 01102630 47F0F036 036E47F0 F030040A 47F0F02A *.00..>.00....00.*
 01102640 046C47F0 F02405DA 47F0F01E 079E47F0 *.%.00....00....0*
 01102650 F0180864 47F0F012 08F447F0 F00C0984 *0....00..4.00..d*
 01102660 47F0F006 0A4A90EC D00C05C0 5800CE24 *.00.............*
 01102670 58F00DE0 5810F040 1E015500 F04447D0 *.0....00...*
 01102680 C0361F01 58F00DDC 05EF0000 00400000 *.....0....... ..*
 01102690 00000000 00080000 000458E0 D00C58F0 *...............0*
 011026A0 0DE05000 F04018FD 18D150F0 D00450D0 *..&;0 ...J&X-0;.&;*
 011026B0 F00898F1 F0104AFF 000407FF 5860913C *0.q10........-j.*
 011026C0 1F889110 101D47E0 C1621F77 4370101C *.hj.....A.......*
 011026D0 41B00001 197B4740 C15A4780 C11241F0 *.....#. A...A..0*
 011026E0 0004197F 4720C15A 4780C0D2 06708970 *..."..A....K..i.*
 011026F0 000247F7 C08647F0 C13647F0 C09245E0 *...7.f.0A..0.k..*

Figure 28. FINDMOD Output When a Module Name Is Specified

Figure 29 on page 97 illustrates the data displayed when an address operand (5ad20) is specified to
determine the module that has the address. The subcommand entered is:

findmod 01102680

 01102680 is 80 bytes into module DMSWAI at 01102600

Figure 29. FINDMOD Output When an Address Is Specified

FINDMOD

Chapter 5. DUMPSCAN Subcommand Reference 97

FORMAT Subcommand

FORMAT

type

Purpose
Use the FORMAT subcommand to change or query the type of a virtual machine dump being viewed.

Operands
type

is any 1- to 8-character name for the new dump type.

Usage Notes
1. The type of a dump is not the same as the file type of a CMS dump file. The dump type identifies

dumped data’s format, such as can be specified with the FORMAT parameter of the CP VMDUMP
command.

2. If type is not specified, FORMAT displays the current dump type on the user’s screen.
3. If the format is changed, FORMAT displays the new type on the screen, appends it to the session file,

and changes the DUMPSCAN status line.
4. If type is one of the supported dump types, FORMAT unloads or resets the block files and exit routines

for the old dump type and loads the ones for the new dump type. For instance, if a dump of CMS data
has been made with the default type of FILE, entering

FORMAT cms

changes the format of the dump and loads the CMS-only routines, such as CMSPOINT, for examining
the dump.

See Appendix A, “Using Attachment Interfaces,” on page 139 for a discussion of the supported dump
types and the exit routines for extracting and formatting.

5. Because information within the dump is modified as a result of this command, you must have write
access to the dump file.

6. This subcommand is for virtual machine dumps only.

Examples

When

FORMAT SFS

is entered, the new format of the dump is displayed at the user's screen:

DUMP FORMAT IS: SFS

Messages and Return Codes
Return Code

Explanation
0

Successful completion

FORMAT

98 z/VM: 7.3 Dump Viewing Facility

4
The dump is on a disk that is not accessed as R/W

8
An additional operand was specified

104
Internal processing error

FORMAT

Chapter 5. DUMPSCAN Subcommand Reference 99

FORWARD Subcommand

Forward

Purpose
The FORWARD subcommand scrolls forward toward the highest address in the dump.

Usage Notes
1. The FORWARD subcommand can be used after entering the DISPLAY, LOCATE, FINDMOD, TRACE, or

other scrolling subcommands.
2. The FORWARD subcommand may be reentered by pressing ENTER (null line subcommand).
3. If the OFFSET operand was specified on the previous DISPLAY subcommand, issuing the FORWARD

subcommand continues to display offsets.
4. You cannot display with offsets beyond X'FFF0'.
5. The FORWARD subcommand does not wrap the screen.
6. Refer to the BACKWARD subcommand to scroll backward toward the lowest address in the dump.

Responses
One full screen of the dump data is presented in both hexadecimal and EBCDIC.

When scrolling after the TRACE subcommand, the format of the next screen is identical with the format of
the screen when TRACE was entered. For example, if the previous TRACE subcommand was for FORMAT
output, scrolling continues with formatted output.

FORWARD

100 z/VM: 7.3 Dump Viewing Facility

GDISPLAY Subcommand (AVS Dump)

GDISPLAY CVB caddr

GCB ALL

STATUS

STORAGE

TASK

TRANS

GWB caddr

GWBPTRS *

gateway_name

CVB

RLU

MAPA maddr

MAPN mname

RLU caddr

SCB caddr

SGB

Purpose
Use the GDISPLAY subcommand to display control blocks important to the AVS virtual machine and to
display the module name and module address information for APPC/VM VTAM Support.

Operands
CVB caddr

displays the conversation block at control block address caddr.
GCB

displays the global control block (GCB).
ALL

displays all the information associated with the GCB.
STATUS

displays GCB ABEND, trace, and miscellaneous status information.
STORAGE

displays the GCB queue, stack, and ordered list parameters.
TASK

displays GCB task information.
TRANS

displays GCB transformation information.
GWB caddr

displays the gateway block at control block address caddr.
GWBPTRS

displays the addresses of the conversation block (CVB) or the remote LU block (RLU).
*

displays the list of addresses for all gateway names.

GDISPLAY

Chapter 5. DUMPSCAN Subcommand Reference 101

gateway_name
is the name of an AVS gateway.
CVB

displays all the conversation block addresses for the specified gateway_name.
RLU

displays all the remote LU block addresses for the specified gateway_name.
MAPA maddr

displays the name of the AVS module located at address maddr.
MAPN mname

displays the address of mname, the 8-character name of an AVS module.
RLU caddr

displays the remote LU block at control block address caddr.
SCB caddr

displays the subtask control block at control block address caddr.
SGB

displays the scheduling global block.

Examples

Figure 30 on page 102 is an example of the output of the GDISPLAY subcommand. The following
command produced this output:

gdisplay sgb

SCHEDULING GLOBAL BLOCK (SGB)

 CURRENT SUBTASK SCB ADDRESS = 0000B8F8
 CURRENT SUBTASK PRIORITY = 2
 VTAM SCB ADDRESS = 0000B8D0
 IUCV SCB ADDRESS = 0000B8F8
 COMMAND SCB ADDRESS = 0000B880
 APPC/VM SCB ADDRESS = 0000B8A8
 ACCOUNTING SCB ADDRESS = 00000000
 MAXIMUM PRIORITY = 2
 DISPATCH COUNTER = 6
 ORIGINATORS SAVEAREA ADDRESS = 00031FB0
 PRIORITY QUEUE TIME ARRAY ADDRESS = 00037FF0
 PRIORITY QUEUE MARKER ARRAY ADDRESS = 00037FF8
 PRIORITY QUEUE POINTER ARRAY ADDRESS = 00037FE8

Figure 30. Sample Output of the GDISPLAY Subcommand (SGB Operand)

Messages and Return Codes
AGWZTD440E

Operand missing or invalid
AGWZTR440E

Operand missing or invalid
AGWZTD441E

Conflicting operand: operand
AGWZMA442E

Address entered is not in AVS
AGWZMN443E

Name entered was not found in AVS
AGWZMA444E

AGWZAM table was not found

GDISPLAY

102 z/VM: 7.3 Dump Viewing Facility

AGWZMN444E
AGWZAM table was not found

AGWZRS445E
The pointer to the xxx is invalid

AGWZSG445E
The pointer to the xxx is invalid

AGWZGW446E
The pointer to the xxx is not found

AGWZSG446E
The pointer to the xxx is not found

AGWZGW463E
Unable to list the control block addresses

AGWZGW464E
The pointer to the named ordered list is invalid

AGWZGW465E
The pointer to the named ordered list was not found

GDISPLAY

Chapter 5. DUMPSCAN Subcommand Reference 103

GREGS Subcommand

Gregs

cpuaddr

Purpose
Use the GREGS subcommand to display general purpose registers for a specified processor.

Operands
cpuaddr

is a 1- to 4-digit hexadecimal number specifying the physical address of the CPU whose general
registers are to be displayed.

Usage Notes
1. If the cpuaddr operand is not specified, it defaults to the processor on which the CP VMDUMP

command was issued for the virtual machine.
2. Use the CPU subcommand to obtain the CPU addresses in the dump.

Examples

Figure 31 on page 104 illustrates the output of the GREGS subcommand for CPU address 0000. The
subcommand entered is:

gregs

CPU ADDRESS - 0000
GENERAL REGS 0 - 15
 F0F0F0F0 F0F0F0F1 01488008 81CF6A44 00A4B3D8 00000002 01F3E708 4C4C4C4C
 00000001 00A4B3D8 00000002 00800000 01CF69A0 01F3C980 81CF6A82 0098A968

Figure 31. Sample Output of a GREGS Subcommand

GREGS

104 z/VM: 7.3 Dump Viewing Facility

HC Subcommand

HC

symbolic_name1 =

algebraic_expression

symbolic_name2

literal

MOD

module_name

entry_point_name

Purpose
Use the HC subcommand (macro) to resolve hexadecimal calculations and algebraic expressions. HC may
be entered as a subcommand from the DUMPSCAN command line or called as a REXX function from
another macro.

Operands
symbolic_name1 =

defines a symbolic variable for the DUMPSCAN session. The value for the symbolic name is assigned
from the right side of the equal sign. HC symbolic variables follow the same naming conventions as
those for REXX variables. Symbolic names are valid only for the HC subcommand.

algebraic_expression
is an expression containing more than one of the following:

• literal
• symbolic_name2
• module_name or entry point name.

symbolic_name2
is a name defined from a previous invocation of the HC subcommand.

literal
is a 1- to 8-digit hexadecimal number.

MOD
is an optional keyword indicating the next operand is a module name or entry point name. Use MOD to
override the default precedence order defined in Usage Note 1.

module_name
is an alphanumeric string of 1-to-8 characters that specifies a module name.

entry_point_name
is an alphanumeric string of 1-to-8 characters that specifies an entry point name.

Usage Notes
1. The HC macro resolves hexadecimal literals, symbolic names, module names, entry point names and

user IDs as terms. The following method is used:

a. If the term was previously defined as a symbol on the HC subcommand, its value is substituted into
the term.

b. If the term is not a defined symbolic name, and the data type of the string is hexadecimal, the term
will be treated as a hexadecimal literal.

c. If the term is not a hexadecimal number, an attempt will be made to resolve the string as a
module name or entry point name. This substitution is attempted only if the dump has a module

HC

Chapter 5. DUMPSCAN Subcommand Reference 105

map appended. If the module name or entry point name is found, its address within the dump is
substituted into the term.

d. If the term is not a predefined symbol, hexadecimal literal, module name, entry point name, or
user ID, HC considers the string to be invalid. An error message is issued and the calculation is
terminated.

Figure 32 on page 106 summarizes the description above.

Figure 32. Order of String Resolution for the HC Subcommand (Macro)
2. HC supports the following operators:

+ (hexadecimal add)
- (hexadecimal subtract)
* (hexadecimal multiply)
/ (integer divide)

The expression delimiters (and) are also supported.
3. To release a defined symbol name of its value, assign the symbol name to itself with HC. This is

essentially a reset function. The following HC invocations illustrate a module name set to a symbolic
name and then reset to its original value.

----> hc dmssop
009ED480
----> hc dmssop = 1+2
DMSSOP=3
----> hc dmssop
3
----> hc dmssop = dmssop
DMSSOC=DMSSOP
----> hc dmssop
009ED480

4. Imbedded blanks may surround didactic operators, equal sign ('='), and parenthesis (open and
closed).

5. The HC and &name subcommands are independent of each other. The names defined in the &name
subcommand may not be used in HC.

Examples

Figure 33 on page 107 illustrates the output you receive when you enter the HC subcommand (macro) for
a symbolic name that is assigned an algebraic expression consisting of a module name plus a hex literal.

The subcommand entered for Figure 33 on page 107 is:

hc callsop = dmssfp+428

HC

106 z/VM: 7.3 Dump Viewing Facility

CALLSOP=0f414284

Figure 33. Sample Output of an HC Subcommand (Macro)

Messages and Return Codes
Return Code

Explanation
0

Successful execution
4

Dump has no module map
8

Syntax error on issuing HC
12

Invalid term
32

Internal error

HC

Chapter 5. DUMPSCAN Subcommand Reference 107

HELP Subcommand

HELP
MENU

subcommand

Purpose
Use the HELP subcommand to display a summary of the DUMPSCAN subcommands. The HELP
subcommand describes the specified subcommand, including syntax, operands, and any relevant usage
notes. If you do not enter a subcommand name, a list of all DUMPSCAN subcommands is presented.

Operands
MENU

displays a list of all DUMPSCAN subcommands. This is the default.
subcommand

can be any DUMPSCAN subcommand name and causes a description of the subcommand to
be displayed. If the subcommand is not a DUMPSCAN subcommand, a list of all DUMPSCAN
subcommands are presented.

Usage Notes
1. If you do not enter a subcommand name, or if you enter an invalid subcommand, a list of

subcommands is displayed.
2. DUMPSCAN subcommand abbreviations can be used in the subcommand operand.

Examples

The HELP subcommand provides online information about command syntax, formats, and usage notes.
The HELP text displayed is the same as displayed when HELP is invoked from CMS.

To display a menu of DUMPSCAN subcommands, enter:

help

To display the HELP text of a specific subcommand (for example, for the REGS subcommand) enter:

help dump regs

Messages and Return Codes
Return Code

Explanation
0

Normal
6

A subcommand has been rejected in the profile because of a LOAD error, or a QUIT subcommand has
been issued in a macro called from the last file in the ring

11 & above
Standard CMS HELP command return codes

Error messages are issued from the CMS HELP Facility.

HELP

108 z/VM: 7.3 Dump Viewing Facility

HX Subcommand

HX

Purpose
Use the HX subcommand to end the session and return to CMS.

Usage Notes
1. The HX subcommand is equivalent to the QUIT subcommand.

Responses
CMS ready message.

HX

Chapter 5. DUMPSCAN Subcommand Reference 109

IUCV Subcommand (GCS,AVS,RSCS Dumps)

IUcv

Purpose
Use the IUCV subcommand to display all entries in the IUCV path table. The IUCV path table contains
information about all the IUCV paths in this virtual machine.

Examples

USER-ID-BLOCK EXIT-ADDR USER-WORD TASK-BLOCK PATH-STATUS

HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH HHHH

Figure 34. Sample Output of the IUCV Subcommand

Responses
Displays for each path:

• Owner's ID block address
• Exit address
• User word
• Task control block address
• Path status.

Messages and Return Codes
GCTIIU31S

Insufficient free storage is available
GCTIIU503I

No IUCV PATH table
GCTIIU504I

Page 'nnnnnnnn' not found in dump
GCTIIU542I

IUCV anchor block ptr is zero. Cannot find IUCV path table
GCTIIU544I

IUCV PATH table ptr is zero

IUCV

110 z/VM: 7.3 Dump Viewing Facility

LOCATE(UP) Subcommand

Locate

LocateUp

string

X' string '

fromaddr toaddr
1

increment

Purpose
Use the LOCATE subcommand to search the dump for a particular string of data.

Operands
string

is a string of up to 8 EBCDIC characters to be searched for.
X'string'

is a 1- to 16-digit hexadecimal string to be searched for. The string must be in quotation marks and
preceded by the letter X.

fromaddr
is the 31-bit (4-byte) hexadecimal starting address for the search.

toaddr
is the 31-bit (4-byte) hexadecimal number that is the ending address for the search.

increment
is a 1- to 4-digit hexadecimal number to change the current address after each match attempt. 1 is
the default increment if none is specified.

Usage Notes
1. All EBCDIC strings are truncated on the right to 8 characters. All hexadecimal strings are truncated on

the right to 16 hexadecimal digits.
2. The second quotation mark of the X'string' operand is optional.
3. The LOCATE subcommand may be reissued by pressing ENTER (null line subcommand). The value

of fromaddr is updated using the current address and the increment, and the subcommand is then
reissued.

4. If the following conditions are true, using the increment operand in the LOCATE subcommand can
reduce search time by eliminating unwanted matches.

• If the target string is at a fixed displacement in each entry of a data area, and each entry has a fixed
length

• If the target string is at a fixed boundary (for example, fullword, doubleword, 16-byte, or 32-byte).

For example, to check the beginning of each hexadecimal 20-byte entry from address X'4000' to
X'8000' for the character string ABCD, enter:

locate abcd 4000 8000 20

The data at the hexadecimal addresses 4000, 4020, 4040, ... 8000 is searched for the string ABCD
until the first occurrence (if any) is reached. These addresses are the increment length (X'20') apart.

5. The start of the string must be within the address range specified by the fromaddr and toaddr
addresses. If the fromaddr and toaddr addresses are not specified, they will default to the beginning
and ending of the dump.

6. The valid increment range is from X'1' to X'1000'.

LOCATE

Chapter 5. DUMPSCAN Subcommand Reference 111

7. If the LOCATE subcommand is placed in the &name table, the maximum string of 8 characters includes
the hexadecimal identifier X with the hexadecimal characters within quotation marks (for example,
X'13AB4').

8. If LOCATE is specified, the starting address must be less than the ending address; otherwise, an error
message is issued.

9. If LOCATEUP is specified, the starting address must be greater than the ending address. If it is not, an
error message is issued.

Examples

Figure 35 on page 112 illustrates the screen displayed when the subcommand LOCATE X'da441ea3'
50000 60000 8 is entered. This subcommand searches the dump from hex address 50000 up through
address 60000 for the hexadecimal string X'da441ea3'. The dump is stepped through by adding 8 bytes
from the current address until either a match is found or the toaddr is reached.

Note that the first occurrence of the string is on the first line of data at address 0005AD30.

The subcommand entered is:

lo x'da44lea3' 50000 60000 8

DISPLAY 0005AD30
 0005AD30 DA441EA3 50A0D670 41A09048 50A0D664 06 *...t&.O.....&.O.*
 0005AD40 58709044 06705070 D5ECD201 D6DA9040 *......&.N.K.O.. *
 0005AD50 D200D683 904217AA BFA19043 42A0D69C *K.Oc..........O.*
 0005AD60 4CA0D678 5830B1A0 1EA3D203 D5B0A008 *<.O......tK.N...*
 0005AD70 BF8FD5B0 47F0C3B6 BF8FD5B0 4780C27A *..N..0C...N...B:*
 0005AD80 58F0DA40 0DEF41E0 C2D850F0 E0544770 *.0.BQ0...*
 0005AD90 C27A9508 80004780 C3589520 80004770 *B:n.....C.n.....*
 0005ADA0 C27A9120 80014710 CDCC9210 DA0B5870 *B:j.......k.....*
 0005ADB0 B1D8BF1F 70004780 C2C84177 00085880 *.Q......BH......*
 0005ADC0 70205980 D5B04780 C2C058F0 DA400DEF *....N...B..0. ..*
 0005ADD0 41000000 4780C2AC 41000001 12FF4780 *......B.........*
 0005ADE0 C2BA41E0 C2D850F0 E0541200 4780CDCC *B...BQ0.......*
 0005ADF0 41707090 4610C28E 4110D7A0 4590D326 *......B...P...L.*
 0005AE00 47F0D136 00000000 00000000 00000000 *.0J.............*
 0005AE10 00000000 00000000 00000000 00000000 *................*
 0005AE20 A1C18752 00021900 00001000 0001F900 *.Ag...........9.*
 0005AE30 0001E900 00001FE0 00000000 00000000 *..Z.............*
 0005AE40 00014000 00014000 00001000 00000000 *..*
 0005AE50 0011B000 00000008 8011B3FE 00000000 *................*
 0005AE60 00000000 00000000 00000000 00000000 *................*
 0005AE70 00000000 00000000 00000000 00000000 *................*
 0005AE80 00000000 00000000 95108001 4780C378 *........n.....C.*
 0005AE90 95808001 4780C378 95208001 4780C378 *n.....C.n.....C.*
 0005AEA0 95408001 4770C27A D204D865 DAAB45E0 *nB:K.Q.....*
 0005AEB0 D35E4100 D4E89540 80014780 C3924100 *L;..MYnCk..*
 0005AEC0 D4D858F0 DA480DEF 4770D136 4110DA8A *MQ.0......J.....*
 0005AED0 58F0DA4C 0DEF4770 D1365890 D5BC9202 *.0.<....J...N.k.*
 0005AEE0 939A47F0 C46645E0 C73A4740 C27A4710 *l..0D...G.. B:..*
 0005AEF0 C2C8D204 D865DAB0 45E0D35E 5890D5BC *BHK.Q.....L;..N.*
 0005AF00 9203939A 5810D5B4 D2051048 D848D201 *k.l...N.K...Q.K.*
 0005AF10 D6DA102C 5830D608 4160D598 92066000 *O.....O..-Nqk.-.*
 0005AF20 45E0CB22 4160D598 92056000 41103100 *.....-Nqk.-.....*
 0005AF30 5010D5F8 D203D624 D680D201 D628D6DA *&.N8K.O.O.K.O.O.*
 0005AF40 D203D630 D61CD200 D634DA0A D201D636 *K.O.O.K.O...K.O.*
 0005AF50 D6ECD201 D638D6EE 5080D62C D203D63C *O.K.O.O.&.O.K.O.*
 0005AF60 D680D201 D640D6DA D203D648 D61CD200 *O.K.O O.K.O.O.K.*

Figure 35. Sample Output of a LOCATE Subcommand with the Increment Operand

Responses
Provided the end of dump has not been reached, one full screen of data is presented, in both hexadecimal
and EBCDIC. The target string is positioned on the first line at the hexadecimal location where the string
begins.

LOCATE

112 z/VM: 7.3 Dump Viewing Facility

OSPOINT Subcommand (CMS Dump)

OSPoint

Purpose

Use the OSPOINT subcommand to display the formatted contents of three pointers used in OS simulation.

Examples

The following figure is an example of the output of the OSPOINT subcommand.

CVTSECT= 00002C58
FCBSECT= 00000000
OPSECT = 00003BA0

Figure 36. Example Output of the OSPOINT Subcommand

Responses
OSPOINT displays the formatted contents of the following OS simulation pointers:

CVTSECT
Address of the simulated communications vector table

FCBSECT
Address of the first file control block

OPSECT
Address of the reading and writing parameter list

Messages and Return Codes
DMSDFR2017I

INVALID OPERAND - operand
DMSDOP2017I

PAGE 'page' NOT FOUND IN DUMP

OSPOINT

Chapter 5. DUMPSCAN Subcommand Reference 113

PRINT Subcommand

Print

PRT

1

subcommand

ON

OFF

CLOSE

?

Notes:
1 The default is the last subcommand that was entered.

Purpose
Use the PRINT subcommand to print data displayed on your terminal by one of the DUMPSCAN
subcommands.

