
z/VM
7.3

CP Programming Services

IBM

SC24-6272-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
1099.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2023-11-22
© Copyright International Business Machines Corporation 1991, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xix

Tables..xxv

About This Document... xxxv
Intended Audience... xxxv
Syntax, Message, and Response Conventions... xxxv
Where to Find More Information.. xxxvii

Links to Other Documents and Websites...xxxviii

How to provide feedback to IBM.. xxxix

Summary of Changes for z/VM: CP Programming Services.....................................xli
SC24-6272-73, z/VM 7.3 (December 2023)...xli
SC24-6272-73, z/VM 7.3 (May 2023)... xli
SC24-6272-73, z/VM 7.3 (September 2022)..xli
SC24-6272-06, z/VM 7.2 (May 2022)... xli
SC24-6272-06, z/VM 7.2 (December 2021)..xlii
SC24-6272-05, z/VM 7.2 (July 2021).. xlii
SC24-6272-05, z/VM 7.2 (March 2021)...xlii
SC24-6272-04, z/VM 7.2 (September 2020)..xliii

Part 1. CP DIAGNOSE Instructions... 1

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine.. 3
Instruction Format..3
Macro Format..4
Privilege Classes...5
Address Translation Modes and Restrictions.. 5
How Addresses Are Processed.. 5
How Address Spaces Are Selected.. 7
How Error Conditions Are Reported...7

Access Exceptions.. 8
Condition Codes and Return Codes..9
Storage Protection Mechanisms...9

DIAGNOSE Codes That Are Not Programming Interfaces.. 11

Chapter 2. The IBM-Supplied DIAGNOSE Codes..13
DIAGNOSE Code X'00' – Store Extended-Identification Code... 13

Usage Notes.. 13
Responses...16

DIAGNOSE Code X'04' – Examine Host Storage... 16
Usage Notes.. 17
Responses...19

DIAGNOSE Code X'08' – Virtual Console Function... 19
Usage Notes.. 21
Responses...21
Examples...22

DIAGNOSE Code X'0C' – Pseudo Timer...23

 iii

Usage Notes.. 23
Responses...23

DIAGNOSE Code X'10' – Release Pages..24
Usage Notes.. 24
Responses...25

DIAGNOSE Code X'14' – Input Spool File Manipulation...25
Subcode X'0000'—Read the Next Spool File Buffer (Data Record)...26
Subcode X'0004'—Read the Next Print Spool File Block...27
Subcode X'0008'—Read the Next Punch Spool File Block.. 28
Subcode X'000C'—Order a File to the Front of a Queue..28
Subcode X'0010'—Repeat the Active File a Specified Number of Times......................................28
Subcode X'0014'—Restart an Active File at the Beginning... 29
Subcode X'0018'—Backspace One Record..29
Subcode X'001C'—Read the Next Monitor Spool File Block..29
Subcode X'0020'—Read the Next Monitor Spool Record.. 30
Subcode X'0024'—Read the Last Spool File Buffer... 30
Subcode X'0028'—Position a Spool File to the Designated Record.. 30
Subcode X'002C'—Select a File for Processing and Read the Next Spool Buffer......................... 31
Subcode X'0FFE'—Select the Next File Not Previously Selected.. 31
Subcode X'0FFF'—Retrieve Next File Descriptor... 34
Usage Notes.. 34
Responses...35

DIAGNOSE Code X'18' – Standard DASD I/O..36
Usage Notes ... 37
Responses...37
Example.. 38

DIAGNOSE Code X'20' – 370 Synchronous I/O for DIAGNOSE Support..38
Usage Notes.. 39
Responses...39

DIAGNOSE Code X'24' – Device Type and Features... 40
Usage Notes.. 40
Responses...42

DIAGNOSE Code X'28' – Dynamic Channel Program Modification...42
Usage Notes.. 43
Responses...43

DIAGNOSE Code X'34' – Read System Dump Spool File.. 44
Usage Notes.. 44
Responses...45

DIAGNOSE Code X'3C' – Activate z/VM CP Directory... 45
Usage Notes.. 45
Responses...46

DIAGNOSE Code X'44' – Voluntary Time Slice End...46
Usage Notes.. 47
Responses...47

DIAGNOSE Code X'48' – Second Level SVC 76... 47
DIAGNOSE Code X'4C' – Generate Accounting Records.. 47

Usage Notes.. 48
Responses...50

DIAGNOSE Code X'54' – Control the Function of the PA2 Key... 50
Usage Note..51
Responses...51

DIAGNOSE Code X'58' – 3270 Virtual Console Interface...51
Usage Notes.. 52
Responses...60

DIAGNOSE Code X'5C' – Error Message Editing..60
Usage Notes.. 61
Responses...61

DIAGNOSE Code X'60' – Determine Virtual Machine Storage Size.. 62

iv

Responses...62
DIAGNOSE Code X'64' – Named Saved Segment Manipulation...62

Subcode X'00' — LOADSHR.. 63
Subcode X'04' — LOADNSHR..64
Subcode X'08' — PURGESEG..65
Subcode X'0C' — FINDSEG... 65
Subcode X'10' — LOADNOLY.. 66
Subcode X'18' — SEGEXT... 66
Subcode X'20' — LOADSHR (64-Bit).. 73
Subcode X'24' — LOADNSHR (64-Bit)..73
Subcode X'2C' — FINDSEG (64-Bit)... 73
Subcode X'38' — SEGEXT (64-Bit)... 73
Usage Notes.. 75
Responses...77

DIAGNOSE Code X'70' – Time-of-Day Clock Accounting Interface... 80
Usage Notes.. 81
Responses...82

DIAGNOSE Code X'74' – Saving and Loading an Image Library File.. 82
Usage Notes.. 83
Responses...83

DIAGNOSE Code X'7C' – Logical Device Support Facility... 84
Usage Notes.. 86
Responses...86
Logical Device External Interrupt Code X'2402'..88
Logical Device Support Facility Functions..89

DIAGNOSE Code X'84' – Directory Update-in-Place.. 91
Usage Note..102
Responses...102

DIAGNOSE Code X'88' – Validate User Authorization/Link Minidisk..105
Subcode -1 – Verify Authorization to Use DIAGNOSE Code X'88'.. 106
Subcode X'00' – Validate User Authorization.. 106
Subcode X'04' – Link Minidisk..106
Subcode X'08' – Validate User Authorization.. 108
Responses...109

DIAGNOSE Code X'8C' – Access 3270 Display Device Information.. 110
Usage Notes..111
Responses...111

DIAGNOSE Code X'90' – Read Symbol Table..112
Usage Note..112
Responses...112

DIAGNOSE Code X'94' – VMDUMP and Symptom Record Service...113
Supported Parameters... 113
Dump Address List..116
Usage Notes Regarding Dumping a Virtual Machine... 118
Usage Notes Regarding Dump Address Lists...118
Usage Notes Regarding Symptom Records... 119
Responses...120

DIAGNOSE Code X'98' – Real I/O..124
LOCK Subfunction...124
UNLOCK Subfunction..125
SSCH-Real Subfunction.. 125
Block Diagnose X'98' Request... 126
Usage Notes..131
Responses...132

DIAGNOSE Code X'9C' – Voluntary Time Slice Yield.. 133
Usage Notes..133
Responses...133

DIAGNOSE Code X'A0' – Obtain ACI Information...134

 v

Responses...135
DIAGNOSE Code X'A4' – Synchronous I/O (Standard CMS Blocksize).. 135

Synchronous Block I/O Parameter List (HCPSBIOP)...136
Block Entries (SBILIST).. 140
Usage Notes..141
Responses...141

DIAGNOSE Code X'A8' – Synchronous I/O (for All Devices)...143
Synchronous General I/O Parameter List (HCPSGIOP)...143
Usage Notes ... 146
Responses...146

DIAGNOSE Code X'B0' – Access Re-IPL Data...148
Re-IPL Information...148
IPL Statement Information.. 150
Usage Notes..150
Responses...150

DIAGNOSE Code X'B4' – Read/Write/Erase the Virtual Printer XAB..150
Responses...151

DIAGNOSE Code X'B8' – Spool File XAB Manipulation...152
Usage Note..153
Responses...153

DIAGNOSE Code X'BC' – Open and Query Spool File Characteristics..154
Usage Note..157
Responses...157

DIAGNOSE Code X'C8' – Set Language... 158
Responses...158

DIAGNOSE Code X'CC' – Save Message Repository... 159
Responses...159

DIAGNOSE Code X'D0' – Volume Serial Support.. 160
Usage Note..161
Responses...161

DIAGNOSE Code X'D4' – Set Alternate User ID.. 161
Responses...163

DIAGNOSE Code X'D8' – Read Spool File Blocks on System Queues.. 163
Responses...165

DIAGNOSE Code X'DC' – Control Application Monitor Record Collection..166
Usage Notes..169
Responses...169

DIAGNOSE Code X'E0' – System Trace File Interface.. 170
Usage Notes..171
Responses...171
Content and Format of Trace Blocks..172

DIAGNOSE Code X'E4' – Return Minidisk Information/Define Full-Pack Overlay........................... 173
Function X'00' and Function X'01'... 174
Function X'02'... 177
Function X'03'... 179
Usage Notes..182
Responses...182

DIAGNOSE Code X'EC' – Query GUEST Trace Status..184
Responses...185

DIAGNOSE Code X'F8' – Spool File Origin Information.. 186
Usage Notes..188
Responses...188

DIAGNOSE Code X'210' – Retrieve Device Information... 189
Virtual/Real Device Characteristics Block..189
Usage Notes..195
Responses...196

DIAGNOSE Code X'218' – Retrieve Real CPU Identification.. 196
Usage Notes..197

vi

Responses...198
Examples.. 198

DIAGNOSE Code X'238' – Time-Based Unique Identifiers.. 200
Usage Notes..200
Responses...200

DIAGNOSE Code X'248' – Copy-To-Primary Service.. 201
Usage Note..202
Responses...202

DIAGNOSE Code X'250' – Block I/O (Standard Blocksize)...202
Initialize Block I/O to a Device... 203
Read/Write to DASD... 205
Remove the Block I/O Environment...211
Responses...211
Block I/O External Interruption..214

DIAGNOSE Code X'258' – Page-Reference Services..215
Page-Reference Services... 215

DIAGNOSE Code X'260' – Access Certain Virtual Machine Information..221
Subcode X'00000000' ...221
Subcode X'00000004' ...221
Subcode X'00000008'..222
Subcode X'0000000C'..222
Subcode X'00000010'..223
Responses...223

DIAGNOSE Code X'268' – 370 Accommodation Services..224
Subcode 0 — Convert a BC-mode or mapped PSW to EC mode... 224
Responses...225

DIAGNOSE Code X'26C' – Access Certain System Information... 225
Subcode X'00000004'—Return the BYUSER ID For a Given User ID... 227
Subcode X'00000008'—Return Virtual LAN System Information...227
Subcode X'0000000C'—Return Controller List..230
Subcode X'00000010'—Return Controller Information..231
Subcode X'00000014'—Return Guest LAN List...234
Subcode X'00000018'—Return Guest LAN Information...235
Subcode X'0000001C'—Return Virtual Switch List... 237
Subcode X'00000020'—Return Virtual Switch Information... 238
Subcode X'00000024'—Return Virtual Port, Virtual NIC or HiperSockets Logical Port

Information..252
Subcode X'00000030'—MAC Services.. 260
Responses...262

DIAGNOSE Code X'270' – Pseudo Timer Extended..262
Usage Note..264
Responses...264

DIAGNOSE Code X'274' – Set Timezone Interrupt Flag... 264
Usage Notes..265

DIAGNOSE Code X'27C' –Product Enablement Verification...265
Usage Note..267
Responses...267

DIAGNOSE Code X'288' - Control Virtual Machine Time Bomb... 268
Usage Notes..268
Responses...268

DIAGNOSE Code X'290' – Perform Privileged Spool Functions... 269
Subcode X'0000' – Fetch Current Page of Open Spool File.. 269
Subcode X'0004' – Fetch XAB Data from Virtual Printer.. 271

DIAGNOSE Code X'2A8' – Network Diagnose...273
Operation code X'00' - Query Interface...274
Operation code X'01' - Establish Device Connection.. 276
Operation code X'02' - Send Data Request... 277
Operation code X'03' - Receive Data Request...279

 vii

Operation code X'04' - Multicast MAC Registration.. 279
Operation code X'05' - Network Device Options... 280
Responses...282

DIAGNOSE Code X'2CC' – SSI Interface... 287
Responses...287

DIAGNOSE Code X'2E0' – SYSEVENT Query Virtual Server (QVS)... 289
Usage Notes..289
Responses...289

DIAGNOSE Code X'2FC' – Obtain Certain Guest Performance Data.. 290
Responses...291

Part 2. The Inter-User Communications Vehicle..295

Chapter 3. IUCV Overview...297
How Addresses Are Processed..297
IUCV Paths... 297
IUCV Messages...298

Message Data Transfer... 298
Message Identification... 299

IUCV External Interrupts... 299
Avoiding IUCV External Interrupts...301

Security Considerations... 301
Virtual Machine-to-Virtual Machine Communication..302

Using Data in a Buffer... 302
Using Data in a Parameter List... 303
Using Control Paths.. 304
Invoking IUCV Functions.. 306

General Description of IUCV Functions... 306
Virtual MP Considerations for IUCV Applications... 308
IUCV in a Distributed Environment..309

Chapter 4. IUCV Protocols...311

Chapter 5. IUCV Function Descriptions.. 317
CP System Services..317
ACCEPT Function..319
CONNECT Function.. 324
DECLARE BUFFER Function...331
DESCRIBE Function..334
INTERRUPT POLL Function..337
PURGE Function... 340
QUERY Function... 344
QUIESCE Function..345
RECEIVE Function.. 348
REJECT Function.. 352
REPLY Function.. 355
RESUME Function...362
RETRIEVE BUFFER Function..365
SEND Function..366
SET CONTROL MASK Function...372
SET MASK Function..374
SEVER Function..376
TEST COMPLETION Function...379
TEST MESSAGE Function... 383

Part 3. The Advanced Program-to-Program Communication/VM..........................385

viii

Chapter 6. Overview of the APPC/VM Assembler Interface...387
Overview of APPC/VM Assembler Interface... 387
Basics of APPC/VM...387

APPC/VM Paths...387
APPC/VM States... 388
APPC/VM Interrupts... 388

Invoking APPC/VM Communication Functions... 390
Using Basic APPC/VM Functions... 392

Starting a Conversation.. 392
Sending and Receiving Data on the Conversation... 393
Ending a Conversation..393
Managing a Resource..393
Revoking a Resource.. 394

Understanding APPC/VM Parameter Lists...394
Setting for Optional Parameters...395
Parameters Reserved for IBM Use Only.. 395
Reading the Parameter Lists.. 395
Formatting the Parameter List with MF=L... 395
Registers Altered by APPCVM and IUCV Macro Functions..396

Condition Codes and Return Codes...396
Condition Codes..396
Return Codes.. 397

Virtual MP Considerations for APPC/VM Applications.. 398
APPC/VM Sever, Error, and Sense Codes That You Can Get... 399

Currently-Defined APPC/VM Sever Codes... 399
Sever Codes Generated by VM... 400
Currently-Defined Error Codes...402
Currently-Defined Sense Code...403

State Table for APPC/VM Functions.. 403
Examples of Basic States... 406
State Table for Error Conditions... 407

Chapter 7. APPCVM Macro Functions... 411
Using the Online HELP Facility for APPCVM Functions... 411
APPCVM CONNECT.. 412
APPCVM QRYSTATE (Query State)...447
APPCVM RECEIVE.. 451
APPCVM SENDCNF (Send Confirm)... 465
APPCVM SENDCNFD (Send Confirmed).. 471
APPCVM SENDDATA...475
APPCVM SENDERR (Send Error)..490
APPCVM SENDREQ (Send Request).. 501
APPCVM SETMODFY (Set Modify)... 505
APPCVM SEVER.. 509

Chapter 8. IUCV Macro Functions for Use in APPC/VM..521
Shared Functions That Can Be Used in CMS... 521
Shared Functions That Should Be Avoided in CMS... 521
Condition Codes and Return Codes for IUCV Macro Functions.. 522

Condition Codes..523
Return Codes.. 523

Using the Online HELP Facility for IUCV Macro Functions.. 523
IUCV ACCEPT... 524
IUCV CONNECT.. 529
IUCV DCLBFR (Declare Buffer).. 533
IUCV DESCRIBE... 538
IUCV IPOLL (Interrupt Poll)... 540

 ix

IUCV QUERY... 543
IUCV RTRVBFR (Retrieve Buffer)... 548
IUCV SETCMASK (Set Control Mask)... 550
IUCV SETMASK...553
IUCV SEVER..556
IUCV TESTCMPL (Test Completion)...562
IUCV TESTMSG (Test Message)... 566

Chapter 9. Migrating Programs from IUCV to APPC/VM...567
APPC/VM and IUCV Functions That Work Differently... 567
IUCV Functions Not Supported on APPC/VM Paths..568
APPC/VM Functions Not Supported on IUCV Paths..568
Shared APPC/VM and IUCV Functions.. 569

Shared Functions That Can Be Used in CMS..569
Shared Functions That Should Be Avoided in CMS..569

Chapter 10. APPC Mapped with APPC/VM... 571
APPC Conversations...571

Establishing a Conversation... 571
APPC/VM Interrupts... 571
APPC/VM Conversation States...572
APPC/VM Return Codes..573

APPC Verb Names Mapped to APPC/VM Macro Functions...573
APPC ALLOCATE... 574
APPC CONFIRM..576
APPC CONFIRMED... 577
APPC DEALLOCATE.. 578
APPC FLUSH... 579
APPC GET_ATTRIBUTES.. 579
APPC PREPARE_TO_RECEIVE..579
APPC RECEIVE_AND_WAIT... 580
APPC REQUEST_TO_SEND... 582
APPC SEND_DATA.. 582
APPC SEND_ERROR... 583

Part 4. CP System Services.. 587

Chapter 11. Access Verification System Service (*RPI)... 589
Using the CP Access Control Interface..589

Overview... 590
HCPRPI Module.. 591
HCPRPW Module.. 594
HCPRPD Module... 597
HCPRPE Module for handling DIAGNOSE X'A0'...600
HCPRPF Module..604
HCPRPG Module... 604
HCPRPL Module..604
HCPRPP Module..604
HCPRWA Module.. 605
CP Callable Services for the ACI.. 605
Summary of CP Modules and Entry Points...606
ACI Security Bits...607
HCPDA0 Module for Updating ACI Security Bits..610
ACIPARMS Control Block..620
CP Calls to the ACI..637

Chapter 12. Account System Service (*ACCOUNT).. 697

x

Establishing Communication... 697
Receiving Accounting Records...698
Disconnecting from the Accounting System Service.. 698
Accounting Record Formats...698

Accounting Records for Virtual Machine Resource Usage (Record Type 1)................................699
Accounting Records for Dedicated Devices (Record Type 2).. 700
Accounting Records for Temporary Disk Space (Record Type 3)..701
Accounting Records for Journaling (Record Types 04, 05, 06, 08, and 0I)................................702
Accounting Records for SNA/CCS (Record Type 07)... 705
Accounting Records for Inter-System Facility for Communications (Record Type 09).............. 706
Accounting Records for logging changes to a user's privilege (Record Type 0A).......................708
Accounting Records for virtual disk in storage space (Record Type B).......................................710
Accounting Records Network Data Transmissions (Record Type C)...711
Accounting Records for CPU Capability (Record Types D and E).. 713
Accounting Records for Virtual Machine Resource Usage 2 (Record Type F).............................715

Adding Your Own Accounting Records and Source Code... 716
User-Initiated Accounting Records (Record Type C0)...716

Chapter 13. Asynchronous CP Command Response System Service (*ASYNCMD).............................. 717
Establishing Communication... 717
Message Limits...717
Sending and Receiving Data.. 717
Record Types..718

Chapter 14. DASD Block I/O System Service (*BLOCKIO)... 719
Establishing Communication with the DASD Block I/O System Service.. 719

IUCV CONNECT to the DASD Block I/O System Service... 719
Usage Notes ... 719
IUCV ACCEPT.. 720
IUCV SEVER.. 720

IUCV SEND to *BLOCKIO... 721
Single Block I/O.. 721
Multiple Chained Block I/O.. 723

Ending Communication with the DASD Block I/O System Service...725

Chapter 15. Error Logging System Service (*LOGREC)...727
Establishing Communications with the Error Logging System Service.. 727
Receiving LOGREC Records... 728
Disconnecting from the Error Logging System Service... 728

Chapter 16. Identify System Service (*IDENT)...729
Establishing Communication with the Identify System Service... 729
Handling Connection Requests for the Resource or Gateway.. 731
Communicating with CP...731

*IDENT Interface for Communication with CP's Support for the Family of POSIX exec
Functions... 731

When Your Resource is Revoked... 733
*IDENT Sever Reason Codes... 734

Chapter 17. Message System Service (*MSG).. 737

Chapter 18. Message All System Service (*MSGALL)... 739

Chapter 19. SCLP System Service (*SCLP)... 741
Establishing Communication with the SCLP System Service... 741
Connecting to the SCLP System Service..741
Sending SCLP Events... 742
Receiving SCLP Events... 743

 xi

Disconnecting from the SCLP System Service ..743

Chapter 20. Signal System Service (*SIGNAL)... 745
Establishing Communications with the Signal System Service.. 745
IUCV CONNECT to the Signal System Service...745
Sending Signals.. 747
Receiving Signals..747
Leaving the Signal System Service.. 748

Chapter 21. Spool System Service (*SPL)...749
The AFP Printing *SPL Interface..750

Establishing Communication with the Spool System Service... 750
Virtual Machine Communication to the Spool System Service... 752
Spool System Service Communication to a Virtual Machine...762

The Generic *SPL Interface... 763
Establishing Communication with the Spool System Service... 763
Processing a File... 764
Selecting a File To Be Read.. 764
Transferring Information About a Selected File.. 766
Closing a File...769
Clearing an Existing Connection...769

Chapter 22. Symptom System Service (*SYMPTOM)... 771
Connecting to the Symptom System Service.. 771
Receiving Symptom Records... 772
Disconnecting from the Symptom System Service... 772

Chapter 23. VM Event System Service (*VMEVENT).. 773
Establishing Communication with the VM Event System Service...773
Connecting to the VM Event System Service...773
Receiving *VMEVENT Events... 773
Disconnecting from the VM Event System Service... 793

Part 5. CP Macros for VM Data Spaces and Other Services...................................795

Chapter 24. VM Data Spaces Overview...797
What Are Data Spaces?..797

Uses for Data Spaces..798
ESA/XC Architecture...798
Address Space Support.. 799
Summary of Data Space Operations.. 799

Using Data Spaces in Your Applications.. 800
Creating and Using Data Spaces.. 800

Mapping Minidisks to Address Spaces.. 804
Notifying CP of Future Reference Patterns..805

Chapter 25. CP Macros.. 807
Using the Online HELP Facility for CP Macros... 807
Coding CP Macros.. 807

Preferred Use..807
Alternative Methods...809
ADRSPACE — Address Space Services.. 811
ADRSPACE CREATE.. 814
ADRSPACE DECLARE... 817
ADRSPACE DESTROY... 818
ADRSPACE ISOLATE...820
ADRSPACE PERMIT..822

xii

ADRSPACE QUERY..826
ALSERV — Access List Services... 829
ALSERV ADD... 831
ALSERV DECLARE...834
ALSERV REMOVE..835
DEFWORKA — Define Macro Work Area.. 837
MAPMDISK — Mapping Services..838
MAPMDISK DECLARE...842
MAPMDISK DEFINE... 843
MAPMDISK IDENTIFY..851
MAPMDISK REMOVE..857
MAPMDISK SAVE..860
PFAULT Macro -- Page-Fault Handshaking Services...866
PFAULT CANCEL... 871
PFAULT DECLARE... 872
PFAULT TOKEN... 873
REFPAGE — Page Reference Services... 877
REFPAGE DECLARE.. 879
REFPAGE INFORMB... 880
REFPAGE INFORML..886
VMUDQ – VM User Directory Query...889

Part 6. Architectural Extensions and Accommodations for Virtual Machines........ 895

Chapter 26. Collaborative Memory Management Assist.. 897
Storage... 897

Collaborative Memory Management Block State.. 897
Modification of Translation Tables... 900
Assigned Storage Locations... 900

Control.. 900
Resets... 900

Interruptions.. 901
Addressing Exception... 901
Block-volatility Exception...901

Control Instructions... 902
Program Exceptions..902
Storage-key Manipulation Instructions... 902
TEST PROTECTION... 902
EXTRACT AND SET STORAGE ATTRIBUTES.. 902

Implications for the DIAGNOSE Instruction and Non-CPU Accesses.. 905
Implications for ESA/390, ESA/XC, and z/XC Guests... 906
Implications for Saved Systems and Segments..906
Implications for the VMDUMP Command..906

Chapter 27. 370 Accommodation Facility Overview.. 907
Background.. 907
System/370 Constraints.. 907
High-level Description..907
When Should 370 Accommodation be Used?...908
Choosing a Level of 370 Accommodation... 909
Activating 370 Accommodation.. 909
Running a Restricted CMS MODULE.. 911
What is Not Provided by the 370 Accommodation Facility...912
Possible Adverse Effects on a Working Program...912

Chapter 28. 370 Accommodation Facility Definition..915
System/370 Instructions... 915

 xiii

System/370 I/O Instructions... 915
SET STORAGE KEY (SSK)..916
INSERT STORAGE KEY (ISK).. 916
RESET REFERENCE BIT (RRB)... 916

ESA-Family Instructions.. 916
TEST SUBCHANNEL (TSCH)... 916
STORE SUBCHANNEL (STSCH)...916
TEST PENDING INTERRUPTION (TPI)...916
Discarding Vestigial Status... 917

Other Instructions..917
DIAGNOSE code X'28'.. 917

The Interval Timer..917
PSW Conversions... 918

BC-mode PSW Conversion... 918
BC-mode System Mask Conversion... 919
Mapped PSW Conversion... 919
PSW Conversions During Interruption Processing.. 919

Interruption Parameters.. 920
Special Conditions.. 920

Presentation of Interruptions.. 921
Vestigial Status...921
The CMS 370 Accommodation Facility..923
PSW Mapping Algorithm.. 924

Chapter 29. Store Hypervisor Information (STHYI) Instruction.. 927
Function Code X'0000' - Processor Capacity Information... 928
Common Header Section (INFCHDR).. 939
Function Code X'0001' - Hypervisor Environment Information... 940
Function Code X'0002' - Guest List... 955
Function Code X'0003' - Designated Guest Information..957
Function Code X'0004' - Resource Pool List... 964
Function Code X'0005' - Designated Resource Pool Information..966
Function Code X'0006' - Resource Pool Member List...969
Special Conditions, Exceptions, and Usage Notes.. 971

Part 7. Symptom Record Reporting...973

Chapter 30. Symptom Record Reporting.. 975
Reporting Software Error Symptoms (Symptom Records)... 975
The Format of the Symptom Record..975

Section 1 (Environmental Data)... 975
Section 2 (Control Data)... 975
Section 2.1 (Component Data)...976
Section 3 (Primary SDB—Structured Data Base—Symptoms)...976
Section 4 (Secondary SDB Symptoms).. 976
Section 5 (Free-Format Data)...976
Symptom Strings — SDB Format.. 976
Notes for Applications Using DIAGNOSE Code X'94' SR Option...976

Appendix A. Data Areas Used by DIAGNOSE Codes...983
Data Areas Used by DIAGNOSE Codes X'24' and X'210'... 983

CP370 Device Classes..983
CP370 Device Types.. 983
CP370 Device Features..985
CP370 Virtual Device Status..985
CP370 Virtual Device Flags..986

Data Areas Used by DIAGNOSE Codes X'14' and X'D8'... 986

xiv

SFBLOK - VM/SP 370 Spool File Control Block... 986
SPLINK - VM/SP 370 Spool File Data Block.. 990
Extended Spool File Block for DIAGNOSE Code X'D8'..991

External Attribute Buffer Used by DIAGNOSE Codes X'B4', X'B8', and X'290'...................................... 993
Suggested Format for an External Attribute Buffer...993

Appendix B. Sample Programs Using DASD Block I/O System Service................. 995
Write Program.. 995
Read Program.. 998

Appendix C. DIAGNOSE Code X'68' and VMCF.. 1001
DIAGNOSE Code X'68'.. 1001

Usage Notes... 1001
Responses..1002

The Virtual Machine Communication Facility... 1003
Using the Virtual Machine Communication Facility.. 1004
VMCF Protocol..1006
Descriptions of VMCF Functions..1009
Invoking VMCF Functions.. 1014
VMCF User Doubleword...1020
VMCF in an MP Environment..1020
DIAGNOSE Code X'68' Return Codes..1021
Data Transfer Error Codes... 1023

Appendix D. The Special Message Facility...1025

Appendix E. Logical Device Support Facility..1027

Appendix F. Reserved DIAGNOSE Codes...1029
DIAGNOSE Code X'40' – Clean-Up After Virtual IPL by Device... 1029

Usage Note...1029
Responses..1029

DIAGNOSE Code X'E0' – System Trace File Interface..1029
Subcode X'00000008' — Open (read-only).. 1031
Subcode X'0000000C' — Read..1031
Subcode X'00000010' — Close (read-only).. 1032
Usage Notes... 1033
Trace Block Containing CP Trace Table Entries...1033

DIAGNOSE Code X'214' – Pending Page Release.. 1033
Responses..1035

DIAGNOSE Code X'23C' – Address Space Services... 1035
Create-Space Function.. 1036
Destroy-Space Function...1037
Query-Space Function... 1037
Permit-Access Function...1038
Isolate-Space Function..1039

DIAGNOSE Code X'240' – Access List Services... 1040
Add-ALE Function.. 1040
Remove-ALE Function..1041
Responses..1042

DIAGNOSE Code X'244' – Mapping Services... 1042
Identify-pool Function... 1042
Define-mapping Function.. 1043
Remove-mapping function.. 1044
Save-list Function.. 1045
Responses..1046

DIAGNOSE Code X'254' – Access Real Subsystem..1046

 xv

Hardware Specifications..1046
Open CP Connection.. 1047
Close CP Connection..1049
Perform I/O.. 1050
Responses..1052
Access Real Subsystem External Interruption..1054

DIAGNOSE Code X'25C' – Directory Query.. 1054
Usage Notes... 1057
Responses..1058

DIAGNOSE Code X'264' – CP Communication... 1058
Subcode X'00000000'—Establish CP communication area... 1059
Subcode X'00000004'—Remove CP communication area...1060

DIAGNOSE Code X'278' – Extract XLINK Control Blocks.. 1060
Responses..1063

DIAGNOSE Code X'280' – Set POSIX IDs - security values...1063
Function EXCSETID - Request changes in POSIX security values for an exec() function call....... 1064
Function EXCSSID - Request changes in saved set-IDs for an exec() function call.......................1065
Responses..1066

DIAGNOSE Code X'29C' – Set-POSIX-IDs Services... 1069
Function SPXFUSER - Set User IDs (UIDs) for the Active Process... 1070
Function SPXFGRP - Set Group IDs (GIDs) for the Active Process.. 1072
Function SPXFNGRP — Change to a New Group... 1073
Function SPXFSGID — Change the supplementary group ID list... 1075
Responses..1076

DIAGNOSE Code X'2A0' – Query POSIX IDs.. 1076
Function QPXFPROC - Query Process Attributes..1077
Function QPXFUSER - Query the User Database.. 1078
Function QPXFGRP - Query the Group Database..1081
Function QPXFSGID - Query the Supplementary Group IDs..1083
Function QPXFCONF - Query POSIX Configuration Information..1085
Usage Note...1086
Responses..1086

DIAGNOSE Code X'2A4' – POSIX Process ID (PID) Services...1087
Function 0 - Identify the POSIX communication area..1087
Function 1 - Allocate a PID..1088
Function 2 - Deallocate a PID..1089
Responses..1089

DIAGNOSE Code X'2AC' – HCD Dynamic I/O... 1090
Responses..1090

DIAGNOSE Code X'2C0' – HMC Data Source Load...1093
DIAGNOSE Code X'2C4' – FTP Services... 1094

FPL..1095
Responses..1096

Notices..1099
Programming Interface Information...1100
Trademarks..1100
Terms and Conditions for Product Documentation.. 1100
IBM Online Privacy Statement.. 1101

Bibliography.. 1103
Where to Get z/VM Information.. 1103
z/VM Base Library..1103
z/VM Facilities and Features... 1104
Prerequisite Products..1106
Related Products... 1106

xvi

Index.. 1107

 xvii

xviii

Figures

1. Example of a DIAGNOSE Code in an Assembler Program..4

2. DIAGNOSE X'04' Register Entries...18

3. The Format of the User-Supplied Areas for the SEGEXT Function.. 67

4. The Format of the User-Supplied Areas for the FINDSPACE Operation..69

5. The Format of the User-Supplied Areas for the FINDSKEL, FINDSEGA, or FINDNSSA operations......... 70

6. The Format of the User-Supplied Output Area – Member List.. 72

7. The Format of the User-Supplied Areas for a 64-Bit FINDSPACE Operation.. 73

8. The Format of the User-Supplied Areas for a 64-Bit FINDSKEL or FINDSEGA Operation for a DCSS
or Member Segment, or a 64-Bit FINDNSSA Operation... 74

9. The Format of the User-Supplied Output Areas for a 64-Bit FINDSKEL or FINDSEGA Operation for
a Segment Space..75

10. 31-bit Base format dump address list (without an address space qualifier)..116

11. 31-bit Extended format dump address list (with an address space qualifier)......................................116

12. 64-bit Base format dump address list (without an address space qualifier)..116

13. 64-bit Extended format dump address list (with an address space qualifier)......................................117

14. DIAGNOSE X'A8' Synchronous General I/O Parameter List (HCPSGIOP) Format................................144

15. Fields in the VRDCBLOK DSECT..190

16. IUCV Two-Way Data Transfer... 298

17. Flow of the IUCV CONNECT/ACCEPT Protocol...311

18. Flow of the IUCV SEND/RECEIVE Protocol.. 312

19. Flow of the IUCV SEND/RECEIVE/REPLY Protocol.. 314

20. Flow of the IUCV SEND Protocol.. 315

21. Flow of the IUCV SEND/REPLY Protocol...315

22. APPCVM CONNECT Input Parameter List.. 416

 xix

23. Connection Parameter List Extension.. 418

24. Format of the PIP Variable..423

25. Format of a PIP Subfield...423

26. Example Format for a PIP Variable.. 424

27. APPCVM CONNECT Output Parameter List (Connection Complete Interrupt)..................................... 426

28. Connection Complete Extended Data.. 430

29. Connection Pending External Interrupt... 432

30. Connection Pending Extended Data, Part One: VM Area...435

31. Connection Pending Extended Data, Part Two: FMH5...438

32. Security Subfield in an Attach FMH5 for VM.. 439

33. Connection Pending Extended Data, Part Three: VM-Defined Variable-Length Section...................... 440

34. VM Communication Server Area...445

35. APPCVM QRYSTATE Input Parameter List..448

36. APPCVM QRYSTATE Output Parameter List... 449

37. APPCVM RECEIVE Input Parameter List.. 453

38. APPCVM RECEIVE Output Parameter List (Function Complete Interrupt)... 456

39. APPCVM SENDCNF Input Parameter List...466

40. APPCVM SENDCNF Output Parameter List (Function Complete Interrupt)..468

41. APPCVM SENDCNFD Input Parameter List.. 472

42. APPCVM SENDCNFD Output Parameter List (Function Complete Interrupt)....................................... 473

43. APPCVM SENDDATA Input Parameter List...477

44. APPC Logical Record Format.. 478

45. APPCVM SENDDATA Output Parameter List (Function Complete Interrupt)..482

46. Message Pending External Interrupt..489

47. APPCVM SENDERR Input Parameter List...492

xx

48. Error Log GDS Variable Format...494

49. APPCVM SENDERR Output Parameter List (Function Complete Interrupt)..496

50. APPCVM SENDREQ Input Parameter List.. 502

51. APPCVM SENDREQ Output Parameter List.. 503

52. SENDREQ (Request-to-Send) Interrupt... 504

53. APPCVM SETMODFY Input Parameter List.. 506

54. APPCVM SETMODFY Output Parameter List..507

55. APPCVM SEVER Input Parameter List..511

56. Error Log GDS Variable Format...513

57. APPCVM SEVER Output Parameter List (Function Complete Interrupt)... 516

58. SEVER External Interrupt... 519

59. IUCV ACCEPT Input Parameter List... 526

60. IUCV ACCEPT Output Parameter List... 527

61. User Data Field for CONNECT...530

62. IUCV CONNECT Input Parameter List.. 531

63. IUCV DCLBFR Input Parameter List... 535

64. IUCV DESCRIBE Output Parameter List...539

65. IUCV IPOLL Output Parameter List.. 541

66. IUCV QUERY Input Parameter List... 544

67. IUCV QUERY Output Parameter List (QRYTYPE=BUFFERS)..545

68. IUCV QUERY Output Parameter List (QRYTYPE=CONNECT)...545

69. IUCV SETCMASK Input Parameter List.. 551

70. IUCV SETMASK Input Parameter List...554

71. IUCV SEVER Input Parameter List..557

72. IUCV SEVER Output Parameter List (Sever Complete Interrupt)..558

 xxi

73. IUCV SEVER External Interrupt.. 560

74. IUCV TESTCMPL Input Parameter List... 563

75. IUCV TESTCMPL Output Parameter List...563

76. Overview of the CP Access Control Interface to an ESM... 590

77. Interface Specifications for the HCPRPIRA Entry Point.. 593

78. Interface Specifications for the HCPRPWEP Entry Point...595

79. Interface Specifications for the HCPRPEPX Entry Point..602

80. Interface Specifications for the HCPRPESG Entry Point (Part 1 of 2)... 603

81. Interface Specifications for the HCPRPESG Entry Point (Part 2 of 2)... 604

82. Interface Specifications for the HCPPWAPF Entry Point...606

83. Interface Specifications for the HCPDA0RL Entry Point (Part 1 of 2)... 611

84. Interface Specifications for the HCPDA0RL Entry Point (Part 2 of 2)... 612

85. Interface Specifications for the HCPDA0UL Entry Point (Part 1 of 2)... 613

86. Interface Specifications for the HCPDA0UL Entry Point (Part 2 of 2)... 614

87. Interface Specifications for the HCPDA0MC Entry Point...615

88. SPGBK DSECT... 765

89. SPRBK DSECT... 765

90. Guest data spaces...798

91. Granting Another User Access to an Address Space... 801

92. Graphic Representation of an ALET and an ALE.. 803

93. Accessing an Address Space.. 803

94. Using DEFWORKA within a Reentrant Program... 808

95. Using DEFWORKA within a Non-reentrant Program.. 809

96. Using DEFWORKA to Force Unique Macro Work Areas... 810

97. Using a Remote Macro Work Area.. 811

xxii

98. Page Fault Processing when VERSION=2.. 875

99. Group of 1 Subgroup That Has 4 Spans of Pages.. 883

100. Group of 2 Subgroups That Have 2 Spans of Pages in Each Subgroup...884

101. Group of 2 Subgroups That Have 2 Spans of Pages in Each Subgroup...884

102. Group of a Span of 18 Pages in One Logical Block.. 885

103. Group of a Span of 18 Pages in One Logical Block.. 885

104. Contents of the LSTMDISK Function Parameter List... 890

105. Summary of permissible collaborative memory management state combinations...........................899

106. Suggested Format of an External Attribute Buffer.. 993

107. The SEND Protocol... 1007

108. The SEND/RECV Protocol... 1008

109. The SENDX Protocol... 1009

110. The IDENTIFY Protocol.. 1009

111. DIAGNOSE X'2C4' FPL Parameter List Format.. 1095

 xxiii

xxiv

Tables

1. Examples of Syntax Diagram Conventions.. xxxv

2. Summary of Storage Protection Mechanisms.. 10

3. DIAGNOSE code X'00' — Bit Map Fields...13

4. Normal Exit Results with the SEGEXT Function... 77

5. Results of Exit with Error from DIAGNOSE code X'64'...78

6. DIAGNOSE Code X'84' Operations... 93

7. DIAGNOSE Code X'94' Condition Codes.. 120

8. DIAGNOSE Code X'94' Return Codes... 120

9. DIAGNOSE X'94' Symptom Record Processing Return Codes.. 122

10. DIAGNOSE X'94' Reason Codes for Return Code X'00'...123

11. DIAGNOSE X'94' Reason Codes for Return Code X'04'...123

12. DIAGNOSE X'94' Reason Codes for Return Code X'08'...123

13. DIAGNOSE X'94' Reason Codes for Return Code X'12'...123

14. DIAGNOSE X'A0' Program Checks..135

15. DIAGNOSE Code X'A4' Return Codes...141

16. DIAGNOSE Code X'A4' Return Codes...142

17. DIAGNOSE Code X'A4' Return Codes in the Guest's Register 15 with CC=3..142

18. DIAGNOSE Code X'A8' Return Codes in the Guest's Register 15 with CC=1..147

19. DIAGNOSE Code X'B4' Return Codes...151

20. Return Codes...153

21. Fields in the VRDCBLOK DSECT..191

22. Summary of the Effects of Byte X'19' Bits 6 and 7 on Read/Write Processing.....................................207

23. Status codes for block I/O entries..209

 xxv

24. DIAGNOSE X'250' condition codes.. 212

25. Condition codes and return codes for the Initialize function.. 212

26. Condition codes and return codes for the Read/Write function..212

27. Condition codes and return codes for the Remove function... 213

28. Program exceptions.. 214

29. Version definitions.. 226

30. Subcode X'00000004' Return Codes...227

31. Return Virtual LAN System Information (DSECT CSISRESP) ..228

32. Return IVL Membership Information (DSECT CSISISTR) ... 229

33. Subcode X'00000008' Return Codes...230

34. Subcode X'0000000C' Return Codes...231

35. Return Controller Information (DSECT CSICRESP)..231

36. Controller Information (DSECT CSICCSTR)..232

37. Vswitch Information (DSECT CSICVSTR)... 233

38. Subcode X'00000010' Return Codes...234

39. Subcode X'00000014' Return Codes...234

40. Return Guest LAN Information (DSECT CSIGRESP).. 235

41. Guest LAN Information (DSECT CSIGGSTR).. 235

42. Connected Adapter Information (DSECT CSIGASTR)..237

43. Authorized User Information (DSECT CSIGUSTR)... 237

44. Subcode X'00000018' Return Codes...237

45. Subcode X'0000001C' Return Codes...238

46. Return Virtual Switch Information (DSECT CSIVRESP)... 240

47. Virtual Switch Information (DSECT CSIVVSTR)... 240

48. RDEV Information (DSECT CSIVRSTR) .. 245

xxvi

49. Segment Information (DSECT CSIVSSTR)..249

50. Take-Over MAC Address Information (DSECT CSIVTSTR).. 250

51. Connected Adapter Information (DSECT CSIVASTR).. 250

52. Authorized User Information (DSECT CSIVUSTR)... 251

53. Authorized Port Information (DSECT CSIVPSTR).. 251

54. Authorized User VLAN Information (DSECT CSIVLSTR).. 252

55. Global Virtual Switch Member Information (DSECT CSIVMSTR).. 252

56. Subcode X'00000020' Return Codes...252

57. Return Virtual Port or Virtual NIC Information (DSECT CSIPRESP).. 254

58. Port or NIC Information (DSECT CSIPNSTR)... 254

59. Device Information (DSECT CSIPDSTR) .. 256

60. Data Device Details (DSECT CSIPTSTR)...257

61. Active Segment Information (DSECT CSIPSSTR).. 258

62. MAC Address Information (DSECT CSIPMSTR)... 259

63. Subcode X'00000024' Return Codes...259

64. MAC Services Return MAC Address (DSECT CSIMRESP)...261

65. Subcode X'00000030' Return Codes...261

66. Sequence of Functions... 302

67. CP System Services and Their User IDs... 318

68. Applicable Codes Based on the Condition Code..396

69. Possible APPC/VM Sever Codes... 399

70. Sever Codes Generated by VM... 400

71. APPC/VM States..404

72. APPC/VM States for Coordinated Resource Recovery...405

73. Error Conditions.. 408

 xxvii

74. Summary of Locally Known LU Names...420

75. APPC/VM-Defined SENDERR Codes...494

76. APPC Conversation States and Corresponding APPC/VM Implementation... 572

77. Base Set of APPC Verbs and APPC/VM Functions... 573

78. APPC Operator Control Verbs Mapped to AVS Commands... 574

79. Supported HCPRPD Return Codes... 600

80. Format of information in the HCPA0LBK control block... 615

81. Generic command audit format of ACIPARMS...637

82. Supported Return Codes.. 638

83. Generic DIAGNOSE Call Format of the ACIPARMS Parameter List... 638

84. Supported Return Codes.. 638

85. ACILVIDL and Buffer Data Examples for VLAN AWARE Virtual Switches... 639

86. ACILVIDL and Buffer Data Examples for Guest LANs and VLAN UNAWARE virtual switches..............639

87. (X)AUTOLOG Command Format of the ACIPARMS Parameter List... 640

88. (X)AUTOLOG ESM output fields in ACIPARMS... 641

89. Supported HCPRPWEP Return Codes for the AUTOLOG and XAUTOLOG...641

90. CHANGE Command Audit Format of the ACIPARMS Parameter List.. 642

91. Supported HCPRPIRA Return Codes..642

92. CHANGE Command Format of the ACIPARMS Parameter List..643

93. Supported HCPRPIRA Return Codes..643

94. CLOSE TO Command Format of the ACIPARMS Parameter List..644

95. Supported HCPRPIRA Return Codes for the CLOSE TO Command...644

96. COUPLE Command Format of the ACIPARMS Parameter List...644

97. Supported HCPRPIRA Return Codes for the COUPLE Command..645

98. COUPLEN Command Format of the ACIPARMS Parameter List.. 645

xxviii

99. Supported HCPRPIRA Return Codes for the COUPLEN Command... 646

100. FOR Command MAC/AUDIT Format of the ACIPARMS Parameter List...646

101. Supported Return Codes for the FOR Command...647

102. GIVE return... 647

103. LINK Command Format of the ACIPARMS Parameter List..648

104. Supported HCPRPIRA Return Codes for the LINK Command...648

105. LOGOFF Command Format of the ACIPARMS Parameter List.. 649

106. AT Command Guest LOGOFF Format of the ACIPARMS Parameter List...650

107. LOGON Command Format of the ACIPARMS Parameter List.. 650

108. LOGON ESM output fields in ACIPARMS.. 652

109. Supported HCPRPWEP Return Codes for the LOGON Command... 653

110. AT Command Guest LOGON Format of the ACIPARMS Parameter List.. 653

111. MESSAGE Command MAC/AUDIT Format of the ACIPARMS Parameter List..................................... 654

112. Supported Return Codes for the MESSAGE Command... 654

113. Supported HCPRPIRA Return Codes for the PURGE Command... 655

114. QUERY TAG FILE Command Format of the ACIPARMS Parameter List.. 655

115. Supported Return Codes.. 656

116. QUERY RDR/PRT/PUN Command Format of the ACIPARMS Parameter List...................................... 656

117. Supported HCPRPIRA Return Codes... 656

118. SEND Command Audit Call Format of the ACIPARMS Parameter List.. 657

119. SEND Command Security Label MAC Check Format of the ACIPARMS Parameter List..................... 657

120. Supported Return Codes.. 658

121. SPOOL Command Format of the ACIPARMS Parameter List...658

122. Supported HCPRPIRA Return Codes for the SPOOL TO Command.. 658

123. ACIPARMS format...659

 xxix

124. Supported Return Codes.. 659

125. START real printer with SECLABEL option authorization call.. 659

126. Supported Return Codes for the START Real Printer with SECLABEL...660

127. STORE HOST Command Format of the ACIPARMS Parameter List...660

128. Supported Return Codes.. 661

129. TAG Command Format of the ACIPARMS Parameter List... 661

130. Supported Return Codes for the TAG Command... 662

131. TRANSFER Command Format of the ACIPARMS Parameter List.. 662

132. Supported Return Codes for the TRANSFER Command..662

133. TRANSFER Command Format of the ACIPARMS Parameter List.. 663

134. Supported HCPRPIRA Return Codes... 663

135. TRSAVE TO Command Format of the ACIPARMS Parameter List... 664

136. Supported HCPRPIRA Return Codes for the TRSAVE TO Command.. 664

137. TRSOURCE Command Format of the ACIPARMS Parameter List..664

138. Supported HCPRPIRA Return Codes for the TRSOURCE Command...665

139. TRSOURCE ENABLE Command Format of the ACIPARMS Parameter List... 665

140. Supported Return Codes.. 666

141. VMRELOCATE Command Format of the ACIPARMS Parameter List... 666

142. VMDUMP TO Command and DIAGNOSE X'94' Format of the ACIPARMS Parameter List..................667

143. Supported Return Codes.. 667

144. DIAGNOSE Code X'14' Format of the ACIPARMS Parameter List... 668

145. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'14'.. 668

146. DIAGNOSE Code X'64' Format of the ACIPARMS Parameter List... 668

147. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'64'.. 669

148. DIAGNOSE Code X'68' Format of the ACIPARMS Parameter List... 669

xxx

149. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'68'.. 670

150. DIAGNOSE Code X'88' Format of the ACIPARMS Parameter List... 670

151. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'88'.. 670

152. DIAGNOSE Code X'B8' Format of the ACIPARMS Parameter List...671

153. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'B8'.. 671

154. DIAGNOSE Code X'BC' Format of the ACIPARMS Parameter List...671

155. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'BC'.. 672

156. DIAGNOSE Code X'D4' Format of the ACIPARMS Parameter List...672

157. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'D4'..673

158. DIAGNOSE Code X'E4' Command Format of the ACIPARMS Parameter List..................................... 673

159. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'E4'.. 674

160. DIAGNOSE Code X'290' Command Format of the ACIPARMS Parameter List................................... 674

161. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'290'.. 675

162. DIAGNOSE Code X'23C' Format of the ACIPARMS Parameter List...675

163. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'23C'..675

164. APPC CONNECT Format of the ACIPARMS Parameter List... 676

165. Supported HCPRPIRA Return Codes for APPC CONNECT...676

166. APPC setting of VMDALTID format of ACIPARMS.. 677

167. Supported Return Codes.. 677

168. APPC SEVER Format of the ACIPARMS Parameter List... 678

169. APPC connect with password validation..678

170. Supported Return Codes.. 679

171. Directory Command Format of the ACIPARMS Parameter List... 679

172. Supported Return Codes for a Directory Command.. 679

173. IUCV CONNECT Format of the ACIPARMS Parameter List.. 680

 xxxi

174. Supported HCPRPIRA Return Codes for IUCV CONNECT... 680

175. IUCV SEVER Format of the ACIPARMS Parameter List..680

176. MAINTCCW Format of ACIPARMS..681

177. Supported HCPRPIRA Return Codes... 681

178. MDISK Command Format of the ACIPARMS Parameter List...682

179. Supported HCPRPIRA Return Codes for MDISK..682

180. POSIX Set ID Format of the ACIPARMS Parameter List.. 683

181. POSIX Set IDs ESM output fields in ACIPARMS...684

182. Supported HCPRPIRA Return Codes for POSIX Set ID Functions.. 684

183. Query POSIX Group Database Format of the ACIPARMS Parameter List...684

184. Query POSIX group database output fields in ACIPARMS.. 685

185. Supported HCPRPIRA Return Codes for POSIX group database query..686

186. User Database Query Format of the ACIPARMS Parameter List... 686

187. Query POSIX user database output fields in ACIPARMS...688

188. Supported HCPRPIRA Return Codes for user database query... 688

189. Resource Access Authorization Check Format of the ACIPARMS Parameter List..............................689

190. Supported HCPRPIRA Return Codes for Resource Access Authorization Check............................... 690

191. Class and Resource Names Used by CP for Resource Access Authorization Check.......................... 690

192. RSTDSEG format of the ACIPARMS Parameter List...691

193. Supported HCPRPIRA Return Codes for RSDTSEG... 691

194. SCIF Event Audit Format of the ACIPARMS Parameter List.. 692

195. SCIF Event MAC Check Format of the ACIPARMS Parameter List.. 692

196. Supported Return Codes.. 692

197. SPFOPEN Format of the ACIPARMS Parameter List.. 693

198. Supported HCPRPIRA Return Codes... 693

xxxii

199. ACIPARMS Parameter List..694

200. ACIPARMS Parameter List..694

201. Supported HCPRPIRA Return Codes for a Promiscuous Mode Audit... 695

202. PRINT Format of the ACIPARMS Parameter List... 695

203. Supported HCPRPIRA Return Codes for PRINT.. 695

204. CP SET Commands with an IUCV Option... 737

205. Class 0 Events: Type, Data, and Event... 774

206. Attributes of Terminal Information Data Elements... 781

207. Class 1 Events: Type, Data, and Status.. 782

208. Class 2 Events: Type, Data, and Status.. 785

209. Class 3 Events: Type, Data, and Status.. 787

210. Class 4 Events: Type, Data, and Status.. 789

211. Converting an EC-mode PSW to a mapped PSW... 924

212. Constructing a mapped PSW..925

213. VMCF Return Codes from DIAGNOSE code X'68'..1002

214. Virtual Machine Communication Facility (VMCF) Functions... 1003

215. VMCF Function Codes for DIAGNOSE Code X'68'... 1015

216. Required VMCPARM Fields for VMCF Functions..1017

217. VMCMFUNC Subcodes - DIAGNOSE Code X'68'... 1019

218. DIAGNOSE Code X‘68’ Return Codes.. 1021

219. DIAGNOSE Code X‘68’ Data Transfer Error Codes.. 1024

220. Summary of Logical Device Support Facility Functions...1027

221. Hardware Flags...1048

222. Hardware Flags...1049

223. Hardware Flags...1050

 xxxiii

224. I/O Request Flags...1051

225. General condition code descriptions for all functions...1052

226. Condition codes and return codes for the Open CP Connection function.. 1052

227. Condition codes and return codes for the Close CP Connection function.. 1053

228. Condition codes and return codes for the Perform I/O function.. 1053

229. Perform I/O function completion status codes... 1054

230. DIAGNOSE X'25C' Function List...1056

231. DIAGNOSE X'25C'—Condition codes... 1058

232. Diagnose X'25C' - Return codes...1058

233. CP Subfunctions... 1059

234. DIAGNOSE X'280' condition codes..1066

235. Condition codes and return codes for changing effective and saved set-IDs.................................. 1066

236. Condition codes and return codes for changing saved set-IDs only...1068

237. Condition Codes for Query I/O Configuration Information (Function 0)...1091

238. Condition Codes and Return Codes for Perform Dynamic I/O Changes (Function 1)...................... 1091

239. DIAGNOSE Code X'2C4' Return Codes in Ry... 1096

xxxiv

About This Document

This document contains reference information pertaining to specific services and facilities of CP, such as
the DIAGNOSE instruction, IUCV, APPC/VM, and VM data spaces.

Intended Audience
This information is intended for systems programmers and applications programmers who will be writing
programs for IBM® z/VM®.

To get the most out of this information, you should have a general idea of what z/VM does and what a
virtual machine is. You should also have a working knowledge of Basic Assembler Language programming.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xxxv.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

© Copyright IBM Corp. 1991, 2023 xxxv

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

xxxvi About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where to Find More Information
For more information about z/VM functions, see the other documents listed in the “Bibliography” on page
1103.

About This Document xxxvii

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xxxviii z/VM: 7.3 CP Programming Services

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1991, 2023 xxxix

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xl z/VM: 7.3 CP Programming Services

Summary of Changes for z/VM: CP Programming Services

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6272-73, z/VM 7.3 (December 2023)
This edition includes terminology, maintenance, and editorial changes.

SC24-6272-73, z/VM 7.3 (May 2023)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.3.

[VM66679] VMEVENT Enhancements
With the PTF for APAR VM66679, z/VM 7.3 provides the following new and changed VMEVENT data for
use in operations automation, resource monitoring, and auditing:

• New disconnect and reconnect events. Reconnect events include logon-by and terminal information as
part of the event message.

• Additional logon-by and terminal information is added to the existing logon event.
• Class 0 type 3 and class 1 type 3 provide a full-precision (32-bit) timeout interval for the logoff timeout

service.
• An enhancement to the reporting of "runnable". The runnable event is now reported only when

"runnable" is a result of a state change. Superfluous reports of "runnable" when there is no need to
report an event are eliminated.

The following topic is updated:

• “Receiving *VMEVENT Events” on page 773

SC24-6272-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

Eight-member SSI support
This support increases the maximum size of a single system image (SSI) cluster from four members to
eight, enabling clients to grow their SSI clusters to allow for increased workloads and providing more
flexibility to use live guest relocation (LGR) for nondisruptive upgrades and workload balancing.

The following data area is updated:

• “SFBLOK - VM/SP 370 Spool File Control Block” on page 986

SC24-6272-06, z/VM 7.2 (May 2022)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.2.

© Copyright IBM Corp. 1991, 2023 xli

Miscellaneous updates for May 2022
References to IBM Z® Application Assist Processor (zAAP), which is not supported on IBM z13 and later
models, are removed. The following topic is updated:

• “Accounting Records for Virtual Machine Resource Usage (Record Type 1)” on page 699

SC24-6272-06, z/VM 7.2 (December 2021)
This edition includes changes to support product changes that are provided or announced after the
general availability of z/VM 7.2.

[VM66557] VSwitch Bridge Port Enhancements
With the PTF for APAR VM66557, z/VM 7.2 adds a new NICDISTRIBUTION option to the VSwitch
HiperSockets Bridge. When activated, the option enables the Bridge to distinguish and manage separately
the traffic that is generated by various HiperSockets connections that are on the same HiperSockets
CHPID. Traffic that exits the Bridge Port to an OSA link aggregation group is more evenly distributed
across the entire port group. Activation of the new option also enables the VSwitch to extract IPv4 and
IPv6 address assignments for display in the QUERY VSWITCH command, monitor records, and DIAGNOSE
code X'26C'.

The following topics are updated:

• “Subcode X'00000020'—Return Virtual Switch Information” on page 238
• “Subcode X'00000024'—Return Virtual Port, Virtual NIC or HiperSockets Logical Port Information” on

page 252

SC24-6272-05, z/VM 7.2 (July 2021)
This edition includes terminology, maintenance, and editorial changes.

SC24-6272-05, z/VM 7.2 (March 2021)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.2.

[VM66479] Spool information enhancements
With the PTF for APAR VM66479, z/VM enhances spool subsystem interfaces to provide additional
information. These extensions to the existing interfaces allow clients to manage spool files and volumes
more effectively. This support enables spool management software, such as the IBM Operations Manager
for z/VM, to facilitate client DASD migration and backup activities.

The following topics are updated:

• “DIAGNOSE Code X'D8' – Read Spool File Blocks on System Queues” on page 163
• “Selecting a File To Be Read” on page 764

[VM66201] z/Architecture Extended Configuration (z/XC) support
With the PTFs for APARs VM66201 (CP) and VM66425 (CMS), z/Architecture® Extended Configuration
(z/XC) support is provided. CMS applications that run in z/Architecture can use multiple address spaces.
A z/XC guest can use VM data spaces with z/Architecture in the same way that an ESA/XC guest can
use VM data spaces with Enterprise Systems Architecture. z/Architecture CMS (z/CMS) can use VM data
spaces to access Shared File System (SFS) Directory Control (DIRCONTROL) directories. Programs can
use z/Architecture instructions and registers (within the limits of z/CMS support) and can use VM data
spaces in the same CMS session. For more information, see z/VM: z/Architecture Extended Configuration
(z/XC) Principles of Operation.

xlii z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

The following topics are updated:

• “Address Translation Modes and Restrictions” on page 5
• “How Addresses Are Processed” on page 5
• “How Address Spaces Are Selected” on page 7
• “DIAGNOSE Code X'248' – Copy-To-Primary Service” on page 201 and subtopics
• “DIAGNOSE Code X'250' – Block I/O (Standard Blocksize)” on page 202 and subtopics
• DIAGNOSE code x'94' “Usage Notes Regarding Dumping a Virtual Machine” on page 118
• DIAGNOSE code x'94' “Responses” on page 120
• Chapter 24, “VM Data Spaces Overview,” on page 797 and subtopics
• “ADRSPACE — Address Space Services” on page 811 and subtopics
• “PFAULT Macro -- Page-Fault Handshaking Services” on page 866s
• “PFAULT TOKEN” on page 873
• Collaborative memory management assist “Implications for ESA/390, ESA/XC, and z/XC Guests” on

page 906
• 3270 accommodation facility “Background” on page 907
• Chapter 29, “Store Hypervisor Information (STHYI) Instruction,” on page 927 and subtopics

Miscellaneous updates
The following information is updated:

• DIAGNOSE code X'88' “Subcode X'08' – Validate User Authorization” on page 108

SC24-6272-04, z/VM 7.2 (September 2020)
This edition includes changes to support the general availability of z/VM 7.2.

Accounting Record Formats Information Moved
Information about Accounting Record Formats has been moved from z/VM: CP Planning and
Administration to Chapter 12, “Account System Service (*ACCOUNT),” on page 697.

Summary of Changes for z/VM: CP Programming Services xliii

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

xliv z/VM: 7.3 CP Programming Services

Part 1. CP DIAGNOSE Instructions

The capability of adding customer-written CP routines to the system allows you to define new DIAGNOSE
codes or replace existing DIAGNOSE codes by redefining them, and to enable or disable either new or
existing DIAGNOSE codes. See z/VM: CP Exit Customization for additional information.

This part contains the following chapters:

• Chapter 1, “The DIAGNOSE Instruction in a Virtual Machine,” on page 3, which tells you how to use
the DIAGNOSE instruction and the different types of DIAGNOSE instructions.

• Chapter 2, “The IBM-Supplied DIAGNOSE Codes,” on page 13, which provides a detailed description
of each IBM-Supplied DIAGNOSE code.

© Copyright IBM Corp. 1991, 2023 1

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3

2 z/VM: 7.3 CP Programming Services

Chapter 1. The DIAGNOSE Instruction in a Virtual
Machine

In a real processor, the DIAGNOSE instruction performs processor-dependent diagnostic functions. In a
virtual machine, you use the DIAGNOSE interface to request that CP perform services for your virtual
machine. When your virtual machine attempts to execute a DIAGNOSE instruction, control is returned to
CP. CP uses information provided in the code portion of the instruction to determine what service it should
perform. Once this service is provided, control returns to the virtual machine.

Thus, because a DIAGNOSE instruction issued in a virtual machine results only in returning control to
CP and not in performing real-processor DIAGNOSE functions, think of DIAGNOSE codes as a method of
communicating virtual machine requirements to CP.

Instruction Format
The machine language format of a DIAGNOSE instruction is:

83
is X'83', the machine language operation code for the DIAGNOSE instruction.

Note: There is no assembler mnemonic for DIAGNOSE.

RxRy
typically designate the general registers that contain the operand values or operand storage
addresses to be passed through the DIAGNOSE interface.

The use of the Rx and Ry fields varies by DIAGNOSE code and subcode. In some cases, Rx and/or Ry
may designate a pair of consecutive registers, referred to as registers Rx and Rx+1 and/or Ry and
Ry+1.

B
is the base register. IBM recommends that you specify Register 0 as the base register (see note “1” on
page 3 following).

DDD
is either all or part of the actual DIAGNOSE code value, in hexadecimal (see note “1” on page 3
following). This value is also called the displacement. IBM does not use codes X'100' through X'1FC'.

Notes:

1. With the DIAGNOSE instruction, the effective address (contents of the base register plus the
displacement) is not used to address the data. Ordinarily, the contents of the base register plus the
displacement equal the DIAGNOSE code. However, if you specify the base register to be register 0, its
contents are not added to the displacement; the displacement alone determines the DIAGNOSE code.
IBM recommends that you always specify the base register as register 0; therefore, you should always
set bits 16 through 19 to 0. The DIAGNOSE code, or displacement, must always be a multiple of four.

2. If Rx, Ry or, if applicable, Rx+1 or Ry+1 contains an address, it must be a second-level address (that is,
an address in the storage that appears real to the issuing virtual machine), unless otherwise specified.

3. The description of each DIAGNOSE instruction includes an Addressing Mode specification which
indicates whether it supports 24–bit, 31–bit or 64–bit addressing modes.

DIAGNOSE Instruction

© Copyright IBM Corp. 1991, 2023 3

4. Because DIAGNOSE instructions execute differently in a virtual machine than in a real machine,
your program should determine that it is operating in a virtual machine before issuing a DIAGNOSE
instruction, and prevent execution of a DIAGNOSE instruction when in a real machine. If the first byte
(version code) stored by the Store CPU ID instruction is X'FF', then the program is running in a virtual
machine.

5. A virtual machine issuing an I/O DIAGNOSE instruction should run with interrupts disabled. This
prevents the loss of information pertaining to the DIAGNOSE operation such as status conditions and
sense data.

6. Use of the DIAGNOSE instruction within a transaction will cause the transaction to abort with
either a restricted-instruction transaction-abort code or a transaction-constraint exception. (See
z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf) for
details on transactional execution.)

Example of the DIAGNOSE Instruction: The example in Figure 1 on page 4 demonstrates how to code
a DIAGNOSE code in a small Assembler program. This example happens to use DIAGNOSE code X'00',
which stores the z/VM extended identification code at a specified location in guest storage.

DIAG00 CSECT
*This demonstrates the use of DIAGNOSE code X'00', which
*stores the z/VM Identification Code at a specified address.
 BALR 12,0
 USING *,12
 LA 2,LOC STORAGE ADDRESS IN R2 (Rx)
 LA 3,L'LOC # BYTES TO BE STORED IN R3 (Ry)
 DC X'83',X'23',XL2'0000' PIECE TOGETHER THE DIAG. CODE
 BR 14
 DS 0D FORCE DOUBLEWORD BOUNDARY
LOC DS XL64 STORAGE LOCATION
 END

Figure 1. Example of a DIAGNOSE Code in an Assembler Program

The DC (Declare Constant) line in this program is the actual DIAGNOSE code.

X'83'
is the machine language operation code for the DIAGNOSE instruction.

X'23'
is the specification of the RxRy general register pair. Here, Rx is 2 and Ry is 3.

XL2'0000'
is the base register and the displacement. The base register (0) is the first half byte. The remaining
bits are the displacement, which (for the DIAGNOSE instruction) is the 3-digit hexadecimal DIAGNOSE
code (000).

Macro Format
Using the DIAG macro automatically generates the correct machine format of the DIAGNOSE instruction.
The macro format for the DIAG macro is:

label

DIAG Rx , Ry , code

DIAG
Requests that CP perform the DIAGNOSE instruction.

Rx
is the general register that contains the Rx operand value or operand storage address required for the
particular DIAGNOSE function.

DIAGNOSE Instruction

4 z/VM: 7.3 CP Programming Services

https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

Ry
is the general register that contains the Ry operand value or operand storage address required for the
particular DIAGNOSE function.

code
is the actual DIAGNOSE value. This code can be specified as anything that is acceptable for a Y-type
address constant. The constant must resolve to a supported DIAGNOSE code.

Example of the DIAG Macro:

DIAG 2,3,X'0000'

The above example generates the X'83' instruction for DIAGNOSE code X'00'.

Privilege Classes
Some DIAGNOSE codes, like some CP commands, are reserved for authorized users only. Each
DIAGNOSE code description in this section tells you who may issue that particular code. For more
information on the letter values used in this entry, see z/VM: CP Commands and Utilities Reference.

Address Translation Modes and Restrictions
When used without a qualifier, the term XC encompasses both ESA/XC and z/XC architectures. The
qualified terms ESA/XC and z/XC are used only when it is important to distinguish one architecture from
the other.

A program can change mode from ESA/XC mode to z/XC mode and from z/XC mode to ESA/XC mode.

Some DIAGNOSE codes can be issued only by XC virtual machines, and others can be issued by any type
of virtual machine. Some DIAGNOSE codes cannot be issued by an XC virtual machine in access register
mode, while some can be issued but only refer to the host-primary address space. Some DIAGNOSE
codes can be issued only when 370 Accommodation is active. Some DIAGNOSE codes can use logical
addresses, which refer to any guest address space, including the real, primary, secondary, or home space
or any address space designated by an ALET in an access register. These capabilities and restrictions are
noted in the description of the DIAGNOSE code.

Except for Diagnoses that accept logical addresses, XC virtual machines in primary space mode and non-
XC virtual machines ignore the access registers; all addresses refer to the host-primary address space.
XC virtual machines in access register mode ignore the contents of access register 0 when an address
is passed in general register 0; the access register is assumed to contain an ALET X'00000000', which
indicates the host-primary address space. All exceptions are noted in the description of the DIAGNOSE
code.

A DIAGNOSE code issued by ESA, XA, and Z virtual machines may refer to a logical address. Such
addresses are references to the address space identified by the translation and address-space control
bits in the guest Program Status Word (PSW). This means that the guest can refer to an address that
is in its real, primary, secondary, or home space, as well as one that is access-register designated. In
access-register mode, the access register corresponding to the general register that contains a logical
address is used to obtain the ALET for the address space, although if access register 0 is designated it is
assumed to contain an ALET of X'00000000'.

The description of each DIAGNOSE instruction includes an Addressing Mode specification which
indicates whether it supports 24–bit, 31–bit or 64–bit addressing modes.

How Addresses Are Processed
z/VM processes addresses according to the type of virtual machine in which a guest is running and the
addressing mode which is set.

DIAGNOSE Instruction

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 5

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Type of Guest Address Length Address Space Containing Address

ESA and XA 24- or 31-bit, depending on the
addressing mode1

host-primary2

ESA, XA, and ESA/XC 24- or 31-bit, depending on the
addressing mode1

guest-real, guest-primary, guest-
secondary, guest-home, or ALET-
specified4, 5

ESA/XC, primary-space mode 24- or 31-bit, depending on the
addressing mode1

host-primary

ESA/XC, access-register mode 24- or 31-bit, depending on the
addressing mode1

host-primary or ALET-specified,
depending on the DIAGNOSE
function

z/XC, primary-space mode 24-, 31-, or 64-bit, depending on
the addressing mode1

host-primary

z/XC, access-register mode 24-, 31-, or 64-bit, depending on
the addressing mode1

host-primary or ALET-specified,
depending on the DIAGNOSE
function

ESA, XA, and Z in
z/Architecture mode

24-, 31-, or 64-bit, depending on
the addressing mode1

host-primary2, 3

ESA, XA, and Z in
z/Architecture mode

24-, 31-, or 64-bit, depending on
the addressing mode1

guest-real, guest-primary, guest-
secondary, guest-home, or ALET-
specified5

Notes:

1. Exception: I/O DIAGNOSE codes are always processed in 31-bit mode.
2. With the exception of address spaces accessed through DIAGNOSE code X'248', these types of virtual

machines have access to a single host (CP) created absolute address space, in which all guest real
and absolute addresses reside. This is the absolute address space created by CP at log on time to
represent the virtual machine's main storage.

3. z/Architecture has 8-byte register values. Address values passed for DIAGNOSE instructions in 64-bit
addressing mode use all 8 bytes of the register.

4. An XC virtual machine can operate only in primary-space mode or in access-register mode and thus
may use logical addresses that are either guest-real or ALET-specified.

5. The DIAGNOSE must be defined as accepting a logical address, in which case the address space is
selected based on the translation and address-space control bits in the guest PSW at the time the
DIAGNOSE instruction is issued.

Unless otherwise specified, Most addresses passed in DIAGNOSE functions and CP programming
interface macros are guest real addresses. Those functions that perform I/O operations or cross-virtual-
machine communications generally take guest absolute addresses. In cases where the addressed area
is referenced asynchronously (that is, during a process that continues after the DIAGNOSE instruction
itself completes), addresses are also guest absolute. Consult the description of the individual DIAGNOSE
function to determine whether its operand addresses are real or absolute.

Guest real addresses in the host-primary space are subject to prefixing, whereas guest absolute
addresses are not. Addresses in spaces other than the host-primary space are never subject to
prefixing. (In particular, references using an ALET other than X'00000000' are not subject to prefixing.)
For more information on real and absolute addresses and prefixing, see the Enterprise Systems
Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf), z/VM: ESA/XC
Principles of Operation, z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/
a227832d.pdf), or z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, based on
the architecture mode of the virtual machine.

DIAGNOSE Instruction

6 z/VM: 7.3 CP Programming Services

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

Unless otherwise specified, all storage references by the DIAGNOSE and IUCV instructions and by CP
programming interface macros are multiple-access references, as defined in the Enterprise Systems
Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf), z/VM: ESA/XC
Principles of Operation, z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/
a227832d.pdf), or z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, based on
the architecture mode of the virtual machine.

How Address Spaces Are Selected
When a virtual machine logs on, a host address space is created to serve as the virtual
machine's storage. This storage appears as absolute storage (as defined in the Enterprise Systems
Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf), z/VM: ESA/XC
Principles of Operation, z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/
a227832d.pdf), or z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, based on
the architecture mode of the virtual machine) to the program running in the virtual machine. This address
space is called the virtual machine's host-primary address space. Using VM data spaces, a virtual machine
can also gain access to other host address spaces, which may be other virtual machines' host-primary
spaces or data spaces created by this or other virtual machines.

XA, ESA, and Z virtual machines can reference these additional address spaces through DIAGNOSE
code X'248' only. XC virtual machines can switch between two translation modes, called primary-space
mode and access-register mode. Like a non-XC virtual machine, an XC machine in primary-space mode
addresses only the host-primary space. An XC virtual machine in access-register mode can reference
data in all accessible address spaces directly using nearly the full instruction set, including most of the
DIAGNOSE functions described here.

XA, ESA, and Z machines can create their own address spaces and can switch among five translation
modes called real-space mode, primary-space mode, secondary-space mode, home-space mode, and
access-register mode. DIAGNOSE codes that accept logical addresses for parameters use the address
space designated by the translation and address-space control bits in the guest PSW to determine which
address space the logical address references.

For each storage address referenced, the descriptions of the individual DIAGNOSE codes specify whether
the address is a host-primary address regardless of translation mode, a guest-logical address whose
address space designation is determined by the guest PSW, or an AR-specified or ALET-specified address.
An AR-specified address is one for which the address space is identified by an Access-List-Entry Token
(ALET) in an access register. An ALET-specified address is one for which the address space is identified
by an ALET in a parameter list. In either case, the ALET is translated by means of host access-register
translation (host ART) to identify the target address space.

For more information on access registers, ALETs, and host ART, see Enterprise Systems Architecture/390
Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf) and z/VM: ESA/XC Principles of
Operation. For information on creating and gaining access to host address spaces see Chapter 25, “CP
Macros,” on page 807.

How Error Conditions Are Reported
While trying to perform a DIAGNOSE function, CP may encounter errors. Most DIAGNOSE functions
report these errors through program interruptions, as other instructions do. Some functions report errors
through condition codes and return codes instead. The condition codes and return codes are unique
to each function and are defined with the individual functions. The program interruptions are explained
below.

The DIAGNOSE instruction in a virtual machine can give the following program interruptions:

Program Interruption Cause

Operation exception

Privileged-operation exception

For some DIAGNOSE functions, these exceptions indicate that the
virtual machine is not authorized to perform the function.

DIAGNOSE Instruction

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 7

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3

Program Interruption Cause

Specification exception Any of the following:

• The DIAGNOSE function code is not supported.
• An unknown subfunction was requested.
• For some DIAGNOSE functions, the virtual machine is not authorized

to perform the function.
• The DIAGNOSE function is not supported in the architecture mode of

the virtual machine.
• A virtual machine issued a DIAGNOSE function that does not support

64-bit addressing mode.
• An incorrect register number was specified.
• A field in a parameter list is invalid, or a reserved field is non-zero.
• An operand or parameter list is not aligned on the required storage

boundary.
• An operand's address and length are such that the operand would

cross a 4K-byte boundary, for a DIAGNOSE function that does not
support operands crossing such a boundary.

Operand exception For I/O functions patterned after 370-XA and ESA/390 I/O
instructions, an invalid subchannel ID was specified or an operand
contained an invalid field value or a non-zero reserved field.

Access exceptions (see “Access
Exceptions” on page 8.)

An error occurred while attempting to reference an operand in storage.

Note that certain conditions, such as an invalid parameter-list field or an attempt to perform an
unauthorized function, are reported differently for different DIAGNOSE functions. Consult the description
of the individual function for specific information.

Access Exceptions
As explained in Enterprise Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/
epubs/pdf/dz9ar008.pdf), z/VM: ESA/XC Principles of Operation, z/Architecture Principles of
Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf), and z/VM: z/Architecture Extended
Configuration (z/XC) Principles of Operation, the term access exceptions refers to a class of program
interruptions that can arise while trying to refer to an operand in storage. These are:
Addressing exception

The storage address designates a location not available in the target address space. For an address
space which is this or another virtual machine's host-primary space, this happens when the address is
above the defined storage size and does not designate a location in a saved segment loaded into the
address space. For an address space created through VM Data Spaces services, this happens when
the address is above the address-space size specified when the space was created.

Protection exception
The attempted storage reference (fetch or store) is forbidden by one of several protection
mechanisms. These mechanisms are described below.

ALET-specification exception
For an XC virtual machine in access-register mode, the ALET designating the address space in which
the operand resides is not a correctly-formed ALET.

Addressing-capability exception
For an XC virtual machine in access-register mode, the ALET designating the address space in which
the operand resides is correctly-formed but designates a host access-list entry that is in the revoked
state.

DIAGNOSE Instruction

8 z/VM: 7.3 CP Programming Services

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

ALEN-translation exception
For an XC virtual machine in access-register mode, the ALET designating the address space in which
the operand resides is correctly-formed but does not designate a host access-list entry that is in
either the valid or the revoked state.

For more information on ALETs and on host access-list entries and their states, see z/VM: ESA/XC
Principles of Operation or z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation.

Condition Codes and Return Codes
After CP executes a DIAGNOSE code, certain responses may be sent back to you indicating whether the
execution was successful. Three types of responses that you may receive are:

• Condition codes (sometimes referred to as completion codes), which appear in the PSW (program
status word).

• Return codes, which appear in a register. The exact register where they appear is specified in the
responses section of the documentation for each DIAGNOSE code, along with both decimal and
hexadecimal values for each return code.

• Program Exceptions.

The responses section of each DIAGNOSE code shows the significance of all applicable condition codes
and return codes.

Storage Protection Mechanisms
Several means are provided to control access to storage by DIAGNOSE and other instructions. Some of
these apply to fetch references, that is, attempts to use the contents of storage as input to a function.
Others apply to store references, that is, attempts to place function results into storage. A third class
of reference, update, involves both fetching and storing. Both fetch- and store-protection mechanisms
apply to update references. Violation of these mechanisms generally results in a program interruption for
protection exception, or in a return code specific to the invoked DIAGNOSE function.

Some protection mechanisms apply to synchronous references only, that is, to references that occur
during the execution of the DIAGNOSE instruction itself. Asynchronous references, such as those for an
I/O operation initiated by a DIAGNOSE function that does not wait for completion, are not subject to
such mechanisms. In addition, some mechanisms are not enforced for I/O and cross-virtual-machine
communication functions at all, whether they are synchronous or not. In all cases, an access must pass
every enforced protection mechanism to succeed. If any test fails, access is denied.

Unless otherwise specified, the DIAGNOSE instruction enforces all applicable protection mechanisms.

The specific protection mechanisms are:
Key-controlled protection

Under key-controlled protection, a four-bit access key (usually from the PSW, but for some operations,
specified as an operand) is compared with the access-control bits of the storage key of each 4K-byte
block in guest absolute storage. If the keys match, or if the access key is zero, then the access is
permitted; if not, then store accesses are forbidden, and an additional fetch-protection bit for the
storage block determines whether fetch accesses are forbidden as well. Not all DIAGNOSE functions
enforce key-controlled protection.

In XA, ESA, XC, and Z virtual machines, certain additional mechanisms can modify key-controlled
protection for storage references synchronous with the instruction (DIAGNOSE). They are:
Fetch-protection override

Fetch-protection override (FPO) inhibits key-controlled fetch protection for effective addresses
0-2047 in the host-primary address space; these addresses generally map to reserved locations
in the prefix area. That is, FPO causes fetches from these addresses to be permitted even if the
keys do not match and the block at 0-4095 is marked fetch-protected. FPO is enabled by control
register 0, bit 6; if this bit is off, then FPO is not invoked, and addresses 0-2047 are handled
exactly like addresses 2048-4095. Not all DIAGNOSE functions honor FPO. Also, because FPO

DIAGNOSE Instruction

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 9

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

suppresses key-controlled protection, it is not relevant in cases where key-controlled protection is
not enforced.

Storage-protection override
Storage-protection override (SPO) is an optional feature on ESA/390 processors. SPO appears
installed on the virtual machine if and only if it is installed on the real machine. SPO suppresses
key-controlled protection, for both fetches and stores, for storage blocks whose access-control
bits have the value 9, regardless of the value of the access key. SPO is enabled by control
register 0, bit 7; if this bit is off, then SPO is not invoked, and key 9 is treated no differently from
other keys. Because SPO suppresses key-controlled protection, it is not relevant in cases where
key-controlled protection is not enforced.

Fetch-protection override and storage-protection override are not applicable to asynchronous
references, nor to references to channel control words (CCWs), indirect data address words (IDAWs),
or the data designated by CCWs and IDAWs.

Low-address protection
Low-address protection (LAP) prevents stores into effective addresses 0-511 in the host-primary
address space; these addresses generally map to reserved locations in the prefix area. LAP is enabled
by control register 0, bit 3; if this bit is off, then LAP is not invoked, and addresses 0-511 receive
no special protection. LAP applies only to synchronous store references. LAP does not apply to data
buffers referenced by CCWs and IDAWs. Not all DIAGNOSE functions enforce LAP.

Host page protection
Host page protection prohibits storing into those 4K-byte blocks that contain read-only pages of a
saved segment. Host page protection also prohibits changing the storage keys for those pages. Host
page protection applies to both synchronous and asynchronous store references and is enforced by all
DIAGNOSE functions.

Host access-list-controlled protection
Host access-list-controlled protection prohibits storing into address spaces referenced through host
access-list entries that convey read-only access. This mechanism never applies to references to the
host-primary space made implicitly or through ALET X'00000000', because these references do not
involve an access-list entry. Host access-list-controlled protection does apply to references through
a non-zero ALET which happens to designate the host-primary space. Host access-list-controlled
protection is applicable only in access-register mode in an XC virtual machine, because that is the
only mode in which the program can store into spaces other than the host-primary space. Host
access-list-controlled protection applies to both synchronous and asynchronous store references and
is enforced by all DIAGNOSE functions.

Table 2 on page 10 summarizes these storage protection mechanisms and the cases in which they apply
to DIAGNOSE functions.

Table 2. Summary of Storage Protection Mechanisms

Protection Mechanism

Applies to

Synch Fetch Synch Store
Asynch
Fetch

Asynch
Store

Key-controlled protection Varies Varies Varies Varies

Fetch-protection override Varies1 No No No

Storage-protection override Varies2 Varies2 No No

Low-address protection No Varies No No

Host page protection No Yes No Yes

Host access-list-controlled protection No Yes No Yes

DIAGNOSE Instruction

10 z/VM: 7.3 CP Programming Services

Table 2. Summary of Storage Protection Mechanisms (continued)

Protection Mechanism

Applies to

Synch Fetch Synch Store
Asynch
Fetch

Asynch
Store

Legend:
Yes

All DIAGNOSE functions enforce the mechanism on this type of access.
Varies

Some DIAGNOSE functions enforce the mechanism on this type of access. Unless otherwise specified in
the DIAGNOSE function description, the mechanism is enforced.

No
The mechanism does not apply to this type of access.

1

Fetch-protection override is a modification to key-controlled protection; therefore, it can apply only when
key-controlled protection applies. However, some DIAGNOSE functions which enforce key-controlled
protection still do not honor fetch-protection override. Unless otherwise specified in the DIAGNOSE
function description, fetch-protection override does apply to synchronous fetches whenever key-controlled
protection is enforced.

2

Storage-protection override is a modification to key-controlled protection for synchronous storage
references; it applies when and only when key-controlled protection is enforced.

DIAGNOSE Codes That Are Not Programming Interfaces
The DIAGNOSE codes described in Chapter 2, “The IBM-Supplied DIAGNOSE Codes,” on page 13 are
supported Programming Interfaces of z/VM.

The DIAGNOSE codes described in Appendix F, “Reserved DIAGNOSE Codes,” on page 1029 are reserved
for IBM use and are NOT Programming Interfaces.

DIAGNOSE Instruction

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 11

DIAGNOSE Instruction

12 z/VM: 7.3 CP Programming Services

Chapter 2. The IBM-Supplied DIAGNOSE Codes

This chapter contains information on the individual DIAGNOSE codes available to z/VM users. Wherever
possible, this information includes the following:

• Privilege class of the DIAGNOSE code
• Entry and exit register values
• Condition codes and return codes
• Programming exceptions
• Usage notes.

These DIAGNOSE codes are provided by IBM and by default are enabled. You can disable, modify, and
enable them with system configuration statements or commands. See z/VM: CP Commands and Utilities
Reference for specific command information and z/VM: CP Exit Customization for "how-to" information.

DIAGNOSE Code X'00' – Store Extended-Identification Code
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'00' to examine the z/VM extended-identification code.

Entry Values:
Rx

Contains the guest real storage address where you want to store the z/VM extended-identification
code. This address must be aligned on a doubleword boundary.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space into which you want to store the z/VM extended-identification code. If Rx
designates general register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode,
the z/VM extended-identification code is in the host-primary address space.

Ry
Contains the number of bytes that you want to store. This value is an unsigned binary number.

Exit Values:
Ry

Contains its original value less the number of bytes that were stored.

Usage Notes
1. For a discussion of how z/VM processes addresses, see “How Addresses Are Processed” on page 5.
2. Execution of the DIAGNOSE code X'00' instruction makes a copy of the information shown in Table 3

on page 13 available to your virtual machine at the location specified by Rx (and in Ax if your virtual
machine is an XC virtual machine in access-register mode).

Please note that the service level reported assumes that all service has been applied for this level. If
the service updates have been applied selectively, then the service level reported may be incorrect.

Table 3. DIAGNOSE code X'00' — Bit Map Fields

Field Characteristics Description

Reserved (formerly
"System name")

8 bytes, EBCDIC Contains the constant ‘VM/ESA’ (for
compatibility with the prior product name)

DIAGNOSE Code X'00'

© Copyright IBM Corp. 1991, 2023 13

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3

Table 3. DIAGNOSE code X'00' — Bit Map Fields (continued)

Field Characteristics Description

Environment 2 bytes, binary Identifies the z/VM execution environment.
See “2.a” on page 14 for more information.

Version Information 1 byte, hexadecimal The version number of the product identified
in the System Name field. It is an unsigned
binary number. See usage note “5” on page
16.

Version code 1 byte, hexadecimal Bits 0-7 of the host system's CPUID. This
field will always be 00 when the z/VM host
system is running in a logical partition. This
field will always be FF when the z/VM host
system is running on z/VM.

reserved 2 bytes, hexadecimal z/VM stores zeros in this field.

Processor address 2 bytes, hexadecimal The address of the processor on which z/VM
is currently running

User ID 8 bytes, EBCDIC The user ID of the virtual machine issuing the
DIAGNOSE

Licensed program bit
map

8 bytes, hexadecimal The level of CP that is installed. See “2.b” on
page 14 for the bit settings.

Time zone differential 4 bytes, hexadecimal Represents the time zone differential in
seconds from Coordinated Universal Time
(UTC) (see note “2.c” on page 16 below).

Release Information 4 bytes, hexadecimal The first byte is the release number, the
second byte is the release modification level,
and the third and fourth bytes are the service
level. All three subfields are unsigned binary
numbers.

Notes:

a. The z/VM execution environment bits contain:

• When bit 0 = 1, CP is running in a logical partition (LPAR mode). Bit 0 will always have a value of 1
because the machines supported by z/VM V6.1 and later provide only LPAR mode.

• When bit 1 = 1, CP is running in 64-bit mode. Bit 1 will always have a value of 1 because the
DIAGNOSE code X'00' instruction can be issued only when CP runs in 64-bit mode.

• Bits 2 to 15 are reserved and are currently zeros.
b. The bit map contains:
X'0000000000000000'

for VM/XA SF 1
X'4000000000000000'

for VM/XA SF 2
X'6000000000000000'

for VM/XA SP™ 1
X'7000000000000000'

for VM/XA SP 2
X'7800000000000000'

for VM/XA SP 2 with APSS

DIAGNOSE Code X'00'

14 z/VM: 7.3 CP Programming Services

X'7C00000000000000'
for VM/XA SP 2.1

X'7E00000000000000'
for VM/XA SP 2.1 spool file origin enhancements

X'7F00000000000000'
for VM/ESA Version 1 Release 1.0 ESA Feature

X'7F80000000000000'
for VM/ESA Version 1 Release 1.1

X'7FC0000000000000'
for VM/ESA Version 1 Release 2.0

X'7FE0000000000000'
for VM/ESA Version 1 Release 2.1

X'7FF0000000000000'
for VM/ESA Version 1 Release 2.2

X'7FF8000000000000'
for VM/ESA Version 2 Release 1.0

X'7FFE000000000000'
for VM/ESA Version 2 Release 2.0

X'7FFF000000000000'
for VM/ESA Version 2 Release 3.0

X'7FFF800000000000'
for VM/ESA Version 2 Release 4.0

X'7FFFC00000000000'
for z/VM Version 3 Release 1.0

X'7FFFE00000000000'
for z/VM Version 4 Release 1.0

X'7FFFF00000000000'
for z/VM Version 4 Release 2.0

X'7FFFF80000000000'
for z/VM Version 4 Release 3.0

X'7FFFFC0000000000'
for z/VM Version 4 Release 4.0

X'7FFFFE0000000000'
for z/VM Version 5 Release 1.0

X'7FFFFF0000000000'
for z/VM Version 5 Release 2.0

X'7FFFFF8000000000'
for z/VM Version 5 Release 3.0

X'7FFFFFC000000000'
for z/VM Version 5 Release 4.0

X'7FFFFFE000000000'
for z/VM Version 6 Release 1.0

X'7FFFFFF000000000'
for z/VM Version 6 Release 2.0

X'7FFFFFF800000000'
for z/VM Version 6 Release 3.0

X'7FFFFFFC00000000'
for z/VM Version 6 Release 4.0

X'7FFFFFFE00000000'
for z/VM Version 7 Release 1.0

DIAGNOSE Code X'00'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 15

X'7FFFFFFF00000000'
for z/VM Version 7 Release 2.0

X'7FFFFFFF80000000'
for z/VM Version 7 Release 3.0

Bit 13 (X'0004000000000000') indicates whether Year 2000 support is present in CP.

To determine what VM environment you are in and what CP resources are available to you, use the
high-order bit from this bit map. Specifically, if the high-order bit is on, the environment is VM/SP,
VM/SP HPO, or VM/ESA® (370 Feature). If the high-order bit is off, the environment is VM/XA SP,
VM/ESA (ESA Feature), or z/VM. Do not try to get this information from the first five bytes returned
by DIAGNOSE code X'00'.

c. The time zone differential is a signed hexadecimal fullword value in seconds. Negative values
represent differentials west of Coordinated Universal Time (UTC), and positive values represent
differentials east of Coordinated Universal Time.

3. If z/VM is executing in a virtual machine, up to 40 bytes of extended identification data is appended
to the first 40 bytes described above. Up to five nested levels of z/VM virtual machines are supported
by this DIAGNOSE instruction. Thus, a maximum of 200 bytes of data can be returned to the virtual
machine that initially issued the DIAGNOSE instruction.

4. The CP level does not indicate the release of CMS. To determine the release of CMS, use the "Query
Functional Level of CP and CMS" routine (DMSQEFL), which is described in z/VM: CMS Callable Services
Reference. DMSQEFL also returns the release of CP.

5. In VM/ESA Version 2 Release 1.0, the Version Information byte was created from the third byte of the
Environment field. Because VM releases prior to VM/ESA Version 2 Release 1.0 are not being updated
by APAR, the Version Information for all of these releases is X'00'. For VM/ESA Version 2 Release
1.0 and later, the Version Information will reflect the true version number. For example, the Version
Information for VM/ESA Version 2 Release 1.0 is X'02'.

6. When part of an SSI cluster, the diagnose x'00' output depends on the relocation domain to which
the issuing user is assigned. This output shows the virtual CP level that is being presented to the
issuer of the diagnose. Virtual CP levels may differ among users on the same system when they belong
to different relocation domains. See the explanation of relocation domains in z/VM: CP Planning and
Administration for more details. Also see the documentation of the CP SET VMRELOCATE and CP
QUERY VMRELOCATE commands and the VMRELOCATE directory statement for details about how a
user is assigned to a relocation domain.

Responses
Program Exceptions: These program exceptions can occur if the DIAGNOSE code X'00' is given incorrect
input data:

Problem Encountered Cause

Specification exception The address contained in Rx is not on a doubleword boundary.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store the extended ID code.

DIAGNOSE Code X'04' – Examine Host Storage

Privilege Class: C, E

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'04' to examine host storage for diagnostic, monitoring, and tuning purposes only.

Entry Values:

DIAGNOSE Code X'04'

16 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Rx
Contains the guest real address of a list of host addresses that you want to examine.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the list of host addresses that you want to examine. If Rx designates
general register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the list of
host addresses is in the host-primary address space.

Ry
Contains:

• The number of entries in the list
• An indicator of the address format (31-bit or 64-bit).
• An indicator of the length of data to be returned for each entry.
• An indicator of the address type (host logical or host real)

Ry+1
Contains the guest real address of the result field. The result field contains the values retrieved from
the specified host locations.

When Ry is register 15, Ry+1 is register 0.

Ay+1
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space of the result field. If Ry+1 designates general register 0, if Ay+1 contains
X'00000000', or if the virtual machine is not in XC mode, the result field is in the host-primary address
space.

Usage Notes
1. The guest real addresses that you specify in Rx and Ry+1 must be in the same page of guest real

storage. In XC virtual machines in access register mode, the ALET in Ax (or zero if Ax designates
access register 0) must match the ALET in Ay+1 (or zero if Ay+1 designates access register 0).

2. Because this DIAGNOSE code is intended mainly for system performance monitoring, it is
recommended that the page addressed by Rx and Ry+1 also be resident in host storage at the time
the DIAGNOSE instruction is executed. This can be accomplished by having the instruction itself on
the same page or by locking the page in host storage; otherwise, DIAGNOSE code X'04' processing
causes a page to be paged-in and therefore may affect the performance monitoring data.

3. For a discussion of how z/VM processes addresses, see “How Addresses Are Processed” on page 5.
4. For each address in the list of host addresses, z/VM provides the data obtained from that address.

z/VM stores this data into the result field identified by Ry+1, and possibly by Ay+1 if the virtual
machine is an XC virtual machine running in access-register mode.

Entries in the list of addresses pointed to by Rx correspond (1-to-1) to the entries in the result field
pointed to by Ry+1. Execution of this DIAGNOSE can be thought of as a loop that fetches the first
element from the list of addresses (pointed to by Rx) and stores the data from that location into the
first element of the result field (pointed to by Ry+1). Then the second address is fetched and the
second data item is stored. This continues until the number of addresses in the count field have been
fetched and the corresponding data stored or until an exception is encountered.

DIAGNOSE Code X'04'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 17

Figure 2. DIAGNOSE X'04' Register Entries

It is possible for the results array to overlap the address array. If destructive overlap occurs, incorrect
data may be returned. An addressing exception may be presented when destructive overlap causes
an address to change before it is fetched.

An overlap can occur only if the Ry+1 address is greater than the Rx address and yet within the
bounds of the addresses to be examined.

5. In a multiprocessor environment, each processor has a prefix register that it uses to relocate
addresses between 0 and 4095 (8191 if the host is in z/Architecture mode) to another frame in
storage. The prefix register enables each processor to use a different frame to avoid conflict with
other processors for such activity as interrupt code recording. Thus, the above range refers to
different areas of storage, depending upon which processor generates the address. All references
to host real storage are handled as if they were made on the master processor.

6. Fetching and storing of data is consistent with the Enterprise Systems Architecture/390 Principles
of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf) and z/Architecture Principles of
Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf) for both operands of the MOVE
(MVC) instruction.

7. Because real storage is volatile, the contents of host storage can change at any time after it is copied
into the result field.

8. The number of entries in the list that you specify in Ry must be greater than zero and cannot exceed:

• 1024 if bit 0 of Ry is 0
• 512 if bit 0 of Ry is 1

Otherwise, a specification exception is returned.

DIAGNOSE Code X'04'

18 z/VM: 7.3 CP Programming Services

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

9. If bit 0 of Ry is 0 (indicating 31-bit addresses), bit 1 of Ry must be 0 (indicating a length of 4 bytes). If
bit 0 of Ry is 1 (indicating 64-bit addresses), bit 1 of Ry must be 1 (indicating a length of 8 bytes).

10. If the loaded data is greater than 4 KB in length, the frames backing the host logical storage pages
are not necessarily contiguous in host real storage.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'04' is given incorrect
input data:

Problem Encountered Cause

Specification exception Any of the following:

• In access-register mode in an XC virtual machine, the ALETs
from Ax and Ay+1 do not match.

• The addresses in Rx and Ry+1 are not on the same page of
guest real storage (see Usage Note “1” on page 17).

• Incorrect Ry bit settings; only the following combinations
are supported:

– Bit 0 = 0, bit 1 = 0, bit 2 = 0 (31-bit host logical
addresses, 4 bytes of data)

– Bit 0 = 0, bit 1 = 0, bit 2 = 1 (31-bit host real addresses, 4
bytes of data)

– Bit 0 = 1, bit 1 = 1, bit 2 = 0 (64-bit host logical
addresses, 8 bytes of data)

– Bit 0 = 1, bit 1 = 1, bit 2 = 1 (64-bit host real addresses, 8
bytes of data)

• Any of the non-defined bits in Ry are 1.
• The number of list entries is outside the range specified in

Usage Note “8” on page 18.
• The list of requested storage to examine or the result fields

cross a page boundary.
• Privilege class violations.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to:

• Fetch the address list
• Store into the result field.

Addressing exception • The host address is invalid or designates a directory page.
• The host address that you want to examine is not available.

DIAGNOSE Code X'08' – Virtual Console Function
Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'08' to have your virtual console issue CP commands. Your virtual machine must
specify the command and operands, and indicate whether CP is to return the command response to your

DIAGNOSE Code X'08'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 19

display or to a buffer. In addition to returning the command response, CP sets a completion code and may
set a condition code.

Entry Values:
Rx

Must point to the character string in guest real storage (storage that appears real to the issuing
virtual machine) containing the CP commands and parameters. If the character string contains
multiple commands, each command and its associated parameters must be separated from adjacent
commands by the value X'15'.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the CP commands and parameters. If Rx designates general register
0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the CP commands and
parameters are in the host-primary address space.

Rx+1
If the X'40' flag is set in the flag byte of Ry then Rx+1 points to the buffer in guest real storage where
CP is to return the command response. This address must be real to your virtual machine. The buffer
can cross page boundaries.

Ax+1
Used only by XC virtual machines in access-register mode. If the X'40' flag is set in the flag byte of Ry
then Ax+1 contains the ALET for the address space of the buffer for the command response.

Ry
In z/Architecture mode the high order word of register Ry is ignored. The 4 bytes of the low order
register word contains the following:

• The high-order byte containing flag bits
• Three bytes that specify the length of the CP commands and parameters; the length is given in bytes

and the maximum allowable length is 240 characters.

You can set the flag bits as follows:
X'80'

When this flag is ON, passwords on the LINK, AUTOLOG, and XAUTOLOG commands are permitted
only when the SET PASSWORD command INCLUDE option is in effect. If the SEPARATE option is in
effect for the associated SET PASSWORD command, the command specified in this DIAGNOSE will
be rejected with return code 118 (command format not valid) in Ry+1.

When this flag is OFF, the SET PASSWORD command is ignored and the password can be included
on the specified command.

X'40'
CP is to return the command response in the buffer pointed to by register Rx+1 (and possibly Ax+1
if the virtual machine is an XC virtual machine running in access-register mode).

X'20'
CP is to return a request to the virtual machine that a password is needed for the LINK, AUTOLOG,
or XAUTOLOG commands. This allows the virtual machine to prompt the user for the password.

If the last three bytes in Ry equal the value X'000000', the DIAGNOSE command causes a console
function read to be issued to your terminal. The response buffer is ignored.

If the command response is to be returned in a buffer, Rx and Ry cannot be consecutive registers, and
neither can be register 15. In addition, the Ry+1 register must be set up as follows:

Ry+1
In z/Architecture mode the high order word of register Ry+1 is ignored. The 4 bytes of the low order
register word contains the length of the buffer. The length specified must be greater than 0. Ry+1 only
applies if the X'40' flag is specified in the flag byte in the leftmost byte of Ry.

Exit Values:

DIAGNOSE Code X'08'

20 z/VM: 7.3 CP Programming Services

Ry
If an error is encountered while processing the command issued using DIAGNOSE code X'08',
CP issues an error message and sets a return code in Ry. The return code is the hexadecimal
representation of the numeric portion of the error message. For example, if error message 045E is
returned, CP sets a return code of X'002D', which is the hexadecimal representation of the message
number, 45.

If the virtual machine assumes responsibility for prompting and a password is not in the command
buffer on a LINK, AUTOLOG, or XAUTOLOG command issued through DIAGNOSE code X'08', and
the information in the command buffer is valid, one of five unique return codes (in hexadecimal
representation) is passed back to the virtual machine by register Ry. These return codes indicate
which password prompt the virtual machine should issue. For the AUTOLOG and XAUTOLOG
commands, the short logon prompt and the extended logon prompt return codes are 8013 (X'1F4F'),
8016 (X'1F50'), and 8017 (X'1F51'), respectively. The LINK, AUTOLOG, or XAUTOLOG request should
then be reissued with another DIAGNOSE code X'08' with the password in the command buffer.

Usage Notes
1. If the CP command response is to be returned to the user's buffer, and is an error message, the buffer

contains the error code and text if the user's EMSG setting is ON, OFF or IUCV. If the user's EMSG
setting is TEXT, only the error message text is placed in the buffer. If the EMSG setting is CODE, only
the error code is placed in the buffer. In all cases, the Ry+1 register contains the length of all data
placed in the buffer. If the buffer is too small to contain the entire response, as many full lines as will fit
are placed in the buffer.

If the CP command is not returned in the user's buffer, it is displayed according to the EMSG setting.

An exception to this is if an invalid command is encountered during DIAGNOSE code X'08' processing,
the CP error message HCPCMD001E UNKNOWN CP COMMAND is not displayed or returned in the user's
buffer. The Ry register contains a return code of 1.

2. If CP is executing multiple commands and encounters an invalid command, processing stops, and CP
ignores the remaining commands.

3. If you use DIAGNOSE code X'08' to issue the XAUTOLOG command (without the SYNC option), the
response is not returned in a buffer. This is because this is an asynchronous command, and it has not
necessarily completed by the time the DIAGNOSE instruction finishes execution.

4. You can use the SET D8ONECMD command to control whether CP will accept multiple commands
imbedded in a single command and separated with X'15' characters. You can also use the QUERY
D8ONECMD command to find out the D8ONECMD settings (number of commands) for your own virtual
machine or another user's virtual machine. For more information, see z/VM: CP Commands and Utilities
Reference.

Responses
Condition Codes: If the command response is to be returned in a buffer, CP sets a condition code and
returns information as follows:

Condition
Code

Status Ry Contains Ry+1 Contains

0 The DIAGNOSE request was
successful (although the CP
command may not have
been).

The return code from the
CP command. The return
code 6890 indicates that the
executing virtual machine's
D8ONECMD setting was FAIL.

The length of the response or
error message, if it was to be
returned in a buffer

DIAGNOSE Code X'08'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 21

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Condition
Code

Status Ry Contains Ry+1 Contains

1 The DIAGNOSE request was
not successful. The response
does not fit in the user-
specified response buffer.

The return code from the
CP command. The return
code 6890 indicates that the
executing virtual machine's
D8ONECMD setting was FAIL.

A value that specifies how
many bytes of the response
or error message would not fit
into the buffer1

Note: 1If the response buffer overflow is greater than X'7FFFFFFF', then Ry+1 contains the value
X'7FFFFFFF'.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'08' is given incorrect
data:

Problem Encountered Cause

Specification exception Any of the following:

• The command buffer is greater than 240 bytes long.
• A response buffer is specified, and Rx or Ry is specified as

R15.
• A response buffer is specified, and Rx and Ry are specified

as consecutive registers.
• The length of the response buffer is zero.
• The response buffer exceeds the architected storage limit

(16MB for 24-bit ESA; 2048MB for 31-bit ESA).

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to:

• Fetch the command string
• Store the command response.

Examples
The following are two examples showing how to specify DIAGNOSE code X'08'. Note that this is not part
of the interface definition. Depending on your conventions and programming language, your code may
look quite different.

The first example shows how a program issues the SET IMSG OFF command. In this example, the
response is returned to the user's terminal:

 LA 6,CMMD
 LA 10,CMMDL
 DC X'83',X'6A',XL2'0008'
 .
 .
 .
CMMD DC C'SET IMSG OFF'
CMMDL EQU *-CMMD
 .
 .

The second example shows how to specify a string of commands when multiple commands are to be
issued:

 LA 6,CMMD
 LA 10,CMMDL
 DC X'83',X'6A',XL2'0008'
 .
 .

DIAGNOSE Code X'08'

22 z/VM: 7.3 CP Programming Services

 .
CMMD DC C'SET EMSG OFF'
 DC X'15'
 DC C'PURGE PRT ALL'
CMMDL EQU *-CMMD

DIAGNOSE Code X'0C' – Pseudo Timer
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'0C' to cause CP to store four doublewords of time information at the address
specified in the Rx register.

Entry Values:
Rx

Contains the address of a 32-byte area where the time information is to be stored. The address must
be in second-level storage (that is, in the storage that appears real to your virtual machine) and must
be on a doubleword boundary.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the 32-byte area where the time information is to be stored. If Rx
designates general register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode,
the time information area is in the host-primary address space.

Exit Values: The output area contains the following information:

The first eight bytes of the output area contain the date, month/day-of-month/year, in EBCDIC. The
next eight bytes contain the time of day, hours:minutes:seconds, in EBCDIC. The next eight bytes (16
through 23), VIRTCPU, contain the virtual time consumed by the virtual CPU that issued the DIAGNOSE
instruction. The last eight bytes (24 through 31), TOTALPROC, contain the total of the virtual time
(VIRTCPU) and the simulation time spent on behalf of the virtual CPU that issued the DIAGNOSE
instruction. Thus, TOTALPROC is always greater than or equal to VIRTCPU. The difference between them
represents the time that CP has spent specifically on behalf of the virtual CPU.

These values are also part of the response for the CP command, INDICATE USER. The last 16 bytes
contain the virtual and total processor time used by the virtual machine that issued the DIAGNOSE
instruction. VIRTCPU and TOTALPROC are doubleword, unsigned integers; the time is expressed in
microseconds, not as TOD clock units.

Usage Notes
For a discussion of how z/VM processes addresses, refer to “How Addresses Are Processed” on page 5.

Responses
Program Exceptions: These program exceptions can occur if the DIAGNOSE X'0C' is given incorrect input
data:

DIAGNOSE Code X'0C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 23

Problem Encountered Cause

Specification exception The address contained in Rx is not on a doubleword boundary.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the time-information
area.

DIAGNOSE Code X'10' – Release Pages
Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'10' to release pages of second-level storage.

Entry Values:
Rx

Contains the guest real address of the first page of storage to be released. This address must be on a
page boundary, otherwise a specification exception occurs.

Ax
For XC virtual machines in the access-register mode, Ax contains the ALET designating the address
space in which storage is to be released. Even when Rx is general register 0, the actual contents of Ax
are used in XC access-register mode.

Ry
Contains the guest real address of the last page to be released. This address must be on a page
boundary, and must be greater than or equal to the address specified in the Rx register; otherwise, a
specification exception occurs.

The results of the DIAGNOSE X'10' operation on a particular page depend on whether the page is a
mapped or unmapped page, and for unmapped pages, whether the page is contained in a saved segment
or not. A page is considered mapped when the DEFINE function of the MAPMDISK macro has been used
to associate the page with a DASD block on a minidisk; otherwise, it is an unmapped page. If the page is:

• An unmapped page that is not contained in a saved segment, then the page is unlocked (if it was locked
through the LOCK command), the current contents of the page are discarded and the page is considered
to contain binary zeros.

• An unmapped page that is contained in a saved segment, then no operation is performed. The page
remains unchanged.

• Is a mapped page, then the page is unlocked (if it was locked through the LOCK command), the current
contents of the page are discarded, and upon next reference the contents of the page are refreshed
from the associated DASD block.

The range of storage between the addresses specified in the Rx and Ry registers must be contained
entirely within the defined storage for the address space. That is, this DIAGNOSE code cannot be used
to release discontiguous storage. If an attempt is made to release discontiguous storage, an addressing
exception is recognized.

For an XC virtual machine in the access-register mode, a specification exception is recognized if an
attempt is made to release storage in a host-primary address space through a nonzero ALET.

Usage Notes
1. The addresses contained in Rx and Ry must be on a page boundary. A page boundary is a storage

address whose low-order three digits, expressed in hexadecimal, are zero.
2. Do not use DIAGNOSE code X'10' to release discontiguous storage.
3. If a virtual machine attempts to release a shared page within its defined virtual storage, the page is not

released. No further action is taken.

DIAGNOSE Code X'10'

24 z/VM: 7.3 CP Programming Services

4. It is unpredictable whether a modified mapped page has been saved on its associated mapped
DASD block unless the modified page has been specifically saved through the SAVE function of the
MAPMDISK macro.

To ensure that the modified mapped page has been saved on DASD do not release the page
through DIAGNOSE code X'10' until the save-completion external interrupt signals completion of the
MAPMDISK SAVE function.

5. If DIAGNOSE code X'10' is issued to release pages locked by the CP LOCK command, those pages are
unlocked.

6. The largest address allowed for a guest in 24-bit or 31-bit addressing mode is the smaller of the
address of the end of the first address space extent and either 2047M for a S/390® Architecture guest
or 2048M for a z/Architecture guest. For a z/Architecture guest in 64-bit addressing mode, the limit is
the address of the end of the first address space extent.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'10' is given incorrect
data:

Problem Encountered Cause

Specification exception Any of the following:

• The address of the last page (specified in Ry) is less than
the address of the first page (specified in Rx).

• The virtual machine attempts to release page 0 of its host-
primary address space.

• The address contained in Rx or Ry is not on a page boundary
(see Usage Note “1” on page 24).

• For an XC virtual machine in the access-register mode, an
attempt was made to release storage in this or another
virtual machine's host-primary address space through a
nonzero ALET.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the designated
storage area. (Host access-list-controlled protection is the
only protection mechanism which generates a protection
exception. Key-controlled protection and low-address
protection are not enforced. But note that low-address
protection is preempted by the specification exception if
the page at guest real address 0 is included in the range.
Likewise, a host-page-protection exception condition results
in either a specification exception (for discontiguous storage)
or no operation (for contiguous storage).)

Addressing exception The designated storage area includes discontiguous storage.

Protection exception The designated storage area includes read-only storage.

DIAGNOSE Code X'14' – Input Spool File Manipulation
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'14' to access and to control input spool files in your reader. You can access
descriptions of files in your reader, change the copy count of a file, read files, backspace to the previous
record, or select the next or a specific file to process.

DIAGNOSE Code X'14'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 25

Entry Values:
Rx

The first data register (contents determined by subcode).
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the buffer, if Rx points to a buffer. If Rx designates general register 0, if
Ax contains X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary
address space.

Ry
The second data register (contents determined by subcode).

Ry+1
Contains the actual subcode that was issued (Ry and Ry+1 must be an even-odd pair).

The possible subcodes, which are described in the following sections, are:
Subcode

Function
X'0000'

Read the Next Spool File Buffer (Data Record)
X'0004'

Read the Next Print Spool File Block
X'0008'

Read the Next Punch Spool File Block
X'000C'

Order a File to the Front of a Queue
X'0010'

Repeat the Active File a Specified Number of Times
X'0014'

Restart an Active File at the Beginning
X'0018'

Backspace One Record
X'001C'

Read the Next Monitor Spool File Block
X'0020'

Read the Next Monitor Spool Record
X'0024'

Read the Last Spool File Buffer
X'0028'

Position Spool File to Designated Record
X'002C'

Select a File for Processing and Read the Next Spool Buffer
X'0FFE'

Select the Next File Not Previously Selected and Select Read to EOF Files
X'0FFF'

Retrieve Next File Descriptor

Subcode X'0000'—Read the Next Spool File Buffer (Data Record)
Rx

the buffer address (full page)
Ry

the virtual spool reader address

DIAGNOSE Code X'14'

26 z/VM: 7.3 CP Programming Services

Ry+1
X'00000000' (the subcode)

This subcode returns a page of spool data to the user's buffer. The buffer must be a full page (4K)
in length and must not cross a page boundary. If the buffer crosses a page boundary, a specification
exception occurs. Subcode X'0000' can be issued consecutively as many times as necessary to read an
entire file on the user's virtual reader queue. Different results occur depending on how the virtual reader
has been spooled.

If there is no file currently active on the virtual reader device specified, the first data page (in SPLINK
format; refer to “SPLINK - VM/SP 370 Spool File Data Block” on page 990) of the first eligible file in the
user's virtual reader queue is returned in the user's buffer. A file is eligible if it is not in hold status and if
its class matches that of the virtual reader. The file is opened on the virtual reader when an eligible file is
found.

If there is no file already active on the virtual reader and there are no eligible files, then condition code 2
is returned.

When there is an active file already on the specified virtual reader, condition code 3 with return code X'0C'
in Ry+1 is returned if it is not active due to a previous DIAGNOSE code X'14' operation. If it is active due to
a previous DIAGNOSE code X'14' operation, the next page of data is returned.

When an SPLINK (data page) from a file created on a punch is returned, all write CCWs in the page are
converted and returned as X'41' opcodes.

When EOF (end of file) is reached and continuous read is not set, condition code 1 is returned. No data is
passed back in the user's buffer and the file remains open.

If continuous read is set, processing continues with the first page of data from the next logical file. The
search for the next logical file begins either at the top of the user's reader queue or at the file just
processed, depending on the reader's rescan or norescan setting. If the reader is spooled rescan, the
search begins with the first file in the virtual reader queue. If the reader is spooled hold/norescan, the
search will begin with the next logical file (after the one just processed) in the virtual reader queue. For
all other combinations of norescan (with continuous) the search will start with the first file in the virtual
reader queue.

When a new file is selected because the reader is spooled continuous, the previously read file is closed
and the newly read file is opened. This may be a read of the first page of the same file if that file was set
for multiple copies. When the reader is spooled for continuous read, condition code 1 (EOF) is returned
when no more eligible files are found. When this condition is reached, no data is returned in the user's
buffer and the last file read remains open.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

Subcode X'0004'—Read the Next Print Spool File Block
Rx

the buffer address (13 doublewords)
Ry

the virtual spool reader address
Ry+1

X'00000004' (the subcode)

This subcode returns the next eligible file on the virtual reader queue that was created on a printer or
console. A file is eligible if it is not in hold status and if its class matches that of the virtual reader. The
spool file descriptor block (SFBLOK; refer to Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page
983) for the file is returned in the user's virtual buffer. The file is not opened. The buffer must not cross a
page boundary. If the buffer crosses a page boundary, a specification exception occurs.

DIAGNOSE Code X'14'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 27

The default size of the spool file block returned is 13 doublewords. However, a different size buffer may
be specified by using extended mode. See usage note “1” on page 34 for a description of extended
mode.

If the specified reader device is not already in use by DIAGNOSE code X'14' the first eligible printer or
console file is returned. If DIAGNOSE code X'14' is using the specified device and if this is a repeat call for
a printer spool file block, the chain search continues from the point following the last block given to the
virtual machine. In this case, condition code 1 is set when there are no more print files. If this is the first
call for a spool file block, or if there have been intervening calls for file reading, the spool input chain is
searched from the beginning. If no files are found, condition code 2 is set.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

Subcode X'0008'—Read the Next Punch Spool File Block
Rx

the buffer address (13 doublewords)
Ry

the virtual spool reader address
Ry+1

X'00000008' (the subcode)

Processing for subcode X'0008' is the same as for subcode X'0004', except that only files created on a
punch are processed.

Subcode X'000C'—Order a File to the Front of a Queue
Rx

the file ID
Ry

the virtual spool reader address
Ry+1

X'0000000C' (the subcode)

This subcode moves a file to the front of the user's reader queue so that it can be the next one processed.

The spool input queue is searched for the file specified. If it is found and it is not in hold status, the file is
moved to the front of the queue and condition code 0 is set. The file is ordered to the top of the queue but
it is not opened and no spool data is returned.

If the specified file is not found, if the specified file is in hold status or if the specified file's class does not
match the class of the virtual reader, condition code 2 is set.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

A specification exception occurs if the spool file ID specified is 0 or is greater than 9999.

Subcode X'0010'—Repeat the Active File a Specified Number of Times
Rx

the new copy count for the active file
Ry

the virtual spool reader address
Ry+1

X'00000010' (the subcode)

DIAGNOSE Code X'14'

28 z/VM: 7.3 CP Programming Services

The count of the active file is set to the specified value, the maximum being 255. If the count is greater
than 255, it is set to 255. If the count is negative, a specification error occurs. If there is no active file,
condition code 2 is set.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

Subcode X'0014'—Restart an Active File at the Beginning
Rx

unused
Ry

the virtual spool reader address
Ry+1

X'00000014' (the subcode)

If the device has an active file, the record pointers are set to the beginning of the file. Therefore, the next
read receives the first file record. If no file is active, condition code 2 is set.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

Subcode X'0018'—Backspace One Record
Rx

the buffer address (full page)
Ry

the virtual spool reader address
Ry+1

X'00000018' (the subcode)

If the device has an active file, the record pointer is set to the previous record unless it is already
positioned at the first record. For example, if a normal subcode X'0000' operation was just used to read
the third data page of the file, a subsequent subcode X'0018' operation returns the second data page of
the file. The record is returned to the user as in a normal X'0000' read subfunction. The buffer must be
a full page (4K) in length and must not cross a page boundary. If the buffer crosses a page boundary, a
specification exception occurs. The record pointer is set so that the next X'0000' read operation returns
the third data page again.

If the record pointer is already positioned at the first record, subcode X'0018' returns condition code 1
and the first page of the file is returned in the buffer. If no file is active, condition code 2 is set.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

When an SPLINK (data page) from a file created on a punch is returned, all write CCWs in the page are
converted and returned as X'41' opcodes.

Subcode X'001C'—Read the Next Monitor Spool File Block
Rx

the buffer address (13 double words)
Ry

the virtual spool reader address
Ry+1

X'0000001C' (the subcode)

DIAGNOSE Code X'14'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 29

Condition code 2 is always returned, because monitor spool files are not supported in z/VM.

Subcode X'0020'—Read the Next Monitor Spool Record
Rx

the buffer address (full page)
Ry

the virtual spool reader address
Ry+1

X'00000020' (the subcode)

Condition code 2 is always returned, because monitor spool files are not supported in z/VM.

Subcode X'0024'—Read the Last Spool File Buffer
Rx

the start address of a full-page virtual buffer
Ry

the virtual spool reader address
Ry+1

X'00000024' (the subcode)

The last spool buffer (active file) is read. The specified device is checked for an already active file and, if
there is one, the last full-page buffer is made available to the virtual machine in SPLINK format. If there is
no active file, the condition code of the virtual machine is set to 2.

The buffer must be a full page (4K) in length and must not cross a page boundary. If the buffer crosses a
page boundary, a specification exception occurs.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

When an SPLINK (data page) from a file created on a punch is returned, all write CCWs in the page are
converted and returned as X'41' opcodes.

Subcode X'0028'—Position a Spool File to the Designated Record
Rx

the relative number of the record
Ry

the virtual spool reader address
Ry+1

X'00000028' (the subcode)

The number in (Rx) becomes the number of the new current record. The first data page in the file would
be record number 1. No spool data is returned with this subfunction. Only the current record pointer is
changed so that reading resumes at the specified record the next time a read operation is issued.

Condition code 2 is returned if no file is active or if the device is not ready.

If the value in Rx would set the current record beyond the end of the file, the condition code is set to 3 and
code X'14' is returned in Ry+1.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

DIAGNOSE Code X'14'

30 z/VM: 7.3 CP Programming Services

Subcode X'002C'—Select a File for Processing and Read the Next Spool
Buffer

Rx
the start address of full-page virtual buffer

Ry
the virtual spool reader address

Ry+1
nnnnyyyy where nnnn is the file identifier of the requested file and yyyy is the function subcode.

The spool input chain is searched for the file specified, following the same procedure as subcode X'000C'.
If the file is found, it is moved to the head of the chain, the processing continues, and the file is read as if
subcode X'0000' had been issued.

If the specified file is not found, if the specified file is in hold status or if the specified file's class does not
match the class of the virtual reader, condition code 2 is set.

The buffer must be a full page (4K) in length and must not cross a page boundary. If the buffer crosses a
page boundary, a specification exception occurs.

Condition code 3 is set if the virtual reader specified does not exist or is not a reader. The appropriate
return code is placed in Ry+1 to indicate which of these is the case. See “Responses” on page 35 to
determine the meaning of these return codes.

When an SPLINK (data page) from a file created on a punch is returned, all write CCWs in the page are
converted and returned as X'41' opcodes.

Subcode X'0FFE'—Select the Next File Not Previously Selected
There are two basic functions of DIAGNOSE code X'14' subcode X'0FFE':

• Select the Next File Not Previously Seen
• Select the Read to EOF Files.

Each of these has an initialize capability and a select capability. The input registers are different for each
of these functions. The first byte of Ry determines which of these two functions is being requested. If the
first byte of Ry is X'00' then the "Select the Next File Not Previously Seen" function is being requested. If
the first byte of Ry is not X'00' then the "Select the Read to EOF Files" function is being requested.

(The following two items describe the "Select Next File Not Previously Selected" function.)

Select Next File Not Previously Seen - INIT
Rx

the virtual address of an output buffer; the default size is 252 bytes when invoked without extended
mode. See usage note “2” on page 34 for more information. The buffer may cross a page boundary.

Ry
X'00000001'

Ry+1
a flag, optional size of the spool file block in doublewords, and the subcode X'0FFE'. The format of
Ry+1 is aabb0FFE where
aa

is defined as follows:

bit 0, when 1, identifies extended mode (see usage note “2” on page 34 for more
information).
bit 1 is reserved and must be 0
bits 2-7 are either 0 or specify the size, in doublewords, of the buffer space to hold the spool
file block.

DIAGNOSE Code X'14'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 31

bb
is not used and should be 00

0FFE
is the DIAGNOSE code X'14' subcode.

All of this user's input spool files that are marked as having previously been seen are reset to the
not-yet-seen state, and the descriptor of the first spool file is returned to the user's buffer. Also, CP sets a
bit identifying that this spool file has been seen. If no file is selected, a condition code of 1 is reflected to
the virtual machine. The virtual buffer specified by Rx may cross a page boundary.

Select Next File Not Previously Seen - Select
Rx

the virtual address of an output buffer; the default size is 252 bytes when invoked without extended
mode. See usage note “2” on page 34 for more information. The buffer may cross a page boundary.

Ry
X'00000000'

Ry+1
a flag, optional size of the spool file block in doublewords, and the subcode X'0FFE'. The format of
Ry+1 is aabb0FFE where
aa

is defined as follows:

bit 0, when 1, identifies extended mode (see usage note “2” on page 34 for more
information).
bit 1 is reserved and must be 0
bits 2-7 are either 0 or specify the size, in doublewords, of the buffer space to hold the spool
file block.

bb
is not used and should be 00

0FFE
is the DIAGNOSE code X'14' subcode.

The next reader spool file that has not previously been seen is selected and its descriptor is returned to
the user's buffer. Also, CP sets a bit identifying that this spool file has now been seen.

(The next two items describe the "Read to EOF" function.)

Read to EOF - INIT
Rx

not used
Ry

The format of Ry is nnzzyyyy where
nn

is not 00
zz

is 00
yyyy

is virtual spool reader address.
Ry+1

a flag, optional size of the spool file block in doublewords, and the subcode X'0FFE'. The format of
Ry+1 is aabb0FFE where
aa

is defined as follows:

DIAGNOSE Code X'14'

32 z/VM: 7.3 CP Programming Services

bit 0, when 1, identifies extended mode (see usage note “2” on page 34 for more
information).
bit 1 is reserved and must be 0
bits 2-7 are either 0 or specify the size, in doublewords, of the buffer space to hold the spool
file block.

bb
is not used and should be 00

0FFE
is the DIAGNOSE code X'14' subcode.

This function initializes (or re-initializes) the virtual spool reader specified in yyyy for reading files to EOF
(end of file). Any file previously marked as having been read to EOF on that device is reset, such that it
appears to not have been previously read to EOF. A condition code and return code of 0 are reflected to
the virtual machine. The INIT function also tells CP to begin to keep track of which spool files are read to
EOF on the device. (The SELECT function, described following, resets this.)

Read to EOF - Select
Rx

the virtual address of an output buffer; the default size is 252 bytes when invoked without extended
mode. See usage note “2” on page 34 for more information. The buffer may cross a page boundary.

Ry
The format of Ry is nnzzyyyy where
nn

is a not 00
zz

is 01
yyyy

is virtual spool reader address.
Ry+1

a flag, optional size of the spool file block in doublewords, and the subcode X'0FFE'. The format of
Ry+1 is aabb0FFE where
aa

is defined as follows:

• bit 0, when 1, identifies extended mode (see usage note “2” on page 34 for more information).
• bit 1 is reserved and must be 0
• bits 2-7 are either 0 or specify the size, in doublewords, of the buffer space to hold the spool file

block.

bb
is not used and should be 00

0FFE
is the DIAGNOSE code X'14' subcode.

A SELECT function is performed. This function tells CP to stop marking files read to EOF on the virtual
spool reader specified in yyyy, and then returns the descriptor of the first file found to have been read
to EOF on the device. The selected file is no longer considered to have been read to EOF. Invoking this
function repeatedly (without an intervening INIT function) will return all files which have been read to
EOF.

Notes:

1. The Read-to-EOF indicator might be turned off by spooling commands in an SSI environment. If a file
had been read to EOF on a system other than the originating system and a spooling command is used

DIAGNOSE Code X'14'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 33

to change that file's characteristics, the indicator may be turned off. If this happens, the file is eligible
to be read again and is not returned in response to the Read-to-EOF SELECT function.

2. The Read-to-EOF indicator is turned off by a system reset (for example, the CP SYSTEM RESET or IPL
command does this). Selective reset of the reader (for example, the CP RESET command) does not
turn off the Read-to-EOF indicator.

3. The Read-to-EOF indicator is not turned on for files receiving the EOF indication from their I/O
operation unless all records in the file were actually read. This can happen on files which, for example,
contain one or more X'5A' records. When these files are read, the X'5A' records are skipped and the
Read-to-EOF indicator is not set when the EOF is reached.

For those functions which return a spool file block either the default buffer size can be used or extended
mode can be specified. For these functions, the value of Ry+1 is decoded as follows:

If bit 0 of Ry+1 is 0, then the default buffer size is to be used.
If bit 0 of Ry+1 is 1 (that is, extended mode), then bit 1 must be 0 and bits 2 through 7 specify the size,
in doublewords, of the spool file block to return.

See usage note “2” on page 34 for the exact format of the data returned.

Subcode X'0FFF'—Retrieve Next File Descriptor
Rx

the output buffer address; the default size is 252 bytes when invoked without extended mode. See
usage note “2” on page 34 for more information.

Ry
the spool file ID number

Ry+1
X'00000FFF' (the subcode)

Ry contains a spool file ID or zero and specifies the point at which to begin the search. Zero identifies
the beginning of the chain. The next file belonging to the user, regardless of class, file type, or current
usage is selected. The spool file block and the first record (generally, the TAG) are placed in the caller's
buffer. The buffer may cross a page boundary. If there are no files on the reader queue or if there is no
subsequent file, condition code 1 is returned. If a starting file ID is specified and there is no match for this
user, condition code 2 is returned.

For subcode X'0FFF' either the default buffer size can be used or extended mode can be specified.
Whether the default or extended mode is to be used is determined as follows:

If bit 0 of Ry+1 is 0, then the default buffer size is to be used.
If bit 0 of Ry+1 is 1 (that is, extended mode), then bit 1 must be 0 and bits 2 through 7 specify the size,
in doublewords, of the spool file block to return.

See usage note “2” on page 34 for the exact format of the data returned.

Usage Notes
1. You can use extended mode for subcodes X'0004' and X'0008'. In extended DIAGNOSE mode, you

can specify the size of a spool file block in the high-order byte of Ry+1. If bit 0 is 1, bit 1 must be 0,
and bits 2 through 7 define the size of the block in doublewords to be returned. If a block size of 0 is
specified in extended mode, a specification exception occurs.

2. Subcodes X'0FFE' and X'0FFF' can be issued in either extended mode or not in extended mode.

When invoked without the extended mode indicator, the spool file block (SFBLOK) and the first record
(generally, the TAG) are placed in the caller's buffer. The spool file block is 13 doublewords long and
the first data record follows. The total length of this data is 252 bytes.

When invoked in extended mode, an additional 40 bytes of 3800 printer information (such as CHARS,
FCB, COPY and FLASH) is returned between the spool file block and first data record. The length
specified in Ry+1 is the length of the spool file block returned. The total length of data returned in

DIAGNOSE Code X'14'

34 z/VM: 7.3 CP Programming Services

the user's buffer is the sum of the spool file block length specified, the 40 bytes of 3800 information
(SPCHAR to SPPGLEN in SPLINK), and the 148 bytes of the TAG record. A length of 0 can be specified
for the spool file block. In this case, only the 3800 printer information and the TAG data are returned.

3. For a description of the spool file block information returned, refer to SFBLOK and SPLINK in Appendix
A, “Data Areas Used by DIAGNOSE Codes,” on page 983. DSECTs are provided in the HCPGPI macro
library as SFBLOK COPY and SPLINK COPY.

4. If an external security manager is installed on your system, subcodes X'0000', X'0004', X'0008',
X'002C', X'0FFE', and X'0FFF' may be affected. When these subcodes are issued, the system may skip
spool files that you are not authorized to work with. For additional information, contact your security
administrator.

Responses
Condition Codes: The following condition codes are applicable for all subcodes except the X'0FFE'
SELECT function.

Condition Code Return Code in
Ry+1

Meaning

0 None Successful completion

1 None End-of-file reached

2 None File not found

3 04 (X'04') Device address invalid

3 08 (X'08') Device type invalid

3 12 (X'0C') Device busy, reader not ready, or device real

3 16 (X'10') Fatal paging I/O error

3 20 (X'14') Invalid file; for subcode X'028': requested record number
exceeds the file's size

The following condition codes are applicable for subcode X'0FFE' SELECT function.

Condition Code Return Code in
Ry+1

Meaning

0 None Successful completion

1 None No file found meeting SELECT criteria.

Program Exception: These program exceptions can occur if DIAGNOSE code X'14' is given incorrect data:

DIAGNOSE Code X'14'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 35

Problem Encountered Cause

Specification exception Any of the following:

• Ry is not an even register.
• Ry+1 does not contain a valid subcode.
• A buffer crosses a page boundary (except for subfunctions

X'0FFE' and X'0FFF'; an exception does not occur for these
two subfunctions if a buffer crosses a page boundary).

• The new copy count is negative.
• The file ID specified is greater than 9999.
• The file ID specified is 0.
• The subfunction called "Select Next File Not Previously

Seen" of subcode X'FFE' was issued and Ry is equal to
something other than 0 or 1.

• Ry+1 indicates extended mode with a buffer length of zero
for subcodes X'0004' or X'0008'.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the buffer area.

DIAGNOSE Code X'18' – Standard DASD I/O
Privilege Class: Any (370 Accommodation must be active)

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'18' to perform input/output operations to a direct access device of the type fully
supported by z/VM.

Note: z/VM includes DIAGNOSE code X'18' primarily for VM/SP, VM/SP HPO, and VM/ESA (370 Feature)
compatibility. For new applications and new devices, use DIAGNOSE code X'A4'. When DIAGNOSE code
X'A4' is used, CP constructs the appropriate channel program for the device being used. DIAGNOSE code
X'A4' can be used in all types of virtual machines.

Entry Values:
Rx

Contains the guest real address of the direct-access device.
Ry

Contains a channel address word (CAW).

The leftmost bits, 0 through 3, of the CAW contain the protection key used in accessing second-level
storage for the I/O operation.

Bit 4 (suspend control) must be zero.

Bits 5 through 7 (unassigned) must be zero.

Bits 8 through 31 contain the channel program address.

Bits 29 through 31 must be zero, designating a doubleword-aligned channel program.

Register 15
You must load register 15 with the number of READs or WRITEs in the CCW chain.

DIAGNOSE Code X'18'

36 z/VM: 7.3 CP Programming Services

Usage Notes
1. No I/O interrupts are returned by CP to the virtual machine; the DIAGNOSE instruction is completed

only when all the READ or WRITE commands associated with the DIAGNOSE are completed.
2. Do not use DIAGNOSE code X'18' to read or write record-overflow-formatted data.
3. CP provides error recovery for this DIAGNOSE instruction. The instruction does not complete until the

I/O operation has completed, including any error recovery processing.
4. The guest's Rx and Ry registers can be any two registers, neither of which is register 15.
5. The CCW chain specified by the guest must specify I/O on only one cylinder, and must be of the

standard format.
6. For the 3350, 3375, 3380, 3390, and 9345 devices, the SET SECTOR CCW should precede each

SEARCH CCW.
7. The CCW chain ends with a read or write without command chaining.
8. The CCW chain must not have any indirect data address (IDA), data chain (CD), or program controlled

interrupt (PCI) flags.
9. Data crossing 4KB boundaries is handled using indirect data lists.

10. The CCWs must be format 0.
11. The first CCW must be a SEEK CCW.
12. This DIAGNOSE code does not support fixed-block DASD devices. If a program issues a DIAGNOSE

code X'18' to a fixed-block DASD device, CP sets cc=1 and places a return code of 2 in register 15.
13. This DIAGNOSE code may be used only when the 370 Accommodation facility is active. Activate the

370 Accommodation facility with the SET 370ACCOM ON command.
14. This DIAGNOSE code does not support HyperPAV alias devices.
15. This DIAGNOSE code does not include Extended Address Volume (EAV) support for minidisks that

reside at or above 65520 cylinders. If a program issues a DIAGNOSE code X'18' to such a minidisk,
CP sets a condition code of 1 (cc=1) and places a return code of 2 in register 15.

Responses
Condition Codes: On return from DIAGNOSE code X'18', CP sets the condition code as follows. In
addition, a return code is placed in register 15.

Condition Code Return Code in
Register 15

Meaning

0 0 (X'00') I/O completed successfully.

1 1 (X'01') The device is not attached.

1 2 (X'02') DIAGNOSE code X'18' does not support this device type, or
does not include Extended Address Volume (EAV) support for
minidisks.

1 3 (X'03') An attempt was made to write on read-only disk.

1 4 (X'04') The cylinder or head number on a seek or seek head CCW is
not in the range of the user's disk.

1 5 (X'05') A virtual device is busy or has an interrupt pending.

2 5 (X'05') The user's CAW is invalid for one of the following reasons:

• Bit 4 (suspend control) is 1.
• Bits 5–7 are not B'0000'.
• The channel program address is not doubleword-aligned.

DIAGNOSE Code X'18'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 37

Condition Code Return Code in
Register 15

Meaning

2 6 (X'06') The CCW or the SEEK/SEARCH arguments are not within the
range of the user's storage.

2 7 (X'07') The user's CCW is invalid for one of the following reasons:

• Invalid bits are set in the flag byte of the CCW.
• The CCWs are not in the order expected by CP.
• The byte count in CCW is not valid for the CCW command.

2 8 (X'08') The READ/WRITE byte count is 0.

2 9 (X'09') The READ/WRITE byte count is greater than 4096.

2 10 (X'0A') The READ/WRITE buffer is not within the user's storage or the
buffer is protected.

2 11 (X'0B') The value in register 15, at entry, was not a positive number
in the range of 1 to 15, or was less than the number of READs
and WRITEs in the channel program.

2 12 (X'0C') The cylinder number on the SEEK HEAD was not the same
number as on the first SEEK.

3 13 (X'0D') Unrecoverable I/O error.

The CSW (8 bytes) was returned to the user.

If the CSW indicates a unit check, sense bytes are available if
the user issues a SENSE command.

Example
When you are using DIAGNOSE code X'18', your CCW string may look like the following example of a CCW
string to read or write two 800-byte records:

SEEK,A,CC,6
SET SECTOR (omitted if device does not have RPS feature)
SRCH ID EQ,A+2,CC,5
TIC,*-8,0,0
RD or WRT,DATA1,CC+SILI,bytecount (bytecount to be between 1 and 4096,
 inclusive)
SEEK HEAD,B,CC,6 (omitted if HEAD number unchanged)
SET SECTOR (omitted if device does not
 have RPS feature)
SRCH ID EQ,B+2,CC,5
TIC,*-8,0,0
RD or WRT,DATA2,SILI,bytecount (bytecount to be between 1 and 4096,
 inclusive)

A SEEK and SRCH arguments for first read/write
B SEEK and SRCH arguments for second read/write
DATA1 data area for first read/write
DATA2 data area for second read/write

Note: Indirect addressing is not permitted.

DIAGNOSE Code X'20' – 370 Synchronous I/O for DIAGNOSE
Support

Privilege Class: Any (370 Accommodation must be active)

Addressing Mode: 24-bit or 31-bit

DIAGNOSE Code X'20'

38 z/VM: 7.3 CP Programming Services

Use DIAGNOSE code X'20' to perform input/output (I/O) operations to tapes or direct access storage
devices (DASDs), and dedicated unit record devices supported by z/VM. For a list of supported devices,
see z/VM: General Information.

Note: z/VM includes DIAGNOSE code X'20' primarily for VM/SP, VM/SP HPO, and VM/ESA (370 Feature)
compatibility. For new applications and new devices, use DIAGNOSE code X'A8'. DIAGNOSE code X'A8'
can be used in all types of virtual machines.

Entry Values:
Rx

Contains the virtual device number.
Ry

Contains the channel address word (CAW). The leftmost bits, 0 through 3, of the CAW contain the
protection key to use in accessing guest storage for the I/O operation.

Bit 4 (suspend control) must be zero.

Bits 5 through 7 (unassigned) must be zero.

Bits 8 through 31 contain the channel program address. Bits 29 through 31 must be zero, designating
a doubleword-aligned channel program.

Usage Notes
1. Do not use DIAGNOSE code X'20' to read or write record-overflow-formatted data on DASD devices.
2. The channel program that you specify must not contain self-modifying CCWs.
3. CP provides error recovery for this DIAGNOSE instruction. The instruction does not complete until the

I/O operation has completed, including any error recovery processing.
4. This DIAGNOSE code may be used only when the 370 Accommodation facility is active. Activate the

370 Accommodation facility with the SET 370ACCOM ON command.
5. Diagnose I/O operations issued to virtual Parallel Access Volume bases and aliases are randomly

scheduled on any available, appropriate real base or alias device. Certain CCWs, such as Reserve and
Release, require base or alias real device affinity. This is handled by CP as needed.

6. This DIAGNOSE code is limited to a minidisk size of 65520 cylinders. If a program issues DIAGNOSE
code X'20' to a minidisk larger than 65520 cylinders, CP sets a condition code of 3 (cc=3) and places a
return code of 13 in register 15.

Responses
Condition Codes: On return from DIAGNOSE code X'20' processing, CP sets the condition codes and the
return codes as follows. In addition, a return code may be placed in register 15.

Condition Code Return Code in
Register 15

Meaning

0 Unchanged I/O was completed with no errors; CSW is stored.

1 1 (X'01') The device is either not attached, or is not accessible to the
virtual machine.

1 5 (X'05') The virtual device is busy or has an interrupt pending.

2 2 (X'02') A unit exception is reflected in the unit status field; the CSW is
stored.

2 3 (X'03') An incorrect length is reflected in the channel status field; the
CSW is stored.

DIAGNOSE Code X'20'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 39

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3

Condition Code Return Code in
Register 15

Meaning

3 13 (X'0D') An unsupported device was specified, a permanent I/O error
occurred, or a program issued this DIAGNOSE code to a
minidisk larger than 65520 cylinders.

If the user specifies an unsupported device, both the CSW
and the user's Ry register is set to zero.

If a permanent I/O error occurred, the CSW is stored and
the user's Ry register contains the sense information in the
following format:

 Byte 0 contains sense byte 2
 Byte 1 contains sense byte 3
 Byte 2 contains sense byte 0
 Byte 3 contains sense byte 1

DIAGNOSE Code X'24' – Device Type and Features
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'24' to request identifying information and status information about a particular
virtual device.

Note: DIAGNOSE code X'24' will no longer be upgraded for new device support. Applications using
DIAGNOSE code X'24' should use DIAGNOSE code X'210' to take advantage of new device support. z/VM
will continue to include DIAGNOSE code X'24' as a means of locating the address of the virtual console.

Entry Values:
Rx

Must contain one of the following:

• The virtual device number of the device for which information is requested
• The value negative 1 (–1). Specify this when the device is a virtual console whose device number is

unknown to your virtual machine.

Ry
Not used.

Exit Values:
Rx

Contains information about a virtual console. Rx contains this data only if you specified –1 as an entry
value and if CP located the console device.

Ry
Contains information about the specified virtual device.

Ry+1
Contains information about the real device that is associated with the specified virtual device.
However, if Ry has been specified as register 15, CP returns only virtual device information; no
information is returned in register Ry+1.

Usage Notes
1. A CMS application may determine which set of ASCII and APL tables is currently in use with

DIAGNOSE code X'24'. The real device terminal code field returned in Rx is set to one of the following
values:

DIAGNOSE Code X'24'

40 z/VM: 7.3 CP Programming Services

Value
Meaning

X'10'
ASCII mode (TERMINAL APL OFF)

X'14'
ASCII/APL, SI state (TERMINAL APL ON, using standard ASCII)

X'18'
ASCII/APL, SO state (TERMINAL APL ON, using ASCII/APL)

2. For a DIAGNOSE code X'24' to a SNA device connected through VCNA, the real device model number
information is correct; however, the real device type may not be reliable.

3. This DIAGNOSE code returns device information in the same format as you would receive with CP. It
returns the real device type class and real device type fields as CLASSPEC (X'02') and TYPUNSUP
(X'01') for all 3390 or newer DASD. For all new device information, you should use DIAGNOSE code
X'210'. For more information, see Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983.

The following tables summarize the type of information that is returned to the Rx, Ry, and Ry+1
registers after the instruction has executed.

Not all of the bits that are significant in VM/SP, VM/SP HPO, and VM/ESA (370 Feature) remain
significant in z/VM.

4. If the virtual device is a virtual disk in storage, it is not mapped to a real device. However, condition
code 0 is returned for successful completion, and register Ry+1 contains information about the
simulated real device.

5. When issued for a virtual console and the user is logged on to the system console, CP will return real
device information indicating that the real device is an undefined line mode terminal.

Rx Information
Byte 0 Byte 1 Byte 2 Byte 3

real device terminal
code for a local virtual

console
virtual device number

See Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983 for the meaning of the values
returned in the real device terminal code field.

Ry Information
Byte 0 Byte 1 Byte 2 Byte 3

virtual device type class virtual device type virtual device status virtual device flags

See Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983 for the meanings of values
returned in these fields.

Ry+1 Information
Byte 0 Byte 1 Byte 2 Byte 3

real device type class real device type real device model
number

real device feature code

 —or—

current device line
length for a local virtual

console

DIAGNOSE Code X'24'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 41

See Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983 for the meaning of the values
returned in these fields.

Responses
Condition Codes: The following chart lists the condition codes CP can return for DIAGNOSE code X'24',
the meaning of each condition code, and the registers where data is returned.

Condition
Code

Status Rx Contains1 Ry Contains2 Ry+1 Contains

0 Successful
completion

Virtual console
information

Virtual device
information

Real device
information

1 Undefined

2 Virtual device exists
but is not associated
with a real device

Virtual console
information

Virtual device
information

3 Invalid device
number, or the
virtual device does
not exist

Note:
1The Rx register contains information only when DIAGNOSE code X'24' specifies a virtual console whose
address is unknown.
2If Ry is register 15, CP returns only virtual device information; no information is returned in register
Ry+1.

DIAGNOSE Code X'28' – Dynamic Channel Program Modification
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'28' to modify selected instructions in a channel program after I/O is initiated and
before the operation is completed. The channel command words (CCWs) that you can modify are:

• From a Transfer in Channel (TIC) to a No Operation (NOP)
• From a TIC CCW to point to a new list of CCWs
• From a (No Operation) NOP to a TIC CCW
• The fields of a NOP CCW.

In an XC virtual machine, DIAGNOSE code X'28' can be run in access register mode. It addresses only the
virtual machine’s host-primary address space.

Entry Values:
Rx

Contains the guest absolute address of the transfer in channel (TIC) or No Operation (NOP) channel
command word that was modified by your virtual machine. This channel command word is always in
the host-primary address space.

Ry
Contains the subchannel number in bits 16 through 31. This device must be a TERMINAL or
GRAPHICS class device, a 3704, or a 37x5.

When executed with the 370 Accommodation facility active (the SET 370ACCOM ON command has
been issued), the Ry value is interpreted according to the following heuristic: If the Ry value, when

DIAGNOSE Code X'28'

42 z/VM: 7.3 CP Programming Services

viewed as a System/370 device address, selects a device which exists, and at least one of the
following is true, then the Ry value is interpreted as a device address; otherwise, the Ry value is
interpreted as a subchannel number.

• There is an active channel program on the device with that device address, and the channel program
was started by a System/370 I/O instruction (e.g., SIO or SIOF).

• The Ry value, when viewed as a 370-XA subchannel number, does not select a subchannel with a
device assigned to it.

• The Ry value, when viewed as a 370-XA subchannel number, selects a subchannel with a device
assigned to it, but there is no active channel program on that device.

Note: Rx and Ry cannot be the same register.

Usage Notes
1. If the AUTOPOLL function has been set on, the operating system running in your virtual machine must

use DIAGNOSE code X'28' to notify z/VM whenever a virtual autopolling channel program has been
modified. For more information, see the SET AUTOPOLL command in the z/VM: CP Commands and
Utilities Reference.

2. SUSPEND/RESUME is not supported using DIAGNOSE code X'28'. A request to modify a TIC/NOP CCW
in a:

• Suspended channel program results in a condition code of 2 and a return code of 9.
• Currently executing channel program with a CCW containing a suspend bit equal to 1, or on, is

honored; the suspend bit is reset in the modified channel program.
3. The address specified in the Rx register, the new address in the modified TIC CCW, and the new CCW

list to which the modified TIC CCW points must all be addresses that appear second-level; CP knows
these addresses are virtual, but the virtual machine treats them as absolute.

4. When a virtual machine modifies a TIC CCW, it is modifying a virtual channel program. CP has already
translated that channel program, and the real channel program may or may not have been completed
for the guest virtual machine. DIAGNOSE code X'28' must be issued to inform CP of the change in the
virtual channel program so that CP can make the corresponding change in the real CCW before it is
executed, if possible. If the real CCW has already been executed, the change has no effect unless it is
reexecuted during the running of the channel program.

5. When a NOP or TIC CCW is modified to point to a new list of CCWs, CP translates the new CCWs.

Responses
Condition Codes: On return from DIAGNOSE code X'28' processing, CP sets the condition code listed as
follows: In addition, a return code is placed in register 15:

Condition Code Return Code in
Register 15

Meaning

0 0 (X'00') The real channel program is successfully modified.

1 1 (X'01') The same register is specified for Rx and Ry.

1 2 (X'02') The device specified by the Ry register is not found.

1 3 (X'03') The address specified by the Rx register is not within the
user's storage space.

1 4 (X'04') The address specified by the Rx register is not doubleword-
aligned.

1 5 (X'05') A CCW string corresponding to the device (Ry) and address
(Rx) specified is not found.

DIAGNOSE Code X'28'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 43

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Condition Code Return Code in
Register 15

Meaning

1 6 (X'06') The CCW at the address specified by the Rx register is neither
a TIC nor a NOP; the CCW in the channel program is neither a
TIC nor a NOP.

1 7 (X'07') The new address in the modified TIC CCW is not within the
user's storage space.

1 8 (X'08') The new address in the modified TIC CCW is not doubleword-
aligned.

1 10 (X'0A') The device specified in Ry is not an eligible type.

1 14 (X'0E') The target CCW is in the middle of a data chained region.

1 16 (X'10') A NOP or TIC CCW has been modified to a TIC; the new CCW
data address of the TIC target CCW is not translated, and data
chaining ID active.

2 9 (X'09') The channel program could not be modified; channel end
and/or device end occurred already.

2 12 (X'0C') The channel program could not be modified; a paging error
has occurred when an attempt was being made to derive the
real storage address for the CCW pointed to by the modified
TIC CCW.

DIAGNOSE Code X'34' – Read System Dump Spool File
Privilege Class: C, E

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'34' to read the system dump spool file.

Entry Values:
Rx

Contains the guest real address of a page-size buffer that receives the spool file data. If the buffer
crosses a page boundary, a specification program exception is returned to your virtual machine.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the buffer that receives the spool file data. If Rx designates general
register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the buffer is in the
host-primary address space.

Ry
Contains the virtual address of the spool input card reader. Ry must not be register 15.

Exit Values: On return, Ry+1 may contain a return code. See the Responses section for a description of
these codes.

Usage Notes
1. The format of a z/VM dump may change from release to release.
2. The format of the dump data is not part of the programming interface.
3. You may not be authorized to issue this DIAGNOSE code if an external security manager is installed on

your system. For additional information, contact your security administrator.

DIAGNOSE Code X'34'

44 z/VM: 7.3 CP Programming Services

Responses
Condition Codes: On return from the DIAGNOSE code X'34' processing, CP sets one of the condition
codes listed below. In addition, a return code is placed in Ry+1, as follows:

Condition Code Return Code in
Ry+1

Meaning

0 None Data transfer completed successfully

1 None End-of-file reached

2 None File not found

3 4 (X'04') Device address invalid

3 8 (X'08') Device type invalid

3 12 (X'0C') Device busy

3 16 (X'10') Fatal paging I/O error

3 20 (X'14') Invalid file

Program Exceptions: These program exceptions can occur if the DIAGNOSE X'34' is given incorrect input
data:

Problem Encountered Cause

Specification exception Any of the following:

• The address contained in Rx is not on a page boundary.
• Ry is register 15.
• Privilege class violations.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the result buffer.

DIAGNOSE Code X'3C' – Activate z/VM CP Directory
Privilege Class: A, B, C

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'3C' to activate or reactivate a valid directory found in the CP-owned volume list.
This is usually done at CP initialization time, or as a result of the DIRECTXA command rebuild of the
current z/VM CP directory.

Entry Values:
Rx

Contains the first four bytes of the volume identification of the volume assumed to contain a valid
directory.

Ry
Contains the last two bytes of the volume identification (in bytes 0 and 1), and the number of the
virtual device to which the volume is attached (in bytes 2 and 3).

Usage Notes
DIAGNOSE code X'3C' activates the z/VM directory residing on the specified volume if one of the following
is true:

DIAGNOSE Code X'3C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 45

1. The named volume is the one on which the current CP directory was found at CP initialization time
2. No directory is currently active, and the named volume is currently CP-owned.

Responses
Condition Codes: On return from DIAGNOSE code X'3C', CP sets one of the following condition codes:

Condition Code Meaning

0 z/VM has successfully activated the CP directory.

1 The directory that was activated is not a current CP directory.

2 The DASD address specified in the volume label was invalid. The volume label and
allocation map should be restored to the values that existed prior to the update.

3 A fatal I/O error occurred when z/VM attempted to read the CP directory. The
volume label and allocation map should be restored to the values that existed prior
to the update.

Program Exceptions: These program exceptions can occur if the DIAGNOSE X'3C' is given incorrect input
data:

Problem
Encountered

Cause

Specification
exception

If Rx is unchanged:

The update is not for the current online directory volume and the issuer of the
DIAGNOSE X'3C' does not have the appropriate privilege class.

If Rx=0:

The update is for the current online directory volume and one or more of the
following is true:

• The issuer of the DIAGNOSE X'3C' does not have the appropriate privilege class.
• The new directory is not SSI-enabled, which is not valid in the current system
configuration.

• The new directory is SSI-enabled, which is not valid in the current system
configuration.

Rx should be tested, and if it is zero, the volume label and allocation map should
be restored by the function that issued the DIAGNOSE X'3C' to the values that
existed prior to the update.

Privileged-
operation exception

The virtual machine is in the problem state.

DIAGNOSE Code X'44' – Voluntary Time Slice End
Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'44' to notify the scheduler that a spin lock loop exists in your virtual machine.
DIAGNOSE code X'44' informs the scheduler that the remainder of the CPU time slice allocated to a
virtual CPU is no longer useful. z/OS®® and z/VM operating systems use DIAGNOSE code X'44' as the
standard method for notifying the scheduler that a spin lock loop exists.

Entry Values: Specify the Rx and Ry fields as zero.

DIAGNOSE Code X'44'

46 z/VM: 7.3 CP Programming Services

Usage Notes
1. The virtual CPU that issues DIAGNOSE code X'44' is given a dispatching priority lower than other

virtual CPUs in the same guest multiprocessing configuration. The other virtual CPUs generally run
before the issuing virtual CPU. If there is no other virtual CPU for this virtual machine, then DIAGNOSE
code X'44' has no effect.

2. DIAGNOSE code X'44' is useful when the operating system on one guest CPU is waiting to obtain a spin
lock, and another guest CPU must be run in order to release the spin lock. The DIAGNOSE causes the
CPU holding the spin lock to be run before the issuing CPU runs again.

3. The effects of DIAGNOSE code X'44' are temporary. Within a few seconds, the virtual CPU is scheduled
as if the DIAGNOSE were never issued.

Responses
None.

DIAGNOSE Code X'48' – Second Level SVC 76
Addressing Mode: 24-bit or 31-bit

Execution of DIAGNOSE code X'48' provides a null function in z/VM. z/VM supports DIAGNOSE code X'48'
only to provide compatibility with VM/SP, VM/SP HPO, and VM/ESA (370 Feature).

In VM/SP, VM/SP HPO, and VM/ESA (370 Feature), the function of DIAGNOSE code X'48' is to distinguish
between two or more levels of virtual device numbers in EREP records. In z/VM, CP itself provides this
function; you do not have to invoke it using the DIAGNOSE instruction.

If your virtual machine is an XC virtual machine, then DIAGNOSE code X'48' is not valid. A specification
exception is recognized if DIAGNOSE code X'48' is attempted from an XC virtual machine.

DIAGNOSE Code X'4C' – Generate Accounting Records
Privilege Class: Any, with the directory ACCT option.

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'4C' to generate accounting records with existing accounting information and to
change user accounting information for the next accounting record in the current session. Your virtual
machine can issue this DIAGNOSE only if the account (ACCT) option has been specified for you in the
system directory.

Entry Values:
Rx

Contains the guest real address of one of the following:

• A 24-byte parameter list that identifies the accounting information for the next charge-to user. The
contents of the parameter list depend on the hexadecimal function subcode placed in Ry. In the list
below, the hexadecimal numbers are offsets. The format of the parameter list is:

X'00'—the next charge-to user ID
X'08'—the next charge-to account number
X'10'—the next distribution code

If the address represents a parameter list, the list must be doubleword-aligned.

If the address of the parameter list is zero, no parameter list is used. Instead, the next charge-to
user ID, account number, and distribution code are taken from the directory entry of the user issuing
the DIAGNOSE instruction.

• A variable length data area, up to 70 bytes, that you want to store in an accounting record.

CP interprets the address, based on a hexadecimal function code that is supplied in Ry.

DIAGNOSE Code X'48'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 47

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the data area addressed by Rx. If Rx designates general register 0, if Ax
contains X'00000000', or if the virtual machine is not in XC mode, the data area is in the host-primary
address space.

Ry
Ry contains a hexadecimal function subcode. In z/Architecture mode the high order word of register
Ry is ignored. The subcode is put in the low order byte.
Subcode

Rx points to:
X'0000'

A parameter list containing only a user ID
X'0004'

A parameter list containing a user ID and account number
X'0008'

A parameter list containing a user ID and distribution code
X'000C'

A parameter list containing a user ID, account number, and distribution code
X'0010'

A data area containing up to 70 bytes of user information to be transferred to the accounting
record, starting in column 9

Note: If Ry contains X'0010', Ry cannot be register 15.

Ry+1
If Ry contains X'0010', then Ry+1 must contain the length of the data area that Rx is pointing to. In
z/Architecture mode the high order word of register Ry+1 is ignored. The 4 bytes of the low order
register word contains the length of the buffer. The length specified in Ry+1 must be greater than zero
and less than or equal to 70.

If Ry does not contain X'0010', Ry+1 is ignored.

Usage Notes
1. For a discussion of how z/VM processes addresses, refer to “How Addresses Are Processed” on page

5.
2. If Ry contains any valid function subcode other than X'0010':

• Accounting records are generated for the virtual machine's resources, dedicated devices, temporary
disk space, virtual disk in storage, and network data transmission records using the accounting
information currently set.

The accounting information currently set are the values set with the previous DIAGNOSE X'4C'. If no
DIAGNOSE code X'4C' has been issued yet, the user ID, account number, and distribution code are
set by logon to the values specified in the user directory.

Columns 79 and 80 of the accounting records generated after DIAGNOSE code X'4C' has been
issued have an accounting record identification code of:

C'C1'—the virtual machine resource records
C'C2'—the virtual machine dedicated device records
C'C3'—the virtual machine temporary disk space records
C'CB'—the virtual machine virtual disk in storage records
C'CC'—the virtual machine network data transmission records

For more information about accounting records, see z/VM: CP Planning and Administration.
• The parameter list (a 24-byte area whose guest real address is in Rx) is validated:

– If the address is invalid, an addressing exception is generated.

DIAGNOSE Code X'4C'

48 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

– If the address is not aligned on a doubleword boundary, a specification exception is generated.
– If the address in Rx is zero, that is, no parameter list exists, the accounting information is reset to

equal that of the issuing user ID as set in its directory entry (that is, your user ID, your account
number, and your distribution code).

Control is returned to your virtual machine with a condition code of zero.
– If the address in Rx is valid, that is, it points to a parameter list:

- And if the new user ID specified is invalid, that is, it cannot be found in the system directory:

The accounting information is reset to equal that of the issuing user ID as set in its directory
entry (that is, your user ID, your account number, and your distribution code).
Control is returned to your virtual machine with a condition code of two.

- And if the new user ID specified is valid, the accounting information is updated from the
parameter list pointed to, based on the hexadecimal function subcode set in Ry; and control
is returned to your virtual machine with a condition code of zero:
Subcode

Accounting Information Changed
X'0000'

The next charge-to user ID updated from parameter list.

The next charge-to account number updated from the new user ID system directory entry

The next distribution code updated from the new user ID system directory entry

X'0004'
The next charge-to user ID updated from the parameter list

The next charge-to account number updated from the parameter list

The next distribution code updated from the new user ID system directory entry

X'0008'
The next charge-to user ID updated from the parameter list

The next charge-to account number updated from the new user ID system directory entry

The next distribution code updated from the parameter list

X'000C'
The next charge-to user ID updated from the parameter list

The next charge-to account code updated from the parameter list

The next distribution code updated from parameter list

X'0010'
Not a valid parameter list function subcode (see usage note “3” on page 49)

3. If Rx contains the guest real address of a variable length data area, and Ry contains a function subcode
of X'0010':

• If the address specified in Rx is negative or greater than your virtual machine's storage size, an
addressing exception is generated.

• If the value in Ry+1 is zero, negative, or greater than 70, a specification exception is generated.
• If both the address and the length are valid, an account buffer is built as follows:

– The issuing user ID as set at logon (that is, your user ID), is placed in columns 1 through 8.
– An accounting record identification code of C0 is placed in columns 79 and 80.
– The data, pointed to by the address in Rx, is moved into the accounting record starting at column

9, for a length equal to the value in Ry+1.
– Unused columns are initialized to blanks.
– The accounting buffer is sent to the accounting virtual machine.

DIAGNOSE Code X'4C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 49

– Control is returned to your virtual machine with a condition code of zero.
4. For subcodes other than X'0010', the counter containing the number of LINK commands attempted

with an invalid password is reset.

Responses
Condition Codes: On return from the DIAGNOSE code X'4C', CP sets one of the following condition codes:

Condition Code Meaning

0 Both the user ID and hexadecimal function subcode are valid. Accounting records
are generated using the currently set accounting information, and the accounting
information for the next accounting records for this session is updated from the
parameter list, if one was specified.

1 The user is not authorized to use the account option.

2 Either of the following:

• Your own user ID is no longer in the CP directory. Accounting records have been
written, but the accounting information (user ID, account number, distribution
code) has not been reset.

• The user ID contained in the parameter list is not found in the system directory.
Accounting records have been written, and the accounting information has been
reset to your user ID.

3 The hexadecimal function subcode in Ry is invalid.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'4C' is given incorrect
input data:

Problem Encountered Cause

Specification exception1 Any of the following:

• Subcodes X'0000', X'0004', X'0008', X'000C': the
parameter list does not start on a doubleword boundary.

• Subcode X'0010': Ry is register 15.
• Subcode X'0010': the value in Ry+1 is less than 1 or greater

than 70.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the parameter list or the
data area.

Note: 1 Ordinarily, specification and some access exceptions are suppressing or nullifying, that is, the
instruction is effectively not executed. However, when these exceptions occur for subcodes X'0000',
X'0004', X'0008', or X'000C', of DIAGNOSE code X'4C', accounting records are written for the preceding
interval and accounting information is reset to your own user ID, accounting number, and distribution
code.

DIAGNOSE Code X'54' – Control the Function of the PA2 Key
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'54' to control the function of the PA2 function key. You can use the PA2 key to
simulate an external interrupt to a virtual machine or to clear the output area of a display screen.

DIAGNOSE Code X'54'

50 z/VM: 7.3 CP Programming Services

Entry Values:
Rx

Contains a value that controls the function of the PA2 key. If Rx contains a nonzero value, the PA2 key
simulates an external interrupt to the virtual machine. If Rx contains a zero, the PA2 key clears the
output area of the display screen.

Ry
Not used.

Usage Note
The external interrupt is simulated only when the display screen is in the VM READ, HOLD, or MORE status
and the CP TERMINAL APL ON command has been issued.

Responses
None.

DIAGNOSE Code X'58' – 3270 Virtual Console Interface
Privilege Class: Any

Addressing Mode: 31-bit

Use DIAGNOSE code X'58' to enable your virtual machine to communicate with IBM 3270 display
stations.

DIAGNOSE code X'58' operates in all virtual machines; however, only format 0 CCWs are allowed. All
storage addresses referred to by DIAGNOSE code X'58' are guest absolute addresses and all designated
areas are in host-primary space. Addresses of CCWs and the addresses contained in the CCW, including
the pointer to indirect address words (IDAWs) as well as directly referenced data buffers, are 24-bit
addresses. DIAGNOSE code X'58' may be used in one of two modes:

• Line mode–the user can write data to the screen, which is in the control of CP and is formatted into
specific areas: input, output, and status. The user can write data to either of the following places:

– The input or output area, beginning at a specified line. Up to a full-screen of data can be written.
– The output area starting at the next available line. More than a full-screen of data can be written.

• Full screen mode–the user has full control over the format of the screen, and is responsible for error
checking and recovery. The user may read from, as well as write to, the display.

In either mode, the virtual machine can provide data stream orders along with data that is sent to the
display station. An attribute character provides control information for the display (an example of control
information is a request to intensify data when it is displayed).

Entry Values:
Rx

Contains the channel address word (CAW). The leftmost bits, 0 through 3, of the CAW contain the
protection key to use in accessing guest absolute storage for the I/O operation.

Bit 4 (Suspend Control) must be zero.

Bits 5 through 7 (Unassigned) must be zero.

Bits 8 through 31 contain the channel program address.

Bits 29 through 31 must be zero, designating a doubleword aligned channel program.

Ry
Contains the device number of the display station where the operation is to be performed. This value
must be right-justified.

DIAGNOSE Code X'58'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 51

For 370-only applications running in an XA, ESA, or XC virtual machine with 370 Accommodation
enabled (see the SET 370ACCOM command in the z/VM: CP Commands and Utilities Reference),
DIAGNOSE code X'58' follows the architecture for the Start I/O (SIO) instruction processing. For more
information on the SIO instruction and the status returned, see the Enterprise Systems Architecture/390
Principles of Operation or z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/
a227832d.pdf). The guest virtual machine's condition codes (CCs) are changed on the following
conditions:
Code

Description
0

The SIO function has been accepted
1

The CSW has been stored
2

The channel or subchannel is busy
3

Not operational.

For ESA applications running in an XA, ESA, XC, or Z virtual machine (including one in access
register mode), DIAGNOSE code X'58' follows the interface architecture for the Start Subchannel
(SSCH) instruction processing. For more information on the SSCH instruction and the status returned,
see the Enterprise Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/
dz9ar008.pdf), z/VM: ESA/XC Principles of Operation, z/Architecture Principles of Operation (https://
publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf), or z/VM: z/Architecture Extended Configuration (z/XC)
Principles of Operation, based on the architecture mode of the virtual machine. The guest virtual
machine's condition codes are changed on the following conditions:
Code

Description
0

The start function is initiated
1

The subchannel is status-pending
2

The subchannel is busy
3

Not operational.

Usage Notes
1. In an XC virtual machine, DIAGNOSE code X'58' can run in access register mode, but it addresses

only the virtual machine's host-primary address space.
2. When a virtual machine issues DIAGNOSE code X'58', it must provide one or more channel command

words (CCWs). These CCWs specify the operation to be performed, provide control information for
the display station, and specify the address of data to be displayed during a write operation or the
address of a buffer where data is to be stored during a read operation. As is usual for I/O operation,
storage accesses to CCWs, IDAWs, and data areas are not subject to low-address protection, fetch-
protection override, or storage-protection override. Key-controlled protection applies, using the key
in Rx bits 0-3. See also the usage note (“8” on page 56) for valid channel programs.

3. When invoking CCW code X'49', both APL and TEXT must be off. Having either APL or TEXT on causes
command rejects.

4. Issuing CCW code X'49' from a device other than a 3270 causes command rejects.
5. DIAGNOSE code X'58' is for a virtual 3215 console and causes command rejects if executed with

CONMODE 3270.

DIAGNOSE Code X'58'

52 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

6. When DIAGNOSE code X'58' is being executed in line mode:

• To display up to a full screen of data starting at a specified line, code a CCW using the following
assembler language instructions:

DS 0D
DC X'19',AL3(dataddr),AL1(flags),AL1(ctl),AL2(count)

X'19'
is the subcode.

dataddr
is the virtual storage address of the first byte of data to be displayed.

flags
are standard CCW flags. The suppress-incorrect-length indicator, bit 34, must be set to a value
of 1. Set other bits as needed. To use 31-bit addresses, the use of indirect data address words
is required.

ctl
is a control byte defined as follows:

– If the high-order bit (bit 0) is on, CP erases the display station screen before new data is
displayed.

– Bits 2 through 7 identify the line on the display screen where the display is to start. A value of
0 (B'xx00 0000') corresponds to the first or top line, a value of 1 (B'xx00 0001') corresponds
to the second line, and so forth.

– If the control byte contains the value X'FF', CP erases the display station's output area. No
new data is displayed.

– If the control byte contains the value X'FE', CP:

- Erases the entire screen
- Rewrites the field attribute bytes for the CP screen format
- Resets the cursor to the beginning of the input area.

count
specifies the number of bytes of data to be displayed. The maximum value allowed is 3991
bytes. The maximum amount of data that can be displayed at one time depends upon the
screen size of the 3270 display station, the line on the screen where the data is to start, and the
character set used.

For APL and TEXT character sets, each character that is translated into a compound character
counts as two bytes. Therefore, the maximum count of data is 1995. For APL and TEXT
data streams that contain some untranslated compound character data, the maximum count
lies somewhere between 1995 and 3991. If an APL or TEXT data stream is sent that, after
translation, exceeds 3991 bytes, the data is truncated.

For the default or EBCDIC character set:

– A model 2 can display in an area that extends from:

- Lines 1 through 22 (a maximum of 1760 bytes)
- Line 23 up to and including the left 59 character positions of line 24 (a maximum of 139

bytes).
– A model 3 can display in an area that extends from:

- Lines 1 through 30 (a maximum of 2400 bytes)
- Line 31 up to and including the left 59 character positions of line 32 (a maximum of 139

bytes).
– A model 4 can display in an area that extends from:

- Lines 1 through 41 (a maximum of 3280 bytes)

DIAGNOSE Code X'58'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 53

- Line 42 up to and including the left 59 character positions of line 43 (a maximum of 139
bytes).

– A model 5 can display in an area that extends from:

- Lines 1 through 25 (a maximum of 3300 bytes)
- Line 26 up to and including the left 111 character positions of line 27 (a maximum of 243

bytes).

The above lengths are dependent on hardware characteristics, not on DIAGNOSE code X'58'
interface limitations.

• To display data starting at the next available line on the screen, code a CCW using the following
assembler language instructions:

DS 0D
DC X'49',AL3(dataddr),AL1(flags),AL1(ctl),AL2(count)

X'49'
is the subcode.

dataddr
is the virtual storage address of the first byte of data to be displayed.

flags
are standard CCW flags.

ctl
is ignored.

count
specifies the number of bytes of data to be displayed. The maximum value allowed is 3991
bytes.

When the virtual machine issues CCW code X'49', CP treats the channel program as a normal
3215 channel program, with the following exceptions:

– The data stream is processed as if TERMINAL LINESIZE OFF has been issued. That is, the
data stream is broken up only when a X'15' is encountered in the data stream.

– Each time a X'15' is encountered, CP counts exactly one line.
– CP does not translate any code point from X'40' to X'FE', inclusive. CP also does not translate

code points X'0E' and X'0F'.

DIAGNOSE code X'8C' should be issued before DIAGNOSE code X'58' and code X'49' to
determine the width of the screen. This information should then be used to determine the
number of character positions that can be taken up between occurrences of X'15'. The width of
the screen minus 2 should be the maximum for that number. If this restriction is not observed,
CP cannot manage the screen correctly.

To provide attribute characters for the data, place the attribute character in the data stream
immediately following a 3270 start-field order. The start-field order, a 1-byte value, notifies the
3270 display station that the next byte in the data stream is an attribute character. For a description
of how the 3270 display station uses attribute characters, and to determine the values to specify
for attribute characters and the start-field order, see the IBM 3270 Information Display System:
3274 Control Unit Description and Programmer's Guide, GA23-0061. This is a requirement of the
hardware, not of the DIAGNOSE code X'58' interface.

Note: Through the attribute character, it is possible to define a display field as selector-pen
detectable. However, when the selector pen selects the field, CP does not return data from the
field to the virtual machine. This is a requirement of the hardware, not of the DIAGNOSE code X'58'
interface.

When DIAGNOSE X'58' is specified, any start-field order in the data stream has its associated
attribute byte set with the modified data tag off and the protection bit on, regardless of previous
settings.

DIAGNOSE Code X'58'

54 z/VM: 7.3 CP Programming Services

After processing DIAGNOSE code X'58', CP sets a condition code. If the operation is successful (no
I/O errors occurred), CP sets a condition code of zero. If an I/O error occurs, CP sets a nonzero
condition code.

For 370-only applications running in an XA, ESA, or XC virtual machine with 370 Accommodation
enabled, the returned condition codes and CSW status are the standard condition codes and status
as defined in System/370 Principles of Operation. The application program is responsible for all I/O
status and error checking, just as if START I/O (SIO) were being used instead of DIAGNOSE. This
is done by using the TEST I/O (TIO) instruction and examining the returned condition code and the
virtual CSW.

For ESA applications running in XA, ESA, XC, or Z virtual machines, the application program is
responsible for all I/O status and error checking, just as if a Start Subchannel (SSCH) were
being used instead of DIAGNOSE code X'58'. This is done by using the Test Subchannel (TSCH)
instruction and by examining the subsequent IRB. For more information on the IRB and the
status returned, see System/370 Principles of Operation, z/VM: ESA/XC Principles of Operation,
z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf),
or z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, based on the
architecture mode of the virtual machine.

7. When DIAGNOSE code X'58' is being executed in full-screen mode:

DIAGNOSE X'58' provides a means by which a virtual machine may share, with CP, control of a 3270
display station. Two CCW operations, X'29' and X'2A', in addition to performing the requested I/O,
also notify CP that the display station is operating under the control of the virtual machine.

CCW code X'29' performs a Write, Erase/Write, Erase/Write Alternate, or Write Structured Field
operation, depending on the value of the control field. The virtual machine must provide appropriate
control information beginning with the Write Control Character (WCC) and including 3270 orders
following the WCC. Data may be written anywhere on the screen. The virtual machine must provide
the address where the write is to begin; it uses a Set Buffer Address (SBA) command to do this.
Writing can also start at the current cursor address. CCW code X'29' performs a Write Structured
Field operation when the value of the control field is X'20'. The Write Structured Field command
sends control information to a 3274 controller.

CCW code X'2A' performs a Read Buffer or a Read Modified operation, depending on the value of the
control field.

To specify the full-screen mode CCW, use the following assembler language instructions:

DC 0D
DC X'(ccwcode)',AL3(dataddr),AL1(flags),AL1(control),AL2(count)

ccwcode
is a 2-digit CCW code (X'29' or X'2A')

dataddr
for a write operation, specifies the first byte of the data stream (WCC) to be written. For a read
operation, specifies the address of the read buffer.

flags
is the standard CCW flag field

control
for a write operation (CCW code X'29') the following control field values cause various operations
to be performed:
Value

Operation Performed
X'80'

Erase/Write
X'C0'

Erase/Write Alternate

DIAGNOSE Code X'58'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 55

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

X'40'
Erase/Write Alternate

X'20'
Write Structured Field

All other values
Write

For a read operation (CCW code of X'2A'), the following control field values cause various
operations to be performed:
Value

Operation Performed
X'80'

Read Modified
All other values

Read Buffer

By adding X'10' to the CONTROL field values for Erase/Write or Erase/Write Alternate, making
them X'90' or X'D0' respectively, the break key interrupt is reflected to the virtual machine. This
replaces the normal break key function of returning the virtual machine to CP mode, and allows a
virtual machine to have full control of the keyboard.

Normal break key function is restored when either full screen mode is reset or a DIAGNOSE code
X'58' CCW code X'29' Erase/Write (control code X'80') or Erase/Write Alternate (control code
X'C0' or X'40') is issued.

count
for a write operation, specifies the number of bytes to be displayed in addition to the number of
bytes of control information. For a read operation, it specifies the number of display characters to
be read in addition to the number of bytes of control information.

If you are using a local terminal (whose controller is connected to the host computer through
a direct channel) the maximum count is 65,535; otherwise, the maximum count is 65,503. The
maximum number of displayable positions (a hardware dependency, not a DIAGNOSE code X'58'
requirement) for the supported devices is:
Max. Displayable

Supported Devices
1920 bytes

3277, 3278, and 3279 Model 2
2560 bytes

3278 and 3279 Model 3
3440 bytes

3278 Model 4
3564 bytes

3278 Model 5
8. For valid channel programs:

The channel programs presented by DIAGNOSE code X'58' may contain one or more CCWs. The CCW
operation codes supported are the DIAGNOSE code X'58' operation codes X'19', X'49', X'29', and
X'2A', and the two general operation codes, X'08' (TIC) and X'03' (NOP). The channel program must
be either line mode or full-screen mode; the two modes cannot be mixed in one channel program.
The X'19' operation code that clears the screen may be used to start either a line mode or full-screen
mode write operation, or it may comprise a whole channel program in itself.

The following rules apply:

a. The channel program must begin with a valid DIAGNOSE code X'58' operation code: X'19', X'49',
X'29', or X'2A'.

DIAGNOSE Code X'58'

56 z/VM: 7.3 CP Programming Services

b. A X'19' or X'49' write can be command-chained to another X'19', a X'49', a X'08' (TIC), or a X'03'
(NOP operation code).

c. A X'19' with a CTL value of X'FF' or X'FE' can be chained to any other X'19', X'49', or X'29'
operation code, or to an intervening X'08' (TIC) or X'03' (NOP) operation code. In the case of a
X'29' operation code, the X'19' must be the first CCW in the channel program.

d. A X'29' or X'2A' operation code can be chained to another X'29', a X'2A', a X'08' (TIC), or a X'03'
(NOP) operation code.

9. For full-screen interactions (for both DIAGNOSE code X'58' and 3270 SIO/SSCH):

The virtual machine console operates in one of two modes: CP or full-screen. CP mode is the default
and is indicated by the screen status field in the lower right-hand corner of the screen. When in CP
mode, CP controls the screen format, and the data that appears on the screen is provided by CP and
the programs running in the virtual machine.

A guest virtual machine can use either DIAGNOSE code X'58' or the 3270 SIO/SSCH instruction to
initiate full-screen mode, but not both. Full screen console support enables a guest virtual machine
and CP to share a locally-attached display station controlled by CP. The virtual machine can use the
display station in full-screen mode; CP can use the same display station as a device in line mode.

When in full-screen mode, the screen format data checking and error checking are under complete
control of the program running in the virtual machine.

Line mode is terminated and full screen mode is initiated when the application program issues an
Erase/Write, Erase/Write Alternate, or Write Structured Field instruction. Full screen mode may be
terminated by a line mode type I/O to the screen anytime the keyboard is in a locked state.

The Terminal BRKKEY command allows the user to specify a PF key, the Clear key, or the PA2
key, as well as the PA1 key, as the break key in full-screen mode; it also allows BRKKEY NONE to
be specified. The default break key is PA1. When you press the user-defined break key while in
full-screen mode, z/VM puts your virtual machine in CP mode and displays CP READ in your status
area. When PA1 is not defined as the BRKKEY, PA1 attentions are sent to the virtual machine. Some
application programs that could be running in the virtual machine may interpret the PA1 attention as
a user request to enter the CP environment. For a further explanation of the use of the PA1 key, see
usage note “10” on page 58 (DIAGNOSE code X'58' full-screen I/O).

In full-screen mode, all CP messages are queued. The entire queue of CP messages is processed
after each of the following operations:

a. A full-screen read operation (any read operation locks the keyboard)
b. A full-screen write operation (that locks the keyboard)
c. The expiration of a 60-second timer for CP priority messages.

If a priority CP message (such as a warning message from the system operator) is to be displayed
while in full-screen mode, z/VM posts an attention interruption to the application program, and a
60-second timer is set. The attention interrupt informs the application program that a read operation
should be initiated. In general, if the application program does not issue a read request before the
60 seconds have expired, CP erases the screen and displays all queued messages. However, if the
application program has issued a full-screen support Write Structured Field instruction, CP does not
take over the screen.

Other non-full-screen messages are displayed immediately by z/VM when in full-screen mode.

Interactions between CP and the application program in the virtual machine using full-screen support
are in the IBM 3270 Information Display System: 3274 Control Unit Description and Programmer's
Guide, GA23-0061. The application programmer must be familiar with the operation of the IBM 3270
display station.

If Terminal Breakin GuestCTL has been specified, CP is allowed to break in when the break key
is used. An audible alarm is sounded when CP messages are queued. Priority CP messages and
DIAGNOSE code X'08' output can still break in and take over the full screen.

DIAGNOSE Code X'58'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 57

Other non-full-screen messages are displayed immediately by z/VM when in full-screen mode
(except for those exceptions noted for the Terminal Breakin command).

A full-screen Erase/Write, Erase/Write Alternate, or Write Structure Field operation establishes full-
screen mode.

10. For DIAGNOSE code X'58' full-screen I/O:

Listed below are general programming considerations that must be followed to effectively use the
DIAGNOSE code X'58' instruction for full-screen I/O:

a. A full-screen Erase/Write or Erase/Write Alternate operation establishes full-screen mode.
b. When a mode switch has occurred and the screen is in CP mode, the application program is

notified by an X'8E' in the CSW/IRB unit status byte following a full-screen I/O operation. An
Erase/Write, Erase/Write Alternate, or Write Structure Field operation instruction should be issued
to reestablish full-screen mode and reformat the screen.

An X'8E' in the CSW/IRB unit status byte following an Erase/Write or Erase/Write Alternate
instruction indicates that non-full-screen data (CP mode) is waiting to be read. The application
program should issue a non-full-screen Read and then reissue the Erase/Write instruction.

c. The application program must establish an environment to handle attention interruptions. This
could be done using the CMS macros HNDINT and WAITD. CP posts an attention interruption to
the application program in one of the following conditions:

i) CP receives an attention interruption indicating that the virtual machine console operator has
caused an interruption (for example, when the Enter key or a PF key is pressed)

ii) A CP priority message is to be displayed.
d. If the test request key is pressed at a local 3270 when in full-screen mode, X'604040' is returned

to the application program in the read buffer.
e. For break key operation in full-screen mode:

i) If a 3270 SIO/SSCH or DIAGNOSE code X'58' with bit X'10' of the control option is not set:

If the break key is pressed, CP posts an attention interrupt to the virtual machine. If the virtual
machine responds with a READ, or the break key is pressed a second time, the virtual machine
is put in line mode and a CP READ is displayed on the screen's status area.

ii) If DIAGNOSE code X'58' with bit X'10' of the control option is set:

If the break key is pressed, CP posts an attention interrupt to the virtual machine. If the virtual
machine responds with a Read, the break key is passed to the virtual machine. If the virtual
machine does not respond with a Read and the break key is pressed a second (or more) time,
CP posts another attention interrupt to the virtual machine. In both cases, the passing of the
break key interrupt to the virtual machine overrides the BRKKEY setting (if the interrupt came
by request of the application program using the X'10' bit in the control byte of the previous
Erase/Write or Erase/Write Alternate operation).

11. 3270 SIO/SSCH full-screen mode interactions:

Before a guest virtual machine can issue 3270 SIO/SSCH commands, it must first ensure that
the console mode is set to 3270. For more information on setting the console mode, see the
Terminal Conmode command in the z/VM: CP Commands and Utilities Reference. After the console is
designated a 3270 console, whenever CP is ready to give up control of the screen it presents a CLEAR
attention interrupt to the virtual machine. It is the responsibility of the application program to issue
an Erase/Write to refresh the screen. If a virtual machine issues only a Write that does not cover the
entire screen, information that CP displayed remains on the screen.

12. Double-byte character set (DBCS) line-mode console output may be sent to the virtual machine
console by CP, or when CP obtains messages and responses from a DBCS NLS message repository, or
by the virtual machine.

The virtual machine sends line-mode output to its virtual machine console by using mixed DBCS data
streams. Mixed DBCS data streams contain DBCS character strings surrounded by a shift out/shift in
(SO/SI) pair. Single-byte character set (SBCS) data may or may not be present in the data stream.

DIAGNOSE Code X'58'

58 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Example 1—A Data Stream Containing SBCS Data

The following contains SBCS data identified by a B:

BBBBBBBBBBBBBBBBBBBBBBB

Example 2—A Data Stream Containing DBCS Data

The following contains DBCS data identified by a D:

Example 3—A Data Stream Containing Mixed DBCS Data

The following contains SBCS data identified by a B and DBCS data identified by a D:

The virtual machine can send DBCS line-mode data by issuing SIO, SIOF, or SSCH to a channel
program containing a Write CCW addressing a mixed DBCS data stream, or by issuing DIAGNOSE
X'58' opcode X'49'. For the I/O request to succeed, TERMINAL TEXT and TERMINAL APL must be
turned off. This can be checked with the QUERY TERM command. If these are not turned off, the
request fails with a command reject indication.

When a virtual machine issues I/O to a channel program, CP ensures the console is DBCS capable.
If a console is DBCS capable and is not an SNA/CCS terminal, CP formats the data for the screen
and properly displays the data. If it is not DBCS capable, the request is rejected with a data check
indication.

You do not have to insert new line (NL) characters in the data stream to format the data for the
physical line size of the terminal on an SIO, SIOF, or SSCH. CP formats the data, using the smaller of
the:

• Physical width of the screen or
• Logical line size.

This is determined by the TERMINAL LINESIZE command, as follows:

• If LINESIZE=0, LINESIZE is turned off and the physical width of the screen is used.
• If LINESIZE=1, 2, or 3, a line size of 4 is used, because this is the smallest line-size value that

displays one byte of DBCS data.

CP ensures, for the DBCS data, that each line displayed contains an even number of DBCS bytes
surrounded by an SO/SI pair. If the data is not an even number of bytes or if the data is not
surrounded by an SI/SO pair, the request is rejected with a data check indication.

Note: If the data is spooled to the console log or passed to applications over the *MSG or *MSGALL
connection, the DBCS data stream is properly formatted and displayed after the data is sent.

For SNA/CCS terminals, NL characters are inserted in the data stream based on the smaller of the
logical or the physical line size of the terminal before the data is sent to the terminal; the data is then
passed to the appropriate SNA/CCS or real terminal processor to complete writing the data to the
terminal.

When DIAGNOSE code X'58' opcode X'49' is used, it is the user's responsibility to format the data by
inserting NL characters in the data. This is based on the smaller of the logical line size or the physical
width of the screen, which is determined by the TERMINAL LINESIZE command. If LINESIZE=0,
LINESIZE is turned off and the physical width of the screen is used; if LINESIZE=1, 2, or 3, a line size
of 4 is used, because this is the smallest line-size value that displays one byte of DBCS data. When
determining the length of the data, keep in mind the following:

DIAGNOSE Code X'58'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 59

• SI, NL, and SO characters must be inserted, so space in the data stream must be considered for
these characters.

• When an NL character is inserted within DBCS data, the data cannot be split in the middle of a
double-byte character.

Responses
None.

DIAGNOSE Code X'5C' – Error Message Editing
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'5C' to edit error messages according to your setting of the EMSG function, as
determined by the SET EMSG command, or according to the setting of the EMSG function of another
virtual machine.

Entry Values:
Rx

Contains the address where the first byte of the message to be edited can be found. If the subcode is
X'40', the Rx register cannot be register 15.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the message text. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the message text is in the host-primary
address space.

Rx+1
Contains the length of the message header if the subcode is X'40'.

Ry
Consists of ssxxllll
ss

is the subcode and modifier code
xx

is not checked
llll

is the length of the message to be edited.

If the alternate user ID modifier (X'80') is specified, Ry cannot be register 15.

Ry+1
Contains the address of an 8-byte field containing the alternate user ID and padded with blanks if
necessary. (Only if Modifier code X'80' is specified.)

Ay+1
Is used only by XC virtual machines in access-register mode. Ay+1 contains the ALET for the address
space containing the user ID.

Subcode
Meaning

X'00'
Indicates that a 10-byte message header (code) is assumed; the actual contents of the message are
not checked.

X'20'
Indicates that the length of the message header must be calculated; DIAGNOSE code X'5C' assumes
that the header runs up to, but does not include, the first blank. It also assumes the text begins at the
location following the first blank.

DIAGNOSE Code X'5C'

60 z/VM: 7.3 CP Programming Services

X'40'
Indicates that the length of the message header is being passed in Rx+1; the actual contents of the
message are not checked.

Modifier Code
Meaning

X'80'
Indicates that the issuer wishes to use the EMSG setting of the user ID specified by Ry+1. Although
X'00', X'20', and X'40' are all mutually exclusive, you can combine modifier code X'80' with any one
of the above subcodes. For example, a subcode of X'A0' is a combination of X'20' and X'80'. Modifier
code X'80' is valid only for class B enabled user IDs.

Exit Values: On return from DIAGNOSE code '5C', CP sets a condition code (described in the Responses
section) and, based on the EMSG setting, returns Rx and Ry.

EMSG Setting: CP tests the EMSG setting and returns Rx and Ry to the caller modified as follows:

EMSG Setting Rx Ry

ON
IUCV

No change The subcode/modifier code byte is zeroed out. The rest of the
register remains unchanged.

CODE No change The length of the header, as determined by the subcode.

TEXT The pointer to the
text part of the
message

The length of the text alone

OFF No change 0

Usage Notes
1. DIAGNOSE code X'5C' does not write the message; it merely rearranges the starting pointer and

length.
2. Modifier code X'80' is only valid for class B enabled user IDs.

Responses
Condition Codes: When the alternate user ID modifier (X'80') is specified, one of the following condition
codes is returned:

Condition Code Meaning

0 Successful completion

2 The specified user ID is not logged on

When the alternate user ID modifier is not specified, the condition code remains unchanged.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'5C' is given incorrect
input data:

Problem Encountered Cause

Specification exception Any of the following:

• The subcode in Ry bits 1-7 is invalid.
• For subcode X'40': Rx is register 15.
• For modifier code X'80': the user ID is not aligned on a

doubleword boundary, or Ry is register 15.

DIAGNOSE Code X'5C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 61

Problem Encountered Cause

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state or has requested
but is not authorized for alternate user ID processing.

• Modifier code X'80' was specified and the user does not
have class B privileges.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to:

• Fetch the message text (subcode X'20' only)
• Fetch the user ID (modifier code X'80')

DIAGNOSE Code X'60' – Determine Virtual Machine Storage Size
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'60' to determine your virtual machine's defined storage size, that is, to determine
the size of your virtual machine's host-primary address space, excluding any discontiguous saved
segment or saved system storage loaded above the defined size.

Note: For a virtual machine in 64-bit addressing mode, subcode X'0000000C' of Diagnose X'260' may be
used to obtain the virtual machine storage size. Subcode X'00000000' of Diagnose X'260 ' may be used
as an alternative to Diagnose X'60' for a virtual machine in 24-bit or 31-bit addressing mode.

Entry Values: You must specify a register number for Rx.

Exit Values: On return, the register specified as Rx contains the virtual machine storage size, in bytes.

Responses
None.

DIAGNOSE Code X'64' – Named Saved Segment Manipulation
Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'64' to manipulate named saved segments from a user's virtual machine. The
DIAGNOSE code X'64' interface is used in application programs as a linkage mechanism to previously-
created saved segments. These segments have been defined by the DEFSEG command, initialized by a
product or application with the necessary code and data, and saved by the SAVESEG command.

A discontiguous saved segment (DCSS) is a saved segment that occupies one or more architected
segments. It can be embedded above the virtual machine's defined storage size and begins and ends
on a megabyte boundary.

Saved segments may have been defined as segment spaces or as members of a segment space. All
references to named saved segments through any DIAGNOSE code X'64' function is by the name of
the saved segment. This means that all names are unique, whether they have been defined as segment
spaces or member saved segments. The results of a function are based on whether the object of the
processing was a segment space name or a member saved segment name.

Entry Values:
Rx

Subcodes X'00', X'04', X'08', X'0C', X'10', X'20', X'24', X'2C': Contains the address of an 8-byte buffer
containing the name of a saved segment. The saved segment name must be 8 characters or less in

DIAGNOSE Code X'60'

62 z/VM: 7.3 CP Programming Services

length, on a doubleword boundary, left-justified, and padded with blanks to 8 characters. Access to
the segment name is subject to key-controlled protection.

Subcodes X'18', X'38': Contains the address of a parameter area. Parameters include the name
of the saved segment, a code for the kind of information to be returned about the segment, and
specifications for an output area to receive information. The output area must be in the same address
space as the parameter area. Access to the parameter area is subject to key-controlled protection.

Note: When running in 64-bit mode, the address in Rx is interpreted as a 31-bit address. In 24- and
31-bit modes, the address is interpreted according to the addressing mode of the guest.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the buffer to which Rx points. In the case of subcode X'18', the output
area is also in this address space. If Rx designates general register 0, if Ax contains X'00000000', or if
the virtual machine is not in XC mode, the buffer is in the host-primary address space.

Ry
Contains a function subcode.

In the following pages, the possible functions are listed in the order of their subcodes. After each
subcode number is a description of what the function does.

Subcode X'00' — LOADSHR
This function loads a saved segment in shared mode. After this function executes, the storage occupied
by the named saved segment is addressable by the virtual machine, even if the loaded saved segment
is outside the addressing range of the virtual machine. However, any storage beyond that defined for the
virtual machine and below that defined for the saved segment is not addressable. The following describes
the processing characteristics as they relate to the different forms of saved segments:
DCSS

Purges any saved segment that is within the range definition of the DCSS being loaded. If the saved
segment being loaded was defined without the SPACE operand, then this segment is made accessible
to the user virtual machine.

Rx contains the actual beginning address of the DCSS.

• The beginning address of the DCSS is the first byte of the lowest page value that was specified on
the DEFSEG command.

Ry contains a rounded ending address of the DCSS.

• The ending address of a DCSS is rounded up to the last byte of the highest page value that was
specified on the DEFSEG command.

Segment space
This function purges any saved segment within the range definition of the segment space being
loaded. If the segment space being loaded has members, each member of the segment space is
made accessible to the user virtual machine. Rx contains the actual beginning address of the segment
space.

• The beginning address of a segment space is the first byte of the lowest page value that was
specified for a member having the lowest page value on the DEFSEG command.

Ry contains a rounded ending address of the segment space.

• The ending address of a segment space is rounded up to the last byte of the highest page value that
was specified for a member having the highest page value on the DEFSEG command.

Member saved segment
This function purges any saved segment that is within the range definition of the segment space that
contains the loaded member. However, any previously loaded members that are also part of the same
segment space as the member being loaded are unaffected. The loaded member saved segment is
made accessible to the user virtual machine.

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 63

Rx contains the actual beginning address of the member saved segment.

• The beginning address of the member saved segment is the first byte of the lowest page value that
was specified on the DEFSEG command.

Ry contains the actual ending address of this member saved segment.

• The ending address of the member saved segment is rounded up to the last byte of the highest page
value that was specified on the DEFSEG command.

If the member saved segment was outside the addressable range of the virtual machine to which it
was loaded/attached, the virtual machine may now reference any portion of storage occupied by the
segment space that contains the member.

Notes:

1. A member saved segment loaded through LOADSHR after a previous member saved segment of the
same segment space was loaded through LOADNSHR also produces a nonshared copy of the segment.

2. If a DCSS is already loaded and a request to load it again occurs, then this results in a refreshed copy
of any exclusive writeable storage for that DCSS in the virtual machine being attached. If a member
saved segment is already loaded and a request to load it again occurs, then this results in a refresh of
any exclusive writeable storage for that member saved segment in that virtual machine, but storage for
other member saved segments in the same segment space is not refreshed. If a segment space was
already explicitly loaded by name, and an explicit request is made to load it by name again, then there
is no effect and the segment space storage is not refreshed.

Subcode X'04' — LOADNSHR
Loads a saved segment in exclusive-write mode after purging any existing named saved segment or saved
segment.

If the DCSS or segment space was defined with the LOADNSHR operand, any user will be allowed to load
an exclusive-write mode copy. If a member saved segment is requested and any member of the space in
which it will be loaded was so defined, the same is true.

When a user requests a nonshared copy of a saved segment and that segment fits below the user's
maximum definable address space size, the user will be allowed to load the segment. (The maximum
definable address space size is determined from the user's directory entry.)

If the saved segment was not defined with the LOADNSHR operand, and its address range(s) goes above
the user's maximum definable address space size, a NAMESAVE entry is required in the user's directory
entry. If the segment being loaded is a member saved segment, then the NAMESAVE entry is the segment
space name.

The effect of loading a segment space or a member of a segment space is similar to what is described
under the LOADSHR function. The difference is that the segment space storage is loaded in exclusive-
write mode, regardless of the mode in which it was originally defined.

Notes:

1. If a member saved segment is loaded through LOADNSHR after a previous member saved segment
of the same segment space but with a different name was loaded through LOADSHR, then the load
request will terminate in an error. This is because the segment space containing both members has
already been loaded in shared mode.

2. The user receives the saved segment in exclusive-write mode, regardless of the mode in which it was
originally defined.

3. If a DCSS is already loaded non-shared and a request to load it non-shared again occurs, then this
results in a refreshed copy of the entire segment being attached. If a member saved segment is
already loaded non-shared and a request to load it non-shared again occurs, then this results in a
refreshed copy of the member saved segment being attached, but other member saved segments in
the same segment space are not refreshed. If a segment space was already explicitly loaded by name
non-shared, and an attempt is made to explicitly load it by name non-shared again, then there is no
effect and the segment space storage is not refreshed.

DIAGNOSE Code X'64'

64 z/VM: 7.3 CP Programming Services

Subcode X'08' — PURGESEG
Releases a saved segment from guest real storage.

If PURGESEG is invoked for a saved segment not previously loaded, the request is terminated with a
condition code of 1. The following describes the processing characteristics as they relate to the different
forms of saved segments:
DCSS

If the DCSS being purged was defined without the SPACE operand, then the result would be the same
as described for segment space.

When a PURGESEG is executed for a segment in nonshared mode residing in the users virtual machine
address space, the storage is cleared to binary zeros and the keys are reset to zero.

Segment space
If the segment space being purged was originally loaded by spacename, then each member of
the segment space that is loaded or attached to the user virtual machine is purged (see note).
This releases the associated storage that was acquired when the corresponding load function was
executed.

Note: If a user had previously loaded a segment space by spacename and also loaded a member
of the same segment space by a DCSS name, and then issued a PURGESEG for the spacename, the
result of the purge function does not detach the member saved segment that was loaded through the
DCSS name.

If the storage occupied by the saved segment was beyond the defined virtual machine storage size,
that storage is no longer addressable by the virtual machine.

Member saved segment
The loaded or attached member saved segment is purged from the user virtual machine. This releases
the associated control block storage that was acquired when the corresponding load function was
executed. If the purged member saved segment was the last member of the segment space that was
loaded for this virtual machine, the storage associated with the segment space is released.

If the storage occupied by the member saved segment was beyond the defined virtual machine
storage size, that storage would still be addressable by the virtual machine if another member of the
same segment space was still loaded to the virtual machine.

Subcode X'0C' — FINDSEG
Returns the start and end page addresses of the named saved segment.

In z/VM, the existence of the saved segment is found by searching for an active segment, and then for a
skeleton segment. An active segment search is defined as follows:

1. If the saved segment is attached to the virtual machine, the address information is returned from the
description in storage.

2. If the saved segment is a member of a segment space, and if another member of this same segment
space is attached to the virtual machine, then the address information is returned from the description
in storage. This is true even if the member or space is pending purge.

3. If an active segment (a segment for which a class A or R SDF file is created) is found, the address
information is returned from the description in the SDF.

Note: A saved segment that is in pending purge status (where its SDF file class is P) is bypassed in the
search process.

If a skeleton segment search is entered when no active segment exists:

• Search for a skeleton segment definition (a segment having only a class S SDF file created); if found,
then the address information is returned from the description in the SDF.

The following describes the processing characteristics as they relate to the different forms of saved
segments.

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 65

DCSS
The Rx register contains the beginning address.

• The beginning address of the DCSS segment is the first byte of the lowest page value that was
specified on the DEFSEG command.

The Ry register contains the ending address.

• The ending address of the DCSS is rounded up to the last byte of the highest page value that was
specified on the DEFSEG command.

Segment space
If the request is for a segment space that has members, the beginning and ending addresses are the
lowest and highest page addresses of any of the members.

The Rx register contains the beginning address.

• The beginning address of a segment space is the first byte of the lowest page value that was
specified for a member having the lowest page value on the DEFSEG command.

The Ry register contains the ending address.

• The ending address of a segment space is rounded up to the last byte of the highest page value that
was specified for a member having the highest page value on the DEFSEG command.

Member saved segment
If the request is for a member of a segment space, the actual beginning and ending addresses
are returned for the specified member saved segment as determined from the actual page ranges
specified through the DEFSEG command.

The Rx register contains the beginning address, that is, the first byte of the lowest page value that was
specified on the DEFSEG command.

The Ry register contains the ending address, that is, the address that is rounded up to the last byte of
the highest page value that was specified on the DEFSEG command.

Subcode X'10' — LOADNOLY
Loads a saved segment in shared mode only if no overlay condition exists.

The effect of loading a segment space or a member of a segment space is the same as described under
the LOADSHR function. In this case, the load would be completed only if an overlay condition did not
exist.

Subcode X'18' — SEGEXT
Returns information relative to saved segments through user-supplied areas.

Rx is set up to point to a user-supplied buffer (that is, contains a guest real address). The parameter
portion of the buffer describes the input to the function and on return from the function the parameter
area contains status information. The buffer has a minimum length of three doublewords. The parameter
portion of the buffer must reside on a doubleword boundary and cannot cross a page boundary (Rx
content + the buffer length cannot cross a page boundary). This reserves a parameter area that may be up
to one 4KB-page in length.

The SXIOAREA and SXIOARLN fields of the parameter area define an output area address and length. This
area must also reside on a doubleword boundary and cannot cross a page boundary (SXIOAREA content
+ SXIOARLN content cannot cross a page boundary). This reserves an output area up to one 4KB-page in
length. The output area must be in the same address space as the parameter area.

The input buffer format is provided to map the parameter area, and the input buffer area is provided to
map the output area for the functions supported.

The format of the parameter and output areas is shown in Figure 3 on page 67.

Ry is set up to contain the X'18' function code.

DIAGNOSE Code X'64'

66 z/VM: 7.3 CP Programming Services

Figure 3. The Format of the User-Supplied Areas for the SEGEXT Function

The definition of the parameter area is as follows:

SXIOPCOD
is a 1-byte field containing the code for the operation to be performed. Possible values are:
X'01'

FINDSPACE
X'02'

FINDSKEL
X'0C'

FINDSEGA
X'0D'

FINDNSSA

Descriptions of these operations follow. Opcodes not defined by this function are reserved for IBM
use.

////...
is a 3-byte field reserved for IBM use.

SXIRCODE
is a 1-byte field containing a return code from the function.

The following return codes and meanings are valid for FINDSPACE, opcode X'01':
X'00'

The SXIRNAME and SPACENAM fields are equal, the request was for DCSS.
X'04'

The SXIRNAME and SPACENAM fields are not equal, the request was for a member saved
segment.

X'08'
The SXIRNAME and SPACENAM fields are equal, the request was for a segment space.

The following return codes and meanings are valid for FINDSKEL, opcode X'02' and FINDSEGA,
opcode X'0C':
X'00'

The name of the segment in SXIRNAME was found to be a DCSS structure.

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 67

X'04'
The name of the segment in SXIRNAME was found to be a member saved segment structure.

X'08'
The name of the segment in SXIRNAME was found to be a segment space structure.

The following return code and meaning are valid for FINDNSSA, opcode X'0D':
X'00'

There is an IPLed NSS.

////...
is a 3-byte field reserved for IBM use.

SXIRNAME
is an 8-byte field containing the requested segment name. This name is left-justified and padded with
blanks if necessary.

For the FINDNSSA operation, SXIRNAME is ignored.

SXIOAREA
is a fullword field containing the address of the output area. This area must begin on a doubleword
boundary. The output area resides in the same host address space as the input parameter list.

SXIOARLN
is a halfword field containing the length of the output area in bytes. The output area must not cross a
page boundary.

////...
is a halfword field reserved for IBM use.

The definition of the output area is based on the OPCODE field function.

SEGEXT Function Operation Codes
The possible operation codes under the SEGEXT function are listed on the following pages in order of their
codes. Following each operation name is a description of how the operation works.

Opcode X'01' — FINDSPACE
This operation returns the beginning and ending addresses of a segment space if either a member saved
segment name or a segment space name is supplied. In addition, the name of the segment space is
returned. If a DCSS name is supplied, then the beginning and ending addresses returned for a segment
space are the same as what was defined for a DCSS.

FINDSPACE searches for an active segment, then for a skeleton. The search is defined as follows:

1. If the saved segment is attached to the virtual machine, the address information is returned from the
description in storage.

2. If the saved segment is a member of a segment space, and if another member of this same segment
space is attached to the virtual machine, the address information is returned from the description in
storage.

3. An active segment is sought (a segment for which a class A or R SDF file is created); if it is found, the
address information is returned from the description in the SDF.

Note: A saved segment that is in pending purge status (where its SDF file class is P) is bypassed in the
search process.

4. Search for a skeleton segment definition (a segment having a class S SDF file created); if it is found, the
address information is returned from the description in the SDF.

The format of the buffer for the FINDSPACE operation is as shown in Figure 4 on page 69.

DIAGNOSE Code X'64'

68 z/VM: 7.3 CP Programming Services

Figure 4. The Format of the User-Supplied Areas for the FINDSPACE Operation

SXOLSBA
A fullword containing the beginning guest absolute address of the segment space that contains
the requested saved segment. The address of the megabyte boundary containing the lowest page
definition of the segment space is returned.

SXOLSEA
A fullword containing the ending guest absolute address of the segment space that contains the
requested saved segment. The last address of the megabyte in which the page with the highest
definition resides, is returned.

SXOLSNAM
A doubleword field containing the name of the segment space that contains the requested saved
segment. If this name and SXIRNAME are the same, the requested named segment is the segment
space or a DCSS. If this name is different from SXIRNAME, the requested named segment is a
member of this segment space. The name is returned left-justified, padded with blanks.

If the member saved segment belongs to multiple segment spaces, the segment space name would
pertain to the segment space that would have been loaded if a DIAGNOSE code X'64' LOAD was
issued.

Opcode X'02' — FINDSKEL
The FINDSKEL operation searches for a skeleton segment search definitions (a segment having a class S
SDF file created). If it is found, the address information is returned from the description in the SDF. Any
search for any active definitions is bypassed.

For information on the buffer used for the FINDSKEL operation and other information common with
FINDSEGA, see the second half of the description of FINDSEGA that follows.

Opcode X'0C' — FINDSEGA
This operation returns the page range values and page range attributes that were specified on a DEFSEG
command. When operation code X'02' is specified, the page definition information is related to the
skeleton file, a nonactive segment definition whose spool file class is S. The specification of operation
code X'0C' returns the page definition information related to an active segment definition.

When FINDSEGA is issued from your virtual machine, only an active segment search is performed (a
segment for which a class A or class R SDF file is created). The order of search is as follows:

1. If the saved segment is attached to your virtual machine, the address information is returned from the
description in storage.

2. If the saved segment is a member of a segment space, and if another member of this same segment
space or the space itself is attached to your virtual machine, the address information is returned from
the description in storage.

3. If the saved segment is attached to another virtual machine or is contained inside a segment space
and is not in a pending purge state, the address information is returned from the description in storage.
If the saved segment was in a pending purge state, the saved segment is bypassed in the search
operation. This behavior is the same even if the saved segment is a DCSS structure.

4. The SDF files are searched next. Search for an active segment; if it is found, the address information is
returned from the description in the SDF.

Note: A saved segment in pending purge state (where its SDF file class is P) is bypassed in the search
process.

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 69

The FINDSKEL and FINDSEGA operation codes may be used by install programs to initialize the areas
within the returned page range addresses with the appropriate code or data. Because z/VM may have an
active segment definition as well as a skeleton definition at the same time, the product can now explicitly
select the desired definition of the segment.

The page range definition information applies only to a DCSS, a member saved segment, or an NSS. If
the FINDSKEL or FINDSEGA is issued for a name that is a segment space, no page range table data is
returned.

To determine the segment structure in terms of a DCSS, member saved segment, or a segment space, the
return code may be checked.

The format of the buffer for the FINDSKEL, FINDSEGA, or FINDNSSA operation is as shown in Figure 5 on
page 70. The output area shown in this figure is used when SXIRNAME is a DCSS, or a member saved
segment, or when the FINDNSSA function is performed. See Figure 6 on page 72 for a picture of the
output area when SXIRNAME is a segment space.

Figure 5. The Format of the User-Supplied Areas for the FINDSKEL, FINDSEGA, or FINDNSSA operations

SXOSKBA
A fullword that contains the beginning guest absolute address of the global range of the skeleton or
active segment as defined by the DEFSEG command or of the IPLed NSS as defined by the DEFSYS
command. The address returned is the lowest page value defined for the member, DCSS, or NSS.

SXOSKEA
A fullword that contains the ending guest absolute address of the global range of the skeleton or
active segment as defined by the DEFSEG command or of the IPLed NSS as defined by the DEFSYS
command. The address returned is the last byte of the page for the highest page value defined for the
member, DCSS, or NSS.

SXORGCT
A fullword field containing the count of valid page range entry pairs (Page Range Start and Page Range
End) in the output area.

Note:

1. If the output area length specified by the SXIOAREA field is not large enough to accommodate all
the entries, SXORGCT is not adjusted to reflect the number of entries contained in the limited size
buffer. Refer to the SXORGCTA field.

SXORGCTA
A fullword field containing the count of valid page range entry pairs (SXORGST and SXORGEND) that
were actually placed in the output area page range table. This may be used when the output buffer
provided was not large enough to contain all the page range entries that were available.

The start of a 1024-byte page range information table that contains doubleword entries that are broken
down into a start (SXORGST) and ending (SXORGEND) address range definition. The attribute of the page

DIAGNOSE Code X'64'

70 z/VM: 7.3 CP Programming Services

range definition (SXOPRAT) is contained in the fourth byte of the entry. The page range entries are ordered
from lowest value to highest value. A maximum of 128 page range entries may be placed in this table.

If the request is issued against a segment space, the page range table is not modified. A segment space
has no page range definitions associated with itself, only with its members.

SXORGST
A 3-byte field containing the high-order three bytes of the start page range entry definition. To
produce a valid start page address, this value must be placed in the high-order three bytes of a
register, and the low order byte of the register must be set to zero. The result is a guest absolute
address.

SXOPRAT
A 1-byte field containing the page range attribute flag. Bit 7 (X'01' – SXOEXCL) of this field indicates
an exclusive copy; each user gets a separate copy of this page range. Bit 6 (X'02' – SXOPROT) of
this field indicates page ranges that are page protected; users may access these pages in read-only
mode. Bit 5 (X'04' – SXONDAT) of this field indicates page ranges, the data in which is not saved in the
system data file (SDF). Combinations of these bits produce the following codes:
X'00'

SW — shared read/write access.
X'01'

EW — exclusive read/write access.
X'02'

SR — shared read-only access.
X'03'

ER — exclusive read-only access.
X'04'

SN — shared read/write access, no data saved.
X'05'

EN — exclusive read/write access, no data saved.
X'06'

SC — shared read-only, no data saved, CP writeable pages.
SXORGEND

A 3-byte field containing the high-order three bytes of the end page range entry definition. To produce
a valid end page address, this value must be placed in the high-order three bytes of a register, and the
low-order three hexadecimal digits must be set to X'F'. The result is a guest absolute address.

////...
A 1-byte field reserved for IBM use.

Note: The output area length specified by SXIOAREA dictates the amount of information provided in the
output buffer area.

The output area buffer for the FINDSKEL or FINDSEGA operation for SXIRNAME that is a segment space
will contain two doublewords of member information for each member entry in the following format:

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 71

Figure 6. The Format of the User-Supplied Output Area – Member List

SXOSKBA
A fullword that contains the beginning guest absolute address of the global range of the skeleton or
active segment as defined by the DEFSEG command. The address returned is the first byte of the
lowest page value that was specified for a member having the lowest page value on the DEFSEG
command.

SXOSKEA
A fullword that contains the ending guest absolute address of the global range of the skeleton or
active segment as defined by the DEFSEG command. The address returned is rounded up to the last
byte of the highest page value that was specified for a member having the highest page value on the
DEFSEG command.

SXORGCT
A fullword field containing the count of defined member saved segment for this segment space.

Note: If the output area length specified by SXIOAREA field is not large enough to accommodate all
the entries, SXORGCT is not adjusted to reflect the number of entries contained in the limited size
buffer. Refer to SXORGCTA.

SXORGCTA
A fullword field containing the count of member saved segment entries that are actually placed in
the output area member list table. This may be used when the output buffer provided was not large
enough to contain all the member saved segment entries that were available.

Note: SXORGCTA reflects only full (two doubleword) entries that were placed in the output area.

The start of a 1024-byte member list information table containing two doubleword entries of the
member saved segment names that were defined for the segment space and the starting and ending
page range defined for the member.

SXOMSSNM
The name of a member saved segment that was defined for the segment space identified by the
SXIRNAME (requested segment name) field.

SXOMEMST
The lowest page value defined for the member saved segment when defined by the DEFSEG
command. The first 3 bytes contain this page value; the fourth byte contains the status information for
the member saved segment.

DIAGNOSE Code X'64'

72 z/VM: 7.3 CP Programming Services

X'01'
MPENP — indicates the member saved segment is in the pending purge state.

X'02'
MSAVD — indicates the member saved segment has been saved. If this bit is not on, then it
indicates this member is not saved.

SXOMEMEN
The highest page value defined for the member saved segment when defined by the DEFSEG
command. The first 3 bytes contain this page value. The fourth byte is reserved for IBM use.

Opcode X'0D' — FINDNSSA
The FINDNSSA operation returns the page range values and page range attributes that were specified on
a DEFSYS command for the issuer’s currently-IPLed NSS.

The input buffer content is the same as defined for the FINDSEGA operation. See Figure 3 on page 67 and
the accompanying explanation.

The output area content is as defined for the FINDSKEL and FINDSEGA functions for a DCSS or a member
saved segment. For more information, see Figure 5 on page 70 and the accompanying explanation.

Subcode X'20' — LOADSHR (64-Bit)
Subcode X'20' performs the same function as “Subcode X'00' — LOADSHR” on page 63, except that
output addresses are 64-bit instead of 31-bit.

Subcode X'24' — LOADNSHR (64-Bit)
Subcode X'24' performs the same function as “Subcode X'04' — LOADNSHR” on page 64, except that
output addresses are 64-bit instead of 31-bit.

Subcode X'2C' — FINDSEG (64-Bit)
Subcode X'2C' performs the same function as “Subcode X'0C' — FINDSEG” on page 65, except that
output addresses are 64-bit instead of 31-bit.

Subcode X'38' — SEGEXT (64-Bit)
Subcode X'38' performs the same function as “Subcode X'18' — SEGEXT” on page 66, except that
output addresses are 64-bit instead of 31-bit and the output areas for the operation codes have different
formats.

The format of the output areas for opcode X'01' (FINDSPACE) is as shown in Figure 7 on page 73.

Figure 7. The Format of the User-Supplied Areas for a 64-Bit FINDSPACE Operation

The 64-bit output areas have different names but are used for the same functions as the corresponding
31-bit output areas. See the descriptions of the 31-bit areas shown in Figure 4 on page 69.

64-Bit Area Name 31-Bit Area Name

SXOLSBAG SXOLSBA

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 73

64-Bit Area Name 31-Bit Area Name

SXOLSEAG SXOLSEA

SXOLSNMG SXOLSNAM

The format of the output areas for opcode X'02' (FINDSKEL) and opcode X'0C' (FINDSEGA) for a DCSS or
member segment, and opcode X'0D' (FINDNSSA), is as shown in Figure 8 on page 74.

Figure 8. The Format of the User-Supplied Areas for a 64-Bit FINDSKEL or FINDSEGA Operation for a DCSS
or Member Segment, or a 64-Bit FINDNSSA Operation

The 64-bit output areas have different names but are used for the same functions as the corresponding
31-bit output areas. See the descriptions of the 31-bit areas shown in Figure 5 on page 70.

64-Bit Area Name 31-Bit Area Name

SXOSKBAG SXOSKBA

SXOSKEAG SXOSKEA

SXORGCTG SXORGCT

SXORGCGA SXORGCTA

SXORGSTG SXORGST

SXOPRATG SXOPRAT

SXORGENG SXORGEND

The format of the output areas for opcode X'02' (FINDSKEL) and opcode X'0C' (FINDSEGA) for a segment
space is as shown in Figure 9 on page 75.

DIAGNOSE Code X'64'

74 z/VM: 7.3 CP Programming Services

Figure 9. The Format of the User-Supplied Output Areas for a 64-Bit FINDSKEL or FINDSEGA Operation for
a Segment Space

The 64-bit output areas have different names but are used for the same functions as the corresponding
31-bit output areas. See the descriptions of the 31-bit areas shown in Figure 6 on page 72.

64-Bit Area Name 31-Bit Area Name

SXOSKBAG SXOSKBA

SXOSKEAG SXOSKEA

SXORGCTG SXORGCT

SXORGCGA SXORGCTA

SXOMSNMG SXOMSSNM

SXOMEMSG SXOMEMST

SXOMEMEG SXOMEMEN

Usage Notes
1. When the host-primary address space of your virtual machine is considered a shareable address

space, you can successfully use only the FINDSEG, FINDSPACE, FINDSKEL FINDSEGA, or FINDNSSA
operations of DIAGNOSE code X'64'. A request for any of the other operations of this DIAGNOSE code
will result in return code X'0CB'.

The host-primary address space of your virtual machine becomes shareable if your virtual machine
uses the PERMIT function of the ADRSPACE macro to grant another virtual machine access to the
address space. The host-primary address space remains in the shareable state until your virtual
machine subsequently invokes the ISOLATE function of the ADRSPACE macro, or until a subsystem
reset operation is performed on your virtual machine (for example through the SYSTEM RESET

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 75

command). For more information on ADRSPACE, see “ADRSPACE — Address Space Services” on page
811.

2. A segment space has a range that may span one or more architected 1 megabyte segments. The
beginning address of a segment space is rounded down to the nearest megabyte boundary of the
member having the lowest page value. The ending address of a segment space is rounded up to the
last address of the last page within the megabyte occupied by the member having the highest page
value.

3. Each member saved segment has a range that may span one or more pages. The beginning
address of a member saved segment is determined by its lowest page value. The ending address
is determined by the last address of the highest page value.

4. If a load with an overlay arrangement occurs, the old segment space is indeed purged, and the new
segment space is loaded with the duplicate members.

5. When a member of a segment space is loaded, all members of the segment space are made
accessible to the virtual machine.

Note: However, to access other member saved segments predictably, the DIAGNOSE code X'64'
programming interface or the CMS SEGMENT programming interface must be used.

6. When a LOADxxx is issued, the following search order occurs to resolve the load request:

a. The user's loaded saved segments are searched for the specified name.
b. Other user's saved segments are searched for the specified name.
c. The closed class A SDF files are searched for the specified name.

• If the specified name is a member of one or more segment spaces:

– The first segment space for which the user is authorized is made accessible to the user's
virtual machine, and the specified member is loaded.

• If the specified name is a DCSS and the user is authorized for the DCSS, it is loaded.
• If the specified name is a segment space:

– If the user is authorized for the segment space, it is made accessible to the user's virtual
machine and the entire segment space is loaded.

7. A FINDxxx request for a saved segment of a specified name that is both not currently loaded to the
user's virtual machine and in pending purge status, results in a not-found condition.

8. A PURGESEG purges only a saved segment previously loaded by a corresponding LOADxxx function
with the same name.

• If other members of the same segment space are still loaded, then the virtual machine still has
access to the member that was purged.

Note: An attempt to access a member saved segment after it has been purged cause unpredictable
results.

9. If a PURGESEG was issued for the last member of a segment space loaded into a user's virtual
machine, the segment space is removed from the user's virtual machine address space. The virtual
machine has no accessibility to any area of the segment space.

10. Addresses returned through FINDSPACE are always rounded to megabyte boundaries.
11. The beginning address returned through a LOADxxx, FINDSEG, FINDSEGA, and FINDSKEL is on a

page boundary. The ending address is rounded to the page boundary containing the highest page
definition.

12. It is the guest's responsibility to serialize writes to writable shared storage.
13. When a DCSS is loaded nonshared, any writable shared storage appears as it was when the DCSS

was saved. Changes made to shared pages by other users who have the DCSS loaded shared, are not
copied.

DIAGNOSE Code X'64'

76 z/VM: 7.3 CP Programming Services

14. You may not be authorized to issue subcodes X'00', X'04', X'10', X'20', and X'24' of this DIAGNOSE
code if an external security manager is installed on your system. For additional information, contact
your security administrator.

15. Subcodes X'00', X'04', X'0C', X'10', and X'18' cannot be used on a DCSS that includes addresses
above 2047 MB, because these subcodes support only 31-bit output addresses. If one of these
subcodes is used on a DCSS above 2047 MB, the DIAGNOSE code exits with return code X'02C',
indicating that the saved segment does not exist.

16. The initial load of a large DCSS can appreciably delay processing of subsequent DIAGNOSE code
X'64' requests and the following commands: DEFSEG, SAVESEG, DEFSYS, SAVESYS, INDICATE NSS,
IPL of an NSS, PURGE NSS, and QUERY NSS.

17. LOADSHR, LOADNSHR, LOADNOLY, and PURGESEG will fail if executed when VMRELOCATE is in
progress.

Responses
Condition Codes for a Normal Exit: Upon a normal exit condition, you receive a condition code of either
0 or 1. Refer to Table 4 on page 77 for the exact results. In the headings for the last two columns of this
table, user buffer refers to data in the user's output buffer for SEGEXT functions.

Table 4. Normal Exit Results with the SEGEXT Function

Condition
Code

Meaning Contents of Rx or User
Buffer

Contents of Ry or User Buffer

0 (FIND) The saved segment is
already loaded.

The actual starting
address at which the
saved segment is loaded
in Rx.

The actual ending address of the
saved segment in Ry.

0 (FINDSPACE) If FINDSPACE
was issued with the name
of the segment space, the
segment space exists and
it is already loaded or has
one of its members already
loaded.

If FINDSPACE was issued
with the name of the
member or a DCSS, the
saved segment exits and is
already loaded.

No change The ending address is rounded
up to the segment (megabyte)
boundary containing the highest
page value specified for a member
on the DEFSEG command.

0 (FINDSEGA) If FINDSEGA
was issued with the name
of the segment space, the
segment space exists and
it is already loaded or has
one of its members already
loaded.

If FINDSEGA was issued with
the name of the member or
a DCSS, the saved segment
exits and is already loaded.

No change The ending address is rounded
up to the segment (megabyte)
boundary containing the highest
page value specified for a member
on the DEFSEG command.

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 77

Table 4. Normal Exit Results with the SEGEXT Function (continued)

Condition
Code

Meaning Contents of Rx or User
Buffer

Contents of Ry or User Buffer

0 (LOAD) The saved segment
loaded outside the user's
defined virtual storage area.

The actual starting
address at which the
saved segment was
loaded.

The actual ending address of the
saved segment.

0 (PURGE) The saved segment
is purged.

No change No change

0 (FINDNSSA) Output area
contains NSS configuration
information.

No change No change

1 (FIND) The saved segment
exists but is not loaded.

The actual starting
address at which the
saved segment would be
loaded.

The actual ending address of the
saved segment in Ry.

1 (FINDSKEL and/or
FINDSEGA) The skeleton or
active segment exists but is
not loaded.

No change The actual ending address of the
skeleton or active segment at
which the saved segment would be
loaded.

1 (FINDSPACE) The saved
segment exists but is not
loaded. If it is issued with
a segment space name,
neither the segment space
nor its members are loaded.

No change The ending address is rounded
up to the segment (megabyte)
boundary containing the highest
page value specified for a member
on the DEFSEG command.

1 (LOAD) The saved segment
loaded within the user's
defined virtual storage area.

The member saved segment
was outside of the virtual
machine's storage, but the
segment space containing
the member is inside the
virtual machine's storage
area.

The actual starting
address at which the
saved segment was
loaded.

The actual ending address of the
storage released before the saved
segment was loaded, or the ending
address of the virtual machine.

1 (PURGE) The saved segment
does not exist.

No change No change

Condition Codes for an Exit with Error: Upon an exit error condition, you receive a condition code of 2.
In addition, Ry contains a return code (in hexadecimal) indicating the exact error. Refer to Table 5 on page
78 for return code messages.

Note: In this table, return codes are given in both hexadecimal and decimal forms, as the decimal number
corresponds to a CP message number unless otherwise noted.

Table 5. Results of Exit with Error from DIAGNOSE code X'64'

Condition Code Return Code in Ry Meaning

2 (FINDNSSA) 44 (X'02C') An NSS is not IPLed.

DIAGNOSE Code X'64'

78 z/VM: 7.3 CP Programming Services

Table 5. Results of Exit with Error from DIAGNOSE code X'64' (continued)

Condition Code Return Code in Ry Meaning

2 (FINDSEGA) 44 (X'02C') The saved segment does not exist or is part of a segment
space that is incomplete.

2 53 (X'035') The user is not in the CP directory.

2 174 (X'0AE') Paging I/O error

2 203 (X'0CB') An operation other than FINDSEG, FINDSPACE, FINDSKEL
or FINDSEGA was requested when the host-primary address
space was in the shareable state. This return code does not
correspond to a CP message number.

2 449 (X'1C1') The user is not authorized.

2 475 (X'1DB') A fatal I/O error occurred reading the CP directory.

2 1015 (X'3F7') Insufficient storage is available to satisfy your request.

2 1351 (X'547') The saved segment would overlay the existing segment. Rx
contains the address of the first segment that would be
overlaid.

2 1352 (X'548') An unacceptable condition occurred.

2 1357 (X'54D') Reserved. Not used by z/VM.

2 1358 (X'54E') An attempt was made to load a CP-owned DCSS in nonshared
mode.

2 1367 (X'557') The user attempted to load a member saved segment
in a mode (NONSHARE) different than the mode (SHR)
established for the segment space to which it belongs.

2 6874 (X'1ADA') This result is returned if the DEFine STORage CONFIGuration
command is used to define the storage configuration for
the virtual machine's base address space and more than
one configuration extent is specified. Saved systems and
segments cannot be loaded into storage that is greater
than or equal to the starting address of the second storage
configuration extent.

Note: A return code from a load function is always associated with the item that would have produced a
successful load. In an example where three choices are possible:

• M1 is a member of segment spaces S1, S2, S3
• S1 is a restricted segment space
• S2 is a segment space with pending purge status
• S3 is a segment space that will have a paging problem

A load of M1 is attempted by a user not authorized for S1. The return code associated with the loading of
M1 using segment space S3 would have been returned. If no other options (no S2 or S3) were available,
the unauthorized return code would have been given. If S1 and S2 were options, and S2 is in pending
purge, then the return associated with the S2 status would have been given.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'64' is given incorrect
data:

DIAGNOSE Code X'64'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 79

Problem Encountered Cause

Specification exception Any of the following:

• Ry is not a valid subcode.
• Rx is not aligned on a doubleword boundary or the buffer

crosses a page boundary.
• The output area is not aligned on a doubleword boundary or

it crosses a page boundary.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to:

• Fetch the DCSS name (for functions other than X'0018' and
X'0038')

• Store into the SEGEXT output area (for functions X'0018'
and X'0038' only)

• Fetch and store into the SEGEXT parameter list (for
functions X'0018' and X'0038' only).

DIAGNOSE Code X'70' – Time-of-Day Clock Accounting Interface
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'70' to request timing information from CP. Each time the virtual machine is run, CP
provides the accumulated CPU time the virtual machine has used (VTIME) and a time-of-day (TOD) time
stamp to be used in subsequent accounting calculations. Programs that are running in the virtual machine
may use the timing information to calculate the amount of processor time used by each job.

XC virtual machines in access register mode cannot execute DIAGNOSE code X'70'.

Note: For more information, see Enterprise Systems Architecture/390 Principles of Operation
(publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf), z/VM: ESA/XC Principles of Operation, z/Architecture
Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf), or z/VM: z/Architecture
Extended Configuration (z/XC) Principles of Operation.

Entry Values:
Rx

is the guest real address of a 16-byte storage area in the host-primary address space to be used as
a communication area (CA). The storage area must be aligned on a doubleword boundary, must not
cross a 4K-byte boundary, and must be in the virtual machine's real storage, preferably in page zero.
Page zero is preferred because page zero is in storage for the user, and the communication-area page
must be locked. Thus when page zero is used, CP does not have to lock an additional page.

Key-controlled protection and low-address protection do not apply to accesses to the communication
area.

If Rx contains the value X'FFFFFFFF', the Time-of-Day clock accounting interface for the issuing
virtual CPU is reset. If the interface was not enabled, no action is taken.

Ry
Not used.

After a virtual machine issues a DIAGNOSE code X'70' to enable the TOD clock accounting interface,
CP updates the communication area each time the virtual machine is run. The first 8 bytes of the
communication area contain the total CPU time accumulated to date by the virtual CPU while running in
interpretive-execution mode (CA.VTIME) up to the guest TOD clock time (CA.TOD) in the next 8-byte field.
The difference between any current value of the guest TOD clock and the value of the guest TOD clock

DIAGNOSE Code X'70'

80 z/VM: 7.3 CP Programming Services

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

stored in the communication area (CA.TOD) represents the current value of the delta VTIME accumulated
by the guest in addition to the VTIME stored in the communication area (CA.VTIME). Programs running in
the virtual machine should not change the communication area.

DIAGNOSE code X'70' may not be issued in access-register mode in an XC virtual machine.

Usage Notes
1. In a virtual machine with multiple virtual CPUs, the guest - typically a system control program (SCP)

- must use a separate communication area for each of its CPUs. If the guest runs in an attached-
processor (AP) or a multiprocessor (MP) configuration, the SCP has to issue DIAGNOSE code X'70'
from each virtual CPU, identifying a different communication area.

2. When the wait-state interpretation capability is specified for the guest by CP, the guest remains
dispatched, even when it enters the PSW enabled-wait state. In this case, the time spent dispatched in
wait state is included in the virtual CPU time reported for the guest in the accounting communication
area (CA.VTIME).

3. To avoid receiving widely differing results, care should be taken when using the information
returned by DIAGNOSE code X'70' to analyze program performance of small portions of code.
Processor performance characteristics, such as the cache storage size, influence the information
returned. For example, the number of references to data which is not currently in cache may
affect the amount of virtual time reported by DIAGNOSE code X'70'. Cache storage size and other
processor performance characteristics may vary between processor models. Refer to the processor
characteristics documentation for your hardware.

4. CP uses the real processor's CPU Timer value to maintain the communication area VTIME value.
Although the CA values are accurate, when calculating consumed CPU time between CP updates to
the Communication Area, it is important to remember that ESA/390 architecture does not require that
the CPU Timer value be decremented each time the CPU's TOD clock advances. The CPU Timer may
not count the time during which the CPU is not executing instructions. Thus, the difference between a
current value of the guest TOD clock and CA.TOD may not be entirely reflected in CA.VTIME the next
time the CA values are updated. This could result in calculated VTIME values that are slightly larger
than actual consumed processor time at that moment. With extremely frequent sampling, the VTIME
that is computed with the following algorithm may appear to regress slightly.

Programmers who need to calculate an exact value should consider using the guest CPU Timer instead
of DIAGNOSE code X'70'. For details on CPU Timer and CPU TOD Clock operation, see Enterprise
Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf)
and z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf).

Tutorial Notes: The following notes are tutorial information, not requirements of the DIAGNOSE code
X'70' interface:

1. To use the information that CP has stored in the communication area for accounting purposes, perform
the following steps:

a. Preserve the TOD value in the communication area (CA.TOD) by storing a copy of it in your storage
or registers.

b. Get the current TOD by issuing the STORE CLOCK (STCK) instruction.
c. Subtract the TOD in the communication area from the current TOD obtained in step “1.b” on page

81. This difference is the amount of processor time the virtual machine has used since it was last
run (delta.VTIME).

d. Add the accumulated processor time that is stored in the communication area (CA.VTIME) to the
result obtained in step “1.c” on page 81. The result is the total amount of processor time the virtual
machine has used up to the present time.

e. Ensure that the TOD value stored in the communication area (CA.TOD) has not changed since step
“1.a” on page 81 was performed, that is, the TOD in the communication area (CA.TOD) must be
equal to the copy obtained in step “1.a” on page 81. If it has changed, repeat the procedure from
step “1.a” on page 81.

DIAGNOSE Code X'70'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 81

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'70' is given incorrect
data:

Problem Encountered Cause

Special-operation exception DIAGNOSE code X'70' cannot run in an XC virtual machine
that is in access register mode.

Specification exception Any of the following:

• The communication area is not aligned on a doubleword
boundary.

• The communication area crosses a page boundary.
• The TOD clock accounting interface is already active for the

virtual CPU using a different communication area.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the communication area;
key-controlled protection and low-address protection do not
apply.

DIAGNOSE Code X'74' – Saving and Loading an Image Library File
Privilege Class: A, B, C, or E

Addressing Mode: 24-bit or 31-bit

Entry Values:
Rx

Contains the first 4 characters of the image library file name. Rx cannot be register 15.
Rx+1

Contains the last 4 characters of the image library file name, where the name is left-justified and
padded with blanks.

Ry
Contains the guest real address of the start of the data area. The area must start on a page boundary.
Accesses to the data area are not subject to key-controlled protection or low-address protection.

Ry cannot be register 15.

Ay
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the image library file. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the image library file is in the host-primary
address space.

Ry+1
Bits 0-7 contain a subcode for either loading or saving of the image library file. Bits 8-31 contain the
length of the image library data in bytes. CP rounds the length up to a multiple of 4K bytes, and saves
or loads the resulting number of bytes. Partial pages are not saved or loaded.

The following subcodes are bits 0 through 7 of the Ry+1 register.

Subcode Function Description

X'00' LOAD Loads an image library into guest real storage from an image
library file.

X'04' SAVE Saves an image library from the guest's real storage area into an
image library file.

DIAGNOSE Code X'74'

82 z/VM: 7.3 CP Programming Services

Usage Notes
1. If the number of bytes to save (in Ry+1) is specified as zero, the image library is not created. If an

image library with the same name already existed, it will be unchanged.
2. Using VMRELOCATE for a virtual machine that might be using this function is not recommended and

may have undesired results. If a virtual machine reads an Imagelib and is then relocated to another
system, any subsequent save of that Imagelib will be written out to a different system, not the one
from which it was read.

Responses
Condition Codes for a Normal Exit: Upon a normal exit condition, you receive a condition code of 0 or 1,
indicating that the image library file was saved or loaded successfully. You also receive a return code in
Ry. Refer to the following chart for the meaning:

Function and
Condition Code

Return Code in Ry Meaning

LOAD, CC=0 0 (X'00') An image library file was loaded successfully.

SAVE, CC=0 0 (X'00') The new image was saved successfully.

SAVE, CC=1 0 (X'00') An image file of the same name has been replaced.

Condition Codes for an Exit with Error: Upon finding an error condition, you receive a condition code of
3, indicating that the image library file was not saved or loaded successfully. You will also receive a return
code in Ry. Refer to the following chart for the meaning:

Function and
Condition Code

Return Code in Ry Meaning

LOAD, CC=3 4 (X'04') Image library file not found

LOAD, CC=3 20 (X'14') The image length specification is greater than the actual size
of the image. The residual byte count is in Ry+1.

LOAD, CC=3 24 (X'18') Paging or spooling error

LOAD, CC=3 28 (X'1C') The image length specification is less than the actual size of
the image. The residual byte count is in Ry+1.

LOAD, CC=3 36 (X'24') Abnormal termination occurred; an NSI001 soft abend
generated.

LOAD, CC=3 40 (X'28') Invalid file name specified

SAVE, CC=3 8 (X'08') Image library file currently active

SAVE, CC=3 24 (X'18') Paging or spooling error

SAVE, CC=3 32 (X'20') Spool space full

SAVE, CC=3 36 (X'24') An abnormal termination occurred; an NSI001 soft abend
generated

SAVE, CC=3 40 (X'28') Invalid file name specified

SAVE, CC=3 44 (X'2C') No spool file IDs available

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'74' is given incorrect
data:

DIAGNOSE Code X'74'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 83

Problem Encountered Cause

Specification exception Any of the following:

• R15 is specified as Rx or Ry.
• The address in Ry is not on a page boundary.
• The register specified for Rx is the same as Ry.
• The Rx and Ry registers are not at least two registers apart.

Privileged-operation exception Any of the following:.

• The guest does not have the correct privilege class (A, B, C,
or E).

• The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to:

• Fetch the data area (SAVE function); Key-controlled
protection does not apply.

• Store into the data area (LOAD function); Key-controlled
protection and low-address protection do not apply.

DIAGNOSE Code X'7C' – Logical Device Support Facility
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'7C' to create, and communicate with, logical 3270 terminals. DIAGNOSE code
X'7C' provides the following functions:

• The INITIATE function opens a logical communication path between the calling virtual machine that
issues the DIAGNOSE code (the DIAGNOSE code X'7C' guest) and CP. It causes a logical device to be
created and the VM logo to be directed to it.

• The ACCEPT function collects output data that CP has directed to a logical device. It is invoked after
the DIAGNOSE code X'7C' guest is notified through an external interrupt that output data is to be
processed.

• The STATUS function notifies CP of the completion and ending status of an ACCEPT function for logical
printers.

• The PRESENT function passes input data to CP. The location of the data is described by an address or a
complemented address. If a complemented address is used, it is the address of a list that describes a
data stream occupying multiple data buffers.

• The TERMINATE function notifies CP to delete a specific logical device. If the logical device is the
console of a virtual machine, the virtual machine is placed in FORCE DISCONNECT state. If the logical
device is dialed to a virtual machine, the dialed connection is reset. If the logical printer is attached
to a virtual machine, it is detached from that virtual machine. If an input or output operation is being
processed, it is terminated with a unit check and intervention required.

Entry Values:
Rx

Is any user-specified register except R15 that contains the logical device address used to coordinate
CP and virtual machine operations.

If a specific address is requested for the INITIATE function, the low-order two bytes of Rx specify
the device address. Addresses in the range X'0000' to X'nnnnn-1' are valid, where nnnnn is the
hexadecimal representation of the maximum number of logical devices as specified on the SET
MAXLDEV command. The system default for nnnnn-1 is 4095, and thus the default range of valid
addresses is X'0000' to X'0FFF'.

DIAGNOSE Code X'7C'

84 z/VM: 7.3 CP Programming Services

Rx+1

For the INITIATE function, Rx+1 contains the following information about the pseudo device to be
created:

• The first byte indicates optional features:

– Bit 0 — 3270 extended features are to be supported (not valid for 3277s or 328Xs).
– Bit 1 — the ACCEPT function must be followed by STATUS function (must be on for logical

printers).
– Bit 2 — the specific device address is requested.
– Bit 3 — an IP address is supplied in Ry+1.
– Bit 4 — Ry+1 points to a 16-byte field containing an IPv6 address. If bit 3 is on, bit 4 is ignored.

Rule: The 16-byte field must not cross a page boundary.
• The second byte contains the model number: X'y0' through X'y5' (the first four bits (y) of the model

number are ignored).
• The third byte contains the device class and must be X'40' (graphic).
• The fourth byte indicates the device type:

– X'01' - 3278 or 3279 (3270 family displays except the 3277)
– X'02' - 328X (3270 family printers)
– X'04' - 3277 display

The following constitute valid model, class and type input. (The first four bits, (y), of the model
number are ignored. Also, X'y0' is accepted, but treated as model X'y2'.)

3277 y04004
3277 y24004
3278/9 y24001
3278/9 y34001
3278/9 y44001
3278/9 y54001
328X y04002
328X y14002
328X y24002
328X y34002
328X y44002

For the ACCEPT function, Rx+1 is a register that contains the address of a data buffer. Zero may not be
used as the data-buffer address.

For the PRESENT function in buffer format, Rx+1 is a register that contains the address of the data
buffer.

For the PRESENT function in a list format, Rx+1 is a complemented address of a list of buffer entries.
For more information on this format see “PRESENT: DIAGNOSE code X'7C' subcode X'00000003'” on
page 90. If this form of PRESENT ends with condition code 0, return code 3, an external interrupt is
reflected when processing of the data is complete.

For a PRESENT from a printer, if Rx+1 is zero, an asynchronous device end interrupt is reflected. For a
PRESENT from a non-printer device, Rx+1 may not be zero.

For the STATUS function, Rx+1 contains the sense data in the low order byte of the register.

Ry
Is any user-specified register except R15 that contains one of the following subcodes:
Subcode

Function
X'00000001'

INITIATE

DIAGNOSE Code X'7C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 85

X'00000002'
ACCEPT

X'00000003'
PRESENT

X'00000004'
TERMINATE

X'00000005'
TERMINATE (All)

X'00000006'
STATUS

Ry+1
For the INITIATE function, Ry+1 is a register that may contain the IP address associated with the
logical device. This information is recorded and is used in appropriate command responses, operator
messages, accounting records, and access control interface parameter lists.

For the ACCEPT and PRESENT functions, Ry+1 is a register that contains the length of the data buffer.
For the BUFFER form of the PRESENT function, the buffer length cannot exceed 4096 bytes. For
ACCEPT and for the BUFFER form of PRESENT, the length must be greater than zero. For the LIST
form of the PRESENT function, this register is not used to contain the length; bits 1-31 of Ry+1 are
ignored in this case. The contents of Ry+1 are also ignored when PRESENT is issued with zero in Rx+1
to generate an asynchronous device end from a printer.

PRESENT
When bit 0 is set to 1, the data is from a Read-Buffer request; when bit 0 is set to 0, the data is
from a Read-Modified request.

ACCEPT
When bit 0 is set to 1, move partial data if the buffer is too short (Partial ACCEPT); when bit 0 is
set to 0, move all data; if all data cannot be moved, the issuer receives a condition code of 1, and
Ry+1=3; the size of the buffer needed is returned in Ry.

DIAGNOSE code X'7C' may not be issued in access-register mode in an XC virtual machine. All addresses
passed on DIAGNOSE code X'7C' are guest absolute addresses in the host-primary address space. Key-
controlled protection and low-address protection do not apply to storage references by DIAGNOSE code
X'7C'.

Exit Values: On a successful return from an INITIATE function, Rx contains the logical device address
assigned to the newly created logical device. This logical device address is returned by the INITIATE
function, and must be specified by the user for an ACCEPT, PRESENT, TERMINATE, or STATUS function.

On return from an ACCEPT function, Ry contains the length of the data transferred. The maximum buffer
length for an ACCEPT is X'7FFFFFFF'.

On completion of any of the DIAGNOSE functions, Ry+1 contains the return code.

Usage Notes
1. Even if the input is an address, z/VM uses all 32 bits of the Rx and Ry input registers.
2. DIAGNOSE code X'7C' ACCEPT sets a return code of 0 whether the CCW is command chained. It also

issues an external interrupt subcode, X'02', for each new command chained CCW.

Responses
Condition Codes and Return Codes: One of the following condition codes is returned from the
DIAGNOSE code X'7C' call. The codes are:

0 — Function completed with no errors
1 — Error condition
2 — Busy condition

DIAGNOSE Code X'7C'

86 z/VM: 7.3 CP Programming Services

3 — Device addressing error

In addition to the condition codes, a return code that indicates the specific cause of the problem is
returned in Ry+1 as follows:

Condition Code Return Code in
Ry+1

Meaning

0 0 (X'00') Normal completion

0 1 (X'01') (ACCEPT) Another ACCEPT is required for another Write data
stream.

0 2 (X'02') (ACCEPT) Another ACCEPT is required for the next segment of
the current data stream.

0 3 (X'03') (PRESENT) An external interrupt is presented when
processing of the data is finished. Note that the issuer may
receive an external interrupt other than the one that indicates
that the PRESENT is completed. If this occurs, then the issuer
will not receive the interrupt specifically indicating that the
PRESENT is complete.

0 4 (X'04') (ACCEPT) A STATUS function must be issued to end the
ACCEPT.

1 1 (X'01') An invalid function code is in register Ry.

1 2 (X'02') • (ACCEPT) no data available
• (STATUS) The logical device is not waiting for a status

function.

1 3 (X'03') • (ACCEPT) The buffer was too short. No data was
transferred.

• Another ACCEPT is required to retrieve the data.
• The required data length is in register Ry, unless data-

chained CCWs are being used. If data-chained CCWs are
being used, the byte count returned in Ry only contains the
amount of data up to the CCW that exhausted the ACCEPT
buffer and may not be the total data amount.

1 4 (X'04') (ACCEPT, PRESENT) The buffer specification is in error:

• (PRESENT) The length is greater than 4096 bytes.
• (ACCEPT) The length is zero.
• (PRESENT) The length is zero (length is not checked for an

asynchronous device end request on a logical printer).
• The address is not in the user's address space.
• A paging I/O error occurred.

1 9 (X'09') (INITIATE) The maximum logical devices have already been
created.

1 10 (X'0A') (ACCEPT, PRESENT) The logical channel detected an error.

1 11 (X'0B') User not authorized for DIAGNOSE code X'7C'.

2 1 (X'01') (PRESENT) CP has pending data that must be accepted first.
The PRESENT function was not performed.

DIAGNOSE Code X'7C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 87

Condition Code Return Code in
Ry+1

Meaning

2 2 (X'02') (PRESENT) The previous DIAGNOSE code X'7C' is not
completed. The current PRESENT function was not
performed. An external interrupt is reflected to the virtual
machine.

2 3 (X'03') (PRESENT) CP has an active Read-Buffer request outstanding,
and this PRESENT is for a Read-Modified request. The
PRESENT function was not performed.

2 4 (X'04') (PRESENT) This PRESENT indicates Read-Buffer request data,
and the READ is for a Read-Modified request. The PRESENT
function was not performed.

2 5 (X'05') (PRESENT) CP is waiting for a STATUS request. The PRESENT
function is not performed.

3 2 (X'02') The specified logical device does not exist.

3 3 (X'03') • (INITIATE) The device class, type, or model is invalid.
• (STATUS) The STATUS is not valid for this logical device; the

original INITIATE did not have bit 1 on in Rx+1.

3 4 (X'04') (INITIATE) The specific device address is invalid.

3 5 (X'05') (INITIATE) For a specific device request, the device was
already created.

3 6 (X'06') (INITIATE) The IPv6 address pointer is not valid or the data
crosses a page boundary.

Program Exceptions: These program exceptions can occur if the DIAGNOSE X'7C' is given incorrect input
data:

Problem Encountered Cause

Specification exception Either of

• An incorrect privilege class
• Rx or Ry specified as register 15.

Privileged-operation exception The virtual machine is in the problem state.

Special-operation exception DIAGNOSE code X'7C' cannot run in an XC virtual machine
that is in access register mode.

Logical Device External Interrupt Code X'2402'
The logical device support uses a special external interrupt code to notify the DIAGNOSE code X'7C' guest
of a change in status for a specific logical device. The external interrupt code is X'2402'. This interrupt
causes a fullword of data to be stored at location X'80' in the DIAGNOSE code X'7C' guest's virtual
machine. The interrupt is masked on and off by bit 22 of control register zero.

The format of the stored fullword is:
Address

Contents
80-81

Logical device number

DIAGNOSE Code X'7C'

88 z/VM: 7.3 CP Programming Services

82
Flag byte

83
External interrupt reason code

The flag byte contains the following status flags:
Bit

Meaning
0

Data from the last PRESENT was discarded by the system (the subsequent I/O was a Write instead of
a Read).

1
A data transfer error occurred on the previous PRESENT (LIST form of the PRESENT).

The logical device external interrupt reason codes stored in location X'83' are:
Code

Meaning
01

CP is terminating the logical device.
02

A Write has been issued to the device (an ACCEPT must be done).
03

A previous PRESENT is now finished. (User received CC=0 and RC=3, or CC=2 and RC=2 after a
PRESENT)

04
A Read Buffer command has been issued to the device.

05
A Read Modified command has been issued to the device.

Logical Device Support Facility Functions
The following logical device functions manage communications and the transfer of data between CP and
the DIAGNOSE code X'7C' guest.

INITIATE: DIAGNOSE code X'7C' subcode X'00000001'
The INITIATE function opens a logical communications path between the DIAGNOSE code X'7C' guest
and the z/VM Control Program. It causes a logical device to be created, initialized with device, model,
and type information, enabled, and the z/VM logo to be directed to it. During the enabling process, if
the device supports extended features, a WSFQ (Write Structured Field Query) is issued to the device to
determine its characteristics, and the Reply information used to update the device characteristics of the
logical device, and also saved to be used to respond to future DIAGNOSE code X'8C' requests issued by
the logical device user's virtual machine.

Rx+1 must contain the model number in byte 2, and the device class and type in bytes 3 and 4.

Rx is used only if a specific logical device is requested: bit 2 of Rx+1 is on. If so, Rx contains the logical
device number.

If a specific address is not requested, then CP assigns the next available address to the new logical
device. When more than one logical device will be created with specific device addresses requested, it is
recommended that these devices be created in the range of X'0F80' to X'0FFF'. This is because logical
devices will not be created from this range unless there is a specific request from this range or there
are no other logical device addresses available. Reserving this range for specific logical device requests
minimizes the possibility of finding a device address already in use.

DIAGNOSE Code X'7C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 89

Ry+1 is used only if an IP address is supplied: bit 3 of Rx+1 is on. If so, Ry+1 contains the IP address to be
associated with the logical device.

On completion of the INITIATE, the newly assigned logical device address is placed in Rx. This value is
used on subsequent DIAGNOSE operations to indicate the logical device being used. This address is also
provided with any external interrupts for the device so that the DIAGNOSE code X'7C' guest can associate
the interrupt with a specific logical device.

ACCEPT: DIAGNOSE code X'7C' subcode X'00000002'
The ACCEPT function collects data that CP has directed to a logical device. It is invoked after the
DIAGNOSE code X'7C' guest is notified through external interrupt that output data is to be processed.
Upon invocation, Rx+1 must contain the data buffer address and Ry+1 the buffer length. If the data buffer
supplied was too short to contain the data, the function returns the required buffer size in Ry and no data
is moved. This action can be overridden by setting an indicator in the length register (bit zero in Ry+1 set
to 1) when the function is invoked. In this case, the data is moved to the short buffer and a condition code
of 0 and a return code of 2 is sent. The system moves the next portion of the data on the next ACCEPT.
Upon successful completion of function processing, the data length is returned in Ry, and the data buffer
contains the CCW OP code in its first byte (only the first time if several operations are required to collect
all the data from that CCW) and data in the remaining buffer space.

STATUS: DIAGNOSE code X'7C' subcode X'00000006'
The STATUS function allows status to be returned to CP after an ACCEPT function is performed. It must be
used with a logical 328x printer to indicate when the printer has completed the printout and the ending
status of the printer.

PRESENT: DIAGNOSE code X'7C' subcode X'00000003'
The PRESENT function passes input data to CP. The location of the data is described by an address or
a complemented1 address in Rx+1. If the register contains an address, it is the address of a data buffer
4096 bytes or less in length. In this case, Ry+1 contains the length of that data buffer. If Rx+1 contains
a complemented address, it is the address of a list that describes a data stream occupying multiple data
buffers and/or greater than 4096 bytes in length. In this case, Ry+1 is not used to describe the data
length. However, in either case, a high-order bit of 1 in Ry+1 indicates whether the data is the result of a
Read Buffer or Read Modified CCW.

If a list describes the data, the list must be in the format:

The list must start on a fullword boundary. Each entry consists of a flag byte, a 3-byte unsigned length
field and a 4-byte buffer address field that describe the length and location of sequential segments of a

1 Refers to the two's complement of the address.

DIAGNOSE Code X'7C'

90 z/VM: 7.3 CP Programming Services

data stream. Bit X'80' set to 1 in the flag byte marks the last entry; other bits are reserved and should be
zeros.

A single entry list may be used to describe a single data buffer greater than 4096 bytes in length. Neither
the list nor the data may be modified before transfer of the data has completed.

A PRESENT may be either solicited or unsolicited. If solicited, then a Read Buffer or Read Modified was
directed by CP to the logical device and the DIAGNOSE code X'7C' guest is notified through an external
interrupt of that fact. When the guest responds with a DIAGNOSE code X'7C' PRESENT, the input data is
received immediately and the DIAGNOSE completes with a condition code of 0 (zero), and a return code
of 0 (zero).

If unsolicited, processing differs depending on whether the PRESENT is buffer format or list format. If
buffer format, then the input data is moved to a CP buffer awaiting a Read from CP, and the DIAGNOSE
completes with a condition code of 0 (zero) and a return code of zero (0). When eventually a Read is
processed by CP, the data saved in the CP buffer satisfies the Read. If list format, the data is left in its
input list format, and the DIAGNOSE completes with a condition code of zero (0) and a return code of 3.
Later, when a Read is processed by CP, and the input data received (that is, moved from the DIAGNOSE
code X'7C' input buffers), the DIAGNOSE X'7C' guest is notified through an external interrupt that the
previous PRESENT is now finished.

TERMINATE: DIAGNOSE code X'7C' subcode X'00000004'
The TERMINATE function causes CP to delete a specific logical device. If the logical device is the console
of a virtual machine, the virtual machine is placed in Force Disconnect state. If the logical device is
dialed, the connection is reset; if attached, it is detached from that virtual machine. If an input or output
operation is being processed, it is terminated with a unit check and intervention required. The logical
device is deleted, and its logical device address is made available again.

TERMINATE (All): DIAGNOSE code X'7C' subcode X'00000005'
The TERMINATE (all) function notifies CP to terminate all logical devices created by the DIAGNOSE code
X'7C' guest.

DIAGNOSE Code X'84' – Directory Update-in-Place
Privilege Class: B

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'84' enables a class B user to replace certain data in any user, identity, or
subconfiguration stanza of the CP object directory. The user must specify the stanza and can replace
the following data:

• The logon password
• The default virtual machine storage size
• The maximum virtual machine storage size
• Privilege classes
• Logical editing symbols
• The initial program load (IPL) system
• IPL parameter data
• The account number
• The distribution code
• User options
• The minidisk access mode
• The minidisk read, write, or multiple password
• The minidisk device type, allocation definition, and volume serial.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 91

• Options of the SCREEN directory control statement
• XAUTOLOG user IDs
• The type of virtual machine (XA, ESA, XC, Z)
• The maximum number of virtual processors
• The maximum number of spool files
• Virtual processor ID and VECTOR and CRYPTO option values
• User's default date format setting.

See the individual operation descriptions in Table 6 on page 93 to understand when the results of each
operation take effect.

DIAGNOSE code X'84' can neither add new entries to, nor delete existing entries from, the object
directory. It can only replace existing object directory data. This DIAGNOSE instruction has no effect
on definition control statements in the CP source directory.

In SSI-enabled directories, the changes to identity and subconfiguration object directory entries are
applied as if the changes are made to the statements in the corresponding stanza in the source directory.
Because settings specified in a subconfiguration stanza can override settings in the associated identity
stanza, changes made using DIAGNOSE X'84' to an identity object directory entry might not appear to
have any affect if overridden by settings specified in the subconfiguration stanza.

Object directories for SSI-ready directories do not contain separate entries for identity and
subconfiguration stanzas specified in the source directory. Rather, when the object directory is built,
the identity stanza and the single associated subconfiguration stanza are merged into a single entry that
appears as if it was created from a single user stanza. Therefore, changes to the object directory for
identity and subconfiguration stanzas are made specifying the user ID from the IDENTITY statement.

For more information on the directory entries, see z/VM: CP Planning and Administration.

Entry Values:
Rx

must contain the guest real address of a variable-length parameter list.
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

Ry
must specify, in bytes, the length of the parameter list.

The parameter list must contain at least a fixed-length area 24 bytes long, followed by an optional
variable length area of up to 223 bytes and a 4-byte fence (X'FF') or two sequential blanks. Data in the
fixed-length area identifies the directory stanza to be updated, the password of the user ID associated
with the stanza, and the data field to be replaced in the directory stanza. All entries in the parameter list
must contain unpacked, EBCDIC data.

DIAGNOSE Code X'84'

92 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

The parameter list is organized as follows:
Fixed-length area
USER userid/IDENTITY userid/SUBCONFIG id

is the USER or IDENTITY user ID, or the SUBCONFIG ID whose stanza is updated. This is a 1- to
8-character, left-justified value and must be padded with blanks with no imbedded blanks.

password
is the current CP password of the USER, IDENTITY, or SUBCONFIG whose stanza is updated. This is a
1- to 8-character, left-justified value and must be padded with blanks with no imbedded blanks. For a
subconfiguration stanza, specify the password of the associated IDENTITY.

If this field is blank, the update-in-place function is processed in test mode and the directory is not
updated. Test mode lets you check the syntax of the directory operations without modifying the CP
user directory or any operational controls.

operation
is a 1- to 8-character, left-justified value that identifies the data in the stanza that is to be replaced.
Valid values and the data that each identifies for replacement are defined in the description of the
variable-length area that follows.

Variable-length area
Table 6 on page 93 shows, for each value of the operation field, the data that must be in the
variable-length area of the parameter list, and the format and characteristics of the data. Table 6 on
page 93 also shows specific information concerning all DIAGNOSE code X'84' operations.

Table 6. DIAGNOSE Code X'84' Operations

Operation Description

ACCOUNT Replaces all of the user's accounting numbers, up to eight, to be effective at the next
user logon.

The ACCOUNT operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

aaaaaaa1[aaaaaaa2[aaaaaaa3...[aaaaaaa8]]]

aaaaaaa1...aaaaaaa8
is up to eight account numbers, 1- to 8-character values, left-justified and padded
with blanks. These replace all account numbers, so include the current numbers
along with any changes, remembering that the first in the list is the primary or logon
account number. The list is terminated by a blank account number or X'FFFFFFFF'.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 93

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

CPU Replaces attributes of a user's virtual processor, to be effective at the next user logon.

The CPU operation can be performed on a user or identity stanza, but is not allowed on
a subconfiguration stanza.

pp [VECTOR|NOVECTOR] [CPUID bbbbbb][CRYPTO|NOCRYPTO]

pp
is a 2-digit hexadecimal virtual processor address between X'00' and X'3F' followed
by a blank and one of the following:

VECTOR|NOVECTOR
designates the specified processor as having or not having VECTOR capability.

CPUID bbbbbb
assigns the value following as the processor's CPUID where bbbbbb is a valid
hexadecimal number.

CRYPTO|NOCRYPTO
designates the specified processor as having or not having CRYPTO capability.

Usage Notes:

1. This operation can be used only to alter virtual processors defined by a CPU
directory statement.

2. If you use DIAGNOSE code X'84' to add a VECTOR designation to a CPU, it will have
no effect if the user has specified NOVF on the OPTION directory control statement
in the directory stanza.

3. You can add a CRYPTO designation to a virtual CPU only if the user has a CRYPTO
directory statement in the directory stanza.

DATEFMT Replaces the user's default date format setting, to be effective at the next user logon.

[SHOrtdate|FULldate|ISOdate|SYSdefault]

SHOrtdate|FULldate|ISOdate|SYSdefault
sets the virtual machine's default date format to the specified setting.

DISTRIB Replaces the user's distribution identification value, to be effective at the next user
logon.

The DISTRIB operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

dddddddd

dddddddd
is the distribution identification word, a 1- to 8-character value, left-justified and
padded with blanks.

DIAGNOSE Code X'84'

94 z/VM: 7.3 CP Programming Services

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

EDITCHAR Replaces the user's logical editing symbols for terminal and command analysis, to be
effective at the next user logon.

The EDITCHAR operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

symbols

symbols
is an 8-byte value containing logical editing symbols.

The first four bytes, counting from the left, are line edit symbols. The first or high-
order byte is the line-end symbol (#), the second byte is the line-delete symbol
(¢), the third byte is the character-delete symbol (@), and the fourth byte is the
escape-character symbol ("). All existing symbols in the directory are replaced.
Therefore, specify existing symbols that are to be retained as well as symbols that
are to be changed. Unspecified symbols must contain blanks. The last four bytes of
the 8-byte value are reserved for future IBM use.

Usage Note: You cannot use any of the letters A through Z, the numbers 0 through 9, or
the bytes X'0E' (shift out) or X'0F' (shift in) as a logical line edit symbol.

IACCOUNT Forces the creation of an accounting record for the current account number and
replaces the primary account number in the directory stanza in the object directory,
the new account number being effective immediately.

The IACCOUNT operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

aaaaaaaa

aaaaaaaa
is a 1- to 8-character account number, left-justified and padded with blanks. The
number is assumed to be a valid value in the customer accounting scheme.

Usage Note: If the new account number specified is not one of the alternate account
numbers presently in the directory stanza of the object directory, then the primary
account number is simply replaced and is not preserved as a valid alternate account
number.

IPL Replaces the user's automatic IPL statement, to be effective at the next user logon.

name|aaaa [PARM [ddddd...ddddd]

name|aaaa
is a 1- to 8-character system name or virtual device number, left-justified and
padded with blanks.

PARM
is a keyword indicating that data is to follow.

ddddd...ddddd
is up to 48 characters of variable data.

Usage Note: All existing values are replaced in the directory stanza; therefore, specify
values that are to be retained as well as values that are to be changed. Trailing blanks
are not truncated, but passed.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 95

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

LOGPASS Replaces the password of the specified user ID, to be effective at the next user logon.

password

The LOGPASS operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

password
is a new 1- to 8-byte logon password, left-justified and padded with blanks, starting
in column 1 of the variable length area.

MACHINE Replaces the user's virtual machine data, to be effective at the next user logon.

The MACHINE operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

[XA|ESA|XC|Z] [MAXCPU nn]

XA|ESA|XC|Z
sets the default virtual machine type designation.

MAXCPU nn
sets the maximum number of virtual processors that the virtual machine can have.
The variable nn is a number between 1 and 64.

Usage Notes:

1. Use either or both of the above option values in any order, separated by a single
blank.

2. The list is terminated by two consecutive blanks or the string X'FFFFFFFF'.

MAXSTOR Replaces the user's maximum virtual machine storage size. The new maximum storage
size is enforced at the time of the next DEFINE STORAGE or user logon. Changing the
maximum storage size does not cause any change to the currently defined storage size
of the target user even if the new maximum is smaller than the user's currently defined
storage size.

nnnnnnnnu

nnnnnnnnu
is the maximum virtual machine storage size, a 1- to 8-byte left-justified decimal
value followed by a 1-character storage unit suffix. See the STORAGE operation for
the list of storage unit suffixes, maximum input values, and usage notes.

DIAGNOSE Code X'84'

96 z/VM: 7.3 CP Programming Services

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

MDISK Replaces the default access mode and password definitions for the specified MDISK
address, which must already exist in the directory stanza, the change to be effective
immediately.

The MDISK has two formats of parameter lists based on the length of the device
address and the access mode of the device definition. Format 1 is the preferred format.
Format 2 is for VM/SP, VM/SP HPO, and VM/ESA (370 Feature) compatibility.

Format 1: {VDEV aaaa mmmm [readpass [writepas [multipas]]]}

Format 2: {aaammm[readpass][writepas][multipas]}

VDEV
indicates that this is a format 1 parameter list.

aaaa/aaa
is a 1- to 4-hexadecimal digit minidisk address. If less than four digits, the value
will be padded to the left with 0's.

mmmm/mmm
The default access mode of the device definition. Valid access modes are R, RR,
W, RW, M, MR, MW. These access modes may be concatenated with optional suffix
letters. For Format 1 the allowed suffix letters are V, S, and E. They can be used
in the following combinations: V, S, E, VS, or VE. When concatenated with a mode,
some of the possible combinations would be RV, RRS, WE, MVE, or MRVS. For
Format 2, the only suffix letter allowed is V. The mode is replaced completely so
you must specify it exactly as you want it to appear.

readpass writepas multipas
The passwords are 1- to 8-character values that enable the user to LINK to a
desired DASD in the appropriate mode. All of the passwords are replaced, so you
must supply all of the values to be retained as well as those that are changed. Valid
values for access mode and for passwords are defined in z/VM: CP Planning and
Administration.

Usage Notes:

• Format 1 — A positional set of alphanumeric character strings, each value of which
is separated from the previous by a single blank. The line is terminated by two or
more blanks or a fence of X'FFFFFFFF'. The format is identified by the value VDEV
starting in column 25, followed by a blank. The rest of the elements of the operation's
invocation are in the following list. They are positional and separated by a single
blank:

– A hexadecimal 1- to 4-digit minidisk address. If less than four digits, the address is
padded to the left with zeros.

– A 1- to 4-character access mode
– A 1- to 8-character read password
– A 1- to 8-character write password
– A 1- to 8-character multiple password

• Format 2 — A 30-byte field, column-dependent format. All values must be left-
justified and padded with blanks. The contents of the field are:

– Bytes 1 through 3, counting from the left, specify a minidisk address. This is the
minidisk whose mode and passwords are to be changed.

– Bytes 4 through 6 specify the access mode.
– Bytes 7 through 14 specify the read password.
– Bytes 15 through 22 specify the write password.
– Bytes 23 through 30 specify the multiple password.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 97

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

OPTIONS Replaces the user's current set of OPTIONS definitions. The new options become
effective the next time the user logs on.

[Acct] [Cpuid bbbbbb] [Lang Langid]

** Values supported for compatibility **

[Realtimer] [Ecmode] [Isam] [Svcoff] [BMX] [AFfinity xx]

Acct
sets the account flag to enable the cutting of account records.

The OPTION ACCT operation can be performed on a user or identity stanza, but is
not allowed on a subconfiguration stanza.

Cpuid bbbbbb
sets the default cpuid for the user ID to bbbbbb, where bbbbbb is a valid
hexadecimal number.

Lang langid
sets the system message language ID value to langid.

Values supported for compatibility
are recognized, validated and ignored when used in combination with the valid
ones.

Usage Notes:

1. The user options field is an 80-byte, left-justified value padded with blanks. Specify
each option as a character string with a blank character between options.

2. The options field must be followed by the value X'FFFFFFFF' or by at least two
blanks.

3. For a description of each option and a list of valid values, see z/VM: CP Planning and
Administration.

PRIORITY Is accepted and ignored for compatibility with VM/SP HPO Release 5 and later.

pp

The PRIORITY operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

pp
HPO dispatching priority is ignored.

PRIVLEGE Replaces the user's current privilege class definition with a new set of classes.

The PRIVLEGE operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

c[ccccccccccccccccccccccccccccccc]

cccccccccccccccccccccccccccccccc
is the privilege class parameter, a 32-byte value, where each byte represents a
privilege class. Valid values for each byte are A through Z, and 1 through 6. All
existing classes in the directory stanza are replaced. Therefore, specify existing
classes that are to be retained, as well as classes that are to be changed. The
data must be left-justified and padded with blanks. This field can be all blanks, in
which case the specified virtual machine has the default classes (defined on the
PRIV_CLASSES statement in the system configuration file) each time the user logs
on. The new privilege classes are effective the next time the user logs on.

DIAGNOSE Code X'84'

98 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

RMDISK Alters the minidisk extents and the volume serial number for a minidisk that currently
exists in the user directory.

The RMDISK update-in-place takes effect immediately for all subsequent new LINKs
to the specified minidisk and for ALL new minidisks established by virtue of subsequent
LOGONs.

LINKs to the specified minidisk that were established prior to the RMDISK operation
continue to use the old extents that were in effect at the time of that LINK. In this case,
a DETACH followed by a re-LINK is performed (or LOGOFF followed by LOGON, which is
in effect the same thing), is necessary to access the new extents.

aaaa dddddddd rrrrrrrrrr cccccccccc volser

aaaa
is a 1- to 4-hexadecimal digit minidisk address. If less than four digits, the value is
padded to the left with zeros. The hexadecimal address must be a currently existing
minidisk for the specified user ID.

dddddddd
is the device type of the real DASD. Select the appropriate value from the following:

3350, 3370, 3375, 3380, 3390, 9332, 9335, 9336, 9345 or FB-512. The 9345
must be formatted as an ECKD™ device.

rrrrrrrrrr
is the cylinder (CKD/ECKD) or block (FBA) relocation factor identifying the
beginning of the new allocation. It is the caller's responsibility to specify a cylinder
or block location factor that is valid for the device type that has been specified. This
field must be a 1-10 character decimal value. See the table of maximum minidisk
sizes in the documentation on the MDISK directory statement in z/VM: CP Planning
and Administration.

cccccccccc
is a decimal count of the number of cylinders (CKD/ECKD) or blocks (FBA) to
be allocated or END which is defined as the remaining cylinders or blocks of the
volume. It is the caller's responsibility to specify a cylinder or block count value
that is valid for the device type that has been specified. This field must be a
1-10 character decimal value or END. See the table of maximum minidisk sizes in
the documentation on the MDISK directory statement in z/VM: CP Planning and
Administration.

volser
is a 1- to 6-character new volume serial identification. Any 1- to 6-character
EBCDIC value, other than blank(s), is accepted.

Usage Notes:

1. The variable-length area must contain all of the positional fields, each field
separated from its predecessor by at least one blank. Trailing data, if any, that
follows the last positional field (and its blank delimiter) is ignored.

2. All other fields associated with the minidisk (default link mode, passwords, minidisk
and DASD options) remain unchanged.

3. When coding the device type value, a 3380C is treated as a 3380 if you are coming
from a VM/SP, VM/SP HPO, or VM/ESA (370 Feature) system.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 99

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

SCREEN Replaces the user's SCREEN color and highlight control options, to be effective at the
next user logon.

cccccccchhhhhhhh...cccccccchhhhhhhh

cccccccchhhhhhhh
are the display screen options, specified in an 80-byte area composed of ten
doubleword fields. The ten fields are paired into five sets corresponding to the five
display areas of the SCREEN. You must specify these areas in the following order:

1. CP output
2. VM output
3. Input redisplay
4. Input area
5. Status area.

Each of the five doubleword sets has a color field and an extended highlight field
(see the SCREEN option description in z/VM: CP Planning and Administration for
valid color and extended highlight values). Within each doubleword set you must
specify the color first followed by the extended highlight value. You must specify all
fields, including those you do not want to change. Each of the options you specify
must also be left-justified in its respective 8-byte field.

SPOOLF Replaces the user's spool file characteristics. The new maximum number of spool files
will be effective the next time the user logs on.

MAXSPOOL nnnn

MAXSPOOL nnnn
sets the new maximum spool file number where nnnn is the maximum spool file
number for this user. The number is between 1 and 9999.

DIAGNOSE Code X'84'

100 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

STORAGE Replaces the user's default virtual machine storage size, to be effective at the next user
logon.
nnnnnnnnu

is the virtual machine storage size, a 1- to 8-byte left-justified decimal value
followed by a 1-character storage unit suffix. The value specified can be any value
less than or equal to the user's current maximum storage value in the directory.
Storage units / Suffix (u)

Maximum input value (nnnnnnnn)
Kilobytes / K

2096128
Megabytes / M

99999999
Gigabytes / G

99999999
Terabytes / T

16777216
Petabytes / P

16384
Exabytes / E

16

Usage Notes:

1. The K suffix is provided for upward compatibility only; a K specification is
rounded up to a MB value. The maximum specification is 2096128K (2047 MB).

2. The maximum input value of 99999999 for the M or G suffix is not a size limit
but the physical limit of the parameter (8 digits plus suffix). If the maximum
input value for one of these suffixes does not allow you to define the amount of
storage you want, you need to use a larger storage unit.

3. The maximum size you can specify is 16E (or 16384P or 16777216T), although
the actual maximum size supported may be restricted by the model of the server
where the directory is used.

4. An XC virtual machine can address up to 2047 MB of storage in its base address
space.

5. Giving many virtual machines very large storage sizes might affect real storage
availability. For each virtual machine, CP creates one or more segment tables in
host real storage to represent the virtual machine storage:

• For a virtual machine less than or equal to 512 MB, one frame is allocated for
the segment table.

• For a virtual machine larger than 512 MB but less than or equal to 1 GB, two
contiguous frames are allocated for the segment table.

• For a virtual machine larger than 1 GB but less than or equal to 1.5 GB, three
contiguous frames are allocated for the segment table.

• For a virtual machine larger than 1.5 GB but less than or equal to 2 GB, four
contiguous frames are allocated for the segment table.

• For a virtual machine larger than 2 GB, multiple segment tables are created,
plus one or more higher level (region) tables are created to identify the
segment tables. If needed, multiple levels of region tables are created. Each
region table occupies 1-4 contiguous frames.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 101

Table 6. DIAGNOSE Code X'84' Operations (continued)

Operation Description

TACCOUNT Forces the creation of an accounting record for the current account number. Then
replaces the active account number with the new one specified in the parameter list.
The user's definition in the object directory is left unchanged. The account number is
temporary, terminated by a LOGOFF, by another TACCOUNT operation, an IACCOUNT
operation, or a SET ACCOUNT command.

aaaaaaaa

aaaaaaaa
is the account number, a 1- to 8-character value, left-justified and padded with
blanks. The number is assumed to be a valid value in the customer accounting
scheme.

XAUTOLOG Replaces the list of class G user IDs authorized to XAUTOLOG this user, to be effective
immediately.

The XAUTOLOG operation can be performed on a user or identity stanza, but is not
allowed on a subconfiguration stanza.

[uuuuuuu1 [uuuuuuu2 ... [uuuuuuu8]]]

[uuuuuuu1 [uuuuuuu2 ... [uuuuuuu8]]]
lists up to eight user IDs, each a 1- to 8-character value, separated by single
blanks. The list is terminated by two consecutive blanks or the string X'FFFFFFFF'.
All XAUTOLOG user IDs are replaced, so specify user IDs that are to be retained as
well as those that are to be changed.

XSTORE Accepted for compatibility only. Expanded storage (XSTORE) is not supported.
Specifying this operation has no effect.

Exit Values:
Ry

Contains 0 unless the condition code is 1, in which case the value is the appropriate return code
shown in the following list.

Usage Note
Users defined with the LBYONLY operand in the password field of their USER statement in the CP
directory may be restricted from performing functions that require password validation. A user ID defined
with the LBYONLY operand cannot be the target of DIAGNOSE X'84' operations unless the virtual machine
issuing the diagnose has the D84NOPAS option in its directory stanza and the operation specified is not
LOGPASS or MDISK.

Responses
Condition Codes: Upon return from DIAGNOSE code X'84', CP sets one of the following condition codes:

Condition Code Meaning

0 The object directory was updated.

1 DIAGNOSE code X'84' has detected an error. The directory is unchanged. The
return code defines the error.

3 DIAGNOSE code X'84' has encountered a paging error while trying to access or
update an object directory page. The directory remains unchanged. The return
code defines the error.

DIAGNOSE Code X'84'

102 z/VM: 7.3 CP Programming Services

Abend Codes:

Abend Code Meaning

UDU001 An error has been detected in one of the directory blocks for the user.

Return Codes (in Ry):

Return Code Meaning

0 (X'00') The directory update was successful.

26 (X'1A') The specified device address was not found.

28 (X'1C') The value in the OPERATION field of the parameter list is invalid. Operations not
allowed for subconfiguration stanzas are treated as invalid operations.

30 (X'1E') The specified user ID could not be found.

31 (X'1F') The password specified in the fixed-length area of the parameter list does not
match the current password of the user ID being updated.

40 (X'28') The storage size requested exceeds the maximum defined for this virtual machine.

41 (X'29') The storage size requested exceeds the maximum allowed for the specified storage
unit.

42 (X'2A') The conversion of the storage size from alphanumeric to binary failed with a syntax
error.

43 (X'2B') The value specified for the virtual machine storage size is invalid.

53 (X'35') The specified privilege classes contain an invalid character.

70 (X'46') An option value specified to the OPTIONS operation is invalid.

72 (X'48') The option value contains a syntax error or an invalid character.

80 (X'50') The parameter list contains an invalid minidisk address.

81 (X'51') The parameter list specifies an invalid access mode for a minidisk.

91 (X'5B') No attributes were found on the SCREEN operation.

92 (X'5C') Invalid attributes were found on the SCREEN operation.

101 (X'65') The parameter list is too large, greater than the maximum of 255 bytes.

102 (X'66') The length of the parameter list is less than 24 bytes.

110 (X'6E') No parameter data currently exists in the directory.

111 (X'6F') The parameter length is invalid.

121 (X'79') The virtual address is invalid.

122 (X'7A') This user has no minidisk defined at this virtual address.

123 (X'7B') The specified device type is invalid.

124 (X'7C') The specified starting cylinder or block is invalid.

125 (X'7D') The specified number of cylinders or blocks is invalid.

126 (X'7E') The specified volume serial number is invalid.

230 (X'E6') An invalid option was specified for the SPOOLF operation.

231 (X'E7') The MAXSPOOL value was missing.

DIAGNOSE Code X'84'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 103

232 (X'E8') The MAXSPOOL value equals zero.

233 (X'E9') The MAXSPOOL value contains an invalid EBCDIC value.

234 (X'EA') The MAXSPOOL value was greater than 9999.

240 (X'F0') The CPU specified was not found in the directory for this user.

241 (X'F1') An invalid option was specified for the CPU operation.

242 (X'F2') The specified CPU address is invalid.

243 (X'F3') The CPUID value contains an invalid EBCDIC value.

244 (X'F4') The CPUID value was greater than six bytes long.

245 (X'F5') The CPUID value was missing.

246 (X'F6') CRYPTO was specified for the CPU operation but the user does not have a CRYPTO
directory control statement in their user definition.

250 (X'FA') Too many user IDs were specified for the XAUTOLOG operation.

251 (X'FB') An invalid user ID was specified for the XAUTOLOG operation.

260 (X'104') The MAXCPU value was missing.

261 (X'105') An invalid option was specified for the MACHINE operation.

262 (X'106') Conflicting values were specified for the MACHINE operation.

263 (X'107') The MAXCPU value contains an invalid EBCDIC value. It was not in the range of 1 to
64.

264 (X'108') The XC virtual machine type conflicts with the V=R/V=F option for this virtual
machine. V=R and V=F are not supported.

290 (X'122') An option is missing for the DATEFMT operation.

291 (X'123') An invalid option was specified for the DATEFMT operation.

292 (X'124') More than one option was specified for the DATEFMT operation.

410 (X'19A') An error occurred while writing a directory page out to a direct access device. (See
following note.)

475 (X'1DB') An error occurred while reading a directory page. (See following note.)

550 (X'226') An invalid symbol was specified for the EDITCHAR operation.

1507 (X'5E3') The active CP directory is invalid.

Note: To update the directory, use the service program (DIRECTXA) described in z/VM: CP Planning and
Administration. For more information on formatting the DIRECTXA utility, see z/VM: CP Commands and
Utilities Reference.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'84' is given incorrect
input data:

Problem Encountered Cause

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.
• The user does not have the appropriate privilege class.

DIAGNOSE Code X'84'

104 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the parameter list.

DIAGNOSE Code X'88' – Validate User Authorization/Link Minidisk
Privilege Class: G

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'88' is used by a service virtual machine to authenticate a client agent's access to
a target virtual machine's minidisks and to gain access to those minidisks on the client's behalf. If
an external security manager (ESM) is not controlling the use of this diagnose instruction, the issuing
virtual machine must have the DIAG88 option in its User Directory entry. When under ESM control,
special authorization is required to use this function. Contact your administrator to obtain any needed
permissions. This capability should be granted only to trusted programs.

An application may verify its ability to use DIAGNOSE code X'88' through use of subcode negative 1 (-1).
When an application has the ability to use DIAGNOSE code X'88', it is assumed that the issuing virtual
machine will first use subcode X'00' or subcode X'08' to validate that a client is permitted to access the
resources of a target virtual machine. After performing this validation, the issuing virtual machine may
then use subcode X'04' to obtain access to the target machine's minidisks on behalf of the client.

An agent may be granted access to a target machine's minidisks if the agent's logon password is known
and either the agent is the target or is authorized in the User Directory to access the target via LOGONBY.
In other words, if a client knows how to log on to the target virtual machine, either directly or using
LOGONBY, it may be granted access to that machine's minidisk resources.

CMS provides simplified programming access to DIAGNOSE code X'88' through use of the DMSPASS
callable service. For more information, see DMSPASS callable service in z/VM: CMS Callable Services
Reference.

Entry Values for Subcode X'00':
Rx

X'00000000'
Ry

Pointer to the parameter list, D88PARM0. D88PARM0 COPY is provided in the HCPGPI macro library.
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

D88PARM0 DSECT
The parameter list is in this format:

DIAGNOSE code X'88'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 105

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=pass
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

D88PTARG
is the user ID of the target virtual machine whose resources are to be accessed.

D88PAGNT
is the user ID of the end user requesting access to the target user's resources.

D88PPSWD
is the password of the end user requesting access to the target user's resources.

Subcode -1 – Verify Authorization to Use DIAGNOSE Code X'88'
Subcode -1 provides an application with the ability to invoke DIAGNOSE code X'88', without any
additional parameters, to ensure the virtual machine has all needed authorizations to use DIAGNOSE
code X'88', including those of the ESM. To use this functionality, invoke the CMS callable service
DMSPASS, specifying the domain parameter as -1.

Entry Values for Subcode -1:
Rx

X'FFFFFFFF '
Ry

Is not used.
Ay

Is not used.

Subcode X'00' – Validate User Authorization
Subcode X'00' verifies that the supplied password is valid (for LOGON) for the designated agent. If the
first character of the password is a blank, the verification is bypassed. If the target and agent user
identifiers are different, this function ensures that the agent is authorized for LOGONBY to the target.
Subcode X'00' is provided for compatibility with previous releases of z/VM. Applications should use
subcode X'08' instead.

Subcode X'04' – Link Minidisk
Subcode X'04' links to a minidisk owned by the target virtual machine.

Entry Values for Subcode X'04':
Rx

X'00000004'
Ry

Pointer to the parameter list, D88PARM0.
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

D88PARM0 DSECT
The parameter list is in this format:

DIAGNOSE code X'88'

106 z/VM: 7.3 CP Programming Services

D88PTARG
is the user ID of the target virtual machine whose minidisk is to be linked.

D88PAGNT
is the user ID of the end user requesting the access to the target user's minidisk.

D88PPSWD
is the minidisk password.

D88PMDSK
is the address of the target virtual machine minidisk to be linked.

D88PVADD
is the virtual device address in the requesting virtual machine's configuration at which the link is to be
established.

D88PMODE
is the mode in which the link is to be established. This may be any of the valid LINK modes (R, RR,
W, WR, M, MR, or MW). In addition, the first character may be specified as X, in which case the link is
established as follows:

• If a password is supplied, the link is established in the highest mode associated with that password.
• If public access is permitted (ALL is the password defined in the User Directory), the link is

established in the highest mode with such access.
• For the minidisk owner, the link is established in the mode associated with the minidisk definition in

the User Directory.
• Otherwise, the link is established as read only (RR).

Exit Values: Return codes are set for DIAGNOSE code X'88'.

DIAGNOSE code X'88'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 107

Subcode X'08' – Validate User Authorization
Subcode X'08' verifies that the supplied password is valid (for LOGON) for the designated agent. If the
target and agent user identifiers are different, this function ensures that the agent is authorized for
LOGONBY to the target.

Subcode X'08' is similar to subcode X'00', with the exception that subcode X'08' handles password
phrases and all necessary calls to an ESM. The caller does not have to worry about case, valid characters,
or lengths.

Entry Values for Subcode X'08':
Rx

is X'00000008'.
Ry

is a pointer to the parameter list, D88PARM0.
Ay

is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space that contains the parameter list. If Ry designates general register 0, Ay is not
examined. T he ALET is assumed to be 0, which indicates the host-primary address space.

D88PARM0 DSECT
The parameter list is in this format:

D88PTARG
is the user ID of the target virtual machine whose identity the agent would like to assume after
authentication. If this field is not null or blank and is not the same as D88PAGNT, the agent's
authorization to use LOGONBY to access the target user ID is verified. If D88PTARG is null or
blank, it is assumed to be the same as D88PAGNT.

D88PAGNT
is the user ID of the agent whose password is to be verified.

D88PPLEN
is the length, in bytes, of the password; the maximum value is 200. Applications should be coded
to allow up to 200 characters (including blanks), but should also be aware that an ESM might
impose further restrictions on the password length. For example, RACF® supports passwords that
are up to 100 characters in length.

DIAGNOSE code X'88'

108 z/VM: 7.3 CP Programming Services

D88PPHRA
is the password of the agent user ID. The password field is ignored if the agent user ID is defined
in the CP directory as NOPASS.

Exit Values: Return codes are set for DIAGNOSE code X'88'.

Responses
Return Codes:

Return codes for subcode -1 are as follows:

Return Code in Rx Meaning

0 (X'00') The issuer is authorized to use this diagnose.

8 (X'08') The issuer is not authorized to use this diagnose.

40 (X'28') ESM required, but is not available.

Return codes for subcode X'00' are as follows:

Return Code in Rx Meaning

0 (X'00') Access granted.

8 (X'08') Access denied.

24 (X'18') Paging I/O error.

Return codes for subcode X'04' are as follows:

Return Code in Rx Meaning

0 (X'00') Minidisk linked read/write.

4 (X'04') Minidisk linked read-only.

8 (X'08') Access denied.

12 (X'0C') Minidisk password required.

16 (X'10') Minidisk password incorrect.

20 (X'14') Link failed. Ry = LINK error message number.

24 (X'18') Paging I/O error.

Return codes for subcode X'08' are as follows:

Return Code in Rx Meaning

0 (X'00') Agent is authenticated and is authorized to act as target.

8 (X'08') Agent password not valid. This return code is also used when the agent user ID is
defined in the CP directory with a password of NOLOG or AUTOONLY.

24 (X'18') Paging I/O error.

28 (X'1C') Agent authenticated but is not authorized to act as target.

32 (X'20') Agent password has expired.

36 (X'24') ESM active, but does not support password phrases.

40 (X'28') ESM required, but is not available.

DIAGNOSE code X'88'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 109

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'88' is given incorrect
data:

Problem Encountered Cause

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.
• The issuer does not have class G privileges.
• The issuer does not have the DIAG88 User Directory option.
• The ESM is required, but is not available (subcodes X'00'

and X'04' only).

Specification exception One of the following:

• Rx and Ry are the same register
• The Rx register does not contain a valid subcode.
• The address of the parameter list specified in Rx is not on a

doubleword boundary.
• A password length is zero or greater than 200.
• The agent user ID is blank.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the parameter list.

DIAGNOSE Code X'8C' – Access 3270 Display Device Information
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'8C' to allow a virtual machine to obtain certain 3270 display device information
instead of issuing a Write Structured Field Query command. If the characteristics of the display are
altered dynamically, the data returned by DIAGNOSE code X'8C' does not reflect the changes. (This is
because the information is obtained only at power-on time, or when the device becomes enabled for CP's
use.)

Entry Values:
Rx

Is the guest real address of a user-provided data buffer; the buffer must start on a doubleword
boundary. Rx cannot be register 15.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the data buffer. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the data buffer is in the host-primary
address space.

Ry
Is the length of the user-provided data buffer. This value must be greater than zero.

Rx+1
Must contain one of the following:

• The virtual device number of the 3270 display device for which information is requested
• The value negative 1 (-1). Specify -1 when the device is a virtual console whose device address is

unknown to your virtual machine.

Exit Values:

DIAGNOSE Code X'8C'

110 z/VM: 7.3 CP Programming Services

Rx+1
Contains a return code–see the Responses section for a description.

Ry
Contains the residual count if the length specified on entry is greater than the amount of data
received.

The data returned in the user-specified data buffer by DIAGNOSE code X'8C' is in the following format:

Byte 0 Byte 1 Bytes 2 and 3 Bytes 4 and 5 Bytes 6 through nnn

Flags Number of partitions Screen width, in cells
(hexadecimal)

Screen height, in cells
(hexadecimal)

Write Structured
Field Query reply
data

The flags are defined as follows:

X'80'—Extended color present
X'40'—Extended highlighting present
X'20'—Programmable symbol sets (PSS) present
X'02'—3270 emulation
X'01'—14-bit addressing allowed.

Usage Notes
1. The data returned in bytes 6 through nnn is the data returned from the Write Structured Field (WSF)

Query, issued by CP. This data is stripped of the AID value X'88'. (The AID value signals the beginning
of the WSF read-partition query reply data. Refer to your device operations manual for a more detailed
description).

2. If the write structured field is not supported by the display, only six bytes of information are available:
the flags and number of partitions, which contain zeros, and screen width and height, which contain
their correct values.

3. If a paging error occurs when the pageable buffer that contains the query reply data is being paged
in, up to six bytes of data are returned in the buffer specified by Rx, and if more than six bytes were
requested, the residual count is returned in Ry. If less than six bytes were requested, that number of
bytes is returned.

4. The amount of data returned by DIAGNOSE code X'8C' can be computed as follows:

• If Ry(after) equals Ry(before)
• Then the data length equals Ry(after)
• Else the data length equals Ry(before) - Ry(after).

Responses
Return Codes: Upon completion of DIAGNOSE code X'8C', one of the following return codes is placed in
Rx+1:

Return Code in
Rx+1

Meaning

0 (X'00') Successful completion

2 (X'02') The specified device does not exist. It is not a display-type device, or the user is
running in disconnected mode.

4 (X'04') An I/O error has occurred (CP was unable to page in the guest's buffer).

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'8C' is given incorrect
data:

DIAGNOSE Code X'8C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 111

Problem Encountered Cause

Specification exception Any of the following:

• The length specified in Ry is negative or zero.
• The virtual device number specified does not exist.
• The buffer address is not on a doubleword boundary.
• The Rx specified is register 15.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the data buffer.

DIAGNOSE Code X'90' – Read Symbol Table

Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'90' to find the address of a specific symbol contained in the symbol table for
diagnosis, monitoring, or tuning activities only.

The loader creates a symbol table at load time that contains all the external symbols in the system. This
symbol table does not have a maximum size.

Entry Values:
Rx

Contains the length of the symbol. Trailing blanks are not counted. The value contained in Rx must be
greater than or equal to 6, and less than or equal to 8; otherwise, you will get a specification error.

Ry
Contains the host logical storage address of the symbol.

Ay
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the symbol. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the symbol is in the host-primary address
space.

Usage Note
If the CSECT at the symbol is greater than 4 KB in length, the frames backing the host logical storage
pages are not necessarily contiguous in host real storage.

Responses
Condition Codes: After executing DIAGNOSE code X'90', you receive a condition code indicating the
success or failure of the instruction as follows:

Condition
Code

Status Rx Contains Ry Contains

0 Resident symbol found The length of the symbol if
it is a CSECT (zero if the
symbol is an entry point
only).

The host logical storage
address of the symbol in the
system execution space.

2 Symbol not found, or paging
error

Unchanged Unchanged

DIAGNOSE Code X'90'

112 z/VM: 7.3 CP Programming Services

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'90' is given incorrect
input data:

Problem Encountered Cause

Specification exception The length of the symbol (specified in Rx) is less than 6 or
greater than 8.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the symbol.

DIAGNOSE Code X'94' – VMDUMP and Symptom Record Service
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'94' to:

• Request a dump of guest real storage to a system data file, in VMDUMP format, that can be processed
by the DUMPLOAD utility for non-CP dumps, and viewed by the VM Dump Tool VMDUMPTL command for
CP dumps.

• Request that CP process a symptom record. A copy of the completed symptom record is placed in
the dump file (if a dump was requested), and copies of the completed symptom record are available
to authorized symptom record recording virtual machines. Symptom records should be used to record
suspected errors in IBM software or in IBM hardware.

Entry Values:
Rx

Is the address of the parameter string in guest real storage.
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter string. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter string is in the host-primary
address space.

Ry
Is the length of the parameter string. When a request to process a symptom record accompanies a
dump request, Ry should not be register 15.

Supported Parameters
The parameters supported by DIAGNOSE code X'94' are in the following syntax diagram. If you are
unfamiliar with reading syntax diagrams, see “Syntax, Message, and Response Conventions” on page
xxxv. The parameter string must be no longer than 240 bytes, and must not be fetch-protected from
the invoking program. It is a character string with the same format as the operands of the VMDUMP
command, with the exception of the parameters described, which are unique to DIAGNOSE code X'94'.

DIAGNOSE Code X'94'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 113

Main Parms

DUMP list-addr

DUMPDW list-addr

FORMAT FILE

FORMAT vmtype

1
Options

CLOSE

CANCEL CONt

NOCont

CONt

NOCont CLOSE

CANCEL

Main Parms
PRImary

SPACE userid:space_name

space_name

ASIT asit

ALET alet

AREG areg

2
0 :END

0
3

:END

-
:
.

END

ALL

:
-

 hexloc2

. bytecount

hexloc1
: hexloc1

-
:
.

END

ALL

:
-

 hexloc2

. bytecount

Notes:

DIAGNOSE Code X'94'

114 z/VM: 7.3 CP Programming Services

1 On an individual request, the address space qualifiers, ranges, dump address list, format, and optional
parameters can be specified in any order. Address ranges and the format apply to the address space last
specified on the request.
2 When DCSS or DSS is specified and no address range operand is specified, the default range is ignored
and no part of the address space is dumped. Also, if the address space qualifier specified refers to an
address space other than the primary space, the default range is 0-ALL.
3 This path is followed only when the starting address is zero by default. If zero is specified explicitly, the
path starting with hexloc1 is followed.

Options

XA

TO *
1

TO userid NORETURN

SYSTEM NORETURN

DCSS

DSS

SR symptom-rec-addr

SRDW symptom-rec-addr NODUMP

2
* dumpid

Notes:
1 The user who is to receive the dump files can be specified, even by default, only once and only on the first
request for the dump.
2 If *dumpid is specified, it must be last.

Parameters Unique to DIAGNOSE code X'94'
DUMP list-addr

indicates that the dump address ranges are in hexadecimal form within a separate dump address list.
List-addr is the address of the dump address list in the same address space as the parameter list. It
is expressed as a 4-byte hexadecimal address immediately following the DUMP keyword and a single
blank. See “Dump Address List” on page 116 for a complete description of the dump address list.

DUMPDW list-addr
indicates that the dump address ranges are in hexadecimal form within a separate dump address list.
List-addr is the address of the dump address list in the same address space as the parameter list. It
is expressed as an 8-byte hexadecimal address immediately following the DUMPDW keyword and a
single blank. See “Dump Address List” on page 116 for a complete description of the dump address
list.

NORETURN
indicates that the invoking virtual machine may not transfer the spool file back to itself from the
dump receiver, using the TRANSFER or CHANGE command. This parameter must be used only with
the SYSTEM or TO userid (in other words, not your own user ID) parameter designating the authorized
receiver of the dump file. This facility can be used to restrict access to dumps of shared virtual
machine storage to certain authorized users.

SR symptom-rec-addr
indicates that a symptom record is to be processed by CP. Symptom-rec-addr is the address of the
symptom record in the same address space as the parameter string. It is expressed as a 4-byte
hexadecimal address immediately following the SR keyword and a single blank. This parameter may
be used to record suspected software errors in IBM products. Symptom records should not be used
to record end-user errors. Errors that are presented through DIAGNOSE code X'94' using the SR
keyword are those that need the attention of the personnel who are responsible for first-level problem
determination at an installation.

DIAGNOSE Code X'94'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 115

SRDW symptom-rec-addr
indicates that a symptom record is to be processed by CP. Symptom-rec-addr is the address of the
symptom record in the same address space as the parameter string. It is expressed as an 8-byte
hexadecimal address immediately following the SRDW keyword and a single blank. This parameter
may be used to record suspected software errors in IBM products. Symptom records should not be
used to record end-user errors. Errors that are presented through DIAGNOSE code X'94' using the
SRDW keyword are those that need the attention of the personnel who are responsible for first-level
problem determination at an installation.

NODUMP
indicates that the symptom record is to be made available to the authorized symptom record
recording virtual machine, but no virtual machine dump is to be taken. This parameter may only
be used with the SR parameter indicating the address of a symptom record to be processed.

The remaining parameters are exactly as specified for the VMDUMP command in z/VM: CP Commands and
Utilities Reference.

Dump Address List
A virtual machine program that issues DIAGNOSE code X'94' can provide dump address lists containing
address ranges to be dumped. These lists are in hexadecimal format and the maximum number of dump
address lists is 2,049. When the DUMP or DUMPDW keyword is used, you must store the 4 or 8 byte
address of the first list in the DIAGNOSE code X'94' parameter list described above, following the DUMP
keyword and separated from it by a blank. When the DUMPDW keyword is used, the address of the first list
is an 8-byte address. The first word of each list contains a pointer to the next list.

The dump address list can be in one of four formats based on whether an address space qualifier is
specified. Figure 10 on page 116 shows the 31-bit base format (without an address space qualifier), and
Figure 11 on page 116 shows the 31-bit extended format (with an address space qualifier). Figure 12 on
page 116 shows the 64-bit base format, and Figure 13 on page 117 shows the 64-bit extended format.

Figure 10. 31-bit Base format dump address list (without an address space qualifier)

Figure 11. 31-bit Extended format dump address list (with an address space qualifier)

Figure 12. 64-bit Base format dump address list (without an address space qualifier)

DIAGNOSE Code X'94'

116 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Figure 13. 64-bit Extended format dump address list (with an address space qualifier)

NEXT-LIST-ADDRESS
is the fullword or doubleword address of the next dump address list or a fullword containing binary
zeros if no further list exists.

ADDRESS-RANGE-COUNT
is the fullword count of the number of address ranges included in this dump address list. It must be
greater than zero.

TYPE
is a one-byte flag indicating:

• whether the address ranges in the list are specified in address/length or address/address form
(X'80')

• whether the address space qualifier is specified (X'40')
• whether the addresses are 31-bit or 64-bit (X'20').

Bits 3-7 are reserved and must contain binary zeros.

 1... (X'80') 0 = address/length
 1 = address/address
 .1.. (X'40') 0 = no address space qualifier specified
 1 = address space qualifier specified
 ..1. (X'20') 0 = 31-bit addresses
 1 = 64-bit addresses

address/length
Ranges are specified as the starting address and length.

For 31-bit addresses, the length is specified as a 4 byte value. For 64-bit addresses, the length is
specified as an 8-byte value.

address/address
Ranges are specified as the starting address and ending address.

ADDRESS-SPACE-QUALIFIER
is the 4-byte ALET specifying the address space with which each address range in the dump address
list is associated.

Notes:

1. The values represented by this format of an ALET and the format specified on the DIAGNOSE
invocation (for example, for DCSS) can be the same. However, the format is different - in the dump
address list, the ALET is a 4-byte value; on the invocation, the ALET is the 8-digit hexadecimal
representation of the 4-byte value.

2. Only the primary address space can be specified when in z/Architecture mode.

ADDRESS-RANGE-DATA
consists of pairs of fullwords or doublewords containing the starting address of each range followed
by either the length or the ending address, depending on the setting of the TYPE flag. The number of
range entries is contained in the ADDRESS-RANGE-COUNT field.

These ranges point to data in the address space identified by the address space qualifier. If there is
no address space qualifier, the ranges point to data in the primary address space. The ranges are not
affected by any address space qualifier specified in the parameter string.

DIAGNOSE Code X'94'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 117

Usage Notes Regarding Dumping a Virtual Machine
1. The requested dump file contains only storage that the user is authorized by storage key to access.

Any block of storage that is fetch protected with a key other than that of the invoking program is not
dumped. A virtual machine program that executes in key zero can dump any part of virtual storage.
Shared segments which comprise named saved systems and discontiguous saved segments are also
dumped, subject to the same protection rule. Only second-level storage (that is, guest real storage) is
dumped. Operating systems that execute in translate mode create third-level (guest virtual) storage.

Note: In addition to storage key authorization, the virtual machine must be permitted to access the
requested address space.

2. You cannot specify inline address ranges and DUMP or DUMPDW address list ranges that refer to the
same space on the same invocation of DIAGNOSE code X'94'.

3. The maximum address that VMDUMP can dump is X'7FFFEFFF' for ESA/390 machines, and
X'7FFFFFFFFF' (512 Gigabytes - 1) for z/Architecture machines.

4. The absence of discontiguous saved segments when DCSS is specified results in an error only if no
other area of storage was requested.

5. The dump address list must contain at least one address range.
6. The DUMP, DUMPDW and NORETURN parameters may not be specified on the same invocation

of DIAGNOSE code X'94' with CLOSE, CANCEL, CONT, or NOCONT. See the VMDUMP command
documentation for a list of other parameters with the same restriction.

7. When multiple DIAGNOSE code X'94' invocations are used in continuous output mode, the
NORETURN parameter is only accepted on the first request which opens the file. Once successfully
specified, it may be repeated on later requests. However, if it is not specified on the first request,
subsequent requests (affecting the same VMDUMP file) that specify NORETURN cause an error.

8. When multiple DIAGNOSE code X'94' invocations are used in continuous output mode, the DUMP
parameter may be specified on any request to dump storage.

9. You may not be authorized to issue this DIAGNOSE code if an external security manager is
installed on your system. This restriction applies only to the VMDUMP TO command. For additional
information, contact your security administrator.

10. Long-running DIAGNOSE code X'94' processing can be halted by the user by entering #CP CPHX.
Another user can halt a user during DIAGNOSE code X'94' processing by using the CPHX or FORCE
command. A TERM BRKKEY (normally set to PA1 key) will not halt DIAGNOSE code X'94' processing.

11. For more information on the VMDUMP command, see the Usage Notes in z/VM: CP Commands and
Utilities Reference.

Usage Notes Regarding Dump Address Lists
1. The dump address list must contain at least one address range.
2. If the dump address list does not contain address space qualifiers then DIAGNOSE code X'94'

processing will consider the address ranges in the dump address list to apply to the primary address
space.

3. Because address space qualifiers are within the dump address list any address space qualifiers
specified on the same DIAGNOSE code X'94' invocation with a DUMP list-addr option will not affect
the addresses in the dump address list. For example, if the DIAGNOSE code X'94' parameter string
contained

'ASIT 12A456B81B345F78 FORMAT CMS DUMP list-addr'

the address space qualifier ASIT 12A456B81B345F78 would apply only to the FORMAT CMS option.
The addresses in the dump address list would either default to the primary address space or be
qualified by the address-space-qualifier(s) within the dump address list.

You cannot specify dump ranges for the same address space in both the parameter list and the dump
address list.

DIAGNOSE Code X'94'

118 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Usage Notes Regarding Symptom Records
1. DIAGNOSE code X'94' processing always creates and records a symptom record when taking a dump.

If the guest uses the SR or SRDW keyword, CP updates that symptom record and records if for the
guest.

2. A symptom record is processed only if it resides within storage that the user is authorized by storage
key to access. If the storage within which the symptom record resides is fetch-protected with a
key other than that of the invoking program, the symptom record is not processed; if a dump was
requested along with symptom record processing, CP generates a symptom record to be placed in
the virtual machine dump. This record contains only CP environment information. A symptom record
supplied by a virtual machine that executes in key zero is always processed, regardless of where in
guest real storage the symptom record resides.

3. The program that issues the DIAGNOSE code X'94' must initialize the required fields within the
symptom record with information describing a problem before it issues DIAGNOSE code X'94'.

4. CP updates the symptom record to contain the following information:

• CP environment data in section 1
• The architectural level of the CP symptom record processor (C'10') in section 2
• Return and reason codes in section 2.1.

If the invoking program is running with a PSW key that is neither the storage key of the symptom
record nor zero, the system records the symptom record but does not update the invoker's copy in
virtual machine storage with CP environment data.

5. Symptom records which are over 3500 decimal bytes in length are truncated before being placed in a
dump or made available to symptom record recording virtual machines.

6. All fields designated by an RS are updated within the caller's symptom record by CP. The conventions
for initializing the contents of the RS (required from system service) fields are:

a. The customer-assigned system node name (ADSRID) is the value specified on the
SYSTEM_IDENTIFIER statement in the system configuration file for the CPU on which CP is
running while processing the DIAGNOSE code X'94' request.

b. The ADSRTOD field is in Coordinated Universal Time (UTC). The ADSRGMT field contains the
clock zone differential that may be of value to users who want to convert to local. If the STCK
instruction completes with a nonzero condition code, the clock value (ADSRTIME) is hex zeros,
and the printable time/date fields are blanks.

7. When the SR or SRDW parameter is coded, registers Rx+1 and Ry+1 reflect the results of symptom
record processing in the form of hexadecimal return codes and reason codes. If the symptom record
storage within the virtual machine can be written to, the ADSRRET and ADSRREA fields in section 2.1
contain these same results. The return code and reason code value reflect the most severe level of
error that occurred. The reason code value contains the value for the first error found at the severity
level indicated by the return code.

If the symptom strings in sections 3 and 4 contain other than alphanumeric or national characters,
pound signs, slashes, or blanks, a return code of 4 and a reason code of X'0E08' are generated.

8. The SDB syntax of the symptoms in sections 3 and 4 is not validated.
9. If a DIAGNOSE code X'94' is issued with the SR or SRDW keyword in the parameter list, and section

1 of the symptom record is already initialized, the CP environment sections (RS fields) are not
updated within the symptom record. An unmodified copy of the symptom record is sent to each
virtual machine connected to the CP Symptom Recording system service (*SYMPTOM). *SYMPTOM is
documented in Chapter 22, “Symptom System Service (*SYMPTOM),” on page 771.

10. The SR, SRDW and NODUMP parameters may not be specified on the same invocation of DIAGNOSE
code X'94' with CLOSE, CANCEL, CONT, or NOCONT.

11. When multiple DIAGNOSE code X'94' invocations are used in continuous output mode, the SR or
SRDW parameter can be specified on any one invocation to supply the symptom record in the dump.
When a program issues a DIAGNOSE code X'94' request only to add a symptom record and does not

DIAGNOSE Code X'94'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 119

want to dump any areas of guest storage, it should include a dummy address range of zero. This is
required because, if no address range or DUMP/DUMPDW address list is specified, all of guest storage
is dumped. Because page zero is always included in VMDUMP files, a request such as 0 SR addr does
not result in any added output.

12. Input symptom record storage

Unused space is not compressed from the symptom record. The symptom record sections are written
in the sequence and at the displacements in which they are presented. No unused symptom record
storage should be passed by means of the DIAGNOSE code X'94' instruction. For example, there
should not be preassigned, unused space at the end of symptom record sections 3, 4, or 5. The
length for that section (contained in section 2) should only be the length of the used portion of the
section when the DIAGNOSE code X'94' is issued; otherwise, the common storage that is allocated to
the service routine and the CMS symptom record file contain wasted space.

13. Symptom record recording considerations

When a DIAGNOSE code X'94' is issued with a parameter list containing an SR or SRDW keyword,
CP sends copies of the symptom record asynchronously to authorized virtual machines that are
connected to the CP Symptom Recording system service (*SYMPTOM). Control is returned to the
virtual machine that issued the DIAGNOSE code X'94' instruction after a copy of the symptom record
is placed on the recording queue. For more information on *SYMPTOM, see Chapter 22, “Symptom
System Service (*SYMPTOM),” on page 771.

Responses
Condition Codes and Return Codes: Upon completion of DIAGNOSE code X'94', control is returned to
the invoker with a condition code set to indicate the status of both input parameter list processing and
dump processing. A return code in Ry indicates the results of processing the input parameter string and
the dump request (if present).

If symptom record processing was requested, return and reason codes in registers Ry+1 and Rx+1,
respectively, indicate the result of symptom record processing (condition codes are not used to reflect the
status of symptom record processing).

The condition codes are listed in Table 7 on page 120.

Table 7. DIAGNOSE Code X'94' Condition Codes

Condition Code Meaning

0 The function has completed successfully. All requested ranges have been dumped.

1 The function completed with error(s). Portions of the requested address ranges
have been dumped. Ry contains a return code which indicates the reason for the
error.

2 The function failed. No dump has been created. Ry contains a return code which
indicates the reason for the failure.

The return codes in Ry are listed in Table 8 on page 120.

Table 8. DIAGNOSE Code X'94' Return Codes

Condition Code Return Code Meaning

0,1 0 (X'00') Successful completion.

• CC = 0 indicates that all requested areas were dumped.
• CC = 1 indicates that the DCSS operand was specified

without any ranges or dump address list, and no DCSSs are
loaded.

2 4 (X'04') Parameter list exceeds 240 bytes.

DIAGNOSE Code X'94'

120 z/VM: 7.3 CP Programming Services

Table 8. DIAGNOSE Code X'94' Return Codes (continued)

Condition Code Return Code Meaning

1,2 8 (X'08') System I/O error reading a guest page.

• CC = 1 indicates that at least one requested page could not
be dumped.

• CC = 2 indicates that the parameter list or dump address list
could not be accessed.

1,2 12 (X'0C') Storage access violates guest fetch protection.

• CC = 1 indicate that at least one requested page could not
be dumped.

• CC = 2 indicates that the parameter list or dump address list
could not be accessed.

2 16 (X'10') Invalid dump address range. More than 2,049 dump address
lists, ending address less than start, or range length of 0
given, or too many ranges in the address list. (A single list
must fit within a page of storage.)

2 20 (X'14') Conflicting options.

2 24 (X'18') Userid missing or longer than eight characters.

2 28 (X'1C') hexloc missing or invalid hexadecimal value. If dump address
list is used, number of ranges specified was zero.

2 32 (X'20') Required parameter missing or invalid.

2 36 (X'24') User ID not in directory.

2 40 (X'28') Spooling error.

2 44 (X'2C') hexloc exceeds storage size.

2 48 (X'30') Return code unused but reserved for compatibility with
VM/SP, VM/SP HPO, and VM/ESA (370 Feature)

2 52 (X'34') Invalid address points to storage outside of user area.

2 56 (X'38') Soft abend occurred during processing.

1, 2 60 (X'3C') Unaddressable range given. At least one range given was
above guest storage and did not fall within a discontiguous
saved segment. The unaddressable ranges are not dumped.

• CC=1 indicates the valid addresses given are dumped.
• CC=2 indicates that no valid ranges were given.

2 64 (X'40') For an XC virtual machine in access-register mode: ALET in
the parameter list is missing or invalid

2 68 (X'44') For an XC virtual machine in access-register mode: Access
register is missing or invalid.

2 72 (X'48') For an XC virtual machine in access-register mode: ASIT in
the parameter list is missing or invalid.

2 76 (X'4C') For an XC virtual machine in access-register mode: Address-
space identifier in the parameter list is missing or invalid.

DIAGNOSE Code X'94'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 121

Table 8. DIAGNOSE Code X'94' Return Codes (continued)

Condition Code Return Code Meaning

1 80 (X'50') For an XC virtual machine in access-register mode: An
address space has become inaccessible to your virtual
machine. One or more pages associated with that address
space were not dumped.

2 84 (X'54') You have used an operand that is not valid for your virtual
machine mode or architecture mode.

1 92 (X'5C') CP cannot add the requested information to the current
virtual machine dump. Either more than 200 address spaces
have been requested, or there have been more DIAGNOSE
X'94' invocations requesting data from a single address space
than allowed. Only 900 invocations are allowed for ESA/390
and ESA/XC architecture and 500 invocations are allowed for
z/Architecture and z/XC.

2 96 (X'60') Unable to access the address space due to an ALEN-
translation exception condition.

2 100 (X'64') Unable to access the address space due to an ALET-
specification exception condition.

2 104 (X'68') Unable to access the address space with the specified
address space identifier (addressing-capability exception
condition).

2 108 (X'6C') Authorization request failed.

2 112 (X'70') Unable to access the address space with the specified ASIT
(addressing-capability exception condition).

2 116 (X'74') The parameter list or dump address list is in a space that does
not exist or that you are not authorized to access.

2 120 (X'78') The space designated by the ALET parameter or the address
space qualifier in the dump address list cannot be accessed
due to an addressing-capability exception condition.

2 124 (X'7C') The space designated by the AREG parameter cannot
be accessed due to an addressing-capability exception
condition.

1 132(X'84') Processing halted by CPHX or FORCE command.

Upon completion of DIAGNOSE code X'94', if the SR or SRDW parameter was specified, the return codes
shown in Table 9 on page 122 are placed in Ry+1:

Table 9. DIAGNOSE X'94' Symptom Record Processing Return Codes

Return Code Meaning

0 (X'00') Successful completion. The symptom record was recorded and updated (if
necessary) in virtual machine storage.

4 (X'04') Error(s) detected within the DIAGNOSE code X'94' request. The entire input
symptom record was recorded.

8 (X'08') Error(s) detected within the DIAGNOSE code X'94' request. A partial symptom
record was recorded.

DIAGNOSE Code X'94'

122 z/VM: 7.3 CP Programming Services

Table 9. DIAGNOSE X'94' Symptom Record Processing Return Codes (continued)

Return Code Meaning

18 (X'12') An error was detected within the DIAGNOSE code X'94' request. None of the
symptom record was recorded.

22 (X'16') An error was detected within the DIAGNOSE code X'94' service. None of the
symptom record was recorded.

The reason code shown in Table 10 on page 123 may be returned in Rx+1 when Ry+1 contains a return
code value of X'00':

Table 10. DIAGNOSE X'94' Reason Codes for Return Code X'00'

Reason Code Meaning

X'0000' Successful completion

The reason codes shown in Table 11 on page 123 may be returned in Rx+1 when Ry+1 contains a return
code value of X'04':

Table 11. DIAGNOSE X'94' Reason Codes for Return Code X'04'

Reason Code Meaning

X'0164' The input symptom record was copied, but the key of the storage containing the
symptom record did not allow the symptom record to be updated.

X'0E08' The input symptom record was processed, but invalid characters were found in
section 3 or 4.

The reason codes shown in Table 12 on page 123 may be returned in Rx+1 when Ry+1 contains a return
code value of X'08':

Table 12. DIAGNOSE X'94' Reason Codes for Return Code X'08'

Reason Code Meaning

X'0158' The total length of the input symptom record exceeds 3500 decimal bytes.

X'015C' Optional portions of the input symptom record were not in accessible storage. The
resulting record includes all accessible entries of the input symptom record.

The reason codes shown in Table 13 on page 123 may be returned in Rx+1 when Ry+1 contains a return
code value of X'12':

Table 13. DIAGNOSE X'94' Reason Codes for Return Code X'12'

Reason Code Meaning

X'0104' The first two bytes of the symptom record do not contain the characters SR.

X'0108' The input symptom record does not contain the required entries of section 2.

X'010C' The input symptom record does not contain the required entries of section 2.1.

X'0114' The input symptom record does not contain the required entries of section 3.

X'012C' Required portions of the input symptom record are not in accessible storage.

X'0E04' The input symptom record is a duplicate; a continuous mode dump is being
processed, and a symptom record has already been placed in the dump file.

DIAGNOSE Code X'94'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 123

DIAGNOSE Code X'98' – Real I/O
Privilege Class: Any

Addressing Mode: 31-bit

Using DIAGNOSE code X'98', a virtual machine can lock and unlock virtual pages and can execute its own
real channel programs.

The subfunctions of DIAGNOSE code X'98' are LOCK, UNLOCK, and SSCH-Real. The requested
subfunction is identified by a code in the Rx register. The LOCK subfunction locks a single 4 KB page
of virtual machine storage in host real storage. In addition, it returns to the virtual machine the absolute
storage address of the frame used to lock the guest page. The UNLOCK subfunction unlocks a single 4 KB
page of virtual machine storage that was previously locked by DIAGNOSE code X'98'. In addition, multiple
4 KB pages can be locked or unlocked by invoking the Block Diagnose X'98' Request. This allows multiple
occurrences of a Diagnose X'98' subfunction to be executed with only a single invocation of the Diagnose
instruction. The SSCH-Real subfunction initiates execution of a real channel program for XA, ESA, XC, and
Z virtual machines.

DIAGNOSE code X'98' allows a virtual machine to bypass CCW translation and initiate execution of
real channel programs. Execution of this DIAGNOSE bypasses most software and hardware protection
mechanisms. For example, the virtual machine is able to read from, or write to, any frame in storage that
does not have a storage key of 0. If the virtual machine is running a program with an error in it, system
(that is, other users) security and integrity may be compromised. The ability to execute DIAGNOSE code
X'98' is controlled by the directory OPTION statement, and should be granted only to the most trusted
programs after careful consideration of the possible security and integrity exposures.

LOCK Subfunction
This subfunction locks a selected page of virtual machine absolute storage into host real storage below
2 GB, thus excluding the page from future paging activity. Locking pages can enhance the efficiency of
a particular virtual machine by keeping frequently-used pages resident in real storage. When the LOCK
subfunction is issued, it operates exactly like the LOCK command, obtaining a real storage page from the
normal paging area.

Entry Values:
Rx

contains X'00000000' the subfunction code
Ry

contains the guest absolute address to be translated and locked. Ry cannot be register 15.
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the page to be locked. This address space must be owned by the
virtual machine issuing DIAGNOSE code X'98'. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the page to be locked is in the host-primary
address space.

Exit Values:
Ry+1

contains one of the following:

• The host absolute address (set by CP with condition code 0)
• A return code (set by CP with condition code 3):

Return Code Meaning

1 (X'01') Reserved.

2 (X'02') This is an invalid guest address.

DIAGNOSE Code X'98'

124 z/VM: 7.3 CP Programming Services

Return Code Meaning

3 (X'03') Page cannot be locked.

5 (X'05') ALET-specification exception condition for an XC virtual machine in access-
register mode: Ay contains an ALET that cannot be translated.

6 (X'06') ALEN-translation exception condition for an XC virtual machine in access-
register mode: Ay contains an ALET that cannot be translated.

7 (X'07') For an XC virtual machine in access-register mode, the issuer of this
DIAGNOSE is not the owner of the address space or the issuer is the owner but
the address space has been destroyed.

UNLOCK Subfunction
This subfunction unlocks a page of virtual machine storage that was previously locked by DIAGNOSE code
X'98'. Real storage pages become available for normal paging operations.

Entry Values:
Rx

contains X'00000004'–the subfunction code
Ry

contains the guest absolute address of the page to be unlocked
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the page to be unlocked. This address space must be owned by
the virtual machine issuing DIAGNOSE code X'98'. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the page to be unlocked is in the host-
primary address space.

Exit Values: If UNLOCK was successful, the condition code is 0 and Ry+1 is unchanged.

If UNLOCK was not successful, the condition code is 3 and Ry+1 contains one of the following return
codes:

Return Code Meaning

1 (X'01') Reserved.

2 (X'02') This is an invalid guest address

3 (X'03') Page is already unlocked

5 (X'05') ALET-specification exception condition for an XC virtual machine in access-register
mode: Ay contains an ALET that cannot be translated.

6 (X'06') ALEN-translation exception condition for an XC virtual machine in access-register
mode: Ay contains an ALET that cannot be translated.

7 (X'07') For an XC virtual machine in access-register mode, the issuer of this DIAGNOSE
is not the owner of the address space or the issuer is the owner but the address
space has been destroyed.

SSCH-Real Subfunction
This subfunction initiates execution of a real channel program that the virtual machine has built
in locked pages of storage. The address of the first CCW in the ORB is a host absolute address,
as are the data addresses and transfer addresses (in TIC CCWs). For more information on ORB,
see the Enterprise Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/
dz9ar008.pdf), z/VM: ESA/XC Principles of Operation, z/Architecture Principles of Operation (https://
publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf), or z/VM: z/Architecture Extended Configuration (z/XC)

DIAGNOSE Code X'98'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 125

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

Principles of Operation, based on the architecture mode of the virtual machine. This subfunction is valid
for an XA, ESA, XC, or Z virtual machine, and it operates as a SSCH instruction. Condition codes 0, 1, and
2 are compatible with normal virtual I/O operation of that instruction. Condition code 3 is extended to
provide a return code to indicate error conditions unique to the Real I/O interface. The device identified
by the parameter register must be defined and dedicated or a full-pack minidisk. The device cannot be
read/only. To protect host storage from overlay by guest Real I/O, the subchannel key in the ORB must be
nonzero.

Entry Values:
R1

contains the subsystem identification (SID) for the virtual device
Rx

contains X'0000000C'–the subfunction code
Ry

contains the guest logical address of the ORB.
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the ORB. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the ORB is in the host-primary address
space.

Exit Values:
Ry+1

contains the return code (set by CP with condition code 3), as follows:

Return Code Meaning

1 (X'01') The device is not operational or is not attached.

2 (X'02') The device is neither dedicated nor a full-pack minidisk, or is read-only, or the
device is already active with a system function such as SPXTAPE.

3 (X'03') The subchannel key in the ORB is zero.

Block Diagnose X'98' Request
Use the Block Diagnose X'98' subfunction to allow multiple occurrences of a Diagnose X'98' subfunction
to be executed with only a single invocation of the Diagnose instruction. Both the LOCK and UNLOCK
subfunctions are supported with the Block Diagnose X'98' instruction.

Entry Values:
Rx

contains X'00000010'— the subfunction code to specify a Block Diagnose X'98' request.
Ry

contains the real address of a Diagnose X'98' Multiple Request Block for the function to be performed.
The address must be on a word boundary; otherwise a specification exception will occur.

Ry cannot be register 15.

Exit Values:
Ry+1

A global return code reflected by the Diagnose X'98' processor, which specifies the overall results of
the Block Diagnose X'98' request.

The global return code may be checked by the program to quickly determine whether all specified
Diagnose X'98' subfunctions within the array have completed successfully. If the global return code
is zero, there is no need to examine each individual RC field value in order to determine successful
completion.

DIAGNOSE Code X'98'

126 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

Return Code Meaning

0 (X'00') All requests completed successfully.

1 (X'01') One or more requests specified in the Diagnose X'98' Multiple Request Block RC
field must be checked to determine the failing requests.

2 (X'02') Reserved.

3 (X'03') Reserved.

4 (X'04') Reserved. Not used by z/VM.

5 (X'05') Invalid value specified in the Diagnose X'98' Multiple Request Block DIAG field.

6 (X'06') Invalid value specified in the Diagnose X'98' Multiple Request Block FCN field.

7 (X'07') Invalid value specified in the Diagnose X'98' Multiple Request Block LENGTH
field.

Diagnose X'98' Multiple Request Block
The Diagnose X'98' Multiple Request Block is used by the program to specify multiple occurrences of a
single Diagnose X'98' subfunction to CP for execution. The Diagnose X'98' Multiple Request Block is a self
defining control block, which is divided into two sections. The first section is the Diagnose X'98' Multiple
Request Block Fixed Header which is used to define the control block, provide parameters, a response
area, and is global to the entire request. This fixed header section is common for all Block Diagnose X'98'
requests.

The second section of this request block is variable in size, containing an array of Diagnose X'98'
subfunction requests. The number of requests within the array is determined from the LENGTH and FCN
fields specified in the fixed area of the request block. The data within an array entry is determined by the
FCN code specified, which can be the LOCK subfunction (FCN code X'00'), the UNLOCK subfunction (FCN
code X'04'), or the RELEASE AND LOCK subfunction (FCN code X'20').

The following is the layout for the entire Diagnose X'98' Multiple Request Block:

DIAGNOSE Code X'98'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 127

Diagnose X'98' Multiple Request Block Fixed Header: The fixed header section of the Diagnose X'98'
Multiple Request Block has a length of 16 bytes for all requests. The following is a list of fields which
make up the fixed header:

DIAG
Is the halfword DIAGNOSE code. It must contain the halfword X'0098'.

FCN
Specifies the Diagnose X'98' subfunction:
X'00'

LOCK
X'04'

UNLOCK
X'20'

RELEASE AND LOCK
LENGTH

Is the length in bytes of the entire Diagnose X'98' Multiple Request Block. The valid range for the
length field is X'28' to X'1000'.

////////
Indicates fields reserved for future use.

LOCK Subfunction FCN Code X'00'
The LOCK subfunction locks multiple pages of a virtual machine's absolute storage into host real storage
below 2 GB, thus excluding the pages from future paging activities. When the LOCK function is issued, it

DIAGNOSE Code X'98'

128 z/VM: 7.3 CP Programming Services

is identical to issuing multiple CP LOCK commands, obtaining real storage frames from the normal paging
area.

An XC virtual machine can lock pages only within the host-primary address space. The Ay register is
ignored.

The following structure is required for each individual LOCK request included in the array area of a
FCN=X'00' Diagnose X'98' Multiple Request Block:

GUEST ABSOLUTE ADDRESS
Is the 8-byte guest absolute address that the program wants to lock in host storage. The 4 KB page
which contains the specified address will be locked in host storage. The value specified does not need
to be on a page boundary.

HOST ABSOLUTE ADDRESS
Is the 8-byte host absolute address for the program-specified GUEST ABSOLUTE ADDRESS, which is
returned by CP upon a successful completion of the lock request. Zeros will be returned if the lock
request was not successful.

PARM
Is not used by the LOCK subfunction. (PARM is used only by the RELEASE AND LOCK subfunction.)

RC
Is a 2-byte return code which specifies the completion status of this individual Diagnose X'98'
subfunction request. The following return codes may be returned for the LOCK subfunction:

Return Code Meaning

0 (X'00') LOCK request completed successfully. The HOST ABSOLUTE ADDRESS field will
contain the translated address.

1 (X'01') Reserved.

2 (X'02') Invalid guest address specified in the GUEST ABSOLUTE ADDRESS field.

3 (X'03') Page is already locked by Diagnose X'98'.

4 (X'04') Page is currently resident above 2 GB and cannot be moved to LOCK.

5-7 (X'05'-X'07') Reserved for future use.

8 (X'08') Paging error occurred while attempting to lock the page.

9-65535 (X'09'-X'
FFFF')

Reserved for future use.

////////
Indicates fields reserved for future use.

UNLOCK Subfunction FCN Code X'04'
The UNLOCK subfunction unlocks multiple pages of virtual machine storage that were previously locked
by Diagnose code X'98'. The real storage frames that are unlocked will become available again for normal
CP paging.

The following structure is required for each individual UNLOCK request included in the array area of a
FCN=X'04' Diagnose X'98' Multiple Request Block:

DIAGNOSE Code X'98'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 129

GUEST ABSOLUTE ADDRESS
Is the 8-byte guest absolute address that the program wants to unlock in CP storage. The 4 KB page
which contains the specified address will be unlocked in CP storage. The value specified does not
need to be on a page boundary.

PARM
Is not used by the UNLOCK subfunction. (PARM is used only by the RELEASE AND LOCK subfunction.)

RC
Is a 2-byte return code which specifies the completion status for this individual Diagnose X'98'
subfunction request. The following return codes may be returned for the UNLOCK Subfunction:

Return Code Meaning

0 (X'00') UNLOCK request completed successfully.

1 (X'01') Reserved.

2 (X'02') Invalid guest address specified in the GUEST ABSOLUTE ADDRESS field.

3 (X'03') Page is already unlocked.

4-7 (X'04'-X'07') Reserved for future use.

8 (X'08') Paging error occurred while attempting to unlock the page.

9-65535 (X'09'-
X'FFFF')

Reserved for future use.

////////
Indicates fields reserved for future use.

RELEASE AND LOCK Subfunction FCN Code X'20'
The RELEASE AND LOCK subfunction clears multiple pages of a virtual machine's absolute storage and
locks them in real storage, based on the value specified in the PARM field, thus excluding the pages from
future paging activities. A PARM value of X'01' indicates that the page can be locked anywhere in real
storage, but the preference will be to lock it in storage above 2 GB. A PARM value of X'02' indicates that
the page must be locked in real storage below 2 GB. If the page is already resident in storage above 2 GB,
it must be moved.

When the RELEASE AND LOCK function is issued, it is identical to issuing multiple CP LOCK commands,
obtaining real storage frames from the normal paging area.

An XC virtual machine can lock pages only within the host-primary address space. The Ay register is
ignored.

The following structure is required for each individual RELEASE AND LOCK request included in the array
area of a FCN=X'20' Diagnose X'98' Multiple Request Block:

DIAGNOSE Code X'98'

130 z/VM: 7.3 CP Programming Services

GUEST ABSOLUTE ADDRESS
Is the 8-byte guest absolute address that the program wants to lock in host storage. The 4 KB page
which contains the specified address will be locked in host storage. The value specified does not need
to be on a page boundary.

HOST ABSOLUTE ADDRESS
Is the 8-byte host absolute address for the program-specified GUEST ABSOLUTE ADDRESS, which is
returned by CP upon a successful completion of the lock request. Zeros will be returned if the lock
request was not successful.

PARM
Specifies where in real storage the page will be locked:
X'01'

Lock the page anywhere in storage, with a preference of above 2 GB.
X'02'

Lock the page below 2 GB.
RC

Is a 2-byte return code which specifies the completion status of this individual Diagnose X'98'
Subfunction request. The following return codes may be returned for the RELEASE AND LOCK
subfunction:

Return Code Meaning

0 (X'00') RELEASE AND LOCK request completed successfully. The HOST ABSOLUTE
ADDRESS field will contain the translated address.

1 (X'01') Reserved.

2 (X'02') Invalid guest address specified in the GUEST ABSOLUTE ADDRESS field.

3 (X'03') Page is already locked by Diagnose X'98'.

4 (X'04') Page is currently resident above 2 GB and could not be moved to LOCK.

5-7 (X'05'-X'07') Reserved for future use.

8 (X'08') Paging error occurred while attempting to lock the page.

9 (X'09') Release of Shared Readable/Exclusive Readable is not allowed.

10 (X'0A') Invalid PARM value specified.

11 (X'0B') Storage could not be disassociated from the page.

12-65535 (X'0C'-
X' FFFF')

Reserved for future use.

////////
Indicates fields reserved for future use.

Block Diagnose X'98' Request Condition Codes
The following are the condition codes which may be set on completion of a Block Diagnose X'98' Request:

Condition Code Meaning

0 All requests completed successfully.

3 Non-zero global return code was returned.

Usage Notes
1. If you attempt to lock a prefix page in a virtual multiprocessor configuration, an error code of 2 is

returned.

DIAGNOSE Code X'98'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 131

2. If you attempt to lock a page that has been mapped with the DEFINE function of the MAPMDISK
macro, an error code of 2 is returned.

3. The LOCK subfunction requires an available real storage frame in the area the system uses for paging.
4. If you LOCK a page in a shared segment and do not issue an UNLOCK, the page will be unlocked when

the last user of the shared segment releases the storage at LOGOFF (or uses another command which
clears storage).

5. The LOCK command issued for a user ID's virtual pages operates independently of the DIAGNOSE
code X'98' page locking facility. Pages locked by the LOCK command cannot be unlocked by
DIAGNOSE code X'98', nor can pages locked by DIAGNOSE code X'98' be unlocked by the UNLOCK
command.

6. Pages that are locked by DIAGNOSE code X'98' are not unlocked by the operation of the ADRSPACE
ISOLATE and ADRSPACE PERMIT macros (see “ADRSPACE — Address Space Services” on page 811).

7. SSCH-Real does not support suspend/resume in channel programs. New I/O starts cannot be
executed before previous I/O operations are concluded (early redrive is not supported).

8. At completion of an I/O operation started by DIAGNOSE code X'98', the CCW address returned to
the virtual machine in the IRB on an XA, ESA, XC, or Z Test Subchannel instruction is a host absolute
address.

9. The address-limit-checking facility of the Channel Subsystem is not available to users of the
DIAGNOSE code X'98' SSCH-Real. The host absolute addresses used in the channel program are
random addresses from the viewpoint of the virtual machine, so limit checking is meaningless. If
the address-limit-checking control is set on in the ORB, it is ignored by the control program when
scheduling the I/O.

10. If too many pages of real storage are locked, there may not be enough remaining frames to allow
the system to operate efficiently. It is important for the system programmer to control the use of this
facility.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'98' is given incorrect
data:

Problem Encountered Cause

Operand exception (z/VM SSCH-real
subfunction only)

Any of the following:

• Invalid subchannel ID
• Invalid entries in the ORB.

Operation exception The user does not have the correct directory authorization.

Specification exception Any of the following:

• Ry=R15, Rx=Ry, or Rx=Ry+1
• Unknown subfunction requested.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the ORB (SCCH-real
subfunction).

Program Exceptions: These program exceptions can occur when issuing a Block X'98' request.

Problem Encountered Cause

Operation exception The virtual machine is not authorized to issue a Diagnose
X'98' instruction. The virtual machine must have the OPTION
DIAG98 specified in its CP system directory entry.

DIAGNOSE Code X'98'

132 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Specification exception The following reasons will cause this exception to be
reflected:

• The subfunction code specified in Rx is not valid or
supported by Diagnose X'98' .

• The Diagnose X'98' Multiple Request Block specified by Ry
is not on a fullword boundary.

• Rx is the same register as Ry.
• Rx is the same register as specified by Ry+1.
• R15 was specified for the Ry register.

Access exception The following reasons will cause this exception to be
reflected:

• Protection violation (key mismatch) when fetching or storing
the Diagnose X'98' Multiple Request Block.

• Addressing violation if the the Diagnose X'98' Multiple
Request Block specified by Ry is not within the storage
configuation.

DIAGNOSE Code X'9C' – Voluntary Time Slice Yield

Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'9C' to notify the scheduler that a spin lock loop exists in your virtual machine.
DIAGNOSE code X'9C' informs the scheduler that the remainder of the CPU time slice allocated to a
virtual CPU is no longer useful and that another virtual CPU in your virtual machine should be favored for
execution by the scheduler.

Entry Values:
Rx

In z/Architecture mode, bits 0-31 of register Rx are ignored, bits 48-63 contain the CPU address of
the virtual CPU that should be favored by the scheduler for execution, and bits 32-47 are unused
and should contain zeros. In ESA/390 mode, bits 16-31 of register Rx contain the CPU address of
the virtual CPU that should be favored by the scheduler for execution and bits 0-15 are unused and
should contain zeros.

Usage Notes
1. DIAGNOSE code X'9C' is useful when the operating system on one guest CPU is waiting to obtain a spin

lock, and it is known which other guest CPU is holding the lock and needs to be run before the issuing
guest CPU can again run productively.

2. The virtual CPU that issues DIAGNOSE code X'9C' will have its dispatching priority modified such that
the target virtual CPU specified in Rx will generally run before the issuing virtual CPU is run again. If
there is no other virtual CPU for this virtual machine, or the specified virtual CPU does not exist, then
DIAGNOSE code X'9C' has no effect.

3. The effects of DIAGNOSE code X'9C' are temporary. After a brief time, the virtual CPU is scheduled as
if the DIAGNOSE were never issued.

Responses
Program Exceptions: These program exceptions can occur when issuing DIAGNOSE code X'9C' :

DIAGNOSE Code X'9C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 133

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE Code X'A0' – Obtain ACI Information
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'A0' to:

• Return the Access Control Interface (ACI) groupname for a given user ID (subcode 0)
• Determine whether an External Security Manager (ESM) is installed (subcode 8).
• Return External Security Manager (ESM) product information (subcode 72 (X'48')).

Note: Only the basic DIAGNOSE code X'A0' interface is described in this book. An external security
manager (ESM) may extend that interface, for its own internal use or as an API.

DIAGNOSE code X'A0' cannot be issued in access-register mode in an XC virtual machine.

Entry Values:
Rx

For subcode 0, Rx contains the guest real address of a 16-byte doubleword aligned buffer. The first 8
bytes of this buffer contains a user ID (left-justified, followed by spaces) passed as input. The second
8 bytes are used by CP to pass the groupname back to the guest. For subcode 8 Rx is not used. For
subcode 72 RX contains the guest real address of a doubleword aligned buffer to receive the ESM
Product Information, this buffer should be 277 bytes in length to ensure that it will accommodate the
maximum amount of data that might be returned.

Ry
Contains a right-adjusted subcode value:

• 0 — to request the return of the groupname associated with the input user ID
• 8 — to request a test to determine if an ESM is installed.
• 72 — to request ESM product information.

Note: An ESM may support additional subcode values. If you have an ESM installed, consult the ESM
documentation for information on such extensions, their register usage, and applicable restrictions.

Exit Values:

Normal Exit:
Rx

Unchanged
Ry

Unchanged

• For subcode 0, the guest condition code is set to 0 on a successful request.
• For subcode 8, the guest condition code is set to 0 if the ACI program has been installed, or to 1 if it

has not been installed.
• For subcode 72 returned ESM product information is in the following format:

ESM name
8–byte character string

ESM version
4–byte character string

ESM is active
Flag byte (bit 0 indicates ESM is active)

DIAGNOSE Code X'A0'

134 z/VM: 7.3 CP Programming Services

Vendor name
8–byte character string

ESM product information
1–byte length of the following variable length character string

Error with Exit:
Rx

Unchanged
Ry

Unchanged.

• For subcode 0, the user ID that was specified is invalid. The condition code is set to 1.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'A0' is given incorrect
data:

Table 14. DIAGNOSE X'A0' Program Checks

Problem Encountered Cause

Specification exception Any of the following:

• Invalid subcode specified (should be either 0, 8, or 72).
• If you specify subcode 0 or 72, your buffer address in Rx is

not on a doubleword boundary.

Privileged-operation exception The virtual machine is in the problem state.

Special-operation exception DIAGNOSE code X'A0' cannot run in an XC virtual machine
that is in access register mode.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the user ID or store either
the group name or the ESM product information.

DIAGNOSE Code X'A4' – Synchronous I/O (Standard CMS
Blocksize)

Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'A4' to perform synchronous input/output operations to a direct access device
formatted by CMS and supported by z/VM. Using DIAGNOSE code X'A4' ensures that CP will construct
the appropriate channel program for the device being accessed. DIAGNOSE code X'A4' operates in all
supported virtual machine architectures. Results of the I/O operation are contained in the synchronous
block I/O parameter list (HCPSBIOP) and in the condition code and return code.

Entry Values:
Rx

contains the real address of the synchronous block I/O parameter list (HCPSBIOP). The address must
be on a word boundary; otherwise a specification exception will occur.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the synchronous block I/O parameter list (HCPSBIOP) and list of block
entries (see “Block Entries (SBILIST)” on page 140). If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the HCPSBIOP and SBILIST are in the
host-primary address space.

DIAGNOSE Code X'A4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 135

Three different I/O operations can be performed through DIAGNOSE code X'A4': READ, WRITE, and
FORMAT.

Operations are specified using the request-type field of the HCPSBIOP. The way to request each operation
shown, see “Synchronous Block I/O Parameter List (HCPSBIOP)” on page 136.

Synchronous Block I/O Parameter List (HCPSBIOP)
The synchronous block I/O parameter list (HCPSBIOP) is the parameter list that DIAGNOSE code X'A4'
uses in controlling the block I/O request. The parameters for read and write I/O operations include:

• Virtual device number
• Storage protection key
• Request type
• Block size
• Address of the block number/data address list
• Number of pairs in the block number/data address list
• Number of blocks processed by CP
• Device and subchannel status
• Residual count
• Sense data count
• Sense data.

These fields of the HCPSBIOP must be filled in:

• Virtual device number
• Storage protection key
• Request type
• Block size
• Address of the block entries list
• Number of pairs in the block entries list.

See the Responses section for the HCPSBIOP fields that are filled in upon completion of the operation.

The HCPSBIOP for the read and write request type is as follows (the HCPSBIOP COPY file is provided in
the HCPGPI macro library):

The fields in this HCPSBIOP are defined as follows:

DIAGNOSE Code X'A4'

136 z/VM: 7.3 CP Programming Services

Device Number
Bits 0 through 15 of word 0 contains a virtual device number (1 to 4 digits) of the DASD to which
this operation is targeted. The DASD must be fully supported. This field is filled in by the issuer of the
DIAGNOSE, and is returned unchanged.

Storage Protection Key
Bits 16 through 19 of word 0 contain the subchannel key for all fetching of output data and for the
storing of input data associated with the start function. This key is matched with a storage key during
these storage references. Bits 20 through 23 must be zeros; otherwise an operand exception occurs.
Bit 20 represents suspend control, which is not supported. The storage protection key is filled in by
the issuer of the DIAGNOSE and is returned unchanged.

I/O Request Type
Bits 30 through 31 of word 0 contain the request type for this I/O operation. If bit 30 of word 0 is
1, then the I/O operation is to read data from DASD to storage. If bit 31 of word 0 is 1, then the I/O
operation is to write data from storage to DASD. The user must set exactly one of bits 30 and 31 —
the other must be zeros; otherwise, an operand exception occurs. Bits 24 through 29 of word 0 are
reserved for future use and must be zeros; otherwise, an operand exception occurs.

In other words, the I/O request-type bits must be:

WRITE = B'0000 0001'
READ = B'0000 0010'

Anything else is invalid.

Block Size
Bits 0 through 31 of word 1 contain the size of the storage blocks for this request. The block size must
be one of the following:

• 1024
• 2048
• 4096

If you set the block size to other than the above, processing of the DIAGNOSE terminates and a return
code of 8 and a condition code of 2 are set. For a read or write request to CKD or ECKD DASD, if the
block size does not match the physical block size of the DASD, the DIAGNOSE request ends with an
incorrect length indication, and the results of the Read or Write are unpredictable.

Address of Block Entries
Bits 0 through 31 of word 2 designate the guest absolute address of the list of DASD block number
and data address pairs for this request. This list resides in the host-primary address space and is
described in “Block Entries (SBILIST)” on page 140. All 32 bits of this field are used for the address;
high-order bits beyond the address size must be zero.

The three rightmost bits of the block entries address must be zeros, specifying that the SBILIST is on
a doubleword boundary; otherwise an operand exception occurs.

If the data address specifies a location protected against fetching or specifies a location outside the
storage of the virtual machine, the processing of the DIAGNOSE terminates and a return code of 10
and a condition code of 2 are set.

Fetch-protection override and storage-protection override do not apply to references to the SBILIST.

Count of Block Entries
Bits 0 through 31 of word 3 contain the count of DASD block number and data address pairs in the
SBILIST. For a read or write request, the maximum allowed is 500 and the minimum is 1; otherwise,
the processing of the DIAGNOSE terminates and a return code of 11 and a condition code of 2 are set.

This is an unsigned binary number. The field is returned unchanged.

DIAGNOSE Code X'A4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 137

Blocks Processed by CP
Bits 0 through 31 of word 4 contains the number of blocks which were successfully processed by the
Control Program. Blocks are processed sequentially, in the order the user provided. The data areas
associated with unprocessed blocks are unpredictable.

Device Status
Bits 0 through 7 of word 5 identify the conditions in the device when the channel program ended.
Each of the eight bits represents one condition, as defined in the Enterprise Systems Architecture/390
Principles of Operation and z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/
epubs/pdf/a227832d.pdf). This is returned to the issuer.

Subchannel Status
Bits 8 through 15 of word 5 identify the conditions in the subchannel when the channel
program ended. Each of the eight bits represents one condition, as defined in the Enterprise
Systems Architecture/390 Principles of Operation and z/Architecture Principles of Operation (https://
publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf). This is returned to the issuer.

Residual Count
Bits 16 through 31 of word 5 contain the residual count from the CCW in control when the channel
program ended. This is returned to the issuer of the DIAGNOSE.

Logical Path Mask (LPM)
Bits 0 through 7 of word 6 contain a mask of paths that the channel subsystem can use to execute
the I/O operation requested by the DIAGNOSE. If the issuer of the DIAGNOSE requires that the I/O be
issued down a specific path, that path must be represented in this field. If this field contains zeros, the
issuer of the DIAGNOSE does not wish the I/O operation to be restricted to a particular path or paths.

Note: A positional correspondence exists between the bit positions in the logical path mask and the
channel path IDs in the subchannel.

Reserved
Bits 8 through 31 of word 6 are reserved for future use and must be zeros; otherwise, an operand
exception occurs.

Bits 0 through 15 of word 7 are reserved for future use and must be zeros; otherwise an operand
exception occurs.

Sense Data Count
Bits 16 through 31 of word 7 contain the amount of sense data present if a unit check is indicated.
This is returned to the issuer of the DIAGNOSE. This field is returned unchanged if unit check is not
present.

Reserved
Bits 0 through 31 of words 8 through 13 are reserved for future use and must be zeros; otherwise an
operand exception occurs.

Sense Data
Bits 0 through 31 of words 14 through 21 contain the sense data (as limited by the sense data count)
if a unit check is indicated. This is returned to the issuer of the DIAGNOSE. This field is returned
unchanged if unit check is not present.

The parameters for format I/O operations include:

• Virtual device number
• Request type
• Block size
• Logical block address
• Number of blocks to format
• Address of format data block
• CP blocks to format
• IBM service diagnostic information.

These fields of the HCPSBIOP must be filled in:

DIAGNOSE Code X'A4'

138 z/VM: 7.3 CP Programming Services

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

• Virtual device number
• Request type
• Block size
• Logical block address.

The HCPSBIOP for the format request type is as follows (the HCPSBIOP COPY file is provided in the
HCPGPI macro library):

The fields in this HCPSBIOP are defined as follows:
Device Number

Bits 0 through 15 of word 0 contains a virtual device number (1 to 4 digits) of the DASD to which
this operation is targeted. The DASD must be fully supported. This field is filled in by the issuer of the
DIAGNOSE, and is returned unchanged.

I/O Request Type
Bit 29 of word 0 contains the request type for this I/O operation. When bit 29 is 1, the I/O operation is
to format data from DASD to storage. Bits 24 through 28, 30, and 31 of word 0 are reserved for future
use and must be zeros; otherwise, an operand exception occurs.

DIAGNOSE Code X'A4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 139

In other words, the I/O request-type bit for format must be:

FORMAT = B'0000 0100'

Anything else is invalid.

Format is only valid for an emulated device that represents a real SCSI device associated with 2105 or
2107 attributes.

Block Size
Word 1 contains the size of the storage blocks for this request. The block size must be 512 when the
device number is an emulated device that represents a real SCSI device.

If you set the block size to other than 512, processing of the DIAGNOSE terminates and a return code
of 8 and a condition code of 2 are set.

Logical Block Address
Words 2 and 3 contain the logical block address where formatting will begin.

Number of Blocks to Format
Words 4 and 5 contain the request number of blocks to be formatted. When zero, formatting will
continue until the end of the device is reached.

Address of Format Data Block
Words 6 and 7 contain the address of a 512-byte block which contains the data that will be written
multiple times to the disk, starting at the logical block address and continuing for the number of
blocks specified. When zero, zeros will be written.

CP Blocks to Format
Words 8 and 9 contain the number of blocks which CP will attempt to process when zero is specified
in the Number of Blocks to Format field.

IBM Service Diagnostic Information
Words 10, 11, and 12 contain information which can be used by IBM Service when condition code 3
with return code 13 (X'0D') in register 15 is returned.

Reserved
Words 13 through 21 are reserved for future use and must be zeros; otherwise, an operand exception
occurs.

Block Entries (SBILIST)
The block entries (SBILIST) describing the CMS block number and data address pairs have the following
format:

The fields in the SBILIST are defined as follows:
Block Number

Bits 0 through 31 of word 0 contain the CMS block number for this request. This is provided by the
issuer of the DIAGNOSE. Block numbers are assigned sequentially to CMS records, starting with zero.

Data Address
Bits 0 through 31 of word 1 designate the guest absolute address of the data for this request, in the
host-primary address space. For a Write request, this is the location in storage from which the data is
written to DASD. For a Read request, this is the location in storage to which the data read from DASD is
placed.

If the data address specifies a location in a shared segment for a read request or specifies a location
outside the storage of the virtual machine, the processing of the DIAGNOSE is terminated and return
code 12, condition code 2 is set. The field in HCPSBIOP called blocks processed by CP indicates the
number of list entries for which data transfer was successful. List entries are processed sequentially,
in the order the user provided. The blocks processed by CP field is set to zero if the error was detected
before any I/O was attempted.

DIAGNOSE Code X'A4'

140 z/VM: 7.3 CP Programming Services

Fetch-protection override, storage-protection override, and low-address protection do not apply to
references to the data area.

Usage Notes
1. No I/O interrupts are returned by CP to the virtual machine; the DIAGNOSE instruction is completed

only when the Read or Write commands associated with the DIAGNOSE are completed.
2. One way to figure out the block size of a CMS formatted disk automatically is to read the label record

and look at the length field. The length field is in the fourth word of the record. For CKD or ECKD
devices, the label record is in cylinder 0, track 0, record 3 (block number 2). For FBA devices, the label
record is in the second 512 byte block (block number 1, using a blocksize of 512 bytes).

3. Use DIAGNOSE code X'A4' to perform synchronous I/O in a nonsynchronous environment.
4. Diagnose I/O operations issued to virtual Parallel Access Volume bases and aliases are randomly

scheduled on any available, appropriate real base or alias device. Certain CCWs, such as Reserve and
Release, require base or alias real device affinity. This is handled by CP as needed.

5. This DIAGNOSE code does not support HyperPAV alias devices.
6. This DIAGNOSE code is limited to a minidisk size of 65520 cylinders, regardless of formatted block

size. If a program issues DIAGNOSE code X'A4' to a minidisk larger than 65520 cylinders, CP sets a
condition code of 1 (cc=1) and places a return code of 4 in register 15.

Responses
Upon completion of a Read or Write operation, HCPSBIOP is updated with the number of blocks
processed by CP, the device and subchannel status, the residual count, the sense data count and the
sense data (if a unit check is indicated).

Condition Codes and Return Codes: Upon completion of DIAGNOSE code X'A4', you receive a condition
code, along with a return code in register 15:

• If you receive a condition code of 0, the I/O operation was completed successfully. The return code in
register 15 is 0 also.

• If you receive a condition code of 1, an error condition was detected which prevented complete
execution of the channel program built for the DIAGNOSE I/O request. No I/O was performed unless the
return code in Register 15 is 1.

In addition, the return codes shown in Table 15 on page 141 are set in the guest's register 15:

Table 15. DIAGNOSE Code X'A4' Return Codes. DIAGNOSE Code X'A4' Return Codes in the Guest's
Register 15 with CC=1

Condition Code Return Code in
Register 15

Meaning

1 1 (X'01') Device not attached (See Note below.)

1 2 (X'02') Device is not a supported DASD.

1 3 (X'03') Attempt to write to a read-only disk

1 4 (X'04') A program issued a DIAGNOSE code X'A4' to a minidisk
larger than 65520 cylinders.

1 5 (X'05') Device is busy, or has an interrupt pending

Note: This indicates that either the device has not been logically attached, or the physical path to the
device has been lost. If the physical path to the device has been lost, then some portion of the channel
program may have been executed. This is because CP may have used multiple real channel programs
to perform the I/O operation. The blocks processed by CP field in HCPSBIOP must be examined to
determine how much, if any, of the I/O request was completed. Device verification is required to
determine why the physical path to the device was lost.

DIAGNOSE Code X'A4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 141

• If you receive a condition code of 2, a specification exception was detected (the HCPSBIOP was not set
up correctly). No I/O was performed, except when the return code in register 15 is 16. One of the return
codes shown in Table 16 on page 142 is set in the guest's register 15:

Table 16. DIAGNOSE Code X'A4' Return Codes

Condition Code Return Code in
Register 15

Meaning

2 7 (X'07') Guest DASD block number is invalid

2 8 (X'08') Blocksize equals zero, or is unsupported

2 9 (X'09') The number of blocks specified exceeds the size of the
mdisk

2 10 (X'0A') The address of the SBILIST is invalid, or the SBILIST is
fetch-protected

2 11 (X'0B') The number of buffer list entries was not a positive number
within the range of 1 to 500

2 12 (X'0C') One of the buffers identified in the buffer list is not within the
guest's storage (for example, its address is invalid)

2 16 (X'10') Unsolicited status was pending at the real subchannel or
device (See note below.)

Note: The channel program may not have completed, and thus the ending status may not pertain to this
I/O request. The blocks processed by CP field in the HCPSBIOP must be examined to determine how
much, if any, of the I/O request was completed. Device verification will be required to determine why
unsolicited status was pending at the real subchannel or device.

• If you receive a condition code of 3, an unrecoverable I/O error occurred. If the device status field
indicates a unit check, sense data is stored in the sense data field, and the amount of sense data is
stored in the sense data count field. One of the return codes shown in Table 17 on page 142 is set in the
guest's register 15:

Table 17. DIAGNOSE Code X'A4' Return Codes in the Guest's Register 15 with CC=3

Condition Code Return Code in
Register 15

Meaning

3 13 (X'0D') A permanent I/O error or a soft abend occurred, or the I/O
was terminated at the user's request by entering an exigent
command.

3 15 (X'0F') Paging error occurred; channel data check status is set,
unless the paging error occurred while accessing the SBILIST.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'A4' is given incorrect
input data:

Problem Encountered Cause

Specification exception The address HCPSBIOP (specified in Rx) is not on a word
boundary.

DIAGNOSE Code X'A4'

142 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Operand exception Any of the following:

• In word 0 of the HCPSBIOP, bits 20 to 23 are not all set to
zero.

• In word 0 of the HCPSBIOP, both bits 30 and 31 (I/O
request type) are set to 0 or both are set to 1.

• In the HCPSBIOP, the address of the block entries list is not
on a doubleword boundary.

• In the HCPSBIOP, the bits in these reserved fields are not all
set to zeros:

– word 6, bits 8 to 31
– word 7, bits 0 to 15
– words 8 through 13

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch or store the HCPSBIOP.

DIAGNOSE Code X'A8' – Synchronous I/O (for All Devices)
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'A8' to perform synchronous input/output operations to all fully supported devices,
except channel-to-channel adapters, consoles, and graphics devices.

DIAGNOSE code X'A8' uses the synchronous general I/O parameter list (HCPSGIOP) to receive and return
data.

Entry Values:
Rx

Contains the guest real address of the synchronous general I/O parameter list (HCPSGIOP). The
HCPSGIOP must be on a word boundary; otherwise a specification exception occurs.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the synchronous general I/O parameter list. If Rx designates general
register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the parameter list is
in the host-primary address space.

To perform general I/O operations using DIAGNOSE code X'A8', the HCPSGIOP needs to have the
following fields filled in: virtual device number, storage protection key, request flag, and channel program
address.

Synchronous General I/O Parameter List (HCPSGIOP)
The synchronous general I/O parameter list (HCPSGIOP) is the parameter list that DIAGNOSE code X'A8'
uses in controlling the general I/O request. These parameters include:

• Virtual device number
• Storage protection key
• Request flag
• Channel program address
• CCW address at interrupt

DIAGNOSE Code X'A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 143

• Device and subchannel status
• Residual count
• Sense data count
• Sense data.

The synchronous general I/O parameter list has the following format (the HCPSGIOP COPY file is provided
in the HCPGPI macro library):

Figure 14. DIAGNOSE X'A8' Synchronous General I/O Parameter List (HCPSGIOP) Format

The fields in the HCPSGIOP are defined as follows:
Device Number

Bits 0 through 15 of word 0 contains a virtual device number (1-4 digits) of the device to which this
operation is targeted. The device must be fully supported, but virtual channel-to-channel adapters,
virtual console devices, and graphics devices are not allowed. This field is filled in by the issuer of the
DIAGNOSE, and is returned unchanged.

Storage Protection Key
Bits 16 through 19 of word 0 contain the subchannel key for all fetching of CCWs, IDAWs and output
data and for the storing of input data associated with the start function. This key is matched with a
storage key during these storage references. Bits 20 through 23 must be zeros; otherwise an operand
exception occurs. Bit 20 represents suspend control, which is not supported. The storage protection
key is filled in by the issuer of the DIAGNOSE and is returned unchanged.

I/O Request Flag
Bits 24 through 31 of word 0 contain the request flag for this I/O operation.

Bit 24 of word 0 specifies the format of the channel-command words (CCWs) which make up the
channel program designated by the channel program address field. If bit 24 is zero, format-0 CCWs
are specified. If bit 24 is one, format-1 CCWs are specified. Both format CCWs are allowed in all virtual
machines.

Bits 25 through 29 of word 0 are reserved for future use and must be zeros; otherwise an operand
exception occurs. This field is filled in by the issuer of the DIAGNOSE and is returned unchanged.

If bit 30 (SGIDAWF2) is on, it indicates that format-2 IDAWs are used in the channel program for all
CCWs that have the IDAW flag set to one. Otherwise, format-1 IDAWs are used.

DIAGNOSE Code X'A8'

144 z/VM: 7.3 CP Programming Services

If bit 31 (SGIDAW2K) is on, it indicates that format-2 IDAWs use a storage block size of 2K.
Otherwise, format-2 IDAWs use a storage block size of 4K. SGIDAW2K is ignored if SGIDAWF2 is
off.

Both bit 30 and bit 31 may be on if and only if bit 24 is also on. Otherwise, an operand exception is
recognized.

Reserved
Bits 0 through 31 of word 1 are reserved for future use and must be zeros; otherwise an operand
exception occurs.

Channel Program Address
Bits 0 through 31 of word 2 designate the location of the first CCW in the host-primary address space.
If format-0 CCWs have been specified in bit 24 of word 0, then bits 0 through 7 of word 2 must be
zeros. If format-0 CCWs have been specified and bits 0 through 7 do not contain zeros, an operand
exception occurs. If format-1 CCWs have been specified, then bit 0 of word 2 must be zero. If bit 0
is not zero, an operand exception occurs. This field is filled in by the issuer of the DIAGNOSE and is
returned unchanged.

The three rightmost bits of the channel-program address must be zeros, specifying the CCW on a
doubleword boundary; otherwise an operand exception occurs.

If the CCW address specifies a location protected against fetching or specifies a location outside the
storage of the virtual machine, the processing of the DIAGNOSE is terminated and return code 13,
condition code 3 is set. The subchannel status indicates a program-check condition and the CCWA =
CPA + 8.

Reserved
Bits 0 through 31 of word 3 are reserved for future use and must be zeros; otherwise an operand
exception occurs.

Channel Command Word Address at Interrupt
Bits 0 through 31 of word 4 form an absolute address. The address indicated represents the CCW + 8
of the last executed CCW. This is returned to the issuer of the DIAGNOSE.

Device Status
Bits 0 through 7 of word 5 identify the conditions in the device when the channel program ended.
Each of the eight bits represents one condition, as defined in the Enterprise Systems Architecture/390
Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf) and z/Architecture Principles
of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf). This is returned to the issuer
of the DIAGNOSE.

Subchannel Status
Bits 8 through 15 of word 5 identify the conditions in the subchannel when the channel program
ended. Each of the eight bits represents one condition, as defined in the Enterprise Systems
Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf) and z/
Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf). This is
returned to the issuer of the DIAGNOSE.

Residual Count
Bits 16 through 31 of word 5 contain the residual count from the CCW in control when the channel
program ended. This is returned to the issuer of the DIAGNOSE.

LPM - Logical Path Mask
Bits 0 through 7 of word 6 contain a mask of paths that the channel subsystem should be permitted to
use to execute the I/O operation requested by the DIAGNOSE. If the issuer of the DIAGNOSE requires
that his I/O be issued down a specific path, he must represent that path in this field. If this field
contains zeros, this indicates that the issuer of the DIAGNOSE does not wish the I/O operation to be
restricted to a particular path or paths.

Note that there is a positional correspondence between the bit positions in the logical path mask and
the channel path IDs in the subchannel.

Options
Bits 8 through 15 of word 6 contain settings for certain options for this I/O operation.

DIAGNOSE Code X'A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 145

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

If bit 8 is on, the caller can use the 28-bit extended addressing format and access a minidisk above
cylinder 65519.

Bits 9 through 15 are reserved for future use and must be zeros; otherwise an operand exception
occurs.

Reserved
Bits 16 through 31 of word 6 are reserved for future use and must be zeros; otherwise an operand
exception occurs.

Bits 0 through 15 of word 7 are reserved for future use and must be zeros; otherwise an operand
exception occurs.

Sense Data Count
Bits 16 through 31 of word 7 contain the amount of sense data present if a unit check is indicated.
This is returned to the issuer of the DIAGNOSE. This field is returned unchanged if unit check is not
present.

Reserved
Bits 0 through 31 of words 8 through 13 are reserved for future use and must be zeros; otherwise an
operand exception occurs.

Sense Data
Bits 0 through 31 of words 14 through 21 contain the sense data (as limited by the Sense Data Count)
if a unit check is indicated. This is returned to the issuer of the DIAGNOSE. This field is returned
unchanged if unit check is not present.

Usage Notes
1. No I/O interruptions are returned by CP to the virtual machine. The DIAGNOSE instruction is complete

only when the channel program associated with the DIAGNOSE is complete.
2. If neither DIAGNOSE code X'A4' nor DIAGNOSE code X'18' can be used, then the channel

programming capability of the device being accessed must be determined and the appropriate channel
program constructed.

a. Use DIAGNOSE code X'24' or X'210' to determine if the device is in an ECKD-capable subsystem.
b. Generate a CKD, ECKD or FBA channel program as appropriate for the device being accessed.
c. Expand sense error analysis and recovery procedures to include the 32 byte format returned by

ECKD subsystems.
3. Use DIAGNOSE code X'A8' to perform synchronous I/O in a nonsynchronous environment.
4. Diagnose I/O operations issued to virtual Parallel Access Volume bases and aliases are randomly

scheduled on any available, appropriate real base or alias device. Certain CCWs, such as Reserve and
Release, require base or alias real device affinity. This is handled by CP as needed.

5. DIAGNOSE code X'A8' can be used on a minidisk that resides on an Extended Address Volume (EAV).

Responses
Upon completion of DIAGNOSE code X'A8', the HCPSGIOP is returned with information in the following
fields:

• Device status
• Subchannel status
• Residual count
• Address of CCW at interrupt
• Sense data count
• Sense data if a unit check is present in the device status field.

Condition Codes and Return Codes: Upon completion of DIAGNOSE code X'A8', you also receive a
condition code and, if there is an error, a return code in register 15.

DIAGNOSE Code X'A8'

146 z/VM: 7.3 CP Programming Services

If you receive a condition code of 0, the I/O operation completed successfully and register 15 remains
unchanged.

If you receive a condition code of 1, an error condition was detected which prevented execution of the
guest virtual machine's channel program. Real I/O may not have been performed. In addition, one of the
return codes shown in Table 18 on page 147 is set in the guest's register 15:

Table 18. DIAGNOSE Code X'A8' Return Codes in the Guest's Register 15 with CC=1

Condition Code Return Code in
Register 15

Meaning

1 1 (X'01') Device not attached.

Note: This indicates that either the device has not been
logically attached, or that the physical path to the device has
been lost. If the physical path to the device has been lost,
then some portion of the channel program may have been
executed. This is because CP may have used multiple real
channel programs to perform the I/O operation.

1 2 (X'02') Device is not supported.

1 5 (X'05') Device is busy, or has an interrupt pending.

If you receive a condition code of 2, an exception condition was detected. Return code 16 is set in the
guest's register 15, indicating that an unsolicited status was pending at the real subchannel or device.

The channel program may not have completed, and thus the ending status may not pertain to this I/O
request. This is because CP may have used multiple real channel programs to perform the I/O operation.
The channel command word at interrupt field in the HCPSGIOP must be examined to determine how
much, if any, of the I/O request was completed. Device verification is required to determine why
unsolicited status was pending at the real subchannel or device.

If you receive a condition code of 3, this indicates that an unrecoverable I/O error occurred or the I/O
was terminated at the user's request by entering an exigent command. If the I/O error resulted in a unit
check, then sense data is stored in the sense data field and the amount of sense data stored is in the
sense data count field. Return code 13 is set in the guest's register 15, indicating that a permanent I/O
error occurred.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'A8' is given incorrect
input data:

Problem Encountered Cause

Specification exception The address of the HCPSGIOP (specified in Rx) is not on a
word boundary.

Operand exception Any of the following:

• These reserved fields in the HCPSGIOP are not all set to
zeros: word 0, bits 20-23, 25-31; word 3; word 6; word 7,
bits 8-15; and words 8 through 13.

• In the HCPSGIOP, bit 24 of word 0 (CCW format flag) is 0
and bits 0 through 7 of word 2 (channel program address)
are not all zeros.

• In the HCPSGIOP, bit 24 of word 0 (CCW format flag) is 1
and bit 0 of word 2 (channel program address) is not zero.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch or store the HCPSGIOP.

DIAGNOSE Code X'A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 147

DIAGNOSE Code X'B0' – Access Re-IPL Data
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'B0' to obtain diagnostic information about the cause of the automatic re-IPL of
your virtual machine. The data returned by the system also includes the IPL statement from the directory
entry for the issuing user.

Entry Values:
Rx

Contains the guest real address of the buffer for the output data.
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the buffer for the output area. If Rx designates general register 0, if Ax
contains X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary
address space.

Ry
Contains the length of the buffer. Any nonnegative length is allowed. To avoid possible truncation of
data, a buffer of at least 90 bytes is recommended.

Exit Values:
Ry

Contains a completion code, as follows:
Code

Meaning
0

Re-IPL information and IPL statement information are returned in buffer. (The IPL statement
information may be the null string.)

4
No re-IPL information is available. IPL statement information is returned in the buffer. (The IPL
statement information may be the null string.) Either the protected application environment is not
active, or the IPL was initiated by the user.

8
No information is available. A paging or storage error has occurred.

Buffer Content: Successful completion of the request may result in output consisting of re-IPL
information, an IPL statement from the directory, both types of information, or neither. Only as much
information is returned as fits in the output area supplied.

Re-IPL Information
If the completion code is zero, the buffer contains re-IPL information consisting of the following:

Byte 0: Error code

• The codes and the errors to which they correspond are as follows:
Code

CP Meaning
X'01'

CP entered; Disabled wait PSW is provided in a message in the buffer
X'02'

CP entered; External interrupt loop
X'03'

CP entered; Paging error

DIAGNOSE Code X'B0'

148 z/VM: 7.3 CP Programming Services

X'04'
CP entered; Program interrupt loop

X'07'
CP entered; Complex interrupt loop

X'08'
System soft abend, abend code is provided in a message in the buffer

X'09'
CPU ... stopped; Check-stop state entered

X'0A'
Page zero damaged

X'0B'
An error occurred but CP was unable to provide a message because of a paging error.

Bytes 1-n: Variable data

• The additional variable length data, if present, depends on the particular error condition. The variable
length data is shown as follows:
Code

Variable Data
X'01'

for z/Architecture mode guests, 16-byte binary disabled wait state PSW

for non-z/Architecture mode guests, 8-byte binary disabled wait state PSW

X'02'
for z/Architecture mode guests, 16-byte binary external interrupt old PSW

for non-z/Architecture mode guests, 8-byte binary external interrupt old PSW

X'03'
None

X'04'
for z/Architecture mode guests, 16-byte binary program interrupt old PSW

for non-z/Architecture mode guests, 8-byte binary program interrupt old PSW

X'07'
None

X'08'

EBCDIC CPU number
EBCDIC abend code

X'09'
EBCDIC CPU number

X'0A'
None

X'0B'

CP module name
EBCDIC offset into module

• EBCDIC variable data items (for codes above X'07') are delimited by 1-byte binary fields. The field
between multiple data items is X'00'. The field following the final data item is X'01'. For example, the
buffer contents returned for a soft abend is the following (assuming the buffer is large enough):

– X'08'
– CPU number
– X'00'

DIAGNOSE Code X'B0'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 149

– Abend code
– X'01'.

IPL Statement Information
If the completion code is 0, the IPL statement information immediately follows the re-IPL information in
the buffer. If the completion code is 4, the IPL statement information is placed at the start of the buffer.

Byte 0: Length of IPL directory statement

This data is present if a re-IPL occurred. It is zero if the user has no IPL statement in the directory, or if
the output area is too small to contain at least one byte of text. If the entire IPL statement does not fit
in the area, this length is that of the text truncated to fit in the available space.

Bytes 1-m: Text of IPL directory statement

This data is present if the preceding length byte is nonzero.

Usage Notes
1. If Ry specifies a length of zero on entry, the contents of Rx are not examined. Ry returns with the value

zero if an automatic re-IPL has occurred; otherwise, Ry contains the value four.
2. CP does not guarantee the validity of the IPL statement content for the virtual machine environment

issuing DIAGNOSE code X'B0'. It is the responsibility of the program issuing DIAGNOSE code X'B0' to
use the information contained in it appropriately.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'B0' is given incorrect
data:

Problem Encountered Cause

Specification exception The buffer length is negative.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store the re-IPL data.

DIAGNOSE Code X'B4' – Read/Write/Erase the Virtual Printer XAB
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'B4' to read, write, and erase the external attribute buffer (XAB) for a spooled
printer device. A copy of this external attribute buffer is added to each spool file created on the device.
Specific information about the XAB may be found in “External Attribute Buffer Used by DIAGNOSE Codes
X'B4', X'B8', and X'290'” on page 993.

Entry Values:
Rx

Contains the buffer address
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the buffer. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary address
space.

DIAGNOSE Code X'B4'

150 z/VM: 7.3 CP Programming Services

Ry
Bytes 0 and 1 contain the length of the buffer in bytes (0=ERASE). Bytes 2 and 3 contain the device
number of the virtual printer.

Ry+1
Bytes 2 and 3 contain subcode X'0000' (Read) or X'0004' (Write/Erase).

Exit Values:

READ - Subcode X'0000'
CC=0 - Successful

Ry
Bytes 0 and 1 contain the length of the XAB read, 0 if there is no XAB. Bytes 2 and 3 are unchanged.

Ry+1
Byte 0 is X'00'. Bytes 1 through 3 are unchanged.

READ - Subcode X'0000'
CC=2 - Unsuccessful

Ry
Bytes 0 and 1 contain the length of the XAB if it is too large for the buffer. Bytes 2 and 3 are
unchanged.

Ry+1
Byte 0 contains the return code; see Table 19 on page 151. Bytes 1 through 3 are unchanged.

WRITE/ERASE - Subcode X'0004'
CC=0 - Successful

Ry+1
Byte 0 contains X'00'. Bytes 1 through 3 are unchanged.

WRITE/ERASE - Subcode X'0004'
CC=2 - Unsuccessful

Ry+1
Byte 0 contains the return code; see Table 19 on page 151. Bytes 1 through 3 are unchanged.

Responses
Condition Codes for Normal Exit: The condition code for a normal exit is 0, indicating that the reading,
writing, or erasing of the XAB was successful.

Condition Codes and Return Codes for Exit with Error: The condition code for an error exit is 2,
indicating that the reading, writing, or erasing of the XAB was unsuccessful. The return code is shown in
Table 19 on page 151.

Table 19. DIAGNOSE Code X'B4' Return Codes

Return Code in
Ry+1

Meaning

4 (X'04') The device does not exist, or is not a spooled virtual printer.

8 (X'08') The buffer is too small. (returned for READ, subcode X'0000', only).

12 (X'0C') The buffer length is invalid.

20 (X'14') CP paging or I/O error

28 (X'1C') Invalid subcode

32 (X'20') The buffer address is zero or negative.

36 (X'24') Not used

40 (X'28') No XAB is to be erased (returned for Write/Erase, subcode X'0004', only).

DIAGNOSE Code X'B4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 151

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'B4' is given incorrect
data:

Problem Encountered Cause

Specification exception Ry is R15.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch from (WRITE function) or
store to (READ function) the buffer.

DIAGNOSE Code X'B8' – Spool File XAB Manipulation
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'B8' to read, write, or erase the external attribute buffer (XAB) of a spool file on the
printer queue, or to read the XAB of a file on the reader queue. It also can be used to set user HOLD status
or user NOHOLD status.

Note: The external attribute buffer (XAB) is a control block that contains data the user creates to specify
additional information about a print file. Each print file has its own XAB, and CP has the facilities
to maintain the XABs. For more information on the XAB, refer to “External Attribute Buffer Used by
DIAGNOSE Codes X'B4', X'B8', and X'290'” on page 993.

Entry Values:
Rx

Bytes 0 through 3 contain the buffer address
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the buffer. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary address
space.

Ry
Bytes 0 and 1 contain the length of the buffer in bytes (0=ERASE). Bytes 2 and 3 contain the spool file
ID.

Ry+1
Byte 1 contains flag bits which have the following meanings:
Flag

Meaning
X'01'

Place the spool file in user HOLD status
X'02'

Place the spool file in user NOHOLD status
X'04'

Look for the spool file on the reader queue (READ function only).

Flags X'01' and X'02' may not be specified together. If neither is specified, the file's HOLD status is left
unchanged.

Bytes 2 and 3 of Ry+1 contain subcode X'0000' (READ) or X'0004' (WRITE/ERASE).

Exit Values:

READ - Subcode X'0000'
CC=0 - Successful

DIAGNOSE Code X'B8'

152 z/VM: 7.3 CP Programming Services

Ry
Bytes 0 and 1 contain the length of the XAB Read; 0 if there is no XAB

Ry+1
Byte 0 contains X'00'

READ - Subcode X'0000'
CC=2 - Unsuccessful

Ry
Bytes 0 and 1 contain the length of the XAB if it is too large for the buffer

Ry+1
Byte 0 contains the return code, see Table 20 on page 153.

WRITE/ERASE - Subcode X'0004'
CC=0 - Successful

Ry+1
Byte 0 contains X'00'

WRITE/ERASE - Subcode X'0004'
CC=2 - Unsuccessful

Ry+1
Byte 0 contains the return code, see Table 20 on page 153.

Usage Note
You may not be authorized to issue this DIAGNOSE code if an external security manager is installed on
your system. For additional information, contact your security administrator.

Responses
Condition Codes for Normal Exit: A normal exit condition is a condition code of 0, indicating that the
reading, writing, or erasing of the XAB of a spool file on the printer queue (or the reading of the XAB of a
file on the reader queue) was successful.

Condition Codes and Return Codes for Exit with Error: An error exit condition is a condition code of
2, indicating that the reading, writing, or erasing of the XAB of a spool file on the printer queue (or the
reading of the XAB of a spool file on the reader queue) was unsuccessful. The return code is shown in
Table 20 on page 153.

Table 20. Return Codes

Return Code in
Ry+1

Meaning

4 (X'04') The spool ID is invalid or does not exist.

8 (X'08') The length of the XAB buffer is greater than the user buffer. (See note)

12 (X'0C') The buffer length is invalid.

20 (X'14') CP paging or I/O error

24 (X'18') The specified process flag is invalid.

28 (X'1C') Invalid subcode

32 (X'20') The buffer address is zero or negative.

36 (X'24') Not used

40 (X'28') No XAB is to be erased (returned for WRITE/ERASE, subcode X'0004', only).

44 (X'2C') The XAB is not available because the file is marked for purge or has been
converted.

DIAGNOSE Code X'B8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 153

Note: Any special processing requested by the flag byte is completed.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'B8' is given incorrect
data:

Problem Encountered Cause

Specification exception Ry is R15.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See“Access
Exceptions” on page 8.

An error occurred trying to fetch from (WRITE function) or
store into (READ function) the buffer.

DIAGNOSE Code X'BC' – Open and Query Spool File Characteristics
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'BC' opens a spool file (if it is not already open) for a spooled reader device and returns
all information about the spool file to a user-specified buffer. CP selects the spool file according to the
rules governing the CLASS and HOLD status. For these rules, refer to z/VM: CP Commands and Utilities
Reference and z/VM: Virtual Machine Operation. This means CP opens only spool files with the same class
designation as the virtual reader.

Entry Values: Set the input registers up as follows when invoking DIAGNOSE code X'BC':
Rx

contains the guest real address of a buffer. Rx cannot be register 15.
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the buffer. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary address
space.

Rx+1
contains the length of the buffer, in bytes.

Ry
Bytes 0 and 1 contain the subcode. Bytes 2 and 3 contain the virtual device number of the spooled
reader device. Ry cannot be register 15.

Subcode
Meaning

X'0000'
This subcode provides information in character format only. This subcode is compatible with VM/SP,
VM/SP HPO, and VM/ESA (370 Feature).

X'0004'
This subcode provides information in character format, where appropriate, and binary format for
numeric information. This format is not compatible with VM/SP, VM/SP HPO, and VM/ESA (370
Feature).

Exit Values:

Subcode X'0000': Depending on the specified buffer length, the user's buffer contains as much of the
following information shown as possible: (Bytes means character length, in bytes.)
Bytes

Description
4

Spool file ID (EBCDIC)

DIAGNOSE Code X'BC'

154 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb2_v7r3.pdf#nameddest=hcpb2_v7r3

8
File originator

1
Class

3
Type: RDR, PRT, PUN, CON

8
Number of records (EBCDIC)

3
Number of copies (EBCDIC)

12
File name

12
File type

8
Date: mm/dd/yy

8
Time

8
Distribution

4
Status -- ‘NONE’

8
FORM -- User forms

8
Destination

4
Flash name

3
Flash count (EBCDIC)

4
FCB -- Forms control buffer

4
CMOD -- Character modification

1
Character modification count (EBCDIC)

3
Load 3800 -- ‘ANY’ ‘BEG’ ‘NO’

16
CHARS -- Character Arrangement Tables

8
SIZE -- Number of pages

8
SECLABEL - Security label of file.

10
Full year date: mm/dd/yyyy

10
ISO date: yyyy-mm-dd

DIAGNOSE Code X'BC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 155

Subcode X'0004': Depending on the specified buffer length, the user's buffer contains as much of
the following information as possible. (Bytes means character length, in bytes.) Note that CP returns
character information, where appropriate, and binary format for numeric data.
Bytes

Description
1

Control block update level identifier
1

Maximum length of data available in doublewords
1

Spool file CLASS
1

*** RESERVED FOR IBM USE ***
1

Copy count
1

Page copy count
1

Flash count
1

Modify number
2

Spool file ID (in hexadecimal)
2

Logical Record length
4

Record count
4

Number of spool data blocks
4

*** RESERVED FOR IBM USE ****
4

Type: RDR, PRT, PUN, CONS
4

Spool file ID in EBCDIC
8

File owner
8

File originator
8

File name
8

File type
8

Date: mm/dd/yy
8

Time: hh-mm-ss
8

Distribution code

DIAGNOSE Code X'BC'

156 z/VM: 7.3 CP Programming Services

8
Destination value

8
User form name

8
Operator form name

4
FCB name

4
3800 Load CCWs: 'NO '|'BEG '|'ANY '

4
Flash name

4
Modify name

16
Character set names

8
SECLABEL - Security label of file.

10
Full year date: mm/dd/yyyy

10
ISO date: yyyy-mm-dd

Usage Note
If an external security manager is installed, the user may not receive all the information about the file. If
the external security manager denies access to the file, the only fields of the response that will contain
information are the spool file ID, user ID, class, date, time and status fields. All other fields will contain
asterisks.

Responses
Condition Codes and Return Codes: Upon completion, DIAGNOSE code X'BC' returns the following
condition codes (found in the user's PSW) and return codes (found in Ry+1):

Condition Code Return Code in
Ry+1

Meaning

0 0 (X'00') Data transfer successful, file opened

1 0 (X'00') Data transfer successful, file already opened

2 N/A No file is found

3 4 (X'04') The device address is invalid

3 8 (X'08') The device type is invalid

3 18 (X'12') Device busy, not ready, or a real reader

3 22 (X'16') A paging I/O error is received.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'BC' is given incorrect
data:

DIAGNOSE Code X'BC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 157

Problem Encountered Cause

Specification exception Any of the following:

• The user's buffer length is less than or equal to 0
• Either Rx or Ry is specified as R15
• There is any overlap of Rx, Rx+1, Ry, or Ry+1
• The subcode specification is not X'00' or X'04'.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See“Access
Exceptions” on page 8.)

An error occurred trying to store into the buffer.

DIAGNOSE Code X'C8' – Set Language
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'C8' initiates the SET of the national language for the virtual machine session. It sets
only the CP language. CP uses this language to issue most CP system messages.

For CMS applications, the preferred user interface is the CMS SET LANGUAGE command.

For more information on the languages supported on your z/VM system, see z/VM: Installation Guide.

Entry Values:
Rx and Rx+1

Language identifier specifying the language to be set for the virtual machine and the langid specified
in the message repository. The language identifier is specified using the 1- to 5-character langid,
left-justified (that is, the first four characters in Rx and fifth character in the high-order byte of Rx+1).
If the language identifier is less than five characters, it should be padded on the right with blanks. Rx
cannot be register 15.

Ry
X'00xxxxxx'–the function code (X'00' in the high-order byte, with the remaining bytes unused).

Exit Values: When processing of the SET function completes, the first five bytes of the register pair Rx,
Rx+1 contain the language identifier for the language that has been set for CP messages (this language
may or may not be the same as the language set before the DIAGNOSE code was issued), left-justified
and padded on the right with blanks as required.

Responses
Return Codes: The low-order byte of register Ry contains one of the following return codes (the contents
of the remaining bytes of Ry are unpredictable):

Return Code in
Ry+1

Meaning

0 (X'00') The language requested has been set.

20 (X'14') A paging error occurred while an attempt was being made to read the first page of
the requested message repository. The current language used for CP messages is
unchanged.

28 (X'1C') No message repository could be found for the specified language identifier. The
current language used for CP messages is unchanged.

32 (X'20') The selected repository does not appear to be a valid message repository.

DIAGNOSE Code X'C8'

158 z/VM: 7.3 CP Programming Services

Return Code in
Ry+1

Meaning

36 (X'24') Unrecoverable error, causing a soft abend. The current language used for CP
messages is unchanged.

40 (X'28') The NLS lock could not be obtained. This is a temporary error. Retry the command.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'C8' is given incorrect
data:

Problem Encountered Cause

Specification exception Any of the following:

• Rx or Rx+1 is the same register as Ry
• Rx is register 15.
• The function code is invalid.

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE Code X'CC' – Save Message Repository
Privilege Class: E

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'CC' to initiate the SAVE function for the CP message repository. If the SAVE
operation completes successfully, then DIAGNOSE code X'C8' can be used to set that language.

The preferred user interface is the CMS LANGGEN command.

Entry Values:
Rx and Rx+1

The language identifiers specifying the language to be saved and the language identifiers specified in
the message repository. The language identifiers are specified using the 1- to 5-character language
identifier, left-justified (that is, the first four characters in Rx and the fifth character in the high-order
byte of Rx+1). If the language identifiers are less than five characters, they should be padded on the
right with blanks. Rx cannot be register 15.

Ry
X'00xxxxxx' – the function code (X'00' in the high-order byte, with the remaining bytes unused). Ry
cannot be register 15.

Ry+1
The guest real address where the compiled CP message repository that is to be saved has been
loaded. This address must be on a page boundary.

Key-controlled protection does not apply to accesses to the message repository data.

Ay+1
Is used only by XC virtual machines in access-register mode. Ay+1 contains the ALET for the address
space containing the CP message repository.

Responses
Return Codes : When processing of the SAVE function is completed, the low-order byte of Ry contains the
return code (the contents of the remaining bytes being unpredictable).

Return Code in Ry Meaning

0 (X'00') The entire CP message repository is successfully saved.

DIAGNOSE Code X'CC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 159

Return Code in Ry Meaning

16 (X'10') The repository cannot be saved because of insufficient resources (spool file IDs or
spool space).

24 (X'18') A storage or paging I/O error occurred.

28 (X'1C') The language identifier specified does not match the language identifier in the
repository at the specified virtual address.

32 (X'20') The selected repository does not appear to be a valid message repository.

40 (X'28') An unrecoverable error has occurred. A soft abend has been taken.

44 (X'2C') No system spool file ID is available.

48 (X'30') An invalid file name was specified. The language identifier was left blank or
contains more than one name.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'CC' is given incorrect
data:

Problem Encountered Cause

Specification exception Any of the following:

• Rx is the same register as Ry or Ry+1
• Rx+1 is the same register as Ry
• Rx or Ry is register 15
• Function code is invalid
• Repository buffer address is not on a 4K-byte boundary.

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.
• The user does not have the privilege class required to issue

the DIAGNOSE instruction.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the message repository data.
(Key-controlled protection does not apply.)

DIAGNOSE Code X'D0' – Volume Serial Support
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'D0' to pass CP the virtual device number and the volume serial (VOLSER) for a
tape device. CP will include the VOLSER in error recording records it creates for that drive.

Entry Values:
Rx

Contains the address of the tape volume serial passed to the DIAGNOSE interface. The tape volume
serial should be six bytes long.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the tape volume serial. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the tape volume serial is in the host-primary
address space.

DIAGNOSE Code X'D0'

160 z/VM: 7.3 CP Programming Services

Ry
Contains the virtual device number passed to the DIAGNOSE interface.

Exit Values: Return and condition codes are returned for DIAGNOSE code X'D0'.

Usage Note
The volume serial of a tape volume is recorded in the OBR and MDR records whenever DIAGNOSE code
X'D0' has been successfully executed for the tape volume. The VOLSER is maintained until the tape
volume is unloaded. If a tape is manually unloaded, CP clears the VOLSER field following the logging
of the required OBR record to avoid the possibility of logging future OBR/MDR records with an incorrect
VOLSER.

Responses
Condition Codes and Return Codes:

Condition Code Return Code in Ry Meaning

0 The original
contents of Ry.

DIAGNOSE completed successfully.

1 1 (X'01') Addressing exception condition.

1 3 (X'03') Paging or storage error.

1 4 (X'04') VOLSER fetch-protected.

1 5 (X'05') Invalid virtual device number or device not dedicated

1 6 (X'06') The VOLSER function does not support this device.

1 7 (X'07') ALET-specification exception condition: For an XC virtual
machine in access-register mode, Ax contains an ALET that
has an unexpected bit setting.

1 8 (X'08') ALEN-translation exception condition: For an XC virtual
machine in access-register mode, Ax contains an ALET that
cannot be translated.

1 9 (X'09') Addressing-capability exception condition: For an XC virtual
machine in access-register mode, Ax contains an ALET that
designates an address space for which your virtual machine's
access has been revoked.

DIAGNOSE Code X'D4' – Set Alternate User ID
Privilege Class: B

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'D4' is used by a virtual machine when scheduling work on one of its worker virtual
machines on behalf of an end user. The end user's user ID is considered to be the alternate user ID.

CP uses the alternate user ID in the following ways:

• Placed in the IPVMID field of the APPC/VM connection pending interrupt data when the worker issues
and APPCVM CONNECT. (See Part 3, “The Advanced Program-to-Program Communication/VM,” on page
385 for more information.)

• Used as a spool file origin ID for spool files created by the worker. It establishes the end user's user ID
as the originator of spool files created while the worker machine is processing the end user's request.
Special files such as VMDUMP files are not affected as they rightly belong to the worker machine. When

DIAGNOSE code X'D4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 161

the worker virtual machine is finished with the end user's request, the master virtual machine can set a
new alternate user ID for the next job, or cancel alternate user ID processing for the worker.

Notes:

1. The parameter list may cross a page boundary.
2. Invoking DIAGNOSE code X'D4' does not change the user ID for existing IUCV/APPC connections.
3. If an external security manager is installed and security label checking is enabled, but no SECLABEL

is supplied (for either subcode 0 or 4), then the worker's VMDBK is updated with the alternate user's
default SECLABEL.

4. If security label checking is not enabled, the DD4ALTSC value supplied with a subcode 4 is ignored.

Entry Values for Subcode X'00':
Rx

X'00'
Ry

Pointer to the parameter list, DD4PARM0. DD4PARM0 COPY is provided in the HCPGPI macro library.
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

DD4PARM0 DSECT
The parameter list is in this format:

DD4PTGT
is the user ID of the worker virtual machine which will run with an alternate user ID. If less than eight
characters, it must be padded on the right with blanks.

DD4PALT
is the user ID of the end user requesting the work from the worker virtual machine. This user ID
will appear as the originator of the spool files. If specified and less than eight characters, it must be
padded on the right with blanks. If set to zero (not specified), then the alternate user ID and alternate
SECLABEL functions are set off (reset to zero).

Entry Values for Subcode X'04':
Rx

X'04'
Ry

Pointer to the parameter list, DD4PARM4.
Ay

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

DD4PARM4 DSECT
The parameter list is in this format:

DIAGNOSE code X'D4'

162 z/VM: 7.3 CP Programming Services

DD4PTGT
is the user ID of the worker virtual machine which will run with an alternate user ID. If less than eight
characters, it must be padded on the right with blanks.

DD4PALT
is the user ID of the end user requesting the work from the worker virtual machine. This user ID
will appear as the originator of the spool files. If specified and less than eight characters, it must be
padded on the right with blanks. If set to zero (not specified), then the alternate user ID and alternate
SECLABEL functions are set off (reset to zero).

DD4ALTSC
is the SECLABEL of the end user requesting the work from the worker virtual machine. The worker
virtual machine will acquire this SECLABEL value. The SECLABEL is a 1- to 8-character value. If
specified and less than eight characters, it must be padded on the right with blanks.

Exit Values: Return codes are returned for DIAGNOSE code X'D4'.

Responses
Return Codes: Return codes are returned as follows:

Return Code in Rx Meaning

0 (X'00') Successful completion

4 (X'04') Paging or storage error on the parameter list

8 (X'08') Worker virtual machine not found

12 (X'0C') ESM authorization denied

16 (X'10') Alternate user ID currently set through APPC/VM

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'D4' is given incorrect
data:

Problem Encountered Cause

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.
• The issuer does not have class B privileges.

Specification exception One of the following:

• Rx and Ry are the same register
• The Rx register does not contain a valid subcode.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the parameter list.

DIAGNOSE Code X'D8' – Read Spool File Blocks on System Queues
Privilege Class: D

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'D8' to read information from the spool file descriptor block of any file in the
system. This DIAGNOSE code:

• Allows a program to request the first or next spool file block on the specified queue: reader, printer,
punch, or system data (NSS/DCSS, UCR, IMG, NLS, and TRF files). Files for a particular user, or any file
within the system, can be specified. The descriptor block information is returned in DIAGNOSE code
X'14' compatibility format (SFBLOKs), or in z/VM format (SPFBKs).

DIAGNOSE Code X'D8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 163

• Returns a bitmap indicating which CP-owned volumes contain at least one page of a designated spool
file.

Entry Values:
Rx

Points to the parameter list, DD8PARM0. DD8PARM0 COPY is provided in the HCPGPI macro library.
The parameter list must be on a doubleword boundary.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing DD8PARM0 and the output buffer for the spool file descriptor blocks.
If Rx designates general register 0, if Ax contains X'00000000', or if the virtual machine is not in XC
mode, DD8PARM0 and the output buffer are in the host-primary address space.
DD8PARM0 DSECT

The parameter list, in this format:

DD8PSPID
is the spool file ID of the previous file when reading the next file. It is zero if the first file is to be
read.

DD8PCODE
X'0000'

Return SFBLOK format (see Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page
983)

X'0004'
Return SPFBK format (see Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983)

DD8PBUF
is the address of the storage buffer in the same address space as the parameter list. The buffer
must start on a doubleword boundary and must reside in the same host address space as the
parameter list.

DD8PUSER
is the owner of the file if the selection is by the user. This field must be either zero or blank when
requesting the first file on a queue.

DD8PTYPE
is the queue to be searched:
X'80'

Printer files
X'40'

Punch files

DIAGNOSE Code X'D8'

164 z/VM: 7.3 CP Programming Services

X'20'
Reader files

X'10'
System data

DD8PSIZE
is the size of the user buffer in doublewords. If it is zero, the first 20 doublewords are returned. If
the address in DD8PBUF plus the length is greater than the size of the address space, the buffer is
wrapped to the beginning of the address space.

DD8PCFLG
means choose system or individual user files.
X'00'

Get the next file for the user.
X'80'

Get the next file regardless of the user.
DD8PBMSZ

is the size of a guest buffer area to hold the bitmap, in doublewords. If this field is non-zero, up
to 32 bytes of the bitmap are returned. The bitmap area is located immediately after the spool file
block area in the issuer's buffer.

DD8PRSVD
is reserved for IBM use and must be zero.

Responses
Condition Codes: Condition codes are returned as follows:

Condition Code Meaning

0 Successful completion; the spool file block has been copied to the user's buffer.

1 No files are available after the input file.

2 The starting file is not found.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'D8' is given incorrect
data:

Problem Encountered Cause

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.
• The issuer of the command does not have class D privileges.

Specification exception Any of the following:

• The parameter list or buffer is not doubleword-aligned.
• The reserved fields are not set to zeros.
• The subfunction code is not defined.
• The spool file ID is specified without the corresponding user

ID.
• The user ID was not specified, but the request was for a

particular user.
• The queue specified is not valid.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the parameter list or to store
into the spool file block buffer.

DIAGNOSE Code X'D8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 165

DIAGNOSE Code X'DC' – Control Application Monitor Record
Collection

Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'DC' to control the collection of monitor records for an application. Data is collected
by CP from buffers declared using this Diagnose function and may be used to analyze application
performance.

Entry Values: To issue DIAGNOSE code X'DC', the user's directory must contain an OPTION APPLMON
statement.
Rx

Specifies the guest real address of the parameter list.
Ax

Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list and the product ID. If Rx designates general register
0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the parameter list and
product ID are in the host-primary address space.

Ry
Used for responses, no entry value required

Rx and Ry can be the same register.

There are two different formats for the parameter list based on the addressing mode of the caller. For
24-bit and 31-bit addressing mode callers there is a 16 byte parameter list:

DIAG
is a 2-byte field containing the DIAGNOSE code X'00DC'.

FCN
is a 1-byte field specifying the function code of the DIAGNOSE:
X'00'

START INTERVAL RECORDING

Declare the buffer for CP monitoring. Application data is collected from this buffer by CP at each
sample interval when application data monitoring is enabled by the MONITOR SAMPLE ENABLE
APPLDATA command. For more information on this command, see z/VM: CP Commands and
Utilities Reference. The application may place data in the buffer at any time. The application may
declare more than one buffer from the same virtual machine. Each START request for a given
buffer address and length is treated independently.

X'01'
STOP INTERVAL OR CONFIGURATION RECORDINGS

Delete the buffer from CP monitoring. Application data is no longer collected from this buffer.
Each STOP request for a given buffer address and length is treated independently. If this function
is issued for an interval recording buffer then if the APPLDATA domain is enabled for event
monitoring, CP generates an event monitor record, indicating that collection of application data
has stopped.

X'02'
GENERATE EVENT RECORD

Collect application data from the buffer immediately as an event record, if the APPLDATA domain
is enabled for event recording by the MONITOR EVENT ENABLE APPLDATA command.

DIAGNOSE code X'DC'

166 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

X'03'
START CONFIGURATION RECORDING

Collect application data from the buffer immediately as an event record, if the APPLDATA domain
is enabled for event recording by the MONITOR EVENT ENABLE APPLDATA command. In addition,
collect application data from the buffer as a sample configuration record whenever monitor
configuration data is generated.

LEN
is a 1-byte field specifying the byte length of the parameter list.

The minimum length is X'10'. A length beyond X'10' is allowed, but only the first 16 bytes are used by
CP.

PRODUCT-ID-ADDRESS
is a 4-byte guest real address in the same address space as the parameter list. This address is treated
as a 31-bit address if the guest PSW is in 31- or 64-bit addressing mode. It is treated as a 24-bit
address in 24-bit addressing mode. It points to a 16-byte field that identifies the product that is
generating the data. The contents of this field are fetched at the time DIAGNOSE code X'DC' START is
issued, and are saved for inclusion in subsequent monitor records.

A suggested format for the product ID is pppppppffnvvrrmm, where ppppppp is the product number or
unique name, ff is the function of the product, n is the record number of the product, vv is the version,
rr is the release, and mm is the modification level.

CP does not check or interpret this data; it is included in all monitor records generated for this buffer.
This data may be useful for identification purposes.

Note: This field is not specified with function code X'01'.

////...
is a 2-byte reserved field.

BUFFER-LEN
is a 2-byte field specifying the length of the application data buffer.

The minimum value for BUFFER-LEN is 1; the maximum value is 4012.

Note: The maximum figure is derived to provide minimal space in a 4KB page for the static portion
(APLSDT_APHDR) of the monitor record, MRAPLSDT, the end-of-frame monitor record, MRMTREOF,
and a 12-byte control area record.

For information on how to access and print the layouts or lengths of the monitor records, see z/VM:
Performance.

BUFFER-ADDRESS
is the 4-byte guest absolute address in the host-primary address space of the application data buffer.
This address is treated as a 31-bit address if the guest PSW is in 31- or 64-bit addressing mode. It is
treated as a 24-bit address in 24-bit addressing mode.

A trial fetch is made of the data buffer when DIAGNOSE code X'DC' is executed; this fetch is subject
to key-controlled protection, but not to fetch-protection override or storage-protection override.
Subsequent to the completion of DIAGNOSE code X'DC', the buffer contents are fetched periodically
to be included in monitor records; no storage protection mechanisms apply to these fetches.

In z/Architecture mode the following 32–byte parameter list is preferred for 24–, 31– and 64–bit
addressing mode callers:

DIAGNOSE code X'DC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 167

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3

DIAG
is a 2-byte field containing the DIAGNOSE code X'00DC'.

FCN
is a 1-byte field specifying the function code of the DIAGNOSE:
X'80'

START INTERVAL RECORDING

Declare the buffer for CP monitoring. Application data is collected from this buffer by CP at each
sample interval when application data monitoring is enabled by the MONITOR SAMPLE ENABLE
APPLDATA command. For more information on this command, see z/VM: CP Commands and
Utilities Reference. The application may place data in the buffer at any time. The application may
declare more than one buffer from the same virtual machine. Each START request for a given
buffer address and length is treated independently.

X'81'
STOP INTERVAL OR CONFIGURATION RECORDINGS

Delete the buffer from CP monitoring. Application data is no longer collected from this buffer.
Each STOP request for a given buffer address and length is treated independently. If this function
is issued for an interval recording buffer, then if the APPLDATA domain is enabled for event
monitoring, CP generates an event monitor record indicating that collection of application data has
stopped.

X'82'
GENERATE EVENT RECORD

Collect application data from the buffer immediately as an event record if the APPLDATA domain is
enabled for event recording by the MONITOR EVENT ENABLE APPLDATA command.

X'83'
START CONFIGURATION RECORDING

Collect application data from the buffer immediately as an event record if the APPLDATA domain
is enabled for event recording by the MONITOR EVENT ENABLE APPLDATA command. In addition,
collect application data from the buffer as a sample configuration record whenever monitor
configuration data is generated.

LEN
is a 1-byte field specifying the byte length of the parameter list. The minimum length for 64-bit
addressing mode access is X'20'. A length beyond X'20' is allowed, but only the first 32 bytes are used
by CP.

-Not used 1-
is a 4-byte field not used under 64-bit addressing mode.

////…
is a 2-byte reserved field.

BUFFER_LEN
is a 2-byte field specifying the length of the application data buffer. The minimum value for
BUFFER_LEN is 1; the maximum value is 4012.

Note: The maximum figure is derived to provide minimal space in a 4KB page for the static portion
(APLSDT_APHDR) of the monitor record, MRAPLSDT, the end-of-frame monitor record, MRMTREOF,
and a 12-byte control area record.

For information on how to access and print the layouts or lengths of the monitor records, see z/VM:
Performance.

-Not used 2-
is a 4-byte field not used under 64-bit addressing mode.

PRODUCT_ID_ADDRESS
is an 8-byte guest real address in the same address space as the parameter list. The addressing mode
of the guest PSW determines whether this address is a 24-bit, 31-bit, or 64-bit address. It points to

DIAGNOSE code X'DC'

168 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3

a 16-byte field that identifies the product that is generating the data. The contents of this field are
fetched at the time DIAGNOSE code X'DC' START is issued, and are saved for inclusion in subsequent
monitor records.

A suggested format for the product ID is pppppppffnvvrrmm, where:
ppppppp

is the product number or unique name
ff

is the function of the product
n

is the record number of the product
vv

is the version
rr

is the release
mm

is the modification level

CP does not check or interpret this data; it is included in all monitor records generated for this buffer.
This data may be useful for identification purposes.

Note: This field is not specified with function code X'01'.

BUFFER_ADDRESS
is the 8-byte guest absolute address in the host-primary address space of the application data buffer.
This address is always treated as a 64-bit address regardless of the guest PSW addressing mode.

A trial fetch is made of the data buffer when DIAGNOSE code X'DC' is executed; this fetch is subject
to key-controlled protection, but not to fetch-protection override or storage-protection override.
Subsequent to the completion of DIAGNOSE code X'DC', the buffer contents are fetched periodically
to be included in monitor records; no storage protection mechanisms apply to these fetches.

Exit Values: Ry contains the return code and the condition code is set in the guest's PSW. See the
Responses section for descriptions.

Usage Notes
1. Recording of application data takes effect only when the application has issued DIAGNOSE code X'DC'

to declare the buffer, its user has been enabled (through the CP MONITOR command) for monitoring
in the APPLDATA domain, the CP monitor has been started, and at least one user is connected to the
*MONITOR IUCV system service.

2. If a buffer, or any part of it, resides within a saved segment and the segment is then purged, CP
performs a DIAGNOSE code X'DC' STOP operation for this buffer, thereby stopping application data
collection from this buffer.

3. If an application neglects to use the STOP function for its declared buffers then monitor data collection
continues until the virtual machine logs off or performs a system reset. This may cause unexpected
results.

Responses
Return Codes: Upon completion of DIAGNOSE code X'DC', the following return codes are placed in Ry:

Condition Code Return Code in Ry Meaning

0 0 (X'00') The request was successfully completed.

1 1 (X'01') The DIAGNOSE code is not X'00DC'.

1 2 (X'02') The function code is invalid (not X'00', X'01', X'02', or X'03').

DIAGNOSE code X'DC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 169

Condition Code Return Code in Ry Meaning

1 3 (X'03') The length of the parameter list is invalid.

1 4 (X'04') The parameter list could not be accessed because of a CP
paging or storage error trying to read one of the following:

• DIAGNOSE code X'DC' parameter list
• Application buffer
• Product ID field.

1 5 (X'05') The virtual machine is not authorized to issue DIAGNOSE
code X'DC'.

1 6 (X'06') The BUFFER-LEN is not within the valid range.

1 7 (X'07') The address contained in the PRODUCT-ID-ADDRESS field is
not within the address space specified in Ax (applicable for
function code X'00' only).

1 8 (X'08') The address contained in the BUFFER-ADDRESS field is
not within the addressable storage of the virtual machine's
primary address space (applicable for function code X'00'
only).

1 9 (X'09') A DIAGNOSE code X'DC' STOP (function code X'01') was
issued for a buffer that had not been declared to CP
for monitoring. That is, no DIAGNOSE code X'DC' START
had been issued for the buffer whose address and length
correspond to the BUFFER-ADDRESS and BUFFER-LEN of the
DIAGNOSE code X'DC' STOP request.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'DC' is given incorrect
data:

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to

• Fetch the parameter list or product ID (except that
an addressing exception condition on the product ID is
reported through return code 7).

• Perform a trial fetch from the application data buffer
(except that an addressing exception condition on the
buffer is reported through return code 8). Fetch-protection
override and storage-protection override do not apply to the
trial fetch.

DIAGNOSE Code X'E0' – System Trace File Interface
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'E0' provides a virtual machine access to system trace files. It allows the virtual
machine to pass a buffer containing trace records to CP to be recorded in a system trace file. The trace
files created by DIAGNOSE code X'E0' may be read using the CP TRACERED utility. For more information
on TRACERED, see z/VM: CP Commands and Utilities Reference.

DIAGNOSE Code X'E0'

170 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Entry Values:
Rx

Is not used for the WRITE function. Rx may not be specified as register 15.
Rx+1

Contains the guest real address of the block of data to be written. The contents of this block are
described in “Content and Format of Trace Blocks” on page 172. The block, including its header, may
be up to 32KB in length.

Ax+1
Is used only by XC virtual machines in access-register mode. Ax+1 contains the ALET for the address
space containing the block of data.

Ry
Is subcode X'00000004' for the Write function. Ry may not be specified as register 15.

The other subcodes of DIAGNOSE code X'E0' are not programming interfaces, therefore, they are
described in Appendix F, “Reserved DIAGNOSE Codes,” on page 1029.

Exit Values: On return from the DIAGNOSE processor, a return code is set in the Ry+1 register. The return
codes are right-justified in the register and padded with zeros. Only the right-most byte value is given in
Responses below.

Usage Notes
1. Write requests using this DIAGNOSE code are ignored if TRSOURCE...BLOCK had not been enabled.
2. When a program writes a block of trace data, the first two bytes of each record must be the length of

that record so that a read routine can determine the length of each record.
3. An addressing-capability exception condition (RC=X'44') can occur after writing has begun.

Responses
Return Codes: The following return codes are returned for subcode X'00000004', the Write function:

Return Code in
Ry+1

Meaning

0 (X'00') Successful write of trace data

4 (X'04') Trace not enabled for this user or user ID not in BLOCK mode

12 (X'0C') I/O error

28 (X'1C') Invalid buffer address

32 (X'20') Invalid buffer length

36 (X'24') Protection exception condition

40 (X'28') Invalid header fields

48 (X'30') Invalid subcode

52 (X'34') Rx+1, Ry, and Ry+1 overlap or Rx is register 15

56 (X'38') Severe error

60 (X'3C') ALET-specification exception condition: For an XC virtual machine in access-
register mode, Ax+1 contains an ALET that has an unexpected bit setting. See
the “Access Exceptions” on page 8.

64 (X'40') ALEN-translation exception condition: For an XC virtual machine in access-register
mode, Ax+1 contains an ALET that cannot be translated. See the “Access
Exceptions” on page 8.

DIAGNOSE Code X'E0'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 171

Return Code in
Ry+1

Meaning

68 (X'44') Addressing-capability exception condition: For an XC virtual machine in access-
register mode, Ax+1 contains an ALET that designates an address space for which
your virtual machine's access has been revoked. (See usage note “3” on page 171.)
See the “Access Exceptions” on page 8

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'04' is given incorrect
input data:

Problem Encountered Cause

Specification exception Ry is register 15.

Content and Format of Trace Blocks
Trace Blocks Containing Virtual Machine Trace Entries: The following diagram describes the format
of a block of trace data collected by CP as a result of a TRSOURCE command and saved in a system
data file or the block of trace data passed to CP through DIAGNOSE code X'E0' write interface. (When
a TRSOURCE...BLOCK request is made, CP inserts its own identifier into the block descriptor record and
saves the time zone differential.)

Blength
Is the 2-byte field containing the number of bytes in the block. On a write request it must be less than
or equal to 32KB and not less than 32 bytes (X'0020').

///////
Is a 2-byte reserved field. This field must contain zeros. It is reserved for system use.

Rlength
Is a 2-byte length of the first record, a block descriptor record used by TRACERED. This length is 28
(X'001C').

///////
Is a 2-byte reserved field. This field must contain zeros. It is reserved for system use.

Merge-routine-name
is the 8-character name of the user exit routine that can be called for each trace entry record in this
block to determine its TOD clock value. This routine is used for merging entries. If no name is provided

DIAGNOSE Code X'E0'

172 z/VM: 7.3 CP Programming Services

(that is, the field is blank), the records in this block cannot be merged with other trace output. On a
write, this field is not checked by CP.

Note: The method used to create the merge routine user exit can be found in the z/VM: CP Commands
and Utilities Reference under the TRACERED utility.

Format-routine-name
is the 8-character name of the user exit routine that can be called for each trace entry record in this
block to provide formatted output. If no name is provided (that is, the field is blank), the records in
this block cannot be formatted. On a write, this field is not checked by CP.

Note: The method used to create the format routine user exit can be found in the z/VM: CP Commands
and Utilities Reference under the TRACERED utility.

Bdesc
This block descriptor code is reserved for system use. It is set by CP to indicate what kind of trace
data the block contains.

• C'D' — Data type trace
• C'E' — Guest type trace, event mode
• C'B' — Guest type trace, block mode
• C'I' — I/O type trace
• C'L' — LAN type trace

///////
Is a 3-byte reserved field.

Time Zone Differential
is a 4-byte field reserved for system use. When the record is written, CP places the time zone
differential here.

Trace Entry Records
contains trace records from the guest virtual machine. In order for these records to be processed by
the CP TRACERED utility, each record must begin with a record descriptor word consisting of a 2-byte
record length followed by the record.

DIAGNOSE Code X'E4' – Return Minidisk Information/Define Full-
Pack Overlay

Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'E4' to get information about a user's minidisk or to create a full-pack overlay.

The functions are:
Code

Function
X'00'

To get information about the device currently linked by a logged-on user.
X'01'

To get information about the device as defined in the directory when the device is attached to the
system.

X'02'
To create a full-pack overlay minidisk of the volume on which a given user's specified minidisk resides.

X'03'
To create for the authorized user a full-pack overlay minidisk of the volume when given the real device
and cylinder/block number.

DIAGNOSE code X'E4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 173

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

To issue function X'00' or X'01' with a user ID other than your own, your virtual machine's directory entry
must include OPTION DEVINFO or DEVMAINT. To issue function X'02' or X'03', your virtual machine's
directory entry must include OPTION DEVMAINT. If External Security Manager (ESM) protection is
enabled for DIAGNOSE code X'E4', then the ESM's criteria are used rather than the directory options.

Entry Values:
Rx

Contains the address of a parameter list. This must be on a doubleword boundary. The format
of this parameter list is function dependent. References to the parameter list are not subject to
key-controlled protection and low-address protection.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

Ry
Is not examined as input. Rx and Ry can be the same register.

Exit Values:
Rx

Contains the address of the parameter list supplied as input. If sufficient length LEN is specified, the
parameter list output area contains the output values of the DIAGNOSE function. The format of this
parameter list is function dependent. If Rx and Ry are the same register, the address of the parameter
list will be overlaid by the return code.

Ry
Contains a return code. Rx and Ry can be the same register.

Function X'00' and Function X'01'
These functions of this DIAGNOSE let a user get relocation and real device information about the minidisk
of another user. If ESM (External Security Manager) protection for DIAGNOSE code X'E4' is not enabled,
then the DEVINFO or DEVMAINT options of the OPTION directory control statement are required for
authorization. For more information on the OPTION directory control statement, see z/VM: CP Planning
and Administration.

This DIAGNOSE also allows a user to get relocation information about the user's own minidisk. No special
authorization is required. For input, you have to supply the following parameter list:

DIAGNOSE code X'E4'

174 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

DIAG
is the halfword DIAGNOSE code. It must contain the halfword X'00E4'.

FCN
is the byte function code.
Code

Function
X'00'

To get information about the device currently linked by a logged-on user.
X'01'

To get information about the device as defined in the directory.
LEN

is the byte length, in bytes, of the parameter list. The minimum value is X'10'. The recommended
value is X'30' to accommodate the output area.

VDEVNO
is the halfword virtual device number of the minidisk for which information is to be returned.

////...
is a halfword reserved area.

USERID
is the user ID of the virtual machine that owns, or has a link to, the minidisk specified in VDEVNO. This
is a doubleword of 8 characters. An asterisk (*) implies the issuer's user ID. The asterisk or user ID
must be left-aligned and padded with blanks.

OUTPUT AREA
is the four doubleword parameter list output area. It is not checked or used as input.

For output, the following information is returned in the parameter list:

(input area)
is the two doublewords of the input area. This area is not used for output and is not changed from the
user's input specified values.

VOLSER
is the 6-character volume serial number of the real volume that contains the minidisk. If the minidisk
is a virtual disk in storage, it is not mapped to a real device, and the value (VDSK) is returned in this
field.

DIAGNOSE code X'E4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 175

RDEVNO
is the halfword real device number of the device containing the minidisk. If the minidisk is a virtual
disk in storage, zeros are returned in this field.

BEGINNING
is the fullword relocation factor of the minidisk. This factor is specified in cylinders for CKD and ECKD
devices or in blocks for FBA devices. The relocation factor is the number of the cylinder or block
where the minidisk starts on the real volume.

EXTENT
is the fullword number of cylinders/blocks allocated to the minidisk. To get the number of the last
cylinder or block, add the beginning cylinder/block to the total number of cylinders/blocks (extent)
minus one.

FLAGS
is the device information:
Code

Meaning
X'80'

The real device associated with the specified virtual device is dedicated.
X'40'

The specified virtual device is a full-pack minidisk.

Note: The relocation factor is zero, and the extent is the number of cylinders or blocks apparently
available to CP. The number of cylinders or blocks might be less than the full number of cylinders
or blocks on the real volume if CP is running as a guest on another VM system in which less than a
full-pack is defined.

X'20'
The specified virtual device is a non-full-pack minidisk.

X'10'
The device is a minidisk defined using the DEVNO operand of the MDISK directory control
statement.

X'08'
The device is the primary device of a duplex pair.

X'04'
The device is the secondary device of a duplex pair.

X'02'
The scope of device is local.

X'01'
The scope of local is from DEFINE MDISK.

////...
is a 1-byte reserved area.

OVDEV
is the halfword virtual device number as defined for the virtual device owner.

////...
is a fullword reserved area.

OUSER
is the doubleword user ID of the virtual device owner. If the virtual device is a minidisk that was
defined in terms of the source directory, OVDEV is the virtual device number that was found on the
MDISK directory control statement and OUSER is the user ID of the user in whose directory entry it
was found; otherwise, the OUSER-OVDEV pair is the same as was given as input.

DIAGNOSE code X'E4'

176 z/VM: 7.3 CP Programming Services

Function X'02'
This function of DIAGNOSE code X'E4' creates for the invoker a full-pack overlay minidisk of the volume
on which a given user's specified minidisk resides. If ESM (External Security Manager) protection for
DIAGNOSE code X'E4' is not enabled, then the DEVMAINT option of the OPTION directory control
statement is required for authorization. For more information on the OPTION directory control statement,
see z/VM: CP Planning and Administration. For input, you have to supply the following parameter list:

DIAG
is the halfword DIAGNOSE code. It must contain the halfword X'00E4'.

FCN
is the byte function code. It must contain the byte X'02'.

LEN
is the byte length, in bytes, of the parameter list. The minimum value is X'12'. The recommended
value is X'20' to accommodate the output area.

VDEVNO1
Is the halfword virtual device number of the minidisk in the other user's virtual machine configuration.

VDEVNO2
Is the halfword virtual device number in the invoker's virtual machine configuration which is to be
assigned to the full-pack overlay minidisk created by this function.

USERID
is the user ID of the virtual machine that owns, or has a link to, the minidisk you specified in
VDEVNO1. This is a doubleword of 8 characters. An asterisk (*) implies the issuer's user ID. The
asterisk and user ID must be left-aligned and padded with blanks.

MODE
is the halfword access mode for LINK.

The valid 2-character modes are:

1. R specifies Read-Only access. The full-pack overlay request will not be granted if any other user
has write or exclusive (read or write) access to the minidisk identified as VDEVNO1. R must be
left-aligned and padded with a blank.

2. W specifies Write access. The full-pack overlay request will not be granted if any other user has
read or write access to the minidisk identified as VDEVNO1. W must be left-aligned and padded
with a blank.

3. M specifies Multiple access. The full-pack overlay request will be granted as a write link unless
another user has an existing write, stable (read or write) or exclusive (read or write) access to the
minidisk identified as VDEVNO1. M must be left-aligned and padded with a blank.

4. RR specifies Read Only access. The full-pack overlay request will always be granted as a read link
unless another user has an existing exclusive (read or write) access.

DIAGNOSE code X'E4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 177

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

5. WR specifies Write access desired, Read access acceptable. The full-pack overlay request will
be granted as a write access unless another user holds an existing read or write access to the
minidisk identified as VDEVNO1, in which case the request will be granted as a read access,
unless the existing access is an exclusive (read or write) access.

6. MR specifies Write access desired, Read access acceptable. The full-pack overlay request will be
granted as a write access unless another user has an existing write, stable or exclusive access
to the minidisk identified as VDEVNO1, in which case the request will be granted as a read link,
unless the existing access is an exclusive access.

7. MW specifies Write access is desired. The full-pack overlay request will always be granted as a
write link, unless another user has an existing stable or exclusive access to the minidisk identified
as VDEVNO1.

8. SR specifies stable Read-only access is desired. The full-pack overlay request will be granted
unless another user has an existing write or exclusive access to the minidisk identified as
VDEVNO1. No other write access requests for this minidisk will be granted while this access
is held.

9. SW specifies stable Write access. The full-pack overlay request will be granted as a write access
unless another user has an existing access to the minidisk identified as VDEVNO1. No other write
access requests for this minidisk will be granted while this access is held.

10. SM specifies stable Multiple access. The full-pack overlay request will be granted as a write
access unless another user has an existing write, stable or exclusive access to the minidisk
identified as VDEVNO1. No other write access requests for this minidisk will be granted while this
access is held.

11. ER specifies Exclusive Read-only access. The full-pack overlay request will be granted as read-
only unless another user has an existing read or write access to the minidisk identified as
VDEVNO1. No other access requests for this minidisk will be granted while this access is held.

12. EW specifies Exclusive Write access. The full-pack overlay request will be granted as a write
access unless another user has an existing read or write access to the minidisk identified as
VDEVNO1. No other access requests for this minidisk will be granted while this access is held.

////...
is a 6-byte reserved area.

OUTPUT AREA
is the doubleword parameter list output area. It is not checked or used as input.

Notes:

1. If VDEVNO1 represents a LINK in the target user's directory, a maximum of 50 indirect directory
iterations are attempted to find the MDISK definition.

2. If VDEVNO1 is a virtual disk in storage, this function fails with a return code of 0302. A virtual disk
in storage is allocated from host storage rather than mapped to a real DASD, and therefore cannot be
used to generate a full-pack overlay minidisk.

3. To use the stable and exclusive LINK access modes it is necessary for the user to have the appropriate
option(s), LNKStabl or LNKExclu, specified on the OPTION directory control statement in the user's
directory definition.

4. Function X'02' checks for conflicting links against all active minidisks that share any cylinders with
the specified minidisk. For example, a user with a full-pack minidisk on the same volume might cause
function X'02' to give return code 307.

5. Based on the state of the DASD and the target directory entry, function X'02' behaves as described by
the following table:

DIAGNOSE code X'E4'

178 z/VM: 7.3 CP Programming Services

DASD state Directory MDISK
statement

Result

Free Defined by DEVNO The device is attached to the system
and a DEVNO full-pack overlay is
defined.

Free Defined by VOLSER Error condition.

Attached to the system as a DEVNO-
defined minidisk.

Defined by DEVNO Define a DEVNO-defined full-pack
overlay.

Attached to the system as a DEVNO-
defined minidisk.

Defined by VOLSER Error condition.

Attached to the system as a VOLSER-
defined minidisk.

Defined by DEVNO Error condition.

Attached to the system as a VOLSER-
defined minidisk.

Defined by VOLSER Define a VOLSER-defined full-pack
overlay.

6. This full-pack overlay appears to its owner as an ordinary full-pack minidisk, but is intended for access
to only the specified minidisk.

For output, the following information is returned in the parameter list:

(input area)
contains the three doublewords of the input area. This area is not used for output and is not changed
from the user's input specified values.

USERID
is the user ID of a virtual machine that has a link to the minidisk and is preventing the full-pack overlay
from being defined. This field is filled in only if the return code is 307. This is a doubleword of 8
characters. The user ID is left-aligned and padded to the right with blanks.

Function X'03'
This function of DIAGNOSE code X'E4' creates a full-pack overlay read/write minidisk for the invoker,
giving the volume real device number and the CYLINDER/BLOCK number. If ESM (External Security
Manager) protection for DIAGNOSE code X'E4' is not enabled, then the DEVMAINT option of the OPTION
directory control statement is required for authorization. For more information on the OPTION directory
control statement, see z/VM: CP Planning and Administration.

For input, you have to supply the following parameter list:

DIAGNOSE code X'E4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 179

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

DIAG
is the halfword DIAGNOSE code. It must contain the halfword X'00E4'.

FCN
is the byte function code. It must contain the byte X'03'.

LEN
is the byte parameter list length, in bytes. The minimum value is X'12'. The recommended value is
X'20' to accommodate the output area.

RDEVNO
Is the halfword real device number of the volume.

VDEVNO
Is the halfword virtual device number in the invoker's virtual machine configuration which is to be
assigned to the full-pack overlay minidisk created by this function.

CYLINDER/BLOCK
is one word and contains the real cylinder/block number.

////...
is a 4-byte reserved area

MODE
is the halfword access mode for LINK.

The valid 2-character modes are:

1. R specifies Read-Only access. The full-pack overlay request will not be granted if there is an
existing write or exclusive access to the minidisk that includes CYLINDER/BLOCK on volume
RDEVNO. R must be left-aligned and padded with a blank.

2. W specifies Write access. The full-pack overlay request will not be granted if there is any existing
read or write access to the minidisk that includes CYLINDER/BLOCK on volume RDEVNO. W must
be left-aligned and padded with a blank.

3. M specifies Multiple access. The full-pack overlay request will be granted as a write link unless
another user has an existing write, stable or exclusive access to the minidisk that includes
CYLINDER/BLOCK on volume RDEVNO. M must be left-aligned and padded with a blank.

4. RR specifies Read-Only access. The full-pack overlay request will always be granted as a read
link unless another user has an existing exclusive access to the minidisk that includes CYLINDER/
BLOCK on volume RDEVNO.

5. WR specifies Write access desired, Read access acceptable. The full-pack overlay request will be
granted as a write link unless another user has an existing read or write access to the minidisk
that includes CYLINDER/BLOCK on volume RDEVNO, in which case the request will be granted as
a read access unless the existing access is an exclusive access.

DIAGNOSE code X'E4'

180 z/VM: 7.3 CP Programming Services

6. MR specifies Write access desired, Read access acceptable. The full-pack overlay request will be
granted as a write link unless another user has an existing write access to the minidisk identified
as CYLINDER/BLOCK on volume RDEVNO, in which case the request will be granted as a read
access unless the existing access is an exclusive access.

7. MW specifies Write access. The full-pack overlay request will always be granted as a write link,
unless there is an existing stable or exclusive access to the minidisk that includes CYLINDER/
BLOCK on volume RDEVNO.

8. SR specifies stable Read-only access. The full-pack overlay request will not be granted if any
other user has write or exclusive access to the minidisk that includes CYLINDER/BLOCK on
volume RDEVNO. No other write access requests that include this cylinder/block will be granted
while this access is held.

9. SW specifies stable Write access. The full-pack overlay request will be granted as a write access
unless another user has an existing access to the minidisk that includes CYLINDER/BLOCK on
volume RDEVNO. No other write access requests that include this cylinder/block will be granted
while this access is held.

10. SM specifies stable Multiple access. The full-pack overlay request will be granted as a write
access unless another user has an existing write, stable or exclusive access to the minidisk that
includes CYLINDER/BLOCK on volume RDEVNO. No other write access requests that include this
cylinder/block will be granted while this access is held.

11. ER specifies Exclusive Read-only access. The full-pack overlay request will not be granted if any
other user has an existing read or write access to the minidisk that includes CYLINDER/BLOCK on
volume RDEVNO. No other access requests that include this cylinder/block will be granted while
this access is held.

12. EW specifies Exclusive Write access. The full-pack overlay request will not be granted if any other
user has an existing read or write access to the minidisk that includes CYLINDER/BLOCK on
volume RDEVNO. No other access requests that include this cylinder/block will be granted while
this access is held.

////...
is a 6-byte reserved area.

OUTPUT AREA
is a 14-byte parameter list output area. It is not checked or used as input.

Note:

1. To use the stable and exclusive LINK access modes it is necessary for the user to have the appropriate
option(s), LNKStabl and/or LNKExclu, specified on the OPTION directory control statement in the
user's directory definition.

2. Function X'03' checks for conflicting links against all active minidisks that include the specified
cylinder. For example, a user with a full-pack minidisk on the specified volume might cause function
X'03' to give return code 407.

3. This full-pack overlay appears to its owner as an ordinary full-pack minidisk, but is intended for access
to only the specified cylinder or block.

4. Based on the state of the DASD, function X'03' behaves as described by the following table:

DASD state Result

Free The device is attached to the system and a DEVNO full-pack
overlay is defined.

Attached to the system as a
DEVNO-defined minidisk.

Define a DEVNO-defined full-pack overlay.

Attached to the system as a
VOLSER-defined minidisk.

Define a VOLSER-defined full-pack overlay.

For output, the following information is returned in the parameter list:

DIAGNOSE code X'E4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 181

(input area)
contains the three doublewords of the input area. This area is not used for output and is not changed
from the user's input specified values.

USERID
is the user ID of a virtual machine that has a link to the minidisk and is preventing the full-pack overlay
from being defined. This field is filled in only if the return code is 407. This is a doubleword of 8
characters. The user ID is left-aligned and padded to the right with blanks.

Usage Notes
1. For customers running RACF/VM, please see z/VM: RACF Security Server Security Administrator's

Guide, for procedures on how to protect the invocation of DIAGNOSE code X'E4'.
2. For functions X'00' and X'01', when the secondary device of a duplex pair is specified, the minidisk

information for the corresponding primary will be returned except for the rdev field. This must occur
because two volumes in a duplex, duplex pending, or suspended state allow only the primary volume
to be fully functional. I/O operations to the secondary are limited.

3. The maximum allowed link indirections is 50.
4. You may not be authorized to issue this DIAGNOSE code if an external security manager is installed on

your system. For additional information, contact your security administrator.

Responses
Condition Codes and Return Codes: Upon successful completion of DIAGNOSE code X'E4', the condition
code is set to 0 and Ry is set to 0.

Upon failure of DIAGNOSE code X'E4', the condition code is set to 1 and Ry is assigned one of the
following return codes:

Return Code Meaning

0001 (X'01') The parameter list contains the wrong DIAGNOSE code. The DIAGNOSE code must
be X'00E4'.

0002 (X'02') The parameter list contains an invalid function code. The function code must be
one of X'00', X'01',X'02', or X'03'.

0003 (X'03') The parameter list specifies a length that is too short to contain the input
parameters.

0004 (X'04') The parameter list could not be accessed because of a system error.

DIAGNOSE code X'E4'

182 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha7_v7r3.pdf#nameddest=icha7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha7_v7r3.pdf#nameddest=icha7_v7r3

Return Code Meaning

0005 (X'05') The user does not have directory authorization or ESM authorization. You must
have the appropriate options (such as DEVINFO, DEVMAINT, LNKStabl, LNKExclu,
and so forth) specified on your OPTION directory control statement and if RACF/VM
is installed, the appropriate RACF PERMITS executed on your behalf.

0100 (X'64') For function code 00, user ID USERID is not logged on.

0101 (X'65') For function code 00, virtual device VDEVNO is not in the specified user's current
virtual I/O configuration.

0102 (X'66') For function code 00, virtual device VDEVNO is not a minidisk or a temporary disk.

0200 (X'C8') For function code 01, user ID USERID is not defined to the system.

0201 (X'C9') For function code 01, virtual device VDEVNO is not in the specified user's current
virtual I/O configuration.

0202 (X'CA') For function code 01, virtual device VDEVNO is not a minidisk.

0203 (X'CB') For function code 01, virtual device VDEVNO is on an unmounted real volume.

0204 (X'CC') For function code 01, the directory blocks could not be accessed because of
system error.

0211 (X'D3') For function code 01, there is an excessive number of indirect links.

0300 (X'12C') For function code 02, user ID USERID is not defined to the system.

0301 (X'12D') For function code 02, virtual device VDEVNO1 is not in the specified user's current
virtual I/O configuration.

0302 (X'12E') For function code 02, virtual device VDEVNO1 must be a regular minidisk, not a
T-disk or a virtual disk in storage.

0303 (X'12F') For function code 02, virtual device VDEVNO1 is on an unmounted real volume.

0304 (X'130') For function code 02, the directory blocks could not be accessed because of
system error.

0305 (X'131') For function code 02, a full-pack overlay already exists.

0306 (X'132') For function code 02, virtual device VDEVNO1 is not accepted because it is a
minidisk that contains CP system space (for example, paging, spooling, directory,
or T-disk).

0307 (X'133') For function code 02, minidisk has existing links to it that prevent linking with
the access mode requested. The USERID returned identifies the holder of the
"strongest" conflicting link (the first in the series EW, ER, SW, SR, R/W, R/O) to the
minidisk identified by VDEVNO.

0308 (X'134') For function code 02, LINK unsuccessful.

0309 (X'135') For function code 02, access mode invalid.

0310 (X'136') For function code 02, reserved for IBM use.

0311 (X'137') For function code 02, there is an excessive number of indirect links.

0400 (X'190') For function code 03, reserved for IBM use.

0401 (X'191') For function code 03, reserved for IBM use.

0402 (X'192') For function code 03, real device RDEVNO is not a DASD.

0403 (X'193') For function code 03, real device RDEVNO is dedicated, off-line, or unmounted.

DIAGNOSE code X'E4'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 183

Return Code Meaning

0404 (X'194') Reserved.

0405 (X'195') For function code 03, a full-pack overlay already exists.

0406 (X'196') For function code 03, real device RDEVNO is not accepted because it lies within CP
system space (for example, paging, spooling, directory, or T-disk).

0407 (X'197') For function code 03, minidisk has existing links to it that prevent linking with the
access mode requested. The USERID returned identifies the holder of the strongest
conflicting link (the first in the series EW, ER, SW, SR, R/W, R/O) to the minidisk
defined on the real volume RDEVNO at CYLINDER/BLOCK.

0408 (X'198') For function code 03, LINK unsuccessful.

0409 (X'199') For function code 03, access mode invalid.

0410 (X'19A') For function code 03, CYLINDER/BLOCK number invalid.

0411 (X'19B') For function code 03, real device RDEVNO is a PAV or HyperPAV alias device.

Program Exceptions: These program exceptions can occur if the DIAGNOSE X'E4' is given incorrect input
data:

Problem Encountered Cause

Specification exception The address of the parameter list specified in Rx is not on a
doubleword boundary.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch from or store into the
parameter list.

DIAGNOSE Code X'EC' – Query GUEST Trace Status
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'EC' to determine whether data transmitted by a virtual machine through a Query
GUEST Trace command is placed in a system trace file.

Entry Values:
Rx

Contains the address of the input buffer.

The input buffer should be in the following format:

Byte 0
is the subcode and must be X'00'

Byte 1
can be

DIAGNOSE Code X'EC'

184 z/VM: 7.3 CP Programming Services

• X'00' — Non-group trace entries
• X'01' — Group trace entries

Note: This value is not used by z/VM. It exists only for compatibility with VM/SP, VM/SP HPO, and
VM/ESA (370 Feature).

Note: The minimum input length is 2 bytes.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the input buffer. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the input buffer is in the host-primary
address space.

Rx+1
Contains the length in bytes of the input buffer. The length must be at least 1 and no more than 255
bytes.

Ry
Contains the address of the output buffer. An output buffer must be provided.

Ay
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the output buffer. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the output buffer is in the host-primary
address space.

Ry+1
Contains the length in bytes of the output buffer. The length must be at least 1 and no more than 255
bytes.

Exit Values:
Ry+1

Contains the return code when an error occurred.

Information returned from DIAGNOSE code X'EC' is as follows:
Byte 0

X'00'

Byte 0 is in the following format:
x...

Reserved (always on)
.x..

Indicates TRSOURCE has been issued for this user
..x.

Indicates TRSOURCE ENABLE has been issued in EVENT mode for this user
...x

Indicates TRSOURCE ENABLE has been issued in BLOCK mode for this user
.... xxxx

Reserved

Note: The minimum output length is 1 byte.

Responses
Condition Codes and Return Codes: Upon completion, DIAGNOSE code X'EC' sets the following
condition and return codes:

DIAGNOSE Code X'EC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 185

Condition Code Return Code in
Ry+1

Meaning

0 Query completed without error. Rx, Rx+1, Ry, Ry+1 not
changed.

1 4 (X'04') Reserved. Not used by z/VM.

1 8 (X'08') An error occurred. The input buffer size is invalid; it is either
too small or too large.

1 12 (X'0C') An error occurred. The output buffer size is invalid; it is either
too small or too large.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'EC' is given incorrect
data:

Problem Encountered Cause

Specification exception Any of the following:

• Rx or Ry is register 15.
• Rx is the same register as Ry or Ry+1
• Rx+1 is the same register as Ry
• The subcode (input byte 0) is invalid.

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch input data or store output
data.

DIAGNOSE Code X'F8' – Spool File Origin Information
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'F8' to have your virtual machine associate the originating node and the user
ID information with a virtual output device, or retrieve the stored information for one of your virtual
machine's spool files.

Subcodes:

• X'00' for the function to associate originating node and user ID with a virtual output device. This can
be done only if you are authorized with the SETORIG operand on the OPTION control statement in your
virtual machine's directory entry.

• X'01' for the general user function to retrieve the stored originating node and user ID information for a
spool file.

Entry Values:
Rx

Contains the subcode.
Ry

Contains the guest real address of the doubleword-aligned parameter list, DF8PARM. DF8PARM COPY
may be found in the HCPGPI macro library. The parameter list is used differently for each subcode.

Ay
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the DF8PARM. If Ry designates general register 0, if Ay contains

DIAGNOSE Code X'F8'

186 z/VM: 7.3 CP Programming Services

X'00000000', or if the virtual machine is not in XC mode, the DF8PARM is in the host-primary address
space.

The DF8PARM parameter list for subcode X'00' is as follows:

DF8VCODE
is reserved for IBM use. It must be binary zeros.

DF8DVNUM
is the output unit record device number (in hexadecimal).

DF8ONODE
is the originating node for the spool file creation (in EBCDIC). This is left-aligned and padded on the
right with blanks.

DF8OUSER
is the originating user ID for the spool file created (in EBCDIC). This is left-aligned and padded on the
right with blanks.

The DF8PARM parameter list for subcode X'01' is as follows:

DF8VCODE
is reserved for IBM use. It must be binary zeros.

DF8SPID
is the spool file ID for which the originating node and the user ID information is retrieved (in
hexadecimal).

DF8ONODE
is the originating node for the spool file (to be filled in by CP). This is left-aligned and padded on the
right with blanks.

DF8OUSER
is the originating user ID for the spool file (to be filled in by CP). This is left-aligned and padded on the
right with blanks.

Exit Values:

DIAGNOSE Code X'F8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 187

Rx
On return, Rx contains the return code for the subcode.

Usage Notes
1. If subcode X'00' is issued for a virtual output device, all files generated on that output device contain

the originating node and user ID information. To change the originating node and user ID information
for a virtual output device, subcode X'00' must be issued again. To clear the originating node and user
ID information, subcode X'00' must be issued again for the virtual output device, specifying blanks for
the originating information.

2. When subcode X'00' is issued for a virtual output device, the originating node and user ID information
is stored with the next file to be opened on that device. If there is an open file on the device when
subcode X'00' is issued, that file does not contain the originating node and user ID information
specified on the DIAGNOSE issued after the file is opened. You must issue subcode X'00', then open
the file on the specified device.

3. Subcode X'01' may not be used for an open spool file. A return code will be set indicating that the
spool file was not found (RC=8).

Responses
Return Codes: Return codes for subcode X'00' are as follows:

Return Code in Rx Meaning

0 (X'00') Successful completion; the originating node and user ID information has been
associated with the virtual output device.

8 (X'08') Device not found

12 X'0C') The device is not a unit record output device.

Return codes for subcode X'01':

Return Code in Rx Meaning

0 (X'00') Successful completion; the originating node and user ID information has been
stored in the parameter list.

4 (X'04') The originating node and user ID information were not stored for this file;
DF8OUSER contains the user ID of the originator of the spool file on this node.

8 (X'08') Spool file not found

16 (X'10') Fatal paging I/O error

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'F8' is given incorrect
data:

Problem Encountered Cause

Specification exception Any of the following:

• The subcode is not defined.
• The parameter list is not doubleword-aligned.
• The DF8VCODE is invalid.
• The issuer of the privileged subcode X'00' is not authorized

in the CP directory.

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE Code X'F8'

188 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch from or store into the
parameter list.

DIAGNOSE Code X'210' – Retrieve Device Information
Privilege Class: G

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'210' to request identifying information and status information about a particular
virtual device. DIAGNOSE code X'210' replaces DIAGNOSE code X'24' for new applications. Your virtual
machine must specify the address of the virtual device for which information is requested. DIAGNOSE
code X'24' should still be used in order to determine the address of the virtual console.

Entry Values:
Rx

contains the guest real address of the Virtual/Real Device Characteristics Block (VRDCBLOK), which
includes the input parameter list and an area for the output data.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the buffer. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary address
space.

Virtual/Real Device Characteristics Block (VRDCBLOK)
is the buffer containing the address of the virtual device (bytes 0 and 1) and the length of the buffer
(bytes 2 and 3). The block must be on a fullword boundary and if a length of 16 bytes or more is
specified, then bytes 14-15 must be zeros; otherwise, a specification exception occurs.

Exit Values:
Virtual/Real Device Characteristics Block

contains virtual device, real device, and control unit information.

Virtual/Real Device Characteristics Block
The Virtual/Real Device Characteristics Block contains virtual device, real device, and control unit
information, and data from READ DEVICE CHARACTERISTICS. The symbolic names in Table 21 on page
191 describe the corresponding fields. See Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page
983 for a description and for bit definitions of the fields in the diagram.

You can use the VRDCBLOK DSECT, which is in the VRDCBLOK COPY file (found in the HCPGPI macro
library), to map the buffer.

The VRDCBLOK DSECT fields are shown in Figure 15 on page 190 and are described in the table following
the figure.

DIAGNOSE Code X'210'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 189

VRDCDVN0 VRDCLEN

VRDRRCC

VRDCVTYP VRDCVSTA VRDCVFLA

VRDCRCCL VRDCCRTY VRDCCRMD VRDCCRFT VRDCRDAF

D e v I c e D e p e n d e n t

I n f o r m a t I o n

(See the CKD/ECKD or FBA mapping in the following table)

VRDCBLOK DSECT
Byte

0

8

10

18

20

28

30

38

40

48

50

58

60

Reserved

VRDCPGID

VRDCUNDV

68

70

78

80

88

90

98

A0

A8

B0

B8

C0

C8

D0

D8

E0

E8

F0

F8

100

VRDCVERS

Reserved

Reserved

Reserved for Input/Output

VRDCRDEV

Figure 15. Fields in the VRDCBLOK DSECT

2 For the meanings of these bytes, refer to Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page
983.

DIAGNOSE Code X'210'

190 z/VM: 7.3 CP Programming Services

Table 21. Fields in the VRDCBLOK DSECT

Displace-
ment

Name Length Description

000 VRDCDVNO XL2 Virtual device number (input field)

002 VRDCLEN XL2 VRDCBLOK length (input)

004 VRDCVDAT Virtual Device Data (Ry information from DIAGNOSE code X'24')

004 VRDCVCLA XL1 Virtual device class.2 Indicates the device class of the
device (DASD, Tape, Unit Record...)

005 VRDCVTYP XL1 Virtual device type.2 Specifies the device type of the device.

006 VRDCVSTA XL1 Virtual device status.2

007 VRDCVFLA XL1 Virtual device flag.2

008 VRDCRCDT Real Device Data (Ry+1 information from DIAGNOSE code X'24')

008 VRDCRCCL XL1 Real device type class.2 Indicates the device class of the
device (DASD, Tape, Unit Record....)

009 VRDCCRTY XL1 Real device type.2 Specifies the device type of the device.

00A VRDCCRMD XL1 Real device model. See Usage Note “3” on page 196.

00B VRDCCRFT XL1 Real device feature. Real device feature code2 for
nondisplay (graphic) devices or real device line length for
display/graphic devices.

DIAGNOSE Code X'210'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 191

Table 21. Fields in the VRDCBLOK DSECT (continued)

Displace-
ment

Name Length Description

00C VRDCUNDV XL1 Underlying device code for devices that emulate other
device types. Valid only for CLASTAPE devices. Zero for all
other device classes. Possible values for CLASTAPE devices
are:
VRDCTNAT X'00'

Native non-emulation drive
VRDCT120 X'01'

3590 128-TRK drive (B1A or B11) attached to 3590
A00/A50/A60 control unit, emulating 3490E

VRDCTVTS X'02'
3490E virtual drive in a 3494 VTS tape library

VRDCT121 X'03'
3590 128-TRK drive (B1A or B11) attached to 3591
control unit, emulating 3490E

VRDCT255 X'09'
3590 256-TRK drive (E1A or E11) attached to 3590
A00/A50/A60 control unit, emulating 3590 B1A or B11

VRDCT254 X'0A'
3590 256-TRK drive (E1A or E11) attached to 3590
A00/A50/A60 control unit, emulating 3490E

VRDCT384 X'0B'
3590 384-TRK drive (H11 or H1A) attached to 3590
A60 control unit, emulating 3590/B1x

VRDCT383 X'0C'
3590 384-TRK drive (H11 or H1A) attached to 3590
A60 control unit, emulating 3490E

VRDCT512 X'10'
3592 512–track drive (J1A or J11) attached to 3590
A60 or 3592 J70 control unit, emulating 3590 B1A or
B11

VRDCT511 X'11'
3592 512–track drive (J1A or J11) attached to 3590
A60 control unit, emulating 3490E

VRDCT896 X'12'
3592 896–track drive (Model E05) attached to 3590
J70 control unit, emulating 3590/B1x

VRDCTENC X'13'
3592 896-track drive (Model E05) emulating 3590 B1x,
and enabled for encryption.

VRDCTEN2 X'14'
3592 1152-track drive (Model E06) emulating 3590
B1x, and enabled for encryption.

DIAGNOSE Code X'210'

192 z/VM: 7.3 CP Programming Services

Table 21. Fields in the VRDCBLOK DSECT (continued)

Displace-
ment

Name Length Description

VRDCTEN3 X'15'
3592 2176-track drive (Model E07) emulating 3590
B1x, and enabled for encryption.

VRDCTUNK X'FF'
Unknown emulation drive

00D VRDCRDAF XL1 Real device additional features that are present, such as
FlashCopy® capabilities.
VRDCDA4F X'01'

Diagnose A4 SCSI format supported.
VRDCEMRD X'02'

No underlying real device. Real device features are
emulated.

VRDCXRCT X'04'
Time stamping is active for specified device.

VRDCFCFV X'20'
Full volume FlashCopy enabled.

VRDCFCDS X'80'
Data set-level FlashCopy enabled.

00E VRDCRSVD XL2 Reserved. This value must be zero on z/VM 5.3.0 and
earlier.

060 VRDCVERS XL1 Specifies version of output buffer. Should be 0 on input. On
output, if this value is X'00' only the first 96B of output data
are valid.

061 VRDCRSIO XL31 Reserved for future Input/Output fields. Should be set to
zero for input.

080 VRDCRDEV XL2 Contains the device number of the underlying real device.
This value is only valid when the diagnose returns with a CC
of 0 and the VRDCEMRD bit is OFF. If there is a nonzero CC
or the VRDCEMRD bit is ON, then VRDCRDEV will be X'0000'
but invalid.

082 VRDRRCC XL1 Contains condition codes explaining reasons why a real
device may not be able to be reserved. If this field is zero,
real Reserve CCWs will be issued to the underlying real
device.
VRDSUPRR X'80'

Underlying device does not support reserve/release.
VRDMDWOV X'40'

Minidisk without the 'v' suffix.
VRDNFPDD X'20'

Minidisk that is not a full-pack.
VRDFPNSB X'10'

Full-pack/dedicated device and the underlying device
does not have the SHARED bit on.

083 VRDCRSVE XL125 Reserved.

DIAGNOSE Code X'210'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 193

Table 21. Fields in the VRDCBLOK DSECT (continued)

Displace-
ment

Name Length Description

CKD/ECKD mapping follows:

010 VRDCSTRT Start of the RDC Data Bytes

010 VRDCCUTY XL2 Control unit type as returned by SENSE ID (bytes 1,2)
or READ DEVICE CHARACTERISTICS (bytes 0,1) channel
commands.

012 VRDCCUMD 1X Control unit model as returned by SENSE ID (byte 3)
or READ DEVICE CHARACTERISTICS (byte 2) channel
commands

013 VRDCDVTY XL2 Device type number as returned by SENSE ID (bytes 4,5)
or READ DEVICE CHARACTERISTICS (bytes 3,4) channel
commands.

015 VRDCDVMD 1X Device model number as returned by SENSE ID (byte
6) or READ DEVICE CHARACTERISTICS (byte 5) channel
commands.

016 VRDCDVFE XL3 Device features as returned by READ DEVICE
CHARACTERISTICS (bytes 6-8) channel command.

019 VRDCSDFE 1X Storage director features as returned by READ DEVICE
CHARACTERISTICS (byte 9) channel command.

01A VRDCDVCL 1X Device class code as returned by READ DEVICE
CHARACTERISTICS (byte 10) channel command.

01B VRDCDVCO 1X Device type code as returned by READ DEVICE
CHARACTERISTICS (byte 11) channel command.

01C VRDDEVF1 XL28 Device Specific Field

01C VRDCPRIM 1H Number of primary cylinders. If greater than 65520
cylinders, this will be set to X'FFFE' and the correct value
will be found only in VRDCCYLS (see displacement 04C
below).

01E VRDCTRKC 1H Tracks per cylinder

020 VRDCSECT 1X Number of sectors

021 VRDCTOTR XL3 Total usable track length

024 VRDCHA XL2 Length for HA and R0

026 VRDCMODE 1X Track capacity calculation mode

027 VRDCMDFR 1X Track capacity calculation modification

028 VRDCNKOV 1H Nonkeyed record overhead

02A VRDCKOVH 1H Keyed area overhead

02C VRDCALTC 1H Address of first alternate cylinder

02E VRDCALTR 1H Number of alternate tracks

030 VRDCDIG 1H Address of diagnostic cylinder

032 VRDCDIGN 1H Number of diagnostic tracks

034 VRDCDVCY 1H Address of first device cylinder

DIAGNOSE Code X'210'

194 z/VM: 7.3 CP Programming Services

Table 21. Fields in the VRDCBLOK DSECT (continued)

Displace-
ment

Name Length Description

036 VRDCDVTR 1H Number of device support tracks

038 VRDCMDR 1X MDR record ID (CKD, ECKD, FBA)

039 VRDCOBR 1X OBR record ID (CKD, ECKD, FBA)

03A VRDDEVF2 XL22 Device Specific Field

03A VRDCCUID 1X Control unit ID

04C VRDCCYLS F Number of primary cylinders. See also VRDCPRIM
(displacement 01C above).

050 VRDCPGID XL11 VM Real Path Group ID

FBA mapping follows:

010 VRDCFBA XL32 FBA DASD Data

010 VRDCOPER 1X Device operation modes

011 VRDCFBAF 1X FBA device features

012 VRDCFBAC 1X FBA device class

013 VRDCFBAT 1X FBA device type

014 VRDFBAD1 1X Device Specific Field

014 VRDCRCSZ XL2 Physical record size

016 VRDCBKCG XL4 Blocks per cyclical access group (track)

01A VRDCBKAP XL4 Blocks per access position

01E VRDCBKMA XL4 Blocks under movable access

022 VRDCBKFA XL4 Blocks under fixed access

026 VRDCBKAA XL2 Blocks in alternate area

028 VRDCBKCE XL2 Blocks in CE area

02A VRDCBFLG XL2 Number of buffered log bytes

02C VRDCATMI XL2 Minimum access time

02E VRDCATMA XL2 Maximum access time

03A VRDFBAD2 XL22 Device Specific Field

Usage Notes
1. The field VRDCVERS should be cleared before issuing DIAGNOSE X'210'. This field will be updated as

output from the DIAGNOSE, such that:

• The field will remain unchanged if the value of VRDCLEN is not greater than X'60'.
• The field will remain unchanged if z/VM is version 5.3.0 or earlier.
• The field will be set to X'01' if z/VM is version 5.4.0 or greater and the value of VRDCLEN is greater

than X'60'. This implies that the data returned beginning at offset X'60' is valid up until VRDCLEN.
2. It is strongly recommended that the field VRDCRSIO be cleared prior to issuing the DIAGNOSE. IBM

presently does not check these fields for input, but may do so in future releases.

DIAGNOSE Code X'210'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 195

3. The device information in bytes X'004' through X'009', and X'00B', is returned in a format consistent
with DIAGNOSE code X'24'. However, the real device model field in DIAGNOSE code X'24' and the
corresponding byte (X'00A') in DIAGNOSE code X'210' return different information. For a 3380 DASD,
DIAGNOSE code X'24' returns the high-order 4 bits of the control unit model number in its high-order
4 bits, and the low-order 4 bits of the device model number in its low-order 4 bits in the real device
model field. For a 3390 and 9345, DASD, the model number does not apply for DIAGNOSE code X'24'.
Instead, byte X'00A' in DIAGNOSE code X'210' contains only device model information for all devices.

4. Refer to the hardware manuals for content descriptions of the sense ID or the READ DEVICE
CHARACTERISTICS channel command results.

5. If DIAGNOSE code X'210' is issued for a device that does not support RDC, the RDC data bytes starting
with Byte X'015' show the static device information and do not necessarily conform to the format
given.

6. When DIAGNOSE code X'210' is issued for a minidisk, the number of primary cylinders or blocks is set
to the size of the minidisk. The alternate, diagnostic, and device support cylinder or block addresses,
and number of tracks, are all set to zero.

7. DIAGNOSE code X'210' returns as much information to the virtual machine as possible in the
VRDCBLOK. For example, if the length is only 8 bytes, then only the virtual device information is
returned.

8. If the virtual device is a virtual disk in storage, it is not mapped to a real device. However,
condition code 0 is returned for successful completion, and VRDCBLOK contains information about
the simulated real device.

9. When issued for a virtual console and the user is logged on to the system console, CP will return real
device information indicating that the real device is an undefined line mode terminal.

Responses
Condition Codes: Upon completion of DIAGNOSE code X'210', the condition codes are:

Condition Code Meaning

0 Normal completion.

1 CP paging error, no data returned.

2 The virtual device exists, but is not associated with a real device.

3 Invalid device address, or the virtual device does not exist.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'210' is given incorrect
data:

Problem Encountered Cause

Specification exception • The VRDCBLOK address is not on a fullword boundary.
• The VRDCBLOK length is not 8 bytes or greater.
• For z/VM 5.3.0 and earlier: The VRDCRSVD field does not

contain zeros.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch from or store into the
VRDCBLOK.

DIAGNOSE Code X'218' – Retrieve Real CPU Identification
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE Code X'218'

196 z/VM: 7.3 CP Programming Services

Use DIAGNOSE code X'218' to request the real CPU identification. The information is stored in a buffer
address supplied in the Ry register.

Entry Values:
Rx

Contains a function code:

• Function code 0

The CPU identification is returned to an 8-byte buffer address in Ry. The data returned is the same
as supplied by the STIDP instruction on the real machine.

• Function code 1

The CPU identification is returned in 16-byte character format to the second half of a 32-byte
buffer addressed by Ry. The first half of the 32-byte buffer contains a 16-byte translation string
supplied by the calling program. Each byte of the translation string corresponds in sequence to the
characters 0 (zero) through F.

Ry
Contains a guest real address of a buffer in the following format:

• Function code 0 in Rx: CPU identification; for format, see the description of STORE CPU ID in
z/Architecture Principles of Operation, SA22-7832.

• Function code 1 in Rx:

A 32-byte buffer; the first 16 bytes contains a translation string supplied by the calling program. The
translated CPU identification is stored in character format in the second half of the buffer.

The 8-byte binary CPU ID (STIDP instruction format) is converted to a 16-byte character string by
translating each 4-bit nibble to one byte, picking the byte at the corresponding offset (0-15) in the
given 16-byte translation string.

For example, specifying the translation string '0123456789ABCDEF' results in the CPU
identification being returned in character format in the second half of the 32-byte buffer.

Ay
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the buffer. If Ry designates general register 0, if Ay contains
X'00000000', or if the virtual machine is not in XC mode, the buffer is in the host-primary address
space.

Exit Values:
Rx

Contains a return code
Ry

Does not change.

Results are stored in the CPU identification buffer.

Usage Notes
1. In a multiprocessor configuration, this DIAGNOSE may execute on different processors in subsequent

calls, resulting in different a CPU identification being returned.

DIAGNOSE Code X'218'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 197

https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

2. As is the case for all programs that run in virtual machines, the execution of a program that uses this
DIAGNOSE code, and the results of the DIAGNOSE code that the program observes, can be altered
through the use of CP debugging commands (such as TRACE).

Responses
Return Codes: Upon completion of DIAGNOSE code X'218', the following return codes are placed in Rx:

Return Code in Rx Meaning

0 (X'00') Real CPU identification is successfully returned to the buffer address supplied in
Ry.

4 (X'04') DIAGNOSE is not supported on a lower level Control Program. Virtual CPU
identification is returned to the buffer address supplied in Ry.

Examples
The following code shows how DIAGNOSE code X'218' can be called to get the binary CPU ID from the
real processor:

DIAG CSECT

* Register Equates *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* Save registers and set addressability *

 STM R14,R12,12(R13) Save the registers
 LR R12,R15 Point to start of program
 USING DIAG,R12 Establish addressability
 LR R6,R13 Save callers save area address
 LA R13,SAVEAREA Get my save area address
 ST R13,8(R6) Store my save area address
 ST R6,4(R13) Store caller save area address

* Set Rx, Ry and call diagnose *

 LA R7,0 Set up Rx Register
 LA R8,BUFFER Ry points to buffer
 DIAG R7,R8,X'218' Call DIAG 218
 C R7,=F'4' Virtual CPU ID?
 BE VIRTUAL
 C R7,=F'0' Real CPU ID?
 BE REAL
 LINEWRT DATA=BADRC Bad return code from diagnose
 B QUIT Exit program
VIRTUAL LINEWRT DATA=VIRTCPU Virtual CPU ID message
 B UNPACK
REAL LINEWRT DATA=REALCPU Real CPU ID message

* Convert CPU ID to character format and display *

UNPACK UNPK CPUID(16),BUFFER(8) Unpack buffer
 OI CPUID+15,X'F0' Fix last byte
 TR CPUID(16),TABLE Translate to character

DIAGNOSE Code X'218'

198 z/VM: 7.3 CP Programming Services

 LINEWRT DATA=CPUID+1 Display CPU ID
QUIT L R13,SAVEAREA+4 Get old savearea address
 LM R0,R12,20(R13) Restore the registers
 L R14,12(R13) Restore return address
 BR R14 Exit program
SAVEAREA DC 18F'0' Program save area
VIRTCPU DC C'Virtual CPU ID returned'
REALCPU DC C'Real CPU ID returned'
BADRC DC C'Bad Return code from diagnose'
BUFFER DC 8X'0' 8 byte buffer for diagnose
CPUID DC CL16' ' Character format CPU ID
 DC C'0' Extra character for UNPACK
 DS 0D
TABLE DC 240X'00' Translate table
 DC X'F0F1F2F3F4F5F6F7F8F9C1C2C3C4C5C6'
 LTORG
 END

This sample code shows how DIAGNOSE code X'218' can be called to retrieve the character format CPU
ID:

DIAG CSECT

* Register Equates *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* Save registers and set addressability *

 STM R14,R12,12(R13) Save the registers
 LR R12,R15 Point to start of program
 USING DIAG,R12 Establish addressability
 LR R6,R13 Save callers save area address
 LA R13,SAVEAREA Get my save area address
 ST R13,8(R6) Store my save area address
 ST R6,4(R13) Store caller save area address

* Set Rx, Ry and call diagnose *

 LA R7,1 Set up Rx Register
 LA R8,BUFFER Ry points to buffer
 DIAG R7,R8,X'218' Call DIAG 218
 C R7,=F'4' Virtual CPU ID?
 BE VIRTUAL
 C R7,=F'0' Real CPU ID?
 BE REAL
 LINEWRT DATA=BADRC Bad return code from diagnose
 B QUIT Exit program
VIRTUAL LINEWRT DATA=VIRTCPU Virtual CPU ID message
 B DISPLAY
REAL LINEWRT DATA=REALCPU Real CPU ID message
DISPLAY LINEWRT DATA=CHARCPU Display CPU ID
QUIT L R13,SAVEAREA+4 Get old savearea address
 LM R0,R12,20(R13) Restore the registers
 L R14,12(R13) Restore return address
 BR R14 Exit program
SAVEAREA DC 18F'0' Program save area
VIRTCPU DC C'Virtual CPU ID returned'
REALCPU DC C'Real CPU ID returned'
BADRC DC C'Bad Return code from diagnose'

BUFFER DS 0D 32 byte buffer for diagnose
TRSTRING DC C'0123456789ABCDEF' Translation string
CHARCPU DC CL16' ' Character CPU ID stored here

DIAGNOSE Code X'218'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 199

 LTORG
 END

DIAGNOSE Code X'238' – Time-Based Unique Identifiers
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'238' to obtain a time stamp value and clock sequence number to form unique
time-based serial numbers.