Operands
subcommand

is a DUMPSCAN subcommand to be entered. Its results are printed and displayed.
ON

turns on the print switch to collect data for printing.
OFF

turns off the print switch, but does not close the virtual printer.
CLOSE

closes the current print file in the virtual printer, but does not turn the print switch off.
?

displays the print switch status (ON or OFF).

Usage Notes
1. When the print switch is ON, all data displayed at the terminal is also written to the virtual printer.
2. PRINT with no operands reissues the subcommand previously entered and prints the data. The data is

not redisplayed at the terminal.
3. Synonyms for the PRINT subcommand are not allowed in the &name table. (See the &name

subcommand in Chapter 5, “DUMPSCAN Subcommand Reference,” on page 51.)
4. CLOSE is automatically issued at the end of the DUMPSCAN session.
5. If the print switch is OFF, the PRINT subcommand turns it on for the subcommand’s operation, then

turns it off. If the print switch is ON, it is left on.
6. PRT is a synonym for the PRINT subcommand.
7. Each line of output in the print file has a prefix field showing which dump file produced the data.

PRINT

114 z/VM: 7.3 Dump Viewing Facility

QUIT Subcommand

QUIT

Purpose
Use the QUIT subcommand to end the session and return to CMS.

Usage Notes
1. The QUIT subcommand is equivalent to the HX subcommand.

QUIT

Chapter 5. DUMPSCAN Subcommand Reference 115

REGS Subcommand

Regs

cpuaddr

Purpose
Use the REGS subcommand to display registers, clocks, timer, and program status words for a specific
processor.

Operands
cpuaddr

is a 1- to 4-digit hexadecimal number specifying the CPU address for which the information is to be
displayed.

Usage Notes
1. For 370-mode virtual machine dumps, the output of the REGS subcommand also includes:

• Channel status word (CSW)
• Channel address word (CAW)
• Interval timer
• Current program status word (PSW). For CP abend dumps, the current PSW is available in the store

status area of the prefix page. For CP stand-alone dumps, the store status information for the IPL
CPU is located in absolute page 0.

2. The REGS subcommand clears the screen prior to presenting data.
3. Use the CPU subcommand to obtain the CPU addresses in the dump.
4. If the cpuaddr operand is not specified, it defaults to the CPU on which the CP VMDUMP command was

entered for the virtual machine.
5. The REGs subcommand does not display access registers for 370-mode virtual machine dumps.
6. For virtual machine dumps, the REGS subcommand formats the crypto domain index register for ESA

virtual machines that have the Integrated Cryptographic Facility defined.

Examples

Figure 37 on page 117 illustrates the output of the REGS subcommand for a virtual machine dump. The
subcommand entered is:

regs

REGS

116 z/VM: 7.3 Dump Viewing Facility

REGS
CPU ADDRESS - 0000 PREFIX REGISTER - 00000000
GENERAL REGS 0 - 15
 D43F372C 00005964 00000017 000057E0 000017F8 00000000 00002025 000017F8
 000057E0 00E01352 00000006 0B3B6582 00EC5B98 003F36E0 50EC5C36 00E01352
CONTROL REGS 0 - 15
 010000E0 00000000 FFFFFFFF 00000000 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000 00000000 00000000 C2000000 00000200
ACCESS REGS 0 - 15
 00000000 01000003 01000003 00000000 00000000 01000003 00000000 00000000
 00000000 01000003 00000000 00000000 00000000 00000000 00000000 00000000
FLOATING POINT REGS 0 - 6
 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

TOD CLOCK A211E668 FDF4CA01 CSW 00004AB8 0C000000
CLOCK COMPARATOR A211D917 FF495000 CAW 00004AA8
CPU TIMER FFFFE3CB 60D8CB00
INTERVAL TIMER 00000000

EXT OLD FF044001 00E5EDEA INT CODE 4001 EXT NEW 00000000 00E2D930
SVC OLD FFE000CA 5003B30C INT CODE 00CA ILC 0002 SVC NEW 00000000 0044D630
PGM OLD 00000004 D0E7328A INT CODE 0004 ILC 0006 PGM NEW 00000000 00E30238
MCH OLD 00000000 00000000 MCH NEW 00000000 00E412F8
I/O OLD FFFFFFFF FFFFFFFF I/O NEW 00000000 00E05360

Figure 37. Sample Output of a REGS Subcommand for a Virtual Machine Dump

REGS

Chapter 5. DUMPSCAN Subcommand Reference 117

SCROLL Subcommand

Scroll

U

ScrollU

FORMat

HEX

Purpose

Use the SCROLL subcommand to repeat the most recent TRACE subcommand with an adjusted address
for server virtual machine dumps.

SCROLLU decreases the target address to display the preceding screen of data. SCROLL increases the
target address to display the next screen of data.

Operands
FORMat

displays the trace entries in the long (FORMAT) version. This operand is valid only when you enter the
SCROLL subcommand after a formatted display of the trace entries.

HEX
displays the trace entries in the short (HEX) version. This operand is valid only when you enter the
SCROLL subcommand after a formatted display of the trace entries.

Usage Notes
1. The SCROLL subcommand is intended for use on a display terminal and scrolls from the last hex entry

displayed.
2. The SCROLLU subcommand scrolls from the first entry displayed; it displays the preceding addresses.
3. You can reissue the SCROLL and SCROLLU subcommands by pressing ENTER or its equivalent.
4. The HEX and FORMAT options are invalid for SFS dumps.

Examples

The following is a valid sequence of TRACE subcommands:

To display a screen of trace entries, setting the FROM address and the FORMAT option, you enter the
command:

trace format

To display the next screen of formatted (FORMAT) trace entries, you enter the command:

scroll

To change the HEX or FORMAT setting while continuing to scroll, you can enter the SCROLL subcommand
and specify HEX or FORMAT operands. For example, you enter either of the following commands:

scroll u format

or

trace scroll u format

SCROLL

118 z/VM: 7.3 Dump Viewing Facility

The SCROLL option of the TRACE subcommand returns control to the trace formatter after using the
DISPLAY subcommand to display storage. For example, you might do the following:

• Display trace entries
• Use the SCROLL subcommand to format and display more trace entries
• Enter a DISPLAY subcommand to look at storage
• Enter a SCROLL subcommand.

However, the storage will not be formatted as trace entries, even if the displayed area is in the trace
table. Because the SCROLL subcommand is not processing trace entries at this time, the FORMAT and
HEX operands are not valid operands. The following is an example of an invalid sequence:

To display a screen of trace entries, setting the FROM address and the FORMAT, enter the command:

trace format

To display a screen of trace entries with the HEX operand, you enter:

scroll u hex

To look at this area of storage in display format, enter:

display 240000

To look at the next screen of displayed storage, enter the command:

scroll

When you enter the next command, you receive error message DMMSCR863E, which states you have
entered an invalid parameter:

scroll format

The SCROLL option on the TRACE subcommand, explained in “TRACE Subcommand” on page 129,
lets you return to formatting trace entries after a display of some storage area. The following example
contains a valid sequence of commands.

To display a screen of trace entries, setting the FROM address and the FORMAT, you enter the following
command:

trace format

To display a screen of trace entries with the HEX operand, enter:

scroll u hex

To look at an area of storage in display format, you enter:

display 240000

To look at next screen of displayed storage, you enter:

scroll

Finally, to look beyond last-displayed trace entries and use the FORMAT option, you enter the command:

trace scroll u format

Responses
SCROLL displays a full screen of storage data (hexadecimal and translated) or trace data in the existing
format mode. The current line pointer (line 10) is positioned X'130' bytes from its previous location.

SCROLL

Chapter 5. DUMPSCAN Subcommand Reference 119

Messages and Return Codes
ATSZTO076E

FORMATTED DATA ENTRY EXCEEDS MAXIMUM SIZE
ATSZTS087E

ATTEMPT TO GO BEYOND STORAGE BOUNDARY

SCROLL

120 z/VM: 7.3 Dump Viewing Facility

SYMPTOM Subcommand

SYMPtom

Purpose
Use the SYMPTOM subcommand to display formatted symptom record information at your terminal.

Usage Notes
1. If the dump symptom record is missing or not readable, you receive an error message.
2. For virtual machine dumps only, an additional line of output is displayed for the Section 5 Data: the

number of address spaces, including the primary, that were dumped by the CP VMDUMP command or
by DIAGNOSE code X'94'.

See Figure 38 on page 121 for an example.

This information is useful for locating other related dump files of address spaces. The dump files
created by DUMPLOAD have file types numbered in sequence, beginning with DUMP0001. The Dump
Viewing Facility will not be able to locate as many files as SYMPTOM reports if DUMPLOAD failed while
it was building the dump files, or if any of the related dump files have been renamed.

See “Virtual Machine Dumps in an XC Environment” on page 11 for more information.
3. SYMPTOM output may span several screens. Use the XEDIT subcommands FORWARD and BACKWARD

to scroll the display.

Examples

Figure 38 on page 121 shows an output screen for a VM dump when the SYMPTOM subcommand is
entered:

symptom

 SYMPTOM RECORD FOR INCIDENT A1A2351C CD3D0SYM

 TOD CLOCK . . A1A2351CCD3D0E01 DATE. 02/08/99
 TIME ZONE . . -05:00:00 TIME. 17:59:25

 CPU MODEL . . 9672 BASE SCP. . . 5654
 CPU SERIAL. . 174554 NODEID. . . . VMESA

 DUMP NAME: HUNGSYS2 DUMP0001 DUMP TYPE . . VMDUMP
 --
 SECTION 5 DATA:
 USERID DUMPED: USER1
 DUMP RECEIVER: USER1
 SPOOLID: 0920
 NAME OF MAIN DUMP: HUNGSYS2 DUMP0001
 NUMBER OF ADDRESS SPACES DUMPED: 0006

Figure 38. Output Format of a SYMPTOM Subcommand for a VM Dump

SYMPTOM

Chapter 5. DUMPSCAN Subcommand Reference 121

TACTIVE Subcommand (GCS,AVS,RSCS Dumps)

TACtive
ALL

taskid

Purpose
Use the TACTIVE subcommand to display the task's active program list.

Operands
taskid

identifies the task you want information about. The format is nnnn.
ALL

requests information for all tasks. ALL is the default.

Examples

Figure 39 on page 122 shows sample output for the TACTIVE subcommand.

TASK BLOCK COMPLETION BLOCK TYPE PROGRAM ENTRY
 ID ADDRESS CODE ADDRESS NAME ADDRESS

HHHH HHHHHHHH HHHHHH HHHHHHHH HH EEEEE HHHHHHH

0001 002438 000000 16B600 40 GDUMP 1870E6
 R0 =001690D4 R1 =001690F8 R2 =00169310
 R3 =00000000 R4 =00000590 R5 =00000000
 R6 =00000678 R7 =00000678 R8 =00000006
 R9 =002FD000 R10=00169048 R11=00009F38
 R12=50182F1C R13=00009F28 R14=50183280
 R15=00000001
 002518 80 CONSOLE 182EA8
 R0 =00000000 R1 =00000000 R2 =00000000
 R3 =00000000 R4 =00000000 R5 =00000000
 R6 =00000000 R7 =00000000 R8 =00000000
 R9 =00000000 R10=00000000 R11=00000000
 R12=00000000 R13=00000000 R14=00000000
 R15=00000000

 TASK BLOCK COMPLETION BLOCK PROGRAM ENTRY
 ID ADDRESS CODE ADDRESS TYPE NAME ADDRESS
0002 002430 000000 0035B0 80 COMMAND 182A68
 R0 =00000000 R1 =00000000 R2 =00000000
 R3 =00000000 R4 =00000000 R5 =00000000
 R6 =00000000 R7 =00000000 R8 =00000000
 R9 =00000000 R10=00000000 R11=00000000
 R12=00000000 R13=00000000 R14=00000000
 R15=00000000

Figure 39. Sample Output of the TACTIVE Subcommand

Responses
Displays a chart containing the task ID, the address of the task control block, and the task completion
code. A state block is a control block that contains information about an active program. There are three
types of state blocks:

• Link blocks represent programs that have been invoked through the LINK, SYNCH, XCTL, or ATTACH
macros, or the OSRUN command

• SVC blocks represent calls to the SVC interrupt handler

TACTIVE

122 z/VM: 7.3 Dump Viewing Facility

• Asynchronous exit blocks exist for asynchronous exits scheduled for this task.

For every state block on the task's active program list, this subcommand also displays the:

• Address of the state block
• Type of state block (link block, SVC block, or asynchronous exit block)
• Name and entry-point address of the program that the block represents
• Register contents associated with the state block.

Messages and Return Codes
GCTIAL031S

Insufficient free storage is available
GCTIAL504I

Page 'nnnnnnnn' not found in dump
GCTIAL505I

TASKID 'xxxxxxxx' invalid
GCTIAL545I

NUCON extension pointer is zero. Cannot find state block
GCTIAL546I

Task block PRT is zero. Cannot find state block
GCTIAL547I

State block PRT is zero
GCTIAL548I

Taskid table PRT is zero. Can't find state block

TACTIVE

Chapter 5. DUMPSCAN Subcommand Reference 123

TIMEDIFF Subcommand

TIMediff

todclock1 todclock2

@
1

address1 address2

Notes:
1 Do not put blanks between the operands and special characters.

Purpose
Use the TIMEDIFF subcommand (macro) to display the difference in time between two TOD clock values.

Operands
todclock1

is a 1- to 16-digit hexadecimal number specifying the first TOD clock value.
todclock2

is a 1- to 16-digit hexadecimal number specifying the second TOD clock value.
@

indicates addresses are used specifying the TOD clock values. Eight bytes are used as the TOD clock
value.

address1
is the 31-bit (4-byte) hexadecimal address from which the first TOD clock is read.

address2
is the 31-bit (4-byte) hexadecimal address from which the second TOD clock is read.

Usage Notes
1. Values are treated as the rightmost positions of a 16-digit TOD clock. So, for example, a TOD clock

comparison value of 68A23451 would be equivalent to 0000000068A23451.
2. If the two comparison TOD clock values are of different length, leading digits of the longer operand are

ignored.
3. You may specify both TOD clock values from cursor positions on the screen. To use screen TOD

clock values, type the subcommand with no operands (TIMEDIFF), then position the cursor at the
screen position where you want data substitution for the first TOD clock. Press Enter, and you will be
prompted to position the cursor for screen data substitution for the second TOD clock. Position the
cursor and press Enter. The subcommand is completed.

4. You may specify both TOD clock addresses from cursor positions on the screen. To use screen address
values, type the subcommand with the address keyword and no address operands (TIMEDIFF @), then
position the cursor at a screen position where you want data substitution for the first address. Press
Enter, and you will be prompted to position the cursor for screen data substitution for the second
address. Position the cursor and press Enter. The subcommand is completed.

5. The following rules apply for entering TOD clock values from screen positions:

• TOD clock values are delimited on the left by a blank or column 1. If you place the cursor in the
middle of a string, TIMEDIFF will shift it left until either a blank is found or column one reached.

• TOD clock values are delimited on the right by a blank or the first 16 characters found.
• It is invalid to have nonhexadecimal digits in the specified string.

TIMEDIFF

124 z/VM: 7.3 Dump Viewing Facility

6. When selecting addresses from screen positions with the @ operand:

• Addresses are delimited on the left by a blank or column 1. If you place the cursor in the middle of a
string, TIMEDIFF will shift it left until either a blank is found or column one reached.

• It is invalid to have nonhexadecimal digits in the specified string.
• Only the lower 3 bytes are used in the difference calculation when the TOD clocks values are read

from the trace tables.

Examples

Figure 40 on page 125 illustrates the output of the TIMEDIFF subcommand (macro). The subcommand
entered is:

timediff 69e93bd68000 69e93bb8e000

time1 = 69E93BD68000
time2 = 69E93BB8E000
time2 is 474.00000 microsecs before time1

Figure 40. Sample Output of a TIMEDIFF Subcommand (macro)

Figure 41 on page 125 illustrates the output of the TIMEDIFF subcommand (macro) entered with address
operands. The subcommand entered is:

timediff @1A2000 1A2060

time1 = 1A2000 -> 69E93BD68000
time2 = 1A2060 -> 69E93BB8E000
time2 is 474.00000 microsecs before time1

Figure 41. Sample Output of a TIMEDIFF Subcommand (macro) entered with addresses

Messages and Return Codes
Return Code

Explanation
0

Successful completion
4

Invalid TOD clock value
8

Syntax error on issuing TIMEDIFF
12

Address specified is not in the dump
32

Internal error

TIMEDIFF

Chapter 5. DUMPSCAN Subcommand Reference 125

TLOADL Subcommand (GCS,AVS,RSCS Dumps)

TLoadl
ALL

taskid

Purpose
Use the TLOADL subcommand to display the task load list.

Operands
taskid

identifies the task you want information about. The format is nnnn.
ALL

requests information for all tasks. ALL is the default.

Examples

Figure 42 on page 126 shows an example of the output of the TLOADL subcommand.

TASK-ID TASK-BLOCK LOAD-BLOCK PROGRAM-NAME LOAD-COUNT

HHHH HHHHHHHH HHHHHHHH EEEEEEEE HHHH

Figure 42. Sample Output for the TLOADL Subcommand

Responses
Displays the following for each program loaded by this task:

• The address of the control block that points to where the program is loaded
• The associated program name
• The number of times it has been loaded, but not deleted.

Messages and Return Codes
GCTITL031S

Insufficient free storage is available
GCTITL504I

Page 'nnnnnnnn' not found in dump
GCTIAL505I

TASKID 'xxxxxxxx' invalid
GCTITL535I

TASKID table PRT is zero. Cannot find task load list
GCTITL537I

Task block PRT is zero. Cannot find task load list
GCTITL538I

Task block list PRT is zero

TLOADL

126 z/VM: 7.3 Dump Viewing Facility

TODCLK Subcommand

TODCLK

todclock

ZONE

hrs

@
1

address

Notes:
1 Do not put blanks between the operands and special characters.

Purpose
Use the TODCLK subcommand (macro) to display the date and time for a specified hexadecimal TOD
clock value.

Operands
todclock

is a 1- to 16-digit hexadecimal value.
ZONE

is a keyword used to obtain the local time.
hrs

is a 1- to 4-character decimal time zone difference to be applied to the TOD clock value, which is
based on GMT. If hrs is not specified with the keyword ZONE, the differential is taken from the dump
symptom record. The hrs operand may be specified as a signed decimal such as -5.5 or -5.

@
indicates an address is used specifying the TOD clock value. Eight bytes read from the dump at the
address are used as the TOD clock value.

address
is the 31-bit (4-byte) hexadecimal address from which the TOD clock data is read.

Usage Notes
1. If the supplied TOD clock value is less than 16 digits, the value is padded to the right with zeros before

being converted into date and time.
2. You may specify TOD clock values from cursor positions on the screen. To substitute a screen value as

a TOD clock, type the subcommand with no operands (TODCLK), then position the cursor at a screen
position and press Enter.

3. You may specify addresses from cursor positions on the screen. To substitute a screen value as an
address, type the subcommand with the address keyword and no address operand (TODCLK @), then
position the cursor at a screen position and press Enter.

4. The following rules apply for entering TOD clock values from screen positions:

TOD clock values are delimited on the left by a blank or column one. If you place the cursor in the
middle of a string, TODCLK will shift it left until either a blank is found or column one is reached.
TOD clock values are delimited on the right by a blank or the first 16 digits found.
It is invalid to have nonhexadecimal digits in the specified string.

TODCLK

Chapter 5. DUMPSCAN Subcommand Reference 127

If TODCLK is entered without any operands, the TOD value is taken from the cursor position in the
dump view file area. If the cursor is not positioned in the file area, the command puts the current
time and date into the dump view file.

Examples

The following figures illustrate the output of the TODCLK subcommand (macro). The subcommand
entered is:

todclk

Todays Date 01/21/88 Current Time 11:19:54

Figure 43. Sample Output of a TODCLK Subcommand (macro)

The subcommand entered is:

todclk 9df469ec5e511000

----> todclk 9df469ec5e511000
9DF469EC5E51100 +0 => Date 01/21/88 Time 11:19:54

Figure 44. Sample Output of a TODCLK Subcommand (macro)

The subcommand entered is:

todclk 9df469ec5e511000 zone 2.5

----> todclk 9df469ec5e511000 zone 2.5
9DF469EC5E51100 +2.5 => Date 01/21/88 Time 11:22:24

Figure 45. Sample Output of a TODCLK Subcommand (macro)

The subcommand entered is:

todclk @1FAA90 zone -5

----> todclk @1FAA90 zone -5
1FAA90 -> 9DF469EC5E51100 -5 => Date 01/21/88 Time 05:52:24

Figure 46. Sample Output of a TODCLK Subcommand (macro)

Messages and Return Codes
Return Code

Explanation
0

Successful execution
4

Invalid TOD clock value or hrs
8

Syntax error on issuing TODCLOCK
12

The specified address is not in the dump
32

Internal error

TODCLK

128 z/VM: 7.3 Dump Viewing Facility

TRACE Subcommand

Trace
FOR

1
FROM

2

FOR

count FROM fromloc

Scroll

U

ScrollU

FORMAT

HEX

Notes:
1 The default is a full screen of data on a 24-line terminal.
2 The default value is the address of the most recent trace table entry.

Purpose
Use the TRACE subcommand to display trace table entries in either the short (HEX) or fully formatted
versions.

After the first invocation of the TRACE subcommand, you may specify either the SCROLL option to move
forward or backward through the trace table, using the formatting options that you established with an
earlier TRACE subcommand. You can also enter the REUSE NULL LINE subcommand.

Operands
FOR

is an optional keyword operand. If you specify FOR, a count value must follow immediately. Do not
combine this operand with the SCROLL or SCROLLU operand.
count

is a decimal number from 1 to 999 that specifies the number of entries to be displayed in the trace
table. Do not combine this with the SCROLL or SCROLLU operand.

FROM
is an optional keyword operand. If you specify it, a fromloc value must follow immediately. Do not
combine this with the SCROLL or SCROLLU operand.
fromloc

is a hexadecimal address from which the trace entries are displayed. You must specify a location
that is on a 16-byte boundary.

Scroll
is an optional keyword operand. If you specify it, the next screen of trace entries is displayed. SCROLL
U has the same effect as the SCROLLU operand. This option is only valid if you already entered a
successful TRACE subcommand. Do not combine this option with the FROM or FOR options.

ScrollU
is an optional keyword operand. If you specify it, the preceding screen full of trace entries is
displayed. This option is only valid if you already entered a successful TRACE subcommand.

FORMAT
is an optional keyword operand. If you specify it, formatted trace table entries are displayed. The
FORMAT operand is invalid for SFS.

HEX
is an optional keyword operand. If you specify it, unformatted trace table entries are displayed in
hexadecimal, along with a brief description of the entry. HEX is the default the first time you enter

TRACE

Chapter 5. DUMPSCAN Subcommand Reference 129

TRACE in a DUMPSCAN session. Thereafter, it defaults to the previous formatting keyword (HEX or
FORMAT). Do not combine this with the FORMAT operand. The HEX operand is invalid for SFS.

Usage Notes
1. The AVS, TSAF, and SFS trace formatting routines must be on an accessed disk.
2. The formatted output produced by the TRACE subcommand is valid for z/VM dumps only.

Unpredictable results can occur in the formatted output if you use this function against a pre-z/VM
dump. When analyzing data, you should rely only on the hexadecimal TRACE data and not the
formatted or brief descriptions provided with the hexadecimal data.

3. If the trace table pointers are invalid, you can use the FROM operand and location values to view the
trace table.

4. HEX and FORMAT operands may not be specified together. However, you may specify any of the
operands together in any order.

Error Detection
The TRACE subcommand detects three types of errors:

• Invocation errors, which may consist of:

– Conflicting operands
– Missing operands
– Nonhexadecimal characters in a hexadecimal operand
– A fromloc address that is outside the range of addresses indicated in the valid trace table pointers
– For AVS, SFS, and TSAF, a fromloc address that is not at the beginning of a valid trace entry
– An invalid count operand (not within the range of 1 to 999).

• Errors that are detected in the dump, which include:

– Invalid trace table pointers:

- Start pointer is greater than the trace table stop pointer
- Current pointer points are outside of the trace table
- Start or stop pointer is not on a page boundary
- Pointers do not point to valid trace entries
- The map is not appended (TSAF only)
- The trace table must be full pages.

– A page that is to be used for the trace function is not in the dump. This page may contain the pointers
or the trace entries.

• Necessary resources that are not available.

Examples

To display the last four entries in the trace table, where address X'CCB230' is the most recent entry, you
enter either of the following commands:

trace 4 hex

or

trace for 4 from ccb230

The following output is produced; this hexadecimal display consists of:

TRACE

130 z/VM: 7.3 Dump Viewing Facility

• Trace entry address (first column)
• Hexadecimal display of the trace entry (second through fifth columns)
• Trace entry description (last column).

00CCB200 08FEBCC8 800C4202 03800000 0000F438 ENTER SCHEDULER
00CCB210 09FEBCC8 0000F1AB 084000BC 00F908FC QUEUE DROP
00CCB220 03000000 00040040 000C2000 0002B8D2 PROGRAM INTERRUPT
00CCB230 02016F04 00020008 000C0000 00018D66 SVC INTERRUPT (CALL)

Figure 47. Example Output of the TRACE Subcommand (HEX Display)

Example (HEX TSAF and AVS)
Because TSAF and AVS have the same general format, only TSAF output is shown in this example.

To display the last seven entries in the TSAF trace table, where address X'D8EF' is the most recent entry,
you enter either of the following commands:

trace 8 hex

or

trace for 8 from d8ef hex

The following output is produced; this hexadecimal display consists of:

• Trace entry address (first column)
• Hexadecimal display of the trace entry trailer record (middle column)
• Trace entry description (last column).

0000D82D 9AF3D043 1B168000 D3F1E3 A572 0008 ATSL1T EXIT
0000D846 9AF3D043 1B1D9000 E5E2D2 C00C 0029 DISPATCH A TASK
0000D880 9AF3D043 1B1F2000 D3D4D5 A168 0005 WOKE UP IN STATE
0000D896 9AF3D043 1B21D000 D4E3E8 60E1 0004 MODULE ENTERED AT ATSMTY
0000D8AB 9AF3D043 1B225000 D4E3E8 60E8 0005 TRACE INPUT
0000D8C1 9AF3D043 1B234000 D4E3E8 60E6 0008 ATSMTY EXIT
0000D8DA 9AF3D043 1B298000 D3F1D7 A461 0004 MODULE ENTERED AT ATSL1P
0000D8EF 9AF3D043 1B29D000 D3F1D7 A464 0005 LINK PURGED

Figure 48. Sample Output of the TRACE Subcommand (HEX TSAF Display)

Example (FORMAT TSAF and AVS)
Because TSAF and AVS have the same general format, only TSAF output is shown in this example.

To display three entries in the trace table, beginning with the most recent trace table entry (X'D8EF'), you
enter either of the following commands:

trace 3 format

or

trace for 3 from d8ef format

TRACE

Chapter 5. DUMPSCAN Subcommand Reference 131

60E6 ATSMTY EXIT ADDR = 0000D8C1
 CLOCK = 9AF3D043 1B234000 MODULE = ATSMTY
 TIME = 08:43:08.627508 GMT 05/20/1986 LENGTH = 0008
 R14 6002F8E4 *-.8U*
 R15 0004AB30 *....*

A461 MODULE ENTERED AT ATSL1P ADDR = 0000D8DA
 CLOCK = 9AF3D043 1B298000 MODULE = ATSL1P
 TIME = 08:43:08.627608 GMT 05/20/1986 LENGTH = 0004
 PARM_LIST 000300A4 *...u*

A464 LINK PURGED ADDR = 0000D8EF
 CLOCK = 9AF3D043 1B29D000 MODULE = ATSL1P
 TIME = 08:43:08.627613 GMT 05/20/1986 LENGTH = 0005
 LINK_NUMBER 00000004 *....*

Figure 49. Sample Output of the TRACE Subcommand (FORMAT TSAF)

The formatted display consists of the following information:

• Main line containing trace:

– Type number
– Entry description
– Table address.

• Two lines containing:

– Time stamp for trace entry
– Module that produced the trace entry
– Time stamp in readable format
– Length of the data files (in hex).

• Zero or more additional lines containing formatted information (with descriptors) from the trace entry.

Example (SFS)
To display the most recent trace table entry, you enter the command:

trace 1

If address X'47A8F7' is the most recent trace entry, TRACE displays the following output:

TPOINT=8003 DMPADR=47A8F7 USERID=PHAYES COMP=SC DATE=10/06/87 TIME=09:32:59
 MOD_REPORTS='DMS5CA '
 L_VMCPLIST=HEXADECIMAL DUMP:
ADDR OFFSET DUMP DATA
038017 000000 06008700 00020A00 00000000 00000000 * *
038027 000010 00000000 00000000 00000000 00000000 * *
038037 000020 00000000 00000040 * *

Figure 50. Sample Output of the TRACE Subcommand (SFS Display)

Messages and Return Codes
AGWZTD440E

Operand missing or invalid
AGWZTD448E

Page page not found in dump
AGWZTF460E

Data field overlaps trailer record
AGWZTO461E

Formatted data entry exceeds maximum size

TRACE

132 z/VM: 7.3 Dump Viewing Facility

AGWZTR440E
Operand missing or invalid

AGWZTR441E
Conflicting operand: operand

AGWZTR449E
Non-numeric character in count; retry

AGWZTS447E
Trace table pointers invalid: Start = start End = end Current = current

AGWZTS448E
Page page not found in dump

AGWZTS450E
FROM location outside of trace table range: fromloc Start = start End = end Current = current

AGWZTS451E
FROM location is not a valid trace entry: fromloc

AGWZTS452E
Invalid trace entry found at addr

AGWZTS453E
Required resources are not available

AGWZTS454E
No trace entries found

AGWZTS455E
Attempted to go beyond storage boundary

AGWZTS457E
Trace entry search stopped at addr1 To search to lower dump addresses, try address addr2 To search
to higher dump addresses, try addresses addr3 addr4

AGWZTS458E
Possible trace entry at addr1 Use the FROM operand to display the entry

ATSZTF091E
DATA FIELD OVERLAPS TRAILER RECORD

ATSZTO076E
FORMATTED DATA ENTRY EXCEEDS MAXIMUM SIZE

ATSZTR075E
NON-NUMERIC COUNT CHARACTER - RETRY

ATSZTR077E
CONFLICTING OPERAND - operand

ATSZTR078E
OPERAND MISSING OR INVALID

ATSZTR087E
ATTEMPT TO GO BEYOND STORAGE BOUNDARY

ATSZTS079I
TRACE TABLE POINTERS INVALID: START = start END = end CURRENT = current

ATSZTS080I
"FROM" LOCATION OUTSIDE OF TRACE TABLE RANGE: fromloc START = start END = end CURRENT =
current

ATSZTS081E
"FROM" LOCATION NOT A VALID TRACE ENTRY: fromloc

ATSZTS082E
INVALID TRACE ENTRY FOUND AT addr

ATSZTS083E
REQUIRED RESOURCES NOT AVAILABLE

TRACE

Chapter 5. DUMPSCAN Subcommand Reference 133

ATSZTS084I
PAGE 'page' NOT FOUND IN DUMP

ATSZTS086E
NO TRACE ENTRIES FOUND - addr

ATSZTS088E
UNABLE TO LOCATE TRACE TABLE POINTERS

ATSZTS092I
TRACE ENTRY SEARCH STOPPED AT addr1 TO SEARCH TO LOWER DUMP ADDRESSES, TRY ADDRESS
addr2 TO SEARCH TO HIGHER DUMP ADDRESSES, TRY (ADDRESS addr3 │ "SCROLL")

ATSZTS093I
POSSIBLE TRACE ENTRY AT addr USE THE "FROM" OPERAND TO DISPLAY THE ENTRY

DMS5NB3950E
Non-numeric count character - Retry

DMS5ND3951E
Formatted data entry exceeds maximum size

DMS5NB3952E
Conflicting operand - operand

DMS5NB3953E
Operand missing or invalid

DMS5NC3954W
Trace table pointers invalid: Start = start End = end Current = current

DMS5NC3955W
"FROM" location outside of trace table range: fromloc Start = start End = end Current = current

DMS5NC3956E
"FROM" location not a valid trace entry: fromloc

DMS5NC3957E
Invalid trace entry found at addr

DMS5NC3958E
Required resources not available

DMS5NC3959W
Page xxxxxxxx not found in dump

DMS5NF3960E
Invalid trace point found in CPTRAP file

DMS5NC3961E
No trace entries found - addr

DMS5NC3962E
Attempt to go beyond storage boundary

DMS5NC3963E
Unable to locate trace table pointers via n

DMS5NC3964I
Trace entry search stopped at addr1 To search to lower dump addresses, try address addr2 To search
to higher dump addresses, try {address addr3 | "SCROLL"}

DMS5NC3965I
Possible trace entry at addr Use the FROM operand to display the entry

DMS5NB3966E
IPCS TRACE subcommand missing or invalid

TRACE

134 z/VM: 7.3 Dump Viewing Facility

TSAB Subcommand (GCS,AVS,RSCS Dumps)

TSab
ALL

taskid

Purpose
Use the TSAB subcommand to display the subpool map and storage owned by a task.

Operands
taskid

identifies the task you want information about. The format is nnnn.
ALL

requests information for all tasks. ALL is the default.

Examples

The following is an example of the output of the TSAB subcommand. The first 32 bytes of the TSAB
contain the 256 bit map of the subpools owned by the task.

TASK-ID TASK-BLOCK TASK-STORAGE-ANCHOR-BLOCK CHAIN-HEADER

HHHH HHHHHHHH HHHHHHHH HHHHHHHH

SUBPOOL-MAP: (CONSISTING OF 64 HEX DIGITS)

Responses
Displays the:

• Task block address
• Task storage anchor block address
• Storage owned by the task
• 256-bit map of the subpools owned by the task.

Messages and Return Codes
GCTITL031S

Insufficient free storage is available
GCTITL504I

Page 'nnnnnnnn' not found in dump
GCTIAL505I

TASKID 'xxxxxxxx' invalid
GCTITL537I

Task block PRT is zero. Cannot find task load list
GCTITL538I

Task block list PRT is zero
GCTITA539I

NUCON extension PRT is zero. Cannot find task storage anchor block

TSAB

Chapter 5. DUMPSCAN Subcommand Reference 135

GCTITA540I
TASKID table PRT is zero. Cannot find task storage anchor block

TSAB

136 z/VM: 7.3 Dump Viewing Facility

VMLOADL Subcommand (GCS,AVS,RSCS Dumps)

VMLoadl

Purpose
Use the VMLOADL subcommand to display information about all programs loaded in this virtual machine.

Examples

The following is an example of the output of the VMLOADL subcommand.

MAJOR-NUCCBLK MOD-NAME MOD-ENTRY-ADDR MOD-SIZE MOD-ADDR

 HHHHHHHH EEEEEEEE HHHHHHHH HHHH HHHHHHHH

MAJOR-NUCCBLK ENTRY-NAME ENTRY-ADDRESS TYPE

 HHHHHHHH EEEEEEEE HHHHHHHH EEEEEEEE

Responses
Displays for each module loaded in this virtual machine:

• Address of the control block containing related information
• Associated program name
• Program address
• Program size
• Entry point address.

For an ALIAS or IDENTIFY-specified entry point, this subcommand displays:

• Address of the control block containing related information
• Entry point name
• Entry point address
• Type of control block (ALIAS or IDENTIFY).

Messages and Return Codes
GCTIVL504I

Page ‘nnnnnnnn’ not found in dump
GCTIVL533I

The virtual machine load list is empty

VMLOADL

Chapter 5. DUMPSCAN Subcommand Reference 137

XEDIT Subcommand

XEdit

command

Purpose
Use the XEDIT subcommand to force the Dump Viewing Facility to pass the command line to XEDIT for
execution.

Operands
command

is any valid XEDIT subcommand or macro and its operands.

Usage Notes
1. Any XEDIT subcommand should be prefaced with XEDIT to prevent the Dump Viewing Facility from

processing the subcommand.

XEDIT

138 z/VM: 7.3 Dump Viewing Facility

Appendix A. Using Attachment Interfaces

The following attachment interfaces are provided by the Dump Viewing Facility:

• The MAP attachment interface
• Exit routine interfaces
• Block tables.

An attachment interface is defined as the logical interconnection and interaction between or to software
programs that enable the programs to function together.

MAP Attachment Interface
The Dump Viewing Facility MAP command enables you to compress load map(s) to create a module map.
The module map can then be appended to a dump by using the ADDMAP command. The format of the
generated module map, as used by the ADDMAP command, is described in Appendix D, “Module Map
Architecture (Used by ADDMAP),” on page 189. In addition to the load map(s), the Dump Viewing Facility
needs specific information in order to create a module map. This information, for the supported dump
types, resides in the HCSTAB ASSEMBLE file. Entries can be added to this file, or existing entries can
be modified by using the TABENTRY utility macro. This procedure for modifying the HCSTAB ASSEMBLE
file is described under “Modifying the HCSTAB Table” on page 139. The description and specification
information for the TABENTRY utility macro is described in Appendix C, “Dump Viewing Facility Utilities,”
on page 163.

HCSTAB Table
The HCSTAB table contains the map information required by the MAP command for creating a module
map from a load map(s). The entries in the table are in a specified order; one entry may depend on
another entry. For example, the CMS entry must precede the TSAF entry in the table.

HCSTAB Table Format
The table is organized by dump types supported by the Dump Viewing Facility as follows:

• CMS
• GCS/XA
• AVS
• PVM
• RSCS
• SFS (including CRR)
• TSAF.

Modifying the HCSTAB Table
The TABENTRY utility macro is provided to create a map information entry in the HCSTAB table for a
specific dump type. This entry provides the information required for the compression of the dump's
associated load map(s) which then can be used to generate a module map for the dump. The description
and specification information for the TABENTRY macro is described in Appendix C, “Dump Viewing
Facility Utilities,” on page 163. Use the following procedure for modifying the HCSTAB table:

1. Place the HCSTAB ASSEMBLE file on your A-disk or other writable disk.
2. Use the TABENTRY utility macro to add or modify a table entry.
3. Assemble the HCSTAB ASSEMBLE file.

Attachment Interfaces

© Copyright IBM Corp. 1991, 2022 139

4. Correct any problems identified by error messages.
5. Place the HCSTAB TEXT file on your A-disk.
6. Use the VMSES/E Local Modification procedure to regenerate the MAP module, see the z/VM: Service

Guide.

Exit Routine Interfaces
 PI

The Dump Viewing Facility provides several types of installation wide exit interfaces for virtual machine
dumps:

• Extraction routines
• Formatting routines called from DUMPSCAN
• Formatting routines called from PRTDUMP

The routine names for the supported dump types are located in the Dump Viewing Facility HCSTBL
ASSEMBLE file. Entries can be added to this file, or existing entries can be modified. See “Modifying the
HCSTBL Table” on page 144 for the procedure for adding or modifying table entries.

These routines can use the services that the Dump Viewing Facility provides as described in Appendix
B, “Dump Viewing Facility Services,” on page 153, under “SVC 199 Services” on page 153 and
“Miscellaneous Services” on page 159.

Extraction Routines
The Dump Viewing Facility sets up this exit to allow the extraction routine for a specific virtual machine
dump to gain control, extract the required information, and optionally return the information to Dump
Viewing Facility through use of SVC 199 services. Prerequisites for calling the extraction routines are the
following:

• The extraction routine must be accessible
• The virtual machine dump, which is the object of DUMPSCAN or PRTDUMP, must reside on a writable

disk.

If these prerequisites are satisfied, the extraction routine is invoked during the initialization phase of
either the DUMPSCAN or PRTDUMP command. If the extraction routine is successful, it is invoked only
the first time the dump is viewed or printed by DUMPSCAN or PRTDUMP, respectively. If unsuccessful, the
extraction routine will be called again on the next invocation of either DUMPSCAN or PRTDUMP.

Extraction Routine Interface
The extraction routine must provide proper entry and exit linkage. When the extraction routine receives
control, the registers contain the following:
Register

Contents

0
Not specified

1
The address of the 8-byte return string, initially blank (filled with X'40404040')

2-12
Not specified

13
The savearea address

14
The return address

Attachment Interfaces

140 z/VM: 7.3 Dump Viewing Facility

15
The entry point address

On return from the extraction routine, the Dump Viewing Facility interprets the return string as follows:
Return String Values

Dump Viewing Facility Actions
'ERROR '

The extraction routine was unsuccessful. If SVC 199 codes 10, 20, or 80 were issued by the extraction
routine, the services for these codes are not performed. If the dump is viewed using DUMPSCAN or
printed by PRTDUMP again, the extraction routine is called.

All others
The extraction routine was successful. If SVC 199 codes 10, 20, or 80 were issued by the extraction
routine, the services for these codes will be performed. A flag is set in the dump's symptom
record informing Dump Viewing Facility that the extraction routine for this dump has already been
performed. Therefore it is not called on subsequent invocations of either the DUMPSCAN or PRTDUMP
commands.

Note: On return from the extraction routine, Dump Viewing Facility does not check the return code.

Formatting Routines Called from DUMPSCAN
The Dump Viewing Facility sets up this exit to allow the formatting routine for a specific virtual machine
dump type to gain control during a DUMPSCAN session in order to format data areas.

The formatting routines are invoked during a Dump Viewing Facility DUMPSCAN session. This occurs when
DUMPSCAN does not handle a subcommand. DUMPSCAN will not handle a subcommand in the following
situations:

• The subcommand is not recognized by DUMPSCAN
• The subcommand is the TRACE subcommand and the dump being viewed is a virtual machine dump
• The subcommand is a scrolling subcommand (FORWARD, BACKWARD, SCROLL, SCROLLU, SCROLL U,

or NULLLINE) and the special scrolling interface was established previously by a formatting routine
invoked by another subcommand (for example, the TRACE subcommand). See “Special Scrolling
Interface” on page 143 for additional information.

Note: Special scrolling is disabled after a user issues a successful Dump Viewing Facility subcommand
that can be scrolled.

Formatting Routine Interface for Nonscrolling Subcommands
The formatting routine must provide proper entry and exit linkage. If the subcommand was a nonscrolling
subcommand, the registers will contain the following when the formatting routine receives control :
Register

Contents
0-1

Not specified
2

The address of the tokenized input list (tokens are 8 characters in length and converted to uppercase;
the token list is ended by X'FFFFFFFFFFFFFFFF')

3
The address of the untokenized input list (the input list is converted to uppercase and is ended by
X'FFFFFFFFFFFFFFFF')

4-12
Not specified

13
The savearea address

Attachment Interfaces

Appendix A. Using Attachment Interfaces 141

14
The return address

15
The entry point address

On return from the formatting routine, the Dump Viewing Facility handles the return code as follows:
Return Codes

Dump Viewing Facility Actions
0 or 4

The formatting routine processed the subcommand successfully, and DUMPSCAN prompts for a new
subcommand.

8 or 12
The formatting routine was unsuccessful in processing the recognized subcommand. DUMPSCAN
issues the Dump Viewing Facility message 270I, then prompts for new subcommand.

16
The formatting routine did not recognize the subcommand. DUMPSCAN passes the subcommand to
XEDIT for processing.

All others
Reserved—currently processed as follows:

Formatting routine was unsuccessful in processing the recognized subcommand. DUMPSCAN issues
Message 270I and prompts for new subcommand.

Note: If a formatting routine does not recognize a subcommand, it must return a return code of 16. This
return code instructs DUMPSCAN to pass the subcommand to other environments (XEDIT, CMS, and CP)
for potential processing.

Formatting Routine Interface for Scrolling Subcommands
The formatting routine must provide proper entry and exit linkage. If the subcommand is a scrolling
subcommand, the registers contain the following when the formatting routine receives control:
Register

Contents
0-1

Not specified
2

The address of the second token in the tokenized input list (tokens are 8 characters in length and
converted to uppercase; token list is ended by X'FFFFFFFFFFFFFFFF')

3
The address of the first argument of the untokenized input list (input list is converted to uppercase
and is ended by X'FFFFFFFFFFFFFFFF')

4-12
Not specified

13
The savearea address

14
The return address

15
The entry point address

Note: If the scrolling subcommand has no second token, registers 2 and 3 point to X'FFFFFFFFFFFFFFFF'.
If the subcommand itself consists of two tokens (SCROLL U), and there is no third token, registers 2 and
3 point to X'FFFFFFFFFFFFFFFF'. If the subcommand was NULLLINE, both registers 2 and 3 point to
X'FFFFFFFFFFFFFFFF'.

Attachment Interfaces

142 z/VM: 7.3 Dump Viewing Facility

On return from the formatting routine, the Dump Viewing Facility handles the return code as follows:
Return Codes

Dump Viewing Facility Action
0 or 4

The formatting routine processed the subcommand successfully, and DUMPSCAN prompts for a new
subcommand.

8 or 12
The formatting routine was unsuccessful in processing the recognized subcommand. DUMPSCAN
issues message 270I and prompts for a new subcommand.

16
The formatting routine did not recognize the subcommand. DUMPSCAN passes the subcommand to
XEDIT for processing.

All others
Reserved—currently being processed as follows:

The formatting routine was unsuccessful in processing the recognized subcommand. DUMPSCAN
issues message 270I and prompts for a new subcommand.

Note: If a formatting routine does not recognize a subcommand, it must return a return code of 16. This
return code instructs DUMPSCAN to pass the subcommand to other environments (XEDIT, CMS, and CP)
for potential processing.

Special Scrolling Interface
The special scrolling interface supports scrolling by user exits such as the TSAF Trace command. The
following external variables are supported by DUMPSCAN:

Name Length Contents

HEXAD Fullword Contains the address of the first trace entry in a previous
display

SCROLLEN Fullword Contains the address of the last trace entry in a previous
display

FEDFEXSW One byte Contains the scroll switch S

REUSEAD Fullword Contains the address of the routine for the REUSE
subcommand

SCROLAD Fullword Contains the address of the routine for the SCROLL
subcommand

SCROLUAD Fullword Contains the address of the routine for the SCROLLUP
subcommand

PRINTONE One byte X'0F' indicates output of previous subcommand should be
displayed.