The time stamp value is defined as a 60 bit number. It represents the number of 100-nanosecond
intervals of time that have passed since the standard time origin. The standard time origin, the time which
corresponds to a TOD clock value of zero, is January 1, 1900 0 a.m. Coordinated Universal Time (UTC).

The clock sequence number is defined as a 14 bit value. It is given a random non-zero value on the first
IPL of the system or when the system is IPLed with no valid checkpoint data. It is incremented (modulo
16384) every time the system is IPLed or every time diagnose X'238' is issued and the system clock
appears to have been set backwards. The range of values for the clock sequence number is from 1 to
16383. When the clock sequence number reaches 16383, the value on the subsequent IPL would be 1.

Entry Values:
Rx

Contents must be 0.
Ry

Contents must be 0.

Exit Values:
Rx

The low order 28 bits (4-31) are set to the high order 28 bits of the time stamp value. The high order 4
bits (0-3) are set to zero.

Rx+1
Set to the low order 32 bits of the time stamp value.

Ry
The clock sequence number is placed in the low order 14 bits (18-31). The high order 18 bits (0-17)
are set to zero.

Usage Notes
1. No two invocations of this diagnose instruction will return the same 60 bit time stamp value unless the

time on the system clock is set backwards. This is true even when the diagnose instruction is issued
simultaneously by multiple virtual CPUs.

2. The clock sequence number is maintained over a system shutdown. Thus, along with the 60 bit time
stamp value, the clock sequence number can be used to ensure that a unique time-based serial
number is returned to the issuer of the diagnose.

3. Although the time stamp value returned by this diagnose is derived from the TOD clock, this diagnose
is not intended to be used as a timing mechanism for application programs.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'238' is given incorrect
data:

DIAGNOSE Code X'238'

200 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Specification exception Any of the following:

• Input value for either Rx or Ry was not 0.
• Rx and Ry are specified as the same register.
• Rx was specified as R15.
• Rx+1 and Ry were specified as the same register.

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE Code X'248' – Copy-To-Primary Service
Privilege Class: Any (XA, ESA, and Z virtual machines only)

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'248' to copy data from an address space designated by a host access-list entry
(ALE) on your virtual machine's host access list into your virtual machine's host-primary address space.
An XA, ESA, or Z virtual machine must use this DIAGNOSE to access address spaces on its host access list
because the host access-register translation process of the XC architecture is not available to it.

This DIAGNOSE code copies data from an ALET-specified source address space into the host-primary
address space. The source location is specified by an address and an ALET contained in an even-odd
general-register pair. The target location is specified by an address contained in the even register of an
even-odd general-register pair, and the number of bytes to be copied is specified in the odd register of
that even-odd register pair.

The ALET identifying the source address space is translated through host access-register translation
as if the virtual machine was an XC virtual machine operating in the access-register mode. An ALEN-
translation, ALET-specification, or addressing-capability exception may possibly be recognized on this
DIAGNOSE code as a result of host access-register translation, even though these exceptions cannot
normally occur for an XA or DAT-off ESA or Z virtual machine. If an ALEN-translation or addressing-
capability exception occurs, zeros will be stored at location 160 and the ALET being translated will be
stored at locations 168-171.

Movement of data from the source area to the target area starts at the left end (lowest-numbered
address) of both areas and proceeds to the right. The storage-operand-consistency specification for the
storage accesses and the handling of destructive overlap conditions is the same as is defined for the
MOVE CHARACTER (MVC) instruction. For destructive-overlap purposes, the target is considered to be
specified by ALET X'00000000'; thus, if a non-zero source ALET is used to access the host-primary space,
destructive overlap may not be recognized and may yield unpredictable results.

Entry Values:
Rx

Contains the real address of the first byte of the target storage area. This target-area address is
treated as a 24-bit or 31-bit real address as appropriate.

The target area always resides within the host-primary address space.

Address wraparound for the target addresses occurs according to the ESA rules for 24-bit address
wraparound when the target addresses are treated as 24-bit addresses, and according to the ESA
rules for 31-bit address wraparound when the target addresses are treated as 31-bit addresses.

Rx must designate the even register of an even-odd pair of general registers; otherwise a specification
exception is recognized.

Rx+1
Bits 8-31 of the Rx+1 register contain the number of bytes to be copied from the source address
space into the host-primary address space, starting at the addresses contained in the Rx and Ry
registers.

DIAGNOSE Code X'248'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 201

Bits 0-7 of the Rx+1 register are ignored.

Ry
Contains the real address of the first byte of the source storage area. This source-area address is
always treated as a 31-bit real address.

The source area resides within the host-address space designated by the ALET in register Ry+1.

Address wraparound for the source addresses occurs according to the ESA rules for 31-bit address
wraparound.

Ry must designate the even register of an even-odd pair of general registers; otherwise a specification
exception is recognized.

Ry+1
Contains an ALET designating the source address space. This ALET must designate a valid ALE in your
virtual machine's host access list, or be an ALET of X'00000000' designating your virtual machine's
host-primary address space. If the ALET does not designate a valid ALE, then host-ART-related
exceptions will be recognized as in ESA/XC or z/XC architecture (ALEN-translation, ALET-specification,
or addressing-capability) depending on the particular exception condition.

The Rx and Ry fields must designate different registers; otherwise a specification exception is recognized.

Exit Values: None.

Usage Note
The target addresses are treated as 24-bit or 31-bit real addresses based on the setting of the
addressing-mode bit, bit 32 of the PSW.

See “How Addresses Are Processed” on page 5.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'248' is given incorrect
data:

Problem Encountered Cause

Specification exception • The hardware support required for VM Data Spaces is not
available.

• Your virtual machine is not an XA, ESA, or Z virtual machine.
• The Rx or Ry field does not designate an even-numbered

register.
• The Rx and Ry fields designate the same register.

Privileged-operation exception The virtual machine is in the problem state.

Access exception, including ESA/XC and
z/XC host-ART exceptions (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the source data or store into
the target area.

DIAGNOSE Code X'250' – Block I/O (Standard Blocksize)
Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'250' to perform input/output operations to a direct-access storage device with
consistent block sizes and supported by z/VM. DIAGNOSE code X'250' provides a virtual machine
with device independent access to its virtual DASD devices either synchronously or asynchronously.

DIAGNOSE Code X'250'

202 z/VM: 7.3 CP Programming Services

DIAGNOSE code X'250' also supports input/output operations to and from data spaces. Status of the
DIAGNOSE is contained in the condition code, the Rx+1 register and the block I/O entry list.

Entry Values:
Rx

is the general register that contains the guest real address of the block I/O parameter list (HCPBIOPL).
The BIOPL must be on a doubleword boundary.

The entire BIOPL will be replaced in guest storage when this function completes.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the block I/O parameter list (BIOPL). If Rx designates general register
0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the
host-primary address space.

Ry
In z/Architecture and z/XC mode the high order word of register Ry is ignored. The low order register
word contains a function code in the low order byte. The possible function codes are:

• X'00' - Initialize the environment to perform block I/O to a virtual DASD
• X'01' - Read/Write to a virtual DASD
• X'02' - Remove the block I/O environment for a virtual DASD

The remaining three bytes must contain binary zeros.

Exit Values:
Rx+1

Contains the return code indicating the result of this request. Refer to “Responses” on page 211 for a
description of the possible values of this field. In z/Architecture mode the high order word of register
Rx+1 is unaltered.

Initialize Block I/O to a Device
This function establishes the necessary environment to invoke subsequent read/write functions of
DIAGNOSE code X'250' on a virtual device.

The function code for an initialization request is X'00', and the BIOPL is defined by one of the following
formats determined by bit 0 of byte X'02'.

If bit 0 of byte X'02' is zero:

DIAGNOSE Code X'250'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 203

If bit 0 of byte X'02' is one:

Device Number
is a halfword field containing the virtual device number of the DASD to which subsequent DIAGNOSE
code X'250' read/write requests will be targeted. The DASD must be fully supported by z/VM. The
device number must be in the range X'0000'-X'FFFF'.

Flag A
Bit 0 of byte X'02' indicates the format of the parameter list.

DIAGNOSE Code X'250'

204 z/VM: 7.3 CP Programming Services

Bits 1-7 of byte X'02' must contain binary zeros.

Block Size
is a fullword field containing an unsigned binary number that specifies the size of the storage blocks
for this request. The block size must be one of the following:

• 512
• 1024
• 2048
• 4096

Offset
is a fullword or doubleword field containing the number of sequential blocks used at the beginning of
the disk by the file system to implement its structure.

This DIAGNOSE does not check the validity of this number; therefore the application can change the
number if desired, but you could overlay blocks used by the file system.

Start Block
is a fullword or doubleword field set by this function to contain a signed integer representing 1 minus
the offset specified on input. Start block and end block specify the range of block numbers allowable
on subsequent invocations of the read/write function of DIAGNOSE code X'250' for this virtual device.

End Block
is a fullword or doubleword field set by this function to contain the number of blocks on the specified
device minus the offset specified on input. Start block and end block specify the range of block
numbers allowable on subsequent invocations of the read/write function of DIAGNOSE code X'250'
for this virtual device.

Reserved
The rest of the fields in this block are reserved for IBM use and must contain binary zeros.

Usage Notes:

1. If the disk is in CMS format, the CMS RESERVE command may be used to allocate all available blocks
of the minidisk to a unique CMS file, although this is not required.

2. If the minidisk is in CMS format, and has been reserved, an application can use the CMS function
DISKID to obtain the device number, block size, and offset information. DISKID is described in z/VM:
CMS Macros and Functions Reference.

3. The use of bit 0 of byte X'02' in the BIOPL is restricted to guests in z/Architecture or z/XC mode.

Read/Write to DASD
Once block I/O initialization for a virtual DASD has completed, you can use the read/write function of
DIAGNOSE code X'250' to perform I/O to that virtual device.

The function code for a read/write request is X'01', and the BIOPL is defined by one of the following
formats determined by bit 0 of byte X'02'.

If bit 0 of byteX'02' is zero:

DIAGNOSE Code X'250'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 205

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

If bit 0 of byte X'02' is one:

Device Number
is a halfword field containing the virtual device number of the DASD to which the read/write operation
is targeted.

Flag A
Bit 0 of byte X'02' indicates the format of the parameter list, and the block I/O entries, see “Format of
a Block I/O Entry” on page 208.

DIAGNOSE Code X'250'

206 z/VM: 7.3 CP Programming Services

Bits 1-7 of byte X'02' must contain binary zeros.

Key
Bits 0-3 of byte X'18' contain the subchannel key for fetching of output data and for storing of input
data associated with this read/write request. This key is matched with a storage key during these
storage references.

Bits 4-7 of this field must contain binary zeros.

Flags
Bits 0-5 of byte X'19' must contain binary zeros.

Bit 6 of byte X'19' indicates whether this is a synchronous or an asynchronous request. If the bit is
zero, then the read/write operation is to be performed synchronously. The condition code and return
code returned by this function will indicate the results of the operation.

If the bit is one, then the I/O may be performed asynchronously. Status of the I/O request will be
presented by a block I/O external interruption. However, if the asynchronous request can be serviced
entirely from minidisk cache, and bit 7 of byte X'19' is zero to indicate that minidisk cache should be
interrogated, then a condition code and return code are returned by this function and no block I/O
external interruption is generated.

Table 22. Summary of the Effects of Byte X'19' Bits 6 and 7 on Read/Write Processing

Bit 6 Bit 7 Effect

0 0 The request will be performed synchronously; minidisk cache may be
interrogated. The condition code and return code will indicate the results of
the operation.

0 1 The request will be performed synchronously; minidisk cache will not be
interrogated. The condition code and return code will indicate the results of
the operation. This option is ignored for write requests.

1 0 The request may be performed asynchronously; minidisk cache may be
interrogated. The condition code and return code must be examined to
determine if the requested was performed asynchronously; if is was, the
results of the I/O request will be presented via a block I/O external
interruption; otherwise, the condition code and return code will indicate the
results of the operation.

1 1 The request will be performed asynchronously; minidisk cache will not be
interrogated. The results of the I/O operation will be presented by a block I/O
external interruption. This option is ignored for write requests.

Bit 7 of byte X'19' indicates whether minidisk cache should be bypassed for the read request. If the
bit is zero, then the request will be satisfied from minidisk cache if possible. If the bit is one, then
minidisk cache will not be interrogated. I/O will be performed even if the request could be satisfied
from cache.

Use the minidisk cache bypass option when reading data that is not referenced frequently. This
prevents infrequently-used data from filling the cache and flushing out frequently referenced data.

Note: This option is ignored for write requests.

Block Count
is a fullword field containing an unsigned binary number specifying the count of entries in the block
I/O entry list. The minimum number of entries is 1, and the maximum is 256.

ALET of the block I/O entry list

If your virtual machine is an XC virtual machine executing in host-access-register mode, then this
fullword field contains the access-list-entry token (ALET) designating the address space containing
the block I/O entry list. If the virtual CPU of your XC virtual machine is executing in host-primary-

DIAGNOSE Code X'250'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 207

space mode or your virtual machine is not an XC virtual machine, then this field is ignored, and the
block I/O entry list is contained in the host-primary address space.

The system performs host access-register translation for the ALETs contained within the BIOPL during
the execution of DIAGNOSE code X'250'. When asynchronous I/O has been requested, the resulting
ASITs are used to reference the data buffers during the ensuing asynchronous process.

31 bit address of block I/O entry list
If bit 0 of byte X'02' is zero, then bytes X'24' - X'27' is a fullword field containing the guest real
address of a contiguous list of block I/O entries. Each entry in the list identifies a read or write request
for the virtual device. The data within an individual entry is described in “Format of a Block I/O Entry”
on page 208.

The address of the block I/O entry list must be an address on a doubleword boundary.

If bit 0 of byte X'02' is one, bytes X'24' - X'27' must contain zeros.

32 bit Interruption Parameter
If bit 0 of byte X'02' is zero, then this fullword field contains user data to be stored at guest real
storage locations 128-131 in the host-primary address space upon presentation of the block I/O
external interruption at the completion of an asynchronous read/write request.

64 bit Interruption Parameter
If bit 0 of byte X'02' is one, then this doubleword field contains user data to be stored at guest real
storage locations 4536-4543 in the host-primary address space upon presentation of the block I/O
external interruption at the completion of an asynchronous read/write request.

64 bit address of block I/O entry list
If bit 0 of byte X'02' is one, then bytes X'30' - X'37' are a doubleword field containing the guest real
address of a contiguous list of block I/O entries. Each entry in the list identifies a read or write request
for the virtual device. The data within an individual entry is described in “Format of a Block I/O Entry”
on page 208.

The address of the block I/O entry list must be an address on a doubleword boundary.

If bit 0 of byte X'02' is zero, bytes X'30' - X'37' must contain zeros.

Reserved
The rest of the fields in this block are reserved for IBM use and must contain binary zeros.

Format of a Block I/O Entry
The block I/O entry list is a contiguous list of entries, each defining a read or write request. The starting
address of the list is specified in the block I/O parameter list (BIOPL). If your virtual machine is an XC
virtual machine that is executing in host-access-register mode, then the ALET at offset X'20' of the BIOPL
identifies the address space containing the block I/O entry list. Otherwise, the block I/O entry list resides
in the host-primary address space. For performance reasons, try not to let the block I/O entry list cross a
page boundary.

The status code field in each entry is updated in guest storage to reflect the status of the corresponding
operation; it is unpredictable whether the remainder of the block I/O entry list is stored back into guest
storage.

Each entry within the block I/O entry list is mapped by HCPBELBK to one the following formats.

If bit 0 of byte X'02' in the BIOPL is zero:

If bit of byte X'02' in the BIOPL is one:

DIAGNOSE Code X'250'

208 z/VM: 7.3 CP Programming Services

Type
is the one-byte request type for this I/O operation:

X'01' Write request
X'02' Read request

Status
is a byte set by this function to contain a status code for this read or write request. See “Status Codes”
on page 209 for a description of the values assigned to this field.

Block Number
is a fullword or doubleword field containing the DASD block number for this request. Block numbers
are assigned sequentially to DASD records.

Data-Buffer ALET
If your virtual machine is an XC virtual machine that executes in host-access-register mode, then this
fullword field contains the access-list-entry token (ALET) designating the address space containing
the data buffer. If the virtual CPU of your XC virtual machine iexecutes in host-primary-space mode
or your virtual machine is not an XC virtual machine, then this field is ignored, and the data buffer is
contained in the host-primary address space.

Data-Buffer Address
is a fullword or doubleword field containing the guest absolute address of the data for this request.
For a write request this is the location in storage from which the data is written to DASD. For a read
request this is the location in storage where the data read from DASD is placed.

Reserved
The rest of this block is reserved for IBM use and must contain binary zeros.

Status Codes
One of the following status codes is set within each block I/O entry. Since an error on a single block I/O
entry does not prevent processing of other block I/O entries, you should check both the return code in
Rx+1 and the status codes in each entry for the status of your request.

Table 23. Status codes for block I/O entries

Status Code in Block
I/O Entry

Description

X'00' The read or write request was successful.

X'01' An invalid block number is specified in this block I/O entry.

X'02' An addressing exception condition occurred because the data buffer addressed
by this block I/O entry extends into storage locations not available in the
designated address space.

X'03' This block I/O entry indicates a write request; however, the target virtual DASD is
read-only.

X'04'1 The block I/O was initiated at the device; however, the block size specified was
not consistent with the block size on the virtual DASD. (This status code is valid
only for CKD/ECKD devices.)

DIAGNOSE Code X'250'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 209

Table 23. Status codes for block I/O entries (continued)

Status Code in Block
I/O Entry

Description

X'05'1 An irrecoverable I/O error was encountered on the virtual DASD.

X'06' The request type specified in this block I/O entry is invalid.

X'07'1 A protection exception condition occurred.

X'08'1 An addressing-capability exception condition occurred because the address
space containing the data buffer is in the revoked state (no longer accessible
to your virtual machine).

X'09'1 An ALEN-translation exception condition occurred; the ALET in the block I/O
entry for the data buffer designates an ALET that is in neither the valid nor the
revoked state.

X'0A'1 An ALET-specification exception condition occurred; the ALET in the block I/O
entry for the data buffer is invalid.

X'0B'1 Reserved fields in the block I/O entry are not zeros.

X'0C'1 This block I/O entry was not processed. Rx+1 contains the return code that
indicates the condition that occurred to cause partial processing of the block I/O
entry list.

Note: This status code will only occur if a condition for which CC1 is returned on
the DIAGNOSE code invocation occurs.

Note:
1

Some I/O for this request may have been performed to the device.

Usage Notes:

1. You can use the interruption parameter in the BIOPL to associate a block I/O external interruption with
a particular invocation of the read/write function.

2. You can attempt to terminate a synchronous read/write operation by entering an exigent command
from the virtual machine console as the first or only command on a CP command line (that is, while
TERMINAL MODE is CP, or CP READ is displayed, or the command begins with the #CP prefix).

3. No I/O interruptions are returned by CP to the virtual machine for DIAGNOSE code X'250' I/O.
4. The use of bit 0 of byte X'02' in the BIOPL is restricted to guests in z/Architecture mode. This is

because a 64 bit interruption parameter may be stored in the second page of the prefix area.
5. The format of the fields in the BIOPL and block I/O entries is determined by bit 0 of byte X'02' in the

BIOPL and is independent of the PSW addressing mode.
6. The length of the individual block I/O entries is determined by bit 0 of byte X'02' in the BIOPL. If bit

0 of byte X'02' in the BIOPL is zero, the block I/O entries are 2 doublewords in length. If bit 0 of byte
X'02' in the BIOPL is one, the block I/O entries are 3 doublewords in length.

7. The I/O for the DASD blocks specified in the block I/O entries of the BELBK may not occur in the
same order that they are listed. If the application requires that the DASD blocks or I/O data buffers be
updated in a particular order, then that I/O request should be implemented with separate DIAGNOSE
X'250' invocations.

8. This DIAGNOSE code does not support HyperPAV alias devices.
9. The *BLOCKIO IUCV system service and Diagnose X'250' do not honor DASD reserves managed by

VM's virtual reserve/release function. Therefore, do not use these I/O interfaces if a minidisk is shared
by multiple guests on the same VM image where another guest is expecting to use reserve/release
I/O to serialize its data access. Also, *BLOCKIO and Diagnose X'250' do not use reserve/release.

DIAGNOSE Code X'250'

210 z/VM: 7.3 CP Programming Services

Therefore, do not use these interfaces for any DASD (CP-attached or full-pack minidisk) that is shared
with other LPARs where another LPAR expects to use reserve/release to serialize its data.

Remove the Block I/O Environment
The block I/O environment established by the initialization function of DIAGNOSE code X'250' remains in
effect until you explicitly clean up the environment using the remove function of DIAGNOSE code X'250'
or until an I/O reset is performed for the device, for example by the SYSTEM RESET, DETACH, or RESET
commands.

The remove function will clear any pending DIAGNOSE code X'250' I/O to the virtual device. An I/O
reset will clear all pending I/O to that virtual device, for instance any *BLOCKIO requests in addition to
DIAGNOSE code X'250' I/O.

Note: Any I/O cancelled because of a REMOVE or reset operation will be marked as having encountered a
fatal I/O error.

The function code for the remove function is X'02', and the BIOPL is defined as follows:

Device Number
is the halfword field containing the virtual device number of the DASD to which block I/O is to be
discontinued.

Reserved
The rest of the fields in this block are reserved for IBM use and must contain zeros.

Responses
Condition Codes and Return Codes: Upon completion of DIAGNOSE code X'250', control is returned to
the invoker with a condition code set to indicate the status of both input parameter list processing and the
function requested. A return code in Rx+1 further defines that status.

Table 24 on page 212 contains a general description of each of the condition codes.

DIAGNOSE Code X'250'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 211

Table 24. DIAGNOSE X'250' condition codes

Condition Code Meaning

0 Function completed successfully.

1 Function partially completed. Some of the I/O completed successfully. A return
code in Rx+1 indicates the condition that caused the partial completion.

2 Function failed. The environment has not been set up or removed, or no I/O has
completed successfully. The return code in Rx+1 indicates the reason for the
failure.

Return codes and their corresponding condition codes for the INITIALIZE function are listed in Table 25
on page 212.

Table 25. Condition codes and return codes for the Initialize function

Condition Code Return Code in
Rx+1

Meaning

0 0 (X'00') Initialization for DIAGNOSE code X'250' to the specified
virtual DASD is complete. The virtual device is not read-only.
The starting block number and the ending block number have
been stored in the BIOPL.

0 4 (X'04') Initialization for DIAGNOSE code X'250' to the specified
virtual device is complete. The virtual device is read-only.
The starting block number and the ending block number have
been stored in the BIOPL.

2 16 (X'10') The virtual device is not defined.

2 20 (X'14') The virtual device is not a supported DASD.

2 24 (X'18') The block size is not supported.

2 28 (X'1C') A DIAGNOSE code X'250' environment already exists for this
virtual device.

2 255 (X'FF') An irrecoverable error occurred while processing the
DIAGNOSE and a soft abend may have been taken. The
environment was not initialized.

Return codes and their corresponding condition codes for the READ/WRITE function are listed in Table
26 on page 212.

Table 26. Condition codes and return codes for the Read/Write function

Condition Code Return Code in
Rx+1

Meaning

0 0 (X'00') A synchronous request has completed successfully, or
an asynchronous request was successfully serviced from
minidisk cache.

0 8 (X'08') The asynchronous request has been initiated. The BIOPL used
for the initiated request is now available for re-use.

DIAGNOSE Code X'250'

212 z/VM: 7.3 CP Programming Services

Table 26. Condition codes and return codes for the Read/Write function (continued)

Condition Code Return Code in
Rx+1

Meaning

1 12 (X'0C') A synchronous request was partially successful; you must
check each individual block I/O entry for the status code.
This return code also applies to an asynchronous request
that could be serviced from minidisk cache, however, an
error occurred preventing the entire request from completing
successfully.

2 16 (X'10') The virtual device is not defined.

2 28 (X'1C') The DIAGNOSE code X'250' environment does not exist for
this virtual device.

2 32 (X'20') A CP paging error occurred while accessing the block I/O
entry list.

2 36 (X'24') The number of buffer list entries was not a positive number
within the range of 1 to 256.

2 40 (X'28') Every block I/O entry list entry is in error. You must check the
status code in each block I/O entry list entry.

1 44 (X'2C') The remove function has terminated a synchronous read/
write request. Some I/O may have been performed.

1 48 (X'30') A synchronous read/write was terminated at the user's
request (for example, by an exigent command). Some I/O may
have been performed.

1, 2 255 (X'FF') An irrecoverable error occurred while processing the
DIAGNOSE and a soft abend may have been taken. If this
return code is returned with condition code 1, some I/O may
have been performed.

Return codes and their corresponding condition codes for the REMOVE function are listed in Table 27 on
page 213.

Table 27. Condition codes and return codes for the Remove function

Condition Code Return Code in
Rx+1

Meaning

0 0 (X'00') Any pending DIAGNOSE code X'250' block I/O to this virtual
device has been cleared. The block I/O environment has been
deleted.

2 16 (X'10') The virtual device is not defined.

2 28 (X'1C') Block I/O to the virtual device was not previously established
using the initialization function of DIAGNOSE code X'250'.

0 255 (X'FF') An irrecoverable error occurred while processing the
DIAGNOSE and a soft abend may have been taken. The
environment was removed.

Program Exceptions: DIAGNOSE code X'250' may result in one of the following program exceptions:

DIAGNOSE Code X'250'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 213

Table 28. Program exceptions

Problem Encountered Cause

Access exceptions (See “Access
Exceptions” on page 8.)

An error occurred trying to

• Fetch or store the block I/O parameter list (BIOPL) while
processing an initialize function

• Fetch the BIOPL while processing a read/write or remove
function (it is unpredictable whether store-protection
violations are reported for the read/write and remove
functions)

• Fetch or store the block I/O entry list while processing a
read/write function.

Specification exception • The BIOPL is not on a doubleword boundary.
• A reserved field in the BIOPL does not contain binary zeros.
• Bit 0 of byte X'02' in the BIOPL is one for a guest that is not

in z/Architecture mode.
• The block I/O entry list is not on a doubleword boundary.
• An invalid function code was specified.
• The high-order three bytes of the low half of the Ry register

do not contain binary zeros.

Block I/O External Interruption
A block I/O external interruption is generated when an asynchronous DIAGNOSE code X'250' read/
write request has completed normally, or when I/O is cancelled because of either a device reset on
a device that has a DIAGNOSE code X'250' environment active, or a REMOVE request for the device.
The interruption is a floating interruption condition and is presented to the first virtual CPU in the
virtual configuration that is enabled for the interruption. The condition is cleared once the interruption
is presented and also by a virtual subsystem reset (for example, a SYSTEM RESET or IPL command).

The subclass mask to enable for the interruption is bit 22 of control register 0.

The block I/O condition is indicated by an external-interruption code of X'2603' stored at guest real
location 134-135, and a sub-interruption code of X'03' or X'07' stored at guest real location 132. If
the interruption is the result of a read/write request, then an interruption parameter (as specified in
the BIOPL on a DIAGNOSE code X'250' read/write request) is stored at guest real locations 128-131
for sub-interruption code X'03' or at guest real locations 4536-4543 for sub-interruption code X'07';
otherwise, binary zeros are stored at guest real locations 128-131 or 4536-4543. In addition, one of the
following status codes will be stored at guest real location 133:

X'00'
All requested I/O completed successfully.

X'01'
One or more errors occurred which prevented all of the I/O requests from completing successfully.
You must check each entry in the block I/O entry list to determine which requests were successfully
processed.

X'02'
The updated block I/O entry list could not be stored into guest storage. The results of the I/O
operations are indeterminate.

X'03'
The virtual device was reset or the environment removed. Any pending I/O to the device has been
cleared. The results of the I/O operations can be determined by examining the entries in the block I/O
entry list.

DIAGNOSE Code X'250'

214 z/VM: 7.3 CP Programming Services

Notes:

1. All locations updated as a result of the external interruption are in the host-primary address space.
2. If the guest turned on bit 0 of byte X'02' in the BIOPL and is no longer in z/Architecture mode at the

completion of an asynchronous request, the external interruption will not be presented.

DIAGNOSE Code X'258' – Page-Reference Services

Page-Reference Services
Privilege Class: Any

DIAGNOSE X'258' is invoked from the guest PFAULT macro and REFPAGE macro to perform page
reference service functions.

Note: The preferred method of invocation for the page-reference services is the PFAULT and REFPAGE
macros. For more information, refer to “PFAULT Macro -- Page-Fault Handshaking Services” on page 866
and “REFPAGE — Page Reference Services” on page 877.

The following page-reference-service functions can be invoked using this DIAGNOSE:

• Page-fault-token
• Page-fault-cancel
• Page-reference-inform, list form
• Page-reference-inform, block form.

Entry Values:
Rx

The address of a function parameter list, the format of which is determined by the function code in the
parameter list. The parameter list is built by the PFAULT macro or the REFPAGE macro in the macro's
work area.

Ax
Is used only in access-register mode. Ax contains the ALET for the address space containing the
parameter list.

When Rx is general register 0, Ax is not examined. The ALET is assumed to be X'00000000', which
indicates the host-primary address space.

Exit Values:
Ry

On return, register Ry contains a return code, as defined for the PFAULT or REFPAGE macros; refer to
“PFAULT Macro -- Page-Fault Handshaking Services” on page 866 and “REFPAGE — Page Reference
Services” on page 877.

Page-Fault-Token Function
Addressing Mode: 24-bit, 31-bit, or 64–bit

The TOKEN function of the PFAULT macro establishes the guest real storage location of the page-fault
handshaking token. If the VERSION=2 parameter is specified, then it also provides the masks used to
determine if a page-fault is eligible for page-fault handshaking.

Register Rx contains the address of a doubleword-aligned parameter list in the following format when
VERSION=2 is not specified :

DIAGNOSE X'258'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 215

REFDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal code, X'0258'.

REFFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0000' indicates the TOKEN function of the PFAULT macro.

REFDWLEN
Bytes 4 and 5 of the parameter list contain the length of this parameter list in doublewords. The value
must be at least X'0005.'

REFVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

Reserved-Z
Bytes 8-11 and 16-39 of the parameter list are reserved and contain binary zeros.

REFADDR
Bytes 12 through 15 of the parameter list contain the guest real address which will contain the token
to be associated with AR-specified page fault handshaking. This address is always in the host-primary
address space.

Register Rx contains the address of a doubleword-aligned parameter list in the following format when
VERSION=2 is specified:

REFDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal code X'0258.'

DIAGNOSE X'258'

216 z/VM: 7.3 CP Programming Services

REFFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal diagnose function code. A function code
of X'0000' indicates the TOKEN function of the PFAULT macro.

REFDWLEN
Bytes 4 and 5 of the parameter list contain the length of this parameter list in doublewords. The value
must be at least X'0005.'

REFVERSN
Bytes 6 and 7 of the parameter list contains a version code of X'0002.'

REFGADDR
Bytes 8 through 15 of the parameter list contain the guest real address of the token area to be
associated with page-fault handshaking. REFGADDR is always in the host-primary address space. If
the virtual machine is in z/Architecture mode, this is an 8 byte doubleword aligned area. If the virtual
machine is not in z/Architecture mode, this is a 4 byte fullword aligned area. This 64-bit field is used
as an address in the addressing mode of the virtual CPU when the diagnose is executed and the
storage it points to must be accessible. At page fault time, this address is used to fetch the token
to present on the initial interruption. This same token is presented on the subsequent completion
interruption.

REFSELMK
Bytes 16 through 23 of the parameter list contain the 64-bit selection mask. At the time of a
page fault, bits from the current PSW corresponding to bits set to 1 in this mask are selected for
comparison against the compare mask. In z/Architecture mode, all 64 bits are used. When not in
z/Architecture mode, bits 0 through 32 of this mask are used; bits 33 through 63 are ignored and
assumed to be zero.

REFCMPMK
Bytes 24 through 31 of the parameter list contain the 64-bit compare mask. When there is a bit
that is 1 in this compare mask, it must also be 1 in the selection mask, or a specification exception
is presented to the virtual CPU. If the selected bits in the PSW at the time of a page fault exactly
match the compare mask, then the page fault is eligible for page-fault handshaking and an initial
interruption may be presented. Note that the compare mask is not used when presenting the
completion interruption.

Z
This is bit 0 of this doubleword. When this bit is 0, the interface is ESA, which means the token
area address points to a 4-byte field and the interruption parameters are in the format from PFAULT
TOKEN being specified without including the VERSION=2 parameter. When this bit is 1, the interface
is z/Architecture and the token area address points to an 8-byte field and the interruption parameters
are in the format from the VERSION=2 and ARCHITECTURE=z parameters being specified with the
PFAULT TOKEN macro. The setting of this bit must match the architecture of the virtual CPU executing
the diagnose. This bit corresponds to the PFAULT macro ARCHITECTURE parameter.

Reserved-Z
Bytes 32 (bits 1–7 only) through 39 of the parameter list are reserved and contain binary zeros.

Comparison and Selection Mask Example
The program has determined that the PSW must be in the problem state for an initial interruption to be
presented. One way of accomplishing this is for the selection mask to have a 1 in bit position 15 and to
have the compare mask be the exact same mask.

Usage Notes
1. The address that is provided in the REFGADDR field is a real address. This address points to a token

area in the host-primary address space. This address is saved and associated with the invoking virtual
CPU. The length of the token area depends on whether or not the virtual CPU is in z/Architecture
mode. If this address does not meet alignment restrictions, a specification exception is presented to
the virtual CPU.

2. The masks in the parameter list are saved and associated with the invoking virtual CPU.

DIAGNOSE X'258'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 217

3. When VERSION=2 is in effect, this diagnose may be issued in any architecture and any addressing
mode supported by CP.

4. If SIGP Set-Architecture is executed by the virtual configuration, page-fault handshaking is reset.
5. Using the PFAULT TOKEN macro is the preferred interface from assembly language to this diagnose.

Refer to “PFAULT TOKEN” on page 873 for additional information regarding parameters.
6. Refer to “PFAULT Macro -- Page-Fault Handshaking Services” on page 866 for information about

page-fault handshaking and the use of the token area, interruptions, and eligibility.
7. If the token area or parameter list are not accessible, then a program check is presented to the virtual

CPU.
8. If any fields do not contain the value specified for them, then a specification exception is presented to

the virtual CPU.
9. If the specification of the "Z" bit does not match the architecture of the invoking virtual CPU, then a

specification exception is presented to the virtual CPU.

Page-Fault-Cancel Function
Addressing Mode: 24-bit, 31-bit, or 64–bit

The CANCEL function of the PFAULT macro cancels the location of the page-fault handshaking token.
Register Rx contains the address of a doubleword-aligned parameter list in the following format:

REFDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal code, X'0258'.

REFFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0001' indicates the CANCEL function of the PFAULT macro.

REFDWLEN
Bytes 4 and 5 of the parameter list contain the length of this parameter list in doublewords. The value
must be at least X'0005.'

REFVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001' or X'0002.' In either case,
page-fault handshaking (invoked by PFAULT TOKEN) is cancelled for the invoking virtual CPU.

Reserved-Z
Bytes 8 through 39 of the parameter list are reserved and contain binary zeros.

Page-Reference-Inform Function
Addressing Mode: 24-bit or 31-bit

DIAGNOSE X'258'

218 z/VM: 7.3 CP Programming Services

The INFORM function of the REFPAGE macro identifies a range of pages that are about to be referenced in
a specific order.

List Form
For the list-form INFORM function, register Rx contains the address of a doubleword-aligned parameter
list in the following format:

REFDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal code, X'0258'.

REFFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code. A function code of X'0002'
indicates the list form of the INFORM function.

REFDWLEN
Bytes 4 and 5 of the parameter list contain the length of this parameter list in doublewords. The value
must be at least X'0005.'.

REFVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

REFALET
Bytes 8 through 11 of the parameter list contain the ALET designating the address space that contains
the page list addressed by REFADDR. This field is ignored in primary space mode.

REFADDR
Bytes 12 through 15 of the parameter list contain the guest real storage address of the page list. The
page list is the set of ALET/Page numbers.

REFCOUNT
Bytes 16 through 19 of the parameter list contain the count of ALET/Page-number pairs in the list
pointed to by REFADDR.

Note: The ALETs in this list are meaningful even in primary-space mode.

Reserved-Z
Bytes 20 through 39 of the parameter list are reserved and contain binary zeros.

Block Form
For the block-form INFORM function, register Rx contains the address of a doubleword-aligned parameter
list in the following format:

DIAGNOSE X'258'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 219

REFDIAGC
Bytes 0 through 1 of the parameter list contain the hexadecimal code, X'0258'.

REFFCODE
Bytes 2 through 3 of the parameter list contain the hexadecimal function code. A function code of
X'0003' indicates the block form of the INFORM function.

REFDWLEN
Bytes 4 through 5 of the parameter list contain the length of this parameter list in doublewords. The
value must be at least X'0005.'

REFVERSN
Bytes 6 through 7 of the parameter list contain a version code of X'0001'.

REFALET
Bytes 8 through 11 of the parameter list contain the ALET of the address space that contains the page
addressed by REFADDR.

REFADDR
Bytes 12 through 15 of the parameter list contain the starting page address in the page-reference-
pattern. The starting address is the lowest address when the direction is ascending, or it is the highest
address when the direction is descending.

REFGROUP
Bytes 16 through 19 of the parameter list contain the number of subgroups contained in the page-
reference-pattern.

REFSBGRP
Bytes 20 through 23 of the parameter list contain the number of spans within a single subgroup.

REFSPAN
Bytes 24 through 27 of the parameter list contain the number of consecutive pages that should be
considered as a single span of pages within the range of pages.

REFSKIP
Bytes 28 through 31 of the parameter list contain the number of pages to be skipped from the last
page of a given span to the starting page of the next span.

D
Byte 32 of the parameter list contains the direction indicator. This byte should contain a value of 1 for
ascending or -1 for descending, but the actual value is not validated. Bit 0 is checked to determine if it
is ascending (0) or descending (1).

Reserved-Z
Bytes 33 through 39 of the parameter list are reserved and contain binary zeros.

Program Exceptions:

DIAGNOSE X'258'

220 z/VM: 7.3 CP Programming Services

The program exceptions for DIAGNOSE X'258' are the same as those documented for the PFAULT
and REFPAGE macros; refer to “PFAULT Macro -- Page-Fault Handshaking Services” on page 866 and
“REFPAGE — Page Reference Services” on page 877.

DIAGNOSE Code X'260' – Access Certain Virtual Machine
Information

Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'260' to access certain virtual machine information.

Entry Values:
Rx

Depends on the subcode specified in Ry (see description below).
Rx+1

Depends on the subcode specified in Ry.
Ry

In z/Architecture mode, the high-order word of register Ry is ignored. The 4 bytes of the low-order
register word contain the function subcode.

The function subcodes are as follows:

Subcode X'00000000'
Return the highest addressable byte of virtual storage in the host-primary space, including named saved
systems and saved segments. This subcode is valid only for 24-bit or 31-bit addressing mode.

Entry Values:
Ry

Must be X'00000000'.

Exit Values:
Rx

Equal to the highest addressable byte of virtual storage in the host-primary space, including named
saved systems and saved segments. For example, for a 2047 MB address space, Rx would be
X'7FEFFFFF'. For an 8 MB address space with the highest addressable saved segment loaded in
MB X'19', Rx would be X'019FFFFF'.

Usage Note: XC virtual machines in access register mode can execute DIAGNOSE code X'260' Subcode
X'00000000', but only the host-primary address space is implied.

Subcode X'00000004'
Return the BYUSER ID for the user issuing this diagnose. This subcode is valid only for 24-bit or 31-bit
addressing mode.

Entry Values:
Rx

Contains the address of a doubleword that may contain the BYUSER ID (left-justified, followed by
spaces). The output buffer is only used if there is a BYUSER (return code 0).

Ax
Used only for XC virtual machines in access-register mode, in which case it contains the ALET for the
address space containing the output doubleword. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the output doubleword is in the host-primary
address space.

DIAGNOSE Code X'260'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 221

Ry
Must be X'00000004'. Ry cannot be the same as Rx.

Exit Values:
Ry+1

Contains a return code.

Return Code in
Ry+1

Meaning

0 (X'00') BYUSER ID was successfully returned in the specified output buffer.

4 (X'04') BYUSER ID was not returned. There is no BYUSER ID for this user ID.

Usage Notes:

1. Rx and Ry cannot be the same register.
2. Ry must be an even-numbered register.
3. A BYUSER ID is only defined for a virtual machine that is logged on with the BY option of the LOGON

command.
4. When a virtual machine is disconnected, its BYUSER ID remains unchanged.
5. A virtual machine's BYUSER ID is updated on a successful reconnect.

Subcode X'00000008'
Return the lines per page (LPP) value for the virtual printer or virtual console. This subcode is valid only for
24-bit or 31-bit addressing mode.

Entry Values:
Rx

Contains the virtual printer or virtual console device address.
Ry

Must be X'00000008'.

Exit Values:
Rx

Contains zero if the lines-per-page (LPP) value for the virtual printer or virtual console has been set
to OFF either by use of the SPOOL LPP option or through the global system setting. Rx contains the
binary value of the virtual LPP if it has been specified for the device. The binary value has a range of
(decimal) 30 to 255.

Ry
Contains a return code.

Return Code in Ry Meaning

0 (X'00') A valid LPP value was returned (including zero if LPP is OFF).

4 (X'04') Rx is not a valid virtual printer address

Subcode X'0000000C'
Return the highest addressable byte of virtual storage in the host-primary address space, including
named saved systems and saved segments. This subcode is valid only for a z/Architecture virtual
machine.

Entry Values:
Ry

Must be X'0000000C' (the high-order word is ignored).

DIAGNOSE Code X'260'

222 z/VM: 7.3 CP Programming Services

Exit Values:
Rx

Equal to the highest addressable byte of virtual storage in the first defined storage extent of the
host-primary space, including named saved systems and saved segments. For example, for an 8.5G
address space, Rx would be X'000000021FFFFFFF'.

Ry
Equal to the highest addressable byte of virtual storage in the host-primary address space, including
named saved systems and saved segments. For example, for a guest with DEFINE STORAGE CONFIG
0.1G 8G.1G in effect, Rx would be X'000000003FFFFFFF' and Ry would be X'000000023FFFFFFF'.

Usage Notes:

1. The CONFIGURATION option on the DEFINE STORAGE command allows the definition of multiple
noncontiguous storage extents. If the CONFIGURATION, RESERVED, and STANDBY options were not
used on the DEFINE STORAGE command, the defined storage is one extent, and Rx and Ry will be
identical.

2. If the RESERVED or STANDBY option was used on the DEFINE STORAGE command to configure
reserved or standby storage for a guest, the values returned in Rx and Ry will be the current values,
but these values can change dynamically depending on the options specified and any dynamic storage
reconfiguration (DSR) changes initiated by the guest.

Subcode X'00000010'
Return information about a guest’s storage configuration.

Entry Values:
Rx

Guest logical address of storage configuration output area.
Rx+1

Length of storage configuration output area.
Ry

Must be X'00000010'.

Exit Values:
Rx

Unchanged.
Rx+1

Unchanged.
Ry

Number of storage configuration extents.

Usage Note: If the CONFIGURATION option was not used on the DEFINE STORAGE command, the
defined storage is one extent, and the value of Ry will be 1.

Condition Code Meaning

0 All extents returned in output area

1 More extents exist than will fit in the output area

Output Area: The output area consists of one or more pairs of 64-bit values giving the start (first byte)
and end (last byte) addresses of a guest storage extent. The area must be aligned on a quadword
boundary.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'260' is given incorrect
data:

DIAGNOSE Code X'260'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 223

Problem Encountered Cause

Specification exception Ry does not contain a valid function subcode or does not
contain a function subcode that is allowed with the virtual
machine's current addressing mode.

For subcode X'04':

• Rx and Ry are the same register.
• Ry is not an even-numbered register.
• The output buffer is not on a doubleword boundary.

For subcode X'10':

• Rx is not an even-numbered register.
• The address contained in Rx is not on a quadword boundary.
• The length contained in Rx+1 is not a positive multiple of

16.

Access exception For subcode X'04' only, an error occurred trying to store
BYUSER information into the output buffer.

For subcode X'10', an error occurred trying to store the extent
information into the guest's output area.

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE Code X'268' – 370 Accommodation Services
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'268' to access services in support of the 370 Accommodation facility. For
more information on the 370 Accommodation facility, see Part 6, “Architectural Extensions and
Accommodations for Virtual Machines,” on page 895.

Entry Values:
Rx

Contains a function subcode. This subcode selects the service to be performed. The rest of the entry
values and the exit values depend upon the specific subcode. A specification exception is recognized
if an unassigned subcode is given. The following subcode is recognized:
0

Convert a BC-mode or mapped PSW to EC-mode

Subcode 0 — Convert a BC-mode or mapped PSW to EC mode
This function converts a PSW which is in BC mode or which has been "mapped" by the 370
Accommodation facility to an EC-mode PSW.

Entry Values:
Rx

Contains function subcode 0.
Ry

Contains bytes 0-3 of the PSW to be converted. R15 must not be specified as the Ry register, or a
specification exception will result.

Ry+1
Contains bytes 4-7 of the PSW to be converted.

DIAGNOSE Code X'268'

224 z/VM: 7.3 CP Programming Services

Exit Values:
Ry

If the condition code is zero, Ry contains bytes 0-3 of the converted PSW. If the condition code is
non-zero, Ry is unchanged.

Ry+1
If the condition code is zero, Ry+1 contains bytes 4-7 of the converted PSW. If the condition code is
non-zero, Ry+1 is unchanged.

Condition Codes: The following condition codes are set by subcode 0:

Condition Code Status

0 The conversion was successful. The contents of the Ry and Ry+1 general registers are
replaced with the converted PSW.

1 The conversion was unsuccessful because the input PSW is not a BC-mode or mapped
PSW. The contents of the Ry and Ry+1 general registers are unchanged.

Program Exceptions: These program exceptions may be recognized for subcode 0 of DIAGNOSE code
X'268':

Problem Encountered Cause

Specification exception R15 is specified for Ry.

Responses
Program Exceptions: These program exceptions may be recognized for any subcode of DIAGNOSE code
X'268':

Problem Encountered Cause

Specification exception An unknown subcode is specified in Rx.

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE Code X'26C' – Access Certain System Information
Privilege Class: B, E; Subcode X'00000024' and Subcode X'00000030' - G

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'26C' to access certain system information.

Entry Values:
Rx

Contents depend on the value of subcode. Rx must be an even-numbered register and cannot be the
same as Ry.

Rx+1
Contains the address of an output buffer on a doubleword boundary.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the doubleword passed as input. If Rx designates general register 0, if
Ax contains X'00000000', or if the virtual machine is not in XC mode, the input doubleword is in the
host-primary address space.

Ry
The second data register contains the function subcode. Ry must be an even-numbered register and
cannot be the same as Rx.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 225

• Subcode X'00000004' Return the BYUSER ID for a given user ID.
• Subcode X'00000008' Return virtual LAN system information.
• Subcode X'0000000C' Return controller list.
• Subcode X'00000010' Return controller information.
• Subcode X'00000014' Return guest LAN list.
• Subcode X'00000018' Return guest LAN information.
• Subcode X'0000001C' Return virtual switch list.
• Subcode X'00000020' Return virtual switch information.
• Subcode X'00000024' Return virtual port, virtual NIC or HiperSockets logical port information.
• Subcode X'00000030' MAC Services.

Ax+1
Is used only by XC virtual machines in access-register mode. Ax+1 contains the ALET for the address
space containing the output doubleword. If an XC-mode virtual machine is not in access register
mode, or if the virtual machine is not in XC mode, Ax+1 is ignored.

Exit Values:
Ry+1

Contains a return code value. Meaning is determined by subcode.

Common Usage Notes:

1. Rx and Ry cannot be the same register.
2. Rx and Ry must be even-numbered registers.
3. Many subcodes use version as input parameter. Version indicates the desired format of the information

in the output buffer. Note that the version defines the length of the output data, not the content of
reserved fields. For example, reserved fields in version N may actually contain some content defined
for level N+1.

Use CSI66219 to provide information in the format described below.

Valid versions are defined by HCPCSIBK COPY and include:

Table 29. Version definitions. This describes the versions that may be specified on subcodes that
accept a version indicator on input.

Value HCPCSIBK equate Description

0000 0001 CSICPVER z/VM 5.3.0, no service

0000 0001 CSIVERS1 z/VM 5.3.0, no service

0001 0001 CSI64281 z/VM 5.3.0, with APAR VM64281

0002 0001 CSI64277 z/VM 5.3.0, with APAR VM64277

0000 0002 CSIVERS2 z/VM 5.4.0, no service

0000 0003 CSIVERS3 z/VM 6.1.0, no service

0001 0003 CSI64780 z/VM 6.1.0, with APAR VM64780

0000 0004 CSIVERS4 z/VM 6.2.0, no service

0001 0004 CSI65042 z/VM 6.2.0, with APAR VM65042

0000 0005 CSIVERS5 z/VM 6.3.0, no service

0001 0005 CSI65583 z/VM 6.3.0, with APAR VM65583

0000 0006 CSIVERS6 z/VM 6.4.0 no service

DIAGNOSE Code X'26C'

226 z/VM: 7.3 CP Programming Services

Table 29. Version definitions. This describes the versions that may be specified on subcodes that
accept a version indicator on input. (continued)

Value HCPCSIBK equate Description

0001 0006 CSI65925 z/VM 6.4.0 with APAR VM65925

0002 0006 CSI65918 z/VM 6.4.0 with APAR VM65918

0000 0007 CSIVERS7 z/VM 7.1.0, no service

0001 0007 CSI66219 z/VM 7.1.0 with APAR VM66219

0000 0008 CSIVERS8 z/VM 7.2.0, no service

0000 0009 CSIVERS9 z/VM 7.3.0, no service

Programs written to use HCPCSIBK COPY on one release of z/VM can be executed on a new release of
z/VM without change. To exploit the function provided by a follow-on release, examine your program
for necessary changes and use the new value for version.

An error is returned if the version supplied is not supported by the current level of CP.

Subcode X'00000004'—Return the BYUSER ID For a Given User ID
Entry Values:
Rx

Contains the address of an input buffer two fullwords in length. The input buffer contains the user ID
(left-justified, followed by blanks) whose BYUSER value is to be returned.

Rx+1
Contains the address of a doubleword that may contain the BYUSER ID (left-justified, followed by
blanks) of the specified user ID. The output buffer is only used if there is a BYUSER for the user ID
(return code 0).

Table 30. Subcode X'00000004' Return Codes

Return Code in Ry+1 Meaning

0 (X'00') BYUSER ID was successfully returned in the specified output buffer.

4 (X'04') BYUSER ID was not returned. There is no BYUSER ID for this user ID.

8 (X'08') BYUSER ID was not returned. The user ID is not logged on.

Usage Notes:

1. A BYUSER ID is only defined for a virtual machine that is logged on with the BY option of the LOGON
command.

2. When a virtual machine is disconnected, its BYUSER ID remains unchanged.
3. A virtual machine's BYUSER ID is updated on a successful reconnect.

Subcode X'00000008'—Return Virtual LAN System Information
Entry Values:
Rx

Contains the address of an input buffer two fullwords in length. The first word of the buffer contains
the length of the output buffer (Rx+1). The second word contains the version. Valid version numbers
are defined in HCPCSIBK COPY.

This address must be aligned on a doubleword boundary.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 227

Rx+1
Contains the address of an output buffer to contain the virtual LAN system information. This structure
is mapped by HCPCSIBK COPY. The output buffer is modified only if Ry+1 contains return 0 or return
code 16 (X'10').

This address must be aligned on a doubleword boundary.

Output Buffer Format

Table 31. Return Virtual LAN System Information (DSECT CSISRESP) . Length CSISOL51, X'68'. Length for
versions prior to CSI65583 was CSISOL31, X'50'. Length for versions prior to CSI64780 was CSISOSIZ,
X'30'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSISOVER - Output buffer format version

4 X'04' CSIVERS1 CSISMNTL - Maintenance level ID

8 X'08' CSIVERS1 CSISAPAR - Maintenance level. The most recent service
update that affects virtual networking support.

3 X'10' CSIVERS1 CSISMAPF - System MAC address prefix

3 X'13' CSIVERS1 CSISMASS - System MAC ID range start

3 X'16' CSIVERS1 CSISMASE - System MAC ID range end

3 X'19' CSIVERS1 CSISMAUS - User MAC ID range start

3 X'1C' CSIVERS1 CSISMAUE - User MAC ID range end

1 X'1F' CSIVERS1 CSISAC -

Flags
X'80' - System Accounting on
X'40' - User Accounting on
X'20' - System MAC address protection on

4 X'20' CSIVERS1 CSISPRCT - Current persistent value

4 X'24' CSIVERS1 CSISTRCT - Current transient value

4 X'28' CSIVERS1 CSISPRMX - Persistent limit

x'FFFF' is returned for INFINITE

4 X'2C' CSIVERS1 CSISTRMX - Transient limit

x'FFFF' is returned for INFINITE

3 X'30' CSI64780 CSISUMAP - User MAC address prefix

3 X'33' CSI64780 Reserved.

1 X'36' CSI64780 Reserved.

1 X'37' CSI64780 Reserved.

16 X'38' CSI64780 Reserved.

6 X'48' CSI65583 CSISDMAC - IVL Multicast MAC address associated with the
IVL domain to which this system belongs.

DIAGNOSE Code X'26C'

228 z/VM: 7.3 CP Programming Services

Table 31. Return Virtual LAN System Information (DSECT CSISRESP) . Length CSISOL51, X'68'. Length for
versions prior to CSI65583 was CSISOL31, X'50'. Length for versions prior to CSI64780 was CSISOSIZ,
X'30'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'4E' CSI65583 CSISIVLD - IVL domain to which this system belongs.

1 X'4F' CSI65583 Reserved.

8 X'50' CSI65583 CSISDCAP - domain capabilities.

As z/VM enhancements are made IVL domain members may
be using different service levels or different releases of
z/VM. The capabilitystring for each system indicates which
enhancements are available on that IVL domain member.

8000000000000000 - Base capability
C000000000000000 - Collaborative Load Balance Support

2 X'58' CSI65583 CSISVLAN - VLAN ID assigned to the domain.

2 X'5A' CSI65583 CSISHBTO - IVL Heartbeat timeout for the domain.

4 X'5C' CSI65583 CSISICTR - Count of CSISISTR structures.

4 X'60' CSI65583 CSISIOFF - When CSISICTR is not zero, byte offset, relative
from the start of this record, to the start of the first CSISISTR
structure.

4 X'64' CSI65583 CSISISSZ - Length of the CSISISTR structure.

Table 32. Return IVL Membership Information (DSECT CSISISTR) . Length CSISISLN, X'28'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSI65583 CSISMNAM - Member System Name.

6 X'08' CSI65583 CSISMMAC - Unicast MAC address assigned to member.

1 X'0E' CSI65583 CSISMSTA -

Member State
X'80' - Active
X'40' - Inactive
X'20' - Leaving
X'10' - Error
X'08' - Pending Join

1 X'0F' CSI65583 Reserved.

8 X'10' CSI65583 CSISMCAP - Member capabilities.

4 X'18' CSI65583 CSISMHBC - IVLPORT Heartbeat count.

4 X'1C' CSI65583 CSISMMNT - Maintenance Level ID.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 229

Table 32. Return IVL Membership Information (DSECT CSISISTR) . Length CSISISLN, X'28'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'20' CSI65583 CSISPSTA -

Shared Port Group Status

Contains a high level view of the synchronization
status of all shared port groups in the system.
X'80' - Not Synchronized
X'40' - Error
X'20' - Pending Synchronization
X'10' - Synchronized
X'00' - No Shared Port Groups

1 X'21' CSI65583 CSISGSTA -

Global VSwitch Status

Contains a high level view of the synchronization
status of all global virtual switches in the system.
X'80' - Not Synchronized
X'40' - Error
X'20' - Pending Synchronization
X'10' - Synchronized
X'00' - No Global Virtual Switches

6 X'22' CSI65583 Reserved.

Exit Values:

Table 33. Subcode X'00000008' Return Codes

Return Code in Ry+1 Meaning

0 (X'00') Virtual LAN system information was successfully returned in the specified output
buffer. The fullword at the address pointed to by Rx is modified to contain the
total length of the data returned in the buffer.

12 (X'0C') The requested version is not supported by CP.

16 (X'10') The buffer provided is not large enough to contain the virtual LAN system
information. The fullword at the address pointed to by Rx is modified to contain
the size of the buffer needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

Usage Notes: None.

Subcode X'0000000C'—Return Controller List
Entry values:
Rx

Contains the address of an input buffer one fullword in length. The input buffer contains the length of
the output buffer (Rx+1).

DIAGNOSE Code X'26C'

230 z/VM: 7.3 CP Programming Services

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the list of controller virtual machine names. Each
name is padded to 8 bytes. The output buffer is modified only if Ry+1 contains return 0 or return code
16 (X'10').

This address must be aligned on a doubleword boundary.

Exit Values:

Table 34. Subcode X'0000000C' Return Codes

Return Code in
Ry+1

Meaning

0 (X'00') Controller names were successfully returned in the specified output buffer. The
fullword at the address pointed to by Rx is modified to contain the total length of
the data returned in the buffer.

4 (X'04') Controller names were not returned. No controllers exist.

16 (X'10') The buffer provided is not large enough to contain the controller names. Some
information may be returned. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

Usage Notes: None.

Subcode X'00000010'—Return Controller Information
Entry Values:
Rx

Contains the address of an input buffer four fullwords in length. The first word of the buffer contains
the length of the output buffer (Rx+1). The second fullword contains the version. Valid version
numbers are defined in HCPCSIBK COPY. The third and fourth words contain a controller name
(left-justified, padded with blanks) to obtain information about a specific controller. If the controller
name provided is all blanks, information is returned for all controllers.

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the controller information. This structure is
mapped by HCPCSIBK COPY. The output buffer is modified only if Ry+1 contains return 0 or return
code 16 (X'10').

This address must be aligned on a doubleword boundary.

Output Buffer Format

Table 35. Return Controller Information (DSECT CSICRESP). Length CSICOSIZ, X'08' This structure also
includes CISCCCTR entries of type CSICCSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSICOVER - Output buffer format version

4 X'04' CSIVERS1 CSICCCTR - Controller count

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 231

Table 35. Return Controller Information (DSECT CSICRESP). Length CSICOSIZ, X'08' This structure also
includes CISCCCTR entries of type CSICCSTR. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

** X'08' CSIVERS1 CSICCBEG - CSICCCTR entries of type CSICCSTR

Table 36. Controller Information (DSECT CSICCSTR). Length CSICCLEN, X'34'. This structure also
includes CSICVCTR entries of type CSICVSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSICNEXT - Offset of next controller entry

8 X'04' CSIVERS1 CSICONAM - Controller name

1 X'0C' CSIVERS1 CSICAV -

Availability
X'00' - Not available
X'01' - Available

3 X'0D' CSIVERS1 Reserved

2 X'10' CSIVERS1 CSICRNGS - Virtual device range start

2 X'12' CSIVERS1 CSICRNGE - Virtual device range end

20 X'14' CSIVERS1 CSICTCPI - TCP/IP stack level string

4 X'28' CSIVERS1 CSICFL

Status flags
Byte 1
.... ..1. Failover timeout function enabled
.... ...1 Controller is stalled
The remainder of byte 1 and all of bytes 2-4 is
reserved for future use.

DIAGNOSE Code X'26C'

232 z/VM: 7.3 CP Programming Services

Table 36. Controller Information (DSECT CSICCSTR). Length CSICCLEN, X'34'. This structure also
includes CSICVCTR entries of type CSICVSTR. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'2C' CSIVERS1 CSICAP -

Capability flags
Byte 1
1... IP
.1.. Ethernet
..1. Release Level Information
...1 VLAN_ARP
.... 1... GVRP
.... .1.. Management and Link Aggregation
.... ..1. Isolation
.... ...1 Reserved
Byte 2
1... Reserved
.1.. Bridge Capable
..1. VEPA
...1 Enhanced Grat ARP (VM65104+)
.... 1... Shared Link Aggregation (VM65583+)
.... .1.. Priority Queuing (VM66219+)
The remainder of byte 2 and all of bytes 3 and 4
is reserved for future use.

4 X'30' CSIVERS1 CSICVCTR - Count of controlled virtual switches

** X'34' CSIVERS1 CSICVBEG - CSICVCTR entries of type CSICVSTR

Table 37. Vswitch Information (DSECT CSICVSTR). Length CSICVLEN, X'0C'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSIVERS1 CSICVNAM - Virtual switch name

1 X'08' CSIVERS1 CSICVR -

Role
X'80' - UPLINK Port Active, Primary RDEV
X'40' - UPLINK Port Backup RDEV
X'20' - Bridge Port Active RDEV
X'10' - Bridge Port Standby RDEV
X'08' - Bridge Port Inactive RDEF
X'04' - Bridge Port Undefined RDEV

1 X'09' CSIVERS1 Reserved

2 X'0A' CSIVERS1 CSICVDEV - Virtual device address

Exit Values:

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 233

Table 38. Subcode X'00000010' Return Codes

Return Code in
Ry+1

Meaning

0 (X'00') Controller information was successfully returned in the specified output buffer.
The fullword at the address pointed to by Rx is modified to contain the total length
of the data returned in the buffer.

4 (X'04') Controller information was not returned. The specified user ID is not a controller
or no controllers exist.

12 (X'0C') The requested version is not supported by CP.

16 (X'10') The buffer provided is not large enough to contain the controller information.
Some information may be returned. The value of controller count in the output
buffer indicates how many complete sets of controller information are returned.
The first fullword at the address pointed to by Rx is modified to contain the size of
the buffer needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

28 (X'1C') Controller information was not returned. Internal error.

Usage Notes: None.

Subcode X'00000014'—Return Guest LAN List
Entry Values:
Rx

Contains the address of an input buffer one fullword in length. The input buffer contains the length of
the output buffer (Rx+1).

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the guest LAN names. For each guest LAN, the
guest LAN owner is returned in the first 8 bytes padded with blanks, followed by the guest LAN name
in the next 8 bytes padded with blanks. The output buffer is modified only if Ry+1 contains return
code 0 or return code 16 (X'10').

The address must be aligned on a doubleword boundary.

Exit Values:

Table 39. Subcode X'00000014' Return Codes

Return Code in
Ry+1

Meaning

0 (X'00') Guest LAN names were successfully returned in the specified output buffer. The
fullword at the address pointed to by Rx is modified to contain the total length of
the data returned in the buffer.

4 (X'04') Guest LAN names were not returned. No guest LANs exist.

16 (X'10') The buffer provided is not large enough to contain the guest LAN names. Some
information may be returned. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer needed to return all information.

DIAGNOSE Code X'26C'

234 z/VM: 7.3 CP Programming Services

Table 39. Subcode X'00000014' Return Codes (continued)

Return Code in
Ry+1

Meaning

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

Usage Note: The list of guest LAN names returned can include virtual switches, which are a special kind of
guest LAN.

Subcode X'00000018'—Return Guest LAN Information
Entry Values:
Rx

Contains the address of an input buffer six fullwords in length. The first word of the buffer contains the
length of the output buffer (Rx+1). The second word contains the version. Valid version numbers are
defined in HCPCSIBK COPY. The third and fourth words contain the guest LAN owner (left-justified,
padded with blanks). The remaining words contain the guest LAN name (left-justified, padded with
blanks).

Providing blanks for guest LAN owner or guest LAN name can return all guest LANs with a given name,
or all guest LANs with a given owner, or all guest LANs.

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the guest LAN information. This structure is
mapped by HCPCSIBK COPY. The output buffer is modified only if Ry+1 contains return code 0 or
return code 16 (X'10').

The address must be aligned on a doubleword boundary.

Output Buffer Format

Table 40. Return Guest LAN Information (DSECT CSIGRESP). Length CSIGOSIZ, X'08'. This structure also
includes CSIGGCTR Entries of Type CSIGGSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIGOVER - Output buffer format version

4 X'04' CSIVERS1 CSIGGCTR - Guest LAN count

** X'08' CSIVERS1 CSIGGBEG - CSIGGCTR entries of type CSIGGSTR

Table 41. Guest LAN Information (DSECT CSIGGSTR). Length CSIGGLEN, X'2C'. This structure also
includes CISGACTR entries of type CSIGASTR and CSIGUCTR entries of type CSIGUSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIGNEXT - Offset to next Guest LAN entry

8 X'04' CSIVERS1 CSIGOOWN - Guest LAN owner

8 X'0C' CSIVERS1 CSIGONAM - Guest LAN name

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 235

Table 41. Guest LAN Information (DSECT CSIGGSTR). Length CSIGGLEN, X'2C'. This structure also
includes CISGACTR entries of type CSIGASTR and CSIGUCTR entries of type CSIGUSTR. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'14' CSIVERS1 CSIGMAX

Maximum connections
(0 for infinite)

2 X'18' CSIVERS1 CSIGAT -

Attributes
Byte 1
1... Persistent
.1.. Restricted
..1. Prirouter requested
...1 Prirouter active
.... 1... Accounting on
The remainder of byte 1 and all of byte 2 is
reserved for future use.

1 X'1A' CSIVERS1 CSIGMPRO -

MAC address protection setting
0 - Unspecified
1 - On
2 - Off

1 X'1B' CSIVERS1 Reserved

4 X'1C' CSIVERS1 CSIGMFS -

MFS.
(0 for QDIO guest LANs)

1 X'20' CSIVERS1 CSIGTY -

LAN Type 1 - HiperSockets 2 - QDIO
4 - Reserved
5 - Reserved

1 X'21' CSIVERS1 Reserved

2 X'22' CSIVERS1 CSIGIPTI - IPTimeout

4 X'24' CSIVERS1 CSIGACTR - Connected adapter count

** X'28' CSIVERS1 CSIGABEG - CSIGACTR entries of type CSIGASTR

4 ** CSIVERS1 CSIGUCTR - CP Authorized user ID count

** ** CSIVERS1 CSIGUBEG - CSIGUCTR entries of type CSIGUSTR

DIAGNOSE Code X'26C'

236 z/VM: 7.3 CP Programming Services

Table 42. Connected Adapter Information (DSECT CSIGASTR). Length CSIGALEN, X'0C'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSIVERS1 CSIGAOWN - Adapter owner

2 X'08' CSIVERS1 Reserved

2 X'0A' CSIVERS1 CSIGANIC - NIC address

Table 43. Authorized User Information (DSECT CSIGUSTR). Length CSIGULEN, X'0C'

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSIVERS1 CSIGUSER - Authorized user ID

4 X'08' CSIVERS1 CSIGUST -

Authorization status
1... User ID is authorized for promiscuous mode
The remainder of byte 1 and all of bytes 2-4 is
reserved for future use.

Exit Values:

Table 44. Subcode X'00000018' Return Codes

Return Code in
Ry+1

Meaning

0 (X'00') Guest LAN information was successfully returned in the specified output buffer.
The fullword at the address pointed to by Rx is modified to contain the total length
of the data returned in the buffer.

4 (X'04') Guest LAN information was not returned. No guest LANs exist to match the
specified guest LAN owner and guest LAN name, or no guest LANs exist.

12 (X'0C') The requested version is not supported by CP.

16 (X'10') The buffer provided is not large enough to contain the guest LAN information.
Some information may be returned. The value of guest LAN count in the output
buffer indicates how many complete sets of guest LAN information are returned.
The first fullword at the address pointed to by Rx is modified to contain the size of
the buffer needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

Usage Note: The guest LAN information returned can be for a virtual switch, which is a special kind of
guest LAN. Use subcode X'00000020' to obtain information specific to virtual switches.

Subcode X'0000001C'—Return Virtual Switch List
Entry Values:

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 237

Rx
Contains the address of an input buffer one fullword in length. The input buffer contains the length of
the output buffer (Rx+1).

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the list of virtual switch names. Each name is
padded to 8 bytes. The output buffer is modified only if Ry+1 contains return code 0 or return code 16
(X'10').

The address must be aligned on a doubleword boundary.

Exit Values:

Table 45. Subcode X'0000001C' Return Codes

Return Code in Ry+1 Meaning

0 (X'00') Virtual switch names were successfully returned in the specified output buffer.
The fullword at the address pointed to by Rx is modified to contain the total
length of the data returned in the buffer.

4 (X'04') Virtual switch names were not returned. No virtual switches exist.

16 (X'10') The buffer provided is not large enough to contain the virtual switch names.
Some information may be returned. The first fullword at the address pointed
to by Rx is modified to contain the size of the buffer needed to return all
information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

Usage Note: None.

Subcode X'00000020'—Return Virtual Switch Information
Entry Values:
Rx

Contains the address of an input buffer four fullwords in length. The first word of the buffer contains
the length of the output buffer (Rx+1). The second word contains the version. Valid version numbers
are defined in HCPCSIBK COPY.

The third and fourth words contain a VSWITCH name (left-justified, padded with blanks). If the
VSWITCH name provided is all blanks, information is returned for all virtual switches.

OR

The third word contains a virtual switch management IP address in hexadecimal format and the fourth
word contains hex zeroes. If the third and fourth words contain zeroes, information is returned for all
virtual switches.

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the virtual switch information. The structure is
mapped by HCPCSIBK COPY. The output buffer is modified only if Ry+1 contains return code 0 or
return code 16 (X'10').

The address must be aligned on a doubleword boundary.

Output Buffer Format
The following diagram shows the layout of structures that are returned in the output buffer CSIVRESP. The
individual structures are shown in subsequent tables.

DIAGNOSE Code X'26C'

238 z/VM: 7.3 CP Programming Services

+-------------------------------+
| CSIVRESP |
+-------------------------------+
| CSIVVSTR(1) |
| ... |
| CSIVROFF ---------+---+
| ... | |
| CSIVAOFF ---------+---+-------+
| ... | | |
| CSIVUOFF ---------+---+-------+---+
| ... | | | |
| CSIVMCOF ---------+---+-------+---+---+
+-------------------------------+ | | | |
CSIVRSTR(1)	<--+				
...					
CSIVSOFF ---------+---+					
...					
CSIVTOFF ---------+---+---+					
...					
+-------------------------------+					
CSIVSSTR(1)	<--+				
+-------------------------------+					
CSIVSSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVSSTR(n)					
+-------------------------------+					
CSIVTSTR(1)	<------+				
+-------------------------------+					
CSIVTSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVTSTR(n)					
+-------------------------------+					
CSIVRSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVRSTR(n)					
+-------------------------------+					
CSIVASTR(1)	<----------+				
+-------------------------------+					
CSIVASTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVASTR(n)					
+-------------------------------+					
CSIVUSTR(1) or CSIVPSTR(1)	<--------------+				
...					
CSIVLOFF or CSIVPOFF ---+---+					
+-------------------------------+					
CSIVLSTR(1) ..	<--+				
+-------------------------------+					
CSIVLSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVLSTR(n)					
+-------------------------------+					
CSIVUSTR(2) or CSIVPSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVUSTR(n) or CSIVPSTR(n)					
+-------------------------------+					
CSIVMSTR(1)	<------------------+				
+-------------------------------+					
CSIVMSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVMSTR(n)					
+-------------------------------+					
CSIVVSTR(2)					
+-------------------------------+					
...					
+-------------------------------+					
CSIVVSTR(n)					
+-------------------------------+

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 239

Table 46. Return Virtual Switch Information (DSECT CSIVRESP). Length CSIVOSIZ, X'08'. This structure
also includes CSIVVCTR entries of type CSIVVSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIVOVER - Output buffer format version

4 X'04' CSIVERS1 CSIVVCTR - Virtual switch count

** X'08' CSIVERS1 CSIVVBEG - CSIVVCTR entries of type CSIVVSTR

Table 47. Virtual Switch Information (DSECT CSIVVSTR). Length CSIVVL51, X'80'. Length for versions
prior to CSI65583 was CSIVVL20, X'5C'. Length for versions prior to CSIVERS2 was CSIVVLEN, X'50'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIVNEXT - Offset to next virtual switch entry

8 X'04' CSIVERS1 CSIVONAM - Virtual switch name

1 X'0C' CSIVERS1 CSIVTY -

Virtual switch transport type
1 - IP
2 - Ethernet

1 X'0D' CSIVERS1 CSIVST -

Virtual Switch UPLINK port status
X'01' - Vswitch defined
X'02' - Controller not available
X'03' - Operator intervention required
X'04' - Disconnected
X'05' - VDEVs attached to controller (1)
X'06' - OSA initialization in progress (1)
X'07' - OSA device not ready
X'08' - OSA device ready
X'09' - OSA devices being detached (1)
X'0A' - VSWITCH delete pending (1)
X'0B' - VSWITCH failover recovering (1)
X'0C' - Autorestart in progress (1)

(1) If the virtual switch status contains this value, it is
expected to be temporary. Remaining in this status is an
indicator that an error has occurred.

1 X'0E' CSIVERS1 CSIVPRT -

Default Port type
1 - Access
2 - Trunk
(0 for a VLAN unaware virtual switch)

1 X'0F' CSIVERS1 CSIVQUEU - QueueStorage

DIAGNOSE Code X'26C'

240 z/VM: 7.3 CP Programming Services

Table 47. Virtual Switch Information (DSECT CSIVVSTR). Length CSIVVL51, X'80'. Length for versions
prior to CSI65583 was CSIVVL20, X'5C'. Length for versions prior to CSIVERS2 was CSIVVLEN, X'50'.
(continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'10' CSIVERS1 CSIVAT

Attributes
Byte 1
1... Persistent
.1.. Restricted
..1. Prirouter requested
...1 Prirouter active
.... 1... Accounting on
.... .1.. VLAN_ARP
.... ..1. GVRP requested
.... ...1 GVRP enabled
Byte 2
1... VLAN_counters ON
.1.. Reserved
..1. Uplink port NIC
...1 NOUPLINK
.... 1... Port Based
.... .1.. User Based
.... ..1. Isolation Status ON
.... ...1 VEPA Status ON

1 X'12' CSIVERS1 CSIVMPRO - MAC address protection setting

0 - Unspecified
1 - On
2 - Off

1 X'13' CSIVERS1 CSIVSB -

Virtual Switch Bridge Port Status
X'01' - Bridge port defined
X'02' - Controller not available
X'03' - Operator intervention required
X'04' - Disconnected
X'05' - VDEVs attached to controller (2)
X'06' - Initialization in progress (2)
X'07' - Device not ready
X'08' - Device is active bridge port
X'09' - Devices being detached (2)
X'0A' - VSWITCH delete pending (2)
X'0B' - VSWITCH failover recovering (2)
X'0C' - Autorestart in progress (2)

(2) If the virtual switch status contains this value, it is
expected to be temporary. Remaining in this status is an
indicator that an error has occurred.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 241

Table 47. Virtual Switch Information (DSECT CSIVVSTR). Length CSIVVL51, X'80'. Length for versions
prior to CSI65583 was CSIVVL20, X'5C'. Length for versions prior to CSIVERS2 was CSIVVLEN, X'50'.
(continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'14' CSIVERS1 CSIVDEFV -

Default VLAN ID
(0 for a VLAN unaware virtual switch or
X'8000' if VLAN AWARE without a default
VLAN ID)

2 X'16' CSIVERS1 CSIVNATV -

Native VLAN ID
(0 for a VLAN unaware virtual switch)
(1 if native VLAN ID not specified for a VLAN
aware virtual switch or X'8000' if VLAN AWARE
with native VLAN ID NONE)

2 X'18' CSIVERS1 CSIVIPTI - IPTimeout

6 X'1A' CSIVERS1 CSIVMAC - Virtual switch MAC address

8 X'20' CSIVERS1 CSIVMGMT - Management stack user ID

8 X'28' CSIVERS1 CSIVUNUS - UPLINK NIC user ID

2 X'30' CSIVERS1 CSIVUNVD - UPLINK NIC vdev

1 X'32' CSIVERS1 CSIVUNRN -

UPLINK NIC Error status
X'00' - No error
X'01' - Userid not logged on
X'02' - Not authorized
X'03' - VDEV does not exist
X'04' - VDEV is attached elsewhere
X'05' - VDEV not compatible type
X'06' - VLAN conflict
X'07' - No MAC address
X'08' - Not managed
X'09' - Port Error
X'0D' - Type mismatch
X'FF' - Unknown error

1 X'33' CSIVERS1 Reserved

4 X'34' CSIVERS1 CSIVOIPA - Virtual switch IP address

DIAGNOSE Code X'26C'

242 z/VM: 7.3 CP Programming Services

Table 47. Virtual Switch Information (DSECT CSIVVSTR). Length CSIVVL51, X'80'. Length for versions
prior to CSI65583 was CSIVVL20, X'5C'. Length for versions prior to CSIVERS2 was CSIVVLEN, X'50'.
(continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'38' CSIVERS1 CSIVLIN -

Link aggregation attributes
1... GROUP attribute specified
.1.. LACP Active
..1. Reserved
...1 Reserved
.... 1... Shared Port Group
.... .1.. Exclusive Port Group

The remainder of the byte is reserved for future use. X'00' is
returned if this vswitch is not using a shared port group.

1 X'39' CSIVERS1 CSIVTYP -

Virtual Switch Type
2 - QDIO VSWITCH
4 - Reserved
5 - Reserved
6 - IVL VSWITCH

2 X'3A' CSUVERS1 CSIVINT - Link aggregation group interval

8 X'3C' CSIVERS1 CSIVGROU -

Link aggregation group name
(All blanks for NOGROUP)

8 X'44' CSIVERS2 CSIVTIME - Timestamp in TOD clock format representing the
time the virtual switch manager was assigned.

4 X'4C' CSIVERS2 CSIVVLAC - Number of VLAN IDs activated. A VLAN ID is
considered to be activated when at least one guest initialized
a port on which the VLAN ID may flow.

0 is returned for a VLAN UNAWARE VSWITCH.

4 X'50' CSIVERS1 CSIVRCTR - Device count

4 X'54' CSI65583 CSIVROFF - When CSIVRCTR is not zero, byte offset, relative
to the start of this CSIVVSTR structure, to the start of the first
CSIVRSTR structure.

4 X'58' CSI65583 CSIVACTR - Connected adapter count

4 X'5C' CSI65583 CSIVAOFF - When CSIVACTR is not zero, byte offset, relative
to the start of this CSIVVSTR structure, to the start of the first
CSIVASTR structure.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 243

Table 47. Virtual Switch Information (DSECT CSIVVSTR). Length CSIVVL51, X'80'. Length for versions
prior to CSI65583 was CSIVVL20, X'5C'. Length for versions prior to CSIVERS2 was CSIVVLEN, X'50'.
(continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'60' CSI65583 CSIVUCTR or CSIVPCTR - CP Authorized user ID count for
user based virtual switch or Port count for port based virtual
switch

CSIVUCTR applies to a user-based virtual switch prior to
version CSI65925 but is replaced by CSIVPCTR with version
CSI65925 and above output for all virtual switches (whether
it is user based or port based).

4 X'64' CSI65583 CSIVUOFF - When CSIVUCTR/CSIVPCTR is not zero, byte
offset, relative to the start of this CSIVVSTR structure, to the
start of the first CSIVUSTR structure or the first CSIVPSTR
structure.

1 X'68' CSI65918 CSIVLBAL -

Load Balance Type
0 - Independent
8 - Forced Independent
16 - Collaborative

1 X'69' CSI66219 CSIVPRIQ -

Priority Queuing state
0 - Off
4 - Forced off
8 - On

5 X'6A' CSI65918 Reserved.

1 X'6F' CSI65583 CSIVSPGS -

Shared Port Group Scope
X'00' - Not Shared Port Group
X'80' - Not Synchronized
X'40' - Error
X'20' - Pending Synchronization
X'10' - Synchronized

8 X'70' CSI65583 CSIVSTOK - Shared Port Group Synchronization token.
Zeroes if NOGROUP or port group is not a shared port group.

4 X'78' CSI65583 CSIVMCTR - Count of the number of Global Virtual Switch
members.

4 X'7C' CSI65583 CSIVMCOF - When CSIVMCTR is not zero, byte offset, relative
to the start of this CSIVVSTR structure, to the start of the first
CSIVMSTR structure.

DIAGNOSE Code X'26C'

244 z/VM: 7.3 CP Programming Services

Table 48. RDEV Information (DSECT CSIVRSTR) . Length CSIVRL51, X'70'. Length for versions prior to
CSI65583 was CSIVRL40, X'50'. Length for versions prior to CSIVERS4 was CSIVRL12, X'28'. Length for
versions prior to CSI64277 was CSIVRLEN, X'24'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'00' CSIVERS1 CSIVDEVA - Base device address

2 X'02' CSIVERS1 CSIVVDEV - Virtual device address

8 X'04' CSIVERS1 CSIVCONT - Controller user ID

2 X'0C' CSIVERS1 CSIVREAD - Read control device address

2 X'0E' CSIVERS1 CSIVWRIT - Write control device address

2 X'10' CSIVERS1 CSIVDATA - Data device address

2 X'12' CSIVERS1 CSIVUNIT - Data device unit

1 X'14' CSIVERS1 CSIVDST -

Device status
X'00' - Device is not active
X'01' - Device is active
X'02' - Device is backup
X'03' - Device is standby

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 245

Table 48. RDEV Information (DSECT CSIVRSTR) . Length CSIVRL51, X'70'. Length for versions prior to
CSI65583 was CSIVRL40, X'50'. Length for versions prior to CSIVERS4 was CSIVRL12, X'28'. Length for
versions prior to CSI64277 was CSIVRLEN, X'24'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'15' CSIVERS1 CSIVER -

Error status
X'00' - No error
X'01' - Portname conflict
X'02' - No layer 2 support
X'03' - RDEV does not exist
X'04' - RDEV is attached elsewhere
X'05' - RDEV not compatible type
X'06' - Initialization error
X'07' - Stalled OSA
X'08' - Stalled controller
X'09' - Controller connection severed
X'0A' - Primary or secondary routing conflict
X'0B' - Device is offline
X'0C' - Device was detached
X'0D' - Type Mismatch (IP<->Ethernet)
X'0E' - Insufficient storage in controller virtual
machine
X'0F' - TCP/IP Configuration conflict
X'10' - No link Aggregation support
X'11' - OSA-E Attribute mismatch
X'12' - Reserved for future use
X'13' - OSA-E is not ready
X'14' - Reserved for future use
X'15' - Attempting restart for device
X'16' - Exclusive use error
X'17' - Device state is invalid
X'18' - Port number is invalid for device
X'19' - No OSA Connection Isolation
X'1A' - EQID mismatch
X'1B' - Incompatible controller
X'1C' - No HiperSockets Bridge Support
X'1D' - Error on initialization of HiperSockets
Bridge device
X'1E' - No Reflective Relay
X'1F' - Reflective Relay Error
X'20' - No VEPA Support
X'21' - SWITCHOVER Command Issued
X'22' - No Priority Queuing

1 X'16' CSIVERS1 CSIVPTST -

Port status (UPLINK RDEV)
X'00' - Error State
X'02' - Suspended State
X'03' - Waiting State
X'04' - Active State

DIAGNOSE Code X'26C'

246 z/VM: 7.3 CP Programming Services

Table 48. RDEV Information (DSECT CSIVRSTR) . Length CSIVRL51, X'70'. Length for versions prior to
CSI65583 was CSIVRL40, X'50'. Length for versions prior to CSIVERS4 was CSIVRL12, X'28'. Length for
versions prior to CSI64277 was CSIVRLEN, X'24'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'17' CSIVERS1 CSIVPRSN -

Port status reason (UPLINK RDEV)
X'00' - No status to report
X'01' - Pending QDIO action
X'02' - Pending routing assignment
X'03' - Port is inoperable
X'04' - ABEND occurred while processing this port
X'05' - Pending fail back from backup device to
link aggregation group
X'06' - Waiting for LACP port negotiation to add
this port to the link aggregation group. Datagrams
are accepted for the port
X'07' - Port System ID and or Key do not match
our link aggregation group
X'08' - Port marked inoperable by the partner
switch via LACP protocol
X'09' - LACP currently NOT enabled on the
partner switch port

8 X'18' CSIVERS1 CSIVPORT or CSIVPLPR -

For UPLINK RDEV: Portname
(All blanks for unassigned)

For active or standby HiperSockets Bridge RDEV: Active
LPAR. Otherwise blanks.

1 X'20' CSI64277 CSIVOSAP - OSA-Express hardware port number

1 X'21' CSI64277 CSIVRTHP/CSIVRTHS

NIC distribution setting
X'80' - NIC distribution ON

2 X'22' CSI64277 Reserved

8 X'24' CSIVERS4 CSIVEQID - User specified device equivalency ID (EQID).
Zero if a user EQID has not been set for the device.

1 X'2C' CSI65042 CSIVRTYP -

Virtual Switch RDEV Type
X'00' - UPLINK RDEV
X'01' - Primary HiperSockets Bridge RDEV
X'02' - Secondary HiperSockets Bridge RDEV

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 247

Table 48. RDEV Information (DSECT CSIVRSTR) . Length CSIVRL51, X'70'. Length for versions prior to
CSI65583 was CSIVRL40, X'50'. Length for versions prior to CSIVERS4 was CSIVRL12, X'28'. Length for
versions prior to CSI64277 was CSIVRLEN, X'24'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'2D' CSI65042 CSIVMTUS -

For UPLINK RDEV, Path MTU Discovery Setting
X'80' - Off
X'40' - Value
X'20' - External

2 X'2E' CSI65042 CSIVMTUV - For UPLINK RDEV, Path MTU Discovery
Value

4 X'30' CSI65042 CSIVHMFS - For HiperSockets Bridge RDEV, MFS.

4 X'34' CSI65042 CSIVHBFL - For HiperSockets Bridge RDEV, Buffer Limit.

4 X'38' CSI65042 CSIVHBFU - For HiperSockets Bridge RDEV, Buffer
in use.

4 X'3C' CSI65042 CSIVHASY - For HiperSockets Bridge RDEV,
count of asynchronous data transfers.

4 X'40' CSI65042 CSIVHCC2 - For HiperSockets Bridge RDEV, SIGa Busy
Count.

4 X'44' CSIVERS5 CSIVPATR - Partner switch capability

X'00000000' - Not available
X'00000001' - Standard - VEB
X'00000002' - Reflective Relay

4 X'48' CSIVERS5 Reserved.

4 X'4C' CSIVERS1 CSIVSCTR - Segment count.

4 X'50' CSI65583 CSIVSOFF - When CSIVSCTR is not zero, byte offset,
relative to the start of this CSIVRSTR structure, to the
start of the first CSIVSSTR structure.

4 X'54' CSI65583 CSIVSLN - Length of the CSIVSSTR structure.

4 X'58' CSI65583 CSIVTCTR - Take-Over MAC address count

4 X'5C' CSI65583 CSIVTOFF - When CSIVTCTR is not zero, byte offset,
relative to the start of this CSIVRSTR structure, to the
start of the first CSIVTSTR structure.

4 X'60' CSI65583 CSIVTLN - Length of the CSIVTSTR structure.

8 X'64' CSI65583 CSIVTDS - Adapter description, 8 bytes of data

CECID - 6 bytes of data that uniquely identifies
the processor. PCHID - 2 bytes of data that
identifies the Physical Channel ID representing the
OSA-Express adapter.

4 X'6C' CSI65583 Reserved.

DIAGNOSE Code X'26C'

248 z/VM: 7.3 CP Programming Services

Table 49. Segment Information (DSECT CSIVSSTR). Length CSIVSL50, X'AC'. Length for versions prior to
CSI66219 was CSIVSL40, X'4C'. Length for versions prior to CSIVERS4 was CSIVS20, X'3C'. Length for
versions prior to CSIVER2 was CSIVSLEN, X'24'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'00' CSIVERS1 CSIVVLAN - VLAN ID or 0.

(0 is returned for a VLAN UNAWARE virtual switch, or
a VLAN AWARE virtual switch with the VLAN_counters
attribute set to OFF.)

2 X'02' CSIVERS1 Reserved for future IBM use

8 X'04' CSIVERS1 CSIVRXFM - Received Frames

8 X'0C' CSIVERS1 CSIVRXDS - Received Frames Discarded

8 X'14' CSIVERS1 CSIVTXFM - Transmitted Frames

8 X'1C' CSIVERS1 CSIVTXDS - Transmitted Frames Discarded

8 X'24' CSIVERS2 CSIVLTMC - Timestamp in TOD clock format
representing the time the VLAN most recently became
active. A VLAN ID is considered to be activated when at
least one guest initialized a port on which the VLAN ID
may flow.

Null for a VLAN UNAWARE virtual switch, a VLAN
AWARE virtual switch with VLAN_counters set to OFF,
or for the Native VLAN when it is not in the list of
authorized VLANs.

8 X'2C' CSIVERS2 CSIVLTMU - Timestamp in TOD clock format
representing the most recent change to the VLAN
configuration. A VLAN configuration change occurs
when a port is added or removed from the list of ports
on which the VLAN ID may flow.

Null for a VLAN UNAWARE virtual switch, a VLAN
AWARE virtual switch with VLAN_counters set to OFF,
or for the Native VLAN when it is not in the list of
authorized VLANs.

4 X'34' CSIVERS2 CSIVLACT - Number of interfaces on which the VLAN is
active.

Null for the Native VLAN when it is not in the list of
authorized VLANs.

4 X'38' CSIVERS2 CSIVLDEL - Number of times VLAN was deleted, when
VLAN ID is non-zero.

Null for the Native VLAN when it is not in the list of
authorized VLANs.

8 X'3C' CSI65042 CSIVRXBT - Total number of bytes received

8 X'44' CSI65042 CSIVTXBT - Total number of bytes transmitted

8 X'4C' CSI66219 CSIVTX0B - Transmitted bytes - Queue 0

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 249

Table 49. Segment Information (DSECT CSIVSSTR). Length CSIVSL50, X'AC'. Length for versions prior to
CSI66219 was CSIVSL40, X'4C'. Length for versions prior to CSIVERS4 was CSIVS20, X'3C'. Length for
versions prior to CSIVER2 was CSIVSLEN, X'24'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'54' CSI66219 CSIVTX0F - Transmitted frames - Queue 0

8 X'5C' CSI66219 CSIVTX0D - Transmitted frames discarded - Queue 0

8 X'64' CSI66219 CSIVTX1B- Transmitted bytes - Queue 1

8 X'6C' CSI66219 CSIVTX1F- Transmitted frames - Queue 1

8 X'74' CSI66219 CSIVTX1D- Transmitted frames discarded - Queue 1

8 X'7C' CSI66219 CSIVTX2B - Transmitted bytes - Queue 2

8 X'84' CSI66219 CSIVTX2F - Transmitted frames - Queue 2

8 X'8C' CSI66219 CSIVTX2D - Transmitted frames discarded - Queue 2

8 X'94' CSI66219 CSIVTX3B - Transmitted bytes - Queue 3

8 X'9C' CSI66219 CSIVTX3F - Transmitted frames - Queue 3

8 X'A4' CSI66219 CSIVTX3D - Transmitted frames discarded - Queue 3

Table 50. Take-Over MAC Address Information (DSECT CSIVTSTR). Length CSIVTLEN. X'18'.

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

6 X'00' CSI65583 CSIVTKM - Take-Over MAC Address

6 X'06' CSI65583 CSIVTHM - MAC Address of Failing Host system

8 X'0C' CSI65583 CSIVTVS - Failing VSwitch name

4 X'14' CSI65583 Reserved

Table 51. Connected Adapter Information (DSECT CSIVASTR). Length CSIVALEN. X'0C'.

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSIVERS1 CSIVAOWN - Adapter owner

1 X'08' CSIVERS1 CSIVAPTY -

Port Type
X'00' - Simulated Guest Port
X'01' - HiperSockets Logical Port

1 X'09' CSIVERS1 Reserved

2 X'0A' CSIVERS1 CSIVANIC - NIC address

DIAGNOSE Code X'26C'

250 z/VM: 7.3 CP Programming Services

Table 52. Authorized User Information (DSECT CSIVUSTR). Length CSIVUL51, X'14'. Length for versions
prior to VM65583 was CSIVULEN, X'10'. CSIVUSTR applies to a user-based virtual switch prior to version
CSI65925 but is replaced by CSIVPSTR with version CSI65925 and above output.

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSIVERS1 CSIVUSER - User ID

4 X'08' CSIVERS1 CSIVUST -

Authorization status
1... User ID is authorized for promiscuous mode
The remainder of byte 1 and all of bytes 2-4 is
reserved for future use.

4 X'0C' CSIVERS1 CSIVLCTR - Authorized VLAN list count

4 X'10' CSI65583 CSIVLOFF - When CSIVLCTR is not zero, byte offset,
relative to the start of this CSIVUSTR structure, to the
start of the first CSIVLSTR structure.

Table 53. Authorized Port Information (DSECT CSIVPSTR). Length CSIVPL51, X'28'. Length for versions
prior to VM65583 was CSIVPLEN, X'24'. For versions CSI65925 and above the authorized user/port list
is included as a series of CSIVPSTR structures for every virtual switch (whether it is user based or port
based).

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS4 CSIVPNUM - Port number

8 X'04' CSIVERS4 CSIVPSER - User ID

4 X'0C' CSIVERS4 CSIVPST -

Authorization status
1... Port is authorized for promiscuous mode
The remainder of byte 1 and all of bytes 2-4 is
reserved for future use.

1 X'10' CSI66219 CSIVUPTX - Guest transmission priority level

PQUPLINKTX value
0 - z/VM
1 - High
2 - Normal
3 - Low

15 X'11' CSIVERS4 CSIVPRSV - Reserved for additional port attributes

4 X'20' CSIVERS4 CSIVPVTR - Authorized VLAN list count

4 X'24' CSI65583 CSIVPOFF - When CSIVPVTR is not zero, byte offset,
relative to the start of this CSIVPSTR structure, to the
start of the first CSIVLSTR.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 251

Table 54. Authorized User VLAN Information (DSECT CSIVLSTR). Length CSIVLLEN, X'04'.

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'00' CSIVERS1 CSIVUVID - Authorized VLAN ID

2 X'02' CSIVERS1 Reserved

Table 55. Global Virtual Switch Member Information (DSECT CSIVMSTR). Length CSIVMLEN, X'10'.

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

8 X'00' CSI65583 CSIVMNAM - IVL member name.

1 X'08' CSI65583 CSIVMSTA - State

Member State
X'80' - Not Synchronized
X'40' - Error
X'20' - Pending Synchronization
X'10' - Synchronized

3 X'09' CSI65583 Reserved

4 X'0C' CSI65583 CSIVMERC - Synchronization error code.

Exit Values:

Table 56. Subcode X'00000020' Return Codes

Return Code in
Ry+1

Meaning

0 (X'00') Virtual switch information was successfully returned in the specified output buffer.
The fullword at the address pointed to by Rx is modified to contain the total length
of the data returned in the buffer.

4 X'04') Virtual switch information was not returned. The specified VSWITCH does not
exist, or no virtual switch has a management IP address matching the IP address
provided, or no virtual switches exist.

12 X'0C') The requested version is not supported by CP.

16 (X'10') The buffer provided is not large enough to contain the virtual switch information.
Some information may be returned. The value of virtual switch count in the output
buffer indicates how may complete sets of virtual switch information are returned.
The first fullword at the address pointed to by Rx is modified to contain the size of
the buffer needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

Usage Notes: None.

Subcode X'00000024'—Return Virtual Port, Virtual NIC or HiperSockets
Logical Port Information

Entry Values:

DIAGNOSE Code X'26C'

252 z/VM: 7.3 CP Programming Services

Rx
Contains the address of an input buffer six fullwords in length. This is mapped by the CSIPPLST
structure in HCPCSIBK COPY. The first word of the buffer contains the length of the output buffer
(Rx+1). The second fullword contains the version. Valid version numbers are defined in HCPCSIBK
COPY. The high order half word of the third word contains an input parameter list type which defines
the format of the remaining input.

The following formats return Virtual Port or Virtual NIC Information. This information is obtained for
guests on the VSWITCH itself.

• 0 (X'0000') - CSIPITYU. Return port information by user ID, optionally filtered by VLAN ID and NIC
addresses. The low order half word of the third word contains a VLAN ID or hex zeroes. If the
halfword contains zeroes, information is returned for all active VLAN IDs.

The fourth and fifth fullwords contain the name of the virtual machine ID. Use the user ID of the
controller to obtain information about the active virtual switch RDEV ports.

The sixth fullword contains the coupled guest NIC in the two low-order bytes, or use the RDEV
to obtain information about an active virtual switch RDEV port. The two high-order bytes must
contain zeroes. If the two low-order bytes contain X'FFFF' (CSIPINON), information is returned
for all coupled NICs defined for the specified user and all active RDEV ports for which the virtual
machine is a VSWITCH controller.

• 1 (X'0001') - CSIPITYI. Return port information by virtual switch management IP address, optionally
filtering by VLAN ID and port number. The low order half word of the third word contains a VLAN ID
or hex zeroes. If the halfword contain zeroes, information is returned for all active VLAN IDs defined
for the virtual switch.

The fourth word contains a virtual switch management IP address in hexadecimal format.

The fifth word must contain hex zeroes.

The sixth fullword contains the port number in hexadecimal format. If the sixth fullword contains
zeroes, information is returned for all ports defined for the specified virtual switch. Ports include all
virtual NICs coupled to the virtual switch, as well as the VSWITCH's active RDEVs.

• 2 (X'0002') - CSIPITYN. Return virtual NIC information by user ID, optionally filtered by VLAN ID
and NIC address. The low order half word of the third word contains a VLAN ID or hex zeroes. If the
halfword contains zeroes, information is returned for all active VLAN IDs.

The fourth and fifth fullwords contain the name of the virtual machine ID for which virtual NICs are
defined.

The sixth fullword contains the NIC in the two low-order bytes. The two high-order bytes must
contain zeroes. If the two low-order bytes also contain x'FFFF' (CSIPINON), information is returned
for all NICs defined for the specified user.

The following formats return HiperSockets Logical Port Information. This information is obtained for
guests on the HiperSockets channel that are bridge capable.

• 20 (X'0014') - CSIPITYH. Return HiperSockets logical port information by VSWITCH name.

The low order halfword of the third word is unused.

The fourth and fifth fullwords contain the name of the VSWITCH.

The sixth fullword is not used and contains zero.

This address must be aligned on a doubleword boundary.

Rx+1
Contains the address of an output buffer to contain the guest LAN information. This structure is
mapped by HCPCSIBK COPY. The output buffer is modified only if Ry+1 contains return code 0 or
return code 16 (X'10').

The address must be aligned on a doubleword boundary.

Output Buffer Format

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 253

Table 57. Return Virtual Port or Virtual NIC Information (DSECT CSIPRESP). Length CSIPOSIZ, X'08'. This
structure also includes CSIPNCTR entries of type CSIPNSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIPOVER - Output buffer format version

4 X'04' CSIVERS1 CSIPNCTR - Port or NIC count

** X'08' CSIVERS1 CSIPNBEG - CSIPNCTR entries of type CSIPNSTR

Table 58. Port or NIC Information (DSECT CSIPNSTR). Length CSIPNL61, X'40'. This structure also
includes CSIPDCTR entries of type CSIPDSTR. Length for versions prior to CSI66219 was CSIPNLEN,
X'3C'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIPNEXT - Offset to next port or NIC entry

8 X'04' CSIVERS1 CSIPOWNE -

Port or NIC owner
For a guest NIC, this is the NIC owner.
For a virtual switch network connection or a
HiperSockets Bridge port the user ID
of the controller is contained in this field.
For a HiperSockets Logical Port, this is the
Logical Guest Port ID.

2 X'0C' CSIVERS1 CSIPADDR -

Port or NIC address.
For a guest NIC, this is the NIC address.
For a virtual switch network connection or a
HiperSockets Bridge port this is the RDEV
address. For a HiperSockets Logical Port, this is
the device number portion of the Logical Guest
Port ID.

1 X'0E' CSIVERS1 CSIPSTA -

Port or NIC status

For a guest NIC:
X'00' - NIC is not coupled
X'01' - Coupled but not active
X'02' - Coupled and active

For a virtual switch network connection or a
HiperSockets Bridge port:
X'01' - Attached to a controller but not active
X'02' - Attached and active

DIAGNOSE Code X'26C'

254 z/VM: 7.3 CP Programming Services

Table 58. Port or NIC Information (DSECT CSIPNSTR). Length CSIPNL61, X'40'. This structure also
includes CSIPDCTR entries of type CSIPDSTR. Length for versions prior to CSI66219 was CSIPNLEN,
X'3C'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

1 X'0F' CSIVERS1 CSIPTY -

Type
1 - HiperSockets NIC
2 - QDIO NIC
3 - QDIO VSWITCH
4 - Reserved
5 - Reserved
6 - IQD Bridge Port

8 X'10' CSIVERS1 CSIPLAOW -

Guest LAN owner
(Blank if guest NIC is not connected)

8 X'18' CSIVERS1 CSIPLANM -

Guest LAN name
(Blank if guest NIC is not connected)

8 X'20' CSIVERS1 CSIPPORT or CSIPPLPR -

Port name for a guest NIC: Portname or blanks.
For active or standby HiperSockets Bridge port:
Active LPAR. Otherwise, blanks.

1 X'28' CSIVERS1 CSIPPT -

Port type
0 - Undefined (VLAN Unaware or guest NIC
 not coupled)
1 - Access
2 - Trunk

1 X'29' CSIVERS1 CSIPEST -

Extended Port Status
1... Isolation status ON (0 if guest NIC not
 coupled)
.1.. VEPA status ON
..1. Uplink NIC Port (0 if guest NIC not
 coupled)
.... ..11 Transport Protocol (VM65918 +)
 00: Undetermined (NIC not Coupled)
 01: IP (Layer 3)
 10: Ethernet (Layer 2)
 11: Reserved

2 X'2A' CSIVERS1 CSIPVDEV - Base virtual device address

4 X'2C' CSIVERS1 CSIPPTNM - Portnum (0 if never coupled)

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 255

Table 58. Port or NIC Information (DSECT CSIPNSTR). Length CSIPNL61, X'40'. This structure also
includes CSIPDCTR entries of type CSIPDSTR. Length for versions prior to CSI66219 was CSIPNLEN,
X'3C'. (continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'30' CSIVERS1 CSIPIFIN - IfIndex (0 if not coupled)

4 X'34' CSIVERS1 CSIPMAXI - MAXinfo

4 X'38' CSIVERS1 CSIPDCTR - Count of devices

1 X'3C' CSI66219 CSIPUPTX - Guest transmission priority level

PQUPLINKTX value
0 - z/VM
1 - High
2 - Normal
3 - Low

1 X'3D' CSI66219 CSIPFLAG - Flags:

1... NIC distribution ON

The remainder of the byte is reserved for future use.

2 X'3E' CSI66219 Reserved

** X'40' CSIVERS1 CSIPDBEG - CSIPDCTR entries of type CSIPDSTR

Table 59. Device Information (DSECT CSIPDSTR) . Length CSIPDL40, X'1C'. This structure also includes
CSIPTCTR entries of type CSIPTSTR. Length for versions prior to CSIVERS4 was CSIPDLEN, X'0C'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'00' CSIVERS1 CSIPDATA - Device address

2 X'02' CSIVERS1 CSIPUNIT - Device unit

1 X'04' CSIVERS1 CSIPROLE -

Device role
0 - Unassigned
1 - Read control
2 - Write control
3 - Data device
4 - Data-Diag device

3 X'05' CSIVERS1 Reserved

16 X'08' CSIVERS4 Reserved

4 X'18' CSIVERS1 CSIPTCTR -

Count of data devices
(Currently always 0 or 1)

DIAGNOSE Code X'26C'

256 z/VM: 7.3 CP Programming Services

Table 59. Device Information (DSECT CSIPDSTR) . Length CSIPDL40, X'1C'. This structure also includes
CSIPTCTR entries of type CSIPTSTR. Length for versions prior to CSIVERS4 was CSIPDLEN, X'0C'.
(continued)

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

** X'1C' CSIVERS1 CSIPTBEG - One entry of type CSIPTSTR when device
Role=3, data device

Table 60. Data Device Details (DSECT CSIPTSTR). Length CSIPTLEN, X'10'. This structure also includes
CSIPSCTR entries of type CSIPSSTR and CSIPMCTR entries of type CSIPMSTR.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS1 CSIPOP -

Options
Byte 1
1... Broadcast
.1.. Ethernet
..1. IPv4
...1 IPv6
.... 1... Multicast
.... .1.. Promiscuous enabled
.... ..1. Promiscuous denied
.... ...1 VLAN enabled
Bytes 2-4 are reserved for future use.
>For a HiperSockets Logical Port, these bytes are
not used.

1 X'04' CSIVERS1 CSIPROU -

Router Status
1... Primary
.1.. Secondary
..1. Multicast
...1 MAC address protection ON
The remainder of the byte is reserved for future
use.

3 X'05' CSIVERS1 Reserved

4 X'08' CSIVERS1 CSIPSCTR - Active segment count

** X'0C' CSIVERS1 CSIPSBEG - CSIPSCTR entries of type CSIPSSTR

4 ** CSIVERS1 CSIPMCTR - MAC address count

** ** CSIVERS1 CSIPMBEG - CSIPMCTR entries of type CSIPMSTR

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 257

Table 61. Active Segment Information (DSECT CSIPSSTR). Length CSIPSL40, X'34'. Length for versions
prior to CSIVERS4 was CSIPSLEN, X'24'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

2 X'00' CSIVERS1 CSIPVLAN - VLAN ID or 0. A non-zero VLAN ID is
returned only when:

• a global VLAN ID has been set for the port, or
• the port is on a VLAN AWARE virtual switch with the

VLAN_counters attribute set to ON.

1 X'02' CSIVERS1 CSIPVST4 -

IPv4 VLAN status flag when VLAN ID is non-zero.
1... Assigned by user
.1.. Assigned by system
..1. Authorization Conflict
 The remainder of the byte is reserved for future
use.

1 X'03' CSIVERS1 CSIPVST6 -

IPv6 VLAN status flag when VLAN ID is non-zero.
1... Assigned by user
.1.. Assigned by system
..1. Authorization Conflict
 The remainder of the byte is reserved for future
use.

8 X'04' CSIVERS1 CSIPRXFM - Received Frames. For a HiperSockets
Bridge Capable guest port, this field is valid only when
NICDISTRIBUTION is ON.

8 X'0C' CSIVERS1 CSIPRXDS - Received Frames Discarded. For a
HiperSockets Bridge Capable guest port, this field is
valid only when NICDISTRIBUTION is ON.

8 X'14' CSIVERS1 CSIPTXFM - Transmitted Frames. For a HiperSockets
Bridge Capable guest port, this field is valid only when
NICDISTRIBUTION is ON.

8 X'1C' CSIVERS1 CSIPTXDS - Transmitted Frames Discarded. For a
HiperSockets Bridge Capable guest port, this field is
valid only when NICDISTRIBUTION is ON.

8 X'24' CSI65042 CSIPRXBT - Total number of bytes received. For a
HiperSockets Bridge Capable guest port, this field is
valid only when NICDISTRIBUTION is ON.

8 X'2C' CSI65042 CSIPTXBT - Total number of bytes transmitted. For a
HiperSockets Bridge Capable guest port, this field is
valid only when NICDISTRIBUTION is ON.

DIAGNOSE Code X'26C'

258 z/VM: 7.3 CP Programming Services

Table 62. MAC Address Information (DSECT CSIPMSTR). Length CSIPMLEN, X'1C'.

Length Current
Version
Hexadecimal
Offset

Earliest
Version
available

Contents

6 X'00' CSIVERS1 CSIPMAC - MAC address

2 X'06' CSIVERS1 Reserved

16 X'08' CSIVERS1 CSIPIPV6, or CSIPIV4

IP address
For an IPv4 address, bytes 1-12 are reserved and
the IP address is returned in bytes 13-16.
Hexadecimal zeroes are returned for MAC
addresses associated with Virtual Switch RDEV
ports.
When the IP address cannot be determined,
hexadecimal zeroes are returned for MAC
addresses associated with guest ports
on ETHERNET virtual switches.

1 X'18' CSIVERS1 CSIPFL -

Address version
X'04' - IPv4
X'06' - IPv6

1 X'19' CSIVERS1 Reserved

1 X'1A' CSIVERS1 CSIPATY -

Address type
X'00' - Unicast MAC or IP address
X'01' - Multicast MAC or IP address
X'02' - Broadcast MAC

1 X'1B' CSIVERS1 CSIPAST -

IP or MAC address status
1... Local
.1.. Remote
..1. Manual
...1 Owner
.... 1... Error or External Conflict

The remainder of the byte is reserved for future use.

Exit Values:

Table 63. Subcode X'00000024' Return Codes

Return Code in Ry+1 Meaning

0 (X'00') Virtual port or NIC information was successfully returned in the specified output
buffer. The fullword at the address pointed to by Rx is modified to contain the
total length of the data returned in the buffer.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 259

Table 63. Subcode X'00000024' Return Codes (continued)

Return Code in Ry+1 Meaning

4 (X'04') Virtual port or NIC information was not returned.

• The specified adapter owner does not exist, or
• the specified NIC is invalid, or
• the specified NIC is not defined for the adapter owner, or
• no NICs are defined for the adapter owner, or
• no NICs match the filtering information provided on input, or
• no HiperSockets Logical Ports exist, or
• the specified VSWITCH does not exist, or
• VLAN filtering was requested but the virtual switch management IP address

provided is for a VLAN UNAWARE virtual switch, or a VLAN AWARE switch with
VLAN_counters set to OFF.

12 (X'0C') The requested version is not supported by CP.

16 (X'10') The buffer provided is not large enough to contain the information. Some
information may be returned. The value of port or NIC count in the output buffer
indicates how many complete sets of information are returned. The first fullword
at the address pointed to by Rx is modified to contain the size of the buffer
needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

24 (X'18') Incorrect parameter list type (CSIPITYP) or reserved field not zero.

28 (X'1C') The issuer has G privilege class and is not authorized to obtain information for
the virtual machine name specified (CSIPIUSR) in plist CSIPPLST structure.

Usage Notes: Privilege class G users are able to obtain information for their virtual machine. Information
pertaining to other users will not be returned.

Subcode X'00000030'—MAC Services
Entry Values:
Rx

Contains the address of a buffer four fullwords in length. This is mapped by the CSIMPLST structure in
HCPCSIBK COPY.

The first word of the buffer contains the length of the output buffer (Rx+1). The second fullword
contains the version. Valid version numbers are defined in HCPCSIBK COPY.

The high order halfword of the third word contains the MAC services operation code.

X'0000' - Return MAC address

The low order halfword contains the virtual device number in hexadecimal format.

The fourth fullword is reserved.

Rx+1
Contains the address of an output buffer to contain the results of the MAC Service requested. This
structure is mapped by HCPCSIBK COPY. The output buffer is modified only if Ry+1 contains return 0
or return code 16 (X'10').

This address must be aligned on a doubleword boundary.

DIAGNOSE Code X'26C'

260 z/VM: 7.3 CP Programming Services

Output Buffer Format

Table 64. MAC Services Return MAC Address (DSECT CSIMRESP). Length CSIMOSIZ, X'0C'.

Length Current Version
Hexadecimal
Offset

Earliest
Version
available

Contents

4 X'00' CSIVERS2 CSIMOVER - Output buffer format version

6 X'04' CSIVERS2 CSIMOMAC - MAC address assigned to the virtual
device. A MAC address is assigned by concatenating
the VMLAN MACPREFIX (as de fined by the system
configuration file) with the MACID found first in the
following priority list:

• The MAC ID from a SET NIC MACID command issued
for the device,

• the MAC ID specified on a NICDEF directory control
statement defining the device, which must be in the
USER subset of the VMLAN MACIDRANGE SYSTEM
range, or

• an available MACID from the SYSTEM section of the
VMLAN MACIDRANGE.

2 X'0A' CSIVERS2 CSIMRSV1 - Reserved

Exit Values:

Table 65. Subcode X'00000030' Return Codes

Return Code in Ry+1 Meaning

0 (X'00') The MAC service response was successfully returned in the specified output
buffer. The fullword at the address pointed to by Rx is modified to contain the
total length of the data returned in the buffer.

4 (X'04') The MAC service was not successful.

• Operation Code X'0000' - Return MAC Address

– The specified virtual device does not exist, or is not a networking device.

12 (X'0C') The requested version is not supported by CP.

16 (X'10') The buffer provided is not large enough to contain the information. Some
information may be returned. The first fullword at the address pointed to by Rx
is modified to contain the size of the buffer needed to return all information.

20 (X'14') Error obtaining storage. The buffer size provided is too large. Issue the request
using a smaller buffer size. The first fullword at the address pointed to by Rx is
modified to contain the size of the buffer required.

24 (X'18') An unsupported MAC Service operation code was specified.

28 (X'1C') The MAC service was not successful.

• Operation Code X'0000' - Return MAC Address

– MACID is not available. No more MACIDs are available in the VMLAN
SYSTEM MACIDRANGE or MACID is already in use.

DIAGNOSE Code X'26C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 261

Table 65. Subcode X'00000030' Return Codes (continued)

Return Code in Ry+1 Meaning

32 (X'20') The MAC service was not successful.

• Operation Code X'0000' - Return MAC Address

– MAC address is not available. Unable to assign MAC address due to an
unstable SSI mode.

36 (X'24') The MAC service was not successful.

• Operation Code X'0000' - Return MAC Address

– MAC address is not available. Unable to assign MAC address due to the
user currently being relocated.

40 (X'28') The MAC service was not successful.

• Operation Code X'0000' - Return MAC Address

– MAC address must be obtained from the OSA-Express directly. The service
does not support MAC address assignments for IEDN or INMN.

Usage Notes: None.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'26C' is given incorrect
data:

Problem Encountered Cause

Specification exception • Ry does not contain a valid subfunction code.
• Rx and Ry are the same register.
• Rx or Ry is not an even-numbered register.
• The input buffer is not on a doubleword boundary.
• The output buffer is not on a doubleword boundary.

Access exception An error occurred trying to:

• Fetch the data from the input buffer.
• Store data into the output buffer.

Privileged-operation exception Any of the following:

• The virtual machine is in the problem state.
• The issuer does not have the appropriate privilege class

(class E or class G for subcode X'00000030' only).

DIAGNOSE Code X'270' – Pseudo Timer Extended
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'270' to cause CP to store the number of bytes of time information specified in the
Ry register at the address specified in the Rx register. DIAGNOSE code X'270' replaces DIAGNOSE code
X'0C' for new applications.

Entry Values:

DIAGNOSE Code X'270'

262 z/VM: 7.3 CP Programming Services

Rx
Contains the address of an area where the time information is to be stored. The address must be in
second-level storage (that is, in the storage that appears real to your virtual machine) and must be on
a doubleword boundary.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the buffer where the time information is to be stored. If Rx designates
general register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the buffer is
in the host-primary address space.

Ry
Contains the length of the buffer in bytes. If Ry is 0, the same output as the DIAGNOSE X'0C' will be
given. 48 bytes are necessary to contain the same output from the DIAGNOSE X'0C' and the date in
the full-year format. 64 bytes are needed to contain the same output from the DIAGNOSE X'0C', the
date in full-year format and the date in ISO format.

Exit Values: The output area contains the following information:

The byte definitions for F1, F2, and F3 are as follows:
F1

Version of DIAGNOSE 270 (Currently 1)
F2

User's default date format
F3

System default data format
The bit settings in F2 and F3 are as follows:
X'80'

SHORTdate format — mm/dd/yy
X'40'

FULLdate format — mm/dd/yyyy
X'20'

ISOdate format — yyyy-mm-dd
X'10'

Use the system-wide default setting (F2 only). If this bit is on, one of the other bits will be on also. The
combination of these bits indicates the value of the system-wide default setting.

DIAGNOSE Code X'270'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 263

The first eight bytes (0 through 7) of the output area contain the date (mm/dd/yy) in EBCDIC. The next
eight bytes (8 through 15) contain the time of day (hh:mm:ss) in EBCDIC. The next eight bytes, VIRTCPU
(16 through 23), contain the virtual time consumed by the virtual CPU that issued the DIAGNOSE
instruction. The next eight bytes, TOTALPROC (24 through 31), contain the total of the virtual time
(VIRTCPU) and the simulation time spent on behalf of the virtual CPU that issued the DIAGNOSE
instruction. Thus, TOTALPROC is always greater than or equal to VIRTCPU. The difference between them
represents the time that CP has spent specifically on behalf of the virtual CPU. The next 10 bytes (32
through 41) contain the date in full year format (mm/dd/yyyy). The next 6 bytes (42 through 47) are
reserved. The next 10 bytes (48 through 57) contain the date in ISO date format (yyyy-mm-dd). The next
three bytes are three one-byte fields. The first byte is the version of the Diagnose 270. The second byte is
the user's default date format. The third byte is the system default date format. The last three bytes are
reserved.

These values are also part of the response for the CP INDICATE USER command. Bytes 16 through 31
contain the virtual and total processor time used by the virtual machine that issued the DIAGNOSE
instruction. VIRTCPU and TOTALPROC are doubleword, unsigned integers; the time is expressed in
microseconds, not as TOD clock units.

Usage Note
For a discussion of how z/VM processes addresses, refer to “How Addresses Are Processed” on page 5.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE X'270' is given incorrect input
data:

Problem Encountered Cause

Specification exception Any of the following:

• The address contained in Rx is not on a doubleword
boundary.

• Ry is specified as any register except R0 and the user's
buffer length is less than or equal to 0.

• The user's buffer address is equal to zero.
• There is an overlap of Rx and Ry, unless Rx and Ry are both
specified as R0.

Privileged-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to store into the time-information
area.

DIAGNOSE Code X'274' – Set Timezone Interrupt Flag
Privilege Class: G

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'274' to instruct CP to reflect an external interrupt, X'2004', to the issuer's virtual
machine when an operator enters the SET TIMEZONE command.

Entry Values:
Rx

contains the subfunction code.
Ry

is reserved and must be specified as 0.

DIAGNOSE Code X'274'

264 z/VM: 7.3 CP Programming Services

Subfunction Code
Meaning

0
Turns off the normal timezone interrupt flag.

1
Turns on the normal timezone interrupt flag.

2
Turns off the control program timezone interrupt flag. This flag should only be used by the virtual
machine's operating system.

3
Turns on the control program timezone interrupt flag. This flag should only be used by the virtual
machine's operating system. Starting with CMS Level 11, CMS uses this flag in order to monitor time
zone changes on VM.

If either the normal or the control program timezone interrupt flag is turned on and control register 0 bit
19 is on, the floating external interrupt is presented to the virtual machine.

Exit Values:
Guest Cond. Code

Meaning
0

DIAGNOSE completed with no errors.
3

DIAGNOSE failed due to one of the following errors:

• Ry was not specified as 0.
• The subfunction code was not valid.

Usage Notes
1. Interrupt X'2004' is masked by the TOD - clock sync-check subclass mask, control register 0 bit 19.

When the interruption is received, DIAGNOSE code X'00' may be used to obtain the new time zone
differential.

2. A Subsystem Reset resets both timezone interrupt flags. Such a reset occurs during the processing of
commands like IPL, DEFINE STORAGE, SET MACHINE, SYSTEM RESET, SYSTEM CLEAR, and DETACH
CPU.

3. HNDEXT SET for interrupt X'2004' can be used by CMS applications wanting to monitor time zone
changes. Starting with CMS Level 11, control register 0 bit 19 (CR0.19) is turned on during CMS
initialization to enable the X'2004' interruption. Applications which turn CR0.19 off prohibit recognition
of the time zone change. The CMS application receives control after CMS processes the X'2004'
interrupt.

DIAGNOSE Code X'27C' –Product Enablement Verification
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'27C' to perform product enablement verification. This DIAGNOSE code tests
information relating to the product definition within the system. DIAGNOSE code X'27C' requests
information regarding the enablement status of a single product or feature. The return code and output
area produced by DIAGNOSE code X'27C' contain the following information:

• Whether the product or feature is defined to the system. The product can be defined using a PRODUCT
statement within the system configuration file or a SET PRODUCT command.

• The current state of the product (ENABLED or DISABLED).

DIAGNOSE Code X'27C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 265

• The contents of the optional DESCRIPTION operand specified on the PRODUCT statement or SET
PRODUCT command.

Entry Values:
Rx

Is the guest real address of a product parameter list. This area is mapped by the HCPPPLBK member
in HCPGPI MACLIB. This address must be on a doubleword boundary. The required entry values of the
product parameter list are described under Product Parameter List Entry Values.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the product parameter list and the description return area. If Rx
designates general register 0, if Ax contains X'00000000', or if the virtual machine is not in XC mode,
the product parameter list and the description return area are in the host-primary address space.

Ry
Is the length of the product parameter list. This length must be equal to X'20' (PPLBKSZ).

HCPPPLBK — Product Parameter List Format:

HCPPPLBK — Product Parameter List Entry Values:

The required entry values of the product parameter list are:

• The PPLTYPE field must be set to PPLPROD (X'01') to explicitly indicate this is a product query.
• The PPLFLAG1 field must be set to X'00'.
• The reserved fields must be set to X'00'.
• The PPLPRDID field must be set to the VMSES/E product identifier of the product or feature the issuer

wanted to query. A seven character product identifier must be padded on the right with a blank.
• To receive any product description data:

– The PPLDESCL field must contain the number of bytes of the product description the issuer wants to
store. It is an unsigned binary number between 0 and 255 (X'00' to X'FF'). If PPLDESCL is not zero,
the product description is stored at the guest real address specified by PPLDESCA. If PPLDESCL is
zero, the product description is not stored even if one exists.

– The PPLDESCA field must contain the guest real address where the product description is to be
stored. It must be aligned on a doubleword boundary.

Exit Values:
Rx

Is unchanged. The exit values of the product parameter list are described under Product Parameter
List Exit Values.

Ax
Is unchanged.

Ry
Is the return code from the product enablement verification. The return codes are as follows:

Return Code in Ry Status

0 (X'00') The specified product is defined to the z/VM system, and the current status of
the product is ENABLED. The fields in the product parameter list are updated as
described in Product Parameter List Exit Values.

DIAGNOSE Code X'27C'

266 z/VM: 7.3 CP Programming Services

Return Code in Ry Status

4 (X'04') The specified product is defined to the z/VM system, but the current status of
the product is DISABLED. The fields of the product parameter list are updated as
described in Product Parameter List Exit Values.

8 (X'08') The specified product is not defined to the z/VM system. The fields in the product
parameter list are not updated.

12 (X'0C') An unknown error occurred. The fields in the product parameter list are not
updated.

HCPPPLBK — Product Parameter List Exit Values:

If the Ry return code is 8 or 12, the fields within the product parameter list are not changed.

If the Ry return code is 0 or 4, the fields within the product parameter list are updated as follows:

• PPLTYPE field is unchanged.
• PPLFLAG1 field is updated as appropriate. Either the PPLENABL bit (X'80') or the PPLDISAB bit (X'40')

is set depending on the state of the product within the system. The PPLDESCR bit (X'10') is set if the
specified product contains a decription.

• PPLPRDID field is unchanged.
• PPLDESCL field may be changed. It contains the actual number of bytes of the product description that

was stored. This is either the number of bytes of the actual product description or the value of the input
PPLDESCL, whichever is smaller.

• PPLDESCA field is unchanged.

Usage Note
For a discussion of how z/VM processes addresses , refer to “How Addresses Are Processed” on page 5.

Responses
Program Exceptions: These program exceptions can occur if the DIAGNOSE code X'27C' is given
incorrect input data:

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

Access exception An error occurred trying to fetch from or store into the
parameter list.

Specification exception Any of the following:

• The address of the parameter list specified in Rx is not on a
doubleword boundary.

• The PPLTYPE field is not X'01' (PPLPROD).
• The PPLFLAG1 field is not zero.
• The parameter list description length (PPLDESCL) is not in

the range of 0 to 255.
• The parameter list description return address (PPLDESCA)

is not on a doubleword boundary.
• Ry contains an invalid length. The only valid length is X'20'.
• Reserved fields in the product parmeter list are not zero.

DIAGNOSE Code X'27C'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 267

DIAGNOSE Code X'288' - Control Virtual Machine Time Bomb
Privilege Class: Any

Addressing Mode: 31-bit or 64–bit

Use DIAGNOSE code X'288' to set, change, or cancel a virtual machine time bomb. A time bomb explodes
after an interval defined by the Diagnose issuer unless it is changed or cancelled. In practice, this
interface is used to ensure that the virtual machine remains responsive, as indicated by its issuance of
the Diagnose before the interval expires. For example, if the virtual machine issues the Diagnose every 10
seconds and specifies an interval of 15 seconds, it will avoid the explosion indefinitely.

Entry Values:
Rx

is a 32-bit value comprising a 16-bit flag field followed by a 16-bit integer function code. In z/
Architecture mode, the high-order word of the register is ignored. The following function codes are
supported:
0

Initialize
1

Change
2

Cancel

The following flags are supported:
X'8000'

For the Initialize function, enable SET CONCEAL ON for the virtual machine and arm the time
bomb for conditions it detects

Rx+1
For the Initialize or Change function, contains the 32-bit interval in seconds that must elapse before
the time bomb explodes. In z/Architecture mode, the high-order word of the register is ignored.

Ry
For the Initialize function, contains the 31-bit or 64-bit real address of the command string to be
executed if the time bomb explodes.

Ry+1
For the Initialize function, contains the 32-bit length of the command string. In z/Architecture mode,
the high-order word of the register is ignored.

Usage Notes
1. The time bomb interval must not be less than 15 seconds, unless it is zero, in which case the time

bomb is disarmed.
2. The command string may consist of one or more commands separated by line-end characters (X'15').
3. Registers that are not used by a particular function code are ignored.
4. Flags that are defined but are not used by a particular function code are ignored.
5. The Initialize function must be the first one used by a virtual machine after it IPLs or issues a Cancel

function. Thereafter, the Initialize and Change functions may be used as desired until either a system
reset occurs (for example, as part of an IPL) or a Cancel function is used, after which another Initialize
function is required.

Responses
Program Exceptions: These program exceptions can occur if DIAGNOSE code X'288' is given incorrect
input data:

DIAGNOSE Code X'288'

268 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

Addressing exception The time bomb command string is not addressable.

Specification exception Any of the following:

• An undefined flag bit is turned on.
• An undefined function code is used.
• The time bomb interval is less than 15 seconds and is not

zero (Initialize, Change).
• The time bomb command string length exceeds 240 bytes

or is zero (Initialize).
• No time bomb is defined (Change, Cancel).

DIAGNOSE Code X'290' – Perform Privileged Spool Functions
Privilege Class: D

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'290' to perform the privileged spool functions identified by the following
subcodes:

• X'0000' fetches the page currently being built in a spool file that is open for creation. This data page
contains the records most recently added to the file and has not been written to spool. The spool file
may be owned by a user other than the issuer of this Diagnose.

• X'0004' fetches the external attribute buffer (XAB) data associated with a particular virtual unit record
output device. The owner of the device may be any user currently logged on to the system. For more
information on the XAB, refer to “External Attribute Buffer Used by DIAGNOSE Codes X'B4', X'B8', and
X'290'” on page 993.

Entry Values:
Rx

Contains the guest real storage address of the input parameter block. This block must be aligned on a
doubleword boundary.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the input parameter block. If Rx designates general register 0, if Ax
contains X'00000000', or if the virtual machine is not in XC mode, the input parameter block is in the
host-primary address space.

Ry
(32-bit) Bytes 0 and 1 contain the length of the input parameter block in bytes. Bytes 2 and 3 contain
the subcode.

Subcode X'0000' – Fetch Current Page of Open Spool File
Input Parameter Block: The input parameter block for DIAGNOSE code X'290' subcode X'0000' is
defined in the D29000 DSECT (in HCPD290P COPY) and contains the following input parameters:
D29000VN

(displacement 0, length 1) Version number (must be X'01').
D29000Q

(displacement 1, length 1) Queue on which the target spool file exists:
D29000PU

X'40' punch queue

DIAGNOSE Code X'290'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 269

D29000PR
X'20' printer queue

D29000ID
(displacement 2, length 2) Spool file ID of the target file.

D29000PN
(displacement 4, length 4) Relative page number of the data page that the program expects is the
active page in the open spool file; that is, the page where records are currently being written during
creation of the spool file. The first data page in the file is relative page number 0. If the page number
of the currently active page does not match this value, a nonzero return code is given (see Responses).
This mismatch can occur because new records can be written by the owner between the time the
application determines the page number and the time this Diagnose executes.

D29000UI
(displacement 8, length 8) User ID of the owner of the target spool file.

D29000BA
(displacement 16, length 8) Buffer address - the 64-bit guest real address of the output buffer where
the data page contents should be stored. This buffer is in the same address space that contains the
input parameter block, and it must start on a 4 KB boundary.

D29000BL
(displacement 24, length 4) Buffer length in bytes (must be 4096).

D29000R1
(displacement 28, length 4) Reserved (must be zero for future compatibility).

Exit Values:

• Successful:

– CC = 0
– Ry (32-bit) = 0
– The contents of the current spool file page are in the buffer.

• Unsuccessful:

– CC = 1
– Ry (32-bit) = nonzero return code (see Responses)
– The buffer does not contain the requested data.

Usage Note
For a discussion of how z/VM processes addresses, refer to “How Addresses Are Processed” on page 5.

Responses
Condition Codes:

Condition Code Meaning

0 The contents of the specified open spool file's currently active page buffer have
been stored in the guest's buffer. The return code in Ry is 0.

1 The data has not been stored in the buffer. The exact error is defined by the return
code.

Return Codes:

Return Code in Ry Meaning

0 (X'00') Successful completion.

DIAGNOSE Code X'290'

270 z/VM: 7.3 CP Programming Services

Return Code in Ry Meaning

4 (X'04')
D29000UIDNTLG

The user ID specified is not logged on.

8 (X'08')
D29000SFDNTEX

The spool file specified does not exist on the specified queue.

12 (X'0C')
D29000SFNTOPN

The spool file specified is not currently open.

16 (X'10')
D29000RBNTCUR

The requested block number is not the current page.

20 (X'14')
D29000BFLNTVAL

The buffer length is not 4096.

24 (X'18')
D29000BFADNT4K

The buffer is not on a 4 KB boundary.

28 (X'1C')
D29000CPIOERR

A CP paging or I/O error occurred.

32 (X'20')
D29000QNTVAL

The spool queue specified is not valid.

36 (X'24')
D29000ESMFAIL

DIAGNOSE code X'290' use is not authorized.

Program Exceptions: These program exceptions can occur if DIAGNOSE X'290' is given incorrect input
data:

Problem Encountered Cause

Specification exception Any of the following:

• The address contained in Rx is not on a doubleword
boundary.

• The subcode specified in Ry is not valid.
• The input parameter block length in Ry is incorrect.
• The input parameter block version number is not valid.
• The reserved fields in the input parameter block are not all

zeros.

Privileged-operation exception The issuer of the instruction does not have class D privileges.

Access exception (See “Access
Exceptions” on page 8.)

Any of the following:

• An error occurred trying to fetch the input parameter block.
• An error occurred trying to store the spool page into the

guest's buffer.

Subcode X'0004' – Fetch XAB Data from Virtual Printer
Input Parameter Block: The input parameter block for DIAGNOSE code X'290' subcode X'0004' is
defined in the D29004 DSECT (in HCPD290P COPY) and contains the following input parameters:
D29004VN

(displacement 0, length 1) Version number (must be X'01').
D29004R1

(displacement 1, length 1) Reserved (must be zero for future compatibility).

DIAGNOSE Code X'290'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 271

D29004DN
(displacement 2, length 2) Virtual address of the target device.

D29004R2
(displacement 4, length 4) Reserved (must be zero for future compatibility).

D29004UI
(displacement 8, length 8) User ID of the owner of the target device.

D29004BA
(displacement 16, length 8) Buffer address - the 64-bit guest real address of the output buffer where
the XAB data should be stored. This buffer is in the same address space that contains the input
parameter block, and it must start on a 4 KB boundary.

D29004BL
(displacement 24, length 4) Buffer length in bytes (must be 32768).

D29004R3
(displacement 28, length 4) Reserved (must be zero for future compatibility).

Exit Values:

• Successful:

– CC = 0
– Rx (32-bit) = actual length of XAB data stored in the buffer
– Ry (32-bit) = 0
– The contents of the XABs are in the buffer.

• Unsuccessful:

– CC = 1
– Ry (32-bit) = nonzero return code (see Responses)
– The buffer does not contain the requested XAB data.

Usage Note
For a discussion of how z/VM processes addresses, refer to “How Addresses Are Processed” on page 5.

Responses
Condition Codes:

Condition Code Meaning

0 The contents of the specified virtual output device's associated XABs have been
stored in the guest's buffer. The return code in Ry is 0.

1 The XAB data has not been stored in the buffer. The exact error is defined by the
return code.

Return Codes:

Return Code in Ry Meaning

0 (X'00') Successful completion.

4 (X'04')
D29004UIDNTLG

The user ID specified is not logged on.

8 (X'08')
D29004DEVNTEX

The device specified does not exist.

12 (X'0C')
D29004DEVNTPRT

The device specified is not a printer.

DIAGNOSE Code X'290'

272 z/VM: 7.3 CP Programming Services

Return Code in Ry Meaning

16 (X'10')
D29004DEVNOXAB

The device has no associated XABs.

20 (X'14')
D29004BFLNTVAL

The buffer length is not 32768.

24 (X'18')
D29004BFADNT4K

The buffer is not on a 4 KB boundary.

28 (X'1C')
D29004CPIOERR

A CP paging or I/O error occurred.

36 (X'24')
D29004ESMFAIL

DIAGNOSE code X'290' use is not authorized.

Program Exceptions: These program exceptions can occur if DIAGNOSE X'290' is given incorrect input
data:

Problem Encountered Cause

Specification exception Any of the following:

• The address contained in Rx is not on a doubleword
boundary.

• The subcode specified in Ry is not valid.
• The input parameter block length in Ry is incorrect.
• The input parameter block version number is not valid.
• The reserved fields in the input parameter block are not all

zeros.

Privileged-operation exception The issuer of the instruction does not have class D privileges.

Access exception (See “Access
Exceptions” on page 8.)

Any of the following:

• An error occurred trying to fetch the input parameter block.
• An error occurred trying to store the XAB data into the

guest's buffer.

DIAGNOSE Code X'2A8' – Network Diagnose
Privilege Class: Any

Addressing Mode: 31-bit or 64-bit

DIAGNOSE code X'2A8' establishes a network connection on a z/VM simulated network device in order to
transmit and receive Ethernet frames. It provides a virtual machine with device-independent access to a
simulated NIC created with a CP DEFINE NIC command that is coupled with a CP COUPLE command to
either an Ethernet VSWITCH or Ethernet QDIO guest LAN.

Entry Values:
Rx

The general register that contains the guest real address of a DIAGNOSE code X'2A8' request block.
The request block must be on a doubleword boundary and cannot cross a 4K boundary. The size and
format of the request block is determined by the specified operation code in Ry.

Ax
Is not used. The DIAGNOSE code X'2A8' request block must be in the host-primary address space.

Ry
The operation, as follows:

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 273

Bits
Function

0-31
Zero

32-39
Operation code:
X'00'

Query Interface
X'01'

Establish Device Connection
X'02'

Send Data Request
X'03'

Receive Data Request
X'04'

Multicast MAC Registration
X'05'

Network Device Options
40-47

Zero
48-63

Device number

Exit Values:
Rx + 1

Contains the response code indicating the results of the request. Refer to “Responses” on page 282
for the response codes that may be returned.

Operation code X'00' - Query Interface
This function returns the information required to establish and activate a network device connection using
an operation code X'01' - Establish Device Connection.

The operation code in bits 32-39 of the Ry operand for this query request is X'00'. The Rx operand
must specify the guest real address of a 64-byte storage area in which this operation code will store the
following information for the virtual device number specified in Ry operand bits 48-63:

Field Length Description

MAC Address 6 The MAC address that will be assigned to the device connection
when established with an operation code X'01' - Establish
Device Connection request.

DIAGNOSE Code X'2A8'

274 z/VM: 7.3 CP Programming Services

Field Length Description

Format 1 Specifies the layout of the returned Query Interface
information:
00

Initial release of DIAGNOSE X'2A8'.
01

Format and operation code mask included in the query
response.

Features 1 The features supported by this virtual NIC:
X'80'

A program control interruption (PCI) will be used to indicate
there are one or more packets waiting to be received using
an operation code X'03' - Receive Data Request.

Notes:

1. Other features may become available in future releases.
2. An attempt to use a feature that is reported as not available

may give inconsistent and unpredictable results.

Frames 2 The total number of guest absolute frames required to establish
a device connection with an operation code X'01' - Establish
Device Connection request.

Below 2GB Frames 2 The number of guest absolute frames below 2GB required to
establish a device connection with an operation code X'01' -
Establish Device Connection request. The required number of
frames below 2GB is included in the Frames field.

Reserved 2 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

MAC Limit 2 The maximum number of MAC addresses that may be
registered using operation code X'04' - Multicast MAC Address
Registration.

CCW 8 The format 1 CCW that must be issued with a SSCH instruction
to activate the device connection after a successful operation
code X'01' - Establish Device Connection request.

Reserved 32 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 275

Field Length Description

Operation Code Mask 4 Bit mask of supported operation codes:
Bit

Code – Description
X'80000000'

00 – Query Interface
X'40000000'

01 – Establish Device Connection
X'20000000'

02 – Send Data Request
X'10000000'

03 – Receive Data Request
X'08000000'

04 – Multicast MAC Registration
X'04000000'

05 – Network Device Options

Reserved 4 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Operation code X'01' - Establish Device Connection
This function will establish a network connection on a virtual NIC, defined by a CP DEFINE NIC command
that is coupled with a CP COUPLE command to either an Ethernet VSWITCH or Ethernet QDIO guest LAN.
Prior to establishing a connection, an operation code X'00' - Query Interface must be issued to obtain the
information needed to establish and activate this connection.

Prior to issuing an operation code X'01' - Establish Device Connection, the number of guest absolute
frames required for Diagnose use (as returned by operation code X'00' - Query Interface) must be
provided in guest storage and not modified while the device connection is in use. Unpredictable results
can occur if these frames are modified while the device connection is established or activated.

The operation code in bits 32-39 of the Ry operand for this query request is X'01'. The Rx operand must
specify the guest real address of a variable-size establish device connection parameter list (EDCPL) that
provides the following information for the virtual device number specified in Ry operand bits 48-63:

Once a connection is established, it must be activated by issuing a SSCH instruction to the device
specified in Ry with the CCW returned by the operation code X'00' - Query Interface. The I/O request
will remain active until it is either terminated by the adapter due to an unexpected error condition or
terminated by the guest with either a CSCH or HSCH instruction. As long as the device connection is

DIAGNOSE Code X'2A8'

276 z/VM: 7.3 CP Programming Services

active, data can be sent to the LAN by an operation code X'02' - Send Data Request or received with an
operation code X'03' - Receive Data Request.

Field Length Description

Frames 2 The number of guest real frames given to DIAGNOSE Code
X'2A8' to manage the device connection. The number of
frames required to establish a device connection is returned
by operation code X'00' - Query Interface.

Index 2 When a response code returned in Rx+1 indicates a problem
with an entry in the Frame Address Array, the index (0 to x) of
the entry in error is set in this field. The field is ignored on entry.

Reserved 28 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Frame Address Array Frames X 8 Variable-size array of 64-bit frames being given to the Network
Diagnose to manage the device connection. The size of the
array must equal the Frames field multiplied by eight bytes.
Each entry must contain the non-zero 64-bit guest absolute
address of a frame for the exclusive use of this Diagnose. The
frames must remain resident and unmodified in guest storage
until the activation CCW terminates.

Note: The Frame Address Array contains a list of both frames
below and above 2GB to be given to the Network Diagnose. The
required number of frames below 2GB returned by operation
code X'00' Query Interface must be the first frames specified
in the Frame Address Array. Failure to specify the frames
below 2GB first within the Frame Address Array will result in
a response code 32 error. The rest of the frames in the Frame
Address Array may reside anywhere in storage.

Operation code X'02' - Send Data Request
This function transmits the specified Ethernet frames to the LAN connection established with operation
code X'01' - Establish Device Connection and activated with a SSCH of the I/O activation CCW provided by
operation code X'00' - Query Interface. As long as the connection is active, data can be sent to the LAN by
an operation code X'02' - Send Data Request.

The operation code in bits 32-39 of the Ry operand for this request is X'02'. The Rx operand must specify
the 64- or 31-bit guest real address of a network parameter list (NETPL) to transmit Ethernet frames on
the device connection activated on the virtual device number specified in Ry operand bits 48-63:

Network Parameter List (NETPL)
The NETPL is a variable-size control block and is divided into two sections. The first 32 bytes is a
fixed-size header that is followed by a variable-size array of data request blocks (DRBs). The address of
the NETPL must be on a doubleword boundary and cannot cross a 4K boundary. The NETPL specifies the
following information for the virtual device number in Ry operand bits 48-63:

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 277

Field Length Description

Entries 1 The number of data request blocks (DRBs) associated with a
Send or Receive Data Request. A range of 1 to 254 entries
may be specified. On completion of an operation code X'03' -
Receive Data Request, the Entries field will indicate the number
of DGRs filled with Ethernet frames.

Index 1 When a non-zero response code is returned in the Rx+1
operand, the index of the DRB in error is set in this field. The
field is ignored on entry.

Reserved 30 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Data Request Block (DRB)
Appended to the NETPL is an array of data request blocks. Each DRB maps a single packet to be
transmitted or received. The number of DRBs to be processed is specified in the Entries field of the
NETPL. The maximum number of DRBs that may be specified in a particular NETPL is determined by its
starting address. An entire NETPL including the array of DRBs must reside within a single 4K frame. If any
portion of the NETPL crosses a 4K boundary, the request will fail.

Field Length Description

Flags 1 Processing flags for an operation code X'02' - Send Data
Request. Only one of the following flags may be set:
X'01'

Indicates a multicast frame
X'02'

Indicates a broadcast frame
X'04'

Indicates a unicast frame

Key 4 bits Bits 0-3 of byte 1 contain the storage key to be used when
fetching or storing a Ethernet frame.

DIAGNOSE Code X'2A8'

278 z/VM: 7.3 CP Programming Services

Field Length Description

Reserved 4 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Count 2 An unsigned half word that specifies the size of the frame to
be transmitted for an operation code X'02' - Send Data Request
or the size of the buffer for an operation code X'03' - Receive
Data Request. For a Receive Data, this count field will indicate
the number of bytes filled in the DGRs on completion of the
Diagnose.

Ethernet Frame
Address

8 Guest real 64-bit address of a Ethernet frame for an operation
code X'02' - Send Data Request or an empty buffer for
operation code X'03' - Receive Data Request. The Ethernet and
VLAN frame headers specified within a SEND Ethernet frame
may not cross a 4K boundary. An Ethernet or VLAN frame
header crossing a 4K boundary will result in a response code
40 error.

Note: For performance reasons, it’s advisable to keep the entire
Ethernet frame within a single 4K frame. Additional Diagnose
logic is necessary to process a Ethernet frame which crosses a
4K boundary.

Operation code X'03' - Receive Data Request
This function is used to retrieve Ethernet frames received from the LAN connection established with
operation code X'01' - Establish Device Connection. After the network connection is activated, the arrival
of inbound frames is signaled by a PCI I/O Interruption on the subchannel on which the I/O CCW provided
by operation code X'00' - Query Interface was started via SSCH.

On receipt of a PCI I/O Interruption, an operation code X'03' - Receive Data Request should be issued
with an array of empty data request buffers (DGRs). The size of each buffer must be large enough to
contain an entire Ethernet frame (equal to or greater than the MTU size for the interface). On completion
of the Diagnose instruction, the NETPL Entries field will indicate the number of DGR entries filled with
Ethernet frames. The Count field in each filled-in DGR is updated to reflect the number of bytes stored
in the Ethernet frame. Operation code X'03' - Receive Data Request should be reissued until all pending
Ethernet frames are received. As long as the connection is active, data can be received from the LAN by an
operation code X'03' - Receive Data Request.

The operation code in bits 32-39 of the Ry operand for this Receive Data request is X'03'. The Rx operand
must specify a 64- or 31-bit guest real address of a network parameter list (NETPL) in order to receive
pending Ethernet frames on the device connection activated on the virtual device number specified in Ry
operand bits 48-63.

The NETPL is a variable-size control block and is divided into two sections. The first 32 bytes is a
fixed-size header and is followed by a variable-size array of Data Request Blocks (DRB). The address
of the NETPL must be on a doubleword boundary and cannot cross a 4K boundary. Refer to “Network
Parameter List (NETPL)” on page 277 for the format of the NETPL for a Receive Data request.

Operation code X'04' - Multicast MAC Registration
This function is used to register a multicast MAC address on a LAN connection established with an
operation code X'01' - Establish Device Connection. After the network connection is activated, inbound
multicast Ethernet frames may only be received when their multicast MAC address is registered on the
LAN. Operation code X'04' allows a program to either register a multicast MAC address or to remove a
previously registered multicast address from an activated network connection.

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 279

A multicast MAC address may only be registered after the device connection is activated. A MAC address
registration will remain in effect until either it is removed by this operation code or the device connection
is deactivated by a CSCH.

The operation code in bits 32-39 of the Ry operand for this registration request is X'04'. The Rx operand
must specify a 64- or 31-bit guest real address of a multicast MAC address parameter list (MACPL) in
order to receive multicast Ethernet frames on the device connection activated on the virtual device:

Field Length Description

Function 1 Function to perform:
X'01'

Assign a multicast MAC address
X'02'

Remove an assigned multicast MAC address

All other function codes are reserved for future IBM use.

Reserved 7 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Multicast MAC
Address

6 The multicast MAC address that will be assigned or unassigned
to an active device connection established and activated with
an operation code X'01' - Establish Device Connection request.

Reserved 18 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Operation code X'05' - Network Device Options
This function is used to examine or modify options for a network device connection established with an
operation code X'01' - Establish Device Connection. A device options parameter list (DOPL) is specified
when the operation code is executed. The first 32 bytes of the DOPL specify the function to be performed.
The trailing 32 bytes of the DOPL return the active device settings at completion of the operation code
X'05' - Network Device Options.

A device option may be modified after the device connection is activated. Any change made will remain in
effect until it is either modified by this operation code or the device connection is deactivated.

The operation code in bits 32-39 of the Ry operand for this Network Device Options request is X'05'. The
Rx operand must specify the 64- or 31-bit guest real address of a device options parameter list (DOPL).

DIAGNOSE Code X'2A8'

280 z/VM: 7.3 CP Programming Services

Device Options Parameter List (DOPL)

Field Length Description

Function to perform:
X'00'

Query device options
X'01'

Turn on promiscuous mode
X'02'

Turn off promiscuous mode

All other function codes are reserved for future IBM use.

Reserved 31 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

DOPL Response Area
On completion of operation code X'05' - Network Device Options, the DOPL response area contains the
device options currently in effect for the active device connection. All fields within the DOPL response
area are ignored on entry.

Field Length Description

Current Options 4 On a condition code 0 completion of operation code X'05'
- Network Device Options, this field will contain the active
options for the specified device:
Bit

Description
X'80000000'

Promiscuous mode changes are permitted.
X'40000000'

Promiscuous mode is on.

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 281

Field Length Description

Reserved 28 Reserved (set to binary zeros). Note that programs which place
nonzero values in these fields may not operate compatibly in
the future.

Responses
Condition Codes:

Upon completion of DIAGNOSE code X'2A8', control is returned to the invoker with a condition code set to
indicate the status of both input parameter list processing and the function requested. A response code in
Rx+1 further defines the results (see the response code tables that follow).

Condition Code Meaning

0 Function completed successfully.

1 Function partially completed. Some of the I/O completed successfully. A response
code in Rx+1 indicates the condition that caused the partial completion and the
Index field in the EDCPL or NETPL indicates the entry in error.

2 Function failed. No I/O has completed successfully. The response code in Rx+1
indicates the reason for the failure.

3 One of the following conditions occurred:

• The device number specified in bits 48 to 63 in Ry doesn’t exist or its subchannel
is not enabled.

• The device number is not a virtual NIC coupled to an Ethernet VSWITCH or
Ethernet QDIO Guest LAN.

• A nonrecoverable error occurred while processing the instruction – a soft ABEND
was taken.

The response code in Rx+1 indicates the reason for the failure.

Response codes for operation code X'00' - Query Interface are as follows:

Condition Code

Response Code
in Rx+1
(decimal) Meaning

0 0 Query Interface completed successfully.

3 256 The device number specified in bits 48 to 63 in Ry doesn’t exist.

3 260 The device number specified in bits 48 to 63 in Ry is not a virtual NIC
coupled to a Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 264 The Subchannel Enable (E) bit in the Subchannel Information Block
(SCHIB) is not enabled for the Device Number specified in bits 48 to
63 in Ry.

3 268 A nonrecoverable error occurred while processing the instruction and
a soft ABEND may have been taken. No device information returned.

The program should terminate the DIAGNOSE code X'2A8'
connection with a CSCH instruction, establish and activate the
network connection again to insure the best chance of recovery.

Response codes for operation code X'01' - Establish Device Connection are as follows:

DIAGNOSE Code X'2A8'

282 z/VM: 7.3 CP Programming Services

Condition Code

Response Code
in Rx+1
(decimal) Meaning

0 0 Establish Device Connection completed successfully.

2 20 The specified device is currently activated for a network connection
or has an outstanding I/O operation.

2 24 The number of frames specified in the EDCPL is not sufficient to
establish a device connection.

2 28 An address not on a 4K boundary, an invalid or a zero guest absolute
address is specified in a Frame Address Array entry. The Index field
in the EDCPL will contain the entry number in error.

2 32 The number of guest absolute frames below 2GB is not sufficient to
establish a device connection. The required number of frames below
2GB must be the first frames specified in the Frame Address Array.

2 36 The same frame address was specified more than once in the Frame
Address Array. The Index field in the EDCPL will contain the entry
number of the duplicate entry.

2 40 The MAC address assigned to this device is currently being used by
another device on the LAN.

2 44 The maximum number of multicast MAC addresses allowed to be
assigned has been reached for this device connection, The maximum
number of MAC addresses allowed to be assigned is returned by
operation code X'00' - Query Interface.

3 256 The device number specified in bits 48 to 63 in Ry doesn’t exist.

3 260 The device number specified in bits 48 to 63 in Ry is not a virtual NIC
coupled to a Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 264 The subchannel enable (E) bit in the subchannel information block
(SCHIB) is not enabled for the Device Number specified in bits 48 to
63 in Ry.

3 268 A nonrecoverable error occurred while processing the Diagnose
instruction and a soft ABEND may have been taken. The device is
in an unpredictable state.

The program should terminate the DIAGNOSE code X'2A8'
connection with a CSCH instruction, establish and activate the
network connection again to insure the best chance of recovery.

Response codes for operation code X'02' - Send Data Request are as follows:

Condition Code

Response Code
in Rx+1
(decimal) Meaning

0 0 Send Data completed successfully.

2 16 The virtual device does not have an activated network connection.

2 20 The virtual device does not have a network device connection
established by operation code X'01' - Establish Device Connection.

2 24 An invalid number of entries was specified in the NETPL Entries field.

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 283

Condition Code

Response Code
in Rx+1
(decimal) Meaning

1,2 28 Invalid DRB Flag value specified. The Index field in the NETPL will
contain the number of the DRB entry in error.

1,2 32 Invalid or a zero guest real address is specified in the Address field of
a DRB entry. The Index field in the NETPL will contain the number of
the DRB entry in error.

1,2 36 Storage key violation fetching or storing data in the address specified
in a DRB entry. The Index field in the NETPL will contain the number
of the DRB entry in error.

1,2 40 Insufficient Count value specified in the DRB to hold an Ethernet
frame containing both a destination and source MAC address. The
Index field in the NETPL will contain the number of the DRB entry in
error.

1,2 44 A zero count value specified in the DRB. The Index field in the NETPL
will contain the number of the DRB entry in error.

1,2 48 The MAC address specified in the Ethernet frame header doesn’t
match the DRB Flag value specified. The Index field in the NETPL will
contain the number of the DRB entry in error.

3 256 The device number specified in bits 48 to 63 in Ry doesn’t exist.

3 260 The device number specified in bits 48 to 63 in Ry is not a virtual NIC
coupled to a Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 264 The subchannel enable (E) bit in the subchannel information block
(SCHIB) is not enabled for the device number specified in bits 48 to
63 in Ry.

3 268 A nonrecoverable error occurred while processing the Diagnose
instruction and a soft ABEND may have been taken. The device is
in an unpredictable state.

The program should terminate the DIAGNOSE code X'2A8'
connection with a CSCH instruction, establish and activate the
network connection again to insure the best chance of recovery.

Response codes for operation code X'03' - Receive Data Request are as follows:

Condition Code

Response Code
in Rx+1
(decimal) Meaning

0 0 Receive Data completed successfully.

0 4 Receive Data completed successfully. There are additional pending
Ethernet frames to retrieve with another Receive Data request.

2 8 No Ethernet frames returned on a Receive Data request.

2 16 The virtual device does not have an activated network connection.

2 20 The virtual device does not have a network device connection
established by an operation code X'01' - Establish Device
Connection.

2 24 An invalid number of entries was specified in the NETPL Entries field.

DIAGNOSE Code X'2A8'

284 z/VM: 7.3 CP Programming Services

Condition Code

Response Code
in Rx+1
(decimal) Meaning

1,2 32 Invalid or a zero guest real address is specified in the Address field of
a DRB entry. The Index field in the NETPL will contain the number of
the DRB entry in error.

1,2 36 Storage key violation fetching or storing data in the address specified
in a DRB entry. The Index field in the NETPL will contain the number
of the DRB entry in error.

1,2 40 Insufficient Count value specified in the DRB to hold the Ethernet
frame. The Index field in the NETPL will contain the number of the
DRB entry in error.

1,2 44 A zero Count value specified in the DRB. The Index field in the NETPL
will contain the number of the DRB entry in error.

3 256 The device number specified in bits 48 to 63 in Ry doesn’t exist.

3 260 The device number specified in bits 48 to 63 in Ry is not a virtual NIC
coupled to a Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 264 The subchannel enable (E) bit in the subchannel information block
(SCHIB) is not enabled for the device number specified in bits 48 to
63 in Ry.

3 268 A nonrecoverable error occurred while processing the Diagnose
instruction and a soft ABEND may have been taken. The device is
in an unpredictable state.

The program should terminate the DIAGNOSE code X'2A8'
connection with a CSCH instruction, establish and activate the
network connection again to insure the best chance of recovery.

Response codes for operation code X'04' - Multicast MAC Registration are as follows:

Condition Code

Response Code
in Rx+1
(decimal) Meaning

0 0 Multicast MAC address registration completed successfully.

0 4 The specified MAC address is already registered for this network
connection.

0 8 The specified MAC address being removed is not registered on this
network connection.

2 16 The virtual device does not have an activated network connection.

2 20 The virtual device does not have a network device connection
established by an operation code X'01' - Establish Device
Connection.

2 28 The specified MAC address is not a valid multicast MAC address.

2 32 An invalid function code value was specified.

2 36 The maximum number of multicast MAC addresses allowed to be
assigned has been reached for this device connection. The maximum
number of multicast MAC addresses allowed to be assigned is
returned by an operation code X'00' - Query Interface.

DIAGNOSE Code X'2A8'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 285

Condition Code

Response Code
in Rx+1
(decimal) Meaning

3 256 The device number specified in bits 48 to 63 in Ry doesn’t exist.

3 260 The device number specified in bits 48 to 63 in Ry is not a virtual NIC
coupled to a Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 264 The subchannel enable (E) bit in the subchannel information block
(SCHIB) is not enabled for the device number specified in bits 48 to
63 in Ry.

3 268 A nonrecoverable error occurred while processing the Diagnose
instruction and a soft ABEND may have been taken. The device is
in an unpredictable state.

The program should terminate the DIAGNOSE code X'2A8'
connection with a CSCH instruction, establish and activate the
network connection again to insure the best chance of recovery.

Response codes for operation code X'05' - Network Device Options are as follows:

Condition Code

Response Code
in Rx+1
(decimal) Meaning

0 0 Network Device Options completed successfully.

2 16 The virtual device does not have an activated network connection.

2 20 The virtual device does not have a network device connection
established by an operation code X'01' - Establish Device
Connection.

2 32 An unsupported function code value was specified.

2 36 The user ID is not authorized to set promiscuous mode.

3 256 The device number specified in bits 48 to 63 in Ry doesn’t exist or
its subchannel is either not enabled or not a virtual NIC coupled to a
Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 260 The device number specified in bits 48 to 63 in Ry is not a virtual NIC
coupled to a Ethernet VSWITCH or Ethernet QDIO guest LAN.

3 264 The subchannel enable (E) bit in the subchannel information block
(SCHIB) is not enabled for the device number specified in bits 48 to
63 in Ry.

3 268 A nonrecoverable error occurred while processing the Diagnose
instruction and a soft ABEND may have been taken. The device is
in an unpredictable state.

The program should terminate the DIAGNOSE code X'2A8'
connection with a CSCH instruction, establish and activate the
network connection again to insure the best chance of recovery.

Program Exceptions: DIAGNOSE code X'2A8' may result in one of the following program exceptions:

Program Exception Cause

Privileged-operation The virtual machine is in the problem state.

DIAGNOSE Code X'2A8'

286 z/VM: 7.3 CP Programming Services

Program Exception Cause

Access An error occurred trying to:

• Store Query Interface information
• Fetch or store the establish device connection parameter

list (EDCPL)
• Fetch or store the network parameter list (NETPL)
• Fetch or store the device options parameter list (DOPL).

Specification One of the following:

• Rx is not on a doubleword boundary or it crosses a 4K
boundary

• Rx equals Ry
• Register 15 specified for Rx
• Rx+1 overlays Ry
• Rx specifies an address of zero

Operand An invalid operation code is specified in bits 32-39 of Ry.

DIAGNOSE Code X'2CC' – SSI Interface
Privilege Class: B, E

Addressing Mode: 24-, 31-, or 64-bit

Use DIAGNOSE code X'2CC' to perform certain SSI-related functions. DIAGNOSE code X'2CC' provides a
virtual machine with access to SSI information.

Entry Values:
Rx

Function code.

Bits Function

00-31 Ignored

32-63 Function Code:

0 – Obtain Local System SSI Identifiers
1 – Query membership

Ry
Contains a function-specific value and must be an even-numbered register.

Exit Values:
Ry + 1

Contains the response code indicating the results of the request. Refer to the section for each function
code to determine the response codes that can be returned.

Responses
Condition Codes and Response Codes:

Upon completion of DIAGNOSE code X'2CC', control is returned to the invoker with the condition code set
to indicate the status of both input parameter processing and the function requested. A response code is
set in Ry+1 and might further define the results.

DIAGNOSE Code X'2CC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 287

If the function code in Rx is not recognized, condition code 3 is set and Ry+1 contains a response code of
256.

Refer to the individual function code descriptions for specific explanations of the meanings of condition
codes 0, 1, and 2, as well as for the associated response code values and meanings.

Program Exceptions:

DIAGNOSE code X'2CC' might result in one of the following program exceptions:

Program Exception Cause

Privileged-operation Any of the following:

• The virtual machine is in the problem state.
• The virtual machine does not have privilege class B or E.

Access An error occurred trying to fetch or store a parameter.

Specification Any of the following:

• Rx and Ry are the same register.
• Ry is not an even-numbered register.

Function Code 0: Obtain Local System SSI Identifiers
This function sets the condition code based on whether the local system is a member of the SSI cluster
and, if so, returns cluster-related information.

The function code in bits 32-63 of the Rx operand for the Obtain Local System SSI Identifiers request is 0.

The Ry operand must specify the guest logical address of a 32-byte storage area that contains, if the
response code is zero:

• The name of the SSI cluster, left-justified and padded with blanks, if necessary, in bytes 0-7
• The name of the local system, left-justified and padded with blanks, if necessary, in bytes 8-15
• A bitmap indicating the slot number of the local system (from left to right), in bytes 16-19
• The slot number of the local system in bytes 20-21
• Zeroes in bytes 22-31.

If the system is not a member of an SSI cluster, condition code 2 is set and the designated 32-byte
storage area contains:

• Blanks in bytes 0-7
• The system name, left-justified and padded with blanks, if necessary, in bytes 8-15
• Zeroes in bytes 16-31.

Condition Codes and Response Codes for Obtain Local System SSI Identifiers Function:

Condition code
Response Code in
Ry+1 Response Code Meaning

0 0 The local system is an SSI cluster member.

2 248 The local system is not a member of an SSI cluster
because it is not configured for an SSI cluster.

2 252 The local system is not a member of an SSI cluster
because it was IPLed with the REPAIR parameter, which
causes any SSI configuration information to be ignored.

DIAGNOSE Code X'2CC'

288 z/VM: 7.3 CP Programming Services

Function Code 1: Query SSI Membership
This function sets the condition code based on whether the system name, whose address is in Ry, is
configured as a member of the SSI cluster to which the local system belongs.

The function code in bits 32-63 of the Rx operand for the Query Membership request is 1.

The Ry operand must specify the guest logical address of an eight-byte storage area containing the
name of the system whose cluster membership is to be determined. The name of the system must be
left-justified and padded with blanks, if necessary.

Condition Codes and Response Codes for Query Membership Function:

Condition code
Response Code in
Ry+1 Response Code Meaning

0 0 The specified system is a member of the SSI cluster.

1 4 The specified system is not a member of the SSI cluster.

2 248 The local system is not a member of an SSI cluster
because it is not configured for an SSI cluster.

2 252 The local system is not a member of an SSI cluster
because it was IPLed with the REPAIR parameter, which
causes any SSI configuration information to be ignored.

DIAGNOSE Code X'2E0' – SYSEVENT Query Virtual Server (QVS)
Privilege Class: Any

Addressing Mode: 24-bit, 31-bit, or 64-bit

Use DIAGNOSE code X'2E0' to return information about system, logical partition, and virtual machine
capacity. It is equivalent to the MVS™™ SYSEVENT QVS interface, as described in z/OS MVS Programming:
Authorized Assembler Services Reference, Volume 4 (SET-WTO), SA22-7612.

Entry Values:
Rx

Contains the guest logical address of QVS parameter list.
Ry

Contents must be 0.

Exit Values:
Rx

Does not change.
Ry

Contains a return code.

Parameter List: The parameter list consists of an input area followed by an output area. The area must be
aligned on a doubleword boundary. This area is mapped by the IRAQVS macro in HCPGPI MACLIB.

Usage Notes
1. SYSEVENT QVS does not report capacity information when z/VM is running on IFL processor engines.
2. Virtual and real specialty engines that may be part of the virtual machine, logical partition, or machine

configuration are not included in the capacity values returned by SYSEVENT QVS.

Responses
Upon completion, DIAGNOSE code X'2E0' sets one of the following return codes in Ry:

DIAGNOSE Code X'2E0'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 289

Return Code
Explanation

0
Successful.

4
Parameter list too short.

The output area is set to zeros with a return code of zero if z/VM is running in a Linux®-only partition, or
the DIAGNOSE is issued on a virtual processor that is not a virtual CP.

The virtual machine capacity value returned by DIAGNOSE code X'2E0' is not affected by any SHARE
HARDLIMIT setting and reflects the capacity of the lowest-level virtual machine. That is, if the DIAGNOSE
is issued by a guest of a z/VM guest, the virtual machine capacity value reflects the capacity of the z/VM
guest and not the one issuing the DIAGNOSE instruction.

Program Exceptions: These program exceptions can occur if DIAGNOSE code X'2E0' is given incorrect
data:

Problem Encountered Cause

Specification exception • The address contained in Rx is not on a doubleword
boundary.

• The value contained in Ry is not zero.

Access exception An error occurred trying to store the capacity information into
the guest's output area.

DIAGNOSE Code X'2FC' – Obtain Certain Guest Performance Data
Privilege Class: Any, B.

Addressing Mode: 24-bit, 31-bit or 64-bit

Use DIAGNOSE code X'2FC' to obtain certain guest performance data.

Entry Values:
Rx

Contains the guest logical address of the parameter list.
Ax

Is used only for virtual machines in access register mode and contains the ALET for the address
space containing the parameter list and the response area. When Rx is general register 0, Ax is not
examined; the ALET is assumed to be X'00000000', which indicates the guest host-primary address
space.

Exit Values:
Rx

Contains the response buffer residual length.
Ax

Does not change.
Ry

Contains a return code.

Parameter List Definition: The parameter list must be aligned on a doubleword boundary. Its format is as
follows:

DIAGNOSE Code X'2FC'

290 z/VM: 7.3 CP Programming Services

Where:

User identifier selection string (EBCDIC value) This string:

• (Class Any) must be eight blanks to indicate that the issuer’s performance data is to be obtained.
• (Class B) must identify a user whose performance data is to be obtained.
• (Class B) must identify a set of users by designating zero or more of the leading characters of their

user identifiers, followed by an asterisk (i.e., *) to indicate that any arbitrary subsequent characters are
allowed.

ACI Group identifier selection string (EBCDIC value) This string:

• (Class Any) is ignored.
• (Class B) must identify the ACI group name of the users whose performance data is to be obtained.
• (Class B) must identify a set of users by designating zero or more of their ACI group name leading

characters, followed by an asterisk (i.e., *) to indicate that any arbitrary subsequent characters are
allowed.

Performance data is returned only for users who satisfy both the user identifier and the ACI Group
identifier conditions.

Response area address: This is the guest logical address of the doubleword-aligned area in storage
where the performance data is to be returned. For a virtual machine in access register mode, the ALET for
the address space is contained in Ax. See Ax under Entry Values, for more information.

Response area length: This is the signed 32-bit binary length of the response area.

Response area format: This is the response format and must have the binary integer value 2.

Responses
At the completion of the instruction, the response area contains zero or more sets of performance data.
The first word of each set of data in the response is a binary version number indicating its format.

The Format 2, Version 1 response is X'70' (112) bytes long and has the following format:

Offset Type (Length) Field Description

0x00 Binary(4) Version

DIAGNOSE Code X'2FC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 291

Offset Type (Length) Field Description

0x04 Bit(32) Guest Flags
Bits 0-7:

Primary Virtual CPU type

Valid values:
x'00' General Purpose (CP)
x'03' Integrated Facility for Linux
 (IFL)

Bits 8-15:
Dispatch CPU type

Valid values:
x'00' General Purpose (CP)
x'03' Integrated Facility for Linux
 (IFL)

Bits 16-27:
Reserved (zeros)

Bit 28:
Reserved

Bits 29-30:
Capping 00-None 01-Soft 10-Hard

Bit 31:
Multi-threading 0-Off 1-On

0x08 Binary(8) Used CPU (uS); total CPU time consumed by all CPUs with the same type
as the primary virtual CPU

0x10 Binary(8) Elapsed Time (uS); time logged on

0x18 Binary(8) Memory Minimum (KB); reserved pages

0x20 Binary(8) Memory Maximum (KB); virtual machine storage size

0x28 Binary(8) Memory Shares (KB); target working set size

0x30 Binary(8) Used Memory (KB); resident pages

0x38 Binary(4) Total Active Physical CPUs in CEC

0x3C Binary(4) Total Current Logical CPUs in z/VM System

0x40 Binary(4) Virtual CPUs in Guest with the same type as the primary virtual CPU

0x44 Binary(4) CPU Minimum; number of guest virtual CPUs with the same type as the
primary virtual CPU that are not in the stopped state (0 if guest has
ABSOLUTE normal or limit SHARE)

0x48 Binary(4) CPU Maximum; RELATIVE LIMITSOFT or LIMITHARD SHARE of the
dispatch CPU type, if set, 10000 otherwise (0 if guest has ABSOLUTE
normal or limit SHARE)

0x4C Binary(4) CPU Share; RELATIVE SHARE of the dispatch CPU type (0 if guest has
ABSOLUTE normal or limit SHARE)

0x50 Binary(4) CPU Using Samples; times user found using CPU

0x54 Binary(4) CPU Delay Samples; times user found waiting for CPU

0x58 Binary(4) Page Wait Samples; times user found in page wait

0x5C Binary(4) Idle Samples; times user found idle

DIAGNOSE Code X'2FC'

292 z/VM: 7.3 CP Programming Services

Offset Type (Length) Field Description

0x60 Binary(4) Other Samples; times user found in other state

0x64 Binary(4) Total Samples; times user state sampled

0x68 Char(8) EBCDIC User Identifier

Notes:

1. The fields that contain samples (from x'50' through x'64') are calculated only for virtual CPUs of the
same type as the primary virtual CPU.

2. For more information about specialty engines and CPU types, see Chapter 1 of z/VM: Running Guest
Operating Systems.

Condition Code: The condition code is unchanged.

Return Codes: At the completion of the Diagnose instruction, the following return codes are provided in
Ry:

Return Code Meaning

0 SUCCESS

Rx contains the residual response area length. Subtract its value from the original
response area length to determine the amount of performance data returned. The
result could be zero.

-1 FORMAT_NOT_SUPPORTED

The Response format value is not 2.

-2 RECEIVE_BUFFER_TOO_SMALL

The response area is too small to hold all the performance data and contains only
as many complete responses as would fit. Rx contains the residual response area
length and will be negative, its complement indicating how much larger the area
must be to contain the entire response. Since the size of the response area may
change between two invocations of the Diagnose, increasing the area size by this
amount might make it either too large or too small to hold a subsequent response.
This error will also be returned if the initial response area length is not positive.

-3 INCORRECT_RECEIVE_ADDRESS

The response area is not doubleword-aligned, is protected, or is not addressable.
The contents of any accessible portion of the response area are unpredictable.

-4 API_EXCEPTION

An error occurred fetching the parameter list or storing into the response area.
An attempt was made to access another user’s performance data without the
appropriate (privilege class B) authorization.

DIAGNOSE Code X'2FC'

Chapter 2. The IBM-Supplied DIAGNOSE Codes 293

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa7_v7r3.pdf#nameddest=hcpa7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa7_v7r3.pdf#nameddest=hcpa7_v7r3

DIAGNOSE Code X'2FC'

294 z/VM: 7.3 CP Programming Services

Part 2. The Inter-User Communications Vehicle

This part contains the following chapters:

• Chapter 3, “IUCV Overview,” on page 297 which gives an overview of the Inter-User Communications
Vehicle (IUCV), and a high-level description of using IUCV to pass information from one virtual machine
to another.

• Chapter 4, “IUCV Protocols,” on page 311 which gives reference information on IUCV protocol.
• Chapter 5, “IUCV Function Descriptions,” on page 317 which gives reference information needed to

code IUCV functions.

© Copyright IBM Corp. 1991, 2023 295

296 z/VM: 7.3 CP Programming Services

Chapter 3. IUCV Overview

The Inter-User Communications Vehicle (IUCV) is a communications facility that allows a program
running in a virtual machine to communicate with other virtual machines, with a CP system service,
and with itself.

An IUCV communication takes place between a source communicator and a target communicator. The
communication takes place over a predefined linkage called a path. Each communicator can have multiple
paths, and can receive or send multiple messages on the same path simultaneously.

IUCV provides functions, through the IUCV macro, to:

• Create and dismantle paths
• Send and reply to messages
• Receive or reject messages
• Control the sequence of IUCV events.

Communicators receive information about IUCV events by handling IUCV external interrupts.

To use the IUCV macro, issue the CMS GLOBAL command for HCPGPI MACLIB before assembling your
program.

Note: Advanced Program-to-Program Communication/VM (APPC/VM) is based on the IUCV support
described in this chapter. Using APPC/VM, a user application program can communicate with a resource
manager program in the same system, as with IUCV. With APPC/VM however, an application program can
also communicate with a program in another system. This other system could reside in the same TSAF
collection (a defined group of z/VM systems), CS collection, or anywhere within a network defined by
IBM's Systems Network Architecture (SNA). IUCV connections are restricted to the CS collection, and by
default to only virtual machines on the same system.

This chapter only describes communication using IUCV—it does not include information about APPC/VM.
Please refer to Part 3, “The Advanced Program-to-Program Communication/VM,” on page 385 for details
about APPC/VM and communications outside a single system.

You can write programs that use just the IUCV support described in this chapter, however, CMS IUCV
applications should use the CMS support for IUCV and APPC/VM as described in z/VM: CMS Application
Development Guide for Assembler and z/VM: CMS Macros and Functions Reference. The CMS Shared File
System, Session Services, private resources, CPI Communications (also known as SAA communications
interface), and Coordinated Resource Recovery are just some of the functions and products that require
this CMS support.

How Addresses Are Processed
z/VM processes addresses (24-bit or 31-bit) according to the addressing mode being used by the virtual
machine. When the guest PSW is in 64-bit addressing mode, IUCV treats addresses as 31-bit addresses.

Note: The IUCV instruction is not supported in access-register mode in an XC virtual machine. It results in
a special-operation exception.

The address of the IUCV parameter list is a guest real address in the host-primary address space. All other
addresses processed by IUCV are guest absolute addresses in the host-primary address space.

IUCV Paths
The IUCV directory control statement authorizes the establishment of paths between virtual machines, or
between a virtual machine and a CP system service. If the maximum number of paths is not specified by
the MAXCONN keyword of the OPTION statement in the user's directory, a communicator can establish a
maximum of 64 paths.

IUCV

© Copyright IBM Corp. 1991, 2023 297

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

Once authorized, users establish a path when the source communicator invokes the CONNECT function
and the target communicator invokes the ACCEPT function. Either communicator can terminate
an established path through the SEVER function. The target communicator can also prevent the
establishment of a path by invoking the SEVER function instead of the ACCEPT function. In addition,
communication over a path can be temporarily suspended when a communicator invokes the QUIESCE
function. The quiesced path can be reactivated when a communicator invokes the RESUME function.

A single communicator can have multiple paths defined, and virtual machines may have multiple paths
between them. The communicator could be a source communicator on some of its defined paths, a
target communicator on other paths, and both a source and a target communicator on still other paths.
Communication over any and all paths can occur simultaneously.

Every path has two ends: the source communicator's end and the target communicator's end. The source
communicator has a description of the path from the source's perspective and the target communicator
has a description of the same path from the target's perspective.

Each path description has a path ID that is unique for each communicator. IUCV assigns path IDs when
communicators invoke the CONNECT and ACCEPT functions. When invoking IUCV functions, the source
communicator identifies the path by using the source's path ID. The target communicator identifies the
same path to IUCV by using the target's path ID. A path ID is IUCV's method of distinguishing among the
paths available to a communicator.

IUCV Messages
An IUCV communication is called a message. The source communicator invoking the SEND function
initiates communication and creates a message. The target communicator obtains the message by
invoking the RECEIVE function.

The target communicator can optionally request information about messages sent to it by invoking the
DESCRIBE function or the INTERRUPT POLL function, and can refuse a message sent to it by invoking the
REJECT function. The target communicator can respond to a message through the REPLY function.

Communication is terminated and the message is destroyed when the source communicator issues the
TEST COMPLETION function, the INTERRUPT POLL function, or handles an IUCV message complete
external interrupt.

Message Data Transfer
When the target communicator issues the RECEIVE function, IUCV moves the message data from
the source communicator's SEND virtual address space to the target communicator's RECEIVE
virtual address space. When the target communicator issues the REPLY function during a two-way
communication, IUCV moves data from the target communicator's REPLY virtual address space to the
source communicator's ANSWER virtual address space.

Figure 16 on page 298 illustrates the movement of message data during an IUCV two-way
communication.

Figure 16. IUCV Two-Way Data Transfer

IUCV

298 z/VM: 7.3 CP Programming Services

The source communicator's SEND and ANSWER areas may overlap. Similarly, the target communicator's
RECEIVE and REPLY areas may overlap.

CP performs storage protection checking for all data moved during an IUCV communication.

Message Identification
A message is fully identified to a virtual machine by three values. IUCV functions allow one or more of
these values to be specified to process messages selectively.

• Message ID

IUCV assigns a message ID when the source communicator invokes the SEND function. The message ID
is generated by a sequential counter value and is unique for the system IPL.

• Message class

The source communicator identifies a message by using the source message class and target
communicator identifies a message by using the target message class. The message classes are
arbitrary values that the source communicator specifies when invoking the SEND function. The meaning
of the message classes is agreed to in advance by the two communicators. IUCV places no restrictions
on the values specified for message class. The communicators can use the message class to handle
messages selectively.

• Path ID

IUCV assigns the path ID when a path is established with the CONNECT function.

There is no defined relationship between the values of the source and target path IDs IUCV assigns, or
between the message classes the source and the target communicators use. None of these values need
to be the same although they refer to the same message.

The message ID always has the same value for both target and source communicators.

When invoking IUCV functions, the source communicator may refer to a message by a combination of its
source path ID, source message class, and message ID. The target communicator may refer to the same
message by a combination of its target path ID, target message class, and message ID.

The message tag information may optionally be used by the source communicator to further identify a
message. Since IUCV presents the tag to the source communicator when the message completes, the tag
may be used to tie the completed message to the original SEND request.

Since a message can be identified as a priority message, the source communicator may also use this as an
indication to the target communicator that special handling is required. IUCV queues a priority message
ahead of any nonpriority messages and behind any earlier priority messages. A communicator must be
authorized to handle priority messages in the IUCV directory control statement.

IUCV External Interrupts
The IUCV external interrupt notifies a virtual machine about IUCV events.

To enable IUCV external interruptions, communicators must:

• Invoke the DECLARE BUFFER function to indicate to IUCV where to store data associated with an
external interruption.

• Set bit 7 in the virtual machine's PSW to 1.
• Set submask bit 30 of control register 0 to 1.

IUCV functions generate a type X'4000' external interruption. When a virtual machine in EC mode receives
an IUCV external interruption, IUCV places the interruption code in locations X'86' and X'87' of the virtual
machine's storage. For a virtual machine in BC mode, IUCV places the code in the external old PSW.
In addition, IUCV stores an external interrupt buffer containing information about the message or IUCV
function at the address specified when the communicator invoked the DECLARE BUFFER function. One
field of this buffer is an external interrupt subtype that indicates why the external interrupt occurred. The
possible values of this field are:

IUCV

Chapter 3. IUCV Overview 299

• 01 - Connection pending
• 02 - Connection complete
• 03 - Connection severed
• 04 - Connection quiesced
• 05 - Connection resumed
• 06 - Priority message completion
• 07 - Nonpriority message completion
• 08 - Priority message pending
• 09 - Nonpriority message pending.

The first five types are called control interrupts, and the last four types are called message interrupts.

Whenever there are multiple IUCV interrupts queued for the virtual machine, control interrupts are always
reflected to the virtual machine in first-in-first-out (FIFO) order before message interrupts. Message
interrupts of the same subtype are reflected in first-in-first-out (FIFO), but message interrupts of different
subtypes are reflected in the order shown above.

Interrupts are reflected to the virtual machine in this order regardless of the order in which the interrupts
were queued for the virtual machine. There are many conditions which can cause more than one
interrupt to be queued for a virtual machine, some of which are beyond the control of the application.
For example, if the virtual machine disables for IUCV interrupts for a period of time or if the virtual
machine is communicating with multiple partners, then often multiple IUCV interrupts will be on the
virtual machine's queue. Also, the relative priorities and time slices given to the communicating virtual
machines can affect the order in which IUCV interrupts are presented. For example, if virtual machine
A sends a one-way message to virtual machine B, and B receives the message, a message complete
interrupt is queued for A. If B then severs the IUCV path, then a sever interrupt is queued for A. If A
is not dispatched, or doesn't enable for IUCV interrupts until after the sever interrupt is queued, then A
would see the sever interrupt first. If A is dispatched and is enabled for IUCV interrupts before the sever
interrupt is queued, then A would see the message complete interrupt first.

A virtual machine can use the SET MASK function to enable or disable external interrupts selectively for
IUCV communications. The SET MASK function has mask bits that enable or disable external interruptions
for:

• Priority message pending
• Nonpriority message pending
• Priority message completion
• Nonpriority message completion
• IUCV control functions.

To divide and handle the control type interrupts even further, the SET CONTROL MASK function may be
used on the IUCV macro. The types of control interrupts may be separately enabled and disabled. These
control type interrupts are:

• Connection pending
• Connection complete
• Connection severed
• Connection quiesced
• Connection resumed.

The SET MASK function is interrogated before the SET CONTROL MASK function. If you specify that all
control interrupts are disabled using the SET MASK function, then the SET CONTROL MASK settings are
not interrogated. If you specify that all control interrupts are enabled using the SET MASK function, then
the SET CONTROL MASK settings are interrogated to determine how to handle the individual types of
control interrupts.

IUCV

300 z/VM: 7.3 CP Programming Services

After IUCV initialization and until you issue the SET MASK or SET CONTROL MASK functions, all IUCV
submask bits are on, enabling all IUCV external interrupts.

Avoiding IUCV External Interrupts
A virtual machine can only be notified about an IUCV control function by receiving an external
interruption. However, a virtual machine can handle pending messages either by an external interrupts
or by using the DESCRIBE function. Message completions can be handled either by an external interrupt
or with the TEST COMPLETION function. The INTERRUPT POLL function allows a user to handle message
completions and pending messages at the same time.

IUCV also provides the TEST MESSAGE function to determine the presence of any pending messages
or message completions. If neither is pending, the virtual machine goes into a wait state until one is
pending.

For example, if a source communicator sends a priority message, IUCV queues an external interrupt for
the target communicator. If the target virtual machine is enabled for external interrupts, then the target
virtual machine receives an external interrupt. However, if the target virtual machine is not enabled, the
message remains pending for the virtual machine, and the target virtual machine can issue the DESCRIBE
function or the INTERRUPT POLL function to obtain information about the message in the parameter list.
The message pending external interrupt is cleared. The target virtual machine can continue processing
the message with the RECEIVE or REJECT functions.

Note: If a communicator is enabled for external interrupts and issues the DESCRIBE, INTERRUPT POLL
or TEST COMPLETION function, results are unpredictable. However, IUCV supplies information about a
message only once.

Two IUCV functions, QUIESCE and RESUME, let a virtual machine control the arrival of message pending
external interrupts. The QUIESCE function suspends incoming messages on one or all IUCV paths. Any
communicator trying to send a message over a path that has been quiesced receives a return code
indicating a quiesced path. No message is created and thus no external interrupt is reflected. The
RESUME function restores normal communications.

Security Considerations
Installations control how IUCV is used through the virtual machine directory entries. If the installation has
not authorized a user for IUCV communications in the directory, all requests for IUCV communications to
virtual machines other than the user's own are denied. Service virtual machines and CP system services
defined with the ALLOW (any virtual machine to connect) option do their own authorization checking, and
individual directory entries are not needed.

IUCV moves data from one virtual machine address space to another. A virtual machine never has access
to the storage or registers of CP or another virtual machine. When the user invokes the RECEIVE or REPLY
functions, the data to be moved is described by a starting address and a length, or a list of starting
addresses and lengths. The length specified in the parameter list is the maximum amount of data moved.
No requirements are placed on a virtual machine as to the location of these buffers.

IUCV assigns path IDs and records the path ID of each communicator. A given communicator can
reference only the paths that have been established for his virtual machine.

IUCV assigns the message ID for each message. IUCV does not use this identifier as a direct reference,
but only as an operand in a comparison. It is conceivable that a virtual machine could generate a valid
message identifier and use this to request a message. However, when a message ID is used to request
a message, a user must also specify a message class and a path ID. If the specified message is not
associated with the specified path ID and message class, the user cannot access the messages. If the
message ID, path ID, and message class do match, the user could legitimately access the message by
specifying simply path ID and/or message class without the generated message ID.

The installation can limit the number of connections for a particular virtual machine by using the
MAXCONN parameter of the OPTION control statement in the virtual machine's directory entry.

IUCV

Chapter 3. IUCV Overview 301

Virtual Machine-to-Virtual Machine Communication
Three ways of accomplishing virtual machine-to-virtual machine communications are:

• Using data in a buffer
• Using data in a parameter list
• Using control paths.

Using Data in a Buffer
Table 66 on page 302 illustrates a typical sequence of functions invoked when a virtual machine
communicates with another virtual machine. The functions include initializing, connecting to another
virtual machine, sending and receiving messages, replying to and waiting for messages, severing
communications with the other virtual machine, and terminating communications.

Note: Remember, in Table 66 on page 302 data for the messages is stored in a buffer. Refer to “Using
Data in a Parameter List” on page 303 for an example of using parameter list data.

Virtual Machine X Communicating to Virtual Machine Y

Table 66. Sequence of Functions

Virtual Machine X Virtual Machine Y

 1. DECLARE BUFFER
 2. CONNECT to Y

 5. Get External Interrupt
 6. SEND to Y

 8. TEST COMPLETION

11. Get External Interrupt
 /or/
 TEST COMPLETION
12. SEVER

15. RETRIEVE BUFFER

 1. DECLARE BUFFER

 3. Get External Interrupt
 4. ACCEPT

 7. Get External Interrupt
 /or/
 DESCRIBE

 9. RECEIVE
10. REPLY

13. Get External Interrupt
14. SEVER
15. RETRIEVE BUFFER

1. Virtual machine X wishes to communicate with virtual machine Y. Both virtual machines must
independently invoke the DECLARE BUFFER function. The buffer provides the virtual machine with
information about incoming external interrupts concerning IUCV functions.

2. Virtual machine X invokes the CONNECT function, indicating Y as the target. IUCV checks the
directory to determine if this connection is authorized. If it is, IUCV queues an external interrupt for
Y indicating that there is a connection pending for it. IUCV returns control to X at the next instruction
after the CONNECT.

3. The external interrupt queued by step “2” on page 302 is reflected to Y indicating a connection
pending. IUCV places the external interrupt information in the buffer that Y provided in step “1” on
page 302. IUCV passes control to the external interrupt handler of Y.

4. Virtual machine Y interprets the external interrupt and responds with an ACCEPT to complete
the connection. IUCV then completes the connection and queues a Connection Complete external
interrupt for X. IUCV returns control to Y at the next instruction after the ACCEPT.

5. The external interrupt queued by step “4” on page 302 is reflected to X, indicating that the
connection is complete, and the communication path is available for use. IUCV places the external
interrupt information in the buffer that X provided in step “1” on page 302. IUCV passes control to
the external interrupt handler of X.

IUCV

302 z/VM: 7.3 CP Programming Services

6. Virtual machine X issues a SEND. The SEND function queues an external interrupt for Y indicating that
a message is pending. Control returns in X at the next instruction after the SEND.

7. If virtual machine Y is enabled for external interrupts and for IUCV messages (through SET MASK),
the external interrupt queued by step “6” on page 303 is reflected to Y, indicating that a message
is pending. IUCV places external interrupt information in the buffer specified in step “1” on page
302. IUCV passes control to the external interrupt handler of Y. If virtual machine Y is disabled for
external interrupts or IUCV messages and invokes the DESCRIBE function, IUCV places the message
information in the DESCRIBE parameter list, and the Message Pending external interrupt for this
message is cleared. IUCV passes control to the next instruction after the DESCRIBE.

8. While virtual machine Y is processing the message, virtual machine X can decide to check if the
communication has been completed by issuing the TEST COMPLETION function. The condition code
indicates that (in this example) the communication is not complete.

9. With the message description from step “7” on page 303, virtual machine Y starts processing the
message and issues a RECEIVE. The parameter list associated with RECEIVE specifies where the
message data is stored in virtual machine Y.

If the message was one-way, the RECEIVE function queues an external interrupt for X indicating that
the message had completed. REPLY processing in step “10” on page 303 would not be required for
one-way messages. Control returns to Y at the next instruction after the RECEIVE.

10. When processing the message is complete, virtual machine Y responds to X by invoking the REPLY
function. The REPLY function queues an external interrupt for X indicating that the message has
completed. Control returns to Y at the next instruction after the REPLY.

11. If virtual machine X is both enabled for external interrupts and enabled for IUCV replies, the external
interrupt queued by step “10” on page 303 is reflected to X, indicating a reply pending. To identify
the reply, the external interrupt information is placed in the buffer specified in step “1” on page
302. IUCV passes control to the external interrupt handler of X. If virtual machine X is disabled for
external interrupts and issues a TEST COMPLETION, IUCV places the message information in the
TEST COMPLETION parameter list, and the Message Completion external interrupt is cleared. IUCV
passes control to the next instruction after the TEST COMPLETION.

12. Virtual machine X has now completed its communications with virtual machine Y and issues a SEVER
to break the communications path. The SEVER function queues an external interrupt for Y indicating
that the communication link has been broken. Control returns in X at the next instruction after the
SEVER.

13. The external interrupt queued by step “12” on page 303 is reflected to Y indicating that the path has
been broken by virtual machine X. Virtual machine Y can now do any cleanup needed in its storage.

14. After virtual machine Y has completed processing, the virtual machine issues a SEVER notifying IUCV
that it also is finished with the communication path. IUCV can then clean up its control blocks.

15. When all communications are complete and all communication paths have been severed, both virtual
machines independently invoke the RETRIEVE BUFFER function.

Using Data in a Parameter List
Most IUCV functions require a parameter list which contains information necessary for IUCV to perform
the requested function. The IUCV macro assists you in filling in the parameter list properly. The
parameters used with each function are described with the individual function descriptions later in this
chapter.

The parameters let you specify 8 bytes of data in the parameter list. To understand better how data
specified in the parameter list is handled, the IUCV functions are covered in a typical scenario.

1. The IUCV DECLARE BUFFER, CONNECT, and ACCEPT sequence must be invoked to establish the user's
external interrupt buffer and a path to the target virtual machine (or CP). If you expect to receive
data in the parameter list, you must authorize such communication on the CONNECT or ACCEPT by
specifying PRMDATA=YES. The external interrupt information to the target communicator includes a bit
indicating if PRMDATA=YES was chosen.

IUCV

Chapter 3. IUCV Overview 303

2. Issue an IUCV SEND request. When the data is to be passed in the parameter list, the DATA=PRMMSG
option is used on the IUCV macro, and the PRMMSG= option is used to move the data into the
parameter list. The sender of the message should be prepared to handle a return code indicating
that DATA=PRMMSG is not allowed if the target communicator has not specified PRMDATA=YES at
connection time. IUCV saves the message data until it is to be presented to the target.

3. If the target is enabled for IUCV Message Pending external interrupts, the target virtual machine
receives an IUCV Message Pending external interrupt because of the SEND request in the previous
step. The message data is stored in the external interrupt buffer. A flag is set in the IPFLAGS1
field of the buffer (in the IPARML DSECT) indicating that the data is in the parameter list. Since the
message data has been presented to the target, the target does not have to issue an IUCV RECEIVE
for this message. If the message was a one-way message, communication is complete. There is
no asynchronous return of message completion given to the source (sending) virtual machine on a
one-way message.

4. If the target is disabled for IUCV Message Pending external interrupts and issues the IUCV DESCRIBE
or RECEIVE functions, the message data is stored in the parameter list. A flag is set in the IPFLAGS1
field of the parameter list (in the IPARML DSECT) indicating that the data is in the parameter list. Since
the message data is presented to the target on a DESCRIBE, the target does not have to issue an IUCV
RECEIVE for this message. If the message was a one-way message, the communication is complete.
There is no asynchronous return of message completion given to the source (sending) virtual machine
on a one-way message.

5. If the communication in the previous steps was a two-way message, a REPLY is issued by the target
virtual machine. When the REPLY data is to be passed in the parameter list, the DATA=PRMMSG
option is used on the IUCV macro, and the PRMMSG= option is used to move the data into the
parameter list. The REPLYer of the message should be prepared to handle a return code indicating
that DATA=PRMMSG is not allowed if the source communicator has not specified PRMDATA=YES at
connection time. IUCV saves the message data until it is to be presented to the source communicator.

6. If the source communicator is enabled for IUCV Message Completion external interrupts, the source
virtual machine receives an IUCV Message Completion external interrupt because of the REPLY in the
previous step. The message data is stored in the external interrupt buffer. A flag is set in the IPFLAGS1
field of the buffer indicating that the data is in the parameter list. The communication is complete.

7. If the target is disabled for IUCV Message Completion external interrupts, and issues the IUCV TEST
COMPLETE function, the message data is stored in the parameter list. A flag is set in the IPFLAGS1
field of the parameter list indicating that the data is in the parameter list. The communication is
complete.

8. SEVER and RETRIEVE BUFFER cause any messages pending to be destroyed for that virtual machine.
Since no asynchronous Message Completion external interrupt is returned to the source communicator
for one-way messages using the DATA=PRMMSG option, the source communicator must realize upon
receiving an IUCV Connection Severed external interrupt from the target communicator that messages
may not have been received by the target.

Using Control Paths
IUCV control paths and buffers allow a control program (like CMS) running in a virtual machine to use
the IUCV functions without interfering with a user application that is also using IUCV. Applications would
not be coded using the CONTROL parameter on the IUCV DECLARE BUFFER, IUCV CONNECT, and IUCV
ACCEPT functions.

To understand better how control paths would be handled, the IUCV functions are covered in a typical
user scenario. In the scenario, CMS is used as the control program running in a virtual machine executing
a normal IUCV application.

1. When CMS is IPLed in the virtual machine, CMS issues an IUCV DECLARE BUFFER with the
CONTROL=YES parameter. This establishes a control buffer for CMS to use. All IUCV external interrupt
information for control paths is presented in this buffer.

IUCV

304 z/VM: 7.3 CP Programming Services

2. After CMS has defined a control buffer, CMS may establish control paths to other virtual machines
by issuing an IUCV CONNECT with the CONTROL=YES parameter. All paths used by CMS should be
specified as control paths.

3. If the target virtual machine accepts the connection request, an IUCV Connection Complete external
interrupt is presented to the CMS control program. The IPCNTRL bit in IPFLAGS1 of the external
interrupt (in the IPARML DSECT) indicates that a control path was accepted. CMS may now start
communications on this path.

4. Just as it can establish control paths through IUCV CONNECT, CMS can also accept connections and
specify that they be managed as control paths. CMS does this by issuing IUCV ACCEPT with the
CONTROL=YES parameter. All paths accepted by CMS should be accepted as control paths.

5. When CMS allows the application program to run, the application issues an IUCV DECLARE BUFFER
with the CONTROL=NO parameter. All application paths are established using IUCV CONNECT with the
CONTROL=NO parameter. These are the functions that the application uses today so no changes are
required to the application.

6. The application starts communicating over its established paths.
7. Since both CMS and its application have established paths, both are expecting and handling external

interrupts.

If an external interrupt is on a control path, the IUCV information about the interrupt is stored in the
control buffer when the interrupt is presented to CMS. CMS interrogates the control buffer, recognizes
the path ID as belonging to a control path, and handles the IUCV interrupt. The application's buffer
remains unchanged.

If the external interrupt is on an application path, the IUCV information about the interrupt is stored
in the application's buffer when the interrupt is presented to CMS. Since CMS only has access to the
control buffer, IUCV stores the path ID in the control buffer and clears (to 0) the remainder of the
buffer. CMS interrogates the control buffer, recognizes the path ID as belonging to an application path,
and passes the IUCV external interrupt to the application for handling.

8. When the application wishes to terminate a path that it established or to terminate all IUCV
communications, it uses the IUCV SEVER or RETRIEVE BUFFER functions. Neither of these functions
affects the control paths being used by CMS.

Certain IUCV functions result in an operation exception if executed with only a control buffer declared.
These functions are:

• DESCRIBE
• INTERRUPT POLL
• RETRIEVE BUFFER
• SET CONTROL MASK
• SET MASK
• TEST COMPLETION
• TEST MESSAGE.

The ALL=YES parameter on the IUCV functions of SEVER, QUIESCE, and RESUME does not affect control
paths.

When handling IUCV messages with the IUCV functions of RECEIVE, REPLY, REJECT, and PURGE on
control paths, the message must be fully qualified. The message ID, path ID, and class of the message
must be specified in the parameter list to reference the message.

The IUCV functions affecting IUCV external interrupts do not operate on interrupts for control paths.
These functions are TEST MESSAGE, DESCRIBE, INTERRUPT POLL, TEST COMPLETION, SET MASK, and
SET CONTROL MASK. These functions are never used by a control program since they have no affect on
control paths.

Since IUCV cannot tell what part of the virtual machine issued an IUCV function, it is possible for an
application to issue an IUCV function on a control path. This reference to a control path by an application,
whether intentional or accidental, is considered a user application error. For example, the SEVER function

IUCV

Chapter 3. IUCV Overview 305

specifying a control path terminates that path even though the function was issued by the application
program.

Invoking IUCV Functions
You can invoke all IUCV functions through the IUCV macro. In general, specify the name of the IUCV
function you wish to perform, the address of a parameter list to contain input to the function, and keyword
parameters. IUCV moves the values specified on the keyword parameters into the specified parameter
list.

The parameter list must be defined on a doubleword boundary.

You can specify IUCV parameters in two ways:

• By coding keyword parameters on the IUCV macro. IUCV stores values in the parameter list based on
values you specify on the macro.

• By storing required input to the function in the function parameter list before invoking the IUCV macro.
To store input in an IUCV parameter list, use labels generated by the IPARML DSECT in HCPGPI
MACLIB.

You may use a combination of these methods to supply input to a single IUCV function. If you specify
any optional parameters on the IUCV macro, you are responsible for providing the USING for the IPARML
DSECT when the macro is invoked. If you do not specify an optional parameter to initialize the parameter
list, the macro assumes that you have stored a value in the parameter list before invoking the IUCV macro.

Note: The IUCV macro does NOT clear parameter list fields since values may have been stored by the
user already. Therefore, it is the user's responsibility to insure that all unused fields are cleared (set to 0).
All reserved fields in the parameter list should always be set to 0.

An advantage of using the IUCV macro is that IUCV provides extensive error checking of parameter
combinations when input is supplied on the macro. Many invalid parameter combinations can be detected
by IUCV when you assemble the program.

For more information on the CMS IUCV applications, see z/VM: CMS Application Development Guide for
Assembler and z/VM: CMS Macros and Functions Reference.

General Description of IUCV Functions
In the description of IUCV functions the following terms are used:
Address

A guest real address (real to the virtual machine). It can be specified on the IUCV macro in one of the
following ways:

• Label of the storage location
• Number of a register in parentheses that contains the address, (reg).

Every address field in the IUCV parameter list is a 4-byte reserved field. The address of the parameter
list must be a guest real address, and it must be on a doubleword boundary.

Specify the address of the parameter list as a relocatable label or the number of a register that
contains the address.

Address List
A virtual machine defined area used on an IUCV SEND, RECEIVE, or REPLY that allows data to be
moved from discontiguous areas. The address list must be on a doubleword boundary in the following
format:

IUCV

306 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

Each entry contains two fullwords; the guest real address of the data to be transferred and the
number of bytes to be transferred from that address.

Label
An addressable label in the user's program. The IPARML DSECT provides common labels for
referencing fields in an IUCV parameter list.

Length
The amount of data to be transferred on an IUCV request. It can be specified on the IUCV macro in
one of the following ways:

• Label of the storage location containing the length
• Number of a register that contains the length, (reg).

The IUCV macro assumes a halfword value for the length at the storage location, or the low-order
halfword of the register specified. A length modifier of 2 or 4 may be used, (label,2) or ((reg),2), or
(label,4) or ((reg),4). If a length modifier of 4 is used, the macro uses the fullword value for the length
at the storage location or in the register specified.

The descriptions of the IUCV functions are presented in alphabetic order in Chapter 5, “IUCV Function
Descriptions,” on page 317:

ACCEPT — Complete a path
CONNECT — Establish a path
DECLARE BUFFER* — Initialize for IUCV communications
DESCRIBE* — Avoid Message pending interrupt
IPOLL* — Check for pending replies or incoming messages
PURGE — Cancel a message
QUERY — Get IUCV information
QUIESCE — Suspend message pending interrupts
RECEIVE — Receive a message
REJECT — Refuse a message
REPLY — Respond to a message
RESUME — Restore message pending interrupts
RETRIEVE BUFFER* — Terminate all IUCV communications

IUCV

Chapter 3. IUCV Overview 307

SEND — Transmit a message
SET CONTROL MASK* — Disable all IUCV control interrupts
SET MASK* — Disable all types of IUCV interrupts
SEVER — Terminate a path
TEST COMPLETION* — Avoid Message complete interrupt
TEST MESSAGE* — Check for interrupts or wait.

*These functions have different meanings in a virtual MP environment. For more information about a
virtual MP environment, see the following section on "Virtual MP Considerations for IUCV Applications".

Virtual MP Considerations for IUCV Applications
IUCV applications can be written to work in a virtual MP environment. The following list is intended to
provide some guidance on using IUCV in a virtual MP environment.

• IUCV functions may be invoked by any virtual processor in the virtual configuration as long as one of the
processors has issued a DECLARE BUFFER function.

• The DECLARE BUFFER function defines an interrupt buffer for the virtual processor that invokes it.
• In the virtual MP environment, IUCV interrupts are treated as "floating" interrupts. Any virtual processor

that has:

– issued an IUCV Declare Buffer
– enabled to receive IUCV interrupts with the CR0 setting
– enabled for IUCV interrupts with the SETMASK and SETCMASK functions

may receive an IUCV interrupt.
• The IUCV RETRIEVE BUFFER function will only retrieve the buffer for the currently running virtual

processor. IUCV paths will not be SEVERed until the last virtual processor issues a RETRIEVE BUFFER.
• The SETMASK and SETCMASK functions will apply only to the virtual processor on which they are

invoked. This will allow an application to force different types of IUCV interrupts to different virtual
processors in the complex, if so desired.

• The following are associated with the virtual configuration:

– IUCV directory specifications
– IUCV paths
– IUCV interrupts
– IUCV messages.

• The following are associated with the virtual CPU:

– the application buffer, the control buffer, and the interrupt buffer extension
– interrupt enablement masks in the virtual PSW and virtual control register 0 (bit 30)
– the interrupt enablement masks of SETMASK and SETCMASK.

• The DESCRIBE, TEST COMPLETE, and IPOLL functions will complete on any processor in the virtual
complex as long as one virtual processor has issued a DECLARE BUFFER (it does not have to be the
virtual processor that issued the DESCRIBE, TEST COMPLETE, or IPOLL function).

• If multiple virtual processors in the complex issue the TEST MESSAGE function, it is unpredictable in
which order the virtual processors will be taken out of their wait states.

• All addresses specified with IUCV parameter lists are guest absolute addresses.
• Without appropriate guest operating system support, it is difficult or impossible to use IUCV in a virtual

MP environment. This support would allow your application to:

– declare buffers on different processors
– enable for IUCV interrupts on the needed processors
– handle the interrupts and route them to the appropriate virtual processor

IUCV

308 z/VM: 7.3 CP Programming Services

Note that CMS does not currently support IUCV virtual MP functions.

IUCV in a Distributed Environment
Distributed IUCV is supported across a Communication Services (CS) collection. Participating systems
must include the DISTRIBUTE IUCV statement in their SYSTEM CONFIG files. Depending on what you
specify, distributed IUCV will either:

• attempt to satisfy a CONNECT on the local system, then attempt to locate the target on a system
within the CS collection. The only exceptions being if the application specifies that the connect must be
satisfied either locally or on a particular target system.

• or, be supported only when an application explicitly specifies the target system for a CONNECT.

IUCV applications will behave the same in a distributed environment as they do on a local system with the
following exceptions:

• PURGE and REJECT will only be honored on the local system. Once a message is sent to the other
system it is considered to be delivered.

• The PRIORITY and MSGLIMIT directory specifications must be present on both systems if they are to be
honored.

• The default maximum data length is 16M per message. The maximum can be altered via the SYSTEM
CONFIG file by using the DISTRIBUTE statement.

As with distributed APPC/VM through ISFC, distributed IUCV will SEVER both sides of the conversation if
it receives an IPRCODE or IPAUDIT code on function completion. Because ISFC is a transport mechanism,
it can not rely on information received on a function that completes with an error and because ISFC is
unsure of the disposition of the conversation, it SEVERs the path. This is the normal procedure for an
application that receives an IUCV error.

At this time, no system services are able to operate in a distributed IUCV environment.

See z/VM: CP Planning and Administration for information on the DISTRIBUTE IUCV system configuration
statement.

IUCV

Chapter 3. IUCV Overview 309

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

IUCV

310 z/VM: 7.3 CP Programming Services

Chapter 4. IUCV Protocols

The following protocols are defined for IUCV data communication:
CONNECT/ACCEPT

Establishes a path between two communicators
SEND/RECEIVE

Sends one-way messages with data in one or more buffers
SEND/RECEIVE/REPLY

Sends two-way messages with data in one or more buffers
SEND

Sends one-way messages with data in a parameter list
SEND/REPLY

Sends two-way messages with data in a parameter list.

IUCV CONNECT/ACCEPT Protocol: A virtual machine uses the CONNECT/ACCEPT protocol (shown in
Figure 17 on page 311) to establish a connection with another virtual machine or with a CP system
service. The IUCV parameter list specified on the CONNECT request indicates the user ID of the intended
target virtual machine or CP system service and, optionally:

• A message limit that indicates the number of outstanding messages permitted for the path
• The path's ability to handle priority communications
• Whether data is to be sent in a parameter list or in one or more buffers
• A user doubleword of data.

The condition code and the return code for the CONNECT request indicate to the source virtual machine
the success or failure of the sending of the request. IUCV also returns the (IUCV-assigned) path ID and
message limit to the source virtual machine in the IUCV parameter list.

Target virtual machine

CP posts connection-pending
external interrupt

ACCEPT function to complete the
path (or SEVER)

CP posts condition code and
return code at completion of
path

Source virtual machine

- CONNECT function to request
establishment of a path

- Test condition code and
return code

- Continue processing or SEVER
before ACCEPT or SEVER issued

CP posts connection-complete
external interrupt at
completion of path

CP IUCV
interface routine

Figure 17. Flow of the IUCV CONNECT/ACCEPT Protocol

The target communicator specified in a successful CONNECT request has a connection-pending external
interrupt queued for it by CP. Identification of the request (the source virtual machine's path ID and user
ID) is placed in the external interrupt buffer that is stored in the target virtual machine's virtual storage at
the time the target virtual machine receives the connection-pending external interrupt. The target virtual
machine can then send an ACCEPT function that specifies the path ID of the path to be accepted and
optionally modifies the characteristics of the path, such as its message limit and priority handling.

If the ACCEPT function is incorrectly specified, the target virtual machine is notified immediately by way
of a condition code and return code and the acceptance of the path does not take place. If correctly

IUCV Protocols

© Copyright IBM Corp. 1991, 2023 311

specified, the ACCEPT function causes CP to establish the path. When the path is established, CP notifies
the target virtual machine by way of a condition code and return code for the ACCEPT function that
indicates a successful or unsuccessful operation.

The source virtual machine is notified of the completion of its CONNECT request by way of a connection-
complete external interrupt. The external interrupt buffer identifies the completed request by way of its
path ID, indicates the path's characteristics, and optionally, contains a user doubleword of data specified
by the target virtual machine.

If the target virtual machine to which a CONNECT request is directed does not wish to establish the path,
it can enter a SEVER function that specifies the path being rejected. CP then posts a connection-severed
external interrupt for the source virtual machine. The external interrupt buffer indicates the path ID of
the severed path, and optionally, a user doubleword of data specified by the target virtual machine. The
source virtual machine can also sever a path by using the SEVER function.

IUCV SEND/RECEIVE Protocol: The SEND/RECEIVE protocol defines a one-way transfer of data from
virtual storage of the source virtual machine to virtual storage of the target virtual machine, as shown in
Figure 18 on page 312. The IUCV parameter list specified on the SEND request indicates:

• Path ID of the path on which the message is to be sent
• This is a one-way message
• Data is in one or more buffers
• Length of the data
• Address of the data or the address of a list of buffers that contain the data in the source virtual machine.

Optionally, the priority of the message, the source message class, the target message class, and a
message tag may be specified. The condition code and the return code for the SEND request indicate
to the source virtual machine the success or failure of the sending of the request. IUCV also returns the
(IUCV-assigned) message ID to the source virtual machine in the IUCV parameter list. The source virtual
machine can then continue with other processing while the data transfer operation takes place.

Target virtual machine

CP posts message-pending
external interrupt

RECEIVE function to initiate
data transfer (or REJECT)

CP posts condition code and
return code at completion of
data transfer operation

Source virtual machine

- SEND function to request
data transfer

- Test condition code and
return code

- Continue processing or PURGE
before RECEIVE or REJECT issued

Data transfer

CP posts message-complete
external interrupt at
completion of data transfer
operation

CP IUCV
interface routine

Figure 18. Flow of the IUCV SEND/RECEIVE Protocol

The target communicator specified in a successful SEND request has a message-pending external
interrupt queued for it by CP. Identification of the request (path ID and message ID) and data length are
placed in the external interrupt buffer that is stored in the target virtual machine's virtual storage when
the target virtual machine receives the message-pending external interrupt. The target virtual machine
can then send a RECEIVE function that specifies the path ID and message ID the request to be received
and the address and length of the buffer in its own virtual storage in which the data to be received is to be
placed. If more than one buffer is required, the address of a list of discontiguous buffers may be specified

IUCV Protocols

312 z/VM: 7.3 CP Programming Services

instead. Use of the message ID in the RECEIVE function enables a virtual machine with more than one
data transfer request queued to process them in the order desired.

If the RECEIVE function is incorrectly specified, the target virtual machine is notified immediately by
way of a condition code and a return code. The requested data transfer does not take place. If correctly
specified, the RECEIVE function causes CP to begin transferring the data from virtual storage of the
source to virtual storage of the target virtual machine. When the data transfer is completed, CP notifies
the target virtual machine by way of a condition code and a return code for the RECEIVE function that
indicates a successful or unsuccessful operation.

The source virtual machine is notified of the completion of its SEND request by way of a message-
complete external interrupt. The external interrupt buffer:

• Indicates whether the data transfer occurred successfully (by way of the audit trail bits)
• Identifies the completed request (by way of its path ID and message ID)
• Contains a residual count for a partial transfer operation (as a result of a data transfer error).

If the target virtual machine to which a SEND request is directed does not wish to receive the data, it
can issue a REJECT function that specifies the request being rejected. The external interrupt buffer stored
for the message-complete external interrupt for the source virtual machine indicates that the request
was rejected by way of an audit trail bit. The source virtual machine can purge a SEND request using the
PURGE function.

IUCV SEND/RECEIVE/REPLY Protocol: The SEND/RECEIVE/REPLY protocol provides the means for a
virtual machine to perform a send and receive operation using a single request. That is, while data is being
transferred from the source virtual machine to the target virtual machine, data can also be transferred
from the target virtual machine to the source virtual machine.

As shown in Figure 19 on page 314, the source virtual machine issues a SEND function to initiate the
two-way transfer request. The IUCV parameter list of the SEND function specifies the following:

• The path ID of the path on which the message is to be sent
• That this is a two-way message
• That the data is in one or more buffers
• The address and length of the data to be sent (or list of buffers that contain the data) in the source

virtual machine
• The address and length of the reply area (or list of reply buffers) in the source virtual machine.

Optionally, the priority of the message, the source message class, the target message class, and a
message tag may be specified.

IUCV Protocols

Chapter 4. IUCV Protocols 313

Target virtual machine

CP posts message-pending
external interrupt

RECEIVE function to initiate
data transfer from source
virtual machine (or REJECT)

Test condition code and return
code

REPLY function to initiate
data transfer from target
virtual machine

Data transfer

CP posts condition code and
return code to indicate both
data transfer operations are
complete

Source virtual machine

- SEND function to request
data transfer

- Test condition code and
return code

- Continue processing or PURGE
before response from target
virtual machine

Data transfer

CP posts message-complete
external interrupt after
both data transfer operations
are complete

CP IUCV
interface routine

Figure 19. Flow of the IUCV SEND/RECEIVE/REPLY Protocol

The condition code and the return code for the SEND request indicate whether the request was sent
successfully. IUCV also returns the (IUCV-assigned) message ID to the source virtual machine in the
IUCV parameter list and processing in the source virtual machine continues. A message-pending external
interrupt is queued for the target virtual machine by CP. When the target virtual machine receives the
interrupt, the request is identified in the external interrupt buffer by its path ID and message ID. The
length and location of the buffer in the source virtual machine that is to receive data sent by the target
virtual machine by way of a REPLY (or the address of a list of buffers) is also stored.

After receiving the message-pending external interrupt, the target virtual machine can respond with a
RECEIVE or REJECT function, with parameters specified as for a SEND/RECEIVE transaction. The REJECT
function causes the entire SEND/RECEIVE/REPLY transaction to be cancelled. The RECEIVE function
causes a data transfer from the source virtual machine to the target virtual machine, as for a SEND/
RECEIVE transaction. However, after the RECEIVE function is sent, the target virtual machine receives
control to send a REPLY function that specifies the path ID and message ID for this REPLY request, and
the address and length of the data to be sent to the source virtual machine. This causes CP to start
transferring data from the target virtual machine to the source virtual machine. The data is placed in the
reply buffers in the source virtual machine that were specified in the SEND function.

When both data transfer operations have completed, the source virtual machine receives a message-
complete external interrupt and the target virtual machine receives a condition code and return code in
response to the REPLY function. The source virtual machine can use the REPLY data length field in the
stored external interrupt buffer to determine the amount of data sent by the target virtual machine.

A SEND/RECEIVE/REPLY request can be terminated by the source virtual machine by way of a PURGE
function.

IUCV SEND Protocol: The SEND protocol defines a one-way transfer of data from a source virtual
machine to a target virtual machine without the use of the RECEIVE function, as shown in Figure 20 on
page 315. The data that may be transferred in this way is limited to 8 bytes and is stored in the IUCV
parameter list. The path to be used must be authorized to handle data in the parameter list during the
CONNECT/ACCEPT protocol that establishes it. If a SEND is directed to a virtual machine that has not
authorized receipt of data in a parameter list on this path, it is indicated by a return code to the SEND
request and the request is cancelled by CP.

IUCV Protocols

314 z/VM: 7.3 CP Programming Services

The IUCV parameter list for a SEND request with data in the parameter list specifies the path ID of the
path on which the message is to be sent, that this is a one-way message, and that the data is in the
parameter list. Optionally, the priority of the message, the source message class, the target message
class, and a message tag may be specified. When correctly specified, the SEND causes CP to transfer data
from the source to the external interrupt buffer of the target virtual machine. After the data transfer is
complete, a message-pending external interrupt is queued for the target virtual machine. Note that no
message-complete external interrupt is queued for the source virtual machine.

A SEND request can be purged by the source virtual machine through the PURGE function. The target
virtual machine can reject a SEND request through the REJECT function.

Target virtual machine

To external interrupt buffer

CP posts message-pending
external interrupt at
completion of data transfer

Source virtual machine

- SEND function to request
data transfer in a
parameter list

Data transfer

CP posts condition code and
return code at completion
of data transfer

CP IUCV
interface routine

Figure 20. Flow of the IUCV SEND Protocol

IUCV SEND/REPLY Protocol: The SEND/REPLY protocol defines a two-way transfer of data from a source
virtual machine to a target virtual machine without the use of the RECEIVE function, as shown in Figure 21
on page 315. The data that may be transferred in this way is limited to 8 bytes and is stored in the IUCV
parameter list. The path to be used must be authorized to handle data in the parameter list during the
CONNECT/ACCEPT protocol that establishes it. If a SEND/REPLY request is directed to a virtual machine
that has not authorized receipt of data in a parameter list on this path, it is indicated by a return code to
the SEND/REPLY request and the request is cancelled by CP.

Target virtual machine

To external interrupt buffer

CP posts message-pending
external interrupt at
completion of data transfer

REPLY function to initiate
data transfer from target
virtual machine

Data transfer

CP posts condition code and
return code at completion
of data transfer

Source virtual machine

- SEND function to request
data transfer in a
parameter list

Data transfer

CP posts condition code and
return code at completion
of data transfer

To external interrupt buffer

CP posts message-complete
external interrupt at
completion of data transfer

CP IUCV
interface routine

Figure 21. Flow of the IUCV SEND/REPLY Protocol

The IUCV parameter list for a SEND/REPLY request with data in the parameter list specifies the path ID
of the path on which the message is to be sent, that this is a two-way message, and that the data is in
the parameter list. Optionally, the priority of the message, the source message class, the target message
class, and a message tag may be specified. When correctly specified, the SEND causes CP to transfer data
from the source virtual machine to the external interrupt buffer of the target virtual machine. After the
data transfer is complete, a message-pending external interrupt is queued for the target virtual machine.

IUCV Protocols

Chapter 4. IUCV Protocols 315

Note that no message-complete external interrupt is queued for the source virtual machine after the
SEND.

After receiving the message-pending external interrupt, the target virtual machine receives control to
send a REPLY function that specifies the path ID and message ID for this REPLY request, and that the
reply is in the parameter list. CP transfers the data from the target virtual machine's parameter list to
the external interrupt buffer of the source virtual machine. When the data transfer from the REPLY is
complete, the source virtual machine receives a message-complete external interrupt and the target
virtual machine receives a condition code and return code in response to the REPLY function.

The target virtual machine can also REPLY with data in one or more buffers as is described under the
SEND/RECEIVE/REPLY protocol.

A SEND request can be purged by the source virtual machine using the PURGE function. The target virtual
machine can reject a SEND request using the REJECT function.

IUCV Protocols

316 z/VM: 7.3 CP Programming Services

Chapter 5. IUCV Function Descriptions

This chapter contains information on the following IUCV functions and external interrupts:

• Accept and the Connection Complete Interrupt
• Connect and the Connection Pending External Interrupt
• Declare Buffer
• Describe
• Interrupt Poll
• Purge
• Query
• Quiesce and the Connection Quiesced External Interrupt
• Receive
• Reply and the Message Complete External Interrupt
• Resume and the Connection Resumed External Interrupt
• Retrieve Buffer
• Send and the Message Pending External Interrupt
• Set Control Mask
• Set Mask
• Sever and the Connection Severed External Interrupt
• Test Completion
• Test Message.

If you are unfamiliar with reading syntax diagrams, see “Syntax, Message, and Response Conventions” on
page xxxv.

CP System Services
IUCV treats communications with CP as if CP were a single virtual machine. IUCV gathers information
about a message and routes it to the specified system service for processing.

IUCV provides:

• Routing of connections to CP system services
• Routing of messages to CP system services
• Routing of message completions to the CP system service that issued the SEND
• Severing of connections to CP system services.

Each CP system service that interfaces with virtual machines is uniquely defined to IUCV. The following
table shows the corresponding user ID for each of the CP system services. This user ID must be specified
on the USERID= parameter when invoking the IUCV CONNECT function.

Note: Use of any IUCV service within a transaction will cause the transaction to abort with
either a restricted-instruction transaction-abort code or a transaction-constraint exception. (See z/
Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf) for details
on transactional execution.)

CP system services and their user IDs are as follows:

© Copyright IBM Corp. 1991, 2023 317

https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

Table 67. CP System Services and Their User IDs

System Service
User ID

System Service

*ACCOUNT Accounting System Service (See page Chapter 12, “Account System Service
(*ACCOUNT),” on page 697.)

*ASYNCMD Asynchronous CP Command Response System Service (See page Chapter 13,
“Asynchronous CP Command Response System Service (*ASYNCMD),” on page
717.)

*BLOCKIO DASD Block I/O System Service (See page Chapter 14, “DASD Block I/O System
Service (*BLOCKIO),” on page 719>.)

*IDENT Identify System Service (See page Chapter 16, “Identify System Service (*IDENT),”
on page 729.)

*LOGREC Error Recording System Service (See page Chapter 15, “Error Logging System
Service (*LOGREC),” on page 727.)

*MONITOR Monitor System Service (See z/VM: Performance.)

*MSG Message System Service (See page Chapter 17, “Message System Service (*MSG),”
on page 737.)

*MSGALL Message All System Service (See page Chapter 18, “Message All System Service
(*MSGALL),” on page 739.)

*RPI Access Verification System Service (See page Chapter 11, “Access Verification
System Service (*RPI),” on page 589.)

*SIGNAL Signal System Service (See page Chapter 20, “Signal System Service (*SIGNAL),”
on page 745.)

*SPL Spool System Service (See page Chapter 21, “Spool System Service (*SPL),” on
page 749.)

*SYMPTOM Symptom System Service (See page Chapter 22, “Symptom System Service
(*SYMPTOM),” on page 771.)

*VMEVENT VM Event System Service (See page Chapter 23, “VM Event System Service
(*VMEVENT),” on page 773.)

318 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3

ACCEPT Function

label

IUCV ACCEPT ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MSGLIM=  address ,PATHID=  address

,PRTY=
2

YES

NO

,PRMDATA=
2

YES

NO

,QUIESCE=
2

YES

NO

,USERDTA=  address

,CONTROL=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The ACCEPT function is issued after the user receives a Connection Pending external interrupt and now
wishes to complete the IUCV communication path.

Parameters
Required Parameters:
ACCEPT

Requests that CP perform the IUCV ACCEPT function.
PRMLIST=

Specifies the address of the ACCEPT parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

IUCV ACCEPT

Chapter 5. IUCV Function Descriptions 319

MSGLIM=
Specifies the limit of outstanding messages to be allowed on the path completing this ACCEPT. The
address of the MSGLIM points to a 2-byte field.

Upon executing the IUCV instruction, the message limit specified is checked to insure that the
maximum limit of 65535 has not been exceeded. The actual limit assigned to the invoker's path
established by this connection depends on the value specified for MSGLIM and the value specified for
MSGLIMIT (if any) on the IUCV control statement of the invoker's directory entry. The IUCV control
statement authorizes the invoker to establish the path.

When the ACCEPT function is invoked, the directory entries are searched in a definite order:

1. The invoker's IUCV control statements are searched for an entry for the target's user ID.
2. The invoker's IUCV control statements are searched for an ANY entry.

The first entry found, that applies establishes the message limit for the path according to the following
table:

MSGLIM specified
on ACCEPT

MSGLIMIT specified
on applicable IUCV
control statement

Actual message limit

No No Default value of 10

No Yes Directory entry value

Yes No MSGLIM value

Yes Yes Lower value of the two specified

After executing the IUCV instruction, the IPMSGLIM field in the output parameter list reflects the
actual message limit established for the path.

PATHID=
Specifies the path identification number on which you wish to communicate. This path ID is presented
to the virtual machine in the Connection Pending external interrupt.

PRTY=
Specifies if you want to send priority messages on this path. It does not affect the program's ability to
receive priority messages.

PRTY=YES indicates that you want to send priority messages. Priority must be authorized in the IUCV
directory control statement for this parameter to be effective. After executing the IUCV instruction,
the IPPRTY bit in IPFLAGS1 should be checked to insure that priority messages were authorized.

PRTY=NO indicates that you cannot send priority messages.

If your program is unauthorized or if PRTY=NO is specified, IUCV prevents your program from sending
priority messages.

PRMDATA=
Specifies whether your program can handle message data in the parameter list.

PRMDATA=YES indicates that your program can handle message data in the parameter list (those
messages sent using the parameter DATA=PRMMSG on an IUCV SEND).

PRMDATA=NO indicates that your program can only handle message data presented in a buffer (sent
using the parameter DATA=BUFFER on an IUCV SEND).

QUIESCE=
Specifies whether you want to quiesce the path being established.

QUIESCE=YES prevents messages from coming across the path until your program is ready to process
them. You can restore the path to full communication by invoking the IUCV RESUME function.

QUIESCE=NO indicates that the path will become active as soon as the IUCV ACCEPT completes.

IUCV ACCEPT

320 z/VM: 7.3 CP Programming Services

USERDTA=
Specifies the data area containing the 16 bytes of user data that IUCV is to reflect to the source virtual
machine. The user data is reflected as part of the IUCV Connection Complete external interrupt.

CONTROL=
Specifies whether this connection is to be associated with the external interrupt buffer for control
paths or application paths.

CONTROL=YES indicates that this path is to be associated with the external interrupt buffer for control
paths. CONTROL=NO indicates that this path is to be associated with the external interrupt buffer for
application paths.

Parameter List Format:

/ / / / / / / / / / /IPMSGLIMIPFLAGS1IPPATHID0

8

10

IPUSER

18

20

IPRCODE

/ /

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path identification number of the path you are completing.
IPFLAGS1

Contains options for the ACCEPT function.
IPRMDATA (X'80')

Indicates that you are prepared to handle message data in the parameter list.
IPQUSCE (X'40')

Indicates that you do not want to receive messages on this path until an IUCV RESUME is issued.
IPPRTY (X'20')

Indicates that you want to send priority messages on this path.
IPCNTRL (X'04')

Indicates that you want this to be a control path.
IPMSGLIM

Contains the limit of outstanding messages that IUCV is to allow the invoker to send on the path.
IPUSER

Contains the user data that IUCV reflects to the target virtual machine.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored in IPRCODE.

Parameter List Output Fields:
IPMSGLIM

Contains the message limit for this path.
IPFLAGS1

Contains specific information about this connection.

IUCV ACCEPT

Chapter 5. IUCV Function Descriptions 321

IPPRTY (X'20')
Indicates that you may send priority messages.

IPRCODE
Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Connection is not pending on this path
20 - X'14' - Originator has severed this path
30 - X'1E' - IPAPPC flag in IPFLAGS1 not 0.

Note: If you get a return code that is not documented here, it is an APPC/VM return code. An APPC/VM
return code can result if the IPAPPC bit is set on during an IUCV CONNECT. For a description of the
APPC/VM return code, refer to “IUCV ACCEPT” on page 524.

Program Exceptions
The program exceptions for IUCV ACCEPT are:
Specification Exception

The parameter list is not on a doubleword boundary.
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

Completion Conditions
Connection Complete External Interrupt: To notify the source virtual machine that you have accepted
the connection and completed a new IUCV path, IUCV reflects an IUCV Connection Complete external
interrupt to the source virtual machine.

The source virtual machine receives this external interrupt if it is enabled for IUCV interrupts in
Control Register 0 and the PSW. The functions of SET MASK and SET CONTROL MASK also control the
presentation of this type of interrupt.

/ / / / / / / / / / /IPMSGLIMIPFLAGS1IPPATHID0

8

10

IPUSER

18

20

IPTYPE

/ /

/ /IPPOLLFG

0 1 2 3 4 5 6 7

IPPATHID
Contains the path ID of the path which has now been established.

IPFLAGS1
Contains options for this path.
IPRMDATA (X'80')

Indicates that the connecting virtual machine can handle message data in the parameter list.

IUCV ACCEPT

322 z/VM: 7.3 CP Programming Services

IPQUSCE (X'40')
Indicates that IUCV will not allow messages to be sent on this path until an IUCV RESUME is
issued by the connecting virtual machine.

IPPRTY (X'20')
Indicates that the virtual machine may receive priority messages on this path.

IPCNTRL (X'04')
Indicates that this is a control path.

IPTYPE
Indicates a Connection Complete external interrupt with a value of X'02'.

IPMSGLIM
Contains the maximum number of messages that IUCV allows the virtual machine that issued the
ACCEPT function to send on this path.

IPUSER
Contains the user data specified by the target virtual machine when it accepted this connection.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV ACCEPT

Chapter 5. IUCV Function Descriptions 323

CONNECT Function

label

IUCV CONNECT ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,CONTROL=
2

YES

NO

,MSGLIM=  address

,PRMDATA=
2

YES

NO

,PRTY=
2

YES

NO

,QUIESCE=
2

YES

NO

,USERDTA=  address

,USERID=  address ,TARGET=  address ,LOCAL=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The CONNECT function establishes an IUCV path to another virtual machine. Although the CONNECT may
complete successfully, you are not able to use the path until you receive an IUCV Connection Complete
external interrupt (the target has accepted your connection) for this path.

If you receive an IUCV Connection Severed external interrupt (the target has severed your connection) for
this path, you may not use this path since the connection has been refused by the target virtual machine.

If the CONNECT function completes successfully, the count of active connections is incremented for both
virtual machines. If a virtual machine is connecting to itself, the active connection count is incremented by
two. The count is not decremented until the virtual machine issues an IUCV SEVER for a particular path.

Note: If an external security manager is installed on your system, you may not be authorized to use this
function. For additional information, contact your security administrator.

Parameters
Required Parameters:

IUCV CONNECT

324 z/VM: 7.3 CP Programming Services

CONNECT
Requests that CP perform the IUCV CONNECT function.

PRMLIST=
Specifies the address of the CONNECT parameter list. The IUCV instruction is generated to reference
the address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

CONTROL=
Specifies whether this connection is to be associated with the external interrupt buffer for control
paths or application paths.

CONTROL=YES indicates that this path is to be associated with the external interrupt buffer for control
paths. For a complete discussion on using control paths and buffers, see “Using Control Paths” on
page 304.

CONTROL=NO indicates that this path is to be associated with the external interrupt buffer for
application paths.

LOCAL=

YES

Allows an application to force the partner to be on the local system. LOCAL=YES and
TARGET=address cannot be specified together.

NO
Indicates that if the partner is not found on the local system, IUCV may try to locate the partner
within the CS collection if DISTRIBUTE IUCV YES is specified in the system configuration file.

MSGLIM=
Specifies the limit of outstanding messages to be allowed on the path established by this CONNECT.
The address of the MSGLIM points to a 2-byte field.

Upon executing the IUCV instruction, the message limit specified is checked to insure that the
maximum limit of 65535 has not been exceeded. The actual limit assigned to the invoker's path
established by this connection depends on the value specified for MSGLIM and the value specified for
MSGLIMIT (if any) on the IUCV control statement of the invoker's directory entry. The IUCV control
statement authorizes the invoker to establish the path.

When the CONNECT function is invoked, the directory entries are searched in a definite order:

1. The invoker's IUCV control statements are searched for an entry for the target's user ID.
2. The invoker's IUCV control statements are searched for an ANY entry.
3. The target's IUCV control statements are searched for an ALLOW entry.

The first entry found, that applies establishes the message limit for the path according to the following
table:

MSGLIM specified
on CONNECT

MSGLIMIT specified
on applicable IUCV
control statement

Actual message limit

No No Default value of 10

No Yes Directory entry value

Yes No MSGLIM value

IUCV CONNECT

Chapter 5. IUCV Function Descriptions 325

MSGLIM specified
on CONNECT

MSGLIMIT specified
on applicable IUCV
control statement

Actual message limit

Yes Yes Lower value of the two specified

After executing the IUCV instruction, the IPMSGLIM field in the output parameter list reflects the
actual message limit established for the path.

If the SEND function completes successfully, the count of active messages is incremented for the
sending virtual machine. The count is not decremented until the message complete external interrupt
is returned. For one-way messages using data in the parameter list, the count is decremented when
the message pending external interrupt is presented to the target virtual machine.

PRMDATA=
Specifies whether your program can handle message data in the parameter list.

PRMDATA=YES indicates that your program can handle message data in the parameter list (those
messages sent using the parameter DATA=PRMMSG on an IUCV SEND).

PRMDATA=NO indicates that your program can only handle message data presented in a buffer (sent
using the parameter DATA=BUFFER on an IUCV SEND).

PRTY=
Specifies if you want to send priority messages on this path. It does not affect the program's ability to
receive priority messages.

PRTY=YES indicates that you want to send priority messages. Priority must be authorized on the IUCV
directory control statement for this parameter to be effective. After executing the IUCV instruction,
the IPPRTY bit in IPFLAGS1 should be checked to insure that priority messages were authorized.

If the IUCV CONNECT is routed via ISFC, PRIORITY status for the CONNECT is determined by the
initial CONNECT invoker's IUCV directory control statement.

PRTY=NO indicates that you do not want to send priority messages.

If your program is unauthorized or if PRTY=NO is specified, IUCV prevents your program from sending
priority messages.

TARGET=
Specifies which system the target must be on. LOCAL=YES and TARGET=address cannot be specified
together.

This option allows a remote connection within the CS collection if DISTRIBUTE IUCV YES or
TOLERATE has been specified in the system configuration file. If DISTRIBUTE IUCV NO has been
specified, a remote connection is allowed only if the source and target node are members of the same
SSI cluster.

QUIESCE=
Specifies whether you want to quiesce the path being established.

QUIESCE=YES prevents messages from coming across this path until your program is ready to
process them. You can restore the path to full communication by invoking the IUCV RESUME function.

QUIESCE=NO indicates that the path is to become active as soon as the corresponding IUCV ACCEPT
is done by the target communicator.

USERDTA=
Specifies the data area containing the 16 bytes of user data that IUCV is to reflect to the target virtual
machine. The user data is reflected as part of the IUCV Connection Pending external interrupt.

USERID=
Specifies the 8-character user ID of the target virtual machine or the IUCV system service to which
you want to establish this path.

IUCV CONNECT

326 z/VM: 7.3 CP Programming Services

By default USERID is resolved within the local VM system.

When TARGET is specified, USERID is resolved on the designated target VM system. This requires:

• Configure DISTRIBUTE IUCV YES or TOLERATE on both systems. For more information on the
SYSTEM CONFIG statement, see z/VM: CP Planning and Administration. Note that if the source and
target node reside within the same SSI cluster, the DISTRIBUTE IUCV restrictions do not apply.

• Configure ISFC links connecting both VM systems. For more information on the ACTIVATE ISLINK,
see z/VM: CP Commands and Utilities Reference and z/VM: CP Planning and Administration.

• The LOCAL=YES option must not be specified.

When TARGET is not specified, USERID is resolved according to the following rules:

• If USERID is logged on the local VM system (the one the invoker is on) a local connection is initiated.
• If an ISFC link is active, and DISTRIBUTE IUCV YES is configured, ISFC will perform a search for

USERID logged on within the ISFC collection. If USERID is found on a node within the collection, a
connection is attempted via ISFC.

If DISTRIBUTE IUCV NO or TOLERATE is configured and USERID is a single-configuration user
online within the same SSI cluster, a remote connection is initiated because the user is configured to
operate on any node in the cluster. If DISTRIBUTE IUCV NO or TOLERATE is configured and USERID
is a multiconfiguration (IDENTITY) user, the IUCV CONNECT fails without a TARGET node.

• Otherwise, the IUCV CONNECT fails.

Parameter List Format:

/ / / / / / / / / / /IPMSGLIMIPFLAGS1IPPATHID0

8

10

IPUSER

18

20

IPRCODE

IPVMID

0 1 2 3 4 5 6 7

IPTARGET

28

IPARML DSECT

Parameter List Input Fields:
IPFLAGS1

Contains options for the CONNECT function.
IPRMDATA (X'80')

Indicates that your program can handle message data in the parameter list.
IPQUSCE (X'40')

Indicates that you do not want to receive messages on this path until an IUCV RESUME is issued.
IPPRTY (X'20')

Indicates that you want to send priority messages on this path.
IPAPPC (X'08')

Indicates the protocol to be used on this path. This bit must be set to 0.
IPCNTRL (X'04')

Indicates that you want this to be a control path.
IPLOCAL (X'01')

Indicates that the connect can only be satisfied on the local system
IPMSGLIM

Contains the limit of outstanding messages that IUCV is to allow the invoker to send on the path.
IPVMID

Contains the user ID of the virtual machine or IUCV system service to which you want to establish this
path.

IUCV CONNECT

Chapter 5. IUCV Function Descriptions 327

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

IPUSER
Contains the user data that IUCV reflects to the target virtual machine.

IPTARGET
Contains the system name where the connect is to be satisfied.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored in IPRCODE.

Parameter List Output Fields:
IPPATHID

Contains the path ID that IUCV assigns the new path.
IPMSGLIM

Contains the message limit for this path.
IPFLAGS1

Contains specific information about this connection.
IPPRTY (X'20')

Indicates that you may send priority messages on this path.
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
11 - X'0B' - Target communicator is not logged on.
 Also see note 2 below.
12 - X'0C' - Target communicator has not invoked the DECLARE
 BUFFER function
13 - X'0D' - Maximum number of connections for this
 communicator exceeded
14 - X'0E' - Maximum number of connections for the target
 exceeded
15 - X'0F' - No authorization found (See Note 3.)
16 - X'10' - Invalid IUCV system service name

Notes:

1. If you get a return code that is not documented here, it is an APPC/VM return code. An APPC/VM return
code can result if the IPAPPC bit is set on during an IUCV CONNECT. For a description of the APPC/VM
return code, refer to “APPCVM CONNECT” on page 412.

2. IPRCODE 11 - X'0B' may also be returned if Distributed IUCV is active (either DISTRIBUTE IUCV
TOLERATE or DISTRIBUTE IUCV YES is specified in the SYSTEM CONFIG file for the z/VM system) and
one of the following occurs:

• IPLOCAL is specified but IPTARGET is non-zero.
• IPLOCAL is specified but the target VM id (IPVMID) is not logged on locally.
• IPTARGET is blanks.
• IPTARGET specifies a remote system but no ISFC link exists.

IUCV CONNECT

328 z/VM: 7.3 CP Programming Services

• DISTRIBUTE IUCV TOLERATE is specified in SYSTEM CONFIG and IPTARGET is zero but the VM id
(IPVMID) is not logged on locally.

• DISTRIBUTE IUCV YES is specified in SYSTEM CONFIG and IPTARGET is zero but the VM id (IPVMID)
is not logged on locally or remotely.

3. IPRCODE 15 - X'0F' may also be returned if a problem was detected with internal CP control
structures. Consequently, a CP soft abend will be generated.

Program Exceptions
The program exceptions for IUCV CONNECT are:
Specification Exception

The parameter list is not on a doubleword boundary.
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

Completion Conditions
Connection Pending External Interrupt: To notify the target virtual machine that you wish to establish
a new path (through the CONNECT), IUCV reflects an IUCV Connection Pending external interrupt to the
target virtual machine.

The target virtual machine receives this external interrupt if it is enabled for IUCV interrupts in Control
Register 0 and the PSW. The functions of SET MASK and SET CONTROL MASK also control the
presentation of this type of interrupt.

The external interrupt contains the information that the target virtual machine needs to either ACCEPT or
SEVER the pending connection.

/ / / / / / / / / / /IPMSGLIMIPFLAGS1IPPATHID0

8

10

IPUSER

18

20

IPTYPE

IPVMID

/ /IPPOLLFG

0 1 2 3 4 5 6 7

IPPATHID
Contains the path ID that IUCV assigns the new path.

IPFLAGS1
Contains options for this path.
IPRMDATA (X'80')

Indicates that the connecting virtual machine can handle message data in the parameter list.
IPQUSCE (X'40')

Indicates that IUCV will not allow messages to be sent on this path until an IUCV RESUME is
issued by the connecting virtual machine.

IPPRTY (X'20')
Indicates that the virtual machine may receive priority messages on this path.

IPTYPE
Indicates a Connection Pending external interrupt with a value of X'01'.

IUCV CONNECT

Chapter 5. IUCV Function Descriptions 329

IPMSGLIM
Contains the maximum number of messages that IUCV allows the virtual machine that issued the
CONNECT function to send on this path.

IPVMID
Contains the user ID of the virtual machine or IUCV system service specified by the virtual machine
that wants to establish this path.

IPUSER
Contains the user data specified by the virtual machine that wants to establish this path.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV CONNECT

330 z/VM: 7.3 CP Programming Services

DECLARE BUFFER Function

label

IUCV DCLBFR ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,BUFFER=  address ,CONTROL=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The DECLARE BUFFER function specifies the guest real address of an external interrupt buffer where
IUCV can store information. When a virtual machine receives an IUCV external interruption, IUCV stores in
this buffer information about the message, reply, or control function that caused the interruption.

The DECLARE BUFFER function must be invoked before any other IUCV function can be used (except
QUERY).

After invoking the DECLARE BUFFER function and if enabled for IUCV interrupts, the virtual machine can
now start receiving IUCV external interrupts.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameters:
DCLBFR

requests that CP perform the IUCV DECLARE BUFFER function.
PRMLIST=

specifies the address of the DECLARE BUFFER parameter list. The IUCV instruction is generated
to reference the address specified. The address of the parameter list must be on a doubleword
boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

BUFFER=
specifies the address of the external interrupt buffer.

CONTROL=
specifies whether this buffer is to be used with control paths or application paths.

IUCV DECLARE BUFFER

Chapter 5. IUCV Function Descriptions 331

CONTROL=YES indicates that this buffer is to be used with control paths. For a complete discussion
on using control buffers and paths, see “Using Control Paths” on page 304.

CONTROL=NO indicates that this buffer is to be used with application paths.

Parameter List Format:

/ /IPFLAGS10

8

10

18

20

IPRCODE

IPBFADR1

/ /

/ / / / / / / / / / / /

/ /

/ /

/ /

IPARML DSECT

Parameter List Input Fields:
IPFLAGS1

contains options for the DECLARE BUFFER function.
IPCNTRL (X'04')

indicates that you want this to be a control buffer.
IPBFADR1

contains the address of your external interrupt buffer.

Condition Codes and Return Codes
CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE
3 - Errors encountered in reading directory.

Parameter List Output Fields:
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
10 - X'0A' - Invalid length for the interrupt buffer extension.
19 - X'13' - A previously declared buffer is still in use
 or an IUCV RETRIEVE BUFFER is in progress.
62 - X'3E' - Two of the following buffers overlap:
 • Control buffer
 • External interrupt buffer
 • Interrupt buffer extension
92 - X'5C' - A paging or storage error was detected.

Program Exceptions
The program exceptions for IUCV DECLARE BUFFER are:
Specification Exception

The parameter list is not on a doubleword boundary.
Addressing Exception

The parameter list or buffer address that you specified is outside the virtual machine's storage.

IUCV DECLARE BUFFER

332 z/VM: 7.3 CP Programming Services

Operation Exception
Your virtual machine is not in supervisor state.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

The buffer is outside the user's address space when CP checks to see that the user is entitled to
access the area of space assigned to the buffer.

IUCV DECLARE BUFFER

Chapter 5. IUCV Function Descriptions 333

DESCRIBE Function

label

IUCV DESCRIBE ,PRMLIST=  address
,MF=L

Purpose
The DESCRIBE function determines whether you have a message pending for your virtual machine. If
there is a message pending, information about the message is returned in the parameter list. Since
you now have the message information, there is no need for IUCV to reflect an IUCV Message Pending
external interrupt and you do not receive one for this message.

Since IUCV normally informs you of the message by reflecting a Message Pending external interrupt, you
should not use the DESCRIBE function unless you have disabled for this type of interrupt. The IUCV SET
MASK function can be used to disable your virtual machine for Message Pending external interrupts.

A message is described only once, either in the parameter list of a DESCRIBE or by a Message Pending
external interrupt.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameters:
DESCRIBE

Requests that CP perform the IUCV DESCRIBE function.
PRMLIST=

Specifies the address of the DESCRIBE parameter list. The IUCV instruction is generated to reference
the address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameter: If you do not specify this parameter, the macro assumes that you have stored the
desired value into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

Parameter List Format:

/ /

IPFLAGS10

8

10

18

20

IPRCODE

IPRMMSG1

/ / / / / / / / / / / / / / / / / / /

/ /

IPTRGCLS

IPPATHID IPMSGID

IPBFLN1F / IPRMMSG2

IPBFLN2F IPPOLLFG

0 1 2 3 4 5 6 7

IPARML DSECT

Condition Codes and Return Codes

IUCV DESCRIBE

334 z/VM: 7.3 CP Programming Services

CONDITION CODES

0 - Normal completion
2 - No message found.

Parameter List Output Fields:
IPPATHID

Contains the path on which the message was sent.
IPFLAGS1

Contains specific information about the message.
IPRMDATA (X'80')

Indicates that the 8-byte message is in the parameter list at IPRMMSG.
IPPRTY (X'20')

Indicates that this is a priority message.
IPNORPY (X'10')

Indicates that this is a one-way message and no REPLY is expected.
IPFGMID (X'04')

Is always set to 1 indicating that the message ID has been stored at IPMSGID.
IPFGPID (X'02')

Is always set to 1 indicating that the path ID has been stored at IPPATHID.
IPFGMCL (X'01')

Is always set to 1 indicating that the target message class has been stored at IPTRGCLS.
IPMSGID

Contains the message ID.
IPTRGCLS

Contains the target message class.
IPRMMSG1/IPRMMSG2

Contains the message when it is stored in the parameter list (indicated by IPRMDATA in IPFLAGS1).
The label IPRMMSG refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPBFLN1F
Contains the length of the message.

IPBFLN2F
Contains the length of the maximum expected reply.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that another iteration of this function will probably not find a message waiting at this
time.

IPRCODE
Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

0 - X'00' - Normal return.

Program Exceptions
The program exceptions for IUCV DESCRIBE are:

IUCV DESCRIBE

Chapter 5. IUCV Function Descriptions 335

Specification Exception
The parameter list is not on a doubleword boundary.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

IUCV DESCRIBE

336 z/VM: 7.3 CP Programming Services

INTERRUPT POLL Function

label

IUCV IPOLL ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,BUFFER=  address ,BUFLEN=  address

Notes:
1 Optional parameters can be entered in any order.

Purpose
The INTERRUPT POLL (IPOLL) function determines whether you have any replies or incoming messages
pending. If IUCV finds any replies or incoming messages pending, it returns the information about them in
the buffer provided. The maximum number of pending interrupts that can be retrieved on a single request
is the number of IUCV external interrupt buffers which can fit on one 4K page.

Notes:

1. Unless you disable your virtual machine for IUCV message-complete and message-pending interrupts,
you should not use the INTERRUPT POLL function. When the virtual machine is enabled for these
interrupts, IUCV automatically informs you of message completion or arrival of an incoming message
by reflecting an external interrupt to your virtual machine.

2. No external interrupt will occur for a reply represented by a message-complete returned by the
INTERRUPT POLL function.

3. No external interrupt will occur for a message represented by a message-pending returned by the
INTERRUPT POLL function. It is your responsibility to use the RECEIVE or REJECT function to process
a message obtained using the INTERRUPT POLL function.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameters:
IPOLL

Requests that CP perform the IUCV INTERRUPT POLL function.
PRMLIST=

Specifies the address of the INTERRUPT POLL parameter list. The IUCV instruction is generated
to reference the address specified. The address of the parameter list must be on a doubleword
boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

BUFFER=
Specifies the address of the INTERRUPT POLL buffer for interrupt data.

IUCV INTERRUPT POLL

Chapter 5. IUCV Function Descriptions 337

BUFLEN=
Specifies the length of the INTERRUPT POLL buffer for interrupt data. This length must be at least the
size of an IUCV interrupt buffer and not more than 4096 bytes, and the buffer may not cross a 4K page
boundary. The length need not be an exact multiple of the length of an IPARML.

Parameter List Format:

/ /0

8

10

18

20

IPRCODE

IPBFADR1

/ /

/ /

/ /

0 1 2 3 4 5 6 7

/ /IPBFLN1F

/ /

IPARML DSECT

Parameter List Input Fields:
IPBFADR1

contains the address of the input buffer.
IPBFLN1F

contains the length of the input buffer.

Condition Codes and Return Codes
CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found.

Parameter List Output Fields:
IPBFLN1F

contains the length of the output data returned by the INTERRUPT POLL function. This value will
always be a multiple of the length of an IUCV external interrupt buffer (IPARML).

IPRCODE
contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
92 - X'5C' - A paging or storage error was detected.

Program Exceptions
The program exceptions for IUCV INTERRUPT POLL are:
Specification Exception

The parameter list is not on a doubleword boundary.

The buffer length specified is less than the size of an IUCV interrupt buffer.

The buffer specified spans a 4K page boundary.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

IUCV INTERRUPT POLL

338 z/VM: 7.3 CP Programming Services

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Completion Conditions
Output Buffer Format: When the condition code is zero, the buffer contains one or more interrupt data
areas for replies and messages. See Message Complete External Interrupt, and Message Pending External
Interrupt. The remainder of the buffer not occupied by the external interrupt data remains unchanged.

If no more replies or messages are pending for the invoker, the last interrupt placed in the output buffer
will have the IPNOPOLL flag set.

If INTERRUPT POLL is issued in an APPC/VM environment you may receive interrupt information both for
IUCV and APPC/VM paths.

IUCV INTERRUPT POLL

Chapter 5. IUCV Function Descriptions 339

PURGE Function

label

IUCV PURGE ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MSGID=  address ,PATHID=  address

,SRCCLS=  address

Notes:
1 Optional parameters can be entered in any order.

Purpose
The PURGE function cancels a message that you have sent. When you purge a message, one of the
following actions takes place:

• If you purge a message before the target virtual machine has received an IUCV Message Pending
external interrupt for this message, the target virtual machine is never aware that you sent the message.

• If you purge a message after the target virtual machine has received the IUCV Message Pending
external interrupt, but before the target has completed handling the message, the target receives a
return code indicating that the message has been purged the next time it references the message
(normally, on a RECEIVE or a REPLY). The target is given only one such indication about the purged
message. Any future references to the purged message results in a no message found condition.

• If you purge a message on which the target virtual machine has already completed its processing, the
IUCV Message Complete external interrupt is avoided, but the target virtual machine is never aware that
the message was purged.

When purging a message, you can completely identify the message by specifying the message ID, path ID,
and source message class. You can also identify the message by the path ID with or without the message
class.

Parameters
Required Parameters:
PURGE

Requests that CP perform the IUCV PURGE function.
PRMLIST=

Specifies the address of the PURGE parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

IUCV PURGE

340 z/VM: 7.3 CP Programming Services

MSGID=
Specifies the message ID of the message to be purged. If the message ID is used to identify the
message, the path ID and the source class must also be correctly specified in the parameter list.

PATHID=
Specifies the path ID on which the message was sent. The address of the PATHID is a halfword value.

SRCCLS=
Specifies the source message class associated with a message.

Parameter List Format:

IPMSGIDIPRCODE

IPAUDIT

IPFLAGS1IPPATHID0

8

10

IPMSGTAG /

IPSRCCLS

18

20 /

/ /

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the message you are purging.
IPFLAGS1

Specifies options for the PURGE function.
IPFGMID (X'04')

Indicates that you have specified a message ID (IPMSGID) for the message you are purging.
IPFGPID (X'02')

Indicates that you have specified a path ID (IPPATHID) for the message you are purging.
IPFGMCL (X'01')

Indicates that you have specified a source message class (IPSRCCLS) to identify the message you
are trying to purge.

IPMSGID
Contains the message ID of the message you are purging.

IPSRCCLS
Contains the source message class of the message you are purging.

Condition Codes and Return Codes
CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found.

Parameter List Output Fields:
IPPATHID

Contains the path ID of the message you purged.
IPFLAGS1

Contains specific information about the message purged.
IPNORPY (X'10')

Indicates that the message purged is a one-way message.
IPPRTY (X'20')

Indicates that the message purged is a priority message.

IUCV PURGE

Chapter 5. IUCV Function Descriptions 341

IPMSGID
Contains the message ID of the message you purged.

IPAUDIT
Contains information about possible asynchronous error conditions which may have affected the
normal completion of this message. If this field is 0, the message has completed successfully.

The meanings of the bits in the audit trail are:
IPADRPLE (X'800000')

Reply too long for buffer
IPADSNPX (X'400000')

Protection exception on send buffer
IPADSNAX (X'200000')

Addressing exception on send buffer
IPADANPX (X'100000')

Protection exception on answer buffer
IPADANAX (X'080000')

Addressing exception on answer buffer
IPADRJCT (X'040000')

Message was rejected
IPADPRMD (X'020000')

Reply specified DATA=PRMMSG, but this path cannot handle data in the parameter list.
IPADPGNR (X'010000')

Message purged on send or receive queue.
IPADRCPX (X'008000')

Protection exception on receive buffer
IPADRCAX (X'004000')

Addressing exception on receive buffer
IPADRPPX (X'002000')

Protection exception on reply buffer
IPADRPAX (X'001000')

Addressing exception on reply buffer
IPADSVRD (X'000800')

Path was severed
IPADRLST (X'000400')

Invalid RECEIVE or REPLY address list
(X'000200')

Reserved
(X'000100')

Reserved
IPADBLEN (X'000080')

Bad length in SEND buffer list
IPADALEN (X'000040')

Bad length in SEND answer list
IPADBTOT (X'000020')

Invalid total SEND buffer length
IPADATOT (X'000010')

Invalid total SEND answer length
(X'000008')

Reserved

IUCV PURGE

342 z/VM: 7.3 CP Programming Services

(X'000004')
Reserved

(X'000002')
Reserved

(X'000001')
Reserved.

IPSRCCLS
Contains the message class of the message you purged.

IPMSGTAG
Contains the message tag of the message you purged.

IPRCODE
Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
 8 - X'08' - Message found but message class invalid
31 - X'1F' - IUCV function specified on an APPC/VM path.

Program Exceptions
The program exceptions for IUCV PURGE are:
Specification Exception

The parameter list is not on a doubleword boundary, or the message ID was specified without the path
ID or the message class.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

IUCV PURGE

Chapter 5. IUCV Function Descriptions 343

QUERY Function

label

IUCV QUERY

Purpose
The QUERY function determines how large an external interrupt buffer IUCV requires to store information,
and determines the maximum number of communication paths you can establish in your virtual machine.

QUERY can be issued before DECLARE BUFFER to determine the buffer size and allocate the buffer before
it is declared to IUCV. The maximum number of paths facilitates the allocation of a user-defined path
table. This function is useful to virtual machines that have dynamic storage allocations routines. For those
programs that must allocate fixed storage, the buffer size is 40 bytes (X'28'), and the maximum number
of paths available would be the default of four or the number on the user's OPTION directory control
statement, the MAXCONN option.

Parameters
Required Parameter:
QUERY

Requests that CP perform the IUCV QUERY function.

Condition Codes and Return Codes
CONDITION CODES

0 - Normal completion
2 - Error - IUCV RETRIEVE BUFFER in progress.
3 - Errors were encountered reading directory.

Output from QUERY: When you invoke the QUERY function, IUCV returns:

• The size of the IUCV external interrupt buffer in general register 0.
• The maximum number of connections that can be outstanding for this virtual machine in general

register 1.

Program Exceptions
The program exceptions for IUCV QUERY are:
Operation Exception

Your virtual machine is not in supervisor state.

IUCV QUERY

344 z/VM: 7.3 CP Programming Services

QUIESCE Function

label

IUCV QUIESCE ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,ALL=
2

YES

NO

,PATHID=  address

,USERDTA=  address

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The QUIESCE function temporarily suspends incoming messages on an IUCV path. You can later
reactivate the path by invoking the RESUME function or you may leave the path quiesced, making it a
one-way path. You are still allowed to send messages as the path is only quiesced for incoming messages.

If a message is sent to you on a quiesced path, a return code is returned to the sender, and the message is
not sent. Each end of a path can be quiesced independently.

Parameters
Required Parameters:
QUIESCE

Requests that CP perform the IUCV QUIESCE function.
PRMLIST=

Specifies the address of the QUIESCE parameter list. The IUCV instruction is generated to reference
the address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.
MF=L

Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

ALL=
Specifies whether all paths for this virtual machine are to be quiesced.

ALL=YES indicates that all of your paths are to be quiesced.

ALL=NO indicates that you do not want all of your paths quiesced, only the one specified by PATHID.

PATHID=
Specifies the path ID of the path you want to quiesce.

IUCV QUIESCE

Chapter 5. IUCV Function Descriptions 345

USERDTA=
Specifies the data area containing the 16 bytes of user data to be reflected across the path. The user
data is reflected as part of the IUCV Connection Quiesced external interrupt.

Parameter List Format:

IPRCODEIPFLAGS1IPPATHID0

8

10

/ /

IPUSER

18

20 /

0 1 2 3 4 5 6 7

/ /

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the path you are quiescing.
IPFLAGS1

Contains options for the QUIESCE function.
IPALL (X'80')

Indicates that you want to quiesce all paths for this virtual machine.
IPUSER

Contains the user data that is reflected across the path.

Condition Codes and Return Codes
CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE

Parameter List Output Fields:
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
31 - X'1F' - IUCV function specified on an APPC/VM path.
48 - X'30' - Partner system service does not support this function.

Program Exceptions
The program exceptions for IUCV QUIESCE are:
Specification Exception

The parameter list is not on a doubleword boundary.
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

IUCV QUIESCE

346 z/VM: 7.3 CP Programming Services

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

Completion Conditions
Connection Quiesced External Interrupt: To notify the other side of the path that the path has been
quiesced, IUCV reflects an IUCV Connection Quiesced external interrupt.

The target virtual machine receives this external interrupt if it is enabled for IUCV interrupts in Control
Register 0 and the PSW. The functions of SET MASK and SET CONTROL MASK also control the
presentation of this type of interrupt.

IPTYPE/ / / / / / /IPPATHID0

8

10

/ /

IPUSER

18

20 /

0 1 2 3 4 5 6 7

/ /

/ /IPPOLLFG

IPPATHID
Contains the path ID of the path quiesced.

IPTYPE
Indicates a Connection Quiesced external interrupt with a value of X'04'.

IPUSER
Contains the user data specified by the virtual machine that quiesced the path.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV QUIESCE

Chapter 5. IUCV Function Descriptions 347

RECEIVE Function

label

IUCV RECEIVE ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MSGID=  address ,PATHID=  address

,TRGCLS=  address ,BUFLIST=
2

YES

NO

,BUFFER= address

address-list

,BUFLEN=  length

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The RECEIVE function receives messages that are being sent to you over established paths. The RECEIVE
function moves the message data from the source virtual machine to your virtual machine.

When receiving a message, you can completely identify the message by specifying the message ID, path
ID, and target class. You can also identify the message by either the path ID or the target class, or both. If
you do not specify any identifiers when invoking the RECEIVE function, you receive the first message that
has not been partially received.

If your receive area cannot contain the complete message, you can issue another RECEIVE to obtain
the remainder of the message. If you use the same parameter list on the subsequent RECEIVE, the
message ID, path ID, and message class that are already stored in the parameter list completely identify
the message. These fields are required on any subsequent RECEIVEs for the same message. You must
initialize the receive area and length for the subsequent RECEIVEs.

The RECEIVE function completes a one-way communication when all the data has been received.

Parameters
Required Parameters:
RECEIVE

Requests that CP perform the IUCV RECEIVE function.
PRMLIST=

Specifies the address of the RECEIVE parameter list. The IUCV instruction is generated to reference
the address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

IUCV RECEIVE

348 z/VM: 7.3 CP Programming Services

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

MSGID=
Specifies the message ID of the message to be received. If the message ID is used to locate the
message, the path ID and the target class must also be correctly specified in the parameter list.

PATHID=
Specifies the path over which you wish to receive the message. The address of the PATHID is to a
halfword value.

TRGCLS=
Specifies the target message class associated with this message.

BUFLIST=
Specifies that the list format is being used.

BUFLIST=NO indicates that the list format is not being used. The BUFFER parameter is the address of
the complete message.

BUFLIST=YES indicates that the address on the BUFFER parameter identifies the address of a list of
addresses and lengths of discontiguous buffers that hold the message text.

BUFFER=
Specifies the address or the list of addresses into which IUCV moves the message.

BUFLEN=
Specifies the total length of the message to RECEIVE. If BUFFER specifies an address list
(BUFLIST=YES), the value specified with BUFLEN is the total of the individual buffer lengths in the
list.

Parameter List Format:

IPMSGIDIPRCODE

IPTRGCLS

IPFLAGS1IPPATHID0

8

10

IPBFLN2F

/ /

18

20

/ /

0 1 2 3 4 5 6 7

/ /

IPBFADR1 / IPRMMSG1

IPBFLN1F / IPRMMSG2

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the path to receive the message.
IPFLAGS1

Contains options for the RECEIVE function.
IPBUFLST (X'40')

Indicates that you are using an address list for the message data.
IPAPPC (X'08')

Indicates the protocol to be used on this path. This bit must be set to 0.
IPFGMID (X'04')

Indicates that you have specified a message ID (IPMSGID) for the messages you are trying to
receive.

IPFGPID (X'02')
Indicates that you have specified a path ID (IPPATHID) for the message you are trying to receive.

IPFGMCL (X'01')
Indicates that you have specified a target message class (IPTRGCLS) to identify the message you
are trying to receive.

IUCV RECEIVE

Chapter 5. IUCV Function Descriptions 349

IPMSGID
Contains the message ID of the message you are trying to receive.

IPTRGCLS
Contains the target message class of the message you are trying to receive.

IPBFADR1
Contains the address of the receive buffer.

IPBFLN1F
Contains the length of the receive buffer. Use this label with a fullword value. Use IPBFLN1 with a
halfword value.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found.

Parameter List Output Fields:
IPPATHID

Contains the path ID of the message you received.
IPFLAGS1

Contains specific information about the message received.
IPRMDATA (X'80')

Indicates that the 8-byte message is contained in the parameter list at IPRMMSG.
IPPRTY (X'20')

Indicates that this is a priority message.
IPNORPY (X'10')

Indicates that this is a one-way message and no reply is expected.
IPFGMID (X'04')

Is always set to 1 indicating that the message ID has been stored at IPMSGID.
IPFGPID (X'02')

Is always set to 1 indicating that the path ID has been stored at IPPATHID.
IPFGMCL (X'01')

Is always set to 1 indicating that the target message class has been stored at IPTRGCLS.
IPMSGID

Contains the message ID.
IPTRGCLS

Contains the target message class.
IPBFADR1

If BUFLIST=NO, contains the address of the buffer updated by the number of bytes you have received.
If BUFLIST=YES, the address points to the current list entry IUCV is working on.

IPRMMSG1/IPRMMSG2
Contains the message when it is stored in the parameter list (indicated by IPRMDATA in IPFLAGS1).
The label IPRMMSG refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPBFLN1F
Contains one of the following values, if the receive buffer is:

The same length as the message, this field contains 0.
Longer than the message, this field contains the number of bytes remaining in the buffer.

IUCV RECEIVE

350 z/VM: 7.3 CP Programming Services

Shorter than the message, this field contains a residual count (that is, the number of bytes
remaining in the message that does not fit into the buffer).

IPBFLN2F
Contains the length of the expected reply. Use this label with a fullword value. Use IPBFLN2 with a
halfword value.

IPRCODE
Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
 5 - X'05' - Receive buffer too short to contain message
 6 - X'06' - Fetch protection exception on send buffer
 7 - X'07' - Addressing exception on the send buffer
 8 - X'08' - Message ID found but message class or path ID
 invalid
 9 - X'09' - Message has been purged
10 - X'0A' - Message length is negative
22 - X'16' - Send buffer list invalid
23 - X'17' - Negative length in buffer list
24 - X'18' - Incorrect total length of buffer list lengths
26 - X'1A' - Buffer list not on a doubleword boundary
30 - X'1E' - IPAPPC flag in IPFLAGS1 not 0
31 - X'1F' - IUCV function specified on an APPC/VM path
91 - X'5B' - A paging or storage error was detected in the
 SEND data area
92 - X'5C' - A paging or storage error was detected in the
 RECEIVE data area.

Note: If you get a return code that is not documented here, it is an APPC/VM return code. An APPC/VM
return code can result if the IPAPPC bit is set on during an IUCV CONNECT. For a description of the
APPC/VM return code, refer to “APPCVM RECEIVE” on page 451.

Program Exceptions
The program exceptions for IUCV RECEIVE are:
Specification Exception

The parameter list is not on a doubleword boundary, or the message ID was specified without the path
ID and the message class.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list, the buffer address, or the buffer list address that you specified is outside the
virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address, buffer list address, or buffer address in the
parameter list or the buffer list does not match the key of the user.

IUCV RECEIVE

Chapter 5. IUCV Function Descriptions 351

REJECT Function

label

IUCV REJECT ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MSGID=  address ,PATHID=  address

,TRGCLS=  address

Notes:
1 Optional parameters can be entered in any order.

Purpose
The REJECT function refuses a specified message. Between the time that you are notified of a message
and the time that you complete the message, the message may be rejected.

When a message is rejected, an IUCV Message Complete external interrupt is reflected to the source
virtual machine with an indication in the audit trail (IPAUDIT) that the message was rejected. Depending
on when the message was rejected and the type of message, message data may or may not have
been moved. When a message is rejected, the sender has no way to determine if any data has been
transmitted.

When rejecting a message, you can completely identify the message by specifying the message ID, path
ID, and target message class. You can also identify the message by either the path ID or the target
message class, or both.

Parameters
Required Parameters:
REJECT

Requests that CP perform the IUCV REJECT function.
PRMLIST=

Specifies the address of the REJECT parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

MSGID=
Specifies the message ID of the message to be rejected. If the message ID is used to locate the
message, the path ID and the target class must also be correctly specified in the parameter list.

PATHID=
Specifies the path ID of the message to be rejected.

TRGCLS=
Specifies the target message class of the message to be rejected.

IUCV REJECT

352 z/VM: 7.3 CP Programming Services

Parameter List Format:

IPMSGIDIPRCODE

IPTRGCLS

IPFLAGS1IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ /

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the message you are rejecting.
IPFLAGS1

Contains options for the REJECT function.
IPFGMID (X'04')

Indicates that you have specified a message ID (IPMSGID) for the message you are rejecting.
IPFGPID (X'02')

Indicates that you have specified a path ID (IPPATHID) for the message you are rejecting.
IPFGMCL (X'01')

Indicates that you have specified a target message class (IPTRGCLS) for the message you are
rejecting.

IPMSGID
Contains the message ID of the message you are rejecting.

IPTRGCLS
Contains the target message class of the message you are rejecting.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored in IPRCODE
2 - No message found.

Parameter List Output Fields:
IPPATHID

Contains the path ID of the message you rejected.
IPMSGID

Contains the message ID of the message you rejected.
IPTRGCLS

Contains the target message class of the message you rejected.
IPRCODE

Contains the return code describing how this function completed.

IUCV REJECT

Chapter 5. IUCV Function Descriptions 353

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
 8 - X'08' - Message ID found but message class or path ID
 invalid
31 - X'1F' - IUCV function specified on an APPC/VM path.

Program Exceptions
The program exceptions for IUCV REJECT are:
Specification Exception

The parameter list is not on a doubleword boundary, or the message ID was specified without the path
ID and the message class.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

IUCV REJECT

354 z/VM: 7.3 CP Programming Services

REPLY Function

label

IUCV REPLY ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MSGID=  address ,PATHID=  address

,TRGCLS=  address ,DATA=
2

BUFFER

PRMMSG

,ANSLIST=
2

YES

NO

,ANSBUF= address

address-list

,ANSLEN=  length ,PRMMSG=  address ,PRTY=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The REPLY function responds to the two-way messages that you receive. The previous IUCV functions will
have identified the message to which you are replying by providing the message ID, the path ID, and the
target class. You must identify completely the message to which you wish to reply.

The REPLY function moves the reply data from your virtual machine to the source virtual machine.

Parameters
Required Parameters:
REPLY

Requests that CP perform the IUCV REPLY function.
PRMLIST=

Specifies the address of the REPLY parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

IUCV REPLY

Chapter 5. IUCV Function Descriptions 355

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

MSGID=
Specifies the message ID of the message to which you are replying.

PATHID=
Specifies the path associated with the message.

TRGCLS=
Specifies the target message class associated with the message.

With the reply function you have an option of replying to the message in a buffer or in the parameter list.
The size of a parameter list message is very limited, but then the originator of the message (sender) does
not have to maintain an answer buffer (ANSBUF parameter on SEND). The protocol you chose may be
different from that used to send you the message.

DATA=
Specifies the location of your message data for this IUCV communication.

DATA=BUFFER indicates that your reply data is in a buffer. You can use the ANSBUF, ANSLEN, or
ANSLIST macro options to help you fill in the parameter list.

DATA=PRMMSG indicates that your reply data is in the parameter list. Use the PRMMSG parameter if
you want the macro to fill in the parameter list.

ANSLIST=
Specifies whether the list format is being used.

ANSLIST=NO indicates that the list format is not being used. The ANSBUF parameter is the address of
the complete reply.

ANSLIST=YES indicates that the address on the ANSBUF parameter identifies a list of addresses and
lengths of discontiguous buffers that contains the reply data.

ANSBUF=
Specifies the address or the address of a list of addresses (address-list) from which IUCV moves the
reply data.

Since the data is moved as part of the REPLY function, all buffer areas may be reused when the REPLY
function completes.

ANSLEN=
Specifies the total length of the reply data. If ANSBUF specifies an address list (ANSLIST=YES), the
value specified with ANSLEN is the total of the individual buffer lengths in the list.

PRMMSG=
Specifies the 8 bytes of message data that are moved into the parameter list.

An additional option on REPLY lets you define priority messages.

PRTY=
Specifies whether this response is a priority message.

PRTY=YES indicates that this response is a priority message.

PRTY=NO indicates that this response is not a priority message.

Parameter List Format:

IUCV REPLY

356 z/VM: 7.3 CP Programming Services

IPMSGIDIPRCODE

IPTRGCLS

IPFLAGS1IPPATHID0

8

10

18

20

0 1 2 3 4 5 6 7

/ /

/ /

/ /

IPRMMSG1

IPRMMSG2

IPBFLN2F

IPBFADR2

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the message to which you are replying.
IPFLAGS1

Contains the options for the REPLY function.
IPRMDATA (X'80')

Indicates that the reply is in the parameter list.
IPPRTY (X'20')

Indicates that this is a priority response.
IPANSLST (X'08')

Indicates that you are using an address list for the reply data.
IPMSGID

Contains the message ID of the message to which you are replying.
IPTRGCLS

Contains the message class of the message to which you are replying.
IPRMMSG1/IPRMMSG2

Contain the reply data when it is stored in the parameter list rather than a buffer. The label IPRMMSG
refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPBFADR2
Contains the address of the reply data.

IPBFLN2F
Contains the length of the reply data. Use this label with a fullword value. Use IPBFLN2 with a
halfword value.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored in IPRCODE
2 - No message found.

Parameter List Output Fields:
IPBFADR2

Contains the address of the reply data, when ANSLIST=NO, updated by the number of bytes of data
that IUCV moved. If ANSLIST=YES is specified, the address points to the current list entry IUCV is
working on.

IPBFLN2F
Contains one of the following values:

If the answer buffer is the same length as the reply, this field contains 0.

IUCV REPLY

Chapter 5. IUCV Function Descriptions 357

If the answer buffer is longer than the reply, this field contains the number of bytes remaining in
the buffer.
If the answer buffer shorter than the reply, this field contains a residual count (that is, the number
of bytes remaining in the reply that does not fit into the buffer).

IPRCODE
Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
 5 - X'05' - Answer buffer too short to contain message
 6 - X'06' - Storage protection exception on answer buffer
 7 - X'07' - Addressing exception on answer buffer
 8 - X'08' - Message ID found but message class or path ID
 invalid
 9 - X'09' - Message has been purged
10 - X'0A' - Message length is negative
21 - X'15' - Parameter list data not allowed on this path
22 - X'16' - Send/Answer buffer list invalid
23 - X'17' - Negative length in buffer list
24 - X'18' - Incorrect total length of buffer list lengths
25 - X'19' - PRMMSG option invalid with ANSLIST option
27 - X'1B' - Answer list not on a doubleword boundary
31 - X'1F' - IUCV function specified on an APPC/VM path
93 - X'5D' - A paging or storage error was detected in the
 ANSWER data area
94 - X'5E' - A paging or storage error was detected in the
 REPLY data area.

Program Exceptions
The program exceptions for IUCV REPLY are:
Specification Exception

The parameter list is not on a doubleword boundary.
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address, the answer list address, the answer buffer address, or an answer buffer
address in the answer list is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address, answer list address, answer buffer address, or
an answer buffer address in the answer list does not match the key of the user.

Completion Conditions
Message Complete External Interrupt:

To notify the originator of the message (the sender) that you have replied to the message, IUCV reflects an
IUCV Message Complete external interrupt to the originator's virtual machine. If the sender had reserved
buffers or address lists for use with this message, they can now be reused.

Notes:

IUCV REPLY

358 z/VM: 7.3 CP Programming Services

1. Even though the user may not be dependent on the information contained in this interrupt, it should
be processed as the message is not considered complete until the interrupt is reflected to the virtual
machine.

2. A message complete interrupt is also reflected to the sender of the message when a one-way message
with data specified in a buffer is received by the target. No message complete external interrupt is
reflected for a one-way message with data specified in the parameter list.

IPMSGIDIPTPYE

IPAUDIT

IPFLAGS1IPPATHID0

8

10

18

20

0 1 2 3 4 5 6 7

/ /

/ / / / / / / / / / / / / / / / / / / /

IPRMMSG1

IPRMMSG2

IPBFLN2F

IPMSGTAG

IPSRCCLS

IPPOLLFG

IPPATHID
Contains the path on which the message was sent.

IPFLAGS1
Contains specific information about the message.
IPRMDATA (X'80')

Indicates that the 8-byte reply is in the interrupt information.
IPPRTY (X'20')

Indicates that this is a priority reply.
IPNORPY (X'10')

Indicates that this is a one-way message.
IPTYPE

Indicates a Message Complete external interrupt. If this is an incoming priority message completion,
the interrupt type is X'06'. If this is an incoming nonpriority message completion, the interrupt type is
X'07'.

IPMSGID
Contains the message ID.

IPAUDIT
Contains information about possible asynchronous error conditions which may have affected the
normal completion of this message. If this field is 0, the message has completed successfully.

The meanings of the bits in the audit trail are:
IPADRPLE (X'800000')

Reply too long for buffer
IPADSNPX (X'400000')

Protection exception on send buffer
IPADSNAX (X'200000')

Addressing exception on send buffer
IPADANPX (X'100000')

Protection exception on answer buffer
IPADANAX (X'080000')

Addressing exception on answer buffer
IPADRJCT (X'040000')

Message was rejected
IPADPRMD (X'020000')

Reply specified DATA=PRMMSG, but this path cannot handle data in the parameter list.
IPADPGNR (X'010000')

Message purged on send or receive queue.

IUCV REPLY

Chapter 5. IUCV Function Descriptions 359

IPADRCPX (X'008000')
Protection exception on receive buffer

IPADRCAX (X'004000')
Addressing exception on receive buffer

IPADRPPX (X'002000')
Protection exception on reply buffer

IPADRPAX (X'001000')
Addressing exception on reply buffer

IPADSVRD (X'000800')
Path was severed

IPADRLST (X'000400')
Invalid RECEIVE or REPLY address list

(X'000200')
Reserved

(X'000100')
Reserved

IPADBLEN (X'000080')
Bad length in SEND buffer list

IPADALEN (X'000040')
Invalid Send/Answer buffer list such as bad address or length

IPADBTOT (X'000020')
Invalid total SEND buffer length

IPADATOT (X'000010')
Invalid total SEND answer length

(X'000008')
Reserved

(X'000004')
Reserved

(X'000002')
Reserved

(X'000001')
Reserved.

The fourth byte of IPAUDIT, IPASYRC, may contain on of the following error codes (for which an
appropriate IPRCODE was given to your communications partner.
IPMCSNDA, 91 (X'00005B')

Paging or storage error was detected in SEND data area
IPMCRECA, 92 (X'00005C')

Paging or storage error was detected in RECEIVE data area
IPMCANSA, 93 (X'00005D')

Paging or storage error was detected in ANSWER data area
IPMCRPYA, 94 (X'00005E')

Paging or storage error was detected in REPLY data area.

IPRMMSG1/IPRMMSG2
Contains the message when it is stored with the interrupt information (indicated by IPRMDATA in
IPFLAGS1). The label IPRMMSG refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPSRCCLS
Contains the source message class.

IPMSGTAG
Contains the tag data of the message.

IUCV REPLY

360 z/VM: 7.3 CP Programming Services

IPBFLN2F
Contains one of the following values, if the answer buffer is:

The same length as the reply, this field contains 0.
Longer than the reply, this field contains the number of bytes remaining in the buffer.
Shorter than the reply, this field contains a residual count (that is, the number of bytes remaining
in the reply that does not fit into the buffer). The IPADRPLE bit is set in the audit trail on this
condition.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV REPLY

Chapter 5. IUCV Function Descriptions 361

RESUME Function

label

IUCV RESUME ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID=  address ,ALL=
2

YES

NO

,USERDTA=  address

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The RESUME function restores communications over a quiesced path.

Parameters
Required Parameters:
RESUME

Requests that CP perform the IUCV RESUME function.
PRMLIST=

Specifies the address of the RESUME parameter list. The IUCV instruction is generated to reference
the address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

PATHID=
Specifies the path ID of the path on which you want to resume getting messages.

ALL=
Specifies whether communications should be restored for all paths for this virtual machine.

ALL=YES indicates that communications should be restored on all paths.

ALL=NO indicates that communications should be restored only on the path specified by PATHID.

USERDTA=
Specifies the data area containing the 16 bytes of user data that is to be reflected across the path. The
user data is reflected as part of the IUCV Connection Resumed external interrupt.

Parameter List Format:

IUCV RESUME

362 z/VM: 7.3 CP Programming Services

IPRCODEIPFLAGS1IPPATHID0

8

10

/ /

IPUSER

18

20 /

0 1 2 3 4 5 6 7

/ /

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the path you are resuming.
IPFLAGS1

Contains options for the RESUME function.
IPALL (X'80')

Indicates that you want to resume all paths for this virtual machine.
IPUSER

Contains the user data that is reflected across the path.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE.

Parameter List Output Fields:
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
31 - X'1F' - IUCV function specified on an APPC/VM path.
48 - X'30' - Partner system service does not support this function.

Program Exceptions
The program exceptions for IUCV RESUME are:
Specification Exception

The parameter list is not on a doubleword boundary.
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

IUCV RESUME

Chapter 5. IUCV Function Descriptions 363

Completion Conditions
Connection Resumed External Interrupt: To notify the other side of the path that the path has been
resumed, IUCV reflects an IUCV Connection Resumed external interrupt.

The target virtual machine receives this external interrupt if it is enabled for IUCV interrupts in Control
Register 0 and the PSW. The functions of SET MASK and SET CONTROL MASK also control the
presentation of this type of interrupt.

IPTYPE/ / / / / / /IPPATHID0

8

10

/ /

IPUSER

18

20 /

0 1 2 3 4 5 6 7

/ /

/ /IPPOLLFG

IPPATHID
Contains the path ID of the path quiesced.

IPTYPE
Indicates a Connection Resumed external interrupt with a value of X'05'.

IPUSER
Contains the user data specified by the virtual machine that quiesced the path.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV RESUME

364 z/VM: 7.3 CP Programming Services

RETRIEVE BUFFER Function

label

IUCV RTRVBFR

Purpose
The RETRIEVE BUFFER function terminates all use of IUCV. After the RETRIEVE BUFFER function
completes, you may reuse the storage allocated for the IUCV external interrupt buffer since you will
no longer receive IUCV external interrupts.

Since this function results in a sever of all IUCV paths, all outstanding IUCV communications are
terminated as if each path has been individually severed.

When issued by a virtual machine, the RETRIEVE BUFFER function causes all paths except control paths
to be severed. For example, if a program using CMSIUCV support issues HNDIUCV CLR, CMS issues the
RETRIEVE BUFFER function and all paths are severed except control paths.

When issued by CP, the RETRIEVE BUFFER function severs all paths.

Note: Be aware that CP issues the RETRIEVE BUFFER function for the following commands:

• SYSTEM RESET
• IPL, which issues SYSTEM RESET
• LOGOFF.

This severs all paths, including control paths.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameter:
RTRVBFR

Requests that CP perform the IUCV RETRIEVE BUFFER function.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion.

Program Exceptions
The program exceptions for IUCV RETRIEVE BUFFER are:
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

IUCV RETRIEVE BUFFER

Chapter 5. IUCV Function Descriptions 365

SEND Function

label

IUCV SEND ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID=  address ,TRGCLS=  address

,DATA=
2

BUFFER

PRMMSG

,BUFLIST=
2

YES

NO

,BUFFER= address

address-list

,BUFLEN=  length

,PRMMSG=  address ,TYPE=
2

1WAY

2WAY

,ANSLIST=
2

YES

NO

,ANSBUF= address

address-list

,ANSLEN=  length ,MSGTAG=  address ,PRTY=
2

YES

NO

,SRCCLS=  address ,SYNC=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The SEND function transmits data to another virtual machine. This data is called a message and may be
specified in the parameter list or in a buffer. The message is sent over a path that has been established by
the CONNECT function.

IUCV SEND

366 z/VM: 7.3 CP Programming Services

Parameters
Required Parameters:
SEND

Requests that CP perform the IUCV SEND function.
PRMLIST=

Specifies the address of the SEND parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

PATHID=
Specifies the path over which you wish to send the message. The address of the PATHID is to a
halfword value.

TRGCLS=
Specifies the target message class associated with this message. This value, which is user defined, is
considered part of the message identification (along with the PATHID and the MSGID field returned by
IUCV). It can be used by the target virtual machine to receive particular messages.

With the SEND function you have an option of sending the message in a buffer or in the parameter list.
The size of a parameter list message is very limited (only 8 bytes), but the overhead of an IUCV RECEIVE
is avoided, which simplifies the communication process. The protocol that you chose on SEND does not
affect the protocol chosen if the target must REPLY.

DATA=
Specifies the location of your message data for this IUCV communication.

DATA=BUFFER indicates that your message is in a buffer. You can use the BUFFER, BUFLEN, or
BUFLIST macro parameter to help you fill in the parameter list.

DATA=PRMMSG indicates that your message is in the parameter list. Use the PRMMSG parameter if
you want the macro to fill in the parameter list.

BUFLIST=
Specifies if the list format is being used.

BUFLIST=NO indicates that the list format is not being used. The BUFFER parameter is the address of
the complete message.

BUFLIST=YES indicates that the address on the BUFFER parameter identifies a list of addresses and
lengths of discontiguous buffers that hold the message text.

BUFFER=
Specifies the address or the address of a list of addresses (address-list) from which IUCV moves the
message. Any message buffers should not be reused until you receive a Message Complete external
interrupt for this message.

BUFLEN=
Specifies the total length of the message. If BUFFER specifies an address list (BUFLIST=YES), the
value specified with BUFLEN is the total of the individual buffer lengths in the list.

PRMMSG=
Specifies the eight bytes of message data that are moved into the parameter list.

With the SEND function you have an option of sending the message with and without a reply. If you
depend on the target virtual machine processing the message (for example, updating a database), you
should use the 2-WAY protocol with a REPLY.

TYPE=
Specifies whether a reply is expected to this message.

IUCV SEND

Chapter 5. IUCV Function Descriptions 367

TYPE=1WAY indicates that this is a one-way message and that the receiver will not reply to the
message.

TYPE=2WAY indicates that this is a two-way messages and that the receiver is expected to reply to
the message. You can use the ANSBUF, ANSLEN, or ANSLIST macro parameter to help you fill in the
parameter list.

ANSLIST=
Specifies whether the list format is being used.

ANSLIST=NO indicates that the list format is not being used. The ANSBUF parameter is the address to
contain the complete reply.

ANSLIST=YES indicates that the address on the ANSBUF parameter identifies a list of addresses and
lengths of discontiguous buffers that contains the reply.

ANSBUF=
Specifies the address or the address of a list of addresses (address-list) into which IUCV moves the
reply to this message. You do not know that the reply has been stored into this area until you receive a
Message Complete external interrupt.

ANSLEN=
Specifies the total length of the expected reply. If ANSBUF specifies an address list (ANSLIST=YES),
the value specified with ANSLEN is the total of the individual buffer lengths in the list.

Additional options for SEND include tagging the messages, sending priority messages, and defining a
source class.

MSGTAG=
Specifies a tag to be associated with this message. This tag is returned to you on the IUCV Message
Complete external interrupt. IUCV does not reference this tag so it may be used for any purpose that
you desire. The tag information is not presented to the target user.

PRTY=
Specifies whether this is a priority message.

PRTY=YES indicates that this is a priority message.

PRTY=NO indicates that this is not a priority message.

SRCCLS=
Specifies the source message class associated with this message.

The tag information is not presented to the target user. The source class is returned on the Message
Complete external interrupt. You can use this field to identify different types of messages.

SYNC=
Designates a synchronous send request.

Parameter List Format:

IPMSGIDIPRCODE

IPTRGCLS

IPFLAGS1IPPATHID0

8

10

IPBFLN2F

18

20

0 1 2 3 4 5 6 7

/ /

IPBFADR1 / IPRMMSG1

IPBFLN1F / IPRMMSG2 IPSRCCLS

IPMSGTAG IPBFADR2

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID on which to send the message.
IPFLAGS1

Contains options for the SEND function.

IUCV SEND

368 z/VM: 7.3 CP Programming Services

IPRMDATA (X'80')
Indicates that the message is in the parameter list.

IPBUFLST (X'40')
Indicates that you are using an address list for the message data.

IPPRTY (X'20')
Indicates that you are sending a priority message.

IPNORPY (X'10')
Indicates that this is a one-way message. No reply expected.

IPANSLST (X'08')
Indicates that you are using an address list for the reply data.

IPSYNC (X'04')
Indicates that you are requesting a synchronous send.

IPAPPCSN (X'02')
Indicates the protocol to be used on this path. This bit must be set to 0.

IPTRGCLS
Contains the target message class.

IPBFADR1
Contains the address of the message.

IPBFLN1F
Contains the length of the message buffer. Use this label with a fullword value. Use IPBFLN1 with a
halfword value.

IPRMMSG1/IPRMMSG2
Contains the message when it is stored in the parameter list rather than a buffer. The label IPRMMSG
refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPSRCCLS
Contains the source message class.

IPMSGTAG
Contains the tag data of the message.

IPBFADR2
Contains the address to hold the reply.

IPBFLN2F
Contains the length of the reply area. Use this label with a fullword value. Use IPBFLN2 with a
halfword value.

Condition Codes and Return Codes
The condition codes are:

0 Normal completion

1 Nonzero value stored in IPRCODE

2 Synchronous send request (IPSYNC) to the DASD Block I/O System Service has
completed successfully.

Parameter List Output Fields:
IPMSGID

Contains a message ID that IUCV assigns the message.
IPRCODE

Contains the return code describing how this function completed.

0 - X'00' Normal return

IUCV SEND

Chapter 5. IUCV Function Descriptions 369

1 - X'01' Path ID specified is not an established path

2 - X'02' Path quiesced - SENDs not allowed

3 - X'03' Message limit exceeded

4 - X'04' Priority messages not allowed on this path

10 - X'0A' Message length is negative

21 - X'15' Message in parameter list not allowed on this path

25 - X'19' PRMMSG invalid with BUFLIST parameter

26 - X'1A' Buffer list not on a doubleword boundary

27 - X'1B' Answer list not on a doubleword boundary

30 - X'1E' IPAPPCSN flag in IPFLAGS1 not 0

31 - X'1F' IUCV function specified on an APPC/VM path

48 - X'30' Partner system service does not support this function.

96 - X'60' The send was going to be routed via ISFC but the length was greater
than the maximum allowed

97 - X'61' The send was going to be routed via ISFC but the answer area was
greater than the maximum allowed

Note: If you get a return code that is not documented here, it is an APPC/VM return code. An APPC/VM
return code can result if the IPAPPC bit is set on during an IUCV CONNECT. For a description of the
APPC/VM return code, refer to “APPCVM SENDDATA” on page 475.

Program Exceptions
The program exceptions for IUCV SEND are:
Specification Exception

The parameter list is not on a doubleword boundary.
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list or buffer address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

Completion Conditions
Message Pending External Interrupt: To notify the target virtual machine that you have sent a message,
IUCV reflects an IUCV Message Pending external interrupt to the target virtual machine.

The target virtual machine receives this external interrupt if it is enabled for IUCV interrupts in Control
Register 0 and the PSW. The SET MASK function also controls the presentation of this type of interrupt.

The external interrupt contains the information that the target virtual machine needs to continue
processing the message. If the message is being sent in a buffer, the target continues processing by
issuing a RECEIVE or a REJECT. If the message is contained in the interrupt information (IPRMDATA in
IPFLAGS1 is on), a RECEIVE is not needed. If the interrupt indicates a one-way message with the data
in the parameter list, no further IUCV processing is necessary. Therefore, no message complete external
interrupt is generated for the sender of the message.

IUCV SEND

370 z/VM: 7.3 CP Programming Services

IPMSGIDIPTYPE

IPTRGCLS

IPFLAGS1IPPATHID0

8

10

IPBFLN2F

/ /

18

20

/ /

0 1 2 3 4 5 6 7

/ / / / / / / / / / / / / / / / / / / /

IPRMMSG1

IPBFLN1F / IPRMMSG2

IPPOLLFG

IPPATHID
Contains the path on which the message was sent.

IPFLAGS1
Contains options for this message.
IPRMDATA (X'80')

Indicates that the 8-byte message is in the interrupt information.
X'40'

This value is reserved for IBM use only.
IPPRTY (X'20')

Indicates that this is a priority message.
IPNORPY (X'10')

Indicates that this is a one-way message and no REPLY is expected.
IPFGMID (X'04')

Is always set to 1 indicating that the message ID has been stored at IPMSGID.
IPFGPID (X'02')

Is always set to 1 indicating that the path ID has been stored at IPPATHID.
IPFGMCL (X'01')

Is always set to 1 indicating that the target message class has been stored at IPTRGCLS.
IPTYPE

Indicates an Incoming Message external interrupt. If this is an incoming priority message, the
interrupt type is X'08'. If this is an incoming nonpriority message, the interrupt type is X'09'.

IPMSGID
Contains the message ID.

IPTRGCLS
Contains the target message class.

IPRMMSG1/IPRMMSG2
Contains the message when it is stored with the interrupt information (indicated by IPRMDATA in
IPFLAGS1). The label IPRMMSG refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPBFLN1F
Contains the length of the message.

IPBFLN2F
Contains the length of the maximum expected reply.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV SEND

Chapter 5. IUCV Function Descriptions 371

SET CONTROL MASK Function

label

IUCV SETCMASK ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MASK=  address

Notes:
1 Optional parameters can be entered in any order.

Purpose
The SET CONTROL MASK function enables or disables the following IUCV external interruptions:

• Pending Connection
• Connection Complete
• Connection Severed
• Connection Quiesced
• Connection Resumed.

IUCV external interrupts are controlled by several masks in the following priority order:

1. Submask bit 30 of Control Register 0
2. Bit 7 of the virtual machine PSW
3. Bits defined by the SET MASK function
4. Bits defined by the SET CONTROL MASK function.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameters:
SETCMASK

Requests that CP perform the IUCV SET CONTROL MASK function.
PRMLIST=

Specifies the address of the SET parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

MASK=
Specifies the mask byte to determine for which, if any, IUCV external interrupts a virtual machine is
enabled.

Parameter List Format:

IUCV SET CONTROL MASK

372 z/VM: 7.3 CP Programming Services

IPRCODEIPMASK0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ /

/ /

/ / / / / / / / / / / / /

IPARML DSECT

Parameter List Input Fields:
IPMASK

Contains the mask that specifies for which, if any, IUCV interrupts your virtual machine is enabled. The
meanings of the bits in the mask are:
IPCLPC (X'80')

Enable for pending connections interrupts
IPCLCC (X'40')

Enable for connection complete interrupts
IPCLPS (X'20')

Enable for connection severed interrupts
IPCLPQ (X'10')

Enable for connection quiesced interrupts
IPCLPR (X'08')

Enable for connection resumed interrupts.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion

Parameter List Output Fields:
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

0 - X'00' - Normal return

Program Exceptions
The program exceptions for IUCV SET CONTROL MASK are:
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Protection Exception
The storage key of the specified parameter list does not match the key of the user.

IUCV SET CONTROL MASK

Chapter 5. IUCV Function Descriptions 373

SET MASK Function

label

IUCV SETMASK ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MASK=  address

Notes:
1 Optional parameters can be entered in any order.

Purpose
The SET MASK function enables or disables the following IUCV external interruptions:

• Nonpriority message interrupts
• Priority message interrupts
• Priority reply interrupts
• Nonpriority reply interrupts
• IUCV control interrupts.

Individual IUCV control interrupts can be controlled by using the SET CONTROL MASK function.

IUCV external interrupts are controlled by several masks in the following priority order:

1. Submask bit 30 of Control Register 0
2. Bit 7 of the virtual machine PSW
3. Bits defined by the SET MASK function
4. Bits defined by the SET CONTROL MASK function.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameters:
SET MASK

Requests that CP perform the IUCV SET MASK function.
PRMLIST=

Specifies the address of the SET parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

MASK=
Specifies the mask byte to determine for which, if any, IUCV external interrupts a virtual machine is
enabled.

IUCV SET MASK

374 z/VM: 7.3 CP Programming Services

Parameter List Format:

IPRCODEIPMASK0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ /

/ /

/ / / / / / / / / / / / /

IPARML DSECT

Parameter List Input Fields:
IPMASK

Contains the mask that specifies for which, if any, IUCV interrupts your virtual machine is enabled. The
meanings of the bits in the mask are:
IPSNDN (X'80')

Enable for nonpriority message interrupts
IPSNDP (X'40')

Enable for priority message interrupts
IPRPYN (X'20')

Enable for nonpriority message completion interrupts
IPRPYP (X'10')

Enable for priority message completion interrupts
IPCTRL (X'08')

Enable for IUCV control interrupts

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion.

Parameter List Output Fields:
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

0 - X'00' - Normal return.

Program Exceptions
The program exceptions for IUCV SET MASK are:
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Protection Exception
The storage key of the specified parameter list does not match the key of the user.

IUCV SET MASK

Chapter 5. IUCV Function Descriptions 375

SEVER Function

label

IUCV SEVER ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,ALL=
2

YES

NO

,PATHID=  address

,USERDTA=  address

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The SEVER function terminates an IUCV path to another virtual machine. You can terminate an
established path or a pending connection. When you SEVER an established path, all of your outstanding
messages on that path are purged, and any incoming messages on that path are rejected. When you have
severed a path, communications on that path are no longer allowed and no communication, in either
direction, can occur. The path ID may be reused by IUCV when new paths are established.

When you receive an IUCV Connection Severed external interrupt, you can no longer send on that path,
but you can process outstanding messages. You should always issue a SEVER in response to a Connection
Severed interrupt to terminate your use of the path.

Parameters
Required Parameters:
SEVER

Requests that CP perform the IUCV SEVER function.
PRMLIST=

Specifies the address of the SEVER parameter list. The IUCV instruction is generated to reference the
address specified. The address of the parameter list must be on a doubleword boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

ALL=
Specifies whether all paths for this virtual machine are to be severed.

ALL=YES indicates that all of your paths are to be severed.

ALL=NO indicates that you do not want all of your paths severed, only the one specified by PATHID.

IUCV SEVER

376 z/VM: 7.3 CP Programming Services

PATHID=
Specifies the path ID to be severed.

USERDTA=
Specifies the data area containing the 16 bytes of user data that IUCV is to reflect across the path. The
user data is reflected as part of the IUCV Connection Severed external interrupt.

Parameter List Format:

IPRCODEIPFLAGS1IPPATHID0

8

10

/ /

IPUSER

18

20 /

0 1 2 3 4 5 6 7

/ /

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID of the path you want to sever.
IPFLAGS1

Contains options for the SEVER function.
IPALL (X'80')

Indicates that you want to sever all paths for this virtual machine.
IPAPPC (X'08')

Indicates the protocol to be used on this path. This bit must be set to 0.
IPUSER

Contains the user data that IUCV reflects across the path.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE.

Parameter List Output Fields:
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
30 - X'1E' - IPAPPC flag in IPFLAGS1 not 0.

Note: If you get a return code that is not documented here, it is an APPC/VM return code. An APPC/VM
return code can result if the IPAPPC bit is set on during an IUCV CONNECT. For a description of the
APPC/VM return code, refer to “APPCVM SEVER” on page 509.

Program Exceptions
The program exceptions for IUCV SEVER are:

IUCV SEVER

Chapter 5. IUCV Function Descriptions 377

Specification Exception
The parameter list is not on a doubleword boundary.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

Completion Conditions
Connection Severed External Interrupt: To notify the other side of the path that you wish to terminate
communication on a path, IUCV reflects an IUCV Connection Severed external interrupt.

The target virtual machine receives this external interrupt if it is enabled for IUCV interrupts in Control
Register 0 and the PSW. The functions of SET MASK and SET CONTROL MASK also control the
presentation of this type of interrupt.

IPTYPE/ / / / / / /IPPATHID0

8

10

/ /

IPUSER

18

20 /

0 1 2 3 4 5 6 7

/ /

/ /IPPOLLFG

IPPATHID
Contains the path ID of the path being severed.

IPTYPE
Indicates a Connection Severed external interrupt with a value of X'03'.

IPUSER
Contains the user data specified by the virtual machine that severed this path.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IUCV SEVER

378 z/VM: 7.3 CP Programming Services

TEST COMPLETION Function

label

IUCV TESTCMPL ,PRMLIST=  address

Optional Parameters
1

Optional Parameters

,MF=L ,MSGID=  address ,PATHID=  address

,SRCCLS=  address

Notes:
1 Optional parameters can be entered in any order.

Purpose
The TEST COMPLETION function determines whether you have a message completion pending for your
virtual machine. If a message completion is pending, information about the message is returned in the
parameter list. Since you now have the message completion information, there is no need for IUCV to
reflect an IUCV Message Completion external interrupt and you will not receive one for this message.

Since IUCV normally informs you of a message completion by reflecting a Message Completion external
interrupt, you should not use the TEST COMPLETION function unless you have disabled for this type
of interrupt. The IUCV SET MASK function can be used to disable your virtual machine for Message
Completion external interrupts.

When invoking the TEST COMPLETION function, you can completely identify the message by specifying
the message ID, path ID, and source message class. You can also identify the message by either the path
ID or the source message class, or both. If you do not specify any identifiers when invoking the TEST
COMPLETION function, any available message completion satisfies the function.

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Parameters
Required Parameters:
TESTCMPL

Requests that CP perform the IUCV TEST COMPLETION function.
PRMLIST=

Specifies the address of the TEST COMPLETION parameter list. The IUCV instruction is generated
to reference the address specified. The address of the parameter list must be on a doubleword
boundary.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
Lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

MSGID=
Specifies the message ID of the message. If the message ID is used to locate the message, the path
ID and the source class must also be correctly specified in the parameter list.

IUCV TEST COMPLETION

Chapter 5. IUCV Function Descriptions 379

PATHID=
Specifies the unique path identification number associated with a message.

SRCCLS=
Specifies the source message class associated with a message.

Parameter List Format:

IPMSGIDIPRCODE

IPAUDIT

IPFLAGS1IPPATHID0

8

10

18

20

0 1 2 3 4 5 6 7

/ /

/ / / / / / / / / / / / / / / / / / / /

IPRMMSG1

IPRMMSG2

IPBFLN2F

IPMSGTAG

IPSRCCLS

IPPOLLFG

IPARML DSECT

Parameter List Input Fields:
IPPATHID

Contains the path ID for the message completion.
IPFLAGS1

Contains options for the TEST COMPLETION function.
IPFGMID (X'04')

Indicates that you have specified a message ID (IPMSGID) to identify the message completion.
IPFGPID (X'02')

Indicates that you have specified a path ID (IPPATHID) to identify the message completion.
IPFGMCL (X'01')

Indicates that you have specified a source message class (IPSRCCL) to identify the message
completion.

IPMSGID
Contains the message ID for the message completion.

IPSRCCLS
Contains the source message class for the message completion.

Condition Codes and Return Codes

CONDITION CODES

0 - Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found
3 - Nonzero audit trail stored.

Parameter List Output Fields:
IPPATHID

Contains the path ID on which the message was sent.
IPFLAGS1

Contains specific information about the message.
IPRMDATA (X'80')

Indicates that the 8-byte reply is in the parameter list.
IPPRTY (X'20')

Indicates that this is a priority message.

IUCV TEST COMPLETION

380 z/VM: 7.3 CP Programming Services

IPMSGID
Contains the message ID.

IPAUDIT
Contains information about possible asynchronous error conditions which may have affected the
normal completion of this message. If this field is 0, the message has completed successfully.

The meanings of the bits in the audit trail are:
IPADRPLE (X'800000')

Reply too long for buffer
IPADSNPX (X'400000')

Protection exception on send buffer
IPADSNAX (X'200000')

Addressing exception on send buffer
IPADANPX (X'100000')

Protection exception on answer buffer
IPADANAX (X'080000')

Addressing exception on answer buffer
IPADRJCT (X'040000')

Message was rejected
IPADPRMD (X'020000')

Reply specified DATA=PRMMSG, but this path cannot handle data in the parameter list.
IPADPGNR (X'010000')

Message purged on send or receive queue.
IPADRCPX (X'008000')

Protection exception on receive buffer
IPADRCAX (X'004000')

Addressing exception on receive buffer
IPADRPPX (X'002000')

Protection exception on reply buffer
IPADRPAX (X'001000')

Addressing exception on reply buffer
IPADSVRD (X'000800')

Path was severed
IPADRLST (X'000400')

Invalid RECEIVE or REPLY address list
(X'000200')

Reserved
(X'000100')

Reserved
IPADBLEN (X'000080')

Bad length in SEND buffer list
IPADALEN (X'000040')

Bad length in SEND answer list
IPADBTOT (X'000020')

Invalid total SEND buffer length
IPADATOT (X'000010')

Invalid total SEND answer length
(X'000008')

Reserved

IUCV TEST COMPLETION

Chapter 5. IUCV Function Descriptions 381

(X'000004')
Reserved

(X'000002')
Reserved

(X'000001')
Reserved.

IPRMMSG1/IPRMMSG2
Contains the message when it is stored in the parameter list (indicated by IPRMDATA in IPFLAGS1).
The label IPRMMSG refers to the combined IPRMMSG1 and IPRMMSG2 fields.

IPSRCCLS
Contains the source message class.

IPMSGTAG
Contains the tag data of the message.

IPBFLN2F
Contains one of the following values:

If the buffer is exactly the correct length, this field contains 0.
If the buffer is too long, this field contains the number of bytes unused in the buffer.
If the buffer is too short, this field contains a residual count (that is, the number of bytes remaining
of the reply that do not fit into the buffer). The IPADRPLE bit is set in the audit trail on this
condition.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that another iteration of this function will probably not find a reply waiting at this time.
IPRCODE

Contains the return code describing how this function completed.

RETURN CODES in IPRCODE

 0 - X'00' - Normal return
 1 - X'01' - Path ID specified is not an established path
 8 - X'08' - Message ID found but message class or path ID
 invalid.

Program Exceptions
The program exceptions for IUCV TEST COMPLETION are:
Specification Exception

The parameter list is not on a doubleword boundary, or the message ID was specified without the path
ID and the message class.

Operation Exception
The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

Addressing Exception
The parameter list address that you specified is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address does not match the key of the user.

IUCV TEST COMPLETION

382 z/VM: 7.3 CP Programming Services

TEST MESSAGE Function

label

IUCV TESTMSG

Purpose
The TEST MESSAGE function determines whether any IUCV Message Pending or IUCV Message Complete
external interrupts are queued for your virtual machine.

This function, when used with the DESCRIBE and TEST COMPLETION functions, lets the virtual machine
avoid the external interrupt handling associated with messages. In some applications, as when only one
type of message is ever handled, the DESCRIBE may also be avoided and a RECEIVE issued directly.

When you receive message or message completions, IUCV informs you by reflecting a Message Pending
or Message Complete external interrupt to your virtual machine. Therefore, unless you disable your virtual
machine for Message Pending and Message Complete external interrupts, you should not use the TEST
MESSAGE function.

If, when your virtual machine invokes the TEST MESSAGE function, it finds that there are no messages
or message completions pending, your virtual machine enters a wait state. Your virtual machine remains
enabled for all interrupts that were enabled when the TEST MESSAGE function was issued.

If, while your virtual machine is in a wait state, you receive an IUCV message or message completion,
your virtual machine resumes execution by re-executing the TEST MESSAGE function (which returns a
condition code).

This function has a different meaning in a virtual MP environment. For more information about a virtual MP
environment, see “Virtual MP Considerations for IUCV Applications” on page 308.

Condition Codes and Return Codes
The condition codes are:

1 Message pending

2 Message completion pending

3 Both message and message completion pending

Program Exceptions
The program exceptions for IUCV TEST MESSAGE are:
Operation Exception

The external interrupt buffer has not been declared using the DECLARE BUFFER function, your virtual
machine is not in supervisor state, or a previous RETRIEVE BUFFER function is outstanding and has
not completed yet.

IUCV TEST MESSAGE

Chapter 5. IUCV Function Descriptions 383

IUCV TEST MESSAGE

384 z/VM: 7.3 CP Programming Services

Part 3. The Advanced Program-to-Program
Communication/VM

This part contains the following chapters:

• Chapter 6, “Overview of the APPC/VM Assembler Interface,” on page 387
• Chapter 7, “APPCVM Macro Functions,” on page 411
• Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521
• Chapter 9, “Migrating Programs from IUCV to APPC/VM,” on page 567
• Chapter 10, “APPC Mapped with APPC/VM,” on page 571

© Copyright IBM Corp. 1991, 2023 385

386 z/VM: 7.3 CP Programming Services

Chapter 6. Overview of the APPC/VM Assembler
Interface

In its simplest form, connectivity is the ability of one program to communicate with another program. In
this document, we are concerned with communications between two application programs. Application
programs are typically written to communicate with one another because a user needs access to some
kind of data.

System Network Architecture (SNA) defines various sets of rules for data to be transmitted in a network.
Application programs communicate with each other using a layer of SNA called Advanced Program-to-
Program Communication (APPC). APPC is also known as LU 6.2. z/VM implements the base set of APPC
and several APPC option sets using Advanced Program-to-Program Communication/VM (APPC/VM).

z/VM provides two programming interfaces to APPC/VM:

1. A low-level interface intended for programs written in assembler language. This low-level interface
consists of CMS macros and CP macros. In this document we will discuss the APPC/VM macros
that are part of the CP programming interface. The CMS macros that you can use with APPC/VM
are documented in the z/VM: CMS Macros and Functions Reference and z/VM: CMS Application
Development Guide for Assembler.

2. Common Programming Interface (CPI) Communications. This interface (also known as SAA
communications interface) can be used with any programming language defined in the System
Application Architecture (SAA). For z/VM, this interface can be used in CMS. This interface should
be used for new application development.

Note: For more information about CPI Communications routines, see Common Programming Interface
Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf).

Overview of APPC/VM Assembler Interface
The assembler programming interface for APPC/VM allows communications between application
programs that are written in assembler language. The APPC/VM assembler interface implements the
base set of APPC (SNA LU 6.2) verbs and several APPC option sets.

The APPC/VM assembler interface provides macros and parameter lists that applications can use to set
up and control the communications environment within one z/VM system, and among z/VM systems in
a TSAF or Communication Services (CS) collection. (For programs communicating outside a TSAF or CS
collection to an SNA network, AVS translates APPC/VM protocol into APPC/VTAM, which is the VTAM®

implementation of APPC.)

In addition, z/VM has implemented some IUCV functions for an APPC/VM environment. IUCV functions
are not part of the APPC architecture and are unique to z/VM. Note: The remainder of this document
refers to the APPC/VM assembler programming interface as simply APPC/VM.

Basics of APPC/VM
The following sections describe some of the basics of APPC/VM communication: paths, states, and
interrupts.

APPC/VM Paths
An APPC/VM path is a logical connection between one or more virtual machines. Information flows on
APPC/VM paths. To establish an APPC/VM path between two virtual machines, at least one of the virtual
machines must be authorized in the IUCV directory statement.

Basics of APPC/VM

© Copyright IBM Corp. 1991, 2023 387

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

A path is created when the source virtual machine invokes the CONNECT function and the target virtual
machine invokes the ACCEPT function. Once the path is created, communications can begin. Programs
identify a path using the PATHID parameter of the pertinent APPC/VM function.

The target virtual machine can prevent the path from being established by invoking the SEVER function.
Either virtual machine can destroy an established path with the SEVER function.

A single virtual machine can have up to 65,536 APPC/VM paths defined. Two virtual machines can have
more than one path between them. Communication can occur over any and all paths at the same time.

APPC/VM States
The APPC/VM interface is a half-duplex communications protocol. This means that only one of the
communications partners can send data at any given time. Because of this, APPC/VM uses states to
define what functions a program can and cannot issue at any given time.

A program is always in a single state for a particular conversation. When your program or your
communications partner issues an APPC/VM function, the state of the conversation may change. If your
virtual machine is communicating with different virtual machines through various paths, it may be in
different states on different paths at the same time. A program participating in multiple conversations
could have multiple states, too.

The basic states for APPC/VM assembler programs are:
Reset

The state for each program before communications begin and after communications end.
Connect

The state for a source program after a connection has been started but before it has completed, or
the state for a target program after it has received a connection pending interrupt but before it has
accepted.

Send
The state in which a program is allowed to send data.

Receive
The state in which a program is ready to receive data.

Confirm
The state in which a program must respond to its communications partner.

Sever
The state a program is in when its partner stops communications.

These APPC/VM states are based on the states that APPC defines, but there are two differences:

1. The Connect state is unique to APPC/VM
2. The Sever state is analogous to the APPC Deallocate state.

In addition, APPC/VM defines several other states for special programs involving coordinated resource
recovery (CRR). Refer to Table 72 on page 405 for details about these APPC/VM states.

APPC/VM Interrupts
In APPC/VM, your program may receive notification of pending functions through external interrupts.
Interrupts are caused by actions taken by the virtual machine on the other end of the local APPC/VM
path. Interrupts indicate pending and completed functions. For example, your virtual machine receives an
interrupt when another virtual machine sends you some kind of message that it wants you to receive.

At the start of your program, you must create a buffer to hold the interrupt information for any APPC/VM
functions on any path. (You can create this buffer using the IUCV DCLBFR function.) This buffer is a
40-byte area called an external interrupt buffer. When your program is presented with an interrupt,
information about the interrupt goes in this external interrupt buffer.

Basics of APPC/VM

388 z/VM: 7.3 CP Programming Services

The possible APPC/VM interrupts you can get fall into two categories. The first type of interrupt signals
that your communications partner has invoked some function, independent of your actions. These
interrupts are:

• Connection pending
• Message pending
• Request-to-Send
• Sever.

The second type of interrupt signals the completion of a function that you initiated. These interrupts are:

• Connection complete
• Function complete.

The six basic types of APPC/VM interrupts are described in the following sections.

Connection Pending External Interrupt
You get a connection pending interrupt when a virtual machine invokes an APPCVM CONNECT function to
connect to your virtual machine. The interrupt is placed in a control buffer if the virtual machine wants to
connect to a private resource; otherwise, the interrupt is presented to your virtual machine's application
buffer.

Refer to the diagram in APPCVM CONNECT, Connection Pending External Interrupt.

Message Pending External Interrupt
You get a message pending interrupt when your communications partner issues an APPC/VM function for
which you should issue an APPCVM RECEIVE. Your communications partner issuing any of the following
APPCVM macro functions can cause a message pending interrupt:

• RECEIVE
• SENDCNF
• SENDDATA
• SENDERR.

You only get a message pending interrupt if you are in Receive state on the corresponding path.

Refer to the diagram in APPCVM SENDDATA, Message Pending External Interrupt format.

Request-to-Send External Interrupt
You get a request-to-send interrupt when your communications partner issues the APPCVM SENDREQ
function to request to send data.

Refer to the diagram in APPCVM SENDREQ, SENDREQ Interrupt.

Sever External Interrupt
You get a sever interrupt when the program to which you are connected or trying to connect to invokes an
APPCVM SEVER or IUCV SEVER, invokes an HNDIUCV CLR (or IUCV RTRVBFR), or abends. You could also
get a sever interrupt when the virtual machine to which you are connected or trying to connect to resets
its virtual machine or logs off.

Note: If you get a sever interrupt after you have issued an APPC/VM function to your partner, do not
assume that your function has terminated.

Refer to the diagram in APPCVM SEVER, SEVER External Interrupt format.

Basics of APPC/VM

Chapter 6. Overview of the APPC/VM Assembler Interface 389

Connection Complete External Interrupt
You get a connection complete interrupt when you issue the APPCVM CONNECT WAIT=NO function and
the virtual machine on the other end of the local APPC/VM path accepts the connection.

When you get a connection complete interrupt, do not assume that the target program performed any
action to cause your function to complete.

For a diagram of the connection complete external interrupt in APPCVM CONNECT, see “Condition Codes
and Return Codes” on page 424.

Function Complete External Interrupt
You get a function complete interrupt when the function that you issued completes. The completion of
any of the following APPC/VM functions can cause a function complete interrupt:

• RECEIVE
• SENDCNF
• SENDDATA
• SENDERR
• SEVER.

The function complete interrupts are shown in the following sections:

• APPCVM RECEIVE Output Parameter List in APPCVM RECEIVE
• AFFCVM SENDCNF Output Parameter List in APPCVM SENDCNF
• APPCVM SENDDATA Output Parameter List in APPCVM SENDDATA
• APPCVM SENDERR Output Parameter List in APPCVM SENDERR
• SEVER Output Parameter List format in APPCVM SEVER

Whenever there are multiple APPC/VM interrupts queued for the virtual machine, control interrupts
are always reflected to the virtual machine in first-in-first-out (FIFO) order before message interrupts.
Message interrupts of the same subtype are reflected in first-in-first-out (FIFO), but message interrupts of
different subtypes are reflected in the order shown in the previous list.

Interrupts are reflected to the virtual machine in this order regardless of the order in which the interrupts
were queued for the virtual machine. There are many conditions which can cause more than one interrupt
to be queued for a virtual machine, some of which are beyond the control of the application. For example,
if the virtual machine disables for APPC/VM interrupts for a period of time or if the virtual machine is
communicating with multiple partners, then often multiple APPC/VM interrupts will be on the virtual
machine's queue. Also, the relative priorities and time slices given to the communicating virtual machines
can affect the order in which APPC/VM interrupts are presented. For example, if virtual machine A sends
a one-way message to virtual machine B, and B receives the message, a message complete interrupt
(function complete interrupt for SENDDATA) is queued for A. If B then severs the APPC/VM path, then a
sever interrupt is queued for A. If A is not dispatched, or doesn't enable for APPC/VM interrupts until after
the sever interrupt is queued, then A would see the sever interrupt first. If A is dispatched and is enabled
for APPC/VM interrupts before the sever interrupt is queued, then A would see the message complete
interrupt first.

Invoking APPC/VM Communication Functions
z/VM programs at each end of an APPC/VM path use APPC/VM functions to communicate with each other.
Most APPC/VM communications functions are provided as parameters of the APPCVM macro.

To use the APPCVM or IUCV macro, issue the CMS GLOBAL command for the HCPGPI MACLIB before
assembling your program.

The APPC/VM communications functions used with the APPCVM macro are:

Invoking APPC/VM Communication Functions

390 z/VM: 7.3 CP Programming Services

Function Description Page

CONNECT Establishes and reserves a path to communicate with
another program.

“APPCVM CONNECT” on
page 412

QRYSTATE Determines the current state of a path. “APPCVM QRYSTATE
(Query State)” on page
447

RECEIVE Receives data and information sent to your program. “APPCVM RECEIVE” on
page 451

SENDCNF Sends a confirmation request to your communications
partner.

“APPCVM SENDCNF
(Send Confirm)” on page
465

SENDCNFD Sends a response to a confirmation request. “APPCVM SENDCNFD
(Send Confirmed)” on
page 471

SENDDATA Sends data to your communications partner. “APPCVM SENDDATA”
on page 475

SENDERR Sends notice to your communications partner that your
program has detected an error.

“APPCVM SENDERR
(Send Error)” on page
490

SENDREQ Requests permission to send data. “APPCVM SENDREQ
(Send Request)” on
page 501

SETMODFY Sets the state to Defer_Receive or Defer_Sever and sets
the sync-point control modifier.

“APPCVM SETMODFY
(Set Modify)” on page
505

SEVER Ends communications with another program. “APPCVM SEVER” on
page 509

In addition, some APPC/VM functions are provided as parameters on the IUCV macro. The APPC/VM
communications functions used with the IUCV macro are:

• IUCV ACCEPT
• IUCV QUERY
• IUCV SEVER.

The IUCV macro functions relate to both APPC/VM and IUCV paths. The IUCV functions are not defined
by the SNA LU 6.2 (APPC architecture) verb interface, but they are a necessary complement for APPC
programs executing in a z/VM processor. The IUCV macro functions that relate to APPC/VM are:

Function Description Page

ACCEPT Accepts a connection from another virtual machine or
from your own virtual machine.

“IUCV ACCEPT” on page
524

CONNECT Establishes a path to the Identify system service
(*IDENT).

“IUCV CONNECT” on
page 529

DCLBFR* Defines an interrupt buffer to prepare for APPC/VM
communications.

“IUCV DCLBFR (Declare
Buffer)” on page 533

DESCRIBE* Gets a description of a pending APPC/VM or IUCV
message.

“IUCV DESCRIBE” on
page 538

Invoking APPC/VM Communication Functions

Chapter 6. Overview of the APPC/VM Assembler Interface 391

Function Description Page

IPOLL* Checks for pending replies or incoming messages. “IUCV IPOLL (Interrupt
Poll)” on page 540

QUERY Determines the maximum number of communications
paths that can be established for your virtual machine.

“IUCV QUERY” on page
543

RTRVBFR* Undefines the external interrupt buffer, ending
communications.

“IUCV RTRVBFR
(Retrieve Buffer)” on
page 548

SETCMASK* Enables or disables external interrupts for certain
APPC/VM and IUCV control functions.

“IUCV SETCMASK (Set
Control Mask)” on page
550

SETMASK* Enables or disables external interrupts for certain
APPC/VM and IUCV functions.

“IUCV SETMASK” on
page 553

SEVER Terminates an APPC/VM or IUCV path or terminates a
path established to the *IDENT system service.

“IUCV SEVER” on page
556

TESTCMPL* Determines if any messages or functions have been
completed.

“IUCV TESTCMPL (Test
Completion)” on page
562

TESTMSG* Allows programs to avoid using external interrupt
handling.

“IUCV TESTMSG (Test
Message)” on page 566

Note: Other IUCV macro functions can be used from APPC/VM, but are not recommended for use by
APPC/VM programs running in CMS. For information about APPC/VM and IUCV macro functions that you
can use in CMS, see the z/VM: CMS Application Development Guide for Assembler.

*These functions have different meanings in a virtual MP environment. For more information about a
virtual MP environment, see “Virtual MP Considerations for APPC/VM Applications” on page 398.

Using Basic APPC/VM Functions
To write starter APPC/VM programs, you need to know the APPC/VM functions that do the basic steps of
starting a conversation, communicating in a conversation, and ending a conversation.

Starting a Conversation
To start a conversation, your user program must issue an APPCVM CONNECT with a resource ID.
Depending on the type of connection, a user program also might supply a connection parameter list
extension, which contains detailed information that is necessary to make a connection. (If the resource ID
maps to an entry in a CMS communications directory file, the program generally does not have to build the
extension itself, CMS does it.)

When your program issues an APPCVM CONNECT, your communications partner gets a connection
pending interrupt. Your partner should examine the interrupt before accepting or rejecting the connection.
The interrupt contains information such as the resource ID for which the connection is being made and
the user ID of the requesting program.

In addition to the connection pending interrupt, your partner can also get other kinds of data before
accepting the connection:

• Allocate data, which provides more details about the pending connection
• Program Initialization Parameters (PIP data), which can serve many purposes. (See Specifying a PIP

Variable for more information.)

After examining all this data, your communications partner can do either of the following in response to
your connect request:

Using Basic APPC/VM Functions

392 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

• Accept the connection if it wants to communicate with your program, making sure to specify the path ID
that was on the connection pending interrupt.

• Accept the connection and then immediately sever the connection if it does not want to communicate
with your program.

Sending and Receiving Data on the Conversation
When you issue the command to connect to a target, and your communications partner accepts the
connection:

• Your program is in Send state for the conversation.
• Your communications partner's program is in Receive state.

You can now send data, using APPCVM SENDDATA. Your program must set up data in buffers, and the
data must be in APPC logical record format. Remember that you can only send data when your program is
in Send state and receive data when your program is in the Receive state.

As you send data, your communications partner is notified through one or more message pending
interrupts. Your partner can then receive the data using APPCVM RECEIVE.

Ending a Conversation
When your program is finished communicating with your partner program, you should end the
conversation by issuing APPCVM SEVER or IUCV SEVER.

APPCVM SEVER
You can issue an APPCVM SEVER anytime after you have established a path with your partner (that is,
you must first issue a CONNECT and your partner must issue an ACCEPT). At this point your partner will
receive a sever interrupt that contains information about the path and any errors that may have occurred
during the sever.

You can also include log data on an APPCVM SEVER. This data can be accepted by your partner and used
for debugging and error recovery.

After you issue an APPCVM SEVER, your partner can examine the sever interrupt information and:

• Issue an APPCVM SEVER to sever their side of the path.
• If log data is available, issue an APPCVM RECEIVE to obtain that data before severing using IUCV

SEVER.
• Issue an IUCV SEVER to sever their side of the path.

IUCV SEVER
An IUCV SEVER can be issued at any time during a conversation. Usually your partner will receive a sever
interrupt which contains information about the path and any errors that may have occurred during the
sever.

After receiving an IUCV SEVER, your partner can issue an:

• APPCVM SEVER to sever their side of the path.
• IUCV SEVER to sever their side of the path.

In a CMS environment, you can also use the CMSIUCV macro. For more information on the CMSIUCV
macro, see z/VM: CMS Macros and Functions Reference.

Managing a Resource
For a virtual machine to manage a local, global, or system resource, it must first be authorized to connect
to the Identify System Service, *IDENT. Your system administrator is the person who can authorize your
virtual machine to manage a particular resource. To do this, the administrator must specify a special IUCV

Using Basic APPC/VM Functions

Chapter 6. Overview of the APPC/VM Assembler Interface 393

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

*IDENT statement in your virtual machine's directory entry. For more information on the IUCV directory
control statement, see z/VM: CP Planning and Administration.

Your virtual machine must connect to *IDENT before using it to manage a resource or gateway. This
connect should be done using an IUCV CONNECT. For more information on using IUCV CONNECT to
connect to *IDENT, see “IUCV CONNECT” on page 529.

If your virtual machine becomes a local, global, or system resource manager by establishing a connection
to *IDENT, APPC/VM lets other virtual machines connect to you. The connecting virtual machines must
specify, on their connection request, the resource ID you identified through *IDENT.

*IDENT maintains a local system resource table. *IDENT adds an entry to this table each time it accepts
a virtual machine connection and deletes the entry when it severs the associated connection. A virtual
machine manages a resource only while connected to *IDENT. (For details on how *IDENT works, refer to
Chapter 16, “Identify System Service (*IDENT),” on page 729.)

Revoking a Resource
To manage a resource, a program must identify the resource name by connecting to *IDENT. The virtual
machine for the program must have proper directory authorization to connect to *IDENT. A program can
also revoke—stop management of—a resource name.

A program can revoke a resource it manages by issuing an IUCV SEVER to sever its path to *IDENT.
*IDENT then deletes the resource from the system resource table and severs its half of the path. Your
program then gets an IUCV sever interrupt from *IDENT. The SEVER does not affect existing APPC/VM
paths to your virtual machine.

If another virtual machine connects to *IDENT to manage the resource that you revoked, requests to
connect to the resource go to that virtual machine.

Note: If a virtual machine tries to connect to a resource that you manage before your revoke completes,
the path may be established.

A program can revoke a resource that another program manages by issuing an IUCV CONNECT to
*IDENT with the appropriate user data. The issuing program's virtual machine must have proper directory
authorization to connect to *IDENT and to do this kind of revoke. Your system administrator can authorize
your program's virtual machine to revoke a particular resource.

For more information on using IUCV CONNECT to connect to *IDENT, see “IUCV CONNECT” on page 529
and to Chapter 16, “Identify System Service (*IDENT),” on page 729.

You might have a case where two disjoint TSAF or CS collections merge, and the same resource name
is identified (through connections to *IDENT) by resource managers in both collections. If this happens,
the TSAF virtual machine issues a revoke to one of the competing resource managers while ISFC issues
revokes to both resource managers. *IDENT severs the paths to the resource manager programs that own
the revoked resources.

Understanding APPC/VM Parameter Lists
Note: For more information on IUCV macro functions that can be used on APPC/VM paths, see Chapter 8,
“IUCV Macro Functions for Use in APPC/VM,” on page 521.

Parameter lists for all APPC/VM functions are 40 bytes. Your program can specify a single 40-byte area in
storage to use for all APPC/VM function parameter lists. The address of the 40-byte area must be a guest
real address in the virtual machine's host-primary address space (guest=real).

The APPCVM and IUCV macros are both in the HCPGPI MACLIB, along with the IPARML DSECT. The
APPCVM and IUCV macros use labels defined in IPARML DSECT to complete the parameter list. You need
to provide a USING statement for the IPARML COPY file when you invoke the macro, and define proper
storage for it.

Understanding APPC/VM Parameter Lists

394 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

To reference fields in parameter lists for APPCVM and IUCV functions, always use the name defined for
that field in the IPARML DSECT, rather than using the displacement within IPARML DSECT. The parameter
lists (IPARML DSECT mappings) are shown with each APPCVM and IUCV macro function.

All address fields in the APPCVM and IUCV parameter lists are 4-byte reserved fields.

Setting for Optional Parameters
If you do not specify a parameter shown as optional when you invoke an APPCVM or IUCV macro function,
the macro assumes that you have stored a value in the parameter list before invoking the APPCVM macro.
Therefore, you should set all fields and flag bits in the parameter list that you are not defining for a
particular APPCVM or IUCV macro function to 0. This helps ensure that if these fields are defined in the
future, applications will continue to work.

Note: There are no explicit default values for the optional parameters on the IUCV and APPCVM macros.
As such, if a parameter is not specified or is specified with a null value, the value of the field it represents
will not be altered by the macro invocation. This allows the actual parameter list to be filled in on multiple
macro invocations using the MF=L option. This also allows an application to build a parameter list once
using the macro and use it multiple times without having to recode all of the macro parameters. However,
please take note of any values that may be altered by function completion.

Parameters Reserved for IBM Use Only
You should set all fields and flag bits in the parameter list that are reserved for IBM use only to 0.
Otherwise, unpredictable results may occur. All areas denoted by a series of slashes (/////...) are reserved
for IBM use.

Reading the Parameter Lists
For your reference, the format of input and output parameter lists is shown in this chapter. Parameter
lists for APPC/VM functions are 40 (X'28') bytes. These 40 bytes are shown in rows of 8 bytes for easier
reading. The numeric values for rows and columns are shown in hexadecimal.

For example, look at the following example parameter list:

PARM1 is in the first 2 bytes of the parameter list, and PARM2 is in byte 19. The slash characters (/)
indicate bytes that are reserved for IBM use only and should contain X'00's.

Formatting the Parameter List with MF=L
If you specify MF=L on a macro, the macro generates the instructions necessary to format the parameter
list by using the keyword values provided on the macro. However, the macro does not generate any
instructions to execute the specified function.

When using CMS support of APPC/VM, it is especially useful for you to use MF=L. For example, to request
a connection in CMS, you can issue functions in this sequence:

1. Issue APPCVM CONNECT with MF=L and any other appropriate macro keywords to fully prepare the
parameter list.

2. Then issue CMSIUCV CONNECT with any other appropriate macro keywords to invoke the connection
request.

Step 1 formats the parameter list, and step 2 invokes the function using the already-formatted parameter
list. You can use a similar sequence for these other functions in CMS:

Understanding APPC/VM Parameter Lists

Chapter 6. Overview of the APPC/VM Assembler Interface 395

• IUCV ACCEPT followed by CMSIUCV ACCEPT
• APPCVM SEVER followed by CMSIUCV SEVER
• IUCV SEVER followed by CMSIUCV SEVER.

If you do not specify MF=L on an APPCVM macro, the macro generates the instructions necessary to:

1. Format the parameter list as specified by parameter values on the macro.
2. Execute the APPC/VM function.

Registers Altered by APPCVM and IUCV Macro Functions
If you specify MF=L on an APPCVM or IUCV macro function, the macro may alter R0. If you do not specify
MF=L, R0 is still altered and for IUCV functions only R1 may be altered.

For more information on macro parameter lists, see z/VM: CMS Macros and Functions Reference.

Condition Codes and Return Codes
APPCVM macros generate four condition codes and four return codes. This section first gives a summary
of the conditions under which each of the 4 return codes are generated followed by a description of
each condition code and return codes that APPCVM macro functions generate. See the individual APPCVM
macro details for the specific condition codes and return codes generated by each macro.

See Table 68 on page 396 for a summary of the conditions under which each of the 4 return code fields
applies. In the figure, an X indicates that the field applies for the corresponding condition code.

Table 68. Applicable Codes Based on the Condition Code

 IPRCODE IPAUDIT IPCODE IPWHATRC

CC=0 X X X

CC=1 X

CC=2 X X

CC=3 X

Note: For CC=0; IPAUDIT, IPCODE, and IPWHATRC are meaningful in the function complete interrupt.
(The interrupt signals the completion of the function that started with CC=0.)

For CC=1, 2, or 3; IPRCODE, IPAUDIT, IPCODE, and IPWHATRC are meaningful in the output parameter
list for the function you issued.

Condition Codes
The condition code (CC) is stored in the program status word (PSW). There are four possible values for
condition codes: 0, 1, 2, and 3.
CC=0

The function has started but has not yet completed. This condition code applies only when WAIT=NO
(asynchronous processing). When the function does complete, a virtual machine gets a function
complete interrupt.

Note: Throughout this section, function complete interrupt is meant to include the connection
complete interrupt also.

CC=1
An error occurred when the function was initiated. In this case, the error code is stored in the
IPRCODE field of the output parameter list (see a description of IPRCODE below) and no processing
occurred.

Condition Codes and Return Codes

396 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

CC=2
The function has successfully completed with no errors.

CC=3
The function has completed, but an error was detected. In this case, the error code is stored in the
IPAUDIT field of the output parameter list. (See a description of IPAUDIT below.) This condition code
applies only when WAIT=YES (synchronous processing).

See “Condition Codes and Return Codes for IUCV Macro Functions” on page 522 for completions of IUCV
functions on APPC/VM paths.

Return Codes
Four types of return code fields are possible in an APPC/VM environment. The various return codes are
stored in either the output parameter list or the function complete interrupt.

Here are the four types of return code fields:
IPRCODE

reports error conditions that CP detects when the function is initiated. IPRCODE is a 1-byte field in
the output parameter list. A value is placed into IPRCODE when CC=1. Note that IPRCODEs are often
given as a result of issuing a function from the wrong state. (For more information about states, see
Table 71 on page 404.)

There is no corrective action for this type of error. You should generally sever the path when you get a
nonzero value in this field.

IPAUDIT
reports error conditions that CP detects between the time that the function is initiated and the
time that the function completes. These errors relate to data that is being sent between programs.
IPAUDIT is a 4-byte field in the output parameter list and function complete interrupt. IPAUDIT is in
the output parameter list (when WAIT=YES and CC=3) or in the function complete interrupt (when
WAIT=NO and CC=0).

IPWHATRC
contains either a return code or what-received indication caused by your communications partner.
IPWHATRC is a 1-byte field in the output parameter list and function complete interrupt.

When IPWHATRC is a what-received indication, IPCODE contains 0 and serves no purpose.
IPWHATRC represents a what-received indication when it contains one of the following:
X'01'

Data was received
X'02'

Your partner switched the conversation around
X'04'

Your partner is requesting confirmation
X'05'

Your partner is requesting confirmation that it can issue a SEVER
X'06'

Your partner has confirmed your request
X'0B'

Allocate data was received
X'0C'

Your partner is requesting confirmation that it can enter Receive state
X'0D'

Log data was received
X'0E'

PIP variable was received.

Condition Codes and Return Codes

Chapter 6. Overview of the APPC/VM Assembler Interface 397

IPWHATRC represents a return code (with IPCODE) when it contains one of the following:
X'03'

Your partner issued SENDERR
X'08'

Your partner issued SEVER TYPE=NORMAL
X'09'

Your partner issued SEVER TYPE=ABEND.

IPCODE
contains the sever or error code caused by your communications partner. IPCODE is a 2-byte field
in the output parameter list and function complete interrupt. The value of the IPWHATRC field
determines what type of code is in IPCODE. If IPWHATRC is:

• X'09', IPCODE contains a sever code (meaning your partner issued a SEVER TYPE=ABEND). For
more information on sever codes, see “APPC/VM Sever, Error, and Sense Codes That You Can Get”
on page 399.

• X'03', IPCODE contains an error code (meaning your partner issued a SENDERR). For more
information on error codes, see “APPC/VM Sever, Error, and Sense Codes That You Can Get” on
page 399.

Virtual MP Considerations for APPC/VM Applications
APPC/VM applications can be written to work in a virtual MP environment. The following list is intended to
provide some guidance on using APPC/VM in a virtual MP environment.

• APPC/VM functions may be invoked by any virtual processor in the virtual configuration as long as one of
the processors has issued an IUCV DECLARE BUFFER function.

• The IUCV DECLARE BUFFER function defines an interrupt buffer for the virtual processor that invokes it.
• In the virtual MP environment, APPC/VM interrupts are treated as "floating" interrupts. Any virtual

processor that has one of the following conditions may receive an APPC/VM interrupt:

– issued an IUCV DECLARE BUFFER
– enabled to receive APPC/VM interrupts with the CR0 setting
– enabled for APPC/VM interrupts with the SETMASK and SETCMASK functions

• The IUCV RETRIEVE BUFFER function will only retrieve the buffer for the currently running virtual
processor. APPC/VM paths will not be SEVERed until the last virtual processor issues an IUCV RETRIEVE
BUFFER.

• The IUCV SETMASK and SETCMASK functions will apply only to the virtual processor on which they are
invoked. This will allow an application to force different types of APPC/VM interrupts to different virtual
processors in the complex, if so desired.

• The following are associated with the virtual configuration:

– APPC/VM directory specifications
– APPC/VM paths
– APPC/VM interrupts
– APPC/VM messages.

• The following are associated with the virtual CPU:

– the application buffer, the control interrupt buffer, and the interrupt buffer extension
– interrupt enablement masks in the virtual PSW and virtual control register 0 (bit 30)
– the interrupt enablement masks of SETMASK and SETCMASK

• The IUCV DESCRIBE, TEST COMPLETE, and IPOLL functions will complete on any processor in the
virtual complex as long as one virtual processor has issued an IUCV DECLARE BUFFER (it does not have
to be the virtual processor that issued the DESCRIBE, TEST COMPLETE, or IPOLL function).

Virtual MP Considerations

398 z/VM: 7.3 CP Programming Services

• If multiple virtual processors in the complex issue the IUCV TEST MESSAGE function, it is unpredictable
in which order the virtual processors will be taken out of their wait states.

• All addresses specified with APPC/VM parameter lists are guest absolute addresses.
• Without appropriate guest operating system support, it is difficult or impossible to use APPC/VM in a

virtual MP environment. This support would allow your application to:

– declare buffers on different processors
– enable for APPC/VM interrupts on the needed processors
– handle the interrupts and route them to the appropriate virtual processor.

Note that CMS does not currently support APPC/VM virtual MP functions.

APPC/VM Sever, Error, and Sense Codes That You Can Get
After issuing an APPCVM macro function, your program could get a special problem code returned
in bytes 4 and 5 (the IPCODE field) of the output parameter list/function complete interrupt. This
2-byte code is a sever, error, or sense code, originating from your communications partner, intermediate
communications server, or VM system.

Sever, error, and sense codes can be reported on completion of the following APPCVM macro functions:
CONNECT, RECEIVE, SENDCNF, SENDDATA, or SENDERR.

Currently-Defined APPC/VM Sever Codes
See Table 69 on page 399 for a list of all the APPC/VM sever codes that your application program can get
at the current time. Sever codes can come from your communications partner, from your VM system, or
from an intermediate communications server. Note that these sever codes can come from VTAM® or other
SNA network components. (The sever codes that are generated by VM are listed in Table 70 on page 400
and are a subset of those listed in Table 69 on page 399.)

The corresponding APPC error condition is given for each APPC/VM sever code; refer to the SNA
Transaction Programmer's Reference Manual for LU Type 6.2 for a description of each APPC error
condition.

Table 69. Possible APPC/VM Sever Codes

APPC/VM Sever
Code

APPC Error Condition

X'0110'
X'0111'
X'0112'
X'0120'
X'0130'
X'0131'
X'0140'
X'0141'
X'0142'
X'0150'
X'0151'
X'0160'

ALLOCATION_ERROR
 ALLOCATION_FAILURE_NO_RETRY
 ALLOCATION_FAILURE_RETRY
 UNSUCCESSFUL
 CONVERSATION_TYPE_MISMATCH
 SYNC_LEVEL_NOT_SUPPORTED_BY_PGM
 SYNC_LEVEL_NOT_SUPPORTED_BY_LU
 TRANS_PGM_NOT_AVAIL_NO_RETRY
 TRANS_PGM_NOT_AVAIL_RETRY
 TPN_NOT_RECOGNIZED
 PIP_NOT_SPECIFIED_CORRECTLY
 PIP_NOT_ALLOWED
 SECURITY_NOT_VALID

X'0210' DEALLOCATE_ABEND_PROG

X'0220', X'0221',
X'0222'

DEALLOCATE_ABEND_SVC

APPC/VM Sever, Error, and Sense Codes

Chapter 6. Overview of the APPC/VM Assembler Interface 399

Table 69. Possible APPC/VM Sever Codes (continued)

APPC/VM Sever
Code

APPC Error Condition

X'0230' DEALLOCATE_ABEND_TIMER

X'0301'
X'0302'

PARAMETER_ERROR
 Invalid LU name
 Invalid mode name

X'0610' (Note 1) RESOURCE_FAILURE_NO_RETRY or
ALLOCATION_FAILURE_NO_RETRY

X'0620' (Note 2) RESOURCE_FAILURE_RETRY or
ALLOCATION_FAILURE_RETRY

Notes:

1. X'0610' resulting from APPCVM CONNECT corresponds to ALLOCATION_FAILURE_NO_RETRY; from
all other functions, X'0610' corresponds to RESOURCE_FAILURE_NO_RETRY.

2. X'0620' resulting from APPCVM CONNECT corresponds to ALLOCATION_FAILURE_RETRY; from all
other functions, X'0620' corresponds to RESOURCE_FAILURE_RETRY.

Sever Codes Generated by VM
Your program can get sever codes generated from the CP, CMS, TSAF, or AVS components on VM. See
Table 70 on page 400 for a list of these sever codes and some possible causes for each sever code. See
Table 69 on page 399 for the APPC error condition that corresponds to each of these APPC/VM sever
codes.

Your program can also get sever codes from AVS that AVS is just passing along from VTAM or other SNA
network component. See Table 69 on page 399 for a list of sever codes you can receive.

Note: It is important to note that the possible causes shown for each code may not be an exhaustive list.

Table 70. Sever Codes Generated by VM

APPC/VM
Sever Code

Possible Causes

X'0110' • The local AVS had problems receiving PIP data on an incoming APPC/VM connection.
• The local AVS received a storage error from VTAM or some other VTAM problem occurred.
• The communications server unsuccessfully issued an APPCVM CONNECT with PIP data

resulting in an IPRCODE.
• The communications server issued an APPCVM CONNECT with PIP data but a nonzero

return code was reflected in IPAUDIT.

X'0111' • A completion time-out.

X'0131' • The remote LU does not support connections with the specified synchronization level.

X'0140' • Your program is not authorized to make the connection.
• Your program tried connecting to a private resource manager program, but the private server

virtual machine either had SET SERVER OFF or SET FULLSCREEN ON.
• TSAF did not have authorization to make a connection on behalf of your program.

APPC/VM Sever, Error, and Sense Codes

400 z/VM: 7.3 CP Programming Services

Table 70. Sever Codes Generated by VM (continued)

APPC/VM
Sever Code

Possible Causes

X'0141' • The target program has not issued HNDIUCV SET (or IUCV DCLBFR).
• The target server virtual machine has exceeded its maximum number of connections.
• The TSAF virtual machine exceeded its maximum number of connections.

X'0142' • The TSAF virtual machine or target server virtual machine does not exist, or TSAF cannot
find the resource owner.

• The target local or global server virtual machine is not logged on.
• The target private servers virtual machine cannot be autologged.
• The target resource manager did not issue an HNDIUCV SET for the resource ID (program

name).
• For private resource manager programs, the resource ID was not registered in the private

server's $SERVER$ NAMES file.
• The CMS-invoked routine in a private server (specified on the :module. tag in $SERVER$

NAMES) is unknown.

X'0151' • You tried to connect to your partner with PIP data, but, the communications server on the
target system is running on a back level CP that does not support PIP data.

X'0160' • The security information specified on your connection is invalid.
• The user ID requesting to connect to a private resource (IPVMID in the target's connection

pending interrupt) is not authorized in the private server's $SERVER$ NAMES file.

X'0220' • IUCV SEVER was issued on a conversation established with SYNCLVL=SYNCPT, and the
sync-point-in-progress flag was off.

• A SEND or SENDCNF TYPE=PREPRECV was not accepted by VTAM and the conversation is
not in a sync-point.

X'0221' • CP detected an inbound protocol violation during a sync-point. CP reports the error to AVS
using CC=1.

X'0222' • AVS issues this code on an inbound protocol violation during a sync-point when there is a
problem receiving log data from VTAM.

APPC/VM Sever, Error, and Sense Codes

Chapter 6. Overview of the APPC/VM Assembler Interface 401

Table 70. Sever Codes Generated by VM (continued)

APPC/VM
Sever Code

Possible Causes

X'0610' • ALLOCATION_FAILURE_NO_RETRY

– The AVS had problems receiving PIP data from VM or VTAM.
– The AVS could not obtain storage for the PIP data.
– The remote AVS unsuccessfully issued APPCVM CONNECT with PIP data resulting in an

nonzero IPRCODE.
– The HNDIUCV SET for CMS failed during IPL.
– There was a problem with your program's call to the DMSNAM module (for

communications directory resolution).
– There was insufficient storage during the connection pending processing.
– Your partner program issued an HNDIUCV CLR for a resource ID (program name), but

there are still active paths associated with that name.
– A CMS abend occurred.
– CMS had problems receiving PIP data on an incoming APPC/VM connection. As a result,

CMS issued an IUCV SEVER. The problem could be:

- CMS had problems receiving PIP data into CMS storage.
- CMS could not obtain storage for the PIP data.

– The communications server issued APPCVM CONNECT with PIP data but a nonzero return
code was reflected in IPAUDIT2.

– An error occurred that caused CMS to issue an IUCV SEVER.
• RESOURCE_FAILURE_NO_RETRY

– IUCV RTRVBFR or HNDIUCV CLR for the resource ID (program name).
– IUCV SEVER was issued on a conversation that had SYNCLVL=NONE or

SYNCLVL=CONFIRM.
– IUCV SEVER issued immediately after issuing IUCV ACCEPT.
– A command (a re-IPL, for instance) that caused CP to issue an IUCV SEVER, IUCV

RTRVBFR, or HNDIUCV CLR.
– The remote AVS virtual machine issued a VTAM function that failed, causing AVS to reject

the VTAM conversation.

X'0620' • RESOURCE_FAILURE_RETRY

– The TSAF virtual machine encountered a problem during its processing, or the TSAF link
went down.

– IUCV SEVER was issued on a conversation with SYNCLVL=SYNCPT, and the sync-point-in-
progress flag was on.

• ALLOCATION_FAILURE_RETRY

– APPCVM CONNECT with PIP data was issued and TSAF on the remote system specified
PIP incorrectly on its connection to the target application. (The remote TSAF will abend in
this situation.)

Currently-Defined Error Codes
The following table summarizes the error codes that you can get in an APPC/VM program.

APPC/VM Sever, Error, and Sense Codes

402 z/VM: 7.3 CP Programming Services

For each APPC/VM-defined error code shown in this section, the APPC error condition is given. For more
information of each APPC error condition, see SNA Transaction Programmer's Reference Manual for LU
Type 6.2.

APPC/VM Code APPC Error Condition

X'0410' PROG_ERROR_NO_TRUNC

X'0420' PROG_ERROR_TRUNC

X'0430' PROG_ERROR_PURGING

X'0510' SVC_ERROR_NO_TRUNC

X'0520' SVC_ERROR_TRUNC

X'0530' SVC_ERROR_PURGING

Currently-Defined Sense Code
The following table shows the sense code that you can get in an APPC/VM program. Refer to the SNA
Transaction Programmer's Reference Manual for LU Type 6.2, for a description of the APPC BACKOUT
condition.

APPC/VM Code APPC Error Condition

X'0824' BACKOUT

The z/VM: CMS Application Development Guide for Assembler contains programming information,
scenarios, and sample programs that illustrate how to write APPC/VM programs using these APPCVM
macro functions.

State Table for APPC/VM Functions
The basic states for APPC/VM assembler programs are:
Reset

The state for each program before communications begin and after communications end
Connect

The state for a source program after a connection has been started but before it has completed, or
the state for a target program after it has received a connection pending interrupt but before it has
accepted.

Send
The state in which a program is allowed to send data

Receive
The state in which a program is ready to receive data

Confirm
The state in which a program must respond to its communications partner

Sever
The state a program is in when its partner stops communications.

These APPC/VM states are based on the states that APPC defines, but there are two differences:

• The Connect state is unique to APPC/VM
• The Sever state is analogous to the APPC Deallocate state.

The following table summarizes general APPC/VM functions that can be issued from the basic APPC/VM
states.

State Table for APPC/VM Functions

Chapter 6. Overview of the APPC/VM Assembler Interface 403

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Table 71. APPC/VM States

State When the State Occurs Functions You Can Issue

Reset • Before the program sets up a path.
• Before the connection pending interrupt is

accepted.
• After the program issues a SEVER.

APPCVM CONNECT
IUCV SEVER KEEP=NO
APPCVM QRYSTATE

Connect • After the program issues CONNECT, but
before the CONNECT completes.

• After the program receives a connection
pending interrupt, but before it invokes an
ACCEPT for the connection.

IUCV SEVER
APPCVM RECEIVE
IUCV ACCEPT
APPCVM QRYSTATE

Send • After the CONNECT completes.
• After you receive notice that your

communications partner issued RECEIVE
or SENDDATA RECEIVE=YES.

• When your SENDCNF TYPE=NORMAL is
completed by your partner's SENDCNFD.

• After you issue SENDCNFD in
response to your partner's SENDCNF
TYPE=PREPRECV.

• After SENDERR completes normally.

• APPCVM SENDDATA
• APPCVM SENDCNF
• APPCVM RECEIVE
• APPCVM SENDERR
• APPCVM SENDREQ (if target is not accessed

through AVS)
• APPCVM SEVER TYPE=NORMAL, or

APPCVM SEVER TYPE=ABEND
• IUCV SEVER
• APPCVM QRYSTATE
• APPCVM SETMODFY

Receive • After the program issues ACCEPT for a
connection.

• After RECEIVE completes.
• After any function completes, and you

receive notice that your partner has issued
a SENDERR.

• After you issue SENDCNFD, in response to
your partner's SENDCNF TYPE=NORMAL.

• When your SENDCNF TYPE=PREPRECV is
completed by your partner's SENDCNFD.

APPCVM RECEIVE
APPCVM SENDERR
APPCVM SENDREQ
APPCVM SEVER TYPE=ABEND
IUCV SEVER
APPCVM QRYSTATE

Confirm • After the program receives a confirmation
request (APPCVM SENDCNF function)
from its communications partner.

APPCVM SENDCNFD
APPCVM SENDERR
APPCVM SENDREQ
APPCVM SEVER TYPE=ABEND
IUCV SEVER
APPCVM QRYSTATE

State Table for APPC/VM Functions

404 z/VM: 7.3 CP Programming Services

Table 71. APPC/VM States (continued)

State When the State Occurs Functions You Can Issue

Sever • After a SEND or RECEIVE completes with
an indication that your communications
partner issued a SEVER.

• After your SENDCNF TYPE=SEVER is
completed by your partner's SENDCNFD.

• After you issue SENDCNFD, in response to
your partner's SENDCNF TYPE=SEVER.

APPCVM SEVER TYPE=NORMAL
IUCV SEVER
APPCVM RECEIVE
APPCVM QRYSTATE

In addition, APPC/VM defines several other states for special programs involved with coordinated
resource recovery. The additional states for APPC/VM assembler programs are:
Defer_Receive

The state a program is in after issuing SETMODFY TYPE=RECEIVE.
Defer_Sever

The state a program is in after issuing SETMODFY TYPE=SEVER.
Prepare_Receive

The state a program is in when a RECEIVE or SENDDATA RECEIVE=YES function completes with
IPWHATRC=IPPREPAR, an indication that the partner initiated a commit sync-point.

Unsolicited_Request_Commit_Received
The state a program is in when a RECEIVE or SENDDATA RECEIVE=YES function completes with
IPWHATRC=IPREQCOM, an indication that the partner initiated a commit sync-point.

Backout_Received
The state a program is in when a function completes with IPWHATRC=IPBACK, an indication of a
backout sync-point.

Backout_Required
The state a program is in when CMS is backing out the CMS work unit.

The following table summarizes these states:

Table 72. APPC/VM States for Coordinated Resource Recovery

State When the State Occurs Functions You Can Issue

Defer_Receive • When SETMODFY
TYPE=RECEIVE completes.

APPCVM QRYSTATE
APPCVM SENDCNF TYPE=PREPRECV
APPCVM SENDDATA RECEIVE=NO,
FLUSH=YES
APPCVM SEVER TYPE=ABEND
IUCV SEVER

Defer_Sever • When SETMODFY TYPE=SEVER
completes.

APPCVM QRYSTATE
APPCVM SEVER TYPE=ABEND
IUCV SEVER

Prepare_Received • When a function completes with
IPWHATRC=IPPREPAR, which is
an indication that your partner
initiated a CRR commit sync-
point.

APPCVM QRYSTATE
APPCVM SENDERR
APPCVM SENDREQ
APPCVM SEVER TYPE=ABEND
IUCV SEVER

State Table for APPC/VM Functions

Chapter 6. Overview of the APPC/VM Assembler Interface 405

Table 72. APPC/VM States for Coordinated Resource Recovery (continued)

State When the State Occurs Functions You Can Issue

Unsolicited_
Request_
Commit_Received

• When a RECEIVE or
SENDDATA RECEIVE=YES
function completes with
IPWHATRC=IPREQCOM, which is
an indication that your partner
initiated a CRR commit sync-
point.

APPCVM QRYSTATE
IUCV SEVER
APPCVM SENDERR
APPCVM SENDREQ
APPCVM SEVER TYPE=ABEND

Backout_Received • When a function completes with
IPWHATRC=IPBACK, which is
an indication that your partner
initiated a CRR backout sync-
point.

APPCVM QRYSTATE
APPCVM SENDCNFD
IUCV SEVER
APPCVM SEVER TYPE=ABEND

Backout_Required • When CMS is backing out the
CMS work unit.

APPCVM QRYSTATE
IUCV SEVER
APPCVM SEVER TYPE=ABEND

Examples of Basic States
The following examples show one way that you can get into each of the APPC/VM basic states.

Reset State: After the path is established,

USER1: USER2:

• issues APPCVM SEVER and receives CC=2

At this point, USER1 is in Reset state.

Connect State: After IUCV DCLBFR and an identification of a resource by USER2 has already been
performed,

USER1: USER2:

• issues APPCVM CONNECT and receives
CC=0

checks the connection pending
interrupt

At this point, USER1 and USER2 are in Connect state.

Send State: After IUCV DCLBFR and an identification of a resource by USER2 has already been
performed,

USER1: USER2:

• issues APPCVM CONNECT and receives
CC=0

• checks the connection pending
interrupt

• issues ACCEPT and receives CC=0

State Table for APPC/VM Functions

406 z/VM: 7.3 CP Programming Services

• checks the connection complete
interrupt

At this point, USER1 is in Send state.

Receive State: After IUCV DCLBFR and an identification of a resource by USER2 has already been
performed,

USER1: USER2:

• issues APPCVM CONNECT and receives
CC=0

• checks the connection pending
interrupt

• issues ACCEPT and receives CC=0

• checks the connection complete
interrupt

At this point, USER2 is in Receive state.

Confirm State: After a path is established with SYNCLVL=CONFIRM,

USER1: USER2:

• issues APPCVM SENDCNF and receive
CC=0

• checks the message pending interrupt
• issues RECEIVE and receives CC=2

At this point, USER2 is in Confirm state.

Sever State: After a path is established,

USER1: USER2:

• issues APPCVM SEVER and receives CC=2

• checks the sever interrupt
• issues RECEIVE and receives CC=2

At this point, USER2 is in Sever state.

State Table for Error Conditions
If you issue a function from the wrong state, you receive an IPRCODE. The IPRCODE tells you the error
condition that CP detected when the function was initiated. The IPRCODE you receive depends on the
function you issued and the state from which you issued it.

The following table lists the basic APPC/VM functions and the IUCV functions that you can use in
APPC/VM. The numbers across the top of Table 73 on page 408 correspond to the following states or
conditions:
Number

State or Condition
1

Reset

State Table for APPC/VM Functions

Chapter 6. Overview of the APPC/VM Assembler Interface 407

2
Connect

3
Send

4
Receive

5
Confirm

6
Sever

7
Defer_Receive

8
Defer_Sever

9
Prepare_Received

10
(For IBM use only)

11
Unsolicited_Request_Commit_Received

12
(For IBM use only)

13
Backout_Received

14
Backout_Required

15
(For IBM use only)

16
(For IBM use only)

17
Synchronization level is not SYNCPT.

The following matrix shows which APPC/VM functions can be invoked from each defined state. The
number in the box indicates the IPRCODE (in decimal) given when a function is issued from a particular
state. An X in the box indicates that no IPRCODE is issued because of the function issued from that
particular state. If a number and an X appear in a box then the IPRCODE is conditional.

Table 73. Error Conditions

Function 1 2 3 4 5 6 7 8 9 11 13 14 15 16 17

APPCVM CONNECT X X X X X X X X X X X X X X X

APPCVM RECEIVE 68 32X X X 35 36X 69 70 71 73 75 76 81X X X

APPCVM SENDCNF 68 32 X 34 35 36 69X 70 71 73 75 76 81 79X X

APPCVM SENDCNFD 68 32 33 34 X 36 69 70 71 73 X 76 X 83X X

APPCVM SENDDATA 68 32 X 34 35 36 69X 70 71 73 75 76 81 X X

APPCVM SENDERR 68 32 X X X 36 69 70 X X 75X 76 81 X X

APPCVM SENDREQ 68 32 X X X 36 69 70 X X 75 76 81 X X

State Table for APPC/VM Functions

408 z/VM: 7.3 CP Programming Services

Table 73. Error Conditions (continued)

Function 1 2 3 4 5 6 7 8 9 11 13 14 15 16 17

APPCVM SEVER
TYPE=ABEND

68 32 X X X 36X X X X X X X X X X

APPCVM SEVER
TYPE=NORMAL

68 32 X 34 35 X 69 70 71 73 75 76 81 X X

IUCV ACCEPT 68 X 01 01 01 01 01 01 01 01 01 01 X X X

IUCV CONNECT X X X X X X X X X X X X X X X

IUCV DCLBFR 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

IUCV DESCRIBE X X X X X X X X X X X X X X X

IUCV IPOLL X X X X X X X X X X X X X X X

IUCV QUERY X X X X X X X X X X X X X X X

IUCV RTRVBFR X X X X X X X X X X X X X X X

IUCV SETCMASK X X X X X X X X X X X X X X X

IUCV SETMASK X X X X X X X X X X X X X X X

IUCV SEVER 68X X X X X X X X X X X X X X X

IUCV TESTCMPL X X X X X X X X X X X X X X X

IUCV TESTMSG X X X X X X X X X X X X X X X

State Table for APPC/VM Functions

Chapter 6. Overview of the APPC/VM Assembler Interface 409

State Table for APPC/VM Functions

410 z/VM: 7.3 CP Programming Services

Chapter 7. APPCVM Macro Functions

This chapter describes in detail the following APPCVM macro functions:

• CONNECT
• QRYSTATE (Query State)
• RECEIVE
• SENDCNF (Send Confirm)
• SENDCNFD (Send Confirmed)
• SENDDATA
• SENDERR (Send Error)
• SENDREQ (Send Request)
• SETMODFY
• SEVER.

If you are unfamiliar with reading syntax diagrams, see “Syntax, Message, and Response Conventions” on
page xxxv.

Using the Online HELP Facility for APPCVM Functions
You can receive online information about the APPCVM macro functions by using the z/VM HELP Facility.
For example, to display a menu of the APPCVM macro functions, enter:

help appcvm menu

To display information about a specific APPCVM macro function (CONNECT in this example), enter:

help appcvm connect

For more information about using the HELP Facility, see z/VM: CMS User's Guide. To display the main HELP
task panel, enter:

help

For more information about the HELP command, see z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

© Copyright IBM Corp. 1991, 2023 411

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

APPCVM CONNECT

label

APPCVM CONNECT ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,CONTROL=
2

YES

NO

,RESID= label

( reg)

,SYNCLVL=
2

NONE

CONFIRM

SYNCPT

,WAIT=
2

YES

NO

,BUFFER= label

( reg)

,BUFLEN= label

( reg)

,TYPE=
2

BASIC

MAPPED

,RETURN=
2

ALLOCD

IMMED

,LOGDATA=
2

YES

NO

,ALTID= label

( reg)

,FMH5=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
Use the CONNECT function to establish a communication path with a program residing in either your own
virtual machine, another virtual machine in your TSAF or CS collection, or in an SNA network.

APPCVM CONNECT

412 z/VM: 7.3 CP Programming Services

Note: If an external security manager is installed on your system, you may not be authorized to use this
function. For additional information, contact your security administrator.

Parameters
Required Parameter:
PRMLIST=

Lets you specify the address of the APPC/VM parameter list. The address must be a guest real
address; that is, the address must be within the virtual machine's real address space (guest=real).
Also, the parameter list must be on a doubleword boundary.
label

Is the relocatable label of the parameter list.
(reg)

Is the register number that contains the address of the parameter list.

Optional Parameters:

MF=L
Generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM CONNECT.

CONTROL=
Lets you specify whether a control path is being established. Control paths allow interrupt information
for your half of the path to be placed in the control buffer.
YES

Sends APPC/VM interrupt information on this path to the control buffer.

Note: Do not specify CONTROL=YES in application programs running in CMS; CMS uses
control paths.

NO
Sends APPC/VM interrupt information on this path to the application buffer.

RESID=
Lets you specify a 1- to 8-character resource identifier. Your program will be connected to the
program that manages the resource. If the resource ID you specify is less than eight bytes, left-justify
the value in this field and pad the right with blanks.
label

Is the relocatable label of the storage area that contains the resource ID.
(reg)

Is the register number that contains the address of the storage area. This storage area contains
the resource ID.

The RESID value you specify here either specifies the target transaction program name (TPN), or it is
resolved into a transaction program name and additional allocation data using a CMS communication
directory file. When CMS resolves the TPN, CMS replaces the RESID value specified in IPRESID with
the first 8 bytes of the TPN.

Notes:

1. The RESID (or the RESID resolved by CMS) must match the TPN. If the TPN is longer than 8 bytes,
then just the first 8 bytes must match. If the TPN is less than 8 bytes, then the TPN is padded to
the right with blanks for the compare.

2. The RESID value (or resolved TPN) should be the same as the resource manager program name
required by the CMS interface to assembler APPC/VM (the NAME parameter on the HNDIUCV and
CMSIUCV macros).

3. RESIDs beginning with a period (.). The . character must be reserved for recovery servers.

SYNCLVL=
Lets you specify the synchronization level for the path being established.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 413

NONE
Does not let either communication partner request confirmation (issue SENDCNF or SENDCNFD)
on the path this connection is establishing.

CONFIRM
Lets either communication partner request confirmation (issue SENDCNF or SENDCNFD) on the
path this connection is establishing.

SYNCPT
Specifies that this path can have SYNCPT synchronization level.

Notes:

1. SYNCPT also allows either communication partner to issue confirmation functions (SENDCNF,
SENDCNFD).

2. CP rejects connections attempted with SYNCLVL=SYNCPT if the resource manager is located in
a TSAF or CS collection.

3. CMS does not allow SYNCLVL=SYNCPT specified on control paths.

WAIT=
Lets you specify when control is returned to your virtual machine.
YES

Returns control to your virtual machine after the CONNECT completes.
NO

Returns control to your virtual machine as soon as the CONNECT request is initiated. When the
CONNECT completes, you are notified by a connection complete interrupt. You can issue any
APPC/VM function on any path, except the path that you are trying to establish with the CONNECT;
the only function that you can issue on the path you are trying to establish is IUCV SEVER.

BUFFER=
Lets you specify the starting address of the connection parameter list extension. This extension either
contains actual allocate data (VM area, FMH5, and VM-defined variable-length section) or information
that CP uses to build the allocate data. This buffer address must be a guest real address (real to the
virtual machine).
label

Is the relocatable label of the storage area that contains the connection parameter list extension.
(reg)

Is the register number that contains the address of the storage area. This storage area contains
the connection parameter list extension.

If you wish to invoke a connection using communication directory resolution (COMDIR=YES on
CMSIUCV CONNECT), you do not need to specify this BUFFER address. However, if you want
communication directory resolution without invoking a connection (CMSIUCV RESOLVE), you must
specify this BUFFER address.

BUFLEN=
Is a 4-byte field that specifies the length of the area containing the connection parameter list
extension.
label

Is the relocatable label of the storage area that contains the length.
(reg)

Is the register number that contains the length of the storage area.

If you specify FMH5=NO, you are passing CP information it needs to build the allocate data needed
by your communication partner. The value you specify for BUFLEN depends on how you want the
connection parameter list extension created.

1. If you are explicitly creating the extension, the valid lengths for BUFLEN are 0, 16, 32, 56, 120,
128, or 160 bytes. If you supply fewer bytes than any of these values, the remaining bytes are

APPCVM CONNECT

414 z/VM: 7.3 CP Programming Services

considered to be omitted. When SYNCLVL=SYNCPT and FMH5=NO, or when you use PIP data,
BUFLEN must be 160.

2. If you wish to invoke a connection using CMS communication directory resolution (COMDIR=YES
on CMSIUCV CONNECT), you do not need to specify BUFLEN.

3. If you want communication directory resolution without invoking a connection (CMSIUCV
RESOLVE), BUFLEN must be set to at least 120 bytes.

If you specify FMH5=YES (allowed only for communication servers), this means you are directly
passing the allocate data needed by your communication partner. The allocate data consists of a VM
area, an FMH5, and a VM-defined variable-length section. In addition, if a communication server is
passing a PIP variable, it needs to include the length of the VM communication server area (8-bytes) in
the BUFLEN total. As a result, BUFLEN can vary from 43 to 911 bytes for a communication server.

See Considerations for Communications Servers for more details.

TYPE=
lets you specify the conversation type being established by the invoker.
BASIC

indicates that a basic conversation is being allocated.
MAPPED

Indicates that a mapped conversation is being allocated.

Note: It is the programmer's responsibility to format and interpret the data according to the
connection type specified here. Refer to “APPCVM SENDDATA” on page 475.

RETURN=
lets you specify whether the SNA communication server should wait for a session to become
available or should return immediately if no suitable session is available. This operand applies only to
connections outside of a TSAF collection.
ALLOCD

indicates that an SNA session should be allocated for the conversation before control is returned
to the invoker.

IMMED
indicates that an SNA session should be allocated for the conversation only if a suitable session is
immediately available.

LOGDATA=
lets you specify whether your connecting program receives log data on the path being established.
YES

Indicates that the connecting program receives log data.
NO

Indicates that the connecting program does not receive log data. In this case, CP does not log the
data for the program.

Communication Server Parameters:
ALTID=

is the 8-byte user ID of the virtual machine that made the original connection for which the
communication server is establishing the path. If the user ID that you specify is less than eight bytes,
left-justify the value in this field and pad the right with blanks.
label

Is the relocatable label of the storage area that contains the user ID.
(reg)

Is the register number that contains the address of the storage area. This storage area contains
the user ID.

Note: Only virtual machines authorized as communication servers can specify ALTID. (Refer to
Considerations for Communications Servers.)

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 415

FMH5=
indicates whether your program's connection parameter list extension (specified by the
BUFFER=keyword) contains actual allocate data or information that CP uses to build the allocate
data. Actual allocate data consists of a VM area, an FMH5 (Function Management Header Type 5)
area, and a VM-defined variable-length section.
NO

indicates that information in the connection parameter list extension is being supplied so that CP
can build the allocate data for you.

You should specify FMH5=NO if you want to invoke the connection using the CMS communication
directory (COMDIR=YES on the CMSIUCV CONNECT), or if you just want communication directory
resolution without invoking a connection (CMSIUCV RESOLVE). In these two cases, CMS fills in the
extension from the information in the communication directory file.

If your program is explicitly supplying the connection extension so that CP can build the allocate
data, refer to CONNECT Input Parameter List Extension for a description on how you must set up
this extension.

YES
indicates that your program is a communication server, and it is supplying allocate data (a VM
area, an FMH5, and a VM-defined variable-length section) and possibly a VM communication
server area in the connection parameter list extension. See Considerations for Communications
Servers for more information.

Note: If you specify FMH5=YES, CMS communication directory resolution is disabled on any
subsequent CMSIUCV CONNECT or CMSIUCV RESOLVE functions.

Input Parameter List: The APPCVM CONNECT parameter list has the input format shown in the following
figure when establishing APPC paths:

/ / / / / / / / / / / / / / /0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPFLAGS1 /

IPVMID

IPFLAGS2

/ /

IPRESID

IPBFADR2

IPBFLN2F

IPARML DSECT

Figure 22. APPCVM CONNECT Input Parameter List

IPFLAGS1
may contain one or more of the following input bit flags:
IPAPPC (X'08')

APPC protocol is used on the path.
IPCNTRL (X'04')

a control path is being established.
X'80'

this value is reserved for IBM use only.
IPFLAGS2

may contain one or more of the following input bit flags:
IPWAIT (X'80')

the connecting program specified WAIT=YES (meaning a synchronous connection).
IPLVLCF (X'40')

a synchronization level of CONFIRM is permitted.

Note: If this bit is on, IPSYNCPT must be off.

APPCVM CONNECT

416 z/VM: 7.3 CP Programming Services

IPCOMSRV (X'20')
This connection is being made for another user. This flag is set when the ALTID keyword is
specified. See Considerations for Communications Servers.

IPMAPPED (X'10')
A mapped conversation is being created.

IPFMH5 (X'08')
A connection parameter list extension contains the VM area, the FMH5 area, and a VM-defined
variable-length section.

IPLOGDOK (X'04')
The connecting program specified LOGDATA=YES.

IPIMMED (X'02')
The connecting program specified RETURN=IMMED.

IPSYNCPT (X'01')
SYNCLVL=SYNCPT is specified for the conversation.

Note:

1. A synchronization level of CONFIRM is also permitted on this conversation.
2. If this bit is on, IPLVLCF must be off.

IPVMID
is the user ID that this connection is made for. Only communication servers can supply this parameter.
This field is set from the user ID value specified with the ALTID parameter. See Considerations for
Communications Servers.

IPRESID
is the name of the 1- to 8-character resource identifier. Your program is connected to the program that
manages the resource. If IPRESID is less than eight bytes, left-justify the value in this field and pad
the right with blanks.

IPRESID either specifies the target transaction program name (TPN), or it is resolved into a
transaction program name and additional allocation data using a CMS communication directory file.
When CMS resolves the TPN, CMS replaces the IPRESID value specified in IPRESID with the first 8
bytes of the TPN.

Notes:

1. The IPRESID (or the IPRESID resolved by CMS) must match the TPN. If the TPN is longer than
8 bytes, then just the first 8 bytes must match. If the TPN is less than 8 bytes, then the TPN is
padded to the right with blanks for the compare.

2. IPRESID (or resolved TPN) should be the same as the resource manager program name required
by the CMS interface to assembler APPC/VM (the NAME parameter on the HNDIUCV and CMSIUCV
macros).

IPBFADR2
is the address of the connection parameter list extension.

IPBFLN2F
is the length of the connection parameter list extension.

For a communication server (where FMH5=YES), this must include the allocate data length and, if
applicable, the length of the VM communication server area. (See Considerations for Communications
Servers.)

Input Parameter List Extension: If your program specifies FMH5=NO on APPCVM CONNECT, it wants
CP to build the allocate data (the VM area, the FMH5 area, and the VM-defined variable-length section)
that your communication partner needs. In this case, your program can supply CP with the connection
parameter list extension data shown in this section.

Does Your Program Need to Make This Extension?

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 417

Your program does not have to actually build a connection parameter extension as shown in this section
if any of the following are true:

1. Your program is an intermediate communication server that specifies FMH5=YES on the connection.
(Refer to Considerations for Communications Servers.)

2. Your program does not specify a PIP variable and requests a connection using CMS communication
directory resolution (COMDIR=YES on CMSIUCV CONNECT) to resolve the RESID on APPCVM
CONNECT. In this case, CMS provides an extension for you; your program's APPCVM CONNECT does
not have to specify BUFFER or BUFLEN.

3. Your program just requests to resolve RESID using the CMS communication directory, without
invoking a connection (CMSIUCV RESOLVE). In this case, CMS fills in the extension for you; your
program's APPCVM CONNECT must specify a BUFFER and a BUFLEN of at least 120 bytes.

If your program is building its own connection parameter list extension, it should include a USING
statement for the IPARMLX COPY file and define proper storage for this file. (The IPARMLX COPY file
is contained in the HCPGPI MACLIB.) IPARMLX contains labels that your program can refer to in the
connection parameter list extension.

Certain fields of the connection parameter list extension can be omitted. There are two ways you can
indicate this, you can specify a:

• Field as binary zeros.
• Connection parameter list extension length (BUFLEN), which is less than the displacement of that field

into the extension. For example, if you specify a BUFLEN of 0, all fields are considered to be omitted. If
you specify a BUFLEN of 16, the first 16 bytes of the extension are used, and the fields in the remaining
bytes are considered to be omitted. Note that the length must still be a valid lengths for the BUFLEN
parameter. See the description of BUFLEN.

The format of the connection parameter list extension is shown in the following figure.

/ /

IPXMODE

IPARMLX DSECT

0

8

10

IPXTPN

IPXLKLU

20

= =

IPXLUWL

IPXSUSER

IPXSPSWD

IPXLUW

IPXALTID

30

38

A0

78

80

28

IPXFLAGIPXTPNLIPXSTYPE

IPXPLEN IPXPADR

0 1 2 3 4 5 6 7

/ /

Figure 23. Connection Parameter List Extension

IPXMODE
contains the mode name. This is an 8-byte field, left-justified and padded with blanks as necessary.

APPCVM CONNECT

418 z/VM: 7.3 CP Programming Services

When the target LU name, IPXTRGLU of IPXLKLU, is omitted (a connection within a TSAF or CS
collection), the mode name identifies the type of communication server being used:

• VMINT or binary zeros (the default) identifies an interactive communication server.
• VMBAT identifies a batch-oriented communication server. A path with a mode name of VMBAT gives

messages or files a lower priority than messages or files over VMINT or regular TSAF virtual machine
session paths.

If an outbound connection through AVS is being requested and the LU name qualifier (gateway name)
is specified in the connection parameter list extension, the mode name can be any mode name that
is valid for the locally known LU name specified in IPXLKLU. Information on mode name is in SNA
Transaction Programmer's Reference Manual for LU Type 6.2.

IPXLKLU
contains the locally known LU name. The locally known LU name is a 16-byte field that is made up of
these two pieces:

• IPXLQUAL—an 8-byte LU name qualifier
• IPXTRGLU—an 8-byte target LU name.

Both these 8-byte fields are left-justified and padded with blanks as necessary.

The meaning of the target LU name depends on the LU name qualifier and the type of connection:

• Connection to a local, system, or global resource: If the LU name qualifier is *IDENT, the resource
manager program (IPRESID) has already identified itself to the TSAF or CS collection as a local,
global, or system resource using the Identify system service (*IDENT). The connection is routed to
the local, global, or system resource manager program. If the LU name qualifier is omitted, then it is
assumed to be *IDENT. The target LU name must be omitted if the LU name qualifier is *IDENT or is
omitted.

• Connection to a private resource: If the LU name qualifier is *USERID, then the target LU name is
the user ID of the private server virtual machine. The connection is routed to the private resource
manager program (IPRESID), which is located in the virtual machine named in the target LU name
field.

Note: Private resource connections to recovery servers (IPRESID is X'06F2', or whose first character
is a period .) are treated differently.

• Connection to a specific system: If the LU name qualifier is a system gateway name of a system in the
TSAF or CS collection, then the connection is routed to this specific system. If the target LU name is
binary zeros, then the target system routes the connection to either the system or global resource
manager that identified the resource specified in the IPRESID field. If the target LU name is not
binary zeros, then the target system routes the connection to the private resource manager whose
user ID is the target LU name. The connection is only completed if the resource manager resides on
the specified system.

• Connection to a resource in the SNA network: The LU name qualifier is a gateway name. The target
LU name is the name of an LU in the SNA network, and resource name (IPRESID) is the name of
a transaction program at the remote LU. If the gateway name has already been identified to the
Identify system service (*IDENT), then the connection is routed to the specified gateway, and the
target LU name is presented to the AVS virtual machine that defined the gateway. The gateway uses
the target LU name to allocate the conversation for the invoker of the connect.

The connection is rejected if the LU name qualifier is one of the following:

• A gateway name, and that gateway is not owned by a virtual machine
• *IDENT, and the resource is not owned by a virtual machine.

For a summary of the connections, given a LU name qualifier and target LU name, see Table 74 on
page 420.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 419

Table 74. Summary of Locally Known LU Names

Locally Known LU Name
IPRESID
Value

Connection Made To:LU Name

Qualifier
Target LU
Name

*IDENT Omitted X Local, global, or system resource X

*USERID userid Y Private resource Y

G L Z Transaction program Z residing at LU L accessed
through gateway G

SYSGATE Omitted X A global or system resource X on the system in
the TSAF or CS collection that owns the system
gateway, SYSGATE.

SYSGATE userid Y A private resource Y on the system in the TSAF
or CS collection that owns the system gateway,
SYSGATE.

IPXSTYPE
indicates the access security type of the connection.
IPXSSAME (X'00')

SECURITY(SAME) is specified.

The target of the connection receives a connection pending interrupt with the source user ID in the
IPVMID field. The source user ID is one of the following:

• The logon user ID of the virtual machine issuing the CONNECT
• An alternate user ID specified by a virtual machine issuing DIAGNOSE code X'D4'
• The user ID specified on the ALTID keyword (from intermediate servers)

If the target LU is a TSAF collection, the source user ID is sent to the target program in the
connection pending interrupt and the already verified flag set in the FMH5. If the target LU is in the
SNA network, the source user ID is sent to the target LU with the already verified flag set in the
FMH5. If the target LU does not support the already verified option, the local LU downgrades the
security information to the equivalent of SECURITY(NONE).

IPXSNONE (X'01')
SECURITY(NONE) is specified.

The target of the connection receives a connection pending interrupt with binary zeros in the
IPVMID field and an FMH5 with no security fields.

1. If the LU name qualifier is *IDENT, the connection is rejected, unless the resource specified
that it would receive connections with SECURITY(NONE) when it connected to *IDENT.

2. If the LU name qualifier is *USERID, the connection is made to the private resource manager,
who may or may not reject the connection depending on the CMS authorization list (in the
$SERVER$ NAMES file) for that private resource.

3. If the LU name qualifier is not *IDENT or *USERID (meaning a connection to a program in the
SNA network), the connection is routed to the specified gateway to be sent to the remote LU.

Note: The following two paragraphs apply to IPXSPGM, IPXSPGLU, and IPXSPGU.

If the LU name qualifier is *IDENT or *USERID, the security fields are validated in the TSAF or
CS collection. If the access user ID and password are valid, the access user ID (not the user
ID of the virtual machine issuing the CONNECT) is specified as the user ID in the IPVMID field
of the connection pending interrupt and in the FMH5. The virtual machine issuing the CONNECT
must have directory authorization to connect to the target virtual machine; however, when the

APPCVM CONNECT

420 z/VM: 7.3 CP Programming Services

connection is to a private resource and the user ID of the target private server is the same as the
access user ID, no authorization is needed.

If the LU name qualifier is not *IDENT or *USERID, the remote LU validates fields in the security
area. If the remote LU is a TSAF or CS collection, the collection validates the access user ID and
password, the target program gets an FMH5 containing the user ID and the already verified flag
set.

IPXSPGM (X'02')
SECURITY(PGM) is specified; the access user ID and password are both supplied in this extension.
(The user ID is in field IPXSUSER; the password is in IPXSPSWD.)

IPXSPGLU (X'03')
SECURITY(PGM) is specified; and the access user ID and password are taken from the invoker's
APPCPASS directory statement.

The APPCPASS directory statement used must have a locally known LU name that matches the
locally known LU name supplied in the connection parameter list extension (field IPXLKLU). If
there are multiple APPCPASS directory statements in the invoker's directory entry with matching
LU names, the user ID and password in the first match are used.

IPXSPGUS (X'04')
SECURITY(PGM) is specified; the access user ID is supplied in field IPXSUSER of this extension,
and the access password is taken from the invoker's APPCPASS directory statement.

The APPCPASS directory statement used must have a locally known LU name that matches the
locally known LU name supplied in field IPXLKLU and a user ID that matches the user ID supplied
in field IPXSUSER. If there are multiple APPCPASS directory statements in the invoker's directory
entry with a matching locally known LU name and access user ID, then the password in the first
match is used.

Note: This lets a single user have multiple user IDs at a given LU, each with a different password.

IPXTPNL
is the length of the transaction program name (which is contained in field IPXTPN). The length can
be 0 to 64 bytes.

IPXFLAG
may contain the following flag:
IPXPBUFL (X'40')

specifies that the PIP address field (IPXPADR) contains the address of a list of buffer addresses
and lengths for the PIP variable. (Refer to Specifying a PIP Variable for more information.)

IPXLUWL
is the length (in bytes) of the logical-unit-of-work identifier fields defined in the IPXLUW field. Values 0
and 10 through 26 are valid. CMS fills in this field for APPC/VM programs that use SYNCLVL=SYNCPT
paths.

IPXSUSER
is the access security user ID.

This area is valid only when IPXSTYPE is IPXSPGM, IPXSPGLU, or IPXSPGUS (indicating a security
type of PGM).

IPXSPSWD
is the access security password.

This area is valid only when IPXSTYPE is IPXSPGM, IPXSPGLU, or IPXSPGUS (indicating a security
type of PGM).

Note: The target virtual machine never receives the password. When the password is supplied,
CP verifies the password and sends the verified user ID to the resource manager program. If the
password being verified by CP is LBYONLY then the password validation, and subsequently the
CONNECT, will fail. Refer to the USER or IDENTITY directory statement in z/VM: CP Planning and
Administration for more information about the LBYONLY operand.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 421

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

IPXTPN
is the transaction program name (TPN). This must be a 64-byte field. (IPXTPNL describes the actual
length of this name.)

If the TPN length (IPXTPNL) is 0 or omitted, CP places:

• 8 into the transaction program name length field (CPEFTPNL) of the FMH5
• The RESID value from the APPCVM CONNECT into the transaction program name field (CPEFTPN) of

the FMH5.

Any value specified in IPXTPN is not used.

If the length is not 0, CP places:

• The value from IPXTPNL into the transaction program name length field (CPEFTPNL) of the FMH5
• The value from IPXTPN into the transaction program name field (CPEFTPN) of the FMH5. Even

though CP places IPXTPN into the FMH5, the RESID value on APPCVM CONNECT still determines
the target resource.

If IPXTPNL is less than 64 bytes, the user must still supply the full 64-byte transaction program name
area. The value of IPXTPNL must equal the value of IPRESID. See “IPRESID” on page 417 for details.

For SYNCLVL=SYNCPT conversations, only the first 24 bytes of the TPN length register the path to the
sync-point manager.

IPXALTID
is an alternate user ID that is supplied to the target virtual machine. To specify a nonzero value in this
field, a virtual machine must be authorized in the CP directory for DIAGNOSE code X'D4'.

IPXLUW
is the logical-unit-of-work identifier. This is a 26-byte field. (IPXLUWL describes the actual length.)
CMS fills in this field for APPC/VM programs in CMS for SYNCLVL=SYNCPT conversations only.

IPXPLEN
is the length, in binary, of the number of bytes for the entire PIP variable (PIP data and all header
information). Valid values are 0, 4, or any value from 8 to 32,767.

IPXPADR
specifies either the address of a PIP variable buffer, or the address of a list that contains addresses
and lengths of multiple PIP variable buffers.

Usage Notes
Specifying a PIP Variable: Your program can supply a PIP variable that the target program can receive
before accepting your connection. When specifying a PIP variable, your program must supply the
following information in the APPCVM CONNECT parameter list extension:

• The length of the PIP variable (field IPXPLEN)
• The address of the PIP variable (field IPXPADR)
• An indication of whether you are specifying the PIP variable with a single buffer using one address and

one length, or specifying multiple buffers using a list of addresses and lengths (flag IPXPBUFL in field
IPXFLAG).

When you specify a single buffer using one address and one length:

• IPXPADR specifies the address.
• IPXPLEN specifies the length.
• The flag IPXPBUFL in the field IPXFLAG must be turned off.

When you specify multiple buffers with a list of addresses and lengths,

• IPXPADR specifies the address of the list.

APPCVM CONNECT

422 z/VM: 7.3 CP Programming Services

• IPXPLEN specifies the sum of the lengths of the buffers in the list.
• The flag IPXPBUFL in the field IPXFLAG must be turned on.

You must follow these conventions when you use address lists:

• The list must begin on a doubleword boundary.
• Each list entry must be two fullwords:

– The first fullword is the address of that portion of the list.
– The second fullword is the length of that portion of the list.

When you use an address list, the addresses and lengths in the address list are updated during APPC/VM
processing. Do not alter them during processing or assume that they are unchanged when APPC/VM
processing is complete. Also, APPC/VM assumes that there is another entry in the list until the sum of the
lengths of the entries processed is equal to the total length specified (by IPXPLEN).

Note: The data in a PIP variable buffer must not be reused until the connection is completed by the
partner's IUCV ACCEPT or rejected by the partner's IUCV or APPCVM SEVER. This is because the data in
a PIP variable buffer (specified on APPCVM CONNECT) does not move to the receive area (specified on
APPCVM RECEIVE) until APPCVM RECEIVE PIP=YES is issued by the target.

The PIP variable you are sending in buffers must be coded into a PIP general data stream (GDS) variable.
A PIP GDS variable has the format shown in Figure 24 on page 423 as defined by SNA LU 6.2:

CPEPIPSUCPEPIPLN CPEPIPID

CPED DSECT

0 1 2 3 4 n

Figure 24. Format of the PIP Variable

CPEPIPLN
the total length in binary, of the PIP variable (including this length field). CPEPIPLN should be equal to
the IPXPLEN field specified in the connection parameter list extension.

CPEPIPID
the GDS identifier for the PIP variable, X'12F5'.

CPEPIPSU
zero or more PIP subfields, each of which has the format shown in Figure 25 on page 423.

CPEPIPSD . . .CPEPIPSL CPEPIPSI

CPED DSECT

0 1 2 3 4

Figure 25. Format of a PIP Subfield

CPEPIPSL
is the length, in binary, of the PIP subfield (including this length field).

CPEPIPSI
is the GDS identifier for a PIP subfield, X'12E2'.

CPEPIPSD
is the actual PIP data.

Considerations for single system image (SSI): When APPCVM CONNECT is used from within an SSI
cluster to connect to a private resource, the initial search for the associated userid is performed across
the SSI cluster before extending the search across the ISFC Collection.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 423

Examples

Example of Specifying a PIP Variable: A simple example of specifying a PIP variable would be if you
wanted to send the letter Z to a program with which you are trying to connect. To do this, you could
specify the PIP variable as:

X'000912F5000512E2E9'

• The X'0009' gives the length of the entire PIP variable. This corresponds to the CPEPIPLN field in Figure
24 on page 423.

• The X'12F5' is the GDS identifier for the PIP variable. This corresponds to the CPEPIPID field in Figure
24 on page 423. If you are sending PIP variable, CPEPIPID must always have a value of X'12F5'.

• The X'0005' is the number of bytes in the PIP subfield. This corresponds to CPEPIPSL field in Figure 25
on page 423.

• The X'12E2' is the GDS identifier for the PIP subfield. This corresponds to the CPEPIPSI field in Figure
25 on page 423.

If you are sending PIP variables with subfields, each subfield must specify a length in the first 2 bytes
and the value X'12E2' in the next 2 bytes.

• The X'E9' (Z) is the actual PIP data that we want to send.

The format of this PIP variable would look like what is shown in the following figure.

X'0005'X'0009' X'12F5'

CPED DSECT

0 1 2 3 4 5 6 7 8 9

X'12E2' X'E9'

Figure 26. Example Format for a PIP Variable

For more information about the PIP variable, see SNA Format and Protocol Reference Manual:
Architectural Logic for LU Type 6.2.

Condition Codes and Return Codes

CC=0
the CONNECT started successfully, but has not completed. IPPATHID is placed in the output
parameter list, identifying the path being started by this connection. When the function does complete
and your virtual machine is properly enabled for interrupts, you get a connection complete or Sever
interrupt. Both the connection complete and the Sever interrupt have the same format as the APPCVM
CONNECT output parameter list (see CC=2).

Note: When you specify WAIT=YES, CC=0 is not possible.

CC=1
an error occurred before the CONNECT was initiated. The output parameter list is the same as the
input shown in CONNECT Input Parameter List, except that one of the following return codes is stored
in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'0A' 10 The buffer length for the PIP variable is
negative.

X'0B' 11 CP could not find the resource or gateway, or,
the resource or gateway is not available for
connections, and no TSAF virtual machine is
currently operating on your system.

APPCVM CONNECT

424 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Why the Error Occurred

X'0C' 12 Your communication partner has not invoked
the HNDIUCV SET (or IUCV DCLBFR) function.

X'0D' 13 Your virtual machine already has the maximum
number of connections.

X'0E' 14 Your communication partner already has the
maximum number of connections.

X'0F' 15 • Your virtual machine is not authorized to
connect to the resource, or

• The request was from a communication server
and security label checking is enabled on the
system, or

• A problem was detected in internal CP
control structures. In this case, the error is
accompanied by a CP soft abend.

X'1A' 26 The buffer list for the PIP variable is not on a
doubleword boundary.

X'1D' 29 You are not authorized to act for another user.

X'27' 39 Your program specified an invalid connection
parameter list extension length.

X'28' 40 Your program specified an invalid locally known
LU name.

X'29' 41 Your program specified an invalid mode name.

X'2F' 47 Your program specified invalid security fields in
the FMH5.

X'31' 49 Your communication partner does not allow
connections with SECURITY(NONE).

X'32' 50 Your program specified invalid allocation data.
Or, a communication server did not include
the length of the VM communication server
area in the allocate data length. Refer to
Considerations for Communications Servers for
more information.

X'34' 52 There is no APPCPASS directory statement.

X'35' 53 Your program specified an invalid transaction
program name (TPN) length.

X'36' 54 Your program specified an invalid transaction
program name (TPN).

X'38' 56 WAIT=YES was specified on a function issued to
this same virtual machine.

X'39' 57 Your program specified an invalid length for the
PIP variable. Valid values are 0, 4, or any value
from 8 to 32,767.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 425

Hex
Code

Decimal
Code

Why the Error Occurred

X'3A' 58 Your program specified an invalid length for the
VM communication server area. Valid values are
0 and 8.

X'3D' 61 Your virtual machine is not authorized to specify
an alternate user ID.

X'3F' 63 Your program specified an invalid logical-unit-
of-work identifier length. Valid values are 0 and
10 to 26.

X'40' 64 Your program specified an invalid fully-qualified
LU network name in the logical-unit-of-work
identifier.

X'41' 65 Your program specified SYNCLVL=SYNCPT, but
the logical-unit-of-work identifier length field is
zeros.

X'43' 67 Both SYNCLVL=CONFIRM and
SYNCLVL=SYNCPT were specified in IPFLAGS2
in the APPCVM CONNECT input parameter list.

X'56' 86 A control buffer must be declared to issue
APPCVM CONNECT with SYNCLVL=SYNCPT.

X'59' 89 For your SYNCLVL=SYNCPT connection, CP
could not find the resource, or the resource
is not available for connections on the local
system. Therefore, your SYNCLVL=SYNCPT
would have to be routed through a TSAF virtual
machine or ISFC, but TSAF and ISFC do not
support SYNCLVL=SYNCPT conversations.

X'5C' 92 A paging or storage error was detected.

CC=2 or
CC=3

the connect completed. (See CONNECT Completion for more information.) When CC=2, the connect
completed with no errors; when CC=3, there is some error information in the IPAUDIT field.

Note: When WAIT=NO, CC=2 or 3 is not possible.

The output parameter list when CC=2 or 3 is shown in Figure 27 on page 426.

IPPATHID0

8

10

18

20 /

0 1 2 3 4 5 6 7

IPTYPE

/ /

/ /

/ /

IPFLAGS1 IPCODE IPWHATRC / / / / / /

IPAUDIT

IPPOLLFG IPSTATE

IPARML DSECT

Figure 27. APPCVM CONNECT Output Parameter List (Connection Complete Interrupt)

IPPATHID
contains the path ID on which the connection was completed or severed.

APPCVM CONNECT

426 z/VM: 7.3 CP Programming Services

IPFLAGS1
contains one of the following bit flags:
IPCNTRL (X'04')

a connection complete is on a control path. This flag is not set if the external interrupt was caused
by a SEVER (IPTYPE=X'83').

IPREMOTE (X'02')
the connection was accepted by a communication server.

IPTYPE
contains one of the following codes:
IPTYPCCA (X'82')

the connection complete interrupt code, indicating your partner or an intermediate
communication server accepted the connection.

IPTYPSVA (X'83')
the sever interrupt code, indicating your partner or an intermediate communication server
rejected the connection with the SEVER function.

IPCODE
contains the sever code from the partner's SEVER. IPCODE is only valid when the external interrupt
was caused by a SEVER (IPTYPE=X'83'). See “APPC/VM Sever, Error, and Sense Codes That You Can
Get” on page 399.

IPWHATRC
contains the following what-received code:
IPSABEND (X'09')

your partner issued SEVER TYPE=ABEND.

IPWHATRC is only valid when the external interrupt was caused by a SEVER (IPTYPE=X'83').

IPAUDIT
has four fields that may contain error information caused by a PIP data problem.

Notes: In the following descriptions:

• PIP area refers to either a PIP buffer specified by IPXPADR or a PIP buffer that is part of a buffer list.
• Receive area refers to either a receive buffer specified directly on APPCVM RECEIVE, BUFFER= or a

receive buffer that is part of a buffer list.

IPAUDIT1 (first byte of IPAUDIT)
may contain one of the following bit flags:
IPADSNPX (X'40')

a protection exception occurred on your PIP area.
IPADSNAX (X'20')

an addressing exception occurred on your PIP area.
IPAUDIT2 (second byte of IPAUDIT)

may contain one of the following bit flags:
IPADRCPX (X'80')

a protection exception occurred on your communication partner's receive area for the PIP
variable.

IPADRCAX (X'40')
an addressing exception occurred on your communication partner's receive area for the PIP
variable.

IPADRLST (X'04')
your communication partner specified an invalid receive buffer list.

IPAUDIT3 (third byte of IPAUDIT)
may contain the following bit flag:

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 427

IPADBLEN (X'80')
an invalid length is in your PIP variable buffer list.

IPADBTOT (X'20')
your total PIP data buffer length (CPEPIPLN) is invalid.

IPASYRC (fourth byte of IPAUDIT)
may contain one of the following error codes (for which an appropriate IPRCODE was given to your
communication partner):

Hex
Code

Decimal
Code

Meaning

X'3B' 59 An invalid general data stream ID was specified within the PIP variable.

X'3C' 60 An invalid length was specified for a PIP subfield, or the total length in
bytes 0 through 1 of the PIP variable is not the sum of the lengths of the
PIP subfields.

X'5B' 91 A paging or storage error occurred on your PIP area.

X'5C' 92 A paging or storage error occurred on your communication partner's
receive area for the PIP variable.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
contains the current state for this path, which has one of the following values:
IPSENDST (X'03')

the path is in the Send state.
IPBKREQ (X'0E')

the path is in the Backout_Required state.
IPSTATE is not valid when the connection completes with a sever interrupt (IPTYPE=X'83').

Program Exceptions
The program exceptions for CONNECT are:

Type Description

Addressing The parameter list address or connection extension address is outside of the
virtual machine.

Operation Either an external interrupt buffer has not been declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.
This exception also occurs if the connection extension address is fetch-protected.

Specification The parameter list is not on a doubleword boundary.

APPCVM CONNECT

428 z/VM: 7.3 CP Programming Services

Note: APPC/VM does not reflect addressing exceptions or protection exceptions on PIP variable buffers,
because your partner cannot have a predefined receive area for the PIP variable. Instead, the errors are
reported to your program in the corresponding IPAUDIT flags in the connection complete data.

State Checks and State Changes
There are no state checks for APPCVM CONNECT.

Your virtual machine path is in one of the following states:

• The Connect state for either of the following situations:

– After you issue the CONNECT, but before your communication partner or an intermediate
communication server accepts the connection (CC=0).

– If your communication partner or an intermediate communication server issues a SEVER when you
issue the CONNECT, you get a sever interrupt and no path is established. You remain in the Connect
state, and you must issue IUCV SEVER to delete your side of the path.

• The Send state after you receive the connection complete indication.

Completion Conditions
Connection complete data can be in different forms, depending on whether you specify WAIT=YES or
WAIT=NO on the APPCVM CONNECT.

If you specify WAIT=YES, and your communication partner or intermediate communication server accepts
the connection, you get a connection complete indication (with CC=2 or CC=3). If it severs the connection,
you get a sever indication in the connection complete data.

The connection complete data goes to the parameter list that you specified on the APPCVM CONNECT
macro. The format of the connection complete data is the same as the output parameter list described
under CC=2 in Figure 27 on page 426.

If you specify WAIT=NO, and your communication partner accepts the connection, you get a connection
complete interrupt. If your partner severs the connection, you get a sever interrupt.

When you specify WAIT=NO and your virtual machine is enabled for external interrupts, the connection
complete data goes to your external interrupt buffer.

The format of the connection complete interrupt data is the same as described under CC=2 in Figure 27
on page 426. All subsequent interrupts for the established path are presented in the same buffer as the
connection complete interrupt.

Note: The connection complete interrupt indicates only that your CONNECT has completed and that you
are now in the Send state on the path. A connection complete interrupt does not necessarily indicate
that the actual target of your CONNECT has issued an ACCEPT for the connection, or even that the target
of the CONNECT has been invoked. For example, if your connection goes through AVS, AVS accepts the
conversation when it communicates with VTAM.

Connection Complete Extended Data: When an APPC/VM connection complete interrupt is reflected to
a virtual machine, the Connection Complete Extended Data (CCED) is reflected in the interrupt buffer
extension, if it exists. The CCED DSECT and CCED COPY files are located in the HCPGPI macro library.
Note that when running in CMS the interrupt buffer extension is defined by the virtual machine, not by the
application.

A program running in CMS can obtain connection complete extended data in two ways:

• After CMSIUCV CONNECT completes with return code 0 (signifying CC=0 from APPCVM CONNECT), and
while the user exit (interrupt handler) is being driven for the connection complete interrupt, Register 3
points to the CCED.

• When CMSIUCV CONNECT completes with return code 2 or 3 (signifying CC=2 or CC=3 from APPCVM
CONNECT), the connection complete extended data is in the address specified on the CMSIUCV
CONNECT BUFFER parameter.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 429

A program running in GCS can obtain connection complete extended data when IUCVCOM CONNECT
completes with return code 0 (signifying CC=0 from APPCVM CONNECT), and while the user exit (interrupt
handler) is being driven for the connection complete interrupt, Register 3 points to the CCED.

The virtual machine has no way of getting any CCED data that does not fit in the interrupt buffer extension.

Notes:

1. CCED data is returned for all synchronization levels, but it is most useful for SYNCLVL=SYNCPT
conversations.

2. You still get CCED data, even if a PIP data problem caused an IPAUDIT error.

The following shows the format of the connection complete extended data.

/ /

CCEDSIIL

CCEDFIXLCCEDTOTL

CCED DSECT

0

8

10
CCEDSII

18

30

40

48

20

0 1 2 3 4 5 6 7

/ /

/ /

CCEDCVC

CCEDLFQN

CCEDRFQN

CCEDUSER

CCEDCVCL CCEDLFQL CCEDRFQL

Figure 28. Connection Complete Extended Data

CCEDTOTL
contains the total length of the CCED.

CCEDFIXL
contains the length of the fixed length fields of the CCED (CCEDSIIL through CCEDUSER).

CCEDSIIL
contains the length of the session instance identifier (field CCEDSII). Valid values for the length are
0 and 2 through 8. If the session instance identifier is not known because neither the issuer of
CONNECT or ACCEPT specified it, this length field is 0, and CCEDSII is undefined.

CCEDCVCL
contains the length of the conversation correlator (field CCEDCVC). Valid values for the length are 0
through 8. If the conversation correlator is not known because the issuer of CONNECT did not specify
it and CP could not generate it, this length field is zero, and CCEDCVC is undefined.

Note: CP does not generate a conversation correlator if the CONNECT was specified with FMH5=YES.
This means that if the length of the conversation correlator specified in the FMH5 is zero, the
corresponding length in field CCEDCVCL is zero. CCEDCVCL is nonzero in all other cases.

CCEDLFQL
contains the length of the local network fully qualified LU name (field CCEDLFQN). Valid values for the
length are 0 through 17. If the local fully qualified LU name is not known because neither the issuer
of CONNECT or ACCEPT specified it, this length field is 0, and CCEDLFQN is undefined. (This happens
when the target program is on the same system as the source program and AVS is not used.)

CCEDRFQL
contains the length of the remote network fully qualified LU name (CCEDRFQN). Valid values for the
length are 0 through 17. If the remote fully qualified LU name is not known because neither the
issuer of CONNECT or ACCEPT specified it, this length field is zero, and CCEDRFQN is undefined. (This
happens when the target program is on the same system as the source program and AVS is not used.)

APPCVM CONNECT

430 z/VM: 7.3 CP Programming Services

Note: The following applies to all fields that have a corresponding length field in the CCED. If the
actual length of the field is less than the maximum length, the data is left-justified within the field and
padded on the right with blank characters (X'40'):

CCEDSII
contains the session instance identifier.

If the length CCEDSIIL is zero, this field is undefined and contains binary zeros. This is the case if
neither the virtual machine which issued the CONNECT nor the ACCEPT is the SNA communication
server.

CCEDCVC
contains the conversation correlator.

If the length CCEDCVCL is zero, the conversation correlator is undefined and contains binary zeros.

CCEDLFQN
contains the local network fully qualified LU name.

If the length CCEDLFQL is zero, this field is undefined and contains binary zeros. This is the case if
neither the virtual machine which issued the CONNECT nor the ACCEPT is the SNA communication
server.

CCEDRFQN
contains the remote network fully qualified LU name.

If the length CCEDRFQL is zero, this field is undefined and contains binary zeros. This is the case if
neither the virtual machine which issued the CONNECT nor the ACCEPT is the SNA communication
server.

CCEDUSER
is the access user ID provided for this conversation.

Because the source application does not always specify this user ID, this field allows the source
application to know what access security user ID was used when establishing this connection. The
value of this field depends on the SECURITY level specified by the invoker of CONNECT.

• When SECURITY NONE was specified, CCEDUSER contains binary zeros. This is the same value that
is passed to the target program, assuming that the target program is on a VM system. SECURITY
NONE might be presented to the target program differently on non-VM systems. However, the target
program will be able to determine that SECURITY NONE was specified.

• When SECURITY PGM was specified, CCEDUSER contains the user ID specified by the invoker. This
is the same value passed to the target program.

• When SECURITY SAME was specified, then CCEDUSER generally contains the logon user ID of the
invoker. However, there are two exceptions to this:

1. If the CONNECT was issued by a communication server on behalf of another user (IPCOMSRV is
on), CCEDUSER contains the user ID specified on the ALTID parameter of CONNECT.

2. If the CONNECT was not issued by a communication server on behalf of another user (IPCOMSRV
is off), but the invoker has an alternate user ID defined using DIAGNOSE code X'D4', CCEDUSER
contains this alternate user ID.

This is the same value that is passed to the target program if the target program is within a TSAF
collection. If the target program is on a VM system outside of the source TSAF collection, this user
ID may be mapped to another user ID on the target system.

What Happens to Your VM Communication Partner
This section describes the information presented to your partner program after your program issues
APPCVM CONNECT. It includes information on:

• Connection pending interrupt
• Connection pending extended data (allocate data).

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 431

Connection Pending Interrupt: When you invoke a CONNECT, your communication partner gets a
connection pending external interrupt (assuming it is enabled for interrupts). If you are connecting to
a private resource, the connection pending interrupt data goes to the private resource manager's virtual
machine control buffer; for all connections to local, global, or system resources, the connection pending
external interrupt data always goes to your communication partner's application buffer.

The connection pending external interrupt format is shown in the following figure.

/ / / / / /IPPIPLENIPFLAGS1IPPATHID0

8

10 IPRESID

18

20

IPTYPE

IPVMID

IPPOLLFG

0 1 2 3 4 5 6 7

IPBFLN2F /

/ /

IPFLAGS2

IPARML DSECT

Figure 29. Connection Pending External Interrupt

IPPATHID
contains the path ID on which a connection is pending.

IPFLAGS1
may contain the following bit flag:
IPREMOTE (X'02')

the connection is through ISFC, the TSAF virtual machine, AVS virtual machine, or another
communication server that specified a connection using ALTID.

IPTYPE
contains the interrupt type for a connection pending (IPTYPPCA, X'81').

IPPIPLEN
contains the number of bytes (in binary) for the PIP variable. If a PIP variable was not specified on the
APPCVM CONNECT, this field is set to zero. If IPPIPLEN is greater than zero, your partner can receive a
PIP variable in addition to the allocate data.

Your partner can obtain a PIP variable using APPCVM RECEIVE PIP=YES before accepting the
connection with IUCV ACCEPT. See “APPCVM RECEIVE” on page 451 for information about receiving
PIP variables. Programs running on CMS and using CMS support for communication do not need to
issue a receive to get a PIP variable. CMS receives the PIP variable and places its address in register 4.

IPFLAGS2
may contain one or more of the following bit flags:
IPINVOKE (X'80')

the IPRESID specified is a private resource. The private resource manager program should be
invoked if it is not currently active and if the connecting program is authorized in the $SERVER$
NAMES file.

Notes:

1. CMS examines this flag, and when necessary, invokes the appropriate application. Applications
not running in the CMS environment can provide this program invocation function if desired.

2. This flag is set when the incoming connection has an LU name qualifier (gateway name) of
*USERID. However, do not assume that the connecting application specified *USERID as the
gateway name; the SNA communication server (AVS) could have transformed the gateway
name originally specified by the connecting application.

IPLVLCF (X'40')
confirmation requests (SENDCNF and SENDCNFD functions) are permitted on this path.

IPMAPPED (X'10')
a mapped conversation is being established.

APPCVM CONNECT

432 z/VM: 7.3 CP Programming Services

IPIMMED (X'02')
the connecting program specified RETURN=IMMED.

IPSYNCPT (X'01')
the conversation was established with SYNCLVL=SYNCPT.

IPVMID
contains the source user ID of the virtual machine that wants to connect which may be one of the
following:

• The user ID specified with the ALTID parameter of APPCVM CONNECT
• An alternate user ID set by a DIAGNOSE code X'D4'
• The logon user ID of the virtual machine issuing the APPCVM CONNECT
• The access security user ID when a security type of PGM was specified on the APPCVM CONNECT.

The field may be zero, which indicates that the identity of the connecting virtual machine is unknown.
This is an 8-byte field, left-justified and padded with blanks as necessary.

IPRESID
for a noncommunication server, this field contains the name of the resource that is the target of the
connection (the transaction program name, or TPN).

For a communication server (including ISFC, and the TSAF and AVS virtual machines), this field
contains one of the following:

• The name of the target resource, if the connection is to a VM local, global, or system resource. (The
LU name qualifier on the connection was *IDENT.)

• The value *USERID, if the connection is to a VM private resource. (The LU name qualifier on the
connection was *USERID.)

• The value *GATEWAY, if the connection is outbound to a resource in the SNA network. (The LU name
qualifier on the connection was the name of an established gateway.)

IPBFLN2F
contains the length of pending allocate data. Refer to Connection Pending Extended Data for a further
explanation of pending allocate data.

Note: This allocate data consists of the VM area, the FMH5, and the VM-defined variable-length
section only. The length of the PIP variable is contained in the IPPIPLEN field of this interrupt.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

Connection Pending Extended Data (Allocate Data): When your partner is presented with a connection
pending interrupt, it is also presented with connection pending extended data (CPED), if the interrupt
buffer extension exists. The CPED is referred to as allocate data, which consists of three parts:

• VM architected area
• Attach FMH5 (Function Management Header Type 5)
• VM-defined variable-length section.

The allocate data is created from information in the entire connection parameter list, including the
connection parameter list extension.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 433

The CPED (allocate data) currently has a maximum of 919 bytes3: 164 bytes maximum length for the VM
area, 255 bytes maximum length for the FMH5, and 500 bytes maximum length (NGROUPS_MAX * 4) for
the VM-defined variable-length section.

Your partner can obtain the allocate data in two ways:

1. Use APPCVM RECEIVE to receive the data into buffers. If some of the allocate data does not fit in the
interrupt buffer extension, the virtual machine must still receive all the allocate data (as indicated by
the IPBFLN2F field in the connection pending interrupt), not just the portion of allocate data that fits in
the interrupt buffer extension.

2. When CMS (or GCS) drives the user exit with the connection pending interrupt, Register 3 contains the
address of the connection pending extended data.

Once a program accepts the connection, the allocate data is purged by CP. If the target of your connection
wants to use the allocate data, it must do so before accepting the connection—once the connection is
accepted, CP purges allocate data.

The three pieces of allocation data are described in the following sections. Diagrams of these areas are
shown in Figure 30 on page 435 and in Figure 31 on page 438.

CPED Part One-VM Area:

3 There are two exceptions to this:

• When the TSAF virtual machine is handling a connection to a private resource, the VM area is preceded
with an 8-byte node ID. Or when a communications server is making a connection with PIP data on behalf
of another virtual machine, the FMH5 is followed by the 8-byte VM communications area. As a result, the
maximum CPED length is 927.

• When the TSAF virtual machine is handling a connection to a private resource with PIP data, the
maximum CPED length will be 935.

APPCVM CONNECT

434 z/VM: 7.3 CP Programming Services

/ / / / / / / / / / / / / / /

CPEVSESL

CPEVFIXLCPEVTOTL

CPED DSECT

0

8

10
CPEVMODE

18

30

40

60

20

0 1 2 3 4 5 6 7

/ /

/ /

CPEVSESS

CPEVLUQ

CPEVTLU

CPEVLLUL CPEVRLUL

CPEVSRVL

50

CPEVPLUQ

68

70

78

80

88

90

98

A0

A4

CPEVRLUN

CPEVALT

CPEVCIT

CPEVIDFL CPEVEUID

CPEVRUIDCPEVEGID

CPEVRGID CPEVIDLN

CPEVVARL

CPEVCBPL

/ /

Figure 30. Connection Pending Extended Data, Part One: VM Area

CPEVTOTL
is the total length of the VM architected area, including this length field. CPEVTOTL can have one of
the following values: 32, 64, 120, 148, or 164.

CPEVFIXL
is the length of the fixed length fields area (the total length of the fields CPEVSESL through
CPEVVARL).

CPEVSRVL
contains zeros. (Handling PIP Variables has further information.)

CPEVSESL
is the length of the session instance identifier (field CPEVSESS). Valid lengths are 2 to 8.

CPEVLLUL
is the length of the local fully-qualified LU name (field CPEVLLUN). Valid lengths are 1 to 17.

CPEVRLUL
is the length of the remote fully-qualified LU name (field CPEVRLUN). Valid lengths are 1 to 17.

CPEVMODE
is the mode name.

CPEVSESS
is the session instance identifier. If the connection is being made by a noncommunication server, this
field contains binary zeros. Refer to VTAM Programming for LU 6.2 for more information about the
session instance identifier.

CPEVLKL
is the locally known LU name used by the connecting program as its target. This consists of two 8-byte
fields:

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 435

CPEVLUQ
the LU name qualifier (gateway, name) used on the initial connection.

CPEVTLU
the LU name of the target of the connection.

See Table 74 on page 420 for the LU name qualifiers and target LU names.

CPEVPLKL
is the locally known LU name that the target of the initial connect could use to connect back to the
source's LU. (Note that to connect back to the source LU, a program also needs to specify a TPN and
also needs to specify *USERID,userid. See Table 74 on page 420.)

This consists of two 8-byte fields:
CPEVPLUQ

the LU name qualifier (gateway) that the program uses to connect back to the source's LU.
CPEVPTLU

the LU name of the original source connecting program.

See Table 74 on page 420 for the LU name qualifiers and target LU names.

CPEVLLUN
is the local fully-qualified LU name. If the connection was made by a noncommunication server, this
field contains binary zeros.

CPEVRLUN
is the remote fully-qualified LU name. If the connection was made by a noncommunication server, this
field contains binary zeros.

See SNA Format and Protocol Reference Manual: Architectural Logic for LU Type 6.2 for details on the
local and remote fully-qualified LU names.

CPEVALT
is an alternate user ID the target virtual machine uses. The user ID must be left-justified and padded
on the right with blanks as necessary.

This alternate user ID is assigned to the target virtual machine when that machine accepts the
connection, and it is unassigned when that machine severs the connection. Connection pending
interrupts are not presented to a virtual machine that has an alternate user ID assigned; such
interrupts are deferred until the alternate user ID has been unassigned. No user ID is assigned if
this field contains all zeros.

CPEVCIT
contains the virtual configuration identification token (VCIT) of the virtual machine requesting the
connection, if that virtual machine is located in the same system as you are. If the partner virtual
machine is on a different system, then this field contains binary zeros.

VCITs are used as an alternative to a user ID as a way of identifying a virtual machine for certain
operations, such as the PERMIT function of the CP ADRSPACE macro.

CPEVIDFL
contains access control information. Valid values are:
1...

POSIX user ID (UID) and group ID (GID) information has been filled in.
.1..

Reserved
..1.

Reserved
...1

Reserved
.... 1...

Reserved

APPCVM CONNECT

436 z/VM: 7.3 CP Programming Services

.... .1..
Reserved

.... ..1.
Reserved

.... ...1
Reserved

If bit zero is on,
the access control information (effective and real UIDs, effective and real GIDs, and
supplementary GIDs) has been supplied.

All other bits
are reserved.

CPEVEUID
contains one of the following:

• the effective UID of the process that issued the CONNECT
• the database UID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVEGID
contains one of the following:

• the effective GID of the process that issued the CONNECT
• the database GID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVRUID
contains one of the following:

• the real UID of the process that issued the CONNECT
• the database UID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVRGID
contains one of the following:

• the real GID of the process that issued the CONNECT
• the database GID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVIDLN
contains the length of the supplementary GID area, CPESGIDV.

CPEVVARL
contains the length of the VM-defined variable-length section of the CPED.

CPEVCBPL
contains the connect-back partner LU name. This is the LU name that should be used (rather than
CPEVPLKL) by the target of the initial connect to connect back to the source's LU. (Note that to
connect back to the source LU, a program also needs to specify a TPN. See Table 74 on page 420.)
CPEVCBPL consists of two 8-byte fields:
CPEVCBLQ

The LU name qualifier (gateway) that the program uses to connect back to the source's LU.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 437

CPEVCBTL
The LU name of the original source connecting program.

See Table 74 on page 420 for the LU name qualifiers and target LU names.

CPED Part Two—FMH5: APPC (LU Type 6.2) uses an FMH5 to carry a request for a conversation to be
established between two transaction programs. This header identifies the transaction program that is the
target of a connection and that is invoked. An FMH5 is variable length.

It is possible for your program to receive FMH5 information from the SNA network. This FMH5 may be
different from the FMH5 generated by VM. For more information on what you can expect from the SNA
network, see SNA Format and Protocol Reference Manual: Architectural Logic for LU Type 6.2 for more
information on the FMH5.)

In APPC/VM, you are concerned with a certain type of FMH5—an Attach FMH5. Throughout the rest of this
document, we refer to the Attach FMH5 as simply FMH5.

If CP creates the FMH5, it specifies the values shown below. Fields CPEFLEN through CPEFTPN are
created for any connection; fields CPEFASIL and the security area are created only for connections with
SECURITY(SAME) or SECURITY(PGM).

CPEFLEN

CPED DSECT

0 1 2 3 4 5 6 7

CPEFTYPE CPEFCODE CPEFFLG1 CPEFPRML CPEFCONT / / / / / /

CPEFFLG2 CPEFTPNL

CPEFTPN

CPEFASIL

CPEFSEC

CPEFLUWL CPEFFQNL

CPEFFQN

CPEFLUIN CPEFLUSN

CPEFCORL

CPEFCORT

Figure 31. Connection Pending Extended Data, Part Two: FMH5

CPEFLEN
is the total length, in hexadecimal, of the Attach FMH5 (including this length byte).

CPEFTYPE
is the type code for FMH5, X'05'.

CPEFCODE
is the command code for APPC Attach, X'02FF'.

CPEFFLG1
may contain one or more of the following flags:
CPEFSECI (X'80')

indicates that access security user ID is already verified.
CPEFPIP (X'08')

indicates a PIP (program initialization parameter) variable is present.
CPEFPRML

is the total length of the fixed length parameters field, currently three bytes.

Note: Programs should be sensitive to the fact that this length could change.

CPEFCONT
contains the conversation type.
CPEFBASC (X'D0')

indicates a basic conversation

APPCVM CONNECT

438 z/VM: 7.3 CP Programming Services

CPEFMAPC (X'D1')
indicates a mapped conversation

CPEFFLG2
contains one of the following flags:
CPEFSYNO (X'00')

indicates that no confirmation requests can be issued (SYNCLVL=NONE).
CPEFSYCF (X'40')

indicates that confirmation requests can be issued (SYNCLVL=CONFIRM).
CPEFSYSP (X'80')

indicates that requests for confirmation, taking a synchronization point, or making a backout can
be issued (SYNCLVL=SYNCPT).

CPEFTPNL
is the length of the transaction program name.

CPEFTPN
is the transaction program name, which is a variable length.

Note: For connections inbound from an SNA network, CPEFTPN can be from 1 to 64 bytes in length.
However, in the case where CPEFTPN is greater than 8, CP uses only the first 8 bytes.

For SYNCLVL=SYNCPT conversions, only the first 24 bytes of the TPN length register the path to the
sync-point manager.

CPEFASIL
is the length of the security area (CPEFSEC). CP only creates this for SECURITY(SAME) and
SECURITY(PGM).

CPEFSSEC
is a variable-length area that contains one or two subfields of security information, depending on the
security level and the destination:

• For a SECURITY(SAME) connection, there will be one subfield—for a user ID.
• For a SECURITY(PGM) connection, there will be two subfields—one for a user ID and one for a

password.

The format of a security subfield is shown in the following figure.

CPEFSUBL

CPED DSECT

0 1 2

CPEFSUBT

CPEFDATA

Figure 32. Security Subfield in an Attach FMH5 for VM

The items in a security subfield are as follows:
CPEFSUBL

is the length of CPEFSUBT (one byte) plus the length of CPEFDATA.
CPEFSUBT

is a flag indicating the contents of CPEFDATA:
CPEFPROF (X'00')

if CPEFDATA contains a profile

Note: For connections inbound from an SNA network CPEFSUBT can contain a profile flag
(CPEFPROF).

CPEFPASS (X'01')
if CPEFDATA contains a password

CPEFUSER (X'02')
if CPEFDATA contains a user ID.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 439

CPEFDATA
contains either a user ID or a password, depending on the value for CPEFSUBT. For VM, this user
ID or password can be from one to eight bytes in length.

Note: For connections inbound from an SNA network, CPEFDATA can be from one to ten bytes in
length. However, the 9th and 10th byte, if present, must be blank.

CPEFLUWL
is the length of the LUWID, not including this length byte. The actual LUWID is composed of the
following parts:
CPEFFQNL

is the length of the fully qualified LU name, not including this length byte.
CPEFFQN

is the name of the network fully qualified LU name. This is a variable length.
CPEFLUIN

is the instance number of the LUWID.
CPEFLUSN

is the sequence number of the LUWID.
CPEFCORL

is the length of the sender's conversation correlator.
CPEFCORT

is the conversation correlator of the sender's transaction. This has a variable length.

CPED Part Three—VM-Defined Variable-Length Section: Immediately following the FHM5 is an optional
part of the allocate area, the VM-defined variable-length section. The length of this section is defined in
field CPEVVARL in the VM area, and is zero if this section does not exist.

The VM-defined variable-length section contains the supplementary GID area, a part of the POSIX access
control information. The length of the supplementary GID area is also defined in the VM area (CPEVIDLN).

CPESGIDS

0 1 2 3 4 5 6 7

CPED DSECT

Figure 33. Connection Pending Extended Data, Part Three: VM-Defined Variable-Length Section

Examples of Allocate Data for a Connection to a VM Private Resource: The following three scenarios
show examples of portions of allocate data for a connection to a private resource within a TSAF collection.
Assume that the extension information is provided either directly by the program or through a CMS
communication directory file.

1. If a source program, running in a virtual machine whose user ID is USER1, issues a connection with the
following information specified in the parameter list and extension:

• A resource ID (TPN) of PAYROLL
• Mode name omitted
• SYNCLVL=CONFIRM
• MAPPED=NO
• SECURITY(NONE).

the VM area and FMH5 is in this format (assuming PAYROLL is managed by USER2):

 VM architected area starts here

X'0040003800000000' Lengths

X'0000000000000000' Reserved

X'0000000000000000' Mode name omitted

APPCVM CONNECT

440 z/VM: 7.3 CP Programming Services

X'0000000000000000' Reserved

 Locally known LU name:

 (from source program's point of view)

X'5CE4E2C5D9C9C440' LU name qualifier, *USERID

X'E4E2C5D9F2404040' Target LU name, USER2

 Partner program's locally known LU name:

 (from priv. res. manager's point of view)

X'5CE4E2C5D9C9C440' Partner's LU name qualifier, *USERID

X'E4E2C5D9F1404040' Partner's target LU name, USER1

 FMH5 starts here

X'120502FF0003D00040' First 9 bytes

X'08D7C1E8D9D6D3D340' Transaction program named PAYROLL

2. If the source program specifies SECURITY(SAME) in the last example instead of SECURITY(NONE), the
FMH5 is in this format:

 FMH5 starts here

X'1A0502FF8003D00040' Already verified flag is set

X'08D7C1E8D9D6D3D340' Transaction program named PAYROLL

X'07' Length of security area

X'0602E4E2C5D9F1' User ID, USER1

3. If the source program specifies SECURITY(PGM) with an access user ID of USER3 and an access
password of PASS3 instead of SECURITY(NONE), the FMH5 is in the format below. Note that CP places
only the access user ID into the FMH5 before the FMH5 is sent to the private resource manager
program. (The target LU verifies the password, and in this case the target LU is the same as the source
LU.)

 FMH5 starts here

X'1A0502FF8003D00040' Already verified flag is set

X'08D7C1E8D9D6D3D340' Transaction program named PAYROLL

X'07' Length of security area

X'0602E4E2C5D9F3' Access user ID, USER3

Considerations for Communication Servers
A communication server is an intermediate program (a middleman) that makes connections on behalf
of another program. Communication servers must be authorized in the CP directory with the OPTION
COMSRV statement.

When a communication server makes a connection on behalf of another user, it specifies FMH5=YES on
its APPCVM CONNECT. This means that its connection parameter list extension contains allocate data. CP
does not create this FMH5 and does not verify the format or contents of the supplied FMH5; CP simply
passes it on to your partner.

CP can receive any valid FMH5 information from the SNA network and it may be different from the FMH5
generated from VM. For example, even though VM never generates the CPEFPROF flag in the CPEFSUBT
security subfield, it may receive an FMH5 from the SNA network that does use this flag.

For more information on valid FMH5 information, see SNA Format and Protocol Reference Manual:
Architectural Logic for LU Type 6.2.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 441

The VM area being created by a communication server must be in the same format as part one of the
CPED data (see Connection Pending Extended Data). However, a communication server creating a VM
area must note special considerations for several VM area fields:
CPEVSRVL

when a communication server is making a connection with PIP data on behalf of another virtual
machine, it must supply a value of 8 in this field. The value 8 is the length of the VM communication
server area which points to the PIP variable (see note). Refer to Handling PIP Variables for more
information.

Note: When a communication server specifies the length of the connection parameter list extension
(BUFLEN=) and a PIP variable is present, the maximum length of the extension is 915 bytes. Refer to
note “3” on page 415 for the BUFLEN= parameter when FMH5=YES is specified.

CPEVALT
is an alternate user ID that the target virtual machine uses. The user ID must be left-justified and
padded on the right with blanks as necessary.

This alternate user ID is assigned to the target virtual machine when that machine accepts the
connection, and it is unassigned when the connection is severed. Connection pending interrupts that
contain an alternate user ID are not presented to a virtual machine that already has an alternate
user ID assigned; such interrupts are deferred until the alternate user ID is unassigned. (However,
these types of connection pending interrupts are presented if the virtual machine is a communication
server.) No user ID is assigned if this field contains all zeros.

To specify this field, a virtual machine must be authorized in the CP directory for DIAGNOSE code
X'D4'. Note that this defaults to class B privilege. However, using VM's user class modification,
a virtual machine can be authorized to specify this alternate user ID without being given other
class B privileges. For more information about modifying user classes, see z/VM: CP Planning and
Administration.

CPEVIDFL
is a 1-byte field consisting of access control information. For valid values, see the description of
“CPEVIDFL” on page 436.

CPEVEUID
contains one of the following:

• the effective UID of the process that issued the CONNECT
• the database UID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVEGID
contains one of the following:

• the effective GID of the process that issued the CONNECT
• the database GID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVRUID
contains one of the following:

• the real UID of the process that issued the CONNECT
• the database UID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVRGID
contains one of the following:

APPCVM CONNECT

442 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

• the real GID of the process that issued the CONNECT
• the database GID value associated with the userid determined by the rules governing access

security and based on the access security type specified.

Refer to Additional Considerations for POSIX Security Values for details.

CPEVIDLN
contains the length of the supplementary GID area, CPESGIDV.

CPESGIDS (in the VM-defined variable-length section)
contains the list of supplementary GIDs, a list of 4-byte GIDs immediately following each other.

Refer to Connection Pending Extended Data for a complete description of the FMH5, and also SNA Format
and Protocol Reference Manual: Architectural Logic for LU Type 6.2.

Note: If you specify FMH5=YES, CMS communication directory resolution is disabled on any subsequent
CMSIUCV CONNECT or CMSIUCV RESOLVE functions.

When a communication server is establishing a connection for another virtual machine, the
communication server should use the ALTID keyword on APPCVM CONNECT. This parameter specifies
the user ID of the virtual machine that made the original connection and is the virtual machine for which
the connection is being made.

The communication server should use the user ID sent in the IPVMID field of the connection pending
interrupt for accounting and problem determination. The value of the user ID sent in the IPVMID field of
the connection pending interrupt depends on whether the connection is inbound from the SNA network or
outbound to the SNA network.

If the connection is inbound from the SNA network to a TSAF collection and the SECURITY value is:

• NONE, then IPVMID in the connection pending interrupt is set to binary zeros.
• SAME, then IPVMID in the connection pending interrupt is set to the source user ID.
• PGM, then IPVMID is set to the verified access user ID from the security field of the FMH5.

If the connection is outbound from a TSAF or CS collection to the SNA network, the IPVMID field in the
connection pending interrupt contains a source user ID. The source user ID is one of the following:

• The user ID specified with the ALTID parameter of APPCVM CONNECT
• An alternate user ID set by a DIAGNOSE code X'D4'
• The logon user ID of the virtual machine issuing the APPCVM CONNECT.

Note: The TSAF virtual machine gets an 8-byte node ID preceding the VM area, the FMH5, and the
VM-defined variable-length section when it is handling a private resource connection.

Additional Considerations for POSIX Security Values: The VM area and the supplementary GID area
together contain a set of fields known collectively as the POSIX access control information. These fields
are:

• CPEVIDFL
• CPEVEUID
• CPEVEGID
• CPEVRUID
• CPEVRGID
• CPEVIDLN
• CPEVSGIDS

If the communications server knows the appropriate values to fill in for these fields, it should do so and
ensure that bit zero of flag CPEVIDFL is one. If the communications server does not fill in these fields, it
must ensure that bit zero of flag CPEVIDFL is zero. CP will then fill in the information.

How the VM systems are connected together and the level of each of the systems involved makes a
difference in determining the source of the security data that is provided to the server.

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 443

• A server that resides on the same system as the requestor is provided with the POSIX security values
for the currently-active process.

• A server accessible via ISFC (the system is a member of a CS collection) where all systems involved
in the route from the requestor to the server are at least at the VM/ESA Version 2 Release 1.0 level is
provided with the POSIX security values for the currently-active process. If there is a system with CP at
a level prior to VM/ESA Version 2 Release 1.0 in the route, the POSIX security values are provided for
the currently-active process, but the supplementary GIDs are stripped off.

• A server accessible via TSAF where all systems involved in the route from the requestor to the server
are at least at the VM/ESA Version 2 Release 1.0 level and systems at prior levels have the appropriate
APAR installed (see the Conversion Notebook for details) is provided with the POSIX security values for
the currently-active process.

• A server accessible via AVS is provided with the database POSIX security values
• In each of the previous cases, if there is no currently-active process, the user's database POSIX security

values are provided.

Examples of Allocate Data for an Outbound Connection: The following three scenarios show examples
of portions of allocate data that the SNA communication server (AVS) gets for an outbound connection.
Assume that the extension information is provided either by the source program or through a CMS
communication directory file.

1. If a source program, running in a virtual machine whose user ID is USER1, issues a connection with the
following information specified in the parameter list and extension:

• A mode name of FAST
• An LU name qualifier GATE1
• A target LU name of ENDICOTT
• A resource ID of PAYROLL
• SYNCLVL=CONFIRM
• MAPPED=NO
• SECURITY(NONE).

The SNA communication server gets a VM area, an FMH5, and a VM-defined variable-length section in
this format:

 VM architected area starts here

X'0040003800000000' Lengths

X'0000000000000000' Reserved

X'C6C1E2E340404040' Mode name, FAST

X'0000000000000000' Reserved

 Locally known LU name:

 (from the source program's point of view)

X'C7C1E3C5F0404040' LU name qualifier, GATE1

X'C5D5C4C9C3D6E3E3' Target LU name, ENDICOTT

 Partner program's locally known LU name:

 (from the communication server's point of view)

X'5CE4E2C5D9C9C440' Partner's LU name qualifier, *USERID

X'E4E2C5D9F1404040' Partner's target LU name, USER1

 FMH5 starts here

X'120502FF0003D00040' First 9 bytes

APPCVM CONNECT

444 z/VM: 7.3 CP Programming Services

X'08D7C1E8D9D6D3D340' Transaction program named PAYROLL

2. If the source program specifies SECURITY(SAME) in the last example instead of SECURITY(NONE) the
communication server gets an FMH5 in this format:

 FMH5 starts here

X'1A0502FF8003D00040' Already verified flag is set

X'08D7C1E8D9D6D3D340' Transaction program named PAYROLL

X'07' Length of security area

X'0602E4E2C5D9F1' User ID, USER1

3. If the source program specifies SECURITY(PGM) with an access user ID of USER3 and an access
password of PASS3 instead of SECURITY(NONE), the communication server gets an FMH5 in the
format below. Note that in this case, CP places the access user ID and the access password in the
FMH5 before the FMH5 is sent to the communication server. (The target LU verifies the password, and
in this case the target LU is not the same as the source LU.)

 FMH5 starts here

X'210502FF0003D00040' First 9 bytes

X'08D7C1E8D9D6D3D340' Transaction program named PAYROLL

X'0E' Length of security area

X'0602E4E2C5D9F3' Access user ID, USER3

X'0601D7C1E2E2F3' Access password, PASS3

Handling PIP Variables: Communication servers typically make connections on behalf of other users.
They receive a connection pending interrupt, receive the allocate data, and pass on the allocate data
using APPCVM CONNECT, FMH5=YES. The allocate data, consisting of a VM area and FMH5, is already
contained in the parameter list extension.

Communication servers handle PIP variables a little differently. If the IPPIPLEN field in the connection
pending interrupt is greater than 0, indicating PIP data is present, the communication server must do the
following:

1. Receive the PIP variable using APPCVM RECEIVE PIP=YES.

Note: If the communication server program is running in CMS, CMS issues the APPCVM RECEIVE
PIP=YES. In CMS, when a user exit is driven for a connection pending interrupt, register 4 (R4) points
to the PIP variable if it is nonzero. The communication server can thus access the PIP variable before
accepting the conversation.

2. Set up the PIP variable using a single buffer or multiple buffers.
3. Create a VM communication server area that passes the PIP variable to the final target.
4. Specify a value of 8 in field CPEVSRVL of the VM area to denote the length of the VM communication

server area.
5. Include the length of the VM communication server area (eight bytes) when specifying the BUFLEN

parameter on APPCVM CONNECT.

The VM communication server area must follow the VM-defined variable-length section, and it has the
format shown in the following figure.

/ / / / / /CPECOMPLCPECOMFL

0 1 2 3 4 5 6 7

CPECOMPA

CPED DSECT

Figure 34. VM Communication Server Area

APPCVM CONNECT

Chapter 7. APPCVM Macro Functions 445

CPECOMFL
is a byte that contains the following flag:
CPECOMBL (X'40')

specifies that CPECOMPA contains the address of a list of multiple buffer addresses and lengths
for the PIP variable.

CPECOMPL
is the total number of bytes (in binary) for the PIP variable. Valid values are 0, 4, or any value from
8 to 32,767. (CPECOMPL should be equal to the IPPIPLEN field specified in the connection pending
interrupt.)

//////
is reserved and set to zeros.

CPECOMPA
specifies either the address of a single data buffer, or the address of a list that contains multiple buffer
addresses and lengths for the PIP variable.

If the VM communication server area is created, a communication server must add the area's length to
the allocate data length (the BUFLEN parameter or IPBFLN2F field) when it issues the APPCVM CONNECT,
FMH5=YES. If the communication server does not append the length, IPRCODE 50 results.

When the virtual machine that is the target of the APPCVM CONNECT receives the allocate data (using
APPCVM RECEIVE), the VM communication server area is not presented. As a result, the CPEVSRVL field
in the VM area contains binary zeros, and the allocate data length in the connection pending interrupt
reflects only the lengths of the VM area, the FMH5, and the VM-defined variable-length section.

Considerations when using an External Security Manager with security label checking: An APPCVM
CONNECT from a communication server will fail with a condition code of 1 (cc=1) and a return code of 15
(IPRCODE=X'0F') if security label checking is enabled on the system.

APPCVM CONNECT

446 z/VM: 7.3 CP Programming Services

APPCVM QRYSTATE (Query State)

label

APPCVM QRYSTATE ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
The QRYSTATE function gets the current state of any APPC/VM path on the issuing virtual machine.

Note: This is issued only by the CMS Protected Conversation Adapter (PCA).

Parameters
Required Parameters:

PRMLIST=
specifies the address of the APPC/VM parameter list. The address must be a guest real address (real
to the virtual machine), and the parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:

MF=L
generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM QRYSTATE.

PATHID=
specifies the path ID on which the state is to be queried.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.

Input Parameter List: The APPCVM QRYSTATE parameter list has the following input format:

APPCVM QRYSTATE (Query State)

Chapter 7. APPCVM Macro Functions 447

IPFLAGS1IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ /

/ /

/ /IPSIPCD

IPARML DSECT

Figure 35. APPCVM QRYSTATE Input Parameter List

The parameters are:
IPPATHID

contains the path ID on which the state is to be queried.
IPFLAGS1

contains the following input bit flag:
IPAPPC (X'08')

This is an APPC function.
IPSIPCD

this value should always be set.
X'00'

this value is reserved for IBM use only.
X'01'

this value is reserved for IBM use only.
X'02'

this value is reserved for IBM use only.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

Not Possible X X Not Possible

QRYSTATE always completes immediately.
CC=1

An error occurred before the QRYSTATE was initiated. The output parameter list is the same as the
input shown in QRYSTATE Input Parameter List, except that one of the following return codes is stored
in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Meaning

X'01' 1 The specified path ID is not yet established.

X'1E' 30 This is a non-APPC path.

CC=2
QRYSTATE completed (also see SENDREQ Completion). The output parameter list when CC=2 is:

APPCVM QRYSTATE (Query State)

448 z/VM: 7.3 CP Programming Services

IPFLAGS1IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ /

/ /

IPSTATEIPSIPFG

IPARML DSECT

IPSPCMOD IPSYCLVL

Figure 36. APPCVM QRYSTATE Output Parameter List

The parameters are:
IPPATHID

contains the path ID on which QRYSTATE completed.
IPFLAGS1

may contain the following output bit flag:
IPLRECL (X'10')

A logical record is in progress.
IPSIPFG

is reserved for IBM use only.
X'00'

this value is reserved for IBM use only.
X'01'

this value is reserved for IBM use only.
IPSTATE

contains the current state for this path, which may have one of the following values:
IPENDING (X'00')

A function is pending on the path. When the function completes, the state change will occur.
IPRESET (X'01')

The path is in the Reset state.
IPCONNCT (X'02')

The path is in the Connect state.
IPSENDST (X'03')

The path is in the Send state.
IPRECVST (X'04')

The path is in the Receive state.
IPCONFRM (X'05')

The path is in the Confirm state.
IPSEVER (X'06')

The path is in the Sever state.
IPDEFRCV (X'07')

The path is in the Defer_Receive state.
IPDEFSVR (X'08')

The path is in the Defer_Sever state.
IPREPARE (X'09')

The path is in the Prepare_Received state.
X'0A'

this value is reserved for IBM use only.
IPURQCMT (X'0B')

The path is in the Unsolicited_Request_Commit_Received state.

APPCVM QRYSTATE (Query State)

Chapter 7. APPCVM Macro Functions 449

IPBKOUT (X'0D')
The path is in the Backout_Received state.

IPBKREQ (X'0E')
The path is in the Backout_Required state.

IPSPCMOD
is reserved for IBM use only.
X'03'

this value is reserved for IBM use only.
X'04'

this value is reserved for IBM use only.
X'06'

this value is reserved for IBM use only.
IPSYCLVL

indicates the synchronization level for the path.
IPSYCNON (X'00')

SYNCLVL=NONE.
IPSYCCNF (X'01')

SYNCLVL=CONFIRM.
IPSYCSP (X'02')

SYNCLVL=SYNCPT.

Program Exceptions

The program exceptions for QRYSTATE are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an application interrupt buffer has not been declared, or the invoking
virtual machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes

There are no state changes associated with the QRYSTATE function.

APPCVM QRYSTATE (Query State)

450 z/VM: 7.3 CP Programming Services

APPCVM RECEIVE

label

APPCVM RECEIVE ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

,BUFLIST=
2

YES

NO

,BUFFER= label

( reg)

,BUFLEN= label

( reg)

,WAIT=
2

YES

NO

,PIP=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
Use the RECEIVE function to receive data that is sent to your program.

In addition to receiving regular application data (sent by APPCVM SENDDATA), you can receive these
special types of data:

• Log data, sent from your communication partner so that you can diagnose an error indication.
• Allocate data, sent from your communication partner to describe its connection request to you. You can

receive this before accepting a connection.
• A program initialization parameter (PIP) variable. You can receive this before accepting a connection.

Refer to Message Pending External Interrupt for format and a description of the message pending
interrupt.

When you issue RECEIVE and no message is currently pending on the path, the receive area that you
specify is allocated for future messages on the path.

Parameters
Required Parameter:

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 451

PRMLIST=
lets you specify the address of the APPC/VM parameter list. The address must be a guest real
address, that is, the address is within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM RECEIVE function.

PATHID=
lets you identify the path on which to receive data.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
BUFLIST=

specifies the type of buffer address that the BUFFER parameter refers to. (See Specifying Buffers on
RECEIVE.)
YES

refers to a list of addresses.
NO

refers to a single address.
BUFFER=

specifies the addresses of the areas into which CP places the data received. If BUFLIST=YES, this
BUFFER address is the start of a list of addresses of discontiguous buffers. (See Specifying Buffers on
RECEIVE.)
label

is the relocatable label in storage where CP places the data received.
(reg)

is the register number that contains the address in storage where CP places the data received.
This storage area is where CP places the message.

BUFLEN=
specifies the total length of the area(s) into which APPC/VM places the data. (See Specifying Buffers
on RECEIVE.)
label

is the relocatable label of the fullword that contains the length.
(reg)

is the register number that contains the length.
WAIT=

lets you specify when control is returned to your virtual machine.
YES

returns control to your virtual machine after the RECEIVE completes.
NO

returns control to your virtual machine when you initiate the RECEIVE. If the RECEIVE does not
complete immediately, you are notified with a function complete interrupt when it does complete.

PIP=
lets you specify whether or not the APPCVM RECEIVE is for a PIP variable.

APPCVM RECEIVE

452 z/VM: 7.3 CP Programming Services

YES
specifies that this APPCVM RECEIVE is for the PIP variable. PIP=YES can only be specified from
the Connect state.

You can determine the total length of the PIP variable from the IPPIPLEN field in the connection
pending interrupt. If you receive only part of the PIP variable or have not yet received any portion
of the PIP variable, and then either accept or sever the connection, any remaining portion of the
PIP variable gets purged.

You can receive the PIP variable before any allocate data is received, after all the allocate data is
received, or after only a portion of the allocate data is received.

NO
specifies that this APPCVM RECEIVE is not for the PIP variable.

Input Parameter List: The APPCVM RECEIVE parameter list has the input format shown in the following
figure.

IPFLAGS1IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ / / / /

IPARML DSECT

/ /

IPFLAGS2

IPBFADR1

/ /IPBFLN1F

Figure 37. APPCVM RECEIVE Input Parameter List

IPPATHID
contains the path ID over which you receive data.

IPFLAGS1
contains one of the following input bit flags:
IPBUFLST (X'40')

a buffer list was specified.
IPAPPC (X'08')

an APPC function was issued.
IPFLAGS2

contains the following input bit flag:
IPWAIT (X'80')

a synchronous return is desired (WAIT=YES was specified). IPWAIT is ignored if IPPIP is on.
IPPIP (X'20')

this program is receiving the PIP variable (PIP=YES was specified).
IPBFADR1

contains the address of the area where APPC/VM stores the received data or the address of the list.
See the following section, Specifying Buffers on RECEIVE.

IPBFLN1F
contains receive area length that IPBFADR1 specifies. See Specifying Buffers on RECEIVE.

Usage Notes
Specifying Buffers on RECEIVE: You can use the buffer support with APPCVM RECEIVE to receive normal
application data, log data, allocate data, and PIP variables. You can receive data by specifying a single
buffer using one address and one length, or by specifying multiple buffers using a list of addresses and
lengths.

When you specify a single buffer using one address and one length:

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 453

• BUFFER specifies the address.
• BUFLEN specifies the length.
• BUFLIST must be equal to NO.

When you specify multiple buffers with a list of addresses and lengths:

• BUFFER specifies the address of the list.
• BUFLEN specifies the sum of the lengths of the buffers in the list.
• BUFLIST must be equal to YES.

When specifying address lists (BUFLIST=YES), note the following:

1. The list must begin on a doubleword boundary.
2. Each list entry must be two fullwords:

• The first fullword is the address of that portion of the list.
• The second fullword is the length of that portion of the list.

3. The addresses and lengths in the address list are updated during APPC/VM processing. Do not alter
them during processing or assume that they are unchanged when APPC/VM processing is complete.

4. APPC/VM assumes that there is another entry in the list until the sum of the lengths of the entries
processed is equal to the total length specified by BUFLEN.

Note: Do not code a receiving program so that the length of the receive buffer is based on the length of
your communication partner's send buffer.

When a program on the local system sends data, the length in the message pending interrupt is the
actual length of the data sent. However, when a program on a remote system sends data, intermediate
communication servers (like the TSAF virtual machine) could break up a single data stream into multiple
data streams, or combine numerous data streams. As a result, the length shown in your message pending
interrupt is the length of the data sent by the intermediate communication server, not the length of the
data sent by the source program. For example, your communication partner could send a data stream of 0
length followed by a data stream of 100 bytes. However, your program, the target, might get only one data
stream message with a length of 100 bytes.

When participating in a basic conversation, your program should examine the 2-byte logical record length
(LL) field to determine how much data your communication partner has sent on a logical record. See
Setting Up the Data To Send for more information on logical records.

Condition Codes and Return Codes

CC=0
The RECEIVE started successfully, but has not yet completed. If your virtual machine is enabled for
function complete interrupts, one is presented to your virtual machine when RECEIVE completes. The
interrupt format is the same as the RECEIVE output parameter list (see CC=2 or CC=3). When you get
the function complete interrupt, check the IPAUDIT field for error information.

When control is returned to your virtual machine with CC=0, the parameter list may have been altered.

Note: CC=0 is not possible when WAIT=YES or PIP=YES.

CC=1
An error occurred before the RECEIVE was initiated. The parameter list format is the same as the
input shown in RECEIVE Input Parameter List, except that one of the following return codes is stored
in IPRCODE (byte 3):

APPCVM RECEIVE

454 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

X'03' 3 A function is pending on this path.

X'06' 6 A storage protection exception occurred on one of your partner's buffers that
was used for one of the following:

• Application data (from APPCVM SENDDATA)
• The PIP variable (from APPCVM CONNECT)
• Log data (from APPCVM SENDERR or APPCVM SEVER)

This applies only when your RECEIVE was issued after a message was
pending on the path.

X'07' 7 An addressing exception occurred on one of your partner's buffers that was
used for one of the following:

• Application data (from APPCVM SENDDATA)
• The PIP variable (from APPCVM CONNECT)
• Log data (from APPCVM SENDERR or APPCVM SEVER)

This applies only when your RECEIVE was issued after a message was
pending on the path.

X'0A' 10 Your receive buffer length is negative.

X'14' 20 The PIP variable cannot be received because the originator has severed the
path.

X'16' 22 Your communication partner's send buffer list or PIP variable buffer list is
invalid.

X'17' 23 A length specified in your receive buffer list is negative.

X'18' 24 The total length specified (BUFLEN) is not the total of the receive buffer
lengths in your list.

X'1A' 26 The receive buffer list address is not on a doubleword boundary.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 RECEIVE is an invalid function from the Connect state. (See RECEIVE State
Checks and State Changes.)

X'21' 33 RECEIVE PIP=YES is an invalid function from the Send state.

X'22' 34 RECEIVE PIP=YES is an invalid function from the Receive state.

X'23' 35 RECEIVE is an invalid function from the Confirm state.

X'24' 36 RECEIVE is an invalid function from the Sever state when the receive is not
for log data.

X'2B' 43 There is an invalid logical record length in your communication partner's data
stream.

X'2C' 44 Before issuing RECEIVE, you started—but did not finish—sending a logical
record.

X'2D' 45 Your communication partner started—but did not finish—sending a logical
record and tried to change to the Receive state.

X'38' 56 WAIT=YES was specified on a function issued to this same virtual machine.

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 455

Hex
Code

Decimal
Code

Why the Error Occurred

X'3B' 59 Your partner specified an invalid GDS ID within the PIP variable.

X'3C' 60 Your partner specified an invalid length for a PIP subfield, or the total length
in bytes 0 and 1 of the PIP variable is not the sum of the lengths of the PIP
subfields.

X'44' 68 RECEIVE is invalid from the Reset state.

X'45' 69 RECEIVE is invalid from the Defer_Receive state.

X'46' 70 RECEIVE is invalid from the Defer_Sever state.

X'47' 71 RECEIVE is invalid from the Prepare_Received state.

X'49' 73 RECEIVE is invalid from the Unsolicited_Request_Commit_Received state.

X'4B' 75 RECEIVE is invalid from the Backout_Received state.

X'4C' 76 RECEIVE is invalid from the Backout_Required state.

X'5B' 91 A paging or storage error was detected in your communication partner's
SEND data area

X'5C' 92 A paging or storage error was detected in the RECEIVE data area

These return codes can only occur if a message is pending for the specified path at the time you
issued the RECEIVE: X'06', X'07', X'16', X'17', X'18', X'2B', and X'2D'.

If no message is pending for the specified path at the time you issued the RECEIVE, CP reports the
above error conditions (X'06', X'07', X'16', X'17', X'18', X'2B', and X'2D') to you in the corresponding
IPAUDIT flags of your RECEIVE output parameter list, when your RECEIVE completes.

Notes:

1. Whenever CC=1, fields in the parameter list may have been altered.
2. For return codes X'16', X'17', X'18', X'2B', X'2D', X'3B', and X'3C' some data may have been

received, but the amount is unpredictable.

CC=2 or CC=3

The RECEIVE is complete. (Also see RECEIVE Completion.) When CC=2, the function completed with
no errors; when CC=3, there is error information in IPAUDIT.

Note: CC=3 is not possible when WAIT=NO or PIP=YES.

The output parameter list when CC=2 or CC=3 is shown in the following figure.

IPFLAGS1IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPWHATRC

IPAUDIT

/ /IPBFLN1F

IPTYPE IPCODE

IPBFLN2F IPPOLLFG IPSTATE IPWHTRC2 / / / / / /

IPSENDOP

Figure 38. APPCVM RECEIVE Output Parameter List (Function Complete Interrupt)

IPPATHID
contains the path ID on which the function is complete.

APPCVM RECEIVE

456 z/VM: 7.3 CP Programming Services

IPFLAGS1
may contain one or more of the following bit flags:
IPFLUSH (X'40')

for a non-sync-point conversation, your partner issued SENDDATA FLUSH=YES. In this case,
this flag can only be seen by a communication server.

For a sync-point conversation, this flag is set under two conditions:

• Your partner issued SENDDATA FLUSH=YES BUFLEN=0 from the Send state. In this case, you
must be a communication server to see this flag.

• Your partner issued a SENDDATA FLUSH=YES from the Defer_Receive state. In this case, you
see this flag even if you are not a communication server.

X'20'
This value is reserved for IBM use only.

IPTYPE
contains the function complete interrupt code (IPTYPFCA, X'87').

IPCODE
contains the error, sever, or sense code from the partner's SENDERR, SEVER, or attempt to initiate
a backout sync-point. IPCODE is only valid when IPWHATRC=IPERROR, IPSABEND, or X'14'. See
“APPC/VM Sever, Error, and Sense Codes That You Can Get” on page 399.

IPWHATRC
contains the what-received code:
IPDATA (X'01')

only data was received, with no other indications.
IPSEND (X'02')

Your partner has switched the conversation around (using RECEIVE, SENDDATA
RECEIVE=YES, or SENDDATA FLUSH=YES from the Defer_Receive state) and you are now in
the Send state.

IPERROR (X'03')
Your partner issued SENDERR.

IPCNFRM (X'04')
Your partner issued SENDCNF TYPE=NORMAL.

IPCNFSEV (X'05')
Your partner issued SENDCNF TYPE=SEVER.

IPSNORM (X'08')
Your partner issued a SEVER TYPE=NORMAL.

IPSABEND (X'09')
Your partner issued a SEVER TYPE=ABEND.

IPALLOCD (X'0B')
The allocate data was received.

IPSNDCNF (X'0C')
Your partner issued SENDCNF TYPE=PREPRECV.

IPLGDATA (X'0D')
The log data was received.

IPPIPDAT (X'0E')
The PIP variable has been received.

IPPREPAR (X'0F')
The function was completed with an indication that your partner initiated a CRR commit
sync-point. You should commit the CMS work unit of which this conversation is a part.

IPREQCOM (X'10')
The function was completed with an indication that your partner initiated a CRR commit
sync-point. You should commit the CMS work unit of which this conversation is a part.

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 457

IPBACK (X'14')
The function was completed with an indication that your partner initiated a CRR backout
sync-point. You should back out the CMS work unit of which this conversation is a part.

X'16'
This value is reserved for IBM use only.

Notes:

1. Data may have been received for any IPWHATRC value.
2. You get IPDATA in IPWHATRC until you receive all the data that your partner (or

intermediate communication server) sent with or before a nondata function. For example,
IPWHATRC would be IPDATA if:

a. Your partner (or intermediate communication server) issued SENDDATA RECEIVE=YES
with a data length of 200 bytes, and

b. You did a RECEIVE for 199 bytes.

When you issue a RECEIVE for the 200th byte, then IPWHATRC would become IPSEND.

IPSENDOP
contains the SEND option code:
IPRECV (X'0A')

The function being completed is a RECEIVE.
IPAUDIT

has four fields that may contain error information.

Note: In the following descriptions,

• Receive area refers to either a receive buffer specified directly on an APPCVM RECEIVE,
BUFFER= or a receive buffer that is part of a buffer list.

• Send area refers to a buffer specified for the PIP variable (on APPCVM CONNECT), a buffer
specified directly on an APPCVM SENDDATA, BUFFER=, or a buffer that is part of a buffer list.

IPAUDIT1 (first byte of IPAUDIT)
may contain one of the following bit flags:
IPADANPX (X'10')

A protection exception occurred on your receive area. This only applies if your RECEIVE
was issued before a message was pending on the path. (It does not apply when receiving
log data.)

IPADANAX (X'08')
An addressing exception occurred on your receive area. This only applies if your RECEIVE
was issued before a message was pending on the path. (It does not apply when receiving
log data.)

IPAUDIT2 (second byte of IPAUDIT)
May contain one of the following bit flags:
IPADRPPX (X'20')

A protection exception occurred on your communication partner's send area. This only
applies if your RECEIVE was issued before a message was pending on the path. (It does
not apply when log data is being sent.)

IPADRPAX (X'10')
An addressing exception occurred on your communication partner's send area. This only
applies if your RECEIVE was issued before a message was pending on the path. (It does
not apply when log data is being sent.)

IPADRLST (X'04')
Your communication partner had an invalid SEND list.

IPAUDIT3 (third byte of IPAUDIT)
May contain one of the following bit flags:

APPCVM RECEIVE

458 z/VM: 7.3 CP Programming Services

IPADALEN (X'40')
A bad length is in your RECEIVE buffer list.

IPADATOT (X'10')
Your RECEIVE buffer length is invalid.

IPADTINV (X'08')
Your communication partner's data stream has an invalid logical record length.

IPADTTRN (X'02')
Your communication partner started, but did not finish, sending a logical record and tried
to change to the Receive state.

IPASYRC (fourth byte of IPAUDIT)
May contain one of the following error codes (for which and appropriate IPRCODE was given to
your communication partner):

Hex
Code

Decimal
Code

Meaning

X'5B' 91 A paging or storage error was detected in your communication
partner's SEND data area

X'5C' 92 A paging or storage error was detected in the RECEIVE data area.

Note: IPAUDIT X'5D' and X'5E' are possible on a RECEIVE when the partner issues a
RECEIVE prior to the SENDDATA (RECEIVE ahead).

IPBFLN1F
contains the length of pending log data for you to receive. This field is only meaningful when
IPWHATRC is equal to IPSABEND or IPERROR.

IPBFLN2F
contains one of the following depending on the value of IPWHATRC:

• If IPWHATRC is equal to IPDATA, IPBFLN2F contains the number of bytes that were sent but
did not fit into your defined RECEIVE area. This length is the byte length of your communication
partner's (or communication server's) application data, allocation data, log data, or PIP variable,
minus the length that you already received.

For example, your communication partner or communication server issues SENDDATA with a
data length of 100, and you issue RECEIVE with a buffer length of 40, then IPBFLN2F would
contain 60.

• If IPWHATRC is not equal to IPDATA, then IPBFLN2F contains the number of unused bytes
remaining in your RECEIVE area.

For example, your communication partner or communication server issues SENDDATA
RECEIVE=YES with a data length of 150, and you issue RECEIVE with a buffer length of 200,
then IPWHATRC would contain IPSEND and IPBFLN2F would contain 50.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see
a reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
Contains the current state for this path, which may be any of the following values:

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 459

IPCONNCT (X'02')
The path is in the Connect state.

IPSENDST (X'03')
The path is in the Send state.

IPRECVST (X'04')
The path is in the Receive state.

IPCONFRM (X'05')
The path is in the Confirm state.

IPSEVER (X'06')
The path is in the Sever state.

IPREPARE (X'09')
The path is in the Prepare_Received state.

IPURQCMT (X'0B')
The path is in the Unsolicited_Request_Commit_Received state.

IPBKOUT (X'0D')
The path is in the Backout_Received state.

IPBKREQ (X'0E')
The path is in the Backout_Required state.

IPWHTRC2
further qualifies the IPWHATRC=IPPREPAR and IPWHATRC=IPREQCOM.
IPTPSEND (X'03')

Your partner requests to be in the Send state upon the successful completion of the commit
sync-point.

IPTPRECV (X'04')
Your partner requests to be in the Receive state upon the successful completion of the commit
sync-point.

IPTPSEVR (X'06')
Your partner requests to be in the Sever state upon the successful completion of the commit
sync-point.

Program Exceptions

The program exceptions for RECEIVE are:

Type Description

Addressing The parameter list address is outside of the virtual machine. An addressing
exception also occurs for any of the following:

• An invalid buffer address in the RECEIVE parameter list
• An invalid buffer list address in the RECEIVE parameter list
• An invalid buffer address in the RECEIVE buffer list.

This only applies if the RECEIVE is issued after a message is pending on the path.
(This includes messages for application data, the PIP variable, and log data.)

Operation Either an external interrupt buffer is not declared, or the invoking virtual machine
is not in the supervisor state.

APPCVM RECEIVE

460 z/VM: 7.3 CP Programming Services

Type Description

Protection The storage key of the parameter list address does not match the key of the user.
A protection exception also occurs for any of the following:

• The buffer address in the parameter list is protected.
• The buffer list address in the parameter list is protected.
• A buffer address in the buffer list is protected.

This only applies if the RECEIVE is issued after a message is pending on the path.
(This includes messages for application data, the PIP variable, and log data.)

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check results when APPCVM RECEIVE is issued from an improper state (you receive an IPRCODE
when you issue a function from the improper state). You get a state check (IPRCODE=X'20') if you issue an
APPCVM RECEIVE from the Connect state under the following conditions:

• After you have received all the allocate data
• After you have received all the PIP variable (when PIP=YES)
• When no PIP variable was sent (when PIP=YES)
• You issue an APPCVM RECEIVE PIP=YES after a previous APPCVM RECEIVE PIP=YES was invalid.

You get a state check (IPRCODE=X'2B' or X'2C') if you issue APPCVM RECEIVE PIP=YES from the Receive
or the Send state. You also get a state check (IPRCODE=X'2C') if you start, but do not finish, sending a
logical record on this path. See the list of APPCVM RECEIVE return codes for all state check conditions.

No state change occurs when CC=1. State changes can occur when either of the following happens:

• The function completes, and control is returned to the virtual machine (CC=2 or 3).
• The function complete interrupt is accepted by your virtual machine (or you use IUCV TESTCMPL to

discover that the function completed).

The state change depends on the IPWHATRC value you got in the output parameter list:

IPWHATRC
Value New

State

Cause

IPDATA Receive or Connect or Sever Depends on your state when you invoke RECEIVE:

• If you are not in the Connect state or the Sever state,
you enter the Receive state. The RECEIVE completed
without you receiving any nondata indications. Your
communication partner sent data to complete the
RECEIVE, or the receive length was 0.