When the Dump Viewing Facility invokes the format routine, register 2 points to the next parameter in the
tokenized command parameter list.

Formatting Routines Called from PRTDUMP
The Dump Viewing Facility sets up this exit to allow the formatting routine for a specific virtual machine
dump type to gain control in order to format data areas for printing. This formatting routine is invoked
through the Dump Viewing Facility PRTDUMP command.

Attachment Interfaces

Appendix A. Using Attachment Interfaces 143

Formatting Routine Interface
The formatting routine must provide proper entry and exit linkage. When the formatting routine receives
control, the registers contain:
Registers

Contents
0

Not specified
1

The address of the tokenized list of PRTDUMP options that were specified on the PRTDUMP command
line but were not recognized by PRTDUMP (tokens are 8 characters in length, converted to uppercase,
and the token list is ended by X'FFFFFFFFFFFFFFFF')

2-12
Not specified

13
The save area address

14
The return address

15
The entry point address

Note: The tokenized options list (pointed to by register 1) consists of a maximum of nineteen 8-character
tokens. Options greater than 8 characters in length are truncated to 8 characters.

On return from the formatting routine, PRTDUMP will not check the return code.

HCSTBL Table
The Dump Viewing Facility provides the capability for exit routines to extract, view, and print virtual
machine dump data. It uses a table, HCSTBL, as the attachment interface for this function. This table
is contained within a file named HCSTBL ASSEMBLE and is shipped with the Dump Viewing Facility. It
contains information associated with each supported virtual machine dump type.

HCSTBL Table Format
The format of HCSTBL supported by the Dump Viewing Facility is as follows:

• CMS
• GCS/XA
• AVS
• PVM
• RSCS
• SFS (including CRR)
• TSAF.

Modifying the HCSTBL Table
The TBLENTRY utility macro is provided for creating an entry in the HCSTBL table for a specific dump type.
This entry provides the necessary extraction and formatting information for a specific dump type. The
description and specification information for this utility macro is described in Appendix C, “Dump Viewing
Facility Utilities,” on page 163. Use the following procedure for modifying the HCSTBL table:

1. Place the HCSTBL ASSEMBLE file on your A disk or other writable disk.
2. Use the TBLENTRY utility macro to add or modify a table entry.
3. Assemble the HCSTBL ASSEMBLE file.

Attachment Interfaces

144 z/VM: 7.3 Dump Viewing Facility

4. Correct any problems identified by error messages.
5. Place the HCSTBL TEXT file on your A disk.
6. Use the VMSES/E Local Modification procedure to regenerate the DUMPSCAN and PRTDUMP modules,

see the z/VM: Service Guide.

 PI end

Block Table Architecture
The BLOCK subcommand displays a control block by mapping the contents of storage into a predefined
format. This is accomplished by using a previously defined description of the control block called the
block definition file. The block definition file is listed in a control file which is named in HCSTBL.

Figure 51. DUMPSCAN BLOCK Tables Diagram

HCSTBL is shipped with entries for each of the Dump Viewing Facility supported dump types.

Creating Block Definition Files
You can alter the block definitions and create new definitions in user block table files. You must observe
the following limitations, however:

• A block table file must have a logical record size of 80
• The record format must be fixed
• The file cannot exceed 32,656 records in length
• A maximum of 2048 blocks can be defined per block table
• The file name of the file must be unique. This is necessary to ensure the right block definitions are

loaded into BLOCK during initialization. If the name is not unique, BLOCK loads the first occurrence of
the name based on the CMS minidisk search order.

Creating BLOCK Control Files
After the BLOCK table file is built, you must determine in which of the BLOCK control files the new
definition file name should reside, and what order position the file will occupy.

A maximum of four block table files can be used in a single block session.

The block control file is a file that tells BLOCK which block table files to load during initialization.
The definition files loaded depend on the type of dump the user is currently examining. When BLOCK
initialization starts, BLOCK uses the dump type to search a table called HCSTBL. See “HCSTBL Table” on
page 144 for more information on HCSTBL. When a match is found on the DUMPTYPE, the entry in the
HCSTBL is checked for a block control file. If that exists, the suffix is appended to the characters HCS$
to form the file name of the control file name (the file type is always TABLE) for that dump type. BLOCK
then searches for that control file and extracts the names of the block definition files for the dump. After
you know the name of the control file for the dump being examined, you simply put the name of the new
file in the order position desired. The position of the file is important. BLOCK searches for control block
names sequentially. This means that the first definition file is searched first, the second searched second,
and so on. After the BLOCK subcommand finds a match to the name entered on BLOCK invocation, the
file search stops, and BLOCK maps the data based on that definition. BLOCK thus does not recognize
duplicate names within a definition file.

After you have added the new definition file names, the file should be saved on a minidisk that is ahead of
the original control file disk in the CMS search order.

The following is an example of a simple BLOCK control file. The file has records 80 bytes long.

Attachment Interfaces

Appendix A. Using Attachment Interfaces 145

**
* The base CMS control blocks for z/VM *
**
CMSBLOCK CBMAP

In this example, MYFILE CBMAP is added to a BLOCK control file:

**
* The base CMS control blocks for z/VM *
**
MYFILE CBMAP
CPMBLOCK CBMAP

Adding Block Definition Files
Assume you have an updated CMS control block source copy file which you want to define to DUMPSCAN
such that the BLOCK subcommand can map dump data for this control block using the updated version.
For your example, you have a copy file for the SAVBK control block, "DMSABN COPY" located on your
A-disk.

1. Invoke BLOCKDEF utility command to generate a block definition file containing formatted DSECT for
the SAVBK. Suppose you wish to name this new block definition file, "MY CBMAP".

"BLOCKDEF DMSABN COPY A MY CBMAP A (COPY".

The optional parameter COPY tells BLOCKDEF the input file name is the name of a single control block
to be processed. See "BLOCKDEF Utility Command" in Appendix C for a description of all the optional
parameters used with BLOCKDEF.

2. Locate the "HCS$xxx TABLE" control file which is appropriate for the type of dump you are processing.

In your example, you are processing a CMS control block, so you want to select the control file for
CMS dumps, "HCS$CMS TABLE". These control files are named in HCSTBL, which can be updated.
"HCS$CMS TABLE" is supplied with the product. See “Modifying the HCSTAB Table” on page 139 for a
description on how to update HCSTBL.

3. Add the name of the new block definition file created with BLOCKDEF above, "MY CBMAP", to the
"HCS$CMS TABLE" control file.

Up to 4 block definition files can be listed in one control file.
4. You are now ready to use your new block definition file with the BLOCK subcommand.

Note: If you were already in a DUMPSCAN session when you created the new block definition file
for SAVBK, you MUST exit the DUMPSCAN session and start again, before the change will take
effect. DUMPSCAN only initializes the control block mappings for a particular dump type once during
initialization time.

Block Definitions
The control block descriptions are formatted as follows:

• Each field within a control block is described to the BLOCK subcommand in a single record called a
block definition record (see Figure 52 on page 146).

• The entire control block description is made up of groups of these definition records and is called a
block definition (see Figure 53 on page 147).

• The block definitions are stored in large files and are called block table files (see Figure 54 on page
147).

030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER

Figure 52. A Block Definition Record: A Single Field within a Control Block

Note: See “Block Descriptor Record Format” on page 147 for record layout.

Attachment Interfaces

146 z/VM: 7.3 Dump Viewing Facility

*** USER BLOCK NONDISPLAYABLE COMMENT
000 0 (0) STRUCTURE 29 USERBLOK
010 0 (0) BIT 1 USERFLGA EVENT STATUS FLAGS
011 1... USERBIT1 I/O IN PROGRESS
012 .1.. USERBIT2 DEACTIVATE STARTED
012 ..1. USERBIT3 SESSION ENDED
012 ...1 USERBIT4 PURGE Q REQUESTED
012 1... USERBIT5 PURGE Q COMPLETED
012 1.. USERBIT6 DEACTIVATE COMPLETE
012 1. USERBIT7 I/O COMPLETE
013 1 USERBIT8 PURGE Q I/O WAIT
010 1 (1) BIT 1 USERFLGB EVENT STATUS FLAGS #2
020 2 (2) FIXED(U) 2 * RESERVED
040 4 (4) POINTER 4 USERLINK LINK POINTER
030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER
060 12 (C) OFFSET 4 USERREGF SAVED RETURN CODE
0A0 FROM CALL
080 16 (10) FIXED(S) 4 USERREGE SAVED REGE FROM
0A0 PRIOR CALL
090 20 (14) AREA 8 USERTIME TIME OF DISPATCH TO
0A0 CPU 1 DISPATCHER/
0A0 SCHEDULER ROUTINE
010 28 (1C) BIT 1 USERFLGC LOCK FLAGS
011 1..1 .11. USERLOC2 DISPATCH STATUS FLAGS
0A1 FOR THE PRIMARY CPU
0A1 DISPATCHER

Figure 53. A Block Definition: The Group of Records Defining a Single Block

*** FIRST BLOCK DEFINITION
000 0 (0) STRUCTURE 29 USERBLOK
010 0 (0) BIT 1 USERFLGA EVENT STATUS FLAGS
011 1... USERBIT1 I/O IN PROGRESS
012 .1.. USERBIT2 DEACTIVATE STARTED
012 ..1. USERBIT3 SESSION ENDED
013 ...1 USERBIT4 PURGE Q REQUESTED
010 1 (1) BIT 1 USERFLGB EVENT STATUS FLAGS #2
020 2 (2) FIXED(U) 2 * RESERVED
040 4 (4) POINTER 4 USERLINK LINK POINTER
030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER
060 12 (C) OFFSET 4 USERREGF SAVED RETURN CODE
0A0 FROM CALL
080 16 (10) FIXED(S) 4 USERREGE SAVED REGE FROM
0A0 PRIOR CALL
090 20 (14) AREA 8 USERTIME TIME OF DISPATCH TO
0A0 THE CPU 1 DISPATCHER/
0A0 SCHEDULER ROUTINE
010 28 (1C) BIT 1 USERFLGC LOCK FLAGS
011 1..1 .11. USERLOC2 DISPATCH STATUS FLAGS
0A1 FOR THE PRIMARY CPU
0A1 DISPATCHER
*** SECOND BLOCK DEFINITION
000 0 (0) STRUCTURE 34 BLOKBLOK
030 0 (0) CHARACTER 4 BLOKCBID THE BLOCKS' ID FIELD
040 4 (4) POINTER 4 BLOKLINK LINK POINTER
040 8 (8) POINTER 4 BLOKSTAT ACTIVATE STATUS
040 12 (C) POINTER 4 BLOKWAIT WAIT EVENT BLOCK
0A0 POINTER
090 24 (18) AREA 8 BLOKTIME TIME OF DISPATCH
010 32 (20) BIT 1 BLOKWFLG WAIT FLAGS
010 33 (21) BIT 1 * RESERVED

Figure 54. A Block Table File Containing Multiple Block Definitions

Block Descriptor Record Format
You can build a block definition record by using the format shown in Figure 55 on page 147.

040 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER

Figure 55. The Block Descriptor Record

Attachment Interfaces

Appendix A. Using Attachment Interfaces 147

Where:

Table 10. Block Descriptor Record Format

Columns Field Name Field Description

1-3 Key field A 3-digit value that provides information about the field to
BLOCK. The digits are used as follows:
Column 1

Default character field
Column 2-3

Data type indicator

The possible combinations are:
00

STRUCTURE—Start of definition
10

BIT—BIT data
11

BIT—Bit subrecord start (on byte boundary)
12

BIT—Bit subrecord
13

BIT—Bit subrecord end
20

FIXED(U)—Fixed unsigned data
30

CHARACTER—Character data
40

POINTER—Pointer data
50

Reserved for future IBM use
60

OFFSET—Offset data
70

Reserved for future IBM use
80

FIXED(S)—Fixed signed data
90

AREA—Area data
A0

Independent record comment
A1

Independent subrecord comment
**

Nondisplayable comment

7-11 Decimal offset The field's offset within the block. This field is right-
justified.

13-18 Hexadecimal offset The field's offset within the block. This field is right-
justified and bracketed by parentheses.

20-28 Data type The type of data contained in the field

Attachment Interfaces

148 z/VM: 7.3 Dump Viewing Facility

Table 10. Block Descriptor Record Format (continued)

Columns Field Name Field Description

30-34 Field/block size The decimal size of the field in bytes. This field is right-
justified.

37-50 Field/block name The name of the field. The name field can also contain an
array element count value. This count must be bracketed
by parentheses; for example, TESTDATA(1024). This
indicates that TESTDATA is an array of 1024 elements.

52-79 Field comments The comments describing the field

Note: Columns not specifically assigned to a field must contain blanks.

Block Descriptor Record – BIT Subrecord Format
There is an alternate format for bit subrecord format records. Figure 56 on page 149 shows an example:

011 1... USERBIT1 I/O IN PROGRESS

Figure 56. Alternate Format for Bit Subrecord

Where:

Table 11. Block Descriptor Record–BIT Subrecord Format

Columns Field Name Field Description

01-03 Key field A 3-digit value that provides information about the field to
BLOCK. The digits are used as follows:
Column 1

Default character field
Column 2-3

Data type indicator

The possible combinations are:
10

BIT—BIT data
11

BIT—Bit subrecord start (on byte boundary)
12

BIT—Bit subrecord
13

BIT—Bit subrecord end

16-25 Bit map field The bit placement map used to format bit display

37-50 Field/block name The name of the bits

52-79 Field comments The comments describing the field

Note: Columns not specifically assigned to a field must contain blanks.

Default Display Fields
You can get a display of the default display fields by omitting the ALL and PROMPT options on the BLOCK
subcommand. You select the fields to be displayed as default fields. This is accomplished by specifying a

Attachment Interfaces

Appendix A. Using Attachment Interfaces 149

default field indicator in the definition header record of a block definition as shown in Figure 57 on page
150.

000 0 (0) STRUCTURE 29 USERBLOK

Figure 57. Block Header Record with No Default Settings

Note: If you want to use a nondisplayable comment, you cannot use an asterisk for the default character
within that block.

The default character for a block is set by altering the first character of the KEY field. For example, we will
use the letter D in Figure 58 on page 150 to signify that a field is a default field. The user may specify any
valid EBCDIC character as the default character.

D00 0 (0) STRUCTURE 29 USERBLOK

Figure 58. Block Header Record Set to Default of D

Altering a block definition header record KEY field indicates to the BLOCK subcommand that any field
record within the definition that has the same character in the first character position of its own KEY field
is to be considered a default field. For example, the block field shown in Figure 59 on page 150 would be
considered a default field.

D30 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
DA0 IDENTIFIER

Figure 59. Field Record Set to Default of D

Tailoring a Block Table File
You can customize an existing definition by:

• Changing the control block name in the header record
• Changing the names of various fields
• Deleting fields of no interest
• Adding new fields, such as bit subrecords
• Changing comments for the field.

Use caution when modifying the following fields in the definition:

• Control block and field size values. The field size value tells BLOCK how much data to map into that
particular field. The block size value tells BLOCK how much data to get from the dump to map into the
block.

• Field offset values. These fields tell BLOCK exactly where, within the storage of the control block, the
data to be mapped is located.

In the following record, the control block name is changed from:

D00 0 (0) STRUCTURE 29 USERBLOK

to:

D00 0 (0) STRUCTURE 29 MYBLOCK1

In the following record, the field name and the comment are changed from:

D30 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
DA0 IDENTIFIER

to:

Attachment Interfaces

150 z/VM: 7.3 Dump Viewing Facility

D40 8 (8) CHARACTER 4 BLOCKID THE BLOCKS'
DA0 ID FIELD

In the following record:

000 0 (0) STRUCTURE 29 USERBLOK
010 0 (0) BIT 1 USERFLGA EVENT STATUS FLAGS
011 1... USERBIT1 I/O IN PROGRESS
012 .1.. USERBIT2 DEACTIVATE STARTED
012 ..1. USERBIT3 SESSION ENDED
013 ...1 USERBIT4 PURGE Q REQUESTED
010 1 (1) BIT 1 USERFLGB EVENT STATUS FLAGS #2
020 2 (2) FIXED(U) 2 * RESERVED
040 4 (4) POINTER 4 USERLINK LINK POINTER
030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER
060 12 (C) OFFSET 4 USERREGF SAVED RETURN CODE
0A0 FROM CALL
080 16 (10) FIXED(S) 4 USERREGE SAVED REGE FROM
0A0 PRIOR CALL
090 20 (14) AREA 8 USERTIME TIME OF DISPATCH TO
0A0 THE CPU 1 DISPATCHER/
0A0 SCHEDULER ROUTINE
010 28 (1C) BIT 1 USERFLGC LOCK FLAGS
011 1..1 .11. USERLOC2 DISPATCH STATUS FLAGS
0A1 FOR THE PRIMARY CPU
0A1 DISPATCHER

a bit breakdown is added to a definition:

000 0 (0) STRUCTURE 29 USERBLOK
010 0 (0) BIT 1 USERFLGA EVENT STATUS FLAGS
011 1... USERBIT1 I/O IN PROGRESS
012 .1.. USERBIT2 DEACTIVATE STARTED
012 ..1. USERBIT3 SESSION ENDED
012 ...1 USERBIT4 PURGE Q REQUESTED
012 1... USERBIT5 PURGE Q COMPLETED
012 1.. USERBIT6 DEACTIVATE COMPLETE
012 1. USERBIT7 I/O COMPLETE
013 1 USERBIT8 PURGE Q I/O WAIT
010 1 (1) BIT 1 USERFLGB EVENT STATUS FLAGS #2
020 2 (2) FIXED(U) 2 * RESERVED
040 4 (4) POINTER 4 USERLINK LINK POINTER
030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER
060 12 (C) OFFSET 4 USERREGF SAVED RETURN CODE
0A0 FROM CALL
080 16 (10) FIXED(S) 4 USERREGE SAVED REGE FROM
0A0 PRIOR CALL
090 20 (14) AREA 8 USERTIME TIME OF DISPATCH TO
0A0 THE CPU 1 DISPATCHER/
0A0 SCHEDULER ROUTINE
010 28 (1C) BIT 1 USERFLGC LOCK FLAGS
011 1..1 .11. USERLOC2 DISPATCH STATUS FLAGS
0A1 FOR THE PRIMARY CPU
0A1 DISPATCHER

In this record:

Attachment Interfaces

Appendix A. Using Attachment Interfaces 151

000 0 (0) STRUCTURE 29 USERBLOK
010 0 (0) BIT 1 USERFLGA EVENT STATUS FLAGS
011 1... USERBIT1 I/O IN PROGRESS
012 .1.. USERBIT2 DEACTIVATE STARTED
012 ..1. USERBIT3 SESSION ENDED
012 ...1 USERBIT4 PURGE Q REQUESTED
012 1... USERBIT5 PURGE Q COMPLETED
012 1.. USERBIT6 DEACTIVATE COMPLETE
012 1. USERBIT7 I/O COMPLETE
013 1 USERBIT8 PURGE Q I/O WAIT
010 1 (1) BIT 1 USERFLGB EVENT STATUS FLAGS #2
020 2 (2) FIXED(U) 2 * RESERVED
040 4 (4) POINTER 4 USERLINK LINK POINTER
030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER
060 12 (C) OFFSET 4 USERREGF SAVED RETURN CODE
0A0 FROM CALL
080 16 (10) FIXED(S) 4 USERREGE SAVED REGE FROM
0A0 PRIOR CALL
090 20 (14) AREA 8 USERTIME TIME OF DISPATCH TO
0A0 THE CPU 1 DISPATCHER/
0A0 SCHEDULER ROUTINE

USERBIT5 through USERBIT8 are deleted:

000 0 (0) STRUCTURE 29 USERBLOK
010 0 (0) BIT 1 USERFLGA EVENT STATUS FLAGS
011 1... USERBIT1 I/O IN PROGRESS
012 .1.. USERBIT2 DEACTIVATE STARTED
012 ..1. USERBIT3 SESSION ENDED
013 ...1 USERBIT4 PURGE Q REQUESTED
010 1 (1) BIT 1 USERFLGB EVENT STATUS FLAGS #2
020 2 (2) FIXED(U) 2 * RESERVED
040 4 (4) POINTER 4 USERLINK LINK POINTER
030 8 (8) CHARACTER 4 USERCBID CONTROL BLOCK
0A0 IDENTIFIER
060 12 (C) OFFSET 4 USERREGF SAVED RETURN CODE
0A0 FROM CALL
080 16 (10) FIXED(S) 4 USERREGE SAVED REGE FROM
0A0 PRIOR CALL
090 20 (14) AREA 8 USERTIME TIME OF DISPATCH TO
0A0 THE CPU 1 DISPATCHER/
0A0 SCHEDULER ROUTINE

Attachment Interfaces

152 z/VM: 7.3 Dump Viewing Facility

Appendix B. Dump Viewing Facility Services

 PI

The following services are provided by the Dump Viewing Facility:

• SVC 199 services
• Miscellaneous services.

SVC 199 Services
The SVC 199 type of communication provides the interface between the Dump Viewing Facility and the
exit routines. These services are used by:

• Extraction routines
• Formatting routines called by DUMPSCAN
• Formatting routines called by PRTDUMP.

Note: All codes are available to the DUMPSCAN command unless otherwise noted.

Following are the codes that the Dump Viewing Facility supports:

• Code = 10: Send the keyword symptom data to the Dump Viewing Facility for inclusion in the SYMPTOM
record.

PLIST DS 0F
 DC AL4(*-*) The address of the keyword list
 DC H'10' The code field
 DC H'0' The number of entries in the list

The keyword list must comply with the following rules:

– All data must be presented in printable format
– The total number of keywords must not exceed 15
– The minimum number of keywords is four
– The total length of keyword plus data, including a suffix of five blanks, is 20 characters. The first 15

characters are used.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

An invalid number of entries (<4 or >15)

• Code = 20: Send additional data to the Dump Viewing Facility for inclusion in the SYMPTOM record.

PLIST DS 0F
 DC AL4(*-*) The address of the data list
 DC H'20' The code field
 DC H'0' The number of 80-bytes entries in the list

The data list must comply with the following rules:

– All data is presented in printable format
– Entries are 80 bytes long, including spaces

Services

© Copyright IBM Corp. 1991, 2022 153

– Total number of entries do not exceed 15.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

An invalid number of entries (>15)

• Code = 30: Request a work buffer

PLIST DS 0F
 DC AL4C(*-*) Address of buffer returned to caller
 DC H'30' The code field
 DC H'0' The number of buffers requested

Note: The caller needs a work buffer. Up to six 4 KB buffers may be requested. The request is denied if
all space asked for cannot be provided. Buffers are on page boundaries and are contiguous.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

Insufficient storage
8

Invalid request
• Code = 31: Free a work buffer

PLIST DS 0F
 DC AL4(*-*) The address of the buffer(s) to be returned
 DC H'31' The code field
 DC H'0' The number of 4 KB buffers to be returned

Frees storage previously obtained with SVC subcode 30.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

Address invalid
8

Invalid request
• Code = 40: Request data from an address

PLIST DS 0F
 DC AL4(*-*) The address of the data wanted
 DC H'40' The code field
 DC H'0' The number of bytes read contiguous to the
 address requested and the end of a 12 KB buffer
 DC AL4(*-*) The address of the 12 KB buffer returned to the
 caller that contains the address of the desired
 data

Services

154 z/VM: 7.3 Dump Viewing Facility

The address of the data requested is the first entry in the buffer returned. The buffer varies in length if
the next page of the dump was not dumped to the page in which the address requested was found. The
last halfword of the PLIST contains the total number of consecutive bytes (a maximum of 12 KB).