• If you are in the Connect state, you remain in the
Connect state. An IPDATA indication means there is
still some allocation data or a portion of PIP variable
left for you to receive.

• If you are in the Sever state, you remain in the Sever
state. An IPDATA indication means that there is still
some log data left for you to receive.

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 461

IPWHATRC
Value New

State

Cause

IPSEND Send Your communication partner issued RECEIVE or
SENDDATA RECEIVE=YES to complete the RECEIVE.

Otherwise, your communication partner issued
SENDDATA FLUSH=YES, BUFLEN=0 from the
Defer_Receive state.

IPERROR Receive Your communication partner issued a SENDERR to
complete the RECEIVE.

IPCNFRM Confirm Your communication partner issued a SENDCNF
TYPE=NORMAL to complete the RECEIVE.

IPSNDCNF Confirm The partner is requesting confirmation that it can enter
the Receive state. Your communication partner issued
a SENDCNF TYPE=PREPRECV from the Send state to
complete the RECEIVE.

Your communication partner issued SENDCNF
TYPE=PREPRECV from the Defer_Receive state.

IPCNFSEV Confirm Your communication partner issued a SENDCNF
TYPE=SEVER to complete the RECEIVE.

IPSNORM Sever Your communication partner issued a SEVER
TYPE=NORMAL to complete the RECEIVE.

IPSABEND Sever Your communication partner issued a SEVER
TYPE=ABEND to complete the RECEIVE.

IPALLOCD Connect You completed the RECEIVE of the allocate data.

IPPIPDAT Connect You completed the RECEIVE of the PIP variable.

IPLGDATA Receive or Sever You completed the RECEIVE of the log data. If you were
in the Receive state, you remain in the Receive state;
if you were in the Sever state, you remain in the Sever
state.

IPPREPAR Prepare_Received Your communications partner initiated a commit sync-
point to complete the RECEIVE.

IPREQCOM Unsolicited_Request_
Commit_Received

Your communications partner initiated a commit sync-
point to complete the RECEIVE.

IPBACK Backout_Received Your communications partner initiated a backout sync-
point to complete the RECEIVE.

X'16' This state is reserved for IBM use only.

Completion Conditions
You cannot issue another RECEIVE, SEND, or SEVER TYPE=NORMAL on the same path until your
outstanding RECEIVE completes. (In this case, SEND refers to the set of APPC/VM send functions:
SENDCNF, SENDCNFD, SENDDATA, SENDERR, and SENDREQ.) Your RECEIVE completes immediately
when it is issued for the following:

• A pending message that has no data
• A pending message that has enough data to fill your receive area.

APPCVM RECEIVE

462 z/VM: 7.3 CP Programming Services

If the amount of pending data is not enough to fill your receive area, your program's RECEIVE waits until
either it gets more data or gets a nondata indication from your partner.

Your RECEIVE also completes when your receive area is larger than the data in the pending message, but
you get an indication (in IPWHATRC) that:

• Your communication partner issued RECEIVE, SENDCNF, SENDDATA RECEIVE=YES, SENDERR, or
SEVER.

• You have received all allocate data, PIP variables, or log data.

When your receive area has a 0 length and you are in:

• The Receive state, the RECEIVE completes immediately
• The Send state, the RECEIVE completes when your communication partner or an intermediate

communication server receives notice that it is in the Send state.

Note the following:

• When the RECEIVE is for allocate data, you get IPDATA in IPWHATRC if you only partially receive
allocate data. When you receive all the allocate data, you get IPALLOCD in IPWHATRC.

• When the RECEIVE is for a PIP variable, you get IPDATA in IPWHATRC if you only partially receive the
PIP variable. When you receive the entire PIP variable, you get IPPIPDAT in IPWHATRC.

• When the RECEIVE is for log data, you get IPDATA in IPWHATRC if you only partially receive log data.
When you receive all the log data, you get IPLGDATA in IPWHATRC.

• Your RECEIVE always completes immediately if your receive area is larger than pending allocate data,
PIP variable, or log data.

• Except when receiving allocation data or PIP data, if your communication partner severs, your RECEIVE
completes immediately. The IPWHATRC value in your output parameter list indicates the sever, and you
are presented with a sever interrupt.

What Happens to Your VM Communication Partner
If an intermediate communication server (like TSAF, ISFC, or AVS) handles communication between you
and your partner, the information in this section also describes what happens to the intermediate server
when you issue RECEIVE.

After you issue APPCVM RECEIVE, your communication partner may get a function complete interrupt, a
message pending interrupt, or no indication at all.

Your partner gets a function complete interrupt for the following conditions, your partner:

• Has a SENDDATA RECEIVE=NO or SENDDATA RECEIVE=YES with a 0 answer length outstanding on its
half of the path, and you have received all the data sent.

• Issued SENDERR without sending log data.
• Issued SENDERR with log data, and you have received all the log data.
• Issued APPCVM SEVER TYPE=ABEND with log data, and you have received all the log data.

If your communication partner has a SENDCNF or SENDDATA RECEIVE=YES outstanding on its half of the
path, your partner does not get any notification of your actions on that path until you respond.

Your communication partner does not get an indication that you have received allocate data or PIP
variable.

Note: Your communication partner should not reuse the data buffers for the PIP variable until the
connection request has completed.

Your partner gets a message pending interrupt if your partner:

• Has no function outstanding on its half of the path
• Is in the Receive state on its half of the path
• Is enabled for message pending interrupts.

APPCVM RECEIVE

Chapter 7. APPCVM Macro Functions 463

See Message Pending External Interrupt.

APPCVM RECEIVE

464 z/VM: 7.3 CP Programming Services

APPCVM SENDCNF (Send Confirm)

label

APPCVM SENDCNF ,PRMLIST= label

( reg)

,TYPE=
1

NORMAL

SEVER

PREPRECV

Optional Parameters
2

Optional Parameters

,MF=L ,PATHID= label

( reg)

,WAIT=
1

YES

NO

Notes:
1 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.
2 Optional parameters can be entered in any order.

Purpose
Use the SENDCNF (Send Confirm) function to send a confirmation request from your program to
your communication partner. Requesting confirmation helps to establish synchronization between two
programs.

For either program in a conversation to use SENDCNF, the program establishing a conversation must
specify SYNCLVL=CONFIRM or SYNCLVL=SYNCPT on the APPCVM CONNECT.

Your partner program can reply to your SENDCNF by sending a positive response using SENDCNFD (Send
Confirmed), sending a negative response using SENDERR, or issuing SEVER.

Parameters
Required Parameters:

PRMLIST=
Specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.
TYPE=

specifies what type of confirmation is being requested.
NORMAL

requests a normal confirmation.

APPCVM SENDCNF (Send Confirm)

Chapter 7. APPCVM Macro Functions 465

SEVER
requests a confirmation that would let you issue a SEVER.

Note: For a SYNCLVL=SYNCPT conversation, this parameter can only be specified by an authorized
communication server.

PREPRECV
also requests a normal confirmation, but if this confirmation is successful, your program switches
to the Receive state.

Optional Parameters:
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SENDCNF.

PATHID=
lets you identify the path on which to send the confirmation request.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
WAIT=

specifies when control is returned to your virtual machine.
YES

returns control to your virtual machine when the SENDCNF is complete.
NO

returns control to your virtual machine as soon as the SENDCNF request is initiated. When the
SENDCNF completes, you are notified with a function complete interrupt.

Input Parameter List: The APPCVM SENDCNF parameter list has the input format shown in the following
figure.

IPFLAGS1IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

/ /

/ /

IPARML DSECT

/ /

IPFLAGS2 IPSENDOP

Figure 39. APPCVM SENDCNF Input Parameter List

IPPATHID
contains the path ID on which the confirmation request is sent.

IPFLAGS1
contains the following input bit flag:
IPAPPCSN (X'02')

indicates an APPC SEND function was issued.
IPFLAGS2

may contain one or more of the following input bit flags:
IPWAIT (X'80')

a synchronous return was requested.
IPCOMSRV (X'20')

SENDCNF was issued by a communication server.

APPCVM SENDCNF (Send Confirm)

466 z/VM: 7.3 CP Programming Services

Note: This bit must be set on by an authorized communication server if SENDCNF TYPE=SEVER is
issued on a SYNCLVL=SYNCPT conversation.

IPSENDOP
contains one of the following SEND option codes:
IPCNFRM (X'04')

You are requesting normal confirmation from your communication partner.
IPCNFSEV (X'05')

You are requesting confirmation from your communication partner that you can issue a SEVER.
IPPREPRC (X'0C')

You are requesting confirmation from your communication partner that you can enter the Receive
state.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X X Not Possible

CC=0
SENDCNF started successfully, but has not yet completed. When it completes, CP presents your
virtual machine with a function complete interrupt. The function complete interrupt buffer has the
same format as the SENDCNF output parameter list (see CC=2, below).

Note: When WAIT=YES, CC=0 is not possible.

CC=1
An error occurred. The output parameter list is the same as the input shown in SENDCNF Input
Parameter List, except that one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

X'03' 3 A function is pending on this path.

X'1D' 29 You are not authorized as a communication server.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 SENDCNF is an invalid function from the Connect state.

X'22' 34 SENDCNF is an invalid function from the Receive state.

X'23' 35 SENDCNF is an invalid function from the Confirm state.

X'24' 36 SENDCNF is an invalid function from the Sever state.

X'25' 37 The connection was established with SYNCLVL=NONE.

X'26' 38 The IPSENDOP field contains an invalid value.

X'2C' 44 Before invoking SENDCNF, you started, but did not finish, sending a logical
record.

X'38' 56 WAIT=YES was specified on a function issued to this same virtual machine.

X'44' 68 SENDCNF is invalid from the Reset state.

X'45' 69 SENDCNF TYPE=NORMAL or TYPE=SEVER is invalid from the Defer_Receive
state.

APPCVM SENDCNF (Send Confirm)

Chapter 7. APPCVM Macro Functions 467

Hex
Code

Decimal
Code

Why the Error Occurred

X'46' 70 SENDCNF TYPE=NORMAL/SEVER is invalid from the Defer_Sever state.

X'47' 71 SENDCNF is invalid from the Prepare_Received state.

X'49' 73 SENDCNF is invalid from the Unsolicited_Request_Commit_Received state.

X'4B' 75 SENDCNF is invalid from the Backout_Received state.

X'4C' 76 SENDCNF is invalid from the Backout_Required state.

X'4F' 79 SENDCNF TYPE=SEVER is invalid on a SYNCLVL=SYNCPT conversation when
the IPCOMSRV bit is not set on.

CC=2
SENDCNF completed (see SENDCNF Completion), with no errors.

The output parameter list when CC=2 is shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ / / / / /

/ /

IPARML DSECT

/ /

IPWHATRCIPSENDOP

/ /

/ / / / / / / / / / / / / / /

IPTYPE IPCODE

IPPOLLFG IPSTATE

IPBFLN1F

Figure 40. APPCVM SENDCNF Output Parameter List (Function Complete Interrupt)

IPPATHID
contains the path ID on which the function is complete.

IPTYPE
contains the function complete interrupt code (IPTYPFCA, X'87').

IPCODE
contains the error code from the partner's SENDERR or sever code from the partner's SEVER.
IPCODE is only valid when IPWHATRC=IPERROR or IPSABEND. See “APPC/VM Sever, Error, and
Sense Codes That You Can Get” on page 399.

IPWHATRC
contains one of the following what-received codes:
IPCOMP (X'00')

Your partner's SENDCNFD completed the function.
IPERROR (X'03')

Your partner issued SENDERR.
IPSABEND (X'09')

Your partner issued a SEVER TYPE=ABEND.
IPBACK (X'14')

Your partner initiated a backout sync-point.
IPSENDOP

contains one of the following SEND option codes:
IPCNFRM (X'04')

The SENDCNF TYPE=NORMAL is being completed.

APPCVM SENDCNF (Send Confirm)

468 z/VM: 7.3 CP Programming Services

IPCNFSEV (X'05')
The SENDCNF TYPE=SEVER is being completed.

IPPREPRC (X'0C')
The SENDCNF TYPE=PREPRECV is being completed.

IPBFLN1F
contains the length of pending log data for you to receive. This field is meaningful only when
IPWHATRC is equal to IPSABEND or IPERROR.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see
a reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
contains one of the following values that show the current state for this path:
IPSENDST (X'03')

The path is in the Send state.
IPRECVST (X'04')

The path is in the Receive state.
IPSEVER (X'06')

The path is in the Sever state.
IPBKOUT (X'0D')

The path is in the Backout_Received state.
IPBKREQ (X'0E')

The path is in the Backout_Required state.

Program Exceptions
The program exceptions for SENDCNF are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an external interrupt buffer is not declared, or the invoking virtual machine
is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check results when your virtual machine issues APPCVM SENDCNF and it is not in the Send state
on this path. A state check also occurs (IPRCODE=X'2C') if you started—but did not finish—sending a
logical record on this path. (See the list of APPCVM SENDCNF return codes for all state check conditions.)

No state change occurs when CC=1. State changes can occur when the function completes, and one of
the following occurs:

• You regain control (CC=2).
• You accept the function complete interrupt (CC=0), or you use TESTCMPL to discover that the function

was completed.

APPCVM SENDCNF (Send Confirm)

Chapter 7. APPCVM Macro Functions 469

The state change depends on the IPWHATRC value:

IPWHATRC
Value

New State

Cause

IPCOMP Send The SENDCNF TYPE=NORMAL was completed by the
communication partner issuing a SENDCNFD.

IPCOMP Sever The SENDCNF TYPE=SEVER was completed by the
communication partner issuing a SENDCNFD.

IPCOMP Receive The SENDCNF TYPE=PREPRECV, issued from Send
or Defer_Receive state, was completed by the
communication partner issuing a SENDCNFD.

IPERROR Receive The SENDCNF was completed by the communication
partner issuing a SENDERR.

IPSABEND Sever The SENDCNF was completed by the communication
partner issuing a SEVER TYPE=ABEND.

IPBACK Backout_Received Your communication partner initiated a backout sync-
point.

Note: When you issue SENDCNF, you have no way of telling if the SENDERR or SEVER indication received
is in response to your confirmation request or if it was issued before your SENDCNF.

Completion Conditions
After issuing a SENDCNF, you cannot issue another SEND, RECEIVE, or SEVER TYPE=NORMAL on
that path until the outstanding SENDCNF is complete. (SEND generally refers to the APPC/VM send
functions: SENDCNF, SENDCNFD, SENDDATA, SENDERR, and SENDREQ.) SENDCNF is complete when the
communication partner responds with a SENDCNFD, SENDERR, or SEVER.

What Happens to Your VM Communication Partner
Your communication partner's outstanding function may complete, or your partner may get a message
pending interrupt.

If your partner has a RECEIVE, SENDDATA RECEIVE=YES, or SENDERR outstanding on its half of the path,
your partner's outstanding function is completed.

Your partner gets a message pending interrupt, if your partner:

• Has no function outstanding on its half of the path
• Is in the Receive state on its half of the path
• Is enabled for message pending interrupts.

See Message Pending External Interrupt.

APPCVM SENDCNF (Send Confirm)

470 z/VM: 7.3 CP Programming Services

APPCVM SENDCNFD (Send Confirmed)

label

APPCVM SENDCNFD ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the SENDCNFD (Send Confirmed) function to send a confirmation response from your program to
another program. You should issue this as a positive response to your partner sending a SENDCNF (or
to confirm your partner's backout sync-point). (For a negative response, invoke SENDERR; see “APPCVM
SENDERR (Send Error)” on page 490.)

Parameters
Required Parameter:
PRMLIST=

specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SENDCNFD.

PATHID=
identifies the path on which to send the confirmation.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.

Input Parameter List: The APPCVM SENDCNFD parameter list has the input format shown in the
following figure.

APPCVM SENDCNFD (Send Confirmed)

Chapter 7. APPCVM Macro Functions 471

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ /

IPARML DSECT

IPFLAGS2 IPSENDOP/ /IPFLAGS1

/ /

/ /

Figure 41. APPCVM SENDCNFD Input Parameter List

IPPATHID
contains the path ID on which the confirmation is sent.

IPFLAGS1
contains the following input bit flag:
IPAPPCSN (X'02')

The APPC SEND function was issued.
IPFLAGS2

Contains the following input bit flag:
IPCOMSRV (X'20')

The SENDCNFD was issued from a communication server.

Note: The flag must be set by an authorized communication server. Virtual machines that are not
communication servers, should not set this flag.

IPSENDOP
contains the SEND option code:
IPCNFRMD (X'06')

your communication partner is sending confirmation as requested.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

Not Possible X X Not Possible

SENDCNFD always completes immediately.
CC=1

An error occurred. The parameter list format is the same as the input shown in the SENDCNFD Input
Parameter List, except that one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 SENDCNFD is an invalid function from the Connect state.

X'21' 33 SENDCNFD is an invalid function from the Send state.

X'22' 34 SENDCNFD is an invalid function from the Receive state.

X'24' 36 SENDCNFD is an invalid function from the Sever state.

X'26' 38 The IPSENDOP field contains an invalid value.

APPCVM SENDCNFD (Send Confirmed)

472 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Why the Error Occurred

X'44' 68 SENDCNFD is invalid from the Reset state.

X'45' 69 SENDCNFD is invalid from the Defer_Receive state.

X'46' 70 SENDCNFD is invalid from the Defer_Sever state.

X'47' 71 SENDCNFD is invalid from the Prepare_Received state.

X'49' 73 SENDCNFD is invalid from the Unsolicited_Request_Commit_Received state.

X'4C' 76 SENDCNFD is invalid from the Backout_Required state.

CC=2
SENDCNFD completed (see SENDCNFD Completion).

The output parameter list when CC=2 is shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ / / / / /

/ /

IPARML DSECT

/ /

IPWHATRCIPSENDOP

/ / / / / / / / / / / / / / /

IPTYPE

IPPOLLFG IPSTATE

/ / / / / / / / / / / / / / /

/ /

Figure 42. APPCVM SENDCNFD Output Parameter List (Function Complete Interrupt)

IPPATHID
contains the path ID on which the function is complete.

IPTYPE
contains the function complete interrupt code (IPTYPFCA, X'87').

IPWHATRC
contains one of the following what-received codes:
IPCOMP (X'00')

SENDCNFD completed in response to a SENDCNF TYPE=NORMAL.
IPSNORM (X'08')

SENDCNFD completed in response to a SENDCNF TYPE=SEVER.
IPSNDCNF (X'0C')

SENDCNFD completed in response to a SENDCNF TYPE=PREPRECV.
IPCNFBK (X'15')

SENDCNFD completed in response to your partner's backout sync-point.
IPSENDOP

contains the SEND option code:
IPCNFRMD (X'06')

the SENDCNFD is being completed.
IPPOLLFG

Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV

APPCVM SENDCNFD (Send Confirmed)

Chapter 7. APPCVM Macro Functions 473

DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see
a reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
contains one of the following values for the state of this path:
IPSENDST (X'03')

The path is in the Send state.
IPRECVST (X'04')

The path is in the Receive state.
IPSEVER (X'06')

The path is in the Sever state.

Program Exceptions
The program exceptions for SENDCNFD are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an external interrupt buffer is not declared, or the invoking virtual machine
is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check results when your virtual machine issues APPCVM SENDCNFD and it is not in the Confirm
state or the Backout_Received state on this path. (You receive an IPRCODE if you issue a function from
the wrong state.) See the list of APPCVM SENDCNFD return codes for all state check conditions.

No state change occurs when CC=1. State changes do occur when the function completes; that is, when
control is returned to the virtual machine (CC=2). The state change depends on the value of IPWHATRC:

IPWHATRC
Value New

State

Cause

IPCOMP Receive The SENDCNFD was in response to SENDCNF TYPE=NORMAL.

IPSNORM Sever The SENDCNFD was in response to SENDCNF TYPE=SEVER.

IPSNDCNF Send The SENDCNFD was in response to SENDCNF TYPE=PREPRECV.

IPCNFBK saved_state The SENDCNFD was issued from the BACKOUT_Received state to
confirm a backout.

Completion Conditions
Because the SENDCNFD function completes immediately, you can issue another function on the same
path as soon as your virtual machine regains control.

What Happens to Your VM Communication Partner
You can only issue SENDCNFD in response to a SENDCNF for SYNCLVL=CONFIRM or SYNCLVL=SYNCPT
conversations. SENDCNFD always causes the completion of the SENDCNF. For SYNCLVL=SYNCPT
conversations, SENDCNFD can also be issued in response to your partner's backout sync-point. If
your communication partner issued SENDCNF with WAIT=NO, and your partner is enabled for function
complete interrupts, then your partner gets a function complete interrupt.

APPCVM SENDCNFD (Send Confirmed)

474 z/VM: 7.3 CP Programming Services

APPCVM SENDDATA

label

APPCVM SENDDATA ,PRMLIST= label

( reg)

,RECEIVE=
1

YES

NO
Optional Parameters

2

Optional Parameters

,MF=L ,PATHID= label

( reg)

,BUFLIST=
1

YES

NO

,BUFFER= label

( reg)

,BUFLEN= label

( reg)

,ANSLIST=
1

YES

NO

,ANSBUF= label

( reg)

,ANSLEN= label

( reg)

,WAIT=
1

YES

NO

,FLUSH=
1

YES

NO

Notes:
1 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.
2 Optional parameters can be entered in any order.

Purpose
Use the SENDDATA function to send data from your program to your communication partner. You can also
use this function to switch the conversation state from the Send state to the Receive state and to define
an answer area for your partner's SENDDATA.

Parameters
Required Parameters:

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 475

PRMLIST=
specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

RECEIVE=
specifies whether to switch from Send to Receive state and define an answer area to get data back
from your communication partner.
YES

switches the conversation state and defines an answer area.

Note: If you specify RECEIVE=YES, FLUSH=YES is invalid for this SENDDATA.

NO
keeps your program in the Send state and does not define an answer area.

Optional Parameters:
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SENDDATA.

PATHID=
specifies the path ID on which you send the data.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
BUFLIST=

specifies whether the BUFFER parameter refers to a single buffer address or an address for a list of
buffers. (For more information, see Specifying Buffers on SENDDATA.)
YES

specifies that BUFFER refers to a list of addresses.
NO

specifies that BUFFER refers to a single address.
BUFFER=

specifies the areas in storage where CP gets the data to send. (See Specifying Buffers on SENDDATA.)
label

is the relocatable label for this storage area.
(reg)

is the register number that contains the address of this storage area.
BUFLEN=

specifies the total length, in bytes, of the data to be sent. See Specifying Buffers on SENDDATA.

Note that this length is not related to the length of a logical record, because the data does not have to
be sent in complete logical records. See Setting Up the Data To Send.

label
is the relocatable label of the fullword that contains the length.

(reg)
is the register number that contains the length.

APPCVM SENDDATA

476 z/VM: 7.3 CP Programming Services

ANSLIST=
specifies whether the ANSBUF parameter refers to a single buffer address or an address for a list of
buffers. (See Specifying Buffers on SENDDATA.)
YES

specifies that ANSBUF refers to a list of addresses.
NO

specifies that ANSBUF refers to a single address.
ANSBUF=

specifies the areas in storage where CP places data that is sent by your communication partner. (See
Specifying Buffers on SENDDATA.)
label

is the relocatable label for this storage area.
(reg)

is the register number that contains the address of this storage area.
ANSLEN=

specifies the total length of the data (in bytes) sent by your communication partner. (See Specifying
Buffers on SENDDATA.)
label

is the relocatable label of the fullword that contains the length.
(reg)

is the register number that contains the length.
WAIT=

specifies when control is returned to your virtual machine.
YES

returns control to your virtual machine when the SENDDATA is complete.
NO

returns control to your virtual machine when the SENDDATA request is initiated.

After you issue a SENDDATA with WAIT=NO, do not assume that the data is moved out of the
buffer until you receive a function complete indication.

FLUSH=
specifies whether your local LU should flush its send buffer.
YES

causes your local LU to flush its send buffer when SENDDATA is complete.

Note: FLUSH=YES is invalid if you also specify RECEIVE=YES on this SENDDATA.

NO
does not cause your local LU to flush its send buffer when SENDDATA is complete.

Input Parameter List: The APPCVM SENDDATA parameter list has the input format shown in the
following figure.

IPFLAGS1IPPATHID0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPFLAGS2

IPBFADR1

/ /IPBFLN1F

IPBFLN2F

IPSENDOP

/ IPBFADR2

/ /

/ /

Figure 43. APPCVM SENDDATA Input Parameter List

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 477

IPPATHID
contains the path ID over which you send the data.

IPFLAGS1
contains one of the following input bit flags:
IPBUFLST (X'40')

BUFLIST was specified.
IPANSLST (X'08')

ANSLIST was specified.
IPAPPCSN (X'02')

The APPC SEND function was issued.
X'80'

this value is reserved for IBM use only.
IPFLAGS2

contains one of the following input bit flags:
IPWAIT (X'80')

A synchronous return is desired.
IPNOFLSH (X'40')

FLUSH=NO is specified. This flag is ignored unless IPSENDOP=IPDATA is set.
IPSENDOP

contains one of the following SEND option codes:
IPDATA (X'01')

You are sending data.
IPSNDRCV (X'02')

You are sending the data. The conversation is to be turned around, and an answer area is defined
by IPBFADR2 and IPBFLN2F.

IPBFADR1
contains the address from which CP gets the data to send. This address is either the address of a
buffer or the address of a list of buffer addresses. (See Specifying Buffers on SENDDATA.)

IPBFLN1F
contains the total length of the data being sent. This length is not related to the length of a logical
record; it is used only to determine the length of the data to be moved by this SENDDATA. (See
Specifying Buffers on SENDDATA.)

IPBFADR2
contains the address where CP places the answer data from your communication partner. This
address is either the address of a buffer or the address of a list of buffer addresses. IPBFADR2 is
only valid when IPSENDOP=IPSNDRCV. (See Specifying Buffers on SENDDATA.)

IPBFLN2F
contains the total length of the answer data received from your communication partner. IPBFADR2 is
only valid when IPSENDOP=IPSNDRCV. (See Specifying Buffers on SENDDATA.)

Usage Notes
Setting Up the Data To Send: Using APPCVM SENDDATA, data is sent from a source program to a
target program in buffers. APPC defines a logical record so that applications can communicate without
depending on each other's buffering priorities and the priorities of any intermediate communication
servers.

A logical record consists of a 2-byte logical record length field (LL) followed by a data field as shown in the
following figure.

dataLL

Figure 44. APPC Logical Record Format

APPCVM SENDDATA

478 z/VM: 7.3 CP Programming Services

The LL field, in its low-order 15 bits, contains the total length of the logical record. A discussion of the
high-order bit of the LL field follows later in this section. This total logical record length includes the
2-bytes for the LL field, plus the length of the data field; as a result, the total logical record length must
always be at least 2 bytes. If the data field has a length of 0, the logical record contains only the 2-byte
length field.

The data field in a single logical record can range from 0 to 32,765 bytes long. If your program sends
more than 32,765 bytes of data, it must break up the data into multiple logical records.

APPC defines two kinds of conversations, basic conversations and mapped conversations.

Basic Conversations: For basic conversations, application programs send data directly in the APPC-
defined logical record format. They need to include a 2-byte length field (LL) followed by the data field,
as described above. For basic conversations, the LUs do not examine the high-order bit of the LL field.
The following logical record length values are invalid, because the total length must be at least 2 and the
high-order bit is ignored: X'0000', X'0001', X'8000', and X'8001'.

The length of the data that a program actually sends on a single APPCVM SENDDATA is independent of
the logical record length. The data actually sent by a program on one SENDDATA could consist of one or
more complete logical records, the beginning of a record, the middle of a record, or the end of a record.
For example, you can specify any of the following combinations:

• One or more complete records, followed by the beginning of a record
• The end of a record, followed by one or more complete records
• The end of a record, followed by one or more complete records, followed by the beginning of a record
• The end of a record, followed by the beginning of a record.

Note: However, you only specify the 2-byte logical record length (LL) once per logical record—even if that
logical record spans more than one SENDDATA.

Mapped Conversations: A program using the APPC/VM assembler language API and attempting to
conduct a mapped conversation with its partner must be aware that CP does not encode or decode
mapped conversation data streams; rather, it is the responsibility of the APPC/VM assembler application.

Note: CPI Communication (also known as SAA communications interface) performs the data stream
encoding and decoding functions for the applications it serves. If you use CPI communication, you do not
have to encode or decode mapped conversation data streams.

An APPC/VM assembler application allocates a mapped conversation by specifying TYPE=MAPPED on
the APPCVM CONNECT macro (this results in the IPMAPPED bit in the IPFLAGS2 field of the CONNECT
parameter list being set). A receiving APPC/VM assembler application can determine whether an inbound
conversation is mapped by checking the IPMAPPED bit of the IPFLAGS2 field in the connection pending
interrupt buffer.

A technique called general data stream organizes the data flowing on an APPC mapped conversation. (In
fact, GDS formats organize not only APPC mapped conversations, but other line flows in SNA as well.) For
more information on GDS formats, and on how GDS formats to organize APPC mapped conversations, see
Systems Network Architecture: Formats, GA27-3136.

Specifying Buffers on SENDDATA: With APPCVM SENDDATA, you can specify a single buffer using one
address and one length, or multiple buffers using a list of addresses and lengths.

When you specify a single buffer using one address and one length:

• BUFFER (or ANSBUF) specifies the address
• BUFLEN (or ANSLEN) specifies the length
• BUFLIST (or ANSLIST) must be equal to NO.

When you specify multiple buffers with a list of addresses and lengths:

• BUFFER (or ANSBUF) specifies the address of the list
• BUFLEN (or ANSLEN) specifies the sum of the lengths of the buffers in the list
• BUFLIST (or ANSLIST) must be equal to YES.

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 479

You must follow these conventions when you use address lists (BUFLIST=YES or ANSLIST=YES):

• The list must begin on a doubleword boundary.
• Each list entry must be two fullwords:

– The first is the address of that portion of the list.
– The second is the length of that portion of the list.

When you use an address list, the addresses and lengths in the address list are updated during APPC/VM
processing. Do not alter them during processing or assume that they are unchanged when APPC/VM
processing is complete. Also, APPC/VM assumes that there is another entry in the list until the sum of the
lengths of the entries processed is equal to the total length specified (by BUFLEN or ANSLEN).

Each application involved in the communication must determine the amount of data sent in each data
stream. You can choose buffer sizes based on whatever is important to your application, such as the size
of free storage buffers or efficient storage utilization.

Note: Even if you are responsible for both ends of the communication, do not code a receiving program so
that the length of the receive buffer is based on the length of the send buffer.

When a program on the local system sends data, the length in the message pending interrupt is the
actual length of the data sent. However, when a program on a remote system sends data, intermediate
communication servers (like the TSAF virtual machine) could break up a single data stream into multiple
data streams, or combine numerous data streams; as a result, the length shown in the target's message
pending interrupt is the length of the data sent by the intermediate communication server, not the length
of the data sent by the source program. For example, you could send a data stream of 0 length followed
by a data stream of 100 bytes. However, the target program might get only one data stream message with
the length of 100 bytes.

For basic conversations, your communication partner should examine the 2-byte logical record length
field to determine how much data you sent on a logical record.

Condition Codes and Return Codes

CC=0
The SENDDATA started successfully, but has not yet completed. If your virtual machine is enabled for
function complete interrupts, one is presented to your virtual machine when SENDDATA completes.
The interrupt format is the same as the SENDDATA output parameter list (see CC=2, 3). When you get
the function complete interrupt, check the IPAUDIT field for error information.

When control is returned to your virtual machine with CC=0, the parameter list may have been altered.

Note: CC=0 is not possible when WAIT=YES.

CC=1
An error occurred before the SENDDATA was initiated. The output parameter list is the same as the
input shown in SENDDATA Input Parameter List, except that one of the following return codes is
stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

X'03' 3 A function is pending on this path.

X'06' 6 A protection exception occurred on your communication partner's predefined
answer or receive area.

X'07' 7 An addressing exception occurred on your communication partner's predefined
answer or receive area.

APPCVM SENDDATA

480 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Why the Error Occurred

X'0A' 10 Your send buffer length (BUFLEN) or answer buffer length (ANSLEN) is negative.

X'16' 22 Your communication partner's predefined answer list or receive list is invalid.

X'17' 23 A length specified in your send buffer list is negative.

X'18' 24 The total length that you specified (BUFLEN) is not the total of the lengths in
your send buffer list.

X'1A' 26 The send buffer list does not begin on a doubleword boundary.

X'1B' 27 The answer buffer list does not begin on a doubleword boundary.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 SENDDATA is an invalid function from the Connect state.

X'22' 34 SENDDATA is an invalid function from the Receive state.

X'23' 35 SENDDATA is an invalid function from the Confirm state.

X'24' 36 SENDDATA is an invalid function from the Sever state.

X'26' 38 There was an invalid value in IPSENDOP field.

X'2A' 42 There is an invalid logical record length in your data stream.

X'2C' 44 You started, but did not finish, sending a logical record. (This can only occur if
you specified RECEIVE=YES on the SENDDATA.)

X'38' 56 WAIT=YES was specified on a function issued to this same virtual machine.

X'44' 68 SENDDATA is invalid from the Reset state.

X'45' 69 SENDDATA FLUSH=NO or SENDDATA FLUSH=YES, BUFLEN > 0 is invalid from
the Defer_Receive state.

X'46' 70 SENDDATA is invalid from the Defer_Sever state.

X'47' 71 SENDDATA is invalid from the Prepare_Received state.

X'49' 73 SENDDATA is invalid from the Unsolicited_Request_Commit_Received state.

X'4B' 75 SENDDATA is invalid from the Backout_Received state.

X'4C' 76 SENDDATA is invalid from the Backout_Required state.

X'5B' 91 A paging or storage error was detected in the SEND data area.

X'5C' 92 A paging or storage error was detected in the RECEIVE data area.

X'5D' 93 A paging or storage error was detected in the ANSWER data area.

X'5E' 94 A paging or storage error was detected in the REPLY data area.

The following return codes can only occur if your communication partner defined an answer area or
receive area before you issued the SENDDATA:

X'06', X'07', X'16', X'17', X'18', X'2A', and X'2C'.

If your communication partner did not define an answer area or receive area before you issued the
SENDDATA, CP reports the above error conditions (X'06', X'07', X'16', X'17', X'18', X'2A', and X'2C') to you
in the IPAUDIT flags of your SENDDATA output parameter list, when your partner's RECEIVE completes.

Your partner learns of the error through one of the following:

• A protection exception from CP
• An addressing exception from CP

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 481

• A return code on the RECEIVE
• The IPAUDIT flags of the RECEIVE output parameter list, when the RECEIVE completes.

For the following return codes, data may be copied to your communication partner's virtual machine
before the error is detected (the amount of data copied in this case is unpredictable):

X'16', X'17', X'18', X'2A', and X'2C'

Note that for CC=1, other fields in the parameter list might have been altered.
CC=2 or
CC=3

The SENDDATA completed. (Also see SENDDATA Completion.) When CC=2, then the function
completed with no errors; when CC=3, there is some error information in IPAUDIT.

Note: When WAIT=NO, CC=3 is not possible.

The output parameter list when CC=2 or 3 is shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPFLAGS1

IPARML DSECT

IPWHATRCIPSENDOP

/ /

/ / / / / /

IPTYPE IPCODE

IPPOLLFG IPSTATE

IPBFLN1F

/ /IPAUDIT

IPBFLN2F IPWHTRC2

Figure 45. APPCVM SENDDATA Output Parameter List (Function Complete Interrupt)

IPPATHID
contains the path ID on which the function is complete.

IPFLAGS1
may contain the following output bit flag:
X'20'

This value is reserved for IBM use only.
IPTYPE

contains the function complete interrupt code (IPTYPFCA, X'87').
IPCODE

contains the error or sever code from the partner's SENDERR or SEVER. IPCODE is only valid when
IPWHATRC=IPERROR or IPSABEND. See “APPC/VM Sever, Error, and Sense Codes That You Can Get”
on page 399.

IPWHATRC
contains the what-received code. For RECEIVE=YES or RECEIVE=NO:
IPCOMP (X'00')

Either of the following has occurred:

• The SENDDATA RECEIVE=NO completed normally.
• The SENDDATA RECEIVE=YES or NO completed with an error on your SEND buffer or on your

partner's answer or RECEIVE buffer. See the IPAUDIT description.

IPERROR (X'03')
Your partner issued SENDERR.

IPSABEND (X'09')
Your partner issued a SEVER TYPE=ABEND.

IPBACK (X'14')
The function was completed with an indication that your partner initiated a CRR backout sync-
point. You should back out the CMS work unit of which this conversation is a part.

APPCVM SENDDATA

482 z/VM: 7.3 CP Programming Services

For RECEIVE=YES only:
IPDATA (X'01')

Only data was received.
IPSEND (X'02')

Your partner switched the conversation around, and you are now in the Send state.
IPCNFRM (X'04')

Your partner is requesting confirmation.
IPCNFSEV (X'05')

Your partner is requesting confirmation that it can issue a SEVER.
IPSNORM (X'08')

Your partner issued a SEVER TYPE=NORMAL.
IPSNDCNF (X'0C')

Your partner is requesting confirmation that it can enter the Receive state.
IPPREPAR (X'0F')

The function was completed with an indication that your partner initiated a CRR commit sync-
point. You should commit the CMS work unit of which this conversation is a part. (This is not
possible when RECEIVE=NO.)

IPREQCOM (X'10')
The function was completed with a SENDRQCM indication. (This is not possible when
RECEIVE=NO.)

Notes:

1. When SENDDATA RECEIVE=YES is specified, data might have been received for any IPWHATRC
value.

2. You do not get a nondata indication in IPWHATRC until you do a SENDDATA RECEIVE=YES for all
the data that your partner (or intermediate communication server) sent with or before the nondata
function. For example, if both of the following were true:

a. You did a SENDDATA RECEIVE=YES with a 199-byte answer area
b. Your partner (or intermediate communication server) issued SENDDATA RECEIVE=YES with a

data length of 200 bytes.

IPWHATRC would be IPDATA. When you issue a RECEIVE for the 200th byte, IPWHATRC would
become IPSEND.

IPSENDOP
Contains one of the following SEND option codes:
IPDATA (X'01')

Your SENDDATA RECEIVE=NO is completing.
IPSNDRCV (X'02')

Your SENDDATA RECEIVE=YES is completing.
IPAUDIT

Has four fields that may contain error information.

Note: In the following descriptions,

• Send area refers to either a send buffer specified directly on an APPCVM SENDDATA, BUFFER= or a
send buffer that is part of a buffer list.

• Answer area refers to either an answer buffer specified directly on an APPCVM SENDDATA,
ANSBUF= or an answer buffer that is part of a buffer list.

• Receive area refers to either a receive buffer specified directly on an APPCVM RECEIVE, BUFFER=
or a receive buffer that is part of a buffer list.

(See Specifying Buffers on SENDDATA for more information.)

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 483

IPAUDIT1 (first byte of IPAUDIT)
May contain one of the following bit flags:
IPADSNPX (X'40')

A protection exception occurred on your send area. This only applies if your partner did not
have a receive area defined when your data was sent.

IPADSNAX (X'20')
An addressing exception occurred on your send area. This only applies if your partner did not
have a receive area defined when your data was sent.

IPADANPX (X'10')
A protection exception occurred on your answer area.

IPADANAX (X'08')
An addressing exception occurred on your answer area.

IPAUDIT2 (second byte of IPAUDIT)
May contain one of the following bit flags:
IPADRCPX (X'80')

A protection exception occurred on your communication partner's receive area (if your partner
did not have the receive area defined when your data was sent), or your communication
partner's answer area.

IPADRCAX (X'40')
An addressing exception occurred on your communication partner's receive area (if your
partner did not have the receive area defined when your data was sent), or your
communication partner's answer area.

IPADRPPX (X'20')
A protection exception occurred on your communication partner's send area.

IPADRPAX (X'10')
An addressing exception occurred on your communication partner's send area.

IPADRLST (X'04')
Your communication partner had an invalid send, answer, or receive buffer list.

IPAUDIT3 (third byte of IPAUDIT)
May contain one of the following bit flags:
IPADBLEN (X'80')

A bad length is in your send buffer list.
IPADALEN (X'40')

A bad length is in your answer buffer list.
IPADBTOT (X'20')

Your total send buffer length is invalid.
IPADATOT (X'10')

Your total answer buffer length is invalid.
IPADTINV (X'08')

There is an invalid logical record length in your communication partner's data stream.
IPADIINV (X'04')

There is an invalid logical record length in your data stream.
IPADTTRN (X'02')

Your communication partner started, but did not finish, sending a logical record and tried to
change to the Receive state.

IPADITRN (X'01')
You started, but did not finish, sending a logical record and you tried to change to the Receive
state.

APPCVM SENDDATA

484 z/VM: 7.3 CP Programming Services

IPASYRC (fourth byte of IPAUDIT)
May contain one of the following error codes (for which an appropriate IPRCODE was given to your
communication partner):

Hex
Code

Decimal
Code

Meaning

X'5B' 91 A paging or storage error was detected in the SEND data area

X'5C' 92 A paging or storage error was detected in the RECEIVE data area.

X'5D' 93 A paging or storage error was detected in the ANSWER data area.

X'5E' 94 A paging or storage error was detected in the REPLY data area.

Note: IPRCODEs X'5D' and X'5E' are possible on a SENDDATA when the partner issues a
RECEIVE prior to the SENDDATA (RECEIVE ahead).

IPBFLN1F
Contains the length of pending log data for you to receive. This field is only meaningful when
IPWHATRC is equal to IPSABEND or IPERROR.

IPBFLN2F
Contains one of the following depending on the value of IPWHATRC. If IPWHATRC is:

• Equal to IPDATA, IPBFLN2F contains the number of bytes that were sent by your communication
partner, but did not fit into the defined answer area. This length is not the length of the APPC data
stream being sent, rather, it is the length of the data that has arrived and is ready to receive.

• Not equal to IPDATA, IPBFLN2F contains the number of bytes left in your defined answer area.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
Contains the current state for this path, which may be any of the following values:
IPSENDST (X'03')

The path is in the Send state.
IPRECVST (X'04')

The path is in the Receive state.
IPCONFRM (X'05')

The path is in the Confirm state.
IPSEVER (X'06')

The path is in the Sever state.
IPREPARE (X'09')

The path is in the Prepare_Received state.
IPURQCMT (X'0B')

The path is in the Unsolicited_Request_Commit_Received state.
IPBKOUT (X'0D')

The path is in the Backout_Received state.

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 485

IPBKREQ (X'0E')
The path is in the Backout_Required state.

IPWHTRC2
Further qualifies the IPWHATRC=IPPREPAR and IPWHATRC=IPREQCOM:
IPTPSEND (X'03')

Your partner requests to be in the Send state upon the successful completion of the commit
sync-point.

IPTPRECV (X'04')
Your partner requests to be in the Receive state upon the successful completion of the commit
sync-point.

IPTPSEVR (X'06')
Your partner requests to be in the Sever state upon the successful completion of the commit
sync-point.

Program Exceptions
The program exceptions for SENDDATA are:

Type Description

Addressing The parameter list address is outside of the virtual machine. An addressing
exception also occurs for any of the following:

• An invalid buffer address in SENDDATA's parameter list
• An invalid buffer list address in SENDDATA's parameter list
• An invalid buffer address in SENDDATA's buffer list.

This only applies if your partner had a receive area defined when you sent the
data. (Answer areas are always predefined.)

Operation Either an external interrupt buffer was not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.
A protection exception also occurs for any of the following:

• An invalid buffer address in SENDDATA's parameter list
• An invalid buffer list address in SENDDATA's parameter list
• An invalid buffer address in SENDDATA's buffer list.

This only applies if your partner had a receive area defined when you sent the
data. (Answer areas are always predefined.)

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check results when your virtual machine issues APPCVM SENDDATA and it is not in the Send
state for this path. (You also receive an IPRCODE since you issued a function from an improper state.)
A state check also occurs (IPRCODE=X'2C') if you started, but did not finish, sending a logical record on
this path at the completion of the send portion of your SENDDATA RECEIVE=YES. See the list of APPCVM
SENDDATA return codes for all state check conditions.

When you issue SENDDATA RECEIVE=YES, your communication partner receives notice of this as if you
had issued the following sequence of functions:

1. SENDDATA RECEIVE=NO
2. RECEIVE.

APPCVM SENDDATA

486 z/VM: 7.3 CP Programming Services

When the receive part of the SENDDATA RECEIVE=YES begins, you should have completed sending any
outstanding logical records. For example, the following sequence would cause an error:

1. You issue SENDDATA RECEIVE=YES BUFLEN=999 to send a logical record with a logical record length
of 1000 bytes.

2. Your partner does a RECEIVE of the 999 bytes.
3. The receive portion of your SENDDATA RECEIVE begins.

In this situation, the error is caused because you did not send all 1000 bytes; therefore, you did not
complete sending the outstanding logical record.

No state change occurs when CC=1. State changes occur when:

• The function completes; that is, control returns to the virtual machine (CC=2 or 3).
• The function complete interrupt is accepted by the virtual machine (CC=0) or you complete the function

using TESTCMPL.

The state change depends on the IPWHATRC value:

IPWHATRC
Value New

State

Cause

IPCOMP No state change occurs. Either of the following could be the cause:

• The SENDDATA RECEIVE=NO has completed normally.
• The SENDDATA RECEIVE=YES or NO completed with an

error on your SEND buffer or on your partner's answer or
RECEIVE buffer.

IPCOMP Receive The SENDDATA FLUSH=YES is issued from the
Defer_Receive state.

IPDATA Receive Either of the following could be the cause:

• The SENDDATA RECEIVE=YES with a nonzero length
answer area was completed by your partner sending data.

• The SENDDATA RECEIVE=YES with a 0 length answer
area was completed by your partner receiving the data
sent.

IPSEND Send The SENDDATA RECEIVE=YES was completed by the
communication partner issuing a RECEIVE or SENDDATA
RECEIVE=YES.

IPERROR Receive The SENDDATA was completed by the communication
partner issuing a SENDERR.

IPCNFRM Confirm The SENDDATA RECEIVE=YES was completed by the
communication partner issuing a SENDCNF TYPE=NORMAL.

IPCNFSEV Confirm The SENDDATA RECEIVE=YES was completed by the
communication partner issuing a SENDCNF TYPE=SEVER.

IPSNDCNF Confirm The SENDDATA RECEIVE=YES was completed by
the communication partner issuing a SENDCNF
TYPE=PREPRECV.

IPSNORM Sever The SENDDATA RECEIVE=YES was completed by the
communication partner issuing a SEVER TYPE=NORMAL.

IPSABEND Sever The SENDDATA was completed by the communication
partner issuing a SEVER TYPE=ABEND.

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 487

IPWHATRC
Value New

State

Cause

IPPREPAR Prepare_Received Your communication partner initiated a commit sync-point
to complete the SENDDATA.

IPREQCOM Unsolicited_Request_
Commit_Received

Your communication partner initiated a commit sync-point
to complete the SENDDATA.

IPBACK Backout_Received Your communication partner issued a SENDBACK to
complete the SENDATA.

Completion Conditions
After issuing a SENDDATA, you cannot issue another SEND (see note), RECEIVE, or SEVER TYPE=NORMAL
on that path until the outstanding SENDDATA is complete.

Note: SEND generally refers to all of the APPC/VM send functions: SENDCNF, SENDCNFD, SENDDATA,
SENDERR, and SENDREQ.

When the SENDDATA completes for a communication program depends on the value you give to the
RECEIVE parameter of SENDDATA:

• When RECEIVE=NO, your SENDDATA is complete when all of the data is copied out of your SEND buffer,
or when your communication partner issues a SENDERR or a SEVER.

• Your SENDDATA completes immediately when RECEIVE=NO, FLUSH=NO, and you specify a 0-length
send buffer.

• When RECEIVE=NO, FLUSH=YES, and you specify a 0-length send buffer (this is called a pure flush),
your SENDDATA completes immediately, unless your partner is notified of the flush. (See IPFLUSH
(X'40') in the IPFLAGS1 Return Code for “APPCVM RECEIVE” on page 451 for more information.)

• When RECEIVE=YES and you specify a 0 answer area, your SENDDATA is complete when all of the data
is copied out of your SEND buffer.

• When RECEIVE=YES and you specify a nonzero answer area, then the SENDDATA is complete when all
of the data is copied out of your SEND buffer and your communication partner:

– Sends messages to your virtual machine to completely fill the answer area specified on your virtual
machine's SENDDATA

– Issues RECEIVE, SENDCNF, SENDDATA RECEIVE=YES, SENDERR, or SEVER.

Remember, when you specify SENDDATA RECEIVE=YES with a nonzero answer area length, you get one
function complete interrupt when your communication partner or an intermediate communication server
issues a function. But, when you specify SENDDATA RECEIVE=NO followed by a RECEIVE, you receive
two function complete interrupts. The first interrupt is a result of the data being copied out of your SEND
buffer; the second interrupt is when your RECEIVE is completed.

What Happens to Your VM Communication Partner

Note: If an intermediate communication server (like TSAF, ISFC, or AVS) handles communication between
you and your partner, the information in this section also describes what happens to the intermediate
server when you issue SENDDATA.

When you issue an APPCVM SENDDATA, your communication partner's outstanding function may
complete, or your partner may get a message pending interrupt:

• If your partner has a SENDERR outstanding on its half of the path, your partner's function completes.
• If your partner has a SENDDATA RECEIVE=YES or RECEIVE outstanding on its half of the path and you

issued SENDDATA RECEIVE=YES or RECEIVE, then your partner's function completes.

APPCVM SENDDATA

488 z/VM: 7.3 CP Programming Services

• If your partner has a SENDDATA RECEIVE=YES outstanding on its half of the path and you issued
SENDDATA RECEIVE=NO, your partner's function completes only when you send enough data to fill your
partner's predefined receive area.

• Your partner gets a message pending interrupt if it:

– Has no function outstanding on its half of the path
– Is in the Receive state on its half of the path
– Is enabled for message pending interrupts.

Message Pending External Interrupt: Your program can get a message pending interrupt when your
communication partner issues APPCVM SENDDATA, RECEIVE, SENDCNF, SENDERR, or initiates a commit
or backout sync-point.

The APPC/VM message pending external interrupt has the format shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ / / / / /

/ /

IPARML DSECT

/ /

/ /

/ /

IPTYPE

IPPOLLFG

IPBFLN1F

/ /

Figure 46. Message Pending External Interrupt

IPPATHID
contains the path ID on which a message is pending.

IPTYPE
contains the interrupt type for a message pending (IPTYPMPA, X'89').

IPBFLN1F
contains the length of the pending message. This length is the length of the data that has arrived and
is ready to receive.

When the data is sent by a virtual machine on your system, IPBFLN1F specifies the entire length of
the data sent. When the data is sent by a virtual machine on a remote system, IPBFLN1F specifies
only the length of the data sent by the communication server (typically TSAF or AVS).

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

Your program gets a message pending interrupt for a path only when its half of the path is in the Receive
state. If your program is not in the Receive state on that path, the message pending interrupt is kept
pending until your half of the path enters the Receive state; then you get the message pending interrupt.
When you receive the message, check the condition code or the IPWHATRC field to find what to do next.
See “APPCVM RECEIVE” on page 451 for more information.

APPCVM SENDDATA

Chapter 7. APPCVM Macro Functions 489

APPCVM SENDERR (Send Error)

label

APPCVM SENDERR ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

,WAIT=
2

YES

NO

,TYPE=
2

PROG

SVC

,CODE= label

( reg)

,BUFLIST=
2

YES

NO

,BUFFER= label

( reg)

,BUFLEN= label

( reg)

,DIRECT=
2

SEND

RECEIVE

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value from the last
time the instruction was issued.

Purpose
Use the SENDERR function to notify your communication partner that an error has occurred and causes
a break in a typical send/receive sequence. You can also issue SENDERR as a negative response to a
confirmation request (SENDCNF). After issuing SENDERR, your program can send error information to
your communication partner using SENDDATA.

Your program can optionally specify log data directly on the SENDERR call.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.

APPCVM SENDERR (Send Error)

490 z/VM: 7.3 CP Programming Services

label
is the relocatable label of the parameter list.

(reg)
is the register number that contains the address of the parameter list.

Optional Parameters:
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SENDERR.

PATHID=
specifies the path ID of the path on which you send the error notice.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
WAIT=

specifies when control is returned to your virtual machine.
YES

returns control to your virtual machine when the SENDERR is complete.
NO

returns control to your virtual machine as soon as you issue the SENDERR request. When the
SENDERR completes, you are notified with a function complete interrupt.

TYPE=
describes the level of error that CP reports to your communication partner. CP generates the
appropriate error code to correspond to this value. TYPE is invalid if CODE is specified.
PROG

indicates that a user application program error is being reported. The error code will be one of the
following: X'0410', X'0420', or X'0430'.

SVC
indicates that an LU services error is being reported. For example, this error type is used by the
programs providing mapped conversation support to report errors. (CP does not check to ensure
that SENDERR TYPE=SVC is issued on a mapped conversation.) The error code sent will be one of
the following: X'0510', X'0520', or X'0530'.

See Error Codes that CP and Communication Servers Can Issue for the APPC meanings of these error
codes.

CODE=
specifies a 2-byte error code that a communication server sends to your communication partner.
CODE is invalid if TYPE is specified.
label

is a relocatable label in the storage area that contains the error code.
(reg)

is the register number that contains the error code in the low-order halfword.

Only communication servers (authorized by OPTION COMSRV in their directory entries) can specify
CODE. Communication servers should use the APPC/VM-defined error codes; they should not define
error codes for their own use. See Error Codes that CP and Communication Servers Can Issue.

If your program is not a communication server, it should just issue the APPCVM SENDERR function
without an error code; CP generates the appropriate error code based on the states of the programs.

BUFLIST=
specifies the type of buffer address to which the BUFFER parameter refers.

APPCVM SENDERR (Send Error)

Chapter 7. APPCVM Macro Functions 491

YES
refers to a list of addresses.

NO
refers to a single address.

BUFFER=
specifies the address of the areas from which CP takes the log data.
label

is the relocatable label in storage where CP gets the log data to send.
(reg)

is the register number that contains the address of the storage area. This storage area is where CP
gets the log data to send.

BUFLEN=
specifies the length of the areas from which APPC/VM takes the log data to be sent. The minimum
length is eight bytes; the maximum length is 600 bytes. This length is not related to the length of a
logical record.
label

is the relocatable label of the fullword that contains the length.
(reg)

is the register number that contains the length.
DIRECT=

specifies the state (SEND or RECEIVE) your program was in when you detected the error. Specifying
the state ensures that the partner gets the correct error code.

DIRECT is ignored unless this is the first function issued after receiving both data and a SEND
indication on the last function to complete. DIRECT is invalid if CODE is specified.

SEND
indicates that the error was detected while the program was preparing to send data. The error
code issued for this case indicates that the logical record was not truncated.

RECEIVE
indicates that the error was detected while the program was receiving the data. The error code
issued for this case indicates that the remaining data was purged.

Input Parameter List: The APPCVM SENDERR parameter list has the input format shown in the following
figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ / / / / /

IPARML DSECT

/ /

IPCODE

IPBFLN1F

/ /

/ /

IPFLAGS1 IPFLAGS2 IPSENDOP

IPBFADR1

Figure 47. APPCVM SENDERR Input Parameter List

IPPATHID
contains the path ID over which to send the SENDERR.

IPFLAGS1
contains one of the following input bit flags:
IPBUFLST (X'40')

You specified the buffer list option.
IPAPPCSN (X'02')

The APPC SEND function was issued.

APPCVM SENDERR (Send Error)

492 z/VM: 7.3 CP Programming Services

IPCODE
contains the error code you are sending on the APPCVM SENDERR. IPCODE is only valid when
IPCOMSRV is set. Refer to Error Codes that CP and Communication Servers Can Issue.

IPFLAGS2
contains one of the following input bit flags:
IPWAIT (X'80')

You specified a synchronous return.
IPCHGDIR (X'40')

You specified DIRECT=RECEIVE.
IPCOMSRV (X'20')

The SENDERR is being issued for another user. Only an authorized communication server (OPTION
COMSRV in the directory entry) can specify IPCOMSRV. When you do specify IPCOMSRV, CP does
not generate a SENDERR code, but, instead, uses the one that you provide. It is your responsibility
to ensure that the code is appropriate.

IPTYPSVC (X'10')
You specified an LU services error.

IPSENDOP
contains the SEND option code:

IPERROR (X'03')
indicates the SENDERR.

IPBFADR1
contains the address of the area from which APPC/VM takes one of the following:

• The log data
• The address of a list of buffer addresses.

See Specifying Log Data.
IPBFLN1F

contains the length of the log data being sent. If IPBFLN1F is 0, then no log data is being sent.
Otherwise, log data is being sent.

Usage Notes
Specifying Log Data: An application program can choose to set up log data and send that log data using
buffers specified on APPCVM SENDERR. Log data conveys error information to an LU, where it is added to
the system error log. This error information can be used in debugging and error recovery.

When using APPCVM SENDERR to send log data to your communication partner, you use buffers. You
can specify a single buffer using one address and one length or specify multiple buffers using a list of
addresses and lengths.

When you specify a single buffer using one address and one length,

• BUFFER specifies the address
• BUFLEN specifies the length
• BUFLIST must be equal to NO.

When you specify multiple buffers with a list of addresses and lengths,

• BUFFER specifies the address of the list
• BUFLEN specifies the sum of the lengths of the buffers in the list
• BUFLIST must be equal to YES.

When specifying address lists (BUFLIST=YES), note the following:

• The list must begin on a doubleword boundary.

APPCVM SENDERR (Send Error)

Chapter 7. APPCVM Macro Functions 493

• Each list entry must be two fullwords; the first is the address of that portion of the list, and the second is
the length.

• The addresses and lengths in the address list are updated during APPC/VM processing. Do not alter
them during processing or assume that they are unchanged when APPC/VM processing is complete.

• APPC/VM assumes that there is another entry in the list until the sum of the lengths of the entries
processed is equal to the total length specified by BUFLEN.

The log data you are sending in buffers must be coded into an error log general data stream (GDS)
variable. An error log GDS variable has the format as defined by SNA LU 6.2 and shown in the following
figure.

GDS10

4

6

6+j

6+j+2

0 1 2 3

(j is the length specified by GDS3
minus 2 bytes for GDS3's length.)

GDS3

GDS2

GDS4 . . .

GDS5

GDS6 . . .

Figure 48. Error Log GDS Variable Format

GDS1
contains the length, in binary, of the error log GDS variable, including this length field. This must be in
the range from 8 to 600 bytes.

GDS2
contains a GDS identifier for an error log variable, X'12E1'.

GDS3
contains the length, in binary, of the product set ID (GDS4) including this length field.

Note: The length field is always present; a value of 2 indicates no product set ID subvector follows.

GDS4
contains the product set ID subvector. This subvector, which is variable length, uniquely identifies the
product.

GDS5
contains the length, in binary, of the log data including this length field.

Note: The length field is always present; a value of 2 indicates no log data follows.

GDS6
contains the log data.

For more information about the error log GDS variable and product set ID, see SNA Format and Protocol
Reference Manual: Architectural Logic for LU Type 6.2.

Error Codes That CP and Communication Servers Can Issue: See Table 75 on page 494 for the codes
that CP or a communication server can issue on an APPCVM SENDERR.

This table also shows the APPC error condition associated with each error code. For more information
on what these APPC conditions mean and when to use these error codes, see SNA Format and Protocol
Reference Manual: Architectural Logic for LU Type 6.2.

Note: A communication server within a TSAF collection can specify only codes X'0410', X'0420', and
X'0430'.

Table 75. APPC/VM-Defined SENDERR Codes

APPC/VM Code APPC Error Condition

X'0410' PROG_ERROR_NO_TRUNC

APPCVM SENDERR (Send Error)

494 z/VM: 7.3 CP Programming Services

Table 75. APPC/VM-Defined SENDERR Codes (continued)

APPC/VM Code APPC Error Condition

X'0420' PROG_ERROR_TRUNC

X'0430' PROG_ERROR_PURGING

X'0510' SVC_ERROR_NO_TRUNC

X'0520' SVC_ERROR_TRUNC

X'0530' SVC_ERROR_PURGING

If your program is not a communication server, it should just issue the APPCVM SENDERR function
without an error code; CP generates the appropriate error code based on the states of the programs.

Sever Codes That You May Receive in Response to a SENDERR: If the SENDERR was completed by
the communication partner issuing a SEVER, a sever code is returned. The sever code you get when your
SENDERR completes depends on the state you are in when you issue SENDERR. If you are in the:

• Send state, you may get any valid sever code.
• Receive state, you may get either sever code X'0610' or X'0620'. You would receive notice of any other

sever condition on a subsequent APPC/VM function on which an error can be reported.

In addition, you get an indication of SEVER TYPE=NORMAL (IPWHATRC=IPSNORM) when your
SENDERR completes, if your communication partner issued SEVER TYPE=NORMAL.

You also get an indication of SEVER TYPE=NORMAL when your SENDERR completes, if your partner
issued SEVER TYPE=ABEND with any of the sever codes X'210', X'220', X'230'. In this case, you will not
see the sever code.

• Confirm state, you may get either sever code X'0610' or X'0620'. You would receive notice of any other
sever condition on a subsequent APPC/VM function on which an error can be reported.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X X X

CC=0
SENDERR started successfully, but has not yet completed. When the function completes, a function
complete interrupt is presented to your virtual machine. The function complete interrupt has the same
format as the SENDERR output parameter list (see CC=2, 3). When you get the function complete
interrupt, check the IPAUDIT field for error information.

Note: When you specify WAIT=YES, CC=0 is not possible.

CC=1
An error occurred. The output parameter list is the same as the input shown in SENDERR Input
Parameter List, except that one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

X'03' 3 A function is pending on this path.

X'0A' 10 Your buffer length is negative.

APPCVM SENDERR (Send Error)

Chapter 7. APPCVM Macro Functions 495

Hex
Code

Decimal
Code

Why the Error Occurred

X'17' 23 A length specified in your SEND buffer list is negative.

X'18' 24 The total length that you specified is not the total of the lengths in your SEND
buffer list.

X'1A' 26 The buffer list address is not on a doubleword boundary.

X'1D' 29 You are not authorized to act for another user.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 SENDERR is an invalid function from the Connect state.

X'24' 36 SENDERR is an invalid function from the Sever state.

X'26' 38 There is an invalid value in IPSENDOP field.

X'33' 51 You must receive pending log data before issuing SENDERR.

X'37' 55 Your buffer length is either less than eight or greater than 600.

X'38' 56 WAIT=YES was specified on a function issued to this same virtual machine.

X'44' 68 SENDERR is invalid from the Reset state.

X'45' 69 SENDERR is invalid from the Defer_Receive state.

X'46' 70 SENDERR is invalid from the Defer_Sever state.

X'4B' 75 SENDERR is valid from the Backout_Received state only when issued by a
communication server.

X'4C' 76 SENDERR is invalid from the Backout_Required state.

CC=2 or
CC=3

SENDERR completed (also see SENDERR Completion). When CC=2, the function completed with no
errors; when CC=3, there is error information in IPAUDIT.

Note: When you specify WAIT=NO, CC=3 is not possible.

The output parameter list when CC=2 or 3 is shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

/ / / / / /

IPARML DSECT

/ /

IPCODE

IPBFLN1F

IPWHATRC IPSENDOPIPTYPE

/ /IPAUDIT

/ IPPOLLFG IPSTATE / / / / / / / / / / / / / / /

Figure 49. APPCVM SENDERR Output Parameter List (Function Complete Interrupt)

IPPATHID
contains the path ID on which the function is complete.

IPTYPE
contains the function complete interrupt code (IPTYPFCA, X'87').

APPCVM SENDERR (Send Error)

496 z/VM: 7.3 CP Programming Services

IPCODE
contains the error or sever code from the partner's SENDERR or SEVER. IPCODE is only valid when
IPWHATRC=IPERROR or IPSABEND. See Sever Codes That You May Receive in Response to a
SENDERR. Also see “APPC/VM Sever, Error, and Sense Codes That You Can Get” on page 399 for a
complete list of the error and sever codes.

IPWHATRC
contains the what-received code:
IPCOMP (X'00')

SENDERR completed with nothing received.
IPERROR (X'03')

Your partner issued SENDERR.
IPSNORM (X'08')

Your partner issued a SEVER TYPE=NORMAL, or SEVER TYPE=ABEND with sever codes
X'0210', X'0220', or X'0230'.

IPSABEND (X'09')
Your partner issued a SEVER TYPE=ABEND with sever codes other than X'0210', X'0220', or
X'0230'.

IPBACK (X'14')
The function completed with an indication that your partner initiated a CRR backout sync-
point. You should back out the CMS work unit of which this conversation is a part.

IPSENDOP
contains the SEND option code:
IPERROR (X'03')

Means that the SENDERR is being completed.
IPAUDIT

has four fields that may contain error information.

Note: In the following descriptions:

• Send area refers to either a send buffer specified directly on an APPCVM SENDERR, BUFFER= or
a send buffer that is part of a buffer list. These buffers are used for sending log data.

• Receive area refers to either a receive buffer specified directly on your partner's APPCVM
RECEIVE, BUFFER= or a receive buffer that is part of a buffer list. These buffers are used for
receiving log data.

(See Specifying Log Data for more information on specifying buffers and buffer lists for log data.)
IPAUDIT1 (first byte of IPAUDIT)

may contain one of the following bit flags:
IPADSNPX (X'40')

A protection exception occurred on your send area.
IPADSNAX (X'20')

An addressing exception occurred on your send area.
IPAUDIT2 (second byte of IPAUDIT)

may contain one of the following bit flags:
IPADRCPX (X'80')

A protection exception occurred on your communication partner's receive area for log
data.

IPADRCAX (X'40')
An addressing exception occurred on your communication partner's receive area for log
data.

IPADRLST (X'04')
Your communication partner had an invalid receive buffer list.

APPCVM SENDERR (Send Error)

Chapter 7. APPCVM Macro Functions 497

IPAUDIT3 (third byte of IPAUDIT)
may contain one of the following bit flags:
IPADBLEN (X'80')

A bad length is in your send buffer list.
IPADBTOT (X'20')

Your total send buffer length is invalid.
IPADIINV (X'04')

There is an invalid logical record length in your data stream.
IPASYRC (fourth byte of IPAUDIT)

Reserved.

IPBFLN1F
contains the length of pending log data for you to receive. This field is only meaningful when
IPWHATRC is equal to IPSABEND or IPERROR.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see
a reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
Contains the current state for this path, which may be one of the following values:
IPSENDST (X'03')

The path is in the Send state.
IPRECVST (X'04')

The path is in the Receive state.
IPSEVER (X'06')

The path is in the Sever state.
IPBKOUT (X'0D')

The path is in the Backout_Received state.
IPBKREQ (X'0E')

The path is in the Backout_Required state.

Program Exceptions
The program exceptions for SENDERR are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an external interrupt buffer was not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

APPCVM SENDERR (Send Error)

498 z/VM: 7.3 CP Programming Services

State Checks and State Changes
A state check results when APPCVM SENDERR is issued from an improper state. (You also receive an
IPRCODE when you issue a function from the wrong state.) See the list of APPCVM SENDERR return codes
for all state check conditions.

No state change occurs when CC=1. State changes occur when:

• The function completes, that is, when control is returned to the virtual machine (CC=2 or CC=3).
• The function complete interrupt is accepted by the virtual machine or you use TESTCMPL to discover

that the function was completed.

The state change depends on the IPWHATRC value in the output parameter list:

IPWHATRC
Value

State

Cause

IPCOMP Send The SENDERR has completed.

IPERROR Receive The SENDERR was completed by the communication partner issuing a
SENDERR from the Receive state.

IPSNORM Sever The SENDERR was completed by the communication partner issuing
a SEVER TYPE=NORMAL, or SEVER TYPE=ABEND with sever codes
X'0210', X'0220', or X'0230'.

IPSABEND Sever The SENDERR was completed by the communication partner issuing a
SEVER TYPE=ABEND with sever codes other than X'0210', X'0220', or
X'0230'.

IPBACK Backout_
Received

The SENDERR was completed by the communication partner initiating a
backout sync-point. Your program must respond with a SENDCNFD.

Completion Conditions
After you issue a SENDERR, you cannot issue another SEND (see note), RECEIVE, or SEVER
TYPE=NORMAL on that path until the outstanding SENDERR is complete. SENDERR is complete when
your communication partner or an intermediate communication server gets notified of the SENDERR by an
IPERROR indication in IPWHATRC (in the function complete interrupt).

Note: In this case, SEND refers to the set of APPC/VM send functions: SENDCNF, SENDCNFD, SENDDATA,
SENDERR, and SENDREQ.

APPC/VM notifies your communication partner of the SENDERR when your partner's SENDDATA,
SENDCNF, SENDERR, or RECEIVE completes. SENDERR causes your partner's outstanding functions
to complete. If none of these functions are outstanding when the SENDERR is issued, the SENDERR
indication will not be presented to the communications partner until the next function is issued.

If your communication partner is in the Receive state and sends a SENDERR before it receives your
SENDERR notice, your partner's SENDERR is invoked over yours. In this case, your partner would enter
the Send state, and you would be switched to the Receive state.

If your communication partner specified that it is willing to receive log data (LOGDATA=YES on either
APPCVM CONNECT or IUCV ACCEPT, whichever is applicable) your SENDERR completes when all of
the log data is copied out of your buffer. If your partner specified that it would not receive log data
(LOGDATA=NO on either APPCVM CONNECT or IUCV ACCEPT, whichever is applicable), the log data is
considered to be copied out of your buffer and the SENDERR completes.

When SENDERR completes, CP resets your logical record count to zero, as well as your communication
partner's; that is, your next SENDDATA would be a new logical record.

APPCVM SENDERR (Send Error)

Chapter 7. APPCVM Macro Functions 499

What Happens to Your VM Communication Partner
Your communication partner's outstanding function may complete, or your partner may get a message
pending interrupt.

If your partner has a RECEIVE, SENDDATA, SENDCNF, or SENDERR outstanding on its half of the path,
your partner's function is completed.

Your partner gets a message pending interrupt, if your partner:

• Has no function outstanding on its half of the path
• Is in the Receive state on its half of the path
• Is enabled for message pending interrupts.

See Message Pending External Interrupt.

If you do not specify CODE=, the SENDERR code (IPCODE) that your communication partner gets depends
on the state of the conversation and whether a logical record is being truncated.

For communication server programs, the code that your communication partner gets depends on the code
specified on the CODE parameter of APPCVM SENDERR.

APPCVM SENDERR (Send Error)

500 z/VM: 7.3 CP Programming Services

APPCVM SENDREQ (Send Request)

label

APPCVM SENDREQ ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the SENDREQ (Send Request) function to signal your communication partner that you would like to
send data. The communication partner can ignore your request.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SENDREQ.

PATHID=
specifies the path ID on which to send the request.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.

Input Parameter List: The APPCVM SENDREQ parameter list has the input format shown in the following
figure.

APPCVM SENDREQ (Send Request)

Chapter 7. APPCVM Macro Functions 501

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

/ /IPFLAGS1 IPSENDOP

/ /

/ /

Figure 50. APPCVM SENDREQ Input Parameter List

IPPATHID
contains the path ID on which the request to send is sent.

IPFLAGS1
contains the following input bit flag:
IPAPPCSN (X'02')

The APPC SEND function is issued.
IPSENDOP

contains the SEND option code:
IPREQSND (X'07')

indicates the request to send.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

Not possible X X Not possible

SENDREQ always completes immediately.
CC=1

An error occurred. The output parameter list is the same as the input shown in SENDREQ Input
Parameter List, except that one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 SENDREQ is an invalid function from the Connect state.

X'24' 36 SENDREQ is an invalid function from the Sever state.

X'26' 38 There is an invalid value in the IPSENDOP field.

X'33' 51 You must receive pending log data before issuing SENDREQ.

X'44' 68 SENDREQ is invalid from the Reset state.

X'45' 69 SENDREQ is invalid from the Defer_Receive state.

X'46' 70 SENDREQ is invalid from the Defer_Sever state.

X'4B' 75 SENDREQ is invalid from the Backout_Received state.

X'4C' 76 SENDREQ is invalid from the Backout_Required state.

APPCVM SENDREQ (Send Request)

502 z/VM: 7.3 CP Programming Services

CC=2
SENDREQ completed (also see SENDREQ Completion). The output parameter list when CC=2 is shown
in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

/ /IPTYPE IPSENDOP

/ /

/ /

/ / / / / / / / / / / / / / /

/ / / / / /

IPSTATE

Figure 51. APPCVM SENDREQ Output Parameter List

IPPATHID
contains the path ID on which the function is complete.

IPTYPE
contains the function complete interrupt code (IPTYPFCA, X'87').

IPSENDOP
contains the SEND option code:
IPREQSND (X'07')

The SENDREQ is being completed.
IPSTATE

contains one of the following values for the path's state:
IPSENDST (X'03')

The path is in the Send state.
IPRECVST (X'04')

The path is in the Receive state.
IPCONFRM (X'05')

The path is in the Confirm state.

Program Exceptions
The program exceptions for SENDREQ are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an external interrupt buffer has not been declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check results when APPCVM SENDREQ is issued from an improper state. (You also receive an
IPRCODE when you issue a function from an improper state.) See the list of APPCVM SENDREQ return
codes for all state check conditions.

No state change occurs.

APPCVM SENDREQ (Send Request)

Chapter 7. APPCVM Macro Functions 503

Completion Conditions
Because the SENDREQ function completes immediately, you can issue another SEND (see note) or
RECEIVE on the path when your virtual machine regains control.

Note: In this case, SEND refers to the set of APPC/VM send functions: SENDCNF, SENDCNFD, SENDDATA,
SENDERR, and SENDREQ.

You can issue more than one SENDREQ. Your communication partner does not get additional
SENDREQs until it receives an indication of any preceding SENDREQs. Those SENDREQs, sent before
previous SENDREQs have been indicated to your partner, are lost. CP does not notify you when your
communication partner actually gets the SENDREQ interrupt. You also do not receive an error message if
you issue another SENDREQ before your partner receives notification of previous SENDREQs.

You can issue SENDREQ even when another function is pending on the path. If the pending function is a
SENDCNF TYPE=SEVER, then your partner may not be informed of your SENDREQ.

If you issue a SEVER before your communication partner learns of your SENDREQ, your communication
partner may not be informed of your SENDREQ.

What Happens to Your VM Communication Partner
If your communication partner is enabled for SENDREQ interrupts, it gets the SENDREQ interrupt shown
in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPTYPE

/ /

/ /

/ /

/ / / / / /

IPPOLLFG

/ /

Figure 52. SENDREQ (Request-to-Send) Interrupt

IPPATHID
is the path ID on which you get the SENDREQ notice.

IPTYPE
is the interrupt type for a SENDREQ notification (IPTYPSRA, X'88').

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

CP does not queue more than one SENDREQ interrupt on a single path for the communication partner at
one time. Thus, the number of SENDREQ interrupts reflected to your communication partner may be less
than the number of SENDREQs issued.

You cannot receive SENDREQ indicators with the RECEIVE function. They are only presented as an
interrupt or with the DESCRIBE function.

If your connection to your VM partner is routed over a VTAM link, then the partner may not receive
a SENDREQ interrupt for the conversation until it performs some other APPC/VM operation on the
conversation. For more information, see Chapter 10, “APPC Mapped with APPC/VM,” on page 571.

APPCVM SENDREQ (Send Request)

504 z/VM: 7.3 CP Programming Services

APPCVM SETMODFY (Set Modify)

label

APPCVM SETMODFY ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,TYPE=
2

RECEIVE

SEVER

,PATHID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
The SETMODFY function sets the state to Defer_Receive or Defer_Sever state, and sets the sync-point
control modifier to Receive or Sever. The sync-point control modifier specifies the state to occur after a
subsequent sync-point completes.

Note: If SETMODFY is not issued, a program is in the Send state when the sync-point completes.

Parameters
Required Parameters:
PRMLIST=

specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:
TYPE=

specifies the sync-point control modifier, which indicates the state that a program wishes to be in at
the end of the sync-point sequence:
RECEIVE

the program is in the Receive state when the sync-point sequence completes.
SEVER

the program is in the Sever state when the sync-point sequence completes.
MF=L

generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SETMODFY.

APPCVM SETMODFY (Set Modify)

Chapter 7. APPCVM Macro Functions 505

PATHID=
specifies the path ID on which the sync-point control modifier is being specified.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.

Input Parameter List: The APPCVM SETMODFY parameter list has the input format shown in the
following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPFLAGS1

/ /

/ /

IPSNDOP2

/ /

Figure 53. APPCVM SETMODFY Input Parameter List

IPPATHID
contains the path ID on which the sync-point control modifier is being specified.

IPFLAGS1
contains the following input bit flag:
IPAPPC (X'08')

specifies that this is an APPC function.
IPSNDOP2

contains one of the following SEND option codes:
IPTPRECV (X'04')

a Receive state was requested when the sync-point sequence completes.
IPTPSEVR (X'06')

a Sever state was requested when the sync-point sequence completes.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

Not possible X X Not possible

SETMODFY always completes immediately.

CC=1
An error occurred before the SETMODFY was initiated. The output parameter list is the same as the
input shown in SETMODFY Input Parameter List, except that one of the following return codes is
stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 The specified path ID is not yet established.

X'03' 3 A function is pending on this path.

X'1E' 30 This is a non-APPC path.

APPCVM SETMODFY (Set Modify)

506 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Why the Error Occurred

X'20' 32 SETMODFY is invalid from the Connect state.

X'22' 34 SETMODFY is invalid from the Receive state.

X'23' 35 SETMODFY is invalid from the Confirm state.

X'24' 36 SETMODFY is invalid from the Sever state.

X'25' 37 The connection was established with SYNCLVL=NONE or CONFIRM.

X'2C' 44 Before invoking SETMODFY, the program started but did not finish sending a
logical record.

X'44' 68 SETMODFY is invalid from the Reset state.

X'45' 69 SETMODFY is invalid from the Defer_Receive state.

X'46' 70 SETMODFY is invalid from the Defer_Sever state.

X'47' 71 SETMODFY is invalid from the Prepare_Received state.

X'49' 73 SETMODFY is invalid from the Unsolicited_Request_Commit_Received state.

X'4B' 75 SETMODFY is invalid from the Backout_Received state.

X'4C' 76 SETMODFY is invalid from the Backout_Required state.

X'4E' 78 IPSNDOP2 contains an invalid value.

CC=2
SETMODFY completed with no error caused by the invoker. The output parameter list when CC=2 is
shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ / / / / / / / / / / / / / /

/ /

/ /

IPSTATE

/ /

/ /

Figure 54. APPCVM SETMODFY Output Parameter List

IPPATHID
contains the path ID on which SETMODFY completed.

IPSTATE
contains the current state for this path, which may have one of the following values:
IPDEFRCV (X'07')

The path is in the Defer_Receive state.
IPDEFSEV (X'08')

The path is in the Defer_Sever state.

Program Exceptions
The program exceptions for SETMODFY are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

APPCVM SETMODFY (Set Modify)

Chapter 7. APPCVM Macro Functions 507

Type Description

Operation Either an external interrupt buffer has not been declared, or the invoking virtual
machine is not in supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check occurs (see the IPRCODEs) if the path is not in the Send state.

The state change depends on the value of the TYPE= parameter:

• When TYPE=RECEIVE, the state changes to the Defer_Receive state.
• When TYPE=SEVER, the state changes to the Defer_Sever state.

Completion Conditions
The SETMODFY function always completes immediately. This allows the program to issue another
function on the same path as soon as the virtual machine regains control.

What Happens to Your VM Communication Partner
The communication partner is not affected by the SETMODFY function.

APPCVM SETMODFY (Set Modify)

508 z/VM: 7.3 CP Programming Services

APPCVM SEVER

label

APPCVM SEVER ,PRMLIST= label

( reg)

,TYPE=
1

NORMAL

ABEND

Optional Parameters
2

Optional Parameters

,MF=L ,CODE= label

( reg)

,PATHID= label

( reg)

,WAIT=
1

YES

NO

,BUFLIST=
1

YES

NO

,BUFFER= label

( reg)

,BUFLEN= label

( reg)

,KEEP=
1

YES

NO

Notes:
1 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.
2 Optional parameters can be entered in any order.

Purpose
Use the SEVER function to break a communication path with another virtual machine or your own virtual
machine. After severing the connection with the other virtual machine, you cannot send or receive any
other messages on that connection. Remember that your communication partner cannot receive any of
the data that has not yet been copied out of your storage. However, your partner can receive log data that
you send with APPCVM SEVER.

Parameters
Required Parameters:
PRMLIST=

specifies the address of the APPC/VM parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.

APPCVM SEVER

Chapter 7. APPCVM Macro Functions 509

(reg)
is the register number that contains the address of the parameter list.

TYPE=
indicates the type of SEVER performed.
NORMAL

severs the path normally. You can only do this if you are in the Send state (see note) and not in the
middle of sending a logical record, or if you are in the Sever state.

Note: For a SYNCLVL=SYNCPT conversation, only communication servers can issue
TYPE=NORMAL from the Send state.

ABEND
severs the path abnormally. APPC/VM invokes SEVER TYPE=ABEND from the Send, Receive, or
Confirm state, even if there is a function that still has not completed on the specified path.

TYPE=NORMAL is not valid if BUFLIST, BUFFER, and BUFLEN are specified.

Optional Parameters:
CODE=

specifies a 2-byte sever code. CODE is only valid when you specify TYPE=ABEND. IBM defines all the
codes; applications may not define error or sever codes for their own use.
label

is the relocatable label of the 2-byte sever code.
(reg)

is the register number that contains the sever code.

When CP issues a SEVER, or your communication partner issues an IUCV SEVER or RTRVBFR, CP
determines the sever code to reflect. See What Happens to Your VM Communications Partner for
more information on what this sever code could be. Also see Sever Codes That You Can Issue for
information on what you can issue.

MF=L
generates the instructions necessary to initialize the APPC/VM parameter list as specified, but does
not invoke the APPCVM SEVER.

PATHID=
specifies the path ID that is severed.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
WAIT=

lets you specify when control is returned to your virtual machine.
YES

returns control to your virtual machine when the SEVER is complete.
NO

returns control to your virtual machine when the SEVER is initiated.
BUFLIST=

specifies the type of buffer address to which the BUFFER parameter refers.
YES

refers to a list of addresses.
NO

refers to a single address.

This parameter is not valid if TYPE=NORMAL.

APPCVM SEVER

510 z/VM: 7.3 CP Programming Services

BUFFER=
specifies the address of the areas from which CP takes the log data.
label

is the relocatable label in storage where CP gets the log data to send.
(reg)

is the register number that contains the address of the storage area. This storage area is where CP
gets the log data to send.

This parameter is not valid if TYPE=NORMAL.

BUFLEN=
specifies the length of the areas from which APPC/VM takes the log data to be sent. The minimum
length is eight bytes; the maximum length is 600 bytes. This length is not related to the length of a
logical record.
label

is the relocatable label of the fullword that contains the length.
(reg)

is the register number that contains the length.

This parameter is not valid if TYPE=NORMAL.

KEEP=
indicates whether the path ID may be reassigned by CP for another conversation immediately after
the APPCVM SEVER.
YES

indicates that the path ID is not to be freed for reuse by CP for another conversation.

Note: This value is invalid when TYPE=NORMAL.

NO
indicates that the path ID is to be freed for reuse by CP for another conversation.

Input Parameter List: The APPCVM SEVER parameter list has the input format shown in the following
figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

/ / / / / /

/ /

/ /IPBFLN1F

IPBFADR1

IPFLAGS1 IPCODE IPFLAGS2 IPSENDOP

Figure 55. APPCVM SEVER Input Parameter List

IPPATHID
contains the path ID being severed.

IPFLAGS1
contains one of the following input bit flags:
IPBUFLIST (X'40')

You specified the buffer list option. This flag is ignored unless IPSENDOP=IPSABEND.
IPAPPC (X'08')

The APPC SEVER function was issued.
IPKEEP (X'10')

indicates that the path ID is not to be freed for reuse after the APPCVM SEVER completes.

Note: This flag is ignored unless IPSENDOP=IPSABEND.

APPCVM SEVER

Chapter 7. APPCVM Macro Functions 511

IPCODE
contains the sever code. IPCODE is only valid when IPSENDOP=IPSABEND. See Sever Codes That You
Can Issue.

IPFLAGS2
contains one of the following input bit flags:
IPWAIT (X'80')

You specified the wait option. This flag is ignored unless LOGDATA was specified.
IPCOMSRV (X'20')

Means that the SEVER is on behalf of another user. Only an authorized user (OPTION COMSRV in
directory) can specify IPCOMSRV.

IPSENDOP
contains one of the following SEND option codes:
IPSNORM (X'08')

You requested that the path be severed normally.
IPSABEND (X'09')

You requested that the path be severed abnormally.
IPBFADR1

contains the address of the area from which APPC/VM takes the log data or the address of the address
list or the length list. This parameter is ignored unless IPSENDOP=IPSABEND.

IPBFLN1F
contains the length of the log data being sent. If IPBFLN1F is 0, then no log data is being sent.
Otherwise, log data is being sent. This parameter is ignored unless IPSENDOP=IPSABEND.

Usage Notes
Specifying Log Data: An application program can choose to set up log data and to send that log data
using buffers specified on APPCVM SEVER. Log data conveys error information to an LU, where it is added
to the system error log. This error information can be used in debugging and error recovery.

When using APPCVM SEVER to send log data to your communication partner, you use buffers. You can
specify a single buffer using one address and one length or specify multiple buffers using a list of
addresses and lengths.

When you specify a single buffer using one address and one length:

• BUFFER specifies the address
• BUFLEN specifies the length
• BUFLIST must be equal to NO.

When you specify multiple buffers with a list of addresses and lengths:

• BUFFER specifies the address of the list
• BUFLEN specifies the sum of the lengths of the buffers in the list
• BUFLIST must be equal to YES.

When specifying address lists (BUFLIST=YES), note the following:

1. The list must begin on a doubleword boundary.
2. Each list entry must be two fullwords; the first is the address of that portion of the list, and the second

is the length.
3. The addresses and lengths in the address list are updated during APPC/VM processing. Do not alter

them during processing or assume that they are unchanged when APPC/VM processing is complete.
4. APPC/VM assumes that there is another entry in the list until the sum of the lengths of the entries

processed is equal to the total length specified by BUFLEN.

Note: Log data is ignored on an incomplete path.

APPCVM SEVER

512 z/VM: 7.3 CP Programming Services

The log data you are sending in buffers must be coded into an error log general data stream (GDS)
variable. An error log GDS variable has the following format, defined by SNA LU 6.2:

GDS10

4

6

6+j

6+j+2

0 1 2 3

(j is the length specified by GDS3
minus 2 bytes for GDS3's length.)

GDS3

GDS2

GDS4 . . .

GDS5

GDS6 . . .

Figure 56. Error Log GDS Variable Format

GDS1
contains the length, in binary, of the error log GDS variable, including this length field. This must be in
the range from 8 to 600 bytes.

GDS2
contains a GDS identifier for an error log variable, X'12E1'.

GDS3
contains the length, in binary, of the product set ID (GDS4) including this length field.

Note: The length field is always present; a value of 2 indicates no product set ID subvector follows.

GDS4
contains the product set ID subvector. This subvector, which is variable length, uniquely identifies the
product.

GDS5
contains the length, in binary, of the log data including this length field.

Note: The length field is always present; a value of 2 indicates no log data follows.

GDS6
contains the log data.

For more information about the error log GDS Variable and product set ID, see SNA Format and Protocol
Reference Manual: Architectural Logic for LU Type 6.2.

Sever Codes That You Can Issue: You can specify a sever code using the CODE= parameter on an
APPCVM SEVER with TYPE=ABEND. The point at which you can specify a sever code depends on the state
of your path. (However, you can issue an IUCV SEVER function on any APPC path at any time.)

The table below shows the APPC error condition associated with each sever code. Refer to SNA Format
and Protocol Reference Manual: Architectural Logic for LU Type 6.2 for an explanation of what these APPC
conditions mean and when to use these sever codes.

• If you are in the Connect state, you can only issue IUCV SEVER, which has no associated sever codes.
• After you ACCEPT the connection, and before you issue any other function on the path, you can issue

APPCVM SEVER with any of the following APPC/VM sever codes:

APPC/VM Code APPC Error Condition

X'0120' CONVERSATION_TYPE_MISMATCH

X'0130' SYNC_LEVEL_NOT_SUPPORTED_BY_PGM

X'0140' TRANS_PGM_NOT_AVAIL_NO_RETRY

X'0141' TRANS_PGM_NOT_AVAIL_RETRY

X'0142' TPN_NOT_RECOGNIZED

X'0150' PIP_NOT_SPECIFIED_CORRECTLY

APPCVM SEVER

Chapter 7. APPCVM Macro Functions 513

APPC/VM Code APPC Error Condition

X'0151' PIP_NOT_ALLOWED

X'0160' SECURITY_NOT_VALID

X'0210' DEALLOCATE_ABEND_PROG

X'0220' DEALLOCATE_ABEND_SVC

X'0230' DEALLOCATE_ABEND_TIMER

• After the path is established (that is, CONNECT or ACCEPT is complete) you can issue APPCVM SEVER
with the sever codes shown as follows:

APPC/VM Code APPC Error Condition

X'0210' DEALLOCATE_ABEND_PROG

X'0220' DEALLOCATE_ABEND_SVC

X'0230' DEALLOCATE_ABEND_TIMER

• Communication servers can sever with any defined SEVER code. See page “Currently-Defined APPC/VM
Sever Codes” on page 399 for all currently-defined sever codes. The communication server is
responsible for using only valid sever codes based on the conversation state according to the APPC
architecture.

The sever type and code presented to your partner may not always be the sever type and code that
you specified. For example, if your partner issues a SENDERR from the Receive state, a sever code of
DEALLOCATE_ABEND_PROG is presented to your partner as DEALLOCATE_NORMAL in the completion
data of your partner's SENDERR. See “APPCVM SENDERR (Send Error)” on page 490 for more information.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X X X

CC=0
The APPCVM SEVER started successfully, but has not yet completed. If your virtual machine is
enabled for function complete interrupts, one is presented to your virtual machine when SEVER
completes. When you get the function complete interrupt, check the IPAUDIT field for error
information. The function complete interrupt has the same format as the SEVER output parameter
list (see CC=2, 3).

When control is returned to your virtual machine with CC=0, the parameter list may have been altered.

Note: CC=0 is not possible when WAIT=YES.

CC=1
An error occurred. The parameter list format is the same as the input shown in SEVER Input
Parameter List, except that one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 01 You specified a path ID that is not yet established.

X'03' 03 A function is pending on this path.

X'0A' 10 Your buffer length is negative.

APPCVM SEVER

514 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Why the Error Occurred

X'17' 23 A length specified in your SEND buffer list is negative.

X'18' 24 The total length that you specified is not the total of the lengths in your SEND
buffer list.

X'1A' 26 The buffer list address is not on a doubleword boundary.

X'1D' 29 You are not authorized to act for another user.

X'1E' 30 You specified an APPC/VM function on a non-APPC path.

X'20' 32 APPCVM SEVER is an invalid function from the Connect state.

X'22' 34 APPCVM SEVER TYPE=NORMAL is an invalid function from the Receive state.

X'23' 35 APPCVM SEVER TYPE=NORMAL is an invalid function from the Confirm state.

X'24' 36 APPCVM SEVER TYPE=ABEND is an invalid function from the Sever state.

X'26' 38 There is an invalid value in the IPSENDOP field.

X'2C' 44 Before invoking APPCVM SEVER TYPE=NORMAL, you started but did not
finish, sending a logical record.

X'2E' 46 You specified an invalid sever code.

X'37' 55 Your buffer length is either less than 8 or greater than 600.

X'38' 56 WAIT=YES was specified on a function issued to this same virtual machine.

X'44' 68 APPCVM SEVER is an invalid function from the Reset state.

X'45' 69 APPCVM SEVER TYPE=NORMAL is invalid from the Defer_Receive state.

X'46' 70 APPCVM SEVER TYPE=NORMAL is invalid from the Defer_Sever state.

X'47' 71 APPCVM SEVER TYPE=NORMAL is invalid from the Prepare_Received state.

X'49' 73 APPCVM SEVER TYPE=NORMAL is invalid from the
Unsolicited_Request_Commit_Received state.

X'4B' 75 APPCVM SEVER TYPE=NORMAL is invalid from the Backout_Received state.

X'4C' 76 APPCVM SEVER TYPE=NORMAL is invalid from the Backout_Required state.

X'4F' 79 APPCVM SEVER TYPE=NORMAL is invalid on a SYNCLVL=SYNCPT
conversation when issued by:

• A communication server from a state other than the Sever or the Send
state

• A noncommunication server from a state other than the Sever state.

X'57' 87 An APPCVM SEVER with KEEP=YES is invalid after a previous APPCVM SEVER
that specified log data.

CC=2 or CC=3
The SEVER completed (also see SEVER Completion). When CC=2, the function completed with no
errors; when CC=3, there is error information in IPAUDIT.

Note: When you specify WAIT=NO, CC=3 is not possible.

The output parameter list when CC=2 or CC=3 is as shown in the following figure.

APPCVM SEVER

Chapter 7. APPCVM Macro Functions 515

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPTYPE

/ /

/ /IPAUDIT

IPSTATE

IPFLAGS1 IPWHATRC IPSENDOP

IPPOLLFG / / / / / / / / / / / / / / /

/ / / / / / / / / / / / / / /

Figure 57. APPCVM SEVER Output Parameter List (Function Complete Interrupt)

IPPATHID
contains the path ID on which the function is complete.

IPFLAGS1
may contain one or more of the following output bit flags:
X'20'

This value is reserved for IBM use only.
X'02'

This value is reserved for IBM use only.
X'01'

This value is reserved for IBM use only.
IPTYPE

Contains the function complete interrupt code (IPTYPFCA, X'87').
IPWHATRC

Contains the what-received code.
IPCOMP (X'00')

SEVER completed normally.
IPSENDOP

contains one of the following SEND option codes:
IPSNORM (X'08')

SEVER TYPE=NORMAL has completed.
IPSABEND (X'09')

SEVER TYPE=ABEND has completed.
IPAUDIT

has three fields that may contain error information.

Note: In the following descriptions:

• Send area refers to either a send buffer specified directly on an APPCVM SEVER, BUFFER= or a
send buffer that is part of a buffer list. This area is used for sending log data.

• Receive area refers to either a receive buffer specified directly on an APPCVM RECEIVE,
BUFFER= or a receive buffer that is part of a buffer list. This area is used for receiving log
data.

(See Specifying Log Data for more information on specifying buffers and buffer lists.)
IPAUDIT1 (first byte of IPAUDIT)

may contain one of the following bit flags:
IPADSNPX (X'40')

A protection exception occurred on your send area for log data.
IPADSNAX (X'20')

An addressing exception occurred on your send area for log data.
IPAUDIT2 (second byte of IPAUDIT)

may contain one of the following bit flags:

APPCVM SEVER

516 z/VM: 7.3 CP Programming Services

IPADRCPX (X'80')
A protection exception occurred on your communication partner's receive area for log
data.

IPADRCAX (X'40')
An addressing exception occurred on your communication partner's receive area for log
data.

IPADRLST (X'04')
Your communication partner had an invalid receive buffer list.

IPAUDIT3 (third byte of IPAUDIT)
may contain one of the following bit flags:
IPADBLEN (X'80')

A bad length is in your send buffer list.
IPADBTOT (X'20')

Your total send buffer length is invalid.
IPADIINV (X'04')

There is an invalid logical record length in your data stream.
IPASYRC (fourth byte of IPAUDIT)

Reserved.

Even when an error is reported in the IPAUDIT field, the path is severed.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see
a reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
contains the current state for this path.
IPRESET (X'01')

Indicates that the path is in the Reset state.
IPSENDST (X'03')

Indicates that the path is in the Send state.
IPRECVST (X'04')

Indicates that the path is in the Receive state.

Program Exceptions
The program exceptions for SEVER are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an external interrupt buffer was not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

APPCVM SEVER

Chapter 7. APPCVM Macro Functions 517

State Checks and State Changes
A state check occurs (IPRCODE=X'44') if the path is in the Reset state. (When you issue a function from
an improper state, you receive an IPRCODE.) Other state checks depend on whether TYPE=NORMAL or
TYPE=ABEND. See the list of APPCVM SEVER return codes for all state check conditions.

When your virtual machine regains control after successfully completing the SEVER (CC=2 or CC=3), you
enter the Reset state. However, if APPCVM SEVER TYPE=ABEND was issued by a noncommunication
server while a sync-point was in progress, the state changes to the saved_state value (either the Send or
the Receive state).

The state of a path on a SYNCLVL=SYNCPT conversation is saved when the conversation is initialized
and when each SYNCPT completes. This is so the conversation can back out to the saved state when a
backout occurs.

No state change occurs when CC=1.

Completion Conditions

After APPCVM SEVER completes, you cannot issue any other functions on that path. The timing of an
APPCVM SEVER completion depends on whether log data was specified.

If you do not specify log data on the APPCVM SEVER, it always completes immediately. If you do specify
log data, the APPCVM SEVER function completes when all of the log data is copied out of your buffer. An
APPCVM SEVER with log data also completes when your partner issues a SEVER.

If your communication partner specified that it does not accept log data, the log data is automatically
considered copied out of your buffer. If log data is specified and control is returned to your virtual
machine with CC=0, this indicates that the function started successfully. The only functions that can be
issued on the path are:

• IUCV SEVER, KEEP=NO
• APPCVM SEVER, KEEP=NO, TYPE=ABEND, with no log data.

If you issue either of these two functions after issuing an APPCVM SEVER with log data, your
communication partner cannot receive any log data that has not yet been copied out of your storage.

You cannot issue APPCVM SEVER TYPE=NORMAL if there is another function outstanding on the path. You
can, however, issue APPCVM SEVER TYPE=ABEND without log data if there is an outstanding function on
a path. (However, if the pending function is a syncpoint function, IPCODEs of X'210', X'220', and X'230'
may not be specified.) In this case, CP may not present the outstanding function to your communication
partner. For example, if you issue the following sequence of functions, your communication partner is
notified of the SEVER, but not the SENDERR:

1. SENDERR
2. SEVER TYPE=ABEND (before your partner receives the SENDERR).

Also, in the following example sequence of functions, your communication partner cannot receive more
than the amount of data specified in the RECEIVE.

1. You issue a SENDDATA BUFLEN=200.
2. Your communication partner issues a RECEIVE BUFLEN=100.
3. You issue a SEVER TYPE=ABEND.

CP notifies your communication partner of the APPCVM SEVER with a sever interrupt. In addition, CP
notifies your partner the next time your partner issues a function on which CP can report the APPCVM
SEVER.

If KEEP=YES is not specified for APPCVM SEVER, the path ID is no longer valid when the SEVER
completes. If another function is then issued for that path ID, the function completes with CC=1 and
an IPRCODE of X'01' (specified path ID not established).

APPCVM SEVER

518 z/VM: 7.3 CP Programming Services

What Happens to Your VM Communication Partner
Any time after you and your partner have established a path (after the CONNECT/ACCEPT sequence is
complete), you can issue an APPCVM SEVER with TYPE=NORMAL or TYPE=ABEND.

Note: Before a path is established, you cannot issue an APPCVM SEVER, only an IUCV SEVER, unless your
program is a communication server. Refer to “IUCV SEVER” on page 556.

When you issue an APPCVM SEVER, your partner gets a sever interrupt (assuming it is enabled for sever
interrupts). In addition, if your partner has a RECEIVE, SENDDATA, SENDCNF, or SENDERR outstanding
on its half of the path, the function completes. Otherwise, if your partner issues one of those four
functions after you have issued the APPCVM SEVER, their function completes immediately with indication
of IPWHATRC=IPSNORM or IPWHATRC=IPSABEND.

A sever interrupt does not change your partner's path to the Sever state (the partner could have been in
the Sever state already). Your partner only enters the Sever state after it issues a function that completes
with IPWHATRC=IPSNORM or IPWHATRC=IPSABEND.

When you issue an APPCVM SEVER with log data, the way your partner receives it depends on what state
it was in when it got the Sever interrupt:

• If your partner was already in the Sever state when it got the Sever interrupt, it must next issue an
APPCVM RECEIVE to get the log data.

• If your partner was not in the Sever state when it got the Sever interrupt, it finds out about the log data
when it issues a function that completes with IPWHATRC=IPSABEND. It must then issue an APPCVM
RECEIVE to get the log data.

If your connection to your VM partner is routed over a VTAM link, then the partner may not receive
a SEVER interrupt for the conversation until it performs some other APPC/VM operation on the
conversation. For more information, see Chapter 10, “APPC Mapped with APPC/VM,” on page 571.

SEVER External Interrupt: A SEVER external interrupt on an APPC/VM path can result from an APPCVM
SEVER or an IUCV SEVER. In either case, it has the format shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPTYPE

/ /IPBFLN1F

/ / / / / / IPWHATRC / / / / / /IPCODE

/ /

Figure 58. SEVER External Interrupt

IPPATHID
contains the path ID being severed.

IPTYPE
contains the interrupt type for SEVER (IPTYPSVA, X'83').

IPCODE
contains the sever code from the partner's SEVER. See “APPC/VM Sever, Error, and Sense Codes That
You Can Get” on page 399 for a description of the sever codes.

IPWHATRC
contains the what-received code:
IPSNORM (X'08')

Your partner issued a SEVER TYPE=NORMAL.
IPSABEND (X'09')

Your partner issued SEVER TYPE=ABEND.

APPCVM SEVER

Chapter 7. APPCVM Macro Functions 519

IPBFLN1F
contains the length of the pending log data.

For an IUCV SEVER, CP ignores the user data field, issues an APPCVM SEVER TYPE=ABEND to your
communication partner, and then reflects a sever code. For an explanation of possible sever codes, see
What Happens to Your VM Communications Partner.

APPCVM SEVER

520 z/VM: 7.3 CP Programming Services

Chapter 8. IUCV Macro Functions for Use in APPC/VM

This chapter describes, in detail, each IUCV macro function that can be used in APPC/VM. These are:

• IUCV ACCEPT
• IUCV CONNECT
• IUCV DCLBFR (Declare Buffer)
• IUCV IPOLL (Interrupt Poll)
• IUCV QUERY
• IUCV RTRVBFR (Retrieve Buffer)
• IUCV SETCMASK (Set Control Mask)
• IUCV SETMASK
• IUCV SEVER
• IUCV TESTCMPL (Test Completion)
• IUCV TESTMSG (Test Message)

If you are unfamiliar with reading syntax diagrams, see “Syntax, Message, and Response Conventions” on
page xxxv.

The set of IUCV macro functions that can be used with APPC/VM is split into two sections. Those that:

• Can be used in CMS without special considerations
• Should be avoided in CMS.

Shared Functions That Can Be Used in CMS
The following table summarizes each IUCV macro function that can be used in CMS, then points to the
section that describes each function in detail.

Function Description Page

ACCEPT Accepts the connection from a requesting program to complete
a path.

“IUCV ACCEPT”
on page 524

CONNECT Establishes and reserves a path for resource manager programs
to communicate with *IDENT.

“IUCV
CONNECT” on
page 529

QUERY Gets information about the external interrupt buffer and finds
out how many paths can be established.

“IUCV QUERY”
on page 543

SEVER Ends communications with another program when APPCVM
SEVER is not appropriate.

“IUCV SEVER”
on page 556

For information on CMS in a virtual MP environment, see “Virtual MP Considerations for APPC/VM
Applications” on page 398.

Shared Functions That Should Be Avoided in CMS
Other functions are also shared for both APPC/VM and IUCV. These shared functions should not be used
in a CMS environment because they could affect other programs in the same virtual machine; however,
they can be used safely in a non-CMS environment.

Each of these functions is briefly described in the following list, then described in detail in the remainder
of this chapter.

© Copyright IBM Corp. 1991, 2023 521

The following table summarizes each IUCV macro function that should be avoided in a CMS environment,
then points to the section that describes each function in detail.

Function Description Page

DCLBFR Declares an interrupt buffer. (This buffer can be used for both
APPC/VM and IUCV interrupts.)

“IUCV DCLBFR
(Declare
Buffer)” on page
533

DESCRIBE Gives the following information:

• The next message pending on non-APPC paths
• The next message pending on an APPC path that is in the

Receive state
• A SENDREQ on an APPC path.

“IUCV
DESCRIBE” on
page 538

IPOLL Determines if any messages or replies are pending. “IUCV IPOLL
(Interrupt Poll)”
on page 540

RTRVBFR Releases an interrupt buffer. (This buffer can be used for both
APPC/VM and IUCV interrupts.)

“IUCV RTRVBFR
(Retrieve
Buffer)” on page
548

SETMASK Disables and enables APPC and non-APPC interrupts. “IUCV
SETCMASK (Set
Control Mask)”
on page 550

SETCMASK Disables and enables APPC and non-APPC control interrupts. “IUCV
SETMASK” on
page 553

TESTCMPL Determines the next APPC or non-APPC function that has
completed.

“IUCV
TESTCMPL (Test
Completion)” on
page 562

TESTMSG Waits for the following:

• A message pending or message complete interrupt on non-
APPC paths

• A message pending interrupt on an APPC path that is in the
Receive state

• A request-to-send interrupt on an APPC path
• A function complete interrupt on an APPC path.

“IUCV TESTMSG
(Test Message)”
on page 566

For more information on how to use the IUCV macro functions when writing programs, see z/VM: CMS
Macros and Functions Reference.

Condition Codes and Return Codes for IUCV Macro Functions
This section summarizes the condition codes and return codes that IUCV macro functions generate. See
the individual IUCV function details for specific condition code and return code information.

522 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

Condition Codes
The condition code (CC) is stored in the program status word (PSW). There are four possible values for
condition codes: 0, 1, 2, and 3. Here is the general meaning for each CC value:
Code

Meaning
CC=0

The function successfully completed with no errors.
CC=1

An error occurred when the function was initiated. In this case, the error code is stored in the
IPRCODE field of the output parameter list. (See a description of IPRCODE below.)

CC=2
The function completed immediately with no errors. In most cases, the requested function was not
performed. However, for IUCV ACCEPT on an APPC path, CC=2 indicates a successful completion.

CC=3
The function completed, but an error was detected.

Note: CC values for the IUCV TESTMSG have different meanings than shown here.

Return Codes
Return codes are stored in IPRCODE, 1-byte field in the output parameter list. IPRCODE reports error
conditions that CP detects when the function is initiated. A nonzero value is placed into IPRCODE when
CC=1. There is no corrective action for this type of error. You should sever the path when you get a
nonzero value in this field.

Note: In addition, the IUCV TESTCMPL output parameter list may define a field called IPAUDIT. IPAUDIT
reports error conditions that CP detects between the time that the function is initiated and the time it
completes. Like IPRCODE, there is no corrective action for this type of error. You should sever the path
when you get a nonzero IPAUDIT.

Using the Online HELP Facility for IUCV Macro Functions
You can receive online information about the IUCV macro functions (used with APPC/VM) by using the
z/VM HELP Facility. For example, to display a menu of the IUCV macro functions, enter:

help iucv menu

To display information about a specific IUCV macro function (ACCEPT in this example), enter:

help iucv accept

For more information about using the HELP Facility, see z/VM: CMS User's Guide. To display the main HELP
Task Menu, enter:

help

For more information about the HELP command, see z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

Chapter 8. IUCV Macro Functions for Use in APPC/VM 523

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

IUCV ACCEPT

label

IUCV ACCEPT ,PRMLIST= label

( reg) Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

,LOGDATA=
2

YES

NO

,COMSRV=
2

YES

NO

,BUFFER= label

( reg)

,BUFLEN= label

( reg)

,CONTROL=
2

YES

NO

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose

Use the ACCEPT function of the IUCV macro to accept a connection from another virtual machine or
from your own virtual machine. You should use ACCEPT only after your virtual machine gets a connection
pending external interrupt.

Note: The ACCEPT function is not part of the APPC architecture and is unique to VM.

In a CMS environment, you should use IUCV ACCEPT to set up an ACCEPT parameter list, then call
CMSIUCV ACCEPT to invoke the function. For more information, see z/VM: CMS Application Development
Guide for Assembler.

Parameters
Required Parameter
PRMLIST=

specifies the address of the IUCV ACCEPT parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

IUCV ACCEPT

524 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Optional Parameters
MF=L

generates the instructions necessary to initialize the IUCV parameter list as specified, but does not
invoke the IUCV ACCEPT.

PATHID=
identifies the path on which to accept the connection. If you specify the path ID, it must be the same
value presented in the connection pending interrupt; if you do not specify the path ID, it defaults to
the value contained in the first two-bytes of your parameter list.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
LOGDATA=

indicates whether the accepting program is willing to receive log data on the path being established.
YES

indicates that the accepting program receives log data.
NO

indicates that the accepting program does not receive log data. CP discards any log data sent to
this program.

Communication Server Parameters

COMSRV=
indicates whether the connection is being accepted for another user.
YES

indicates that the connection is being accepted for another virtual machine. Only communication
server virtual machines (OPTION COMSRV specified in the directory) can specify this parameter.

NO
indicates that the connection is not being accepted for another virtual machine.

BUFFER=
specifies the address of the connection complete extended data. (See Connection Complete
Extended Data for more information.) Only communication servers can specify this parameter. If a
noncommunication server specifies this parameter, it is ignored. There is not an error indication, and
CP builds the extended data.
label

is the relocatable label of connection complete extended data address.
(reg)

is the register number that contains the address of the connection complete extended data.
BUFLEN=

specifies the length of the connection complete extended data. (See Connection Complete
Extended Data for more information.) Only communication servers can specify this parameter. If a
noncommunication server specifies this parameter, it is ignored and there is no error indication.
label

is the relocatable label of the fullword storage location containing the length.
(reg)

is the register number that contains the length. If BUFLEN is 0, BUFFER and BUFLEN are
considered not specified; if BUFLEN is nonzero, length must be 80 (X'50') bytes, the current length
of the connection complete extended data.

CONTROL=
lets you specify whether a control path is being established. Control paths allow interrupt information
for your half of the path to be placed in the control buffer.

IUCV ACCEPT

Chapter 8. IUCV Macro Functions for Use in APPC/VM 525

YES
sends the APPC/VM interrupt information on this path to the control buffer.

Note: Do not specify CONTROL=YES in application programs running in CMS; CMS uses control
paths.

NO
sends APPC/VM interrupt information on this path the to application buffer.

Input Parameter List: The IUCV ACCEPT parameter list has the input format shown in the following figure
when accepting a connection on an APPC path:

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /IPBFLN1F

IPFLAGS1 IPFLAGS2 / / / / / // /

/ /

/ IPBFADR1

Figure 59. IUCV ACCEPT Input Parameter List

IPPATHID
is the path ID on which to accept the connection.

IPFLAGS1
contains the following input bit flag:
IPCNTRL (X'04')

a control path is being established.
X'80'

this value is reserved for IBM use only.
IPFLAGS2

contains one of the following input bit flags:
IPCOMSRV (X'20')

the connection is being accepted for another user.
IPLOGDOK (X'04')

the accepting program is specifying LOGDATA=YES.
IPBFADR1

specifies the address of the connection complete extended data.
IPBFLN1F

specifies the length of the connection complete extended data.

Usage Notes
Considerations for SNA Communication Servers: An SNA communication server can use the BUFFER
and BUFLEN parameters to send connection-complete extended data to the source (connecting) program.
The connection-complete extended data, which is sent to the source program along with connection-
complete data, contains the session ID, the conversation correlator, the local and remote network
fully qualified LU names, and the access user ID. CP passes the connection-complete extended data
information unchanged from the SNA communication server to the source program.

It is the communication server's responsibility to ensure that the conversation correlator provided
matches the conversation correlator received in the FMH5.

If an I/O error is encountered while reading in the connection-complete extended data from BUFFER,
CP builds the connection-complete extended data from the allocate data as it would for an ACCEPT by a
noncommunication server.

IUCV ACCEPT

526 z/VM: 7.3 CP Programming Services

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

Not Possible X X Not Possible

CC=1
an error occurred. The output parameter list is the same as the ACCEPT input parameter list, except
one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 IUCV ACCEPT cannot be issued on an APPC path until the connection
pending interrupt is presented. You specified a path ID that is not yet
established, or you tried issuing IUCV ACCEPT before getting a connection
pending interrupt. You can also get this code if you issue a second IUCV
ACCEPT on a path.

X'0A' 10 Invalid length for the connection complete extended data buffer

X'14' 20 Connection cannot be completed—originator has severed the path.

Note: If your path gets severed, you must still issue IUCV SEVER to clean up
your side of the path.

X'1D' 29 You are not authorized to act for another user.

X'44' 68 IUCV ACCEPT is invalid from the Reset state.

X'56' 86 You must have a control buffer declared to accept a SYNCLVL=SYNCPT
connection.

CC=2
ACCEPT is complete. The format of the output parameter list is as shown in the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

/ IPSTATE

/ /

/ /

/ / / / / / / / / / / / / / /

Figure 60. IUCV ACCEPT Output Parameter List

IPPATHID
is the path ID on which the connection was accepted.

IPSTATE
contains the current state for this path, which may have one of the following values:
IPRECVST (X'04')

the path is in the Receive state.
IPBKREQ (X'0E')

the path is in the Backout_Required state.

Program Exceptions
The program exceptions for ACCEPT are:

IUCV ACCEPT

Chapter 8. IUCV Macro Functions for Use in APPC/VM 527

Type Description

Addressing The parameter list address is outside of the virtual machine, the CCED buffer is
outside the virtual machine, or the CCED buffer address is 0.

Operation Either an external interrupt buffer has not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
If the ACCEPT completes successfully, your virtual machine enters the Receive state.

If the connection cannot be completed because the path was severed (IPRCODE 20), your virtual machine
remains in the Connect state.

When IUCV ACCEPT completes for a conversation established with SYNCLVL=SYNCPT, the current state
(Receive) is saved as the initial state value.

Completion Conditions
Because you can issue ACCEPT only when there is a connection pending, the ACCEPT function completes
immediately. If you have not yet received the allocation data pending for this path, that data is purged
when ACCEPT completes.

If the connection is for a private resource, the connection pending interrupt is presented in the control
buffer; after the ACCEPT is issued, all subsequent interrupts are placed in the application buffer.

When IUCV ACCEPT is issued before the PIP variable has been completely received, CP purges any
remaining data for the PIP variable that has not been received.

What Happens to Your VM Communication Partner
When you issue the ACCEPT function, the receiver of the connection-complete indication depends on the
system your communication partner (the virtual machine that issued the original CONNECT) is on. If it is:

• The same system, your partner gets the indication.
• A different system, the intermediate communication server (for example, TSAF or AVS) gets it.

The ACCEPT function can be issued by an intermediate communication server that is not the target of the
CONNECT. In this case, accepting a connection does not necessarily mean that the APPC/VM path has
been completed between two communicating programs. See “APPCVM CONNECT” on page 412 for more
details on the connection-complete indication.

IUCV ACCEPT

528 z/VM: 7.3 CP Programming Services

IUCV CONNECT

label

IUCV CONNECT ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,USERDTA= label

( reg)

,USERID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the CONNECT function of the IUCV macro to establish a path to the Identify system service (*IDENT).
A program in a virtual machine with proper directory authorization can manage or revoke a resource by
establishing a path to *IDENT.

Although the CONNECT may complete successfully, you are not able to use the path until you receive
a connection-complete external interrupt (meaning that *IDENT has accepted your connection) for this
path.

If you get an connection-severed external interrupt for this path (meaning that *IDENT has severed your
connection), you may not use the path. For more information on *IDENT, see Chapter 16, “Identify System
Service (*IDENT),” on page 729.

Notes:

1. The IUCV CONNECT function has more options when being used in an IUCV environment. However,
only the IUCV CONNECT parameters shown here should be used when connecting to *IDENT.

2. If an external security manager is installed on your system, you may not be authorized to use this
function. For additional information, contact your security administrator.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the IUCV parameter list. The IUCV instruction is generated to reference the
address specified.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:
MF=L

lets you build an IUCV CONNECT parameter list without initializing any registers or invoking the
connection. After using MF=L, you can use CMSIUCV CONNECT to actually issue the connect request
to *IDENT. (For more information, see z/VM: CMS Application Development Guide for Assembler.)

IUCV CONNECT

Chapter 8. IUCV Macro Functions for Use in APPC/VM 529

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

USERDTA=
specifies the data area containing the 16 bytes of user data that you are supplying to *IDENT. The user
data is presented to *IDENT as part of the connection pending external interrupt.
label

is the relocatable label of the user data.
(reg)

is the register number that contains the address of the user data.

On this IUCV CONNECT, the user data field must have the format shown in the following figure.

Name0

8

0 1 2 3 4 5 6 7

Fcode /Flag / / / / / / Ntype

Figure 61. User Data Field for CONNECT

Name
contains the name of the resource or gateway that you are managing or revoking. The first byte
of this name must be alphanumeric; IBM reserves names beginning with the remaining characters
for its own use. In addition, this resource/gateway name cannot be blanks (X'40's), nulls (X'00's),
ANY, ALLOW, or SYSTEM.

Fcode
is the function code. FCODE=1 indicates a request to identify (manage) a resource or gateway.
FCODE=2 indicates a request to revoke a resource or gateway.

Flag
is a flag byte.

For manage requests (FCODE=1):
Bit 0 on

The resource is accessible from outside the local system:

• If bit 0 is on and bit 2 is off, this is a global resource, unique in the TSAF or CS collection, and
accessible throughout the TSAF or CS collection and by AVS.

• If bit 0 is on and bit 2 is on, this is a system resource, accessible throughout the TSAF or CS
collection through the system gateway and by AVS.

This bit must be on for a gateway.

Bit 0 off
The resource is accessible only from the local system (a local resource).

Bit 1 on
The resource manager program accepts connections with SECURITY(NONE).

Bit 1 off
The resource manager program does not accept connections with SECURITY(NONE).

Bit 2 on
The resource is a system resource. If this bit is on, bit 0 must also be on.

Bit 2 off
This resource is not a system resource.

For revoke requests (FCODE=2):
Bit 0 on

CP revokes the global or system resource or gateway, known to the TSAF or CS collection. It
must also be on for revoking a system resource (see bit 2).

Bit 0 off
CP revokes the local resource, known only to the local system.

IUCV CONNECT

530 z/VM: 7.3 CP Programming Services

Bit 2 on
This resource is a system resource. If this bit is on, bit 0 must also be on.

Bit 2 off
This resource is not a system resource.

Ntype
indicates the type for name. If Ntype is 0 indicates a resource ID; if Ntype is 1 indicates a gateway
name.

USERID=
specifies *IDENT, the 8-character user ID for the Identify system service.

Input Parameter List: The IUCV CONNECT parameter list has the input format shown in the following
figure.

IPFLAGS10

8

10

18

20 /

0 1 2 3 4 5 6 7

IPARML DSECT

/ / / / / / / / / / / / / / /

IPVMID

IPMSGLIM/ / / / / / / / / / / /

IPUSER

IPUSER

/ / / / / /

Figure 62. IUCV CONNECT Input Parameter List

IPFLAGS1
contains all zeros.

IPMSGLIM
contains all zeros.

IPVMID
contains *IDENT, the user ID of the system service to which you want to establish this path.

IPUSER
contains the user data that is reflected to the *IDENT system service.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X Not Possible Not Possible

CC=0
the IUCV CONNECT completed successfully. The output parameter field, IPPATHID, identifies the path
ID that IUCV assigns this new path.

CC=1
the IUCV CONNECT encountered an error, and stored one of the following return codes in IPRCODE
(byte 3) of the output parameter list:

Hex
Code Decimal

Code

Why the Error Occurred

X'00' 0 Normal return

X'0D' 13 Your virtual machine already has the maximum number of connections.

X'0F' 15 Your virtual machine is not authorized to connect to *IDENT.

IUCV CONNECT

Chapter 8. IUCV Macro Functions for Use in APPC/VM 531

Hex
Code Decimal

Code

Why the Error Occurred

X'10' 16 Your program specified an invalid IUCV system service name.

Program Exceptions
The program exceptions for IUCV CONNECT are:

Type Description

Specification The parameter list is not on a doubleword boundary.

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

Addressing The parameter list address that you specified is outside the virtual machine's
storage.

Protection The storage key of the specified parameter list address does not match the key of
the user.

IUCV CONNECT

532 z/VM: 7.3 CP Programming Services

IUCV DCLBFR (Declare Buffer)

label

IUCV DCLBFR ,PRMLIST= label

( reg) Optional Parameters
1

Optional Parameters

,MF=L ,BUFFER= label

( reg)

,CONTROL=
2

YES

NO

,EXTBUF= label

( reg)

,EXTLEN= label

( reg)

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose

Use the DCLBFR (Declare Buffer) function before you use any other APPC/VM functions (except IUCV
QUERY) to set the address of a buffer that APPC/VM and IUCV can use to store external interrupt data.
After you receive an external interrupt, this buffer contains information about the message, reply, or
control function that caused the interrupt.

When you issue DCLBFR, the virtual machine is enabled for all types of APPC/VM and IUCV external
interrupts. Use the SETMASK and the SETCMASK functions to change these initial settings.

In addition, programs using control paths can set up an interrupt buffer extension.

Note: The IUCV interrupt mask in control register 0 is not affected by DCLBFR. See “IUCV SETMASK” on
page 553 for more details. If your program is running in a CMS environment, you can use HNDIUCV SET
to do the same job as DCLBFR.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Parameters
Required Parameters:
PRMLIST=

specifies the address of the IUCV DCLBFR parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:

IUCV DCLBFR (Declare Buffer)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 533

MF=L
expands the IUCV macro to generate the instructions necessary to initialize the parameter list as
specified, but not to invoke the DCLBFR function.

BUFFER=
identifies the external interrupt buffer. When an external interrupt is sent to the virtual machine,
APPC/VM stores information about the message or the control interrupt in this buffer.
label

is the relocatable label of the storage area used as the external interrupt buffer.
(reg)

is the register number that contains the address of the storage area used as the external interrupt
buffer.

Note: You can reduce the overhead involved in reflecting APPC/VM external interrupts to the virtual
machine if the buffer you declare is entirely within one page. You can further reduce overhead if the
buffer is entirely within page 0 of the virtual machine.

CONTROL=
lets you declare an application buffer or a control buffer.
YES

declares a control buffer.
NO

declares an application buffer.

User applications running CMS and GCS should not use a control buffer and control paths. CMS and
GCS declare control buffers during their initialization process. CMS and GCS do not allow applications
that use the control buffer to establish paths.

However, applications not running in CMS or GCS can use control and application buffers. If you
declare a control buffer with DCLBFR, you can establish control paths with CONNECT CONTROL=YES.
When you specify CONTROL=YES, only you view the path as a control path. Your communications
partner views it as an application path.

When an interrupt for a control path is presented to your virtual machine, it goes to the control buffer.
When an interrupt for an application path comes in, it goes to the application buffer, and the path ID is
stored in the control buffer. The rest of the control buffer contains zeros.

When a private resource manager connection pending interrupt is presented to a virtual machine, the
interrupt is presented in the control buffer. If the conversation is accepted with CONTROL=YES, then
all subsequent interrupts for the conversation are placed in the control buffer. If the conversation is
accepted with CONTROL=NO, then all subsequent interrupts for the conversation are placed in the
application buffer. For more information, see “IUCV ACCEPT” on page 524.

Restricted Parameters:
EXTBUF=

specifies the address of the interrupt buffer extension. This parameter should not be used by
applications running in CMS or GCS. (See Interrupt Buffer Extension.)
label

is the relocatable label in storage that contains the interrupt buffer extension.
(reg)

is the register number that contains the address of the interrupt buffer extension.

Note: EXTBUF is not valid when CONTROL=NO.

EXTLEN=
specifies the length of the interrupt buffer extension. This length must have a value from 0 to 4096
(inclusive). This parameter should not be used by applications running in CMS or GCS. (See Interrupt
Buffer Extension.)

IUCV DCLBFR (Declare Buffer)

534 z/VM: 7.3 CP Programming Services

You can use the IUCV QUERY function to determine the maximum length of data that can be returned
in the external interrupt buffer.

label
Is the relocatable label of the fullword storage location containing the length.

(reg)
Is the register number that contains the length.

Note: EXTLEN is not valid when CONTROL=NO.

Input Parameter List: The IUCV DCLBFR parameter list has the input format shown in the following
figure.

/ / / / / / / / / / / /0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

/ /

/ IPBFADR1

IPFLAGS1

IPBFLN2F

/ /

IPBFADR2

/ /

Figure 63. IUCV DCLBFR Input Parameter List

IPFLAGS1
may contain the following input bit flag:
IPCNTRL (X'04')

a control buffer is being established.
IPBFADR1

identifies the area where information about an APPC/VM or IUCV external interrupt is stored.
IPBFADR2

specifies the address of the interrupt buffer extension.
IPBFLN2F

specifies the length of the interrupt buffer extension.

Interrupt Buffer Extension: When an interrupt for which extended information is defined (that is,
connection pending and connection complete interrupts on APPC/VM paths.) is reflected to the virtual
machine, the extended information is placed in the interrupt buffer extension declared by the virtual
machine. When a function (for which extended information is defined) completes with CC=2 instead of a
completion interrupt, the extended information is still placed in the interrupt buffer extension (declared
by the virtual machine), even though the other information is placed in the parameter list.

Note: If an I/O error is encountered while paging in the user's interrupt buffer extension, the extended
information is not valid.

To ensure that you get all of the extended information, declare your extended interrupt buffer using the
maximum allowable size. Use the IUCV QUERY,PRMLIST= function to determine the maximum size of the
buffer. (See “IUCV QUERY” on page 543 for more information.)

If the length of the interrupt buffer extension is greater than the length of the extended information,
the remaining area is undefined and may be set to zero by CP or may contain data left over from a
previous interrupt. All extended interrupt data that can be variable in length contains length fields so that
the application can determine what data is valid. The data is valid only until the next IUCV or APPC/VM
interrupt is reflected to the virtual machine regardless of whether the next interrupt has extended data
defined.

The interrupt buffer extension should not be used directly by applications running in CMS or GCS. CMS
and GCS should use the interrupt buffer extension to obtain information necessary for coordinated
resource recovery, such as the conversation correlator, session ID, and the network fully qualified logical
unit (LU) names.

IUCV DCLBFR (Declare Buffer)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 535

Note: Issuing IUCV RTRVBFR has no effect on an interrupt buffer extension.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X Not Possible X

CC=0
DCLBFR completed with no errors. The output parameter list is the same as the input shown in the
DCLBFR Input Parameter List.

CC=1
an error occurred before the DCLBFR was initiated. The output parameter list is the same as the input
shown in the DCLBFR Input Parameter List, except that the return code is stored in IPRCODE (byte 3)
You can get the following return codes:

Hex
Code Decimal

Code

Why the Error Occurred

X'0A' 10 Invalid length for the interrupt buffer extension.

X'13' 19 Depends on the value for the CONTROL parameter:

• If CONTROL=YES, a control buffer has already been defined.
• If CONTROL=NO, an application buffer has already been defined.

X'3E' 62 Two of the following buffers overlap:

• Control buffer
• External interrupt buffer
• Interrupt buffer extension.

X'5C' 92 A paging or storage error was detected.

CC=3
IUCV found errors while reading your directory.

Program Exceptions
The program exceptions for DCLBFR are:

Type Description

Addressing The parameter list address or specified buffer address is outside the virtual
machine or at virtual address zero; or, the interrupt buffer extension is outside the
virtual machine storage or at virtual address zero.

Operation The invoking virtual machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
DCLBFR does not act on any one path and does not cause any state changes.

IUCV DCLBFR (Declare Buffer)

536 z/VM: 7.3 CP Programming Services

Completion Conditions
The DCLBFR function completes immediately.

IUCV DCLBFR (Declare Buffer)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 537

IUCV DESCRIBE

label

IUCV DESCRIBE ,PRMLIST= label

( reg)

Purpose
Use the DESCRIBE function to get the following:

• A description of a pending APPC/VM or IUCV message without receiving it
• A request-to-send indication.

DESCRIBE returns information about a message only once—the next time you invoke DESCRIBE, you get
a description of the next undescribed message. You can issue a RECEIVE on a message after you have
described it. However, it is not necessary to describe a message before receiving it.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the IUCV DESCRIBE parameter list. The address must be a guest real
address, that is, the address must be within the virtual machine's real address space (guest=real).
Also, the parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Usage Notes
1. For APPC/VM messages, the message is only described if the corresponding path is in the Receive

state. APPC/VM presents request-to-send indications regardless of the state of the corresponding
path.

2. DESCRIBE does not describe messages that are pending on control paths.
3. If there is a function outstanding on a path, APPC/VM may report the message on the completion of

that function (instead of on DESCRIBE).
4. CP considers a message described if you do one of the following:

• Completely or partially receive a message
• Get a message pending interrupt
• Get a request-to-send interrupt.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X Not Possible X Not Possible

IUCV DESCRIBE

538 z/VM: 7.3 CP Programming Services

CC=0
DESCRIBE completed with no errors. The output parameter list of an APPC/VM message is shown in
the following figure.

IPPATHID0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

IPTYPE

/ /

/ /

/ / / / / / /

IPPOLLFG

/ /

IPBFLN1F /

Figure 64. IUCV DESCRIBE Output Parameter List

IPPATHID
contains the path ID on which the message is pending.

IPTYPE
contains the interrupt type for a message pending (IPTYPMPA, X'89') or request-to-send
(IPTYPSRA, X'88').

IPBFLN1F
contains the length of the message that is pending. This length has no relationship to the length of
the APPC data stream being sent; it is only the length of the data that has arrived and is ready to
be received. If the interrupt type is not X'89', this has no meaning.

IPPOLLFG
contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that another iteration of this function will probably not find a message waiting at this
time.

CC=2
IUCV did not find any APPC/VM or IUCV undescribed messages.

Program Exceptions
The program exceptions for DESCRIBE are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
No state changes occur.

Completion Conditions
The DESCRIBE function completes immediately with CC=0 or CC=2.

IUCV DESCRIBE

Chapter 8. IUCV Macro Functions for Use in APPC/VM 539

IUCV IPOLL (Interrupt Poll)

label

IUCV IPOLL ,PRMLIST= label

( reg) Optional Parameters
1

Optional Parameters

,MF=L ,BUFFER= label

( reg)

,BUFLEN= label

( label ,2)

( label ,4)

( reg)

(( reg),2)

(( reg),4)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the IPOLL (Interrupt Poll) function of the IUCV macro to determine if you have any replies or incoming
messages pending. If IUCV finds any replies or incoming messages pending, it returns the information
about them in the buffer provided. The maximum number of pending interrupts that can be retrieved on a
single request is the number of IUCV external interrupt buffers that can fit on one 4K page.

Notes:

1. Unless you disable your virtual machine for IUCV message-complete and message-pending interrupts,
you should not use the IPOLL function. When the virtual machine is enabled for these interrupts, IUCV
automatically informs you of message completion or arrival of an incoming message by reflecting an
external interrupt to your virtual machine.

2. No external interrupt occurs for a reply represented by a message-complete returned by IPOLL.
3. No external interrupt occurs for a message represented by a message-pending returned by IPOLL. It

is your responsibility to use the RECEIVE or REJECT function to process a message obtained using
IPOLL.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Parameters
Required Parameters:
PRMLIST=

identifies to IUCV the address of your parameter list. The address of the parameter list must be a
guest real address (an address that is real to your virtual machine), and it must be on a doubleword
boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:

IUCV IPOLL (Interrupt Poll)

540 z/VM: 7.3 CP Programming Services

MF=L
lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction.

BUFFER=
specifies the address of the IPOLL buffer for interrupt data.
label

is the relocatable label of the buffer.
(reg)

is the register number that contains the address of the buffer.
BUFLEN=

specifies the length of the IPOLL buffer for interrupt data. This length must be at least the size of
an IUCV interrupt buffer and not more than 4096 bytes, and the buffer may not cross a 4K page
boundary. The length need not be an exact multiple of the length of an IPARML.
label

is the relocatable label of the halfword storage location containing the length.
(reg)

is the register number that contains the length of the buffer.

Input Parameter List: The IUCV IPOLL parameter list has the input format shown in the following figure.

0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /

/ /

IPBFLN1F /

/ /

IPBFADR1

Figure 65. IUCV IPOLL Output Parameter List

IPBFADR1
contains the address of the input buffer.

IPBFLN1F
contains the length of the input buffer. For output data returned by the IPOLL function, it contains the
length of the output data returned by the IPOLL function. This value will always be a multiple of the
length of an IUCV external interrupt buffer (IPARML).

Output Buffer Format When the condition code is zero, the buffer contains one or more interrupt data
areas for replies or messages. See the Message Complete External Interrupt, the Message Pending
External Interrupt, the Message Pending External Interrupt, SENDREQ Interrupt, and APPCVM RECEIVE
Output Parameter List. The remainder of the buffer not occupied by the external interrupt data remains
unchanged.

If no more replies or messages are pending for the invoker, the last interrupt placed in the output buffer
will have the IPNOPOLL flag set.

If IPOLL is issued in an APPC/VM environment you may receive interrupt information both for IUCV and
APPC/VM paths.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X X Not possible

IUCV IPOLL (Interrupt Poll)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 541

CC=0
IUCV returned one or more messages and/or replies

CC=1
An error occurred. The output parameter list is the same as the IPOLL input parameter list, except that
one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code

Decimal
Code

Why the Error Occurred

X'5C' 92 A paging or storage error was detected.

CC=2
IUCV did not find any replies or messages

Program Exceptions
The program exceptions for IPOLL are:

Type Description

Addressing Your parameter list address or buffer address is invalid; the address you specified
is outside of your virtual machine's storage.

Operation IUCV is inactive; you have not used the DCLBFR function to declare an external
interrupt buffer.

Specification • You did not define your parameter list on a doubleword boundary.
• You specified a buffer length less than the size of an IUCV interrupt buffer.
• You specified a buffer which spans a 4K page boundary.

IUCV IPOLL (Interrupt Poll)

542 z/VM: 7.3 CP Programming Services

IUCV QUERY

label

IUCV QUERY
1

Optional Parameters

Optional Parameters

,MF=L ,QRYTYPE= BUFFERS

CONNECT

,PRMLIST= label

( reg)

,PATHID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose

Use the QUERY function to obtain information about the IUCV environment in your virtual machine. An
application program can use the QUERY function to determine the maximum number of communication
paths that can be established for your virtual machine. The value is returned in register 1.

In addition, CMS and GCS can use IUCV QUERY during initialization to determine the following:

1. The size of the external interrupt buffer. This value is returned in register 0.
2. The maximum length of data that can be returned in the external interrupt buffer extension, if you

specify the PRMLIST=parameter. This value is returned in the output parameter list.
3. The maximum length Input Parameter List Extension (IPARMLX) that will be accepted on an APPC/VM

connect. This value is only available if the PRMLIST=parameter was specified. This value is returned in
the output parameter list.

An application program can use IUCV QUERY to obtain information about a specific connection.

Note: The IUCV QUERY function:

• Causes no state changes
• Completes immediately
• Does not involve a communication partner.

Parameters
Optional Parameter:
MF=L

generates the instructions necessary to initialize the IUCV parameter list as specified, but does not
invoke the IUCV QUERY function.

QRYTYPE=
specifies the IUCV QUERY subtype. The value must represent one of the codes defined for IPQTYPE.
The input QRYTYPE refines the IUCV QUERY request as follows:
BUFFERS

CP returns the length of the APPC/VM parameter/buffer extensions.

IUCV QUERY

Chapter 8. IUCV Macro Functions for Use in APPC/VM 543

CONNECT
CP returns information about the connection on a specified PATHID.

PRMLIST=
specifies the address of the IUCV QUERY parameter list. The address must be a guest real address;
the address must be within the virtual machine's real address space (guest=real). Also, the parameter
list must be on a doubleword boundary. The PRMLIST is optional. If it is omitted, the IUCV QUERY
will only return information through the Output Registers. (This is the basic IUCV QUERY format.)
If PRMLIST is specified without QRYTYPE, the IUCV QUERY will return extended buffer length
information. (This is equivalent to QRYTYPE=BUFFERS.)
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.
PATHID=

specifies the IUCV path ID to be interrogated by this operation. The specified path ID is assigned to
the field IPPATHID in the Input Parameter List.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.

Input Parameter List: IUCV QUERY may be issued without a parameter list. When PRMLIST is specified,
the parameter list passed to the IUCV instruction has the format shown in Figure 66 on page 544:

0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

/ /IPPATHID

/ /

IPQTYPE

/ /

/ /

Figure 66. IUCV QUERY Input Parameter List

The parameters are as follows:
IPPATHID

contains the path ID to be interrogated for path-specific information. This field is set from the PATHID
parameter, and is only relevant when IPQTYPE=IPQCONN.

IPQTYPE
IPQTYPE contains one of the following codes which represent the specified QRYTYPE:
IPQBFLN (X'00')

Return general information about the parameter and interrupt extension lengths for the APPC/VM
interface. This is set as the default value for IPQTYPE when IUCV QUERY is specified with a
PRMLIST value.

IPQCONN (X'01')
Return information about the connection that exists on a specific path (the one specified in
IPPATHID).

Note: All other fields in the input parameter list are reserved for IBM use, and should be initialized to
zero by the invoker. A nonzero value in one of these fields is not reported as an error, but may cause
undesirable results at some point in the future.

IUCV QUERY

544 z/VM: 7.3 CP Programming Services

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X X X

Note: QUERY always completes immediately.

CC=0
QUERY completed with no errors. The requested information is returned through the output
parameter list. The format of the output parameter list is determined by the input IPQTYPE field
value.

Output Parameter List: When IPQTYPE=IPQBFLN (Query Buffer Lengths) the IUCV QUERY output
parameter list has the output format shown in Figure 67 on page 545:

0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

IPIPXMLN

/ /

IPQTYPE

/ /

/ /

IPBFLN2F

/ /

Figure 67. IUCV QUERY Output Parameter List (QRYTYPE=BUFFERS)

IPQTYPE
Contains the input QRYTYPE value

IPIPXMLN
Contains the length (in bytes) of the maximum valid APPC/VM connect input parameter list
extension (IPARMLX)

IPBFLN2F
Contains the maximum length (in bytes) of data that can be reflected in the interrupt buffer
extension

When IPQTYPE=IPQCONN (Query Connection) the IUCV QUERY output parameter list has the output
format shown in Figure 68 on page 545 :

0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

IPPATHID IPQTYPE

/ /

/ /

/ /

/ /

IPQCODE IPQFLAGS

Figure 68. IUCV QUERY Output Parameter List (QRYTYPE=CONNECT)

IPPATHID
Contains the original input value (the specified path ID)

IPQCODE
Contains one of the following codes:
IPQCNNOT (0)

The specified PATHID is NOT connected at all.
IPQCNPND (1)

The specified PATHID is Connection Pending.

IUCV QUERY

Chapter 8. IUCV Macro Functions for Use in APPC/VM 545

IPQCNCTD (2)
The specified PATHID is Connected.

IPQCNSEV (3)
The specified PATHID is Severed.

IPQFLAGS
These flags provide additional information about an IUCV path. Note that some characteristics
(such as IPQAPPC) can be established for any valid path. Other characteristics (like IPQCMSRV)
can only be established if IPQCODE=IPQCNCTD (indicating that the path is already connected).
IPQFLAGS may contain a combination of the following flags:
IPQAPPC (X'80')

The path specified on input represents an APPC/VM connection (instead of an IUCV
connection).

IPQCMSRV (X'40')
The specified path is connected to a Virtual Machine operating as a Communication Server.
This normally means the path is being extended to a remote partner.

IPQISFC (X'20')
The specified path is connected to CP ISFC (Inter-System Facility for Communication)
services. This normally means the path is being extended to a remote partner.

IPQCPSVC (X'10')
The specified path is connected to a CP System Service (for example, *IDENT). None of the CP
System Services would extend a connection beyond the local system.

IPQTYPE
Contains the input QRYTYPE value.

CC=1
QUERY did not complete. The output parameter list is the same as the QUERY input parameter list,
except that one of the following return codes is stored in IPRCODE (byte 3):

Hex Code Decimal Code Why the Error Occurred

X'01' 1 You specified a path ID that does not exist.

X'11' 17 The input IPQTYPE is not one of the supported QUERY
subfunctions (refer to “Parameters” on page 543 for more
information).

CC=2
QUERY did not complete. The user ID of the invoking virtual machine was not found in the CP
directory, or the QUERY function was initiated while an IUCV RTRVBFR was in progress. The output
parameter list is the same as the QUERY input parameter list.

CC=3
QUERY did not complete. CP encountered an error while trying to read the CP user directory entry for
the invoking virtual machine. The output parameter list is the same as the QUERY input parameter list.

Program Exceptions
The program exceptions for QUERY are:

Type Description

Operation The invoking virtual machine is not in the supervisor state.

Specification The parameter list is not doubleword aligned.

Addressing The parameter list is outside the virtual machine storage.

Protection The parameter list storage area key does not match the user's key.

IUCV QUERY

546 z/VM: 7.3 CP Programming Services

Output Registers: When the IUCV QUERY code is executed, the following information is returned in the
invoker's general purpose registers R0 and R1:
R0

The size (in bytes) of the external interrupt buffer for IUCV
R1

The maximum number of communication paths that can be established for your virtual machine

Usage Notes
1. IUCV QUERY does not require an IUCV interrupt buffer. So it can be issued before the IUCV DCLBFR

(Declare Buffer) function.
2. IUCV QUERY completes immediately and does not cause a state change for any APPC/VM

conversation.
3. An IUCV application can use a simple IUCV QUERY function (with no PRMLIST) to determine how

much storage to allocate for interrupt buffers and path information. An APPC/VM application can
use IUCV QUERY with QRYTYPE=BUFFERS to determine how much storage to allocate for the Input
Parameter List Extension and the Interrupt Buffer Extension.

4. An IUCV or APPC/VM application can use IUCV QUERY with QRYTYPE=CONNECT to obtain information
about a specific connection. For example, if the output IPQCODE=IPQCNCTD and either IPQCMSRV or
IPQISFC is ON, it would be reasonable to assume that the specified PATHID is extended to a remote
partner.

IUCV QUERY

Chapter 8. IUCV Macro Functions for Use in APPC/VM 547

IUCV RTRVBFR (Retrieve Buffer)

label

IUCV RTRVBFR

Purpose
Use the RTRVBFR (Retrieve Buffer) function to do the following:

• Stop all IUCV and APPC/VM outstanding messages
• Sever all IUCV and APPC/VM communication paths
• End IUCV and APPC/VM communications.

When issued by a virtual machine, RTRVBFR causes all paths except control paths to be severed. For
example, if a program using CMSIUCV support issues HNDIUCV CLR, CMS issues RTRVBFR and all paths
are severed except control paths.

When issued by CP, the RETRIEVE BUFFER function severs all paths.

Note: Be aware that CP issues RTRVBFR for the following commands:

• SYSTEM RESET
• IPL, which issues SYSTEM RESET
• LOGOFF.

This severs all paths, including control paths.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X Not Possible Not Possible Not Possible

CC=0
normal completion.

Program Exceptions
The program exception for RTRVBFR is:

Type Description

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

State Checks and State Changes
RTRVBFR does not act on any one path; therefore, no state checks occur. When RTRVBFR is done
executing, all paths for your virtual machine are destroyed (put in the Reset state) except your control
paths, which do not change states.

IUCV RTRVBFR (Retrieve Buffer)

548 z/VM: 7.3 CP Programming Services

Completion Conditions
The RTRVBFR function completes immediately.

What Happens to Your VM Communication Partner
When you invoke RTRVBFR, all your noncontrol APPC/VM and IUCV communication paths are severed.
APPC/VM informs your communication partners as if you issued a SEVER TYPE=ABEND. See What
Happens to Your VM Communications Partner for a description of possible sever codes.

IUCV RTRVBFR (Retrieve Buffer)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 549

IUCV SETCMASK (Set Control Mask)

label

IUCV SETCMASK ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,MASK= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the SETCMASK (Set Control Mask) function to enable or disable external interrupts for the following
APPC/VM and IUCV control functions:

• Connection pending
• Connection complete
• Path severed
• Path quiesced (non-APPC only)
• Path resumed (non-APPC only).

You cannot use the SETCMASK function to disable interrupts on control paths.

To use this function, you must enable your virtual machine for external interrupts by setting the following
bits to 1:

• Bit 7 in the virtual PSW
• Submask bit 30 in the control register 0.

You must also enable external interrupts with the SETMASK function. Otherwise, APPC/VM ignores the
SETCMASK settings.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Parameters
Required Parameters:
PRMLIST=

specifies the address of the IUCV SETCMASK parameter list. The address must be a guest real
address, that is, the address must be within the virtual machine's real address space (guest=real).
Also, the parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:

IUCV SETCMASK (Set Control Mask)

550 z/VM: 7.3 CP Programming Services

MF=L
expands the IUCV macro to generate the instructions necessary to initialize the parameter list as
specified, but not to invoke the SETCMASK function.

MASK=
specifies the mask byte to determine for which, if any, of the APPC/VM and IUCV external interrupts a
virtual machine is enabled for.
label

is the relocatable label of a byte containing the mask.
(reg)

is the register number that contains the mask in its low-order byte.

Input Parameter List: The IUCV SETCMASK parameter list has the input format shown in the following
figure.

0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

IPCMASK

/ /

/ /

/ /

/ /

Figure 69. IUCV SETCMASK Input Parameter List

IPCMASK
specifies the mask byte to determine for which of the control interrupts your virtual machine is
enabled for.

When a bit is turned off, the virtual machine is disabled for that interrupt. For example, if IPCMASK
contains X'C0', this means that your virtual machine is enabled for connection pending and
connection complete interrupts, but disabled for all other interrupts.
IPCLPC (X'80')

you are enabled for connection pending interrupts. This is type X'81' for APPC and type X'01' for
non-APPC.

IPCLCC (X'40')
you are enabled for connection complete interrupts. This is type X'82' for APPC and type X'02' for
non-APPC.

IPCLPS (X'20')
you are enabled for sever interrupts. This is type X'83' for APPC and type X'03' for non-APPC.

IPCLPQ (X'10')
you are enabled for path-quiesced interrupts. This is type X'04'; it applies to non-APPC only.

IPCLPR (X'08')
you are enabled for path-resumed interrupts. This is type X'05'; it applies to non-APPC only.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X Not Possible Not Possible Not Possible

CC=0
normal completion.

IUCV SETCMASK (Set Control Mask)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 551

Program Exceptions
The program exceptions for SETCMASK are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
There are no states associated with the SETCMASK function.

Completion Conditions

The SETCMASK function completes immediately.

IUCV SETCMASK (Set Control Mask)

552 z/VM: 7.3 CP Programming Services

IUCV SETMASK

label

IUCV SETMASK ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,MASK= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the SETMASK (Set Mask) function to enable or disable external interrupts for the following APPC/VM
and IUCV functions:

• Message-pending interrupts
• SENDREQ (request-to-send) interrupts
• Function-complete interrupts
• APPC/VM and IUCV control interrupts.

You cannot use the SETMASK function to disable interrupts on control paths.

To use this function, you must enable your virtual machine for external interrupts by setting the following
bits to 1:

• Bit 7 in the virtual PSW
• Submask bit 30 in control register 0.

The IUCV SETMASK function specifies a byte of selective masks. This lets you mask APPC/VM and IUCV
external interrupts selectively.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the IUCV SETMASK parameter list. The address must be a guest real address,
that is, the address must be within the virtual machine's real address space (guest=real). Also, the
parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:

IUCV SETMASK

Chapter 8. IUCV Macro Functions for Use in APPC/VM 553

MF=L
expands the IUCV macro to generate the instructions necessary to initialize the parameter list as
specified, but not to invoke the SETMASK function.

MASK=
lets you specify the mask byte to determine which, if any, of the APPC/VM and IUCV external
interrupts a virtual machine is enabled for.
label

is the relocatable label of a byte containing the mask.
(reg)

is the register number that contains the mask in its low-order byte.

Input Parameter List: The IUCV SETMASK parameter list has the input format shown in the following
figure.

0

8

10

18

20

/ /

0 1 2 3 4 5 6 7

IPARML DSECT

IPMASK

/ /

/ /

/ /

/ /

Figure 70. IUCV SETMASK Input Parameter List

IPMASK
specifies the mask byte to determine which types of interrupts a virtual machine is enabled for.

When a bit is turned off, the virtual machine is disabled for that interrupt. For example, if IPMASK
contains X'C0', the virtual machine is enabled for IUCV and APPC message interrupts and APPC
SENDREQ interrupts, but disabled for all other interrupts.
IPSNDN (X'80')

you are enabled for nonpriority message interrupts (type X'09', for non-APPC) and message-
pending interrupts (type X'89', for APPC).

IPSNDP (X'40')
you are enabled for priority message interrupts (type X'08', for non-APPC) and SENDREQ
interrupts (type X'88', for APPC).

IPRPYN (X'20')
you are enabled for nonpriority reply interrupts (type X'07', for non-APPC) and function-complete
interrupts (type X'87', for APPC).

IPRPYP (X'10')
you are enabled for priority reply interrupts (type X'06', for non-APPC only).

IPCTRL (X'08')
you are enabled for control interrupts (non-APPC and APPC).

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X Not possible Not possible Not possible

CC=0
normal completion.

IUCV SETMASK

554 z/VM: 7.3 CP Programming Services

Program Exceptions
The program exceptions for SETMASK are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
No states are associated with the SETMASK function.

Completion Conditions
The SETMASK function completes immediately.

IUCV SETMASK

Chapter 8. IUCV Macro Functions for Use in APPC/VM 555

IUCV SEVER

label

IUCV SEVER ,PRMLIST= label

( reg) Optional Parameters
1

Optional Parameters

,MF=L ,ALL=
2

YES

NO

,KEEP=
2

YES

NO

,PATHID= label

( reg)

,USERDTA= label

( reg)

Notes:
1 Optional parameters can be entered in any order.
2 There is no default value. If a value is not specified, the parameter retains the value currently set
in the parameter list.

Purpose
Use the SEVER function of the IUCV macro for the following reasons:

• To revoke ownership of a resource that you manage by ending an established path with the Identify
system service (*IDENT)

• To terminate your side of the path when a connecting program severs its path or logs off
• When your program wants to terminate a path that could be either an IUCV (non-APPC) path or an APPC

path.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the IUCV SEVER parameter list. The IUCV instruction is generated to
reference the address specified.
label

Is the relocatable label of the parameter list.
(reg)

Is the register number that contains the address of the parameter list.

Optional Parameters: If you do not specify these parameters, the macro assumes that you have stored
the desired values into the parameter list before invoking the IUCV macro.

MF=L
lets you build an IUCV parameter list without initializing any registers or executing the IUCV
instruction. Using this format, you can then use CMSIUCV SEVER to actually issue the sever. For
more information on using CMSIUCV SEVER, see z/VM: CMS Macros and Functions Reference.

ALL=
specifies whether all paths for this virtual machine are to be severed. When ALL is specified by a
virtual machine, all paths except control paths are severed.

IUCV SEVER

556 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

YES
indicates that all of your paths are to be severed.

NO
indicates that you do not want all of your paths severed, only the one specified by PATHID.

KEEP=
indicates whether the path ID may be reassigned by CP for another conversation immediately after
the IUCV SEVER. This applies only to APPC/VM paths.
YES

indicates that the path ID is not to be freed for reuse by CP for another conversation.

Note: This value is invalid when ALL=YES.

NO
indicates that the path ID is to be freed for reuse by CP for another conversation.

PATHID=
specifies the path ID to be severed.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.
USERDTA=

specifies the data area containing the 16 bytes of user data that IUCV is to reflect across the path. The
user data is reflected as part of the IUCV connection-severed external interrupt. USERDTA is ignored
on APPC/VM paths.
label

is the relocatable label of the user data.
(reg)

is the register number that contains the address of the user data.

Input Parameter List: The IUCV SEVER parameter list has the input format shown in the following figure.

0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

IPPATHID

/ /

/ /

/ /IPFLAGS1

IPUSER

IPUSER

Figure 71. IUCV SEVER Input Parameter List

IPPATHID
contains the path ID of the path you want to sever.

IPFLAGS1
contains options for the SEVER function.
IPAPPC (X'08')

indicates the protocol to be used on this path. This bit must be set to 0.
IPKEEP (X'10')

indicates that the path ID is not to be freed for reuse after the IUCV SEVER completes.

Note: This flag is ignored on a non-APPC/VM path, or if the IPALL flag is set on.

IUCV SEVER

Chapter 8. IUCV Macro Functions for Use in APPC/VM 557

IPALL (X'80')
indicates that you want to sever all paths for this virtual machine.

IPUSER
contains the user data that IUCV reflects across the path.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X Not possible Not possible

CC=0
The SEVER completed normally. The output parameter list is shown in the following figure.

0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

IPPATHID

/ /

/ /

/ /IPFLAGS1

IPUSER

IPUSER

/ / / / / / / / / / / / / / /IPPOLLFG IPSTATE

Figure 72. IUCV SEVER Output Parameter List (Sever Complete Interrupt)

IPPATHID
contains the path ID of the path you want to sever.

Note: IPPATHID is undefined when ALL=YES.

IPFLAGS1
may contain one or more of the following output bit flags:

Note: IPFLAGS1 is undefined when ALL=YES.

X'20'
reserved for IBM use only.

X'02'
reserved for IBM use only.

X'01'
reserved for IBM use only.

IPUSER
contains the user data that IUCV reflected across the path. IPUSER is ignored on APPC/VM paths.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see
a reply or message even though IPNOPOLL was set on the previous function's completion.

IPSTATE
contains the current state of the path:
IPRESET (X'01')

the path is in Reset state.

IUCV SEVER

558 z/VM: 7.3 CP Programming Services

IPSENDST (X'03')
the path is in Send state.

IPRECVST (X'04')
the path is in Receive state.

Note: IPSTATE is undefined when ALL=YES and for non-APPC paths.

CC=1
An error occurred. The output parameter list is the same as the SEVER input parameter list, except
that one of the following return codes is stored in IPRCODE (byte 3):

Hex
Code Decimal

Code

Why the Error Occurred

X'01' 1 You specified a path ID that does not exist.

X'1E' 30 The IPAPPC flag in IPFLAGS1 is not 0.

X'44' 68 IUCV SEVER with KEEP=YES is an invalid function from the Reset state.

X'57' 87 IUCV SEVER with KEEP=YES is invalid when a previous APPCVM SEVER was
issued with log data on this path.

Program Exceptions
The program exceptions for SEVER are:

Type Description

Addressing The parameter list address that you specified is outside the virtual machine's
storage.

Operation Either an application interrupt buffer has not been declared, or the invoking
virtual machine is not in supervisor state.

Protection The storage key of the specified parameter list address does not match the key of
the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
A state check occurs (IPRCODE=X'44') if KEEP=YES is specified for an APPC/VM path that is in Reset
state.

When IUCV SEVER completes (CC=0), the state changes to Reset.

Completion Conditions
IUCV SEVER always completes immediately. When IUCV SEVER with KEEP=YES specified completes, the
path ID is still valid, and IUCV SEVER (without KEEP=YES) may be issued from RESET state to free the
path ID for reuse.

If KEEP=YES is not specified for IUCV SEVER, the path ID is no longer valid when the SEVER completes. If
another function is then issued for that path ID, the function will complete with CC=1 and IPRCODE=X'01'
(specified path ID not established).

What Happens to Your VM Communication Partner
Your communications partner may be affected different ways, depending on the sequence of functions
that you issue. Any of the following conditions can occur when you issue:

IUCV SEVER

Chapter 8. IUCV Macro Functions for Use in APPC/VM 559

• CONNECT, and then issue IUCV SEVER before your partner gets the connection pending interrupt. In
this case, your partner does not get a connection pending interrupt or a sever interrupt.

• CONNECT, and then issue IUCV SEVER after your partner gets the connection pending interrupt, but
before your partner issues ACCEPT. In this case, your partner gets a sever interrupt (assuming it is
enabled for sever interrupts).

• An IUCV SEVER after receiving a connection pending interrupt, instead of issuing an ACCEPT. If your
partner issued:

– CONNECT with WAIT=NO, your partner gets a sever interrupt (assuming it is enabled for sever
interrupts).

– CONNECT with WAIT=YES, your partner's CONNECT completes with a sever indication.

If IUCV SEVER is issued on an APPC/VM path established with SYNCLVL=CONFIRM or SYNCLVL=NONE,
CP reflects the SEVER to the partner as an APPCVM SEVER TYPE=ABEND with a sever code X'0610'
(RESOURCE_FAILURE_NO_RETRY).

Note the following when IUCV SEVER is issued on an APPC/VM path established with APPCVM CONNECT,
SYNCLVL=SYNCPT. If you issue IUCV SEVER:

• Immediately after issuing IUCV ACCEPT, CP reflects the SEVER to the partner as an APPCVM SEVER
TYPE=ABEND with a sever code X'0610' (RESOURCE_FAILURE_NO_RETRY).

• From Connect state or Reset state, CP reflects the SEVER to the partner as an APPCVM SEVER
TYPE=ABEND with a sever code X'0610' (RESOURCE_FAILURE_NO_RETRY).

• After the path is established, CP reflects the SEVER to the partner as an APPCVM SEVER TYPE=ABEND
with sever code X'0220' (DEALLOCATE_ABEND_SVC).

Because IUCV SEVER may be issued twice on the path, once with KEEP=YES then again with KEEP=NO,
the second SEVER is not reflected to the communication partner.

IUCV SEVER External Interrupt: When IUCV SEVER is issued on an IUCV path (for *IDENT connection),
the sever interrupt that your communications partner gets has the format shown in the following figure.

0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

IPPATHID

/ /

/ /

/ / / / / / /

IPUSER

IPUSER

/ /IPPOLLFG

/ /IPTYPE

Figure 73. IUCV SEVER External Interrupt

IPPATHID
contains the path ID being severed.

IPTYPE
contains the interrupt type for IUCV SEVER (IPTYPSVC, X'03').

IPUSER
contains the user data specified by the program that severed this path.

If the sever interrupt came from *IDENT, byte 10 of this IPUSER field contains a reason code. See
“*IDENT Sever Reason Codes” on page 734.

IPPOLLFG
Contains a flag returned by IUCV.
IPNOPOLL (X'80')

Indicates that an IPOLL function would not be productive for the user.

IUCV SEVER

560 z/VM: 7.3 CP Programming Services

Note: When an IPNOPOLL flag is set in an interrupt, this indicates that a brief check by CP of
the user's pending replies and messages reveals that an IPOLL request at this time may not be
productive. If a user enables for a reply interrupt or for a message interrupt, or issues an IUCV
DESCRIBE, an IUCV TESTCMPL, or an IUCV IPOLL function immediately, the user may still see a
reply or message even though IPNOPOLL was set on the previous function's completion.

When IUCV SEVER is issued on an APPC/VM path, CP ignores the user data field and issues an APPCVM
SEVER TYPE=ABEND to your communications partner. Your partner then gets an APPC/VM SEVER
interrupt. Refer to SEVER External Interrupt for information on the sever interrupt.

IUCV SEVER

Chapter 8. IUCV Macro Functions for Use in APPC/VM 561

IUCV TESTCMPL (Test Completion)

label

IUCV TESTCMPL ,PRMLIST= label

( reg)

Optional Parameters
1

Optional Parameters

,MF=L ,PATHID= label

( reg)

Notes:
1 Optional parameters can be entered in any order.

Purpose
Use the TESTCMPL (Test Completion) function to determine if any messages or functions have been
completed. You can identify a specific path when you invoke this function. If you do not specify a path, the
next function on the queue of completed functions (if such a function exists) is displayed. TESTCMPL does
not present functions completed on control paths.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Parameters
Required Parameter:
PRMLIST=

specifies the address of the IUCV TESTCMPL parameter list. The address must be a guest real
address, that is, the address must be within the virtual machine's real address space (guest=real).
Also, the parameter list must be on a doubleword boundary.
label

is the relocatable label of the parameter list.
(reg)

is the register number that contains the address of the parameter list.

Optional Parameters:
MF=L

expands the IUCV macro to generate the instructions necessary to initialize the parameter list as
specified, but not to invoke the TESTCMPL function.

PATHID=
identifies the path ID to do the test completion.
label

is the relocatable label of a halfword that contains the path ID.
(reg)

is the register number that contains the path ID in the low-order halfword.

Input Parameter List: The IUCV TESTCMPL parameter list has the format shown in the following figure.

IUCV TESTCMPL (Test Completion)

562 z/VM: 7.3 CP Programming Services

0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

IPPATHID

/ /

/ /IPFLAGS1

/ /

/ /

/ /

Figure 74. IUCV TESTCMPL Input Parameter List

IPPATHID
contains the path ID on which you want to complete the function. This parameter is only valid when
the IPFGPID flag is set.

IPFLAGS1
contains the following input bit flag:
IPFGPID (X'02')

You specified a path ID.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

X X X X

CC=0
indicates normal completion. The output parameter list is shown in the following figure.

0

8

10

18

20

0 1 2 3 4 5 6 7

IPARML DSECT

IPPATHID

/ /

IPFLAGS1

/ /

/ /

IPTYPE IPCODE IPWHATRC IPSENDOP

IPAUDIT

IPBFLN1F

IPBFLN2F IPPOLLFG IPSTATE IPWHTRC2 IPSNDOP2

Figure 75. IUCV TESTCMPL Output Parameter List

Note: Only the contents of the IPSENDOP and IPBFLN1F fields are described here. The contents of
the other fields in this parameter list depend on what function has completed. The function that has
completed is indicated in IPSENDOP. Refer to the CC=2 description under the specific function being
completed.
IPSENDOP

contains one of the following SEND option codes:
IPDATA (X'01')

SENDDATA RECEIVE=NO is being completed.
IPSNDRCV (X'02')

SENDDATA RECEIVE=YES is being completed.
IPERROR (X'03')

SENDERR is being completed.
IPCNFRM (X'04')

SENDCNF TYPE=NORMAL is being completed.

IUCV TESTCMPL (Test Completion)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 563

IPCNFSEV (X'05')
SENDCNF TYPE=SEVER is being completed.

IPSABEND (X'09')
SEVER TYPE=ABEND is being completed.

IPRECV (X'0A')
RECEIVE is being completed.

IPPREPRC (X'0C')
SENDCNF TYPE=PREPRECV is being completed.

X'0F'
reserved for IBM use only.

X'10'
reserved for IBM use only.

X'11'
reserved for IBM use only.

X'14'
is reserved for IBM use only.

X'16'
reserved for IBM use only.

IPBFLN1F
contains the length of pending log data for you to receive. This field is only meaningful when
IPWHATRC is equal to IPSABEND or IPERROR.

CC=1
means an error occurred. The parameter list format is the same as the input shown in the TESTCMPL
input parameter list except that the following return code is stored in IPRCODE:

Hex
Code

Decimal
Code

Why the Error Occurred

X'01' 1 You specified a path ID that is not yet established.

CC=2
no APPC/VM function completes, or IUCV message completes were found.

CC=3
a nonzero IPAUDIT value was stored.

Program Exceptions
The program exceptions for the IUCV TESTCMPL are:

Type Description

Addressing The parameter list address is outside of the virtual machine.

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

Protection The storage key of the parameter list address does not match the key of the user.

Specification The parameter list is not on a doubleword boundary.

State Checks and State Changes
TESTCMPL sets the state of the path on which the function is being completed. The state that is set
depends on which function is being completed; refer to the individual function description for details.

IUCV TESTCMPL (Test Completion)

564 z/VM: 7.3 CP Programming Services

Completion Conditions
The TESTCMPL function completes immediately.

IUCV TESTCMPL (Test Completion)

Chapter 8. IUCV Macro Functions for Use in APPC/VM 565

IUCV TESTMSG (Test Message)

label

IUCV TESTMSG

Purpose
Use the TESTMSG (Test Message) function to avoid using external interrupt handling. When you invoke the
TESTMSG function, your virtual machine enters the WAIT state if none of the following are pending:

• SENDREQ interrupts (APPC/VM)
• Function-complete interrupts (APPC/VM)
• Message-pending interrupts (IUCV and APPC/VM)
• Message-complete interrupts (IUCV).

If any of these interrupts are pending while your virtual machine is in the WAIT state, the virtual machine
reexecutes the TESTMSG function. TESTMSG then returns a condition code. TESTMSG ignores APPC/VM
message pending interrupts unless the path corresponding to the message pending is in the Receive
state. TESTMSG does not receive or describe the interrupt. You must use RECEIVE, DESCRIBE, or
TESTCMPL, or enable for interrupts to clear the interrupt.

Note that CMS does not currently support IUCV or APPC/VM virtual MP functions.

Condition Codes and Return Codes

CC=0 CC=1 CC=2 CC=3

Not possible X X X

CC=1
means a message or SENDREQ indication is pending.

CC=2
means a message completion or function completion is pending.

CC=3
means one or more conditions causing a condition code 1 and one or more conditions causing a
condition code 2 are pending.

Program Exceptions
The program exception for TESTMSG is:

Type Description

Operation Either an application interrupt buffer is not declared, or the invoking virtual
machine is not in the supervisor state.

State Checks and State Changes
No states are associated with the TESTMSG function.

Completion Conditions
The TESTMSG function completes when control is returned to your virtual machine.

IUCV TESTMSG (Test Message)

566 z/VM: 7.3 CP Programming Services

Chapter 9. Migrating Programs from IUCV to
APPC/VM

The Inter-User Communications Vehicle (IUCV) provides a way for program-to-program communications
within one z/VM system. A program using IUCV can communicate with itself, with a CP system service,
or with another program on the same system. IUCV is not part of the APPC (SNA LU 6.2) architecture.
Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521 has more details on IUCV.

APPC/VM, which is z/VM's implementation of APPC (SNA LU 6.2) protocol, includes some IUCV support.
However, because IUCV is not part of the APPC architecture, it is important to know the differences
between APPC/VM and IUCV.

To start, APPC/VM depends on a half-duplex protocol, while IUCV communication uses a full-duplex
protocol. In support of half duplex protocol, APPC/VM defines and enforces states on each path.

In addition, in APPC/VM the high-order bit of the IPTYPE field is set to designate APPC/VM from IUCV
interrupts. (The IPTYPE field is part of an interrupt.)

APPC/VM and IUCV each provide a set of communication functions. This chapter outlines the differences
and similarities between APPC/VM functions and IUCV functions.

APPC/VM and IUCV Functions That Work Differently
The following functions are supported in both APPC/VM and IUCV, but work differently. For more
information about the APPC/VM function discussed in this section, see Chapter 7, “APPCVM Macro
Functions,” on page 411. For more information about the IUCV functions discussed in this section, see
Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

• CONNECT

The RESID on the APPCVM CONNECT defines the target of the connection. The target could be on the
same z/VM system, a different system within the same TSAF collection, or in an SNA network. For IUCV
CONNECT, the USERID defines the target. The target must be on the same z/VM system.4

Other APPC/VM differences are:

– APPCVM CONNECT does not have a message limit parameter, whereas IUCV CONNECT does. This is
because the message limit is always one on APPC/VM paths.

– APPCVM CONNECT does not have a user data field.
– APPCVM CONNECT has a WAIT=YES option.
– You cannot use APPCVM CONNECT to connect to a CP system service.
– A connection parameter list extension is defined for APPCVM CONNECT that lets you specify

additional information needed to complete the connect.

Note that resource manager programs in APPC/VM must use IUCV CONNECT to connect to the Identify
system service. This function is described in “IUCV CONNECT” on page 529.

• RECEIVE

APPC/VM differences are:

– You must provide a path ID on APPCVM RECEIVE.

4 This chapter focuses on the migration of traditional, single-system IUCV communication. In general,
migration from a distributed IUCV environment would have the same considerations. However, the target of
a CONNECT does not need to be on the same z/VM system with distributed IUCV. Distributed IUCV might
also be considered as an alternative to migrating to APPC. Refer to “IUCV in a Distributed Environment” on
page 309 for more information.

Migrating from IUCV to APPC/VM

© Copyright IBM Corp. 1991, 2023 567

– You can issue APPCVM RECEIVE before data arrives on a path.
– APPCVM RECEIVE has a WAIT=YES option.
– APPCVM RECEIVE has a PIP=YES option.

• SEND (for APPC/VM, SENDDATA)

APPCVM SENDDATA and IUCV SEND differences are:

– APPCVM SENDDATA does not have a parameter list data option.
– APPCVM SENDDATA does not have a priority message option.
– APPCVM SENDDATA does not have any special message identifiers (a message class or a message

tag).
– APPCVM SENDDATA has a WAIT=YES option.
– APPCVM SENDDATA has a RECEIVE=YES option that lets you define an answer area. IUCV SEND has

a TYPE=2WAY option that lets you define an answer area.

The APPC/VM user responds to a SENDDATA RECEIVE=YES with a SENDDATA. The length of the
response does not depend on the size of the answer area. The IUCV user, on the other hand,
responds to a SEND TYPE=2WAY with a REPLY. The length of the response cannot be bigger than the
size of the answer area.

– With APPC/VM, the data sent is in logical record format. With IUCV, the data can be in any format.
• SEVER

APPC/VM differences are:

– APPCVM SEVER does not have a user data field.
– APPCVM SEVER has a WAIT=YES option.
– There are two APPCVM SEVER types, TYPE=NORMAL and TYPE=ABEND. There is only one IUCV

SEVER type.
– APPCVM SEVER has a function complete interrupt for log data.

Resource manager programs must use IUCV SEVER to:

– Sever a connection to the Identify system service
– Sever an APPC/VM connection before a path is established.

For more information about IUCV SEVER, refer to on page “IUCV SEVER” on page 556.

IUCV Functions Not Supported on APPC/VM Paths
The following IUCV functions are not supported on APPC/VM paths:

• PURGE
• QUIESCE and RESUME

(However, because the message limit on APPC/VM paths is one, an application can quiesce a path by
not receiving a message pending on that path.)

• REJECT

(However, APPCVM SENDERR is similar to IUCV REJECT.)
• REPLY

(However, APPCVM SENDDATA can be used in place of IUCV REPLY. Refer to “APPCVM SENDDATA” on
page 475 for more information.)

APPC/VM Functions Not Supported on IUCV Paths
The following APPC/VM functions are not supported on IUCV paths:

Migrating from IUCV to APPC/VM

568 z/VM: 7.3 CP Programming Services

• QRYSTATE

(IUCV does not have any equivalent functions.)
• SENDCNF and SENDCNFD

(IUCV does not have any equivalent functions.)
• SENDERR

(However, IUCV REJECT is similar to APPCVM SENDERR.)
• SENDREQ

(However, APPCVM SENDREQ is similar to an IUCV priority 1WAY parameter data SEND, when that
SEND is used as a signal and does not contain any data.)

• SETMODFY

(IUCV does not have any equivalent functions.)

Shared APPC/VM and IUCV Functions
Several functions are shared for both APPC/VM and IUCV. This section describes these functions as they
relate to an APPC/VM environment. Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page
521 describes the IUCV versions of these functions unrelated to APPC/VM. Parameters other than those
described in this document are available, but have no meaning on APPC/VM paths and are ignored.

Shared Functions That Can Be Used in CMS
The following two functions are documented in Chapter 7, “APPCVM Macro Functions,” on page 411 and
can be safely used in a CMS environment:

• ACCEPT

When ACCEPT is issued to establish an APPC path,

– ACCEPT does not have a message limit parameter, whereas non-APPC ACCEPT does. This is because
the message limit is always one on APPC/VM paths.

– ACCEPT does not have a user data field.
• QUERY

QUERY gives you the following information about a virtual machine:

– The size of the external interrupt buffer
– The maximum number of communication paths that can be established for the virtual machine.
– The maximum length of the interrupt buffer extension used in CMS and GCS.

Shared Functions That Should Be Avoided in CMS
Other functions are also shared for both APPC/VM and IUCV. These shared functions should not be used
in a CMS environment because they could affect other programs in the same virtual machine; however,
they can be used safely in a non-CMS environment.

Each of these functions is briefly described in the following list, then described in detail in Chapter 8,
“IUCV Macro Functions for Use in APPC/VM,” on page 521.

• DCLBFR (Declare Buffer)

DCLBFR declares an interrupt buffer. (Both APPC/VM and IUCV interrupts are presented in the same
buffers.)

DCLBFR should not be directly issued by a program in CMS; HNDIUCV uses DCLBFR to initialize the
virtual machine's APPC/VM environment.

• DESCRIBE

Migrating from IUCV to APPC/VM

Chapter 9. Migrating Programs from IUCV to APPC/VM 569

DESCRIBE gives the following information:

– The next message pending on non-APPC paths
– The next message pending on an APPC path that is in Receive state
– A SENDREQ on an APPC path.

DESCRIBE should not be used in CMS because this function clears the pending-message external
interrupt for the described message. This interrupt may not belong to the issuer of the DESCRIBE
function; thus, other programs running in the same virtual machine can be affected because the
message is lost and never reflected to the true target.

• IPOLL (Interrupt Poll)

IPOLL determines if there are any replies or incoming messages pending. If IUCV finds any replies or
incoming messages pending, information about them is stored in the buffer provided. The maximum
number of interrupts that can be retrieved on a single request is the number of interrupt buffers which
can fit on one page. INTERRUPT POLL can be used instead of DESCRIBE and TEST COMPLETION to
avoid some of the processing overhead involved in large numbers of messages and replies.

IPOLL can be directly issued by a program in CMS. If it is not, APPC/VM completes the first message on
the REPLY queue for the entire virtual machine, and that interrupt may not belong to the application that
issued the IPOLL. Thus, other programs running in the same virtual machine can be affected because
the message or reply is lost and never reflected to the true target.

• RTRVBFR (Retrieve Buffer)

RTRVBFR releases an interrupt buffer. (Both APPC/VM and IUCV interrupts are presented in the same
buffers.)

RTRVBFR should not be directly issued by a program in CMS; HNDIUCV and CMS abend processing use
RTRVBFR to terminate a virtual machine's APPC/VM environment.

• SETMASK and SETCMASK

SETMASK and SETCMASK disable and enable APPC and non-APPC interrupts.

These functions should not be used by a program in CMS because they disable certain APPC/VM
external interrupts for the entire virtual machine. Thus, other programs running in the same virtual
machine may be affected.

• TESTCMPL (Test Completion)

TESTCMPL determines the next APPC or non-APPC function that has completed.

TESTCMPL can be directly issued by a program in CMS; however, the issuer must be careful that a
message ID or path ID is specified in the IUCV parameter list. If it is not, APPC/VM completes the first
message on the REPLY queue for the entire virtual machine, and that message may not belong to the
application that issued the TESTCMPL.

• TESTMSG (Test Message)

TESTMSG waits for the following:

– A message pending or message complete interrupt on non-APPC paths
– A message pending interrupt on an APPC path that is in Receive state
– A request-to-send interrupt on an APPC path
– A function complete interrupt on an APPC path.

TESTMSG should not be used by a program in CMS because it places the entire virtual machine in a wait
state if no incoming messages or replies are pending. Thus, other programs running in the same virtual
machine may be affected.

Migrating from IUCV to APPC/VM

570 z/VM: 7.3 CP Programming Services

Chapter 10. APPC Mapped with APPC/VM

The APPC/VM assembler interface implements the base set and various options sets of APPC (SNA LU
6.2) communication functions. This chapter details the relationship between APPC and APPC/VM, and
then maps APPC/VM functions with the APPC functions provided with the SNA LU 6.2 protocol.

For more information on the LU 6.2 protocol, see these documents:

• SNA Format and Protocol Reference Manual: Architectural Logic for LU Type 6.2
• SNA Transaction Programmer's Reference Manual for LU 6.2.

APPC Conversations
User programs and resource manager programs in z/VM must follow the rules of an APPC conversation.
APPC/VM supports and enforces these rules, as described in the following sections.

Note: An APPC conversation is represented within a TSAF or CS collection as an APPC/VM path. SNA
sessions have no representation in a TSAF or CS collection. VTAM allocates and ends the SNA session on
which APPC/VM conversations are established.

Establishing a Conversation
If your virtual machine manages a resource, and another virtual machine is trying to establish a path to
the resource, you receive a connection pending interrupt. Check to be sure that the connection pending
interrupt is for an APPC connection. Do not assume that the program trying to connect is on the local TSAF
or CS collection, or that the program is a VM program.

The server virtual machine is responsible for invoking the transaction program (resource manager
program) and verifying the contents of the FMH5. CP recognizes nothing smaller than the server virtual
machine. CMS and GCS recognize nothing smaller than a program. In general, in the CMS and GCS
environments, each inbound connection does not cause the resource manager to create another instance
of the transaction program. Instead, the program is notified that another path is being established.

It is the program's responsibility to receive the Attach FMH5 (optionally) and save its relevant contents. In
addition, the program must issue an IUCV ACCEPT before communicating on the APPC/VM path. ACCEPT
is not part of the APPC architecture. If there is something wrong in the Attach FMH5 data (for example,
the program does not support the synchronization level specified), then it is the program's responsibility
to sever the connection with the appropriate sever code.

After the CONNECT/ACCEPT sequence has been successfully completed on both sides, the two programs
can exchange data using the half-duplex protocol of an APPC conversation. APPC/VM fully supports the
base set of APPC communication and enables programs to support basic and mapped conversations.

APPC/VM Interrupts
APPC/VM uses external interrupts to signal certain events and can be categorized as follows:

• Those interrupts that let applications process other paths while waiting for input or a function to
complete on other paths:

– Message pending interrupts
– Connection pending interrupts
– Function complete interrupts
– Connection complete interrupts.

• Those interrupts that asynchronously indicate your partner has issued a SENDREQ or a SEVER:

– Request-to-send interrupts

© Copyright IBM Corp. 1991, 2023 571

– Sever interrupts.

This interrupt-oriented signalling of your partner's activity is unique to APPC/VM; it does not map to any
APPC architected function. In situations where your APPC/VM conversation is carried on a VTAM link,
interrupts describing your partner's issuing of SEVER or SENDREQ may not be delivered to you until you
perform some other operation on the conversation. This is because VTAM provides no asynchronous
means for delivering the SENDREQ or SEVER indication to APPC/VM VTAM Support (AVS), and therefore
the notification cannot be passed along to your program.

APPC/VM supports some IUCV macro functions that do not correspond to any APPC function. A program
that wants to avoid non-APPC functions should be enabled only for connection pending interrupts.

APPC/VM Conversation States
APPC/VM defines several states that a program can be in during a conversation. Most of these are based
on states defined by APPC. The following table lists the conversation states for APPC and the APPC/VM
counterparts. (Note that several APPC/VM states do not map to an APPC state.)

Table 76. APPC Conversation States and Corresponding APPC/VM Implementation

APPC State APPC/VM Implementation

Backout Required Backout_Received
Backout_Required

Confirm
Confirm Send
Confirm Deallocate

Confirm
Confirm
Confirm

Deallocate Sever

Defer Receive
Defer Deallocate

Defer_Receive
Defer_Sever

Receive Receive

Reset Reset

Send Send

Sync-Point Prepare_Received
 or
Unsolicited_Request_Commit_Received
(if the sync-point control modifier is request send.)

Sync-Point Send Prepare_Received
 or
Unsolicited_Request_Commit_Received
(if the sync-point control modifier is request receive.)

Sync-Point Deallocate Prepare_Received
 or
Unsolicited_Request_Commit_Received
(if the sync-point control modifier is request sever.)

N/A Committed_Received

N/A Connect

572 z/VM: 7.3 CP Programming Services

Table 76. APPC Conversation States and Corresponding APPC/VM Implementation (continued)

APPC State APPC/VM Implementation

N/A Solicited_Request_Commit_Received

APPC/VM Return Codes
CP reports errors that it finds in the IPRCODE or IPAUDIT field. The target application or communications
servers report errors that they find in the IPCODE field on SEVER or SENDERR functions; this same
condition may be reported in IPRCODE, IPAUDIT, or IPCODE depending on the following:

• Whether the path goes through a communications server (TSAF and AVS), and
• Where CP detected the error along the path.

CP does not report the error in both IPRCODE/IPAUDIT and IPCODE at the same time.

An application should sever if it gets an error in IPRCODE. The application can sever the path using the
APPCVM SEVER function with a SEVER code X'0210' to indicate DEALLOCATE_ABEND_PROG.

The return code mapping tables in this chapter have entries for the return code (or condition code), and
the corresponding IPRCODE and/or IPCODE. APPC/VM return codes that do not correspond to defined
APPC return codes are not discussed in this chapter.

Notes:

1. All APPC return codes are mapped to a return code and/or sever code in APPC/VM.
2. The LU 6.2 Architecture for SYNCPT conversations has secondary return codes (reason codes) for each

of the following APPC return codes:

• DEALLOCATE_ABEND
• DEALLOCATE_ABEND_PROG
• DEALLOCATE_ABEND_SVC
• DEALLOCATE_ABEND_TIMER
• DEALLOCATE_NORMAL
• RESOURCE_FAILURE_NO_RETRY
• RESOURCE_FAILURE_RETRY

VM does not support these. An application should always initiate a roll-back process when it gets one
of the above return codes on a SYNCLVL=SYNCPT conversation.

APPC Verb Names Mapped to APPC/VM Macro Functions
APPC/VM supports the base set of APPC functions. The following table lists the base set of APPC verbs for
basic conversations, and their APPC/VM counterparts:

Table 77. Base Set of APPC Verbs and APPC/VM Functions

APPC Verb APPC/VM Implementation

ALLOCATE CONNECT

CONFIRM SENDCNF TYPE=NORMAL

CONFIRMED SENDCNFD

DEALLOCATE SEVER or SENDCNF TYPE=SEVER

FLUSH SENDDATA FLUSH=YES, RECEIVE=NO, BUFLEN=0

GET_ATTRIBUTES No specific functions, but indirect support

Chapter 10. APPC Mapped with APPC/VM 573

Table 77. Base Set of APPC Verbs and APPC/VM Functions (continued)

APPC Verb APPC/VM Implementation

RECEIVE_AND_WAIT RECEIVE

REQUEST_TO_SEND SENDREQ

SEND_DATA SENDDATA RECEIVE=NO

SEND_DATA
 followed by RECEIVE_AND_WAIT

SENDDATA RECEIVE=YES

SEND_ERROR SENDERR

In addition, the APPC PREPARE_TO_RECEIVE verb (from the Prepare to Receive option set) is
implemented in APPC/VM with the RECEIVE or SENDCNF TYPE=PREPRECV functions.

Here's how other types of APPC base set verbs map to APPC/VM:

• Mapped conversation verbs

APPC/VM lets programs support mapped conversations. You must specify TYPE=MAPPED on the
APPCVM CONNECT to do this. For mapped conversations, the APPC/VM implementation is roughly the
same as in the preceding table.

• Operator control verbs

Some operator control commands are provided for APPC/VM VTAM Support (AVS). The following table
shows the APPC verbs that have equivalents for AVS. APPC operator control verbs not shown here do
not have AVS equivalents.

Table 78. APPC Operator Control Verbs Mapped to AVS Commands

APPC Verb AVS Equivalent

CHANGE_SESSION_LIMIT AGW CNOS command

INITIALIZE_SESSION_LIMIT AGW CNOS command

RESET_SESSION_LIMIT AGW CNOS command

For more information on the AGW CNOS command, see z/VM: Connectivity.

In addition, APPC/VM implements APPC type-independent conversation verbs as follows:

• You can use the GET_TYPE function by providing a general-purpose application running on top of
APPC/VM.

• The SYNCPT and BACKOUT verbs are implemented on VM for protected conversations through two
interfaces:

– In CMS you can use several callable services library routines to initiate a sync-point or roll back
process. For more information on these routines, see z/VM: CMS Callable Services Reference.

– The APPC/VM assembler interface contains several macros that initiate a sync-point or roll back
process.

APPC ALLOCATE
The APPC ALLOCATE verb maps to the APPCVM CONNECT function.

Note: Do not make assumptions about the target of the APPCVM CONNECT when the CONNECT
completes—your CONNECT may complete before the target program is even invoked.

APPC ALLOCATE Verb

574 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

Parameters: The following list maps APPC ALLOCATE parameters (in bold) to APPC/VM equivalents (in
italics):

LU_NAME - locally known LU name in the connection parameter list extension
In APPC/VM, locally known LU names are 16 bytes.

MODE_NAME - mode name in the connection parameter list extension
In APPC/VM, mode names are 8 bytes.

TPN - transaction program name in the connection parameter list extension

TYPE - TYPE= parameter on APPCVM CONNECT
APPC/VM supports the APPC options:

• TYPE(BASIC_CONVERSATION) as TYPE=BASIC
• TYPE(MAPPED_CONVERSATION) as TYPE=MAPPED.

RETURN_CONTROL - RETURN= parameter on APPCVM CONNECT
APPC/VM supports the APPC options:

• RETURN_CONTROL(WHEN_SESSION_ALLOCATED) as RETURN=ALLOCD
• RETURN_CONTROL(IMMEDIATE) as RETURN=IMMED.

APPC/VM does not support the APPC option
RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED).

SYNC_LEVEL - SYNCLVL= parameter on APPCVM CONNECT
APPC/VM supports the APPC options:

• SYNC_LEVEL(NONE) as SYNCLVL=NONE
• SYNC_LEVEL(CONFIRM) as SYNCLVL=CONFIRM
• SYNC_LEVEL(SYNCPT) as SYNCLVL=SYNCPT.

SECURITY - security fields in the connection parameter list extension
APPC/VM supports the APPC options:

• SECURITY(NONE) as a X'01' value in the security type field of the connection parameter list
extension.

• SECURITY(SAME) as a X'00' value in the security type field of the connection parameter list
extension, and the user ID in the connection pending interrupt.

• SECURITY(PGM(USER_ID PASSWORD)) as a X'02' value in the security type field of the connection
parameter list extension, and the user ID and password in the security fields of this extension.

SECURITY(PGM(PROFILE)) is not supported.

PIP - address of PIP data in the connection parameter list extension
APPC/VM supports the PIP option set on the source and target program.

A source program specifies information about PIP data in the connection parameter list extension.
This consists of the address of the PIP data, length of the PIP data, and a flag to indicate whether the
data is presented in a single buffer or multiple buffers.

The target program must make a special indication when receiving PIP data. It does this by specifying
PIP=YES on the APPCVM RECEIVE.

RESOURCE - IPPATHID in connect complete interrupt
In APPC/VM, the path ID is a halfword number.

RETURN_CODE - IPRCODE and IPCODE
The APPC RETURN_CODE variable corresponds to the following in APPC/VM:

• IPRCODE in the APPCVM CONNECT output parameter list
• IPCODE in the APPCVM SEVER external interrupt.

APPC ALLOCATE Verb

Chapter 10. APPC Mapped with APPC/VM 575

The connecting program must look at the IPRCODE when it receives a CC=1 on CONNECT. Also, if your
partner rejects the connection with SEVER (CC=2), then the connecting program must look at IPCODE
to determine the allocation error.

RETURN_CODE IPRCODE IPCODE

OK 0 Not
applicable

ALLOCATION_ERROR

 ALLOCATION_FAILURE_RETRY
 ALLOCATION_FAILURE_NO_RETRY
 UNSUCCESSFUL
 SECURITY_NOT_VALID
 TRANS_PGM_NOT_RECOGNIZED
 TRANS_PGM_NOT_AVAILABLE_RETRY
 TRANS_PGM_NOT_AVAILABLE_NO_RETRY
 SYNC_LEVEL_NOT_SUPPORTED_BY_LU

X'0B',X'0C',X'0D',X'0E'
X'0B'
X'0F'
X'31'
X'0B'
X'0C',X'0D',X'0E'
X'0F'
X'89'

X'0111'
X'0110'
X'0112'
X'0160'
X'0142'
X'0141'
X'0140'
X'0131'

PARAMETER_ERROR

 Invalid LU name
 Invalid mode name

X'28'
X'29'

X'0301'
X'0302'

State Changes: For both APPC ALLOCATE and APPCVM CONNECT, you, the invoker, are in Send state
when the function successfully completes.

Abend Conditions: The parameter check condition is as follows:

Parameter Check Condition IPRCODE

The program is not allowed to specify MODE_NAME(SNASVCMG), or
MODE_NAME(SNASVCMG) is not supported.

X'29'

APPC CONFIRM
The APPC CONFIRM verb maps to the APPC/VM function, SENDCNF TYPE=NORMAL.

Parameters: The following list maps APPC CONFIRM parameters (in bold) to APPC/VM equivalents (in
italics):

RESOURCE - PATHID parameter of APPCVM SENDCNF
The resource ID returned in APPC/VM is a path ID. The path ID is a halfword number.

REQUEST_TO_SEND_RECEIVED - SENDREQ interrupt
APPC/VM indicates that the partner issued REQUEST_TO_SEND by reflecting a SENDREQ interrupt.

RETURN_CODE - IPCODE
The APPC RETURN_CODE variable corresponds to the following in APPC/VM:

• IPCODE from APPCVM SENDERR or APPCVM SEVER.

If the SENDCNF completes with a SENDERR or SEVER, then the virtual machine that invoked
SENDCNF should look at the IPCODE field to determine the error.

RETURN_CODE IPCODE

OK X'0000'

ALLOCATION_ERROR Any allocation error code
(X'0110' through X'0160')

APPC CONFIRM Verb

576 z/VM: 7.3 CP Programming Services

RETURN_CODE IPCODE

DEALLOCATE_ABEND_PROG X'0210'

DEALLOCATE_ABEND_SVC X'0220'

DEALLOCATE_ABEND_TIMER X'0230'

PROG_ERROR_PURGING X'0430'

SVC_ERROR_PURGING X'0530'

RESOURCE_FAILURE_NO_RETRY X'0610'

RESOURCE_FAILURE_RETRY X'0620'

State Changes: No state changes occur.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

SYNC_LEVEL(NONE) was specified X'25'

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send state X'20', X'22', X'23', X'24', X'44'-
X'4C'

Conversation started but did not finish sending a logical record X'2C'

APPC CONFIRMED
The APPC CONFIRMED verb maps to the APPCVM SENDCNFD function.

Parameters: The following list maps the APPC CONFIRMED parameter (in bold) to the APPC/VM
equivalent (in italics):

RESOURCE - PATHID parameter on APPCVM SENDCNFD
In APPC/VM, the path ID is a halfword number.

State Changes: Your program can be in any of the following states:

• RECEIVE, if the SENDCNFD is in response to a SENDCNF TYPE=NORMAL.
• SEVER, if the SENDCNFD is in response to a SENDCNF TYPE=SEVER. Sever state is the APPC/VM

equivalent of Deallocate state.
• SEND, if the SENDCNFD is in response to a SENDCNF TYPE=PREPRECV.
• SEND or RECEIVE, if the SENDCNFD is in response to the partner's backout.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Confirm state X'20', X'21', X'22', X'24', X'44',
X'4A'-X'4C'

APPC CONFIRMED Verb

Chapter 10. APPC Mapped with APPC/VM 577

APPC DEALLOCATE
The APPC DEALLOCATE verb maps to the APPC/VM functions SEVER and SENDCNF TYPE=SEVER.

Parameters: The following list maps APPC DEALLOCATE parameters (in bold) to APPC/VM equivalents (in
italics):

RESOURCE - PATHID parameter of APPCVM SENDCNF and APPCVM SEVER
In APPC/VM, the path ID is a halfword number.

TYPE - TYPE and CODE parameters of APPCVM SEVER

TYPE(SYNC_LEVEL)
Use the following APPC/VM functions:

• APPCVM SEVER TYPE=NORMAL, to do a DEALLOCATE TYPE(SYNC_LEVEL) when
SYNCLVL=NONE.

• APPCVM SENDCNF TYPE=SEVER, followed by APPCVM SEVER TYPE=NORMAL, to do a
DEALLOCATE TYPE(CONFIRM) when SYNCLVL=CONFIRM.

• APPCVM SETMODFY TYPE=SEVER, followed by a function to initiate a sync-point, to do a
DEALLOCATE TYPE(SYNC_LEVEL) when SYNCLVL=SYNCPT.

• APPCVM SETMODFY TYPE=SEVER, followed by APPCVM CONFIRM to do a DEALLOCATE
TYPE(SYNC_LEVEL) when SYNCLVL=CONFIRM.

TYPE(FLUSH)
Use APPCVM SEVER TYPE=NORMAL.

TYPE(CONFIRM)
Use the APPCVM SENDCNF TYPE=SEVER, followed by APPCVM SEVER TYPE=NORMAL, to do a
TYPE(CONFIRM).

TYPE(ABEND_PROG)
Use APPCVM SEVER TYPE=ABEND with the appropriate sever code (CODE=X'210').

TYPE(ABEND_SVC)
Use APPCVM SEVER TYPE=ABEND with the appropriate sever code (CODE=X'220').

TYPE(ABEND_TIMER)
Use APPCVM SEVER TYPE=ABEND with the appropriate sever code (CODE=X'230').

TYPE(LOCAL)
Use APPCVM SEVER TYPE=NORMAL after receiving a sever indication from your partner.

LOG_DATA - BUFFER and BUFLEN parameters of APPCVM SEVER
The LOG_DATA can be from 8 to 600 bytes in length. APPC/VM supports the APPC option:

• LOG_DATA(NO) as BUFLEN=0
• LOG_DATA(YES) as BUFLEN > 0.

RETURN_CODE - IPRCODE and IPCODE
For all types of DEALLOCATE except SYNC_LEVEL(CONFIRM), the only possible return code is OK. For
SYNC_LEVEL(CONFIRM), the same mapping exists as for the return codes from CONFIRM. See the
return code table under “APPC CONFIRM” on page 576 for details.

State Changes: After the Sever completes, your program is in Reset state.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

The state check conditions follow:

APPC DEALLOCATE Verb

578 z/VM: 7.3 CP Programming Services

State Check Condition IPRCODE

Issued TYPE(FLUSH), TYPE(CONFIRM), or TYPE(SYNC_LEVEL) from
the wrong state.

X'20', X'22', X'23', X'24'

Issued TYPE(LOCAL) from the wrong state. X'20', X'21', X'22', X'23'

Issued TYPE(FLUSH) or TYPE(SYNC_LEVEL), and the conversation
started but did not finish sending a logical record.

X'2C'

APPC FLUSH
The APPC FLUSH verb maps to APPCVM SENDDATA FLUSH=YES, RECEIVE=NO, BUFLEN=0.

Parameters: The following list maps APPC FLUSH parameters (in bold) to APPC/VM equivalents (in
italics):

RESOURCE - PATHID parameter of APPCVM SENDDATA
In APPC/VM, the path ID is a halfword number.

State Changes: Your program will be in Receive state if the SENDDATA FLUSH=YES is issued from
Defer_Receive state. Otherwise, no state change occurs.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send state X'20', X'22', X'23', X'24', X'44'-
X'4C'

APPC GET_ATTRIBUTES
APPC/VM provides the function of the GET_ATTRIBUTES verb, but does not provide a specific APPC/VM
function.

The transaction program is responsible for obtaining the following:

• The PARTNER_LU_NAME from the VM area, after initially receiving the allocate data.
• The MODE_NAME from the VM area, after initially receiving the allocate data.
• The SYNC_LEVEL in the connection pending interrupt and/or Attach FMH5.
• The SECURITY_USER_ID from the connection pending interrupt and/or the Attach FMH5.

APPC/VM does not provide SECURITY_PROFILE.

APPC PREPARE_TO_RECEIVE
The APPC PREPARE_TO_RECEIVE verb maps to the APPC/VM function SENDCNF TYPE=PREPRECV.

Parameters: The following list maps APPC PREPARE_TO_RECEIVE parameters (in bold) to APPC/VM
equivalents (in italics):

RESOURCE - PATHID parameter on APPCVM SENDCNF
In APPC/VM, the path ID is a halfword number.

TYPE(FLUSH) - APPCVM RECEIVE with BUFLEN=0 from Send state
In APPC/VM, if you are in Send state and issue RECEIVE with a receive area of 0 length, this is
equivalent to APPC PREPARE_TO_RECEIVE TYPE(FLUSH).

APPC FLUSH Verb

Chapter 10. APPC Mapped with APPC/VM 579

LOCKS - no parameter
APPC/VM does not support the LOCKS option set.

RETURN_CODE - IPCODE
The APPC RETURN_CODE variable corresponds to the following in APPC/VM:

• The IPCODE of APPCVM SENDERR or APPCVM SEVER TYPE=ABEND.

If the SENDCNF completes with a SENDERR or SEVER, then the virtual machine that invoked
SENDCNF should look at the IPCODE field to determine the error.

The same mapping exists as for the return codes from CONFIRM. See the return code table under
“APPC CONFIRM” on page 576 for details.

State Changes: After this function completes, your program is in Receive state.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send state X'20', X'22', X'23', X'24', X'44'-
X'4C'

APPC RECEIVE_AND_WAIT
The APPC RECEIVE_AND_WAIT verb maps to the APPC/VM function, RECEIVE.

Parameters: The following list maps APPC RECEIVE_AND_WAIT parameters (in bold) to APPC/VM
equivalents (in italics):

RESOURCE - PATHID parameter on APPCVM RECEIVE
In APPC/VM, the path ID is a halfword number.

FILL - no parameter
APPC/VM supports FILL(BUFFER), but does not support FILL(LL). Support for FILL(LL) can be provided
by a program.

DATA - BUFFER parameter of APPCVM RECEIVE
The APPC parameter, DATA(variable), and the APPC/VM parameter, BUFFER=, specifies the address of
the buffer to place the data being received.

LENGTH - BUFLEN parameter of APPCVM RECEIVE
The APPC parameter, LENGTH(variable), and the APPC/VM parameter, BUFLEN=, define the RECEIVE
area length.

When control is returned to the program at the completion of RECEIVE_AND_WAIT, the LENGTH
variable contains the length of data received. For APPC/VM, the length variable, IPBFLN2F, contains
one of the following:

• The amount of space left in the buffer
• A count of how much data is pending that did not fit into the buffer.

When you are in Send state and specify a 0 length, the Receive completes before the target responds.
This maps to PREPARE_TO_RECEIVE TYPE (FLUSH). When you issue RECEIVE with a 0 length from
Receive state, it completes immediately even if nothing is pending on the path. In APPC/VM, you can
use RECEIVE and then wait for a message pending or sever interrupt on the same path to do the
equivalent of an APPC RECEIVE_AND_WAIT with a 0 length.

REQUEST_TO_SEND_RECEIVED - SENDREQ interrupt
APPC/VM indicates that the partner issued REQUEST_TO_SEND by reflecting a SENDREQ interrupt.

APPC RECEIVE_AND_WAIT Verb

580 z/VM: 7.3 CP Programming Services

WHAT_RECEIVED - IPWHATRC in function complete interrupt
You can receive data along with other indicators.
WHAT_RECEIVED(DATA)

In APPC/VM, this indication is presented by either IPWHATRC=IPDATA, or IPWHATRC does not
equal IPDATA with the length field (IPBFLN2F) less than IPBFLN1F when you issued RECEIVE.

WHAT_RECEIVED(DATA_COMPLETE,DATA_INCOMPLETE, LL_TRUNCATED)
Does not occur in APPC/VM, because APPC/VM does not support FILL(LL).

WHAT_RECEIVED(SEND)
In APPC/VM, this indication is IPWHATRC=IPSEND.

WHAT_RECEIVED(CONFIRM)
In APPC/VM, this indication is IPWHATRC=IPCNFRM.

WHAT_RECEIVED(CONFIRM_SEND)
In APPC/VM, this indication is IPWHATRC = IPSNDCNF.

WHAT_RECEIVED(CONFIRM_DEALLOCATE)
In APPC/VM, this function is IPWHATRC=IPCNFSEV.

WHAT_RECEIVED(TAKE_SYNCPT)
In APPC/VM, this indication can be either IPWHATRC = IPPREPAR or, IPWHATRC = IPREQCOM
and IPWHATRC2=IPTPRECV.

WHAT_RECEIVED(TAKE_SYNCPT_SEND)
In APPC/VM, this indication can be either IPWHATRC = IPPREPAR or, IPWHATRC = IPREQCOM
and IPWHATRC2=IPTPSEND.

WHAT_RECEIVED(TAKE_SYNCPT_DEALLOCATE)
In APPC/VM, this indication can be either IPWHATRC = IPPREPAR or, IPWHATRC = IPREQCOM
and IPWHATRC2=IPTPSEVR.

RETURN_CODE - IPCODE in function complete interrupt
The APPC RETURN_CODE variable corresponds to the following in APPC/VM:

• The IPCODE of APPCVM SENDERR or APPCVM SEVER TYPE=ABEND
• The IPWHATRC field of the APPCVM RECEIVE output parameter list.

If the RECEIVE completes with a SENDERR or SEVER TYPE=ABEND, then the virtual machine that
issued RECEIVE should look at the IPCODE field to determine the error. IPWHATRC could also contain
IPSNORM to indicate DEALLOCATE_NORMAL.

RETURN_CODE IPCODE

OK X'0000'

ALLOCATION_ERROR Any allocation error code
(X'0110' through X'0160')

DEALLOCATE_ABEND_PROG X'0210'

DEALLOCATE_ABEND_SVC X'0220'

DEALLOCATE_ABEND_TIMER X'0230'

PROG_ERROR_NO_TRUNC X'0410'

PROG_ERROR_TRUNC X'0420'

PROG_ERROR_PURGING X'0430'

SVC_ERROR_NO_TRUNC X'0510'

SVC_ERROR_TRUNC X'0520'

SVC_ERROR_PURGING X'0530'

APPC RECEIVE_AND_WAIT Verb

Chapter 10. APPC Mapped with APPC/VM 581

RETURN_CODE IPCODE

RESOURCE_FAILURE_NO_RETRY X'0610'

RESOURCE_FAILURE_RETRY X'0620'

State Changes: When RECEIVE completes, your program may be in any of the following states:

• Receive state, when WHAT_RECEIVED is DATA
• Send state, when WHAT_RECEIVED is SEND
• Confirm state, when WHAT_RECEIVED is CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE.
• Prepare_Received state, when IPWHATRC=IPPREPAR
• Unsolicited_Request_Commit_Received state, when IPWHATRC=IPREQCOM.

No state change occurs when the verb is issued in Receive state and WHAT_RECEIVED is DATA.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send or Receive state X'20', X'23', X'24', X'44'-X'4C'

Conversation started but did not finish sending a logical record X'2C' (see note)

Note: This condition could also be reported in IPAUDIT by the IPADITRN flag.

APPC REQUEST_TO_SEND
The APPC REQUEST_TO_SEND verb maps to the APPC/VM function SENDREQ.

Parameters: The following maps the APPC REQUEST_TO_SEND parameter (in bold) to the APPC/VM
equivalent (in italics):

RESOURCE - PATHID parameter of APPCVM SENDREQ
In APPC/VM, the path ID is a halfword number.

State Changes: No state changes occur.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send, Receive, or Confirm state X'20', X'24', X'44'-X'46', X'48',
X'4A'-X'4C'

APPC SEND_DATA
The APPC SEND_DATA verb maps to the APPC/VM function SENDDATA RECEIVE=NO.

Parameters: The following list maps the APPC SEND_DATA parameters (in bold) to the APPC/VM
equivalents (in italics):

APPC REQUEST_TO_SEND Verb

582 z/VM: 7.3 CP Programming Services

RESOURCE - PATHID parameter of APPCVM SENDDATA
In APPC/VM, the path ID is a halfword number.

DATA - BUFFER parameter of APPCVM SENDDATA
The APPC parameter, DATA(variable), and the APPC/VM parameter, BUFFER=, specify the address of
the data to send.

LENGTH - BUFLEN parameter of APPCVM SENDDATA
The APPC parameter LENGTH(variable) and the APPC/VM parameter BUFLEN= specify the length of
the data to send.

REQUEST_TO_SEND_RECEIVED - SENDREQ interrupt
APPC/VM indicates that the partner issued REQUEST_TO_SEND by reflecting a SENDREQ interrupt.

RETURN_CODE - IPCODE in function complete interrupt
The APPC RETURN_CODE variable corresponds to the following in APPC/VM:

• The IPCODE of APPCVM SENDERR or APPCVM SEVER.

If the SENDDATA completes with a SENDERR or SEVER, the virtual machine that issued the SENDDATA
should look at the IPCODE field to determine the error.

RETURN_CODE IPCODE

OK X'0000'

ALLOCATION_ERROR Any allocation error code
(X'0110' through X'0160')

DEALLOCATE_ABEND_PROG X'0210'

DEALLOCATE_ABEND_SVC X'0220'

DEALLOCATE_ABEND_TIMER X'0230'

PROG_ERROR_PURGING X'0430'

SVC_ERROR_PURGING X'0530'

RESOURCE_FAILURE_NO_RETRY X'0610'

RESOURCE_FAILURE_RETRY X'0620'

State Changes: No state changes occur.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

Invalid resource ID X'01'

Invalid logical record length X'2A' (see note)

Note: This condition could also be reported in IPAUDIT by the IPADIINV flag.

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send state X'20', X'22', X'23', X'24', X'44'-
X'4C'

APPC SEND_ERROR
The APPC SEND_ERROR verb maps to the APPC/VM function SENDERR.

APPC SEND_ERROR Verb

Chapter 10. APPC Mapped with APPC/VM 583

Parameters: The following list maps the APPC SEND_ERROR parameters (in bold) to the APPC/VM
equivalents (in italics):

RESOURCE - PATHID parameter of APPCVM SENDERR
In APPC/VM, the path ID is a halfword number.

TYPE - TYPE parameter of APPCVM SENDERR
APPC/VM supports APPC options:

• TYPE(PROG) as TYPE=PROG
• TYPE(SVC) as TYPE=SVC.

LOG_DATA - BUFFER and BUFLEN parameters of APPCVM SENDERR
The APPC LOG_DATA variable corresponds to the APPC/VM BUFFER and BUFLEN. The LOG_DATA can
be from 8 to 600 bytes in length. APPC/VM supports the APPC option:

• LOG_DATA(NO) as BUFLEN=0
• LOG_DATA(YES) as BUFLEN with a value > 0.

REQUEST_TO_SEND_RECEIVED - SENDREQ interrupt
APPC/VM indicates that the partner issued REQUEST_TO_SEND by reflecting a SENDREQ interrupt.

RETURN_CODE - IPCODE in function complete interrupt
The APPC RETURN_CODE variable corresponds to the following in APPC/VM:

• The IPCODE of APPCVM SENDERR or APPCVM SEVER TYPE=ABEND
• The IPWHATRC field of the APPCVM SENDERR output parameter list.

If the SENDERR completes with an indication that the communication partner issued a SENDERR or
SEVER, the virtual machine should look at the IPCODE field to determine the error.

If you issue SEND_ERROR from Send state, the following return codes are possible. IPWHATRC may
also contain IPSNORM to indicate DEALLOCATE_NORMAL.

RETURN_CODE IPCODE

OK X'0000'

ALLOCATION_ERROR Any allocation error code
(X'0110' through X'0160')

DEALLOCATE_ABEND_PROG X'0210'

DEALLOCATE_ABEND_SVC X'0220'

DEALLOCATE_ABEND_TIMER X'0230'

PROG_ERROR_PURGING X'0430'

SVC_ERROR_PURGING X'0530'

RESOURCE_FAILURE_NO_RETRY X'0610'

RESOURCE_FAILURE_RETRY X'0620'

If you issue SEND_ERROR from Receive state, the following return codes are possible. IPWHATRC
may also contain IPSNORM to indicate DEALLOCATE_NORMAL.

RETURN_CODE IPCODE

OK X'0000'

RESOURCE_FAILURE_NO_RETRY X'0610'

RESOURCE_FAILURE_RETRY X'0620'

APPC SEND_ERROR Verb

584 z/VM: 7.3 CP Programming Services

If you issue SEND_ERROR from Confirm state, the following return codes are possible:

RETURN_CODE IPCODE

OK X'0000'

RESOURCE_FAILURE_NO_RETRY X'0610'

RESOURCE_FAILURE_RETRY X'0620'

State Changes: If you issue the SENDERR, you remain in or are put into Send state.

Abend Conditions: The parameter check conditions follow:

Parameter Check Condition IPRCODE

LOG_DATA not supported Not supported

Invalid resource ID X'01'

The state check conditions follow:

State Check Condition IPRCODE

Conversation not in Send, Receive, or Confirm state X'20', X'24', X'44'-X'46', X'48',
X'4A'- X'4C'

APPC SEND_ERROR Verb

Chapter 10. APPC Mapped with APPC/VM 585

APPC SEND_ERROR Verb

586 z/VM: 7.3 CP Programming Services

Part 4. CP System Services

This part contains the following chapters:

• Chapter 11, “Access Verification System Service (*RPI),” on page 589
• Chapter 12, “Account System Service (*ACCOUNT),” on page 697
• Chapter 13, “Asynchronous CP Command Response System Service (*ASYNCMD),” on page 717
• Chapter 14, “DASD Block I/O System Service (*BLOCKIO),” on page 719
• Chapter 15, “Error Logging System Service (*LOGREC),” on page 727
• Chapter 16, “Identify System Service (*IDENT),” on page 729
• Chapter 17, “Message System Service (*MSG),” on page 737
• Chapter 18, “Message All System Service (*MSGALL),” on page 739
• Chapter 19, “SCLP System Service (*SCLP),” on page 741
• Chapter 20, “Signal System Service (*SIGNAL),” on page 745
• Chapter 21, “Spool System Service (*SPL),” on page 749
• Chapter 22, “Symptom System Service (*SYMPTOM),” on page 771
• Chapter 23, “VM Event System Service (*VMEVENT),” on page 773

Note: For information on Monitor System Service (*MONITOR), see Appendix A, in z/VM: Performance.

© Copyright IBM Corp. 1991, 2023 587

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=montr
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3

588 z/VM: 7.3 CP Programming Services

Chapter 11. Access Verification System Service
(*RPI)

The access verification system service (*RPI) handles IUCV communications between the CP access
control interface (ACI) and an external security manager (ESM) service virtual machine, such as the
Resource Access Control Facility (RACF). The ACI is a group of CP modules that mediate between CP
and the ESM to handle authorization checking. z/VM supplies stub modules that are replaced by the ESM
when it is installed. Part of this ESM-supplied code becomes the *RPI system service. Therefore, the *RPI
system service is available only if an ESM is installed and the interface to *RPI is as defined by the ESM.

Using the CP Access Control Interface
The CP access control interface (ACI) is a group of modules that mediate between CP and an external
security manager (ESM). An ESM is a service virtual machine that runs outside the primary operating
system to help maintain the latter's security and integrity. The RACF Security Server for z/VM is an
example of an ESM.

The access control interface consists of the CP modules: HCPRPD, HCPRPF, HCPRPG, HCPRPI, HCPRPW,
HCPRPP, and HCPRWA, and the ACIPARMS control block. These modules are supplied in CP as stub
modules. When an ESM is installed, these modules can be replaced with ESM versions that do not exceed
one page in size. These modules are installation-wide exits. HCPRPD, HCPRPI, HCPRPP, and HCPRPW
comprise the portion of the ACI in which CP takes an active part. CP routes control to these modules and
expects certain return conditions. HCPRPF and HCPRPG are provided solely for ESM use. HCPRWA and
HCPRPF are nonexecutable modules which can be used as data areas.

HCPPWAPF is an entry point that can be called by the ESM to notify CP of the level of support provided for
optional features, such as password phrases. HCPPWA is not part of the ACI and it is not intended to be
modified by the ESM.

The CP module, HCPDA0, may be called by an ESM to query or to update the security bit settings for each
command, DIAGNOSE, and security relevant system function. The security bit settings control the calls
that CP makes to the ACI.

The following topics are discussed in this chapter:

• “Overview” on page 590
• “HCPRPI Module” on page 591
• “HCPRPW Module” on page 594
• “HCPRPD Module” on page 597
• “HCPRPE Module for handling DIAGNOSE X'A0'” on page 600
• “HCPRPF Module” on page 604
• “HCPRPG Module” on page 604
• “HCPRPP Module” on page 604
• “HCPRWA Module” on page 605
• “CP Callable Services for the ACI” on page 605
• “Summary of CP Modules and Entry Points” on page 606
• “ACI Security Bits” on page 607
• “HCPDA0 Module for Updating ACI Security Bits” on page 610
• “ACIPARMS Control Block” on page 620
• “CP Calls to the ACI” on page 637

– “Generic Command and DIAGNOSE Audit Calls” on page 637

© Copyright IBM Corp. 1991, 2023 589

– “ACIPARMS Parameter Lists for CP Commands” on page 639
– “ACIPARMS Parameter Lists for DIAGNOSE Codes” on page 668
– “ACIPARMS Parameter Lists for System Functions” on page 676.

Overview
CP's SSI Configuration Manager defines a "security" service that calls entry points in the module HCPRPP
to handle the following SSI related events: Worthiness checks; Enablement function; Join processing;
State change notification; STABLE preparation; SSI level change. See “HCPRPP Module” on page 604
for more details. CP and the ESM use a control block called ACIPARMS to communicate with each other
about security-relevant events. An event may be a CP command, DIAGNOSE code, or system function.

Figure 76 on page 590 provides an overview of the CP access control interface and the suggested
method for an ESM to use it. The general security steps are as follows:

1. The ESM replaces the CP stub modules HCPRPW, HCPRPI, HCPRPD, HCPRPF, HCPRPG, and HCPRWA
with its own tailored versions.

2. When a command, DIAGNOSE, or security-relevant system function is issued, CP checks the ACI
security bit settings for that event. If the ACI needs to be called, CP creates an ACIPARMS parameter
list specifically for that request and then calls the ACI through either HCPRPI or HCPRPW, sending
ACIPARMS as input.

3. The request is then passed to the ESM through IUCV.
4. The ESM performs the requested function, records its response in the appropriate ACIPARMS field

(ACICODE), and returns the ACIPARMS control block to CP.
5. CP then carries out the ESM's security decision. The process continues at step “2” on page 590 for the

next event.

Figure 76. Overview of the CP Access Control Interface to an ESM

590 z/VM: 7.3 CP Programming Services

HCPRPI Module
The HCPRPI module contains six entry points: HCPRPICN, HCPRPIIL, HCPRPISV, HCPRPIQS, HCPRPIRM,
and HCPRPIRA.

Entry Points HCPRPICN, HCPRPIIL, HCPRPISV, HCPRPIQS, and HCPRPIRM -
IUCV Interface
The HCPRPICN, HCPRPIIL, HCPRPISV, HCPRPIQS, and HCPRPIRM entry points are defined to support an
IUCV interface. These entry points comprise the skeleton for the *RPI system service through which the
Security Manager service virtual machine can communicate with the ACI modules. These entry points,
along with their respective assigned functions, are defined to CP's IUCV processing as the interrupt
handlers for the *RPI system service:
Entry Point

Function
HCPRPICN

IUCV Connect interrupt handler
HCPRPIIL

IUCV message pending interrupt handler
HCPRPISV

IUCV Sever interrupt handler
HCPRPIQS

IUCV Quiesce interrupt handler
HCPRPIRM

IUCV Resume interrupt handler

For example, if a virtual machine issues an IUCV connect to *RPI, CP's IUCV processing routes control to
HCPRPICN.

The ESM may replace these skeleton entry points with code to perform the IUCV services required to
communicate with the ESM virtual machine. This ESM-supplied code becomes the *RPI system service. In
conjunction with this, the ESM virtual machine must contain the IUCV code needed to communicate with
the *RPI system service. The ESM virtual machine must use the same protocol for IUCV communications
as the ESM-supplied interrupt handlers.

For information about IUCV, see Part 2, “The Inter-User Communications Vehicle,” on page 295.

CP's stub version of the HCPRPICN entry point issues an IUCV sever for the path that the connect was on.

CP's stub versions of the HCPRPIIL, HCPRPISV, HCPRPIQS, and HCPRPIRM entry points issue a defer
(ACIDEFR) return code in the ACICODE field of ACIPARMS, and return to CP. However, there is no CP
handling of this return code, and the ESM replacement module does not need to reproduce it.

Interface specifications for the HCPRPICN, HCPRPIIL, HCPRPISV, HCPRPIQS, and HCPRPIRM entry
points follow.

Input Registers:
R1

Address of the external interrupt.

The interrupt buffer is mapped by IPARML, and the contents differ depending on the type of
interrupt.

R11
Address of the dispatched VMDBK

Output: None

Attributes: MP, dynamic, resident

Linkage: Call with a dynamic save area

Chapter 11. Access Verification System Service (*RPI) 591

Register Usage:
R0

Scratch
R1

Address of external interrupt
R2

Scratch
R3

Scratch
R4

Scratch
R5

Scratch
R6

Scratch
R7

Scratch
R8

Scratch
R9

Scratch
R10

Scratch
R11

Address of dispatched VMDBK
R12

Base register
R13

Address of save area
R14

Scratch
R15

Scratch

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

CP's stub module expects register 1 to contain the address of ACIPARMS on input and output. However,
the ESM's replacement module should expect R1 to contain the address of the external interrupt buffer
on input; there are no output requirements.

Entry Point HCPRPIRA - Request Services from the ESM
The HCPRPIRA entry point is defined to support authorization requests (calls) from CP to the ESM. For
a subset of commands and DIAGNOSE codes, CP calls this entry point to check whether the user is
authorized before it performs the requested function. CP sends the address of ACIPARMS in Register 1.
ACIPARMS contains information about the command or DIAGNOSE code that has been issued. The calls
to this entry point and the format of ACIPARMS for each call are described in detail in “CP Calls to the
ACI” on page 637.

CP's stub module returns a code of ACIDEFR in the ACICODE field in ACIPARMS. This indicates to CP that
the ESM has made no authorization check.

The ESM replacement module is expected to receive the input parameters in ACIPARMS, and to send the
ESM's response back to the caller in the ACICODE field.

592 z/VM: 7.3 CP Programming Services

Figure 77 on page 593 lists the interface specifications for this entry point.

Input Registers:
R1

Address of ACIPARMS parameter list
R11

Address of the dispatched VMDBK

Output:
R1

Address of ACIPARMS parameter list

ACICODE field contains the return code

Attributes: MP, dynamic, resident

Linkage: Call with a dynamic save area

Register Usage:
R0

Scratch
R1

Address of ACIPARMS
R2

Scratch
R3

Scratch
R4

Scratch
R5

Scratch
R6

Scratch
R7

Scratch
R8

Scratch
R9

Scratch
R10

Scratch
R11

Address of dispatched VMDBK
R12

Base register
R13

Address of save area
R14

Scratch
R15

Scratch

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Figure 77. Interface Specifications for the HCPRPIRA Entry Point

Chapter 11. Access Verification System Service (*RPI) 593

Exit from HCPRPI
Return from all the executable entry points in HCPRPI is made to the calling module by the HCPEXIT
macro, located in the HCPPSI macro library.

The HCPEXIT macro is coded in HCPRPI as:

HCPEXIT EP=(HCPRPIRA,HCPRPICN,HCPRPIIL,HCPRPIQS,HCPRPIRM,HCPRPISV)

Each entry point branches to this instruction to exit.

HCPRPW Module
The HCPRPW module contains two entry points, HCPRPWEP and HCPRPWPR.

Entry Point HCPRPWEP - Logon Password Verification Routine
This entry point is defined to support calls from CP to the ESM for password checking for the following
commands:

• LOGON
• AUTOLOG
• XAUTOLOG.

For LOGON, AUTOLOG, and XAUTOLOG, CP calls the HCPRPWEP entry point to check whether the user
is authorized before it processes the command. CP sends the address of the ACIPARMS parameter list
in Register 1. ACIPARMS contains information about the command that has been issued. The format of
ACIPARMS for each command is described in “CP Calls to the ACI” on page 637.

CP's stub module returns a code of ACIDEFR in the ACICODE field. This indicates to CP that the ESM has
made no authorization check.

The ESM replacement module is expected to receive the input parameters in ACIPARMS, and to send the
ESM's response back to the caller in the ACICODE field.

Figure 78 on page 595 lists the interface specifications for this entry point.

594 z/VM: 7.3 CP Programming Services

Input Registers:
R1

Address of ACIPARMS parameter list
R11

Address of the dispatched VMDBK

Output:
R1

Address of ACIPARMS parameter list

ACICODE field contains the return code

Attributes: Non-MP, dynamic, resident

Linkage: Call with a dynamic save area

Register Usage:
R0

Scratch
R1

Address of ACIPARMS
R2

Scratch
R3

Scratch
R4

Scratch
R5

Scratch
R6

Scratch
R7

Scratch
R8

Scratch
R9

Scratch
R10

Scratch
R11

Address of dispatched VMDBK
R12

Base register
R13

Address of save area
R14

Scratch
R15

Scratch

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Figure 78. Interface Specifications for the HCPRPWEP Entry Point

Chapter 11. Access Verification System Service (*RPI) 595

Exit from HCPRPWEP
Return is made to the calling module by the HCPEXIT macro, located in the HCPPSI macro library. The
HCPEXIT macro is coded in HCPRPWEP as:

HCPEXIT EP=(HCPRPWEP) Return to Caller

Entry Point HCPRPWPR - Logon Password Prompting Routine
This entry point prompts for password/phrase data and passes the entered data back in ACIPARMS. CP
calls the HCPRPWPR entry point to prompt for and collect password/phrase data for later verification by
entry point HCPRPWEP. CP sends the address of the ACIPARMS parameter list in Register 1.

CP's stub module returns a code of ACIDEFR in the ACICODE field. This indicates to CP that no ESM is
installed.

The ESM replacement module is expected to receive the input parameters in ACIPARMS, and to send the
response back to the caller in the ACICODE, ACIOPPLN and ACIOPP fields.

Interface specifications for the HCPRPWPR entry point follow.

Input Registers:
R1

Address of ACIPARMS parameter list

Output:

R1
Address of ACIPARMS parameter list

ACICODE field contains the return code
X'08' - the password/phrase string has been successfully collected
X'10' - a console error occurred

ACIOPPLN = length of entered data
ACIOPP = entered data

Attributes: Non-MP, dynamic, resident

Linkage: Call with a dynamic save area

Register Usage:
R0

Scratch
R1

Address of ACIPARMS
R2

Scratch
R3

Scratch
R4

Scratch
R5

Scratch
R6

Scratch
R7

Scratch

596 z/VM: 7.3 CP Programming Services

R8
Scratch

R9
Scratch

R10
Scratch

R11
Address of dispatched VMDBK

R12
Base register

R13
Address of save area

R14
Scratch

R15
Scratch

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Exit from HCPRPWPR
Return is made to the calling module by the HCPEXIT macro, located in the HCPPSI macro library. The
HCPEXIT macro is coded in HCPRPWPR as:

HCPEXIT EP=(HCPRPWPR) Return to Caller

HCPRPD Module
The HCPRPD module contains one entry point, HCPRPDEP, which functions as the DIAGNOSE code X'A0'
processor.

Entry Point HCPRPDEP - DIAGNOSE Code X'A0' Processor
CP's stub version of HCPRPDEP contains a call to module HCPRPE (entry point HCPRPEEP), which
handles subcodes X'00' and X'08' of DIAGNOSE code X'A0'. Subcode X'00' retrieves the ACI group name,
ACIGROUP, for a given user ID from the user's directory. Subcode X'08' sets the condition code to indicate
whether an ESM is installed. Subcode X'48' retrieves the ESM product information from HCPRWAPP and
copies it into the buffer pointed to by the RX register. These subcodes are documented in “DIAGNOSE
Code X'A0' – Obtain ACI Information” on page 134. Upon return from HCPRPE, HCPRPD stores registers
R0 and R15 in the caller's R0 and R15 registers, and returns to the caller.

For subcode X'00', the ESM's replacement module should duplicate the call to HCPRPE as it appears in
the stub module so that this subcode continues to be supported in the same way.

For subcode X'08' the ESM should set the guest (virtual machine) condition code to 0 indicating that an
ESM is installed. The condition code is set using the HCPCALL macro, located in the HCPGPI macro library.
The call is coded as:

HCPCALL HCPGSVC0 Set guest condition code to zero

For subcode X'48', the ESM does not need to modify the stub code in HCPRPD and HCPRPE, but should
update the ESM product information in the HCPRWAPP table. This table is mapped by the RWAESM
DSECT in the ACIPARMS macro.

An ESM may also provide additional functions in this entry point by defining its own subcodes for
DIAGNOSE code X'A0' and by handling those subcodes in HCPRPD. The subcodes should be specified in
the Ry register. If the ESM is to contain calls to HCPDA0, it is suggested that these calls be implemented

Chapter 11. Access Verification System Service (*RPI) 597

as DIAGNOSE code X'A0' subcodes, and made from HCPRPD. See “HCPDA0 Module for Updating ACI
Security Bits” on page 610 for more information.

The interface specifications for the HCPRPDEP entry point follow.

Input Registers:
R5

Address of the Rx register
R6

Address of the Ry register
R11

Address of the dispatched VMDBK

See DIAGNOSE code X'A0' for a description of Rx and Ry register specifications for subcodes X'00',
X'08', and X'48'.

Exit Values:
Subcode X'00':

Normal:
R15 =

0 (Successful request)
Rx =

First doubleword is unchanged. Second doubleword contains the ACI group name.
Ry =

Unchanged

Guest condition code = 0

Error:

• If the input user ID is invalid:

R15 = 0
Virtual machine condition code = 1

• Otherwise:

R15 = 8 (Unsuccessful request)
R0 = X'04' Protection exception indicator
R0 = X'05' Addressing exception indicator
R0 = X'06' Specification exception indicator
Virtual machine condition code = 1

Subcode X'08':
R15 =

0 (Successful request)
Rx =

Unchanged
Ry =

Unchanged

Guest condition code is set to 0 = ESM is installed

Guest condition code is set to 1 = ESM is not installed

Subcode X'48':
R15 =

0 (Successful request)
Rx =

Points to area updated with ESM product information

598 z/VM: 7.3 CP Programming Services

Ry =
Unchanged

Guest condition code is set to 0

Invalid Subcode:
R15 =

8 (Unsuccessful request)
R0 =

X'06' Specification exception indicator

Note: R15 in these cases refers to the caller's R15 as opposed to the guest's R15.

Attributes: Non-MP, dynamic

Linkage: Call with a dynamic save area

Register Usage:
R0

Scratch
R1

Scratch
R2

Scratch
R3

Scratch
R4

Scratch
R5

Address of Rx register
R6

Address of Ry register
R7

Scratch
R8

Scratch
R9

Scratch
R10

Scratch
R11

Address of dispatched VMDBK
R12

Base register
R13

Address of save area
R14

Scratch
R15

Scratch

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Chapter 11. Access Verification System Service (*RPI) 599

Return Codes
When HCPRPD returns to its caller, the return code in Register 15 is handled as shown in Table 79 on page
600.

Table 79. Supported HCPRPD Return Codes

RC Meaning

0 Processing was successful. Complete the guest instruction.

4 Processing failed due to a condition that would cause a guest program check. Simulate
the guest program interruption passed in Register 0.

8 Nullify the guest instruction.

12 Generate a machine check for a storage error, then nullify the instruction. The guest
real address of failing storage is in Register 1.

16 Generate a machine check for processing damage, then terminate the instruction.

20 Generate a machine check for storage error, then terminate the instruction. The guest
real address of failing storage is in Register 1.

24 Issue an error message or soft abend for a paging I/O error, then nullify the instruction.
Register 1 has the message or abend number.

Exit from HCPRPD
Return is made to the calling module by the HCPEXIT macro, located in the HCPPSI macro library. The
HCPEXIT macro is coded in HCPRPDEP as:

HCPEXIT EP=(HCPRPDEP) Return to Caller

HCPRPE Module for handling DIAGNOSE X'A0'
HCPRPE is a CP module that can be called by an ESM to handle certain DIAGNOSE code X'A0' subcodes
and other functions. The following entry points are provided:
Entry Point

Function
HCPRPEEP

To handle DIAGNOSE code X'A0' subcodes X'00', X'08', and X'48'.
HCPRPEPX

To inform CP of the ESM's POSIX capabilities.
HCPRPESG

To inform CP of a change to a user's POSIX Supplementary GID list.
The suggested way for an ESM to call HCPRPE is through HCPRPD, the DIAGNOSE code X'A0' processor
(see “HCPRPD Module” on page 597). After the appropriate input parameters are set up, the HCPRPE call
can be coded as follows:

HCPCALL HCPRPExx

where xx are the last two letters of the entry point name.

Entry Point HCPRPEEP - Handle DIAGNOSE Code X'A0' subcodes X'00', X'08',
and X'48'
If no ESM is installed, HCPRPDEP will call HCPRPEEP to handle subcodes X'00', X'08', and X'48'. If
an ESM is installed, it continues to call HCPRPEEP for subcodes X'00' and X'48', but it should handle
subcode X'08' in HCPRPDEP. See “HCPRPD Module” on page 597 for additional information.

600 z/VM: 7.3 CP Programming Services

Entry Point HCPRPEPX - Notify CP of POSIX capabilities
If the ESM contains POSIX support, it should inform CP of this by calling HCPRPEPX; otherwise, CP will
not attempt to acquire POSIX database information from the ESM or invoke the ESM to authorize the
various POSIX functions. If HCPRPEPX is not invoked, the system will behave as if the ESM returned
ACIDEFR on all POSIX-related requests:

• For AUTOLOG, XAUTOLOG and LOGON requests, the POSIX-related information will be obtained from
the CP directory. See “LOGON Command” on page 650 and “AUTOLOG and XAUTOLOG Commands” on
page 639 for more information about these fields and their use in these requests.

• For POSIX set IDs requests, the entire request is considered to have been deferred to CP. See “POSIX
Set ID Functions” on page 683 for more about this type of request.

• For POSIX group database queries, the entire request is considered to have been deferred to CP. See
“POSIX Group Database Query Function” on page 684 for more about this type of request.

• For POSIX user database queries, the entire request is considered to have been deferred to CP. See
“POSIX User Database Query Function” on page 686 for more about this type of request.

{NGROUPS_MAX} is the maximum number of POSIX Supplementary Group IDs (SGIDs) associated with a
single POSIX process or POSIX database entry. If the ESM is providing the POSIX database information
for the system, it is permitted to support a different number of SGIDs than CP does when an ESM
is not providing the POSIX database information. If this is the case, the ESM must inform CP of its
{NGROUPS_MAX} value. The value must be within the valid range supported by CP. The minimum value
can be determined from the QPXFCONF function of DIAGNOSE code X'2A0'; the maximum value is
125. The ESM is only permitted to supply the value to CP a single time. It becomes the system's
{NGROUPS_MAX} value. for the duration of the CP system IPL. It is recommended that the ESM inform CP
of its {NGROUPS_MAX} value during ESM initialization, so that all users have the same capabilities and the
system behaves in a POSIX-compliant manner.

For performance and storage utilization reasons, it is recommended that this value be no larger than
necessary. The number of SGIDs in the largest SGID list in the database, plus a small margin for growth,
would be a reasonable value.

Chapter 11. Access Verification System Service (*RPI) 601

Descriptive Name: Notify CP of POSIX capabilities

Function: Registers that there is an ESM installed that provides support for POSIX functions and the
POSIX system databases. Accepts the value of {NGROUPS_MAX} that the ESM supports and makes it
the system value.

Input Registers:
R0

{NGROUPS_MAX} value supported by the ESM.
R1

Must contain zero (X'00000000')
R11

Address of the dispatched VMDBK

Output: See Exit Values (Normal and Error)

Note: R15 will be changed for each exit. See each particular exit case, for the registers which contain
meaningful information for that case.

Exit Values:

Normal:
R15 = 0

Function Completed

Error:
R15 = 4

The ESM has already informed CP of its capabilities and its {NGROUPS_MAX} value
R15 = 8

The {NGROUPS_MAX} value supplied in R0 is invalid

Attributes: Resident, MP, Reentrant

Linkage: Call with a dynamic save area

Abend Codes: None

Messages None

Responses: None

Wait States: None

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Figure 79. Interface Specifications for the HCPRPEPX Entry Point

Entry Point HCPRPESG - Refresh a user's POSIX SGID list
If a user's POSIX database information is updated such that the POSIX Supplementary GID (SGID) list is
affected, the user normally has to LOGOFF and log back on to have the new SGIDs take effect. However,
if an ESM wishes to have the change take effect sooner, it may use the following interface to notify CP of
the change. The ESM passes the SGIDs to CP, and CP causes them to be in effect for subsequent POSIX
programs. Existing POSIX programs are not affected by this action; they continue to execute with their
own SGIDs.

There is no need to inform CP of such a change if the affected user is not logged on. For performance and
efficiency reasons, the ESM should only inform CP of changes to logged on or disconnected users' SGID
lists.

602 z/VM: 7.3 CP Programming Services

Descriptive Name: Refresh a user's POSIX Supplementary GIDs (SGIDs)

Function: Accepts a notification from the ESM that a user's Supplementary GIDs in the POSIX
database have changed. CP makes them take effect for certain new POSIX processes created by the
user.

Input Registers:
R0

z/VM user ID of the user whose SGIDs have changed.
R1

This user ID must be specified in upper case and be left-justified and padded with blanks.
R2

Address of a buffer containing the new SGID list. The buffer consists of contiguous four-byte
entries, each containing a GID.

R3
Number of SGIDs contained in the buffer pointed to by R2.

R11
Address of dispatched VMDBK.

Output: See Exit Values (Normal and Error)

Note: R15 will be changed for each exit. See each particular exit case, for the registers which contain
meaningful information for that case.

Exit Values:

Normal:
R15 = 0

Function Completed

Error:
R15 = 4

The new SGID list contains an invalid number of SGIDs:

• The list contains 0 SGIDs
• The list contains more than {NGROUPS_MAX} SGIDs.

R15 = 8
The input user ID is not logged on.

R15 = 12
A CP error condition was detected that prevented the replacement of the user's SGID list. A soft
abend or SNAP dump may have occurred.

Attributes: Resident, MP, Reentrant

Figure 80. Interface Specifications for the HCPRPESG Entry Point (Part 1 of 2)

Chapter 11. Access Verification System Service (*RPI) 603

Linkage: Call with a dynamic save area

Abend Codes: None

Messages None

Responses: None

Wait States: None

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Figure 81. Interface Specifications for the HCPRPESG Entry Point (Part 2 of 2)

HCPRPF Module
CP's version of HCPRPF is a data area, not an executable module. It is empty, nonexecutable, static, and
resident. An ESM may replace CP's stub module with its own copy of HCPRPF, which it may use as a data
area. CP makes no reference to this module.

HCPRPG Module
CP's version of HCPRPG contains an entry point, HCPRPGPH, and serves only as a place holder. An ESM
may replace CP's stub module with its own copy of HCPRPG. CP makes no reference to this module. This
module is resident, MP, and dynamic.

HCPRPL Module
CP's version of HCPRPL contains an entry point, HCPRPLPH, and serves only as a place holder. An ESM
may replace CP's stub module with its own copy of HCPRPL. CP makes no reference to this module. This
module is resident, MP, and dynamic.

HCPRPP Module
CP's version of HCPRPP contains six entry points for ESM single system image (SSI) support: HCPRPPEN,
HCPRPPJN, HCPRPPPC, HCPRPPPS, HCPRPPSC, and HCPRPPWC. It also contains the following local
entry points: HCPRPPHR, HCPRPPJD, HCPRPPJR, and HCPRPPHS.

Entry Point HCPRPPEN
This entry point is used for single system image enablement processing. HCPRPPEN issues:

HCPSOCK CREATE_PORT,PORT='*RPI',RETSID=(R),EP=HCPRPPHR

This establishes the socket and stacks a call to the local entry point for the code that handles incoming
messages, HCPRPPHR. The returned socket id is stored for subsequent use in the table HCPRWAPP
mapped by the RWAESM DSECT.

The portname *RPI should be used by all HCPSOCK macros in HCPRPP.

Entry Point HCPRPPJN
This entry point is used for single system image join processing. HCPRPPJN stacks a deferred call to
HCPRPPJD and returns with RC=4.

Entry Point HCPRPPPC
CP calls this entry point to handle an upgrade to the single system image level. The CP stub entry point is
not used.

604 z/VM: 7.3 CP Programming Services

Entry Point HCPRPPPS
CP calls this entry point when a single system image mode change to STABLE is about to occur. The CP
stub entry point is not used.

Entry Point HCPRPPWC
CP calls this entry point to perform local worthiness checks. When omitted, the service is assumed to be
single system image-worthy. The CP stub entry point is not used.

Entry Point HCPRPPSC
CP calls this entry point when a single system image state change occurs. The CP stub entry point is not
used.

SSI join time processing
A deferred call to HCPRPPJD is stacked by HCPRPPJN after it is called by the single system image
Configuration Manager at SSI join time. HCPRPPJD compares this system's installed ESM/level (if any)
with that of the already joined nodes. If any compare is incompatible the result is PXMREJCT. This code
works in conjunction with the table at EP HCPRWAPP, mapped by DSECT RWAESM in ACIPARMS COPY. An
ESM should provide updates to HCPRWA to ensure that the SSI join time checks use the correct product
and version information. The comparison data from the already joined nodes in the SSI cluster is provided
by local entry point HCPRPPJR. Communication between nodes is by the HCPSOCK service, and local
entry point HCPRPPHS provides a HCPSOCK SEND_REPLY service.

HCPRWA Module
CP's version of HCPRWA contains an entry point, HCPRWACP, which is empty, nonexecutable, static, and
resident. An ESM may replace CP's stub module with its own copy of HCPRWA, which it may use as a work
area. CP makes no reference to this module.

CP Callable Services for the ACI
The following CP services are intended to be called by any of the ACI modules. The use of such services is
optional.

Entry Point HCPPWAPF
If the ESM supports optional features, such as the use of password phrases or mixed-case passwords,
it should inform CP by calling HCPPWAPF. By default, there is no ESM support for password phrases or
mixed-case passwords. When calling HCPPWAPF the ESM must indicate the level of support for optional
features in the low order byte of register 1.

Figure 82 on page 606 lists the interface specifications for this entry point.

Chapter 11. Access Verification System Service (*RPI) 605

Input Registers:
R1

A four-byte parameter containing:

X'00000001' - The ESM supports the extended form of the LOGON ACI call. For more
information, refer to the notes for the “LOGON Command” on page 650.

R11
Address of the dispatched VMDBK

Output:
R15

See Exit Values (Normal and Error)

Exit Values:

Normal:
R15 = 0

Optional features support flag updated

Error:
R15 = 4

Optional features support flag not updated

Attributes: MP, dynamic, resident

Linkage: Call with a dynamic save area

Figure 82. Interface Specifications for the HCPPWAPF Entry Point

Summary of CP Modules and Entry Points
The following table summarizes the module and entry point function information given on pages “HCPRPI
Module” on page 591 through “HCPRPG Module” on page 604:

Module Entry Point Function/Description

HCPRPI HCPRPICN
HCPRPIIL
HCPRPISV
HCPRPIQS
HCPRPIRM

HCPRPIRA

IUCV Connect interrupt handler
IUCV message pending interrupt handler
IUCV Sever interrupt handler
IUCV Quiesce interrupt handler
IUCV Resume interrupt handler

Defined to support authorization requests (calls) from CP to
the ESM. For commands, DIAGNOSE codes, and a subset
of system functions, it is called to check whether a user is
authorized prior to performing the requested function.

HCPRPW HCPRPWEP Defined to support password authorization checking on the
LOGON, AUTOLOG, and XAUTOLOG commands (checked prior
to processing the command).

HCPRPD HCPRPDEP Functions as a DIAGNOSE code X'A0' processor. This
entry point calls HCPRPE at entry point HCPRPEEP, which
processes subcodes X'00', X'08', and X'48'.

606 z/VM: 7.3 CP Programming Services

Module Entry Point Function/Description

HCPRPE HCPRPEEP

HCPRPEPX
HCPRPESG

Handle DIAGNOSE code X'A0' subcodes X'00',
X'08', and X'48'
Notify CP of POSIX capabilities
Refresh a user's POSIX SGID list.

HCPRPF (none) Functions as a data area only, not an executable module.

HCPRPG HCPRPGPH Serves only as a place holder.

HCPRPL HCPRPLPH Serves only as a place holder.

HCPRWA HCPRWA
HCPRWAPP

This module is nonexecutable, static, and resident.
The entry point of the ESM product information
table, used by HCPRPEEP, HCPRPPEN,
HCPRPPJD, HCPRPPJR and HCPRPPHS.

HCPPWA HCPPWAPF Called by the ESM to indicate to CP the level of support
provided for optional features.

ACI Security Bits
The term, event, will be used to refer to all CP commands, all CP DIAGNOSE codes, and selected ‘system
functions’ which have associated ACI Security bits. These selected system functions are listed below:
APPCCON

APPC connect
APPCPWVL

APPC connect with password
APPCSEV

APPC sever
DIRECTORY_CMD

CP command issued from user directory
IUCVCON

IUCV connect
IUCVSEV

IUCV sever
MAINTCCW

Maintenance CCW
MDISK

MDISK and LINK-to-self
RSTDSEG

Load/find a restricted NSS or DCSS
SDF_CREATE

SDF file create
SDF_DELETE

SDF file delete
SDF_OPEN

SDF file open
SNIFFER_MODE

Guest LAN Sniffing ON/OFF
SPF_CREATE

Spool file create

Chapter 11. Access Verification System Service (*RPI) 607

SPF_DELETE
Spool file delete

SPF_OPEN
Spool file open

UTLPRINT
CP PRINT function

There are three different types of security bits:

• AUDIT
• PROTECT(DAC)
• MAC (Mandatory Access Control).

These bits control the calls that CP makes to the ESM. PROTECT and MAC checks are types of
authorization control. AUDITing consists of logging a record to show that the event was issued.

Setting the ACI Security Bits
CP provides the initial settings of the security bits; all AUDIT and MAC bits are initialized to off. The
following is the list of those events for which the PROTECT bit is initialized to ON.

AUTOLOG
DIAGNOSE code X'D4'
DIAGNOSE code X'E4'
DIAGNOSE code X'280'
LINK
LOGOFF
LOGON
TAG
TRANSFER (see the note below)
TRSOURCE
XAUTOLOG

Note: If the PROTECT Bit is on for TRANSFER, then the ACI is called for CHANGE, CLOSE, SPOOL, TRSAVE,
VMDUMP, and DIAGNOSE code X'94', if that event is used to change the ownership of a spool file, such as
when the TO option is specified. The format of ACIPARMS on these calls is similar to the format used on
the call for the TRANSFER command.

If an ESM is installed, it may set the security bits by invoking HCPDA0 (see “HCPDA0 Module for Updating
ACI Security Bits” on page 610). CP enforces restrictions on setting the ACI Security bits. The AUDIT
bit may be set for all events; the PROTECT and MAC bits can be set only for a predefined subset of
events. The AUDIT and PROTECT bits can be set independently on an individual event basis. The MAC
bits, however can only be set either all on or all off.

The following is the list of those events for which the PROTECT bit can be enabled or disabled.

APPC connect with password validation
ATTACH
COUPLE
DEDICATE directory statement processing
DIAGNOSE code X'A0'
DIAGNOSE code X'E4'
DIAGNOSE code X'D4'
DIAGNOSE code X'88'
DIAGNOSE code X'280'
DIAGNOSE code X'290'
FOR
GIVE
LINK
MDISK

608 z/VM: 7.3 CP Programming Services

RSTDSEG
STORE version C
TAG
TRANSFER
TRSOURCE

The following is the list of events for which the MAC bit can be enabled or disabled.

APPC Connect
AUTOLOG
CHANGE
COUPLE
DIAGNOSE code X'14'
DIAGNOSE code X'68'
DIAGNOSE code X'BC'
DIAGNOSE code X'D4'
DIAGNOSE code X'23C'
DIAGNOSE code X'290'
IUCV Connect
LINK
LOGON
MDISK
MESSAGE ('ANY' version), MSGNOH, SMSG, WARNING
QUERY RDR/PRT/PUN
QUERY TAG
QUERY TRFILES
RSTDSEG
SDF_OPEN
SPF_OPEN
START
TAG
TRSOURCE
UTLPRINT
XAUTOLOG

Checking the Security Bits and Calling the ESM
Each time CP processes an event, it checks the associated ACI Security bits. If any are on, CP sets up an
ACIPARMS parameter list and calls the ESM, passing the address of ACIPARMS in General Register 1. See
“CP Calls to the ACI” on page 637 for the parameter lists on the CP calls to the ACI. The ACIBMAPA,
ACIBMAPP, and ACIBMAPM fields indicate which security bits were enabled. These three fields contain
respectively the AUDIT, PROTECT, and MAC setting for the event executing. For DIAGNOSEs, system
functions, and 'ANY' class commands, the high order (X'80') bit in the ACIBMAPx fields contains the
security setting. For privileged commands, the ACIBMAPx fields contain settings for privilege classes A
through G of the command (X'80' - X'20').

Upon return from the ESM, the return code in the ACICODE field is checked. The supported ESM return
codes for each call are documented in “CP Calls to the ACI” on page 637. In general, the return code
handling is as follows:

There are four main ESM return codes defined in the ACIPARMS control block:
ACIAUTH 0

Authorization is granted
ACIDEFR 4

ESM is not there or defers
ACINOAC 8

Authorization is denied

Chapter 11. Access Verification System Service (*RPI) 609

ACIUNAV 20
ESM is not available (could not complete function)

Notes:

1. Audit-only calls to the ESM support the ACIAUTH, ACIDEFR and ACIUNAV return codes.
2. ACIAUTH and ACIDEFR return codes are handled the same: processing continues.
3. If ACINOAC is received, the event will fail with an error message, or condition applicable to the event

which was issued.
4. If ACIUNAV is returned then the event will not be allowed. Most commands fail with message:

6525E The ESM is unavailable

Diagnose codes and system functions end with various failing return conditions.

LOGON, AUTOLOG, XAUTOLOG POSIX SET ID, POSIX GROUP DATABASE QUERY, and POSIX USER
DATABASE QUERY ESM calls recognize additional return codes. These are documented in “CP Calls to
the ACI” on page 637.

HCPDA0 Module for Updating ACI Security Bits
HCPDA0 is a CP module which can be called by an ESM to control the ACI Security bit settings for
CP commands, diagnose codes and selected system functions. Three entry points are provided for ACI
Security bit manipulation:
Entry Point

Function
HCPDA0RL

To return the general ACI Security bit settings
HCPDA0UL

To update general ACI AUDIT and PROTECT bits
HCPDA0MC

To update the ACI MAC bits

The suggested way for an ESM to call HCPDA0 is through HCPRPD, the DIAGNOSE code X'A0' processor
(see “HCPRPD Module” on page 597). After the appropriate input parameters are set up, the HCPDA0 call
can be coded as follow:

HCPCALL HCPDA0xx

where xx are the last two letters of the entry point name.

Entry Point HCPDA0RL - Return ACI Security Bit Settings
Figure 83 on page 611 lists the interface specifications for the HCPDA0RL entry point. To determine
the buffer size needed for the return data, this entry point can be called with a buffer size of zero.
Upon return, general register zero will contain the number of entries to be returned by HCPDA0RL. Each
returned entry will be mapped by an HCPA0LBK of size: A0LSIZE. (See “HCPA0LBK Control Block” on
page 615 for format of HCPA0LBK. The required buffer size can then be calculated, and HCPDA0RL can
be called again with the correct buffer size specified.

610 z/VM: 7.3 CP Programming Services

Descriptive Name: Return General ACI Security bits

Function: Returns to caller a list of all CP commands, diagnose codes, and some system functions, with
the associated system security data.

Input Registers:
R1

Guest real address of buffer in which to return data.

The data is returned as a list of entries mapped by HCPA0LBK, one for each command, diagnose
codes, and system function.

R2
Size of Buffer

R11
Address of the dispatched VMDBK

Output: See Exit Values (Normal and Error)

Note: R0, R1, R2, and R15 will be changed for each exit. See each particular exit case, for the registers
which contain meaningful information for that case.

Exit Values:

Normal:
R15 = 0

Function Completed
R1 =

The number of entries that were processed.

Error:
R15 = 4

The size of the buffer was not large enough to hold all the entries.
R0 =

The number of entries that remain (i.e. could not fit into the buffer).
R1 =

The number of entries that were processed.
R15 = 8

Processing failed due to a condition which would cause a guest program check, or guest program
exception.
R0 =

Program exception code representing the error. A negative value indicates instruction
nullification is required.

R15 = 12
Processing failed due to a host paging or storage error.

Attributes: MP, Reentrant

Figure 83. Interface Specifications for the HCPDA0RL Entry Point (Part 1 of 2)

Chapter 11. Access Verification System Service (*RPI) 611

Linkage: Call with a dynamic save area

Abend Codes: None

Messages None

Responses: None

Wait States: None

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Figure 84. Interface Specifications for the HCPDA0RL Entry Point (Part 2 of 2)

Entry Point HCPDA0UL - Update ACI AUDIT and PROTECT Bits
Following are the interface specifications for the HCPDA0UL entry point.

612 z/VM: 7.3 CP Programming Services

Descriptive Name: Update AUDIT and PROTECT Security bits

Function: Update general audit and protect bits for all CP commands, DIAGNOSE codes, and security-
relevant system functions.

Input Registers:
R1

Guest real address which contains the input entries, mapped by HCPA0UBK.
R2

Number of entries in the input buffer
R11

Address of the dispatched VMDBK

Output: See Exit Values (Normal and Error)

Note: R0, R1, R2, and R15 will be changed for all Normal and Error exits. See each particular exit case
for the registers which contain meaningful information for that case.

Exit Values:

Normal:
R15 = 0

Function Completed

Error:
R15 = 4

Security data was not updated because of an error with one or more of the input A0UBK entries.
‘A0UECODE’ has been set for all entries. If A0UECODE equals A0UNOERR then there was no error
with that entry. Otherwise, the appropriate error code (as defined in the HCPA0UBK) has been
stored in A0UECODE.
R1 =

The number of entries that were incorrect.
R15 = 8

Processing failed due to a condition which would cause a guest program check, or guest program
exception.
R0 =

Program exception code representing the error. A negative value indicates instruction
nullification is required.

R15 = 12
Processing failed due to a host paging or storage error.

Attributes: MP, Reentrant

Figure 85. Interface Specifications for the HCPDA0UL Entry Point (Part 1 of 2)

Chapter 11. Access Verification System Service (*RPI) 613

Linkage: Call with a dynamic save area

Abend Codes: None

Messages None

Responses: None

Wait States: None

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

For commands whose protection setting (CMDPROT in the HCPCMDBK control block) can not be
changed (A0LCPROT=OFF in the HCPA0LBK or CMDVPROT=OFF in the HCPCMDBK control block),
the AOUBK entry must have A0UPROT set to off. For commands whose "valid before logon" setting
(A0LCLOGN=OFF in the HCPA0LBK or CMDXLOG=OFF in the HCPCMDBK control block), the A0UBK
entry must have A0ULOGON set to off.

Figure 86. Interface Specifications for the HCPDA0UL Entry Point (Part 2 of 2)

Entry Point HCPDA0MC - Update ACI MAC Bits
Following are the interface specifications for the HCPDA0MC entry point.

614 z/VM: 7.3 CP Programming Services

Descriptive Name: Update ACI Security MAC bits

Function: Update MAC security bits for CP commands, diagnose codes, and system functions. MAC
bits will be updated only for those events which are defined to have MAC protection, and they will be
updated to be either all on or all off.

Input Registers:
R3

Address of 1 byte parameter list in the following format:

X'80' - Enable MAC
X'40' - Disable MAC

Either Enable_MAC or Disable_MAC must be set, and both may not be set.
R11

Address of the dispatched VMDBK

Output: See Exit Values (Normal and Error)

Exit Values:

Normal:
R15 = 0

Function Completed

Error:
R15 = 8

Request-type parameter was not set correctly (see Input Registers), no processing was done.

Attributes: MP, Reentrant

Linkage: Call with a dynamic save area

Abend Codes: None

Messages None

Responses: None

Wait States: None

General Notes: Registers R11 and R13 should not be changed by the installation-supplied code.

Figure 87. Interface Specifications for the HCPDA0MC Entry Point

HCPA0LBK Control Block
The following table gives the format of information in the HCPA0LBK control block.

Table 80. Format of information in the HCPA0LBK control block

Offsets

Dec Hex Type Len Name (Dim) Description

0 (00) STRUCTURE A0LBK Describes each entry

0 (00) CHARACTER 12 A0LNAME Command, diagnose, or system function
name

HCPA0LBK Control Block

Chapter 11. Access Verification System Service (*RPI) 615

Table 80. Format of information in the HCPA0LBK control block (continued)

Offsets

Dec Hex Type Len Name (Dim) Description

12 (0C) CHARACTER 12 A0LCMDOP Command operand. Valid only if entry
type (i.e. A0LENTYP) is A0LCPCMD,
A0LSTCMD, or A0LQYCMD and A0LOPRND
is on

24 (18) BITSTRING 1 A0LIBMCL IBM Class. Valid only if entry type (i.e.
A0LENTYP) is A0LCPCMD, A0LSTCMD, or
A0LQYCMD.

CODES DEFINED IN A0LIBMCL:

 1...

A0LIBMA X'80' IBM Class A

 .1.. A0LIBMB X'40' IBM Class B

 ..1. A0LIBMC X'20' IBM Class C

 ...1 A0LIBMD X'10' IBM Class D

 1... A0LIBME X'08' IBM Class E

 1.. A0LIBMF X'04' IBM Class F

 1. A0LIBMG X'02' IBM Class G

 1 A0LIBMH X'01' IBM Class H

 1111 1111 A0LCLANY X'FF' IBM Class 'ANY'

25 (19) BITSTRING 1 A0LENTYP Entry type

CODES DEFINED IN A0LENTYP:

1

A0LCPCMD X'01' CP command

 1. A0LSTCMD X'02' CP SET command

11

A0LQYCMD X'03' CP QUERY command

 1.. A0LDIAG X'04' Diagnose code Constants 6-8 are
reserved

HCPA0LBK Control Block

616 z/VM: 7.3 CP Programming Services

Table 80. Format of information in the HCPA0LBK control block (continued)

Offsets

Dec Hex Type Len Name (Dim) Description

 1..1

A0LSYSFN X'09' System function

26 (1A) BITSTRING 1 A0LENTFL Entry flags

BITS DEFINED IN A0LENTFL:

 1...

A0LOPRND X'80' Command operand field is valid

27 (1B) BITSTRING 1 Reserved for future IBM use

28 (1C) BITSTRING 1 A0LATTRI Entry attributes

BITS DEFINED IN A0LATTRI:

 1... A0LCLOGN X'80' Command can be disabled prior
to logon. Valid only if entry type (i.e.
A0LENTYP) is A0LCPCMD, A0LSTCMD, or
A0LQYCMD

 .1.. A0LCPROT X'40' Command, diagnose, or system
function's protection setting can be
changed by the ESM

 A0LCMAC X'10' Command, diagnose, or system
function has MAC capability

29 (1D) BITSTRING 1 Reserved for future IBM use

30 (1E) BITSTRING 1 A0LSECUR Security flags

BITS DEFINED IN A0LSECUR:

 1... A0LLOGON X'80' Command is valid prior to logon

 .1.. A0LAUDIT X'40' Command, diagnose, or system
function is being audited

 ..1.

A0LPROT X'20' Command, diagnose or system
function is being protected

 ...1 A0LMAC X'10' Command, diagnose or system
function is being MAC'd

31 (1F) BITSTRING 33 Reserved for future IBM use

 .1..

A0LNEXT "*" Next entry

 1... A0LSIZE "(*-A0LBK+7)/8"Size of A0LBK in double
words

HCPA0LBK Control Block

Chapter 11. Access Verification System Service (*RPI) 617

Table 80. Format of information in the HCPA0LBK control block (continued)

Offsets

Dec Hex Type Len Name (Dim) Description

 .1..

A0LBSIZE "*-A0LBK" Size of A0LBK in bytes

HCPA0UBK Control Block
The following table gives the format of information in the HCPA0UBK control block.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (00) STRUCTURE A0UBK Describes each entry

0 (00) CHARACTER 12 A0UNAME Command, diagnose, or system function
name

12 (0C) CHARACTER 12 A0UCMDOP Command operand. Valid only if
entry type (i.e. A0UENTYP) is
A0UCPCMD, A0USTCMD, or A0UQYCMD
and A0UOPRND is on

24 (18) BITSTRING 1 A0UIBMCL IBM Class. Valid only if entry type (i.e.
A0UENTYP) is A0UCPCMD, A0USTCMD, or
A0UQYCMD.

CODES DEFINED IN A0UIBMCL:

 1... A0UIBMA X'80' IBM Class A

 .1.. A0UIBMB X'40' IBM Class B

 ..1. A0UIBMC X'20' IBM Class C

 ...1

A0UIBMD X'10' IBM Class D

 1... A0UIBME X'08' IBM Class E

1..

A0UIBMF X'04' IBM Class F

 1. A0UIBMG X'02' IBM Class G

1

A0UIBMH X'01' IBM Class H

 1111 1111 A0UCLANY X'FF' IBM Class 'ANY'

HCPA0UBK Control Block

618 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

25 (19) BITSTRING 1 A0UENTYP Entry type

CODES DEFINED IN A0UENTYP:

1

A0UCPCMD X'01' CP command

1.

A0USTCMD X'02' CP SET command

11

A0UQYCMD X'03' CP QUERY command

1..

A0UDIAG X'04' Diagnose code Constants 6-8 are
reserved

 1..1 A0USYSFN X'09' System function

26 (1A) BITSTRING 1 A0UENTFL Entry flags

BITS DEFINED IN A0UENTFL:

 1... A0UOPRND X'80' Command operand field is valid

27 (1B) BITSTRING 1 Reserved for future IBM use

28 (1C) SIGNED 2 A0UECODE Error code

CODE DEFINITIONS FOR A0UECODE:

 A0UNOERR "000" Entry is o.k.

 1 A0UCMDNF "001" Unknown CP command

 11 A0UINVLD "003" Invalid entry

 .11. .1..

A0UCNOPR "100" Command cannot be protected

 .11. .1.1 A0UNOLOG "101" Command cannot be disabled prior
to logon

 .11. .11.

A0UIBMNF "102" Command not found for specified
IBM class or 'A0UIBMCL' is invalid

 .11. .111 A0UOPRNG "103" 'A0UOPRND' not supported for
entry

 .11. 1...

A0UOPRMS "104" 'A0UCMDOP' is missing

HCPA0UBK Control Block

Chapter 11. Access Verification System Service (*RPI) 619

Offsets

Dec Hex Type Len Name (Dim) Description

 .11. 1..1

A0UNOSET "105" 'CP SET' command is not supported

 .11. 1.1.

A0UNOQUY "106" 'CP QUERY' command is not
supported

 11.. 1...

A0UDGINV "200" Diagnose name is invalid

 11.. 1..1

A0UNOTM4 "201" Diagnose code is not a multiple of 4

 11.. 1.1.

A0UDGND "202" Diagnose code is not available (i.e.
defined)

 11.. 1.11 A0UDNOPR "203" Diagnose cannot be protected

SIGNED A0USYSNS "300" System function not supported or
unknown

SIGNED A0USNOPR "301" System function cannot be
protected

30 (1E) BITSTRING 1 A0USECUR Flags -

BITS DEFINED IN A0USECUR:

 1... A0ULOGON X'80' Command should be valid prior to
logon

 .1.. A0UAUDIT X'40' Command, diagnose, or system
function should be audited

 ..1. A0UPROT X'20' Command, diagnose or system
function should be protected

 ...1 A0UMAC X'10' Command, diagnose or system
function should be MAC'd

31 (1F) BITSTRING 33 Reserved for future IBM use

 .1..

A0UNEXT "*" Next entry

 1... A0USIZE "(*-A0UBK+7)/8"Size of A0UBK in double
words

 .1..

A0UBSIZE "*-A0UBK" Size of A0UBK in bytes

ACIPARMS Control Block
The following table gives the format of information in the ACIPARMS control block.

ACIPARMS Control Block

620 z/VM: 7.3 CP Programming Services

Note: All fields, codes, and flags defined in the ACIPARMS parameter list that are not specifically defined
are reserved and are not to be used by an ESM for other purposes.

Offsets

Dec Hex Type Len Name (Dim) Description

0 (0) STRUCTURE ACIPARMS

0 (0) BITSTRING 1 ACIFCN A 1 function request

CODES DEFINED IN ACIFCN:

The code in this field indicates class of event for the purposes of the authorization check associated with
the ACIBMAPP setting. On calls where no authorization corresponding to the ACIBMAPP setting is applicable,
ACIVMCMD should be used.

ACILINK X'00' Link access validation

 1.. ACISPOOL X'04' Spool access validation

 1... ACITAG X'08' Node access validation

 11.. ACIDEL X'0C' Delete use request

 ...1 ACILOG X'10' LOGON and (X)Autolog

 ...1 1... ACIALTU X'18' Alternate user ID

 ...1 11.. ACIVMCMD X'1C' COMMAND function

 ..1. ACINSSEG X'20' Restricted Load/Find of an NSS

 ..1. .1.. ACIDCSEG X'24' Restricted Load/Find of a DCSS

 ..1. 1...

ACIFESM1 X'28' Reserved for ESM internal use

 ..1. 11.. ACIFESM2 X'2C' Reserved for ESM internal use

 ..11

ACISETID X'30' POSIX set ID request

 ..11 .1.. ACIQGDB X'34' POSIX group database query
request

 ..11 1...

ACIQUDB X'38' POSIX user database query request

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 621

Offsets

Dec Hex Type Len Name (Dim) Description

 ..11 11..

ACIRSCHK X'3C' Resource access check

1 (1) BITSTRING 1 ACICODE A 2 return code field

CODES DEFINED IN ACICODE:

Note: The values X'2C' and X'28' are reserved for ESM (External Security Manager) use in the ACIFCN field.
When adding new function codes, do not use these values.

ACIAUTH X'00' Access authorized, or successful
audit

1..

ACIDEFR X'04' Access deferred

 1... ACINOAC X'08' Access denied

The following two return codes are defined only for LOGON (ACIFCN=ACILOG) calls.

 11.. ACIFAIL X'0C' Fail command and issue no
message. For the LOGON command,
force user. Only possible when
ACIFCN=ACILOG.

 ...1 ACITERM X'10' Fail command and issue
no message. Only possible when
ACIFCN=ACILOG.

 ..1. ACIUNAV X'20' ESM was unable to process request

 ..1. .1.. ACINFND X'24' Input group or user does not exist

 ..1. 1... ACIBFSM X'28' Access authorized, but the data
buffer is too small to contain the
requested data

 ..1. 11.. ACINVAL X'2C' ACINUID or ACINGID contains an
invalid value

 ..11

ACINGMEM X'30' ACITUSR not a member of the group
identified in ACIGGNAM or ACIGGID. Only
possible when ACIPXQGM=1.

2 (2) BITSTRING 2 ACILEN ACIPARMS length, in bytes

The ACIBMAPA, ACIBMAPP and ACIBMAPM fields contain the audit, protect and MAC settings respectively. For
privileged commands, the bits in the field contain the settings for CLASSA-CLASSG of the command. For ANY
class commands, diagnose codes, and system functions, the flags defined after each field are used to indicate
the setting. (ACIBMAPM is located after ACIENV)

4 (4) BITSTRING 1 ACIBMAPA ACI audit bit

ACIPARMS Control Block

622 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

 1...

ACIANYAU X'80' Audit for 'ANY' command

 1...

ACIDGNAU X'80' Audit for diagnose

 1...

ACISYSAU X'80' Audit for system functions

5 (5) BITSTRING 1 ACIBMAPP ACI protect bit

 1...

ACIANYPR X'80' Protect for 'ANY' command

 1...

ACIDGNPR X'80' Protect for diagnose

 1... ACISYSPR X'80' Protect for system functions

6 (6) BITSTRING 1 ACIENV A 3 Type of event

BITS DEFINED IN ACIENV:

The ACIENV codes indicate the format of the ACIPARMS buffer being passed.

 1 ACIXAC X'01' Command

 11 COUPLEN X'03' Network COUPLE

 1.. ACISNIF X'04' Audit promiscuous mode

 11. ACIXAD X'06' Diagnose

 1.11

ACIXAT X'0B' TRANSFER function

 11.. ACIXAV X'0C' VMCF function

 1111

ACIXACCW X'0F' Diagnostic CCW function

 ...1 ACISEG X'10' DIAGNOSE X'64' and RSTDSEG.

 ...1 ...1

ACIDIAE4 X'11' DIAGNOSE X'E4'

 ...1 ..1. ACIAPPW X'12' APPC Connect with password

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 623

Offsets

Dec Hex Type Len Name (Dim) Description

 ...1 ..11

ACICNCT X'13' IUCV & APPC connect

 ...1 .1..

ACISEVER X'14' IUCV & APPC sever

 ...1 .1.1

ACISPF X'15' SPF/SDF create, open & delete and
CP printing

 ..11

ACIAUTO X'30' (X)autolog

 ..11 ...1

ACITAGN X'31' Tag command

 ..11 ..1. ACIDISK X'32' Link or MDISK

 ..11 ..11 ACIGVRTN X'33' GIVE return

 ..11 .111 ACITRANS X'37' Transfer command & 'TO' options

 ..11 1... ACISPTAP X'38' SPXTAPE LOAD or DUMP

 .1.. ACIPQUDB X'40' POSIX user database query

 .1.. ...1 ACIPQGDB X'41' POSIX group database query

 .1.. ..1. ACISETUI X'42' POSIX setuid () function

 .1.. ..11

ACISETEU X'43' POSIX seteuid () function

 .1.. .1.. ACISETGI X'44' POSIX setgid () function

 .1.. .1.1

ACISETEG X'45' POSIX setegid () function

 .1.. .11. ACIEXEC X'46' POSIX exec () function

 .1.. .111

ACINWGRP X'47' POSIX newgrp () function

 .1.. .111 ACINWGRP X'47' POSIX newgrp utility

ACIPARMS Control Block

624 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

 .1.. 1...

ACISETSG X'48' POSIX setgroups () function

 1111 111.

ACICPAUD X'FE' CP-generated audit

7 (7) BITSTRING 1 ACIBMAPM ACI MAC bits

 1...

ACIANYMC X'80' MAC for 'ANY' command

 1...

ACIDGNMC X'80' MAC for Diagnose

 1...

ACISYSMC X'80' MAC for system functions

8 (8) CHARACTER 8 ACIRGRP Requester's group name

16 (10) CHARACTER 8 ACIRUSR Requester's user ID

24 (18) CHARACTER 8 ACITGRP Target group name

32 (20) CHARACTER 8 ACITUSR Target user ID

40 (28) CHARACTER 2 ACIMODE Access mode

42 (2A) CHARACTER 4 ACIADDR Resource address

46 (2E) BITSTRING 1 ACILGOPT Logon options

FLAGS DEFINED IN ACILGOPT

These flags are defined for calls with ACIFCN=ACILOG

 1...

ACINOPAS X'80' Don't check the password

 .1.. ACIRECON X'40' This is a reconnect

 ..1.

ACINPMT X'20' Don't prompt for password

 ...1 ACIVAL X'10' Only check the password

 1...

ACILOGCL X'08' Logical terminal

 1.. ACILOCAL X'04' Local terminal

1.

ACISNA X'02' SNA (VTAM) terminal

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 625

Offsets

Dec Hex Type Len Name (Dim) Description

1.

ACILOGIP X'02' Logical terminal with IP address

1

ACITTY X'01' TTY terminal (ASCII)

46 (2E) BITSTRING 1 ACILFLAG VMLAN specific flags

FLAGS DEFINED IN ACILFLAG

These flags are defined for calls with ACIFCN=ACIVMCMD

 1...

ACILSNIF X'80' Promiscuous mode is authorized

 .1..

h

ACILSON X'40' Audit promiscuous mode on

 ..1. ACILSOFF X'20' Audit promiscuous mode off

ACIVERS indicates the level of the ACIPARMS interface.

ACIVERS should be set to ACIVERS1 on all ESM calls.

47 (2F) BITSTRING 1 ACIVERS ACIPARMS version indicator

BITS DEFINED IN ACIVERS:

 1... ACIVERS1 X'80' Version 1 indicator

48 (30) CHARACTER 8 ACINODE Resource nodename

56 (38) CHARACTER 8 ACILABL Volume label

64 (40) CHARACTER 4 ACITADDR Target resource address

BITS DEFINED IN ACIFLAG:

68 (44) BITSTRING 1 ACIFLAG A 4 success/failure indicator

 1... ACIGOOD X'80' The event was a success. The
definition of success is based on CP's
authority checking for the event, not on
the execution of the event. ACIGOOD
indicates that CP has authorized the
user to issue the command, diagnose or
system function.

ACIPARMS Control Block

626 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

 .1..

ACIBAD X'40' The event was a failure. ACIBAD
indicates that CP denies authority for the
user to issue the command, diagnose
code, or system function. (CP is going to
fail the request). This flag is normally used
on audit- only requests.

 ..1.

ACIANY X'20' Diagnose code, system function or
Class 'ANY' command

1..

ACIRO X'04' Read Only MAC call

1.

ACIWO X'02' Write Only MAC call

 1 ACIRW X'01' Read/Write MAC call

69 (45) BITSTRING 1 ACICMDTP A 5 command version

70 (46) BITSTRING 1 ACIFLAG2 Processing flags

BITS DEFINED IN ACIFLAG2:

 1 ACIMSGUS X'01' Indicates the error message should
only be issued to the user

 1 ACIPXQGM X'01' Indicates this is the query to
determine if ACITUSR is a member of
the group identified in ACIGGNAM or
ACIGGID. Redefined following bits in
ACIFLAG2 for CP use only

 1. ACIPXIDS X'02' Indicates the query was initiated
by a POSIX process. ACIxEUID and
ACIxEGID are filled in.

1..

ACIPXSYS X'04' Indicates this is a CP-initiated query
(as opposed to a user-initiated query). No
authority checking should be performed.

 1...

ACIPXUSN X'08' Indicates supplying a user or group
name in ACIxxNAM (as opposed to a UID
or GID in ACIxxID)

 ...1

ACIPXALL X'10' Indicates real, effective and saved
set IDs are to be set (0 value indicates
only effective ID is to be set)

 ..1.

ACINQLUN X'20' The SNA logical unit identifier
defined in ACITRMID has a network
qualifier, or the logical device identifier
defined in ACINWQFR

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 627

Offsets

Dec Hex Type Len Name (Dim) Description

 .1..

ACINPASS X'40' User defined with NOPASS operand
in system directory

 1...

ACIRMSRC X'80' A private server is being
xautologged by a remote source

71 (47) BITSTRING 1 ACIRSNCD SECLABEL relationship - for MDISK

 ..1.

ACISD X'20' Subject dominates object

72 (48) CHARACTER 12 ACIEVENT Event name

84 (54) SIGNED 4 ACIVMDBK Address of the VMDBK for a user who is
being autologged or logged on

88 (58) CHARACTER 8 ACIBYVAL BYUSER ID

96 (60) CHARACTER 8 ACISLAB Source SECLABEL

104 (68) CHARACTER 8 ACITLAB Target SECLABEL

112 (70) CHARACTER 8 ACIALAB Alternate SECLABEL

120 (78) SIGNED 4 ACIDATA (0) Start of variable length data

EXPRESSION ACISIZE "(ACIDATA-ACIPARMS+7)/8" ACIPARMS
size in double word

120 (78) CHARACTER 40 ACIPASS LOGON passwords

EXPRESSION ACIPWSZ "(*-ACIDATA+7)/8" Size of ACIPASS

160 (A0) CHARACTER 8 ACINWQFR The network qualifier of the SNA logical
unit identifier of the logical device
identifier provided in ACITRMID

168 (A8) BITSTRING 1 ACILOPTS LOGON/(X)AUTOLOG option settings

BITS DEFINED IN ACILOPTS:

 1...

ACILSIDE X'80' If the bit is on, it indicates the
option settings are provided by the
ESM. Otherwise, the options settings are
deferred to CP and the ACILSIDA field is
unused.

 .1..

ACILSIDA X'40' Indicates the user is allowed to set
other user's POSIX IDs

 ..1. ACICHGPW X'20' Request for password change.

ACIPARMS Control Block

628 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

 ...1

ACIUSEPP X'10' Password phrase is in ACIPASSP.

 1...

ACIPPLGO X'08' Password phrase entered in the
password field of the system logon
screen.

120 (78) BITSTRING 1 ACIPWLEN Password length

121 (79) CHARACTER 39 ACIPSWD Password

120 (78) BITSTRING 1 ACIOPWL Current password length

121 (79) CHARACTER 8 ACIOPSWD Current password

129 (81) BITSTRING 1 ACINPWL New password length

130 (82) CHARACTER 8 ACINPSWD New password

208 (D0) CHARACTER 604 ACIPASSA Password phrase area

208 (D0) SIGNED 2 ACIOPPLN Password phrase length

210 (D2) CHARACTER 200 ACIOPP Old password phrase

410 (19A) SIGNED 2 ACINPPLN New password phrase length

412 (19C) CHARACTER 200 ACINPP New password phrase

48 (30) CHARACTER 8 ACITRMID Terminal ID

56 (38) CHARACTER 8 ACIDSPID Dispatched userid

24 (18) CHARACTER 8 ACIWUSR Working (target) user ID

32 (20) CHARACTER 8 ACIAUSR Alternate user ID assigned

48 (30) CHARACTER 8 ACINSPLD New SECLABEL

120 (78) BITSTRING 8 ACISEGNM EBCDIC shared segment name

120 (78) SIGNED 4 ACIRX Contents of the Rx register

124 (7C) SIGNED 4 ACIRX1 Contents of the Rx+1 register

128 (80) SIGNED 4 ACIRY Contents of the Ry register

132 (84) SIGNED 4 ACIRY1 Contents of the Ry+1 register

EXPRESSION ACIDISZ "(*-ACIRX+7)/8"ACIDATA size for
diagnose event

120 (78) CHARACTER 2 ACISUBC Diagnose subcode

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 629

Offsets

Dec Hex Type Len Name (Dim) Description

122 (7A) CHARACTER 4 ACITCYL Cyl/blk number. This field is used for
subcode 03 of DIAGNOSE X'E4'

EXPRESSION ACIDE4SZ "(*-ACISUBC+7)/8" ACIDATA size for
DIAGNOSE X'E4'

For DIAGNOSE X'290':

120 (78) BITSTRING 2 ACI290SC DIAGNOSE X'290' subcode issued

124 (7C) CHARACTER 8 ACI290UI Target userid

132 (84) BITSTRING 4 ACI290DN Target device num (subcd 4 only)

132 (84) BITSTRING 3 ACI290Q Target spool queue (subcd 0 only)

136 (88) BITSTRING 4 ACI290ID Target spool file ID (subcd 0 only)

EXPRESSION ACID290SZ "(*-ACI290SC+7)/8" ACIDATA size for
DIAGNOSE X'290'

120 (78) CHARACTER 8 ACIORIG Spool file origin ID

128 (80) SIGNED 4 ACIFSTPG DASD address of first page

132 (84) SIGNED 2 ACISPLID Spoolid

134 (86) BITSTRING 6 ACITOD Old TOD stamp of first page

140 (8C) BITSTRING 8 ACICMDIS Command issuer

EXPRESSION ACISPLSZ "(*-ACIORIG+7)/8"ACIDATA size for
SPXTAPE event

134 (86) SIGNED 2 ACISPIDN New spool ID

120 (78) SIGNED 2 ACIPATH Pathid for IUCV/APPCVM event

122 (7A) BITSTRING 6 Reserved for future IBM use

EXPRESSION ACIUCVSZ "(*-ACIPATH+7)/8"ACIDATA size for IUCV
event

EXPRESSION ACISEVSZ "(*-ACIPATH+7)/8"ACIDATA size for
APPCVM SEVER

128 (80) CHARACTER 8 ACISERVR Server user ID

136 (88) CHARACTER 8 ACIQUAL LU name qualifier (Gate_LU)

144 (90) CHARACTER 8 ACITLUN Target LU name (Gate_known_LU)

EXPRESSION ACICONSZ "(*-ACIPATH+7)/8"ACIDATA size for
APPCVM CONNECT

ACIPARMS Control Block

630 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

120 (78) BITSTRING 24 ACIVMCF Command name for VMCF event

EXPRESSION ACIVMCSZ "(*-ACIVMCF+7)/8"ACIDATA size for
VMCF event

120 (78) CHARACTER 4 ACIDETAD VDEV returner's device (the device was
GIVEn to this user)

124 (7C) CHARACTER 4 ACIRECAD VDEV of the Giver's device. (this user is
now receiving the device back.)

EXPRESSION ACIGIVSZ "(*-ACIDETAD+7)/8"ACIDATA size for
GIVE event

120 (78) SIGNED 4 ACISCYL Starting cyl/blk on the DASD

124 (7C) SIGNED 4 ACIECYL Ending cylinder/block

128 (80) CHARACTER 4 ACIRDEV Real device number

132 (84) CHARACTER 6 ACIVOLSR Volume serial

EXPRESSION ACICCWSZ "(*-ACISCYL+7)/8"ACIDATA size for
Maintccw event

For POSIX set ID function:

120 (78) SIGNED 4 ACIORUID Old (current) real UID

124 (7C) SIGNED 4 ACIOEUID Old (current) effective UID

128 (80) SIGNED 4 ACIOSUID Old (current) saved set-UID

132 (84) SIGNED 4 ACIORGID Old (current) real GID

136 (88) SIGNED 4 ACIOEGID Old (current) effective GID

140 (8C) SIGNED 4 ACIOSGID Old (current) saved set-UID

144 (90) SIGNED 4 ACINUID New UID (equal to ACIORUID if UID not
being changed)

148 (94) SIGNED 4 ACINGID New GID (equal to ACIORGID if GID
not being changed) if ACIPXUSN is off.
Otherwise, not used.

152 (98) CHARACTER 8 ACINGNAM The group name that identifies the new
GID if ACIPXUSN is on. Otherwise, not
used. May be in mixed case.

160 (A0) SIGNED 4 ACIOSGCT Count of old (current) SGIDs (Valid only
for code ACISETSG)

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 631

Offsets

Dec Hex Type Len Name (Dim) Description

164 (A4) SIGNED 4 ACIOSGLS Address of old (current) SGID list (Valid
only for code ACISETSG)

168 (A8) SIGNED 4 ACINSGCT Count of SGIDs in new list (Valid only for
code ACISETSG)

172 (AC) SIGNED 4 ACINSGLS Address of new SGID list (Valid only for
code ACISETSG)

EXPRESSION ACISIDSD "(ACISIDSB+7)/8" ACIPARMS size for
POSIX set IDs functions

For POSIX group database query functions:

120 (78) SIGNED 4 ACIGRUID Real UID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

124 (7C) SIGNED 4 ACIGEUID Effective UID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

128 (80) SIGNED 4 ACIGSUID Saved set-UID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

132 (84) SIGNED 4 ACIGRGID Real GID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

136 (88) SIGNED 4 ACIGEGID Effective GID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

140 (8C) SIGNED 4 ACIGSGID Saved set-GID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

144 (90) SIGNED 4 ACIGMCNT Count of members of the group.

148 (94) SIGNED 4 ACIGGID GID of the POSIX group for which
information is to be returned if ACIPXUSN
is off.

152 (98) CHARACTER 8 ACIGGNAM The group name of the POSIX group for
which information is to be returned if
ACIPXUSN is on. May be in mixed case.

EXPRESSION ACIGB1SD "(ACIGB1SB+7)/8" ACIPARMS size
without buffer list for POSIX group
database

176 (B0) CHARACTER 0 ACIGBUFL Group database buffer list. Repeats
the following fields: ACIGRPMA and
ACIGRPML

ACIPARMS Control Block

632 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

176 (B0) SIGNED 4 ACIGRPMA Address of the buffer to contain the
member names of the input group

180 (B4) SIGNED 4 ACIGRPML Length of the buffer pointed to by
ACIGRPMA

EXPRESSION ACIGDBSD "(ACIGDBSB+7)/8" ACIPARMS size for 1
POSIX group database buffer list entry

For POSIX user database query functions:

120 (78) SIGNED 4 ACIURUID Real UID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

124 (7C) SIGNED 4 ACIUEUID Effective UID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

128 (80) SIGNED 4 ACIUSUID Saved set-UID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

132 (84) SIGNED 4 ACIURGID Real GID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

136 (88) SIGNED 4 ACIUEGID Effective GID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

140 (8C) SIGNED 4 ACIUSGID Saved set-GID of the process requesting
the data if ACIPXIDS is on. Otherwise,
unpredictable and should not be used.

144 (90) SIGNED 4 ACIUUID UID for which information is to be
returned if ACIPXUSN is off.

148 (94) CHARACTER 8 ACIUUNAM User name for which information is to be
returned if ACIPXUSN is on. May be in
mixed case.

156 (9C) SIGNED 4 ACIUGID GID of the user's primary POSIX group.
(output only)

160 (A0) CHARACTER 8 ACIUGNAM Group name of the user's primary POSIX
group. (output only)

EXPRESSION ACIUB1SD "(ACIUB1SB+7)/8" ACIPARMS size
without buffer list for POSIX user
database

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 633

Offsets

Dec Hex Type Len Name (Dim) Description

184 (B8) CHARACTER 0 ACIUBUFL User database buffer list. Repeats
the following fields: ACIUIWDA and
ACIUIWDL

184 (B8) SIGNED 4 ACIUIWDA Address of the buffer to contain user's
initial working directory

188 (BC) SIGNED 4 ACIUIWDL Length of the buffer pointed to by
ACIUIWDA

BITS DEFINED IN ACIUIWDL:

188 (BC) BITSTRING 4 ACIUIWDI Indicate who provided POSIX IWDIR

 1...

ACIUIWDE POSIX IWDIR provided by ESM.

192 (C0) SIGNED 4 ACIUIUPA Address of the buffer to contain user's
initial user program

196 (C4) SIGNED 4 ACIUIUPL Length of the buffer pointed to by
ACIUIUPA

BITS DEFINED IN ACIUIUPL:

196 (C4) BITSTRING 4 ACIUIUPI Indicate who provided POSIX IUPGM

 1... ACIUIUPE POSIX IUPGM provided by ESM.

200 (C8) SIGNED 4 ACIUFSRA Address of the buffer to contain user's file
system root

204 (CC) SIGNED 4 ACIUFSRL Length of the buffer pointed to by
ACIUFSRA

BITS DEFINED IN ACIUFSRL:

204 (CC) BITSTRING 4 ACIUFSRI Indicate who provided POSIX FSROOT

 1...

ACIUFSRE POSIX FSROOT provided by ESM.

208 (D0) SIGNED 4 ACIUSGIA Address of the buffer to contain the user's
supplementary GID list

212 (D4) SIGNED 4 ACIUSGIL Length of the buffer pointed to by
ACIUSGIA

BITS DEFINED IN ACIUSGIL:

212 (D4) BITSTRING 4 ACIUSGII Indicate who provided POSIX SGIDs

 1... ACIUSGIE POSIX SGIDs provided by ESM.

ACIPARMS Control Block

634 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

EXPRESSION ACIUDBSD "(ACIUDBSB+7)/8" ACIPARMS size for 1
POSIX user database buffer list entry

For COUPLE (COUPLEN) network command:

120 (78) SIGNED 4 ACILVIDA Address of buffer to contain the halfword
VLAN ids

124 (7C) SIGNED 4 ACILVIDL Buffer size in bytes (2 times the number of
VLAN ids)

128 (80) CHARACTER 0 ACIVLANC Variable audit data

EXPRESSION ACICPLSD "(ACICPLSB+7)/8" ACIPARMS size
without buffer list for COUPLE (COUPLEN)

For Directory Command Audit-Only Call:

120 (78) CHARACTER 3 ACIDIRTO 'TO '

123 (7B) CHARACTER 8 ACIDIRUI User identifier

131 (83) CHARACTER 2 ACIDIRND ': '

133 (85) CHARACTER 0 ACIDIRCM Command

120 (78) BITSTRING 1 ACIACCESS Access type

BITS DEFINED IN ACIACCESS:

 ACIACQUERY X'00' Query access

 1 ACIACREAD X'01' Read access

11

ACIACWRITE X'02'+ACIACREAD Write access

 111 ACIACPRIV X'04'+ACIACWRITE Privileged access

 1111

ACIACFULL X'08'+ACIACREAD Full access

121 (79) BITSTRNG 1 ACILOGGING Log bits

BITS DEFINED IN ACILOGGING:

 ACILOGPERESM X'00' ESM determines log

1

ACILOGNOFAIL X'01' Authorization failure not recorded

ACIPARMS Control Block

Chapter 11. Access Verification System Service (*RPI) 635

Offsets

Dec Hex Type Len Name (Dim) Description

1.

ACILOGNONE X'02' Attempt not recorded

11

ACILOGNOSTAT X'03' No log; no resource statistics
updated

124 (7C) SIGNED 4 ACIREASON Reason code

128 (80) CHARACTER 8 ACICLASS Class name

136 (88) SIGNED 2 ACIRESNAMELEN Length of the resource name

138 (8A) CHARACTER 246 ACIRESNAME Resource name

384 (180) SIGNED 2 ACILOGDATALEN Length of log string

386 (182) CHARACTER 255 ACILOGDATA Free form log string for log record

For LOGOFF due to a successful guest relocation:

120 (78) CHARACTER 12 ACIRLODT "RELOCATE TO " keywords

132 (84) CHARACTER 8 ACIRLODN Destination node

140 (8C) CHARACTER 4 ACIRLOBY "BY" keyword

144 (90) CHARACTER 8 ACIRLOCI VMRELOCATE command issuer's name

152 (98) CHARACTER 4 ACIRLOAT "AT" keyword

156 (9C) CHARACTER 8 ACIRLOIN VMRELOCATE command issuer's node

For LOGOFF of skeleton VMDBK due to a failed guest relocation:

120 (78) CHARACTER 14 ACIRLAFA "RELOCATE FROM" keywords

134 (86) CHARACTER 8 ACIRLASC Source node

142 (8E) CHARACTER 8 ACIRLAAK "ABORTED" keyword

SECURITY CONSTANTS FOR CP USE ONLY:

1.

ACIXAQ X'02' Query command

 11 ACIXAQV X'03' Query virtual operand

1..

ACIXAQVM X'04' Query virtual miscellaneous

 1.1 ACIXAS X'05' SET command

ACIPARMS Control Block

636 z/VM: 7.3 CP Programming Services

Offsets

Dec Hex Type Len Name (Dim) Description

For LOGON and LOGOFF of an AT command guest:

120 (78) CHARACTER 12 ACIATCDT "AT command" keywords

132 (84) CHARACTER 8 ACIATCDN Target node

140 (8C) CHARACTER 4 ACIATCBY "BY" keyword

144 (90) CHARACTER 8 ACIATCCI Command issuer

152 (98) CHARACTER 4 ACIATCAT "AT" keyword

156 (9C) CHARACTER 8 ACIATCIN Issuer's node

CP Calls to the ACI
The following sections describe the format of the ACIPARMS parameter list, that CP passes on the call
to the ESM, for each of the commands and diagnose codes that support ESM protection. For more
information about CP commands, see z/VM: CP Commands and Utilities Reference. For more information
about diagnose codes, see Part 1, “CP DIAGNOSE Instructions,” on page 1.

Generic Command and DIAGNOSE Audit Calls
This section specifies ACIPARMS formats for the audit-only calls made for the majority of commands and
diagnose codes. These calls are made to HCPRPIRA.

Generic Audit Call for CP Commands
This is the ACIPARMS format for commands which are audited from the command router. The command
router will also make this call in the case of privilege failure for commands which are normally audited
from the command processor. In addition, some command processors use this format for audit-only calls
in error cases. Table 81 on page 637 shows the ACIPARMS format for the command router audit call.

Table 81. Generic command audit format of ACIPARMS

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA Audit setting for each privilege class or ACIANYAU if this is an 'ANY' class command.

ACIENV ACIXAC

ACIRUSR Command issuer's user ID.

ACIRGRP Command issuer's ACI group name.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD | ACIBAD + ACIANY (if this is an 'ANY' class command)

ACICMDTP Command version

Note: This field is not filled in for 'ANY' class commands.

ACISLAB Command issuer's SECLABEL.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 637

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Table 81. Generic command audit format of ACIPARMS (continued)

Label Contents

ACIEVENT Command name padded with blanks.

ACIDATA Command line.

Table 82 on page 638 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 82. Supported Return Codes

RC Meaning

X'00' Processing continues.

X'04' Processing continues.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

Generic Audit Call for DIAGNOSE Codes
Table 83 on page 638 shows the ACIPARMS parameter list for the DIAGNOSE router audit call.

Table 83. Generic DIAGNOSE Call Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDISZ (in bytes)

ACIBMAPA ACIDGNAU

ACIENV ACIXAD

ACIRUSR DIAGNOSE issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD | ACIBAD

ACISLAB Command issuer's SECLABEL.

ACIEVENT DIAGxxx padded with blanks.

ACIRX Contents of Rx register (in hex).

ACIRY Contents of Ry register (in hex).

ACIRX1 Contents of Rx+1 register (in hex).

ACIRY1 Contents of Ry+1 register (in hex).

If the diagnose processor has detected an error prior to making the audit call, then no return code
checking is done after the HCPRPIRA call, and CP will continue with the error processing for the condition
detected.

Table 84 on page 638 shows the return code (ACICODE) checking performed on the return from
HCPRPIRA in the case where no error was detected prior to the call.

Table 84. Supported Return Codes

RC Status

X'00' Processing continues.

X'04' Processing continues.

CP Calls to the ACI

638 z/VM: 7.3 CP Programming Services

Table 84. Supported Return Codes (continued)

RC Status

X'20' DIAGNOSE fails:

• If DIAGNOSE code X'04', X'34', or X'3C', then reflect a specification exception.
• Otherwise, reflect a privileged operation exception.

ACIPARMS Parameter Lists for CP Commands
This section specifies the ACIPARMS formats that individual CP commands pass to the ESM. The calls are
made to HCPRPIRA unless otherwise stated.

An ESM can provide security control and audit ability for guest LANs and virtual switches. Valid VLAN
IDs range from x'0001'-x'0FFE'. The ESM keeps the VLAN ID list for each User ID and Owner/LANNAME
combination, and it must provide the VLAN IDs in ascending sequence.

If there is not enough space to complete the initial ESM request, previously allocated space is released,
and a call is made with a buffer with enough space for all the VLAN IDs. If there are more than the allowed
2000 VLAN IDs available, message HCP6528E is issued, access is denied, and the return call to HCPRPI is
not made.

Note: Table 85 on page 639 shows examples of different access levels and their corresponding buffer
size.

Table 85. ACILVIDL and Buffer Data Examples for VLAN AWARE Virtual Switches

Access Level Buffer Size Buffer Content

Access allowed for VLANs 1, 2, & 3 6 X'000100020003'

Access allowed for VLAN 2 2 X'0002'

Access allowed - no VLANs 2 X'FFFF'

Table 86. ACILVIDL and Buffer Data Examples for Guest LANs and VLAN UNAWARE virtual switches

Access Level Buffer Size Buffer Content

Access allowed — no VLANs 0

Access allowed — no VLANs 2 X'FFFF'

For MAC processing, CP provides the SECLABEL for the requester, but the ESM must determine and
maintain the SECLABEL for the LAN. The scope of this User ID and Owner/LANNAME combination does
not extend beyond a router. If MAC processing is turned on, but protect is not turned on, MAC processing
returns a return code of 0, with no VLANs. CP checks it's own control blocks for both permission and
VLANs, and then treats this case as if the ESM returned a DEFER.

Both the ESM and CP can participate in allowing the COUPLE command to complete. If AUDIT is
requested, the AUDIT bit is turned off for the initial ESM call. After both the ESM and CP have determined
if the COUPLE command is allowed, another ESM call is made requesting that the AUDIT record be
created by the ESM. This AUDIT record shows the final result.

AUTOLOG and XAUTOLOG Commands
Table 87 on page 640 shows the ACIPARMS parameter list for the ESM call for the AUTOLOG and
XAUTOLOG commands. The call is made to HCPRPWEP. CP will not expect or accept the POSIX-related
information unless the ESM has previously informed CP that it contains POSIX support. See “Entry Point
HCPRPEPX - Notify CP of POSIX capabilities” on page 601 for additional information.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 639

Table 87. (X)AUTOLOG Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACILOG

ACILEN ACILGNSB

ACIBMAPA Class AB, G, or ABG or X'00'.

ACIBMAPP Class AB, G, or ABG or X'00'.

ACIBMAPM Class AB, G or, ABG or X'00'.

ACIENV ACIAUTO

ACIRUSR Command issuer's userid, unless ACIRMSRC is set in ACIFLAG2.

ACITGRP Target's ACI group name ((x)autologee).

ACITUSR User ID of the target (user being (x)autologged).

ACILGOPT Logon options:
ACINOPAS

No password check requested.
ACINPMT

No password prompt requested.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIWO or ACIGOOD + ACIWO + ACIRW

Note: ACIRW will only be set for XAUTOLOG ON when the target is a logical device.

ACICMDTP Class AB (X'C0') or class G (X'02').

ACIFLAG2 • ACIRMSRC is set if a private server is being xautologged by a remote source. In this
case, an effective source is not available and ACIRUSR will not be set.

• ACINPASS is set if the user ID being autologged is defined with the NOPASS operand
in its directory entry.

ACISLAB Command issuer's SECLABEL.

ACIEVENT "AUTOLOG" or "XAUTOLOG" padded with blanks.

ACIVMDBK VMDBK address of the user logging on.

ACIPASS Contains password in EBCDIC format padded with blanks. If no password is set, this
field will be all blanks.

ACITRMID Terminal ID.

ACINWQFR If ACINQLUN is on, the network qualifier of the SNA logical unit identifier defined in
ACITRMID.

ACILBUFL (X)AUTOLOG data buffer list. A list of contiguous entries describing the output buffers
for this request. Each entry consists of a buffer address and length (in bytes). A buffer
address of zero indicates that the corresponding database information, and its length,
should not be returned. ACILEN can be used to calculate the number of entries in the
list. The address and length field of each entry is described below.

ACILUIDA Address of the buffer to contain the user's POSIX UID.

ACILUIDL Length of the buffer pointed to by ACILUIDA.

ACILGIDA Address of the buffer to contain the user's POSIX GID.

CP Calls to the ACI

640 z/VM: 7.3 CP Programming Services

Table 87. (X)AUTOLOG Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACILGIDL Length of the buffer pointed to by ACILGIDA.

ACILSGIA Address of the buffer to contain the user's Supplementary GID list.

ACILSGIL Length of the buffer pointed to by ACILSGIA.

Table 88 on page 641 shows the output fields set by the ESM in ACIPARMS on the return from
HCPRPWEP.

Table 88. (X)AUTOLOG ESM output fields in ACIPARMS

Label Contents

ACILOPTS Flags, as follows:

• ACILSIDE indicates that the ESM has provided the user's ACILSIDA value.
• ACILSIDA indicates that the user is permitted to set other users' POSIX IDs. This

replaces CP's POSIXOPT SETIDS value for the user.

ACILBUFL (X)AUTOLOG data buffer list. If ACICODE = X'00', the high-order bit of each length field
indicates whether the ESM has chosen to provide the corresponding data or to defer
it to CP. If this bit is on, the data that the ESM wishes to provide has been placed in
the buffers, and the length field of the entry contains the length, in bytes, of the data
placed in the buffer pointed to by that entry. If this bit is off, CP will use its own data
(usually from the user directory or a default value).

If the Supplementary GID list was returned, it must include the user's primary GID.

If ACICODE = X'28', the high-order bit of each length field indicates whether the ESM
would provide the corresponding data or defer it to CP. If this bit is on, the length
field of the entry contains the length, in bytes, of the buffer necessary to contain the
corresponding information.

Table 89 on page 641 shows the return codes that CP supports in ACICODE on the return from
HCPRPWEP.

Table 89. Supported HCPRPWEP Return Codes for the AUTOLOG and XAUTOLOG

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred; CP performs appropriate authorization checks.

• Password check for AUTOLOG and XAUTOLOG PROMPT|PASSWORD
• Directory check for XAUTOLOG G

POSIX database information is acquired from the directory.

X'08' The command fails with an error message:

• HCP059E for AUTOLOG and XAUTOLOG PASSWORD|PROMPT
• HCP6050E for XAUTOLOG G

X'0C' and X'10' The command fails, and no message is issued.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 641

Table 89. Supported HCPRPWEP Return Codes for the AUTOLOG and XAUTOLOG (continued)

RC Meaning

X'28' One or more of the buffers provided on input is too small to contain the requested
data. The length field of each ACILBUFL entry whose high-order bit of the length field
is on contains the required buffer length, in bytes, for that item. CP can be expected to
acquire larger buffers and request all of the data from the ESM again, via a POSIX User
Database query.

AUTOLOG and XAUTOLOG Error Case Audit-Only Call
When the AUTOLOG, or XAUTOLOG, processor detects an error during command processing, an audit-only
call will be made (if audit is on) to HCPRPIRA with the ACIPARMS format given in “Generic Audit Call for
CP Commands” on page 637.

CHANGE TO Authorization Call
See “TRANSFER Command Authorization” on page 662.

CHANGE Command Auditing
Table 90 on page 642 shows ACIPARMS parameter list for a CHANGE command audit call.

Table 90. CHANGE Command Audit Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA Audit settings.

ACIENV ACIXAC

ACIRUSR Command issuer's user ID.

ACIFLAG ACIGOOD or ACIBAD

ACIVERS ACIVERS1

ACICMDTP Command version.

ACIEVENT "CHANGE" padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACIDATA Command line.

Table 91 on page 642 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 91. Supported HCPRPIRA Return Codes

RC Meaning

X'00' Processing continues.

X'04' Processing continues.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

CP Calls to the ACI

642 z/VM: 7.3 CP Programming Services

CHANGE Command MAC/AUDIT
Table 92 on page 643 shows ACIPARMS for the MAC/AUDIT call for each file changed. Only the Class
G version of the CHANGE command will be subject to MAC checking. Only a D Class user can use the
SECLABEL option on the CHANGE command.

Table 92. CHANGE Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT settings.

ACIBMAPM MAC settings.

ACIENV ACISPF

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIWO

ACICMDTP Command version.

ACIEVENT "CHANGE" padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACITLAB Spool file SECLABEL.

ACIORIG Spool file origin ID.

ACIFSTPG DASD address of first page.

ACISPLID Spool ID.

ACINSPLD New SECLABEL value if the SECLABEL option was used.

Table 93 on page 643 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 93. Supported HCPRPIRA Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP356E, indicating access denied.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

CLOSE TO Command Authorization Call
This call is controlled by the TRANSFER class G protect setting.

Note: The CLOSE command is audited generically from the command router.

Table 94 on page 644 shows the ACIPARMS parameter list for a DAC HCPRPIRA call for the CLOSE
command, when the TO option is used, and the target is not the issuer.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 643

Table 94. CLOSE TO Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACISPOOL

ACILEN ACISIZE (in bytes)

ACIBMAPP Transfer's protect settings.

ACIENV ACITRANS

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACITGRP ACI group name of user ID to whom files are being sent.

ACITUSR User ID of user to whom files are being sent.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Class G (X'02').

ACIEVENT "CLOSE" padded with blanks.

ACISLAB Command issuer's SECLABEL.

Table 95 on page 644 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 95. Supported HCPRPIRA Return Codes for the CLOSE TO Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues

X'08' The command fails with error message HCP007E, indicating an invalid user ID.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

COUPLE Command MAC/AUDIT
Note: If the target of the couple was not successfully found, then a MAC authorization ESM call will
not be made. This means that when the 'target SECLABEL' is not available, MAC checking will not be
requested. Table 96 on page 644 shows the ACIPARMS parameter list for an HCPRPIRA call for the
COUPLE command.

Table 96. COUPLE Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA AUDIT settings.

ACIBMAPM MAC settings.

ACIENV ACIXAC

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

CP Calls to the ACI

644 z/VM: 7.3 CP Programming Services

Table 96. COUPLE Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIFLAG ACIGOOD + ACIRW

ACICMDTP Command version.

ACIEVENT Command name padded with blanks.

ACIDATA Command line data.

ACISLAB Command issuer's SECLABEL.

ACITLAB SECLABEL of target user ID if successfully obtained by CP, otherwise from X'00'.

Table 97 on page 645 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 97. Supported HCPRPIRA Return Codes for the COUPLE Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP644, indicating an unknown/unauthorized
CP command.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

COUPLE (COUPLEN) Network Command
Note: An ESM audit call may be made after both the ESM and CP have made their decisions about
whether to return the VLAN list. Table 98 on page 645 shows the ACIPARMS parameter list for an
HCPRPIRA call for the COUPLE (COUPLEN) Network command.

Table 98. COUPLEN Command Format of the ACIPARMS Parameter List

Label ORG IPUSER Contents

ACIRUSR DS CL8 Requester's user ID.

ACITUSR DS CL8 Target LAN owner.

ACILFLAG DS X Audit promiscuous mode.

ACINODE DS CL8 Target <lanname> (ACILNID).

ACIRSECL DS CL8 Requester's SECLABEL.

ACILVIDA DS A ADDR of buffer to contain VLAN IDs. VLAN IDs are
two bytes each.

ACILVIDL DS F Buffer size in bytes.

ACIVLANC DS 0D Variable command data.

ACICPLSZ EQU (*ACIVLANC+7)/8

Table 99 on page 646 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 645

Table 99. Supported HCPRPIRA Return Codes for the COUPLEN Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP6011E, indicating the user ID is not
authorized to COUPLE to the specified LAN.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

X'28' Buffer is too small. ACILVIDL contains the total bytes needed, and the External
Security Manager writes as many as space allows. A maximum of 2000 VLAN IDs
is allowed. If the buffer size indicates that the ESM wants to return more then the
allowed maximum, error message HCP6528E is issued, and the COUPLE command
does not complete.

Other The command fails with error message HCP644E, indicating an unknown CP
command, if a return code other than the ones listed above is received.

FOR Command MAC/AUDIT
Table 100 on page 646 shows the ACIPARMS parameter list passed to HCPRPIRA for a MAC/AUDIT call
made by the FOR command.

Table 100. FOR Command MAC/AUDIT Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA AUDIT call only. Not set for MAC call.
CLASSC

If the user ID issuing the FOR command is not the SECUSER of the target user ID.
CLASSG

If the user ID issuing the FOR command is the SECUSER of the target user ID.

ACIBMAPM MAC call only. Not set for AUDIT call.
CLASSC

If the user ID issuing the FOR command is not the SECUSER of the target user ID.
CLASSG

If the user ID issuing the FOR command is the SECUSER of the target user ID.

ACIENV ACIXAC

ACIRUSR User ID that issued the FOR command.

ACITUSR MAC call only. Not set for AUDIT call.

• User ID of the FOR command target.

ACIVERS ACIVERS1

ACIFLAG • AUDIT call: ACIGOOD | ACIBAD
• MAC call: ACIGOOD + ACIRW

ACICMDTP CLASSC + CLASSG

ACISLAB SECLABEL of the FOR command issuer.

CP Calls to the ACI

646 z/VM: 7.3 CP Programming Services

Table 100. FOR Command MAC/AUDIT Format of the ACIPARMS Parameter List (continued)

Label Contents

ACITLAB SECLABEL of the FOR command target user ID.

ACIEVENT "FOR" padded on the right with blanks.

ACIDATA The FOR command issued without PATH and TOKEN operands.

Table 101 on page 647 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 101. Supported Return Codes for the FOR Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP070E, indicating the user issuing the FOR
command is not authorized.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

GIVE (Auditing the Return of a Given Device)
Table 102 on page 647 shows the ACIPARMS format for an HCPRPIRA audit call when a given device
is returned via DETACH or LOGOFF. This call is based on the audit bit for the GIVE command. The GIVE
command is audited generically from the command router.

Table 102. GIVE return

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIGIVSZ (in bytes)

ACIBMAPA CLASSB

ACIENV ACIGVRTN

ACIRUSR Requestor (user returning the given device).

ACITUSR Target user (original giver, now getting device back).

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Command version.

ACIEVENT "GIVERETN" padded with blanks.

ACISLAB Requestor's SECLABEL.

ACITLAB Target SECLABEL (SECLABEL of the giver).

ACIDETAD VDEV returner's device (the device was given to this user).

ACIRECAD VDEV of the Giver's device (this user is now receiving the device back).

There is no return code checking performed after the ESM call.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 647

IPL of a RESTRICTED Segment
See “RSTDSEGt” on page 691.

LINK Command Authorization/Audit Call

Note: The MDISK function, and not LINK, controls LINKs-to-self.

The LINK authorization call is based off the audit, protect, and MAC bits for the LINK command. If, after
making the call and receiving ESM authorization, CP denies or downgrades the requested access, then an
audit-only call will be made. The ACIPARMS format for this audit-only call will be the same as below and:

• ACIBMAPP and ACIBMAPM will be zeroes.
• ACIMODE will be 'RR' if the access has been downgraded to read and 'XX' if the access has been denied.

Table 103 on page 648 shows the ACIPARMS format for the LINK command.

Table 103. LINK Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACILINK

ACILEN ACISIZE (in bytes)

ACIBMAPA Class G (X'02') or X'00'.

ACIBMAPP Class G (X'02') or X'00'.

ACIBMAPM Class G (X'02') or X'00'.

ACIENV ACIDISK

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACITGRP ACI group name of the minidisk owner user ID.

ACITUSR Owning user ID of the minidisk that is being linked to.

ACIMODE Minidisk access mode in EBCDIC format.

ACIADDR Link-To address in EBCDIC format.

ACIVERS ACIVERS1

ACITADDR Link-As address in EBCDIC format.

ACIFLAG ACIRO or ACIRW + ACIGOOD

ACICMDTP Class G (X'02').

ACIEVENT "LINK" padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACITOD Additional field passed only for a shareable virtual disk in storage; contains the virtual
disk in storage identifier (the TOD stamp for the creation of the virtual disk in storage).

Table 104 on page 648 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 104. Supported HCPRPIRA Return Codes for the LINK Command

RC Meaning

X'00' Authorization is granted and processing continues.

CP Calls to the ACI

648 z/VM: 7.3 CP Programming Services

Table 104. Supported HCPRPIRA Return Codes for the LINK Command (continued)

RC Meaning

X'04' Authorization is deferred, and CP performs the authorization check.

X'08' The command fails with error message HCP298E, indicating the minidisk is not linked.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

LINK Audit-Only Call in Error Processing
When the LINK processor detects an error during command processing before the ESM is called for
authorization, then an audit-only call will be made (if audit is on) to HCPRPIRA with the ACIPARMS
format given in “Generic Audit Call for CP Commands” on page 637. This call will not be made if the call
described in “LINK Command Authorization/Audit Call” on page 648 has been made.

LOGOFF Command
Table 105 on page 649 shows the ACIPARMS parameter list for an HCPRPIRA call which is made when a
virtual machine is being logged off. For example, when a user LOGOFFs or is FORCEd off.

Table 105. LOGOFF Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIDEL

ACILEN ACIPARMS (in bytes)

ACIBMAPA ACIANYAU or X'00'.

ACIBMAPP ACIANYPR

ACIENV ACIXAC

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIANY

ACIEVENT "LOGOFF" padded with blanks.

ACISLAB Command issuer's SECLABEL.

The following fields are valid only for a logoff due to a successful guest relocation:

ACIRLODT "RELOCATE TO"

ACIRLODN The name of the SSI cluster member that is the target destination of the relocation.

ACIRLOBY "BY"

ACIRLOCI The userid of the VMRELOCATE command issuer.

ACIRLOAT "AT"

ACIRLOIN The SSI cluster member name where the command issuer was logged on.

The following fields are valid only for a skeleton VMDBK logoff due to an unsuccessful guest relocation:

ACIRLAFA "RELOCATE FROM"

ACIRLASC The name of the SSI cluster member that was the source for the relocation.

ACIRLAAK "ABORTED"

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 649

CP does not check for a return code on the return from HCPRPIRA.

LOGOFF of an AT Command Guest
Table 106 on page 650 shows the ACIPARMS parameter list for an HCPUSP call for the logoff of a guest
that has issued the AT command.

Table 106. AT Command Guest LOGOFF Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIDEL

ACILEN ACIATCSD * 8

ACIBMAPA ACIANYAU if LOGOFF is audited.

ACIBMAPP ACIANYPR

ACIENV ACIXAC

ACIRGRP ACI group name.

ACIRUSR User ID of the AT command guest.

ACIVERS ACIVERS1

ACIFLAG ACIANY

ACIEVENT "LOGOFF" padded with blanks.

ACIVMDBK Address of the AT command guest VMDBK.

ACISLAB Security label.

ACIATCDT "AT_LOGOFF"

ACIATCDN The target node on which the AT command was executed.

ACIATCBY "BY"

ACIATCCI User ID of the AT command issuer.

ACIATCAT "AT"

ACIATCIN Node of the AT command issuer.

LOGON Command
Table 107 on page 650 shows the ACIPARMS parameter list for an HCPRPWEP call for the LOGON
command.

Table 107. LOGON Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACILOG

ACILEN ACILGNSB

ACIBMAPA ACIANYAU or X'00'

ACIBMAPP ACIANYPR

ACIBMAPM ACIANYMC or X'00'

ACIENV ACIXAC

ACIRGRP ACI group name from the user directory entry of the virtual machine being logged on.

CP Calls to the ACI

650 z/VM: 7.3 CP Programming Services

Table 107. LOGON Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIRUSR User ID of the virtual machine being logged on.

ACILGOPT Logon options:
ACINPMT

No password prompt requested
ACIREC

This is a reconnect
ACILOGCL

Logical terminal
ACILOCAL

Local terminal
ACISNA

SNA (VTAM) terminal
ACILOGIP

Logical terminal with IP address
ACITTY

TTY terminal (may be set if either ACILOCAL or ACISNA is set)

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD + ACIRW

ACIFLAG2 ACINPASS is set if the user ID being logged on is defined with the NOPASS operand in
its directory entry.

ACIEVENT "LOGON" padded with blanks.

ACIPASS Contains password in EBCDIC format padded with blanks. If no password is set, this
field will be blank.

ACIVMDBK Address of the VMDBK for the user logging on. This field is guaranteed to be valid only
until the first loss of control after entry to HCPRPWEP.

ACIBYVAL The user ID following the BY operand of the LOGON command, if the BY operand was
specified, or zeros.

ACISLAB Specified SECLABEL padded with blanks, or zeros if no SECLABEL was specified.

ACITLAB Creator of the logical device's SECLABEL or zeros if not a LOGON through a logical
device.

ACITRMID One of the following:

• Terminal ID.
• If ACILOGCL and ACILOGIP are set in ACILGOPT, an IPv4 address (see Note “1” on

page 652).
• If ACILOGCL is not set, but ACILOGIP is set, the 8 high-order bytes of an IPv6

address. The 8 low-order bytes are in ACITRMI2..

ACITRMI2 If ACILOGCL is not set, but ACILOGIP is set, the 8 low-order bytes of an IPv6 address.

ACIDSPID Dispatched user ID.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 651

Table 107. LOGON Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACILBUFL LOGON data buffer list. A list of contiguous entries describing the output buffers for
this request. Each entry consists of a buffer address and length (in bytes). A buffer
address of zero indicates that the corresponding database information, and its length,
should not be returned. ACILEN can be used to calculate the number of entries in the
list. The address and length field of each entry is described below.

ACILUIDA Address of the buffer to contain the user's POSIX UID.

ACILUIDL Length of the buffer pointed to by ACILUIDA.

ACILGIDA Address of the buffer to contain the user's POSIX GID.

ACILGIDL Length of the buffer pointed to by ACILGIDA.

ACILSGIA Address of the buffer to contain the user's Supplementary GID list.

ACILSGIL Length of the buffer pointed to by ACILSGIA.

Notes:

1. IP addresses are normally written in dotted decimal format (for example, 9.130.58.78). In the LOGON
command parameter list, each segment of the IP address is converted to a two-digit hexadecimal
value. For example, 9 is converted to 09, and 130 is converted to 82. The result is an eight-byte string
of four two-digit hexadecimal numbers in character form. So, 9.130.58.78 becomes the character
string 09823A4E.

2. If the ESM supports password phrases, then ACIPASS is blank and the following fields are filled in:
ACIOPPLN

Contains the length of the password phrase. If no password phrase is set, this field will contain
zero.

ACIOPP
Contains the password phrase in EBCDIC.

Table 108 on page 652 shows the output fields set by the ESM in ACIPARMS on the return from
HCPRPWEP.

Table 108. LOGON ESM output fields in ACIPARMS

Label Contents

ACILOPTS Flags, as follows:

• ACILSIDE indicates that the ESM has provided the user's ACILSIDA value.
• ACILSIDA indicates that the user is permitted to set other users' POSIX IDs. This

replaces CP's POSIXOPT SETIDS value for the user.

ACILBUFL LOGON data buffer list. If ACICODE = X'00', the high-order bit of each length field
indicates whether the ESM has chosen to provide the corresponding data or to defer
it to CP. If this bit is on, the data that the ESM wishes to provide has been placed in
the buffers, and the length field of the entry contains the length, in bytes, of the data
placed in the buffer pointed to by that entry. If this bit is off, CP will use its own data
(usually from the user directory or a default value).

If the Supplementary GID list was returned, it must include the user's primary GID.

If ACICODE = X'28', the high-order bit of each length field indicates whether the ESM
would provide the corresponding data or defer it to CP. If this bit is on, the length
field of the entry contains the length, in bytes, of the buffer necessary to contain the
corresponding information.

CP Calls to the ACI

652 z/VM: 7.3 CP Programming Services

Table 109 on page 653 shows the return codes that CP supports in ACIPARMS on the return from
HCPRPWEP.

Table 109. Supported HCPRPWEP Return Codes for the LOGON Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred for CP to perform password verification. POSIX database
information is acquired from the directory.

X'08' The command fails with error message HCP050E, indicating logon was unsuccessful
due to an incorrect password.

X'0C' The command fails, no message is issued, and the logon skeleton is forced off the
system.

X'10' The command fails and no message is issued (logon prompt is displayed).

X'20' The command fails. Error message HCP6525E, indicating the ESM is unavailable, is
sent to the issuing user and to the system operator.

X'28' One or more of the buffers provided on input is too small to contain the requested
data. The length field of each ACILBUFL entry whose high-order bit of the length field
is on contains the required buffer length, in bytes, for that item. CP can be expected
to acquire larger buffers and request all of the data from the ESM again, using a POSIX
User Database query.

LOGON of an AT Command Guest
Table 110 on page 653 shows the ACIPARMS parameter list for an HCPXAT call for the LOGON of a guest
that will issue the AT command.

Table 110. AT Command Guest LOGON Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACILOG

ACILEN ACIATCSB

ACIBMAPA ACIANYAU if LOGON command is audited.

ACIBMAPP ACIANYPR

ACIBMAPM ACIANYMC

ACIENV ACIXAC

ACIRGRP ACI group name.

ACIRUSR User ID of the AT command guest.

ACIVERS ACIVERS1

ACIDSPID User ID the AT command was initiated from on the target node.

ACIFLAG ACIANY + ACIGOOD.

ACIEVENT AT "LOGON" padded with blanks.

ACIVMDBK Address of the AT command guest VMDBK.

ACISLAB Security label.

ACIATCDT "AT_LOGON"

ACIATCDN The target node on which the AT command will be executed.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 653

Table 110. AT Command Guest LOGON Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIATCBY "BY"

ACIATCCI User ID of the AT command issuer.

ACIATCAT "AT"

ACIATCIN Node of the AT command issuer.

MESSAGE Command MAC/AUDIT
Table 111 on page 654 shows the ACIPARMS parameter list for an HCPRPIRA call for the MESSAGE
command.

Note: MAC will not be performed when:

• The ALL option is specified.
• The sender or the receiver is the system operator.

Table 111. MESSAGE Command MAC/AUDIT Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA AUDIT settings.

ACIBMAPM MAC settings.

ACIENV ACIXAC

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD|ACIBAD + ACIWO + ACIANY (for the 'ANY' class message command)

ACICMDTP CLASSA+CLASSB (for message and warning all), CLASSB (for MSGNOH), CLASSG (for
smsg) or CLASSA+CLASSB+CLASSC (Warning not to ALL).

ACIEVENT "MESSAGE" or "MSGNOH" or "SMSG" or "WARNING" padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACITLAB SECLABEL of target user ID if valid user ID found.

ACIDATA Command line data.

Table 112 on page 654 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 112. Supported Return Codes for the MESSAGE Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP003E, indicating an invalid option.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

CP Calls to the ACI

654 z/VM: 7.3 CP Programming Services

MSGNOH Function MAC/AUDIT
See “MESSAGE Command MAC/AUDIT” on page 654.

PURGE Command Audit
The PURGE command calls for audit with the ACIPARMS format shown in “Generic Audit Call for CP
Commands” on page 637.

Table 113 on page 655 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 113. Supported HCPRPIRA Return Codes for the PURGE Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'20' If Purge command processing detected an error prior to the ESM call then the purge
processor will issue the appropriate message. Otherwise, the command fails with error
message HCP6525E, indicating the ESM is unavailable.

QUERY TAG and TAG QUERY Command MAC/AUDIT
Table 114 on page 655 shows the ACIPARMS parameter list for an HCPRPIRA call for the QUERY TAG
and TAG QUERY commands. For QUERY TAG file and TAG QUERY file this is a MAC/AUDIT call. Otherwise,
it is audit-only.

Table 114. QUERY TAG FILE Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes).

ACIBMAPA AUDIT Settings.

ACIBMAPM MAC Settings (only for QUERY TAG and TAG QUERY file).

ACIENV ACIXAC

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIRO

ACICMDTP Class G (X'02')

ACIEVENT "TAG" padded with blanks.

ACISLAB Command issuer's user SECLABEL.

ACITLAB SECLABEL of target spool file (only for TAG QUERY file and QUERY TAG file).

ACIDATA Command line data.

Table 115 on page 656 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 655

Table 115. Supported Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP026E, indicating a missing or invalid
operand.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

QUERY RDR/PRT/PUN Command
Table 116 on page 656 shows the ACIPARMS parameter list for a MAC-only HCPRPIRA call to determine
whether key fields can be displayed in the command response.

Note: The QUERY RDR/PRT/PUN command is audited generically with a separate call.

Table 116. QUERY RDR/PRT/PUN Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPM MAC Settings.

ACIENV ACISPF

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIRO + ACIGOOD

ACICMDTP Command version.

ACIEVENT Command operand (READER, PRINTER or PUNCH) padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACITLAB SECLABEL of target spool file.

ACIORIG Spool file origin ID.

ACIFSTPG DASD address of first page.

ACISPLID Spool file ID.

Table 117 on page 656 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 117. Supported HCPRPIRA Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues

X'08' All fields except ORIGINID, FILEID, CLASS, HOLD, DATE and TIME will be filled with
asterisks.

X'20' All fields except ORIGINID, FILEID, CLASS, HOLD, DATE and TIME will be filled with
asterisks.

CP Calls to the ACI

656 z/VM: 7.3 CP Programming Services

SEND Command Audit
Table 118 on page 657 shows the ACIPARMS parameter list for an HCPRPIRA call for the audit call made
by the SEND command.

Table 118. SEND Command Audit Call Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE (in bytes)

ACIBMAPA CLASSC+CLASSG

ACIENV ACIXAC

ACIRUSR Issuer's user ID

ACITUSR Target user ID

ACIVERS ACIVERS1

ACIFLAG ACIGOOD or ACIBAD

ACISLAB Issuer's SECLABEL

ACITLAB Target user's SECLABEL

ACICMDTP User's privelege classes

ACIEVENT 'SEND' padded with blanks

There is no return code checking performed after the ESM call.

SEND Command Security Label MAC Check
Table 119 on page 657 shows the ACIPARMS parameter list for an HCPRPIRA call for the SEND
command security label MAC check.

Table 119. SEND Command Security Label MAC Check Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE (in bytes)

ACIBMAPA ACISYSMC

ACIENV ACIXAC

ACIRUSR Issuer's user ID

ACITUSR Target user ID

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD + ACIRW or ACIANY + ACIGOOD + ACIWO

ACISLAB Issuer's SECLABEL

ACITLAB Target user's SECLABEL

ACIEVENT 'SEND_SECLBL' padded with blanks

Table 120 on page 658 shows the ACICODE return codes checked on return from HCPRPIRA.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 657

Table 120. Supported Return Codes

RC Meaning

<= X'04' Authorization is granted and processing continues.

> X'04' The command fails with error message HCP068E, indicating the user's SECLABELs
failed the MAC check.

SMSG Function MAC/AUDIT
See “MESSAGE Command MAC/AUDIT” on page 654.

SPOOL TO Command
This call is controlled by the TRANSFER class G protect setting.

Note: The SPOOL command is audited generically from the command router.

Table 121 on page 658 shows the ACIPARMS parameter list for a DAC HCPRPIRA call for the SPOOL
command, when the TO or FOR option is used, and the target is not the issuer.

Table 121. SPOOL Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACISPOOL

ACILEN ACISIZE (in bytes)

ACIBMAPP Transfer's protect settings.

ACIENV ACITRANS

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACITGRP ACI group name of user ID to whom files are being sent.

ACITUSR User ID of user to whom files are being sent.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Class G (X'02').

ACIEVENT "SPOOL" padded with blanks.

ACISLAB Command issuer's SECLABEL.

Table 122 on page 658 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 122. Supported HCPRPIRA Return Codes for the SPOOL TO Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP007E, indicating an invalid user ID.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

CP Calls to the ACI

658 z/VM: 7.3 CP Programming Services

SPXTAPE Dumping and Loading of Files
Table 123 on page 659 shows the ACIPARMS format for an audit-only call for each file dumped or
loaded by the SPXTAPE DUMP or LOAD command. The SPXTAPE command is audited generically.

Table 123. ACIPARMS format

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT Settings.

ACIENV ACISPTAP

ACIRUSR Spool file owner's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP CLASSE+CLASSD | CLASSD | CLASSG

ACIEVENT "SPLDUMP" or "SPLLOAD" padded with blanks.

ACITLAB Spool file SECLABEL.

ACIORIG Spool file origin ID.

ACIFSTPG DASD address of first page.

ACISPLID Spool file ID.

ACITOD TOD clock value at time of SPXTAPE DUMP or LOAD.

ACICMDIS Command issuer's user ID.

Table 124 on page 659 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 124. Supported Return Codes

RC Meaning

X'00' Processing continues.

X'04' Processing continues.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

START Real Printer SECLABEL Authorization Call
Table 125 on page 659 shows the ACIPARMS format for the HCPRPIRA call for the STARTing a real
device.

This call is based on MAC bit for the START command. This is an authorization-only call. The START
command is audited from the command router.

Table 125. START real printer with SECLABEL option authorization call

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE (in bytes)

ACIBMAPM CLASSD (X'10')

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 659

Table 125. START real printer with SECLABEL option authorization call (continued)

Label Contents

ACIENV ACIXAC

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuers user ID.

ACIVERS ACIVERS1

ACITADDR Address of printer right justified in EBCDIC.

ACIFLAG ACIGOOD + ACIWO

ACICMDTP CLASSD

ACIEVENT "START" padded with blanks.

ACISLAB Command issuers SECLABEL.

ACITLAB Existing SECLABEL of the printer.

ACINSPLD SECLABEL printer is being started at.

Table 126 on page 660 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 126. Supported Return Codes for the START Real Printer with SECLABEL

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP1013E, indicating an invalid operand was
supplied for SECLABEL.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

STORE HOST Command
Table 127 on page 660 shows the ACIPARMS parameter list for the DAC/audit call for the STORE
command when used with the HOST operand.

Table 127. STORE HOST Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA Audit setting.

ACIBMAPP Protect setting.

ACIENV ACIXAC

ACIRUSR Command issuer's user ID.

ACIRGRP Command issuer's ACI group name.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD | ACIBAD

ACICMDTP Class C (X'20').

CP Calls to the ACI

660 z/VM: 7.3 CP Programming Services

Table 127. STORE HOST Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACISLAB Command issuer's SECLABEL.

ACIEVENT Command name padded with blanks.

ACIDATA Command line.

Table 128 on page 661 displays the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 128. Supported Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP003E, indicating an invalid option.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

TAG QUERY Command MAC/AUDIT
See “QUERY TAG and TAG QUERY Command MAC/AUDIT” on page 655.

TAG Command MAC/DAC/Audit
Table 129 on page 661 shows the ACIPARMS parameter list for an HCPRPIRA call for the TAG device
command and TAG file command.

Note: MAC is only applicable to the TAG file command.

Table 129. TAG Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACITAG

ACILEN ACISIZE + ACIDATA size (in bytes)

ACIBMAPA Class G (X'02') or X'00'.

ACIBMAPP Class G (X'02') or X'00'.

ACIBMAPM Class G (X'02') or X'00 '.

Note: The MAC setting can only be on for TAG FILE.

ACIENV ACITAGN

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuers user ID.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIWO

ACINODE The first token of the tag text (padded with blanks if < 8 characters).

ACICMDTP Class G (X'02').

ACIEVENT "TAG" padded with blanks.

ACISLAB Command issuers SECLABEL.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 661

Table 129. TAG Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACITLAB SECLABEL of target spool file (For the TAG file command).

ACIDATA Command line data.

Table 130 on page 662 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 130. Supported Return Codes for the TAG Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP003E, indicating an invalid option.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

TRANSFER Command Authorization
Table 131 on page 662 shows the ACIPARMS parameter list for an HCPRPIRA DAC call for the
TRANSFER and CHANGE TO commands when the file is being sent to someone other than the issuer.

Note: This is a DAC-only call. The CHANGE and TRANSFER commands are audited generically.

Table 131. TRANSFER Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACISPOOL

ACILEN ACISIZE (in bytes)

ACIBMAPP PROTECT settings.

ACIENV ACITRANS

ACIRGRP Command issuer's ACI group name from user's directory entry.

ACIRUSR Command issuer's user ID.

ACITGRP ACI group name of user ID to whom files are being sent.

ACITUSR User ID of user to whom files are being sent.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD | ACIBAD

ACICMDTP Class DG (X'12') or CLASS G (X'02').

ACIEVENT "TRANSFER" or "CHANGE" padded with blanks.

ACISLAB Command issuer's SECLABEL.

Table 132 on page 662 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 132. Supported Return Codes for the TRANSFER Command

RC Meaning

X'00' Authorization is granted and processing continues.

CP Calls to the ACI

662 z/VM: 7.3 CP Programming Services

Table 132. Supported Return Codes for the TRANSFER Command (continued)

RC Meaning

X'04' Authorization is deferred, and CP performs the authorization check.

X'08' The command fails with error message HCP007E, indicating an invalid user ID.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

TRANSFER Command
Table 133 on page 663 shows the ACIPARMS parameter list for an HCPRPIRA audit-only call for each file
transferred as a result of the TRANSFER or CHANGE TO command.

Table 133. TRANSFER Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT Settings.

ACIENV ACIXAT

ACIRUSR Spool file owner ID.

ACITUSR User ID to whom files are being sent

ACIEVENT "TRANSFER" padded with blanks.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Command version.

ACISLAB Command issuer's SECLABEL.

ACITLAB SPOOL file's SECLABEL.

ACIORIG Spool file origin ID.

ACIFSTPG DASD address of first page.

ACISPLID Old spool ID.

ACISPIDN New spool ID.

ACICMDIS Command issuer's user ID.

Table 134 on page 663 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 134. Supported HCPRPIRA Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is granted and processing continues.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

TRSAVE TO Command
This call is controlled by the TRANSFER class D protect setting.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 663

Note: The TRSAVE command is audited generically from the command router.

Table 135 on page 664 shows the ACIPARMS parameter list for an HCPRPIRA DAC call for the TRSAVE
TO command when the target is not the issuer.

Table 135. TRSAVE TO Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACISPOOL

ACILEN ACISIZE (in bytes)

ACIBMAPP Transfer's protect settings.

ACIENV ACITRANS

ACIRGRP Command issuer's ACI group name.

ACIRUSR Command issuer's user ID.

ACITGRP ACI group name of the user ID to whom files are being sent.

ACITUSR User ID to whom files are being sent.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Class D (X'10').

ACIEVENT "TRSAVE" padded with blanks.

ACISLAB Command issuer's SECLABEL.

Table 136 on page 664 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 136. Supported HCPRPIRA Return Codes for the TRSAVE TO Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The command fails with error message HCP003E, indicating an invalid option.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

TRSOURCE Command
Table 137 on page 664 shows the ACIPARMS parameter list for a DAC/audit call for the TRSOURCE
command.

Table 137. TRSOURCE Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA size (in bytes)

ACIBMAPA Class C (X'20') or X'00'.

ACIBMAPP Class C (X'20') or X'00'.

ACIENV ACIXAC

ACIRGRP Command issuer's ACI group name from user's directory entry.

CP Calls to the ACI

664 z/VM: 7.3 CP Programming Services

Table 137. TRSOURCE Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIRUSR Command issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Class C (X'20').

ACISLAB Command issuer's SECLABEL.

ACIEVENT "TRSOURCE" padded with blanks.

ACIDATA Command line.

Table 138 on page 665 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 138. Supported HCPRPIRA Return Codes for the TRSOURCE Command

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is granted and processing continues.

X'08' The command fails with error message HCP644E, indicating an unknown/unauthorized
CP command.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

TRSOURCE ENABLE Command (VMGROUP)
Table 139 on page 665 shows the ACIPARMS parameter list for a MAC call for the TRSOURCE ENABLE
command in the case of a VMGROUP.

Table 139. TRSOURCE ENABLE Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACINSSEG

ACILEN ACISIZE + ACIDISZ (in bytes)

ACIBMAPM CLASSC (X'20')

ACIENV ACISEG

ACIRUSR Command issuer's user ID.

ACIEVENT "TRSOURCE" padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACIVERS ACIVERS1

ACIFLAG ACIRW

ACICMDTP CLASS C (X'20')

ACISEGNM VMGROUP name.

Table 140 on page 666 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 665

Table 140. Supported Return Codes

RC Meaning

X'00' Authorization is granted, SDFSCLAB is set to the command issuer's SECLABEL, and
processing continues.

X'04' Processing continues.

X'08' The command fails with error message HCP644E, indicating an unknown/unauthorized
CP command.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

VMRELOCATE Command
Table 141 on page 666 shows the ACIPARMS parameter list for an HCPRPIRA call on the destination
system for the VMRELOCATE command.

Table 141. VMRELOCATE Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACILOG

ACILEN ACIRLOSB

ACIBMAPA ACIANYAU

ACIBMAPP ACIANYPR

ACIBMAPM ACIANYMC

ACIENV ACIXAC

ACIRGRP ACI group name from the user directory entry of the virtual machine being relocated.

ACIRUSR User ID of the virtual machine being relocated.

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD

ACIEVENT "RELOCATE" padded with blanks.

ACIVMDBK Address of the VMDBK for the user being relocated. This field is guaranteed to be valid
only until the first loss of control after entry to HCPRPIRA.

ACISLAB SECLABEL padded with blanks of the guest being relocated, or zeros if no SECLABEL

ACIDSPID Dispatched user ID

ACIRLODT "RELOCATE TO"

ACIRLODN The name of the SSI cluster member that is the target destination of the relocation.

ACIRLOBY "BY"

ACIRLOCI The userid of the VMRELOCATE command issuer.

ACIRLOAT "AT"

ACIRLOIN The SSI cluster member name where the command issuer was logged on.

VMDUMP TO Command and DIAGNOSE X'94'
This call is controlled by the TRANSFER class G protect setting.

Note: VMDUMP and DIAGNOSE code X'94' are audited generically from the command and DIAGNOSE
router respectively.

CP Calls to the ACI

666 z/VM: 7.3 CP Programming Services

Table 142 on page 667 shows the ACIPARMS parameter list for an HCPRPIRA DAC call for the VMDUMP
and for DIAGNOSE code X'94', when the TO option is used, and the target is not the issuer.

Table 142. VMDUMP TO Command and DIAGNOSE X'94' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACISPOOL

ACILEN ACISIZE (in bytes)

ACIBMAPP Transfer's protect settings.

ACIENV ACITRANS

ACIRGRP Command issuer's ACI group name.

ACIRUSR Issuer's user ID.

ACITGRP ACI group name of the user ID to whom dump is being sent.

ACITUSR User ID to whom dump is being sent.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD

ACICMDTP Class G (X'02').

ACIEVENT "VMDUMP" or "DIAG094" padded with blanks.

ACISLAB Issuer's SECLABEL.

Table 143 on page 667 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 143. Supported Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues

X'08' • VMDUMP command

The command fails with message HCP003E, indicating an invalid option.
• DIAGNOSE code X'94'

The DIAGNOSE fails with return code X'6C' and condition code 2.

X'20' • VMDUMP command

The command fails with error message HCP6525E, indicating the ESM is unavailable.
• DIAGNOSE code X'94'

The DIAGNOSE fails with return code X'6C' and condition code 2.

WARNING Command MAC/AUDIT
See “MESSAGE Command MAC/AUDIT” on page 654.

XAUTOLOG Command
See “AUTOLOG and XAUTOLOG Commands” on page 639.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 667

ACIPARMS Parameter Lists for DIAGNOSE Codes
This section specifies the different ACIPARMS formats that CP diagnose codes pass to the ESM. The calls
are made to HCPRPIRA unless otherwise stated.

DIAGNOSE Code X'14'
Table 144 on page 668 shows the ACIPARMS parameter list for a MAC call for subcodes X'04', X'08',
X'FFE', and X'FFF', when they return SFBLOK data.

Table 144. DIAGNOSE Code X'14' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDSIZ (in bytes)

ACIBMAPM ACIDGNMC

ACIENV ACIXAD

ACIRUSR DIAGNOSE issuers's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD + ACIRO

ACIEVENT "DIAG014" padded with blanks.

ACISLAB DIAGNOSE issuer's SECLABEL.

ACITLAB SECLABEL of target spool file.

Table 145 on page 668 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 145. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'14'

RC Meaning

X'00' Processing continues.

X'04' Processing continues.

X'08' The selected spool file is treated as if it does not exist.

X'20' The selected spool file is treated as if it does not exist.

DIAGNOSE Code X'64'
Table 146 on page 668 shows the ACIPARMS parameter list for the audit call for DIAGNOSE code
X'64'. This call does not include DIAGNOSE code X'64' invocations that load or find a restricted segment.
“RSTDSEGt” on page 691 shows the ACIPARMS format for LOAD/FIND of a restricted segment.

Table 146. DIAGNOSE Code X'64' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDSIZ (in bytes)

ACIBMAPA ACIDGNAU

ACIENV ACISEG

ACIRUSR DIAGNOSE issuer's user ID.

CP Calls to the ACI

668 z/VM: 7.3 CP Programming Services

Table 146. DIAGNOSE Code X'64' Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD|ACIBAD

ACIEVENT "DIAG064" padded with blanks.

ACISLAB DIAGNOSE issuer's SECLABEL.

ACISEGNM DCSS name.

ACIRY Contents of user's Ry register.

Table 147 on page 669 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 147. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'64'

RC Meaning

X'00' Processing continues.

X'04' Processing continues.

X'20' Condition code 2 and return code 449 (X'1C1') is returned, indicating the user is not
authorized.

DIAGNOSE Code X'68'
Table 148 on page 669 shows the ACIPARMS parameter list for an HCPRPIRA MAC/audit call for
DIAGNOSE code X'68'. This call is not made if running on the SYSTEM VMDBK.

Note: This call is only made for the SEND, SEND/RECEIVE, SENDX, RECEIVE, REPLY, and IDENTIFY
subfunctions of DIAGNOSE code X'68'. The other subfunctions are not auditable.

Table 148. DIAGNOSE Code X'68' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIVMCSZ (in bytes)

ACIBMAPA AUDIT setting.

ACIBMAPM MAC setting.

ACIENV ACIXAV

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD|ACIBAD + ACIRO (receive)|ACIWO (send, sendx and reply) |
ACIRW (send/receive and Iidentify)

ACIRUSR DIAGNOSE issuer's user ID.

ACITUSR Target user ID.

ACIEVENT "DIAG068" padded with blanks.

ACISLAB DIAGNOSE issuer's SECLABEL.

ACITLAB DIAGNOSE target userid's SECLABEL, if available.

ACIVMCF "DIAGNOSE 68 SEND" or "DIAGNOSE 68 SEND/RECEIVE" or "DIAGNOSE 68 SENDX"
or "DIAGNOSE 68 RECEIVE" or "DIAGNOSE 68 REPLY" or "DIAGNOSE 68 IDENTIFY".

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 669

Table 149 on page 670 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 149. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'68'

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The DIAGNOSE fails with a return code, indicating the target user is not available.

X'20' The DIAGNOSE fails with a return code, indicating the target user is not available.

DIAGNOSE Code X'88'
Table 150 on page 670 shows the ACIPARMS parameter list for an HCPRPIRA protect/audit call for
DIAGNOSE code X'88'.

Table 150. DIAGNOSE Code X'88' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIVMCSZ (in bytes)

ACIBMAPP PROTECT setting.

ACIBMAPA AUDIT setting.

ACIENV ACIXAD

ACIVERS ACIVERS1

ACIFLAG • If the user has OPTION DIAG88: ACIANY + ACIGOOD
• If the user does not have OPTION DIAG88: ACIANY + ACIBAD

ACIEVENT "DIAG088" padded with blanks.

ACIRUSR DIAGNOSE issuer's user ID.

ACIRX Contents of user's Rx register.

ACIRY Contents of user's Ry register.

ACISLAB DIAGNOSE issuer's SECLABEL.

Table 151 on page 670 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 151. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'88'

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

DIAGNOSE Code X'94' with the TO Option
See “VMDUMP TO Command and DIAGNOSE X'94'” on page 666.

CP Calls to the ACI

670 z/VM: 7.3 CP Programming Services

DIAGNOSE Code X'B8'
Table 152 on page 671 shows the ACIPARMS parameter list for an HCPRPIRA MAC/audit call for
DIAGNOSE code X'B8' when a spool file is opened. This call is based on the security settings for
SPF_OPEN. In addition to this call, DIAGNOSE code X'B8' is audited from the DIAGNOSE router.

Table 152. DIAGNOSE Code X'B8' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT Settings.

ACIBMAPM MAC Settings.

ACIENV ACISPF

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIANY + ACIRO (subcode X'00') | ACIWO (subcode X'04')

ACIRUSR DIAGNOSE issuer's user ID.

ACIEVENT "SPF_OPEN" padded with blanks.

ACISLAB DIAGNOSE issuer's SECLABEL.

ACITLAB Spool file's SECLABEL.

ACISPLID Spool ID of the owning X'AB' to be opened.

ACICMDIS Command issuer's user ID.

ACIORIG Spool file origin user ID.

ACIFSTPG DASD address of first page.

Table 153 on page 671 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 153. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'B8'

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and CP performs the authorization check.

X'08' The DIAGNOSE fails with a return code, indicating access is denied.

X'20' The DIAGNOSE fails with a return code, indicating access is denied.

DIAGNOSE Code X'BC'
Table 154 on page 671 shows the ACIPARMS parameter list for an HCPRPIRA call for the DIAGNOSE
code X'BC'.

Table 154. DIAGNOSE Code X'BC' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDISZ (in bytes)

ACIBMAPM ACIDGNMC

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 671

Table 154. DIAGNOSE Code X'BC' Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIENV ACIXAD

ACIRUSR DIAGNOSE issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIRO+ACIANY+ACIGOOD

ACIEVENT "DIAG0BC" padded with blanks.

ACISLAB Command issuer's SECLABEL.

ACITLAB SECLABEL of target spool file.

ACIRX Rx register.

ACIRX1 Rx+1 register.

ACIRY Ry register.

ACIRY1 Ry+1 register.

Table 155 on page 672 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 155. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'BC'.

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is granted and processing continues.

X'08' The command fails with key fields having '*' in them.

X'20' The command fails with key fields having '*' in them.

DIAGNOSE Code X'D4'
Table 156 on page 672 shows the ACIPARMS parameter list for an HCPRPIRA call for DIAGNOSE code
X'\D4'. See also “APPC Setting of VMDALTID” on page 677.

Table 156. DIAGNOSE Code X'D4' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIALTU

ACILEN ACISIZE + ACIDISZ (in bytes)

ACIBMAPA ACIDGNAU (X'80') if audit on.

ACIBMAPP ACIDGNPR (X'80') if protect on.

ACIBMAPM ACIDGNMC (X'80') if MAC on.

ACIENV ACIXAD

ACIRUSR DIAGNOSE issuer's user ID.

ACIWUSR Worker user ID.

ACIAUSR Alternate (end user) user ID.

ACIVERS ACIVERS1

CP Calls to the ACI

672 z/VM: 7.3 CP Programming Services

Table 156. DIAGNOSE Code X'D4' Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIFLAG ACIGOOD+ACIRW+ACIANY

ACIEVENT "DIAG0D4" padded with blanks.

ACIRX Contents of user's Rx register.

ACIRY Contents of user's Ry register.

ACISLAB DIAGNOSE issuer's SECLABEL.

ACIALAB Alternate user ID's SECLABEL (specified in the DD4ALTSC field of the DIAGNOSE code
X'D4' parameter list).

ACITLAB Worker's user ID's SECLABEL (SECLABEL of the user specified in DD4PALT of the
DIAGNOSE code X'D4' parameter list, or zeroes if that user is not logged on).

Table 157 on page 673 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 157. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'D4'

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred, and CP performs the authorization check.

X'08' The DIAGNOSE fails with return code 12 (in Rx), indicating the issuer is not authorized.

X'20' The DIAGNOSE fails with return code 12 (in Rx), indicating the issuer is not authorized.

DIAGNOSE Code X'E4'
Table 158 on page 673 shows the ACIPARMS parameter list for an HCPRPIRA call for DIAGNOSE code
X'E4'.

Table 158. DIAGNOSE Code X'E4' Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDE4SZ (in bytes)

ACIBMAPA ACIDGNAU or X'00'

ACIBMAPP ACIDGNPR or X'00'

ACIENV ACIDIAE4

ACIRUSR DIAGNOSE issuer's user ID.

ACITUSR User ID that owns the minidisk (used for subcodes 0,1, and 2).

ACIMODE Access mode in EBCDIC (used for subcodes 2 and 3).

ACIADDR Link-to address in EBCDIC.

ACIVERS ACIVERS1

ACITADDR Link-As address in EBCDIC (used for subcodes 2 and 3).

ACIFLAG ACIANY+ACIGOOD

ACIEVENT "DIAG0E4" padded with blanks.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 673

Table 158. DIAGNOSE Code X'E4' Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACISLAB DIAGNOSE issuer's SECLABEL.

ACISUBC DIAGNOSE subcode in EBCDIC.

ACITCYL Cylinder number in EBCDIC (used for subcode 3).

ACIETCYL Extended Address Volume (EAV) cylinder number in EBCIDIC (used for subcode 3).

ACITOD Additional field passed only for a shareable virtual disk in storage; contains the virtual
disk in storage identifier (the TOD stamp for the creation of the virtual disk in storage).

Table 159 on page 674 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA. In cases where CP has detected an error before the ESM call, and the ESM returns an error
return code, the CP detected error will be reflected to the user.

Table 159. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'E4'

RC Meaning

X'00' Authorization is granted and processing continues. For subcodes 2 and 3, CP performs
a directory check for DEVMAINT.

X'04' Authorization is deferred, and CP performs directory checks (DEVINFO or DEVMAINT
for subcodes 0 and 1, DEVMAINT for subcodes 2 and 3).

X'08' The DIAGNOSE fails with condition code 1 and return code (in Ry) 5 indicating the
issuer is not authorized.

X'20' The DIAGNOSE fails with condition code 1 and return code (in Ry) 5 indicating the
issuer is not authorized.

DIAGNOSE Code X'290'
Table 160 on page 674 shows the ACIPARMS parameter list for an HCPRPIRA call for DIAGNOSE code
X'290'.

Table 160. DIAGNOSE Code X'290' Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACID290SZ (in bytes)

ACIBMAPA ACIDGNAU or X'80' if audit on

ACIENV ACIXAD

ACIRUSR DIAGNOSE issuer's user ID.

ACIVERS ACIVERS1

ACIFLAG ACIANY+ACIGOOD

ACIEVENT "DIAG290" padded with blanks

ACISLAB DIAGNOSE issuer's SECLABEL.

ACI290SC DIAGNOSE X'290' subcode issued

ACI290UI Target userid

ACI290DN Target device number (subcode 4 only)

CP Calls to the ACI

674 z/VM: 7.3 CP Programming Services

Table 160. DIAGNOSE Code X'290' Command Format of the ACIPARMS Parameter List (continued)

Label Contents

ACI290Q Target spool queue (subcode 0 only)

ACI290ID Target spool file ID (subcode 0 only)

Table 161 on page 675 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 161. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'290'

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

PERMIT to Address Space MAC (DIAGNOSE Code X'23C' Subcode X'03')
Table 162 on page 675 shows the ACIPARMS parameter list for an HCPRPIRA MAC only call for the
PERMIT subfunction of DIAGNOSE code X'23C'. DIAGNOSE code X'23C' is audited generically from the
DIAGNOSE router.

Table 162. DIAGNOSE Code X'23C' Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDISZ (in bytes)

ACIBMAPM ACIDGNMC

ACIENV ACIXAD

ACIRUSR User ID of grantee (the user who is being permitted).

ACITUSR Userid of grantor (the DIAGNOSE issuer).

ACIVERS ACIVERS1

ACIFLAG ACIRW or ACIRO + ACIANY

ACIEVENT "DIAG23C" padded with blanks.

ACISLAB SECLABEL of grantee (the user who is being permitted).

ACITLAB SECLABEL of grantor (the DIAGNOSE issuer).

ACIRX Contents of Rx.

Table 163 on page 675 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 163. Supported HCPRPIRA Return Codes for DIAGNOSE Code X'23C'

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues

X'08' The DIAGNOSE fails with return code 32, indicating the issuer is not authorized.

X'20' The DIAGNOSE fails with return code 32, indicating the issuer is not authorized.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 675

ACIPARMS Parameter Lists for System Functions
This section specifies the different ACIPARMS formats that CP system functions pass to the ESM. The
calls are made to HCPRPIRA unless otherwise stated.

APPC CONNECT
Table 164 on page 676 shows the ACIPARMS format for an HCPRPIRA call for MAC and audit of APPC
connect.

Table 164. APPC CONNECT Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACICONSZ (in bytes)

ACIBMAPA AUDIT Setting

ACIBMAPM MAC Setting

ACIENV ACICNCT

ACIRUSR Effective Source - on whose behalf the connect is being done:

• VMDUSER if non-communication server without alternate user ID
• CONALTID if non-communication server with alternate user ID
• IPVMID if communication server issued connect

ACITUSR Target user ID (Specified resource ID)

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD|ACIBAD + ACIRW

Note: ACIRW will not be set in error (audit-only) cases.

ACIEVENT "APPCCON" padded with blanks

ACISLAB Source SECLABEL (SECLABEL of user in ACIRUSR)

ACITLAB Target SECLABEL if the target is logged on

Note: This field may not be set on audit-only error cases.

ACIPATH APPC path ID

Note: This field may not be set on audit-only error cases.

ACIQUAL LUNAME qualifier from the IPARMLX

ACITLUN Target LU from the IPARMLX

ACISERVR Local source - user ID of the virtual machine who issued the connect

If CP processing detected an error before the ESM call, the call will be made for auditing purposes only
and the ESM return code is not checked. The IPRCODE for the connect will be set to the CP-detected error
code. Otherwise, the ESM return codes are as displayed in Table 165 on page 676.

Table 165. Supported HCPRPIRA Return Codes for APPC CONNECT

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

CP Calls to the ACI

676 z/VM: 7.3 CP Programming Services

Table 165. Supported HCPRPIRA Return Codes for APPC CONNECT (continued)

RC Meaning

X'08' The connect fails. IPRCODE=IPRCBADR.

X'20' The connect fails. IPRCODE=IPRCBADR.

APPC Setting of VMDALTID
Table 166 on page 677 shows the ACIPARMS format for an HCPRPIRA call for audit and authorization for
setting an alternate userid. This call is based off the security settings of DIAGNOSE code X'D4'.

Table 166. APPC setting of VMDALTID format of ACIPARMS

Label Contents

ACIFCN ACIALTU

ACILEN ACISIZE + ACIDISZ (in bytes)

ACIBMAPA ACIDGNAU (X'80') if audit on

ACIBMAPP ACIDGNPR (X'80') if protect on

ACIBMAPM ACIDGNMC (X'80') if MAC on

ACIENV ACIXAD

ACIRUSR Issuer's' user ID

ACIVERS ACIVERS1

ACIFLAG ACIGOOD|ACIBAD + ACIANY + ACIRW

ACIEVENT "DIAG0D4" padded with blanks

ACISLAB Requestor's SECLABEL

ACITLAB SECLABEL of user ID specified in IPXALTID if that user is logged on

Note: This field is not set if ACIBAD is on in ACIFLAG.

ACIALAB SECLABEL of user ID specified in IPXALTID if that user is logged on

Note: This field is not set if ACIBAD is on in ACIFLAG.

ACIWUSR Resource ID (IPRESID), target user ID (IPXTRGLU) or gateway ID (IPXLQUAL)

Note: This field is not set if ACIBAD is on in ACIFLAG.

ACIAUSR Altid to be set up (IPXALTID)

Note: This field is not set if ACIBAD is on in ACIFLAG.

Table 167 on page 677 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 167. Supported Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The connect fails. IPRCODE=IPRCNAUT.

X'20' The connect fails. IPRCODE=IPRCNAUT.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 677

APPC SEVER
Table 168 on page 678 shows the ACIPARMS format for an APPC SEVER.

Table 168. APPC SEVER Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISEVSZ (in bytes)

ACIBMAPA ACISYSAU

ACIENV ACISEVER

ACIRUSR Issuer's user ID

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD

ACIEVENT "APPCSEV" padded with blanks

ACISLAB Requestor's SECLABEL

ACIPATH APPC path ID

There is no ESM return code checking.

APPCPWVL
Table 169 on page 678 shows the ACIPARMS format for an HCPRPIRA call for audit and authorization for
APPC CONNECT with password validation. This call is controlled by the APPCPWVL security settings.

Table 169. APPC connect with password validation

Label Contents

ACIFCN ACILOG if calling for authorization; otherwise, ACIVMCMD

ACILEN ACISIZE + ACIPWSZ (in bytes)

ACIBMAPA ACISYSAU (X'80') if audit on

ACIBMAPP ACISYSPR (X'80') if protect on

ACIENV ACIAPPW

ACIRGRP Blanks

ACIRUSR Userid whose password is being checked

ACITUSR Local source (userid who issued the connect)

ACILGOPT ACIVAL if calling for authorization; otherwise, zeroes

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD|ACIBAD

ACIEVENT "APPCPWVL" padded with blanks

ACIPWLEN Length of password (not included in some audit-only error cases)

ACIPSWRD Password (masked) (not included in some audit-only error cases)

Table 170 on page 679 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

CP Calls to the ACI

678 z/VM: 7.3 CP Programming Services

Table 170. Supported Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and the CP directory password is checked.

X'08' The connect fails. IPRCODE=IPRCNAUT.

X'20' The connect fails. IPRCODE=IPRCNAUT.

Directory Command Audit-Only Call
Table 171 on page 679 shows the ACIPARMS format for an audit-only call for a command executed
automatically upon logon through the use of the COMMAND directory control statement. (See the
COMMAND directory control statement in z/VM: CP Planning and Administration for more information.)

Table 171. Directory Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIDATA (in bytes)

ACIBMAPA Audit setting for each privilege class or ACIANYU if this is an 'ANY' class command.

ACIENV ACICPAUD

ACIRUSR Command issuer's user ID.

ACIRGRP Command issuer's ACI group name.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD | ACIBAD + ACIANY (if this is an 'ANY' class command)

ACICMDTP Command version.

Note: This field is not filled in for 'ANY' class commands.

ACISLAB Command issuer's SECLABEL.

ACIEVENT 'DIRECTRY_CMD'

ACIDATA 'TO userid: ' followed by command line.

Table 172 on page 679 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 172. Supported Return Codes for a Directory Command

RC Meaning

X'00' Processing continues.

X'04' Processing continues.

X'20' The command fails with error message HCP6525E, indicating the ESM is unavailable.

IUCV CONNECT
Table 173 on page 680 shows the ACIPARMS parameter list for the HCPRPIRA call for MAC and audit of
an IUCV CONNECT.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 679

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Table 173. IUCV CONNECT Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACIUCVSZ (in bytes)

ACIBMAPA AUDIT Setting

ACIBMAPM MAC Setting

ACIENV ACICNCT

ACIRUSR Issuer's user ID

ACITUSR Target user ID of the connect (from IPVMID)

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD|ACIBAD + ACIRW

ACIEVENT "IUCVCON" padded with blanks

ACISLAB Command issuer's SECLABEL

ACITLAB Target user ID's SECLABEL, if the target is logged on. If the target is a system service,
then ACITLAB will be set to "SYSNONE."

ACIPATH IUCV path ID

If CP processing detected an error before the ESM call, the call will be made for auditing purposes only
and the ESM return code is not checked. The IPRCODE for the connect will be set to the CP-detected error
code. Otherwise, the ESM return codes are as displayed in Table 174 on page 680.

Table 174. Supported HCPRPIRA Return Codes for IUCV CONNECT

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' The ESM defers any judgement on the user's status. Processing continues.

X'08' The connect fails. IPRCODE=IPRCBADR.

X'20' The connect fails. IPRCODE=IPRCBADR.

IUCV SEVER
Table 175 on page 680 shows the ACIPARMS format for an IUCV SEVER.

Table 175. IUCV SEVER Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISEVSZ (in bytes)

ACIBMAPA ACISYSAU

ACIENV ACISEVER

ACIRUSR Issuer's user ID

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD

ACIEVENT "IUCVSEV" padded with blanks

CP Calls to the ACI

680 z/VM: 7.3 CP Programming Services

Table 175. IUCV SEVER Format of the ACIPARMS Parameter List (continued)

Label Contents

ACISLAB Requestor's SECLABEL

ACIPATH IUCV path ID

There is no ESM return code checking.

MAINTCCW Audit
Table 178 on page 682 shows the ACIPARMS parameter list for an HCPRPIRA audit call for the
MAINTCCW function. This will audit the issuances of diagnostic CCW's. The audit call will be made only
once per channel program.

Table 176. MAINTCCW Format of ACIPARMS

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACICCWSZ (in bytes)

ACIBMAPA ACISYSAU

ACIENV ACIXACCW

ACIRUSR Diagnostic CCW issuer's user ID

ACIADDR Virtual device number

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD

ACIEVENT "MAINTCCW" padded with blanks

ACISLAB Diagnostic CCW issuer's SECLABEL

ACISCYL Starting cyl/blk on the DASD

ACIECYL Ending cyl/blk on the DASD

ACIRDEV Real device number

ACIVOLSR Volume serial

Table 177 on page 681 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 177. Supported HCPRPIRA Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'20' The argument of keyword INDICATOR is set to "NO."

MDISK Command
Table 178 on page 682 shows the ACIPARMS parameter list for an HCPRPIRA audit/DAC/MAC call for
the MDISK function.

Note: The MDISK function, and not LINK, controls LINKs-to-self.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 681

If after making the call and receiving ESM authorization, CP denies or downgrades the requested access,
then an audit-only call will be made. The ACIPARMS format for this audit-only call will be the same as
below and:

• ACIBMAPP and ACIBMAPM will be zeroes
• ACIMODE will be 'RR' if the access has been downgraded to read and 'XX' if the access has been denied

Table 178. MDISK Command Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACILINK

ACILEN ACISIZE (in bytes)

ACIBMAPA Class G (X'02'). or X'00'

ACIBMAPM Class G (X'02'). or X'00'

ACIBMAPP Class G (X'02'). or X'00'

ACIENV ACIDISK

ACIRGRP Command issuer's ACI group name from user's directory entry

ACIRUSR Command issuer's user ID

ACITGRP ACI group name of the minidisk owner user ID (same as ACIRGRP in this case)

ACITUSR Owning user ID of the minidisk that is being linked to (same as ACIRUSR in this case)

ACIMODE Minidisk access mode in EBCDIC format

ACIADDR Link-To address in EBCDIC format

ACIVERS ACIVERS1

ACITADDR Link-As address in EBCDIC format

ACIFLAG ACIRO or ACIRW

ACICMDTP Class G (X'02')

ACIEVENT "MDISK" padded with blanks

ACISLAB Command issuer's SECLABEL

Table 179 on page 682 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 179. Supported HCPRPIRA Return Codes for MDISK

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred, and CP performs the authorization check if needed.

X'08' • If ACIRSNCD=0, then the command fails and message HCP298E 'userid vdev not
linked; request denied.' is issued.

• If ACIRSNCD=ACISD and access mode 'WR' or 'MR' was requested, then the
R/O access is granted and message HCP1156I 'DASD device number forced R/O;
unauthorized for R/W' is issued.

X'20' The command fails with an error message.

CP Calls to the ACI

682 z/VM: 7.3 CP Programming Services

POSIX Set ID Functions
Table 180 on page 683 shows the ACIPARMS parameter list for the call to HCPRPIRA. CP will not
invoke the ESM for POSIX set ID requests unless the ESM has previously informed CP that it contains
POSIX support. See “Entry Point HCPRPEPX - Notify CP of POSIX capabilities” on page 601 for additional
information.

Table 180. POSIX Set ID Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACISETID

ACILEN ACISIDSB

ACIBMAPP ACIDGNPR

ACIENV One of the following: ACISETUI, ACISETEU, ACISETGI, ACISETEG, ACIEXEC,
ACINWGRP, or ACISETSG.

ACIRGRP Access control group name from the user directory entry of the user identified in
ACIRUSR.

ACISLAB SECLABEL of the user identified in ACIRUSR.

ACIRUSR Issuer's user ID (user whose IDs are to change).

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIANY

ACIFLAG2 Flags, as follows:

• ACIPXUSN if supplying a group name in ACINGNAM (as opposed to a GID in
ACINGID).

ACIEVENT “POSIXSETID”, left-justified and padded with blanks.

ACIORUID Old (current) real UID.

ACIOEUID Old (current) effective UID.

ACIOSUID Old (current) saved set-UID.

ACIORGID Old (current) real GID.

ACIOEGID Old (current) effective GID.

ACIOSGID Old (current) saved set-GID.

ACINUID New UID (equal to ACIORUID if UID not being changed).

ACINGID If ACIPXUSN is off, the new GID (equal to ACIORGID if GID not being changed);
otherwise, not used as input to the ESM.

ACINGNAM If ACIPXUSN is on, the group name that identifies the new GID; otherwise, not used.
May be in mixed case.

ACIOSGCT If ACIENV=ACISETSG, count of old (current) SGIDs; otherwise, not used.

ACIOSGLS If ACIENV=ACISETSG, address of old SGID list; otherwise, not used.

ACINSGCT If ACIENV=ACISETSG, count of new SGIDs; otherwise, not used.

ACINSGLS If ACIENV=ACISETSG, address of new SGID list; otherwise, not used.

Table 181 on page 684 shows the output fields set by the ESM in ACIPARMS on the return from
HCPRPIRA.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 683

Table 181. POSIX Set IDs ESM output fields in ACIPARMS

Label Contents

ACIFLAG2 Flags, as follows:

• ACIPXALL indicates that all three (real, effective and saved set) POSIX UIDs and/or
GIDs are to be set to the new value. ACIPXALL is only valid when ACIENV is either
ACISETUI or ACISETGI.

ACINGID If ACIPXUSN is on, the GID associated with the input group name passed in
ACINGNAM.

Table 182 on page 684 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 182. Supported HCPRPIRA Return Codes for POSIX Set ID Functions

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues. CP performs authorization
checking.

X'08' Authorization is denied. If invoked during DIAGNOSE code X'29C', it fails with return
code SPXEAUTH (5).

X'20' The ESM is unavailable. If invoked during DIAGNOSE code X'29C', it fails with return
code SPXEDBAS (9).

X'24' The input group does not exist. If invoked during DIAGNOSE code X'29C', it fails with
return code SPXENFND (6).

X'2C' ACINUID or ACINGID contains an invalid value. If invoked during DIAGNOSE code
X'29C', it fails with return code SPXEID (8).

POSIX Group Database Query Function
This function returns data from the POSIX group database. Table 183 on page 684 shows the ACIPARMS
parameter list for the call to HCPRPIRA. CP will not invoke the ESM for POSIX database queries unless the
ESM has previously informed CP that it contains POSIX support. See “Entry Point HCPRPEPX - Notify CP of
POSIX capabilities” on page 601 for additional information.

Table 183. Query POSIX Group Database Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIQGDB

ACILEN ACIGB1SB + length of ACIGBUFL buffer list (in bytes)

ACIBMAPP ACIDGNPR

ACIENV ACIPQGDB

ACIRGRP Access control group name from the user directory entry of the user identified in
ACIRUSR, if any; otherwise, zeros. If ACIRUSR is “*SYSTEM*”, ACIRGRP is set to zeros.

ACISLAB SECLABEL of the user identified in ACIRUSR, if any; otherwise, zeros. If ACIRUSR is
“*SYSTEM*”, ACISLAB is set to “SYSHIGH”.

ACIRUSR If ACIPXSYS is off, issuer's user ID; otherwise, “*SYSTEM*”. The data must be left-
justified and padded with blanks.

ACITUSR If ACIPXQGM is on, user whose group membership is being queried; otherwise, zeros.

CP Calls to the ACI

684 z/VM: 7.3 CP Programming Services

Table 183. Query POSIX Group Database Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIANY

ACIFLAG2 Flags, as follows:

• ACIPXUSN if supplying a group name in ACIGGNAM (as opposed to a GID in
ACIGGID)

• ACIPXSYS if this is a CP-initiated query (as opposed to a user-initiated query). No
authority checking should be performed.

• ACIPXIDS if the query was initiated by a POSIX process. ACIGRUID, ACIGEUID,
ACIGSUID, ACIGRGID, ACIGEGID and ACIGSGID are filled in.

• ACIPXQGM if this is a query to determine if ACITUSR is a member of the group
identified in ACIGGNAM/ACIGGID.

ACIEVENT “POSIXGROUPDB”, left-justified and padded with blanks

ACIGRUID If ACIPXIDS is on, real UID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGEUID If ACIPXIDS is on, effective UID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGSUID If ACIPXIDS is on, saved set-UID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGRGID If ACIPXIDS is on, real GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGRGID If ACIPXIDS is on, real GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGEGID If ACIPXIDS is on, effective GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGSGID If ACIPXIDS is on, saved set-GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIGGID If ACIPXUSN is off, GID of the POSIX group for which information is to be returned

ACIGGNAM If ACIPXUSN is on, the group name of the POSIX group for which information is to be
returned. May be in mixed case.

ACIGBUFL Group database buffer list. A list of contiguous entries describing the output buffers for
this request. Each entry consists of a buffer address and length (in bytes). ACILEN can
be used to calculate the number of entries in the list. The entries describe the buffers
to contain the only data item requested via this interface, the list of group members.

Table 184 on page 685 shows the output fields set by the ESM in ACIPARMS on the return from
HCPRPIRA.

Table 184. Query POSIX group database output fields in ACIPARMS

Label Contents

ACIGGID If ACIPXUSN is on, the GID corresponding to the input group name

ACIGGNAM If ACIPXUSN is off, the group name corresponding to the input GID

ACIGMCNT Count of members in the group.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 685

Table 184. Query POSIX group database output fields in ACIPARMS (continued)

Label Contents

ACIGBUFL Group database buffer list. If ACICODE = X'00', the user names of the members of the
input group have been placed in the buffers and the length field of each entry contains
the length, in bytes, of the data placed in the buffer pointed to by that entry. The data
consists of contiguous user names that are left-justified and padded on the right with
blanks to a length of 8 characters each. If there are no user names to be returned, then
the length fields in the group buffer list must be set to zero. Before returning this list to
the requestor, CP will translate all user names to lower case.

If ACICODE = X'28', the length field of the first entry contains the length, in bytes, of
the buffer necessary to contain the entire member list.

If ACICODE is not X'00' or X'28', the buffer list is unchanged.

Table 185 on page 686 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 185. Supported HCPRPIRA Return Codes for POSIX group database query

RC Meaning

X'00' Authorization is granted. If requested, the buffers contain the member list, and the
buffer length fields have been updated accordingly. If ACIPXQGM was specified on
input, ACITUSR is a member of the group identified in ACIGGNAM/ACIGGID. CP will
acquire any deferred data items from the directory or use default values, without
performing any authorization checks.

X'04' Authorization is deferred and processing continues. CP performs authorization
checking and provides the database information to authorized requestors.

X'08' Authorization is denied. If invoked during DIAGNOSE code X'2A0', it fails with return
code QPXEAUTH (5).

X'20' The ESM is unavailable. If invoked during DIAGNOSE code X'2A0', it fails with return
code QPXEDBAS (9).

X'24' The input group does not exist. If invoked during DIAGNOSE code X'2A0', it fails with
return code QPXENFND (6).

X'28' Authorization is granted, but the buffers provided on input are too small to contain
the entire group member list. The length field of the first ACIGBUFL entry contains the
total required buffer length, in bytes. CP can be expected to acquire larger buffers and
request all of the data from the ESM again.

X'30' ACITUSR is not a member of the group identified in ACIGGNAM/ACIGGID. This
ACICODE is only possible when ACIPXQGM was specified on input.

POSIX User Database Query Function
This function returns data from the POSIX user database. Table 186 on page 686 shows the ACIPARMS
parameter list for the call to HCPRPIRA. CP will not invoke the ESM for POSIX database queries unless the
ESM has previously informed CP that it contains POSIX support. See “Entry Point HCPRPEPX - Notify CP of
POSIX capabilities” on page 601 for additional information.

Table 186. User Database Query Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIQUDB

ACILEN ACIUDBSB + length of ACIUBUFL buffer list (in bytes)

CP Calls to the ACI

686 z/VM: 7.3 CP Programming Services

Table 186. User Database Query Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIBMAPP ACIDGNPR

ACIENV ACIPQUDB

ACIRGRP Access control group name from the user directory entry of the user identified in
ACIRUSR, if any; otherwise, zeros. If ACIRUSR is “*SYSTEM*”, ACIRGRP is set to zeros.

ACISLAB SECLABEL of the user identified in ACIRUSR, if any; otherwise, zeros. If ACIRUSR is
“*SYSTEM*”, ACISLAB is set to “SYSHIGH”.

ACIRUSR If ACIPXSYS is off, issuer's user ID; otherwise, “*SYSTEM*”. The data must be left-
justified and padded with blanks.

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIANY

ACIFLAG2 Flags, as follows:

• ACIPXUSN if supplying a user name in ACIUUNAM (as opposed to a UID in ACIUUID).
• ACIPXSYS if this is a CP-initiated query (as opposed to a user-initiated query). No

authority checking should be performed.
• ACIPXIDS if the query was initiated by a POSIX process. ACIURID, ACIUEID,

ACIUSUID, ACIURGID, ACIUEGID and ACIUSGID are filled in.

ACIEVENT “POSIXUSERDB”, left-justified and padded with blanks

ACIURUID If ACIPXIDS is on, real UID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIUEUID If ACIPXIDS is on, effective UID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIUSUID If ACIPXIDS is on, saved set-UID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIURGID If ACIPXIDS is on, real GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIUEGID If ACIPXIDS is on, effective GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIUSGID If ACIPXIDS is on, saved set-GID of the process requesting the data. Otherwise,
unpredictable and should not be used.

ACIUUNAM If ACIPXUSN is on, user name (user ID) for which information is to be returned. Must
be in upper case.

ACIUUID If ACIPXUSN is off, UID for which information is to be returned

ACIUBUFL User database buffer list. A list of contiguous entries describing the output buffers for
this request. Each entry consists of a buffer address and length (in bytes). A buffer
address of zero indicates that the corresponding database information, and its length,
should not be returned. ACILEN can be used to calculate the number of entries in the
list. The address and length field of each entry is described below.

ACIUIWDA Address of the buffer to contain the user's initial working directory

ACIUIWDL Length of the buffer pointed to by ACIUIWDA

ACIUIUPA Address of the buffer to contain the user's initial user program

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 687

Table 186. User Database Query Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIUIUPL Length of the buffer pointed to by ACIUIUPA

ACIUFSRA Address of the buffer to contain the user's file system root

ACIUFSRL Length of the buffer pointed to by ACIUFSRA

ACIUSGIA Address of the buffer to contain the user's supplementary GID list

ACIUSGIL Length of the buffer pointed to by ACIUSGIA

Table 187 on page 688 shows the output fields set by the ESM in ACIPARMS on the return from
HCPRPIRA.

Table 187. Query POSIX user database output fields in ACIPARMS

Label Contents

ACIUUNAM If ACIPXUSN is off, the user name (user ID) corresponding to the input UID. CP will
translate this to lower case before returning it to the requestor.

ACIUUID If ACIPXUSN is on, the UID corresponding to the input user name (user ID).

ACIUGNAM Group name of the user's primary POSIX group. May be in mixed case.

ACIUGID GID of the user's primary POSIX group.

ACIUBUFL User database buffer list. If ACICODE = X'00', the high-order bit of each length field
indicates whether the ESM has chosen to provide the corresponding data or to defer
it to CP. If this bit is on, the data that the ESM wishes to provide has been placed in
the buffers, and the length field of the entry contains the length, in bytes, of the data
placed in the buffer pointed to by that entry. If this bit is off, CP will use its own data
(usually from the user directory or a default value).

CP preserves the case of the data pointed to by ACIUIWDA, ACIUIUPA and ACIUFSRA.
These strings must be no longer than 1023 characters.

If the Supplementary GID list was returned, it must include the user's primary GID. It
is recommended, but not required, that the primary GID be the first one in the list. This
list must contain no more than {NGROUPS_MAX} GIDs.

If ACICODE = X'28', the length field of each entry whose high-order bit of the length
field is on contains the length, in bytes, of the buffer necessary to contain the
corresponding database information. If ACICODE is not X'00' or X'28', the buffer list is
unchanged.

Table 188 on page 688 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 188. Supported HCPRPIRA Return Codes for user database query

RC Meaning

X'00' Authorization is granted. The ACIUBUFL entries indicate whether the buffers contain
the requested user database information. The buffer length fields have been updated
accordingly. CP will acquire any deferred data items from the directory or use default
values, without performing any authorization checks.

X'04' Authorization is deferred and processing continues. CP performs authorization
checking and provides the database information to authorized requestors.

CP Calls to the ACI

688 z/VM: 7.3 CP Programming Services

Table 188. Supported HCPRPIRA Return Codes for user database query (continued)

RC Meaning

X'08' Authorization is denied. If invoked during DIAGNOSE code X'2A0', it fails with return
code QPXEAUTH (5).

X'20' The ESM is unavailable. If invoked during DIAGNOSE code X'2A0', it fails with return
code QPXEDBAS (9).

X'24' The input user does not exist. If invoked during DIAGNOSE code X'2A0', it fails with
return code QPXENFND (6).

X'28' Authorization is granted for all requested data, but one or more of the buffers provided
on input is too small to contain the requested data. The length field of each ACIUBUFL
entry whose high-order bit of the length field is on contains the required buffer length,
in bytes, for that item. CP can be expected to acquire larger buffers and request all of
the data from the ESM again.

Resource Access Authorization Check
This function returns data from a resource access authorization check. It can be called by any part of CP
and operates similarly to a RACROUTE REQUEST=AUTH call.

If access is denied or deferred (ACICODE = ACINOAC or ACIDEFR), the ACIREASON label will contain an
additional explanation. For more information on class and resource names and return and reason codes,
see z/VM: Security Server RACROUTE Macro Reference.

Table 189 on page 689 shows the ACIPARMS parameter list for a call to HCPRPIRA.

Table 189. Resource Access Authorization Check Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIRSCHK

ACILEN The length of ACIPARMS (in bytes).

ACIVERS ACIVERS1

ACIBMAPP Protect settings.

ACIENV Event type.

ACIFLAG ACIGOOD or ACIBAD, and ACIANY if required.

ACIEVENT Command, diagnose, or function name.

ACIRUSR User ID that issued the command.

ACITUSR User ID that is the target of the command (optional).

If set, the target user's access to the specified resource will be verified.
Otherwise, the issuing user's access will be verified.

ACISLAB SECLABEL of the user identified in ACIRUSR.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 689

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

Table 189. Resource Access Authorization Check Format of the ACIPARMS Parameter List (continued)

Label Contents

ACIACCESS Either:

• ACIACQUERY to query the highest permitted level of access.
• ACIACREAD to verify read-only access.
• ACIACWRITE to verify write access.
• ACIACPRIV to verify privileged access.
• ACIACFULL to verify full access to the resource.

Note: If ACIACQUERY is specified, this field will be overlaid with the highest
permitted access if the return code is zero.

ACICLASS Resource class name, padded on the right with blanks.

ACILOGGING Either:

• ACILOGPERESM where ESM audit settings are honored (default).
• ACILOGNOFAIL to disable authorization failure audits.
• ACILOGNONE to disable the creation of an audit record.
• ACILOGNOSTAT is the same as ACILOGNONE, but without updating access

statistics.

ACIRESNAME Resource name.

ACIRESNAMELEN Length of the resource name (in bytes).

ACILOGDATA Caller-defined string to be included in the audit record.

ACILOGDATALEN Length of the string in ACILOGDATA (in bytes).

Table 190 on page 690 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 190. Supported HCPRPIRA Return Codes for Resource Access Authorization Check

RC Meaning

X'00' Authorization is granted or deferred and processing continues.

X'08' Authorization is denied.

X'0C' Authorization failed.

X'10' Password is expired.

X'20' The ESM is unavailable.

Table 191 on page 690 shows the list of class and resource names used by CP.

Table 191. Class and Resource Names Used by CP for Resource Access Authorization Check

Class Name Resource Name Used By

SURROGAT LOGONBY.userid • DIAGNOSE X'88' subcode 8
• FOR command

VMDEV RDEV.nnnn, where
nnnn is the 4-digit
hexadecimal device
number.

• DEDICATE command
• ATTACH command
• GIVE command

CP Calls to the ACI

690 z/VM: 7.3 CP Programming Services

RSTDSEGt
Table 192 on page 691 shows the ACIPARMS parameter list for an HCPRPIRA call for LOAD and FIND of
a RESTRICTED NSS/DCSS. This function can be invoked using DIAGNOSE code X'64' or the IPL command.

Table 192. RSTDSEG format of the ACIPARMS Parameter List

Label Contents

ACIFCN Either:

• ACIDCSEG for DCSS's
• ACINSSEG for NSS's

ACILEN ACISIZE + ACIDSIZ (in bytes)

ACIBMAPA X'00' or X'80' (ACISYSAU)

ACIBMAPP X'00' or X'80' (ACISYSPR)

ACIBMAPM X'00' or X'80' (ACISYSMC)

ACIENV ACISEG

ACIRUSR Command issuers user ID.

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIRW|ACIRO + ACIGOOD|ACIBAD

ACIEVENT "RSTDSEG" padded with blanks

ACISLAB Command issuer's SECLABEL

ACISEGNM DCSS name

ACIRY Contents of user's Ry register (for calls invoked via DIAGNOSE code X'64' only)

Table 193 on page 691 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 193. Supported HCPRPIRA Return Codes for RSDTSEG.

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred, and CP performs the authorization check.

X'08' If invoked by DIAGNOSE code X'64', condition code 2 and return code 449 (X'1C1')
is returned, indicating user is not authorized.
If invoked by the IPL command, the command fails. Message HCP449E 'Your userid
is not authorized to IPL system name' is issued.

X'20' If invoked by DIAGNOSE code X'64', condition code 2 and return code 449 (X'1C1')
is returned, indicating user is not authorized.
If invoked by the IPL command, the command fails. Message HCP449E 'Your userid
is not authorized to IPL system name' is issued.

SCIF Event Audit
Table 194 on page 692 shows the ACIPARMS parameter list for an HCPRPIRA call for the audit of a SCIF
event.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 691

Table 194. SCIF Event Audit Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE+ACIVMCSZ (in bytes)

ACIBMAPA ACISYSAU

ACIENV ACISCIF

ACIRUSR Primary user ID

ACITUSR Secondary user ID

ACIVERS ACIVERS1

ACIFLAG ACIANY+ACIGOOD or ACIANY+ACIBAD

ACISLAB Primary user's SECLABEL

ACITLAB Secondary user's SECLABEL

ACIEVENT 'SCIF' padded with blanks

ACIVMCF 'SCIF EVENT- CHECKED' or 'SCIF EVENT- UNCHECKED'

There is no return code checking performed after the ESM call.

SCIF Event MAC Check
Table 195 on page 692 shows the ACIPARMS parameter list for an HCPRPIRA call for the MAC check of a
SCIF event.

Table 195. SCIF Event MAC Check Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD Default function code

ACILEN ACISIZE (in bytes)

ACIBMAPM ACISYSMC

ACIENV ACISCIF

ACIRUSR Secondary user ID

ACITUSR Primary user ID

ACIVERS ACIVERS1

ACIFLAG ACIANY+ACIRO+ACIGOOD

ACISLAB Secondary user's SECLABEL

ACITLAB Primary user's SECLABEL

ACIEVENT 'SCIF' padded with blanks

Table 196 on page 692 shows the ACICODE return codes checked on return from HCPRPIRA.

Table 196. Supported Return Codes

RC Meaning

<= X'04' Authorization is granted and processing continues.

CP Calls to the ACI

692 z/VM: 7.3 CP Programming Services

Table 196. Supported Return Codes (continued)

RC Meaning

> X'04' The command fails with error message HCP6768I, indicating SECUSER or observation
is not functional.

SPF_OPEN, SPF_CREATE, SDF_OPEN, SDF_CREATE
Table 197 on page 693 ACIPARMS format for an audit call for SPF_CREATE and SDF_CREATE and for a
MAC/AUDIT call for SPF_OPEN and SDF_OPEN. These system functions can be invoked in various ways, for
example DIAGNOSE codes X'14', X'34', and X'E0'.

Note: MAC checking will not be performed when running on the system VMDBK.

Table 197. SPFOPEN Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT Setting

ACIBMAPM MAC Setting (only for SPF_OPEN and SDF_OPEN)

ACIENV ACISPF

ACIRUSR Spool file owner's user ID

ACIVERS ACIVERS1

ACIFLAG ACIANY + ACIGOOD + ACIRO

ACIEVENT "SPF_OPEN", "SDF_OPEN", "SPF_CREATE", "SDF_CREATE"

ACISLAB Command issuer's SECLABEL

If running on the system VMDBK, system VMDBK's SECLABEL

ACITLAB Spool file's SECLABEL

ACIORIG Spool file origin user ID

ACIFSTPG DASD address of first page

ACISPLID Spool ID of file to be opened

ACICMDIS Command issuer's user ID

Table 198 on page 693 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 198. Supported HCPRPIRA Return Codes

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

X'08' The function fails and HCPSFSOR returns R15=12 and CC=3 to the caller, indicating
access is denied.

X'20' The function fails and HCPSFSOR returns R15=12 and CC=3 to the caller, indicating
access is denied.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 693

SPF_DELETE and SDF_DELETE audit
Table 199 on page 694 ACIPARMS format for SPF_DELETE and SDF_DELETE.

Table 199. ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT Setting (X'80' or X'00')

ACIENV ACISPF

ACIRUSR Spool file owner's user ID

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIANY

ACIEVENT "SPF_DELETE" or "SDF_DELETE" padded with blanks

ACISLAB Issuer's SECLABEL

ACITLAB Spool file's SECLABEL

ACIFSTPG DASD address of first page

ACISPLID Spool ID of file to be deleted

ACIORIG Spool file origin user ID

ACICMDIS Command issuer's user ID

There is no return code checking done on this audit call.

SNIFFER_MODE Function
Table 200 on page 694 shows the ACIPARMS parameter list for the HCPRPIRA call to audit promiscuous
mode.

Table 200. ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN Length of parameter list in bytes

ACIBMAPA AUDIT Setting

ACIENV ACISNIF

ACIRGRP Command issuer's ACI group name

ACIRUSR Requester's user ID

ACITUSR Guest LAN or virtual switch owner

ACILFLAG Promiscuous mode on or off (ACILGOPT)

ACIVERS ACIVERS1

ACINODE Guest LAN or virtual switch name (ACILNID)

ACITADDR Requester's VDEV address

ACIFLAG ACIGOOD or ACIBAD

CP Calls to the ACI

694 z/VM: 7.3 CP Programming Services

Table 200. ACIPARMS Parameter List (continued)

Label Contents

ACIEVENT SNIFFER_MODE

ACISLAB Requester's SECLABEL

ACILVIDL VLAN ID buffer size

ACILVIDA List of authorized VLAN IDs

Table 201 on page 695 shows the return codes the CP supports in ACICODE on the return from
HCPRPIRA.

Table 201. Supported HCPRPIRA Return Codes for a Promiscuous Mode Audit

RC Meaning

X'00' Successful audit

X'20' ESM was unable to process the request

UTLPRINT Function
Table 202 on page 695 shows the ACIPARMS parameter list for the HCPRPIRA.

Table 202. PRINT Format of the ACIPARMS Parameter List

Label Contents

ACIFCN ACIVMCMD

ACILEN ACISIZE + ACISPLSZ (in bytes)

ACIBMAPA AUDIT Setting

ACIBMAPM MAC Setting

ACIENV ACISPF

ACIRUSR File owner's user ID

ACIVERS ACIVERS1

ACIFLAG ACIGOOD + ACIRO + ACIANY

ACIEVENT "UTLPRINT" padded with blanks

ACITLAB SECLABEL of the file being printed

ACIORIG Spool file origin ID

ACISPLID Spool file ID

ACIFSTPG Starting DASD address

Table 203 on page 695 shows the return codes that CP supports in ACICODE on the return from
HCPRPIRA.

Table 203. Supported HCPRPIRA Return Codes for PRINT

RC Meaning

X'00' Authorization is granted and processing continues.

X'04' Authorization is deferred and processing continues.

CP Calls to the ACI

Chapter 11. Access Verification System Service (*RPI) 695

Table 203. Supported HCPRPIRA Return Codes for PRINT (continued)

RC Meaning

X'08' The file is placed in system HOLD status, and the following messages are issued:

• HCP356E 'Access denied; User userid file spoolid not printed.'
• HCP1561E 'User userid's file spoolid is held.'

X'20' The printer is drained, the file is requeued, and the following messages are issued:

• HCP2514E 'Printer rdev was drained because the external security manager is
unavailable.'

• HCP1561E 'User userid's file spoolid is requeued.'

CP Calls to the ACI

696 z/VM: 7.3 CP Programming Services

Chapter 12. Account System Service (*ACCOUNT)

An installation may write an application to run in a guest virtual machine that has the authorization to
use the IUCV interface to receive accounting records from the z/VM control program supporting it. This
IUCV authorization is defined within the IUCV directory control statement of the guest virtual machine.
The IUCV control statement must name *ACCOUNT as the CP system service to which a communication
path will be established. The user ID of the guest virtual machine may also be identified to the control
program during system generation so that records can be accumulated for the virtual machine before it
has connected to the system service.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

The Account system service (*ACCOUNT) in CP supports both 1-way and 2-way IUCV protocols when
sending records to authorized virtual machines. When a 1-way IUCV SEND function is issued by CP, the
virtual machine to which the accounting record is sent cannot issue an IUCV REPLY function but must
issue a RECEIVE function. When a 2-way IUCV SEND function is issued by CP, the virtual machine to
which the accounting record is sent must issue an IUCV REPLY function. Response data may not be sent
on an IUCV REPLY function. The reply buffer length field in the IUCV parameter list, IPBFLN2F, must
contain zeros. To do this, set a register to zero and code ANSLEN=(register) on the IUCV REPLY function.

Establishing Communication
Before issuing the IUCV CONNECT function to the Account system service, a virtual machine must issue
a DECLARE BUFFER request to IUCV to provide an external interrupt buffer. The virtual machine must be
enabled for IUCV interrupts in Control Register 0, and the PSW must be set to enable external interrupts.

The connection with the Account system service is created by issuing the IUCV CONNECT function,
specifying the user ID as *ACCOUNT. The use of the 2-way protocol for gathering accounting records
from the CP Account system service is specified by the virtual machine in the IPUSER data area when it
issues the IUCV CONNECT function to the Account system service. This area must contain X'02' at offset
8 if the application is written to issue the IUCV REPLY function after data is received from the Account
system service. If the area does not contain a X'02', the default is 1-way communication. The CONNECT
parameter list must also indicate that you do not want to receive messages with data in the parameter
list. This is indicated by specifying or defaulting to the PRMDATA=NO option on the IUCV CONNECT
function.

A virtual machine is not allowed to issue the IUCV SEND function to the Account system service (the path
is quiesced by CP recording services). A virtual machine may only have one communication path to the
Account system service. CP Recording system services will only send records with the PRTY=NO option.

When an application running in a virtual machine issues the CONNECT function to the accounting
system service, the connection is either completed successfully (by ACCEPT) or rejected (by SEVER).
If the connection is accepted, IUCV returns a path ID to the application that must be specified on all
subsequent IUCV requests to the system service. Only one CONNECT can be issued by a virtual machine
to the Account system service.

If the connection is severed, the Account system service places a 1-byte code at offset 9 of the IPUSER
field of the IPARML to indicate why. A code of:

• X'04' indicates that the virtual machine already has a connection to the Account system service.
• X'08' indicates that the virtual machine made a protocol error on the CONNECT request. The

PRMDATA=YES option was specified, but it should not have been.
• X'0C' indicates that the limit of 100 recording table entries has been reached and there is no room for

another.

The data format of an accounting record is identical to the records recorded through use of the RETRIEVE
ACCOUNT command. More than one user ID may be authorized to use this service.

*ACCOUNT

© Copyright IBM Corp. 1991, 2023 697

Receiving Accounting Records
To obtain an accounting record, when the application is notified by an external interrupt that one is
available, the IUCV RECEIVE function must be issued. The Account system service does not send another
record until either a response (when the application indicates that data is to be sent to it using the 1-way
protocol) or a REPLY (when an application indicates that data is sent to it using the 2-way protocol) is
received by CP recording services to the previous record sent.

The Account system service maintains a threshold limit which indicates when to notify the system
operator and the receiving virtual machine that uncollected records are accumulating in host storage.
The default value is 20 for accounting records. This value may be changed using the CP RECORDING
command. For more information on using CP commands, see z/VM: CP Commands and Utilities Reference.

To stop the receipt of records temporarily, you may issue the IUCV SEVER function. CP continues to queue
records for your virtual machine until a CP RECORDING ACCOUNT OFF command is issued specifying
your user ID. To resume receiving records, you may issue the IUCV CONNECT function specifying
USERID=*ACCOUNT.

If the CP abends while a virtual machine is collecting accounting data, accounting records not received by
the virtual machine are checkpointed and requeued to the virtual machine on a subsequent warm or force
start of the CP. The virtual machine is also logged onto the system automatically by CP if it is identified on
the SYSTEM_USERIDS statement in the system configuration file.

Disconnecting from the Accounting System Service
You can terminate collection of accounting records by issuing the IUCV SEVER function or the IUCV
RETRIEVE BUFFER function for your accounting system service path. SEVER may be initiated by the
system due to virtual machine reset or an IUCV RETRIEVE BUFFER request. CP continues to queue
records for your virtual machine until a CP RECORDING ACCOUNT OFF command is issued specifying your
user ID.

Accounting Record Formats
CP produces the following types of accounting records:

• Virtual machine user records (record type 1).
• Records for devices dedicated to a virtual machine user (record type 2).
• Records for temporary disk space dedicated to a virtual machine user (record type 3).
• Records that are written when CP detects that a user has entered enough LOGON, AUTOLOG,

XAUTOLOG, or APPCVM CONNECT invocations with an invalid password to reach or exceed an
installation-defined threshold value (record type 04).

• Records that are written when CP detects that a user has successfully entered a LINK command to a
protected minidisk not owned by the user (record type 05).

• Records that are written when CP detects that a user has entered enough LINK commands with an
invalid password to reach or exceed an installation-defined threshold value (record type 06).

• Records generated whenever a user logs off or disconnects from a device controlled by the VCNA or
VSCS (record type 07).

• Records that are written when CP detects that a user has successfully entered a LINK command to a
protected minidisk not owned by that user's virtual machine (record type 08). Record type 08 is also
generated when the user logs off or disconnects or when a SHUTDOWN or FORCE command causes
a logged-on virtual machine to be forced off the system. Disconnected virtual machines do not have
another 08 record generated for them if they are forced off.

• Records generated about ISFC (record type 09).
• Records logging changes to a user's privilege class (record type 0A)
• Records for virtual disk in storage space (record type B)

*ACCOUNT

698 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

• Records for Network Data Transmissions (record type C)
• Records generated as a result of a user-initiated DIAGNOSE X'4C' instruction (record type C0)
• Records for CPU capability (record type D).

Note: Record types 04, 05, 06, and 08 are generated only when LOGON, AUTOLOG, XAUTOLOG, LINK,
and CONNECT journaling is on.

These records are all 80-character card images.

The size of the fields in the accounting records restricts the data limit that each field can contain. To
find the available field size, refer to each record type. Since the fields are limited in their capacity, it is
recommended that you cut accounting records at least once a day.

Accounting Records for Virtual Machine Resource Usage (Record Type 1)
Type 1 accounting records are produced whenever a user logs off or the ACNT command is entered. These
records can also be produced when a DEFINE CPU command issued from the command line specifies a
change in CPU type. If a DEFINE CPU command is issued through a COMMAND directory statement, no
accounting records are produced. The state of CPU affinity during the accounting interval will determine
primary and secondary CPU usage. When there is usage on both primary and secondary types, two type 1
accounting records are produced. In this case, only the first record contains data in columns 41 through
64 and 73 through 76. Columns 1 through 28 and 79 and 80 of this record contain character data; all
other data is in hexadecimal form (the hexadecimal data is unprintable). All reserved columns contain
EBCDIC blanks. If the records are produced as a result of the DEFINE CPU command, the records contain
usage information for only the CPU being redefined.

Column
Contents

1–8
User ID

9–16
Account number

17–28
Date and time of accounting (mmddyyhhmmss)

29–32
Number of seconds connected to CP

33–36
Milliseconds of processor time used, including time for supervisor functions (see Note “3” on page
700)

37–40
Milliseconds of virtual CPU time used (see Note “3” on page 700)

41–44
Number of page reads

45–48
Number of page writes

49–52
Number of requested virtual I/O starts for non-spooled I/O

53–56
Number of virtual punch cards sent to a virtual punch

57–60
Number of virtual print lines sent to a virtual printer (this includes one line for each carriage control
command)

61–64
Number of virtual punch cards received from a virtual reader

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 699

65
Virtual CPU type code (see Note “2” on page 700)

66
Real CPU type code (see Note “2” on page 700)

67
Number of threads on the Real CPU on which the virtual CPU was dispatched (see Note “4” on page
700)

68–72
Reserved

73–76
Number of completed virtual I/O starts for non-spooled I/O (except DIAGNOSE X'58' and DIAGNOSE
X'98')

77–78
CPU address (for the SYSTEM VMDBK, this is the real processor address)

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

80
Accounting record identification code (1)

Notes:

1. User virtual machine time may be recorded in more than one record entry. For example:

• Processor time is accumulated under connect time (bytes 29 - 32) and processor time (bytes 33 -
40)

2. Virtual and Real CPU Type Codes:

• X'00' – general purpose Central Processor (CP)
• X'03' – IBM Integrated Facility for Linux (IFL)
• X'04' - Internal Coupling Facility (ICF)
• X'05' – IBM z Integrated Information Processor (zIIP)

3. If simultaneous multithreading is not installed on the hardware or not enabled on the system, these
fields contain the raw time reported by the hardware CPU timer (and identical to the MT-1 equivalent
time). If multithreading is enabled, these time fields contain the MT-1 equivalent time and a type
F accounting record is generated. For the raw time and prorated core time values, see “Accounting
Records for Virtual Machine Resource Usage 2 (Record Type F)” on page 715.

4. This is the number of threads on the Real CPU on which the virtual CPU was dispatched for the time
accrued in this accounting record, or an EBCDIC blank (equivalent to binary integer 64). The number of
threads is between 1 and 32. When the number is 1, the CPU time used on that CPU will be identical
regardless of whether it is reported as raw time or MT-1 equivalent time. This allows the type of CPU
time reported in this record to apply to all CPUs on the system. If multithreading is not supported
on the hardware or is not installed, the value will be 1. If this column contains an EBCDEC blank
(equivalent to binary integer 64), the Real CPU is running single threaded and the value should be
treated as 1.

Accounting Records for Dedicated Devices (Record Type 2)
A type 2 accounting record is produced whenever a virtual machine user releases a previously dedicated
device. Columns 1 through 28 and 79 and 80 of this record contain character data; all other data is in
hexadecimal form (the hexadecimal data is unprintable). For translation codes in columns 33 through 36,
see Device Class and Type Codes in z/VM: CP Planning and Administration. See the documentation for
each specific device for more complete information on model numbers.
Column

Contents

*ACCOUNT

700 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

1–8
User ID

9–16
Account number

17–28
Date and time of accounting (mmddyyhhmmss)

29–32
Number of seconds since the virtual disk was created or the number of seconds since the last
accounting record was cut for this virtual disk

33
Device class

34
Device type

35
Device model (if any)

36
Device features (if any)

37–78
Reserved

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

80
Accounting record identification code (2)

Accounting Records for Temporary Disk Space (Record Type 3)
A type 3 accounting record is produced whenever a virtual machine user releases temporary disk
space. Columns 1 through 28 and 79 and 80 of this record contain character data; all other data is in
hexadecimal form (the hexadecimal data is unprintable). See Device Class and Type Codes in z/VM: CP
Planning and Administration for information about translation codes for columns 33 through 36. See the
documentation for each device for more information on model numbers.
Column

Contents
1–8

User ID
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)
29–32

Number of seconds since the TDISK was created or the number of seconds since the last accounting
record was cut for this TDISK

33
Device class

34
Device type

35
Device model (if any)

36
Device features (if any)

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 701

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

37–38
CKD and ECKD Only Number of cylinders of temporary disk space used (only present for CKD or ECKD
architected device types)

39–40
CKD and ECKD Only Reserved

37–40
FBA Only Number of FBA blocks used (only present for FBA architected device types)

41–44
Number of 4-KB pages used (present for all device types)

45–78
Reserved

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

80
Accounting record identification code (3)

Accounting Records for Journaling (Record Types 04, 05, 06, 08, and 0I)
When LOGON, AUTOLOG, XAUTOLOG, LINK, or APPCVM CONNECT journaling is on, CP may create type
04, type 05, type 06, type 08, and type 0I accounting records.

A type 04 accounting record is written whenever CP detects that a user has issued enough LOGON,
AUTOLOG, XAUTOLOG, or APPCVM CONNECT invocations with an invalid password to reach or exceed an
installation-defined threshold value. This record has the following format:
Column

Contents
1–8

User ID specified on the command
9–16

Reserved for IBM use
17–28

Date and time of accounting (mmddyyhhmmss)
29–32

Terminal address (see Note “1” on page 705)
33–40

Invalid password (see Note “2” on page 705)
41–48

User ID that entered AUTOLOG, XAUTOLOG, APPCVM CONNECT, or the BYUSER ID that entered
LOGON (see Note “4” on page 705).

49–51
Reserved for IBM use

52–53
Current invalid password count in hexadecimal

54–55
Accounting record limit in hexadecimal

56
Blank

57–62
Reserved

63–70
Network qualifier for SNA terminal. Host virtual machine name for TCP/IP terminal.

*ACCOUNT

702 z/VM: 7.3 CP Programming Services

71–78
LUNAME for SNA terminal. IP address for TCP/IP terminal (see Note “5” on page 705).

79–80
Accounting card identification code (04)

A type 05 accounting record is produced whenever CP detects that a user has successfully entered a
LINK command to a minidisk protected by a password and not owned by that user. This record is always
produced when an external security manager authorizes the link. This record has the following format:
Column

Contents
1–8

User ID that entered the command
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)
29–32

Terminal address (see Note “1” on page 705)
33–40

Reserved for IBM use
41–48

User ID of the user that owns the minidisk
49–52

The minidisk address for which the LINK command was entered
53

Type of minidisk linked (see Note “3” on page 705)
54–55

Reserved for IBM use
56–57

Blank
58–62

Reserved
63–70

Network qualifier for SNA terminal. Host virtual machine name for TCP/IP terminal.
71–78

LUNAME for SNA terminal. IP address for TCP/IP terminal (see Note “5” on page 705).
79–80

Accounting card identification code (05)

A type 06 accounting record is produced whenever CP detects that a user has entered enough LINK
commands with an invalid password to reach or exceed an installation-defined threshold value. This
record has the following format:
Column

Contents
1–8

User ID that entered the command
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 703

29–32
Terminal address (see Note “1” on page 705)

33–40
Invalid password (see Note “2” on page 705)

41–48
User ID of the user that owns the minidisk

49–51
Reserved for IBM use

52–53
Invalid password count in hexadecimal

54–55
Invalid password limit in hexadecimal

56
Blank

57–60
Minidisk address for which the LINK command was entered

61–62
Reserved

63–70
Network qualifier for SNA terminal. Host virtual machine name for TCP/IP terminal.

71–78
LUNAME for SNA terminal. IP address for TCP/IP terminal (see Note “5” on page 705).

79–80
Accounting card identification code (06)

A type 08 record is generated when a user logs off or disconnects or when a SHUTDOWN or FORCE
command causes that logged-on user to be forced off the system. Disconnected users do not have
another 08 record generated for them if they are forced off. This record has the following format:
Column

Contents
1–8

User ID
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)
29–48

Reserved
49–56

LUNAME for SNA terminal. IP address for TCP/IP terminal (see Note “5” on page 705).
57–64

Network qualifier for SNA terminal. Host virtual machine name for TCP/IP terminal.
65–72

Terminal identification (logical device number, real device number, LUNAME for SNA terminal or
NONE)

73–78
Reserved

79–80
Accounting record identification code (08)

Notes:

*ACCOUNT

704 z/VM: 7.3 CP Programming Services

1. For the terminal address, columns 29 through 32 may contain one of the following:

• NONE—if no terminal is found
• SNA—if terminal is SNA (LUNAME is in columns 71–78)
• A real or logical device number in the form Lnnn, where nnn is the logical device number, for all other

cases.
2. For the invalid password, columns 33 through 40 may contain one of the following:

• Incorrect password
• TOO LONG—if entered password is more than 8 characters.

3. For the type of minidisk linked, column 53 may contain one of the following:

• X'00'–if the link is to a user's minidisk
• X'10'–if the link is to a full-pack overlay minidisk.

4. A by-user is a user who logs on to a virtual machine using the BY operand of the LOGON command.
The by-user’s own password is used for LOGON authorization checking for the virtual machine, so the
invalid password attempts are counted against the by-user ID, not the user ID of the virtual machine.

5. IP addresses are normally written in dotted-decimal format (for example, 9.130.58.78). In journal
records, each segment of the IP address is converted to a two-digit hexadecimal value. For example,
9 is converted to 09, and 130 is converted to 82. The result is an eight-byte string of four two-digit
hexadecimal numbers in character form. So, 9.130.58.78 becomes the character string 09823A4E.

A type 0I record is generated when the user is logged on through a logical device with an associated IPv6
address. This record has the following format:
Column

Contents
1–8

VM user ID
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)
29–36

Host virtual machine name
37–68

IPv6 address (see note “1” on page 705)
69–78

Reserved
79–80

Accounting record identification code (0I)

Note:

1. IPv6 addresses are normally written in hexadecimal text representation.

Example: 0123:4567:89AB:CDEF:FEDC:BA98:7654:3210

In type 0I records, each segment of the IP address is converted from binary to character form. The
result is a 32-byte string of 16 two-digit hexadecimal numbers in character form. So, the address
shown above becomes 0123456789ABCDEFFEDCBA9876543210.

Accounting Records for SNA/CCS (Record Type 07)
A type 07 accounting record is produced whenever a user logs off or disconnects from a device controlled
by VCNA or VSCS. The record indicates the user's share of the VCNA/VSCS resource used. Columns 1
through 16 and 79 and 80 of this record contain character data. See the VCNA Installation and Terminal

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 705

Use Guide for details of VM/VCNA accounting records and the ACF/VTAM Planning and Installation book
for details of VSCS accounting records.
Column

Contents
1–8

User ID
9–16

Account number
17–78

VSCS/VCNA accounting data
79–80

Accounting record identification code (07)

Accounting Records for Inter-System Facility for Communications (Record
Type 09)

A type 09 accounting record is produced when the ALL option of the ACNT command is entered.
Accounting records are generated for all active conversations and all active links.

There are four different categories of ISFC accounting records:

• Initialization accounting records
• Conversation accounting records
• Link statistics accounting records
• Termination accounting records.

ISFC produces the initialization accounting record during its initialization on the z/VM system. This record,
along with the termination accounting record indicates the time frame in which ISFC was active on the
z/VM system.

The format of the initialization accounting record is:
Column

Contents
1–8

SYSISFC, indicating that this record was created by the z/VM domain controller
9–12

Initialization record identifier, ISFI
13–16

Reserved for IBM use
17–28

Date and time the accounting record is generated
29–78

Reserved for IBM use
79–80

ISFC accounting record identifier

The format of the conversation start accounting record is:
Column

Contents
1–8

SYSISFC, indicating that this record was created by the z/VM domain controller
9–12

Conversation start accounting record identifier, ISFS

*ACCOUNT

706 z/VM: 7.3 CP Programming Services

13–16
Conversation ID

17–28
Date and time the accounting record is generated

29–36
User ID of the user that initiated the conversation

37–59
Reserved for IBM use

60
Type of name in bytes 61–68. R indicates a global resource. G indicates a gateway name. U indicates a
private resource server virtual machine or workstation user ID. I indicates IUCV.

61–68
Resource name, a gateway name, the user ID of the private resource server virtual machine or
workstation, or target userid for an IUCV CONNECT.

69–78
Reserved for IBM use

79–80
ISFC accounting record identifier

The format of the conversation active and conversation end accounting records is:
Column

Contents
1–8

SYSISFC, indicating that this record was created by the z/VM domain controller
9–12

Conversation record identifier. ISFA indicates a conversation active accounting record; ISFE, a
conversation end accounting record.

13–16
Conversation ID

17–28
Date and time the accounting record is generated

29–32
Number of bytes received from the remote domain controller since the conversation started or since
the last conversation active accounting record was issued.

33–36
Number of bytes sent to the remote domain controller since the conversation started or since the last
conversation active accounting record was issued.

37–78
Reserved for IBM use.

79–80
ISFC accounting record identifier

The format of the link statistics accounting records is:
Column

Contents
1–8

SYSISFC, indicating that this record was created by the z/VM domain controller
9–12

Link statistics record identifier, ISFL
13–16

Reserved for IBM use

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 707

17–28
Date and time the accounting record is generated

29–32
Number of bytes of data received (unsigned binary fullword)

33–36
Number of bytes of data sent since the link came up or since the last accounting record was generated
for this link (unsigned binary fullword)

37–40
Unit address of the link

41–44
Number of attention interrupts

45–48
Number of write operations that result in collisions

49–52
Number of successful write operations

53–56
Number of successful read operations

57–78
Reserved for IBM use.

79–80
ISFC accounting record identifier

The format of the termination accounting record is:
Column

Contents
1–8

SYSISFC, indicating that this record was created by the z/VM domain controller
9–12

Termination record identifier, ISFT.
13–16

Reserved for IBM use
17–28

Date and time the accounting record was generated
29–78

Reserved for IBM use
79–80

ISFC accounting record identifier

Accounting Records for logging changes to a user's privilege (Record Type
0A)

A type 0A accounting record is produced whenever a SET PRIVCLASS command is successfully issued.
The record tracks changes to a user's privilege class and their ability to change their privilege class
settings.

There are 4 subtypes of this record.
Subtype

Description
L

SET PRIVCLASS LOCK has been issued
U

SET PRIVCLASS UNLOCK has been issued

*ACCOUNT

708 z/VM: 7.3 CP Programming Services

C
The user's privilege class(es) have been changed via the SET PRIVCLASS command.

R
SET PRIVCLASS RESET has been issued

The format for subtypes 'L' (SET PRIVCLASS LOCK) and 'U' (SET PRIVCLASS UNLOCK) appears below.
Columns 1 through 36 and 78 through 80 of this record contain character data; all other data is in
hexadecimal form (the hexadecimal data is unprintable).
Column

Contents
1–8

User ID of the issuer of the SET PRIVCLASS command.
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)
29–36

Target user ID. User ID that is the target of the SET PRIVCLASS lock or unlock
37–77

Reserved
78

Subtype
Character

Subtype Meaning
L

SET PRIVCLASS LOCK has been issued
U

SET PRIVCLASS UNLOCK has been issued
79–80

Accounting record identification code (0A)

The format for subtypes 'C' (SET PRIVCLASS change) and 'R' (SET PRIVCLASS RESET) appears below.
Columns 1 through 36 and 78 through 80 of this record contain character data; all other data is in
hexadecimal form (the hexadecimal data is unprintable). The privilege class information consists of bits
representing privilege classes A-Z, and 1-6 respectively. The bit definitions are defined in HCPCLASS
COPY.
Column

Contents
1–8

User ID of the issuer of the SET PRIVCLASS command
9–16

Account number
17–28

Date and time of accounting (mmddyyhhmmss)
29–36

Target user ID. User ID whose settings are being changed
37–40

User privilege classes before the change or reset
41–44

User privilege classes after the change or reset
45–48

User privilege classes as indicated in the directory

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 709

49–77
Reserved

78
Subtype
Character

Subtype Meaning
C

The User's privilege class has been changed
R

The User's privilege class has been reset
79–80

Accounting record identification code (0A)

Accounting Records for virtual disk in storage space (Record Type B)
A type B accounting record is produced for a virtual disk in storage. Columns 1 through 28 and 79 and
80 of this record contain character data; all other data is in hexadecimal form (the hexadecimal data
is unprintable). For translation codes in columns 33 through 36, see Device Class and Type Codes in
z/VM: CP Planning and Administration. See the documentation for each specific device for more complete
information on model numbers.
Column

Contents
1–8

User ID. This user ID is defined as follows:

• If the virtual disk in storage is defined in the directory, this is the user ID which contains the MDISK
definition for this virtual disk in storage.

• If the virtual disk in storage was defined using the CP DEFINE command, this is the user ID that
issued the DEFINE command.

9–16
Account number

17–28
Date and time of accounting (mmddyyhhmmss)

29–32
Number of seconds connected to CP

33
Device class

34
Device type

35
Device model (if any)

36
Device features (if any)

37–40
Number of FBA blocks used

41–44
Number of 4 KB pages used (present for all device types)

45
Sub-type of virtual disk accounting record. The only volume defined is zero. If non-zero, the contents
of bytes 1-44 and 46-78 are undefined.

*ACCOUNT

710 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

46–78
Reserved

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

80
Accounting record identification code (B)

Accounting Records Network Data Transmissions (Record Type C)
Type C accounting records may be produced for any virtual machine user with NETAccounting or
NETRouter specified as an option in its user directory. The account records are produced when accounting
is performed (CP ACNT command), or when a field in the accounting record is about to overflow, and
the user has sent or received data from a Network device. These records are only produced when fields
containing byte counters for a device are non-zero.

Network devices to be included in these counts are:

• Virtual network interface cards (NIC)
• Virtual Channel to Channel Adapters
• IUCV and APPC/VM connection paths

The contents of Network Data Transmission accounting records depends on the type of Network device
being used. There are 3 different formats, designated by a subtype in byte 78. For subtype 00 (Virtual
NIC records), an additional 4 subformats, designated in byte 77, indicate what type of network data is
counted in the record.

Type C account record describing data transfer involving routers through a Virtual NIC (Network device
type 00). Columns 1 through 28, 35 through 50, and 79 through 80 of this record contain character
data; all other data is in hexadecimal form (the hexadecimal data is unprintable.)
Column

Contents
1-8

VM Userid (Owner of the Virtual NIC)
9-16

Account number
17-28

Date and time of accounting (mmddyyhhmmss)
29-30

Base VDEV address of the Virtual NIC
31-34

Default IP Address for this network adapter
35-42

LAN or virtual switch owner
43-50

LAN name or virtual switch name
51-58

Bytes Sent (See Data Descriptor)
59-66

Bytes Received (See Data Descriptor)
67-76

Reserved
77

Data Descriptor:

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 711

00 - Bytes sent to or received from Routers
01 - Bytes sent to or received from non-Routers
02 - Bytes sent to or received via Broadcast
03 - Bytes sent to or received via Multicast

78
Network device type (00) Virtual NIC

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

80
Accounting record identification code (C)

Notes:

1. Hardware headers which appear before the IP Header are not included in the byte counts reported
for simulated network adapters.

2. IP addresses are normally written in dotted-decimal format (for example, 9.130.58.78). In journal
records, each segment of the IP address is converted to a two-digit hexadecimal value. For example,
9 is converted to 09, and 130 is converted to 82. The result is an 8-byte string of four 2-digit
hexadecimal numbers in character form. So, 9.130.58.78 becomes the character string 09823A4E.

TYPE C accounting record for data transfer with a Virtual Channel to Channel Adapter. Columns 1
through 28, 35 through 42, and 79 through 80 of this record contain character data; all other data is in
hexadecimal form (the hexadecimal data is unprintable.)

Column
Contents

1-8
VM Userid (owner of the local CTCA)

9-16
Account number

17-28
Date and time of accounting (mmddyyhhmmss)

29-30
VDEV address of the local CTCA

31-34
Reserved

35-42
Userid of the owner of the remote CTCA

43-44
VDEV address of the remote CTCA

45-50
Reserved

51-58
Number of bytes sent to the remote CTCA.

59-66
Number of bytes received from the remote CTCA.

67-77
Reserved

78
Network device type (01) virtual CTCA

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

*ACCOUNT

712 z/VM: 7.3 CP Programming Services

80
Accounting record identification code (C)

TYPE C account record for data transfer with an IUCV or APPC/VM connection. Columns 1 through 28,
35 through 42, and 79 through 80 of this record contain character data; all other data is in hexadecimal
form (the hexadecimal data is unprintable.)
Column

Contents
1-8

VM Userid (Owner of the local connection.)
9-16

Account number
17-28

Date and time of accounting (mmddyyhhmmss)
29-34

Reserved
35-42

Connected VM Userid (remote)
43-50

Reserved
51-58

Number of bytes sent to the remote user.
59-66

Number of bytes received from the remote user.
67-77

Reserved
78

Network device type (02) IUCV or APPC path
79

Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)
80

Accounting record identification code (C)

Notes:

1. Byte count values are reset to zero after an accounting record is created.
2. Byte count values represent data read or written to the device. They will not typically contain bytes

transferred as a result of initialization, termination, or error recovery.
3. Accounting for a particular LAN may be controlled by the DEFINE LAN, and SET LAN commands, and

default settings may be set by the VMLAN command or VMLAN statement in the system config file.

Accounting Records for CPU Capability (Record Types D and E)
A type D accounting record is produced to record the CPU capability of the processors in the system. A
record is generated during z/VM system initialization and whenever the CPU capability changes. All fields
of the record contain character data.

Column
Contents

1-16
Reserved

17-28
Date and time of accounting (mmddyyhhmmss)

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 713

29-36
Primary CPU capability

37-44
Secondary CPU capability

45-52
Nominal CPU capability

53–55
Capacity-Change Reason

56–58
Capacity-Adjustment Indication

59–78
Reserved

79
Card generator field (0)

80
Accounting record identification code (D)

Notes:

1. When the secondary CPU capability value is zero, it means all CPUs of any CPU type in the
configuration have the same capability, as specified by the primary CPU capability.

2. When the nominal CPU capability value is zero, it means the system is not operating at reduced speed,
so the primary CPU capability value applies.

A type E (CPU Capability continuation data) accounting record is produced at the same time as the CPU
Capability (type D) accounting record. All fields of the record contain character data. The capability fields
contain 8-digit approximations of the binary-floating point values and the reserved fields contain blanks.

Column
Contents

1-8
User ID

9-16
Account number

17-28
Date and time of accounting (mmddyyhhmmss)

29-36
Primary CPU capability decimal value (see note 1)

37-44
Secondary CPU capability decimal value (see note 1)

45-52
Nominal CPU capability decimal value (see note 1)

53–78
Reserved

79
Card generator field (0)

80
Accounting record identification code (E)

Notes:

1. These fields will be reported as "OVERFLOW" if the capability value is greater than or equal to
100000000 (decimal). These fields will be reported as "UNDERFLO" if the capability value is less
than or equal to 10 -7.

*ACCOUNT

714 z/VM: 7.3 CP Programming Services

2. When the secondary CPU capability value is zero, it means all CPUs of any CPU type in the
configuration have the same capability, as specified by the primary CPU capability.

3. When the nominal CPU capability value is zero, it means the system is not operating at reduced speed,
so the primary CPU capability value applies.

Accounting Records for Virtual Machine Resource Usage 2 (Record Type F)
Type F accounting records are a continuation of the type 1 record. When multithreading is enabled on the
system, a single type F record is produced for each virtual CPU for which one or two type 1 accounting
records (for primary and secondary CPU types) are produced. Columns 1 through 28, 61 through 68, and
79 and 80 of this record contain character data; all other data is in hexadecimal form (the hexadecimal
data is unprintable). All reserved columns contain binary zeros.

Column
Contents

1–8
User ID

9–16
Account number

17–28
Date and time of accounting (mmddyyhhmmss)

29–32
Milliseconds of processor time used on the primary CPU type, including time for supervisor functions,
in raw time.

33–36
Milliseconds of virtual CPU time used on the primary CPU type, in raw time.

37–40
Milliseconds of processor time used on the secondary CPU type, including time for supervisor
functions, in raw time.

41–44
Milliseconds of virtual CPU time used on the secondary CPU type, in raw time.

45–48
Milliseconds of processor time used on the primary CPU type, including time for supervisor functions,
in prorated core time (see Note “1” on page 716)

49–52
Milliseconds of virtual CPU time used on the primary CPU type, in prorated core time (see Note “1” on
page 716)

53–56
Milliseconds of processor time used on the secondary CPU type, including time for supervisor
functions, in prorated core time (see Note “1” on page 716)

57–60
Milliseconds of virtual CPU time used on the secondary CPU type, in prorated core time (see Note “1”
on page 716)

61–68
Name of the CPU pool (see Note “2” on page 716)

69–76
Reserved

77
Codes regarding this accounting record:
X'80'

The prorated core time fields in this record are valid.

*ACCOUNT

Chapter 12. Account System Service (*ACCOUNT) 715

78
Reserved

79
Card generator field (C if Diag 4C has been issued, A if adjunct configuration record, or 0 otherwise)

80
Accounting record identification code (F)

Notes:

1. When APAR VM65680 is applied and multithreading is enabled, prorated core times are calculated
and reported for every virtual machine. The prorated core code provided in column 77 of this record
indicates whether these values are included in the accounting record.

2. When the virtual machine is not assigned to a CPU pool, this field contains EBCDIC blanks.

Adding Your Own Accounting Records and Source Code
CP allows you to customize the way it collects accounting records in two ways:

• A virtual machine can use the DIAGNOSE instruction to initiate the generation of a virtual machine
accounting record. For more information, see “User-Initiated Accounting Records (Record Type C0)” on
page 716

• You can add your own source code to the CP accounting exit module. For more information, see CP
Accounting Exit in z/VM: CP Exit Customization.

User-Initiated Accounting Records (Record Type C0)
A virtual machine user can initiate the creation of an accounting record that contains up to 70 bytes of
information of the user's choosing. To do this, the user enters a DIAGNOSE code X'4C' instruction with the
following operands (the z/VM: CP Programming Services describes how to enter a DIAGNOSE code):

• The address of a data area in virtual storage that contains the information that the user wants in
columns 9 through 78 of the card image record. (This information is placed in the accounting record
exactly as it appears in the data area. If more than 70 bytes of data are included, only the first 70 bytes
appear in the accounting record.)

• A function code of X'10'.
• The length of the data area in bytes.

The information on this type of accounting record is as follows:
Column

Contents
1–8

User ID
9–78

User-formatted data
79–80

Accounting record identification code (C0)

File pool service virtual machines can generate accounting records in this category. For details, see z/VM:
CMS File Pool Planning, Administration, and Operation.

*ACCOUNT

716 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3

Chapter 13. Asynchronous CP Command Response
System Service (*ASYNCMD)

The Asynchronous CP Command Response (*ASYNCMD) system service lets a virtual machine receive CP
command responses that come from CP as result of issuing the CP FOR command, rather than displaying
them on the terminal. (The texts of the CP command responses and the messages themselves is not part
of the programming interface.)

*ASYNCMD is the assigned Asynchronous CP Command Response system service user ID. You establish
communication with this user ID by specifying USERID=*ASYNCMD when issuing the IUCV CONNECT
function.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317.

Establishing Communication
Your virtual machine does not need any special authorization to use the Asynchronous CP Command
Response system service. To establish IUCV communication, issue IUCV DECLARE BUFFER followed by
IUCV CONNECT with USERID=*ASYNCMD.

After a successful IUCV CONNECT to *ASYNCMD, the IUCV path ID returned by the connect may be used
on FOR commands to receive command responses, on that path, from the Asynchronous CP Command
Response system service. For more information, see the “DECLARE BUFFER Function” on page 331 and
the “CONNECT Function” on page 324.

Your virtual machine may have up to 8 communication paths with the Asynchronous CP Command
Response system service. If your virtual machine attempts to establish a new IUCV connection while
there are 8 communication paths already in use, the attempt will be terminated by the system service
with the IUCV SEVER function. You may terminate your connection by using the IUCV SEVER function. For
more information, see the “SEVER Function” on page 376.

Message Limits
The Asynchronous CP Command Response system service uses a default value of 16000 for the number
of outstanding messages allowed on the path unless the user specifies a lower value for the MSGLIM
parameter. If a lower value is specified, that value is used for the number of messages allowed on the
path.

If the message limit is exceeded, any additional incoming messages are discarded and the "end of
command record" shows the number of records that have been discarded. This situation is most likely to
occur when there is a high volume of incoming message and the virtual machine is running with external
interrupts disabled.

Sending and Receiving Data
After your virtual machine issues IUCV CONNECT to the Asynchronous CP Command Response system
service, FOR commands can be issued specifying the path ID returned from IUCV CONNECT along with a
token value. The Asynchronous CP Command Response system service will issue the IUCV SEND function
to send the data to your virtual machine on your specified path where you can issue IUCV RECEIVE
to receive the data. For more information, see the “SEND Function” on page 366 and the “RECEIVE
Function” on page 348.

Note: Your virtual machine is not allowed to issue the IUCV SEND function to the Asynchronous CP
Command Response system service. Do not quiesce a path to the Asynchronous CP Command Response

*ASYNCMD

© Copyright IBM Corp. 1991, 2023 717

system service or you could lose messages. The Asynchronous CP Command Response system service
will only send records with the PRTY=NO option.

Record Types
There are two types of records which can be received over an IUCV connection to the Asynchronous CP
Command Response system service:

1. Command response records.
2. End of command record.

The command response records are the output records generated by the CP command issued for the
target virtual machine. The end of command record is the last record associated with a CP command
which includes the return code and count of discarded messages.

Command response record format

End of command record format

userid
is the user ID specified on the FOR command which is the target of the CP command.

token
is the user-specified correlation token specified on the FOR command, or blanks if nothing was
specified.

msg type
is a 1-byte EBCDIC value with the following values defined:
X'F0'

is a command response record.
X'F1'

is an end of command record.
component ID

is a 3-character prefix indicating which component generated the message. For example, HCP.
msg number

is the CP message number displayed in character format. If no message number was received, the
field is blank.

severity
is a 1-character message severity associated with the CP message. For more information on
severities, see z/VM: CP Messages and Codes.

text
is the actual response that would have displayed on the target user's display terminal using the EMSG
ON setting. This field does not contain the message number or severity.

return code
is a 4-character return code from the CP command that was executed.

number of messages discarded
is a 4-character value indicating how many messages were discarded. The value is zero if there were
no messages discarded and padded to 4 characters.

*ASYNCMD

718 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw0_v7r3.pdf#nameddest=hcpw0_v7r3

Chapter 14. DASD Block I/O System Service
(*BLOCKIO)

The DASD Block I/O system service (*BLOCKIO) provides a virtual machine with device-independent,
asynchronous access to its CMS-formatted virtual disk devices.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317. To see a sample program, see Appendix B, “Sample Programs Using DASD
Block I/O System Service,” on page 995.

Establishing Communication with the DASD Block I/O System
Service

The DASD Block I/O system service uses IUCV to set up communication between itself and a
virtual machine. The virtual machine issues the IUCV DECLARE BUFFER function to initialize for
IUCV communication; the IUCV processor initializes the DASD Block I/O system service for IUCV
communication by issuing the DECLARE BUFFER function for the system service.

After communication is established with IUCV, the virtual machine must issue a CONNECT command to
establish a path between itself and the DASD block I/O system service. Only one CONNECT may be issued
to the DASD Block I/O system service for each virtual device that is intended to receive I/O requests.

No special authorization is required for a virtual machine to use the DASD block I/O system service.
The maximum connection limit (MAXCONN) in the directory can be enlarged to satisfy the user's
requirements. The DASD block I/O system service allows connection from any user.

The IUCV macro checks the validity of all the IUCV parameters. Any IUCV errors are handled according
to IUCV specifications. The DASD Block I/O system service checks the validity of all the parameters it
requires. Any errors resulting from this check are handled as described in the following sections.

IUCV CONNECT to the DASD Block I/O System Service
An IUCV CONNECT is issued by the virtual machine with USERID=*BLOCKIO, and PRMDATA=YES
specified in the IUCV CONNECT parameter list. The IPARML DSECT and IPARML COPY files are located
in the HCPGPI macro library. The user data field (IPUSER) in the IUCV parameter list must have the
following format:

Block size
contains the block size of the specified disk; the block size can be 512, 1K, 2K, or 4K bytes.

Offset
contains the number of sequential blocks used at the beginning of the disk by the CMS file system to
implement its structure. *BLOCKIO uses the offset so that the first block after these used blocks is
addressed as block 1. *BLOCKIO does not check the validity of the offset; therefore the application
can change the number if desired.

Vdevaddr
contains the virtual device address of the disk on which the block I/O is to be performed.

Usage Notes
1. All reserved fields must be set to zero.

*BLOCKIO

© Copyright IBM Corp. 1991, 2023 719

2. The disk must be in CMS format. Although not required by *BLOCKIO, the CMS RESERVE command is
normally then used to allocate all available blocks of this formatted minidisk to a unique CMS file.

3. If the minidisk has been reserved, an application can use the DISKID CMS function to obtain the block
size, offset, and virtual device address information. DISKID is described in z/VM: CMS Macros and
Functions Reference.

4. The *BLOCKIO system service does not support HyperPAV alias devices.
5. The *BLOCKIO system service is limited to a minidisk size of 65520 cylinders, regardless of formatted

block size. If the *BLOCKIO request was issued for a minidisk larger than 65520 cylinders, error code
X'02' will be returned in the first byte of the IPUSER field.

IUCV ACCEPT
If all parameters required by *BLOCKIO are valid, *BLOCKIO issues an IUCV ACCEPT on the path
specifying PRMDATA=YES.

The following information is returned in the IPUSER field of the IUCV connection-complete external
interrupt buffer:

Start block
contains 1 minus the offset specified in the IUCV CONNECT. Start block and end block specify the
range of block numbers allowable on the *BLOCKIO request.

End block
contains the number of blocks on the specified device minus the offset specified on the IUCV
CONNECT. End block and start block specify the range of block numbers allowable on the *BLOCKIO
request.

Flags
contains a set of bits defining the status of the virtual device. One bit is defined; the others are
reserved.
RDONLY X'0001'

the virtual device is read-only

Note: All reserved fields must be set to zero.

IUCV SEVER
If any of the parameters passed to *BLOCKIO are invalid, *BLOCKIO issues an IUCV SEVER on the path
and flags the error.

The first byte of the IPUSER field contains one of the following error codes:
Code

Meaning
X'01'

the virtual device is not defined.
X'02'

the virtual device is not supported.
X'03'

the block size is not supported.
X'04'

the IUCV path already exists for this device.
X'05'

the connection is not using PRMDATA=YES.

*BLOCKIO

720 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

X'06'
the reserved field is not set to zero.

IUCV SEND to *BLOCKIO
When the connection is accepted by *BLOCKIO, you can start sending I/O requests to *BLOCKIO. You can
specify the TRGCLS=, DATA=PRMMSG, and PRMMSG= options on the IUCV SEND, or you can move the
necessary data into the IUCV parameter list yourself. The TRGCLS= option sets the type of I/O requested.
The DATA=PRMMSG option sets a flag in IPRFLAGS1, and the PRMMSG option sets up IPRMMSG1 and
IPRMMSG2 in the IUCV parameter list.

There are two different interfaces to *BLOCKIO. The single block interface is restricted to, and optimized
for, single block transfer. The multiple block interface can be used to read/write from 1 to 256 blocks at a
time.

Single Block I/O
The following list defines the input needed by *BLOCKIO for single block requests on an IUCV SEND:

IPRMMSG1
specifies the block number.

IPRMMSG2
specifies the guest absolute data buffer address.

IPTRGCLS
specifies the block I/O service requested.
Code

Meaning
F'01'

Write request, use the minidisk cache (if present).
F'02'

Read request, use the minidisk cache (if present).
F'81'

Write request, bypass the minidisk cache.
F'82'

Read request, bypass the minidisk cache.

Usage Notes
1. The SYNC=YES option on the IUCV SEND macro can be specified with the F'02' service request. If

SYNC=YES is specified with any of the other three service requests, it will get a return code of F'06',
indicating an invalid request.

The synchronous processing option is intended for use when reading blocks. Applications that
specify the SYNC=YES option have to be prepared for this request to complete synchronously
or asynchronously. If the requested block is in the minidisk cache, the SEND request completes
synchronously. If the requested block is not in the minidisk cache, the SEND request completes
asynchronously.

2. Use the minidisk cache bypass option when reading or writing blocks that are not referenced
frequently. This prevents infrequently-used data from filling the cache and flushing out frequently
referenced data.

3. The *BLOCKIO IUCV system service and Diagnose X'250' do not honor DASD reserves managed by
VM's virtual reserve/release function. Therefore, do not use these I/O interfaces if a minidisk is shared
by multiple guests on the same VM image where another guest is expecting to use reserve/release
I/O to serialize its data access. Also, *BLOCKIO and Diagnose X'250' do not use reserve/release.
Therefore, do not use these interfaces for any DASD (CP-attached or full-pack minidisk) that is shared
with other LPARs where another LPAR expects to use reserve/release to serialize its data.

*BLOCKIO

Chapter 14. DASD Block I/O System Service (*BLOCKIO) 721

Condition and Return Codes
The condition codes on the IUCV SEND instruction indicate how processing was completed:
Code

Meaning
CC=0

The request has been started. An IUCV Message Complete external interrupt is generated when the
request completes.

CC=1
A nonzero value is stored in the IPRCODE field of the IPARML DSECT.

CC=2
The requested block was found in the minidisk cache and has been written into the guest buffer.

The IUCV protocol may have been correct from an IUCV perspective but does not meet the *BLOCKIO
requirements. In that case, the DASD Block I/O system service issues an IUCV SEVER on the path and
flags the error. The first byte of the IPUSER field contains one of the following error codes:
Code

Meaning
X'07'

IUCV communication was not sent using DATA=PRMMSG.
X'08'

No 1-way messages are allowed on the path.

If you coded the IUCV SEND correctly, *BLOCKIO tries to initiate the request. It uses an IUCV REPLY to
return the results of the I/O request. The application's virtual machine is made aware of this response by
an IUCV external interrupt. A return code is returned in the IPRMMSG1 field of the IUCV parameter list:
Code

Meaning
F'00'

I/O completed successfully
F'01'

Invalid block number
F'02'

Invalid data buffer address
F'03'

Write on read-only DASD
F'04'

Incorrect block size — format error
F'05'

Unrecoverable I/O error
F'06'

Invalid service requested
F'07'

Protection exception on virtual buffer

If the device is reset, the path is quiesced, and no more requests are allowed. When no I/O requests are
outstanding, *BLOCKIO issues an IUCV SEVER on the path and flags the error. The first byte of the IPUSER
field contains the following error code:
Code

Meaning
X'09'

Virtual device has been reset

*BLOCKIO

722 z/VM: 7.3 CP Programming Services

Multiple Chained Block I/O
Using *BLOCKIO, you can read and write up to 256 contiguous or discontiguous CMS-formatted blocks
with a single *BLOCKIO request. Individual blocks may be read and written within the same request.
Multiple chained block I/O is invoked similarly to single block I/O requests, but the IUCV SEND parameter
list is set up as follows:

IPRMMSG1
specifies the number of blocks to process (1 to 256).

IPRMMSG2
specifies the guest absolute address of the multiple block I/O parameter list. This list defines the
blocks to be read and written and the buffers to use.

Also returned in the high-order halfword of IPRMMSG2 is the sum of Start Subchannel instructions
issued and successful minidisk cache read requests needed to satisfy the multi-block request.

IPTRGCLS
specifies the block I/O service requested.
Code

Meaning
F'03'

Multiple request, use the minidisk cache (if present).
F'83'

Multiple request, bypass the minidisk cache.

Usage Notes
1. The SYNC=YES option on the IUCV SEND macro can be specified with the F'03' service request. If

SYNC=YES is specified with the F'83' service request, it will get a return code of F'06', indicating an
invalid request.

The synchronous processing option is intended for use when reading blocks. Applications that
specify the SYNC=YES option have to be prepared for this request to complete synchronously or
asynchronously. If all the requested blocks are in the minidisk cache, the SEND request completes
synchronously. If all or some of the requested blocks are not in the minidisk cache, the SEND request
completes asynchronously.

2. Use the minidisk cache bypass option when reading or writing data that is not referenced frequently.
This prevents infrequently-used data from filling the cache and flushing out frequently referenced
data.

3. The multiple block I/O interface can be used to read or write a single block. However, the single block
interface provides somewhat better performance.

4. The I/O for the DASD blocks specified in the block I/O entries of the BPLBK may not occur in the
same order that they are listed. If the application requires that the DASD blocks or I/O data buffers be
updated in a particular order, then that I/O request should be implemented with separate *BLOCKIO
SEND requests.

5. The *BLOCKIO IUCV system service and Diagnose X'250' do not honor DASD reserves managed by
VM's virtual reserve/release function. Therefore, do not use these I/O interfaces if a minidisk is shared
by multiple guests on the same VM image where another guest is expecting to use reserve/release
I/O to serialize its data access. Also, *BLOCKIO and Diagnose X'250' do not use reserve/release.
Therefore, do not use these interfaces for any DASD (CP-attached or full-pack minidisk) that is shared
with other LPARs where another LPAR expects to use reserve/release to serialize its data.

Multiple Block I/O Parameter List
The IPRMMSG2 field of the IUCV SEND parameter list points to a parameter list describing the blocks to
be read and written and the buffers to use. Each 16-byte entry contains the information for one block to
be read or written. For performance reasons, try not to let the parameter list cross a page boundary.

*BLOCKIO

Chapter 14. DASD Block I/O System Service (*BLOCKIO) 723

The contents of this multiple block I/O parameter list are as follows (up to 256 entries):

BPLQCOD (M*1)
is the 1-byte request code indicating a read or write. X'01' indicates Write, and X'02' indicates Read.

BPLSTAT (M*2)
is the 1-byte area in which a return code is placed, to indicate the status of the request.

BPLBUFAD
is a 4-byte field containing the guest absolute address of the buffer area into which this block should
be read or written. Although there are no alignment requirements for the buffer itself, try not to let the
buffer cross a page boundary.

BPLBKNUM
is a 4-byte field containing the number of the block to be read or written.

The BPLBK DSECT with the HCPBPLBK COPY files is located in the HCPGPI macro library.

Condition and Return Codes
The condition codes on the IUCV SEND instruction indicate how processing was completed:
Code

Meaning
CC=0

The request has been started. An IUCV Message Complete external interrupt is generated when the
request completes.

CC=1
A nonzero value is stored in the IPRCODE field of the IPARML DSECT.

CC=2
All requested blocks were found in the minidisk cache and have been written into the guest buffers.

The IUCV protocol may have been correct from an IUCV perspective but does not meet the *BLOCKIO
requirements. In that case, the *BLOCKIO system service issues an IUCV SEVER on the path and flags the
error. The first byte of the IPUSER field contains one of the following error codes:
Code

Meaning
X'07'

IUCV communication was not sent using DATA=PRMMSG.
X'08'

No 1-way messages are allowed on the path.

The following conditions are detected by *BLOCKIO before any I/O is initiated. If any errors are detected,
no I/O is performed. The return code is stored in the IPRMMSG1 field of the IUCV parameter list as
follows:
Code

Description
F'00'

The multiple block parameter list is set up correctly.

Note: Check the return code for each entry in the multiple block I/O parameter list to verify that I/O
has completed successfully for each block.

*BLOCKIO

724 z/VM: 7.3 CP Programming Services

F'02'
The multiple block parameter list is outside the size of the virtual machine.

F'06'
An invalid service was requested.

F'07'
A storage protection error has occurred on the multiple block parameter list.

F'08'
The block count specified is not between 1 and 256, inclusive.

The following conditions are detected on a per-entry basis and do not prevent other blocks within the
same request from being read or written. For those entries in error, no I/O is performed for that block
(except where RC = X'05', unrecoverable I/O error). The return code is stored in the status field (BPLSTAT)
of the individual entry of the multiple block I/O parameter list that contains the error.
Code

Description
X'00'

The block has been successfully processed.
X'01'

The block number specified is invalid.
X'02'

The buffer is outside the size of the virtual machine.
X'03'

A write has been requested to a read-only device.
X'04'

The block size specified is incorrect—format error.
X'05'

An unrecoverable I/O error has occurred.
X'06'

The request code is not X'01' for Write or X'02' for Read.
X'07'

A storage protection error has occurred on the buffer.

Ending Communication with the DASD Block I/O System Service
To end communication when all communication with *BLOCKIO is complete, issue either an IUCV SEVER
or an IUCV RETRIEVE BUFFER.

*BLOCKIO

Chapter 14. DASD Block I/O System Service (*BLOCKIO) 725

*BLOCKIO

726 z/VM: 7.3 CP Programming Services

Chapter 15. Error Logging System Service (*LOGREC)

An installation may write an application to run in a guest virtual machine which has been authorized
to use the IUCV interface to receive LOGREC records from the z/VM control program supporting it. This
IUCV authorization is defined using the IUCV directory control statement of the guest virtual machine. The
IUCV control statement must name *LOGREC as the CP system service to which a communication path is
established. The user ID of the guest virtual machine may also be identified to the control program during
system generation so that records can be accumulated for the virtual machine before it has connected to
the system service.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

The Error Logging system service (*LOGREC) in CP supports both 1-way and 2-way IUCV protocols when
sending records to authorized virtual machines. When a 1-way IUCV SEND is issued by the CP, the virtual
machine to which the LOGREC record is sent cannot issue an IUCV REPLY but must issue a RECEIVE.
When a 2-way IUCV SEND is issued by the CP, the virtual machine to which the LOGREC record is sent
must issue an IUCV REPLY. Response data may not be sent on an IUCV REPLY. The reply buffer length
field in the IUCV parameter list, IPBFLN2F, must contain zeros. This can be accomplished by setting a
register to zero and coding ANSLEN=(reg) on the IUCV REPLY macro.

Establishing Communications with the Error Logging System
Service

Prior to issuing the IUCV CONNECT to the *LOGREC system service, a virtual machine must issue a
DECLARE BUFFER request to IUCV to provide an external interrupt buffer. The virtual machine must be
enabled for IUCV interrupts in Control Register 0 and the PSW must be set to enable external interrupts.

The connection with the *LOGREC system service is created by issuing IUCV CONNECT, specifying the
USERID as *LOGREC. The use of the 2-way protocol for gathering LOGREC records from the CP Error
Logging system service is specified by the virtual machine in the IPUSER data area when it issues an IUCV
CONNECT to the *LOGREC service. This area must contain a X'02' at offset 8 if the application is written
to issue an IUCV REPLY after data is received from the CP *LOGREC system service. If the area does not
contain a X'02', the default is 1-way communication. The CONNECT parameter list must also indicate that
you do not want to receive messages with data in the parameter list. This is indicated by specifying or
defaulting to the PRMDATA=NO option on the IUCV CONNECT.

When you issue CONNECT to the Error Logging system service, the connection is either completed
successfully (by ACCEPT) or rejected (by SEVER). If the connection is accepted, IUCV returns a PATHID to
you, which must be specified on all subsequent IUCV requests to the system service. Only one CONNECT
can be issued by a virtual machine to the Error Logging system service.

If the connection is severed, the Error Logging system service places a 1-byte code at offset 9 of the
IPUSER field of the IPARML to indicate why.

A code of:

• X'04' indicates that the virtual machine already has a connection to the Error Logging system service.
• X'08' indicates that the virtual machine made a protocol error on the CONNECT request. The

PRMDATA=YES option was specified but it should not have been.
• X'0C' indicates that the limit of 100 recording table entries has been reached and there is no room for

another.

A virtual machine is not allowed to issue an IUCV SEND to the *LOGREC service (the path is QUIESCED
by CP Recording Services). A virtual machine may only have one communication path to the Error Logging
system service. CP Recording services send only records with the PRTY=NO option.

*LOGREC

© Copyright IBM Corp. 1991, 2023 727

The data format of a LOGREC record is identical to the records recorded through use of the CP RETRIEVE
EREP command. More than one user ID may be authorized to use this service. For more information on
how to use the CP commands, see z/VM: CP Commands and Utilities Reference.

Receiving LOGREC Records
To obtain a LOGREC record, when the application is notified by an external interrupt that one is available,
issue an IUCV RECEIVE. The Error Logging system service does not send another record until either a
response (when the application indicates that data is to be sent to it using the 1-way protocol) or a REPLY
(when an application indicates that data is to be sent to it using the 2-way protocol) is received by CP
Recording services to the previous record sent.

The Error Logging system service maintains a threshold limit which indicates when to notify the system
operator and the receiving virtual machine that uncollected records are accumulating in host storage. The
default value is 2 for LOGREC records. This value may be changed using the RECORDING command.

To stop receiving records temporarily, you may issue an IUCV SEVER. CP continues to queue records for
your virtual machine until a CP RECORDING EREP OFF command is issued, specifying your user ID. To
resume receiving records, you may issue an IUCV CONNECT specifying the user ID as *LOGREC.

If the CP abends while a virtual machine is collecting LOGREC data, LOGREC records not received by
the virtual machine are checkpointed and requeued to the virtual machine on a subsequent warm or
force-start of the control program. The virtual machine is also logged on the system automatically by CP if
it is identified on the SYSTEM_USERIDS statement in the system configuration file. For more information
on the SYSTEM_USERIDS statement, see z/VM: CP Planning and Administration.

Disconnecting from the Error Logging System Service
You can terminate collection of LOGREC records by issuing IUCV SEVER or IUCV RETRIEVE BUFFER for
your *LOGREC system service path. A SEVER may be initiated by the system due to virtual machine reset
or an IUCV RETRIEVE BUFFER request. CP continues to queue records for your virtual machine until a CP
RECORDING EREP OFF command is issued specifying your user ID.

*LOGREC

728 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Chapter 16. Identify System Service (*IDENT)

The Identify system service (*IDENT) is a CP system service that lets authorized virtual machines connect
to it and:

• Identify themselves as resource or gateway managers
• Revoke ownership of a resource or gateway
• Communicate with CP to request that a user's effective and saved-set POSIX user ID (UID) and group ID

(GID) be set.

The Identify system service maintains a local system resource/gateway table of all resources and
gateways managed on that system. A virtual machine manages a resource or gateway only while it is
connected to *IDENT.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

Establishing Communication with the Identify System Service
For a virtual machine to manage or revoke a local, global, or system resource or gateway, it must first
be authorized to connect to the identify system service, *IDENT. Your system administrator is the person
who can authorize your virtual machine to manage or revoke a particular resource or gateway. To do this,
the administrator must specify a special IUCV *IDENT statement in your virtual machine's directory entry.
Your system administrator also can authorize the AVS virtual machine to revoke a particular gateway by
specifying an IUCV *IDENT statement in the AVS virtual machine's directory entry.

For more information on how a system administrator authorizes virtual machines to manage or revoke
resources and gateways, see z/VM: CP Planning and Administration.

Once authorized, your virtual machine must issue an IUCV CONNECT to use *IDENT. You must specify the
user ID as *IDENT, and the user data field must have the following format:

Name
contains the name of the resource or gateway that you are managing or revoking. The first byte of
this name must be alphanumeric; IBM reserves names beginning with characters for its own use. This
resource/gateway name cannot be blanks (X'40's), nulls (X'00's), ANY, ALLOW, or SYSTEM.

Fcode
is the function code. FCODE=1 indicates a request to identify or manage a resource or gateway.
FCODE=2 indicates a request to revoke a resource or gateway.

Flag
is a flag byte.

For manage requests (FCODE=1):

Bit 0 on
Defines the resource as being accessible from outside the local system.

• If bit 0 is on and bit 2 is off, this is a global resource, unique in the TSAF or CS collection and
accessible throughout the TSAF or CS collection and by AVS.

• If bit 0 is on and bit 2 is on, this is a system resource, accessible throughout the TSAF or CS
collection through the system gateway and by AVS.

This bit must be on for a gateway.

*IDENT

© Copyright IBM Corp. 1991, 2023 729

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Bit 0 off
Defines the resource as being accessible only from the local system (a local resource).

Bit 1 on
Indicates that the resource manager program accepts connections with SECURITY(NONE).

Bit 1 off
Indicates that the resource manager program does not accept connections with
SECURITY(NONE).

Bit 2 on
Defines the resource as a system resource. If this bit is on, bit 0 must also be on.

Bit 2 off
Indicates that this resource is not a system resource.

Bits 3-6
Reserved for IBM use.

Bit 7 on
Defines the resource as one that will communicate with CP and reply to requests from CP's
support for the family of POSIX exec functions for information about POSIX security values.

If this bit is on, the resource must also be authorized to set another user's POSIX security values
and must be prepared to accept traffic along the connection set up by this *IDENT request. See
“Communicating with CP” on page 731 for details on this interface.

CP checks the system directory to ensure that the virtual machine is authorized to set other users'
POSIX security values. If CP determines that the virtual machine is not authorized, or an error
occurs while CP is attempting to check the authorization, CP turns off this bit, and the resource
will not be able to participate in operations requested by CP's support for the family of POSIX
exec functions.

Bit 7 off
Indicates that the resource does not wish to participate in set_UID and set_GID operations.

For revoke requests (FCODE=2):
Bit 0 on

Tells CP to revoke the global resource or gateway, known to the TSAF or CS collection. It must also
be on for revoking a system resource (see bit 2).

Bit 0 off
Tells CP to revoke the local resource, known only to the local system.

Bit 2 on
Indicates that this resource is a system resource. If this bit is on, bit 0 must also be on.

Bit 2 off
Indicates that this resource is not a system resource.

Ntype
Indicates the type for NAME. An Ntype of 0 indicates a resource ID; An Ntype of 1 indicates a gateway
name.

When you try connecting to *IDENT to manage or revoke a resource or gateway, CP checks the validity
of the connection pending parameter list and checks the CP directory to verify that you are authorized to
make the connection. CP severs your connection to *IDENT if it detects an error.

For a request to manage a resource or gateway, *IDENT also checks that the resource or gateway is not
currently managed by another virtual machine. *IDENT accepts the connection if you are accepted as the
resource or gateway manager, and your virtual machine gets a connection complete interrupt. So that you
do not send any messages over the path, CP accepts connections to *IDENT by specifying QUIESCE=YES
on its IUCV ACCEPT. Because *IDENT quiesces the path to your resource or gateway manager, *IDENT
can never receive an incoming message on the path. If you issue an IUCV QUIESCE or an IUCV RESUME
on the path, IUCV returns with no action taken. *IDENT severs the connection if your request to manage
the resource or gateway is rejected. If your connection is accepted, *IDENT may sever the connection
later if another virtual machine revokes your management of the resource or gateway.

*IDENT

730 z/VM: 7.3 CP Programming Services

For a request to revoke a resource or gateway, *IDENT severs the connection to your virtual machine and
severs the connection to the resource or gateway manager.

See “*IDENT Sever Reason Codes” on page 734 for all the sever reason codes used by the Identify
system service.

Handling Connection Requests for the Resource or Gateway
If your virtual machine becomes a local, global, or system resource manager, APPC/VM lets other virtual
machines connect to your virtual machine if they specify the resource ID on APPCVM CONNECT.

Assuming your virtual machine is enabled for interrupts, connection pending interrupts are routed to your
virtual machine since you are registered as the manager of the resource. You, as the resource manager,
can either accept the connection (using IUCV ACCEPT) or sever the connection (using APPCVM SEVER).

When a virtual machine becomes a gateway manager, APPC/VM lets other virtual machines connect to
the gateway manager by specifying the gateway name in the connection parameter list extension on the
APPCVM CONNECT.

Connections to the gateway name are routed to the registered gateway manager virtual machine. The
gateway manager virtual machine can either accept the connection (using IUCV ACCEPT) or sever the
connection (using APPCVM SEVER).

Communicating with CP
If the resource being identified is one that communicates with CP's support for the family of POSIX exec
functions, then the parameter list passed to *IDENT must have bit 7 turned on in the flag byte on the
manage request. Turning on this bit notifies CP that the application is capable of handling conversations
across the *IDENT path.

In addition to the bit in the parameter list, the virtual machine must have authorization to set other users'
UIDs and GIDs. To get this authorization, add the SETIDS option of the POSIXOPT directory statement to
the virtual machine's directory entry. If this authorization is not present, and bit 7 is on, *IDENT will turn
bit 7 off, and CP will not use the extended *IDENT interface and function.

*IDENT Interface for Communication with CP's Support for the Family of
POSIX exec Functions

When CP receives a request to process one of the POSIX exec functions for a set_UID and set_GID file,
CP notifies the resource. The resource should provide any necessary authorization checking and notify CP
of the results, sending the new UID and GID values if the authorization checking is successful.

The interface between CP and the resource is mapped by control block HCPIRCBK, which consists
of two major sections: the header, and the function-specific section. The function-specific section is
mapped differently for *IDENT communication type, and may include both fixed-length and variable
length portions. For upward compatibility, the field IRCFFXLN, the length of the fixed-length portion
of the function-specific section, must be filled in during the execution-time creation of the block. Any
subsequent references to the variable-length portion must always be based on the address of the
beginning of the block plus the lengths of the header and the fixed-length portion of the function-specific
section.

The format of the header is:

The format of the IRCBK for the POSIX exec communication type is:

*IDENT

Chapter 16. Identify System Service (*IDENT) 731

where:

IRCTYPE
is a 1-byte flag containing the type of communication with the resource. Valid values are:
1

Indicates that the information in the block is being communicated on behalf of CP's support for
the family of POSIX exec functions.

IRCTOTLN
is an unsigned fullword containing the total length of the parameter list (the IRCBK) in bytes.

IRCFFXLN
is an unsigned fullword containing the length, in bytes, of the fixed-length portion of the function-
specific section of the parameter list.

IRCIDFLG
is a 1-byte flag set by the resource containing information about the UID and GIDs. Valid values are:
1...

The UID should be changed.
.1..

The GID should be changed.
..1.

Reserved
...1

Reserved
.... 1...

Reserved
.... .1..

Reserved
.... ..1.

Reserved
.... ...1

Reserved
If bit zero is on,

the object's access information specifies that the effective and saved-set UID of the process
issuing one of the POSIX exec functions should be changed to match the value specified in the
IRCNUID field.

If bit one is on,
the object's access information specifies that the effective and saved-set GID of the process
issuing one of the POSIX exec functions should be changed to match the value specified in the
IRCNGID field.

All other bits
are reserved and should be binary zero.

*IDENT

732 z/VM: 7.3 CP Programming Services

IRCEUID
is a fullword field containing the current effective UID of the process issuing one of the POSIX exec
functions.

IRCEGID
is a fullword field containing the current effective GID of the process issuing one of the POSIX exec
functions.

IRCSRET
is a fullword field set by the resource with the return code indicating success or failure of its checks.
If this value indicates anything other than success (success being indicated by the server return code
equal to zero), both bit zero and bit one of IDFLG are ignored.

CP will check this return code to determine whether it should complete its support for the family of
POSIX exec functions or return an error. If this field contains zero, CP will continue. Otherwise CP
will assume that an error has occurred which precludes CP's support for POSIX exec functions from
completing successfully and will so notify the application issuing one of the POSIX exec functions.

IRCSREAS
is a fullword field set by the resource with the reason code associated with the server return code.
CP does not examine this field, but passes it back to the application issuing one of the POSIX exec
functions.

IRCNUID
is a fullword field set by the resource containing the UID to which the user's effective and saved-set
UID should be set. If the server return code does not indicate success, or bit zero in byte IRCIDFLG is
off, the contents of this field are ignored.

IRCNGID
is a fullword field set by the resource containing the GID to which the user's effective and saved-set
GID should be set. If the server return code does not indicate success, or bit one in byte IRCIDFLG is
off, the contents of this field are ignored.

IRCSGLN
is an unsigned fullword field containing the length of the supplementary GID data, in bytes. The value
in this field must include the length of this field and the length of the supplementary GID information
specified in the IRCSGIDS field.

IRCSGIDS
is a variable-length field containing the supplementary GIDs of the user whose process is issuing one
of the POSIX exec functions.

IRCOBJLN
is an unsigned fullword field containing the length of the object token data, in bytes. The value of this
field must include the length of this field and the length of the object token specified in the object
token field.

IRCOBJTK
is a variable-length character field containing the token representing the file to be executed. The
object token is left-justified.

When Your Resource is Revoked
The following can revoke a resource:

• A virtual machine authorized to revoke the resource
• A resource manager virtual machine (by severing its path to *IDENT)
• The TSAF virtual machine
• ISFC.

A virtual machine must be authorized to connect to *IDENT to revoke a resource or gateway.

To revoke a resource or gateway on your virtual machine, your virtual machine must issue an IUCV SEVER
on the path to *IDENT.

*IDENT

Chapter 16. Identify System Service (*IDENT) 733

The SEVER does not affect existing APPC/VM paths to your virtual machine. However, CP does not
establish any new paths to you. If another virtual machine connects to *IDENT to manage the resource or
gateway that you revoked, requests to connect to the resource go to that virtual machine.

Note: If a virtual machine initiates a connection request to a resource that you manage before your revoke
completes, the path may be established.

*IDENT Sever Reason Codes
When *IDENT severs one of its paths, it stores a reason code in byte 10 of the IPUSER field in the IUCV
SEVER external interrupt buffer. This code indicates the reason for the SEVER.

Note: If the virtual machine issues the SEVER, it does not receive an external interrupt; in this case the
*IDENT reason code is X'00'.

The IPUSER field has the following format:

RCODE
contains the *IDENT sever reason code. It can be one of the following values:

Hex
Code

Decimal
Code

Meaning

X'00' 0 *IDENT revoked the resource or gateway as requested.

X'01' 1 An I/O error occurred while CP was reading the system directory. *IDENT
was checking for authorization to manage or revoke the resource or
gateway.

X'02' 2 The IPUSER field in the IUCV CONNECT parameter list was set up
incorrectly for a connection to *IDENT.

X'03' 3 The CONNECT parameter list has an invalid parameter PRMDATA.

X'04' 4 The virtual machine is not authorized to connect to *IDENT for the
specified resource or gateway.

X'05' 5 The virtual machine is not authorized to identify the resource as a global or
system resource.

X'06' 6 The virtual machine is not authorized to revoke the specified resource or
gateway.

X'07' 7 The virtual machine is not authorized to revoke the specified resource
globally.

X'08' 8 CP cannot identify the global resource or gateway because the CP
resource/gateway table currently contains the maximum of 500 entries
owned on the local system.

X'09' 9 A virtual machine already manages the resource or gateway being
identified. The virtual machine trying to identify a resource or gateway
could be the same virtual machine that already manages the resource or
gateway.

X'0A' 10 A virtual machine revoked the resource or gateway. The resource or
gateway may have been revoked by the virtual machine that managed the
resource or gateway.

X'0B' 11 The resource or gateway to be revoked does not exist.

*IDENT

734 z/VM: 7.3 CP Programming Services

Hex
Code

Decimal
Code

Meaning

X'0C' 12 The resource or gateway is pending identification by a virtual machine and
is not available to be identified or revoked.

X'0D' 13 The resource or gateway is pending a revoke by a virtual machine and is
not available to be identified or revoked. An authorized virtual machine is
revoking the resource or gateway, or the resource manager virtual machine
is severing its path to *IDENT.

X'0E' 14 The CONNECT parameter list has an invalid resource name or gateway
name specified.

*IDENT

Chapter 16. Identify System Service (*IDENT) 735

*IDENT

736 z/VM: 7.3 CP Programming Services

Chapter 17. Message System Service (*MSG)

The Message system service (*MSG) lets a virtual machine read messages and responses that come
from CP, rather than display these on the terminal. (The texts of CP command responses and messages
themselves is not part of the programming interface.)

*MSG is the assigned Message system service user ID. You establish communication with this user ID by
specifying USERID=*MSG when issuing the IUCV CONNECT function.

Your virtual machine does not need any special authorization to use the Message system service. All
you have to do is issue IUCV CONNECT with USERID=*MSG. A virtual machine may only have one
communication path to the *MSG system service.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

Once you have issued this, you must specify what kind of messages you want the virtual machine to
receive. The Message system service handles virtual console output if the user has specified the IUCV
option on the CP SET command, as shown in Table 204 on page 737. There is no SET command for
Single Console Image Facility (SCIF) messages; the virtual machine always receives these when it has a
connection to the Message system service.

Note: When full-screen CMS is on, most CMS console output is not passed to CP. In addition, applications
that use the Message system service and SET VMCONIO IUCV do not trap all CMS output. Before running
such applications, it is recommended that you suspend full-screen CMS.

Following is a list of CP SET commands that have an IUCV option. All of these commands assume that you
have a connection to IUCV and *MSG.

Table 204. CP SET Commands with an IUCV Option

CP command Options Function

SET MSG IUCV Passes all messages to the virtual machine using IUCV. The
messages do not go into the virtual console spool file.

SET WNG IUCV Passes warnings to the virtual machine

SET SMSG IUCV Passes special messages along to the virtual machine using
IUCV

SET EMSG IUCV Passes on both text and error code to the virtual machine using
IUCV

SET IMSG IUCV Passes on information messages to the virtual machine using
IUCV

SET VMCONIO IUCV/OFF Passes along responses to the virtual machine using IUCV.
If you do not have an IUCV connection, data is handled as
if VMCONIO is set to OFF. (Refer to the note preceding this
table.)

SET CPCONIO IUCV/OFF Passes along all CP responses to the virtual machine using
IUCV. If there is not an IUCV connection, data is handled as if
CPCONIO is set OFF.