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

Page not in dump
100

Read error

Note:

1. The next subcode call (40 or 41) overlays the buffer returned by the previous invocation of subcode
40 or 41.

2. When the requested address exceeds dump storage size, register 15 is set to 4, and the address of
the 12 KB buffer returned is set to X'000000FF'.

• Code = 41: Request data from an address

PLIST DS 0F
 DC AL4(*-*) The address of the data wanted
 DC H'41' The code field
 DC H'0' The number of usable bytes returned to the user.
 This count varies.
 DC AL4(*-*) The address of the buffer returned to the caller
 containing the address of the desired data. The
 address requested is rounded down to a page
 boundary.

The address in the buffer points to the beginning of the page containing the address of the requested
data. The preceding page and the following page may also be present. The purpose is to provide the
page before and the page after the requested page. The user must index into the page for his address
or use SVC 199 code 40. The number of usable bytes (fourth PLIST field) contains the total number of
bytes (a maximum of 12 KB).

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
1

Preceding page not present
2

Following page not present
3

Preceding and following pages not present
4

Page not in dump
100

Read error

Note:

1. The next subcode call (40 or 41) overlays the buffer returned by the previous invocation of subcode
40 or 41.

Services

Appendix B. Dump Viewing Facility Services 155

2. When the requested address exceeds dump storage size, register 15 is set to 4, and the address of
the 12 KB buffer returned is set to X'000000FF'.

• Code = 50: Request the dump file information record (DFIR). This record contains the general purpose
registers, PSW, and dump ID storage at the time the dump was taken.

These three fields will be at the offsets specified in the DMPINREC format.

Table 12. DMPINREC Control Block

Field Description Length Offset

General Purpose Registers 64 bytes X'0'

PSW 8 bytes X'3D8'

Dump ID 100 bytes X'434'

Note: This subcode is intended for use by exit routines that have been coded to be used with the
VM/370 interactive problem control system (IPCS), and that are migrating to the VM Dump Viewing
Facility. Any exit routines written specifically for use with the Dump Viewing Facility should use subcode
51.

PLIST DS 0F
 DC AL4(*-*) Address of 4 KB buffer to be used to return the
 DMPINREC
 DC H'50' The code field

This record may not have any value for a virtual machine dump. The value of this record should be
determined by the user. All fields should be referenced using their DSECT names.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

Internal error

• Code = 51: Request the address of the 20 KB buffer (5 4 KB lines) for the dump file information record
(DFIR). This record contains the general purpose registers, PSW, and dump ID storage at the time the
dump was taken.

These three fields will be at the offsets specified in the HCPDFIR format.

Table 13. HCPDFIR Control Block

Field Description Length Offset

General Purpose Registers 64 bytes X'0'

PSW 8 bytes X'230'

Dump ID 100 bytes X'240'

Note: This subcode is intended for use by exit routines that have been coded to be used with the VM
Dump Viewing Facility.

PLIST DS 0F
 DC AL4(*-*) Address of the 20 KB buffer (5 4 KB lines) to be
 used to return the HPCDFIR
 DC H'51' The code field

Services

156 z/VM: 7.3 Dump Viewing Facility

This record may not have any value for a virtual machine dump. The value of this record should be
determined by the user. All fields should be referenced using their DSECT names.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

Internal error
• Code = 60: Request PRTDUMP to print a buffer that has been translated.

PLIST DS 0F
 DC AL4(*-*) The address of the buffer to be printed
 DC H'60' The code field
 DC H'0' The number of character lines

The buffer contains translated data with a fixed length of 133 characters, including prefixed print
control code.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

The number of lines = 0
500

Print failure
• Code = 70: Request PRTDUMP to print the registers and PSWs and the appended map.

PLIST DS 0F
 DC AL4(*-*) Reserved
 DC H'70' The code field

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
100

Read error
500

Print failure

Note: When the map is not appended, register 15 equals zero and Dump Viewing Facility message 300I
is issued.

• Code = 71: Request PRTDUMP to format and print the appended map.

PLIST DS 0F
 DC AL4(*-*) Reserved
 DC H'71' The code field

Return codes for register 15 are:
Return Code

Explanation

Services

Appendix B. Dump Viewing Facility Services 157

0
Successful operation

100
Read error

500
Print failure

Note: When the map is not appended, register 15 equals zero and Dump Viewing Facility message 300I
is issued.

• Code = 80: Change the register set and PSW in the dump file information record in the dump.

PLIST DS 0F
 DC AL4(*-*) The address of the buffer containing the register
 set and the PSW
 DC H'80' The code field

Note: Used when the dump information record does not contain a valid virtual machine register set and
PSW. The registers and PSW provided by the extraction are placed into the dump information record by
the Dump Viewing Facility.

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
4

Internal error
• Code = 90: Return to the user a module and an entry point name when given an address.

PLIST DS 0F
 DC AL4(*-*) The address of the module or entry name
 DC H'90' The code field
 DC H Reserved
 DC CL8'' The entry name returned to the caller
 DC AL4(*-*) The entry address to the caller
 DC CL8'' The module name to the caller
 DC AL4(*-*) The module address to the caller

Return codes for register 15 are:
Return Code

Explanation
0

Successful operation
2

Map not present
4

Address not in map
100

Read error
• Code = 91: Return to the caller an entry or module name address when given a name.

PLIST DS 0F
 DC AL4(*-*) The address returned to the caller
 DC H'91' The code field
 DC CL8'NAME' The name field

The address is returned to caller.

Return codes for register 15 are:

Services

158 z/VM: 7.3 Dump Viewing Facility

Return Code
Explanation

0
Operation successful, address returned

2
Map not present

4
Name not found in map

100
Read error

 PI■end

Miscellaneous Services
 PI

The Dump Viewing Facility provides the following non-SVC 199 services:

• DMMCLR (alias DTVCLR): Simulate clearing the screen

The entry point provides the proper entry and exit linkage. The exit routine should branch to the entry
point using a BALR instruction with registers loaded as follows:
Registers

Contents
0-12

Not specified
13

Save area address
14

Return address
15

Entry point address

Description: Routine to clear screen upon call to DMMFEDLN.

This entry point does not set a return code.
• DMMFEDLN (alias DTVFEDLN): Display data on screen.

The entry point provides the proper entry and exit linkage. The exit routine should branch to the entry
point using a BALR instruction with registers loaded as follows:
Registers

Contents
0

Not specified
1

A pointer to parameter list
2-12

Not specified
13

The save area address
14

The return address
15

The entry point address

Services

Appendix B. Dump Viewing Facility Services 159

The parameter list should be set up as follows:

PLIST DC AL4 The address of the data to be displayed
 DC F The number of bytes to be displayed

Description: Used to enable formatting routines to write to the screen during the DUMPSCAN session.

This entry point sets the following return codes:
Return Code

Explanation
0

The service performed
8

PRINTL failure
• DMMHEX: Convert EBCDIC to hexadecimal.

The entry point provides the proper entry and exit linkage. The exit routine should branch to the entry
point using a BALR instruction with registers loaded as follows:
Registers

Contents
0-3

Not specified
4

The pointer to the input string
5

Reserve for output information (will contain the pointer to the output string)
6-12

Not specified
13

The save area address
14

The return address
15

The entry point address

Description: Used to convert EBCDIC data to hexadecimal data and perform hexadecimal data validity
checking.

Note: The input string should be greater than 0, but less than or equal to 8 bytes in length.

This entry point sets the following return codes:
Return Code

Explanation
0

Service performed
8

Invalid hexadecimal data
• DMMINT (alias DTVINT): Convert binary to EBCDIC

The entry point provides the proper entry and exit linkage. The exit routine should branch the entry
point using a BALR instruction with registers loaded as follows:
Registers

Contents
0-2

Not specified

Services

160 z/VM: 7.3 Dump Viewing Facility

3
The input byte count

4
The pointer to the input string

5
Reserve for output information (will contain pointer to output string)

6-12
Not specified

13
The save area address

14
The return address

15
The entry point address

Description: Used to convert binary data to EBCDIC data and perform byte count validity checking. If the
byte count is greater than X'80', it will set it to X'80'; if less than 1, it will set it to 4.

This entry point will set the return code to zero, meaning that the service has been performed.

 PI■end

Services

Appendix B. Dump Viewing Facility Services 161

Services

162 z/VM: 7.3 Dump Viewing Facility

Appendix C. Dump Viewing Facility Utilities

The following utilities are provided by the Dump Viewing Facility:

• TABENTRY Table Macro
• TBLENTRY Table Macro
• BLOCKDEF Utility
• BLOCKMAP Macro

© Copyright IBM Corp. 1991, 2022 163

TABENTRY Utility Macro

label

TABENTRY DUMPTYPE= dumptype

,MINTRUNC= n

,PRITYPE= pritype ,PRILMAP= prilmap

,PRINUC= YES

,PRINUC= NO

,SECTYPE= sectype

,SECLMAP= seclmap

,SECNUC= NO

,SECNUC= YES

,MODMAP= modmap

,LOADER= CPLOADER

CMSLOADC

NONE

,FMODNAME= NONE

,FMODNAME= fmodname

,LMODNAME= NONE

,LMODNAME= lmodname

Purpose
Code the TABENTRY macro to generate a map information entry in the HCSTAB table for a specific dump
type. This entry provides the information required for the compression of the dump's associated load
map(s) that then can be used to generate a module map for the dump. The module map can then be
appended to the dump by using the Dump Viewing Facility ADDMAP command.

Operands
DUMPTYPE=dumptype

is a required 1- to 8-character string specifying the type of dump for which you want a module map
created. There is no verification checking.

MINTRUNC=n
is an optional number from 1 to 8 specifying the minumum truncation length of the character string
specified by DUMPTYPE. This value cannot be greater than the length of the value specified by
DUMPTYPE. If DUMPTYPE has no minimum truncation, you need not specify this, and a default of the
length of the character string specified for DUMPTYPE is taken.

PRITYPE=pritype
is an optional 1- to 8-character string specifying the type of load map that will be used as the primary
load map. The default value is the same as the value specified for DUMPTYPE.

PRILMAP=prilmap
is an optional 1- to 8-character string specifying the CMS file name of the input primary load map that
is needed to create a module map for the specified DUMPTYPE. The default value is the same as the
value specified for PRITYPE.

TABENTRY

164 z/VM: 7.3 Dump Viewing Facility

Note: Validity checking, such as whether this is a valid CMS file name or whether it is a complete and
valid load map, is not done during the assembly of this macro. It is performed during Dump Viewing
Facility MAP command processing.

PRINUC=YES
PRINUC=NO

is an optional operand specifying whether the primary load map is a nucleus. If you do not specify
PRINUC, the default is YES.

SECTYPE=sectype
is an optional 1- to 8-character string specifying the type of load map that will be used as the
secondary load map. If there is no secondary load map, SECTYPE must not be specified. The default is
NONE.

SECLMAP=seclmap
is an optional 1- to 8-character string specifying the CMS file name of the input secondary load map
that may be needed to create a module map for the specified DUMPTYPE. If no secondary load map
is needed (SECTYPE is not specified), SECLMAP must not be specified. If a secondary load map is
needed (SECTYPE is specified), and SECLMAP is not specified, it will default to the value of SECTYPE.

Note: Validity checking, such as whether this is a valid CMS file name or whether it is a complete and
valid load map, is not done during the assembly of this macro. It is performed during Dump Viewing
Facility MAP command processing.

SECNUC=YES
SECNUC=NO

is an optional operand specifying whether the secondary load map is a nucleus. If no secondary load
map is needed (SECTYPE is not specified), SECNUC must not be specified. If a secondary load map is
needed (SECTYPE is specified) and SECNUC is not specified, it defaults to NO.

MODMAP=modmap
is a required 1- to 8-character string specifying the CMS file name of the output module map created
by the Dump Viewing Facility MAP command.

Note: Validity checking, such as whether this is a valid CMS file name or whether one does not already
exist, is not done during the assembly of this macro. It is performed during Dump Viewing Facility MAP
command processing.

LOADER=CPLOADER
LOADER=CMSLOADC
LOADER=NONE

is a required operand specifying how the load map for the DUMPTYPE was created. If the load
map was created using either of the CP loaders (HCPLDR or DMKLD00E), specify CPLOADER. If the
load map was created using the CMS Load command, specify CMSLOADC. If there was no load map
created when loading (or installing) the software or one was generated in some other way, specify
NONE.

FMODNAME=fmodname
FMODNAME=NONE

is an optional 1- to 8-character string specifying the first module's name in the load map for the
DUMPTYPE specified. If there was no load map created when loading (or installing) the software or
one was generated in some other way, specify NONE. The default is NONE; however, if LOADER was
not specified as NONE, this field is required and must not have the value of NONE.

LMODNAME=lmodname
LMODNAME=NONE

is an optional 1- to 8-character string specifying the last module's name in the load map for the
DUMPTYPE specified. If there was no load map created when loading (or installing) the software or
one was generated in some other way, specify NONE. The default is NONE; however, if LOADER was
not specified as NONE, this field is required and must not have the value of NONE.

TABENTRY

Appendix C. Dump Viewing Facility Utilities 165

Usage Notes
1. To code this macro, you should have a general knowledge of the HLASM Version 1 Release 3 Licensed

Program. Specifically you should know what columns to use and how to continue a line. For more
information, see HLASM MVS & VM Language Reference V1 R3.

2. The Dump Viewing Facility MAP command supports the compression of load maps created only by
the following:

• The HCPLDR loader
• The DMKLD00E loader
• The CMS Load command.

All other load maps are not supported by the Dump Viewing Facility MAP command. To append an
unsupported map to a dump, see Appendix D, “Module Map Architecture (Used by ADDMAP),” on
page 189.

3. The first operands of this macro:

• MINTRUNC
• PRITYPE
• PRILMAP
• PRINUC
• SECTYPE
• SECLMAP
• SECNUC
• MODMAP

are used in creating the MODULE MAP for the entry's DUMPTYPE.

The last operands:

• LOADER
• FMODNAME
• LMODNAME

are used in compressing a LOAD MAP of the entry's DUMPTYPE.
4. The MINTRUNC operand, if specified, must be less than or equal to the length of the value specified

for DUMPTYPE, and must be greater than zero.

Note: Take care when establishing a minimum truncation for the DUMPTYPE to ensure that this
abbreviation is still unique among the other DUMPTYPE entries.

5. If SECTYPE is not specified, SECLMAP and SECNUC must not be specified.
6. The PRINUC and SECNUC operands do not change the MAP command processing; instead they are

used in the messages issued during MAP command processing.

Following are examples of how the Dump Viewing Facility MAP command uses the PRINUC operand
of this macro:

a. If you have an entry with DUMPTYPE=XYZ and you specify PRINUC=YES (or do not specify it at
all so that it defaults to YES), during MAP processing message HCS0121A prompts you as follows:

ENTER THE FILENAME FILEMODE FILETYPE OF THE INPUT XYZ NUCLEUS
LOAD MAP, A NULL LINE, SUBSET OR HX

b. If you instead specify PRINUC = NO, during MAP processing message HCS0121A prompts you as
follows:

ENTER THE FILENAME FILEMODE FILETYPE OF THE INPUT XYZ LOAD MAP, A
NULL LINE, SUBSET OR HX

This scenario is similar for the SECNUC operand.

TABENTRY

166 z/VM: 7.3 Dump Viewing Facility

7. If a particular DUMPTYPE entry does not have a primary or a secondary load map of the same type
and no other DUMPTYPE entry needs this entry's load map to create its module map, all of the
following operands—LOADER, FMODNAME, and LMODNAME—should be specified as NONE.

8. If a particular DUMPTYPE entry has a primary or a secondary load map of the same type and another
DUMPTYPE entry needs this entry's load map to create its module map, all of the following operands
—LOADER, FMODNAME, and LMODNAME—must not be specified as NONE.

9. If a particular DUMPTYPE entry specifies LOADER as NONE, FMODNAME and LMODNAME must be
specified as NONE.

10. If an entry has a primary or a secondary load map type (operands PRITYPE or SECTYPE) that is not
the same as the entry's DUMPTYPE, there must be a separate entry in the table for the different
DUMPTYPE. This different DUMPTYPE entry must also be previously defined in the table.

11. The load maps are inputs to the MAP command; they need to be contained in CMS files with the
file name as specified in operands PRILMAP and SECLMAP. When the MAP command uses them, it
expects the CMS file type to be MAP. These files can reside on any accessed disk.

12. The module map is the output of the MAP command. When created, it is contained in a CMS file with
the file name as specified in operand MODMAP. The MAP command creates the CMS file type as MAP
with file mode A.

Examples

The following TABENTRY macro creates an RSCSNET entry for the HCSTAB table:

TABENTRY DUMPTYPE=RSCSNET, X
 MINTRUNC=4, X
 PRINUC=NO, X
 MODMAP=RSCSDVF, X
 LOADER=CPLOADER, X
 FMODNAME=DTMVEC, X
 LMODNAME=DTMINI

The X's are used as continuation characters in column 72.

Note: The RSCSNET entry only requires a primary map to create its module map. The primary load map
type and primary load map file name are the same as the DUMPTYPE, so PRITYPE and PRILMAP are not
specified. Also the RSCSNET entry has a minimum truncation of 4. This allows MAP command processing
to recognize all of the following as valid identifiers for RSCSNET:

• RSCS
• RSCSN
• RSCSNE
• RSCSNET.

The following TABENTRY macro creates a TSAF entry for the HCSTAB table:

TABENTRY DUMPTYPE=TSAF, X
 PRITYPE=CMS, X
 PRILMAP=CMSNUC, X
 SECTYPE=TSAF, X
 MODMAP=TSAFDVF, X
 LOADER=CMSLOADC, X
 FMODNAME=ATSCTL, X
 LMODNAME=ATSVTT

The X's are used as continuation characters in column 72.

Note: The TSAF entry requires both a primary and a secondary load map to create its module map.
Because the primary map is not of type TSAF but is of type CMS, a TABENTRY macro for DUMPTYPE =
CMS must be defined before this one. Because the secondary load map CMS file name is the same as the
secondary load map type specified for SECTYPE (TSAF), SECLMAP is not specified.

The following TABENTRY macro creates an RSCS entry for the HCSTAB table:

TABENTRY

Appendix C. Dump Viewing Facility Utilities 167

TABENTRY DUMPTYPE=RSCS, X
 PRITYPE=GCS, X
 PRILMFN=GCSNUC, X
 MODMAP=GCSDVF, X
 LOADER=NONE

The X's are used as continuation characters in column 72.

Note: The RSCS entry requires a primary load map of GCS; therefore, a TABENTRY macro for
DUMPTYPE=GCS must be defined before this one. Because the primary map type is not RSCS and there
is no secondary map required for RSCS (and also assuming no other entry requires an RSCS load map to
produce its module map), the field LOADER is specified as NONE, and FMODNAME and LMODNAME are
not specified (and thus defaulted to NONE).

TABENTRY

168 z/VM: 7.3 Dump Viewing Facility

TBLENTRY Utility Macro

label

TBLENTRY DUMPTYPE= dumptype

,XROUTINE= xroutine

,DROUTINE= droutine ,PROUTINE= proutine

,BLKCTLSF= blkctlsf

Purpose
Code the TBLENTRY macro to generate an external file information entry in the HCSTBL table for a
specific dump format. This entry provides the necessary extraction and formatting information for a
specific dump type.

Operands
DUMPTYPE=dumptype

is a required 1- to 8-character string specifying the dump type for which this entry is used.
One of the following operands should be specified:
XROUTINE=xroutine

is an optional 1- to 8-character string specifying the CMS file name of the data extraction routine to be
called from the Dump Viewing Facility for the specified DUMPTYPE.

DROUTINE=droutine
is an optional 1- to 8-character string specifying the CMS file name of the dump formatting routine
that is called from the DUMPSCAN command for the specified DUMPTYPE.

PROUTINE=proutine
is an optional 1- to 8-character string specifying the CMS file name of the dump formatting routine
that is called from the PRTDUMP command for the specified DUMPTYPE.

BLKCTLSF=blkctlsf
is an optional 1- to 4-character string specifying the BLOCK Control suffix of the file's file name for the
specified DUMPTYPE. The file prefix of the BLOCK control file name is HCS$. The file type of the CMS
BLOCK control file is TABLE. For example, if you specify DUMPTYPE=ABCDEFGH and BLKCTLNM=ABC,
the file HCS$ABC TABLE is used as the block control table file for the entry ABCDEFGH. See “BLOCK
Subcommand” on page 66 for additional information on the BLOCK subcommand control files.

Usage Notes
1. To code this macro, you should have a general knowledge of the HLASM Version 1 Release 3 Licensed

Program. Specifically you should know what columns to use and how to continue a line. For more
information, see HLASM MVS & VM Language Reference V1 R3.

2. Although every operand except DUMPTYPE is optional, you must have one operand other than
DUMPTYPE to make the entry meaningful.

3. Validity checking such as whether operands are valid CMS file names and whether files are actually
available on accessed disks are not performed during the assembly of this macro. This checking is
performed during Dump Viewing Facility command processing.

4. For the XROUTINE, DROUTINE, and PROUTINE operands, you are specifying what the file name will
be for the data extraction and dump formatting routines. The Dump Viewing Facility commands expect
the file type of these routines to be TEXT. These files can exist on any accessed disk.

TBLENTRY

Appendix C. Dump Viewing Facility Utilities 169

5. For the BLKCTLSF operand, you are specifying what the suffix of the CMS file name is for the BLOCK
control file. The Dump Viewing Facility Block subcommand of the DUMPSCAN command expects the
file name prefix of this file to be HCS$ and the file type to be TABLE. This file can exist on any accessed
disk.

Examples

The following macro creates a GCS/XA entry in HCSTBL with all the fields specified.

TBLENTRY DUMPTYPE=GCS, X
 XROUTINE=GCTIEX, X
 DROUTINE=GCTIDS, X
 PROUTINE=GCTIPR, X
 BLKCTLNM=GCS

The X's are used as continuation characters in column 72.

The following macro creates an ABC entry in HCSTBL with only its format routine from the DUMPSCAN
subcommand specified. All other fields are set to their respective defaults.

TBLENTRY DUMPTYPE=ABC, X
 DROUTINE=ABSXYZ

The X's are used as continuation characters in column 72.