The Message system service uses the IUCV default maximum value of 255 for the number of outstanding
messages allowed on the path. The number of outstanding messages can be set below the default by
specifying a value for MSGLIM on the IUCV CONNECT to *MSG. The default maximum value can be
changed to 16000 by including an IUCV *MSG statement in the directory entry for the user issuing the
connect (the MSGLIMIT parameter is ignored). If the message limit is exceeded, any additional incoming

*MSG

© Copyright IBM Corp. 1991, 2023 737

messages are routed directly to the virtual machine console, or alternate console, and the virtual machine
is not notified about these messages. This situation is most likely to occur when there is a high volume of
incoming messages and the virtual machine is running with external interrupts disabled.

The Message system service identifies the source of the message it intercepts by a code in the IUCV
message class field. The message source is interpreted as follows:
Class

Message Source
1

Message sent using CP MESSAGE (MSG) or CP MSGNOH
2

Message sent using CP WARNING (WNG)
3

Asynchronous CP messages, CP messages to a CP command executed by a virtual machine using
*MSG, and any other console I/O initiated by CP

4
Message sent using CP SMSG command

5
Any data directed to the virtual console by the virtual machine (for example, WRTERM or LINEDIT).

6
Error message from CP (EMSG)

7
Information messages for CP (IMSG)

8
Single console image facility (SCIF) message from CP.

Error and information messages (classes 6 and 7) are types of CP messages and are included in class 3
when EMSG and IMSG are not specifically set to IUCV through the CP SET commands.

The format of the data received from IUCV is as follows:

User ID identifies the sender. Text is the actual data the user would have received on their terminal. For
class 1 and class 2 type messages, the standard header is suppressed. If the data is not received by a
MSG, WNG, SMSG, or using SCIF, the user ID is the recipient.

If a virtual machine has both a valid path to *MSG and a functioning secondary user, incoming messages
(except for SMSGs, which are not console messages) are directed to the secondary user instead of the
IUCV *MSG path to the primary user.

If a secondary user has a valid path to the Message system service (*MSG) and is disconnected, then
output on behalf of the primary user normally directed to the secondary user's console is instead directed
through the IUCV *MSG path.

Any output generated by the SET LOGMSG and ECHO commands is always sent to the terminal. The
output is not sent over *MSG.

*MSG

738 z/VM: 7.3 CP Programming Services

Chapter 18. Message All System Service (*MSGALL)

Like the Message system service, the Message All system service (*MSGALL) lets a virtual machine read
messages and responses that come from CP, rather than displaying these on the terminal.

The Message All system service operates as an alternative to the Message system service. If you use
*MSGALL, all terminal output is received over IUCV. If the user has issued the CP SET command with
the IUCV option, that setting overrides *MSGALL. For example, if the user has issued SET EMSG IUCV, all
EMSGs use the *MSG path, rather than the *MSGALL path. All the other terminal output still follows the
*MSGALL path.

Note: SMSGs are never sent on the *MSGALL path. They only use the *MSG path.

Your virtual machine does not need any special authorization to use the Message All system service. All
you have to do is issue IUCV CONNECT with USERID=*MSGALL. A virtual machine may only have one
communication path to the *MSGALL system service.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

Console output is handled as follows:

Console output sent over the *MSGALL path if unsuccessful with *MSG:

• CPCONIO and EMSGs generated as part of a DIAGNOSE code X'08' operation
• MSGs, WNGs, IMSGs, and SCIFed messages.

Console output sent directly to the terminal:

• Asynchronous CPCONIO (including TRACE events) and EMSGs not generated as part of a DIAGNOSE
code X'08' operation.

• Output generated by the SET LOGMSG and ECHO commands.

Console output never sent over *MSGALL path:

• SMSGs

The Message All system service uses the IUCV default maximum value of 255 for the number of
outstanding messages allowed on the path. The number of outstanding messages can be set below
the default by specifying a value for MSGLIM on the IUCV CONNECT to *MSGALL. The default maximum
value can be changed to 16000 by including an IUCV *MSGALL statement in the directory entry for the
user issuing the connect (the MSGLIMIT parameter is ignored). If the message limit is exceeded, any
additional incoming messages are routed directly to the virtual machine console, or alternate console,
and the virtual machine is not notified about these messages. This situation is most likely to occur when
there is a high volume of incoming messages and the virtual machine is running with external interrupts
disabled.

*MSGALL

© Copyright IBM Corp. 1991, 2023 739

*MSGALL

740 z/VM: 7.3 CP Programming Services

Chapter 19. SCLP System Service (*SCLP)

The SCLP system service (*SCLP) is a CP system service that allows you to receive and transmit Hardware
Management Console events. When you connect to the SCLP system service, you register to handle
the events for one or more event classes. For a virtual machine to transmit and receive Hardware
Management Console events, it must first be authorized to connect to the SCLP system service, *SCLP.
Your system administrator is the person who can authorize a virtual machine to establish a connection. To
do this, the administrator must specify a special IUCV *SCLP statement in the virtual machine's directory
entry. For more information on how a system administrator authorizes virtual machines to connect to
IUCV system services, see z/VM: CP Planning and Administration.

For more information on the IUCV functions mentioned in this section, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

Establishing Communication with the SCLP System Service
The SCLP system service uses IUCV to communicate with a virtual machine. The IUCV macro checks the
validity of the IUCV parameters and any errors are handled according to IUCV specifications. The SCLP
system service checks the validity of all the parameters it requires. Any errors resulting from this check
are handled as described in the remainder of this section.

The first step in establishing IUCV communications with the SCLP system service is to issue an IUCV
DECLARE BUFFER. This function initializes the virtual machine for IUCV communication. This function
also specifies a buffer where IUCV can store external interruption information.

Connecting to the SCLP System Service
After initializing for IUCV communication, you must issue an IUCV CONNECT and specify USERID=*SCLP
in the IUCV CONNECT parameter list (IPARML). The user data field must have the following format:

Event owner
Is a string of eight bytes identifying the owner of the event class and must be "SYSTEM " (two blanks
are required at the end).

Class mask
Is a field of 32 bits defining the event classes your virtual machine registers to handle. Bit zero
corresponds to event class 1, bit one to event class 2, and so on. Only one virtual machine can be
registered for a particular event class.

If the connection request is rejected, the first byte of the user data field has the return code indicating the
reason the connection was severed. The following return codes result from connection errors:
Code

Meaning
1

The Event owner field value is not "SYSTEM ".
2

The Class mask field value is zero.
3

The Reserved field value is not zero.

© Copyright IBM Corp. 1991, 2023 741

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

4
The Class mask field includes an unsupported class.

5
The Class mask field includes a class that is already registered.

6
The IUCV ACCEPT failed.

Sending SCLP Events
Upon notification of a successful connection, your virtual machine is ready to send SCLP events. You
may now issue synchronous (SYNC=YES) 1-way (TYPE=1WAY) IUCV SEND requests to the SCLP system
service specifying the target event class mask and the event data. Specify the target event class mask as
the target class (TRGCLS) in the format of a Class mask (in the mask, only one bit should be on). Specify
the BUFFER and BUFLEN parameters on the IUCV SEND.

If a serious error is encountered, the *SCLP connection is severed. The first byte of the user data field has
the return code indicating the reason the SEND was rejected. The following return codes result from send
errors:
Code

Meaning
7

A target event class was not specified.
8

The event was not sent as a synchronous 1-way message.
9

No event buffer was supplied or DATA=PRMMSG was specified.
10

No connection exists to the *SCLP system service.
11

The original CONNECT request did not enable the specified target event class.

If any other error is encountered, the SEND completes with condition code 1 and an error return code in
the IPRCODE field. The following error codes might be presented:
Code

Meaning
3

The message could not be sent to the HMC.
5

The message is too long.
6

A fetch protection exception was detected on the send buffer.
7

An addressing exception was detected on the send buffer.
22

The send buffer list is invalid.
23

The buffer list contains a negative length.
24

The total of the buffer list lengths is incorrect.
26

The buffer list is not on a doubleword boundary.

742 z/VM: 7.3 CP Programming Services

30
The IPAPPC flag in IPFLAGS1 is not 0.

31
An IUCV function was specified on an APPC/VM path.

91
A paging or storage error was detected in the SEND data area.

If return code 3 is received, a Message Complete external interruption will be presented for the message.

Receiving SCLP Events
The SCLP system service passes events to your virtual machine one at a time by issuing a 1-way IUCV
SEND. The target class (TRGCLS) of the message is the event class in the same format as a Class
mask. If you want to stop receiving events from the SCLP system service temporarily, you can use IUCV
QUIESCE. The SCLP system service queues events while a path is quiescent. The queued events will be
available when you issue an IUCV RESUME.

Disconnecting from the SCLP System Service
When all communications with the SCLP system service are completed, you can terminate communication
by issuing either an IUCV SEVER or an IUCV RETRIEVE BUFFER.

Chapter 19. SCLP System Service (*SCLP) 743

744 z/VM: 7.3 CP Programming Services

Chapter 20. Signal System Service (*SIGNAL)

The Signal system service (*SIGNAL) is a CP system service that allows virtual machines in a virtual
machine group to signal each other. The Signal system service can only be used by virtual machines in
a virtual machine group. Each virtual machine in a group is identified by a unique 16-bit signal ID. When
a virtual machine connects to the Signal system service, it may request that a particular signal ID be
assigned to it. If you have not set up the virtual machine to request a specific signal ID, the Signal system
service automatically assigns one to your virtual machine.

All members of a virtual machine group can send eight bytes of signal data (user information) to any
member in the group, specifying the signal ID of the virtual machine they want to receive the signal data
on, by using IUCV SEND. A virtual machine can also signal all members in a group using a broadcast
signal. Group members can request notification of members entering and leaving the group by specifying
Signal-In and Signal-Out flags when they connect to the Signal system service.

Using the Signal system service requires no directory authorization. The Signal system service allows only
one connection per virtual machine.

For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

Establishing Communications with the Signal System Service
The Signal system service uses IUCV to communicate between itself and a virtual machine. The IUCV
macro checks the validity of all the IUCV parameters and any errors are handled according to IUCV
specifications. The Signal system service checks the validity of all the parameters it requires. Any errors
resulting from this check are handled as described in the following sections.

Your first step in establishing IUCV communications with the Signal system service is to issue an
IUCV DECLARE BUFFER. This initializes the virtual machine for IUCV communication. This function also
specifies a buffer where IUCV can store external interrupt information.

IUCV CONNECT to the Signal System Service
After you establish communications with IUCV, you must issue an IUCV CONNECT with USERID=*SIGNAL
and PRMDATA=YES in the IUCV CONNECT parameter list (IPARML). The user data field must have the
following format:

Signal data
is the eight bytes of user information or signal you want passed to other members of the group. Only
group members that have specified the signal-in flag when they connected receive the data.

Flags
is a set of bits defining the signal options chosen by you for your virtual machine. The first three bits
are defined, and the others are reserved. The defined bits are:
Code

Meaning
X'80'

Signal-in
X'40'

Signal-out

*SIGNAL

© Copyright IBM Corp. 1991, 2023 745

X'20'
Signal ID has been specified

X'1F'
Reserved.

Signal ID
is the signal ID you want assigned to your virtual machine. This signal ID is used by other group
members to communicate with your virtual machine. This field is only used if you set the signal ID flag
bit (X'20') in the flags field.

You must set all reserved fields and flags to zero.

If you specify the signal-on flag, your virtual machine is signaled when future group members enter your
group by connecting to the Signal system service.

If you specify the signal-out flag, your virtual machine is signaled when group members in your group
break their connection (using IUCV SEVER) with the Signal system service.

The IUCV CONNECT function returns a PATHID to your virtual machine. You must specify this PATHID in
the IUCV SEND parameter list (IPARML) for all subsequent communication to the Signal system service.

When you issue IUCV CONNECT to the Signal system service, the connection is either accepted (the Signal
system service issues an IUCV ACCEPT) or severed (the Signal system service issues an IUCV SEVER).

If the connection is accepted, the user data field on the IUCV connection complete external interrupt has
the following format:

Signal data
is unchanged from the IUCV CONNECT.

Flags
are unchanged from the IUCV CONNECT.

Signal ID
is the signal ID you assigned to your virtual machine. If you did not assign a signal ID, the Signal
system service assigns a unique signal ID for you and stores it in this field.

All unused fields remain unchanged from the IUCV CONNECT.

If the connection is rejected, the user data field on the IUCV SEVER external interrupt has the following
format:

IPRCODE
is the return code indicating the reason the connection was severed.

Return codes resulting from connection errors:
Code

Meaning
X'01'

You are not a member of a virtual machine group.
X'02'

You are already connected to the Signal system service.
X'03'

You did not specify PRMDATA=YES in the IUCV CONNECT parameter list (IPARML).

*SIGNAL

746 z/VM: 7.3 CP Programming Services

X'04'
The reserved fields were not set to zero.

X'05'
The signal ID you specified was not unique.

Sending Signals
Upon notification of a successful connection, your virtual machine is ready to send signals. You may now
issue IUCV SEND requests to the Signal system service specifying the 8-byte signal (parameter list data),
the target's signal ID, and the flag settings. Specify the target's signal ID and the flag settings in the target
class (TRGCLS) with the following format:

Flags
is a set of bits defining the handling of the signal. Only two bits are defined and the others are
reserved. The defined bits are:
Code

Meaning
X'10'

Broadcast signal
X'08'

Invalid signal ID
X'E7'

Reserved.
Signal ID

is the target's signal ID.

If you specify the broadcast signal (X'10') flag, a signal is sent to all of the other users in your group that
are connected to the Signal system service.

If you send a signal using an invalid signal ID, the Signal system service returns the signal to you with an
error indicator (X'08') in the FLAGS field. The target class and the signal data remain unchanged.

If the parameter list data option is not used, or if the signal is not 1-way, the connection is severed.

Return codes resulting from send errors:
Code

Meaning
X'06'

The signal was sent without the DATA=PRMMSG option specified.
X'07'

The signal sent was not a 1-way signal.

Receiving Signals
As a member of a virtual machine group, your virtual machine can receive three types of signals. These
are signal-in, signal-out, and a normal signal sent by another group member using an IUCV SEND. The
Signal system service passes these signals to your virtual machine through an IUCV SEND using a 1-way
message with the signal specified in the parameter list data.

Specify the source's signal ID and the flag settings in the target class (TRGCLS) with the following format:

*SIGNAL

Chapter 20. Signal System Service (*SIGNAL) 747

Flags
is a set of bits defining the type of signal sent. Only three bits are defined and the others are unused.
The defined bits are:
Code

Meaning
X'80'

Signal-In
X'40'

Signal-Out
X'10'

Broadcast signal
X'2F'

Unused
Signal ID

is the source's signal ID.

The Signal system service sets all unused fields to zero.

If the signal-in flag is on, this signal was specified in the user data of the user's IUCV CONNECT to the
Signal system service.

If the signal-out flag is on, this signal was specified in the user data of the user's IUCV SEVER to the Signal
system service.

If the broadcast flag or no flags are on, this signal was specified in the parameter list data of the user's
IUCV SEND to the Signal system service.

If you want to stop receiving signals from the Signal system service, you can use IUCV QUIESCE. However,
the Signal system service does not queue signals, and the signals from other members of the group will
be lost until you issue an IUCV RESUME.

Leaving the Signal System Service
When all communications with the Signal system service are completed, you can terminate
communication by issuing either an IUCV SEVER or an IUCV RETRIEVE BUFFER. The user data field
on a SEVER must have the following format:

Signal data
is the 8-byte signal you want passed to other members of the group. Only group members that have
specified the signal-out flag when they connected to the Signal system service will receive the data.

If a SEVER is generated by the CP system, as on a RETRIEVE BUFFER or a virtual machine reset, the signal
data is set to all zeros.

*SIGNAL

748 z/VM: 7.3 CP Programming Services

Chapter 21. Spool System Service (*SPL)

The Spool System Service is a CP system service that provides an interface using IUCV for communication
between CP and virtual machines that provide print services for advanced function printers, and reader
services for reader notification.

*SPL also functions as a generic spool file interface facility that you can use instead of DIAGNOSE code
X'14' to select and read files from the CP spool system.

When the virtual machine connects to the spool system service, for printer service it passes an identifier,
prtid, which is used as the external name of that virtual machine. When the virtual machine connects to
the spool system service, for reader service the IPUSER area (first 8 bytes) must be blank (X'40'), and the
9th byte defines a flag byte (IPUFLAG1). A bit is defined in this byte (IPRDR = X'80') to indicate that the
connect request is for the reader notification function. For *SPL to act as a generic spool file interface, the
virtual machine must pass the keyword VIRTUAL in place of the prtid.

The term prtid is synonymous with print server virtual machine in this document. The virtual machine has
access to the system printer spool files but these printers, of course, are not supported directly by CP.

Once communication between the prtid and the spool system service has been established, a prtid can:

• Select a spool file from the print chain for processing
• Close a selected file
• Send messages or command responses to the operator or other users
• Read the spool file descriptor (SFBLOK) (see note “1” on page 749)
• Read the spool file records (SPLINKs) (see note “2” on page 749)
• Read an external attribute buffer (XAB) (see note “3” on page 749).

Notes:

1. For more information about SFBLOK, refer to Appendix A, “Data Areas Used by DIAGNOSE Codes,” on
page 983.

2. For more information about SPLINK, refer to Appendix A, “Data Areas Used by DIAGNOSE Codes,” on
page 983.

3. The external attribute buffer (XAB) is a control block that contains data the user creates to specify
additional information about a print file. Each print file has its own XAB, and CP has the facilities
to maintain the XABs. For more information about XABs, refer to “External Attribute Buffer Used by
DIAGNOSE Codes X'B4', X'B8', and X'290'” on page 993.

4. For more information on the IUCV functions mentioned in this chapter, refer to Chapter 5, “IUCV
Function Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on
page 521.

Similarly, the spool system service communicates with the prtid and can:

• Send commands to the prtid
• Notify the prtid that a print file is available for processing
• Cancel processing on a print file (PURGE function).

For the second option, you can enter the word VIRTUAL in the field normally used for the prtid that the
PSF machine represents. VIRTUAL indicates that you want the spool system service to process files in the
virtual reader, printer, or punch of a given user. This option enables an application to:

• Read files out of its virtual reader, virtual printer, or virtual punch
• Given the right privilege classes, read files out of another user's virtual reader, virtual printer, or virtual

punch

*SPL

© Copyright IBM Corp. 1991, 2023 749

• Allow for selection of files based on the setting of seen bits and allow for the seen bits to be reset on
files.

This function of *SPL does not require any change in existing applications, such as PSF, that use *SPL.

Depending on whether you specify VIRTUAL or a prtid in the field, all subsequent IUCV SEND, RECEIVE
and SEVER functions issued by the application take on different meanings. For instance, the IUCV
transmission class used by an application for selecting a spool file will differ depending on the type of
IUCV connection established. IUCV connections established using the VIRTUAL keyword will be referred
to as the generic *SPL interface, while connections established using a prtid will be referred to as the
Advance Function Printers (APF) printing *SPL interface. The pages that follow describe each of these
communication functions in more detail.

The AFP Printing *SPL Interface
The AFP Printing *SPL Interface provides print services.

Establishing Communication with the Spool System Service
The spool system service uses IUCV to communicate with the print server virtual machine, and reader
server virtual machine. For you to use the spool system service, the directory entry for the virtual
machines must specify the IUCV *SPL option. *SPL is the SPOOL system service user ID. The IUCV
macro checks the validity of all IUCV parameters. All IUCV errors are handled according to IUCV
specifications. The spool system service checks the validity of all required parameters and handles the
errors. IUCV requires the virtual machine to do a DECLARE BUFFER to initialize the virtual machine for
IUCV communication. The virtual machine does an IUCV CONNECT to the spool system service. The
connection lets the prtid use the spool system service to obtain spool print files for processing. Operator
and user commands can be sent to the server virtual machines through the IUCV connection by specifying
the prtid defined by the virtual machine at CONNECT time.

IUCV CONNECT to the Spool System Service

For Printer Service
An IUCV CONNECT is issued by the virtual machine with USERID=*SPL, PRTY=NO, PRMDATA=YES, and
USERDTA is an address containing the prtid name.

A prtid name is a 1- to 8-character alphanumeric name your installation assigns. If you specify a prtid
name of four or fewer characters, then the name cannot contain all hexadecimal characters. For example,
FFFF is not a valid prtid name, whereas FFFFF is. BLD is another example of a valid name. A prtid name
cannot be ALL. A prtid name must not contain imbedded blanks; however, trailing blanks are permitted.
It is the installation's responsibility to control the names assigned to prtids. The name should not conflict
with any other names, options, or notation the installation uses.

Example

It is recommended that a prtid name should not:

• Be the same as a user ID on the system
• Be PROC or PROCESSOR
• Include a dash (-)
• Be a name that could be confused with a logical device number, for example, L1234.

The spool system service allows multiple virtual machines to be connected with the same prtid name.
This way, when you use the spool system service SEND function, each virtual machine of the specified
prtid name is sent a message.

If you want to create your own IUCV parameter list, then the IPUSER user data field must have the
following data:

*SPL

750 z/VM: 7.3 CP Programming Services

 ORG IPUSER
 SPLNAME DC CL8 PRTID

For Reader Service
An IUCV CONNECT is issued by the virtual machine with USERID=*SPL, PRTY=NO, PRMDATA=YES, and
USERDTA=IPUSER(1:9). The IPUSER field from bytes 1 to 9 contains the following information:

 RDRID DS CL8 Set to blanks

 Bits Defined in IPRFLAG1

 IPRDR EQU X'80' Connection for the reader notify function

If all the parameters required by Spool system service are valid, the Spool system service issues an IUCV
ACCEPT to complete the connection with the virtual machine. All other Spool system service functions
depend on the IUCV CONNECT and ACCEPT being complete.

Reasons the CONNECT Function May Sever
If any of the parameters passed to Spool system service are invalid, Spool system service issues an IUCV
SEVER. When the prtid is ready to end its connection with *SPL system service, the prtid then issues an
IUCV SEVER. Any spool files being processed at the time of the SEVER remain unchanged.

The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to the prtid:

• A CONNECT issued was with QUIESCE, return code X'80'
• A CONNECT issued was with PRTY, return code X'80'
• A CONNECT issued was with PRMDATA=NO, return code X'80'
• A CONNECT issued was with a prtid name, that is:

– ALL
– Contains imbedded blanks
– Is four or less hexadecimal digits.

When the Spool system service CONNECT issues a SEVER, the format of the IPUSER field is:

• IPUSER+0: 1-byte error code of X'80'
• IPUSER+1: 1-byte reserved field of X'00'
• IPUSER+2: 2-bytes, containing IPMSGID from the IUCV parameter list that caused the error.

When the reader service issues a CONNECT, and the Spool system service has 8 (maximum) connections
with reader service machines, then *SPL issues a SEVER, the format of the IPUSER field is:

• IPUSER+0: 1-byte error code of X'80'.

The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to the reader service machine:

• A CONNECT issued was with QUIESCE, return code X'80'
• A CONNECT issued was with PRTY, return code X'80'
• A CONNECT issued was with PRMDATA=NO, return code X'80'.

When the Spool system service CONNECT issues a SEVER, the format of the IPUSER field is:

• IPUSER+0: 1-byte error code of X'80'.

*SPL

Chapter 21. Spool System Service (*SPL) 751

Virtual Machine Communication to the Spool System Service
After the Spool system service accepts the connection (using an IUCV ACCEPT), the virtual machine can
send the following types of requests to the Spool system service with an IUCV SEND:

• SELECT
• CLOSE
• MESSAGE
• READ

– READ SFBLOK (see Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983)
– READ XAB (see “External Attribute Buffer Used by DIAGNOSE Codes X'B4', X'B8', and X'290'” on

page 993)
– READ SPLINK (see Appendix A, “Data Areas Used by DIAGNOSE Codes,” on page 983)

• ENABLE
• DISABLE.

All calls from the virtual machine to *SPL are 2-way sends. The material that follows describes these
functions:

The SELECT Function
Through a file-select, a prtid can obtain a spool print file for processing. To select a file to process, the
prtid sends a SELECT (through an IUCV SEND specifying TYPE=2WAY, DATA=PRMMSG or DATA=BUFFER,
the value of 4 in the address specified by TRGCLS) to the Spool system service.

The SELECT function does not require that a previously selected file be closed before another file is
selected.

The spool print file can be selected either by specific file (user ID or spool ID), by the generic selection
criteria, or by default. In other words, select by:

• Specific criteria (user ID and spool ID), DATA=BUFFER
• Generic criteria, DATA=BUFFER
• Previously specified (default) criteria, DATA=PRMMSG.

SELECT with Specific or Generic Criteria (DATA=BUFFER)
When DATA=BUFFER (the user data is in the buffer and IUCV RECEIVE transfers the data), a length of 60
in the address specified by BUFLEN, and the buffer contains the following information:

Note: Field names used in the following descriptions are used for reference only. You may copy these
names, or use any other names, in your own code.

 SPLSEFLG DS 1X Selection flag
 SPLSETYP DS 1X Type of file eligible for selection
 SPLSECLS DS 4CL1 CLASSes
 SPLSEFSH DS CL4 FLASH
 SPLSEFRM DS CL8 FORM (Operator)
 SPLSEDES DS 4CL8 Destinations
 SPLSUSID DS CL8 User ID (if flag SPLSESID is ON)
 SPLSPID DS H Spool ID (if flag SPLSESID is ON)

 Bits Defined in SPLSEFLG

 SPLSECHG EQU X'80' Change default selection criteria
 to the new selection criteria sent in the
 BUFFER.
 Note: All selection criteria is changed
 so all data must be specified in the buffer.
 SPLSECON EQU X'40' Select spool file for "convert"
 process.

*SPL

752 z/VM: 7.3 CP Programming Services

 Bits Defined in SPLSETYP

 SPLSE5AC EQU X'80' Select files using X'5A' CCWs
 SPLSEN5A EQU X'40' Select files not using X'5A' CCWs
 SPLSECNV EQU X'20' Select files that are converted
 SPLSENCV EQU X'10' Select files that are not converted
 SPLSN38L EQU X'08' Select files not using 3800 load CCWs
 SPLSBE38 EQU X'04' Select files containing 3800 load CCWs
 at the beginning of the file
 SPLSAN38 EQU X'02' Select files containing 3800 load CCWs
 anywhere within the file
 SPLSESID EQU X'01' Select a specific spool file by ID
 (used in conjunction with the SPLSPID
 and SPLUSID)

If the three flags—SPLSN38L, SPLSBE38, and SPLSAN38— are all OFF, then the 3800 load CCW
characteristics of the spool file do not affect whether the file is selected (the tests are bypassed).

Notes:

1. If the SPLSESID bit is off, then select the next available file matching the default selection criteria.
2. If the user ID is less than 8 characters, it must be left-justified and padded with blanks.
3. If the select is by spool ID, the selection criteria are not changed.
4. If the SPLSECON bit is off, then select a spool file to start the print process.

A file that is selected for print processing is similar to files being handled by CP-driven system printers.
The file is marked as being open for system use.

A file that is selected for conversion processing is special because the prtid for which the file was
selected is notified when CP CHANGE, CP PURGE, and CP TRANSFER commands are issued for the file.
See the Spool system service PURGE function (“The PURGE Function” on page 763.)

5. When the select is not by spool ID, you must specify at least one each of CLASS, FLASH, FORM,
DESTination, either SPLSE5AC or SPLSEN5A, and either SPLSECNV or SPLSENCV in SPLSETYP.

If you specify a value of blank for CLASSes, FLASH, FORM, or DESTinations, then no file is selected.
6. Any unused length of the CLASSes, FLASH, FORM, or DESTinations fields must be padded with blanks.

• An asterisk (*) specified for a CLASS, means that any CLASS file can be selected.
• An asterisk (*) specified for FORM (or DESTination) means that any FORM (or DESTination) file can be

selected.
• An asterisk (*) specified for FLASH means that any FLASH file can be selected.
• OFF specified for FORM means that a file is eligible for selection if it has either been assigned

a FORM of OFF or if it has been assigned the default printer FORM. For more information
about setting default forms, see the PRINTER operand on the FORM_DEFAULT statement in the
system configuration file. The FORM_DEFAULT statement is described in z/VM: CP Planning and
Administration.

• OFF specified for DESTination means that files which do not have a destination assigned to them, or
have been assigned OFF, can be selected.

• OFF specified for FLASH means that files which do not have a FLASH assigned to them, or have been
assigned OFF, can be selected.

7. If SPLSESID is specified, then no other bits in SPLSETYP may be specified.

REPLY Information
If a file is selected, the Spool system service always responds using an IUCV REPLY with DATA=BUFFER
and a length of 14 in the address specified by ANSLEN.

ANSBUF=address, where address points to a buffer that contains the following information:

 IPUSER + 0: DS H Spool ID
 IPUSER + 2: DS H COPY count for the file or zero
 IPUSER + 4: DS XL1 Primary flag = X'00'
 IPUSER + 5: DS XL1 Secondary flag

*SPL

Chapter 21. Spool System Service (*SPL) 753

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

 IPUSER + 6: DS CL8 User ID

 Meaning of Bits in Secondary Flag
 EQU X'80' SFBLOK marked to be purged
 EQU X'40' File has been converted
 EQU X'20' File contains X'5A' CCWs
 EQU X'10' Reserved
 EQU X'08' Reserved
 EQU X'04' Reserved
 EQU X'02' Reserved
 EQU X'01' Reserved

If no file is selected, the Spool system service always responds using an IUCV REPLY with
DATA=PRMMSG. PRMMSG contains the following information:

 IPRMMSG1 Bytes 0 to 3 Reserved
 IPRMMSG2 Byte 0 Primary flag = X'04'
 Byte 1 Secondary flag
 Bytes 2 to 3 Reserved

 Meaning of Bits in Secondary Flag
 EQU X'80' Reserved
 EQU X'40' Reserved
 EQU X'20' Reserved
 EQU X'10' Specified file not found on PRINT queue
 EQU X'08' Specified file in USER HOLD status
 EQU X'04' Specified file in SYSTEM HOLD status
 EQU X'02' File is in the process of being printed
 EQU X'01' Reserved

The select was by spool ID; the file was not selected and has one of the characteristics shown in the
secondary flag.

SELECT by Previously-Specified Criteria (DATA=PRMMSG)
When DATA=PRMMSG (select using default selection criteria), then PRMMSG contains the following
information:

 IPRMMSG1 Bytes 0 to 3 Reserved
 IPRMMSG2 Byte 0 Flag
 Bytes 1 to 3 Reserved

 Bits Defined in Byte 0 of IPRMMSG2
 EQU X'80' Reserved
 SPLSECON EQU X'40' If set ON, select spool file for "convert" process
 If set OFF, select file for "print" processing

All other bits are reserved and must be set to zero.

Notes:

1. A file that is selected for print processing is similar to files that are being handled by CP-driven system
printers. The file is marked as being open for system use.

When a file is selected for convert processing, the prtid for which the file was selected is notified if the
CP CHANGE, CP PURGE, and CP TRANSFER commands are issued for the file. This is so the print server
can discard the current conversion and redo it in light of the new characteristics. See the Spool system
service PURGE function (“The PURGE Function” on page 763.)

2. Default selection criteria is defined by the last issued SELECT.

Reasons the SELECT Function May Sever
The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to a prtid:

Return code=X'80':

• Use of TYPE=1WAY communication
• Incorrect buffer length. The specified buffer length on the SEND must be 60 bytes.
• Conflicting selection criteria options:

*SPL

754 z/VM: 7.3 CP Programming Services

– DATA=PRMMSG, and default selection criteria are not defined.
– DATA=BUFFER, and both the SPLSE5AC and SPLSEN5A flags are OFF.
– DATA=BUFFER and both the SPLSECNV and SPLSENCV flags are OFF.

• Incorrect flag specification. No other bit in SPLSETYP can be ON if SPLSESID is ON.

When the Spool system service SELECT does a SEVER, the format of the IPUSER field length is:

 IPUSER + 0: Return code
 IPUSER + 1: X'04' - Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

The CLOSE Function
A prtid uses the Spool system service CLOSE function to take one of these actions:

1. End the processing of a selected file:

The CLOSE functions are performed if a new copy count is not requested.

In this case, when the CLOSE is complete, the prtid can specify to delete the print file or leave it on the
VM spool.

2. Change the spool file copy count:

If SPLCCOPY is greater than 0 and less than X'00FF', the change function is performed. (If SPLCCOPY
is greater than X'00FF', then the Spool system service severs the IUCV path.)

To use the CLOSE function, the prtid sends a CLOSE request (using an IUCV specifying SEND TYPE=2WAY,
DATA=BUFFER, a length of 30 in the address specified by BUFLEN, and a value of 5 in the address
specified by TRGCLS) to the Spool system service.

The buffer contains the following information:

 SPLCSPID DS 1H File spool ID
 SPLCFLCL DS 1X Flag (If the function is to change the copy
 count, then this flag is ignored.)
 SPLCCLAS DS 1X CLASS
 SPLCFORM DS CL8 FORM
 SPLCDEST DS CL8 DESTination
 SPLCCOPY DS 1H Copy count
 SPLCUSID DS CL8 User ID of the owner of the spool file

 Bits Defined in SPLSFLCL
 SPLCLPUR EQU X'80' Close and purge file
 SPLCLUHO EQU X'40' Close and requeue in user hold
 SPLCLSHO EQU X'20' Close and requeue in system hold
 SPLCLCON EQU X'10' Close and requeue converted
 SPLCLCLA EQU X'08' Close and requeue with new CLASS
 SPLCLFRM EQU X'04' Close and requeue with new FORM
 SPLCLDES EQU X'02' Close and requeue with new DESTination
 SPLCLUNC EQU X'01' Close and requeue nonconverted

Notes:

1. If the user ID is less than 8 characters, it must be left-justified and padded with blanks.
2. When you specify SPLCLPUR, it is invalid to specify any other option in SPLCFLCL.
3. It is invalid to specify both SPLCLCON and SPLCLUNC.
4. If SPLCLPUR is not specified, either SPLCLCON or SPLCLUNC must be specified.
5. When SPLCCOPY is not zero, CLOSE updates the copy count, but the file remains in SELECT status; no

other changes occur.
6. SPLCCOPY cannot be greater than 255.
7. When you specify SPLCLPUR and the file has the KEEP attribute, the file is closed in USER hold. When

you specify SPLCLPUR and the file has the NOKEEP attribute, the file is purged.

*SPL

Chapter 21. Spool System Service (*SPL) 755

8. When you specify either SPLCLCON or SPLCLUNC, the file is closed according to the settings of
SPLCLUHO and SPLCLSHO. If neither SPLCLUHO or SPLCLSHO is specified, the file is closed NOHOLD
regardless of the KEEP attribute of the file.

REPLY Information
The Spool system service responds to the CLOSE request using an IUCV REPLY with DATA=PRMMSG, and
PRMMSG containing the following information:

 IPRMMSG1 Bytes 0 to 3 Reserved
 IPRMMSG2 Byte 0 Flag
 Bytes 1 to 3 Reserved

 Bit Defined in Byte 0 of IPRMMSG2
 EQU X'04' File not selected; message already sent to the
 prtid that selected the file.

Reasons the CLOSE Function May Sever
The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to a prtid:

Return code=X'80':

• Use of TYPE=1WAY communication
• Incorrect buffer length. The specified buffer length must be 30-bytes.
• Conflicting file-disposition options. For example, specifying close and purge file at the same time you

specify close and requeue in user hold.
• Use of DATA=PRMMSG in the IUCV SEND
• SPLCCOPY is greater than 255.

Return code=X'10': I/O pending

When the Spool system service CLOSE does a SEVER, the format of the IPUSER field is:

 IPUSER + 0: Return code
 IPUSER + 1: X'05' - Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

The MESSAGE Function
A prtid uses the Spool system service MESSAGE function to send messages or command responses to the
operator or other users. To do this, the prtid uses an IUCV SEND specifying TYPE=2WAY, DATA=BUFFER,
BUFFER=address, and BUFLEN=address, a value of 6 in the address specified by TRGCLS to the Spool
system service.

When a prtid sends a message, it sends the following information to the Spool system service in a buffer:

 SPLMSUID DS CL8 User ID to receive the message
 SPLMSTYP DS CL1 TYPE of message:
 S - Sent via CP SMSG
 M - Sent via CP MSG
 W - Sent via CP MSGNOH and
 console alarm is sounded
 SPLMSARE DS 0XL224 Message area (maximum size is 224 bytes)
 - First 2 bytes: Message area length
 - Next 'n' bytes: Message text
 SPLMSLEN DS XL2 Message area length
 (actual size of SPLMSARE)
 SPLMSTXT DS CL222 Message text (maximum size is 222.)

Note: When a message is sent to a remote node, the issuer is responsible for placing the necessary
networking control sequence and the actual message.

*SPL

756 z/VM: 7.3 CP Programming Services

To send a message, the issuer uses the following format:

 RSCScmd VMnode userid message

For example, if a user wants to send a message (HI from OVERHERE) to a remote VM node (RCVNODE)
user ID OVERTHER, then the issuer specifies the message text be sent to the RSCS machine as follows.

 MSG RCVNODE OVERTHER HI from OVERHERE

REPLY Information
When the Spool system service MESSAGE finishes processing the issuer's request, the Spool system
service MESSAGE replies to the issuer with return codes indicating the success or failure of the function.
The reply is sent using an IUCV REPLY, DATA=PRMMSG, and PRMMSG=return code.

Return codes which do not sever the path are:
Code

Meaning
X'00'

Successful message
X'03'

USERID=ALL is invalid, when message type is S
X'2D'

User ID not logged on
X'39'

User ID not receiving.

Reasons the MESSAGE Function May Sever
The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to a prtid:

Return code=X'80':

• Use of TYPE=1WAY communication
• Use of DATA=PRMMSG. The Spool system service MESSAGE allows only DATA=BUFFER.
• Target user ID is all blanks. The Spool system service MESSAGE does not allow character blanks for the

target user ID.
• Invalid message type.
• Invalid data buffer length. The Spool system service allows only message types S, M, and W. The Spool

system service requires that the data buffer length be greater than or equal to 12 and less than or equal
to 240.

• Invalid message area format. The length of the message area must be greater than 2 but less than or
equal to 224.

When the Spool system service MESSAGE does a SEVER, the format of the IPUSER field is:

 IPUSER + 0: Return code
 IPUSER + 1: X'06'—Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

The READ-SFBLOK Function
With this function, a prtid can read the information contained in a selected spool file's SFBLOK.

When a prtid does a READ-SFBLOK, it sends the following information to the Spool system service:

*SPL

Chapter 21. Spool System Service (*SPL) 757

• The spool ID of the file
• The size of the buffer
• The address of the receiving buffer
• The user ID of the owner of the file.

The READ-SFBLOK function uses the IUCV SEND specifying TYPE=2WAY, DATA=BUFFER (all the user data
is in a buffer), and a value of 2 in the address specified by TRGCLS. BUFFER=address and a value of 16 in
the address specified by BUFLEN are also specified.

The buffer contains the following information:

 SPLRFSID DS 1H Spool ID
 SPLRFSIZ DS 1H Buffer size
 SPLRFADR DS 1F Buffer address
 SPLRFUID DS CL8 User ID

Note: If the user ID is less than 8 characters, it must be left-justified and padded with blanks.

When READ-SFBLOK is complete, the Spool system service replies using an IUCV REPLY with
DATA=PRMMSG, and PRMMSG containing the following information:

 IPRMMSG1 Bytes 0 and 1 Reserved
 Bytes 2 and 3 Length of data
 IPRMMSG2 Byte 0 Flag
 Bytes 1 to 3 Reserved

 Bits Defined in Byte 0 of IPRMMSG2
 EQU X'20' CP paging error
 EQU X'08' User buffer not large enough to
 hold requested data
 EQU X'04' File not selected, or Spool system
 service processing for the file stopped,
 and a Spool system service PURGE
 message already sent to the prtid
 that selected the file.

Notes:

1. If the READ-SFBLOK was successful, then bytes 2 and 3 of IPRMMSG1 contain the actual length of the
SFBLOK.

2. If the READ-SFBLOK was unsuccessful, then bytes 2 and 3 of IPRMMSG1 contain zeros.

Reasons the READ-SFBLOK Function May Sever
The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to a prtid:

Return code=X'80':

• The use of TYPE=1WAY communication.
• The use of DATA=PRMMSG. The Spool system service READ-SFBLOK only allows DATA=BUFFER on the

IUCV SEND.
• Incorrect buffer length. The message buffer length must be 16-bytes.

Return code=X'08':

• Protection or addressing violation for the user buffer. Either there is a storage protection violation
involving the user buffer, or the address range specified for the buffer is not addressable.

When the Spool system service READ-SFBLOK does a SEVER, the format of the IPUSER field is:

 IPUSER + 0: Return code
 IPUSER + 1: X'02'—Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

*SPL

758 z/VM: 7.3 CP Programming Services

The READ-XAB Function
Use the READ-XAB function to allow a prtid to read the information contained in a selected spool file's
external attribute buffer (XAB).

When a prtid does a READ-XAB, it sends the following information to the Spool system service:

• The spool ID of the file
• The size of the buffer
• The address of the receiving buffer
• The user ID of the owner of the file.

The READ-XAB function uses the IUCV SEND, specifying TYPE=2WAY, DATA=BUFFER (all the user data is
in a buffer), and a value of 3 in the address specified by TRGCLS. BUFFER=address and a value of 16 in
the address specified by BUFLEN are also specified. The buffer contains the following information:

 SPLRXSID DS 1H Spool ID
 SPLRXSIZ DS 1H Buffer size
 SPLRXADR DS 1F Buffer address
 SPLRXUID DS CL8 User ID

Note: If the user ID is less than 8 characters, it must be left-justified and padded with blanks.

REPLY Information
When the Spool system service READ-XAB is complete, the Spool system service replies using an IUCV
REPLY, with DATA=PRMMSG, and PRMMSG containing the following information:

 IPRMMSG1 Bytes 0 and 1 Reserved
 Bytes 2 and 3 Length of data
 IPRMMSG2 Byte 0 Flag
 Bytes 1 to 3 Reserved

 Bits Defined in Byte 0 of IPRMMSG2
 EQU X'20' CP I/O error
 EQU X'08' User buffer not large enough to
 hold requested data
 EQU X'04' File not selected or Spool system
 service processing for the file stopped
 and a Spool system service PURGE
 message already sent to the prtid
 that selected the file.

Note: If there is no XAB, then the size returned is zero. If the size returned is greater than the size of the
buffer provided, then no data was put in the buffer. In this case, the requester must get a buffer large
enough to hold the XAB and repeat the READ-XAB function.

Reasons the READ-XAB Function May Sever
The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to a prtid:

Return code=X'80':

• The use of TYPE=1WAY communication.
• The use of DATA=PRMMSG on the IUCV SEND. The Spool system service READ XAB only allows

DATA=BUFFER.
• Incorrect buffer length. The specified buffer length must be 16 bytes.

Return code=X'08':

• An invalid user buffer length. The buffer length cannot be greater than 32,767 bytes.
• A protection or addressing violation for the user buffer. There is either a storage protection violation

involving the user buffer, or the address range specified for the buffer is not addressable.

When the Spool system service READ-XAB does a SEVER, the format of the IPUSER field is:

*SPL

Chapter 21. Spool System Service (*SPL) 759

 IPUSER + 0: Return code
 IPUSER + 1: X'03'—Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

The READ-SPLINK Function
You use this function to read print data from a file. With this function, a prtid can read the CP DASD
records (SPLINKs) for a selected spool file.

When a prtid requests a READ-SPLINK, it sends the following information to the Spool system service:

• The spool ID of the file
• The user ID of the owner of the file
• The number of SPLINKs to be read
• The address of the receiving buffer, which must be on a 4KB boundary.

The READ-SPLINK function uses an IUCV SEND specifying TYPE=2WAY, DATA=BUFFER,
BUFFER=address, a length of 16 in the address specified by BUFLEN, and a value of 1 in the address
specified by TRGCLS. The buffer contains the following information:

 SPLRPSID DS 1H Spool ID
 SPLRPSIZ DS 1H n data pages to be read
 SPLRPADR DS 1F Buffer address
 SPLRPUID DS CL8 User ID

Notes:

1. n is the number of data pages to be read (each page is 4KB). SPLINKs are read in sequential order.
The first READ for a SPLINK after the file has been selected, reads the first n SPLINKs for that file.
Following READS read the next n SPLINKs for the file. Reads can be continued until the end-of-file is
reached.

2. If the user ID is less than 8 characters, it must be left-justified and padded with blanks.

REPLY Information
When the READ-SPLINK is complete, the Spool system service replies using an IUCV REPLY with
DATA=PRMMSG, and PRMMSG containing the following:

 IPRMMSG1 Bytes 0 and 1 Reserved
 Bytes 2 and 3 Number of SPLINKs read
 IPRMMSG2 Byte 0 Flag
 Bytes 1 to 3 Reserved

 Bits Defined in Byte 0 of IPRMMSG2
 EQU X'20' CP I/O error
 EQU X'04' File not selected or Spool system
 service processing for the file stopped
 and a Spool system service PURGE
 message already sent to the prtid
 that selected the file.
 EQU X'02' End-of-file for READ-SPLINK

Reasons the READ-SPLINK Function May Sever
The following situations are considered user errors and cause the Spool system service to sever the IUCV
path to a prtid:

Return code=X'80':

• The use of TYPE=1WAY communication.
• The use of DATA=PRMMSG on the IUCV SEND. The Spool system service READ SPLINK only allows

DATA=BUFFER on the IUCV SEND.
• Incorrect buffer length. The message buffer length must be 16 bytes.

*SPL

760 z/VM: 7.3 CP Programming Services

Return code=X'08':

• A protection or addressing violation for the user buffer

Any of the following has happened:

– The address of the user buffer is not on a 4KB boundary.
– There is a storage protection violation involving the user buffer.
– The address range specified for the buffer is not addressable.

• The number of SPLINKs specified was zero.

Return code=X'10': I/O pending

The READ-SPLINK or READ-XAB function was done while a previous READ-SPLINK/READ-XAB request
was outstanding for the file. The IUCV REPLY for the previous request must be received before the next
READ can be done.

When the Spool system service READ-SPLINK does a sever (using the SEVER function), the format of the
IPUSER field is:

 IPUSER + 0: Return code
 IPUSER + 1: X'01' - Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

The ENABLE Function
This function enables reader notification for a specified user ID. It sends an ENABLE (though an IUCV
SEND specifying TYPE=2WAY, DATA=PRMMSG PRMMSG=user ID (to be enabled) and a value of 10 in the
address specified by TRGCLS) to the Spool system service.

REPLY Information
When the Spool system service ENABLE is completed, the Spool system service replies using an IUCV
REPLY, with DATA=PRMMSG, and PRMMSG containing the following information:

 IPRMMSG2 Byte 0 X'00' function request has been
 completed successfully

When the user ID does not exist, the Spool system service always responds using an IUCV REPLY with
DATA=PRMMSG, and PRMMSG containing the following information:

 IPRMMSG2 Byte 0 X'04' Userid not found

When the Spool system service ENABLE does a SEVER, the format of the IPUSER field is:

 IPUSER + 0: Return code
 IPUSER + 1: X'0A' - Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

The DISABLE Function
This function disables reader notification for a specified user ID. It sends a DISABLE (though an IUCV
SEND specifying TYPE=2WAY communication, DATA=PRMMSG, PRMMSG=user ID (to be enabled), and a
value of 11 in the address specified by TRGCLS) to the Spool system service.

*SPL

Chapter 21. Spool System Service (*SPL) 761

REPLY Information
When the Spool system service DISABLE is completed, the Spool system service replies using an IUCV
REPLY, with DATA=PRMMSG, and PRMMSG containing the following information:

 IPRMMSG2 Byte 0 X'00' function request has been
 completed successfully

When the Spool system service DISABLE does a SEVER, the format of the IPUSER field is:

 IPUSER + 0: Return code
 IPUSER + 1: X'0B' - Identifies the type of IUCV
 SEND that caused the sever
 IPUSER + 2: IPMSGID from the IUCV parameter list
 that caused the error

Spool System Service Communication to a Virtual Machine
When the Spool system service accepts the connection to a prtid, the Spool system service can send the
following types of requests to a prtid:

• SEND
• NOTIFY
• PURGE.

The pages that follow describe these functions.

The SEND Function
The Spool system service uses the Spool system service SEND function to pass printer type commands
directly to a prtid.

The Spool system service SEND function is used in two ways:

1. To pass data from a non-privileged user to a prtid by specifically issuing the CP SEND command.
2. To route operator commands dealing with printer internals to prtids. The commands in this group are

those existing class D, spool operator, and CP commands that control physical system printers. These
commands are:

• DRAIN
• FLUSH
• QUERY
• START.

The Spool system service routes any of the commands issued from the virtual console which specifies
a prtid in place of an rdev.

The Spool system service SEND function is an IUCV SEND specifying TYPE=1WAY, DATA=BUFFER,
BUFFER=address, a length of 253 in the address specified by BUFLEN, and a value of 9 in the address
specified by TRGCLS.

Note: When the ALL parameter is specified on the DRAIN, QUERY, or START command, the Spool system
service SEND function sends the text to every CONNECTed prtid. Also, when prtids have the same name,
the Spool system service SEND function is done to each of them independently.

It is the responsibility of the print server to do the necessary privilege class and authorization checks for
all commands sent to it using the Spool system service SEND function. The prtid uses the Spool system
service MESSAGE function to respond to the issuer of the command.

*SPL

762 z/VM: 7.3 CP Programming Services

With Spool system service SEND, the Spool system service passes the following information to a prtid:

 SPLSNUID DS CL8 User ID of the issuer of the command
 SPLSNPCS DS XL4 Privilege classes of the issuer
 SPLSNTXT DS CL240 Text of the command
 DC X'15' End-of-text indicator

The end-of-text indicator can occur anywhere within the SPLSNTXT field or in the byte following this field.

The NOTIFY Function
The Spool system service NOTIFY function informs an idle prtid that a print file is available for processing.
It also informs the reader service machine that a reader file has been added or deleted to the specified
user's queue.

The Spool system service notifies the prtid through an IUCV SEND specifying TYPE=1WAY,
DATA=PRMMSG, and a value of 8 in the address specified by TRGCLS. No information is sent to the
prtid concerning the spool files associated with the NOTIFY.

Notes:

1. A prtid is considered to be idle when it has done a SELECT and received a response of file not available
from the Spool system service.

2. When a prtid obtains a file for processing by issuing a SELECT request, the Spool system service stops
sending notifications to the prtid because the prtid is no longer idle.

The Spool system service notifies the reader service machine through an IUCV SEND specifying
TYPE=1WAY, DATA=BUFFER, a length of 9 in the address specified by BUFLEN, and a value of 8 in the
address specified by TRGCLS. The 9-bytes of data in the buffer consist of the user ID whose reader queue
changed, the user's spool ID of the reader file, and the number of reader files currently on the user's
queue.

The PURGE Function
The Spool system service PURGE function signals a prtid to immediately stop processing a print file that
the prtid has selected and is in the process of converting. The Spool system service PURGE is done when
a CP PURGE, CP CHANGE, or CP TRANSFER command is issued for a file being converted.

For the PURGE function, the Spool system service does an IUCV SEND specifying (TYPE=1WAY,
DATA=BUFFER, a length of 10 in the address specified by BUFLEN, and a value of 7 in the address
specified by TRGCLS) to the prtid. The 10-bytes of data in the buffer consist of the spool ID of the file to
be purged and the user ID that owns the file. The buffer is formatted as follows:

 + 0: DS XL2 Spool ID
 + 2: DS CL8 User ID

Note: If the user ID is less than 8 characters, it is left-justified and padded with blanks.

The Generic *SPL Interface
The *SPL also functions as a generic spool file interface facility.

Establishing Communication with the Spool System Service
The spool system service uses IUCV to communicate with an application. To create a path to be used in
conjunction with the generic *SPL interface, the application must issue an IUCV CONNECT with userid set
to *SPL, PRTY=NO, PRMDATA=YES, and USERDTA is an address containing the word VIRTUAL followed by
a blank in the first 8 bytes.

*SPL

Chapter 21. Spool System Service (*SPL) 763

Processing a File
Each generic *SPL interface path created between the application and the spool system service can be
used to read data from only one file at a time. The process of reading the contents of a file can be
summarized as follows:

1. IUCV CONNECT to *SPL with the first 8 bytes of IPUSER set to VIRTUAL (followed by a blank).
2. IUCV SEND a SELECT request to *SPL specifying a file to be selected for reading.

Note: You can have the SFBLOK, 3800 information, any number of SPLINKs and the XAB data of the
selected file to be transmitted back to you using the SELECT request.

The data becomes available in the specified buffers when the message complete interrupt occurs.
3. IUCV SEND a GET request for SFBLOK, 3800 information, SPLINKs, XAB, or any combination thereof.

The data becomes available in the specified buffers when the message complete interrupt occurs.
4. IUCV SEND a CLOSE request for the file.

At this point the IUCV path may be reused or SEVERed. To reuse, simply send another SELECT request to
*SPL informing it of the next file to be selected.

Selecting a File To Be Read
To select a file to be made active on an established generic *SPL connection, use IUCV SEND to send a
SELECT request to the *SPL System Service.

A SELECT request involves issuing an IUCV SEND request TYPE=2WAY, DATA=BUFFER, BUFFER = address
of 48 byte parameter list (mapped by SPGBK), BUFLEN = address of field containing length of the
parameter list (SPGSIZEB), a value of 1 in the address specified by TRGCLS, ANSBUF = address of
16-byte reply buffer (mapped by SPRBK), ANSLEN = address of field containing length of the reply buffer
(SPRSIZEB). The parameter list sent to *SPL for a SELECT request is mapped by SPGBK. The reply buffer
is mapped by SPRBK. SPGBK DSECT and SPRBK DSECT are both in the HCPGPI MACLIB.

A SELECT request is required to activate a file on an IUCV path. SELECTs fall into two possible categories:

• Select Specific - selecting by user ID, spool ID, and spool queue
• Select Next - select next unseen file by user ID and spool queue

Thus, the SPGSPEC and SPGNEXT bit settings in the SPGOPTN byte are mutually exclusive. After a file
is selected on a given *SPL connection no reference needs to be made to the spool ID of the file;
all transactions that follow refer specifically to the attached file. To request files from spool queues
belonging to a user other than that of the virtual machine the application is running on, the virtual
machine running the application must have class D privileges.

*SPL

764 z/VM: 7.3 CP Programming Services

SPGBK DSECT

SPGUSER DS CL8 Userid whose file is to be selected
SPGSPID DS H Spoolid of file to be selected
SPGQUEUE DS X Queue (RDR|PRT|PUNCH) file is on
*
* Settings for SPGQUEUE
*
SPGRDR EQU 1 Select file from reader queue
SPGPRT EQU 2 Select file from printer queue
SPGPUN EQU 3 Select file from punch queue
SPGSDF EQU 4 Select SDF queue

SPGOPTN DS X flag byte
*
* Bits defined in SPGOPTN for SELECT and GET operations
*
SPGSPEC EQU X'80' Select specific (SPGUSER, SPGSPID
 and SPGQUEUE)
SPGNEXT EQU X'40' Select next unseen (SPGUSER & SPGQUEUE)
SPGRESET EQU X'20' Reset all seen bits (SPGUSER &SPGQUEUE)
SPGGSFB EQU X'10' Transfer SFBLOK information
SPGG3800 EQU X'08' Transfer 3800 section information
SPGGSPLK EQU X'04' Transfer SPLINK(s) (SPGSPLKS & SPGSPLKN)
SPGGXAB EQU X'02' Transfer XAB
SPGNOSEL EQU X'01' Request for data only,
 file remains unselected
*
* Bits defined in SPGOPTN for CLOSE operation
*
SPGPURGE EQU X'80' Purge the file
SPGUHOLD EQU X'40' Put the file in user hold
SPGSHOLD EQU X'20' Put the file in system hold
SPGDECR EQU X'10' Decrement the copy count

 DS F Reserved for future IBM use

SPGSPLKS DS F Start transferring SPLINK(s) from here
SPGSPLKN DS F Number of SPLINKs to transfer

SPGSFBA DS A Address to place SFBLOK info
SPG3800A DS A Address to place 3800 info (SPLINK)
SPGSPLKA DS A Address to place SPLINK info
SPGXABA DS A Address to place XAB info

SPGSFBL DS X Len of SFBLOK info requested (d-words)
SPG3800L DS X Len of 3800 info requested (bytes)
SPGXABL DS H Len of XAB requested (bytes)
 DS F Reserved for future IBM Use

SPGSIZEB EQU (*-SPGBK) Size in bytes
SPGSIZED EQU (*-SPGBK+7)/8 Size in d-words

Figure 88. SPGBK DSECT

The *SPL System Service responds with 16 bytes of information at the address specified on the ANSBUF
parameter of the IUCV SEND. The buffer contains the following information:

SPRBK DSECT

SPRGENRC DS X General return code
SPRSFBRC DS X SFBLOK related return code
SPRSPKRC DS X SPLINK related return code
SPRXABRC DS X XAB related return code
SPR38RC DS X 3800 related return code

SPRSPLKN DS AL3 Number of SPLINKs transferred

SPRSFBL DS X Len of SFBLOK info returned (d-words)
SPR3800L DS X Len of 3800 info returned (bytes)
SPRXABL DS H Len of XAB data returned (bytes)

 DS F Reserved for future IBM Use

SPRSIZEB EQU (*-SPRBK) Size in bytes
SPRSIZED EQU (*-SPRBK+7)/8 Size in d-words

Figure 89. SPRBK DSECT

*SPL

Chapter 21. Spool System Service (*SPL) 765

In the case of a SELECT that does not request any additional information to be transferred, the only field
set in the SPRBK is SPRGENRC:
Code

Meaning
0

Request completed successfully
4

No file meeting requested criteria found
8

Previously selected file still active
12

Not authorized to select another user's files
16

Value specified for queue (SPGQUEUE) is not valid.
20

Specfied user ID (SPGUSER) not found.
24

ESM check failed.
255

Invalid parameter list encountered:

Select Specific (SPGSPEC) and Select Next (SPGNEXT) were specified
Neither Select Specific (SPGSPEC) nor Select Next (SPGNEXT) was specified and there was not an
active file on the path already.

The SELECT request can be combined with a GET request to select a file and get information such as
SFBLOK, 3800 information (in SPLINK), SPLINK(s), and XAB information as part of the initial reply. This is
accomplished by setting transfer options bits in the SPGOPTN option byte. See the following section for
details of the GET request.

Note: The SPGRESET option bit is used to indicate to *SPL that all files in the user's selected queue are to
have their seen bits reset. This action will supersede any other selection request. Thus, if SPGRESET and
SPGNEXT are set, all seen bits will be reset and the application will end up attaching the first file in the
selected queue (based on SPGQUEUE) to the *SPL IUCV connection.

Transferring Information About a Selected File
As mentioned before, the GET request may be combined with the SELECT request described in the
previous section. As with SELECT requests, GET requests are made by sending the *SPL System service a
SPGBK parameter list using TYPE=2WAY and a value of 1 in the address specified by TRGCLS. Combined
SELECT and GET requests are recognized through the bit settings in the SPGOPTN byte. A pure GET
request will fail if no file is currently active on the chosen *SPL path.

With a GET request or a combined SELECT and GET (assuming the SELECT request does not fail), the
application can expect additional data to accompany the REPLY from the *SPL System Service. The GET
request is formulated as follows:

• If the SPGGSFB bit is set, the first SPGSFBL double words of the SFBLOK of the attached file is placed
at the address specified in SPGSFBA. The minimum length that can be specified by SPGSFBL is 24
d-words.

• If the SPGG3800 bit is set, the first SPG3800L bytes of the 3800 section of the attached file is placed at
the address specified in SPG3800A.

• If the SPGGSPLK bit is set, the number of SPLINKs specified in SPGSPLKN is placed at the address
specified in SPGSPLKA.

*SPL

766 z/VM: 7.3 CP Programming Services

The SPGSPLKS and SPGSPLKN settings determine what SPLINKs of the file are placed at the specified
address. The value of SPGSPLKS determines which SPLINK the transfer will start from. The value of
SPGSPLKN determines how many SPLINKs will be transferred with this request.

For example, a value of 2 in SPGPLKS and a value of 3 in SPGSPLKN would indicate that the transfer of
SPLINK data should start with the second SPLINK in the file and that a total of three SPLINKS would be
placed into storage starting at the address specified in SPGSPLKA.

If the value of SPGPLKS is 0, the read will start from wherever the file is currently positioned. Multiple
SPLINKs are copied into contiguous storage starting at the address specified in SPGSPLKA.

All write CCWs in the SPLINKs transferred by *SPL remain as the original opcode. This is different from
Diagnose X'14', which converts all write CCWs in punch files to X'41' opcodes.

• If the SPGGXAB bit is set, the first SPGXABL bytes of the XAB of the attached file are placed at the
address specified in SPGXABA.

If the settings of the SPGSFBL, SPG3800L, SPGSPLKN or SPGXABL fields exceed the length of the
corresponding areas for the file, only the data available is transferred to the buffer. The remainder
of the buffer is unchanged. If the settings of the SPG3800L, SPGSPLKN or SPGXABL fields are less
than amount of data available, then the amount of data specified in the length field is transferred.
If SFBLOK data is being requested, SPGSFBL must be set to a minimum of 24 double words. The
SPRSPLKN, SPRSFBL, SPR3800L or SPRXABL fields will contain actual number of transferred splinks,
double words or bytes. If the amount of data transferred is not equal to the amount requested, the
SPRSFBRC, SPRSPKRC, SPRXABRC or SPR38RC fields will contain a return code to indicate this. If
SPGSFBL, SPG3800L, SPGSPLKL or SPGXABL are equal to 0, then the corresponding return code in the
SPRBK (SPRSFBRC, SPRSPKRC, SPRXABRC or SPR38RC) will be 0 and the corresponding length field in
the SPRBK (SPRSPLKN, SPRSFBL, SPR3800L or SPRXABL) will be 0.

The GET request may cause the following return codes to be reflected in the SPRBK. For a combined
SELECT and GET request, these return codes can be set in addition to those already outlined in the
SELECT section above.

The settings for SPRGENRC can be the following:
Code

Meaning
0

Request completed successfully.
255

Invalid parameter list encountered:

SPGNOSEL was specified with Transfer SPLINK (SPGGSPLK) and/or Transfer XAB (SPGGXAB)

The settings for SPRSFBRC can be the following:
Code

Meaning
0

Requested SFBLOK information transferred successfully.
4

Paging error encountered when attempting to transfer SFBLOK information to your virtual machine.
8

Addressing or protection exception encountered due to invalid SFBLOK data area address specified on
request.

12
Data area address length that was specified was smaller than size of the SFBLOK (192 bytes).

16
The amount of data requested was greater than the amount of data available. SPRSFBL contains the
number of double words of data returned.

The settings for SPRSPKRC can be the following:

*SPL

Chapter 21. Spool System Service (*SPL) 767

Code
Meaning

0
Requested SPLINK information transferred successfully.

4
Paging error encountered attempting to access SPLINKs or transfer SPLINK information to your virtual
machine.

8
Addressing or protection exception encountered due to invalid SPLINK address specified on request.

12
Starting SPLINK number specified in SPGSPLKS exceeded the number of SPLINKs contained in the
file.

16
The amount of data requested is not equal to the amount available. SPRSPLKN contains the actual
number of SPLINKs returned. If SPRSPLKN is less than the number of SPLINKs requested, end of file
was reached.

20
There was already an outstanding read for this file

The settings for SPRXABRC can be the following:
Code

Meaning
0

Requested XAB information transferred successfully.
4

Paging error encountered when attempting to access XAB or transfer XAB information to your virtual
machine.

8
Addressing or protection exception encountered due to invalid XAB data area address specified on
request or length of data requested (SPGXABL) was greater than 32,767 bytes.

12
File does not have an XAB defined.

16
The amount of data requested is not equal to the amount available. SPRXABL contains the actual
number of bytes of XAB data returned. If SPRXABL is less than the amount of XAB data requested
(SPGXABL), then all of the available XAB data was returned. If SPRXABL is equal to the amount of XAB
data requested, there is more data available.

20
There was already an outstanding read for this file

The settings for SPR38RC can be the following:
Code

Meaning
0

Requested 3800 information transferred successfully.
4

Paging error encountered when attempting to access 3800 data or transfer 3800 information to your
virtual machine.

8
Addressing or protection exception encountered due to invalid 3800 data area address specified on
request.

*SPL

768 z/VM: 7.3 CP Programming Services

16
The amount of data requested is not equal to the amount available. SPR3800L contains the actual
number of bytes of 3800 data returned. If SPR3800L is less than the amount of 3800 data requested
(SPG3800L), then all of the available 3800 data was returned. If SPR3800L is equal to the amount of
3800 data requested, there is more data available.

If more than one of the transfer bits is set in the GET request, the operations are handled by *SPL
independently. For example, if an invalid SPLINK start counter is specified in the SPGSPLKS field, no
SPLINK information will be transferred to the user's virtual machine, but any other information requested
will be placed at the requested locations in storage.

Closing a File
Once all needed information for a given file has been obtained, the file can be closed by issuing a CLOSE
request to the *SPL System Service.

A CLOSE request involves issuing an IUCV SEND request TYPE=2WAY, DATA=BUFFER, BUFFER = address
of 48 byte parameter list (mapped by SPGBK), BUFLEN = address of field containing length of the
parameter list (SPGSIZEB), a value of 2 in the address specified by TRGCLS, ANSBUF = address of 16
byte reply buffer (mapped by SPRBK), ANSLEN = address of field containing length of the reply buffer
(SPRSIZEB). The parameter list sent to *SPL for a CLOSE request is mapped by SPGBK. Required fields
are SPGUSER and SPGSPID. SPGOPTN can be used to specify whether the file should be closed or the
copy count decremented. SPGOPTN is defined as follows for the CLOSE function:
X'80'

Purge the file
X'40'

Place file in user hold
X'20'

Place file in system hold
X'10'

Decrement the copy count of file. This option does not close the file. If the copy count is already set to
1, purge the file.

The purge option cannot be used in conjunction with the other three options. If the purge option is
specified with any of the other three options, the path is severed. No other restrictions exist. If none of the
bits are set, the file is closed and its characteristics are not changed.

The *SPL System Service replies to the CLOSE request by sending an SPRBK back in the address specified
by the ANSBUF parameter on the IUCV SEND.

The possible settings for SPRGENRC are as follows:
Code

Meaning
0

File closed and options set as requested
4

No file active on this *SPL connection
8

File purged (either because of a purge request or a decremented copy count)

Once the file has been closed, the path to *SPL need not be severed; instead the path may be reused by a
new SELECT request attaching a new file to the path.

Clearing an Existing Connection
Should the application lose track of what file is active on a path or should it wish to clear out any file
attached to the path, it can issue a CLEAR request for the *SPL path.

*SPL

Chapter 21. Spool System Service (*SPL) 769

A CLEAR request involves issuing an IUCV SEND request TYPE=2WAY, DATA=BUFFER, BUFLEN = address
of field containing a value of 0, a value of 3 in the address specified by TRGCLS, ANSBUF = address of
16 byte reply buffer (mapped by SPRBK), ANSLEN = address of field containing length of the reply buffer
(16).

The *SPL System Service replies to a CLEAR request by returning an SPRBK in the address specified on
the ANSBUF parameter of the IUCV SEND. The only significant field in the SPRBK is the SPRGENRC field,
which may be set as follows:
Code

Meaning
0

Active file on path has been closed
4

No file was active on the path

*SPL

770 z/VM: 7.3 CP Programming Services

Chapter 22. Symptom System Service (*SYMPTOM)

An application may be written by an installation to run in a guest virtual machine that has been authorized
to use the IUCV interface to collect symptom records from the z/VM control program supporting it. This
IUCV authorization is defined within the IUCV Directory Control Statement of the guest virtual machine.
The IUCV control statement must name *SYMPTOM as the CP system service to which a communication
path will be established. The user ID of the guest virtual machine may also be identified to the control
program during system generation or in the system configuration file so that records can be accumulated
for the virtual machine before it has connected to the system service. For more information on the
required IUCV authorization and identifying the virtual machine that contains a data retrieval application
to the control program (the SYSTEM_USERIDS statement in the system configuration file), see z/VM: CP
Planning and Administration.

For more information on the IUCV functions mentioned in this chapter, see Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

The Symptom system service (*SYMPTOM) in CP supports both 1-way and 2-way IUCV protocols when
sending records to authorized virtual machines. When a 1-way IUCV SEND is issued by z/VM, the virtual
machine to which the symptom record is sent cannot issue an IUCV REPLY but must issue a RECEIVE.
When a 2-way IUCV SEND is issued by z/VM, the virtual machine to which the symptom record is sent
must issue an IUCV REPLY. Response data may not be sent on an IUCV REPLY. The reply buffer length
field in the IUCV parameter list, IPBFLN2F, must contain zeros. This can be accomplished by setting a
register to zero and coding ANSLEN=(reg) on the IUCV REPLY macro.

Connecting to the Symptom System Service
Before issuing the IUCV CONNECT to the CP *SYMPTOM system service, a virtual machine must issue a
DECLARE BUFFER request to IUCV to provide an external interrupt buffer. The virtual machine must be
enabled for IUCV interrupts in Control Register 0, and the PSW must be set to enable external interrupts.

The connection with the Symptom system service is established by issuing an IUCV CONNECT, specifying
USERID=*SYMPTOM. The use of the IUCV 1-way or 2-way protocol for gathering symptom records from
the CP Symptom system service is specified by the virtual machine in the IPUSER data area when it issues
an IUCV CONNECT to the Symptom System Service. This area must contain a X'02' at offset 8 to indicate
2-way protocol. Otherwise, the 1-way protocol is used by default. The CONNECT parameter list must also
indicate that you do not want to receive messages with data in the parameter list. This is indicated by
specifying or defaulting to the PRMDATA=NO option on the IUCV CONNECT.

A virtual machine is not allowed to issue an IUCV SEND to the Symptom system service (the path is
QUIESCED by the CP Symptom system service). A virtual machine may only have one communication
path to the Symptom system service. The Symptom system service only sends records with the PRTY=NO
option.

When an application running in an authorized virtual machine issues a CONNECT to the CP Symptom
system service, the connection is either completed successfully (by ACCEPT) or rejected (by SEVER). If
the connection is accepted, IUCV returns a PATHID to the virtual machine, which must be specified on all
subsequent IUCV requests to the system service. Only one CONNECT can be issued by a virtual machine
to the Symptom system service.

If the connection is severed, the Symptom system service places a 1-byte code at offset 9 of the IPUSER
field of the IPARML to indicate why. A code of X'04' indicates that the virtual machine already has a
connection to the Symptom system service. A code of X'08' indicates that the virtual machine made a
protocol error on the CONNECT request. The PRMDATA=YES option was specified but should not have
been. A code of X'0C' indicates that the maximum number of connections to the Symptom system service
has been exceeded.

The data format of a symptom record is identical to records recorded using the RETRIEVE SYMPTOM
command. More than one user ID may be authorized to connect to this service.

*SYMPTOM

© Copyright IBM Corp. 1991, 2023 771

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

Receiving Symptom Records
To obtain a symptom record, when the application is notified by an external interrupt that one is available,
an IUCV RECEIVE must be issued. The Symptom system service does not send another record until either
a response (when the application indicates that data is to be sent to it using the 1-way protocol) or a
REPLY (when an application indicates that data is to be sent to it using the 2-way protocol) is received by
the CP Symptom system service to the previous record sent.

The CP Symptom system service maintains a threshold limit which indicates when to notify the system
operator and the receiving virtual machine that uncollected records are accumulating in host storage.
The default value is 2 for symptom records. The system operator may change this value by issuing the
RECORDING SYMPTOM command.

To stop receiving records temporarily, the application must issue an IUCV SEVER. CP continues to queue
records for your virtual machine until a CP RECORDING SYMPTOM OFF command is issued for your user
ID. To resume receiving records, the system operator may issue an IUCV CONNECT specifying USERID as
*SYMPTOM.

If z/VM abends while a virtual machine is collecting symptom record data, symptom records not received
by the virtual machine are checkpointed and requeued to the virtual machine on a subsequent warm or
force start of the control program.

The virtual machine is logged on the system automatically by CP if it is identified on the SYSTEM_USERIDS
statement in the system configuration file as part of your system generation.

Disconnecting from the Symptom System Service
You can terminate collection of symptom records by issuing IUCV SEVER or IUCV RETRIEVE BUFFER for
your *SYMPTOM path. A SEVER may be initiated by the system due to virtual machine reset or an IUCV
RETRIEVE BUFFER request.

*SYMPTOM

772 z/VM: 7.3 CP Programming Services

Chapter 23. VM Event System Service (*VMEVENT)

The VM Event system service (*VMEVENT) is a CP system service that notifies you about certain events
that occur in the VM system. When you connect to the VM Event system service, you receive notification
of all events that occur from that point forward. For a virtual machine to receive notifications about VM
system events, it must first be authorized to connect to the VM Event system service, *VMEVENT. Your
system administrator is the person who can authorize a virtual machine to establish a connection. To
do this, the administrator must specify a special IUCV *VMEVENT statement in the virtual machine's
directory entry. For more information on how a system administrator authorizes virtual machines to
connect to IUCV system services, see z/VM: CP Planning and Administration.

For more information on the IUCV functions mentioned in this section, refer to Chapter 5, “IUCV Function
Descriptions,” on page 317 and Chapter 8, “IUCV Macro Functions for Use in APPC/VM,” on page 521.

Establishing Communication with the VM Event System Service
The VM Event system service uses IUCV to communicate with a virtual machine. The IUCV macro checks
the validity of the IUCV parameters and any errors are handled according to IUCV specifications. Your first
step in establishing IUCV communications with the VM Event system service is to issue an IUCV DECLARE
BUFFER. This function initializes the virtual machine for IUCV communication. This function also specifies
a buffer where IUCV can store external interruption information.

Connecting to the VM Event System Service
After you initialize for IUCV communication, you must issue an IUCV CONNECT and specify
USERID=*VMEVENT in the IUCV CONNECT parameter list (IPARML).

Receiving *VMEVENT Events
Upon notification of a successful connection, your virtual machine is ready to receive *VMEVENT events.
The VM Event system service passes events to your virtual machine one at a time by issuing a 1-way IUCV
SEND. Each event contains class and type identifiers and event data.

The target class (TRGCLS) is a four byte field that identifies the class and type of the event. The target
class field has the following format:

The class and type fields are 16-bit binary integers.

The data that is associated with each class-type combination is listed in the sections that follow.

Important: Earlier levels of z/VM might provide shorter versions of certain records. The programmer is
advised to check the message length to determine whether the fields are present in the record. Changes
to *VMEVENT records are documented in CP System Services in z/VM: Migration Guide.

Class 0 Events
The class 0 event types and associated data are indicated in Table 205 on page 774.

© Copyright IBM Corp. 1991, 2023 773

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpf2_v7r3.pdf#nameddest=cpserv

Table 205. Class 0 Events: Type, Data, and Event

Class Type Event Data

0 0 LOGON The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Logon-By User ID

16 variabl
e

Terminal information

The data elements are described:
User ID

Character string, 8 bytes.
Logon-By user ID

Character string, 8 bytes. The field contains blanks
(X'40') if not logon-by.

Terminal information
See “Terminal Information Data Elements” on page
779.

0 1 LOGOFF initiated User ID
Character string, 8 bytes.

0 2 Failure condition detected The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 1 Reason code

The data elements are described:
User ID

Character string, 8 bytes.
Reason code

Hexadecimal value, 1 byte. The value corresponds
to the error codes that can be produced by
Diagnose Code X'B0'. For more information, see
“DIAGNOSE Code X'B0' – Access Re-IPL Data” on
page 148.

774 z/VM: 7.3 CP Programming Services

Table 205. Class 0 Events: Type, Data, and Event (continued)

Class Type Event Data

0 3 LOGOFF timeout started1 The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 2 Timeout interval (16 bit)

10 4 Timeout interval (32 bit)

The data elements are described:
User ID

Character string, 8 bytes.
Timeout interval (16 bit)

16-bit unsigned integer. The value indicates the
timeout interval in seconds.

The maximum value of this 16-bit field is 65,535,
even if the actual timeout value exceeds 65,535.
The 16-bit field is provided for compatibility. Larger
timeout intervals are reported accurately in the 32-
bit field, if that field is present.

Timeout interval (32 bit)
32-bit unsigned integer. The value indicates the
timeout interval in seconds.

0 4 Forced SLEEP started User ID
Character string, 8 bytes.

0 5 Runnable state entered2 User ID
Character string, 8 bytes.

0 6 Free storage limit exceeded User ID
Character string, 8 bytes.

0 9 Virtual machine outbound
relocation started

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Destination system

The data elements are described:

User ID
Character string, 8 bytes.

Destination System
Character string, 8 bytes. The value indicates the
destination system of the guest relocation.

Chapter 23. VM Event System Service (*VMEVENT) 775

Table 205. Class 0 Events: Type, Data, and Event (continued)

Class Type Event Data

0 10 Virtual machine inbound
relocation started

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Source system

The data elements are described:
User ID

Character string, 8 bytes.
Source System

Character string, 8 bytes. The value indicates the
source system of the guest relocation.

0 11 Virtual machine outbound
relocation complete

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Destination system

The data elements are described:

User ID
Character string, 8 bytes.

Destination System
Character string, 8 bytes. The value indicates the
destination system of the guest relocation.

0 12 Virtual machine inbound
relocation complete

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Source system

The data elements are described:
User ID

Character string, 8 bytes.
Source System

Character string, 8 bytes. The value indicates the
source system of the guest relocation.

776 z/VM: 7.3 CP Programming Services

Table 205. Class 0 Events: Type, Data, and Event (continued)

Class Type Event Data

0 13 Virtual machine outbound
relocation terminated

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 1 Relocation termination reason
code

The data elements are described:
User ID

Character string, 8 bytes.
Relocation termination reason code

1-byte unsigned binary integer, one of the following
values:

Value Meaning

1 Canceled by VMRELOCATE CANCEL
command

2 Canceled by CPHX command

3 Canceled due to lost ISFC connection

4 Canceled due to MAXTOTAL time limit
exceeded

5 Canceled due to MAXQUIESCE time limit
exceeded

6 Canceled due to eligibility violation

7 Canceled due to virtual machine action

8 Canceled due to an internal processing
error

9 Canceled because the CP exit rejected
the command

11 Canceled because the CP exit gave a
return code that is not valid

Chapter 23. VM Event System Service (*VMEVENT) 777

Table 205. Class 0 Events: Type, Data, and Event (continued)

Class Type Event Data

0 14 Virtual machine inbound
relocation terminated

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 1 Relocation termination reason
code

The data elements are described:
User ID

Character string, 8 bytes.
Relocation termination reason code

1-byte unsigned binary integer. For more
information, see table of relocation termination
reason codes in Class 0 Type 13.

0 15 Timebomb exploded User ID
Character string, 8 bytes.

0 26 Operating system identified The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 1 Operating system type

The data elements are described:
User ID

Character string, 8 bytes.
Operating system type

1 byte, one of the following values:

Value Meaning

X'00' Unknown operating system

X'04' Inferred Linux

X'08' Explicitly Linux

0 27 Virtual system reset User ID
Character string, 8 bytes.

778 z/VM: 7.3 CP Programming Services

Table 205. Class 0 Events: Type, Data, and Event (continued)

Class Type Event Data

0 28 Virtual Machine (Guest) is
reconnected

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Logon-By User ID

16 variabl
e

Terminal information

The data elements are described:
User ID

Character string, 8 bytes.
Logon-By user ID

Character string, 8 bytes. The field contains blanks
(X'40') if not logon-by.

Terminal information
See “Terminal Information Data Elements” on page
779.

0 29 Virtual Machine (Guest) is
disconnecting

User ID
Character string, 8 bytes.

Notes:

1. If either of the following events occur, a logoff timeout is started and that VM event is reported:

• A forced disconnection occurred
• A console read was attempted on a disconnected guest that had no functional secondary user

However, if the Disconnect_Timeout value in the system configuration file is zero, a forced sleep occurs
and that VM event is reported instead. For more information, see FEATURES Statement in z/VM: CP
Planning and Administration.

2. A "Runnable state entered" (Type 5) event is sent when a virtual machine enters the runnable state
from a non-runnable state that was reported by an event type 0, 2, 3, 4, 6, or 27.

Terminal Information Data Elements
The length and type of terminal information depend on the device type. Terminal information begins with
a 1-byte unsigned binary value that indicates the length of the terminal information structure, including
the initial byte. Following the length field are a hexadecimal device identifier code and 1-4 other data
elements. The locations of the data elements relative to the start of the terminal information structure
and the lengths of the elements are described for each device type. The attributes of the data elements
are described in Table 206 on page 781.
For a disconnected device:

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'00'

Chapter 23. VM Event System Service (*VMEVENT) 779

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=featurs

Offset (bytes) Length (bytes) Data Element

2 1 conmode

For a local 3270 device:

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'01'

2 1 conmode

3 4 rdev

For a logical device:

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'02'

2 1 conmode

3 4 ldev

7 8 owner

15 1 origin_type

16 0-16 bytes origin

For a VTAM device:

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'03'

2 1 conmode

3 17 extended_luname

20 8 owner

For a line-mode integrated console (SYSC):

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'04'

2 1 conmode

For a 3270 integrated console (SYSG):

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'05'

780 z/VM: 7.3 CP Programming Services

Offset (bytes) Length (bytes) Data Element

2 1 conmode

For other connections without identifying information:

Offset (bytes) Length (bytes) Data Element

0 1 Terminal information length

1 1 Device ID: X'FF'

2 1 conmode

Table 206. Attributes of Terminal Information Data Elements

Terminal
information data

element Length Value

conmode 1 byte The conmode element has one of the following values:

Value Meaning

X'00' None

X'01' 3215

X'02' 3270

rdev, ldev 4 bytes The first two bytes contain zeros in bits 0-11 and the subchannel-
set identifier in bits 12-15. The subchannel-set identifier is 0 for
ldev.

Bytes 3 and 4 contain the device number, X'0000'-X'FFFF'.

owner 8 bytes The owner element identifies the user ID of the virtual machine
that created the device. It is an 8-character string, left justified
and padded with blanks (X'40') on the right.

origin_type 1 byte The origin_type element has one of the following values:

Value Meaning

X'00' No origin is provided.

X'01' The origin is a 32-bit IPv4 address.

X'02' The origin is a 128-bit IPv6 address.

origin 0-16 bytes The origin element length and value depends on the value of
origin_type:

• If origin_type=X'00', then origin has a length of 0 bytes.
• If origin_type=X'01', then origin has a length of 4 bytes and

contains a 32-bit IPv4 address.
• If origin_type=X'02', then origin has a length of 16 bytes and

contains a 128-bit IPv6 address.

Chapter 23. VM Event System Service (*VMEVENT) 781

Table 206. Attributes of Terminal Information Data Elements (continued)

Terminal
information data

element Length Value

extended_luname 17 bytes The extended_luname element is a string that contains the
VTAM network qualifier and logical unit name in the format
netname.luname. The string is left justified and padded with
blanks on the right.

Class 1 Events: Exception Status
When you first connect to the VM Event system service, it generates events to report to you the current
status of all logged-on virtual machines that have some sort of exception. The class 1 event types,
associated data, and status are indicated in Table 207 on page 782.

Table 207. Class 1 Events: Type, Data, and Status

Class Type Status Data

1 2 Failure condition exists The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 1 Reason code

The data elements are described:
User ID

Character string, 8 bytes.
Reason code

Hexadecimal value, 1 byte. The value corresponds
to the error codes that can be produced by
Diagnose Code X'B0'. For more information, see
“DIAGNOSE Code X'B0' – Access Re-IPL Data” on
page 148.

782 z/VM: 7.3 CP Programming Services

Table 207. Class 1 Events: Type, Data, and Status (continued)

Class Type Status Data

1 3 LOGOFF timeout in progress The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 2 Timeout interval (16 bit)

10 4 Timeout interval (32 bit)

The data elements are described:
User ID

Character string, 8 bytes.
Timeout interval (16 bit)

16-bit unsigned integer. The timeout interval
indicates the amount of time, in seconds, that
remains in the timeout. If the timeout is expired,
the value is 0.

The maximum value of this 16-bit field is 65,535,
even if the actual timeout value exceeds 65,535.
The 16-bit field is provided for compatibility. Larger
timeout intervals are reported accurately in the 32-
bit field, if that field is present.

Timeout interval (32 bit)
32-bit unsigned integer. The value indicates the
time interval in seconds.

1 4 Virtual machine subject to
forced SLEEP

User ID
Character string, 8 bytes.

1 6 Free storage limit exceeded User ID
Character string, 8 bytes.

1 9 Virtual machine outbound
relocation in progress

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Destination system

The data elements are described:

User ID
Character string, 8 bytes.

Destination System
Character string, 8 bytes. The value indicates the
destination system of the guest relocation.

Chapter 23. VM Event System Service (*VMEVENT) 783

Table 207. Class 1 Events: Type, Data, and Status (continued)

Class Type Status Data

1 10 Virtual machine inbound
relocation in progress

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 User ID

8 8 Source system

The data elements are described:
User ID

Character string, 8 bytes.
Source System

Character string, 8 bytes. The value indicates the
source system of the guest relocation.

Class 2 Events: SSI Status Change
Class 2 events are reported when the SSI mode or an SSI member state changes. The class 2 event types,
associated data, and status are indicated in Table 208 on page 785

784 z/VM: 7.3 CP Programming Services

Table 208. Class 2 Events: Type, Data, and Status

Class Type Status Data

2 7 SSI mode The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 SSI name

8 1 Previous mode

9 1 New mode

The data elements are described:
SSI name

Character string, 8 bytes.
Previous mode

1 byte, one of the following values:

Value Meaning

X'01' Stable

X'02' Influx

X'03' Safe

For more information, see QUERY SSI in z/VM: CP
Commands and Utilities Reference.

New mode
1 byte, one of the values that is possible for
Previous mode.

Chapter 23. VM Event System Service (*VMEVENT) 785

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=quplex

Table 208. Class 2 Events: Type, Data, and Status (continued)

Class Type Status Data

2 8 SSI member state The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 SSI name

8 8 Member system name

16 1 Previous state

17 1 New state

The data elements are described:
SSI name

Character string, 8 bytes.
Member system name

Character string, 8 bytes.
Previous state

1 byte, one of the following values:

Value Meaning

X'00' Down

X'01' Joining

X'02' Joined

X'03' Leaving

X'04' Isolated

X'05' Suspended

X'80' Unknown

For more information, see QUERY SSI in z/VM: CP
Commands and Utilities Reference.

New state
1 byte, one of the values that is possible for
Previous state

Class 3 Events: *VMEVENT Connection Status
Class 3 events are reported when a guest on an SSI member connects to *VMEVENT. The class 3 event
types, associated data, and status are indicated in Table 209 on page 787.

786 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=quplex

Table 209. Class 3 Events: Type, Data, and Status

Class Type Status Data

3 7 SSI mode The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 SSI name

8 1 Previous mode

9 1 Current mode

The data elements are described:
SSI name

Character string, 8 bytes.
Previous mode

1 byte, one of the following values:

Value Meaning

X'01' Stable

X'02' Influx

X'03' Safe

For more information, see QUERY SSI in z/VM: CP
Commands and Utilities Reference.

Current mode
1 byte, one of the values that is possible for
Previous mode.

Note: Class 3 events indicate the conditions at the
time the program connected to *VMEVENT. Class
3 events do not indicate a change in condition.
Hence, the current mode is always the same value
as the previous mode.

Chapter 23. VM Event System Service (*VMEVENT) 787

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=quplex

Table 209. Class 3 Events: Type, Data, and Status (continued)

Class Type Status Data

3 8 SSI member state The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 SSI name

8 8 Member system name

16 1 Previous state

17 1 Current state

The data elements are described:
SSI name

Character string, 8 bytes.
Member system name

Character string, 8 bytes.
Previous state

1 byte, one of the following values:

Value Meaning

X'00' Down

X'01' Joining

X'02' Joined

X'03' Leaving

X'04' Isolated

X'05' Suspended

X'80' Unknown

For more information, see QUERY SSI in z/VM: CP
Commands and Utilities Reference.

Current state
1 byte, one of the values that is possible for
Previous state.

Note: Class 3 events indicate the conditions at the
time the program connected to *VMEVENT. Class
3 events do not indicate a change in condition.
Hence, the current state is always the same value
as the previous state.

Class 4 Events: Networking Status
Class 4 events are networking events. The class 4 event types, associated data, and status are indicated
in Table 210 on page 789.

788 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=quplex

Table 210. Class 4 Events: Type, Data, and Status

Class Type Status Data

4 16 The device has been activated.
The connection to the
real hardware LAN is now
operational.

The data includes virtual switch information that
is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 Virtual switch name

8 8 Port group name

16 2 RDEV number

18 1 Port number

19 1 Port status

20 2 Port status reason

28 1 Vswitch status

30 1 RDEV error status

The data elements are described:
Virtual switch name

Character string, 8 bytes.
Port group name

Also called link aggregation group name. Character
string, 8 bytes.

RDEV number
Base device hexadecimal address, 2 bytes.

Port number
Decimal value, 1 byte.

Port status
Hexadecimal value, 1 byte. See CSIVPTST in Table
48 on page 245.

Port status reason
Hexadecimal value, 2 bytes. See CSIVPRSN in Table
48 on page 245.

Vswitch status
Virtual Switch UPLINK Port Status. Hexadecimal
value, 1 byte. See CSIVST in Table 47 on page 240.

RDEV error status
Hexadecimal value, 1 byte. See CSIVER in Table 48
on page 245.

4 17 An additional device has been
activated for the existing real
hardware LAN.

The data includes the same elements as *VMEVENT
class 4 type 16, which is virtual switch information
that is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

Chapter 23. VM Event System Service (*VMEVENT) 789

Table 210. Class 4 Events: Type, Data, and Status (continued)

Class Type Status Data

4 18 The device has been
deactivated. The connection to
the existing hardware LAN is
still operational.

The data includes the same elements as *VMEVENT
class 4 type 16, which is virtual switch information
that is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

4 19 The device has been
deactivated. The connection to
the existing hardware LAN is
no longer operational.

The data includes the same elements as *VMEVENT
class 4 type 16, which is virtual switch information
that is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

4 20 The device has been activated.
The connection to the virtual
switch Bridge Port is now
operational.

The data includes virtual switch information that
is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 Virtual switch name

8 2 Bridge port RDEV number

10 1 Bridge port status

11 1 Bridge port RDEV error status

The data elements are described:
Virtual switch name

Character string, 8 bytes.
Bridge port RDEV number

Base device hexadecimal address, 2 bytes.
Bridge port status

Hexadecimal value, 1 byte. See CSIVSB in Table 47
on page 240.

Bridge port RDEV error status
Hexadecimal value, 1 byte. See CSIVER in Table 48
on page 245.

4 21 The device has been
deactivated. The connection to
the virtual switch Bridge Port is
no longer operational.

The data includes the same elements as *VMEVENT
class 4 type 20, which is virtual switch information
that is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

790 z/VM: 7.3 CP Programming Services

Table 210. Class 4 Events: Type, Data, and Status (continued)

Class Type Status Data

4 22 A Global virtual switch
member had a connectivity
problem and the local system
using the same global virtual
switch and shared port
group took over the MAC
address to continue to provide
connectivity. The MAC Address
assigned to Virtual Switch
Name (with associated Port
Group Name, PCHID Number,
Port Number, and System
Identifier) has been assigned
to Local Virtual Switch Name
on Local System Identifier.

The data includes virtual switch information that
is returned from DIAGNOSE code X'26C' subcode
X'00000020'.

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 Virtual switch name

8 8 System ID

16 8 Local virtual switch name

24 8 Local system ID

32 2 n/a - Reserved by IBM

34 6 MAC Address

40 8 Port group name

48 2 PCHID (physical channel ID)
number

50 1 Flags

51 1 Port number

52 4 n/a - Reserved by IBM

The description of data elements continues on the
following page.

Chapter 23. VM Event System Service (*VMEVENT) 791

Table 210. Class 4 Events: Type, Data, and Status (continued)

Class Type Status Data

4 22 The description of data elements continues from the
previous page.

The data elements are described:
Virtual switch name

Character string, 8 bytes.
System ID

Character string, 8 bytes. If the remote
system cannot be identified, the value is
X'0000000000000000'.

Local virtual switch name
Character string, 8 bytes.

Local system ID
Character string, 8 bytes.

n/a
2 bytes. Reserved by IBM

MAC address
Hexadecimal value, 6 bytes.

Port group name
Character string, 8 bytes.

PCHID (physical channel ID)
Hexadecimal value, 2 bytes.

Flags
Hexadecimal value, 1 byte.

• X'80' indicates that the PCHID number is valid.
• X'00' indicates that the PCHID number could not

be retrieved; it is not valid.

Port number
Decimal value, 1 byte.

n/a
4 bytes. Reserved by IBM

4 23 A connectivity problem
affecting a global virtual
switch and shared port group
member has been repaired
or a different global virtual
switch member has taken over
the MAC Address. The MAC
Address previously assigned
to Local Virtual Switch Name
and Local System Identifier is
now assigned to Virtual Switch
Name with associated Port
Group Name, PCHID Number,
Port Number, and System
Identifier.

The data includes the same elements as *VMEVENT
class 4 type 22.

792 z/VM: 7.3 CP Programming Services

Table 210. Class 4 Events: Type, Data, and Status (continued)

Class Type Status Data

4 24 The System has successfully
joined the IVL Domain.

The following table indicates the offset and length of
the data elements. The values are a decimal number of
bytes.

Offset Length Element

0 8 Local system ID

8 1 IVL domain

9 1 IVL flag

10 1 Port number

Local system ID
Character string, 8 bytes.

IVL domain
Character string, 1 byte.

IVL Flag
Hexadecimal value, 1 byte.

• X'80' indicates that the local system joined the
IVL domain that is indicated.

• X'40' indicates that the local system left the IVL
domain that is indicated.

Port number
Decimal value, 1 byte.

4 25 The System has left the IVL
Domain.

The data includes the same elements as *VMEVENT
class 4 type 24.

You can issue IUCV QUIESCE to temporarily stop receiving events from the VM Event system service. The
VM Event system service queues events while a path is quiescent. The queued events will be available
when you issue an IUCV RESUME.

Disconnecting from the VM Event System Service
When all communications with the VM Event system service are completed, you can terminate
communication by issuing either an IUCV SEVER or an IUCV RETRIEVE BUFFER.

Chapter 23. VM Event System Service (*VMEVENT) 793

794 z/VM: 7.3 CP Programming Services

Part 5. CP Macros for VM Data Spaces and Other
Services

This part contains the following chapters:

• Chapter 24, “VM Data Spaces Overview,” on page 797
• Chapter 25, “CP Macros,” on page 807

© Copyright IBM Corp. 1991, 2023 795

796 z/VM: 7.3 CP Programming Services

Chapter 24. VM Data Spaces Overview

Using extensions to the interpretive-execution facility, z/VM enables applications to take advantage of
hardware support for multiple address spaces. This support is available to applications that run in
MACHINE XC virtual machines. MACHINE XC virtual machines includes Enterprise Systems Architecture/
Extended Configuration (ESA/XC) and z/Architecture Extended Configuration (z/XC) architecture.

When used without a qualifier, the term XC encompasses both ESA/XC and z/XC architectures. The
qualified terms ESA/XC and z/XC are used only when it is important to distinguish one architecture from
the other.

This chapter introduces VM Data Spaces support and briefly outlines the function provided by seven CP
macros available to programmers working with virtual machines. These macros, described in detail in the
next chapter, are:
ADRSPACE

Provides services for creating, sharing, destroying, and managing address spaces
ALSERV

Provides services for obtaining and relinquishing access to an address space
DEFWORKA

Defines the work areas required for one or more CP macros contained within your program
MAPMDISK

Provides services for mapping data on a direct access storage device (DASD) to pages of an address
space

PFAULT
Provides for asynchronous handling of page faults

REFPAGE
Provides notification to CP of expected page reference patterns.

VMUDQ
Provides an application interface for making specified queries against the CP User Directory

For information about the addition of commands and command operands, and a directory control
statement and operands related to these CP macros and VM Data Spaces, see z/VM: CP Commands
and Utilities Reference and z/VM: CP Planning and Administration.

What Are Data Spaces?
The guest main storage of an XC virtual machine consists of one or more extents of storage known as
absolute storage address spaces, or simply address spaces. Each virtual machine has an initial extent of
main storage, called its primary address space, at logon. An application running in an XC virtual machine
can create multiple address spaces of up to 2 gigabytes (2GB) each for data storage in addition to its
primary address space, as shown in Figure 90 on page 798. These address spaces are also called data
spaces because they can be used only for data storage and manipulation. An authorized application can
share its data spaces with other virtual machines on the same z/VM system. In the figure, the User1
virtual machine can share one or both of its data spaces as well as its primary address space with the
User2 virtual machine.

VM Data Spaces

© Copyright IBM Corp. 1991, 2023 797

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3

 -------------------- User1 --------------------- --- User2 ---
 +-------------+ +-------------+
 +------------+ | User1's | | User1's | +-----------+
XC virtual		data space		data space		Another
machine						virtual
						machine
		(up to 2GB)		(up to 2GB)		
(primary						(primary
address						address
space)	+-------------+ +-------------+	space)				
+-+------------+---------------------------------------+-----------+--+						
CP						
+---+

Figure 90. Guest data spaces

In addition, data space support allows an application executing on a non-XC virtual machine to share its
primary address space as well as copy data from other virtual machines' address spaces into its primary
address space.

Uses for Data Spaces
Certain applications require vast amounts of storage to work efficiently. One such class of applications
includes database managers, which can map an entire database into storage at one time rather than
explicitly managing I/O. Another class of applications requires large storage buffers, which now can reside
outside the virtual machine's primary address space. The graphic representation of three-dimensional
objects, image processing, and numerically-intensive computation all require such large storage areas.

Applications in an XC virtual machine can use data spaces to:

• Dynamically obtain more storage than is available in its virtual machine's primary address space
• Isolate data from other programs that may execute in the same virtual machine
• Share data located in a data space among programs executing in the same or other virtual machines
• Isolate data by its particular usage and then share that data only among related users (this is an

alternative to using a common area that may contain data for various uses)
• Share data located in its virtual machine primary address space with programs executing in other virtual

machines.

In addition, applications (particularly those that provide database management services) can use data
spaces with the minidisk mapping services. This can improve overall system performance by replacing
virtual machine I/O, such as DIAGNOSE I/O, with paging I/O, which is more efficient.

ESA/XC Architecture
VM Data Space support is tailored to the XC architecture virtual machine environment. ESA/XC is a
derivative of the ESA/390 architecture and z/XC is a derivative of the z/Architecture. However, the XC
architecture differs from the native architectures in several important ways:

• XC architecture is a virtual machine architecture designed to satisfy CMS application program
requirements. Other virtual machine architectures are simulations of architectures implemented on
real hardware. For example, an ESA/390 virtual machine is the functional equivalent of a real ESA/390
processor.

• XC services are available specifically for guests, such as CMS, that run with dynamic address translation
(DAT) off.

• The interpretive-execution facility is not provided in XC architecture. This facility is intended for use by
a host for the emulation of virtual machines. XC architecture is intended for application programs, not
hosts like z/VM, so the interpretive execution facility is not needed.

• CP manages the address spaces created by XC virtual machines. As a result, address spaces created
from one virtual machine can be shared with other virtual machines on the same z/VM system. In
contrast, ESA/390 architecture requires that the virtual machine operating system run with DAT on and

VM Data Spaces

798 z/VM: 7.3 CP Programming Services

manage its own data spaces, thus precluding the virtual machine from sharing its data spaces with
other users.

Other features of ESA/390 architecture, such as channel subsystem I/O and bimodal addressing, exist in
ESA/XC architecture. Trimodal addressing exists in z/XC architecture. For details of ESA/XC architecture,
see z/VM: ESA/XC Principles of Operation. For details of z/XC architecture, see z/VM: z/Architecture
Extended Configuration (z/XC) Principles of Operation.

Address Space Support
As the previous section indicates, XC architecture support for multiple address spaces differs from that
of ESA/390 architecture and z/Architecture. The capabilities available to applications running in an XC
virtual machine, however, are similar to those provided by ESA/390 architecture and z/Architecture. The
combination of XC architecture and the services provided by CP macros enable applications running in an
XC virtual machine to own multiple address spaces. In addition, XC architecture allows sharing of address
spaces among multiple virtual machines.

Every XC virtual machine owns at least one address space, the primary address space, given to the user
by CP when the user logs on to the z/VM system. The size of this primary address space is determined
from the entry describing that user ID in the user directory, or from a subsequent DEFINE STORAGE
command.

In addition to the primary address space, a user whose CP directory contains authorization can create
multiple data spaces and share them with other users. Both creating and sharing require separate
authorization in the user's directory. A data space exists until it is either explicitly destroyed by the owner
or until the owning virtual machine goes through a virtual machine reset operation. Virtual machine reset
occurs as part of the processing of the CP LOGOFF, SYSTEM RESET, and IPL commands.

Address spaces created by programs running in an XC virtual machine are maintained by CP. The
structures used to control access to address spaces thus reside in CP-controlled storage. CP also
maintains a host access list for each virtual machine logged on to the z/VM system. This list contains
information that designates the address spaces the associated virtual machine is allowed to access. By
default, each access list can hold 62 entries, and thus can identify 62 address spaces accessible to the
virtual machine in addition to the primary address space. The XCONFIG ACCESSLIST directory control
statement can be used to increase the number of entries allowed on the access list.

In addition to the access lists, CP maintains a list of permitted users that is associated with each address
space. To access or manipulate data in an address or data space, an application must own (or have been
permitted access to) the address space.

The ability to own multiple address spaces brings to mind the question of how a program specifies which
address space should be referenced by an instruction. The answer lies in ESA/390 hardware support
in the form of a set of access registers. Each access register is paired with a general register. The
access registers indicate which address space contains the data being referenced by an address in the
associated general register.

The address translation mode determines whether the access registers are used when resolving an
address. When in access-register mode (AR mode), assembler instructions (such as load, store, and move
character) can move data in and out of a data space and manipulate data within it. Assembler instructions
can also perform arithmetic operations on the data.

The access registers are used for addressing only when a program running on an XC virtual machine
is executing in AR mode. The usual address translation mode is called primary-space mode. The non-
privileged instruction called SET ADDRESS SPACE CONTROL (SAC) is used by an application program to
set a bit in the program status word (PSW) that indicates which address translation mode is in effect.

Summary of Data Space Operations
To exploit data space support, use the CP macros described in detail in Chapter 25, “CP Macros,” on page
807. These macros provide system services for creating, controlling, and deleting data spaces.

VM Data Spaces

Chapter 24. VM Data Spaces Overview 799

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3

An application running in a virtual machine that is allowed to own a data space can use the following CP
macros to perform various address space functions:
ADRSPACE CREATE

Create a data space
ADRSPACE DESTROY

Destroy a data space
ADRSPACE PERMIT

Permit other users (virtual machines) or applications to access an address space
ADRSPACE ISOLATE

Isolate an address space from other users
ADRSPACE QUERY

Ask for the identification token and size of any address space it owns or is permitted to access
ALSERV ADD

Add an entry to the host access list
ALSERV REMOVE

Remove an entry from the host access list

A data space can be created and deleted only from an XC virtual machine that has been authorized using
an XCONFIG ADDRSPACE directory statement. With the SHARE option on that directory statement, your
application can share address spaces it created with applications running on other virtual machines.

An application running in a non-XC virtual machine that is allowed to access an address space belonging
to another virtual machine can use the following operations to perform certain address space functions:

ADRSPACE QUERY Ask for the identification token of the address space it needs
to access

ALSERV ADD Add an entry to the host access list

ALSERV REMOVE Remove an entry from the host access list

DIAGNOSE code X'248' Copy from another address space into primary address space
(for non-XC virtual machines)

Note: Although data space management also can be performed using callable services library (CSL)
routines in CMS, do not mix that programming interface with this one. CMS relies on the CP interface
and any mixing of the interfaces may inhibit CMS from performing its error checking. Thus, performing
data space management directly using data space CP macros or DIAGNOSE codes along with the CMS
interface may cause unexpected results.

Using Data Spaces in Your Applications
This section describes how to use the CP macros in your applications to set up and manage data spaces.
Before you assemble a program that uses these macros, however, you must issue the GLOBAL command
for HCPGPI MACLIB.

Creating and Using Data Spaces
A program's ability to create, delete, and access data spaces depends on whether the virtual machine that
it executes in has been authorized to do so through CP directory control statements. Because the use of
data spaces consumes system resources, such as real and auxiliary storage, their use is controlled by the
installation. System programmers responsible for tuning and maintaining z/VM use the following directory
control statements to control these resources:

• XCONFIG ADDRSPACE directory control statement — This statement authorizes an XC virtual machine
to create and delete data spaces, specifies the maximum size of the data spaces, and indicates whether
they can be shared. For non-XC virtual machines, it allows sharing of the primary address space.

VM Data Spaces

800 z/VM: 7.3 CP Programming Services

• XCONFIG ACCESSLIST directory control statement — This statement allows any type of virtual machine
to access more than 62 address spaces (the number allowed without an XCONFIG ACCESSLIST
statement), specifying the number of data spaces that can be accessed at any given time. The
access list is maintained for the virtual machine by CP and is used to keep track of address space
addressability. Note that a non-XC virtual machine can reference data in another virtual machine's
address space only by using the DIAGNOSE code X'248' (copy-to-primary service).

As an application developer, you should be aware of these installation-established limits and how they
relate to return codes associated with the ADRSPACE and ALSERV macros.

Creating a Data Space
When a program executing in an XC virtual machine uses the ADRSPACE CREATE macro to create a data
space, it needs to provide the name and size (number of pages) of the data space.

Upon return from ADRSPACE CREATE, the address provided on the ASIT operand contains the address
space identification token (ASIT) of the newly-created data space. This ASIT is a system-wide unique
identifier for this data space. It is not used again during the current system IPL. The application must
retain the ASIT for subsequent address space related service calls. An application can obtain the ASIT of
an existing data (or address) space by calling the QUERY function with the name and owner of the address
space.

An ASIT identifies an instance of a data space. An instance of a data space is a temporal concept that
means a particular version of the data in a data space. For example, when a data space is deleted and a
new data space with the same name is created, the new data space can be considered a new instance of
the original data space. Even though the name is the same, re-creating a data space results in a new ASIT
being assigned. Thus, the ASIT can be used to ensure that only users authorized for a particular instance
of a data space can access it.

Permitting Another User to Access an Address Space
Recall that in addition to access lists, CP maintains a list of permitted users for each address space on the
z/VM system. To access an address space that it does not own, a user must have been granted access by
the owner and thus be listed on the permitted-users list for that address space by CP. The owner of an
address space can grant either read-only or read/write access to one or more other users.

To grant another user access to an address space, call the ADRSPACE PERMIT macro, supplying the
ASIT of the address space, the identity of the virtual machine that is to be given access, and the type
of permission (read-only or read/write). Although the PERMIT function grants the access, it does not
establish it. The user authorized to access the address space must then call the ALSERV ADD macro to
establish the access. Figure 91 on page 801 shows that User1 has created a data space, DataSpaceA,
and permitted User2 read-only access to it.

Figure 91. Granting Another User Access to an Address Space

The permitted user needs the ASIT of the address space to establish addressability. Typically, the
owner informs the permitted user through standard z/VM communications facilities, such as APPC/VM.

VM Data Spaces

Chapter 24. VM Data Spaces Overview 801

The owner of the address space always has read/write permission. It is an error for an owner to call
ADRSPACE PERMIT to permit itself.

Permission to access an address space remains in effect until the owner either isolates or destroys the
address space, or until a virtual machine reset occurs on either the owning or the permitted virtual
machine.

Accessing Data Space Storage
To gain access to the data space, the program calls the ALSERV ADD macro, specifying the ASIT of the
data space, which was returned on the ADRSPACE CREATE or QUERY call.

In the example of Figure 91 on page 801, both User1 and User2 must call ALSERV ADD to establish
addressability to DataSpaceA. User1 can establish its access as read/write, because as the owner, it
automatically has read/write access, while User2 can establish read-only access. ALSERV ADD fills in
an unused entry in the access list as requested by the program and returns an access-list-entry token
(ALET). The ALET is then used by the program to select the access list entry (ALE) that identifies the
newly-created address space.

An ALE, as depicted graphically in Figure 92 on page 803, can be thought of as comprising several
components:

A state
An ALE is always in one of three states: unused, valid, or revoked. An unused ALE is one that either has
never been used or has become available as a result of the REMOVE function. A valid ALE is one that
has been filled in by the ADD function. A valid ALE enters the revoked state as a result of the address
space owner's destroying the address space or explicitly isolating it from other users. The revoked state is
different from the unused state in that an ALE can enter the revoked state without any action by the owner
of the access list.

An ALET
The access list entry token that selects the ALE when it is in a valid or revoked state.

An ASIT
The address space identification token designates the address space represented by the ALE.

A read/write authorization
When a program calls the ALSERV ADD macro, it stipulates whether accesses using the resulting ALET
are to be read-only, or whether they can be read/write. The program can call ALSERV ADD more than
once with the same ASIT to obtain different ALETs for a particular address space, for instance, one for
read-only and one for read/write access.

A fault resolution flag
To use storage efficiently, CP might temporarily page out data from an address space to auxiliary
storage. When an application program references a paged-out portion of an address space, CP receives
notification of this as a page fault. CP then reads the data back into storage and reruns the virtual
machine. Aside from a slight time delay, the virtual machine is unaware of this synchronous activity. If this
slight delay in execution is a problem for an application, the program can specify that CP resolve page
faults asynchronously. A program that specifies asynchronous page-fault resolution is not delayed by
page faults, but must contain additional logic to complete the handshaking required to use this function.
See the section entitled “PFAULT Macro -- Page-Fault Handshaking Services” on page 866 for more
information.

Here is a graphic representation of an access-list entry:

VM Data Spaces

802 z/VM: 7.3 CP Programming Services

Figure 92. Graphic Representation of an ALET and an ALE

Once the application has the ALET, it can access an address space by placing the ALET in the access
register associated with the general register being used for the storage operand of the instruction. Before
executing instructions that use access register references, the application must enter AR mode (available
only to XC virtual machines). When in AR mode, the access register corresponding to the general register
specified in the base register field of the instruction is examined to determine which address space is
being referenced.

The ALET in the access register indicates the address space containing the operand and the address in the
general register (possibly modified by a displacement or index specified in the instruction) indicates the
location of the operand within the address space, as shown in Figure 93 on page 803. For instructions
such as MOVE (MVC) that have multiple storage operands, each operand can be designated by a different
access-and-general register pair, so the operands can reside in different address spaces.

Figure 93. Accessing an Address Space

An access register should contain either zeros or an ALET that was obtained by the application when
adding an ALE to its access list. If the access register contains zeros, the reference is to the primary
address space. If the access register contains an ALET selecting a valid access-list entry, the reference
is to the address space designated by that entry. If the selected ALE is in the unused or revoked state, a
program interruption results.

Dropping Addressability to an Address Space
When access to an address space is no longer required, a virtual machine can call the ALSERV REMOVE
macro to drop addressability to it. This function changes a valid (or revoked) access-list entry's state
to unused so the entry can be used again later. Removing addressability does not change the virtual
machine's permission to access the address space. As long as the owning virtual machine does not revoke
permission, the permitted user can establish addressability again.

Maintaining addressability to an address space longer than necessary is not generally harmful, so most
applications would need to remove addressability only during termination. Long-running applications,
such as resource managers in server machines or very complex applications requiring access to more

VM Data Spaces

Chapter 24. VM Data Spaces Overview 803

address spaces than the number of entries available, may need to actively manage the contents of the
access list. Such applications could temporarily remove addressability to one address space to free up an
access-list entry for another address space.

Isolating a Shared Address Space
If widespread changes need to be made to the data stored in a shared address space, these changes
may need to be made with the assurance that no user references are in process. In this case, the owner
can return the address space to a private state by calling the ADRSPACE ISOLATE macro. This function
rescinds all permissions to the address space previously granted using the ADRSPACE PERMIT macro
and cancels any current addressability that other virtual machines may have to the address space. When
the ISOLATE function completes, only the owning virtual machine is able to access the isolated address
space.

The current addressability of other virtual machines is cancelled by changing applicable entries in their
access lists from the valid to the revoked state. The sharing virtual machines find out that their access has
been revoked when their next attempt to reference the address space results in an addressing-capability
exception.

After updating the data in the address space, the owner must repeatedly call the ADRSPACE PERMIT
macro to restore permission for each virtual machine that it wants to allow access to the address space
again. The permitted virtual machines then must call ALSERV ADD to re-establish their addressability to
the address space.

To reduce the cost in overall system performance, an application requiring a shared address space that
periodically needs to be isolated for refresh activity may want to implement its own locking protocol
instead of using the isolate service.

Destroying a Data Space
When a data space is no longer needed, the owner should call the ADRSPACE DESTROY macro to destroy
it. Only the owner of a data space can destroy it. Because a data space always requires some host real
storage, it is a good practice to destroy data spaces when finished with them.

The DESTROY function discards the current contents of the data space and frees all control structures
associated with it. In addition, this function changes the state of the access-list entry designating the data
space to revoked. If the data space was shared with other virtual machines, an implicit ISOLATE function
is performed to terminate the other users' access to the data space. The owner, as well as any other
virtual machines permitted to access the data space, should issue ALSERV REMOVE to change the state of
the access-list entry designating the destroyed data space from revoked to unused.

Mapping Minidisks to Address Spaces
Applications that require access to very large amounts of data may be able to derive a performance
benefit by establishing a mapping between the minidisks in its virtual machine's I/O configuration and
a data space owned by the virtual machine, in effect using the data space as a huge buffer for DASD
blocks. By temporarily placing the minidisk data in a data space, the application can use ordinary CPU
instructions to access the data rather than I/O instructions.

The MAPMDISK macro lets a program establish an association between a collection of minidisk blocks
on one or more minidisks and a collection of address space pages in one or more address spaces. The
address spaces used for mapping can be the virtual machine's primary address space as well as data
spaces that it owns. When a mapping exists, an image of the data that resides on the mapped minidisk
blocks appears in the associated address space pages without requiring the application to issue I/O
instructions to load the data. The I/O operations are performed implicitly by CP as references are made to
the mapped address spaces.

An application executing in an XC virtual machine can invoke the following mapping service functions
using the MAPMDISK macro:

VM Data Spaces

804 z/VM: 7.3 CP Programming Services

IDENTIFY
Identify the minidisk pool and the pool-relative block numbers of the minidisk blocks within the pool.

DEFINE
Establish a mapping between a range of pages in an address space and a set of blocks residing in the
minidisk pool.

SAVE
Initiate a request to write ranges of mapped pages to their corresponding minidisks.

REMOVE
Remove a mapping between a range of pages in an address space and a set of minidisk blocks
residing in the minidisk pool.

An application using these mapping services must be in primary-space mode.

The application's first step in preparation for mapping minidisk storage to an address space is to call
the MAPMDISK IDENTIFY macro to identify the collection of minidisks in its virtual machine's I/O
configuration that will be mapped. This collection is known as a minidisk pool. The IDENTIFY function
assigns a pool-relative block number to each block within the minidisk pool. The result of this operation
is an image of a single large minidisk comprising a consecutive range of 4KB blocks of storage. The
pool-relative block numbers are used by the mapping services to establish the association between
address-space pages and blocks within the minidisk pool.

Once the minidisk pool has been identified, the application uses the DEFINE function of the MAPMDISK
macro to establish the mapping. When a mapping exists between an address space page and a minidisk
block, a correlation is maintained between the contents of the page and the contents of the block such
that data contained in the minidisk block is available in the page where it can be manipulated with
CPU instructions. Upon completion of the DEFINE operation, the data that is contained on the minidisk
blocks is available in the newly-mapped pages. Actual movement of the data from a minidisk block to the
address space page, however, does not occur until the first reference is made to the page.

A page for which a current mapping is defined is known as a mapped page. A page that has never had a
mapping defined or one whose mapping was subsequently removed, is known as an unmapped page.

When an application wants to store changes back on DASD, it uses the SAVE function of the MAPMDISK
macro. The SAVE function initiates an asynchronous operation that writes mapped pages to the
associated minidisk blocks. These mapped pages are those changed since they were written out to DASD.

When an application is finished referencing the mapped data, it can use the REMOVE function to
discontinue the mapping association. This operation changes the status of the address space pages to
unmapped, so they can be used as ordinary storage.

Notifying CP of Future Reference Patterns
If an application accesses certain data in a regular or predictable way, the tuning function provided by
the REFPAGE macro may be helpful in reducing page faults and thus improving overall performance of the
application. The REFPAGE macro lets you specify a range of pages that will be referenced in sequential
order within a specified address space. These pages comprise a logical block. With this information, CP
can pre-fetch pages into its dynamic paging area (DPA) allowing the program immediate access to its
pages.

Reference patterns specified on REFPAGE can be regular or irregular. A regular pattern might occur during
the processing of large arrays. Such patterns could be specified in block form. An irregular pattern might
be encountered during a database server's indexed scan of data. Although the individual references may
appear unrelated, they are predictable based on the contents of the index. Such apparently irregular
patterns can be specified in list form, because the order of page reference is known ahead of time for a list
of unordered pages.

As with any tuning function, incorrect application of the REFPAGE macro can degrade rather than improve
performance. If the page ranges specified on the macro do not closely match the actual reference pattern,
increased paging may result.

VM Data Spaces

Chapter 24. VM Data Spaces Overview 805

VM Data Spaces

806 z/VM: 7.3 CP Programming Services

Chapter 25. CP Macros

This chapter contains information on the following:

• Coding CP macros
• ADRSPACE – address space services
• ALSERV – access list services
• DEFWORKA – define macro work area
• MAPMDISK – mapping services
• PFAULT – page-fault handshaking services
• REFPAGE – page reference services.
• VMUDQ – VM user directory query

If you are unfamiliar with reading syntax diagrams, see “Syntax, Message, and Response Conventions” on
page xxxv.

Using the Online HELP Facility for CP Macros
You can receive online information about the CP and VM data space macros by using the z/VM HELP
Facility. For example, to display a menu of the CP and data space macros, enter:

help vmds menu

To display information about a specific macro (PFAULT in this example), enter:

help vmds pfault

For more information about using the HELP Facility, see z/VM: CMS User's Guide. To display the main HELP
task panel, enter:

help

For more information about the HELP command, see z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

Coding CP Macros
This section describes both the preferred way to code CP and VM data spaces macros and alternative
methods.

Preferred Use
To simplify CP macros in both nonreentrant and reentrant environments, the macros can automatically
control and define the work area required to execute the macro function. You must code the DEFWORKA
macro once, with no operands, after the invocation of the CP macros prior to the assembler END
statement (see examples). The DEFWORKA macro does not generate any executable code. It collects
and defines, with proper alignment, any CP macro work areas required in your program.

Usage Notes:

1. For a reentrant program, code the DEFWORKA macro within a DSECT for which storage is acquired
and released within the program. This makes a separate instance of the storage available to each

CP Macros

© Copyright IBM Corp. 1991, 2023 807

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

dispatchable unit executing the same reenterable program. Addressability to the storage is required
prior to the invocation of the CP macros using the work area.

2. If you are coding in a nonreentrant environment, the invocation of DEFWORKA may appear within the
program's control section (CSECT). This defines the macro work area as part of the program's storage.

3. If you code any CP or VM Data Spaces macro within your program and fail to code the DEFWORKA
macro, you receive error messages from the assembly of your program indicating undefined
references.

The use of DEFWORKA can be seen in the following examples.

Example 1: A Reentrant Program

You can reduce the complexity of coding within a reentrant environment by deferring the definition of the
macro work areas to the DEFWORKA macro coded at the end of your program.

The following segments of a reentrant program outline a method for managing the CP macro work area
storage. The DEFWORKA macro is coded within a DSECT, called MYDATA, containing other variables
modified within this program. The program obtains CMS free storage for the area reserved by the MYDATA
DSECT and then releases this storage before exiting. Two CP macros, ADRSPACE and ALSERV, are used
within the program; however, the same implementation can be applied to any CP macro that relies on the
DEFWORKA macro for work area definition.

 MYCSECT CSECT
 .
 CMSSTOR OBTAIN,BYTES=MYDATALN,... ACQUIRE FREE STORAGE
 LR R10,R1 SAVE THE ADDR OF THE STORAGE
 USING MYDATA,R10 ESTABLISH ADDRESSABILITY
 .
 .
 ADRSPACE CREATE,NAME='MYSPACE',SIZE=SPACESIZ, X
 ASIT=MYASIT INVOKE A CP MACRO
 .
 .
 ALSERV ADD,ASIT=MYASIT, X
 ALET=MYALET INVOKE ANOTHER CP MACRO
 .
 .
 CMSSTOR RELEASE,BYTES=MYDATALN, X
 ADDR=(R10),... RELEASE THE STORAGE
 .
 .
 BR R14 EXIT THE PROGRAM
 R1 EQU 1
 R10 EQU 10
 R14 EQU 14
 SPACESIZ DC F'10' PARAMETER FOR ADRSPACE
 MYDATA DSECT
 MYASIT DS D PARAMETER FOR ADRSPACE
 MYALET DS F PARAMETER FOR ALSERV
 DEFWORKA DEFINE CP MACRO WORK AREA
+HCPWORKA DS (0)D,64X
 MYDATALN EQU *-MYDATA
 END END OF MYCSECT

Figure 94. Using DEFWORKA within a Reentrant Program

Example 2: A Non-Reentrant Program

In this example, a nonreentrant program invokes the DEFWORKA macro within the program's CSECT. This
causes the work area for the macro to reside within the storage for the program.

CP Macros

808 z/VM: 7.3 CP Programming Services

 MYCSECT CSECT
 .
 .
 .
 ADRSPACE CREATE,NAME='MYSPACE',SIZE=SPACESIZ, X
 ASIT=MYASIT INVOKE A CP MACRO
 .
 .
 ALSERV ADD,ASIT=MYASIT, X
 ALET=MYALET INVOKE ANOTHER CP MACRO
 .
 .
 .
 BR R14
 R14 EQU 14
 SPACESIZ DC F'10' PARAMETER FOR ADRSPACE
 MYASIT DS D PARAMETER FOR ADRSPACE
 MYALET DS F PARAMETER FOR ALSERV
 DEFWORKA DEFINE CP MACRO WORK AREA
+HCPWORKA DS (0)D,64X
 END END OF MYCSECT

Figure 95. Using DEFWORKA within a Non-reentrant Program

Alternative Methods
In most cases you will find that DEFWORKA's management of the CP macro work areas satisfies the
needs of your program. However, there may be instances when you do not want to give DEFWORKA
complete control over the definition of the CP macro work areas. For instance, you may want to embed
the work area within a control block that persists beyond the execution of a particular program. This can
be done through the CP macro's DECLARE function. DEFWORKA expands any CP macro work areas that
have not yet been defined within the program by this or a preceding DEFWORKA invocation, or by the
DECLARE function of the CP macros contained within the program.

The examples that follow show alternate ways to manage the macro work area should you have a
requirement to do so. These examples use the CP ADRSPACE macro; any CP macro which relies on the
DEFWORKA macro can be used in the same manner.

Example 1: Forcing Unique Work Areas

The following program assigns a unique workarea to each invocation of the ADRSPACE macro by using
the WORKAREA operand on the ADRSPACE macro invocations. You may choose to force unique macro
work areas in order to preserve the data within the work area for problem determination. The WORKAREA
operand is an optional operand that can be used to identify the label associated with the work area
storage.

Alternative Methods

Chapter 25. CP Macros 809

 MYCSECT CSECT
 .
 .
 ADRSPACE CREATE,...,WORKAREA=WORK1
 .
 .
 ADRSPACE CREATE,...,WORKAREA=WORK2
 .
 .
 ADRSPACE CREATE,...
 .
 .
 BR R14 EXIT THE PROGRAM
 R14 EQU 14
 DEFWORKA DEFINE CP MACRO WORK AREA
+WORK1 DS (0)D,64X
+WORK2 DS (0)D,64X
+HCPWORKA DS (0)D,64X
 END END OF MYCSECT

Figure 96. Using DEFWORKA to Force Unique Macro Work Areas

In this program the ADRSPACE macro is invoked three times: the first invocation uses area WORK1 as its
work area; the second invocation uses area WORK2; and, since the third invocation of ADRSPACE does not
include the WORKAREA operand, the default area assigned by the DEFWORKA macro is used. DEFWORKA
expands the required storage definitions for all three work areas.

Example 2: The DECLARE Function - Creating a Remote Work Area

You may have the requirement to embed the CP macro workarea in another data area (or control block) to
be used by several programs. Suppose you have coded a macro, called CBLOCK, that generates a DSECT
in which you want to embed the CP macro workarea. The CBLOCK macro may look like this:

 MACRO
 CBLOCK
 CBLOCK DSECT
 CBLONE DS F A FIELD WITHIN THIS CONTROL BLOCK
 CBLTWO DS F ANOTHER FIELD
 CBLTHREE DS F ANOTHER FIELD
 CBLMACWA ADRSPACE DECLARE DEFINE THE WORKAREA FOR ADRSPACE
 CBLLENTH EQU *-CBLOCK LENGTH OF THE CONTROL BLOCK
 MEND

The CBLOCK macro expands a DSECT defining a data area called CBLOCK. The labels CBLONE, CBLTWO,
and CBLTHREE are other fields within the CBLOCK that you define; they are shown to indicate that the
control block contains data other than the CP macro workarea. You can use the DECLARE function of the
ADRSPACE macro to define the storage required for the executable functions of the ADRSPACE macro.
To see how the storage is defined, look at the expansion of the CBLOCK macro in the following program.
Assume that storage for the CBLOCK was obtained within the calling program, and its address is provided
as input to this program in register 10.

Alternative Methods

810 z/VM: 7.3 CP Programming Services

 MYCSECT CSECT
 .
 USING CBLOCK,R10
 .
 .
 ADRSPACE CREATE,...,WORKAREA=CBLMACWA
 .
 .
 .
 BR R14
 R14 EQU 14
 CBLOCK
+CBLOCK DSECT
+CBLONE DS F A FIELD WITHIN THIS CONTROL BLOCK
+CBLTWO DS F ANOTHER FIELD
+CBLTHREE DS F ANOTHER FIELD
+CBLMACWA DS (0)D,64X
 CBLLENTH EQU *-CBLOCK LENGTH OF THE CONTROL BLOCK
 END END OF MYCSECT

Figure 97. Using a Remote Macro Work Area

The ADRSPACE DECLARE function within the CBLOCK macro defines the storage required for the CP
macro workarea. The DEFWORKA macro is not required within this program. If you were to code
DEFWORKA, the expansion of the ADRSPACE DECLARE function would indicate to DEFWORKA that
workarea CBLMACWA was already defined, and DEFWORKA would not define any additional work areas.

In this example, a label is coded on the invocation of the ADRSPACE DECLARE function. This label is
assigned to the work area storage and is used as the value of the WORKAREA operand.

When using a scheme such as this, you must ensure compatibility between the definition and usage of the
macro work area. Any time you reassemble one of the programs using the macro work area with a new
level of CP, you must also reassemble the program which uses the DECLARE function to allocate that work
area.

ADRSPACE — Address Space Services

Purpose
Use the ADRSPACE macro to create or destroy address spaces and to control other virtual machine
accesses to the address spaces owned by your virtual machine. You can also use the ADRSPACE macro to
return information about an address space that your virtual machine owns or is authorized to access.

The following address-space service functions can be invoked using this macro:
CREATE

Create a new address space
DECLARE

Define the macro work area
DESTROY

Destroy an address space
ISOLATE

Restore an address space to the private state
PERMIT

Authorize another virtual machine for access to an address space
QUERY

Return information for an address space

ADRSPACE Macro

Chapter 25. CP Macros 811

Usage Notes
XC Address Spaces: The guest main storage of an XC virtual machine consists of one or more extents
of storage known as absolute-storage address spaces, or simply address spaces. Each virtual machine is
provided with an initial extent of main storage, called its host-primary address space, at logon. Using this
macro, a virtual machine can request that CP provide additional address spaces, each from 64 kilobytes
to 2 gigabytes in size. These additional address spaces are sometimes called data spaces because only
data can be within the address space; a program cannot execute in a data space.

The host-primary address space of a virtual machine is always directly addressable by that virtual
machine. An XC virtual machine can directly access other address spaces when the virtual machine is
in the access-register mode, provided that it has a valid host access-list entry designating the address
space. An XA, ESA, or Z virtual machine can indirectly access other address spaces by using DIAGNOSE
code X'248' (Copy-to-primary service), provided that it has a valid host access-list entry designating the
address space.

A virtual machine can use the ALSERV macro to add a host access-list entry to the virtual machine's host
access list.

Address Space States: An address space is considered to be in one of two states: private or shareable.

When an address space is created by CP, it is initially in the private state. While in this state, it can only be
accessed by the virtual machine that owns the address space.

An address space is changed from the private to the shareable state when the owning virtual machine
uses the ADRSPACE PERMIT function to authorize another virtual machine to access the address space.
When an address space is in the shareable state, it is possible for the address space to be accessed by
other virtual machines (using CP commands, a program's use of access-register mode, or DIAGNOSE code
X'248').

Certain DIAGNOSE code X'64' operations are prohibited when the host-primary address space is in the
shareable state.

Once an address space is placed in the shareable state, it remains in this state until the owning virtual
machine subsequently uses the ADRSPACE ISOLATE function to return it to the private state, or until a
subsystem-reset operation is performed on the owning virtual machine.

Address Space Identification: Two identifying values are associated with each address space: an
address-space name, and an address space identification token (ASIT).

An address-space name is a string of 1 to 24 characters that is assigned to an address space. The name
can contain only uppercase letters (A through Z), numbers (0 through 9), and certain special characters
(# $ @ _ -). Each address space owned by your virtual machine must have a different address-space
name. CP assigns the name BASE to the host-primary address space of your virtual machine; your virtual
machine assigns a name to each address space that it creates using the ADRSPACE CREATE function.
Although all of the address spaces owned by your virtual machine must have different address-space
names, there is no requirement that the names of your virtual machine's address spaces be different from
the names of another virtual machine's address space.

The address-space name is a component of a larger identifier called a spaceid. A space ID is a fully-
qualified name for an address space consisting of an address-space name prefixed by the user ID of the
virtual machine that owns the address space. A space ID is used as a parameter for some operations, for
example the DISPLAY STORAGE command, to identify a particular address space in the system.

Also associated with each address space is an address space identification token (ASIT). An ASIT is an
8-byte value assigned to the address space by CP when the address space is created. When an address
space is created by the ADRSPACE CREATE function, the ASIT is returned by that function. The ADRSPACE
QUERY function can be used to return the ASIT associated with the host-primary address space of your
virtual machine. The ASIT is an input to functions of the ADRSPACE and other macros to designate the
address space for those other operations.

An ASIT is a system-wide token that is unique for the scope of a z/VM (CP) IPL. That is, once a
particular ASIT value has been assigned by CP to an address space, it will not be reassigned to another
address space created by CP during the life of the current CP IPL. In addition, when CP returns the

ADRSPACE Macro

812 z/VM: 7.3 CP Programming Services

ASIT associated with an address space (for example, as a result of the ADRSPACE QUERY function), it
always returns the same value regardless of the virtual machine to which the ASIT is being returned.
These characteristics let a program determine if two address spaces are the same by testing the ASITs
associated with the address spaces for equality.

The ASIT associated with the host-primary address space of a virtual machine is sometimes used as an
alternative to a userid as a means of identifying a virtual machine. When the primary-space ASIT is used
in this way, it is known as a virtual configuration identification token (VCIT). Because a VCIT is in fact an
ASIT, VCITs share the same characteristics as ASITs; they are system-wide tokens unique for the life of
the CP IPL.

Program Exceptions
The ADRSPACE macro may result in one of the following program exceptions:

Problem Encountered Cause

Access exception (See page
“Access Exceptions” on page 8.)

An error occurred trying to

• Fetch or store the macro parameter list (in macro work area)
• Fetch a macro operand
• Store the ASIT operand (CREATE or QUERY functions)
• Store the SIZE operand (QUERY function)

Specification exception • The CREATE or DESTROY function was requested and your virtual
machine is an XA, ESA, or Z virtual machine.

• The macro work area is not doubleword aligned.
• The parameter list generated by the macro is in error.

ADRSPACE Macro

Chapter 25. CP Macros 813

ADRSPACE CREATE

label

ADRSPACE CREATE
1

,NAME= 'name'

label

( reg)

,SIZE= label

( reg)

,ASIT= label

( reg) ,KEY= label

( reg)

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function creates a new address space and returns the ASIT associated with the new address space.
All pages of the newly created address space will contain binary zeros and have the same storage key.

The maximum number of address spaces, and the maximum total size of all address spaces that your
virtual machine can create is specified by the XCONFIG ADDRSPACE statement in your virtual machine's
CP directory entry. If your CP directory entry does not contain a XCONFIG ADDRSPACE statement, then
your virtual machine is not authorized to use this function to create any address spaces.

Address spaces that you create with this function exist until either your virtual machine explicitly destroys
them, or until a subsystem-reset operation is performed on your virtual machine, for example by using the
SYSTEM CLEAR, SYSTEM RESET, IPL, or LOGOFF command. When an address space is destroyed, if the
host access list for your virtual machine or some other user's virtual machine has host access-list entries
designating the address space, then those host access-list entries are set to the revoked state.

Your virtual machine must be an XC virtual machine to use this function. If your virtual machine is an XA,
ESA, or Z virtual machine, then a specification exception is recognized.

Parameters
label

is an optional assembler language label on the macro.
NAME=

specifies the address-space name to be assigned to the new address space. This operand may be
specified as one of the following:

• A character string of up to 24 characters within single quotation marks.
• A label identifying a 24-byte real storage area containing the address-space name, left-justified

in the 24-byte field, and the remainder of the field padded with spaces. For a virtual machine in
the access-register mode, the access register corresponding to the base register selected by the
assembler for the label is used to determine the address space containing the storage area.

• A register (in the range of 2-12, inclusive) containing the real address of a 24-byte storage area
defining the address-space name, left-justified in the 24-byte field, and the remainder of the
field padded with spaces. For a virtual machine in the access-register mode, the access register

ADRSPACE CREATE

814 z/VM: 7.3 CP Programming Services

corresponding to the general register is used to determine the address space containing the storage
area.

In all cases, the address-space name must contain only uppercase letters (A through Z), numbers (0
through 9), and certain special characters (# $ @ _ -). If the name contains characters that are not
allowed, then no new address space is created and return code 16 is given.

Each address space owned by your virtual machine must have a different address-space name. If
the address-space name specified matches the name assigned to an address space that your virtual
machine previously created, or if it matches the name BASE which is preassigned by CP for your
virtual machine's host-primary address space, then no new address space is created and return code
4 is given.

This operand is required.

SIZE=
specifies the address of a 4-byte area in real storage that contains the size for the new address space
in pages; each page is 4096 bytes. Specify this operand as a label associated with the storage area,
or as the number of a register (in the range of 2-12, inclusive) containing the address of the storage
area. For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with
the specified general register (register form) is used to determine the address space containing the
storage area.

The minimum size of an address space is 1 page (4096 bytes), and the maximum is 524,288 pages
(2 gigabytes). If the size is not in this range, then return code 20 is given. If the requested size would
cause the total size of all address spaces created by your virtual machine to exceed the maximum
specified for your virtual machine, then no new address space is created and return code 12 is given.

The amount of storage that CP allocates for an address space must be a multiple of 256 pages (1
megabyte). Therefore, if the value of the SIZE operand is not a multiple of 256, the value is rounded
up to the next multiple of 256.

This operand is required.

ASIT=
specifies the address of an 8-byte real storage area that is set by this function to be the ASIT
associated with the newly created address space. Specify this operand as a label associated with
the storage area, or as the number of a register (in the range of 2-12, inclusive) containing the
address of the storage area. For a virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the storage area.

This operand is required.

KEY=
specifies the address of a byte in real storage containing the storage key to be assigned to every page
in the new address space. Specify this operand as a label associated with the byte in real storage, or
as the number of a register (in the range of 2-12, inclusive) containing the address of the byte in real
storage. For a virtual machine in the access-register mode, the access register corresponding to the
base register selected by the assembler for the label (label form) or the access register associated
with the specified general register (register form) is used to determine the address space containing
the storage area.

Bits 0-3 of the byte contain the access-control bits of the storage key and bit 4 of the byte is the
fetch-protection bit. Bits 5-7 of the byte are ignored. The reference and change bits of the storage key
are always set to zero.

This operand is optional. If it is not specified, the access-control and fetch-protection bits of all pages
in the newly created address space will contain zeros.

ADRSPACE CREATE

Chapter 25. CP Macros 815

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ADRSPACE DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. The name specified by the NAME operand is part of the space ID for the new address space. The

full space ID is userid:name where userid is the user ID for your virtual machine, and name is the
address-space name specified by the NAME operand.

Condition Codes and Return Codes
On return from the CREATE function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

CREATE function status

0 The address space has been created as requested. The ASIT associated with the
new address space has been returned.

4 The specified address-space name matches the name of another address space
owned by your virtual machine. No new address space has been created.

8 Creating the new address space would cause the maximum number of address
spaces allowed for your virtual machine to be exceeded. No new address space has
been created.

12 Creating the new address space would cause the total size of all address spaces
owned by your virtual machine to exceed the maximum permitted. No new address
space has been created.

16 The specified address-space name contains invalid characters. No new address
space has been created.

20 The specified size for the new address space is out of range. No new address space
has been created.

ADRSPACE CREATE

816 z/VM: 7.3 CP Programming Services

ADRSPACE DECLARE

label

ADRSPACE DECLARE

Purpose
This function defines the storage required for the WORKAREA operand of the ADRSPACE macro. You must
code this function only if you need to define the macro work area outside of the program requiring it. To
simplify the use of the ADRSPACE macro, do not code the ADRSPACE DECLARE function and omit the
WORKAREA operand on the executable functions of the ADRSPACE macro. This allows the ADRSPACE
macro to control and define the necessary data expansion through the DEFWORKA macro coded at the
end of your program. See “Coding CP Macros” on page 807 for additional details.

Parameters
label

is an optional assembler language label on the macro to be assigned to the defined storage.

Usage Notes
1. The DECLARE function does not generate any executable code. You may code it within a dummy

section (DSECT) or a control section (CSECT).
2. Although a label is not required on the invocation of the DECLARE function, it may be necessary to

identify the work area using the WORKAREA operand.

ADRSPACE DECLARE

Chapter 25. CP Macros 817

ADRSPACE DESTROY

label

ADRSPACE DESTROY
1

,ASIT= label

( reg)

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function destroys an address space previously created by your virtual machine.

If the address space to be destroyed is designated by any host access-list entries, either in your virtual
machine's access list or the host access list of other virtual machines, those host access-list entries are
set to the revoked state. If, when in the access-register mode, your virtual machine attempts to use a
revoked host access-list entry, an addressing-capability exception will be recognized.

Your virtual machine must be an XC virtual machine to use this function. If your virtual machine is an XA,
ESA, or Z virtual machine, then a specification exception is recognized.

Parameters
label

is an optional assembler language label on the macro.
ASIT=

specifies the address of an 8-byte real storage area that contains the ASIT identifying the address
space to be deleted. Specify this operand as a label associated with the storage area, or as the
number of a register (in the range of 2-12, inclusive) containing the address of the storage area.
For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with
the specified general register (register form) is used to determine the address space containing the
storage area.

The specified ASIT must match the ASIT associated with an address space that your virtual machine
previously created, otherwise return code 4 is given.

This operand is required.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ADRSPACE DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
the use of this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

ADRSPACE DESTROY

818 z/VM: 7.3 CP Programming Services

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. The DESTROY function cannot be used to destroy the host-primary address space of your virtual

machine.

Condition Codes and Return Codes
On return from the DESTROY function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

DESTROY Status

0 The address space has been destroyed as requested.

4 The specified ASIT does not identify an existing address space that your virtual
machine created. This error also includes the case of the ASIT identifying the
host-primary address space of your virtual machine in an attempt to destroy the
host-primary address space.

ADRSPACE DESTROY

Chapter 25. CP Macros 819

ADRSPACE ISOLATE

label

ADRSPACE ISOLATE
1

,ASIT= label

( reg) ,MACHINE=370

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function restores to a private state an address space owned by your virtual machine by removing all
references by other virtual machines to the address space.

If the address space to be isolated is designated by any entries in the host access lists of any virtual
machine other than your own, those host access-list entries are set to the revoked state. If, when in the
access-register mode, a virtual machine attempts to use a revoked host access-list entry, an addressing-
capability exception will be recognized.

The execution of the ISOLATE request does not complete until all affected host access-list entries are set
to the revoked state, and all virtual machines have completed any current storage accesses to the address
space which is being isolated.

If your virtual machine is not an XC virtual machine, it can use this function to isolate its host-primary
address space only.

Parameters
label

is an optional assembler language label on the macro.
ASIT=

specifies the address of an 8-byte real storage area that contains the ASIT identifying the address
space to be isolated. Specify this operand as a label associated with the storage area, or as the
number of a register (in the range of 2-12, inclusive) containing the address of the storage area. For
an XC virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with
the specified general register (register form) is used to determine the address space containing the
storage area.

The specified ASIT must match the ASIT associated with an address space that your virtual machine
owns, otherwise return code 4 is given.

This operand is required.

MACHINE=370
has no supported function, because 370 virtual machines are not supported. Results are undefined if
this operand is specified.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For an XC virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for

ADRSPACE ISOLATE

820 z/VM: 7.3 CP Programming Services

the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ADRSPACE DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. The ISOLATE function may take significant time and processing to complete. Its use should be

minimized.
4. The ISOLATE function does not affect any entries in your virtual machine's host access list.
5. When the ISOLATE function completes, it is guaranteed that the only references to the isolated

address space will be those being made by your virtual machine.
6. If ADRSPACE ISOLATE is used specifying the ASIT of a space owned by a user that has been relocated

by the VMRELOCATE command prior to a subsequent reset clear function, the request fails and return
code 4 is given. To avoid this situation, issue a command that initiates a reset clear function on
the user on the relocation target system. Then obtain the new ASIT value using the QUERY SPACES
command or the ADRSPACE QUERY API from a program. Commands that result in a reset clear
include:

• SYSTEM CLEAR
• IPL by NSS name
• IPL by device with the CLear option
• SET MACHine (to a different machine architecture)

Condition Codes and Return Codes
On return from the ISOLATE function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

ISOLATE function status

0 The address space has been isolated as requested.

4 The specified ASIT does not identify an existing address space that your virtual
machine created, nor does it identify the host-primary address space of your virtual
machine, or your virtual machine has been relocated through the VMRELOCATE
command and no subsequent reset clear function has been invoked.

ADRSPACE ISOLATE

Chapter 25. CP Macros 821

ADRSPACE PERMIT

label

ADRSPACE PERMIT
1

,USERID= 'userid'

label

( reg)

,VCIT= label

( reg)

,ASIT= label

( reg)

,MODE=READ

,MODE=WRITE ,MACHINE=370

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function authorizes a virtual machine for access to an address space that your virtual machine owns.
The address space for which authorization is granted can be an address space created by your virtual
machine or it can be your virtual machine's host-primary address space. You can authorize other virtual
machines for either read-only, or read-write access to the address space.

When another virtual machine has authorization to access one of your virtual machine's address spaces,
it can use the ALSERV macro to add to its host access list an entry designating the address space, and
thereby access the address space when in access-register mode. It can also access the address space
using CP commands such as CP DISPLAY, CP DUMP and CP STORE (if authorized for read-write access).

The authorization granted by using this function persists until one of the following occurs:

• Your virtual machine converts the address space for which access authorization was given to a private
address space by using the ISOLATE function of this macro.

• Your virtual machine destroys the address space for which authorization was granted. The address
space can be explicitly destroyed through the DESTROY function of this macro, or implicitly destroyed
as a part of a subsystem-reset performed on your virtual machine, for example by the SYSTEM CLEAR,
SYSTEM RESET, IPL, or LOGOFF commands.

• A subsystem reset is performed on the virtual machine to which authorization was granted. For
example, a subsystem reset is performed by the SYSTEM CLEAR, SYSTEM RESET, IPL, or LOGOFF
commands.

The SHARE parameter must be specified on an XCONFIG ADDRSPACE directory control statement in your
virtual machine's CP directory entry to authorize you to use this function, otherwise return code 32 is
given.

Parameters
label

is an optional assembler language label on the macro.

ADRSPACE PERMIT

822 z/VM: 7.3 CP Programming Services

USERID=
specifies the user ID of the virtual machine to be given access authorization. This operand may be
specified as one of the following:

• A character string of up to 8 characters within single quotation marks.
• A label associated with an 8-byte real storage area containing the user ID, left-justified in the

8-byte field, and the remainder of the field padded with spaces. For an XC virtual machine in
the access-register mode, the access register corresponding to the base register selected by the
assembler for the label is used to determine the address space containing the storage area.

• The number of a register (in the range of 2-12, inclusive) containing the real address of an 8-byte
storage area defining the user ID, left-justified in the 8-byte field, and the remainder of the field
padded with spaces. For an XC virtual machine in the access-register mode, the access register
corresponding to the general register is used to determine the address space containing the storage
area.

The user ID specified by this operand must designate a currently logged-on or disconnected virtual
machine that does not already have authorization for the address space. If the user ID is not the user
ID of a currently logged-on or disconnected virtual machine, then return code 28 is given. If the user
ID designates a virtual machine that already has authorization for the address space, then return code
24 is given.

The USERID and VCIT operands are mutually exclusive. However, one of them is required to identify
the virtual machine which is to be given access authorization.

VCIT=
specifies the address of an 8-byte real storage area that contains the VCIT identifying the virtual
machine to be given access authorization. Specify this operand as a label associated with the
storage area, or as the number of a register (in the range of 2-12, inclusive) containing the address
of the storage area. For an XC virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the storage area.

The VCIT for a virtual machine is the ASIT value assigned to that virtual machine's host-primary
address space.

The VCIT specified by this operand must designate a currently logged-on or disconnected virtual
machine that does not already have authorization for the address space. If the VCIT does not identify
a currently logged-on or disconnected virtual machine, then return code 28 is given. If the VCIT
designates a virtual machine that already has authorization for the address space, then return code 24
is given.

The USERID and VCIT operands are mutually exclusive. However, one of them is required to identify
the virtual machine which is to be given access authorization.

ASIT=
specifies the address of an 8-byte real storage area that contains the ASIT identifying the address
space for which access authorization is to be given. Specify this operand as a label associated with
the storage area, or as the number of a register (in the range of 2-12, inclusive) containing the
address of the storage area. For an XC virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the storage area.

The ASIT specified by this operand must designate an address space owned by your virtual machine,
that is, either an address space that your virtual machine created, or the host-primary address space
for your virtual machine. If it does not designate an address space owned by your virtual machine,
return code 4 is given.

This operand is required.

ADRSPACE PERMIT

Chapter 25. CP Macros 823

MODE=
specifies whether the virtual machine indicated by the USERID operand is to be given read-only, or
read-write access authority. If MODE=READ is specified, the virtual machine is given authority for
read-only access to the address space. If MODE=WRITE is specified, the virtual machine is given
authority for read-write access to the address space.

This operand is optional; the default is MODE=READ.

MACHINE=370
has no supported function, because 370 virtual machines are not supported. Results are undefined if
this operand is specified.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For an XC virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ADRSPACE DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. The first time that your virtual machine uses the PERMIT function to grant authorization for access to

a particular address space, that address space is changed from a private address space to a shareable
address space. The address space remains in the shareable state until your virtual machine uses the
ISOLATE function of this macro to change it back to the private state.

When the host-primary address space of your virtual machine is in the shareable state, certain
operations of DIAGNOSE code X'64' are prohibited. See the usage notes for DIAGNOSE code X'64'
for details.

4. Your virtual machine is implicitly authorized for read-write access to its host-primary address space
and to all address spaces that it creates. This authorization cannot be changed by using PERMIT
function (with the MODE=READ operand). Return code 24 is given if the PERMIT function is invoked
with a USERID or VCIT designating your virtual machine.

5. The address space for which authorization is to be granted is specified by ASIT. When an address
space is created using the CREATE function of this macro, the ASIT associated with the address space
is returned. If authorization is to be granted to your virtual machine's host-primary address space, the
ASIT associated with the host-primary space can be obtained using the QUERY function of this macro.

6. Your virtual machine cannot simply reissue the PERMIT function to change the type of access
authorization that was previously granted to a particular virtual machine. To change previously-granted
access authorization, your virtual machine must first use the ISOLATE function to revoke all users'
access authority to the address space, and then reestablish the desired access authorization for each
virtual machine by a series of PERMIT invocations.

7. If an external security manager is installed on your system, you may not be authorized to use the
PERMIT function of this macro. For additional information, contact your security administrator.

8. If ADRSPACE PERMIT is used specifying the ASIT of a space owned by a user that has been relocated
by the VMRELOCATE command prior to a subsequent reset clear function, the request fails and return
code 4 is given. To avoid this situation, issue a command that initiates a reset clear function on

ADRSPACE PERMIT

824 z/VM: 7.3 CP Programming Services

the user on the relocation target system. Then obtain the new ASIT value using the QUERY SPACES
command or the ADRSPACE QUERY API from a program. Commands that result in a reset clear
include:

• SYSTEM CLEAR
• IPL by NSS name
• IPL by device with the CLear option
• SET MACHine (to a different machine architecture)

Condition Codes and Return Codes
On return from the PERMIT function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

PERMIT function status

0 The virtual machine specified by the USERID or VCIT operand has been authorized
for access to the specified address space.

4 The specified ASIT does not identify a currently existing address space that your
virtual machine owns, or your virtual machine has been relocated through the
VMRELOCATE command and no subsequent reset clear function has been invoked.
No authorization has been granted.

24 The specified virtual machine was already authorized for access to the specified
address space. Authorization for the address space has not been changed.

28 The specified user ID or VCIT does not designate a currently logged-on or
disconnected virtual machine. No authorization has been granted.

32 Your virtual machine is not authorized to use the PERMIT function of the ADRSPACE
macro.

ADRSPACE PERMIT

Chapter 25. CP Macros 825

ADRSPACE QUERY

label

ADRSPACE QUERY
1

,NAME= 'name'

label

( reg)

2

,SIZE= label

( reg)

,ASIT= label

( reg)

,OWNER=*

,OWNER= 'owner'

label

( reg)

,MACHINE=370 ,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.
2 Each parameter can be specified only once.

Purpose
This function returns the ASIT and size associated with an address space your virtual machine owns or is
authorized to access.

Parameters
label

is an optional assembler language label on the macro.
NAME=

specifies the name of the address space for which information is to be returned. This operand may be
specified as one of the following:

• A character string of up to 24 characters within single quotation marks.
• A label associated with a 24-byte real storage area containing the address-space name, left-justified

in the 24-byte field, and the remainder of the field padded with spaces. For an XC virtual machine
in the access-register mode, the access register corresponding to the base register selected by the
assembler for the label is used to determine the address space containing the storage area.

• The number of a register (in the range of 2-12, inclusive) containing the real address of a 24-byte
storage area defining the address-space name, left-justified in the 24-byte field, and the remainder
of the field padded with spaces. For an XC virtual machine in the access-register mode, the access
register corresponding to the general register is used to determine the address space containing the
storage area.

In all cases the address-space name must contain only uppercase letters (A through Z), numbers (0
through 9), and certain special characters (# $ @ _ -). If the name contains characters that are not
allowed, no information is returned, and return code 16 is given.

ADRSPACE QUERY

826 z/VM: 7.3 CP Programming Services

If the OWNER operand is not specified, then this name must match the address-space name of an
address space owned by your virtual machine. If it does not, then no information is returned and
return code 4 is given.

If the OWNER operand is specified, then this name must match the address-space name of an
address space owned by the user ID identified by the OWNER operand. Further, if the OWNER
operand does not identify your virtual machine, then the owning virtual machine must have already
granted authorization to your virtual machine to access the address space. If either of these
conditions is not met, then no information is returned and return code 4 is given.

This operand is required.

SIZE=
specifies the address of a 4-byte real storage area that is set by this function to the size of the named
address space in pages; each page is 4096 bytes.

For a host-primary address space, this includes discontiguous storage (that is, NSS or saved segment
storage located above the virtual machine's defined size). Note, if discontiguous storage is used, there
may be non-addressable areas within this storage.

Specify this operand as a label associated with the storage area, or as the number of a register
(in the range of 2-12, inclusive) containing the address of storage area. For an XC virtual machine
in the access-register mode, the access register corresponding to the base register selected by the
assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the storage area.

You must specify SIZE or ASIT or both to identify the address space information to be returned.

ASIT=
specifies the address of an 8-byte real storage area that is set by this function to the ASIT associated
with the named address space. Specify this operand as a label associated with the storage area, or as
the number of a register (in the range of 2-12, inclusive) containing the address of the storage area.
For an XC virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with
the specified general register (register form) is used to determine the address space containing the
storage area.

You must specify SIZE or ASIT or both to identify the address space information to be returned.

OWNER=
specifies the user ID of the virtual machine owning the address space for which information is
requested. This operand may be specified as one of the following:

• An asterisk (*) to indicate the user ID of your virtual machine.
• A character string of up to 8 characters within single quotation marks.
• A label associated with an 8-byte real storage area containing the user ID, left-justified in the

8-byte field, and the remainder of the field padded with spaces. For an XC virtual machine in
the access-register mode, the access register corresponding to the base register selected by the
assembler for the label is used to determine the address space containing the storage area.

• The number of a register (in the range of 2-12, inclusive) containing the real address of an 8-byte
storage area defining the user ID, left-justified in the 8-byte field, and the remainder of the field
padded with spaces. For an XC virtual machine in the access-register mode, the access register
corresponding to general register is used to determine the address space containing the storage
area.

If the OWNER operand does not identify your virtual machine, then your virtual machine must be
authorized to access the specified address space; otherwise, no information is returned and return
code 4 is given. The virtual machine identified by the OWNER operand authorizes access to the
address space by using the PERMIT function of this macro.

This operand is optional; the default is the user ID for your virtual machine.

ADRSPACE QUERY

Chapter 25. CP Macros 827

MACHINE=370
has no supported function, because 370 virtual machines are not supported. Results are undefined if
this operand is specified.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For an XC virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ADRSPACE DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
the use of this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. Your virtual machine can use the QUERY function, with the operand NAME=‘BASE’ to determine the

ASIT associated with your virtual machine's host-primary address space.

Condition Codes and Return Codes
On return from the QUERY function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

QUERY function status

0 The ASIT and size for the specified address space have been supplied in the
locations indicated by the ASIT and the SIZE operands, respectively.

4 The specified address-space name does not identify either an address space
that your virtual machine owns, or an address space owned by another virtual
machine for which your virtual machine has been granted access authorization. No
information has been returned.

16 The specified address-space-name contains invalid characters. No information has
been returned.

ADRSPACE QUERY

828 z/VM: 7.3 CP Programming Services

ALSERV — Access List Services

Purpose
Use the ALSERV macro to add entries to, or remove entries from your virtual machine's host access list.
If your virtual machine is an XC virtual machine, the host access list for your virtual machine specifies
those address spaces your virtual machine can access when it is in the access-register mode. If your
virtual machine is an XA, ESA, or Z virtual machine, the host access list for your virtual machine specifies
those address spaces your virtual machine can access indirectly through DIAGNOSE code X'248' (Copy-
to-primary service).

The following access-list services can be invoked using this macro:
ADD

Establish a valid host access-list entry
DECLARE

Define the macro work area.
REMOVE

Invalidate a host access-list entry

Usage Notes
Access Lists and Access-List Entry States: Each virtual machine has associated with it a host-managed
table called a host access list. A host access list defines the set of address spaces that are directly
addressable by the virtual machine when it is in the access-register mode (for XC virtual machines) or
that can be accessed using DIAGNOSE code X'248' (for XA or ESA virtual machines). A host access list
contains a directory-specified number of host access-list entries (ALEs), each of which is considered to be
in one of three states: unused, valid or revoked. These states have an effect on the use of the entry for
addressing, and the operation of the functions of the ALSERV macro, as follows:

• An unused ALE does not designate any address space and cannot be successfully used for addressing.
An unused ALE can be selected by the ADD function and then set to the valid state by that function.

• A valid ALE designates a currently-existing address space and can be successfully used for addressing
when your virtual machine is in the access-register mode (or when your virtual machine uses
DIAGNOSE code X'248'). A valid ALE will not be selected by the ADD function.

• A revoked ALE is an ALE that was previously valid, but now designates an address space for which your
virtual machine's access has been revoked. A revoked ALE cannot be successfully used for addressing.
A revoked ALE will not be selected by the ADD function.

When a virtual machine is first logged on, or after a subsystem-reset operation has been performed on a
virtual machine, all of the ALEs in its host access list are in the unused state.

Transitions from one ALE state to another happen as a result of the ALSERV macro, the ADRSPACE macro,
and virtual-machine subsystem reset, as described below:

• An unused ALE is set to the valid state with the ADD function of this macro. When the ALE is made valid,
it is set to designate a particular address space. In addition, the ALE is assigned an ALET value that
is used when in the access-register mode to select this particular ALE for addressing. The ALET value
remains uniquely associated with the ALE until the ALE is placed in the unused state.

The ALET value that is assigned to the host access-list entry is returned by the ADD function of this
macro. When your virtual machine is in the access-register mode (or when your virtual machine uses
DIAGNOSE code X'248') and uses the ALET that selects the ALE, the storage operand associated with
the ALET is considered to reside within the address space that the ALE designates.

• A valid ALE is set to the revoked state when the address space designated by the ALE is destroyed, or
when access to an address space is revoked by the virtual machine that owns the address space. An
address space is destroyed when its owner uses the DESTROY function of the ADRSPACE macro, or it
may be destroyed when a subsystem-reset operation is performed on the virtual machine that owns the

ALSERV Macro

Chapter 25. CP Macros 829

address space. A subsystem-reset is performed, for example, by the SYSTEM CLEAR, SYSTEM RESET,
LOGOFF, or IPL commands. Access to an address space can be revoked by the address space owner
using the ISOLATE function of the ADRSPACE macro.

• An ALE in either the valid or revoked state is set to the unused state when the entry is removed using
the REMOVE function of this macro, or when a subsystem-reset operation is performed. A subsystem-
reset is performed, for example, by the SYSTEM CLEAR, SYSTEM RESET, LOGOFF, or IPL commands.

Host access lists can range in size from 6 to 1022 entries. The XCONFIG ACCESSLIST directory statement
controls the size of the host access list provided for a virtual machine. If a virtual machine's CP directory
entry does not contain an XCONFIG ACCESSLIST statement, then the default is that a 62-entry host
access list is provided for the virtual machine.

Access-List-Entry Tokens: When a virtual machine is in the access-register mode, (or when a virtual
machine uses DIAGNOSE code X'248'), the address space in which an operand resides is specified
indirectly by an access-list-entry token (ALET). An ALET selects the host access-list entry to use; the host
access-list entry in turn designates the particular address space containing the operand. The process
of translating an ALET and determining which, if any, host access-list entry it selects (and hence which
address space the ALET represents) is called the host-access-register translation process.

A host access-list entry that is in either the valid or revoked states is selected by a single ALET value for as
long as that entry remains in either of these two states. A host access-list entry that is in the unused state
is not selected by any ALET value.

When the host-access-register translation process attempts to translate an ALET to determine the host
access-list entry that it selects, there are four possible results. The ALET:

• Selects a host access-list entry that is in the valid state.

This is normal completion of the host-access-register translation process. The storage operand
associated with the ALET is considered to reside within the address space that the host access-list
entry designates.

• Selects a host access-list entry that is in the revoked state.

A revoked host access-list entry is no longer usable for addressing; an addressing-capability exception
is recognized.

• Does not select a host access-list entry

The ALET is not usable for addressing; an ALEN-translation exception is recognized.
• Is not well formed, for example, it contains invalid bit settings.

The ALET is not usable for addressing; an ALET-specification exception is recognized.

Program Exceptions
The ALSERV macro may result in one of the following program exceptions:

Problem Encountered Cause

Access exception (See page
“Access Exceptions” on page 8.)

An error occurred trying to

• Fetch or store the macro parameter list (in macro work area)
• Fetch a macro operand
• Store the ALET operand (ADD function)

Specification exception • The macro work area is not doubleword aligned.
• The parameter list generated by the macro is in error.

ALSERV Macro

830 z/VM: 7.3 CP Programming Services

ALSERV ADD

label

ALSERV ADD
1

,ASIT= label

( reg)

,ALET= label

( reg)

,MODE=READ

,MODE=WRITE

,FAULTS=SYNCH

,FAULTS=ASYNCH ,MACHINE=370

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function establishes a valid ALE in your virtual machine's host access list. It selects an unused entry
in the host access list, places that entry in the valid state designating a specified address space, and
returns the ALET that your virtual machine can use to address the specified address space.

Your virtual machine must be authorized for the requested type of access (read-only or read-write) to the
specified address space, otherwise return code 8 is given. Your virtual machine is always authorized for
read-write access to the address spaces that it owns. Another virtual machine can authorize your virtual
machine to access address spaces that it owns by using the PERMIT function of the ADRSPACE macro.

Parameters
label

is an optional assembler language label on the macro.
ASIT=

specifies the address of an 8-byte area in real storage that contains the ASIT identifying the address
space to be designated by the validated ALE. Specify this operand as a label associated with the area
in storage, or as the number of a register (in the range of 2-12, inclusive) containing the address
of the area in storage. For an XC virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the storage area.

This ASIT must designate a currently-existing address space that your virtual machine is authorized to
access, otherwise return code 8 is given.

This operand is required.

ALET=
specifies the address of a 4-byte real storage area that is set by this function to be the ALET that
your virtual machine can use to reference the address space identified by the ASIT operand. Specify
the ALET operand as a label associated with the area in real storage, or as the number of a register
(in the range of 2-12, inclusive) containing the address of the area in storage. For an XC virtual
machine in the access-register mode, the access register corresponding to the base register selected
by the assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the storage area.

This operand is required.

ALSERV ADD

Chapter 25. CP Macros 831

MODE=
specifies whether the new ALE allows read-only or read-write access to the designated address
space. If MODE=READ is specified, then the ALE is set to provide read-only access to the address
space; an attempt to modify the designated address space using this ALE will result in a protection
exception.

If MODE=WRITE is specified, then the ALE is set to provide read-write access to the address space.

Your virtual machine must be authorized for the requested type of access to the address space
specified by the ASIT operand. If you request either type of ALE when you have no access
authorization, or a read-write ALE when you have read-only access authorization, then return code
8 is given. Your virtual machine is always authorized for read-write access to an address spaces it
owns. Your virtual machine's authorization to an address space owned by another virtual machines is
established by the owning virtual machine.

This operand is optional; the default is MODE=READ.

FAULTS=
specifies whether storage references that use the ALE are eligible for page-fault handshaking.

If FAULTS=ASYNCH is specified then storage references that use the ALE are eligible for page-fault
handshaking, provided that the other conditions necessary for page-fault handshaking are satisfied.
See Page-Fault Handshaking for details on these other conditions and the page-fault-handshaking
process.

If FAULTS=SYNCH is specified then storage references that use the ALE are not eligible for page-fault
handshaking.

This operand is optional; the default is FAULTS=SYNCH.

MACHINE=370
has no supported function, because 370 virtual machines are not supported. Results are undefined if
this operand is specified.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For an XC virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ALSERV DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding this
operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. The address space to be designated by the new ALE is specified by ASIT. When an address space

is created using the CREATE function of the ADRSPACE macro, the ASIT associated with the address
space is returned. The ASIT associated with an address space can also be obtained using the QUERY
function of the ADRSPACE macro.

4. If your virtual machine invokes the ADD function more than once for the same address space (with the
same or a different MODE specifications), your virtual machine's host access list will contain multiple
ALEs designating that address space.

ALSERV ADD

832 z/VM: 7.3 CP Programming Services

5. It is not necessary to have established the location of a page-fault handshaking token prior to
establishing an ALE with the FAULTS=ASYNCH option. However, page-fault-handshaking actions will
not occur for the ALE until the page-fault handshaking token is established for the virtual CPU. See
Page-Fault Handshaking for details on the page-fault-handshaking process.

6. If ALSERV ADD is used specifying the ASIT of a space owned by a user that has been relocated by the
VMRELOCATE command prior to a subsequent reset clear function, the request fails and return code 8
is given. To avoid this situation, issue a command that initiates a reset clear function on the user on the
relocation target system. Then obtain the new ASIT value using the QUERY SPACES command or the
ADRSPACE QUERY API from a program. Commands that result in a reset clear include:

• SYSTEM CLEAR
• IPL by NSS name
• IPL by device with the CLear option
• SET MACHine (to a different machine architecture)

Condition Codes and Return Codes
On return from the ADD function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

ADD function status

0 An ALE has been established to designate the specified address space. The ALET to
use to reference the address space has been returned.

4 There are no unused entries in the host access list that can be used to establish the
new ALE.

8 The specified ASIT does not identify a currently-existing address space for which
your virtual machine is authorized for the requested type of access, or your
virtual machine has been relocated through the VMRELOCATE command and no
subsequent reset clear function has been invoked.

ALSERV ADD

Chapter 25. CP Macros 833

ALSERV DECLARE

label

ALSERV DECLARE

Purpose
ALSERV DECLARE defines the storage required for the WORKAREA operand of the ALSERV macro. You
must code this function only if you need to define the macro work area outside of the program requiring
it. To simplify the use of the ALSERV macro, don't code the ALSERV DECLARE function and omit the
WORKAREA operand on the executable functions of the ALSERV macro. This allows the ALSERV macro to
control and define the necessary data expansion through the DEFWORKA macro coded at the end of your
program. See “Coding CP Macros” on page 807 for additional details.

Parameters
label

is an optional assembler language label on the macro to be assigned to the defined storage.

Usage Notes
1. The DECLARE function does not generate any executable code. You may code it within a dummy

section (DSECT) or a control section (CSECT).
2. Although a label is not required on the invocation of the DECLARE function, it may be necessary in

order to identify the work area on the WORKAREA operand.

ALSERV DECLARE

834 z/VM: 7.3 CP Programming Services

ALSERV REMOVE

label

ALSERV REMOVE
1

,ALET= label

( reg) ,MACHINE=370

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function sets a specified ALE in your virtual machine's host access list to the unused state.

The ALE to be modified is specified by the ALET value which selects that ALE; the specified ALE can
originally be in either the valid or revoked state. After the REMOVE operation, the ALE cannot be used for
addressing when your virtual machine is in the access-register mode (or cannot be used by your virtual
machine through DIAGNOSE code X'248'). The ALE is available for reassignment as a valid ALE by a
subsequent invocation of the ADD function.

Parameters
label

is an optional assembler language label on the macro.
ALET=

specifies the address of a 4-byte area in real storage that contains the ALET designating the ALE to
be set to the unused state. Specify this operand as a label associated with the area in real storage, or
as the number of a register (in the range of 2-12, inclusive) containing the address of the area in real
storage. For an XC virtual machine in the access-register mode, the access register corresponding to
the base register selected by the assembler for the label (label form) or the access register associated
with the specified general register (register form) is used to determine the address space containing
the storage area.

This ALET must designate either a valid, or a revoked entry in your virtual machine's host access list,
otherwise return code 4 is given. If the ALET contains invalid bit settings such that it would cause an
ALET-specification exception to be recognized if it were used in the access-register mode, then return
code 12 is given.

This operand is required.

MACHINE=370
has no supported function, because 370 virtual machines are not supported. Results are undefined if
this operand is specified.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For an XC virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

ALSERV REMOVE

Chapter 25. CP Macros 835

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
ALSERV DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding this
operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. An ALET of X'00000000' designates the host-primary address space, and does not designate any ALE.

An attempt to use the REMOVE function with an ALET of X'00000000' will result in return code 12.

Condition Codes and Return Codes
On return from the REMOVE function, register 15 contains one of the following return codes:

Return Code
In Register 15
(Decimal)

REMOVE function status

0 The ALE designated by the ALET operand has been removed as requested, and the
ALE is now in the unused state.

4 The ALET specified by the ALET operand does not designate an ALE in either the
valid or revoked states. No ALE states have been changed.

12 The ALET specified by the ALET operand contains invalid bit settings. No ALE states
have been changed.

ALSERV REMOVE

836 z/VM: 7.3 CP Programming Services

DEFWORKA — Define Macro Work Area

label

DEFWORKA

Purpose
Use the DEFWORKA macro to define the work areas required for one or more CP macros contained
within your program. The description of each CP macro indicates whether it supports the definition of the
macro's work area through DEFWORKA.

Code DEFWORKA after the invocation of the CP macros which rely on DEFWORKA. DEFWORKA collects
and defines, with proper alignment, the CP macro work areas required within your program. The macros
which use DEFWORKA also support a WORKAREA operand for their executable functions, and a DECLARE
function. DEFWORKA generates the work area for a CP macro which is invoked without a WORKAREA
specification or a CP macro which has a WORKAREA=label specification, where label has not yet been
defined through DEFWORKA or the macro's DECLARE function.

Parameters
label

is an optional assembler language label on the macro.

Usage Notes
1. The DEFWORKA macro does not generate any executable code. You may code it within a dummy

section (DSECT) or the control section (CSECT) of your program.
2. A label coded on the DEFWORKA invocation is not used anywhere within the macro expansion.
3. For additional details on this macro see “Coding CP Macros” on page 807.

DEFWORKA Macro

Chapter 25. CP Macros 837

MAPMDISK — Mapping Services

Purpose
Use the MAPMDISK macro to establish and remove mappings between minidisks in your virtual machine's
I/O configurations and address spaces owned by your virtual machine. A mapping is an association
between a set of 4K minidisk blocks and a set of address space pages that permits a virtual machine to
access data residing on those 4K minidisk blocks using normal CPU instructions, such as MOVE LONG,
rather than by using I/O operations such as START SUBCHANNEL or DIAGNOSE code X'A4'.

Within this description of the MAPMDISK macro, the term "block", in the phrases minidisk block, pool-
relative block number, minidisk-relative block number, and device-relative block number refer to a 4K
byte area of data starting on a 4K block boundary. This use of the term "block" differs from a block on a
fixed block architecture (FBA) DASD. Eight contiguous blocks of size 512 bytes on an FBA DASD make one
minidisk 4K block. An FBA block starts on a 4K block boundary if the number of the FBA block is evenly
divisible by 8.

The following mapping-service functions can be invoked using this macro:
DECLARE

Define the macro work area
DEFINE

Establish a mapping between a range of pages in an address space, and a set of 4K blocks residing in
the minidisk pool

IDENTIFY
Identify the minidisk pool and the pool-relative block numbers of the 4K blocks within the pool

REMOVE
Remove a mapping between a range of pages in an address space, and a set of 4K blocks residing in
the minidisk pool

SAVE
Initiate a request to write ranges of mapped pages to their corresponding minidisks

Usage Notes
Your virtual machine must be an XC virtual machine to successfully use any of the functions of this macro.
If your virtual machine is an XA, ESA, or Z virtual machine, then a specification exception is recognized.

Pool-Relative Block Numbers: A minidisk pool is the collection of minidisks in your virtual machine's
I/O configuration that will participate in mappings. For defining mappings, a 4K DASD block within the
minidisk pool is designated by a 32-bit unsigned value called a pool-relative block number. The IDENTIFY
function of this macro identifies the minidisk pool for your virtual machine and defines the assignment of
pool-relative block numbers to 4K minidisk blocks contained in the minidisk pool.

Each pool-relative block number value is considered either assigned or unassigned. An assigned pool-
relative block number is associated with a single 4K minidisk block for mapping-related operations. An
unassigned pool-relative block number is not associated with any 4K minidisk block within the minidisk
pool. The assigned or unassigned state of a particular pool-relative block number may change as a result
of invoking the IDENTIFY function, or modifying your virtual machine's I/O configuration. See “MAPMDISK
IDENTIFY” on page 851 for details.

Each 4K minidisk block that can be the target of a mapping is designated by at least one pool-relative
block number. Although not normally the case, a 4K minidisk block may be designated by multiple
pool-relative block numbers.

Effects of Mapping: A mapping is an association between a page in an address space and, indirectly
through a pool-relative block number, a 4K block on a minidisk in a minidisk pool. When a mapping exists
between a page and a 4K block, a correlation is maintained between the contents of the page and the
contents of the 4K block so data contained in the 4K block is available in the page where it can be

MAPMDISK Macro

838 z/VM: 7.3 CP Programming Services

manipulated by using normal CPU instructions. Mappings are established by using the DEFINE function
of this macro, and are removed using the REMOVE function of this macro. MAPMDISK REMOVE must
be issued before exiting guest applications that use MAPMDISK; otherwise, unpredictable results might
occur.

A page for which a current mapping is defined is known as a mapped page. A page that has never
had a mapping defined, or one that had a mapping defined and subsequently removed, is known as an
unmapped page.

A mapping is established with the DEFINE function by specifying a pool-relative block number to be
assigned to a page; this pool-relative block number indirectly specifies the 4K minidisk block that is
associated with the mapped page. When a mapping is established for a page, the current contents of that
page may be discarded and either the contents of the associated 4K minidisk block, or binary zeros, may
be made available in the mapped page. Alternatively, the current contents of the page may be retained.
The specific operation depends on the options used in establishing the mapping.

Subsequently, for as long as the page remains mapped, the contents of the page can be refreshed from
the associated 4K minidisk block, and the contents of the page can be stored on the 4K minidisk block as
follows:

• The contents of the mapped page can be refreshed by CP at any time, except that if the mapped page
has been changed, then it will not be refreshed unless the store operation, whose description follows,
has been successfully performed on the page at least as recently as the time of the last change.

The refresh operation performed by CP consists of translating (through the then-current minidisk extent
list) the pool-relative block number assigned to the page to determine the location of the associated
4K minidisk block and fetching the contents of the 4K minidisk block into the mapped page. As viewed
by virtual machines referencing the mapped page, this refreshing operation updates the contents of the
page in a page-concurrent manner.

If an error is encountered when fetching data from the 4K minidisk block, the mapped page is marked
in error so on a subsequent reference to the page a machine check indicating a storage-error condition
is recognized. The storage-error condition is identified by a machine-check-interruption code (MCIC)
specifying storage error uncorrected (bit 16 of the MCIC) and storage-key error uncorrected (bit 18 of
the MCIC). Usually, the condition will be presented by a processing backup machine check in which all
validity bits in the MCIC are set to one and a failing-storage address and ASIT are stored. However the
condition may be presented by a more severe machine check with other machine-check conditions.

• The contents of the mapped page can be stored by CP at any time. In addition, a program can use the
SAVE function of this macro to request that the contents of a changed mapped page be stored.

The store operation performed by CP consists of translating (through the then-current minidisk extent
list) the pool-relative block number assigned to the page to determine the location of the associated
4K minidisk block and storing the contents of the mapped page on the 4K minidisk block. The store
operation is performed in a manner that maintains change integrity for the contents of the page. As
viewed by virtual machines accessing the 4K minidisk block, this store operation alters the contents of
the block in a block-concurrent manner.

If an error is encountered when storing data on the 4K minidisk block, a machine check indicating a
storage-degradation condition is recognized if the store operation was initiated automatically by CP, or
an error completion code is presented if the store operation was initiated through the SAVE function.
In both cases, the contents of the mapped page are unaffected and the page is still considered to be
a changed page. The storage-degradation condition is identified by a machine-check-interruption code
(MCIC) specifying storage-error corrected (bit 17 of the MCIC) and storage degradation (bit 19 of the
MCIC). Usually, the condition will be presented by a system recovery machine check in which all validity
bits in the MCIC are set to one and a failing-storage address and ASIT are stored. However the condition
may be presented by a more severe machine check with other machine-check conditions.

Except as defined above, it is unpredictable if, and when, the refresh and store operations are performed.
Changes made to a 4K minidisk block that is the target of a mapping may not have an immediate, if any,
effect on the data available in the corresponding mapped pages. Likewise, changes made to a mapped
page may not have an immediate, if any, effect on the contents of the associated 4K minidisk block.

MAPMDISK Macro

Chapter 25. CP Macros 839

Because of this unpredictability, care must be taken in using I/O instructions, or I/O DIAGNOSE functions
to either read from or write to a 4K minidisk block that is the target of a mapping.

If, while a page is mapped, the pool-relative block number assigned to the page becomes an unassigned
pool-relative block number, then the contents of the page will eventually become unavailable. When the
contents are unavailable, the mapped page is marked in error such that on a subsequent reference to the
page a storage-error machine check will be recognized.

Programming Notes:

1. Although data on 4K minidisk blocks is said to be available in the associated pages after some
forms of the DEFINE operation are completed, no actual movement of data from the minidisk into
storage occurs at the time the mapping is defined. Movement of data from the 4K minidisk block into
the mapped pages is performed by CP's paging subsystem when a virtual machine makes the first
reference to the mapped page.

After a mapped page is in storage, CP's paging subsystem may or may not steal the frame assigned to
the mapped page. If the frame is stolen and had been changed, the changed contents of the frame are
stored back on the associated 4K minidisk block. When a virtual machine makes another reference to
the page, the page will be reread from the 4K minidisk block.

Since it is unpredictable if or when CP's paging subsystem steals a frame, your program cannot depend
on this action for correct operation. In particular, your program cannot depend on CP's page stealing
to cause changed data to be written to the associated 4K minidisk blocks; the SAVE function of
this macro can be used to ensure predictable saving of changed data. It also cannot depend on CP
refetching data from the minidisk to cause the data in a changed 4K block to be visible in a mapped
page.

2. While a mapping exists, some of the pool-relative block numbers associated with mapped pages may
become unassigned, for example if the minidisk containing the 4K block identified by the pool-relative
block number is detached from the virtual machine's I/O configuration. When a pool-relative block
number used in a mapping becomes unassigned, it is possible that the data contained on the 4K
minidisk block that was identified by the (now-unassigned) pool-relative block number may remain
visible in a mapped page for an unpredictable amount of time. This will occur if CP is currently backing
the mapped page with a real frame. Eventually, any changes made on the mapped page will be
discarded and the mapped page will become unaddressable when CP steals the frame backing the
mapped page. If a subsequent reference is made to the mapped page, a storage-error machine check
will be recognized.

3. Once a storage-degradation machine check or error completion code from the SAVE function is
received, future storage-degradation machine checks for the same page are possible as long as the
page remains mapped to the same 4K minidisk block. This is because the contents of the page are
unaffected by the error and are still considered to be changed, so CP may try the store operation again
on the page at any time. To eliminate the possibility of future storage-degradation machine checks, the
mapping for the page should be removed (using the REMOVE function) or changed (using the DEFINE
function) after a storage-degradation machine check or error completion code from the SAVE function
is received.

4. Although the preceding section defines that the contents of a mapped page can be stored by CP on the
4K minidisk block at any time, this action will not normally occur unless the page has been changed.
However, there are unusual situations that can cause CP to store the contents of a page that was never
changed. Because of these unusual situations, your program cannot assume that unchanged pages will
not be stored.

5. Minidisk cache should be turned off for minidisks that are only read and written via MAPMDISK and the
corresponding data space. Minidisks which use a combination of data space access/MAPMDISK and
virtual I/O (Diagnose and channel program) should be evaluated on an individual basis to determine if
minidisk cache should remain enabled.

Program Exceptions
The MAPMDISK macro may result in one of the following program exceptions:

MAPMDISK Macro

840 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Access exception (See page
“Access Exceptions” on page 8.)

An error occurred trying to

• Fetch or store the macro parameter list (in macro work area)
• Fetch a macro operand
• Fetch an extent-list-definition block (IDENTIFY function)
• Fetch an mapping-list-definition block (DEFINE function)
• Access (as if a fetch) the range of pages to be mapped (DEFINE

function); key-controlled protection does not apply
• Fetch a save-list-definition block (SAVE function)
• Store the error status buffer (SAVE function); key-controlled

protection does not apply

Specification exception • Your virtual machine is an ESA virtual machine.
• The macro work area is not aligned on a doubleword boundary.
• The parameter list generated by the macro is in error.
• An extent-list definition block, a mapping-list definition block or a

save-list definition block is not aligned on the required boundary.
• The ERRBA field in a save-list definition block does not specify a

nonzero address on a doubleword boundary.
• The PAGEADDR parameter does not specify an address on a page

boundary.
• The code in bits 24-31 of the register indicated by PAGEVIEW=(reg)

is invalid.

MAPMDISK Macro

Chapter 25. CP Macros 841

MAPMDISK DECLARE

label

MAPMDISK DECLARE

Purpose
This function defines the storage required for the WORKAREA operand of the MAPMDISK macro. You
must code this function only if you need to define the macro work area outside of the program requiring
it. To simplify using the MAPMDISK macro, do not code the MAPMDISK DECLARE function and omit the
WORKAREA operand on the executable functions of the MAPMDISK macro. This allows the MAPMDISK
macro to control and define the necessary data expansion through the DEFWORKA macro coded at the
end of your program. See “Coding CP Macros” on page 807 for additional details.

Parameters
label

is an optional assembler language label on the macro to be assigned to the defined storage.

Usage Notes
1. The DECLARE function does not generate any executable code. You may code it within a dummy

section (DSECT) or a control section (CSECT).
2. Although a label is not required on the invocation of the DECLARE function, it may be necessary to

identify the work area on the WORKAREA operand.

MAPMDISK DECLARE

842 z/VM: 7.3 CP Programming Services

MAPMDISK DEFINE

label

MAPMDISK DEFINE
1

,ASIT= label

( reg)

,PAGECT= label

( reg)

,PAGEADDR= label

( reg)

,MLDBLOCK= label

( reg)

,PRBN= label

( reg)

,PAGEVIEW=FETCH

,PAGEVIEW= RETAIN

ZERO

( reg)

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function establishes a mapping between a range of pages in an address space and, indirectly through
pool-relative block numbers, a set of 4K blocks residing in the minidisk pool. You must first identify the
minidisk pool, using the IDENTIFY function of this macro, before using the DEFINE function.

The mapping is defined in one of two ways: by using a specified list of pool-relative block numbers (the
list form), or by using a specified consecutive range of pool-relative block numbers (the range form). A
mapping is defined using the list form by specifying an ordered list of pool-relative block numbers that
designate the 4K blocks that are to be associated with a specified consecutive range of address-space
pages. A mapping is defined using the range form by specifying a consecutive range of pool-relative block
numbers that designate the 4K blocks that are to be associated with a specified consecutive range of
address-space pages. For both forms, the address-space pages can be pages either in an address space
that you have created, or in your host-primary address space.

For each page to be mapped by the DEFINE request, the page is unlocked (if it was locked through the
LOCK command) and the specified pool-relative block number is assigned to the page. Depending on
the value of the PAGEVIEW parameter, the current contents of the page are either retained or discarded
as part of the DEFINE operation; if the current contents are discarded, then either binary zeros or the
contents of the associated 4K minidisk block are made available in the mapped page.

If PAGEVIEW=FETCH is specified and the pool-relative block number to be assigned to a page designates
a 4K block that resides on a read-only minidisk, the mapped page is host-page protected by CP so
any attempt to change the mapped page (or to change the storage key for the mapped page) results
in a protection exception. This protection applies even if all other protection mechanisms (low-address,
key-controlled and access-list-controlled protection) would allow the virtual machine to have read-write
access to the page. If the pool-relative block number assigned to the page designates a 4K block that
resides on a read-write minidisk, then the page is not host-page protected; a virtual machine may
change the mapped page if the other protection mechanism permit the change. If PAGEVIEW=ZERO or
PAGEVIEW=RETAIN is specified and the pool-relative block number to be assigned to a page designates a
4K block that resides on a read-only minidisk, return code 36 is given.

Once a mapping is established, the mapping remains in effect and the pool-relative block number
specified for a page remains assigned to the page until a new mapping is established, until the mapping

MAPMDISK DEFINE

Chapter 25. CP Macros 843

is removed with the REMOVE function of this macro, or until a subsystem-reset operation is performed
on your virtual machine. The mapping remains in effect even if the extent-list defining the minidisk pool
is changed after the mapping was established. MAPMDISK REMOVE must be issued before exiting guest
applications that use MAPMDISK; otherwise, unpredictable results might occur.

Parameters
label

is an optional assembler language label on the macro.
ASIT=

specifies the real address of an 8-byte field in storage that contains the ASIT identifying the address
space to be the target of the mapping. Specify this parameter as a label associated with the field,
or as the number of a register (in the range of 2-12, inclusive) containing the address of the field in
storage. For a virtual machine in the access-register mode, the access register corresponding to the
base register selected by the assembler for the label (label form) or the access register associated
with the specified general register (register form) is used to determine the address space containing
the field.

If this ASIT is not associated with an address space your virtual machine created, or the host-primary
address space for your virtual machine, then return code 8 is given.

This operand is required.

PAGECT=
specifies the real address of a 4-byte field in storage that contains the number of consecutive pages
to be mapped by this request. Specify this parameter as a label associated with the field in storage,
or as the number of a register (in the range of 2-12, inclusive) containing the address of the field in
storage. For a virtual machine in the access-register mode, the access register corresponding to the
base register selected by the assembler for the label (label form) or the access register associated
with the specified general register (register form) is used to determine the address space containing
the field.

The minimum number of pages to be mapped is 1, and the maximum number is 524,288. If this count
is not in this range, then return code 4 is given.

If this value does not match the sum of the ENTCT fields in each of the mapping-list definition blocks,
then return code 20 is given.

This operand is required.

PAGEADDR=
specifies the real address of a 4-byte field in storage that contains the 31-bit absolute address of
the first page in the consecutive range of pages to be mapped. Specify this parameter as a label
associated with the field in storage, or as the number of a register (in the range of 2-12, inclusive)
containing the address of the field in storage. For a virtual machine in the access-register mode,
the access register corresponding to the base register selected by the assembler for the label (label
form) or the access register associated with the specified general register (register form) is used to
determine the address space containing the field.

The range of pages to be mapped, from PAGEADDR to PAGEADDR+(PAGECT-1)*4096, must be
contained within the bounds of the address space designated by the ASIT operand, otherwise an
addressing exception is recognized. This range must not include any saved segments, or pages locked
with the LOCK function of DIAGNOSE code X'98' otherwise return code 24 is given.

Bits 20-31 of the page address must be zeros, otherwise a specification exception is recognized.

This operand is required.

MLDBLOCK=
specifies the real storage address of the first mapping-list definition block in the chain of mapping-list
definition blocks for this request. Specify this parameter as a label associated with the block in
real storage, or as the number of a register (in the range of 2-12, inclusive) containing the address
of the block in real storage. For a virtual machine in the access-register mode, the access register

MAPMDISK DEFINE

844 z/VM: 7.3 CP Programming Services

corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the block.

The address of the first mapping-list definition block must be an address on a doubleword boundary,
otherwise a specification exception is recognized. See Mapping-List Format for more information.

The MLDBLOCK and PRBN operands are mutually exclusive. However, one of them is required to
indicate whether the pool-relative block numbers to be associated with the mapped pages are
specified in a list or as a consecutive range.

PRBN=
specifies the real address of a 4-byte field in storage that contains the pool-relative-block number to
be associated with the page identified by the PAGEADDR operand. Each subsequent page in the range
of pages to be mapped is associated with the next higher pool-relative block number.

Specify this parameter as a label associated with the field in storage, or as the number of a register
(in the range of 2-12, inclusive) containing the address of the field in storage. For a virtual machine
in the access-register mode, the access register corresponding to the base register selected by the
assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the field.

The pool-relative block number must be less than or equal to 232-PAGECT and must have been
assigned by the IDENTIFY function, otherwise return code 12 is given.

The MLDBLOCK and PRBN operands are mutually exclusive. However, one of them is required to
indicate whether the pool-relative block numbers to be associated with the mapped pages are
specified in a list or as a consecutive range.

PAGEVIEW=
specifies the disposition of the current contents of the pages to be mapped and the type of data to
be available in the mapped pages at the completion of the DEFINE request. Specify this parameter
as one of the keywords FETCH, RETAIN or ZERO or as the number of a register (in the range of 2-12
inclusive) containing a parameter code in the low order byte.

If PAGEVIEW=FETCH is specified, the current contents of the pages are discarded and the contents of
the associated 4K minidisk blocks are made available in the mapped pages. For the SAVE function, the
pages are considered to be unchanged pages at the completion of the DEFINE operation.

If PAGEVIEW=RETAIN is specified, the current contents of the pages are retained. For purposes of the
SAVE function, the pages are considered to be changed pages.

If PAGEVIEW=ZERO is specified, the current contents of the pages are discarded and the mapped
pages are considered to contain binary zeros. For purposes of the SAVE function, it is unpredictable
whether the pages are considered to be changed or unchanged pages at the completion of the
DEFINE operation.

If PAGEVIEW=(reg) is specified, then bits 24-31 of the general register indicated by (reg) contain a
code that specifies PAGEVIEW as follows:
Code

PAGEVIEW meaning:
X'00'

PAGEVIEW=FETCH
X'01'

PAGEVIEW=RETAIN
X'02'

PAGEVIEW=ZERO
All Others

Invalid
If bits 24-31 of the register contain a code listed as invalid then a specification exception is
recognized. Bits 0-23 of the register are ignored.

MAPMDISK DEFINE

Chapter 25. CP Macros 845

This operand is optional; the default is PAGEVIEW=FETCH.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
parameter as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
MAPMDISK DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. The macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. The normal method of changing data on a 4K minidisk block that is the target of a mapping is to change

the contents of the associated mapped page and then use the SAVE function of this macro to cause the
changed data to be stored on the 4K minidisk block.

However if the data on a 4K minidisk block must be changed by some other means, such as an I/O
instruction or an I/O diagnose, and you want the changed data to be visible in a mapped page, issue
DIAGNOSE code X'10' against the mapped page after the data has been changed on the 4K minidisk
block. The DIAGNOSE code X'10' operation will cause the mapped page to be refreshed from the 4K
minidisk block on next reference.

4. Since it is unpredictable whether mapped pages established using the PAGEVIEW=ZERO operand are
considered changed or unchanged pages, your program cannot use the combination of a DEFINE
request with PAGEVIEW=ZERO followed immediately by a SAVE request for the same page as a way of
zeroing out the contents of the associated 4K minidisk block. The SAVE request may or may not store
the page of zeros on the 4K minidisk block.

If you want the page of zeros to be stored on the associated 4K minidisk block by the SAVE
request, then the page must be changed through CPU instructions before the SAVE request is issued.
Note however that simply storing a byte or word of zeros into the page is insufficient because by
architecture rules, the page may not be considered to be a changed page after a store operation that
does not change the value in storage. Two stores into the page must be done: the first being a store of
some nonzero value, and the second a store of a zero into the same location.

5. Defining a mapping using the DEFINE function changes the data that is visible in the mapped page.
However, it does not change the storage key associated with the page.

Mapping-List Format: If the DEFINE function has been requested using a specified list of pool-relative
block numbers (using the MLDBLOCK parameter), then the pool-relative block numbers to be associated
with the pages to be mapped are specified by a singly-linked list of mapping-list definition blocks.
This mapping is a chained structure to allow for the specification of many mapping-list entries without
requiring many contiguous pages of storage for the list, while retaining the option of having a single
contiguous area if desired. The real address of the first block in this singly-linked list is specified by the
MLDBLOCK operand.

Each mapping-list definition block contains a header, and a contiguous table of mapping-list entries.
The mapping-list definition block must be aligned on a doubleword boundary. Each mapping-list entry
specifies a pool-relative block number to be associated with a page in the range of pages to be mapped.

Each mapping-list definition block must be aligned on a doubleword boundary. A mapping-list definition
block has the following format:

MAPMDISK DEFINE

846 z/VM: 7.3 CP Programming Services

Note: Field names used in the following descriptions are for reference only. You may copy these names, or
use any other names, in your own code.

0

8

16

nn

FWDPT-ALET FWDPT

ENTR1

ENTCT

Mapping-list entries (MLEs)

////////////////////////////

FWDPT-ALET
When the virtual machine is in the access-register mode, bytes 0-3 contain an ALET specifying
the address space in which the next mapping-list definition block resides. Zeros in bytes 0-3 in
conjunction with zeros in bytes 4-7 indicate that this block is the last block in the chain.

Bytes 0-3 are ignored when the virtual machine is in the primary-space mode.

FWDPT
Bytes 4-7 of the mapping-list definition block are the real address of the next block in the singly-
linked chain. This field must specify an address on a doubleword boundary, otherwise return code
28 is given. When the virtual machine is in the primary-space mode, zeros in bytes 4-7 indicate that
this block is the last block in the chain. When the virtual machine is in the access-register mode,
end-of-chain is indicated by zeros in bytes 4-7 and bytes 0-3.

ENTCT
Bytes 8-11 of the mapping-list definition block contain a word that is the number of mapping-list
entries contained in this mapping-list definition block. The minimum number of entries in a mapping-
list definition block is 1, and the maximum number is 524,288. If this count is not in this range, then
return code 16 is given.

If the total number of mapping-list entries in all of the extent-list definition blocks in the chain is
less than the value of the page count specified by the PAGECT operand on the macro invocation,
then a mapping is established only for those pages for which there is a mapping-list entry. If the
total number of mapping-list entries is larger than the value of the PAGECT operand, then the extra
mapping-list entries are not used. In either case, return code 20 is given.

////////
Bytes 12-15 of the mapping-list definition block are reserved for future use and should contain binary
zeros.

ENTR1
Starting at byte 16 of the mapping-list definition block is a contiguous table of 4-byte mapping list
entries. Each mapping-list entry is a word that contains a pool-relative block number. The ENTCT field
specifies how many mapping-list entries are contained in this area.

The overall structure of the mapping list chain is shown in the following diagram:

MAPMDISK DEFINE

Chapter 25. CP Macros 847

FWDPT-ALET

First
mapping-list

definition block

FWDPT

FWDPT-ALET

Last
mapping-list

definition block

ENTCT

=

PRBN

=

PRBN

= =

= =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FWDPT

ENTCT

PRBN

PRBN

PRBN

ENTCT

00000000

00000000

MLDBLOCK

ENTCT

ENTCT

ENTCT PRBN

1 1 1

The chain of mapping-list definition blocks is processed as though it was a single, ordered list of mapping-
list entries. The first mapping-list entry in the first mapping-list definition block contains the pool-relative
block number to be associated with the address-space page identified by the PAGEADDR operand on
the macro invocation. Each subsequent mapping-list entry in the mapping-list definition block contains
the pool-relative block number to be associated with the next page in the page range. After all of the
mapping-list entries in a given mapping-list definition block are processed, the first mapping-list entry of
the next mapping-list definition block in the chain is processed.

Condition Codes and Return Codes
On return from the DEFINE function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

DEFINE function status

0 The mapping has been defined as requested.

4 The page count specified by the PAGECT operand is out of range. No mapping has
been defined.

8 The ASIT specified by the ASIT operand does not identify either an existing address
space that your virtual machine created, or your virtual machine's host-primary
address space. No mapping has been defined.

12 The pool-relative block number to be associated with a page is either unassigned, or
would exceed 232-1. If the error is due to an unassigned pool-relative block number,
mappings have been defined for pages up to but not including the one corresponding
to this error. Register 0 contains the address of the page for which the error occurred.
This page resides in the address space specified by the ASIT operand. If the error is
due to PRBN+PAGECT-1 exceeding 232-1, then no mappings have been defined.

16 The ENTCT field in a mapping-list definition block is out of range. Register 0 contains
the address of the mapping-list definition block that contains the invalid ENTCT
field. In the access-register mode, access register 0 contains the ALET specifying
the address space in which the mapping-list definition block resides. Mapping-list
definition blocks up to but not including the one containing the error have been
processed.

MAPMDISK DEFINE

848 z/VM: 7.3 CP Programming Services

Return Code
in Register 15
(Decimal)

DEFINE function status

20 The page count as specified by the PAGECT operand does not match the sum
of the ENTCT fields in all of the mapping-list definition blocks. If the sum of the
ENTCT fields is less than the page count specified by PAGECT, then all mapping-list
definition blocks have been processed; register 0 contains the address of the last
mapping-list definition block. If the sum of the ENTCT fields is greater than the
page count specified by PAGECT, then mapping-list definition blocks up to but not
including the one that caused the error have been processed; register 0 contains the
address of the mapping-list definition block that caused the error. In both cases in
the access-register mode, access register 0 contains the ALET specifying the address
space in which the mapping-list definition block resides.

24 The range of pages to be mapped includes a saved segment, or includes a page
locked with the LOCK function of DIAGNOSE code X'98'. Mappings have been
defined for all pages up to but not including the first page that is either in a saved
segment, or that has been locked with the LOCK function of DIAGNOSE code X'98'.
Register 0 contains the address of the megabyte containing the page for which the
error occurred. This megabyte of storage resides in the address space specified by
the ASIT operand.

28 The FWDPT field in a mapping-list definition block does not specify an address
on a doubleword boundary. Mapping-list definition blocks up to and including the
one containing the error have been processed. Register 0 contains the address of
the mapping-list definition block containing the invalid FWDPT field. In the access-
register mode, access register 0 contains the ALET specifying the address space in
which the mapping-list definition block resides.

32 No minidisk pool was previously identified through the MAPMDISK IDENTIFY
function. No mapping has been defined.

36 PAGEVIEW=ZERO or PAGEVIEW=RETAIN was specified and a pool-relative block
number designates a 4K block that resides on a read-only minidisk. Mappings have
been defined for pages up to but not including the one corresponding to this error.
Register 0 contains the address of the page for which the error occurred. This page
resides in the address space specified by the ASIT operand.

40 When in the access-register mode, an ALET used in accessing a mapping-list
definition block could not be translated because of an ALET-specification-exception
condition (ALET contains invalid bit settings). Mapping-list definition blocks up to and
including the one containing the error have been processed. Access register 0 and
general register 0 contain the ALET and address (respectively) used in the attempt to
access the mapping-list definition block.

44 When in the access-register mode, an ALET used in accessing a mapping-list
definition block could not be translated because of an ALEN-translation-exception
condition (ALET does not designate a valid or revoked ALE). Mapping-list definition
blocks up to and including the one containing the error have been processed. Access
register 0 and general register 0 contain the ALET and address (respectively) used in
the attempt to access the mapping-list definition block.

48 When in the access-register mode, an ALET used in accessing a mapping-list
definition block could not be translated because of an addressing-capability-
exception condition (ALET designates an address space for which access has been
revoked). Mapping-list definition blocks up to and including the one containing the
error have been processed. Access register 0 and general register 0 contain the ALET
and address (respectively) used in the attempt to access the mapping-list definition
block.

MAPMDISK DEFINE

Chapter 25. CP Macros 849

If an addressing or addressing-capability exception is recognized on the DEFINE function, the operation is
terminated. Those pages in the page range identified by the PAGEADDR and PAGECT parameter that are
processed before the point of error have mappings established as usual. Those pages in the page range at
or after the point of error remain unchanged.

MAPMDISK DEFINE

850 z/VM: 7.3 CP Programming Services

MAPMDISK IDENTIFY

label

MAPMDISK IDENTIFY
1

,EXTCT= label

( reg)

,XLDBLOCK= label

( reg) ,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function identifies your virtual machine's minidisk pool and defines the assignment of pool-relative
block numbers to the 4K blocks contained within the minidisk pool. You must use this function to identify
the minidisk pool before you can successfully use the DEFINE function to establish mappings.

To be in a minidisk pool, a minidisk must reside on a DASD device type that is supported by CP as a paging
device; this requirement is checked by the IDENTIFY function when the minidisk pool is identified. For
minidisks on FBA DASD, the minidisk must start and end on 4K block boundaries (the starting FBA block
number and the ending FBA block number plus one must be evenly divisible by 8); this requirement is
also checked by the IDENTIFY function when the minidisk pool is identified. For minidisks on CKD DASD,
the MAPMDISK functions assume that all minidisks that are part of a minidisk pool are formatted so:

• All blocks are 4K byte blocks
• Each track has consecutive record numbers starting with one
• There are no pad records.

However, these last three requirements for minidisks on CKD DASD are not checked by the IDENTIFY
function. Unpredictable results may occur if these requirements are not met.

The minidisk pool is specified by an extent list, which is an ordered list of minidisk segments that
comprise the minidisk pool. Each extent in the list is a contiguous range of 4K blocks on a minidisk in
your virtual machine's I/O configuration. The 4K blocks contained in an extent are assigned a specified
consecutive range of pool-relative block numbers that designate the blocks in mapping operations.
The extent list entries must be specified with increasing, nonoverlapping ranges of pool-relative block
numbers.

Your virtual machine can have at most one minidisk pool defined. If your virtual machine had previously
used this function to identify a minidisk pool, and then subsequently uses the function again, the new
extent list for the minidisk pool replaces the previous one.

Once a minidisk pool is identified, it remains in effect until it is redefined by a subsequent invocation
of the IDENTIFY function, or until a subsystem-reset operation is performed on your virtual machine. A
subsystem-reset operation deletes any minidisk pool identified for your virtual machine.

If a minidisk contained within your virtual machine's minidisk pool is subsequently detached from your
virtual machine's I/O configuration, or if the minidisk is redefined to have a different device number,
then the minidisk is removed from the minidisk pool, and all pool-relative block numbers corresponding
to the extents that were defined for that minidisk are made unassigned pool-relative block numbers.
The minidisk remains outside of the minidisk pool until it is reattached to your virtual machine's I/O
configuration and another IDENTIFY operation is performed which includes one or more extents residing
on the minidisk device.

MAPMDISK IDENTIFY

Chapter 25. CP Macros 851

Parameters
label

is an optional assembler language label on the macro.
EXTCT=

specifies the real address of a 4-byte field that contains the total number of extents contained in the
extent list. (See Extent-List Format for more information on the extent list.) Specify this parameter
as a label associated with the field in storage, or as the number of a register (in the range of 2-12,
inclusive) containing the address of the field in storage. For a virtual machine in the access-register
mode, the access register corresponding to the base register selected by the assembler for the label
(label form) or the access register associated with the specified general register (register form) is used
to determine the address space containing the storage area.

The minimum number of extents is 1, and the maximum number is 65,536. If this count is not in this
range, then return code 4 is given.

If this value does not match the sum of the ENTCT fields in each of the extent-list definition blocks,
then return code 20 is given.

This operand is required.

XLDBLOCK=
specifies the real storage address of the first extent-list-definition block in the chain of extent-list-
definition blocks for this request. Specify this parameter as a label associated with the block in
real storage, or as the number of a register (in the range of 2-12, inclusive) containing the address
of the block in real storage. For a virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the storage area.

This address of the first extent-list-definition block must be an address on doubleword boundary,
otherwise a specification exception is recognized. See Extent-List Format for more information.

This operand is required.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
parameter as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
MAPMDISK DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. It is possible to specify an extent list that has gaps in the assignment of pool-relative block numbers,

that is, has pool-relative block numbers that are not assigned to the 4K blocks in any minidisk extent.
Such an assignment can be used, for example, to skip ranges of pool-relative block numbers that
correspond to off-line volumes.

4. A mapping between a page and a particular 4K minidisk block is established indirectly, by a pool-
relative block number which is translated as necessary by CP to determine the associated 4K minidisk

MAPMDISK IDENTIFY

852 z/VM: 7.3 CP Programming Services

block. Because of this indirection, and the fact that a mapping association between a particular page
and a particular pool-relative block number remains in effect even if the current extent-list defining the
minidisk pool is changed, care must be taken when changing the extent list defining the minidisk pool.
Since it is unpredictable when, and how many times, a pool-relative block number is translated by CP,
unpredictable operation will result if the extent list is changed so that either a particular pool-relative
block number is assigned to a different 4K minidisk block in the new extent list than it was in the
old extent list, or a particular pool-relative block number is unassigned in the new extent list but was
assigned in the old extent list.

5. To be successfully used for mapping, a minidisk must be formatted with certain characteristics,
as stated above. Minidisks formatted using the CMS FORMAT command with the BLKSIZE 4096 or
BLKSIZE 4K option meets all of these formatting requirements.

6. For a minidisk on an Extended Address Volume, the minidisk end extent must reside below cylinder
65520 to be eligible for the MAPMDISK IDENTIFY function.

Extent-List Format: The extent list for the minidisk pool is specified by a singly-linked chain of extent-list
definition blocks. The extent-list is a chained structure to allow for the specification of many mapping-list
entries without requiring many contiguous pages of storage for the list, while retaining the option of
having a single contiguous area if desired. The address of the first extent-list definition block in the chain
is specified by the XLDBLOCK operand on the MAPMDISK IDENTIFY macro invocation.

Each extent-list definition block begins on a doubleword boundary, and is in the following format:

Note: Field names used in the following descriptions are for reference only. You may copy these names, or
use any other names, in your own code.

0

8

10

nn

FWDPT-ALET FWDPT

ENTR1

ENTCT

Extent-list entries

////////////////////////////

= =

FWDPT-ALET
When the virtual machine is in the access-register mode, bytes 0-3 contain an ALET specifying the
address space in which the next extent-list definition block resides. Zeros in bytes 0-3 in conjunction
with zeros in bytes 4-7 indicate that this block is the last block in the chain.

Bytes 0-3 are ignored when the virtual machine is in the primary-space mode.

FWDPT
Bytes 4-7 of the extent-list definition block are the real address of the next block in the singly-linked
chain. This field must specify an address on a doubleword boundary, otherwise a specification
exception is recognized. When the virtual machine is in the primary-space mode, zeros in bytes 4-7
indicate that this block is the last block in the chain. When the virtual machine is in the access-register
mode, end-of-chain is indicated by zeros in bytes 4-7 and bytes 0-3.

ENTCT
Bytes 8-11 of the extent-list definition block contain a word that is the number of extent-list entries
contained in this extent-list-definition block. The minimum number of entries in the extent-list
definition block is 1, and the maximum number is 65,536. If this count is not in this range, then
return code 16 is given.

If the sum of the ENTCT fields in all of the extent-list-definition blocks does not match the value
specified for the EXTCT operand on the MAPMDISK IDENTIFY macro invocation, then return code 20
is given.

MAPMDISK IDENTIFY

Chapter 25. CP Macros 853

////////
Bytes 12-15 of the extent-list-definition block are reserved for future use and should contain binary
zeros.

ENTR1
Starting at byte 16 of the extent-list definition block is a contiguous table of 16-byte extent-list
entries. The ENTCT field specifies how many extent-list entries are contained in this area. The format
of each extent-list entry follows.

Each 16-byte extent-list entry defines a single extent in the minidisk extent list. An extent-list entry has
the following format:

0

8

PRBN MRBN

DEVNMCOUNT /////////////

PRBN
Bytes 0-3 of the extent-list entry are an unsigned word that contains the pool-relative block number
to be assigned to the 4K block designated by the MRBN field. This number must be larger than
the pool-relative block numbers assigned to previous extents, and must be less than or equal to
232-COUNT. If this number is not greater than the pool-relative block numbers assigned to previous
extents, or if this number is too large, return code 24 is given.

The 4K blocks residing on the extent defined by this extent-list entry are assigned consecutive pool-
relative block numbers from PRBN to PRBN+COUNT-1, inclusive. This range of pool-relative block
numbers is assigned to the 4K blocks within the extent in minidisk-relative block order.

MRBN
Bytes 4-7 of the extent-list entry are a word that contains the minidisk-relative block number of the
first 4K block of the minidisk that is included in the extent. This block number is relative to the start
of the minidisk, and must be between 0 and the number of 4K blocks contained on the minidisk minus
one. If the number is not in this range, return code 12 is given.

COUNT
Bytes 8-11 of the extent-list entry are a word that contains the number of 4K blocks of the minidisk
that are included in the extent. This count must be greater than or equal to 1, and the sum of MRBN
and COUNT must be less than or equal to the number of 4K blocks contained on the minidisk. If either
of these conditions is not met, then return code 12 is given.

DEVNM
Bytes 12-13 of the extent-list entry are a halfword that contains the virtual device number of the
minidisk on which this extent resides. This must be the device number of a minidisk in your virtual
machine's I/O configuration that resides on a device type supported by CP. If the device is not a
minidisk that resides on a device type supported by CP, then return code 8 is given. If the device is
a minidisk residing on an FBA DASD, the minidisk must start and end on a 4K block boundary (the
starting FBA block number and the ending FBA block number + 1 of the minidisk must be evenly
divisible by 8). If not, return code 28 is given.

////////
Bytes 14-15 of the extent-list entry are reserved for future use and should contain binary zeros.

The overall structure of the chain of extent-list definition blocks is shown in the following diagram:

MAPMDISK IDENTIFY

854 z/VM: 7.3 CP Programming Services

FWDPT
ALET

First
mapping-list

definition block

FWDPT
FWDPT
ALET

Last
Extent-list

definition block

ENTCT

=

PRBN

=

PRBN

= =

= =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

FWDPT

ENTCT

PRBN

PRBN

PRBN

ENTCT

00000

XLDBLOCK

ENTCT

ENTCT

ENTCT
PRBN

1 1 1
MRBN

COUNT

COUNT

MRBN

00000

MRBN

MRBN

COUNT

COUNT

MRBN

COUNTDV r

DV r

DV r

DV r DV r

DV r

MRBN

COUNT

The chain of extent-list-definition blocks is processed as though it was a single, ordered list of extent-list
entries. The first extent-list entry in the first extent-list-definition block is the first extent processed by the
identify-pool function. Each subsequent extent-list entry in the extent-list-definition block is processed in
turn. After all of the extent-list entries in a given extent-list-definition block are processed, the first entry
of the next extent-list-definition block in the chain is processed.

Condition Codes and Return Codes
On return from the IDENTIFY function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

IDENTIFY function status

0 The minidisk pool has been identified as requested.

4 The total number of extents as specified by the EXTCT operand is out of range. No
new minidisk pool has been identified.

8 An extent-list entry contains either (1) a device number that does not exist in
the virtual machine's I/O configuration, (2) a device number for a device that is
not supported for mapping operations (not a minidisk device, or a minidisk device
residing on a device type not supported by CP for paging, or a virtual disk in storage),
or (3) a minidisk end extent is not below cylinder 65520 on an Extended Address
Volume. Register 0 contains the address of the extent-list entry that contains the
invalid device number. In the access-register mode, access register 0 contains the
ALET specifying the address space in which the extent-list entry resides. No new
minidisk pool has been identified.

12 An extent-list entry contains a MRBN field that is out of range, or the sum of MRBN
and COUNT is out of range, or COUNT is less than or equal to zero. Register 0
contains the address of the extent-list entry. In the access-register mode, access
register 0 contains the ALET specifying the address space in which the extent-list
entry resides. No new minidisk pool has been identified.

16 The ENTCT field in an extent-list definition block is out of range. Register 0 contains
the address of the extent-list definition block containing the invalid ENTCT field. In
the access-register mode, access register 0 contains the ALET specifying the address
space in which the extent-list definition block resides. No new minidisk pool has
been identified.

MAPMDISK IDENTIFY

Chapter 25. CP Macros 855

Return Code
in Register 15
(Decimal)

IDENTIFY function status

20 The total number of extents as specified by the EXTCT operand does not match the
sum of the ENTCT fields in all of the extent-list-definition blocks. No new minidisk
pool has been identified. If the sum of the ENTCT fields is less than the extent
count specified by EXTCT, then register 0 contains the address of the last extent-list
definition block. If the sum of the ENTCT fields is greater than the extent count
specified by EXTCT, then register 0 contains the address of the extent-list definition
block whose ENTCT field caused the sum of ENTCT fields to exceed the extent count
specified by EXTCT. In both cases in the access-register mode, access register 0
contains the ALET specifying the address space in which the extent-list definition
block resides.

24 An extent-list entry contains a PRBN field that is either too large, or not larger than
the pool-relative block numbers assigned to previous extents. Register 0 contains
the address of the extent-list entry containing the invalid PRBN. In the access-
register mode, access register 0 contains the ALET specifying the address space
in which the extent-list entry resides. No new minidisk pool has been identified.

28 An extent-list entry contains a device number for a minidisk residing on an FBA
DASD. That minidisk either does not start or does not end on a 4K block boundary.
(The starting FBA block number and the ending FBA block number + 1 of the
minidisk must be evenly divisible by 8). No new minidisk pool has been identified.
R0 contains the address of the non-aligned minidisk. In access register mode, access
register 0 contains the ALET specifying the address space in which the extent list
entry resides.

If an addressing or addressing-capability exception is recognized on the IDENTIFY function, the operation
is suppressed. No new minidisk pool is identified and the minidisk pool identified by a previous IDENTIFY
request, if any, remains in effect.

If the IDENTIFY function returns a nonzero return code, the minidisk pool identified through a previous
IDENTIFY request, if any, remains in effect.

MAPMDISK IDENTIFY

856 z/VM: 7.3 CP Programming Services

MAPMDISK REMOVE

label

MAPMDISK REMOVE
1

,ASIT= label

( reg)

,PAGEADDR= label

( reg)

,PAGECT= label

( reg)

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function removes a mapping between a range of pages in an address space and a set of 4K blocks
residing in the minidisk pool.

The current contents of the pages in the specified range are discarded, the pages are set to binary
zeros, and are considered to be unmapped pages. If host-page protection was applied to the page by the
DEFINE function (because the page was mapped onto a read-only minidisk), that host-page protection
is removed. MAPMDISK REMOVE must be issued before exiting guest applications that use MAPMDISK;
otherwise, unpredictable results might occur.

Parameters
label

is an optional assembler language label on the macro.
ASIT=

specifies the real address of an 8-byte field in storage that contains the ASIT identifying the address
space for which mappings are to be removed. Specify this parameter as a label associated with
the field in storage, or as the number of a register (in the range 2-12, inclusive) containing the
address of the field in storage. For a virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the field.

If this ASIT is not associated with an address space your virtual machine created, or with your virtual
machine's host-primary address space, then return code 8 is given.

This operand is required.

PAGEADDR=
specifies the real address of a 4-byte field in storage that contains the 31-bit absolute address of
the first page in the range of pages to be unmapped. Specify this parameter as a label associated
with the field in storage, or as the number of a register (in the range 2-12, inclusive) containing the
address of the field in storage. For a virtual machine in the access-register mode, the access register
corresponding to the base register selected by the assembler for the label (label form) or the access
register associated with the specified general register (register form) is used to determine the address
space containing the field.

The range of pages to be unmapped, from PAGEADDR to PAGEADDR+(PAGECT-1)*4096, must be
contained within the bounds of the address space designated by the ASIT operand, otherwise an

MAPMDISK REMOVE

Chapter 25. CP Macros 857

addressing exception is recognized. In addition, this range must not include any unmapped pages,
otherwise return code 12 is given.

Bits 20-31 of the page address must be zeros, otherwise a specification exception is recognized.

This operand is required.

PAGECT=
specifies the real address of a 4-byte field in storage that contains the count of pages for which a
mapping is to be removed. Specify this parameter as a label associated with the field in storage, or as
the number of a register (in the range of 2-12, inclusive) containing the address of the field storage.
For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with the
specified general register (register form) is used to determine the address space containing the field.

The minimum number of pages to be unmapped is 1, and the maximum number is 524,288. If this
count is not in this range, then return code 4 is given.

This operand is required.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
parameter as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
MAPMDISK DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. The macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. Code the DEFWORKA macro at the end of your program to define any macro work areas that have not

yet been defined.
3. Removing a mapping using the REMOVE function changes the data that is visible in the mapped page.

However, it does not change the storage key associated with the page.

Condition Codes and Return Codes
On return from the REMOVE function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

REMOVE function status

0 The mapping has been removed from the specified range of pages.

4 The page count specified by the PAGECT operand is out of range. No mappings have
been removed.

8 The ASIT specified by the ASIT operand does not identify either an existing address
space that your virtual machine created, or the host-primary address space for your
virtual machine. No mappings have been removed.

MAPMDISK REMOVE

858 z/VM: 7.3 CP Programming Services

Return Code
in Register 15
(Decimal)

REMOVE function status

12 The range of pages to be unmapped includes an unmapped page. Mappings have
been removed for all pages up to but not including the first unmapped page in the
range. Register 0 contains the address of the page for which the error occurred. This
page resides in the address space specified by the ASIT operand.

If an addressing exception is recognized on the REMOVE function, the operation is terminated. Those
pages in the page range identified by the PAGEADDR and PAGECT parameter that are processed before
the point of error have mappings removed as usual. Those pages in the page range at or after the point of
error remain unchanged.

MAPMDISK REMOVE

Chapter 25. CP Macros 859

MAPMDISK SAVE

label

MAPMDISK SAVE
1

,LIST= label

( reg)

,BLOCK= label

( reg)

,ENTCT= label

( reg) ,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
The SAVE function initiates an asynchronous operation that causes the contents of changed, mapped
pages to be stored on the associated 4K minidisk blocks. This function provides a mechanism to commit
changes made to those pages in a predictable fashion.

Your virtual machine must have read-write access to the address space containing the mapped pages.

The pages to be saved are specified in a save-list definition block. The size of the save-list definition block
cannot exceed 4096 bytes. A block may be in the form of a list of address ranges or a list of individual
pages, but not both. Normally, a given page is specified only once per SAVE request. However, it is not an
error for a particular page to be specified multiple times in a single SAVE request, or multiple times in the
same save-list definition block.

For each page to be saved by the SAVE request, a check is made to determine if the page has been
changed since the last time a store operation (either as a result of the SAVE function, or performed
automatically by CP) was performed on the page. If the page has changed, a store operation is initiated
to save the contents of the page on the associated 4K minidisk block; unchanged pages are skipped. If a
page is changed after the SAVE function is invoked but before completion of the SAVE function is signaled,
it is unpredictable whether the changed data is stored as a result of the in-progress SAVE function. If the
changed data is not stored, change integrity is maintained so a subsequent SAVE function request will
cause the change data to be stored.

The order in which the pages are processed by the SAVE function is unpredictable.

Asynchronous completion of the SAVE operation is indicated by a save-completion external interruption
being presented to the virtual machine. Upon the external interruption, a completion code is stored to
indicate the success or failure of the SAVE operation. See Notification of SAVE Completion for details on
the save-completion external interruption.

Multiple SAVE functions can be concurrently outstanding; each is distinguished by a user supplied token.
The token is supplied on the save-completion external interruption. Uniqueness of the token is not
enforced, but if the tokens are not unique your program may have difficulty determining which save
operation completed.

Parameters
label

is an optional assembler language label on the macro.

MAPMDISK SAVE

860 z/VM: 7.3 CP Programming Services

LIST=
specifies the real address of a save-list-definition block for this request which is in list form. Specify
this parameter as a label associated with the block in storage, or as the number of a register (in
the range of 2-12, inclusive) containing the address of the block in storage. For a virtual machine
in the access-register mode, the access register corresponding to the base register selected by the
assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the block.

The address of the first save-list-definition block must be an address on a doubleword boundary,
otherwise a specification exception is recognized. See Save-List Format for more information.

This parameter is mutually exclusive with BLOCK= and one of them must be specified.

BLOCK=
specifies the real address of a save-list-definition block for this request which is in block form. Specify
this parameter as a label associated with the block in storage, or as the number of a register (in
the range of 2-12, inclusive) containing the address of the block in storage. For a virtual machine
in the access-register mode, the access register corresponding to the base register selected by the
assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the block.

The address of the first save-list-definition block must be an address on a doubleword boundary,
otherwise a specification exception is recognized. See Save-List Format for more information.

This parameter is mutually exclusive with LIST= and one of them must be specified.

ENTCT=
specifies the real address of a 4-byte field in storage that contains the total count of entries in the
save-list definition block. Specify this parameter as the label associated with the field in storage or as
the number of a register (in the range of 2-12, inclusive) contains the address of the field in storage.
For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with the
specified general register (register form) is used to determine the address space containing the field.

The minimum number of entries is one for both forms of the macro. For the list form the maximum
number of entries is 1018 and for the block form the maximum number of entries is 509. If the above
counts are out of bounds then a return code of 4 is given.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
parameter as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
MAPMDISK DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. The macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. When an error completion code is stored on external interruption code X'2603', subcode X'01', the

error buffer contains the address of one of the pages for which an error was found. However, because
errors may have occurred on pages other than the one identified by the address in the error buffer, and
since the SAVE function processes pages in an unpredictable order, when an error completion code is
stored on external interruption code X'2603', subcode X'01' it is unpredictable as to what pages have
or have not been saved.

MAPMDISK SAVE

Chapter 25. CP Macros 861

3. After an error completion code is received, the following recovery procedure can be used to bypass the
error on the failing page (identified by the address in the error buffer) and complete the save process
on the remaining pages:

a. Move the data in the failing page to some other page which is mapped to some other 4K minidisk
block

b. Modify the save list to remove the address of the failing page and add the address of the target page
from the preceding step

c. Reissue the SAVE request.

Pages that were not successfully saved during the first SAVE request are saved by this second SAVE
request (unless there are more errors) while pages that were saved by the first request are skipped.

However, the above procedure is not sufficient to eliminate the possibility of future storage-
degradation machine checks on the failing page. See Programming Note “3” on page 840 for a
procedure to use to eliminate the possibility of future storage-degradation machine checks on the
same page.

4. The error buffer must be in writeable storage, otherwise a protection exception is recognized.

Save-List Format: The pages to be saved are specified in a save-list definition block. The block contains a
header, and a contiguous table of save-list entries. The block must be aligned on a doubleword boundary
and cannot exceed 4096 bytes in length. The save-list entries for a particular save-list definition block are
either in the format of single pages or ranges of contiguous pages:

• For single pages, the absolute address of each page to be saved is specified by a word in the list.
• For ranges of contiguous pages, each range is specified by a pair or words in the list, the first word of a

pair specifies the absolute address of the start of the range and the second word of a pair specifies the
number of contiguous pages to be saved.

The two types of entries cannot be mixed within a save-list definition block and the type being used for a
particular block is specified on the MAPMDISK macro.

Note: Field names used in the following descriptions are for reference only. You may copy these names, or
use any other names, in your own code.

A save-list definition has the following format:

TOKEN

ASIT0

8

10 Reserved

Reserved

ERRBA

ENTR1

Save-list entries (SLEs)
= =

18

nn

ASIT
Bytes 0-7 of the save-list definition block contains the ASIT identifying the address space in which
pages will be saved. If this ASIT is not associated with an address space your virtual machine created,
or the host-primary address space for your virtual machine, then return code 8 is given.

TOKEN
Bytes 8-11 of the save-list definition block contains a 32 bit token to be associated with this
save request. It is the program's responsibility to maintain uniqueness to distinguish different SAVE
functions. The token is returned with external interrupt code X'2603', subcode X'01'.

Reserved
Bytes 12-19 of the save-list definition block are reserved for future use and should contain binary
zeros.

ERRBA
Bytes 20-23 of the save-list definition block contain the 31-bit absolute address of an 8-byte
error buffer within the host-primary address space. This field must specify a nonzero address on a

MAPMDISK SAVE

862 z/VM: 7.3 CP Programming Services

doubleword boundary, otherwise a specification exception is recognized. The error buffer is always in
the host-primary address space, even when the virtual machine is in the access-register mode.

Information is provided in the error buffer when the SAVE operation completes with certain errors.
See Notification of SAVE Completion for details.

ENTR1
Starting at byte 24 of the save-list definition block is a contiguous table of save-list entries. Each
save-list entry is either a:

• 4-byte word that contains the 31-bit absolute page address of an individual page to be saved.
• 8-bytes that consists of two words, the first specifying the 31-bit absolute page address of the start

of a range of pages and the second specifying the count of contiguous pages to be saved.

Each entry in a save-list definition block must be of the same format, either a 4-byte individual page
address or an 8-byte page range specification. The two formats cannot be mixed within the same
save-list definition block. The type of format being used for a save-list entry is specified on the
MAPMDISK macro.

When page ranges are specified, the total number of pages contained within the supplied ranges
must be at least 1 and must not exceed 524,288. If the total number of pages contained within the
specified ranges is not between these values, then return code 16 is given.

The range of pages to be mapped, from the start address to the start address+(count-1)*4096, must
be contained within the bounds of the address space designated by the ASIT in the ASIT field,
otherwise an addressing exception is recognized. This also applies to the individual pages that are
found outside of the same bounds.

The different structures for each type of save-list definition block follows:
Single page entries
save-list definition

block
List form

= =

.

.

.

Page

= =

.

.

.

Range of page entries
save-list definition

block
Block form

ASIT ASIT

TOKEN TOKEN

Page

Page Page

Page Start1

Start2

Count1

Count2

StartN CountN

ERRBAERRBA00000000

00000000 00000000

00000000

Page

Condition Codes and Return Codes
On return from the SAVE function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

SAVE function status

0 The save request has been successfully initiated. When the asynchronous request
completes, the completion status will be reflected through a external interrupt code
X'2603', subcode X'01'.

4 The ENTCT count is either zero or above a maximum of 1018 or 509 for a list of
individual or range of pages, respectively. Save processing was not performed on any
page.

MAPMDISK SAVE

Chapter 25. CP Macros 863

Return Code
in Register 15
(Decimal)

SAVE function status

8 The ASIT specified by the ASIT operand does not identify either an existing address
space that your virtual machine created, or your virtual machine's host-primary
address space. Save processing was not performed on any page.

16 A MAPMDISK SAVE function was invoked specifying a save-list definition block in
range form, and a count of 0 consecutive pages was detected. A count was greater
than 524,288. The total count of all count fields is greater than 524,288. Save
processing was not performed on any page. Register 0 contains the address within
the save-list definition block containing the invalid count. For the case were the
total count is greater register 0 contains the address of the entry that caused the
overflow. In both cases in the access-register mode, access register 0 contains the
ALET specifying the address space in which the save-list definition block resides.

If an addressing exception is recognized on the SAVE function, the operation is terminated. None of the
pages have been processed.

Completion Conditions
Notification of SAVE Completion: When a MAPMDISK SAVE operation has completed, the virtual
machine that initiated the SAVE operation is notified of the completion by a save-completion external
interruption. The save-completion interruption is indicated by an external interruption code of X'2603'
and a subcode of X'01'; the subcode of X'2603' is stored at location 132 on the external interruption.

The save-completion interruption is a floating interruption condition that is presented to any virtual CPU
in the configuration that is enabled for the condition. The external interruption mask (bit 7 of the PSW)
and subclass-mask bit 22 of control register 0 determine whether a virtual CPU is enabled for external
interruption code X'2603'.

When the save-completion external interruption is presented, data is stored at real storage locations
128-133 as follows:
Location

Data stored on interruption
128-131

The 32 bit token specified for the SAVE operation.
132

External-interruption X'2603' subcode. A value of X'01' denotes a save-completion notification.
133

Bit 0 indicates whether the program-supplied error buffer contains valid data. If bit 0 is one, then
the error buffer does not contain valid data. This could be due to the page being read-only or the
error-buffer address being no longer addressable. If bit 0 is zero, then for completion codes X'04',
through X'0C', the program-provided error buffer contains additional data related to the error.

Bits 1-7 are a completion code indicating the completion status of the MAPMDISK SAVE operation, as
follows:
Code

Completion status
X'00'

All pages were saved without errors.
X'04'

An attempt was made to save at least one unmapped page. All mapped pages have been saved
without error. If bit 0 of byte 133 is zero, the address of one of the unmapped pages has been
stored in bytes 4-7 of the program-provided error buffer.

MAPMDISK SAVE

864 z/VM: 7.3 CP Programming Services

X'08'
The address space containing the pages to be saved no longer exists. None of the pages have
been saved. If bit 0 of byte 133 is zero, the ASIT identifying the address spaces has been stored in
bytes 0-7 of the program-provided error buffer.