TBLENTRY

170 z/VM: 7.3 Dump Viewing Facility

BLOCKDEF Utility Command

BLOCKDEF maclib

list

copy

ft fm

*

fn

=

CBMAPA1

ft

*
=

A1

fm

*
=

(
1

(
2

Options

)

Options

MAclib

NOMAclib

NOList

List

NOCOpy

COpy

BLOck

NOBLOck

NOBLIp

BLIp

NOXedit

Xedit

NOBOok

BOok CC

NOCC

Prompt

NOPrompt

NOMEmber

MEmber

NOEXT

EXT CTL cntrlfn

PPF ppfname compname

Notes:
1 The defaults you receive appear above the line in the Options fragment.
2 You can enter Options in any order between the parentheses.

Purpose
Use the BLOCKDEF utility command to generate dummy section (DSECT) format files for the DUMPSCAN
BLOCK subcommand and to generate DSECT information print files for users.

Note: The output from the BLOCKDEF utility command is z/VM product implementation information for
diagnosis and must not be used for programming purposes.

The BLOCK subcommand uses the format file to format data from a z/VM dump. See “BLOCK
Subcommand” on page 66 for the description and format of the DUMPSCAN BLOCK subcommand.

Operands
maclib

is the file name of a MACLIB of control blocks to be processed by BLOCKDEF. The file type and file
mode will default to MACLIB and *, respectively.

BLOCKDEF

Appendix C. Dump Viewing Facility Utilities 171

list
is the file identifier (file name, file type, and file mode) of a file list of control blocks to be processed by
BLOCKDEF. The format is similar to CMS EXEC but without the EXEC variables &1 &2.

copy
is the file identifier (file name, file type, and file mode) of a file containing a single control block.

fn
is the file name for the generated book/block file. If you specify =, the file name of the input file is
used.

ft
is the file type for the generated book/block file(s). If you specify * or nothing, the default CBMAP
(for block files) or LISTING (for print files) is used. CBMAP and LISTING are the file types of the
book/block file(s) shipped with z/VM If you specify =, the file type of the input file is used.

fm
is the file mode for the generated book/block file(s). If it is not specified, A1 is used. If the file mode is
not accessed as a read/write disk, processing ends.

Options
MAclib

tells BLOCKDEF that the input file name is the name of a MACLIB containing the control blocks to be
processed. This is the default.

NOMAclib
suppresses the MACLIB option. If you use the NOMACLIB option, you must also use the COPY or LIST
option.

NOList
suppresses the LIST option. This is the default.

List
tells BLOCKDEF that the input file name is the name of a file containing a list of the control blocks to
be processed. The list can be in CMS EXEC file format, meaning that the first five characters on each
line are &1 &2, the same format as found in a CMS EXEC file (See z/VM: CMS Commands and Utilities
Reference, “LISTFILE Command”, for details). The list must consist of individual CMS data sets, not
MACLIB members. To process specific MACLIB members, see the MEMBER option.

NOCOpy
suppresses the COPY option. This is the default.

COpy
tells BLOCKDEF that the input file name is the name of a single control block to be processed.

BLOck
tells BLOCKDEF to build the control block file used by the BLOCK subcommand of DUMPSCAN (a
Dump Viewing Facility command). If NOBLOCK and NOBOOK are used together, all output is canceled.
This is the default.

NOBLOck
suppresses the BLOCK option. If NOBLOCK and NOBOOK are used together, all output is cancelled.

NOBLIp
suppresses the BLIP option. This is the default.

BLIp
tells BLOCKDEF to display, on the user terminal, the name of the control block about to be processed.

NOXedit
suppresses the XEDIT option. This is the default.

Xedit
tells BLOCKDEF to display the generated output in an XEDIT session, rather than in a CMS file. If you
wish to save this information, enter an XEDIT FILE command. If you specify XEDIT with the MACLIB
option (the default input file type), each member of the MACLIB is displayed after it is processed.

BLOCKDEF

172 z/VM: 7.3 Dump Viewing Facility

NOBOok
suppresses the BOOK option.

BOok
tells BLOCKDEF to generate a CMS file that is formatted for printing. Each control block is formatted
with its prolog and all block comments. A storage layout diagram and control block field index are
added to the default BLOCK format. This format is not intended for use by the BLOCK subcommand.

CC
tells BLOCKDEF to place basic carriage control characters into the file to be printed. The CC option
is valid only when you also specify the BOOK option. It is ignored at all other times. When the BOOK
option is used, CC becomes the default.

NOCC
suppresses the CC option. When the BOOK option is not used, NOCC is the default.

Prompt
tells BLOCKDEF to issue a prompt for permission to continue processing with the files indicated as the
input and output file. This is the default.

NOPrompt
suppresses the PROMPT option.

NOMEmber
suppresses the MEMBER option. This is the default.

MEmber
tells BLOCKDEF that you want to be prompted for the names of control blocks to be extracted from
the MACLIB and processed. This option is valid only when the MACLIB option is specified. It is ignored
at all other times. It is not affected by the PROMPT or NOPROMPT option.

NOEXt
suppresses the EXT option and specifies that the $TBKDUXT user exit code should not be used to
locate external copy files. This is the default.

EXT
tells BLOCKDEF that external copy files should be located only with the user supplied exit code in
$TBKDUXT EXEC. See usage note “18” on page 174 for further details on the interface between
BLOCKDEF and the user exit code.

CTL cntrlfn
specifies a control file name to be used by BLOCKDEF to resolve external copy files. BLOCKDEF will
search for external copy files in each maclib on the MACS statement in the control file.
cntrlfn

is the name of the control file used to identify the MACLIB list. The file type of the control file is
CNTRL.

PPF ppfname compname
specifies a SES product parameter file name and component to be used by BLOCKDEF to resolve
external copy files. BLOCKDEF will use the product parameter file to locate the component's control
file. The MACS statement in the control file will then be used to find the list of maclibs to be searched
for external copy files.
ppfname

is the file name of the product parameter file. Its file type must be PPF.
compname

is the name of the component associated with the ppfname, such as CP or CMS.

Usage Notes
1. BLOCKDEF is intended to process dummy sections (DSECTs) written for the IBM System/370

assembler.
2. The BLOCKDEF options are processed from left to right. If you specify an option twice, the rightmost

occurrence of the option is used.

BLOCKDEF

Appendix C. Dump Viewing Facility Utilities 173

3. When the list or copy file name is specified, the file type and file mode must also be specified. The file
mode can be specified as an * to search all accessed disks for files with the specified file name and
file type.

4. The BOOK and BLOCK options are mutually exclusive. If you specify these options together, an
informational message is issued and the rightmost option prevails.

5. When the book option is used with this utility, BLOCKMAP is invoked and all BLOCKMAP conventions
apply.

6. If you are using XEDIT to edit a control block and want to run BLOCKDEF against that file, it is not
necessary to provide the input and output file names. The input file defaults to the file you are editing,
and the output file defaults to the input file name and a file type of CBMAP.

7. The amount of virtual storage you need for this command depends on the largest control block being
processed.

8. Book/block files can be very large. The size of the files depends on the commenting style used in the
control blocks and the options specified. You should have a write access disk with enough space to
contain it.

9. Control blocks that are written as macros are ignored.
10. BLOCKDEF erases the old output files (if they exist) before processing begins. If you wish to keep the

old book/block files, move them to another disk or rename them.
11. The control blocks being processed do not have to be on a write access disk.
12. If a DSECT operation code is not found, the label on the first DC or DS operation code is used as the

control block name.
13. EQU statements that use calculations for operands are ignored. Symbols that are equated to another

symbol, which in turn is equated to yet another symbol, are also ignored.
14. The file BLOCKDEF RUNLOG is updated whenever BLOCKDEF is issued. It contains the names of all

control blocks processed, along with any informational or error messages issued while the control
block is being processed.

15. The list option input file must have at least two names on each line. The first name is used as the file
name for the input copy file. The second name is used as the file type of the input copy file. If a third
name is found on the line, it is used as a file mode. Comments in the input file are indicated with an
asterisk (*) in column 1.

16. Invalid options are indicated by an informational response. Processing proceeds unless you respond
with a NO when prompted.

17. EXTERNALLY REFERENCED COPY FILES

BLOCKDEF attempts to resolve references to external copy files as described in the 'Bit and Code
Definition Tables' section of the BLOCKMAP command description. The external copy files are located
by one or more of the following methods:

• by a user supplied exit routine called $TBKDUXT EXEC
• as a member of the maclib specified on the BLOCKDEF command
• as a member of one of the maclibs in the MACS statement of a control file. These methods are

controlled by the MACLIB, BOOK, EXT, CTL, and PPF command options.
18. The $TBKDUXT USER EXIT

$TBKDUXT is a user supplied exec for locating external copy files. BLOCKDEF invokes $TBKDUXT in
one of two situations:

a. the EXT option was specified, meaning that $TBKDUXT should be the exclusive method for
locating external copy files.

b. all other methods for locating the external reference have failed and NOEXT was not specified.

BLOCKDEF passes to $TBKDUXT the file name of the external copy file to be located. $TBKDUXT
must locate the copy file, place it in the XEDIT ring, and change its file type to 'DEFINED'. If
$TBKDUXT returns to BLOCKDEF without locating the copy file, BLOCKDEF will end if the BOOK

BLOCKDEF

174 z/VM: 7.3 Dump Viewing Facility

option was specified. Otherwise, the external reference will be ignored and BLOCKDEF will continue
processing. $TBKDUXT should return code 0 if the external copy file was found. Any non-zero return
code indicates that $TBKDUXT was unable to find the external copy file.

As an example, the following $TBKDUXT EXEC could be used to check the user's A-disk for external
copy files:

/* $TBKDUXT EXEC to check my A-disk for external copy files when */
/* running BLOCKDEF */
parse upper arg fn.
/* Preserve the user's settings for CMSTYPE */
If cmsflag('CMSTYPE') = 1 Then user_cmstype = 'RT'
else user_cmstype = 'HT'
/* Check to see if the copy file is on the A-disk. */
address 'CMS' 'SET CMSTYPE HT'
address 'CMS' 'STATE fn 'COPY A'
if rc = 0 then do
 Address 'XEDIT' 'XEDIT' fn 'COPY (NOPROF'
 Address 'XEDIT' SET FTYPE DEFINED'
 Address 'CMS' 'SET CMSTYPE' user_cmstype
 end
/* Not found so exit to caller with error return code */
address 'CMS' 'SET CMSTYPE' user_cmstype
Say '$TBKDUXT was unable to find fn 'COPY.'
Exit 12
/* end of $TBKDUXT EXEC example */

19. RESOLVING EXTERNAL REFERENCES

The EXT option causes BLOCKDEF to call the user exit code in $TBKDUXT EXEC as the only resolution
method. If the user exit code fails to locate the external reference, BLOCKDEF's response will
depend on the BOOK option. If BOOK was specified, then BLOCKDEF will end processing. Otherwise
BLOCKDEF will ignore the external reference and continue processing with no output representing
the reference to the external copy file.

If the EXT option is not specified, and BLOCKDEF is processing with the MACLIB or MEMBER options,
the first resolution method will be to search for the external copy file within the maclib specified on
the BLOCKDEF command line. If the external copy file is not located in the maclib, the next search
method will depend on the CTL or PPF options.

The CTL option is used to specify a control file. BLOCKDEF will use the list of maclibs in the MACS
statement from the control file to resolve external references. Each maclib in the list will be searched
until the copy file is located or the list is exhausted.

The PPF option is used to specify a SES product parameter file and a component name. These are
used to locate the control file for the specified component. BLOCKDEF will use the list of maclibs in
the MACS statement from the control file to resolve external references. Each maclib in the list will be
searched until the copy file is located or the list is exhausted.

The CTL, PPF and EXT options are mutually exclusive because the external resolution methods
specified by each may conflict. If more than one of these options is specified, BLOCKDEF will issue
an informational message and use the rightmost option from the command. If none of the previous
methods listed have been able to locate the external copy file, and NOEXT was not specified, the
$TBKDUXT EXEC will be invoked, if it exists.

If all methods fail to locate the external copy file, the action of BLOCKDEF depends on the BOOK
option. If the BOOK option was specified, BLOCKDEF will end processing. If the BOOK option was
not specified, BLOCKDEF will ignore the external reference and continue processing with no output
representing the reference to the external copy file.

Responses
• *** Extra characters “nnnnnnnn” ignored

Explanation: This response shows that the indicated operands are ignored. Any other operands and
options are accepted.

User response: No action is required.

BLOCKDEF

Appendix C. Dump Viewing Facility Utilities 175

• *** Options optionL and optionR are mutually exclusive

Explanation: The options named are mutually exclusive. optionR was the rightmost option and prevails.
• *** These files have the input filename and filetype specified

Explanation: This response indicates that there is more than one file with the file name and file type
you specified. BLOCKDEF uses the topmost file.

• *** Using “fn ft fm” as the input file

Explanation: This response indicates the file to be processed.

User response: No action is required.
• *** Using “<fn ft fm>” for the output block file

Explanation: This response indicates the output block file that will be used.

User response: No action is required.
• *** Using “fn ft fm” for the output book file

Explanation: This response indicates the output book file that will be used.

User response: No action is required.
• *** The file “fn ft fm” exists and will be erased

Explanation: This response indicates that the output files you have specified already exist on the disk.
BLOCKDEF erases these files before processing the control block(s).

• Do you want to proceed with the files shown? (Yes/No)

Explanation: This prompt appears when an input file is found and the file mode of the output file
specifies a read/write disk. This prompt lets you end processing if the input file identified by BLOCKDEF
is not the one you want processed, or if the output file would overwrite one that you do not want
changed.

User response: Entering YES allows BLOCKDEF to continue. Entering NO ends BLOCKDEF processing.
• *** No maclibs were located to resolve external references

Explanation: The command options included EXT, CTL or MACLIB, suggesting that you expect that one
or more maclibs are to be used in resolving external references, but no maclibs have been located.

User response: Verify that the arguments to the EXT or CTL options were specified correctly.
• *** The following maclibs will be used to resolve external references

Explanation: The command options included EXT, CTL or MACLIB, and this message lists the maclibs
which will be used to resolve external references.

User response: No action is required.

Messages and Return Codes
• *** An output file identifier must be specified

Explanation: This message indicates that an output file name is required.

User response: Try the command again.

Severity: 8
• *** An output file identifier may not be *

Explanation: This message indicates that an output file name may not be specified as "*".

User response: Try the command again.

Severity: 8
• *** An input file type is needed with the LIST or COPY options

BLOCKDEF

176 z/VM: 7.3 Dump Viewing Facility

Explanation: This message indicates that an input file type is required when using the LIST or COPY
options.

User response: Try the command again.

Severity: 8
• *** An input file identifier may not be =

Explanation: This message indicates that an input file name may not be specified as "=".

User response: Try the command again.

Severity: 8
• *** Blockdef is not supported for CP control blocks

*** Look for similar functions in VMDUMPTL

Explanation: This message indicates a standard CP maclib name was specified as the input file name.
BLOCKDEF can no longer be used with CP control blocks.

User response: Use the VM Dump Tool when using CP control blocks.

Severity: 50
• *** The disk “nn” is not a write access disk

Explanation: This message indicates that the disk you have chosen for the output files appears to be
read-only.

User response: Specify another output file mode and try the command again.

Severity: 38
• *** The input file fn ft could not be found on any accessed disk

Explanation: This message indicates that the input file you specified could not be found.

User response: Check to see that the file exists (and that you have spelled it correctly) and try the
command again.

Severity: 8
• *** Return code nnn from STATE command. *** Invalid file identifier “fn ft fm”

Explanation: This message indicates that processing cannot continue because the CMS STATE
command found the file identifier objectionable. (See z/VM: Other Components Messages and Codes
for an explanation of the return code.)

User response: Try the command with a different file identifier.

Severity: nnn (from STATE command)
• *** Error nnn, from EXECLOAD command

Explanation: This message indicates that processing cannot continue because the CMS EXECLOAD
command failed while loading a macro. (See z/VM: Other Components Messages and Codes for an
explanation of the return code.)

User response: Try the command with a different file identifier.

Severity: nnn (from EXECLOAD command)
• *** An input file must be specified

Explanation: This message means that an input file name file type is required.

User response: Try the command again.

Severity: 8
• *** The MACLIB “maclib” member “member” was not found

Explanation: This message means that the named MACLIB member could not be found in the named
MACLIB.

BLOCKDEF

Appendix C. Dump Viewing Facility Utilities 177

User response: Try the command again with another MACLIB or correct your spelling of the member
name.

Severity: 8
• *** NOBOOK and NOBLOCK options used. No output is possible.

Explanation: This message means that the options used have suppressed all output.

User response: Use the BOOK option to get a book format of the control block. Use the BLOCK option to
get a format used by the BLOCK subcommand.

Severity: 8
• *** COPY or LIST options must be used with the NOMACLIB option.

Explanation: The contents of the input file are indeterminate when the NOMACLIB option is used
without specifying the alternative COPY or LIST file types.

User response: Retry the command with either the COPY or the LIST option.

Severity: 8
• *** EXT option requires access to $TBKDUXT EXEC

Explanation: The EXT option specified to BLOCKDEF indicates that externally referenced copy files
should be resolved using the user supplied $TBKDUXT EXEC which was not found on any accessed disk.

User response: Access the disk containing your $TBKDUXT EXEC. You may create your own $TBKDUXT
EXEC according to the explanation provided in the Usage Notes section.

Severity: 8
• *** No control file specified on CTL option

Explanation: The CTL option specified to BLOCKDEF indicates that externally referenced copy files
should be resolved using a control file, but none was specified.

User response: Try the command again and specify a control file name immediately following the CTL
option.

Severity: 8
• *** PPF option requires product parameter file and component

Explanation: The PPF option specified to BLOCKDEF indicates that externally referenced copy files
should be resolved using a control file located from a product parameter file and component name. Both
must be specified with the PPF option.

User response: Try the command again and specify a product parameter file and component name
immediately following the PPF option.

Severity: 8
• *** Error finding control file name with VMFSIM

Explanation: BLOCKDEF was unable to locate a control file using VMFSIM.

User response: Refer to the VMFSIM documentation in the z/VM: VMSES/E Introduction and Reference
to interpret any messages issued from VMFSIM.

Severity: 8
• *** Control file cntrlfn CTL fm not found

Explanation: The control file specified to BLOCKDEF using the CTL or PPF options could not be located.

User response: Access the disk containing the control file and retry the command.

Severity: nnn(from ESTATE on control file)
• *** Error reading control file cntrlfn ft fm

Explanation: The control file specified to BLOCKDEF using the CTL or PPF options could not be read.

BLOCKDEF

178 z/VM: 7.3 Dump Viewing Facility

User response: Check the return code from EXECIO, correct the error, and retry the command.

Severity: nnn(from EXECIO on control file)

BLOCKDEF

Appendix C. Dump Viewing Facility Utilities 179

BLOCKMAP Macro
BLOCKMAP is an XEDIT macro used to map the data areas within DSECTs. These DSECTS can be either
IBM supplied or user created so long as they are in ASSEMBLER source format. This macro accepts the
data definitions and control statements as input and creates a formatted control block. This formatted
control block includes the original input, a map of the data areas defined in the DSECT, and a map of the
flags or code-defining EQUates. The formatted control block is a pictorial representation of the DSECT
data areas formed by a series of comments, statements, and the original DSECT definition.

Note: The output from the BLOCKMAP macro is z/VM product implementation information for diagnosis
and must not be used for programming purposes.

A major portion of any program's internal structure is used for creating and altering control blocks, and
for passing information in the form of control blocks or data structures. An important element in the
documentation is the support of this function. BLOCKMAP automates this documentation support by

• Accepting, as input, the data definition and control statements that define a control block
• Producing a map of all flag or code defining equates (EQUs) included in the control block, or of another

control block referenced within the current one.

Note: BLOCKMAP and BLOCKDEF no longer support CP control blocks.

BLOCKMAP Conventions
The BLOCKMAP input conventions ensure that control blocks are readable and consistent. A control block
is written in System/370 Assembler Language. Because BLOCKMAP creates a map of the control block,
only one DSECT is allowed per copy file. A copy file is the file in which the control block is defined and is
the term that will be used throughout this guide. The effectiveness of BLOCKMAP depends on adherence
to these conventions. A description of these conventions is provided in the following sections.

 PI

Field Naming: For notational convenience, control block field names have prefixes specified by 1 to
5 characters. The field names have the same prefix as the prefix on the DSECT label. BLOCKMAP will
attempt to use the full name when drawing the control block map. For 1-byte fields, the maximum length
is 6 characters. If the name is longer than this, BLOCKMAP will replace the prefix characters with a
colon (:). If the resulting name is still too long for the field, BLOCKMAP will use the hexadecimal offset
in parentheses as the name. The hexadecimal offset is the offset of the field from the beginning of the
control block. In the case of field overflow (a field definition that occupies two lines of the control block
image), the field name will appear in both the leading field as well as in the continuation field. The leading
field name will have a dash (–) appended to it, while the continuation field name will be prefixed by a
dash. If either the leading or continuation fields are 1 byte in length, the total length, including the dash,
cannot exceed the 6 characters allowed for the field.

Definition of Reserved Fields: Reserved fields are denoted by a data operand (DS/DC) with no associated
field name. Reserved fields are denoted in the control block pictorial as a group of slashes (/), while
defined fields contain the field name in the pictorial. Two consecutive undefined fields will be depicted as
two undefined fields in the control block pictorial and will not be logically combined to form a single field.

Control Block Structure/ORG Processing: The entire main body of the control block must be defined
first. This main definition may have one or more ORG statements that may provide for additional
detail for a larger field in the main picture or a complete redefinition of a field based on some device
specification. Resetting the location counter to its original value, when the ORG statement is specified
without operands, is not supported.

When an ORG statement is encountered, main picture processing is terminated. The data definition
statements processed to that point will be appended after the commented statements forming the
control block picture. The complete commented control block picture is the main body definition.
BLOCKMAP will then enter redefinition mode. Each ORG followed by its data definition(s) will create
a new picture for those fields. Redefinitions must not exceed the bounds of the main body definition. The

BLOCKMAP

180 z/VM: 7.3 Dump Viewing Facility

target of an ORG statement must be a previously defined field and cannot be the label on the DSECT
statement, another ORG statement, or an EQU statement.

As part of the redefinition picture, the following title line is built:

**** REDEFINITION -

Any comments that appear on the ORG statement up to column 63 will be appended to the title line.

Redefinition Mode and Unnamed Fields: The treatment of unnamed reserved fields is handled
differently in redefinition mode. At times, an unnamed field is encountered and the operands describing
that field are syntactically equivalent to those appearing at the same displacement in a previous
definition. In this case, the picture field generated will contain the name of the previous definition field
and will not be depicted as being reserved. REACH-BACK will attempt to define an unnamed field based
on the target field of the ORG statement. If this attempt fails, REACH-BACK uses the field name in the
main body definition as the field name in the unnamed redefined field.

Variable Length Fields: A variable length field must be the last item in the definition. It is denoted by a
replication factor of zero and the control phrase START OF VARIABLE LENGTH DATA in the comment
area. The field must be named. Redefinition blocks can have a variable length field only if one was
specified in the main definition. The field is drawn in the picture with a series of colons, and no ending
address is given.

Operators Supported: BLOCKMAP supports the following operators. Unrecognized statements are
passed through, but ignored.

DSECT
Only one accepted per copy file.

DS, DC
Define a block in the picture.

EJECT
See Picture Segmentation Option.

ORG
See Control Block Structure/ORG Processing.

CCW, CCW0, CCW1
Define a doubleword block in the picture.

Data Type Operands Supported: BLOCKMAP is designed to support only a subset of the possible data
operand coding conventions. Specifically, only the following data type operands are accepted:

D
Doubleword

F
Fullword

H
Halfword

X
Hexadecimal byte

A
Address constant

V
External address constant

C
Character byte

The alignment implicit to the above operands will be enforced. This means that these operands must be
on a boundary divisible by its implicit data length. An exception to this requirement is the presence of
a length modifier that negates implicit length alignment. Automatic alignment, and, therefore, undefined
holes within the control block, will not be performed. Replication factors on any of the above data types

BLOCKMAP

Appendix C. Dump Viewing Facility Utilities 181

will be accepted. A replication factor of zero will cause the field name to be ignored by BLOCKMAP in
the control block picture. However, the operand will be checked for proper alignment. Explicit length
modifiers are accepted on data type operands A, C, and X. A replication factor greater than 1 is not
accepted in combination with a length modifier for the A type operand; it is permissible for the C and
X type operands. C and X type operands that have both a replication factor and a length modifier will
be formatted as one contiguous entity. Its length will be equal to the product of the replication factor
and length modifier. For example, 2XL2 will be pictorially represented as XL4. Only one data definition
operand per statement will be processed. For example, A(0),A(0) will be interpreted as if only one address
constant were specified.

Bit and Code Definition Tables: Bit definition tables can be built for all flag byte definitions in the control
block, and code definition tables for value equates. The actual bit or code definitions can be contained
in this control block, or defined in an external copy file, either formatted or not. When the bit or code
equates are in the current file, table formatting is invoked by one of the following phrases in a comment
line:

BITS DEFINED IN fieldname
CODES DEFINED IN fieldname

When the bit or code equates are in an external file, the control phrases have the following format:

BITS DEFINED FOR local-fieldname BY file name fieldname
CODES DEFINED FOR local-fieldname BY file name fieldname

In the external file the bits or codes may be defined by the local form or another format. The local form
implies that the actual space for the byte is contained in the structure. The other format is used for global
definition copy files that do not themselves define any space.

* fieldname BIT DEFINITION
* fieldname CODE DEFINITION

Bit-defining equates have the following format and can be intermixed within the byte definition:

bitname EQU X'xx' description
bitname EQU bitname1+bitname2... description

Code-defining equates have one of the following formats; decimal and hex codes cannot be intermixed,
nor can 1- and 2-byte fields.

codename EQU X'xx' description
codename EQU X'xxxx' description
codename EQU n description

where x is a hexadecimal number and n is a decimal number.

The first such statement found that fits the above model starts the definition table. Table processing is
terminated by one of the following statements:

• A statement other than a comment, that does not match the format for the table; for example, a DS,
ORG, or inappropriate EQU

• A comment statement containing another definition control phrase
• The comment statement * END OF DEFINITION
• End-of-file.

Note: If codes are defined in an external file, the last line of the external code file must be a comment.
If codes/bits are defined in an external file, a comment line must follow the last field that is defined.
BLOCKMAP needs this comment starting in column 1 to execute properly.

The field being described must have been defined before the first EQU statement for it. The field name
may have any of the following special characters appended to it; they will be ignored.

• . (period)
• , (comma)

BLOCKMAP

182 z/VM: 7.3 Dump Viewing Facility

• - (hyphen)
• = (equal sign)
• : (colon)
• ; (semicolon)

The hexadecimal displacement of the field in the control block is noted in the title line or lines, which
replace the invoking comment

**** BITS DEFINED IN fieldname (AT HEX DISPLACEMENT: addr)
**** CODES DEFINED IN fieldname (AT HEX DISPLACEMENT: addr)

or, for an externally defined set of values:

**** BITS DEFINED FOR local-fieldname BY file name fieldname
**** (AT HEX DISPLACEMENT: addr)
**** CODES DEFINED FOR local-fieldname BY file name fieldname
**** (AT HEX DISPLACEMENT: addr)

This title card will replace the BITS DEFINED statement encountered in the input stream. This implies
that any additional characters following the field name on the input statement will be ignored. For those
flags that are defined against more than 1 byte, multiple DEFINED IN/FOR statements should be used
(one for each byte for which the definition applies). These keyword statements must appear before the
first EQU model statement but may be separated from each other by intervening comment statements.

As shown in the model of bit-defining EQUs above, a bit name can be defined to have a value equal to the
summation of some number of previously defined bit names. The scope of reference for these previously
defined bit names is the current flag byte definition only. Bit names defined for other flag bytes cannot
be referenced outside of the scope of their flag byte definition. Code definition EQU statements cannot
reference labels.

The description portion of the statement can be continued to subsequent statements either by use of
the continuation column or by the use of subsequent comment statements. All comment statements
that follow an EQU model statement (except for one that contains a control phrase) will be treated as a
description continuation.

 PI■end

BLOCKMAP Invocation

BLOCKMAP is an XEDIT macro that is invoked while editing a file containing the control block to be
mapped. BLOCKMAP can be issued anywhere in the file, regardless of the current line orientation. Also,
any number of files can be active in the XEDIT when BLOCKMAP is invoked.

In order for BLOCKMAP to run, some additional control statements are required. These control
statements are found as special tags in the control block prolog. BLOCKMAP looks for a one-line
description of the control block following the prolog tag DESCRIPTIVE NAME:. The remaining line is
assumed to be the text to be used while building the control block structure. If this tag is not found, a
blank line appears in the output. BLOCKMAP looks for the prefix length tag as the switch to indicate that
the file should be mapped. The tag must appear as PREFIX_LEN =n, where n is the number of characters
that prefix every field in the control block. This prefix is stripped off field names that may be just too long
to fit in their storage declaration picture.

BLOCKMAP has many formatting capabilities. For brevity, not all examples are illustrated. A discussion of
the formatting capabilities will precede each example of formatting.

Processing: Processing of the input file starts when the first DSECT statement is found. The control block
name is the field name of the DSECT. Only one DSECT record per input file is accepted; all others will be
ignored with the data following them being considered to be part of the original DSECT definition.

Upon successful completion of BLOCKMAP processing, the screen will be left in edit mode for the work
file. It is your responsibility to save or file this work file if it is to be retained. If an error occurs during
BLOCKMAP processing, an appropriate error message will be issued. The input file will be oriented such

BLOCKMAP

Appendix C. Dump Viewing Facility Utilities 183

that the current line will be the line that caused the error. The work file created, if any, will be left intact,
although it may contain incorrect images because of incomplete processing. There is no need to erase or
quit this file before reinvoking BLOCKMAP.

Various Field Pictures: Control block fields are depicted in boxes with a length of 1 doubleword. When
required, the doubleword field is segmented to form fullwords, half words, or bytes. The control block
picture has the hexadecimal displacement of the doubleword boundary for any box space that starts a
new field definition. All control blocks will also have their ending address printed. This address will be
printed in the remaining space of an unused doubleword definition or on the line immediately following
the last definition.

Fields that cross a doubleword boundary are represented as spanned records. A box space is continued
on the next line by using hyphens (-) as continuation characters. See Figure 60 on page 184 for a picture.
Large fields that use spanned records and share a common boundary will have that boundary removed.

The DS or DC field name is centered within the box it defines. A reserved field box will be filled with
slashes (/). The field name of a spanned record will appear in both boxes. A field larger than two
doublewords will use the standard doubleword box with break symbols (=) instead of vertical lines (|) for
the box sides to represent more than one doubleword. This eliminates a huge blank box for fields many
doublewords long. The field name of a field larger than a doubleword that shares a common boundary and
does not have a break character sequence will be centered in the largest field of the definition.

An abbreviated field name will be used when the name of a byte field is greater than 6 characters. A colon
(:) will be substituted for the prefix. If the abbreviated field name of a byte field is larger than 6 characters,
the hexadecimal displacement will be placed in the field.

Figure 60. SAMPLE1 COPY Control Block

Redefinition Pictures: Any redefinition of fields must occur after the entire control block has been
defined. When an ORG is encountered, main picture processing ends. Each ORG followed by its data
definition will cause a new picture to be drawn. A title line,

**** REDEFINITION -

will be written before the picture is drawn.

The starting displacement for redefinitions is defined by the ORG operand. For redefinitions that do not
start on doubleword boundaries, the control block picture will be indented the appropriate number of
spaces needed to represent the degree of offset from a doubleword boundary. The left-hand edge will
contain the doubleword boundary address upon which the control block definition falls. If the offset
from this boundary is greater than a byte, the adjusted address (doubleword address offset) will also be
included in the picture. This adjusted address is printed in the indentation space immediately to the left of
the first box.

Figure 61 on page 185 illustrates the redefinition of fields. The original input statements used to generate
the picture are left in the example.

BLOCKMAP

184 z/VM: 7.3 Dump Viewing Facility

REDFSAM DSECT
 SPACE 1
 REDFSAM -

 REDFSAM -
 SPACE 1

* REDEFINITION SAMPLE
REDFWD DS F FULL WORD IN THE MAIN PICTURE
REDF2HLF DS 2H TWO HALF-WORDS IN THE MAIN PICTURE
REDF2BTE DS 2X FOUR BYTES
REDF2CHR DS 2X AND TWO CHARACTERS
 EJECT
 REDEFINITION - FIRST RE-ORIGIN

 REDEFINITION - FIRST RE-ORIGIN
 SPACE 1
REDFORG1 ORG REDFWD FIRST RE-ORIGIN
REDF1#F DS F SAME DEFINITION AS MAIN PICTURE, NEW LABEL
REDF1#4C DS 4C 4 CHARACTERS IN FIRST RE-ORIGIN
 DS 2C NO LABEL PICKED UP- SYNTACTICALLY DIFFERENT
 DS 2C LABEL COPIED FROM MAIN PICTURE, SAME DEF.
 SPACE 2
 REDEFINITION - ORIGIN TO REDEFINITION, NOT MAIN PICTURE

 REDEFINITION - ORIGIN TO REDEFINITION, NOT MAIN PICTURE
 SPACE 1
REDFORG2 ORG REDF1#4C ORIGIN TO REDEFINITION, NOT MAIN PICTURE
 DS 2H NO MATCH AT POINT OF ORIGIN, GET MAIN PICTURE

Figure 61. Redefinition of Fields

Bit and Code Definition Tables: Figure 62 on page 186 illustrates the bit and code definition facility
used by BLOCKMAP. The bits and codes can be in the same file as the control block definition or in an
external file. The control block in SAMPLE3 will have to look externally, in CODES COPY, for the bit and
code definitions. For a detailed discussion of the bit and code definition conventions used by BLOCKMAP,
refer to “BLOCKMAP Conventions” on page 180.

BLOCKMAP

Appendix C. Dump Viewing Facility Utilities 185

SAMPLE3 DSECT
 SPACE 1
 SAMPLE3 - CODE DEFINING EXAMPLE

 SAMPLE3 - CODE DEFINING EXAMPLE
 SPACE 1
SAMBITS DS X BIT SIGNIFICANT FLAG BYTE
SAMCODES DS X BYTE SIGNIFICANT CODE BYTE
SAMLCODE DS 2X LONG CODE FIELD
*
 SPACE 2

BITS DEFINED IN SAMBITS (AT HEX DISPLACEMENT: 0)

VALUE DEFINITION NAME DESCRIPTION
_____ __________ ________ ______________________________

X'80' 1... SAMB80 DEFINE FLAG BIT 0
X'02'1. SAMB02 DEFINE FLAG BIT 6
X'82' 1... ..1. SAMMIX DEFINE A SUMMATION

 SPACE 1
SAMB80 EQU X'80' DEFINE FLAG BIT 0
SAMB02 EQU X'02' DEFINE FLAG BIT 6
SAMMIX EQU SAMB80+SAMB02 DEFINE A SUMMATION
* END OF DEFINITION
SAMALL EQU X'FF' FITS THE FORMAT, BUT NOT INCLUDED IN THE MAP
*
 EJECT

CODES DEFINED FOR SAMCODES BY CODES CBYTE
(AT HEX DISPLACEMENT: 1)

VALUE NAME DESCRIPTION
_______ ________ ______________________________________

X'00' RCOK GOOD RETURN CODE
X'FF' RCERR AND A LESS HAPPY ONE

 SPACE 1
 SPACE 2

Figure 62. Bit and Code Definition (Part 1 of 2)

CODES DEFINED FOR SAMCODES BY CODES STANDARD
(AT HEX DISPLACEMENT: 1)

VALUE NAME X'VALUE DESCRIPTION
_______ ________ _______ _____________________________

0 NULL X'00' ABSENCE OF MEANING
0 ZERO X'00' MEANS THE QUANTITY 'NONE'

 SPACE 1
 SPACE 2

CODES DEFINED IN SAMLCODE (AT HEX DISPLACEMENT: 2)

VALUE NAME DESCRIPTION
_______ ________ ______________________________________

X'0010' SAMINFO INFORMATION PROVIDED
X'0020' SAMCOMP FUNCTION COMPLETE
X'09F0' SAMERR09 USER INPUT ERROR

 SAMPLE 1
SAMINFO EQU X'0010' INFORMATION PROVIDED
SAMCOMP EQU X'0020' FUNCTION COMPLETE
SAMERR09 EQU X'09F0' USER INPUT ERROR
SAMOTHER EQU X'40' NOT TO BE INCLUDED IN CODES TABLE

Figure 63. Bit and Code Definition (Part 2 of 2)

BLOCKMAP

186 z/VM: 7.3 Dump Viewing Facility

General Page Formatting: BLOCKMAP attempts to format the control block, with respect to the
organization of groups of data, on page boundaries. Control block pictures will be divided at points that do
not contain spanned records. BLOCKMAP will also attempt to maximize the number of lines per page in
deciding where to divide a control block. In addition, BLOCKMAP will attempt to keep redefinitions (ORGs)
with their associated data definition statements on the same page.

Because of the infinite number of combinations, it may appear that in some cases the formatting
performed by BLOCKMAP is not optimal. Therefore, it is suggested that you examine the output to
determine the suitability of the formatting performed.

Picture Segmentation Option: For very large control blocks, it is often desirable to break up the
commented portion into smaller units. This is accomplished by including commented EJECT statements
in the input file as follows:

 blank
EJECT , NEW PICTURE
 count,

When this form of the EJECT statement is encountered, the current image will be completed. The data
definition statements processed to that point will be combined to form part of the formatted control
block, followed by this EJECT statement. Processing will then continue with the next logical statement,
and a new picture will be started. This facility provides for the breaking up of the main body of the control
block without entering redefinition. This has significance in the function of reach-back for the processing
of undefined fields when in redefinition mode. Use of this option is valid for both main picture processing
mode and redefinition mode.

No Picture Option: You can override the normal picture segmentation invoked by an ORG statement by
specifying the NO PICTURE option as follows:

ORG: label NO PICTURE and other comments

If this option is encountered during main picture processing, the current picture is not terminated and will
be continued with the next space defining statement. This option lets you perform the following without
disrupting the picture:

• Define space for operators not recognized by BLOCKMAP
• ORG back to the beginning of the reserved space
• Enter the unknown operators.

If the option is encountered on an ORG statement after the main picture is closed, the current redefinition
picture is closed and processing continues without picture processing until another ORG statement is
encountered.

BLOCKMAP

Appendix C. Dump Viewing Facility Utilities 187

BLOCKMAP

188 z/VM: 7.3 Dump Viewing Facility

Appendix D. Module Map Architecture (Used by
ADDMAP)

 PI

A module map, as referred to by the Dump Viewing Facility, is a file containing a header and a compressed
form of the load map(s). The module map file is one of the inputs to the Dump Viewing Facility ADDMAP
command. It can be created using the MAP command if the load map (or maps) was created by a CP
loader or by the CMS LOAD command. If the load map was not created in this manner, you must create
the module map manually, or by other means, if you want to append it to the dump.

The module map file is in FIXED format and has a record length of 4096 bytes. Its contents are shown in
Figure 64 on page 189.

Header (1 record)
Compressed primary load map (n records)
Compressed secondary load map (n records)

Figure 64. Contents of the Module Map File

All module maps have compressed primary load maps (that is, the CMS module map); some also have
compressed secondary load maps (that is, the TSAF module map).

Module Map File Header
The header is the first record of the module map file. Its format is shown in Table 14 on page 189.

Table 14. Module Map File Header Format

Byte Offset
(Hexadecimal)

Field Name Field Description

00-07 Map type An 8-byte EBCDIC identifier representing the type
of module map. If the identifier is less than 8
characters, pad this value to the right with blanks
(for example, X'40').

08-17 Reserved area 16 bytes of X'00'.

18-1F Primary load map name An 8-byte EBCDIC identifier representing the file
name of the primary load map. If the identifier is
less than 8 characters, pad this value to the right
with blanks (for example, X'40').

20-21 Beginning record
number (primary load
map)

A 2-byte right-justified hexadecimal number of
the record that the compressed primary load map
begins in the module map file

22-23 Beginning displacement
(primary load map)

A 2-byte right-justified hexadecimal number
representing the displacement of the first entry
within the beginning record of the compressed
primary load map.

24-25 Ending record number
(primary load map)

A 2-byte right-justified hexadecimal number of the
record that ends the compressed primary load map
in the module map file.

Module Map Architecture

© Copyright IBM Corp. 1991, 2022 189

Table 14. Module Map File Header Format (continued)

Byte Offset
(Hexadecimal)

Field Name Field Description

26-27 Ending displacement
(primary load map)

A 2-byte right-justified hexadecimal number
representing the displacement of the end of
the last entry within the ending record of the
compressed primary load map.

28-2F Reserved area 8 bytes of X'00'.

30-37 Secondary load map
name

An 8-byte EBCDIC identifier representing the file
name of the secondary load map. If the identifier is
less than 8 characters, pad this value to the right
with blanks (that is, X'40'). If there is no secondary
load map, fill this with 8 bytes of X'00'.

38-39 Beginning record
number (secondary load
map)

A 2-byte right-justified hexadecimal number of the
record that begins the first entry of the compressed
secondary load map in the module map file. If
there is no secondary load map, fill this with 2
bytes of X'00'.

3A-3B Beginning displacement
(secondary load map)

A 2-byte right-justified hexadecimal number
representing the displacement of the first entry
within the beginning record of the compressed
secondary load map. If there is no secondary load
map, fill this with 2 bytes of X'00'.

3C-3D Ending record number
(secondary load map)

A 2-byte right-justified hexadecimal number of
the record that ends the compressed secondary
load map in the module map file. If there is no
secondary load map, fill this with 2 bytes of X'00'.

3E-3F Ending displacement
(secondary load map)

A 2-byte right-justified hexadecimal number
representing the displacement of the last entry
in the ending record within the compressed
secondary load map. If there is no secondary load
map, fill this with 2 bytes of X'00'.

40-FFF Reserved area Fill with X'00' to the end.

Compressed Load Maps
Primary and secondary load maps can span any amount of records. Each compressed load map consists
of contiguous entries ended by the trailer. Each entry must start on a 16-byte boundary. From the trailer
to the end of the record are hexadecimal zeros. Figure 65 on page 191 shows compressed primary and
secondary load map structures.

Module Map Architecture

190 z/VM: 7.3 Dump Viewing Facility

Figure 65. Compressed Load Map Structure

Table 15. Entry Format

Byte Offset
(Hexadecimal)

Field Name Field Description

00-07 Entry name An 8-byte EBCDIC name of the module or entry
point. If the name is less than 8 characters in
length, pad this value to the right with blanks (that
is, X'40').

08-0B Entry address A 4-byte hexadecimal number representing the
beginning address of the entry point or module

0C Type flag A 1-byte hexadecimal number representing a flag
to indicate whether this is an entry point or a
module:
X'00'

Module
X'80'

Entry point

0D-0F Entry size A 3-byte hexadecimal right-justified number
representing the size of the module (only valid if
the type flag field is X'00').

Table 16. Trailer Format

Byte Offset
(Hexadecimal)

Field Name Field Contents

00-07 Field 1 X'FFFFFFFFFFFFFFFF'.

08-0B Field 2 X'7FFFFFFF'.

 PI■end

Module Map Architecture

Appendix D. Module Map Architecture (Used by ADDMAP) 191

Module Map Architecture

192 z/VM: 7.3 Dump Viewing Facility

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2022 193

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as Programming Interfaces of
z/VM.

This book also documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/VM. This information is identified where it occurs, either by an introductory
statement to a chapter or section or by the following marking:

 PI

<...Programming Interface information...>

 PI■end

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

194 z/VM: 7.3 Dump Viewing Facility

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 195

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

196 z/VM: 7.3 Dump Viewing Facility

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2022 197

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

198 z/VM: 7.3 Dump Viewing Facility

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 199

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

200 z/VM: 7.3 Dump Viewing Facility

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 201

202 z/VM: 7.3 Dump Viewing Facility

Index

Special Characters
? subcommand

retrieve subcommands 58
(null line) subcommand

previous subcommand 54
&name subcommand

using subcommands 56
+ subcommand

adjusting address pointer 55
= subcommand

DUMPSCAN subcommand 59

Numerics
9370 token ring LAN

links 93

A
abnormal end (abend)

ADDMAP command 22
CMS 17
scenarios 17

access register
displaying 62
physical processor address 62

ACCLIST subcommand
display data space contents 60

ADDMAP command
converted load maps 26
Dump Viewing Facility 22, 164
module map architecture 189

address
control blocks

on a chain 69
displaying

CPU 83
module, for AVS 101

invalid 3
locating

of modules and entry points for a dump 96
pointers

adjusting 55
resolving

CP module's, at time of dump 22
adjust

address pointer 55
algebraic expression

resolving 105
ALL operand

FDISPLAY subcommand 93
analysis

CMS dumps 12
DFSMS dumps 12
GCS dumps 12
problem 4

analysis (continued)
PVM dumps 12
RSCS dumps 12

APPC/VM (Advanced Program-To-Program
Communications/VM)

links
TSAF 93

append
module maps 22

array
displaying

TSAF dump 93
link definition 93
path 93
routing 94

ASID subcommand
display address space data 63

attachment interface
definition 139
services

exit routine interfaces 140
map attachment interfaces 139

using 139
AVS (APPC/VM VTAM Support)

displaying
control blocks 101
module addresses 101
module names 101

IUCV subcommand 110
subpool maps 135
TACTIVE subcommand 122
task storage 135
TLOADL subcommand 126
TRACE subcommand 129
VMLOADL subcommand 137

B
BACKWARD subcommand

scrolling backward 65
BDF (BLOCK DEFINITION FILE)

creating 145
bisynchronous link

TSAF 93
BLOCK subcommand

formatting
control blocks within a dump 66

BLOCKDEF utility
DSECT files 171

BLOCKMAP utility
calling 183
conventions

bit definition table 182, 185
code definition table 182, 185
control block structure/ORG processing
180
data type operands 181

Index 203

BLOCKMAP utility (continued)
conventions (continued)

field naming 180
operators supported 181
redefinition mode 181
reserved fields 180, 181
unnamed fields 181
variable length fields 181

map data areas 180
NO PICTURE option 187
page formatting 187
picture segmentation option 187
processing 183
redefinition pictures 184
various field pictures 184

BSC (Binary Synchronous Communication)
links

TSAF 93

C
call

BLOCKMAP macro 183
extraction routines 140
formatting routines 141, 143
subcommands 56

CHAIN subcommand
displaying in a chain

addresses for control blocks 69
data in control blocks 69
loops of control blocks 69
number of control blocks 69

clock
displaying 116

CMS (Conversational Monitor System)
analysis 17
dumps

display pointer by DOS simulation 88
display pointer from CMS NUCON 74

entering
commands from Dump Viewing Facility 73
from Dump Viewing Facility 73

symptom record files 33
CMS subcommand

enter CMS environment 73
CMSPOINT subcommand

display pointers 74
CMSVIEW subcommand

format control blocks 76
CMSVIEW TRACE subcommand

display trace data 81
COLLECT operand

FDISPLAY subcommand 93
command

Dump Viewing Facility to XEDIT 138
reference 21
string processing 49

compress
load maps 164

content of
IUCV path table 110
module map files 189
pointers 74, 88, 113
registers

content of (continued)
registers (continued)

when extraction routine has control 140
when formatting routine has control 141, 142

control register
displaying 84

conversation block
displaying for AVS 101

convert
binary to EBCDIC

DMMINT service 160
DTVINT service 160

EBCDIC to hexadecimal 160
virtual machines 26

COUNT operand
CHAIN subcommand 70

CP (Control Program)
load map

converting for Dump Viewing Facility 26
modules

resolving address at time of dump 22
CPU (Central Processing Unit)

addresses
displaying 83

CPU subcommand
display CPU addresses 83

create
macros 13
module maps 10

CREGS subcommand
display control registers 84

CTCA (Channel-To-Channel-
Adapter)

links 93
CVB operand

GDISPLAY subcommand 101

D
data

dumps
analyzing 1
duplicate problems 1
formatting 1
printing 1
reading while in macro 47
to tape 8
using data from 4

invalid 3
locating

string of, in a dump 43
printing 29

data area
mapping 180
printing 29

define
PFKEYs 49
reserved fields 180

display
access registers 62
address space information 63
addresses

control blocks in a chain 69
CPU 83

204 z/VM: 7.3 Dump Viewing Facility

display (continued)
AVS

module address 101
module name 101

chains
address for control blocks 69
data in control blocks 69
loops of control blocks 69
number of control blocks 69

clocks 116
control registers

for a CPU address 84
data

DMMFEDLN service 159
DTVFEDLN service 159

dump data 1
dump identifiers 89
dumps 85
error message information 95
general purpose registers 104
global control block (GCB) 101
help 108
neighbor table 93
OS simulation pointers 113
path arrays 93
pointers 74, 88
prefix register values 83
program information 137
program status words 116
registers 116
remote LU blocks 102
resource tables 94
routing tables 94
scheduler global blocks 102
service tables 94
subpool maps 135
symptom records 121
task load list 126
task storage 135
task's active program list 122
timers 116
trace table entries 129
TSAF dumps

arrays 93
control blocks 93
tables 93

DISPLAY subcommand
display dumps 85
reissuing 55

DMMCLR service
simulates clearing screens 159

DMMDEDLN service
displays data 159

DMMHEX service
convert EBCDIC to hexadecimal 160

DMMINT service
convert to binary 160

DOS (Disk Operating System)
pointers 88

DOSPOINT subcommand
CMS dump 88
display pointers 88

DRESTORE macro subcommand
restore variables 40

DSAVE macro subcommand
save DUMPSCAN variables 41

DSECT format file
generating 171

DTVCLR service
simulates clearing screens 159

DTVFEDLN service
displays data 159

DTVINT service
convert to binary 160

dump
addresses

locating highest in dump 100
resolving at time of 22

analyzing 11
avs 135
AVS 122, 126, 137
causes 3
CMS 12, 74
data

analyzing 1
duplicate problems 1
formatting 1
printing 1
reading while in macro 47
write to tape 8

debugging problems 24
determining 5
DFSMS/VM 12
errors 130
files

appending to module map 22
formatting

control blocks 66
gcs 135
GCS 12, 122, 126, 137
identifiers

place into session file 45
initiating

system restarts 4
user 4

licensed programs 12
locating

addresses 96
entry points 96
modules 96
string of data in 43

preparing for 9
printing 29
procedures for 9
processes 2
PVM 12
RSCS 12
server virtual machines 129
TSAF 93
types 2, 51
using data 4
viewing 10, 51
virtual machines

types 10
Dump Viewing Facility

commands
ADDMAP 22
DUMPSCAN 24

Index 205

Dump Viewing Facility (continued)
commands (continued)

PRTDUMP 29
VIEWSYM 33

SVC 199 services 153
utilities

BLOCKDEF utility 171
BLOCKMAP macro 180
TBLENTRY table macro 169

DUMPID subcommand
display dump identifier 89
VMDUMP command 89

DUMPLOAD command
Dump Viewing Facility

dump file created by 1, 26
dump into CMS file 9
PRB00000 existence 9

DUMPSCAN command
debug dumps 24

DUMPSCAN macro subcommands
definition 39
DRESTORE 40
DSAVE 41
DVFSTACK 42
FINDSTRG 43
INIT 45
NOTE 46
READSTRG 47
SCAN 49

DUMPSCAN subcommand
viewing different file 90

DUMPSCAN subcommands
- 55
? 58
(null line) 54
&name 56
+ 55
= (equal) 59
ACCLIST 60
AREGS 62
ASID 63
BLOCK 66
CHAIN 69
CMS 73
CMSPOINT 74
CMSVIEW 76
CMSVIEW TRACE 81
CPU 83
CREGS 84
DISPLAY 85
DOSPOINT 88
DUMPID 89
DUMPSCAN 90
END 92
FDISPLAY 93
FINDMOD 96
FORMAT 98
FORWARD 100
GDISPLAY 101
GREGS 104
HC 105
HELP 108
HX 109
IUCV 110

DUMPSCAN subcommands (continued)
LOCATE, LOCATE(UP) 111
OSPOINT 113
PRINT, PRT 114
QUIT 115
reference 51
REGS 116
SCROLL, SCROLLU 118
SYMPTOM 121
TACTIVE 122
TIMEDIFF 124
TLOADL 126
TODCLK 127
TRACE 129
TSAB 135
VMLOADL 137
XEDIT 138

duplicate
problems

symptom records 5
DVSTACK macro subcommand

directs output to stack 42

E
EBCDIC

converting
to binary 160
to hexadecimal 160

ELAN
links 93

end
Dump Viewing Facility session 92, 109, 115

END subcommand
end session 92

error
detecting 130
dumps 130
hardware 3
messages 5, 17, 95
software

invalid data 3
invalid instructions 3
lockouts 3
loops 3
storage overlays 3
waits 3

symptom records 5
example

&name subcommand 57
abnormal end (abend) 17
CHAIN subcommand 71
PROMPT with = 67
SCROLL subcommand 118
symptom record 36

exit routine
interfaces

DUMPSCAN command 140
extraction routines 140
PRTDUMP command 140
virtual machine dumps 140

virtual machine dump data 144
extraction routine

availability 24

206 z/VM: 7.3 Dump Viewing Facility

extraction routine (continued)
calling 140
interface 140
register contents 140

F
FDISPLAY subcommand

formatted display 93
TSAF dump 93

field name
conventions

BLOCKMAP macro 180
unnamed reserved 181
variable length fields 181

FINDMOD subcommand
locating

addresses 96
entry points in a dump 96
modules in a dump 96

FINDSTRG subcommand
dumps

finding string of data in 43
FOR operand

TRACE subcommand 129
format

control blocks 66
dump data 1
load map 26
pages 187
virtual machine load maps 26

FORMAT subcommand
change or query type 98

formatting routine
DUMPSCAN 141
interfaces

nonscrolling subcommands 141
scrolling subcommands 142

PRTDUMP 143
FORWARD subcommand

scrolls forward 100
FROM operand

TRACE subcommand 129
FROMLOC operand

TRACE subcommand 129
function

Dump Viewing Facility
analyzing dump data 1
defining PFKEYs 49
formatting dump data 1
printing dump data 1
recognizing duplicate problems 1
using 2

G
gateway block

displaying 101
GCB operand

GDISPLAY subcommand 101
GCS (Group Control System)

IUCV subcommand 110
subpool maps 135

GCS (Group Control System) (continued)
TACTIVE subcommand 122
task storage 135
TLOADL subcommand 126
VMLOADL subcommand 137

GDISPLAY subcommand
AVS dump 101

general purpose register
displaying 104

generate
DSECT files 171

global control block
displaying 101

GREGS subcommand
display general purpose registers 104

GWB operand
GDISPLAY subcommand 101

GWBPTRS operand
GDISPLAY subcommand 101

H
hardware

errors 3
HC subcommand

resolving calculations 105
HCSTBL table

using 144
help

DUMPSCAN subcommands 108
error messages 95

HELP subcommand
summary of DUMPSCAN subcommands 108

HELP, online xvi, 21
hexadecimal

resolving calculations 105
HX subcommand

return to CMS 109

I
identify

duplicate problems 5
source of problem 5

INIT macro subcommand
dump name and type to file 45

invalid
addresses 3
data 3
instructions 3

ISearchByKeyCmdADDMAP 22
ISearchByKeyCmdDUMPSCAN 24
ISearchByKeyCmdMAP 26
ISearchByKeyCmdPRTDUMP 29
ISearchByKeyCmdVIEWSYM 33
IUCV subcommand

AVS dumps 110
GCS dumps 110
RSCS dumps 110

L
LAN (Local Area Network)

Index 207

LAN (Local Area Network) (continued)
links 93
TSAF 93

licensed program
dumps 12

link
bisynchronous 93
CTCA 93
ELAN 93
LAN 93
TSAF 93

link definition array
displaying 93

LINKCTL operand
FDISPLAY subcommand 93

LINKDEF operand
FDISPLAY subcommand 93

load map
compressing 164
converting 26
MAP command 189
module maps 26, 189
primary 164, 165
processing of 9
secondary 165
space requirements 9
valid 165

locate
addresses

highest in dump 100
dump data 1
entry points in a dump 96
modules in a dump 96
string of data in a dump 43, 111

LOCATE subcommand
search dumps 111

lockout
software errors 3

loop
software errors 3

M
MAP command

attachment interfaces 139
converting

load map 26
virtual machine load map 26

data areas 180
prompting 26

MAPA operand
GDISPLAY subcommand 102

MAPN operand
GDISPLAY subcommand 102

message
errors 5, 17, 95
problems 5

message examples, notation used in xv
minus (&minus.) subcommand

adjusting address pointer 55
miscellaneous

services 159
module map

converted load maps 26

module map (continued)
creating 10
Dump Viewing Facility 30
listing of 27

module map architecture
ADDMAP command 189
MAP command 189

module map file
contents 189
headers 189

module map structure
fixed format 189

N
NEIGHBOR operand

FDISPLAY subcommand 93
NO PICTURE option

BLOCKMAP macro 187
notation used in message and response examples xv
NOTE subcommand

sending text 46

O
online HELP Facility, using xvi, 21
operator

support in BLOCKMAP 181
OS (Operating System)

simulation pointers 113
OSPOINT subcommand

OS simulation pointers 113
output

CMSPOINT subcommand 74
directing

to program stack 42
samples 62

P
page

formatting 187
PATH operand

FDISPLAY subcommand 93
path table

IUCV 110
pointer

adjusting 55
prefix register

contents
in a summary report 29

displaying
value for dump 83

primary
load maps 164, 165

print
dump data 1
DUMPSCAN subcommand output on terminal 114
summary data 29

PRINT subcommand
print data on terminal 114

problem
analysis 4

208 z/VM: 7.3 Dump Viewing Facility

problem (continued)
debugging

in a dump 24
determining 5
duplicates

symptom records 5
messages 5
source identification 5
symptom records 5

product-sensitive programming interface 139, 153, 164, 189
Program Function (PF) keys

defining 49
program list

displaying 122
program stack

output to 42
programming interfaces

general-use programming interface 164, 169, 194
product-sensitive programming interface 194

PRTDUMP command
print summary data 29

PSW (Program Status Word)
displaying 116

Q
QUIT subcommand

end session 115

R
read

data from dumps 47
READSTRG macro subcommand

read data from dumps 47
register

contents
when extraction routine has control 140
when formatting routine has control 141, 142

displaying 84, 116
REGS subcommand

displaying
clocks 116
program status words 116
registers 116
timers 116

remote LU
block

displaying 102
reserved field

defining 180
unnamed 181

resolve
addresses

pageable CP module's 22
hexadecimal calculations 105

RESOURCE operand
FDISPLAY subcommand 94

resource table
displaying 94

response examples, notation used in xv
restore

values 40

retrieve
DISPLAY subcommand 55
previous subcommands 54
subcommands 58

return
session to CMS 109, 115

RLU operand
GDISPLAY subcommand 102

routing array
displaying 94

ROUTING operand
FDISPLAY subcommand 94

S
sample command output

sample output
AREGS subcommand 62
BLOCK subcommand 67
CHAIN subcommand 71
CMSVIEW subcommand 78
CPU subcommand 83
CREGS subcommand 84
FINDMOD subcommand 96
GDISPLAY subcommand 102
GREGS subcommand 104
HC subcommand 106
IUCV subcommand 110
LOCATE subcommand 112
OSPOINT subcommand 113
SYMPTOM subcommand 121
TACTIVE subcommand 122
TIMEDIFF subcommand 125
TLOADL subcommand 126
TRACE subcommand 131
VMLOADL subcommand 137

save
dump data to tape 8
DUMPSCAN variables 41

SCAN macro subcommand
defining PFKEYs 49

SCB operand of GDISPLAY subcommand 102
scheduler control block

displaying 102
scroll

BACKWARD subcommand 65
FORWARD subcommand 100

SCROLL subcommand
repeating TRACE subcommand 118

SCROLL U operand
TRACE subcommand 129

search
addresses 65
dumps

string of data in 43, 111
secondary

load maps 165
send

notes 46
service

Dump Viewing Facility 8
miscellaneous 159
SVC 199 153
tables 94

Index 209

SERVICE operand
FDISPLAY subcommand 94

SFS (Shared File System)
TRACE subcommand 129

SGB operand
GDISPLAY subcommand 102

simulate
clearing screens

DMMCLR service 159
DTVCLR service 159

software
errors

invalid data 3
invalid instructions 3
lockouts 3
loops 3
storage overlays 3
waits 3

storage
displaying 135
overlays 3
requirements 2

store
dump data to tape 8

string
searching

for in a dump 111
subcommands 56
target 112

SVC 199 service
code 10 153
code 20 153
code 30 154
code 31 154
code 40 154
code 41 155
code 50 156
code 51 156
code 60 157
code 70 157
code 71 157
code 80 158
code 90 158
code 91 158
interfaces

between Dump Viewing Facility and exit routines
153

symptom record
displaying 121
duplicate problems 5
state of the system 29
viewing 33

SYMPTOM subcommand
formatted symptom record 121

syntax diagrams, how to read xiii
system

restarting 4

T
TABENTRY table macro

generate map information 164
table

&name 56

table (continued)
bit and code 182, 185
displaying

TSAF dump 93
neighbor 93
path, IUCV 110
resource 94
service 94
subcommands 56

TACTIVE subcommand
task's active program list 122

tape
dump data to 8

task load list
displaying 126

TBLENTRY table macro
generate external file information entry 169

Time-Of-Day (TOD) clock
date value 127
time value 127
values 124

TIMEDIFF subcommand
TOD clock values 124

timer
displaying 116

TLAN
links 93

TLOADL subcommand
task load list 126

TODCLK subcommand
TOD clock value 127

TRACE subcommand
COUNT operand 129
display trace table entries 129
FOR operand 129
FROM operand 129
FROMLOC operand 129
SCROLL U operand 129

trace table
entries 129

TSAB subcommand
subpool map 135
task storage 135

TSAF (Transparent Services Access Facility)
BSC links 93
CTCA links 93
dumps 93
LAN links 93
link definition array 93
links 93
resource tables 94
routing tables 94
TLAN links 93
TRACE subcommand 129

type
dumps 2

U
use

attachment interfaces
Dump Viewing Facility 139

dump data 4
Dump Viewing Facility 2, 9

210 z/VM: 7.3 Dump Viewing Facility

use (continued)
HCSTBL table 144
XEDIT with Dump Viewing Facility 138

user
initiating dumps 4
writing macros 12

V
valid

load maps 165
variable length field

last item in definition 181
view

CMS symptom record files 33
dumps 10

VIEWSYM command
CMS symptom record files 33

virtual machine
dumps

types of 10
exit routine interfaces 140
load maps 26
program information 137
server dumps 129

VMLOADL subcommand
program information 137

W
wait

software errors 3
write

dump data to tape 8
DUMPSCAN macros 12

X
XEDIT subcommand

passing commands from Dump Viewing Facility 138

Z
z/VM; HELP Facility, using xvi, 21

Index 211

212 z/VM: 7.3 Dump Viewing Facility

IBM®

Product Number: 5741-A09

Printed in USA

GC24-6284-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Using the Online HELP Facility
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: Dump Viewing Facility
	SC24-6284-73, z/VM 7.3 (September 2022)
	GC24-6284-02, z/VM 7.2 (September 2020)
	GC24-6284-01, z/VM 7.1 (January 2020)
	GC24-6284-00, z/VM 7.1 (September 2018)

	Chapter 1. Introduction
	Major Functions
	Interactively Analyzing Dump Data
	Formatting and Printing Dump Data
	Recognizing Duplicate Problems

	Types of Dumps the Dump Viewing Facility Processes
	Requirements for Using the Dump Viewing Facility
	Storage Requirements

	Causes for a Dump
	Hardware-Initiated Dumps
	Software-Initiated Dumps
	User-Initiated Dumps
	System Restarts
	VMDUMP Command
	SNAPDUMP Command

	Location of a Dump
	Use of Dump Information
	Problem Determination
	Problem Source Identification
	Using Error Messages
	Using the Symptom Record to Identify Duplicate Problems

	Commands Associated with the Dump Viewing Facility
	Servicing the Dump Viewing Facility
	Writing Dump Data to Tape

	Chapter 2. Usage Guide
	Preparing a Dump for Use with the Dump Viewing Facility
	Using Load Maps
	Creating Load Maps
	Creating Module Maps
	Viewing Dumps
	Using the Session File
	Virtual Machine Dumps in an XC Environment
	Viewing Several Dump Files at a Time
	Virtual Machine Dump Formats

	Viewing Dumps of Licensed Programs and z/VM Features

	Writing DUMPSCAN Macros
	What Is a DUMPSCAN Macro?
	Creating a Macro File
	Using DUMPSCAN Subcommands in a Macro
	What Is an Environment?
	DUMPSCAN Macro Subcommands
	Communicating between the Editor and the Interpreter
	READ Subcommand
	EXTRACT Subcommand

	Displaying Data on the DUMPSCAN Screen
	DUMPSCAN Macro Examples
	DVFXEDIT Profile
	Assigning Program Function Keys to DUMPSCAN Subcommands

	Scenario 1: Analyzing a CMS Program Exception
	Step 1: Checking the Error Messages
	Step 2: Use DUMPLOAD to Process the Dump
	Step 3: Use DUMPSCAN to Analyze the Dump
	Step 4: Summarizing the DUMP Analysis

	Chapter 3. Command Reference
	Using the Online HELP Facility
	ADDMAP Command
	DUMPSCAN Command
	MAP Command
	PRTDUMP Command
	VIEWSYM Command

	Chapter 4. Macro Subcommands
	DRESTORE Subcommand
	DSAVE Subcommand
	DVFSTACK Subcommand
	FINDSTRG Subcommand
	INIT Subcommand
	NOTE Subcommand
	READSTRG Subcommand
	SCAN Subcommand

	Chapter 5. DUMPSCAN Subcommand Reference
	Null Line Subcommand
	+ and - Subcommands
	&name Subcommand
	? Subcommand
	= Subcommand
	ACCLIST Subcommand
	AREGS Subcommand
	ASID Subcommand
	BACKWARD Subcommand
	BLOCK Subcommand
	CHAIN Subcommand
	CMS Subcommand
	CMSPOINT Subcommand (CMS Dump)
	CMSVIEW Subcommand
	CMSVIEW TRACE Subcommand
	CPU Subcommand
	CREGS Subcommand
	DISPLAY Subcommand
	DOSPOINT Subcommand (CMS Dump)
	DUMPID Subcommand
	DUMPSCAN Subcommand
	END Subcommand
	FDISPLAY Subcommand (TSAF Dump)
	FINDMOD Subcommand
	FORMAT Subcommand
	FORWARD Subcommand
	GDISPLAY Subcommand (AVS Dump)
	GREGS Subcommand
	HC Subcommand
	HELP Subcommand
	HX Subcommand
	IUCV Subcommand (GCS,AVS,RSCS Dumps)
	LOCATE(UP) Subcommand
	OSPOINT Subcommand (CMS Dump)
	PRINT Subcommand
	QUIT Subcommand
	REGS Subcommand
	SCROLL Subcommand
	SYMPTOM Subcommand
	TACTIVE Subcommand (GCS,AVS,RSCS Dumps)
	TIMEDIFF Subcommand
	TLOADL Subcommand (GCS,AVS,RSCS Dumps)
	TODCLK Subcommand
	TRACE Subcommand
	TSAB Subcommand (GCS,AVS,RSCS Dumps)
	VMLOADL Subcommand (GCS,AVS,RSCS Dumps)
	XEDIT Subcommand

	Appendix A. Using Attachment Interfaces
	MAP Attachment Interface
	HCSTAB Table
	HCSTAB Table Format
	Modifying the HCSTAB Table

	Exit Routine Interfaces
	Extraction Routines
	Extraction Routine Interface

	Formatting Routines Called from DUMPSCAN
	Formatting Routine Interface for Nonscrolling Subcommands
	Formatting Routine Interface for Scrolling Subcommands
	Special Scrolling Interface

	Formatting Routines Called from PRTDUMP
	Formatting Routine Interface

	HCSTBL Table
	HCSTBL Table Format
	Modifying the HCSTBL Table

	Block Table Architecture
	Creating Block Definition Files
	Creating BLOCK Control Files

	Adding Block Definition Files
	Block Definitions
	Block Descriptor Record Format
	Block Descriptor Record – BIT Subrecord Format
	Default Display Fields
	Tailoring a Block Table File

	Appendix B. Dump Viewing Facility Services
	SVC 199 Services
	Miscellaneous Services

	Appendix C. Dump Viewing Facility Utilities
	TABENTRY Utility Macro
	TBLENTRY Utility Macro
	BLOCKDEF Utility Command
	BLOCKMAP Macro

	Appendix D. Module Map Architecture (Used by ADDMAP)
	Module Map File Header
	Compressed Load Maps

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