X'0C'
Paging I/O errors were detected while saving one or more pages. It is unpredictable as to whether
any pages were saved successfully. If bit 0 of byte 133 is zero, the address of one of the pages for
which an error was found has been stored in bytes 4-7 of the program-provided error buffer.

If both X'04' and X'0C' conditions are detected during save processing, completion code X'0C' is
presented on the save-completion notification.

MAPMDISK SAVE

Chapter 25. CP Macros 865

PFAULT Macro -- Page-Fault Handshaking Services

CP manages the address spaces provided to virtual machines. This includes the host primary address
space (base space) and host data spaces created by XC-mode virtual machines (ESA/XC and z/XC
architecture). While managing real machine storage, CP determines what portions of virtual machine
storage are allowed to be resident at any given time. If a virtual machine references a portion of an
address space that is not resident in real storage, CP receives a page-fault indication. CP's usual course
of action is to suspend the operation of the virtual machine, perform the paging operation, and finally
resume execution of the virtual machine. The page fault and its resolution by CP are transparent to the
virtual machine, except for the time delay during which the virtual machine was suspended.

It is possible that for some applications, such as servers, the delay due to synchronous page-fault
resolution can be a problem. If the server implements some form of multitasking to maximize its
throughput, it would want to use the delay in executing one task, for instance to wait for a host-paging I/O
operation to complete, to work on another. It can do this by using support for asynchronous page-fault
handling.

When a page fault occurs during a storage reference and asynchronous resolution is enabled, CP initiates
the paging operation and then immediately resumes execution of the virtual machine, presenting a
page-fault initiation interruption to the virtual machine as a signal that a page fault has occurred.
The multitasking server in the virtual machine can then suspend its current task (the one that just
encountered the page fault) and select some other task to run. The new task runs in parallel with the CP
paging operation to resolve the original task's page fault.

Upon completion of the paging operation, CP presents a page-fault completion interrupt to the virtual
machine. This interruption informs the server that the task that generated the page fault can now be
resumed since the page it requires is now available in storage.

To use asynchronous page-fault handling, the application must do some preparation and some additional
processing using CP and possibly some CMS services. To activate and be able to use page-fault
notification, the application must:

1. Establish an external interrupt handler for the page fault initiation and completion signals.
2. Issue the PFAULT macro to define a TOKEN address to CP.5 This TOKEN address is the location of

an area in storage that the server maintains as the task ID token of the current (running) task. The
server would typically set this word to the address of the task control block for the current task. When
a page fault occurs, CP obtains the token for the current task from this location and supplies it in
the page-fault initiation and completion notifications for the page fault just encountered. Because this
token is usually the address of the task control block, the server can process the page-fault completion
interrupt without having to search for the correct task control block.

3. Call the ADD function of the ALSERV macro with the FAULTS=ASYNCH operand when establishing
addressability to the VM data spaces address space. Asynchronous page-fault handling is enabled
independently for each entry in a virtual machine's access list. Thus, the server can use asynchronous
page-fault resolution for some types of references, but not for others.6

Asynchronous page-fault handling is available for references that occur in AR mode for nonprimary
address spaces and in primary-space mode or AR mode to the primary space. Asynchronous page-fault
handling is typically used only for page faults that require CP to perform I/O operations to resolve. If I/O
operations are not required, then the time required to perform the page fault is so short that no significant
benefit can be derived by using asynchronous handling considering the overhead involved.

5 In some limited circumstances it may be necessary to invoke a DIAGNOSE X'258' directly rather than with
the preferred PFAULT macro interface.

6 The primary address space does not require any additional enablement.

PFAULT Macro

866 z/VM: 7.3 CP Programming Services

Purpose
Use the PFAULT macro to enable or cancel page-fault handshaking for a virtual CPU. Page-fault
handshaking allows a virtual CPU to continue execution during the time CP is resolving a host page fault.
Page-fault handshaking is particularly useful for multitasking applications that can normally find some
other task to run during the time that a task must be suspended while CP resolves a host page fault for it.

The following functions can be invoked with this macro:
CANCEL

Cancel page-fault handshaking for a virtual CPU
DECLARE

Define the macro work area
TOKEN

Activate page-fault handshaking for a virtual CPU and establish the location of the page-fault
handshaking token. When the VERSION=2 parameter is specified with the TOKEN function, host-
primary address spaces are also supported.

Usage Notes
If the VERSION=2 parameter is not specified with PFAULT TOKEN, then your virtual machine must be an
XC virtual machine to successfully use this macro. If your virtual machine is an ESA virtual machine, then
a specification exception is recognized unless VERSION=2 is specified. If the VERSION=2 parameter is
specified with PFAULT TOKEN, then your virtual machine can be in any machine mode and architecture
mode supported by CP.

Page-Fault Handshaking: If the VERSION=2 parameter is not specified with PFAULT TOKEN, then
page-fault handshaking is applied to selected storage references made when in the access-register
mode. If the VERSION=2 parameter is specified with PFAULT TOKEN, then handshaking is applied in all
modes supported by CP, but storage references made while in the access-register mode still require
FAULTS=ASYNCH on the appropriate ALSERV ADD macro. The handshaking process consists of the
presentation of a pair of page-fault handshaking external interruptions to the virtual machine: the first
interruption provides a page-fault initiation signal, and the second provides a page-fault completion
signal.

Before page-fault handshaking actions can be performed for a virtual CPU, handshaking must be enabled
for the virtual CPU through the TOKEN function of this macro. If the VERSION=2 parameter is not
specified, the TOKEN function specifies the (guest) real address of a four byte area in the host-primary
address space (the token location) that contains the page-fault handshaking token. If the VERSION=2
parameter is specified, the TOKEN function specifies the guest real address of an eight byte area
if ARCHITECTURE=z is specified or a four byte area if ARCHITECTURE=ESA is specified. The current
contents of this location (the current token) are provided in the page-fault initiation signal that indicates
the start of a page-fault handshaking action, and the same value is provided in the corresponding page-
fault completion signal.

The token is intended to identify the virtual machine task associated with the page fault in order to
suspend that task upon page-fault initiation and to make that task eligible to run upon page-fault
completion. Management of the token, including assigning token values, maintaining the appropriate
relationships between the token and the current virtual machine task, and so forth is the responsibility
of the program running in the virtual machine. It is expected that the token location is fixed for a virtual
CPU. That is, the program should change the contents of the token location, rather than the address of the
token location, whenever switching tasks to be executed by the virtual CPU.

Programming Note: The page-fault handshaking token is 32 bits long, or 64 bits long if the VERSION=2
with ARCHITECTURE=z parameters are specified, so that the program can use the address of the task
control block as the handshaking token for the task. Assigning the token in this way allows the program
to suspend and resume the task without the need for searches to find the task indicated by a page-fault
initiation or page-fault completion signal.

PFAULT Macro

Chapter 25. CP Macros 867

Conditions necessary for handshaking: Page-fault handshaking is usually applied to a storage reference
that will encounter a significant delay due to a page-fault condition, if all of the following conditions are
met:

• The virtual CPU making the storage reference is enabled for page-fault handshaking external
interruptions. (See Notification of Page-Fault Handshaking.)

• The virtual CPU has activated page-fault handshaking. A virtual CPU activates page-fault handshaking
by using the TOKEN function of this macro.

• If the VERSION=2 parameter was not specified with PFAULT TOKEN, then the virtual CPU is in
the access-register mode, and the storage reference is through an access-list entry (ALE) that is
eligible for page-fault handshaking. An ALE is made eligible for page-fault handshaking by specifying
FAULTS=ASYNCH on the ALSERV ADD operation that establishes the ALE.

When the VERSION=2 parameter was specified, if the virtual machine is in XC mode and the virtual
CPU is in access-register mode, then access-register-specified storage references are eligible only if the
corresponding ALE has been made eligible for page-fault handshaking using FAULTS=ASYNCH on the
ALSERV ADD macro. Host-primary storage references require no additional authorization.

• If VERSION=2, the bits that are on in the selection mask must be in the same state in the PSW for the
virtual CPU as they are in the compare mask.

If any of these conditions are not met, then page-fault handshaking is not applied to the storage
reference. The virtual CPU is suspended by CP until resolution of the page-fault condition is completed.
When the resolution of the page-fault condition is completed, execution of the virtual CPU is resumed
without any indication of the delay.

Under unusual circumstances, page-fault handshaking may be bypassed for a storage reference even
though all of the above conditions are met.

Handshaking process: When a virtual CPU encounters a host page fault for which page-fault handshaking
is to be applied, the following occurs:

1. The instruction that encountered the host page fault is nullified.
2. CP fetches four bytes, or eight bytes if VERSION=2 is specified with ARCHITECTURE=z, from storage at

the token location in the host-primary address space.
3. CP presents a page-fault initiation signal to the virtual machine through a page-fault handshaking

external interruption. The page-fault handshaking token fetched from the token location is provided in
this initiation signal.

4. The page-fault initiation signal is presented to the virtual CPU that encountered the page-fault
condition.

5. Normally, the virtual machine responds to the initiation signal by suspending the currently running task
and switching to some other task.

Subsequently, when CP finishes resolution of the page-fault condition, it presents a page-fault completion
signal to the virtual machine through a page-fault handshaking external interruption. The page-fault
handshaking token provided in this completion signal is the same as that provided in the corresponding
page-fault initiation signal for this host page fault. The page-fault completion signal may be presented
to any virtual CPU in the configuration that is enabled for the interruption, even those which have not
activated page-fault handshaking (that is, did not execute the TOKEN function of this macro).

Normally, the virtual machine responds to the completion signal by enabling the task identified by the
page-fault handshaking token to run again.

Notification of page-fault handshaking: The page-fault initiation and page-fault completion signals
described above are provided through page-fault handshaking external interruptions. A page-fault
handshaking interruption is indicated by an external interruption code of X'2603' and a subcode of X'02'
or X'06'; the subcode of X'2603' is stored at location 132 on the external interruption.

When the page-fault handshaking interruption is for a page-fault initiation signal, the interruption
is presented to the virtual CPU encountering the host page fault condition. When the page-fault
handshaking interruption is for a page-fault completion signal, it is a floating interruption condition

PFAULT Macro

868 z/VM: 7.3 CP Programming Services

that is presented to any virtual CPU in the configuration that is enabled for the condition. The external
interruption mask (bit 7 of the PSW) and subclass mask bit 22 of control register 0 determine whether a
virtual CPU is enabled for external interruption code X'2603' (for either initiation or completion signals).

When the page-fault handshaking external interruption is presented and either the VERSION=2
parameter of PFAULT TOKEN was not in effect, or the VERSION=2 and ARCHITECTURE=ESA parameters
of PFAULT TOKEN were specified, then data is stored at real storage locations 128–133 as follows:
Location

Data stored on interruption
128-131

The 32-bit page-fault handshaking token retrieved from the token location at the time that page-fault
handshaking action was initiated for the page fault. The same value is provided in both the page-fault
initiation and page-fault completion signals for a given instance of page-fault handshaking action.

132
External interruption X'2603' subcode. A value of X'02' denotes a page-fault handshaking external
interruption.

133
Bit 0 indicates whether the interruption is for a page-fault initiation or a page-fault completion signal.
If bit 0 is zero, then the interruption is for a page-fault initiation signal. If bit 0 is one, then the
interruption is for a page-fault completion signal.

The contents of bits 1-7 are unpredictable.

When the page-fault handshaking external interruption is presented and the VERSION=2 and
ARCHITECTURE=z parameters of PFAULT TOKEN were in effect, then data is stored at real storage
locations as follows:
Location

Data stored on interruption
4536-4543

The 64-bit page-fault handshaking token retrieved from the token area at the time that page-fault
handshaking action was initiated for the page fault. The same value is provided in both the page-fault
initiation and page-fault completion interruptions for a given page fault.

132
External interruption X'2603' subcode. In z/Architecture mode, a value of X'06' denotes a page-fault
handshaking external interruption for the VERSION=2 parameter of PFAULT TOKEN.

133
Bit 0 indicates whether the interruption is for a page-fault initiation or page-fault completion signal.
If bit 0 is zero, then the interruption is for a page-fault initiation signal. If bit 0 is one, then the
interruption is for a page-fault completion signal.

The contents of bits 1-7 are unpredictable.

Program Exceptions
The PFAULT macro may result in one of the following program exceptions:

Problem Encountered Cause

Access exception (See page
“Access Exceptions” on page 8.)

An error occurred trying to

• Fetch or store the macro parameter list (in macro work area)
• Fetch a macro operand
• Fetch from the token location specified by the ADDR operand

(TOKEN function); key-controlled protection does not apply

PFAULT Macro

Chapter 25. CP Macros 869

Problem Encountered Cause

Specification exception • If the VERSION=2 parameter of PFAULT TOKEN was not in effect,
your virtual machine is not an XC virtual machine.

• The macro work area is not aligned on a doubleword boundary.
• The parameter list generated by the macro is in error.

PFAULT Macro

870 z/VM: 7.3 CP Programming Services

PFAULT CANCEL

label

PFAULT CANCEL

,WORKAREA= label

( reg)

Purpose
This function cancels page-fault handshaking for the virtual CPU that invokes the function.

The CANCEL function purges all in-progress page-fault handshaking actions that were initiated as a result
of page faults encountered by the invoking virtual CPU. A page-fault handshaking action is considered to
be in-progress if the page-fault initiation signal has been made pending, but the corresponding page-fault
completion signal has not yet been made pending. If the page-fault completion signal has been made
pending on the invoking or other virtual CPU, it remains pending.

Parameters
label

is an optional assembler language label on the macro.
WORKAREA=

specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
2-12 inclusive) containing the address of the storage area. For a virtual machine in the access-register
mode, the access register corresponding to the base register selected by the assembler for the label
(label form) or the access register associated with the specified general register (register form) is used
to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
PFAULT DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding the
use of this operand.

This operand is optional; you can simplify coding of your program by omitting this operand in order to
defer the definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. In a multiple virtual CPU environment, the CANCEL function cancels page-fault handshaking only for

the virtual CPU on which it is invoked. Other virtual CPUs that have activated page-fault handshaking
continue to be eligible for page-fault handshaking.

Condition Codes and Return Codes
On return from the CANCEL function, register 15 contains one of the following return codes:

Return Code
in Register 15
(Decimal)

CANCEL function status

0 Page-fault handshaking is cancelled for the virtual CPU.

4 Page-fault handshaking has not been activated for the virtual CPU or has been
previously canceled.

PFAULT CANCEL

Chapter 25. CP Macros 871

PFAULT DECLARE

label

PFAULT DECLARE

Purpose
This function defines the storage required for the WORKAREA operand of the PFAULT macro. You must
code this function only if you need to define the macro work area outside of the program requiring it. To
simplify using the PFAULT macro, do not code the PFAULT DECLARE function and omit the WORKAREA
operand on the executable functions of the PFAULT macro. This allows the PFAULT macro to control and
define the necessary data expansion through the DEFWORKA macro coded at the end of your program.
See “Coding CP Macros” on page 807 for additional details.

Parameters
label

is an optional assembler language label on the macro to be assigned to the defined storage.

Usage Notes
1. The DECLARE function does not generate any executable code. You may code it within a dummy

section (DSECT) or a control section (CSECT).
2. Although a label is not required on the invocation of the DECLARE function, it may be necessary to

identify the work area on the WORKAREA operand.

PFAULT DECLARE

872 z/VM: 7.3 CP Programming Services

PFAULT TOKEN

label

PFAULT TOKEN
1

,ADDR= label

( reg) Version 2

,WORKAREA= label

( reg)

Version 2
,VERSION=2 ,ARCHITECTURE= z

ESA ,SELECTMASK= label

( reg)

,COMPAREMASK= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
This function activates page-fault handshaking for the virtual CPU that invokes the function and
establishes the location of the page-fault handshaking token for that virtual CPU. It can also establish
the selection and compare masks for that virtual CPU.

Once activated, page-fault handshaking remains in effect with the same page-fault handshaking token
location until handshaking is cancelled using one of the following methods:

• The PFAULT CANCEL macro is issued on the virtual CPU.
• A CPU-reset operation is performed on the virtual CPU.
• A SIGP Set-Architecture instruction is performed by the virtual configuration.

Parameters
label

is an optional assembler language label on the macro.
ADDR=

Specifies the real address where the token is located in the host-primary address space. Specify this
operand as a label associated with where the token is located in real storage, or as the number of
a register (in the range 2-12, inclusive) containing the real address of the token's location in real
storage.

The token is a 4-byte fullword aligned field or an 8-byte doubleword aligned field when the
VERSION=2 and ARCHITECTURE=z parameters are specified.

Generation of the effective address of the token location, including address wraparound, is performed
at the time of the invocation of this function. The resulting effective address is stored in the parameter
list and used for all subsequent page-fault handshaking actions. That is, the addressing mode in effect
at the time of a page-fault initiation or page-fault completion signal has no effect on the addressing of
the token location.

PFAULT TOKEN

Chapter 25. CP Macros 873

This operand is required.

VERSION=2
Enables page-fault handshaking for both 31–bit and 64–bit guests, for data spaces and for primary
address space page faults.

ARCHITECTURE=
Specifies the architecture to be used by the macro expansion. When ARCHITECTURE=z is
specified, z/Architecture instructions and 64-bit registers are used in the macro expansion. When
ARCHITECTURE=ESA is specified, ESA/390 instructions and 32-bit registers are used in the macro
expansion. This parameter also determines the length and alignment of the token area.

Note: When specifying the 'z' operand, an upper or lower case character can be used.

SELECTMASK=
Specifies the real address of the 64-bit selection mask. Specify this operand as a label associated
with the 8-byte mask in real storage, or as the number of a register (in the range 2-12, inclusive)
containing the real address of the location of the selection mask in real storage.

At the time a page-fault occurs that is eligible for page-fault handshaking, if a bit in the selection mask
is zero, it causes the corresponding bit in the virtual CPU PSW at the time of the page fault to be
ignored. If a bit in the selection mask is one, it causes the corresponding bit in that PSW to be selected
for comparison against the corresponding bit in the compare mask.

In z/Architecture mode, all 64 bits of the mask are significant. When not in z/Architecture mode, only
bits 0-32 are significant.

Generation of the effective address of the location of the selection mask, including address
wraparound, is performed at the time of the invocation of this macro. The resulting effective address
is used to copy an 8-byte field to the parameter area.

If this operand is not specified, a mask of all zeros is the default.

COMPAREMASK=
Specifies the real address of the 64-bit compare mask. Specify this operand as a label associated with
the 8-byte mask in real storage, or as the number of a register (in the range 2-12, inclusive) containing
the real address of the location of the compare mask in real storage.

At the time a page-fault occurs that is eligible for page-fault handshaking, if a bit in the selection mask
is zero, it causes the corresponding bit in the virtual CPU PSW at the time of the page fault to be
ignored. If a bit in the selection mask is one, it causes the corresponding bit in that PSW to be selected
for comparison against the corresponding bit in this compare mask.

Generation of the effective address of the location of the compare mask, including address
wraparound, is performed at the time of the invocation of this macro. The resulting effective address
is used to copy an 8-byte field to the parameter area.

If this operand is not specified, a mask of all zeros is the default.

WORKAREA=
specifies the address of a real storage area that is used by the macro as a work area. Specify this
operand as the label associated with the storage area, or as the number of a register (in the range
2-12 inclusive) containing the address of the storage area. For a virtual machine in access-register
mode, the access register corresponding to the base register selected by the assembler for the label
(label form) or the access register associated with the specified general register (register form) is used
to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through the
PFAULT DECLARE function. See “Coding CP Macros” on page 807 for additional detail regarding the
use of this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

PFAULT TOKEN

874 z/VM: 7.3 CP Programming Services

Figure 98. Page Fault Processing when VERSION=2

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. CP does not enforce any restriction on the contents of the page-fault handshaking token. Uniqueness

of the page-fault handshaking token and maintenance of the established token location (that is, the
token's relationship to a virtual machine task) is the responsibility of the virtual machine application.

3. The location of the page-fault handshaking token for a virtual CPU cannot be changed without first
cancelling page-fault handshaking for the virtual CPU. To cancel page-fault handshaking for a virtual
CPU, invoke the CANCEL function of this macro. A CPU reset operation also cancels page-fault
handshaking.

4. Page-fault handshaking is most effective when the page containing the page-fault handshaking
token is resident in host storage. Defining the token within (guest) real page zero achieves this
effect because real page zero for a virtual CPU is always resident when the virtual CPU is running.
Alternatively, the token can be defined outside of real page zero; the frequent references that are
made to that page to maintain the handshaking token may be sufficient to keep the page resident
in host storage. However, if the token is defined outside of real page zero, you may want to consider
locking that page in host storage to guarantee residency.

If, at the time of a handshaking-eligible host page-fault, the page containing the page-fault
handshaking token is not resident in host storage then it is unpredictable whether page-fault
handshaking is applied to the page fault. Even if it is applied, the virtual CPU is delayed until CP
completes page-in of the page containing the token or of the faulting page, whichever occurs sooner.

5. The PFAULT macro activates page-fault handshaking and establishes the location of a page-fault
handshaking token only for the virtual CPU on which the PFAULT macro is invoked. In a multiple
virtual CPU environment, activation of page-fault handshaking requires invocation of the PFAULT
macro by each virtual CPU for which handshaking is desired.

Normally, each virtual CPU has a different absolute storage location for the page-fault handshaking
token. Because the address of the page-fault handshaking token is a (guest) real address, this can

PFAULT TOKEN

Chapter 25. CP Macros 875

be achieved by defining the token at the same address within real page zero for each virtual CPU.
The prefixing process transforms the real address into different (guest) absolute addresses for each
virtual CPU.

6. If page fault handshaking is in effect and the virtual configuration executes a SIGP Set-Architecture
instruction, page-fault handshaking is reset.

7. Registers 2-12 inclusive may be used for the ADDR, SELECTMASK, and COMPAREMASK operands,
but the value specified for ADDR must be unique. The mask parameters may specify the same
register.

8. If a bit in the compare mask is set to 1, the corresponding bit in the selection mask must also be set
to 1, or a specification exception is returned.

9. If the selection mask and the compare mask both have a 1 in bit position 15, then the program
determines that the PSW must be in the problem state for an initial interruption to be presented. If
the selection mask and the compare mask are both all zeros, then all page faults pass the selection
test.

10. The ARCHITECTURE parameter only indicates how the macro expands. The mode of the virtual CPU
at the time the macro executes determines the size of the token area and the location in the prefix
area where the interruption parameter is stored. This must match the ARCHITECTURE parameter
setting or a specification exception is returned.

11. If the mode of the virtual CPU is z/Architecture or z/XC mode, you must specify ARCHITECTURE=z if
you specify VERSION=2. The token area is 8 bytes and the interruption parameter is 8 bytes, which
are stored in locations 4536-4543; the subcode is X'06.'

If the mode of the virtual CPU is ESA/390 or ESA/XC mode, you must specify ARCHITECTURE=ESA if
you specify VERSION=2. In ESA/390 or ESA/XC mode, the token area is 4 bytes and the interruption
parameter is 4 bytes. The information is stored in locations 128-131; the subcode is X'02.'

12. If the token area is not accessible, a program check is presented to the virtual CPU.
13. Registers 0, 1, 14 and 15 are changed by this macro. When ARCHITECTURE=z is specified, all 64 bits

of these registers may be affected.

Condition Codes and Return Codes
On return from the TOKEN function, register 15 contains one of the following 32 bit return codes:

Return Code
in Register 15
(Decimal)

TOKEN function status

0 Page-fault handshaking is activated for the virtual CPU.

8 Page-fault handshaking has already been activated for the virtual CPU. The
established page-fault handshaking token location is unchanged.

PFAULT TOKEN

876 z/VM: 7.3 CP Programming Services

REFPAGE — Page Reference Services

Purpose
Use the REFPAGE macro to temporarily identify an ordered set of pages that your program will reference
over a relatively short amount of time. Such an ordered set of pages is known as a page-reference pattern.
Identifying your program's short-term page-reference pattern allows CP to perform some pre-fetching of
pages, that is, retrieving pages into processor storage in advance of your program's need for them. This
reduces the number of page faults your program encounters, and thus improves the performance of the
system.

CP performs pre-fetching by using the page-reference pattern information to form logical blocks of
pages. These logical blocks are sets of pages that your program will require at about the same time.
When your program encounters a page fault for the first of the pages in a logical block, CP may initiate
page-in of the other pages in the logical block as well. However, the logical blocks formed from the page-
reference pattern are temporary. Once pages identified in a page-reference pattern have been brought
into processor storage for referencing, the logical blocking created from the page-reference pattern is
lost.

The following page-reference services can be invoked using the REFPAGE macro:
DECLARE

Define the macro work area.
INFORMB

Identify a regular page-reference pattern using the block form.
INFORML

Identify a complex page-reference pattern using the list form.

Usage Notes
To successfully use any of the functions of this macro, you must be an XC virtual machine. If not, an
specification exception is recognized for an ESA virtual machine.

Specifying Page-Reference Patterns: The REFPAGE macro provides two ways to indicate your program's
page-reference pattern. They are the block form and the list form.

Block form is used when pages will be referenced in either ascending or descending address order and
there is a regular pattern in the addresses of the pages to be referenced. The REFPAGE macro uses the
concept of groups, subgroups, spans and skips to define such a regular page-reference pattern. They are
defined as:
Group

is a page-reference pattern that consists of one or more sets of pages called subgroups.
Subgroup

is the portion of the block-form reference pattern that is treated as a single logical block when
retrieving pages into processor storage. Depending on the storage demand on the z/VM system,
page-in of all of the pages in the subgroup into processor storage may be initiated at the time of the
first reference to a page in the subgroup.

A subgroup consists of one or more sets of contiguous pages to be referenced, called spans, possibly
separated by sets of contiguous pages that will not be referenced, called skips.

Span
is a set of contiguous pages that will be referenced in sequential order.

Skip
is a set of contiguous pages, between spans, that will not be referenced.

See Examples for various examples of block-form page-reference patterns.

REFPAGE Macro

Chapter 25. CP Macros 877

List form is the other way to indicate your program's page-reference pattern. It is used when there is
no regular pattern in the addresses of the pages your program will reference but nonetheless the set of
pages about to be referenced is known in advance. For example, your program may soon reference a set
of pages determined from a lookup in an index. This set of references will not occur in strictly ascending
or descending page address order, nor is there some regular pattern that relates one page in the pattern
to the next in the pattern. An example of a non-regular reference pattern that might result is:

Reference Page address Reference Page address
 1st 00020000 6th 02BC3000
 2nd 0000E000 7th 00021000
 3rd 00DE2000 8th 00022000
 4th 01E00000 9th 00E00000
 5th 0000A000 10th 00023000

The list form of the REFPAGE macro allows the identification of this complex reference pattern by
specifying the page addresses for each of the pages to be referenced, in the order in which the references
will be made.

Both forms of the REFPAGE macro construct logical blocks of pages. These blocks are constructed of
pages that are currently paged-out (reside on paging DASD, not in processor storage) and can span 1MB
segment boundaries, but not address space boundaries. Logical blocks allow CP to bring a whole or
partial block into processor storage when the virtual machine references a page in the block. However, it
does not guarantee any pre-paging activity on behalf of the virtual machine. Pre-paging is dependent on
system resource availability.

Program Exceptions
The REFPAGE macro may result in one of the following program exceptions:

Problem Encountered Cause

Access exception (See page
“Access Exceptions” on page 8.)

An error occurred trying to

• Fetch or store the macro parameter list (in macro work area)
• Fetch a macro operand
• Fetch the page-reference list (INFORML function)
• Access (as if a fetch) a page in a block-form reference pattern (INFORMB

function); key-controlled protection does not apply; access-exception
conditions other than addressing are reported as return codes

• Access (as if a fetch) a page specified in the page-reference list
(INFORML function); key-controlled protection does not apply; access-
exception conditions other than addressing are reported as return codes

Specification exception • Your virtual machine is an ESA virtual machine.
• The macro work area is not aligned on a doubleword boundary.
• The parameter list generated by the macro is in error.
• The page-reference list is not aligned on a word boundary.

REFPAGE Macro

878 z/VM: 7.3 CP Programming Services

REFPAGE DECLARE

label

REFPAGE DECLARE

Purpose
This function defines the storage required for the WORKAREA operand of the REFPAGE macro. You must
code this function only if you need to define the macro work area outside of the program requiring
it. To simplify using the REFPAGE macro, do not code the REFPAGE DECLARE function and omit the
WORKAREA operand on the executable functions of the REFPAGE macro. This allows the REFPAGE macro
to control and define the necessary data expansion through the DEFWORKA macro coded at the end of
your program. See “Coding CP Macros” on page 807 for additional details.

Parameters
label

is an optional assembler language label on the macro to be assigned to the defined storage.

Usage Notes
1. The DECLARE function does not generate any executable code. You may code it within a dummy

section (DSECT) or a control section (CSECT).
2. Although a label is not required on the invocation of the DECLARE function, it may be necessary to

identify the work area on the WORKAREA operand.

REFPAGE DECLARE

Chapter 25. CP Macros 879

REFPAGE INFORMB

label

REFPAGE INFORMB
1

,ALET= label

( reg)

,ADDR= label

( reg)

,DIRECTION= label

( reg)

,GROUP= label

( reg)

,SUBGROUP= label

( reg)

,SPAN= label

( reg)

,SKIP= label

( reg)

,WORKAREA= label

( reg)

Notes:
1 The keyword parameters that follow can be specified in any order.

Purpose
The INFORMB function identifies an ordered reference pattern in which pages will be referenced in either
strictly ascending or descending address sequence and the pages to be referenced form a repeating
pattern or are contiguous to each other.

Parameters
label

is an optional assembler language label on the macro.
ALET=

specifies the real address of a 4-byte field in storage that contains the access-list-entry-token (ALET)
identifying the address space for which the page-reference pattern is being defined. Specify this
parameter as a label associated with the field, or as the number of a register (in the range of 2-12,
inclusive) containing the address of the field. For a virtual machine in the access-register mode, the
access register corresponding to the base register selected by the assembler for the label (label
form) or the access register associated with the specified general register (register form) is used to
determine the address space containing the field.

The ALET contained in the field must designate a private address space that your virtual machine
owns, otherwise return code 8 is given. This ALET is always used to identify the target address space;
that is, this ALET is used even when the virtual machine is in the primary-space mode.

This operand is required.

ADDR=
specifies the real address of a 4-byte field in storage that contains the 31-bit starting address in
the page-reference pattern. Specify this parameter as a label associated with the field, or as the
number of a register (in the range of 2-12, inclusive) containing the address of the field. For a virtual
machine in the access-register mode, the access register corresponding to the base register selected
by the assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the field.

REFPAGE INFORMB

880 z/VM: 7.3 CP Programming Services

The starting address is used as the lowest address in the page-reference pattern when the
DIRECTION operand indicates ascending (the default), or is the highest address in the page-reference
pattern when the DIRECTION operand indicates descending.

This operand is required.

DIRECTION=
specifies the real address of a 1-byte field in storage that contains an indication of the direction of
the page-reference pattern. Specify this parameter as a label associated with the field, or as the
number of a register (in the range of 2-12, inclusive) containing the address of the field. For a virtual
machine in the access-register mode, the access register corresponding to the base register selected
by the assembler for the label (label form) or the access register associated with the specified general
register (register form) is used to determine the address space containing the field.

A value of X'01' (positive one, binary) in the field indicates an ascending page-reference pattern
while a value of X'FF' (negative one, binary) indicates a descending page-reference pattern. When an
ascending page-reference pattern is indicated, the starting address specified by the ADDR operand
is the lowest address of the page-reference pattern. When a descending page-reference pattern is
indicated, the starting address specified by the ADDR operand is the highest address of the page-
reference pattern.

There is no validity checking for values other than X'01' and X'FF' in the field. Results are
unpredictable if an invalid value is specified.

This operand is optional; the default is an ascending page-reference pattern.

GROUP=
specifies the real address of a 4-byte field in storage that contains the number of sub-groups in
the page-reference pattern. Each subgroup constitutes a logical block of pages that is brought into
processor storage as a unit. Specify this parameter as a label associated with the 4-byte field, or
as the number of a register (in the range of 2-12, inclusive) containing the address of the field.
For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with the
specified general register (register form) is used to determine the address space containing the field.

The default and minimum value for this parameter is 1 and the maximum is 262,144. If the value is
not within this range, then return code 20 is given.

Note: If GROUP operand is 1 or omitted then there will be only one logical block of pages formed.
When referencing a large number of pages, there may be places in the page-reference pattern that
may have long periods of computation before continuing to referencing the remainder. In these cases,
a value greater than 1 should be used to allow breaking the page-reference pattern into subgroups.
This allows only those pages in the subgroup that are referenced to be brought into processor storage.

This operand is optional; the default value is 1.

SUBGROUP=
specifies the real address of a 4-byte field in storage that contains the number of spans contained in
each subgroup of the page-reference pattern. Specify this parameter as a label associated with the
field, or as the number of a register (in the range of 2-12, inclusive) containing the address of the
field. For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with the
specified general register (register form) is used to determine the address space containing the field.

A subgroup is a logical block of pages. Subject to the storage demands on the z/VM system, CP
attempts to bring all of the pages in a subgroup into processor storage when the first page in the
subgroup is referenced.

The default and minimum value allowed for SUBGROUP is 1 and the maximum is 262,144. If the value
is not within this range, then return code 20 is given.

If SUBGROUP operand is omitted or 1 then the SPAN operand specifies the subgroup size if the
GROUP operand is greater than 1.

This operand is optional; the default value is 1.

REFPAGE INFORMB

Chapter 25. CP Macros 881

SPAN=
specifies the real address of a 4-byte field in storage that contains the number of contiguous pages
that will be referenced sequentially. Specify this parameter as a label associated with the field, or
as the number of a register (in the range of 2-12, inclusive) containing the address of the field.
For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with the
specified general register (register form) is used to determine the address space containing the field.

The default and minimum value allowed for SPAN is 1 and the maximum is 262,144. If the value is not
within this range, then return code 20 is given.

Note: If the operands SPAN and SUBGROUP are either omitted or 1, then there will not be any
blocking of pages.

This operand is optional; the default value is 1.

SKIP=
specifies the real address of a 4-byte field in storage that contains the number of pages that will be
skipped from the last page of a given span to the first page of the next span. Sequences of skipped
pages are not brought into processor storage when referencing the subgroup. Specify this parameter
as a label associated with the 4-byte field, or as the number of a register (in the range of 2-12,
inclusive) containing the address of the field. For a virtual machine in the access-register mode, the
access register corresponding to the base register selected by the assembler for the label (label
form) or the access register associated with the specified general register (register form) is used to
determine the address space containing the field.

The default and minimum value for SKIP is 0 and the maximum is 131,072. If the value is not in this
range, then return code 20 is given.

Note: If SKIP is zero then all pages specified for keywords SPAN and SUBGROUP are contiguous.

This operand is optional; the default value is 0.

WORKAREA=
specifies the real address of a storage area that is used by the macro as a work area. Specify this
parameter as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through
the REFPAGE macro DECLARE function. See “Coding CP Macros” on page 807 for additional detail
regarding the use of this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. To indicate a contiguous span of pages in one logical page block set GROUP and SUBGROUP to 1 and

SKIP to 0 and set SPAN to the number of contiguous pages.
3. If all the operands use their default value, there will not be any page blocking.
4. Multiple REFPAGE macro INFORMB functions can be concurrently active. If the same page(s) are

specified in more then one INFORMB or INFORML request then the logical blocks of pages that result
will be interleaved. The last INFORM function will be the only one with its logical block of pages intact.
The other logically blocked pages are partially intact. There could be reduced expected performance
depending on how the logical blocks are referenced.

5. Logical blocks are formed from pages that reside on DASD. If the pages are located in host storage,
they will not be blocked.

REFPAGE INFORMB

882 z/VM: 7.3 CP Programming Services

6. CP's normal page stealing forms blocks of pages similar to those formed by REFPAGE. It is possible
for a block of pages that was formed by normal page stealing to point into a REFPAGE-formed block. If
a page from the steal-formed block is referenced then it is possible that part of the REFPAGE-formed
block will be brought into storage.

7. The value of the keywords when multiplied together minus the value of SKIP should not exceed the
maximum value of 524,288:

(GROUP * SUBGROUP * (SPAN + SKIP)) - (SKIP) =< 524,288
8. Large numbers can cause a virtual machine to have performance problems when issuing this macro.

Condition Codes and Return Codes
On return from REFPAGE INFORMB, register 15 will contain one of the following return codes:

Return Code
in Register 15
(Decimal)

REFPAGE macro INFORMB function status:

0 The notification of the pending order of page references has been accepted and
processed.

8 The ALET operand does not identify either an existing private address space that
your virtual machine created, or your virtual machine's base address space. An
address space (including the base) must be private when it is used with this function.
The page-reference pattern has not been established.

12 A shared page was detected in the page-reference pattern.

20 A value was specified for either GROUP, SUBGROUP, SPAN, or SKIP that was out of
range. The page-reference pattern has not been established.

Examples

Example 1: This example shows how to define a logical block of pages to be brought into storage. This
will allow the program to have pages P1,P2,P3,P6,P7,P8,P11,P12,P13,P16,P17,P18 brought in with one
page fault when P1 is referenced.

 LA 2,STARTLOW
 ...
 REFPAGE INFORMB,ADDR=(2),GROUP=L1,SUBGROUP=L4,SPAN=L3,SKIP=L2
 ...
L1 DC F'1'
L2 DC F'2'
L3 DC F'3'
L4 DC F'4'
STARTLOW DC X'00012000' (Addr of P1)

This defines a page-reference pattern as follows:

Figure 99. Group of 1 Subgroup That Has 4 Spans of Pages

REFPAGE INFORMB

Chapter 25. CP Macros 883

Example 2: This example shows how to define two logical blocks of pages to be brought into storage
separately. This will allow the program to have pages P1,P2,P3,P6,P7,P8 brought into storage for one
page fault. The second subgroup will not be brought in until P11 is referenced.

 LA 2,STARTLOW
 ...
 REFPAGE INFORMB,ADDR=(2),GROUP=L2,SUBGROUP=L2,SPAN=L3,SKIP=L2
 ...
L2 DC F'2'
L3 DC F'3'
STARTLOW DC X'00012000' (Addr of P1)

defines a page-reference pattern as follows:

Figure 100. Group of 2 Subgroups That Have 2 Spans of Pages in Each Subgroup

Example 3: This example shows how to define two logical blocks of pages to be brought into storage
separately in reverse order. This will allow the program to have pages P18,P17,P16,P13,P12,P11 brought
into storage for one page fault. The second subgroup will not be brought in until P8 is referenced.

 LA 2,STARTHIG
 ...
 REFPAGE INFORMB,ADDR=(2),GROUP=L2,SUBGROUP=L2,SPAN=L3,
 SKIP=L2,DIRECTION=DESCEND
 ...
L2 DC F'2'
L3 DC F'3'
STARTHIG DC X'01F12000' (Addr of P18)
DESCEND DC X'FF'

defines a page-reference pattern as follows:

Figure 101. Group of 2 Subgroups That Have 2 Spans of Pages in Each Subgroup

Example 4:

 LA 2,STARTLOW
 ...
 REFPAGE INFORMB,ADDR=(2),SPAN=L18
 ...
L18 DC F'18'
STARTLOW DC X'00012000' (Addr of P1)

defines a page-reference pattern that has 18 contiguous pages in one logical block of pages.

REFPAGE INFORMB

884 z/VM: 7.3 CP Programming Services

Figure 102. Group of a Span of 18 Pages in One Logical Block

Example 5:

 LA 2,STARTHIG
 ...
 REFPAGE INFORMB,ADDR=(2),SPAN=L18,DIRECTION=DESCEND
 ...
L18 DC F'18'
STARTHIG DC X'01F12000' (Addr of P18)
DESCEND DC X'FF'

defines a page-reference pattern that has 18 contiguous pages in one logical block of pages. The keyword
DIRECTION indicates that keyword ADDR is the highest address.

Figure 103. Group of a Span of 18 Pages in One Logical Block

where each page is to be considered an individual group with a span of one without any skips.

REFPAGE INFORMB

Chapter 25. CP Macros 885

REFPAGE INFORML

label

REFPAGE INFORML
1

,PRLIST= label

( reg)

,COUNT= label

( reg) ,WORKAREA= label

( reg)

Notes:
1 The keyword operands that follow can be specified in any order.

Purpose
The INFORML function identifies an ordered reference pattern in which there is no regular pattern or
relationship among the addresses of the pages to be referenced. Instead, the page reference pattern is
identified by a list of pages in the reference pattern.

Parameters
label

is an optional assembler language label on the macro.
PRLIST=

specifies the real address of the page-reference list. Specify this parameter as a label associated with
the page-reference list in storage, or as the number of a register (in the range of 2-12, inclusive)
containing the address of the page-reference list. For a virtual machine in the access-register mode,
the access register corresponding to the base register selected by the assembler for the label (label
form) or the access register associated with the specified general register (register form) is used to
determine the address space containing the page-reference list.

The page-reference list specifies the absolute addresses of pages to be included in the page-
reference pattern. (See Page-Reference List Format for more information on the page-reference list.)
The page-reference list is processed in the order it is specified to form one or more logical blocks of
pages. Pages specified by consecutive entries in the list are placed the same logical block as long as
the ALETs for the entries are the same. If consecutive entries have different ALETs, the current logical
block is ended and a new logical block is started. Thus, if the list contains entries with differing ALETs
then multiple logical blocks are formed. Logical blocks are formed within an address space not across
address spaces.

This operand is required.

COUNT=
specifies the real address of a 4-byte field in storage that contains the count of entries in the page-
reference list specified by the PRLIST operand. Specify this parameter as a label associated with the
field, or as the number of a register (in the range of 2-12, inclusive) containing the address of the
field. For a virtual machine in the access-register mode, the access register corresponding to the base
register selected by the assembler for the label (label form) or the access register associated with the
specified general register (register form) is used to determine the address space containing the field.

The minimum number of entries is two and the maximum number of entries is 16,384. If the count is
not in this range, then return code 4 is given.

This operand is required.

REFPAGE INFORML

886 z/VM: 7.3 CP Programming Services

WORKAREA=
specifies the real address of a storage area that is used by the macro as a work area. Specify this
parameter as the label associated with the storage area, or as the number of a register (in the range
of 2-12, inclusive) containing the address of the storage area. For a virtual machine in the access-
register mode, the access register corresponding to the base register selected by the assembler for
the label (label form) or the access register associated with the specified general register (register
form) is used to determine the address space containing the storage area.

The storage area is defined by the DEFWORKA macro coded at the end of your program or through
the REFPAGE DECLARE function. See “Coding CP Macros” on page 807 for additional details regarding
this operand.

This operand is optional; you can simplify coding of your program by omitting this operand to defer the
definition of the macro work area to the DEFWORKA macro.

Usage Notes
1. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
2. The order of the entries in this list defines the order each page is planned to be referenced by the

caller. If the reference order does not match their ordering in the list, performance improvements may
not be realized.

3. Multiple REFPAGE macro INFORML functions can be concurrently active. If the same page(s) are
specified in more than one INFORMB or INFORML request then the logical blocks of pages that result
will be interleaved. The last INFORM function will be the only one with its logical block of pages intact.
The other logically blocked pages are partially intact. There could be reduced expected performance
depending on how the logical blocks are referenced.

4. The number of entries of 16,384 should be used with caution. Large numbers can cause a virtual
machine performance problems when issuing this macro.

Page-Reference List Format: The list pointed to by PRLIST is a set of word pairs where each pair is an
ALET and 31-bit absolute page address. Each ALET must designate a private address space that your
virtual machine owns, otherwise return code 8 is given. Logical blocks are formed from each consecutive
identical ALET within the list. If there are different ALETs then there will be multiple logical blocks formed.
If an ALET appears twice in the list with an intervening different ALET a second logical block will be
formed for the same address space.

Thus, the list of entries appears as follows:

The ALETs contained in the page-reference list are always used to identify the target address spaces; that
is, they are used even when the virtual machine is in the primary-space mode.

Condition Codes and Return Codes
On return from REFPAGE INFORML register 15 contains one of the following return codes:

REFPAGE INFORML

Chapter 25. CP Macros 887

Return Code
in Register 15
(Decimal)

REFPAGE macro INFORML function status:

0 The notification of the pending order of page references has been accepted and
processed.

4 The value for keyword COUNT is either less than 2 or greater than the maximum of
16,384. This request was not processed.

8 An ALET specified within the page-reference list does not identify either an existing
private address space that your virtual machine created, or your virtual machine's
host-primary address space. An address space (including the base) must be private
when it is used with this function. The list of pending page references may have been
formed up to the ALET in error.

12 A shared page was detected in page-reference list.

REFPAGE INFORML

888 z/VM: 7.3 CP Programming Services

VMUDQ – VM User Directory Query

label

VMUDQ parmlabel

( parmreg)

, bufflabel

( buffreg)

, bufflen

( lenreg)

,MACHINE=370

Purpose
The VMUDQ (VM User Directory Query) macro provides an application interface for making specified
queries against the CP User Directory. Documented here is the LSTMDISK (List MDISK Definitions)
function, which writes selected MDISK definitions from the user directory to a designated buffer.

Note: IBM privilege class B is needed.

Parameters
label

is an optional assembler language label.
parmlabel
(parmreg)

specifies the address of a function parameter list held within an address space. Specify this operand
as a label associated with the storage area, or as the number of a general register that is part of an
address/ALET pair of the storage area.

If it is specified as the number of a general register, this register is assumed to be already loaded with
the address, and the corresponding access register is assumed to be already loaded with the ALET
of the target address space. If the ALET value is 0, the target address space is the user's primary
address. If the virtual machine is not an XC virtual machine, the ALET value is ignored, and the target
address space is the user's host-primary address space.

The parameter list is maximum of six doublewords long, and is described under MDISK Parameter List
Contents. It must be on a doubleword boundary and must not span a page boundary. Otherwise, a
specification exception is recognized.

This operand is required.

bufflabel
(buffreg)

specifies the address of the data buffer held within an address space. Specify this operand as the
label associated with the storage area, or as the number of a register that is part of an address/ALET
pair of the storage area. If it is specified as the number of a general register, this is assumed to be
already loaded with the address, and the corresponding access register is assumed to be already
loaded with ALET of the target address space. If the ALET value is 0, the target address space is the
user's host-primary address space. If the virtual machine is not an XC virtual machine, the ALET value
is ignored, and the target address space is the user's host-primary address space.

This operand is required.

bufflen
(lenreg)

is the length in bytes of the allocated data buffer.

The minimum value of the length required for the data buffer is 60 bytes, otherwise, a specification
exception is recognized.

VMUDQ

Chapter 25. CP Macros 889

This operand is required.

MACHINE=370
has no supported function, because 370 virtual machines are not supported. Results are undefined if
this operand is specified.

LSTMDISK Function: This function creates a list of MDISK definitions from the CP user directory based
on, or qualified by, the:

• User IDs to which the MDISK definitions belong
• Virtual devices to which the MDISK definitions are defined
• Volumes containing volsers on which MDISK definitions are found
• SSI member system or SUBCONFIG ID for which the MDISK definitions are found.

An asterisk (*) can be used as a trailing wild card to select a wider group of definitions.

The criteria for this list are in a parameter list pointed to by the PARMADR of the macro. The list is built in
the buffer defined in the macro.

MDISK Parameter List Contents: Figure 104 on page 890 shows the structure of the MDISK parameter
list. It consists of six doublewords.

Figure 104. Contents of the LSTMDISK Function Parameter List

Length
The length is a fullword containing the length in bytes of the length field itself, the reserved field, and
the parameter string that follows. The length field must be one of the following values: 16, 24, 32, 40,
or 48; otherwise a specification exception is recognized.

Flags
contains flags as follows:
X'80'

Indicates that a SUBCONFIG ID should be included in the output record instead of a system name.
////////

is reserved for later use.
LSTMDISK

is the name of the function to be performed by the macro. It must be LSTMDISK; otherwise, a
specification exception is recognized.

VMUDQ

890 z/VM: 7.3 CP Programming Services

* | userid | use*
selects MDISK definitions that belong to the specified user IDs. The userid from a USER or IDENTITY
directory statement can be used. SUBCONFIG IDs cannot be specified. If you specify an asterisk (*)
alone, all MDISK definitions are retrieved. If you specify an asterisk following a set of characters, all
the MDISK definitions owned by all the user IDs that begin with those characters are retrieved. The
value is left-justified in the field and padded to eight characters with blanks. If you leave the field
blank, an asterisk is the default.

* | vdevno | vdev*
selects MDISK definitions that are defined to the specified virtual device number(s). Multiple virtual
device numbers are specified by using an asterisk (*). If you specify an asterisk (*) alone, all MDISK
definitions are selected regardless of vdevno. If you specify an asterisk following a set of numbers, all
MDISK definitions for all the virtual devices whose addresses begin with those numbers are retrieved.
A four-digit address is assumed; therefore, 000* would mean 0000 through 000F and 04* would
mean 0400 through 04FF, and so on. The value is left-justified in the field and padded to eight
characters with blanks. If you leave the field blank, an asterisk is the default.

* | volser | vols*
selects MDISK definitions that are found on the volume containing the specified volser. If you specify
an asterisk (*) alone, all MDISK definitions are retrieved. If you specify an asterisk following a set of
characters, all the MDISK definitions on the volumes with volsers that start with those characters are
retrieved. If you leave the field is blank, an asterisk is the default. The value is left-justified in the field
and padded to eight characters with blanks.

* | systemid | sys*
selects MDISK definitions that are found on the specified SSI member system. An asterisk (*) can
be used as a trailing wild card to select a range of systems that begin with a common set of
characters. An asterisk (*) by itself indicates that the MDISK definitions on all member systems are to
be analyzed. The value is left-justified in the field and padded to eight characters with blanks. If the
field is blank, the default assumed is blank, indicating that only the MDISK definitions on the current
system are to be analyzed. Specifying a system other than by an asterisk or a blank is allowed only
when an SSI-enabled directory is in use.

Output Buffer Format: The output buffer consists of seven blank-delimited fields containing the
information indicated in the following example:

OWNERID- VDEV VOLSER DEVTYPE- START----- SIZE------ SYSTEM
12345678 1234 123456 12345678 1234567890 1234567890 12345678
---------+---------+---------+---------+---------+---------+-------
User123 0191 ABC123 3390 0000000010 0000000200 SYSTEM1
User456 0191 CCC123 FB-512 0000000010 0000200000 SYSTEM1
User789 0222 CCC222 3380 0000000010 END SYSTEM2
UserABC 0345 000345 3390 0000000000 0000000100

Notes:

1. In the above example the "START" field may contain either the starting cylinder or block number. The
"SIZE" field contains the remaining number of cylinders or blocks. The non-device specific "END" in
the size field denotes the end of the volume. Also, the header lines are not part of the returned data.

2. In the above example, the first three lines of output include a system ID. A system ID indicates that the
device was defined within a SUBCONFIG stanza and the device is local to a specified system. The last
line of output does not include a system ID, indicating that the device was defined within an identity or
user stanza and the device is global to all systems.

If an SSI-enabled or SSI-ready directory is in use, a flag can be set in the Flags field of the parameter
list to cause the SUBCONFIG ID that contains the MDISK definition to be returned instead of the
system name.

3. If the MDISK was defined with a size of "END", then size that will be returned in the output buffer will
simply be "END".

4. Temporary disks (T-disks) and virtual disks in storage are ignored by the LSTMDISK function and are
not included in the output buffer.

VMUDQ

Chapter 25. CP Macros 891

Examples

1. Assume you want to create a list of all MDISK definitions in the CP user directory for the system on
which you are currently running and place them in a buffer addressed by buffaddr. Further assume that
the buffer is only 10,000 bytes long. You create the following:

2. Assume you want to create a list of MDISK definitions belonging to user DOTY with addresses in the
range of 0400 through 04FF, regardless of the volume on which they reside, and place them in a buffer
addressed by (R6/AR6), and further assume that the buffer is only 10000 bytes long as specified in
(R7). You create the following parameter list as addressed by (R2/AR2).

Usage Notes
1. An address space is acquired in blocks of 256 pages; therefore, the number of bytes in the buffer to be

passed on the call would equal:

(number pages requested+255/256) * 1048576.

2. This macro modifies general and access registers 0, 1, 14, and 15. All others remain unchanged.
3. If userid, volser, or systemid contains an asterisk (*) not used as a trailing wild card, conflicting results

can occur, because an asterisk is treated as a trailing wild, card left-justified, and padded to eight
characters with blanks.

4. If the MDISK was defined with a volume serial number of &SYSRES, then the value in the VOLSER
output column is the value specified for the &SYSRES option when DIRECTXA created the user
directory. If this option was not specified, the value +VMRES is used.

5. In an SSI-enabled directory, MDISK definitions can be global or local. A global MDISK definition is one
that is included in a user or identity stanza and the minidisk being defined can be linked by virtual
machines on any member system of the SSI cluster. A local MDISK definition is one that is included

VMUDQ

892 z/VM: 7.3 CP Programming Services

in a SUBCONFIG stanza and the minidisk being defined can be linked only by virtual machines on
the SSI member system to which the SUBCONFIG stanza applies. When specifying the system ID
parameter (* | systemid | sys*), you are requesting all MDISK definitions that are global and local to
a particular system. If you specify a system ID that is not specified on any BUILD statements in the
directory, then all global MDISK definitions are reported. If you specify a system ID that is specified on
a BUILD statement in the directory, then all global MDISK definitions and local MDISK definitions for
the specified system are reported.

6. If an SSI-enabled or SSI-ready directory is in use, a flag can be set in the Flags field of the parameter
list to cause the SUBCONFIG ID that contains the MDISK definition to be returned instead of the
system name.

Condition Codes and Return Codes
One of the following condition codes is returned:

Condition Code Description

0 Normal exit from VMUDQ.

1 VMUDQ has detected an error.

3 VMUDQ has encountered a paging error while trying to access the target area in the
data space or an object directory page.

On return from the LSTMDISK function, register 15 contains one of the following return codes if the
condition code is 0.

Function Return code in
Register 15

Description

General X'00' Successful. Register 0 contains the number of bytes moved as the
result of query.

X'04' No records were found to match the criteria specified.

X'08' The buffer length supplied is insufficient. Register 0 contains the
number of bytes needed for the query.

LSTMDISK X'100' An invalid user ID was specified.

X'104' An invalid virtual device number was specified.

X'108' An invalid volume serial number was specified.

X'10C' An invalid system ID was specified.

X'110' The user directory does not include SUBCONFIG information but
SUBCONFIG IDs were requested.

Program Exceptions
You may receive one of the following program checks if the VMUDQ input data is invalid.

VMUDQ

Chapter 25. CP Macros 893

Problem Encountered Cause

Specification exception Any of the following:

• The input parameter list does not start at double-word
boundary.

• The length of buffer is less than 60 bytes, which is the
minimum output buffer size.

• The function specified is not LSTMDISK.
• The input parameter list does cross a page boundary.
• The length of the input parameter list is not one of the values

16, 24, 32, 40, or 48.

Access exception (See page “Access
Exceptions” on page 8.)

An error occurred trying to:

• Fetch the parameter list
• Store into the data buffer.

VMUDQ

894 z/VM: 7.3 CP Programming Services

Part 6. Architectural Extensions and
Accommodations for Virtual Machines

This part contains the following chapters:

• Chapter 26, “Collaborative Memory Management Assist,” on page 897
• Chapter 27, “370 Accommodation Facility Overview,” on page 907
• Chapter 28, “370 Accommodation Facility Definition,” on page 915
• Chapter 29, “Store Hypervisor Information (STHYI) Instruction,” on page 927

© Copyright IBM Corp. 1991, 2023 895

896 z/VM: 7.3 CP Programming Services

Chapter 26. Collaborative Memory Management
Assist

The collaborative memory management assist is a machine feature that allows z/Architecture guests with
the appropriate support to exchange memory usage and status information with z/VM. This sharing of
information provides several benefits:

• z/VM can make more effective decisions, leading to a more efficient use of available memory.
• z/VM page-write overhead is eliminated for pages that the guest has designated as unused or volatile.
• The guest can make better decisions when assigning pages.
• Guest page-clearing overhead can be eliminated for pages that z/VM has indicated contain zeros.
• z/VM can accommodate a proportionately larger number of guests for a given system paging load.

This chapter describes the EXTRACT AND SET STORAGE ATTRIBUTES instruction, the interface
used by a guest to collaborate with z/VM, as well as associated changes to the virtual-machine
interface. The material is an extension to the material in z/Architecture Principles of Operation (https://
publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf), SA22-7832.

The collaborative memory management assist provides a means for communicating state information
about a 4 KB block of storage between a program running in a z/Architecture virtual machine and the
z/VM control program. This sharing of state information allows the program and z/VM to make more
efficient memory management decisions. The collaborative memory management assist includes the
following features:

• A unique block-usage state and block-content state that are associated with each 4 KB block of main
storage (that is, memory) in the virtual configuration.

• The privileged EXTRACT AND SET STORAGE ATTRIBUTES instruction which can be used to extract and
optionally set the block-usage and block-content states of a 4 KB block.

• A new reason for recognizing an addressing-exception program interruption.
• The new block-volatility-exception program-interruption condition.

Storage
The following is an extension to "Chapter 3. Storage", in z/Architecture Principles of Operation.

Collaborative Memory Management Block State
When the collaborative memory management assist is installed, a unique block-usage state and block-
content state are associated with each 4 KB block of storage that is available in the virtual-machine
configuration. Block-usage states and block-content states are not part of addressable storage. The
current states of a 4 KB block are extracted and optionally set by EXTRACT AND SET STORAGE
ATTRIBUTES.

Block-usage States
Following is a description of the block-usage states that can be assigned to a 4 KB block and their
meanings:

• Stable state. A 4 KB block in the stable block-usage state can be referenced by the program. If z/VM
reclaims the real-storage page frame in which the block resides, z/VM preserves (pages out) the block
contents.

• Unused state. A 4 KB block in the unused state should not be referenced by the program; otherwise,
an addressing exception might be recognized or unpredictable results might occur. At any time the
contents of a 4 KB block in the unused block-usage state can be discarded. When a block in the unused

© Copyright IBM Corp. 1991, 2023 897

https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

block-usage state is discarded, the block-content state of the block is set to the logically-zero state, the
reference and change bits for the block are set to zeros, and the remainder of the storage key is set to
unpredictable values. (For a description of the logically-zero state, see “Block-content States” on page
898.)

• Volatile state. A 4 KB block in the volatile block-usage state can be referenced by the program.
However, at any time the contents of a 4 KB block in the volatile block-usage state can be discarded.
When a block in the volatile block-usage state is discarded, the block-content state of the block is
set to the logically-zero state, the reference and change bits for the block are set to zeros, and the
remainder of the storage key is set to unpredictable values. (For a description of the logically-zero state,
see “Block-content States” on page 898.)

If the program references a 4 KB block that is in the volatile block-usage state and is discarded (i.e., the
block is in the volatile block-usage state and the logically-zero block-content state), a block-volatility
exception is recognized.

• Potentially-volatile state. A 4 KB block in the potentially-volatile block-usage state can be referenced
by the program. Based on change indication, the block-usage state might change to the volatile or
stable state as follows:

If the change bit for the 4 KB block is one, the block-usage state might be changed to the stable
state.
If the change bit for the 4 KB block is zero, the contents of the block might be discarded. When a
block in the potentially-volatile block-usage state is discarded, the block-usage state of the block
is set to the volatile state, the block-content state of the block is set to the logically-zero state, the
reference and change bits for the block are set to zeros, and the remainder of the storage key is set
to unpredictable values. (For a description of the logically-zero state, see “Block-content States” on
page 898).

Block-content States
Following is a description of the block-content states that can be assigned to a 4 KB block and their
meanings:

• Resident state. The contents of a 4 KB block in the resident block-content state are present in z/VM
real storage and immediately accessible by the program.

• Preserved state. The contents of a 4 KB block in the preserved block-content state are not present
in z/VM real storage and are preserved elsewhere. When the program references a 4 KB block in the
preserved block-content state, the contents of the block are restored and the block-content state of the
block is changed to the resident state.

• Logically-zero state. The contents of a 4 KB block in the logically-zero block-content state are not
present in z/VM real storage and are known to be zero. The logically-zero block-content state in
conjunction with the block-usage state of the 4 KB block indicates whether the page is accessible
by the program, as follows:

If the block-usage state of the 4 KB block is the stable state and the block-content state of the block
is the logically-zero state when the block is referenced by the program, the contents of the block are
set to zeros and the block-content state is changed to the resident state.
If the block-usage state of the 4 KB block is the unused state and the block-content state of
the block is the logically-zero state when the block is referenced by the program, an addressing
exception is recognized.
If the block-usage state of the 4 KB block is the volatile state and the block-content state of the
block is the logically-zero state when the block is referenced by the program, a block-volatility
exception is recognized.

The program can also change the states associated with a page by using the EXTRACT AND SET STORAGE
ATTRIBUTES instruction.

For 4 KB blocks that are in the stable block-usage state, the block-content state might change at any time
from the resident to the preserved state or from the preserved to the resident state.

898 z/VM: 7.3 CP Programming Services

For 4 KB blocks that are in a block-usage state other than the stable state, the states associated with the
block might change at any time as described under the block-usage states above.

For 4 KB blocks that are in the stable block-usage state and the logically-zero block-content state, the
logically-zero state is removed when non-zero contents are stored in the block. This might occur at other
times as well.

The collective term discarded state refers to either of two state combinations: the unused block-usage
state and the logically-zero block-content state, or the volatile block-usage state and the logically-zero
block-content state. Note that a discarded state need not arise from a discard action by z/VM. For
example, an EXTRACT AND SET STORAGE ATTRIBUTES instruction performing a Set Unused operation on
a stable logically-zero block or on a stable preserved block places that block into a discarded state.

References made by an entity other than the CPU (such as the channel subsystem) to storage in a 4 KB
block that is in a discarded state are treated as if the block is not in the configuration. See “Implications
for the DIAGNOSE Instruction and Non-CPU Accesses” on page 905.

As a result of the machine recognizing block-usage states, some combinations of block-usage and
block-content states are not permissible. Thus, if the program executes EXTRACT AND SET STORAGE
ATTRIBUTES specifying an impermissible state combination, the machine replaces the impermissible
combination with a permissible combination. The table in Figure 105 on page 899 summarizes which
combinations are permissible and which are not. The table also shows the state combinations (in
parentheses) which replace the impermissible combinations.

Figure 105. Summary of permissible collaborative memory management state combinations

Footnotes on block/block-content state combinations shown in parentheses:

Notes:

1. Use of the EXTRACT AND SET STORAGE ATTRIBUTES instruction to set the block-usage state of a 4
KB block in the preserved block-content state to the unused state results in discarding the block by
changing the block-usage state to the unused state and the block-content state to the logically-zero
state.

2. Use of the EXTRACT AND SET STORAGE ATTRIBUTES instruction to set the block-usage state of a 4
KB block in the preserved block-content state to the volatile state results in discarding the block by

Chapter 26. Collaborative Memory Management Assist 899

changing the block-usage state to the volatile state and the block-content state to the logically-zero
state.

3. Use of the EXTRACT AND SET STORAGE ATTRIBUTES instruction to set the block-usage state of a 4 KB
block in the preserved block-content state to the potentially-volatile state results in the block-usage
state remaining the stable state and the block-content state remaining the preserved state, if the block
has been changed, or results in discarding the block by changing the block-usage state to the volatile
state and the block-content state to the logically-zero state, if the block has not been changed.

4. Use of the EXTRACT AND SET STORAGE ATTRIBUTES instruction to set the block-usage state of a
block in the logically-zero block-content state to the potentially-volatile state results in changing the
block-usage state to the volatile state, and the block-content state remains the logically-zero state.

Modification of Translation Tables
When the collaborative memory management assist is installed, translation tables should reside in 4
KB blocks that are in the stable block-usage state. The results of a translation that requires a translation-
table entry that resides in a 4 KB block that is not in the stable block-usage state are unpredictable.

Assigned Storage Locations
The definitions of the assigned storage locations below are extended as indicated when the collaborative
memory management assist is installed in a z/Architecture virtual machine:

160
(Real Address)

Exception Access Identification: During a program interruption due to a block-volatility exception,
zeros might be stored into location 160.

162
(Real Address)

Operand Access Identification: During a program interruption due to a block-volatility exception
recognized by the MOVE PAGE instruction, the contents of the R₁ field of the instruction are stored in
bit positions 0-3 of location 162, and the contents of the R₂ field are stored in bit positions 4-7. If
the block-volatility exception was recognized during the execution of an instruction other than MOVE
PAGE, the contents of location 162 are unpredictable.

168-175
(Real Address)

Translation-Exception Identification: During a program interruption due to a block-volatility exception,
bits 0-51 of the absolute address causing the exception are stored in bits 0-51 of locations 168-175.
Bits 52-60 of locations 168-175 are unpredictable. If the exception was recognized during the
execution of MOVE PAGE, bit 61 of locations 168-175 is set to one; otherwise, bit 61 is set to zero.
Bits 62-63 of locations 168-175 are stored as zeros.

Control
The following is an extension to "Chapter 4. Control" in z/Architecture Principles of Operation.

Resets
The definitions of subsystem reset and clear reset are extended as indicated when the collaborative
memory management assist is installed in a z/Architecture virtual machine:

Subsystem Reset
In addition to the standard operations performed by subsystem reset, if the collaborative memory
management assist is installed, then the block-usage state of all 4 KB blocks is set to the stable state.

900 z/VM: 7.3 CP Programming Services

Clear Reset
In addition to the standard operations performed by clear reset, if the collaborative memory management
assist is installed, the block-content state of all 4 KB blocks is set to the logically-zero state. Since a clear
reset includes a subsystem reset, the block-usage state of all 4 KB blocks is also set to the stable state.

Interruptions
The following is an extension to "Chapter 6. Interruptions" in z/Architecture Principles of Operation.

Addressing Exception
z/Architecture defines a main storage location as not available in the configuration when the location is
not installed, when the storage unit is not in the configuration, or when power is off in the storage unit. An
address designating a storage location that is not available in the configuration is referred to as invalid. An
addressing exception is generally recognized when the CPU attempts to reference a main storage location
that is not available in the configuration.

When the collaborative memory management assist is installed, a main storage location is also
considered not available in the configuration when the location is within a 4 KB block that is in the
unused block-usage state and the logically-zero block-content state. However, addressing exceptions due
to collaborative memory management block-usage and block-content states are not recognized for 4 KB
blocks designated by the following instructions:

• EXTRACT AND SET STORAGE ATTRIBUTES
• INSERT STORAGE KEY EXTENDED
• SET STORAGE KEY EXTENDED
• RESET REFERENCE BIT EXTENDED

Block-volatility Exception
A block-volatility exception is recognized when the collaborative memory management assist is installed
and the CPU attempts to reference a main storage location that is within a 4 KB block that is in the
volatile block-usage state and for which the contents of the block have been discarded (as indicated by
the referenced block also being in the logically-zero block-content state).

The unit of operation is nullified.

When an interruption occurs, information about the 4 KB block address causing the exception is stored at
real locations 168-175 and conditionally at real locations 160 and 162. See “Assigned Storage Locations”
on page 900 for a detailed description of this information.

Block-volatility exceptions are not recognized for 4 KB blocks that are designated by the following
instructions:

• EXTRACT AND SET STORAGE ATTRIBUTES
• INSERT STORAGE KEY EXTENDED
• SET STORAGE KEY EXTENDED
• RESET REFERENCE BIT EXTENDED

When a block-volatility exception occurs during the fetching of an instruction or during the fetching of a
DAT table entry associated with an instruction fetch, it is unpredictable whether the ILC is 1, 2, or 3. When
the exception is associated with fetching the target of EXECUTE, the ILC is 2.

In all cases of block-volatility exceptions not associated with instruction fetching, the ILC is 1, 2, or 3,
indicating the length of the instruction that caused the reference.

A block-volatility exception is indicated by a program-interruption code of 001A hex (or 009A hex if a
concurrent PER event is indicated).

Chapter 26. Collaborative Memory Management Assist 901

Access Exceptions
The access exceptions consist of those exceptions which can be encountered while using an absolute,
instruction, logical, real, or virtual address to access storage. When the collaborative memory
management assist is installed, the block-volatility exception is added to the list of these exceptions,
in all translation and address-space-control modes.

A block-volatility exception for a particular access (instruction, operand, ART table, or DAT table) occurs at
the same priority as an addressing exception for that access.

Control Instructions
The following is an extension to "Chapter 10. Control Instructions" in z/Architecture Principles of
Operation.

Program Exceptions
The descriptions of general and control instructions typically indicate the cases in which access
exceptions might be recognized. In these cases, when the collaborative memory management assist
is installed, block-volatility exceptions are implicitly included among the access exceptions that might be
recognized, except where indicated below.

Certain control instructions might list individual exceptions in their definition, rather than the overall
term "access exceptions." In those cases, except as noted in the sections below, wherever addressing
exception is listed as a program exception that an instruction might recognize, a block-volatility exception
is also recognized when appropriate for that access when the collaborative memory management assist is
installed. For example, BRANCH AND SET AUTHORITY lists an addressing exception on the dispatchable-
unit control table; it also recognizes a block-volatility exception on that table when applicable.

Storage-key Manipulation Instructions
For the instructions INSERT STORAGE KEY EXTENDED, RESET REFERENCE BIT EXTENDED, and SET
STORAGE KEY EXTENDED, a block-volatility condition is not recognized for the address specified by
general register R₂. Similarly, for these instructions, an addressing exception is not recognized due to the
4 KB block at the address specified by general register R₂ being in the unused block-usage state and
logically-zero block-content state. Instead, the instruction accesses the storage key without regard to the
block-usage and block-content states of this block.

TEST PROTECTION
If the collaborative memory management assist is installed and the location designated by the first
operand resides within a 4 KB block that is in both the volatile block-usage state and the logically-zero
block-content state, a block-volatility exception is not recognized. Instead, the instruction is completed by
setting the condition code to 3.

EXTRACT AND SET STORAGE ATTRIBUTES

902 z/VM: 7.3 CP Programming Services

The block-usage state and the block-content state of the 4 KB block designated by the second operand
are extracted into the first operand location. The block-usage state and block-content state might be
optionally set based on the value of the M₃ field.

Asynchronous to the execution of the instruction, either or both the block-usage state and the block-
content state might be changed, as described in the “Associated Functions” on page 905.

In the 24-bit addressing mode, bits 40-51 of general register R₂ designate a 4 KB block in absolute
storage, and bits 0-39 and 52-63 of the register are ignored. In the 31-bit addressing mode, bits 33-51 of
general register R₂ designate a 4 KB block in absolute storage, and bits 0-32 and 52-63 of the register are
ignored. In the 64-bit addressing mode, bits 0-51 of general register R₂ designate a 4 KB block in absolute
storage, and bits 52-63 of the register are ignored. In all addressing modes, bits 52-63 should be zero;
otherwise the program might not operate compatibly in the future.

When the instruction completes, the general register designated by the R₁ field contains the block-usage
state and block-content state of the designated 4 KB block before any specified state change is made. The
format of this register is as follows:

Bits 0-59 are not used and unpredictable. Programs that depend on the value of these bits might not
operate compatibly in the future.

Block-usage State (US)
Bits 60-61 contain a 2-bit code value indicating the block-usage state of the designated 4 KB block.
Following are the meanings of each block-state code value:
Code value

Meaning
0

Stable state
1

Unused state
2

Potentially-volatile state
3

Volatile State

Block-content State (CS)
Bits 62-63 contain a 2-bit code value indicating the block-content state of the designated 4 KB block.
Following are the meanings of each block-content state code value:
Code value

Meaning
0

Resident state
1

(reserved)
2

Preserved state
3

Logically-zero state

The M₃ field designates a 4-bit operation-request code (ORC). Following are the meanings of values of this
field:

Chapter 26. Collaborative Memory Management Assist 903

Code value
Meaning

0
Extract Block Attributes. The current block-usage and block-content states of the designated 4 KB
block are extracted. No change is made to either state.

1
Set Stable State. The current block-usage and block-content states of the designated 4 KB block are
extracted. Following extraction of the states, the block-usage state is set to the stable state.

2
Set Unused State. The current block-usage and block-content states of the designated 4 KB block are
extracted. Following extraction of the states, the following occurs:

• The block-usage state is set to the unused state.
• If the block-content state is the preserved state, the contents of the block are immediately

discarded and the block-content state is set to the logically-zero state.

3
Set Volatile State. The current block-usage and block-content states of the designated 4 KB block are
extracted. Following extraction of the states, the following occurs:

• The block-usage state is set to the volatile state.
• If the block-content state is the preserved state, the contents of the block are immediately

discarded and the block-content state is set to the logically-zero state.

4
Set Potentially-Volatile State. The current block-usage and block-content states of the designated 4
KB block are extracted. Following extraction of the states, the following occurs:

• If the block-content state is the resident state, the block-usage state is set to the potentially-volatile
state.

• If the block-content state is the preserved state and the change bit for the 4 KB block is one, the
block-usage state remains the stable state and the block-content state remains the preserved state.
(See Figure 105 on page 899.)

• If the block-content state is the preserved state and the change bit for the 4 KB block is zero, the
contents of the block are immediately discarded and the block-usage state is set to the volatile state
and the block-content state is set to the logically-zero state.

• If the block-content state is the logically-zero state, the block-usage state is set to the volatile state.

5
Set Stable State and Make Resident. The current block-usage and block-content states of the
designated 4 KB block are extracted. Following extraction of the states, the block-content state is
set to the resident state and the block-usage state is set to the stable state.

6
Set Stable State If Resident. The current block-usage and block-content states of the designated 4 KB
block are extracted. Following extraction of the states, the block-usage state is set to the stable state
only if the block-content state is the resident state.

7-15
Reserved. The instruction should not be issued with any of these values in M₃; otherwise the program
might not operate compatibly in the future.

When the contents of a 4 KB block are discarded, either synchronously or asynchronously, the reference
and change bits in the storage key for the block are set to zeros and the values of the access-control and
fetch-protection bits are changed to unpredictable values. With the exception of this case, the instruction
has no effect on the reference and change bits for the block.

A serialization and checkpoint-synchronization function is performed before the operation begins and a
checkpoint-synchronization function is performed again after the operation completes.

904 z/VM: 7.3 CP Programming Services

Associated Functions
Subsequent to the execution of EXTRACT AND SET STORAGE ATTRIBUTES, either the block-content
state, the block-usage state, or both, might be changed, as follows:

• If the change bit in the storage key is one for a 4 KB block in the potentially-volatile block-usage state,
the block-usage state of the block might be changed to the stable state. If the change bit is zero for
such a block, the contents of the block might be discarded, thereby causing the block-usage state to be
changed to the volatile state, and the block-content state to be changed to the logically-zero state.

• While a 4 KB block is in the stable block-usage state, its contents are not discarded. However, the
block-content state of such a block might be changed from the preserved to the resident state or from
the resident state to the preserved state.

• While a 4 KB block is in the unused or volatile block-usage state, its contents might be discarded,
thereby also causing the block-content state to be changed to the logically-zero state.

Special Conditions
The M₃ field must specify an ORC value in the range of 0-6; otherwise, a specification exception is
recognized and no other action is taken.

The 4 KB block designated by the second operand is not subject to low-address protection or key-
controlled protection. The block is subject to host page protection when M₃ specifies an ORC value in the
range of 1-6. That is, if the block is contained in a read-only page range of a named saved system (NSS) or
discontiguous saved segment (DCSS), it is forbidden to change its block-content state.

Unlike ordinary instructions, execution of EXTRACT AND SET STORAGE ATTRIBUTES does not recognize a
block-volatility condition for the address specified by general register R₂. Similarly, execution of EXTRACT
AND SET STORAGE ATTRIBUTES does not recognize an addressing exception due to the 4 KB block at
the address specified by general register R₂ being in the unused block-usage state and logically-zero
block-content state.

Resulting Condition Codes
The code remains unchanged.

Program Exceptions
• Addressing (operand 2)
• Operation (if the collaborative memory management assist is not installed)
• Privileged operation
• Protection (store, operand 2, due to host page protection when M₃ specifies an ORC value in the range of

1-6)
• Specification

Programming Notes:

1. After changing the state of a 4 KB block to the unused block-usage state, the program should first
change the state of the 4 KB block back to the stable state before referencing the 4 KB block;
otherwise, an addressing exception or unpredictable results might occur.

2. If the program changes the state of a 4 KB block to the potentially-volatile or volatile block-usage
state, the program should ensure that it will not be harmed or that it can reconstruct the contents of
the block if the contents of the block are discarded.

Implications for the DIAGNOSE Instruction and Non-CPU Accesses
An access by an entity other than the CPU (such as the I/O subsystem) to a 4 KB block that is in a
discarded state (that is, a block in the logically-zero block-content state and either the unused or the
volatile block-usage state) is treated like an access to a block not available in the configuration. For

Chapter 26. Collaborative Memory Management Assist 905

example, an attempt to access a CCW, IDAW, or I/O buffer contained in block in a discarded state
results in a channel program check. Likewise, an access by a CPU asynchronously to an instruction, such
as during the storing of an interruption parameter, treats a block in a discarded state like a block not
available in the configuration.

It is unpredictable whether a synchronous access by the DIAGNOSE instruction to a block in a discarded
state is treated like an access by the CPU (resulting in an addressing or block-volatility exception) or by an
entity other than the CPU, as described above. In the latter case, DIAGNOSE might yield the same result
(such as a particular condition code or return code) for a block in a discarded state that it would yield for a
block not available in the configuration.

To avoid these consequences, the program should ensure that blocks referenced by DIAGNOSE or by
non-CPU accesses are in the stable state.

Implications for ESA/390, ESA/XC, and z/XC Guests
The collaborative memory management assist is available only to guests in z/Architecture mode.
EXTRACT AND SET STORAGE ATTRIBUTES results in an operation exception in an ESA/390, ESA/XC,
or z/XC virtual machine. Therefore, a program in such a machine can not place storage blocks into states
other than the stable state.

A z/Architecture guest might share storage with an ESA/390, ESA/XC, or z/XC guest through a named
saved system (NSS) or discontiguous saved segment (DCSS) or through the ADRSPACE PERMIT service.
It is therefore possible for a guest not operating in z/Architecture mode to encounter storage blocks in a
discarded state. A reference by such a guest to a block in a discarded state is treated as a reference to a
block not available in the configuration. For example, such a reference by most instructions generates an
addressing exception. A block-volatility exception is not presented to an ESA/390, ESA/XC, or z/XC guest.

Implications for Saved Systems and Segments
Storage in the page ranges of an NSS or DCSS should be in the stable block-usage state at the time of
the SAVESYS or SAVESEG command. Otherwise, the SAVESEG or SAVESYS operation might fail, or the
contents and the block-usage and block-content states of that storage will be unpredictable when the
storage is subsequently loaded into a virtual machine by IPL or DIAGNOSE X'64', respectively.

When an NSS or DCSS containing shared ranges is imbedded into virtual-machine storage, there is
a single copy of the block-usage and block-content states for each block in the range. If the range
is shared read-only (indicated by page descriptor code SR on DEFSEG or SAVESEG), then EXTRACT
AND SET STORAGE ATTRIBUTES instructions are not permitted to change the block-usage or block-
content states of blocks in this range (though the block-content state might change in normal system
operation). If the range is shared read-write (page descriptor code SW or SN), then all sharing virtual
machines observe and operate on a common state for the block. If one sharer issues EXTRACT AND
SET STORAGE ATTRIBUTES to change the block-content state, other sharers will observe the new
state through EXTRACT AND SET STORAGE ATTRIBUTES Extract, and all sharers are subject to the
consequences, such as discard operations and resulting block-volatility and addressing exceptions. For
proper operation, virtual machines sharing read-write storage must cooperate with regard to collaborative
memory management states, just as they must coooperate with regard to storage contents and storage
keys.

Implications for the VMDUMP Command
When the collaborative memory management assist is used, the VMDUMP command omits, without
indication, any non-stable pages in the specified range.

906 z/VM: 7.3 CP Programming Services

Chapter 27. 370 Accommodation Facility Overview

This chapter provides an overview of the 370 Accommodation Facility. It includes background information
describing why this facility is useful and introductory information describing how to use it.

Background
One of the reasons that CMS users find it difficult to migrate from virtual machines using the
System/370 architecture to virtual machines using a later architecture (370-XA, ESA/370, ESA/390,
or ESA/XC, 7 herein called generically ESA-family architectures) is that they are using, and must
continue to use, programs that cannot tolerate these architectures. Unlike most operating systems, CMS
runs its applications in virtual machine supervisor state. This allows applications to include privileged
instructions. The lack of low-level system services in older versions of CMS often forced applications to
use privileged instructions to accomplish their goals. While the 370-XA architecture was defined to be
highly upward compatible with the System/370 architecture for problem-state instructions, this does not
cover all instructions used by CMS applications. Privileged instructions, the format of the Program Status
Word (PSW), and interruption-parameter formats, are not upward compatible from the System/370
architecture to the ESA-family architectures.

Many CMS programs therefore exist that are restricted to running in 370 virtual machines. Many of these
programs have not been converted to tolerate ESA-family architectures, so users have been prevented
from using the enhancements provided by the newer architectures.

System/370 Constraints
For CMS Level 11 and prior levels, in a 370 virtual machine, CMS could use at most 16 megabytes of
storage for programs, due to the 24-bit addresses provided by the System/370 architecture.

Beginning with CMS Level 12, CMS no longer supports 370 virtual machines. Therefore, users are
encouraged to migrate to ESA-family virtual machines. The 370 Accommodation Facility can help you
in this migration.

High-level Description
The 370 Accommodation Facility allows CMS applications written for 370 virtual machines to run in
ESA-family virtual machines. The 370 Accommodation Facility is successful in running the majority of 370
CMS applications, but not every 370 application is guaranteed to run in ESA-family virtual machines with
370 Accommodation active.

Two levels of 370 Accommodation support are offered. The first level is provided by CP processing alone.
The second level is provided by supplementing the CP processing with CMS assistance. Although the first
level of support has less overhead, the second level of support is more powerful, and allows more 370
programs to run in ESA-family virtual machines. Applications that cannot run with either of these 370
Accommodation levels active must be converted to run in an ESA-family virtual machine.

A program written for System/370 may do one or more of the following that prevent it from running in an
ESA-family virtual machine:

• Use instructions that exist only in the System/370 architecture. Certain privileged instructions, including
I/O instructions and storage-key operations, are unique to System/370, and are replaced by new
instructions in the ESA family. The instructions of most importance to CMS programs written to run
in a 370 virtual machine are: SIO, TIO, SSK, ISK, DIAGNOSE code X'18', and DIAGNOSE code X'20'.
Other instructions less commonly used are: SIOF, HIO, HDV, CLRIO, RRB, and the SIOF-Real subcode

7 z/VM supports only ESA/390 and ESA/XC architectures for CMS. z/VM also supports z/Architecture and
z/XC for z/CMS, but a virtual machine in these z-family architectures cannot run with 370ACCOM ON.

370 Accommodation Facility Overview

© Copyright IBM Corp. 1991, 2023 907

of DIAGNOSE code X'98'. The 370 Accommodation Facility extends the ESA-family architectures to
provide these instructions.

• Load a BC-mode PSW. This is usually done either by a LOAD PSW (LPSW) instruction or by the loading
of the new PSW as part of interruption processing. 370 Accommodation extends the ESA-family
architectures by causing the BC-mode PSW to be translated into an equivalent ESA PSW, without
interrupting the application.

• Manipulate the system mask in the PSW assuming that the PSW is a BC-mode PSW. Because CMS has
not always offered ENABLE and DISABLE macros, programs often resorted to direct manipulation of
the system mask using instructions like SET SYSTEM MASK (SSM) or STORE THEN OR SYSTEM MASK
(STOSM). Because CMS always uses a BC-mode PSW when running in a 370 virtual machine, most
programs were written to assume that mode. BC-mode PSWs are not provided in the ESA family, so
such programs usually fail in these modes. 370 Accommodation extends the ESA-family architectures
by causing a PSW that is manipulated in this manner to be repaired, without interrupting the application.

• Use the interval timer. In a System/370 virtual machine, the interval timer is a facility which allows a
program to measure either elapsed time or CPU time, depending on the setting established by the CP
SET TIMER command. The 370 Accommodation facility extends the ESA-family architectures to provide
the interval timer.

• Use interruption parameters, having fetched them from the locations associated with BC-mode
PSWs. When an interruption occurs in System/370 architecture, the machine stores the interruption
parameters in different places depending on whether the PSW at the time of the interruption was
a BC-mode PSW or an EC-mode PSW. 370 CMS programs that replace CMS interruption new PSWs
with their own are usually written to use the interruption parameters in the BC-mode locations. Even
if the BC-mode PSW that would be loaded as part of interruption processing is repaired, such PSW-
stealing programs would fail in ESA-family virtual machines because the interruption parameters are not
stored in the locations being examined by the program. 370 Accommodation extends the ESA-family
architectures by recognizing that a 370 program has stolen the interruption new PSW (specifically, that
the interruption new PSW designates BC mode, or in the case of I/O interruptions, that the I/O new
PSW designates BC mode or is a 24-bit EC-mode PSW) and presenting interruption parameters in both
System/370 BC-mode and ESA-family format and locations. The BC-mode format allows the stealing
program to process the interruption. The ESA-family format allows CMS to process it in the event that
the stealing program passes control to CMS, which often happens when the interruption trapped is
not one that the application sought to handle. Because it is not possible to know beforehand which
interruptions will be handled by 370 or by ESA-family programs, both interruption formats are stored
in these cases. The additional 370 Accommodation services provided by CMS also allow CP to detect
when a program has modified just the low-order three bytes or the low-order four bytes of either the I/O
or the external new PSWs. Many programs do this with the intent of merely redirecting control to their
own interruption handler, but should nevertheless be considered to be stealing the PSW.

When Should 370 Accommodation be Used?
In general, 370 Accommodation should be activated to try any program that worked in a 370 virtual
machine but fails in an ESA-family virtual machine. There are specific symptoms, however, that are
indicative of programs that may be aided by 370 Accommodation:

• If a program issues an instruction that is not valid in a given architecture, an operation-exception
program interruption occurs. This is the result that would occur if a 370 application tries to issue an
instruction (for example, TIO) that does not exist in the ESA-family architectures. CMS reports this event
with messages similar to the following:

DMSABE148T System abend 0C1 called from hhhhhhhh reason code 00000000
DMSABE141T Operation exception occurred at hhhhhh in routine cccccccc

The first message may not always appear.
• If a program manipulates the system mask of an ESA PSW as if it were BC mode, or loads a BC-mode

PSW in an ESA-family virtual machine, a specification-exception program interruption occurs. CMS
reports this event with messages similar to the following:

370 Accommodation Facility Overview

908 z/VM: 7.3 CP Programming Services

DMSABE148T System abend 0C6 called from hhhhhhhh reason code 00000000
DMSABE141T Specification exception occurred at hhhhhh in routine cccccccc

The first message may not always appear.
• If a program uses the interval timer, and pauses until it receives an external interruption from the

interval timer, it will appear to hang.
• If a program steals the CMS I/O new PSW and then pauses until it receives a particular interruption, it

may appear to hang.
• If a program steals the CMS external new PSW and then pauses until it receives a particular

interruption, it may appear to hang, or it may pass an interruption on to CMS that will confuse CMS.
CMS reports such an event with messages similar to the following:

DMSHDE744R Unexpected external interrupt detected, interrupt status consists
 of: CODE=hhhh, CPUID=hhhh, PARAMETER=hhhhhhhh. Enter a
 1 for ABEND or 2 for RESUME:

• If a program steals the CMS program-new PSW in an ESA-family virtual machine, replacing it with a
BC-mode PSW, the following CP message would result if a program interruption ever occurs:

HCPGIR453W CP entered; program interrupt loop

If you see any of these symptoms when attempting to run a 370 application in an ESA-family virtual
machine, 370 Accommodation should be activated to see if it helps.

Choosing a Level of 370 Accommodation
Two levels of 370 Accommodation support are offered. In the first level, CP alone performs dynamic
repair actions that allow many 370 programs to run. In the second level of support, CMS manipulates its
own I/O and external new PSWs to make it easier for CP to detect PSW-stealing programs. This allows a
great number of additional 370 programs to run successfully in ESA-family virtual machines.

The most important difference between the two levels of support is that when it is not needed by an
application, there is no performance penalty for activating just the CP level of 370 Accommodation, but
there is a performance penalty if you activate the CMS level of 370 Accommodation. To choose which
level is best, you should experiment with your 370 applications. First try activating just the CP level of
370 Accommodation when you run your 370 program. If your program works, then there is no need to
use the CMS level of 370 Accommodation. If your program does not work, or works except in certain
circumstances, try activating the CMS level of 370 Accommodation and running the program again. If it
does not work with the CP level of support, but does work when you activate the CMS level of support,
then you should use the CMS level of 370 Accommodation when running that program.

Activating 370 Accommodation
The CP level of the 370 Accommodation Facility is activated by issuing the following command:

CP SET 370ACCOM ON

You can determine the current setting by issuing the CP QUERY SET command.

The CMS level of the 370 Accommodation Facility is activated by issuing the following CMS command:

SET CMS370AC ON

When you issue the SET CMS370AC ON command, CMS will issue a CP SET 370ACCOM ON command as
part of its processing. If you later issue the SET CMS370AC OFF command, CMS will restore the setting of
CP SET 370ACCOM to what it was when the SET CMS370AC ON command was issued. Issue the QUERY
CMS370AC command to interrogate the current setting of the CMS 370 Accommodation facility.

370 Accommodation Facility Overview

Chapter 27. 370 Accommodation Facility Overview 909

If you find that activating 370 Accommodation helps a 370 application to run in an ESA-family virtual
machine, you must decide when to activate the facility for everyday execution of the application. You have
the following choices:

1. Issue the CP SET 370ACCOM ON command or the SET CMS370AC ON command before starting the
370 application. This is the simplest approach, especially when testing the usefulness of the facility.

2. Write a cover exec to preserve the current 370 Accommodation setting, activate it, run the 370
application, and then restore 370 Accommodation to its original setting. A cover exec that activates
just the CP level of 370 Accommodation might look like the following:

 /* Cover exec for a 370 application */
 Address Command

 /* Get the current state of 370ACCOM */
 Parse Value Diag(8,'QUERY SET') With '370ACCOM' accsetting . '15'x

 /* Strip any trailing commas in case other parameters are */
 /* someday added to the QUERY SET response. */
 accsetting=Strip(accsetting,',','Trailing')

 /* Activate the 370 Accommodation Facility */
 If accsetting\='ON' Then 'CP SET 370ACCOM ON'

 /* Run application with the arguments passed to this cover exec. */
 /* (Replace 370APPL below with the name of your 370 */
 /* application). */
 Address CMS '370APPL' Arg(1)
 retcode=rc /* Preserve return code for exit */

 /* Restore 370ACCOM, if necessary */
 If accsetting\='ON' Then 'CP SET 370ACCOM' accsetting

 Exit retcode /* Return with return code from application */

There are several features of this exec worth mentioning:

a. It makes no assumptions about the setting of 370 Accommodation when the exec is invoked. Upon
exit, it is restored to whatever value it had on entry.

b. When parsing the response to QUERY SET, it tolerates the presence of parameters after
370ACCOM.

c. It allows arguments to be passed to the application program, and returns the application's return
code upon exit.

A cover exec that activates the CMS level of 370 Accommodation might look like the following:

 /* Cover exec for a 370 application */
 Address Command

 /* Get the current state of CMS370AC */
 'PIPE COMMAND QUERY CMS370AC|SPEC W3|VAR accsetting'
 If rc\=0 Then Exit rc

 /* Activate the CMS 370 Accommodation facility */
 If accsetting\='ON' Then 'SET CMS370AC ON'

 /* Run application with the arguments passed to this cover exec. */
 /* (Replace 370APPL below with the name of your 370 */
 /* application). */
 Address CMS '370APPL' Arg(1)
 retcode=rc /* Preserve return code for exit */

 /* Restore CMS370AC, if necessary */
 If accsetting\='ON' Then 'SET CMS370AC' accsetting

 Exit retcode /* Return with return code from application */

This cover exec assumes that the level of CMS is at least CMS Level 12.
3. Issue the CP SET 370ACCOM ON command from your PROFILE EXEC. Your PROFILE EXEC runs each

time you IPL CMS. If you find that you always want to activate 370 Accommodation, then putting it in
your profile can save you from worrying about each individual application. It is probably best to avoid
putting a SET CMS370AC ON command in your PROFILE EXEC, due to the performance degradation it

370 Accommodation Facility Overview

910 z/VM: 7.3 CP Programming Services

induces. If that userid generally runs only one program, however, or if you find that you nearly always
need the CMS level of 370 Accommodation, then you should consider it.

4. The systems programmer may issue the CP SET 370ACCOM ON command from the SYSPROF EXEC
associated with the CMS you IPL, or perhaps an exec called from SYSPROF EXEC. The SYSPROF EXEC
runs each time you IPL CMS, before your PROFILE EXEC runs. If the systems programmer believes
that most users find the facility helpful, you may find that it is already active when your PROFILE EXEC
runs. To determine the setting of the CP SET 370ACCOM command, issue the CP QUERY SET command
after your PROFILE EXEC runs. To determine the setting of the SET CMS370AC command, issue the
QUERY CMS370AC command.

There are several things to be aware of when using 370 Accommodation:

1. The 370 Accommodation Facility is automatically turned off whenever your virtual machine
experiences a subsystem reset. Such a reset usually occurs during the execution of the following
CP commands:

IPL
DEFINE STORAGE
SET MACHINE
SYSTEM RESET
SYSTEM CLEAR
DETACH CPU

370 Accommodation is turned off automatically in case the next operating system you IPL is not CMS.
The architectural extensions that exist when 370 Accommodation is active might confuse a guest
operating system, so CP turns it off.

2. It is possible, though unlikely, for a program to successfully run in an ESA-family virtual machine
before activating 370 Accommodation, but to fail once 370 Accommodation is activated. See “Possible
Adverse Effects on a Working Program” on page 912 for more information on how that can occur.
If you find a program like this, you may want to consider using an alternative for activating 370
Accommodation other than including the CP SET 370ACCOM ON or SET CMS370AC ON command in
your PROFILE EXEC or the SYSPROF EXEC.

3. When it is not needed by an application, there is no performance penalty for activating just the CP
level of 370 Accommodation. When it is needed, there is a slight performance cost because CP is
repairing conditions during execution that would otherwise result in program exceptions. The degree
of the performance degradation is related to how much repair action is required. Normally, you will not
notice it.

On the other hand, there may be more of a performance cost for activating the CMS level of 370
Accommodation. In order to help CP recognize programs that steal the I/O and external new PSWs,
CMS changes its own I/O and external new PSWs in a way that causes CP to perform a small amount
of extra processing for every I/O and external interruption reflected to the virtual machine. If your
virtual machine fields a lot of these interruptions, you might notice the performance penalty. If you
are running a 370 program that does need the CMS level of 370 Accommodation, though, the cost of
having it active doesn't necessarily rise. It depends only on the frequency with which I/O and external
interruptions are received.

Running a Restricted CMS MODULE
The CMS GENMOD command used to have a 370 option that could be used to generate a MODULE
file that CMS restricted to executing in a 370 virtual machine. This option prevented the execution of
applications in ESA-family virtual machines with 370 Accommodation active.

If you have used this option, you need to do one of the following to enable your programs to run in that
environment:

• Use the GENMOD command to generate a new module without using the 370 option. Your program can
then run in any virtual machine architecture, so you can run it with 370 Accommodation active.

370 Accommodation Facility Overview

Chapter 27. 370 Accommodation Facility Overview 911

• Use the CMS SET GEN370 OFF command to cause CMS to bypass checking for that condition when
loading the MODULE file. If you no longer have access to the original source program, or at least the
TEXT files, this may be your only choice. If you use this method, you may consider adding this command
to a cover exec for the application, or possibly including it in your PROFILE EXEC.

What is Not Provided by the 370 Accommodation Facility
Not all programs written for a 370 CMS virtual machine run successfully in an ESA-family virtual machine
with 370 Accommodation active. The following are some reasons a program may not work:

• If an application uses internal CMS fields, the application is not specifically helped by 370
Accommodation. The format and location of some internal CMS fields have changed from VM release
to VM release, and if an application program depends on the layout of such a field, it may fail. Such a
program may already fail in 370 virtual machines of the later CMS releases, so it is not unexpected.

• If an application makes use of instructions or architectural facilities that are not typically used by CMS
or 370 CMS applications, it may not run even with 370 Accommodation active. An example of such an
architectural facility is Dynamic Address Translation (DAT). If a program uses System/370 DAT, it may
not work in an ESA-family virtual machine.

• If an application selectively enables for I/O interruptions by setting only some of the channel mask
bits in the BC-mode PSW, or by setting specific bits in control register 2, it may not run even with 370
Accommodation active. When this kind of application runs in an ESA-family virtual machine, control
register 2 is not examined; and because 370 Accommodation performs only an approximate translation
of the PSW enablement, the application may not work as expected.

• If an application loads a BC-mode PSW with the problem-state bit set to one, it may not run with
370 Accommodation active. 370 Accommodation assigns a special meaning to the problem-state bit in
BC-mode PSWs, and is not always able to determine whether the special meaning should apply to the
PSW in which it's set.

Possible Adverse Effects on a Working Program
If an application program does any of the following, it may fail in an ESA-family virtual machine with 370
Accommodation active, even though it runs when 370 Accommodation is not active. If you encounter
such a program, 370 Accommodation should be set off before running the program.

1. If a program depends upon getting an operation-exception program interruption in an ESA-family
virtual machine when issuing an instruction valid only on the System/370 architecture, it may fail.
When 370 Accommodation is active, CP assumes the application was written to run in a 370 virtual
machine, and simulates the instruction. The application may become confused when the expected
program interruption does not occur. The likely result is that it will fail to exploit 31-bit addressing,
even though it is running in an ESA-family virtual machine.

2. If a program depends upon getting a specification-exception program interruption when loading a
BC-mode PSW in an ESA-family virtual machine, it may fail. When 370 Accommodation is active, CP
assumes the application was written to run in a 370 virtual machine and translates the PSW to EC
mode. The application may become confused when the expected program interruption does not occur.

3. If a program depends upon getting a specification-exception program interruption in an ESA-family
virtual machine when setting unassigned bits in the PSW system mask, it may fail. When 370
Accommodation is active, CP assumes the application was written to run in a 370 virtual machine
and is trying to enable for I/O interruptions in what it expects is a BC-mode PSW, and CP translates the
PSW to the EC-mode equivalent. The application may become confused when the expected program
interruption does not occur.

It may sound unlikely that an application would depend on any of these events, but there is a case
in which it is possible. Some application programs need to know what architecture mode they are
running in because sometimes different actions must be taken by the program for different architecture
modes. Usually such a program determines what mode it is in by obtaining the information from CMS.
That information is available from CMS using the Extract/Replace CSL service, from information in the
simulated OS CVT, or from fields in NUCON. Some applications, however, were written to determine it

370 Accommodation Facility Overview

912 z/VM: 7.3 CP Programming Services

themselves. The usual procedure is to try something that should work in one architecture mode and fail
in others. For example, the program might try loading an EC-mode, 31-bit-mode, PSW. If a specification
exception program interruption occurs, then that PSW format is not valid in the current architecture, so
the architecture must be System/370 architecture. If no program interruption occurs, then it must be one
of the ESA-family architectures. The example just given continues to work even with 370 Accommodation
active because the program interruption occurs in a 370 virtual machine, and a 370 virtual machine is not
affected by 370 Accommodation.

But, suppose the program tries loading a BC-mode PSW instead. If a program interruption occurs, it
knows it is using one of the ESA family architectures because a BC-mode PSW is not permitted in those
architectures. If no program interruption occurs, it knows it is using the System/370 architecture. But with
370 Accommodation active, CP allows a BC-mode PSW to be loaded in an ESA-family virtual machine and
silently converts it to the equivalent ESA PSW. No program interruption is presented to the application. If
an application performs a test like this, it might incorrectly conclude it is in a 370 virtual machine instead
of an ESA-family virtual machine. When you have such an application, 370 Accommodation should be set
off before running the program. One possible sign of such an incorrect conclusion by the program would
be that the program will not exploit 31-bit addressing, even when it is in an ESA-family virtual machine.

370 Accommodation Facility Overview

Chapter 27. 370 Accommodation Facility Overview 913

370 Accommodation Facility Overview

914 z/VM: 7.3 CP Programming Services

Chapter 28. 370 Accommodation Facility Definition

This chapter provides a detailed description of the architecture changes observable in ESA-family virtual
machines when the 370 Accommodation Facility is active.

System/370 Instructions
When 370 Accommodation is active, the ESA-family virtual machines are extended to support some
instructions that are normally limited to System/370 architecture. The following sections describe these
additions. Except where specifically mentioned, the operation of the instructions is as defined in the
System/370 Principles of Operation.

System/370 I/O Instructions
The following System/370 I/O instructions are provided when 370 Accommodation is active:

• START I/O (SIO)
• START I/O FAST RELEASE (SIOF)
• TEST I/O (TIO)
• HALT I/O (HIO)
• HALT DEVICE (HDV)
• CLEAR I/O (CLRIO)
• DIAGNOSE code X'18'
• DIAGNOSE code X'20'
• DIAGNOSE code X'98', SIOF-Real subcode

These instructions operate the same under 370 Accommodation as they do for System/370, with the
following changes:

• The operand System/370 I/O address is treated as an ESA-family device number.
• The addressed channel and device is available to all CPUs in the configuration. The instructions are not

restricted to a single CPU as they would be in a 370 virtual machine on VM/ESA.
• The I/O address specified is not limited to X'1FFF', which is normally the case for a 370 virtual machine

on VM/ESA. This has the effect of making it appear as though there are 256 channels available to the
program.

• If vestigial status is pending at the subchannel, it is discarded before proceeding with instruction
execution. For more information on this new type of status in the subchannel, see “Vestigial Status” on
page 921.

• If the subchannel is not enabled at the beginning of instruction execution, it becomes enabled before
proceeding with instruction execution. That is, bit 8 of word 1 of the subchannel-information block
associated with the subchannel is set to one.

• I/O interruptions generated from operations initiated by these instructions are masked by interruption
subclass (ISC) not channel number. Whether a CPU is enabled for interruptions is determined,
therefore, by bit 6 of the PSW and the interruption-subclass mask in control register 6, not channel-
enablement bits in the PSW and control register 2.

For the START I/O FAST RELEASE (SIOF) and CLEAR I/O (CLRIO) instructions, it should additionally be
noted that bit 0 of control register 0, the block-multiplexing-control bit, is examined during instruction
execution, even though that bit position is unassigned in the ESA-family architectures.

370 Accommodation Facility Definition

© Copyright IBM Corp. 1991, 2023 915

SET STORAGE KEY (SSK)
This instruction operates the same under 370 Accommodation as it does for System/370, with the
following changes:

• This instruction operates as if bit 7 of control register 0, the System/370 storage-key-exception-control
bit, were set to one. That is, bit 7 of control register 0 is not examined, and is considered to be a one
during instruction execution.

INSERT STORAGE KEY (ISK)
This instruction operates the same under 370 Accommodation as it does for System/370, with the
following changes:

• This instruction operates as if bit 7 of control register 0, the System/370 storage-key-exception-control
bit, were set to one. That is, bit 7 of control register 0 is not examined, and is considered to be a one
during instruction execution.

• This instruction operates as if the PSW were in BC mode, with respect to determining what should be
placed into bit positions 29-30 of general register R₁.

RESET REFERENCE BIT (RRB)
This instruction operates the same under 370 Accommodation as it does for System/370, with the
following changes:

• This instruction operates as if bit 7 of control register 0, the System/370 storage-key-exception-control
bit, were set to one. That is, bit 7 of control register 0 is not examined, and is considered to be a one
during instruction execution.

ESA-Family Instructions
When 370 Accommodation is active, the following ESA-family instructions are changed. Except where
specifically mentioned, the operation of the instructions is as defined in the Principles of Operation
document appropriate to the specific ESA-family architecture. References are made below to the term
vestigial status. For more information on this new type of status in the subchannel, see “Vestigial Status”
on page 921.

TEST SUBCHANNEL (TSCH)
This instruction operates normally, with the following change:

• If executed against a subchannel that has vestigial status pending, the instruction is executed as if the
vestigial status were normal status. That is, the status is stored in the interruption-response block (IRB),
with bit 31 of word 0, the status-pending bit, set to one. The status is then cleared, and the instruction
completed with condition code 0.

STORE SUBCHANNEL (STSCH)
This instruction operates normally, with the following change:

• If executed against a subchannel that has vestigial status pending, the instruction is executed as if the
vestigial status were normal status. That is, the status is stored in the subchannel-information block
(SCHIB), with bit 31 of word 0, the status-pending bit, set to one. The status remains pending as
vestigial status.

TEST PENDING INTERRUPTION (TPI)
This instruction operates normally, with the following change:

• If TPI recognizes and clears an interruption condition, it discards any vestigial status pending at the
subchannel. The status in abeyance behind the vestigial status — there must be such status for

370 Accommodation Facility Definition

916 z/VM: 7.3 CP Programming Services

the subchannel to be interruption-pending — becomes ordinary pending status, and the subchannel
becomes no longer interruption-pending.

Discarding Vestigial Status
The following ESA-family instructions are changed to discard any vestigial status at the beginning of
instruction execution. That is, if vestigial status is pending at the subchannel when any of the following
instructions is executed, the vestigial status is discarded before proceeding with instruction execution.
If any additional status was held in abeyance behind the vestigial status, it will become normal pending
status.

• CLEAR SUBCHANNEL (CSCH)
• HALT SUBCHANNEL (HSCH)
• MODIFY SUBCHANNEL (MSCH)
• RESUME SUBCHANNEL (RSCH)
• START SUBCHANNEL (SSCH)
• DIAGNOSE code X'58'
• SSCH-Real subcode of DIAGNOSE code X'98'
• DIAGNOSE code X'A4'
• DIAGNOSE code X'A8'

Other Instructions
When 370 Accommodation is active, the following instructions are changed:

DIAGNOSE code X'28'
This instruction is provided in both System/370 virtual machines and ESA-family virtual machines. When
used by System/370 programs, the Ry register contains a device address, but when used by ESA-family
programs, the Ry register contains a subchannel number. Since CP does not know, when the instruction is
issued, what kind of program is running, the following heuristic is used to interpret the Ry value specified
by the program when 370 Accommodation is active: If the Ry value, when viewed as a System/370 device
address, selects a device which exists, and at least one of the following is true, then the Ry value is
interpreted as a device address. Otherwise, the Ry value is interpreted as a subchannel number.

• There is an active channel program on the device with that device address, and the channel program
was started by a System/370 I/O instruction (e.g., SIO or SIOF).

• The Ry value, when viewed as a 370-XA subchannel number, does not select a subchannel with a device
assigned to it.

• The Ry value, when viewed as a 370-XA subchannel number, selects a subchannel with a device
assigned to it, but there is no active channel program on that device.

The Interval Timer
The System/370 architecture offers a timing facility called the interval timer, which is a location in storage
which is updated by the machine as time passes. When running in a System/370 virtual machine on
VM/ESA, the CP SET TIMER command can be used to select whether the interval timer should be updated
both when the virtual machine is running and when the virtual machine is in wait state (TIMER REAL), or
just when the virtual machine is running (TIMER ON). If no use of the interval timer is intended, the CP
SET TIMER OFF command can be used to disable interval timer emulation.

When 370 Accommodation is active, CP will respect the setting of the CP SET TIMER command, and will
emulate the presence of an interval timer in ESA-family virtual machines. Note, however, that since this
is done without the machine assistance that is normally available for System/370 virtual machines, the
interval timer may not be decremented as often as prescribed by the System/370 Principles of Operation.
On average, though, CP will update the interval timer at the proper overall rate. The observable difference

370 Accommodation Facility Definition

Chapter 28. 370 Accommodation Facility Definition 917

is that it may not be as smooth as it would be if machine assistance were available. For example, instead
of updating the interval timer once every 1/300 of a second, it may be updated twice in 1/150 of a
second, or three times in 1/100 of a second.

When 370 Accommodation is activated, the setting of CP SET TIMER is switched from OFF to either ON
or REAL, depending on what it was set to before the virtual machine switched to one of the ESA family of
architectures. If the System/370 architecture was not previously used, the default is ON. This is the same
transition that occurs when a SET MACHINE 370 command is processed.

When an interval timer interruption becomes pending, it is masked by bit 24 of control register 0,
the interval-timer subclass-mask bit in the System/370 architecture, even though that bit position is
unassigned in the ESA-family architectures. When an interval-timer external interruption is reflected, the
interruption condition is never combined with other external interruption conditions, even though this can
occur in the System/370 architecture.

When 370 Accommodation is active, the CP SET TIMER command is available to change the type
of interval-timer emulation. Normally this command is not available to ESA-family virtual machines.
Similarly, the EXTERNAL INTERVAL command can be used to force an interval-timer interruption to
become pending.

PSW Conversions
When 370 Accommodation is active, certain events in an ESA-family virtual machine cause changes to be
made to the Program Status Word (PSW), either when it is being introduced or when it is being stored. The
following is a summary of the PSW conversions that can occur. They are described in more detail following
the summary.

• When a BC-mode PSW is introduced, it is converted to an equivalent EC-mode PSW. 8

• When an EC-mode PSW with unassigned bits set in the system mask is introduced, it is repaired by
converting the system mask to the equivalent EC-mode system mask.

• When a mapped PSW is introduced, it is converted into an EC-mode PSW substantially equivalent to
the original EC-mode PSW. For more information on this new PSW format, see “Mapped PSWs” on page
919.

• When a supervisor call, external, I/O, or program interruption is being presented, and the interruption
new PSW is a BC-mode PSW, or in the case of I/O interruptions, if the I/O new PSW is a BC-mode
or 24-bit EC-mode PSW, the EC-mode PSW that would be stored as the interruption-old PSW is first
converted to BC mode so that the interruption code can be stored as part of the old PSW. If such a
conversion cannot be done without loss of information, it is converted to a mapped PSW instead.

BC-mode PSW Conversion
When a program written for System/370 introduces a BC-mode PSW with 370 Accommodation active,
it is converted to an EC-mode PSW. A BC-mode PSW is typically introduced with a LOAD PSW (LPSW)
instruction or when a new PSW is loaded during the interruption processing. Commands such as CP
STORE PSW and CP SYSTEM RESTART can also be used to introduce a new PSW.

However the PSW is introduced, it is converted into an EC-mode PSW using the following process:

1. The condition code is moved from bit positions 34-35 to 18-19.
2. The program mask is moved from bit positions 36-39 to 20-23.
3. Bit 6, the EC-mode I/O-enablement bit, is set to one if any of bits 0-5 are set to one.
4. Bits 0-5, 16-17, and 24-39 are set to zero.
5. Bit 12, the EC-mode bit is set to one.

When this conversion is performed, no interruption or other indication is presented to the program.

8 PSWs in the ESA family are not called EC mode, because since only one PSW format exists, differentiation is
not necessary. The term as used here refers to any PSW with bit 12 set to one.

370 Accommodation Facility Definition

918 z/VM: 7.3 CP Programming Services

BC-mode System Mask Conversion
When a program written for System/370 introduces a system mask in the (EC-mode) PSW setting
unassigned bits to one, the PSW is repaired. Specifically, whenever the PSW has a format error caused by
an unassigned bit in the system mask being set to one, if the rest of the PSW is valid, the format error is
repaired by clearing bits 0-5 of the PSW and setting bit 6, the I/O enablement bit, to one. No interruption
or other indication of this repair action is presented to the program.

Mapped PSW Conversion
When a mapped PSW is introduced, it is converted into an EC-mode PSW that is approximately the same
as the EC-mode PSW from which the mapped PSW was originally formed. Mapped PSWs are described in
detail in “Mapped PSWs” on page 919. Mapped PSWs may be stored, for example, as interruption old
PSWs If an interruption handler reloads the interruption old PSW, introducing the mapped PSW as the
current PSW, it is converted into an EC-mode PSW.

If the mapped PSW was unchanged from the time it was stored, then the new EC-mode PSW can differ
from the original EC-mode PSW only in the following ways:

• If the original PSW had a key other than X'0' or X'E', the key has been restored to X'0' instead. Unless
the program was depending upon getting an access exception for a key mismatch, this should not cause
any detrimental effects. Since the original PSW had to be in supervisor state to be mapped in the first
place, changing the key this way does not violate any virtual-machine protection mechanisms.

• If the original PSW was enabled for machine-check interruptions, it is now disabled.
• If the original DAT-off PSW had bit 16 set to one, it is now set to zero. Bit 16 is not significant for CMS

programs that do not use DAT, so this should not be noticeable.

PSW Conversions During Interruption Processing
When an external, supervisor call, program, or I/O interruption is being presented and the interruption
new PSW is a BC-mode PSW, or in the case of I/O interruptions, if the I/O new PSW is a BC-mode or 24-bit
EC-mode PSW, the EC-mode PSW that would be stored as the interruption old PSW is first converted to
BC mode. This is necessary in order to store the interruption code in the old PSW, which is where 370 CMS
applications expect it to be. See “Interruption Parameters” on page 920 for more information on the
storing of interruption parameters when 370 Accommodation is active. If the PSW cannot be converted
without loss of information, it is converted to a mapped PSW instead.

Specifically, if bits 0-5, 16-17, and 24-39 in the original EC-mode PSW are all zeros, then it can be directly
converted to a BC-mode PSW with no loss of information. The following describes that process:

1. The condition code is moved from bit positions 18-19 to 34-35.
2. The program mask is moved from bit positions 20-23 to 36-39.
3. Bits 18-23 are set to zero.
4. Bits 0-5, the BC-mode I/O-enablement bits for channels 0 through 5, are set to one if bit 6 was one in

the original PSW.
5. Bit 12, the EC-mode bit, is set to zero.

Mapped PSWs
If the PSW cannot be converted directly without losing information, it is transformed into a mapped PSW.
This is the only condition that causes a PSW to be mapped. See “PSW Mapping Algorithm” on page 924
for details of the transformation. A mapped PSW may be relied on to have the following attributes:

• Bit 6 contains the I/O enablement mask bit.
• Bit 7 contains the external enablement mask bit.
• Bit 14 contains the wait-state bit.
• Bits 16-31, when a mapped PSW is stored, contain the interruption code. When a mapped PSW is

reloaded, these bits are ignored.

370 Accommodation Facility Definition

Chapter 28. 370 Accommodation Facility Definition 919

• Bits 32-33 contain the instruction-length code (ILC) of the instruction which caused the interruption, if
appropriate for the type of interruption,

• Bits 34-35 contain the condition code.
• Bits 36-39 contain the program mask.

The PSW fields previously listed have the same bit positions in a mapped PSW as they do in a BC-mode
PSW. This is appropriate since the interruption handler expects to see a BC-mode old PSW. So long as an
interruption handler confines itself to changing just those bits in the interruption old PSW, the mapped
PSW may be reloaded safely and still be transformed by CP back into a proper EC-mode PSW.

Interruption Parameters
When a 370 CMS application replaces one of CMS's interruption new PSWs, it probably replaces it with
a BC-mode PSW. A program that replaces an interruption new PSW, or even part of an interruption new
PSW, is called a PSW stealer. When a PSW stealer's interruption handler is driven, it typically examines
the interruption to see if it is one that requires special processing. If so, the processing is done, and
the interrupted program is resumed. If not, the interruption is typically passed on to CMS by loading the
PSW that was the new PSW before it was stolen. For instance, if the program is trying to use the clock
comparator, it may replace CMS's external new PSW to trap interruptions due to the clock comparator
before CMS sees them. If the external interruption is from the clock comparator, it is handled. If the
external interruption is not from the clock comparator, it is passed on to CMS. For example, the program
may be driving a particular I/O device and want to trap I/O interruptions arriving from that device before
CMS sees them.

Interruption codes, such as the external interruption code and the I/O interruption code, are stored
as part of the interruption old PSW in System/370 architecture when the PSW at the time of the
interruption is in BC mode. In the ESA-family architectures, however, they are stored in other locations
in the prefix page. A 370 program that steals a PSW probably looks for the interruption code and other
parameters in the locations that are reserved for them according to the BC-mode definition instead of
the EC-mode definition. When 370 Accommodation is active, CP handles the different requirements by
storing interruption parameters in both sets of locations if the interruption new PSW is in BC mode, or in
the case of I/O interruptions, if the I/O new PSW is a BC-mode or 24-bit EC-mode PSW. The parameters
are put in both sets of locations rather than just in the BC-mode locations to allow CMS to find them
where it expects if the PSW stealer ends up passing the interruption on to CMS for processing. Because
the restart new PSW and the machine-check new PSW are not typically stolen by CMS programs, this
checking is only performed for external, SVC, program, and I/O interruptions.

Because the interruption code is stored as part of the BC-mode old PSW, and these bits are already in
use in an EC-mode PSW, the current (always EC-mode) PSW is converted to BC mode before storing it
during interruption presentation. Because an EC-mode PSW in ESA-family architectures contains more
information than a System/370 BC-mode PSW, something must be done when bits are set in the EC-mode
PSW that cannot be transferred directly to a BC-mode PSW. When it is not possible to convert the
BC-mode PSW into EC mode without losing information, an attempt is made to convert it into a mapped
PSW. The setting of some bits causes the mapping operation to be skipped, some bits are ignored, and
some bits are relocated to other positions in the new, mapped PSW. If the resulting BC-mode or mapped
PSW is subsequently reloaded, an approximation of the original EC-mode PSW is restored by relocating
the bits back to their original positions. See “PSW Conversions During Interruption Processing” on page
919 for general information and “PSW Mapping Algorithm” on page 924 for details of the transformation.

Along with converting the current PSW to BC mode during presentation, the new PSW is converted
to EC mode, if it is not in EC mode already, as it becomes the current PSW. This procedure should
allow the interruption handler to find the interruption parameters either where they belong for BC-mode
PSWs or where they belong for EC-mode PSWs. An interruption presented in this way is called a hybrid
interruption.

Special Conditions
The following special conditions may arise during the presentation of the interruption and the storing of
the interruption parameters:

370 Accommodation Facility Definition

920 z/VM: 7.3 CP Programming Services

• If a program loads a BC-mode PSW that exactly matches the external, SVC, or program new PSW, either
all or none of the following may occur to the value in the location assigned for the corresponding old
PSW:

– The value is converted to a BC-mode or mapped PSW
– The value is combined with the ILC (if appropriate for that type of interruption) and with the

interruption code
– The value is replaced in the old PSW location.

• The storing of the interruption old PSW may be observed to be a multiple-access reference. That is,
intermediate values may be observed by other CPUs in the location assigned to hold the interruption old
PSW before the final value is stored. The storing of the interruption old PSW is normally single-access
and doubleword-concurrent.

Presentation of Interruptions
Under 370 Accommodation, when an external, I/O, program, or SVC interruption is to be presented,
the corresponding interruption new PSW is first fetched and examined. When this interruption new PSW
is an EC-mode PSW, the interruption is presented as an ESA-family interruption; when the interruption
new PSW is a BC-mode PSW, the interruption is presented as a hybrid interruption. In the case of I/O
interruptions, if the I/O new PSW is a 31-bit EC-mode new PSW, the interruption is presented as an
ESA-family interruption; when the I/O new PSW is a BC-mode or 24-bit EC-mode PSW, the interruption
is presented as a hybrid interruption. A hybrid interruption differs from an ESA-family interruption in the
following ways:

• Before being stored as the interruption old PSW, the PSW at the time of the interruption is transformed
into an equivalent BC-mode PSW, if possible. Otherwise, the PSW is transformed into a mapped PSW.
See “PSW Conversions During Interruption Processing” on page 919 for information about this PSW
conversion.

• In addition to storing interruption parameters according to the ESA-family of architectures, parameters
are stored according to System/370 BC mode. For external, SVC, and program interruptions, the
interruption code appears both in its ESA-family architecture location and in bytes 2-3 of the
interruption old PSW. For I/O interruptions, the device number is stored in bytes 2-3 of the I/O old PSW,
and an ESA-family I/O interruption code (including the subchannel ID and the subchannel's interruption
parameter) is stored in its usual location.

• In System/370 architecture, a side effect of an I/O interruption is to clear the status pending at
the subchannel. In ESA-family architectures, the subchannel remains status-pending until TSCH is
executed (or the status is cleared another way). Under 370 Accommodation, a hybrid I/O interruption
differs from both of these: a copy of the status is stored as the System/370 channel-status word
(CSW), but the subchannel remains status-pending with vestigial status until some other event clears
the vestigial status (see “Vestigial Status” on page 921).

When 370 Accommodation is active, all I/O interruptions store a System/370 CSW. If the interruption is
not a hybrid interruption, this is the only way in which the interruption differs from a normal ESA-family
I/O interruption. Specifically, if the I/O interruption is not a hybrid interruption, no device number is stored
in the I/O old PSW, and the subchannel remains status-pending with normal (not vestigial) status.

Vestigial Status
When a hybrid I/O interruption is presented, the pending interruption condition is cleared at the
subchannel, and subchannel status is stored in the form of a System/370 channel-status word (CSW).
This status also remains pending in the subchannel as vestigial status. Vestigial status is handled as
follows:

1. If TSCH or STSCH is executed against a subchannel that has vestigial status pending, the instruction
is executed as if the vestigial status were normal pending status. That is, TSCH stores the status (with
the status-pending bit on) in the IRB, clears it, and completes with condition code 0. STSCH stores the
status (with status-pending on) in the SCHIB but leaves it pending as vestigial status.

370 Accommodation Facility Definition

Chapter 28. 370 Accommodation Facility Definition 921

2. If CSCH, HDV, HIO, HSCH, MSCH, RSCH, SIO, SIOF, SSCH, TIO, DIAGNOSE code X'18', DIAGNOSE code
X'20', DIAGNOSE code X'58', DIAGNOSE code X'98' SIOF-Real and SSCH-Real subcode, DIAGNOSE
code X'A4', or DIAGNOSE code X'A8' is executed against a subchannel that has vestigial status
pending, the vestigial status is discarded and the instruction thereafter executes normally.

3. If additional status is presented (either intermediate or primary status following intermediate status,
or secondary status following primary status, or unsolicited status) while vestigial status is pending at
the subchannel, then the subchannel becomes interruption-pending. The additional status is held in
abeyance in the channel subsystem until the vestigial status is cleared. Such status is never merged
with the vestigial status, even for combinations for which the ESA-family architectures would permit
merging.

In such a case, when the interruption subsequently occurs for this subchannel, any vestigial status
that is still pending at that time is discarded, and the status in abeyance becomes ordinary pending
status. The interruption is then presented as having arisen from this (formerly abeyant) status.
Presentation of this interruption follows standard 370-Accommodation rules: it is presented as a
ESA-family or hybrid interruption according to the I/O new PSW. Note that if a hybrid interruption is
presented, the new (formerly abeyant) status itself becomes vestigial status.

4. TPI does not present an I/O-interruption code designating a subchannel that has only vestigial status
pending because, by definition, such a subchannel is not interruption-pending. However, as noted
above, the arrival of subsequent status for a subchannel that has vestigial status pending makes that
subchannel interruption-pending again. In that case, TPI can recognize and clear that interruption
condition. If TPI presents an I/O-interruption code designating a subchannel with status in abeyance
behind vestigial status, then the vestigial status is discarded during the execution of TPI. The abeyant
status becomes ordinary pending status; and the subchannel becomes no longer interruption-pending.

Programming Notes:

1. Discarding the vestigial status on SIO, SIOF, or SSCH usually makes the subchannel idle and allows the
new I/O request to proceed. However, if subsequent status was held in abeyance behind the vestigial
status, then the status in abeyance becomes normal (not vestigial) pending status when the original
vestigial status is discarded. This newly pending status may prevent execution of a new start function.

2. A consequence of the handling of status that the device presents while vestigial status is pending in
the subchannel is that 370 Accommodation will not work reliably in conjunction with a PSW-stealing
program in a virtual multiprocessor environment when more than one CPU is simultaneously enabled
for the same interruption subclass. As long as only one processor remains enabled for interruptions
from a subchannel, the program that receives a hybrid I/O interruption is guaranteed that the status
remains available to TSCH provided that the TSCH is executed before the CPU next enables for
interruptions from that subchannel. When multiple CPUs are enabled for the same subclass, the
status made vestigial by presentation of an interruption on one CPU may be prematurely cleared by
presentation on another CPU of an interruption arising from subsequent status.

Notes on the Definition of Vestigial Status:

1. The handling of vestigial status when additional status arrives (described in case “3” on page 922) is
done for the following reasons:

a. A program that processes the interruption according to the ESA-family architectures must be able
to retrieve the first status report through TSCH. Thus, the arrival of additional status after the hybrid
interruption is presented but before the program reaches its TSCH must not cause the vestigial
status to be discarded.

b. Conversely, a program that processes the interruption according to the System/370 architecture
must be allowed to receive the second status report. That is, the vestigial status must not postpone
presentation of the second status indefinitely because this could result in a hang condition: A
program written for System/370 will use the status logged in the CSW and will never issue TSCH.
When this program is finished with the CSW, it will simply reenable I/O interruptions. At that time,
the vestigial status can safely be discarded and the second status report presented.

The critical dependency here is that an ESA-family program will issue TSCH before enabling for I/O
interruptions. ESA-family programs that delay the TSCH beyond the point of reenablement may fail

370 Accommodation Facility Definition

922 z/VM: 7.3 CP Programming Services

under 370 Accommodation because a second incoming status report will clear the vestigial status
before it can be presented to TSCH.

2. Merging of vestigial status with subsequent status is prohibited because such merging would not
preserve the behavior desired for 370 Accommodation. If status were merged, then the single
resulting status report would have to be classified as either vestigial or ordinary status, and neither is
correct. Making the merged status vestigial prevents the subsequent status from being presented in
the form of a System/370 CSW. Programs written for System/370 will never process the second status
condition. Conversely, making the merged status ordinary status may cause the first status condition
to be presented redundantly in CSW form, so that programs written for System/370 will process the
same status indication twice.

Forbidding merging has the additional benefit of simplifying the 370 Accommodation environment by
ensuring that when status is presented in a CSW, a subsequent TSCH will present identical status.
Thus, System/370 and ESA-family programs will see the same sequence of status reports.

The CMS 370 Accommodation Facility
When the SET CMS370AC ON command is used to activate the CMS level of 370 Accommodation, the
following actions are taken by CMS:

• The current setting of the CP 370 Accommodation facility is interrogated and preserved for restoration
when the CMS 370 Accommodation facility is turned off again.

• The CP SET 370ACCOM ON command is issued to turn on the CP 370 Accommodation facility.
• The CMS I/O and external new PSWs are replaced with BC-mode PSWs which direct interruption

processing to glue code.
• When the glue code gets control on an I/O or external interruption, it converts the old PSW associated

with the interruption from a BC mode or mapped PSW to the original EC-mode PSW that was in effect
at the time of the interruption. Control is then passed to the normal CMS interruption handler by loading
the interruption new PSW that was in effect before the SET CMS370AC ON command was issued.

Notes on the Definition:

1. The intent of these actions is to allow CP and CMS to better handle 370 programs which steal only
part of the interruption new PSW. Consider a program which overlays just the low-order three bytes of
the I/O new PSW. The original I/O new PSW used by CMS is a 31-bit EC-mode PSW. If an application
overlays just the low-order three bytes, the result will still be a 31-bit EC-mode PSW. Loading such a
PSW during the reflection of an I/O interruption does not trigger CP's hybrid-interruption processing,
so the application's interruption handler will not find the interruption parameters in the locations it
expects. Moreover, the application's interruption handler will receive control in 31-bit mode, which
is likely to cause it to fail, as 370 programs normally expect to run in 24-bit mode. Finally, if the
instruction address in the original CMS I/O new PSW is above the 16-megabyte line, the resulting PSW
has an instruction address which points neither to the CMS interruption handler nor to the application's
interruption handler. Clearly a failure is very likely if control is passed to an unintentional location in
storage.

2. Now consider the same scenario, having issued the SET CMS370AC ON command before running the
370 program. Now when the 370 program executes, the I/O new PSW is in BC mode, which in fact
is what the application was coded to expect. When an I/O interruption occurs, hybrid interruption
processing is performed by CP because the new PSW is in BC mode. This allows the application's
interruption handler to find the interruption parameters in the locations it expects. The application's
interruption handler will also receive control in 24-bit mode, which is what it expects. Since the CMS
glue code is guaranteed to reside below the 16-megabyte line, there's no danger of an incorrect
instruction address being formed when the I/O new PSW is modified.

3. If the application's interruption handler loads the original CMS I/O new PSW that it found, it would
pass control to the glue code. The glue code will convert the I/O old PSW back into its original
EC-mode form, because that's what the CMS interruption handler expects to find, and then pass
control to the I/O interruption handler by loading the original 31-bit EC-mode PSW. This allows the
CMS I/O interruption handler to be entered in the addressing mode it expects, with an interruption old

370 Accommodation Facility Definition

Chapter 28. 370 Accommodation Facility Definition 923

PSW in the form it expects. The pending status which caused the I/O interruption is still pending as
vestigial status, and is thus available to be drained by the TSCH instruction in the CMS I/O interruption
handler.

If the SET CMS370AC OFF command is issued, CMS restores its I/O and external new PSWs to their
original values, and sets the CP 370 Accommodation facility to what it was when SET CMS370AC ON
was issued. It is very important that the CP SET 370ACCOM OFF command not be issued when SET
CMS370AC ON is in effect. This would leave CMS with BC-mode I/O and external new PSWs without the
CP facility active to convert them into EC mode when an interruption occurs. CMS will probably fail soon
after receiving the next I/O or external interruption.

Although the CMS 370 Accommodation facility is very useful for running certain types of PSW-stealing
applications, it should be noted that since it causes CMS to run with BC-mode I/O and external new PSWs,
it generates some additional overhead due to the extra CP processing involved with hybrid interruptions.
This extra processing will occur even when you are not running a 370 application program. If possible, it
is best to limit your use of the CMS 370 Accommodation facility to when you need it for a particular 370
application program instead of running with it active all of the time.

PSW Mapping Algorithm
“PSW Conversions During Interruption Processing” on page 919 describes a case when it is necessary to
convert, when using 370 Accommodation, an EC-mode PSW to a BC-mode PSW. If that is not possible
without losing information, the EC-mode PSW is converted instead into a mapped PSW. This section
describes the details of that conversion. This information is presented for diagnostic purposes only.

If an EC-mode PSW cannot be converted directly to a BC-mode PSW without losing information, it is
transformed according to the following table:

Table 211. Converting an EC-mode PSW to a mapped PSW. This table shows what happens to each bit of an ESA-family EC-mode PSW as it
gets converted to a mapped PSW during interruption presentation. This conversion only occurs for PSWs that cannot be converted without
loss of information.

Bit Positions
in Original EC-
mode PSW

Meaning in EC-mode
PSW

Bit Positions
in New
Mapped PSW

Explanation

0 Unassigned N/A A 1 in this position will prevent conversion.

1 PER 13 This bit position is vacated in order to free up contiguous bits for the
addressing mode and high-order bits of the instruction address.

2-4 Unassigned N/A A 1 in any of these positions will prevent conversion.

5 DAT N/A A 1 in this position will prevent conversion.

6 I/O enablement 6 This bit is left in this position in case it is manipulated by the interruption
handler.

7 External enablement 7 This bit is left in this position in case it is manipulated by the interruption
handler.

8-11 Key 11 CMS typically uses only keys X'0' and X'E' in the PSW. These values will be
converted to B'0' and B'1', respectively. Any other PSW key will be converted
to B'0'.

12 EC mode N/A A 0 in this position will prevent conversion. Bit 12 of the new mapped PSW will
be set to 0 to indicate BC mode. This guarantees that the mapped PSW has
an early format error associated with it, which in turn ensures that CP will be
notified if this mapped PSW is ever re-loaded.

13 Machine-check
enablement

N/A This bit will be ignored in the EC-mode PSW. When the mapped PSW is later
re-loaded, the machine-check enablement bit will be set to 0.

14 Wait state 14 This bit is left in this position in case it is manipulated by the interruption
handler.

15 Problem state N/A A 1 in this position will prevent conversion. Bit 15 of the new PSW will be set
to 1 to indicate the PSW is a mapped PSW.

370 Accommodation Facility Definition

924 z/VM: 7.3 CP Programming Services

Table 211. Converting an EC-mode PSW to a mapped PSW. This table shows what happens to each bit of an ESA-family EC-mode PSW as it
gets converted to a mapped PSW during interruption presentation. This conversion only occurs for PSWs that cannot be converted without
loss of information. (continued)

Bit Positions
in Original EC-
mode PSW

Meaning in EC-mode
PSW

Bit Positions
in New
Mapped PSW

Explanation

16 Address-space control
for ESA or Z;
unassigned for XC

N/A A 1 in this position will be ignored. If the virtual machine is in ESA mode or Z
mode, the bit is not effective anyway (PSW bit 5 is off). If the virtual machine is
in XC mode, the bit must be 0.

17 Address-space control
for ESA or Z; AR-mode
for XC

10 This bit is preserved because if the virtual machine is in XC mode, this bit
position indicates access-register mode.

18-19 Condition code 34-35 Relocate to positions assigned for this field in a BC-mode PSW.

20-23 Program mask 36-39 Relocate to positions assigned for this field in a BC-mode PSW.

24-31 Unassigned N/A A 1 in any of these positions will prevent conversion.

32 Addressing mode 0

33-37 Bits 1-5 of instruction
address

1-5

38-39 Bits 6-7 of instruction
address

8-9

40-63 Bits 8-31 of instruction
address

40-63

The following table shows the converse, which is where each bit of the resulting mapped PSW originates:

Table 212. Constructing a mapped PSW. This table shows where each bit of the resulting mapped PSW originates, when an ESA-family
EC-mode PSW is converted to a mapped PSW during interruption presentation. This conversion only occurs for PSWs that cannot be
converted without loss of information.

Bit Positions
in Resulting
Mapped PSW

Meaning in BC-mode
PSW

Bit Positions
in Original EC-
mode PSW

Explanation

0 Channel 0 32 Addressing mode bit of original EC-mode PSW

1-5 Channels 1-5 33-37 Bits 1-5 of instruction address in EC-mode PSW

6 I/O enablement 6

7 External enablement 7

8-9 Key bits 0-1 38-39 Bits 6-7 of the instruction address in EC-mode PSW

10 key bit 2 17 The access-register-mode bit for XC-mode virtual machines

11 Key bit 3 8-11 The 4-bit key in the EC-mode PSW will be encoded into one bit for the mapped
PSW.

12 BC/EC mode N/A Bit 12 of the new mapped PSW will be set to 0 to indicate BC mode

13 Machine-check
enablement

1 PER bit of original EC-mode PSW

14 Wait state 14

15 Problem State N/A This bit will be set to one in the new mapped PSW. It and bit 12 are the flags
that this BC-mode PSW is actually a mapped PSW.

16-31 Interruption code N/A This field is the reason behind the conversion. When the interruption is
presented, bits 16-31 of the interruption old PSW will contain the interruption
code appropriate for the interruption.

32-33 ILC N/A When the interruption is presented, bits 32-33 of the interruption old PSW will
contain the instruction-length code appropriate for the interruption.

34-35 Condition code 18-19

36-39 Program mask 20-23

370 Accommodation Facility Definition

Chapter 28. 370 Accommodation Facility Definition 925

Table 212. Constructing a mapped PSW. This table shows where each bit of the resulting mapped PSW originates, when an ESA-family
EC-mode PSW is converted to a mapped PSW during interruption presentation. This conversion only occurs for PSWs that cannot be
converted without loss of information. (continued)

Bit Positions
in Resulting
Mapped PSW

Meaning in BC-mode
PSW

Bit Positions
in Original EC-
mode PSW

Explanation

40-63 Bits 8-31 of instruction
address

40-63

When a mapped PSW is loaded, it is converted back into an approximation of the original EC-mode PSW
from which it was formed. This conversion takes place whenever the loaded PSW has bit 15 set to one,
and bits 1-5, 8-9, and 12 set to zero. Any other loaded PSW with bit 12 set to zero is treated like a normal
BC-mode PSW.

370 Accommodation Facility Definition

926 z/VM: 7.3 CP Programming Services

Chapter 29. Store Hypervisor Information (STHYI)
Instruction

Use the STHYI instruction to access certain system information available from the following function
codes:
FC=0

Processor Capacity Information
FC=1

Hypervisor Environment Information
FC=2

Guest List
FC=3

Designated Guest Information (requires a search key value)
FC=4

Resource Pool List
FC=5

Designated Resource Pool Information (requires a search key value)
FC=6

Resource Pool Member List (requires a search key value)

The STHYI instruction is valid in both supervisor and problem states, whenever the store-hypervisor-
information-facility bit, bit 74 of the response to the STORE FACILITY LIST EXTENDED (STFLE)
instruction, is 1. Otherwise, STHYI results in an operation exception.

When the instruction is provided, some function codes might not be provided as indicated by return code.
Function code 0 can be used to determine which function codes are provided and whether they are
authorized for the issuer of STHYI.

The R1 and R2 fields each designate an even-odd pair of general registers and must specify different
even-numbered registers; otherwise a specification exception is recognized.

Note: Bits 16-23 of the instruction are currently unassigned. These bits should contain zeros; otherwise,
the program may not operate compatibly in the future.

A function code in general register R1 indicates which function to perform. All other input is determined
by the function code. The function code is in the rightmost 16 bits of general register R1 (bits 16-31 in
ESA/390 or ESA/XC mode, or bits 48-63 in z/Architecture or z/XC mode). For function codes 2, 4 and 6,
the buffer length as an unsigned number of 4 KB pages must be specified in general register R1 (bits 0-15
in ESA/390 or ESA/XC mode, or bits 32-47 in z/Architecture or z/XC mode). If the value is zero, then a
specification exception is recognized. Those bits should be zeros for other function codes to ensure the
program operates compatibly in the future. No checking is done for address wrapping. No checking is

Store Hypervisor Information (STHYI) Instruction

© Copyright IBM Corp. 1991, 2023 927

done for access to pages of the buffer beyond the last page updated by the response. The remaining bits
of general register R1 should be zeros in order for the program to operate compatibly in the future.

General register R2 contains the guest logical address of a response buffer, which must be on a 4 KB
boundary or a specification exception is recognized. For function codes 0, 1, 3 and 5 the response buffer
is 4 KB in length. For function codes 2, 4 and 6 the length is as specified in R1.

Function codes 3, 5 and 6 require an additional parameter that identifies the object for which that
information is requested. Guest general register R1+1 must contain the guest logical address of a buffer on
a doubleword boundary containing the search key. The key value is an 8-byte value containing a string of
up to 8 EBCDIC characters, left-aligned and padded on the right with blanks. If the buffer is not aligned on
a doubleword boundary a specification exception is recognized.

Input addresses are guest logical addresses with the same meaning as described for DIAGNOSE codes.
See Chapter 1, “The DIAGNOSE Instruction in a Virtual Machine,” on page 3.

When the instruction completes with condition code 3, R2+1 contains the following return code. The return
code is stored in bits 0-31 in ESA/390 or ESA/XC mode, or bits 0-63 in z/Architecture or z/XC mode. The
response buffer is unmodified except as noted below.

Return Code in
R2+1

Meaning

X'04' Unsupported function code

X'08' Not authorized for the function code

X'0C' Missing or invalid name

X'10' Specified name is unknown

X'14' Response buffer is too small. The minimum required size is returned in response
buffer field INFCRQSZ. Values are also provided in INFCVRSN, INFCHDLN and
INFCTOTL. Other response buffer contents are unpredictable.

When the instruction completes with condition code 0, general register R2+1 contains a return code of 0
indicating that the instruction completed successfully. The return code is stored in bits 0-31 in ESA/390
or ESA/XC mode, or bits 0-63 in z/Architecture or z/XC mode. The contents of the buffer beyond the
reported length of the response are unpredictable.

Unless otherwise stated:

• All character strings returned in the response buffer are left-justified EBCDIC padded on the right with
blanks (X'40') and without a terminating null character. This is referred to as "EBCDIC format" in the
response buffer.

• All numeric values are unsigned binary values.

Programs written to use HCPINFBK COPY on one release of z/VM can be executed on a new release of
z/VM without change. To exploit the function provided by a follow-on release, examine your program for
necessary changes. A program will be able to use the contents of the response buffer without change as
long as the following are all true:

• Offset fields are used to locate the contents of sections of the response buffer.
• Length fields are used to determine whether fields are included in the response buffer.
• Count fields are used to determine how many of a repeated section are included in the response buffer.
• Validity bits are used to determine whether values of certain fields are meaningful. If the validity bit is

off, then the values of the specified fields could not be determined.

Function Code X'0000' - Processor Capacity Information
Function code X'0000' returns information on capacity of general-purpose processors (CPs), z Integrated
Information Processor (zIIP), and Integrated Facility for Linux processors (IFLs), including current CPU

Store Hypervisor Information (STHYI) Instruction

928 z/VM: 7.3 CP Programming Services

resources available at the machine, logical partition, hypervisor, and guest levels, as well as any caps
that restrict the guest's use of these resources. This information enables an application to determine the
maximum capacity of CPs, zIIPs, and IFLs available to software running in the issuing virtual machine.

When function code X'0000' is specified, general register R2 contains the guest logical address of a 4 KB
response buffer, which must be on a 4 KB boundary or a specification exception is recognized.

When the instruction completes with condition code 3, the response buffer located by the guest logical
address in R2 is unchanged. When the instruction completes with condition code 0, CPU capacity
information will be stored into the buffer at the guest logical address specified by register R2.

The response buffer returns one section of data for each of the following:

• The Header section. See “Function Code X'0000' Response Header (INF0HDR DSECT)” on page 929.
• The Machine section. See “Function Code X'0000' Response Machine Section (INF0MAC DSECT)” on

page 931.
• The Partition section. See “Function Code X'0000' Response Partition Section (INF0PAR DSECT)” on

page 933.

The response buffer returns up to three sections of data for each of the following:

• The Hypervisor section. See “Function Code X'0000' Response Hypervisor Section (INF0HYP DSECT)”
on page 935.

• The Guest section. See “Function Code X'0000' Response Guest Section (INF0GST DSECT)” on page
937.

Multiple levels can be reported for the Hypervisor and Guest sections when, for example, z/VM is run as a
guest of z/VM. A maximum of three levels of Hypervisor and Guest sections are reported. When more than
three levels exist, the three levels closest to the hardware that support the STHYI instruction are returned
in the buffer. These sections are numbered 1-3, starting with the level that is closest to the hardware. The
remaining unused area in the 4 KB response buffer is cleared (set to 0).

Each Hypervisor section in the function code 0 response contains a mask of the supported function codes.
When running a hypervisor second level or higher, a complete response for function code 0 is available
only if all hypervisor levels support function code 0.

Function Code X'0000' Response Buffer Format (INF0HDR)
INF0HDR DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The header section is placed at the beginning of the response buffer and identifies the location and length
of all other sections. Valid sections have nonzero offset and length values in the header. Each section
provides information about the validity of fields within that section.

Function Code X'0000' Response Header (INF0HDR DSECT)

 +------+------+------+------+--------------------+------+
 0 |:HFLG1|:HFLG2|:HVAL1|:HVAL2|////////////////////|:HYGCT|
 +------+------+------+------+-------------+------+------+
 8 | INFHTOTL | INFHDLN | INFMOFF | INFMLEN |
 +-------------+-------------+-------------+-------------+
 10 | INFPOFF | INFPLEN | INFHOFF1 | INFHLEN1 |
 +-------------+-------------+-------------+-------------+
 18 | INFGOFF1 | INFGLEN1 | INFHOFF2 | INFHLEN2 |
 +-------------+-------------+-------------+-------------+
 20 | INFGOFF2 | INFGLEN2 | INFHOFF3 | INFHLEN3 |
 +-------------+-------------+-------------+-------------+
 28 | INFGOFF3 | INFGLEN3 |///////////////////////////|
 +-------------+-------------+---------------------------+
 30

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF0HDR Mappings for STHYI

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 929

0000 0 Bitstring 1 INFHFLG1 Header Flag Byte 1 These flag
 settings indicate the environment
 that the instruction was executed
 in and may influence the value of
 validity bits. The validity bits,
 not these flags, should be used
 to determine if a field is valid.
 1... INFGPDU X'80' INFGPDU Global Performance
 Data unavailable
 .1.. INFSTHYI X'40' INFSTHYI One or more
 hypervisor levels below this
 level does not support the STHYI
 instruction. When this flag is
 set the value of INFGPDU is not
 meaningful because the state of
 the Global Performance Data
 setting cannot be determined.
 ..1. INFVSI X'20' INFVSI Virtualization stack
 is incomplete. This bit indicates
 one of 2 cases: 1. One or more
 hypervisor levels do not support
 STHYI. For this case INFSTHYI
 will also be set. 2. There were
 more than 3 levels of
 guest/hypervisor information to
 report.
 ...1 INFBASIC X'10' INFBASIC Execution
 environment is not within a
 logical partition.
0001 1 Bitstring 1 INFHFLG2 Header Flag Byte 2 reserved for
 IBM use
0002 2 Bitstring 1 INFHVAL1 Header Validity Byte 1 Reserved
 for IBM use
0003 3 Bitstring 1 INFHVAL2 Header Validity Byte 2 Reserved
 for IBM use
0004 4 Bitstring 3 * Reserved for IBM use
0007 7 Unsigned 1 INFHYGCT Count of reported hypervisors/
 guests. This indicates how many
 hypervisor/guest sections are in
 the response buffer up to a
 maximum of 3.
 00000003 INF0YGMX 3 Maximum Hypervisor/Guest
 sections
0008 8 Unsigned 2 INFHTOTL Total length of the response
 buffer in bytes, including the
 Header, Machine, Partition, and
 Hypervisor and Guest sections.
000A 10 Unsigned 2 INFHDLN Length of Header Section in bytes
000C 12 Unsigned 2 INFMOFF Offset to Machine Section mapped
 by INF0MAC
000E 14 Unsigned 2 INFMLEN Length of Machine Section in
 bytes
0010 16 Unsigned 2 INFPOFF Offset to Partition Section
 mapped by INF0PAR
0012 18 Unsigned 2 INFPLEN Length of Partition Section in
 bytes
0014 20 Unsigned 8 INFHYGS1 Hypervisor/Guest Header 1
0014 20 Unsigned 2 INFHOFF1 Offset to Hypervisor Section 1,
 mapped by INF0HYP
0016 22 Unsigned 2 INFHLEN1 Length of Hypervisor Section 1 in
 bytes
0018 24 Unsigned 2 INFGOFF1 Offset to Guest Section 1 mapped
 by INF0GST
001A 26 Unsigned 2 INFGLEN1 Length of Guest Section 1 in
 bytes
001C 28 Unsigned 8 INFHYGS2 Hypervisor/Guest Header 2
001C 28 Unsigned 2 INFHOFF2 Offset to Hypervisor Section 2
 mapped by INF0HYP
001E 30 Unsigned 2 INFHLEN2 Length of Hypervisor Section 2 in
 bytes
0020 32 Unsigned 2 INFGOFF2 Offset to Guest Section 2 mapped
 by INF0GST
0022 34 Unsigned 2 INFGLEN2 Length of Guest Section 2 in
 bytes
0024 36 Unsigned 8 INFHYGS3 Hypervisor/Guest Header 3
0024 36 Unsigned 2 INFHOFF3 Offset to Hypervisor Section 3
 mapped by INF0HYP
0026 38 Unsigned 2 INFHLEN3 Length of Hypervisor Section 3 in
 bytes
0028 40 Unsigned 2 INFGOFF3 Offset to Guest Section 3 mapped
 by INF0GST
002A 42 Unsigned 2 INFGLEN3 Length of Guest Section 3 in

Store Hypervisor Information (STHYI) Instruction

930 z/VM: 7.3 CP Programming Services

 bytes
002C 44 Bitstring 4 * Reserved for IBM use
 00000030 INF0HDSZ *-INF0HDR Size of header in bytes
 00000006 INF0HDSD (*-INF0HDR+7)/8 Size of Header in
 doublewords

Function Code X'0000' Response Hypervisor/Guest Entry (INF0HDYG DSECT)

 +-------------+-------------+-------------+-------------+
 0 | INFYOFF | INFYLEN | INFGOFF | INFGLEN |
 +-------------+-------------+-------------+-------------+
 8

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF0HDYG Mappings for STHYI
0000 0 Unsigned 2 INFYOFF Offset to Hypervisor Section
 mapped by INF0HYP
0002 2 Unsigned 2 INFYLEN Length of Hypervisor Section in
 bytes
0004 4 Unsigned 2 INFGOFF Offset to Guest Section mapped by
 INF0GST
0006 6 Unsigned 2 INFGLEN Length of Guest Section in bytes
 00000008 INF0HYSZ *-INF0HDYG Size of section
 description in bytes
 00000001 INF0HYSD (*-INF0HDYG+7)/8 Size of section
 description in doublewords.

Function Code X'0000' Response Machine Section (INF0MAC DSECT)

 +------+------+------+------+-------------+-------------+
 0 |:MFLG1|:MFLG2|:MVAL1|:MVAL2| INFMSCPS | INFMDCPS |
 +------+------+------+------+-------------+-------------+
 8 | INFMSIFL | INFMDIFL | INFMNAME- |
 +-------------+-------------+---------------------------+
 10 | -INFMNAME | INFMTYPE |
 +---------------------------+---------------------------+
 18 | INFMMANU |
 | |
 +---+
 28 | INFMSEQ |
 | |
 +---------------------------+---------------------------+
 38 | INFMPMAN |///////////////////////////|
 +---------------------------+---------------------------+
 40 | INFMPLNM |
 +-------------+------------+----------------------------+
 48 | INFMSZIIP | INFMDZIIP |////////////////////////////|
 +-------------+------------+----------------------------+
 50

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF0MAC Mappings for STHYI
0000 0 Bitstring 1 INFMFLG1 Machine Flag Byte 1
 1... INFMPOOL X'80' INFMPOOL Reserved for IBM
 use.
0001 1 Bitstring 1 INFMFLG2 Machine Flag Byte 2 reserved for
 IBM use
0002 2 Bitstring 1 INFMVAL1 Machine Validity Byte 1
 1... INFMPROC X'80' INFMPROC Processor Count
 Validity When this bit is on, it
 indicates that INFMSCPS,
 INFMDCPS, INFMSIFL, and INFMDIFL
 contain valid counts. The
 validity bit may be off when: -
 STHYI support is not available on
 a lower level hypervisor, or -
 Global Performance Data is not
 enabled.
 .1.. INFMMID X'40' INFMMID Machine ID Validity
 This bit being on indicates that
 a SYSIB 1.1.1 was obtained from

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 931

 STSI and information reported in
 the following fields is valid:
 INFMTYPE, INFMMANU, INFMSEQ, and
 INFMPMAN.
 ..1. INFMMNAM X'20' INFMMNAM Machine Name
 Validity This bit being on
 indicates that the INFMNAME field
 is valid.
 ...1 INFMPLNV X'10' INFMPLNV Reserved for IBM
 use.
 1... INFMZIIPV X'08' INFMZIIPV Machine zIIP
 reporting validity. When on, the
 INFMSZIIP and INFMDZIIP fields
 are valid.
0003 3 Bitstring 1 INFMVAL2 Machine Validity Byte 2 Reserved
 for IBM use
0004 4 Unsigned 2 INFMSCPS Count of shared CPs configured in
 the machine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 (INFMPROC)
0006 6 Unsigned 2 INFMDCPS Count of dedicated CPs configured
 in the machine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 (INFMPROC)
0008 8 Unsigned 2 INFMSIFL Count of shared IFLs configured
 in the machine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 (INFMPROC)
000A 10 Unsigned 2 INFMDIFL Count of dedicated IFLs
 configured in the machine or in
 the physical partition if the
 system is physically partitioned.
 (Valid if (INFMPROC)
000C 12 EBCDIC 8 INFMNAME Machine Name, in EBCDIC format.
 This is the CPC name associated
 with the processor. (Valid if
 (INFMMNAM)
0014 20 EBCDIC 4 INFMTYPE Machine Type, in EBCDIC format.
 This is the machine type reported
 by STSI 1.1.1 (Basic Machine
 Configuration). (Valid if
 (INFMMID)
0018 24 EBCDIC 16 INFMMANU Machine Manufacturer, in EBCDIC
 format. This is the name of the
 manufacturer of the configuration
 reported by STSI 1.1.1. (Valid if
 (INFMMID)
0028 40 EBCDIC 16 INFMSEQ Sequence Code, in EBCDIC format.
 This is the sequence code of the
 configuration reported by STSI
 1.1.1. (Valid if (INFMMID)
0038 56 EBCDIC 4 INFMPMAN Plant of Manufacture, in EBCDIC
 format. This is the 4-byte code
 reported by STSI 1.1.1. (Valid if
 (INFMMID)
003C 60 Bitstring 4 * Reserved for IBM use
0040 64 EBCDIC 8 INFMPLNM Reserved for IBM use.
0048 72 Signed 2 INFMSZIIP Count of shared zIIPs configured
 in the macine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 INFMZIIPV)
004A 74 Signed 2 INFMDZIIP Count of dedicated zIIPs
 configured in the machine or in
 the physical partition if the
 system is physically partitioned.
 (Valid if INFMZIIPV)
004C 76 Bitstring 4 * Reserved for IBM use
 00000050 INF0MSIZ *-INF0MAC Size of Machine Section
 in bytes
 0000000A INF0MSZD (*-INF0MAC+7)/8 Size of Machine
 Section in doublewords

Store Hypervisor Information (STHYI) Instruction

932 z/VM: 7.3 CP Programming Services

Function Code X'0000' Response Partition Section (INF0PAR DSECT)

 +------+------+------+------+-------------+-------------+
 0 |:PFLG1|:PFLG2|:PVAL1|:PVAL2| INFPPNUM | INFPSCPS |
 +------+------+------+------+-------------+-------------+
 8 | INFPDCPS | INFPSIFL | INFPDIFL |/////////////|
 +-------------+-------------+-------------+-------------+
 10 | INFPPNAM |
 +---------------------------+---------------------------+
 18 | INFPWBCP | INFPABCP |
 +---------------------------+---------------------------+
 20 | INFPWBIF | INFPABIF |
 +---------------------------+---------------------------+
 28 | INFPLGNM |
 +---------------------------+---------------------------+
 30 | INFPLGCP | INFPLGIF |
 +---------------------------+---------------------------+
 38 | INFPPLNM |
 +-------------+-------------+---------------------------+
 40 | INFPSZIIP | INFPDZIIP | INFPWBZIIP |
 +-------------+-------------+---------------------------+
 48 | INFPABZIIP | INFPLGZIIP |
 +---------------------------+---------------------------+
 50

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF0PAR Mappings for STHYI
0000 0 Bitstring 1 INFPFLG1 Partition Flag Byte 1
 1... INFPMTEN X'80' INFPMTEN Multithreading
 (MT) is enabled
 .1.. INFPPOOL X'40' INFPPOOL Reserved for IBM
 use.
0001 1 Bitstring 1 INFPFLG2 Partition Flag Byte 2 reserved
 for IBM use.
0002 2 Bitstring 1 INFPVAL1 Partition Validity Byte 1
 1... INFPPROC X'80' INFPPROC Processor Count
 Validity This bit being on
 indicates that INFPSCPS,
 INFPDCPS, INFPSIFL, and INFPDIFL
 contain valid counts. When
 INFPZIIPV is on, INFPSZIIP and
 INFPDZIIP contain valid counts.
 .1.. INFPWBCC X'40' INFPWBCC Partition
 weight-based capped capacity
 validity. This bit being on
 indicates that INFPWBCP and
 INFPWBIF are valid. When
 INFPZIIPV is also on, INFPWBZIIP
 is valid.
 ..1. INFPACC X'20' INFPACC Partition absolute
 capped capacity validity. This
 bit being on indicates that
 INFPABCP and INFPABIF are valid.
 When INFPZIIPV is also on,
 INFPABZIIP is valid.
 ...1 INFPPID X'10' INFPPID Partition ID
 Validity. This bit being on
 indicates that a SYSIB 2.2.2 was
 obtained from STSI and
 information reported in the
 following fields is valid:
 INFPPNUM, INFPPNAM
 1... INFPLGVL X'08' INFPLGVL LPAR Group
 Absolute Capacity Capping
 information validity This bit
 being on indicates that INFPLGNM,
 INFPLGCP and INFPLGIF are valid.
 When INFPZIIPV is also on,
 INFPLGZIIP is valid.
 1.. INFPPLNV X'04' INFPPLNV Reserved for IBM
 use.
 1. INFPZIIPV X'02' INFPZIIPV Partition zIIP
 reporting validity. When on, INFPSZIIP
 and INFPDZIIP are valid, and INFPWBZIIP,
 INFPABZIIP and INFPLGZIIP may be valid
 depending on additional validity bits.
0003 3 Bitstring 1 INFPVAL2 Partition Validity Byte 2
 reserved for IBM use.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 933

0004 4 Unsigned 2 INFPPNUM Logical Partition Number. This is
 the Logical-Partition Number
 reported by STSI 2.2.2. (Valid if
 INFPPID)
0006 6 Unsigned 2 INFPSCPS Count of shared logical CP cores
 configured for this partition.
 (Valid if INFPPROC)
0008 8 Unsigned 2 INFPDCPS Count of dedicated logical CP
 cores configured for this
 partition. (Valid if INFPPROC)
000A 10 Unsigned 2 INFPSIFL Count of shared logical IFL cores
 configured for this partition.
 (Valid if INFPPROC)
000C 12 Unsigned 2 INFPDIFL Count of dedicated logical IFL
 cores configured for this
 partition. (Valid if INFPPROC)
000E 14 Bitstring 2 * Reserved for IBM use
0010 16 EBCDIC 8 INFPPNAM Logical Partition Name, in EBCDIC
 format. This is the Logical-
 Partition Name reported by STSI
 2.2.2. (Valid if INFPPID)
0018 24 Unsigned 4 INFPWBCP Partition weight-based capped
 capacity for CPs, a scaled number
 where X'00010000' represents one
 CPU. Cap is applicable only to
 shared processors. Zero if not
 capped. (Valid if INFPWBCC)
001C 28 Unsigned 4 INFPABCP Partition absolute capped
 capacity for CPs, a scaled number
 where X'00010000' represents one
 core. Cap is applicable only to
 shared processors. Zero if not
 capped. (Valid if INFPACC)
0020 32 Unsigned 4 INFPWBIF Partition weight-based capped
 capacity for IFLs, a scaled
 number where X'00010000'
 represents one core. Cap is
 applicable only to shared
 processors. Zero if not capped.
 (Valid if INFPWBCC)
0024 36 Unsigned 4 INFPABIF Partition absolute capped
 capacity for IFLs, a scaled
 number where X'00010000'
 represents one core. Cap is
 applicable only to shared
 processors. Zero if not capped.
 (Valid if INFPACC)
0028 40 EBCDIC 8 INFPLGNM LPAR Group Name (Valid if
 INFPLGVL) EBCDIC, padded on right
 with blanks when in an LPAR group
 and valid. Binary zeros
 otherwise. Only reported when
 there is a group cap on CP, IFL, or
 zIIP CPU types and the partition has
 the capped CPU type.
0030 48 Unsigned 4 INFPLGCP LPAR Group Absolute Capacity
 Value for the CP CPU type when
 nonzero. Nonzero only when
 INFPLGNM is nonzero and a cap is
 defined for this LPAR Group for
 the CP CPU type. When nonzero,
 contains a scaled number where
 X'00010000' represents one core.
 (Valid if INFPLGVL)
0034 52 Unsigned 4 INFPLGIF LPAR Group Absolute Capacity
 Value for the IFL CPU type when
 nonzero. Nonzero only when
 INFPLGNM is nonzero and a cap is
 defined for this LPAR Group for
 the IFL CPU type. When nonzero,
 contains a scaled number where
 X'00010000' represents one core.
 (Valid if INFPLGVL)
0038 56 EBCDIC 8 INFPPLNM Reserved for IBM use.
 00000040 INF0PSIZ *-INF0PAR Size of Partition
 Section in bytes
 00000008 INF0PSZD (*-INF0PAR+7)/8 Size of Partition
 Section in doublewords
0040 64 Signed 2 INFPSZIIP Count of shared logical zIIP
 cores configured for this
 partition. (Valid if INFPZIIPV)
0042 66 Signed 2 INFPDZIIP Count of dedicated logical zIIP

Store Hypervisor Information (STHYI) Instruction

934 z/VM: 7.3 CP Programming Services

 cores configured for this
 partition. (Valid if INFPZIIPV)

0044 68 Signed 2 INFPWBZIIP Partition weight-based capped
 capacity for zIIPs, a scaled
 number where X'00010000'
 represents one core. Cap is
 applicable only to shared
 processors. Zero if not capped.
 (Valid if INFPWBCC & INFPZIIPV)
0048 72 Signed 4 INFPABZIIP Partition absolute capped
 capacity for zIIPs, a scaled
 number where X'00010000'
 represents one core. Cap is
 applicable only to shared
 processors. Zero if not capped.
 (Valid if INFPACC & INFPZIIPV)
004C 76 Signed 4 INFPLGZIIP LPAR Group Absolute Capacity
 Value for the zIIP CPU type when
 nonzero. Nonzero only when
 INFPLGNM is nonzero and a cap is
 defined for this LPAR Group for
 the zIIP CPU type. When nonzero,
 contains a scaled number where
 X'00010000' represents one core.
 (Valid if INFPLGVL & INFPZIIPV)
 00000050 INF0PSIZ *-INF0PAR Size of Partition
 Section in bytes
 0000000A INF0PSZD (*-INF0PAR+7)/8 Size of Partition
 Section in doublewords

Function Code X'0000' Response Hypervisor Section (INF0HYP DSECT)

 +------+------+------+------+------+------+------+------+
 0 |:YFLG1|:YFLG2|:YVAL1|:YVAL2|:YTYPE|//////|:YCPT |:YIFLT|
 +------+------+------+------+------+------+------+------+
 8 | INFYSYID |
 +---+
 10 | INFYCLNM |
 +-------------+-------------+-------------+-------------+
 18 | INFYSCPS | INFYDCPS | INFYSIFL | INFYDIFL |
 +------+------+------+------+------+------+------+------+
 20 |:YINS0|:YINS1|:YINS2|:YINS3|:YINS4|:YINS5|:YINS6|:YINS7|
 +------+------+------+------+------+------+------+------+
 28 |:YAUT0|:YAUT1|:YAUT2|:YAUT3|:YAUT4|:YAUT5|:YAUT6|:YAUT7|
 +------+------+------+------+------+------+------+------+
 30 |:YZIIPT|/////| :YSZIIP |///////////////////////////|
 +------+------+-------------+------+------+------+------+
 38

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF0HYP Mappings for STHYI
0000 0 Bitstring 1 INFYFLG1 Hypervisor Flag Byte 1
 1... INFYLMCN X'80' INFYLMCN Consumption method
 is used to enforce Limithard
 caps.
 .1.. INFYLMPR X'40' INFYLMPR If on, Limithard
 caps use prorated core time for
 capping. If off, raw CPU time is
 used.
 ..1. INFYMTEN X'20' INFYMTEN Hypervisor is
 MT-enabled.
0001 1 Bitstring 1 INFYFLG2 Hypervisor Flag Byte 2 Reserved
 for IBM use
0002 2 Bitstring 1 INFYVAL1 Hypervisor Validity Byte 1
 1... INFYZIIPV X'80' INFYZIIPV Hypervisor zIIP
 reporting validity. When on,
 INFYSZIIP, INFYZIIPT fields are
 valid.
0003 3 Bitstring 1 INFYVAL2 Hypervisor Validity Byte 2
 Reserved for IBM use
0004 4 Unsigned 1 INFYTYPE Hypervisor type
 00000001 INFYTVM X'01' INFYTVM z/VM is the
 hypervisor
 00000002 INFYTKVM X'02' INFYTKVM KVM is the
 hypervisor

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 935

 00000003 INFYTZCX X'03' INFYTZCX zCX is the
 hypervisor
0005 5 Bitstring 1 * Reserved for IBM use
0006 6 Bitstring 1 INFYCPT Threads in use per CP core. This
 value is reported for the current
 configuration settings even when
 the guest CPUs are not dispatched
 on CPs. The value is set only
 when SMT enabled as indicated by
 INFYFLG1.INFYMTEN.
0007 7 Bitstring 1 INFYIFLT Threads in use per IFL core. This
 value is reported for the current
 configuration settings even when
 the guest CPUs are not dispatched
 on IFLs. The value is set only
 when SMT enabled as indicated by
 INFYFLG1.INFYMTEN.
0008 8 EBCDIC 8 INFYSYID System Identifier, in EBCDIC
 format, left justified and padded
 with blanks. This is the value
 generally specified on the
 SYSTEM_IDentifier statement in
 the system configuration file.
 Blank if non-existent.
0010 16 EBCDIC 8 INFYCLNM Cluster Name, in EBCDIC format,
 left justified and padded with
 blanks. This is the name on the
 SSI statement in the system
 configuration file. Blank if
 non-existent.
0018 24 Unsigned 2 INFYSCPS Number of CP cores shared by
 non-dedicated CP-dispatched
 virtual CPUs of this hypervisor.
001A 26 Unsigned 2 INFYDCPS Reserved for IBM use
001C 28 Unsigned 2 INFYSIFL Number of IFL cores shared by
 non-dedicated IFL-dispatched
 virtual CPUs of this hypervisor.
001E 30 Unsigned 2 INFYDIFL Reserved for IBM use
0020 32 Bitstring 8 INFYINSF (0) Mask of installed function codes.
 Bit position corresponding to the
 function code number is on if the
 function code is supported by
 this hypervisor. Bits may be on
 even if the guest is not
 authorized.
0020 32 Bitstring 1 INFYINS0 Function codes 0-7.
 1... INFYFCCP X'80' INFYFCCP FC=0 - Obtain CPU
 Capacity Info.
 .1.. INFYFHYP X'40' INFYFHYP FC=1 - Hypervisor
 Environment Info
 ..1. INFYFGLS X'20' INFYFGLS FC=2 - Guest List
 ...1 INFYFGST X'10' INFYFGST FC=3 - Designated
 Guest Info
 1... INFYFPLS X'08' INFYFPLS FC=4 - Resource
 Pool List
 1.. INFYFPDS X'04' INFYFPDS FC=5 - Designated
 Resource Pool Information
 1. INFYFPML X'02' INFYFPML FC=6 - Resource
 Pool Member List
0021 33 Bitstring 1 INFYINS1 Function codes 8-15.
0022 34 Bitstring 1 INFYINS2 Function codes 16-23.
0023 35 Bitstring 1 INFYINS3 Function codes 24-31.
0024 36 Bitstring 1 INFYINS4 Function codes 32-39.
0025 37 Bitstring 1 INFYINS5 Function codes 40-47.
0026 38 Bitstring 1 INFYINS6 Function codes 48-55.
0027 39 Bitstring 1 INFYINS7 Function codes 56-63.
0028 40 Bitstring 8 INFYAUTF (0) Mask of authorized function
 codes. Bit position corresponding
 to the function code number is on
 if the function code is supported
 by this hypervisor and the guest
 has been authorized in the
 directory.
0028 40 Bitstring 1 INFYAUT0 Function codes 0-7.
 1... INFYFCCP X'80' INFYFCCP FC=0 - Obtain CPU
 Capacity Info.
 .1.. INFYFHYP X'40' INFYFHYP FC=1 - Hypervisor
 Environment Info
 ..1. INFYFGLS X'20' INFYFGLS FC=2 - Guest List
 ...1 INFYFGST X'10' INFYFGST FC=3 - Designated
 Guest Info
 1... INFYFPLS X'08' INFYFPLS FC=4 - Resource

Store Hypervisor Information (STHYI) Instruction

936 z/VM: 7.3 CP Programming Services

 Pool List
 1.. INFYFPDS X'04' INFYFPDS FC=5 - Designated
 Resource Pool Information
 1. INFYFPML X'02' INFYFPML FC=6 - Resource
 Pool Member List
0029 41 Bitstring 1 INFYAUT1 Function codes 8-15.
002A 42 Bitstring 1 INFYAUT2 Function codes 16-23.
002B 43 Bitstring 1 INFYAUT3 Function codes 24-31.
002C 44 Bitstring 1 INFYAUT4 Function codes 32-39.
002D 45 Bitstring 1 INFYAUT5 Function codes 40-47.
002E 46 Bitstring 1 INFYAUT6 Function codes 48-55.
002F 47 Bitstring 1 INFYAUT7 Function codes 56-63.
0030 48 Bitstring 1 INFYZIIPT Threads in use per zIIP core.
 This value is reported for the
 current configuration settings
 even when the guest CPUs are not
 dispatched on zIIPs. The value is
 set only when SMT enabled as
 indicated by INFYFLG1.INFYMTEN.
 (Valid if INFYZIIPV)
0031 49 Bitstring 1 * Reserved for IBM use.
0032 50 Signed 2 INFYSZIIP Number of zIIP cores shared by
 non-dedicated zIIP-dispatched
 virtual CPUs of this hypervisor.
 (Valid if INFYZIIPV)
 Note: zIIP virtual CPUs are never
 dedicated.
0034 52 Signed 4 * Reserved for IBM use.
 00000038 INF0YSIZ *-INF0HYP Size of Hypervisor
 Section in bytes
 00000007 INF0YSZD (*-INF0HYP+7)/8 Size of
 Hypervisor Section in doublewords

Function Code X'0000' Response Guest Section (INF0GST DSECT)
 All counts of CPs, IFLs, and zIIPs and capacity values
 are based on quantities of cores when multithreading is
 enabled. While virtual CPUs are thread dispatched
 they have the potential of consuming an entire core.
 Therefore virtual CP, IFL, and zIIP counts are counts of
 virtual CPUs but treated as counts of cores.

 +------+------+------+------+---------------------------+
 0 |:GFLG1|:GFLG2|:GVAL1|:GVAL2| INFGUSID- |
 +------+------+------+------+-------------+-------------+
 8 | -INFGUSID | INFGSCPS | INFGDCPS |
 +------+--------------------+-------------+-------------+
 10 |:GCPDT|////////////////////| INFGCPCC |
 +------+------+-------------+------+--------------------+
 18 | INFGSIFL | INFGDIFL |:GIFDT|////////////////////|
 +-------------+-------------+------+--------------------+
 20 | INFGIFCC |:GPFLG|////////////////////|
 +---------------------------+------+--------------------+
 28 | INFGPNAM |
 +---------------------------+---------------------------+
 30 | INFGPCCC | INFGPICC |
 +-------------+--------+----+---------------------------+
 38 | INFGSZIIP |:GZIIPDT|////| INFGZIIPCC |
 +-------------+--------+----+---------------------------+
 40 | INFGPZCC |///////////////////////////|
 +---------------------------+---------------------------+
 38

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF0GST Mappings for STHYI
0000 0 Bitstring 1 INFGFLG1 Guest Flag Byte 1
 1... INFGMOB X'80' INFGMOB Guest mobility is
 enabled.
 .1.. INFGMCPT X'40' INFGMCPT Guest has multiple
 CPU types
 ..1. INFGCPLH X'20' INFGCPLH Guest CP dispatch
 type has LIMITHARD cap.
 ...1 INFGIFLH X'10' INFGIFLH Guest IFL dispatch
 type has LIMITHARD cap.
 1... INFGVCPT X'08' INFGVCPT Virtual CPs are
 thread dispatched
 1.. INFGVIFT X'04' INFGVIFT Virtual IFLs are
 thread dispatched

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 937

 1. INFGZIIPH X'02' INFGZIIPH Guest zIIP
 dispatch type has LIMITHARD cap
 (Valid if INFGZIIPV).
 1 INFGVZIIPT X'01' INFGVZIIPT Virtual zIIPs
 are thread dispatched (Valid if
 INFGZIIPV).

0001 1 Bitstring 1 INFGFLG2 Guest Flag Byte 2 Reserved for
 IBM use
0002 2 Bitstring 1 INFGVAL1 Guest Validity Byte 1 Reserved
 for IBM use
 1... INFGZIIPV X'80' INFGZIIPV Guest zIIP
 reporting validity. When on,
 INFGSZIIP, INFGZIIPDT,
 INFGZIIPCC, INFGPZCC fields, and
 INFGZIIPH, INFGVZIIPT, INFGPZLH,
 and INFGPZPC flags are valid.
0003 3 Bitstring 1 INFGVAL2 Guest Validity Byte 2 Reserved
 for IBM use
0004 4 EBCDIC 8 INFGUSID Guest's userid, in EBCDIC format
000C 12 Unsigned 2 INFGSCPS Number of guest shared CPs
000E 14 Unsigned 2 INFGDCPS Reserved for IBM use
0010 16 Unsigned 1 INFGCPDT Dispatch type for guest CPs This
 field is valid if INFGSCPS or
 INFGDCPS is greater than zero.
 Always INGGPUCCP.
 00000000 INFGPUCCP X'00' INFGPUCCP General Purpose
 (CP)
 00000003 INFGPUCIFL X'03' INFGPUCIFL Integrated Fac
 for Linux (IFL).
 00000005 INFGPUCZIP X'05' INFGPUCZIP zSeries
 Integrated Information Processor
 (zIIP).
 000000FF INFGPUCZCP X'FF' INFGPUCZCP May be
 dispatched on zIIP and CP
 Processors due to spillover.
0011 17 Bitstring 3 * Reserved for IBM use
0014 20 Unsigned 4 INFGCPCC Guest current capped capacity for
 CP-dispatched, shared vCPUs, a
 scaled number where X'00010000'
 represents one core. Zero if not
 capped.
0018 24 Unsigned 2 INFGSIFL Number of guest shared IFLs
001A 26 Unsigned 2 INFGDIFL Reserved for IBM use
001C 28 Unsigned 1 INFGIFDT Dispatch type for guest IFLs.
 This field is valid if INFGSIFL
 or INFGDIFL is greater than zero.
 May be INFGPUCIFL or INFGPUCCP.
 00000000 INFGPUCCP X'00' INFGPUCCP General Purpose
 (CP)
 00000003 INFGPUCIFL X'03' INFGPUCIFL Integrated Fac
 for Linux (IFL).
 00000005 INFGPUCZIP X'05' INFGPUCZIP zSeries
 Integrated Information Processor
 (zIIP).
 000000FF INFGPUCZCP X'FF' INFGPUCZCP May be
 dispatched on zIIP and CP
 Processors due to spillover.
001D 29 Bitstring 3 * Reserved for IBM use
0020 32 Unsigned 4 INFGIFCC Guest current capped capacity for
 IFL-dispatched, shared vCPUs, a
 scaled number where X'00010000'
 represents one core. Zero if not
 capped.
0024 36 Bitstring 1 INFGPFLG Resource Pool Capping Flags
 1... INFGPCLH X'80' INFGPCLH Resource Pool's CP
 virtual type has LIMITHARD cap.
 .1.. INFGPCPC X'40' INFGPCPC Resource Pool's CP
 virtual type has CAPACITY cap.
 ..1. INFGPILH X'20' INFGPILH Resource Pool's
 IFL virtual type has LIMITHARD
 cap.
 ...1 INFGPIFC X'10' INFGPIFC Resource Pool's
 IFL virtual type has CAPACITY
 cap.
 1... INFPRCTM X'08' INFPRCTM Resource Pool uses
 prorated core time.
 1.. INFGPZLH X'04' INFGPZLH Resource Pool's
 zIIP virtual type has LIMITHARD
 cap. (Valid if INFGZIIPV)
 1. INFGPZPC X'02' INFGPZPC Resource Pool's
 zIIP virtual type has CAPACITY

Store Hypervisor Information (STHYI) Instruction

938 z/VM: 7.3 CP Programming Services

 cap. (Valid if INFGZIIPV)
0025 37 Bitstring 3 * Reserved for IBM use
0028 40 EBCDIC 8 INFGPNAM Resource pool name. Blanks if not
 Resource Pool.
0030 48 Unsigned 4 INFGPCCC Resource pool capped capacity for
 shared virtual CPs, a scaled
 number where X'00010000'
 represents one core if capped.
 Zero if not capped.
0034 52 Unsigned 4 INFGPICC Resource pool capped capacity for
 shared virtual IFLs, a scaled
 number where X'00010000'
 represents one core if capped.
 Zero if not capped.
0038 56 Signed 2 INFGSZIIP Number of guest shared zIIPs.
 (Valid if INFGZIIPV)
 Note: zIIP virtual CPUs are never
 dedicated.
003A 58 Signed 1 INFGZIIPDT Dispatch type for guest zIIPs.
 This field is set when INFGSZIIP
 > 0. May be INFGPUCZIIP,
 INFGPUCCP or INFGPUCZCP. (Valid
 if INFGZIIPV)
 00000000 INFGPUCCP X'00' INFGPUCCP General Purpose
 (CP)
 00000003 INFGPUCIFL X'03' INFGPUCIFL Integrated Fac
 for Linux (IFL).
 00000005 INFGPUCZIP X'05' INFGPUCZIP zSeries
 Integrated Information Processor
 (zIIP).
 000000FF INFGPUCZCP X'FF' INFGPUCZCP May be
 dispatched on zIIP and CP
 Processors due to spillover.
003B 59 Bitstring 1 * Reserved for IBM use.
003C 60 Signed 4 INFGZIIPCC Guest current capped capacity for
 zIIP-dispatched, shared vCPUs, a
 scaled number where X'00010000'
 represents one core. Zero if not
 capped. (Valid if INFGZIIPV)
0040 64 Signed 4 INFGPZCC Resource pool capped capacity for
 shared virtual zIIPs, a scaled
 number where X'00010000'
 represents one core if capped.
 Zero if not capped. (Valid if
 INFGZIIPV)
0044 68 Signed 4 * Reserved for IBM use.
 00000048 INF0GSIZ *-INF0GST Size of Guest Section
 in bytes
 00000009 INF0GSZD (*-INF0GST+7)/8 Size of Guest
 Section in doublewords

Common Header Section (INFCHDR)
This common header (INFCHDR) is imbedded at the start of the response buffer for function codes
X'0001' through X'0006'. The common header includes information about the size of the response, as well
as list designation fields used to locate and traverse a list that may be included in the response.

Common Header Format (INFCHDR DSECT)

 +-------------+-------------+---------------------------+
 0 | INFCVRSN | INFCHDLN | INFCTOTL |
 +-------------+-------------+-------------+-------------+
 8 | INFCRQSZ | INFCLSOF | INFCENLN |/////////////|
 +-------------+-------------+-------------+-------------+
 10 | INFCCTEN |///////////////////////////|
 +---------------------------+---------------------------+
 18 |///|
 =///=
 |///|
 +---+
 30 | INFCFCUS |
 | |
 +---+
 40

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 939

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INFCHDR Mappings for STHYI
 INFCHDR - INFBK Common Header of Response Buffer
 - This common header section defines the beginning
 of the response buffer for function codes that
 insert it at the start of the function-code-specific
 response buffer definition.
 - The INFxBK of each function-code-specific response
 buffer imbedding this common header describes the
 changes introduced for all version codes as a set
 of equates defined for the redefinition of INFCVRSN.
 The service level that introduced the change is also
 noted in the comment on the equates.
 - Function codes that don't return a list will have
 zero values in INFCLSOF, INFCENLN and INFCCTEN.
 - Function codes that return a list but have no list
 data to return will return zero values in INFCLSOF
 and INFCCTEN, but returns the entry length in INFCENLN.
 - If the definition of this common header changes then
 the version number for all function codes that use
 it will be increased to indicate the change in the
 response buffer format for that function code.
 - The length of the common header section (INFCHDR) will
 never change to prevent shifting offsets of fields
 in the function-code-specific block following the
 common header.
0000 0 Unsigned 2 INFCVRSN Version number indicating the
 format of the response buffer for
 the requested function code. See
 response buffer for each function
 code for associated versions.
0002 2 Unsigned 2 INFCHDLN Length of the full header that
 imbedded this common section.
0004 4 Unsigned 4 INFCTOTL Total length of the actual data
 returned in all sections of the
 response buffer.
0008 8 Unsigned 2 INFCRQSZ Required buffer size as a number
 of 4K pages needed to hold the
 complete response.
000A 10 Unsigned 2 INFCLSOF Offset to start of list from the
 beginning of the INFxBK imbedding
 this common header DSECT. Entries
 are mapped by function-
 code-specific entry definitions.
000C 12 Unsigned 2 INFCENLN Length of list entry.
000E 14 Unsigned 2 * Reserved for IBM use
0010 16 Unsigned 4 INFCCTEN Count of list entries.
0014 20 Unsigned 4 * Reserved for IBM use
0018 24 Dbl-Word 8 * (3) Reserved for IBM use
0030 48 Dbl-Word 8 INFCFCUS (2) Function code-specific section.
 Used only if redefined within an
 INFxBK imbedding INFCHDR DSECT.
 It can be redefined to add
 section offsets and lengths.
 00000040 INFCSB1 *-INFCHDR Version 1 length in
 bytes of the Common Header.
 00000008 INFCSD1 (*-INFCHDR+7)/8 Version 1 length
 in doublewords of the Common
 Header.
 00000040 INFCSZB *-INFCHDR Maximum supported
 version length in bytes of the
 Common Header.
 00000008 INFCSZD (*-INFCHDR+7)/8 Maximum supported
 version length in doublewords of
 the Common Header.

Function Code X'0001' - Hypervisor Environment Information
Function code X'0001' returns hypervisor environment information including current CPU resources
and utilization information available at the machine, logical partition, hypervisor, and guest levels. This
information enables an authorized application to perform CPU performance monitoring and management
of guests of the z/VM system.

Use of this function code is authorized in the user directory by OPTION STHYI-UTIL.

Store Hypervisor Information (STHYI) Instruction

940 z/VM: 7.3 CP Programming Services

When the instruction completes with condition code 3, the response buffer located by the guest logical
address in R2 is unchanged. When the instruction completes with condition code 0, CPU capacity and
utilization information will be stored into the buffer at the guest logical address specified by register R2.
This response buffer contains information as described by HCPINFBK COPY in HCPGPI MACLIB. Refer to
the INF1BK DSECT.

The response buffer returns one section of data for each of the following:

• The Header section. See “Function Code X'0001' Response Header (INF1BK DSECT)” on page 942.
• The Machine section. See “Function Code X'0001' Response Machine Section (INF1MAC DSECT)” on

page 945.
• The Partition section. See “Function Code X'0001' Response Partition Section (INF1PAR DSECT)” on

page 946.

The response buffer returns up to three sections of data for each of the following:

• The Hypervisor section. See “Function Code X'0001' Response Hypervisor Section (INF1HYP DSECT)”
on page 951.

• The Guest section. See “Function Code X'0001' Response Guest Section (INF1GST DSECT)” on page
954.

Multiple levels can be reported for the Hypervisor and Guest sections when, for example, z/VM is run as a
guest of z/VM. A maximum of three levels for Hypervisor and Guest sections is reported. When more than
three levels exist, the three levels closest to the hardware that support the STHYI instruction are returned
in the buffer. These sections are numbered 1-3, starting with the level reported which is closest to the
hardware. The contents of the remaining unused area in the 4 KB response buffer are unpredictable.

If the guest issuing the STHYI is not authorized the STHYI instruction completes with CC3 and RC=8.

When running z/VM second level or higher, a complete response for function code 1 is available only if all
hypervisor levels support function code 1 and the guest at each layer is authorized for function code 1.

Function Code X'0001' Response Buffer Format (INF1BK)
INF1BK DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The version number (INF1VRSN) in the function code X'0001' response header can be used to clearly
identify whether the function code is at the required service level and can be used by applications to show
actual and required version in messages when required support is missing.

The header section is placed at the beginning of the response buffer and identifies the location and length
of all other sections. Valid sections have nonzero offset and length values in the header. Each section
provides information about validity of fields within that section.

The list designation fields in the common header are stored as zeroes.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 941

Function Code X'0001' Response Header (INF1BK DSECT)

 +---+
 0 | |
 = INF1CHDR =
 | |
 +------+------+------+------+--------------------+------+
 40 |:1HFL1|:1HFL2|:1HVL1|:1HVL2|////////////////////|:1HYGC|
 +------+------+------+------+-------------+------+------+
 48 | INF1MOFF | INF1MLEN | INF1POFF | INF1PLEN |
 +-------------+-------------+-------------+-------------+
 50 | INF1YOF1 | INF1YLN1 | INF1YVR1 |/////////////|
 +-------------+-------------+-------------+-------------+
 58 | INF1GOF1 | INF1GLN1 | INF1GVR1 |/////////////|
 +-------------+-------------+-------------+-------------+
 60 | INF1YOF2 | INF1YLN2 | INF1YVR2 |/////////////|
 +-------------+-------------+-------------+-------------+
 68 | INF1GOF2 | INF1GLN2 | INF1GVR2 |/////////////|
 +-------------+-------------+-------------+-------------+
 70 | INF1YOF3 | INF1YLN3 | INF1YVR3 |/////////////|
 +-------------+-------------+-------------+-------------+
 78 | INF1GOF3 | INF1GLN3 | INF1GVR3 |/////////////|
 +-------------+-------------+-------------+-------------+
 80

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF1BK Mappings for STHYI
 Function code x'0001': Hypervisor Environment Information
 This function code reports on the environment of the
 invoker of STHYI.
 The response buffer for function code x'0001' consists
 of five or more sections of data:
 Header Section (INF1BK DSECT, imbeds INF1CHDR)
 Machine Section (INF1MAC DSECT)
 Partition Section (INF1PAR DSECT)
 Hypervisor Section 1 (INF1HYP DSECT)
 Guest Section 1 (INF1GST DSECT)
 Hypervisor Section 2 (may not be present)
 Guest Section 2 (may not be present)
 Hypervisor Section 3 (may not be present)
 Guest Section 3 (may not be present)
 One to three levels of hypervisors and guests may be
 reported. When the guest is running second level or
 higher, hypervisor/guest section 1 is filled in by the
 hypervisor running closest to the hardware, with its
 guest filling in the next section, etc. for a maximum
 of 3 levels.
 The format of this response buffer is determined by the
 hypervisor closest to the LPAR. When running directly
 in a partition, there is only one level of hypervisor
 involved in constructing the response so the version is
 the same for all sections. However when running second
 level the version of this block is generally determined
 by the first level hypervisor.
 The formats of the pairs of hypervisor and guest
 sections may differ. The specified version number
 describes the format of that section.
 Use of this function code is authorized in the User
 Directory by OPTION STHYI-UTIL.
 Error responses:
 - CC=3 RC=4 - Unsupported function code
 - The response buffer is not modified.
 - CC=3 RC=8 - Not authorized for function code
 - The response buffer is not modified.
 Update Log - see equates under INF1VRSN.
0000 0 Bitstring 64 INF1CHDR Common section of header mapped
 by INFCHDR DSECT.
0000 0 Unsigned 2 INF1VRSN Response buffer version.
 00000001 INF1V00001 X'0001' INF1V00001 Initial
 version. APAR VM66105.
0040 64 Bitstring 1 INF1HFL1 Header Flag Byte 1 These flag
 settings indicate the environment
 that the instruction was executed
 in and may influence the value of
 validity bits. The validity bits,
 not these flags, should be used

Store Hypervisor Information (STHYI) Instruction

942 z/VM: 7.3 CP Programming Services

 to determine if a field contains
 valid data.
 1... INF1GPDU X'80' INF1GPDU Global Performance
 Data unavailable.
 .1.. INF1STHY X'40' INF1STHY One or more
 hypervisor levels below this
 level does not support the STHYI
 instruction. When this flag is
 set the value of INF1GPDU is not
 meaningful because the state of
 the Global Performance Data
 setting cannot be determined.
 ..1. INF1VSI X'20' INF1VSI Virtualization
 stack is incomplete. This bit
 indicates one of 2 cases: 1. One
 or more hypervisor levels do not
 support STHYI or the FC as
 indicated by INF1STHY, INF1FCFC
 or INF1FCAU. 2. There were more
 than 3 levels of guest/hypervisor
 information to report.
 ...1 INF1BASC X'10' INF1BASC Execution
 environment is not within a
 logical partition.
 1... INF1FCFC X'08' INF1FCFC A lower level
 hypervisor supports STHYI but not
 this function code. When this
 flag is set the value of INF1GPDU
 is not meaningful because the
 state of the Global Performance
 Data setting cannot be
 determined.
 1.. INF1FCAU X'04' INF1FCAU A lower level
 hypervisor supports STHYI FC=1
 but the guest is not authorized.
 When this flag is set the value
 of INF1GPDU is not meaningful
 because the state of the Global
 Performance Data setting cannot
 be determined.
0041 65 Bitstring 1 INF1HFL2 Reserved for IBM use
0042 66 Bitstring 1 INF1HVL1 Reserved for IBM use
0043 67 Bitstring 1 INF1HVL2 Reserved for IBM use
0044 68 Unsigned 3 * Reserved for IBM use
0047 71 Unsigned 1 INF1HYGC Count of reported hypervisors/
 guests. This indicates how many
 hypervisor/guest sections are in
 the response buffer up to a
 maximum of 3.
 00000003 INF1YGMX 3,1,C'X' Maximum Hypervisor/Guest
 sections
0048 72 Unsigned 2 INF1MOFF Offset from start of INF1BK to
 Machine Section mapped by INF1MAC
004A 74 Unsigned 2 INF1MLEN Length of Machine Section in
 bytes
004C 76 Unsigned 2 INF1POFF Offset from start of INF1BK to
 Partition Section mapped by
 INF1PAR
004E 78 Unsigned 2 INF1PLEN Len of Partition Section in bytes
0050 80 Bitstring 16 INF1HYG1 (0) Hypervisor/Guest Header 1
0050 80 Unsigned 2 INF1YOF1 Offset from start of INF1BK to
 Hypervisor Section 1, mapped by
 INF1HYP.
0052 82 Unsigned 2 INF1YLN1 Length of Hypervisor Section 1 in
 bytes.
0054 84 Unsigned 2 INF1YVR1 Version number of this hypervisor
 section. Corresponds to the FC=1
 version for this hypervisor.
0056 86 Unsigned 2 * Reserved for IBM use.
0058 88 Unsigned 2 INF1GOF1 Offset from start of INF1BK to
 Guest Section 1 mapped by
 INF3GST.
005A 90 Unsigned 2 INF1GLN1 Length of Guest Section 1 in
 bytes
005C 92 Unsigned 2 INF1GVR1 Version number of this guest
 section. Corresponds to the FC=3
 version for this hypervisor.
005E 94 Unsigned 2 * Reserved for IBM use.
0060 96 Bitstring 16 INF1HYG2 (0) Hypervisor/Guest Header 2
0060 96 Unsigned 2 INF1YOF2 Offset from start of INF1BK to
 Hypervisor Section 2 mapped by
 INF1HYP.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 943

0062 98 Unsigned 2 INF1YLN2 Length of Hypervisor Section 2 in
 bytes.
0064 100 Unsigned 2 INF1YVR2 Version number of this hypervisor
 section. Corresponds to the FC=1
 version for this hypervisor.
0066 102 Unsigned 2 * Reserved for IBM use.
0068 104 Unsigned 2 INF1GOF2 Offset from start of INF1BK to
 Guest Section 2 mapped by
 INF3GST.
006A 106 Unsigned 2 INF1GLN2 Length of Guest Section 2 in
 bytes
006C 108 Unsigned 2 INF1GVR2 Version number of this guest
 section. Corresponds to the FC=3
 version for this hypervisor.
006E 110 Unsigned 2 * Reserved for IBM use.
0070 112 Bitstring 16 INF1HYG3 (0) Hypervisor/Guest Header 3
0070 112 Unsigned 2 INF1YOF3 Offset from start of INF1BK to
 Hypervisor Section 3 mapped by
 INF1HYP.
0072 114 Unsigned 2 INF1YLN3 Length of Hypervisor Section 3 in
 bytes.
0074 116 Unsigned 2 INF1YVR3 Version number of this hypervisor
 section. Corresponds to the FC=1
 version for this hypervisor.
0076 118 Unsigned 2 * Reserved for IBM use.
0078 120 Unsigned 2 INF1GOF3 Offset from start of INF1BK to
 Guest Section 3 mapped by
 INF3GST.
007A 122 Unsigned 2 INF1GLN3 Length of Guest Section 3 in
 bytes
007C 124 Unsigned 2 INF1GVR3 Version number of this guest
 section. Corresponds to the FC=3
 version for this hypervisor.
007E 126 Unsigned 2 * Reserved for IBM use.
 00000080 INF1BSB1 *-INF1BK Version 1 length in
 bytes of the Hypervisor
 Environment Information header.
 00000010 INF1BSD1 (*-INF1BK+7)/8 Version 1 length
 in doublewords of the Hypervisor
 Environment Information header.
 00000080 INF1BSZB *-INF1BK Length in bytes for
 newest version of the Hypervisor
 Environment Information header.
 00000010 INF1BSZD (*-INF1BK+7)/8 Length in
 doublewords for newest version of
 the Hypervisor Environment
 Information header.

Function Code X'0001' Response Hypervisor/Guest Entry (INF1YGHD DSECT)

 +-------------+-------------+-------------+-------------+
 0 | INF1YOFF | INF1YLEN | INF1YVRS |/////////////|
 +-------------+-------------+-------------+-------------+
 8 | INF1GOFF | INF1GLEN | INF1GVRS |/////////////|
 +-------------+-------------+-------------+-------------+
 10

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF1YGHD Mappings for STHYI
 Function code X'0001' Response Buffer
 Hypervisor/Guest section description
0000 0 Unsigned 2 INF1YOFF Offset from start of INF1BK to
 Hypervisor Section mapped by
 INF1HYP
0002 2 Unsigned 2 INF1YLEN Length of Hypervisor Section in
 bytes
0004 4 Unsigned 2 INF1YVRS Version number of this hypervisor
 section. Corresponds to the FC=1
 version for this hypervisor.
0006 6 Unsigned 2 * Reserved for IBM use.
0008 8 Unsigned 2 INF1GOFF Offset from start of INF1BK to
 Guest Section mapped by INF3GST.
000A 10 Unsigned 2 INF1GLEN Length of Guest Section in bytes
000C 12 Unsigned 2 INF1GVRS Version number of this guest
 section. Corresponds to the FC=3
 version for this hypervisor.

Store Hypervisor Information (STHYI) Instruction

944 z/VM: 7.3 CP Programming Services

000E 14 Unsigned 2 * Reserved for IBM use.
 00000010 INF1YGB1 *-INF1YGHD Version 1 length in
 bytes of the Hypervisor/Guest
 entry.
 00000002 INF1YGD1 (*-INF1YGHD+7)/8 Version 1 length
 in doublewords of the
 Hypervisor/Guest entry.
 00000010 INF1YGSB *-INF1YGHD Length in bytes for
 newest version of the
 Hypervisor/Guest entry.
 00000002 INF1YGSD (*-INF1YGHD+7)/8 Length in
 doublewords for newest version of
 the Hypervisor/Guest entry.

Function Code X'0001' Response Machine Section (INF1MAC DSECT)

 +------+------+------+------+-------------+-------------+
 0 |:1MFL1|:1MFL2|:1MVL1|:1MVL2| INF1MSCP | INF1MDCP |
 +------+------+------+------+-------------+-------------+
 8 | INF1MSIF | INF1MDIF | INF1MTYP |
 +-------------+-------------+---------------------------+
 10 | INF1MNAM |
 +---+
 18 | INF1MMAN |
 | |
 +---+
 28 | INF1MSEQ |
 | |
 +---------------------------+---------------------------+
 38 | INF1MPMA |///////////////////////////|
 +---------------------------+---------------------------+
 40 | INF1MPLNM |
 +---+
 48

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF1MAC Mappings for STHYI
 Function code X'0001' Response Buffer
 Machine Section
0000 0 Bitstring 1 INF1MFL1 Machine Flag Byte 1
 1... INF1MPOOL X'80' INF1MPOOL Reserved for IBM
 use.
0001 1 Bitstring 1 INF1MFL2 Machine Flag Byte 2 Reserved for
 IBM use.
0002 2 Bitstring 1 INF1MVL1 Machine Field Validity Byte 1
 1... INF1MPROC X'80' INF1MPROC Processor Count
 Validity When on, INF1MSCP,
 INF1MDCP, INF1MSIF, and INF1MDIF
 contain valid counts. Off when
 virtualization stack is
 incomplete (INF1HFL1.INF1VSI on).
 .1.. INF1MIDV X'40' INF1MIDV Machine ID
 Validity This bit being on
 indicates that a SYSIB 1.1.1 was
 obtained from STSI and
 information reported in the
 following fields is valid:
 INF1MTYP, INF1MMAN, INF1MSEQ, and
 INF1MPMA.
 ..1. INF1MNMV X'20' INF1MNMV Machine Name
 Validity This bit being on
 indicates that the INF1MNAM field
 is valid.
 ...1 INF1MPLNV X'10' INF1MPLNV Reserved for IBM
 use.
0003 3 Bitstring 1 INF1MVL2 Reserved for IBM use
0004 4 Unsigned 2 INF1MSCP Count of shared CPs configured in
 the machine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 INF1MPROC)
0006 6 Unsigned 2 INF1MDCP Count of dedicated CPs configured
 in the machine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 INF1MPROC)

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 945

0008 8 Unsigned 2 INF1MSIF Count of shared IFLs configured
 in the machine or in the physical
 partition if the system is
 physically partitioned. (Valid if
 INF1MPROC)
000A 10 Unsigned 2 INF1MDIF Count of dedicated IFLs
 configured in the machine or in
 the physical partition if the
 system is physically partitioned.
 (Valid if INF1MPROC)
000C 12 EBCDIC 4 INF1MTYP Machine Type, in EBCDIC format.
 This is the machine type reported
 by STSI 1.1.1 (Basic Machine
 Configuration). (Valid if
 INF1MIDV)
0010 16 EBCDIC 8 INF1MNAM Machine Name, in EBCDIC format.
 This is the CPC name associated
 with the processor. (Valid if
 INF1MNMV)
0018 24 EBCDIC 16 INF1MMAN Machine Manufacturer, in EBCDIC
 format. This is the name of the
 manufacturer of the configuration
 reported by STSI 1.1.1. (Valid if
 INF1MIDV)
0028 40 EBCDIC 16 INF1MSEQ Sequence Code, in EBCDIC format.
 This is the sequence code of the
 configuration reported by STSI
 1.1.1. (Valid if INF1MIDV)
0038 56 EBCDIC 4 INF1MPMA Plant of Manufacture, in EBCDIC
 format. This is the 4-byte code
 reported by STSI 1.1.1. (Valid if
 INF1MIDV)
003C 60 Unsigned 4 * Reserved for IBM use
0040 64 EBCDIC 8 INF1MPLNM Reserved for IBM use.
 00000048 INF1MSB1 *-INF1MAC Version 1 length in
 bytes of the Machine Section.
 00000009 INF1MSD1 (*-INF1MAC+7)/8 Version 1 length
 in doublewords of the Machine
 Section.
 00000048 INF1MSZB *-INF1MAC Length in bytes for
 newest version of the Machine
 Section.
 00000009 INF1MSZD (*-INF1MAC+7)/8 Length in
 doublewords for newest version of
 the Machine Section.

Function Code X'0001' Response Partition Section (INF1PAR DSECT)

 +------+------+------+------+-------------+-------------+
 0 |:1PFL1|:1PFL2|:1PVL1|:1PVL2| INF1PSCP | INF1PDCP |
 +------+------+------+------+-------------+------+------+
 8 | INF1PSIF | INF1PDIF | INF1PPNU |:CMOD |:PRCPU|
 +-------------+-------------+-------------+------+------+
 10 | INF1PPNA |
 +---------------------------+---------------------------+
 18 | INF1PWBC | INF1PABC |
 +---------------------------+---------------------------+
 20 | INF1PWBI | INF1PABI |
 +---------------------------+---------------------------+
 28 | INF1PLGN |
 +---------------------------+---------------------------+
 30 | INF1PLGC | INF1PLGI |
 +---------------------------+---------------------------+
 38 | INF1PPLNM |
 +---------------------------+---------------------------+
 40 | INF1PENC | INF1PENI |
 +---------------------------+---------------------------+
 48 | INF1PSXCA |
 +---+
 50 | INF1PSXIA |
 +---------------------------+---------------------------+
 58 | INF1PSXCC | INF1PSXIC |
 +---------------------------+---------------------------+
 60 | INF1PUCPA |
 +---+
 68 | INF1PUIFA |
 +---------------------------+---------------------------+
 70 | INF1PUCPC | INF1PUIFC |

Store Hypervisor Information (STHYI) Instruction

946 z/VM: 7.3 CP Programming Services

 +---------------------------+---------------------------+
 78 | INF1PGUCA |
 +---+
 80 | INF1PGUIA |
 +---------------------------+---------------------------+
 88 | INF1PGUCC | INF1PGUIC |
 +---------------------------+---------------------------+
 90 | INF1PUTOD |
 +---+
 98 | INF1PACTC |
 +---+
 A0 | INF1PLPTC |
 +---+
 A8 | INF1POLTC |
 +---+
 B0 | INF1PWTTC |
 +---+
 B8 | INF1PMTIC |
 +---+
 C0 | INF1PACTI |
 +---+
 C8 | INF1PLPTI |
 +---+
 D0 | INF1POLTI |
 +---+
 D8 | INF1PWTTI |
 +---+
 E0 | INF1PMTII |
 +---+
 E8

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF1PAR Mappings for STHYI
 Function code X'0001' Response Buffer
 Partition Section
0000 0 Bitstring 1 INF1PFL1 Partition Flag Byte 1
 1... INF1PMTE X'80' INF1PMTE Multithreading
 (MT) is enabled
 .1.. INF1PPOOL X'40' INF1PPOOL Reserved for IBM
 use.
 ..1. INF1PWTFL X'20' INF1PWTFL Wait Completion
 flag is set. This flag is not
 reliable when INF1PVL1.INF1PUTV
 is not set.
0001 1 Bitstring 1 INF1PFL2 Partition Flag Byte 2 reserved
 for IBM use.
0002 2 Bitstring 1 INF1PVL1 Partition Field Validity Byte 1
 1... INF1PPRC X'80' INF1PPRC Processor
 Configuration Validity. This bit
 being on indicates that INF1PSCP,
 INF1PDCP, INF1PSIF, and INF1PDIF
 contain valid counts and
 INF1PRCPU and INF1PCMOD are
 known.
 .1.. INF1PWCV X'40' INF1PWCV Partition
 weight-based capped capacity
 validity. This bit being on
 indicates that INF1PWBC and
 INF1PWBI are valid.
 ..1. INF1PACC X'20' INF1PACC Partition absolute
 capped capacity validity. This
 bit being on indicates that
 INF1PABC and INF1PABI are valid.
 ...1 INF1PIDV X'10' INF1PIDV Partition ID
 Validity. This bit being on
 indicates that a SYSIB 2.2.2 was
 obtained from STSI and
 information reported in the
 following fields is valid:
 INF1PPNU, INF1PPNA.
 1... INF1PLGV X'08' INF1PLGV LPAR Group
 Absolute Capacity Capping
 information validity This bit
 being on indicates that INF1PLGN,
 INF1PLGC, INF1PLGI, INF1PGUCA,
 INF1PGUIA, INF1PGUCC, and
 INF1PGUIC are valid.
 1.. INF1PPLNV X'04' INF1PPLNV Reserved for IBM
 use.
 1. INF1PENV X'02' INF1PENV Partition

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 947

 Entitlement and related
 information validity. This bit
 being on indicates that INF1PENC,
 INF1PENI, INF1PSXCA, INF1PSXIA,
 INF1PSXCC, INF1PSXIC, INF1PUCPA,
 INF1PUIFA, INF1PUCPC, INF1PUIFC
 are valid.
 1 INF1PUTV X'01' INF1PUTV Partition Core
 Utilization and related
 information validity. This bit
 being on indicates that
 INF1PFL1.INF1PWTFL, INF1PUTOD,
 INF1PACTC, INF1PLPTC, INF1POLTC,
 INF1PWTTC, INF1PMTIC, INF1PACTI,
 INF1PLPTI, INF1POLTI, INF1PWTTI,
 and INF1PMTII are valid.
0003 3 Bitstring 1 INF1PVL2 Reserved for IBM use
0004 4 Unsigned 2 INF1PSCP Count of shared logical CP cores
 configured for this partition.
 (Valid if INF1PPRC)
0006 6 Unsigned 2 INF1PDCP Count of dedicated logical CP
 cores configured for this
 partition. (Valid if INF1PPRC)
0008 8 Unsigned 2 INF1PSIF Count of shared logical IFL cores
 configured for this partition.
 (Valid if INF1PPRC)
000A 10 Unsigned 2 INF1PDIF Count of dedicated logical IFL
 cores configured for this
 partition. (Valid if INF1PPRC)
000C 12 Unsigned 2 INF1PPNU Logical Partition Number. This is
 the Logical-Partition Number
 reported by STSI 2.2.2. (Valid if
 INF1PIDV)
000E 14 Unsigned 1 INF1PCMOD Logical Partition Config Mode
 00000080 INF1PCMGN X'80' INF1PCMGN General (ESA390)
 logical configuration mode
 00000040 INF1PCMLI X'40' INF1PCMLI Linux logical
 configuration mode
 00000020 INF1PCMVM X'20' INF1PCMVM VM logical
 configuration mode
 00000010 INF1PCMCF X'10' INF1PCMCF CF logical
 configuration mode
000F 15 Unsigned 1 INF1PRCPU Partition primary CPU type. Valid
 if INF1PVL1.INF1PPRC is on.
 00000000 INF1PUCCP X'00' INF1PUCCP General Purpose
 (CP)
 00000003 INF1PUCIFL X'03' INF1PUCIFL Integrated Fac
 for Linux (IFL).
0010 16 EBCDIC 8 INF1PPNA Logical Partition Name, in EBCDIC
 format. This is the Logical-
 Partition Name reported by STSI
 2.2.2. (Valid if INF1PIDV)
 Partition Capacity Caps
0018 24 Unsigned 4 INF1PWBC Partition weight-based capped
 capacity for CPs, a scaled number
 where X'00010000' represents one
 CPU. Zero if not capped. Cap is
 applicable only to shared
 processors. (Valid if INF1PWCV)
001C 28 Unsigned 4 INF1PABC Partition absolute capped
 capacity for CPs, a scaled number
 where X'00010000' represents one
 core. Zero if not capped. Cap is
 applicable only to shared
 processors. (Valid if INF1PACC)
0020 32 Unsigned 4 INF1PWBI Partition weight-based capped
 capacity for IFLs, a scaled
 number where X'00010000'
 represents one core. Zero if not
 capped. Cap is applicable only to
 shared processors. (Valid if
 INF1PWCV)
0024 36 Unsigned 4 INF1PABI Partition absolute capped
 capacity for IFLs, a scaled
 number where X'00010000'
 represents one core. Zero if not
 capped. Cap is applicable only to
 shared processors. (Valid if
 INF1PACC)
0028 40 EBCDIC 8 INF1PLGN LPAR Group Name (Valid if
 INF1PLGV) EBCDIC, padded on right
 with blanks when in an LPAR group

Store Hypervisor Information (STHYI) Instruction

948 z/VM: 7.3 CP Programming Services

 and valid. Binary zeros
 otherwise. Only reported when
 there is a group cap on CP or IFL
 CPU types and the par- tition has
 the capped CPU type.
0030 48 Unsigned 4 INF1PLGC LPAR Group Absolute Capacity
 Value for the CP CPU type when
 nonzero. Nonzero only when
 INF1PLGN is nonzero and a cap is
 defined for this LPAR Group for
 the CP CPU type. When nonzero,
 contains a scaled number where
 X'00010000' represents one core.
 (Valid if INF1PLGV)
0034 52 Unsigned 4 INF1PLGI LPAR Group Absolute Capacity
 Value for the IFL CPU type when
 nonzero. Nonzero only when
 INF1PLGN is nonzero and a cap is
 defined for this LPAR Group for
 the IFL CPU type. When nonzero,
 contains a scaled number where
 X'00010000' represents one core.
 (Valid if INF1PLGV)
0038 56 EBCDIC 8 INF1PPLNM Reserved for IBM use.
 Processor Entitlement and Available Capacity
 Entitlement values are current values for the partition. Share
 of extra capacity varies over time. The sum of the calculated
 values at each hiperdispatch interval and the count of those
 intervals are provided so an average between two STHYI invocations
 can be calculated. INF1PENC, INF1PENI, INF1PSXCA, INF1PSXCA,
 INF1PSXIA, INF1PSXCC and INF1PSXIC are monotonically increasing
 for the life of the system.
0040 64 Unsigned 4 INF1PENC Partition Entitled Capacity Value
 for the CP CPU type when nonzero.
 It is a scaled number where
 X'00010000' represents one core.
 The value will have been reduced
 to the count of CP processors if
 the entitlement was larger.
 (Valid if INF1PENV)
0044 68 Unsigned 4 INF1PENI Partition Entitled Capacity Value
 for the IFL CPU type when
 nonzero. It is a scaled number
 where X'00010000' represents one
 core. The value will have been
 reduced to the count of IFL
 processors if the entitlement was
 larger. (Valid if INF1PENV)
0048 72 Unsigned 8 INF1PSXCA Partition calculated Share of
 Extra capacity in the interval:
 number of physical CP CPUs/cores
 which this partition could have
 used. A scaled number where
 X'00010000' represents one
 CPU/core. Aggregated for
 INF1PSXCC intervals. (Valid if
 INF1PENV)
0050 80 Unsigned 8 INF1PSXIA Partition calculated Share of
 Extra capacity in the interval:
 number of physical IFL CPUs/cores
 which this partition could have
 used. A scaled number where
 X'00010000' represents one
 CPU/core. Aggregated for
 INF1PSXIC intervals. (Valid if
 INF1PENV)
0058 88 Unsigned 4 INF1PSXCC Count of intervals aggregated in
 INF1PSXCA. (Valid if INF1PENV)
005C 92 Unsigned 4 INF1PSXIC Count of intervals aggregated in
 INF1PSXIA. (Valid if INF1PENV)
 Partition Utilization
 Partition utilization varies over time. The sum of the
 calculated values at each hiperdispatch interval and the
 count of those intervals are provided so an average
 between two STHYI invocations can be calculated.
 INF1PUCPA, INF1PUIFA, INF1PUCPC and INF1PUIFC are
 monotonically increasing for the life of the system.
0060 96 Unsigned 8 INF1PUCPA Partition Calculated Utilization
 in the interval; number of
 physical CP CPUs/cores of this
 type which were consumed, a
 scaled number where X'00010000'

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 949

 represents one CPU/core.
 Aggregated for INF1PUCPC
 intervals. (Valid if INF1PENV)
0068 104 Unsigned 8 INF1PUIFA Partition Calculated Utilization
 in the interval; number of
 physical IFL CPUs/cores of this
 type which were consumed, a
 scaled number where X'00010000'
 represents one CPU/core.
 Aggregated for INF1PUIFC
 intervals. (Valid if INF1PENV)
0070 112 Unsigned 4 INF1PUCPC Count of intervals aggregated in
 INF1PUCPA. (Valid if INF1PENV)
0074 116 Unsigned 4 INF1PUIFC Count of intervals aggregated in
 INF1PUIFA. (Valid if INF1PENV)
 LPAR Groups Utilization
 LPAR group utilization varies over time. The sum of the
 calculated values at each hiperdispatch interval and the
 count of those intervals are provided so an average
 between two STHYI invocations can be calculated.
 LPAR Groups can be defined for a single CPU type and a
 partition can belong to only 1 group.
 INF1PGUCA, INF1PGUIA, INF1PGUCC and INF1PGUIC are
 monotonically increasing for the life of the system.
0078 120 Unsigned 8 INF1PGUCA LPAR Group Utilization Value for
 the CP CPU type when nonzero.
 Nonzero only when INF1PLGN is
 nonzero and a cap is defined for
 this LPAR Group for the CP CPU
 type. When nonzero, contains a
 scaled number where X'00010000'
 represents one core. Aggregated
 over INF1PGUCC intervals. (Valid
 if INF1PLGV)
0080 128 Unsigned 8 INF1PGUIA LPAR Group Utilization Value for
 the IFL CPU type when nonzero.
 Nonzero only when INF1PLGN is
 nonzero and a cap is defined for
 this LPAR Group for the IFL CPU
 type. When nonzero, contains a
 scaled number where X'00010000'
 represents one core. Aggregated
 over INF1PGUIC intervals. (Valid
 if INF1PLGV)
0088 136 Unsigned 4 INF1PGUCC Count of intervals aggregated in
 INF1PGUCA. (Valid if INF1PLGV)
008C 140 Unsigned 4 INF1PGUIC Count of intervals aggregated in
 INF1PGUIA. (Valid if INF1PLGV)
 Core utilization
 The utilization counts are monotonically increasing values.
 The delta between values from 2 STHYI invocations can be
 used to determine the change in the values during the
 interval. The length of the interval is determined from
 the INF1PUTOD value delta. These fields are valid when
 INF1PVL1.INF1PUTV is set. The values of the fields in this
 section are based on data available at the time specified
 in the INF1PUTOD field.
0090 144 Unsigned 8 INF1PUTOD Host TOD value at the time when
 the partition's core utilization
 information was last determined.
 (Valid if INF1PUTV)
0098 152 Unsigned 8 INF1PACTC Aggregate number of microseconds
 physical CP cores were assigned
 to this partition's logical
 cores. (Valid if INF1PUTV)
00A0 160 Unsigned 8 INF1PLPTC Aggregate number of microseconds
 excluding LPAR management time
 while physical CP cores were
 assigned to this partition's
 logical cores. (Valid if
 INF1PUTV)
00A8 168 Unsigned 8 INF1POLTC Aggregate number of microseconds
 while logical CP cores of this
 partition were online. (Valid if
 INF1PUTV)
00B0 176 Unsigned 8 INF1PWTTC Aggregate number of microseconds
 while logical CP cores of this
 partition were in wait state. If
 MT enabled, accumulates when no
 processors of core are running.
 Not updated if INF1PWTFL=1.
 (Valid if INF1PUTV)

Store Hypervisor Information (STHYI) Instruction

950 z/VM: 7.3 CP Programming Services

00B8 184 Unsigned 8 INF1PMTIC Aggregate number of microseconds
 while logical CP cores of this
 partition were active but some of
 the logical processors of the
 core are in any of these states:
 enabled wait, disabled wait,
 stopped state, check-stop state,
 or program interrupt loop. Zero
 when MT disabled. (Valid if
 INF1PUTV)
00C0 192 Unsigned 8 INF1PACTI Aggregate number of microseconds
 physical IFL cores were assigned
 to this partition's logical
 cores. (Valid if INF1PUTV)
00C8 200 Unsigned 8 INF1PLPTI Aggregate number of microseconds
 excluding LPAR management time
 while physical IFL cores were
 assigned to this partition's
 logical cores. (Valid if
 INF1PUTV)
00D0 208 Unsigned 8 INF1POLTI Aggregate number of microseconds
 while logical IFL cores of this
 partition were online. (Valid if
 INF1PUTV)
00D8 216 Unsigned 8 INF1PWTTI Aggregate number of microseconds
 while logical IFL cores of this
 partition were in wait state. If
 MT enabled, accumulates when no
 processors of core are running.
 Not updated if INF1PWTFL=1.
 (Valid if INF1PUTV)
00E0 224 Unsigned 8 INF1PMTII Aggregate number of microseconds
 while logical IFL cores of this
 partition were active but some of
 the logical processors of the
 core are in any of these states:
 enabled wait, disabled wait,
 stopped state, check-stop state,
 or program interrupt loop. Zero
 when MT disabled. (Valid if
 INF1PUTV)
 000000E8 INF1PSB1 *-INF1PAR Version 1 length in
 bytes of the Partition Section.
 0000001D INF1PSD1 (*-INF1PAR+7)/8 Version 1 length
 in doublewords of the Partition
 Section.
 000000E8 INF1PSZB *-INF1PAR Length in bytes for
 newest version of the Partition
 Section.
 0000001D INF1PSZD (*-INF1PAR+7)/8 Length in
 doublewords for newest version of
 the Partition Section.

Function Code X'0001' Response Hypervisor Section (INF1HYP DSECT)

 +------+------+------+------+------+------+------+------+
 0 |:1YFL1|:1YFL2|:1YVL1|:1YVL2|:1YTYP|//////|:1YCPT|:1YIFT|
 +------+------+------+------+------+------+------+------+
 8 | INF1YSID |
 +---+
 10 | INF1YCLN |
 +-------------+-------------+-------------+-------------+
 18 | INF1YSCP | INF1YDCP | INF1YSIF | INF1YDIF |
 +-------------+-------------+-------------+-------------+
 20 | INF1YASC | INF1YASI |
 +---------------------------+---------------------------+
 28 | INF1YRSC | INF1YRSI |
 +---------------------------+---------------------------+
 30 | INF1YLCC | INF1YLCI |
 +---------------------------+------+------+------+------+
 38 | INF1YMONH |:1YPKF|:XUSC |:XUSI |//////|
 +---------------------------+------+------+------+------+
 40 | INF1YPADC | INF1YPADI |
 +---------------------------+---------------------------+
 48 | INF1YUTOD |
 +---+
 50 | INF1YUTC |
 +---+

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 951

 58 | INF1YUTI |
 +---+
 60 | INF1YSTC |
 +---+
 68 | INF1YSTI |
 +---+
 70 | INF1YWTC |
 +---+
 78 | INF1YWTI |
 +---+
 80 | INF1YPTC |
 +---+
 88 | INF1YPTI |
 +---+
 90

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF1HYP Mappings for STHYI
 Function code X'0001' Response Buffer
 Hypervisor Section
0000 0 Bitstring 1 INF1YFL1 Hypervisor Flag Byte 1
 1... INF1YLMC X'80' INF1YLMC Consumption method
 is used to enforce Limithard
 caps.
 .1.. INF1YLMP X'40' INF1YLMP If on, Limithard
 caps use prorated core time for
 capping. If off, raw CPU time is
 used.
 ..1. INF1YMTE X'20' INF1YMTE Hypervisor is
 MT-enabled.
 ...1 INF1YVRT X'10' INF1YVRT Vertical
 polarization is in use. If off,
 horizontal topology is in use,
 and INF1YPKF, INF1YXUSC,
 INF1YXUSI, INF1YPADC, and
 INF1YPADI are not meaningful.
0001 1 Bitstring 1 INF1YFL2 Hypervisor Flag Byte 2 Reserved
 for IBM use
0002 2 Bitstring 1 INF1YVL1 Reserved for IBM use
0003 3 Bitstring 1 INF1YVL2 Reserved for IBM use
0004 4 Unsigned 1 INF1YTYP Hypervisor type
 00000001 INF1YTVM X'01' INF1YTVM z/VM is the
 hypervisor
0005 5 Bitstring 1 * Reserved for IBM use
0006 6 Bitstring 1 INF1YCPT Threads in use per CP core. This
 value is reported for the current
 configuration settings even when
 the guest CPUs are not dispatched
 on CPs. The value is set only
 when SMT enabled as indicated by
 INF1YFL1.INF1YMTE.
0007 7 Bitstring 1 INF1YIFT Threads in use per IFL core. This
 value is reported for the current
 configuration settings even when
 the guest CPUs are not dispatched
 on IFLs. The value is set only
 when SMT enabled as indicated by
 INF1YFL1.INF1YMTE.
0008 8 EBCDIC 8 INF1YSID System Identifier, in EBCDIC
 format, left justified and padded
 with blanks. This is the value
 generally specified on the
 SYSTEM_IDentifier statement in
 the system configuration file.
 Blank if non-existent.
0010 16 EBCDIC 8 INF1YCLN Cluster Name, in EBCDIC format,
 left justified and padded with
 blanks. This is the name on the
 SSI statement in the system
 configuration file. Blank if the
 member isn't in an SSI cluster.
 Core counts
0018 24 Unsigned 2 INF1YSCP Number of CP cores shared by
 non-dedicated CPUs of the guests
 of this hypervisor.
001A 26 Unsigned 2 INF1YDCP Number of CP cores dedicated to
 guest CPUs of this hypervisor.
001C 28 Unsigned 2 INF1YSIF Number of IFL cores shared by
 non-dedicated CPUs of the guests
 of this hypervisor.

Store Hypervisor Information (STHYI) Instruction

952 z/VM: 7.3 CP Programming Services

001E 30 Unsigned 2 INF1YDIF Number of IFL cores dedicated to
 guest CPUs of this hypervisor.
 Total shares
0020 32 Unsigned 4 INF1YASC Sum of absolute shares for all
 logged on CP-dispatched VMDBKs
 (excluding dedicated VMDBKs).
 A scaled number where X'00010000'
 represents one CPU.
0024 36 Unsigned 4 INF1YASI Sum of absolute shares for all
 logged on IFL-dispatched VMDBKs
 (excluding dedicated VMDBKs).
 A scaled number where X'00010000'
 represents one CPU.
0028 40 Unsigned 4 INF1YRSC Sum of relative shares for all
 logged on CP-dispatched VMDBKs
 (excluding dedicated VMDBKs).
002C 44 Unsigned 4 INF1YRSI Sum of relative shares for all
 logged on IFL-dispatched VMDBKs
 (excluding dedicated VMDBKs).
 Total adds to the limit list
0030 48 Unsigned 4 INF1YLCC Approximate count of adds to the
 limit-list of CP dispatched
 VMDBKs. Monotonically increasing.
0034 52 Unsigned 4 INF1YLCI Approximate count of adds to the
 limit-list of IFL dispatched
 VMDBKs. Monotonically increasing.
 High-frequency sampling period.
0038 56 Unsigned 4 INF1YMONH Current Monitor high-frequency
 (HF) sampling interval in
 hundredths of seconds. Value is 0
 when high frequency sampling is
 not active.
 Hiperdispatch Settings
003C 60 Unsigned 1 INF1YPKF HiperDispatch Unparking setting.
 Not used if INF1YFL1.INF1YVRT=0.
 00000000 INF1YPLG X'00' INF1YPLG SRM UNPARKING
 LARGE (default)
 00000001 INF1YPMD X'01' INF1YPMD SRM UNPARKING
 MEDIUM
 00000002 INF1YPSM X'02' INF1YPSM SRM UNPARKING
 SMALL
003D 61 Unsigned 1 INF1YXUSC SRM EXCESSUSE for General (CP)
 processor type. Not used if
 INF1YFL1.INF1YVRT=0.
 00000010 INF1YXHI 16 INF1YXHI -Indicates the system
 should be aggressive in using
 unentitled CPU/core capacity.
 00000008 INF1YXMD 8 INF1YXMD -Indicates the system
 should be moderately aggressive
 in using unentitled CPU/core
 capacity.
 00000001 INF1YXLO 1 INF1YXLO -Indicates the system
 should not be aggressive in using
 unentitled CPU/core capacity.
 00000002 INF1YXNO 2 INF1YXNO -Indicates the system
 should not use unentitled
 CPU/core capacity.
003E 62 Unsigned 1 INF1YXUSI SRM EXCESSUSE for IFL processor
 type. Not used if
 INF1YFL1.INF1YVRT=0.
 00000010 INF1YXHI 16 INF1YXHI -Indicates the system
 should be aggressive in using
 unentitled CPU/core capacity.
 00000008 INF1YXMD 8 INF1YXMD -Indicates the system
 should be moderately aggressive
 in using unentitled CPU/core
 capacity.
 00000001 INF1YXLO 1 INF1YXLO -Indicates the system
 should not be aggressive in using
 unentitled CPU/core capacity.
 00000002 INF1YXNO 2 INF1YXNO -Indicates the system
 should not use unentitled
 CPU/core capacity.
003F 63 Bitstring 1 * Reserved for IBM use
0040 64 Unsigned 4 INF1YPADC SRM CPUPAD value, a scaled number
 where X'00010000' represents one
 General (CP) CPU/core. Not used
 if INF1YFL1.INF1YVRT=0.
0044 68 Unsigned 4 INF1YPADI SRM CPUPAD value, a scaled number
 where X'00010000' represents one
 IFL CPU/core. Not used if
 INF1YFL1.INF1YVRT=0.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 953

 Logical Processor (not core) Utilization
 The values in these fields are the aggregate of individual
 online processors. When a processor is varied online, the
 value is reset. The length of the interval is determined
 from the INF1YUTOD value delta. INF1YUTOD is set from the
 TOD clock at the start of the calculation of these values.
0048 72 Unsigned 8 INF1YUTOD TOD value at the start of the
 hypervisor logical processor
 utilization calculations.
0050 80 Unsigned 8 INF1YUTC Total CPU time in microseconds
 spent on online CP processors
 charged to guests. Monotonically
 increasing.
0058 88 Unsigned 8 INF1YUTI Total CPU time in microseconds
 spent on online IFL processors
 charged to guests. Monotonically
 increasing.
0060 96 Unsigned 8 INF1YSTC Total CPU time in microseconds
 spent on online CP processors
 charged to SYSTEM. Monotonically
 increasing.
0068 104 Unsigned 8 INF1YSTI Total CPU time in microseconds
 spent on online IFL processors
 charged to SYSTEM. Monotonically
 increasing.
0070 112 Unsigned 8 INF1YWTC Total elapsed time in
 microseconds spent on online CP
 processors while in system wait
 state. Does not include parked
 wait time. Monotonically
 increasing.
0078 120 Unsigned 8 INF1YWTI Total elapsed time in
 microseconds spent on online IFL
 processors while in system wait
 state. Does not include parked
 wait time. Monotonically
 increasing.
0080 128 Unsigned 8 INF1YPTC Total elapsed time in
 microseconds spent on online CP
 processors while in the parked
 state. Monotonically increasing.
0088 136 Unsigned 8 INF1YPTI Total elapsed time in
 microseconds spent on online IFL
 processors while in the parked
 state. Monotonically increasing.
 00000090 INF1YSB1 *-INF1HYP Version 1 length in
 bytes of the Hypervisor Section.
 00000012 INF1YSD1 (*-INF1HYP+7)/8 Version 1 length
 in doublewords of the Hypervisor
 Section.
 00000090 INF1YSZB *-INF1HYP Length in bytes for
 newest version of the Hypervisor
 Section.
 00000012 INF1YSZD (*-INF1HYP+7)/8 Length in
 doublewords for newest version of
 the Hypervisor Section.

Function Code X'0001' Response Guest Section (INF1GST DSECT)

 +---+
 0 | |
 = INF1GSTI =
 | |
 +---+
 140

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF1GST Mappings for STHYI
 Function code X'0001' Response Buffer
 Guest Section - description of STHYI issuer.
 This matches the guest section of function code 3 as
 defined by the INF3GST DSECT.
0000 0 Bitstring 320 INF1GSTI Mapped by INF3GST which lacks the
 FC=3 header.
 00000140 INF1GSB1 INF3GSB1 Version 1 length in
 bytes of the Guest Description.

Store Hypervisor Information (STHYI) Instruction

954 z/VM: 7.3 CP Programming Services

 00000028 INF1GSD1 INF3GSD1 Version 1 length in
 doublewords of the Guest
 Description.
 00000140 INF1GSZB INF3GSZB Length in bytes for
 newest version of the Guest
 Description.
 00000028 INF1GSZD INF3GSZD Length in doublewords
 for newest version of the Guest
 Description.

Function Code X'0002' - Guest List
Function code X'0002' returns a list of logged on guests. Guest virtual machines in the process of logging
on, logging off, being forced, or relocating to this system are excluded. Guests enabled for shutdown
signals appear in the output during the shutdown signal timeout interval until the actual logoff process
begins.

Use of this function code is authorized in the user directory by OPTION STHYI-GUEST.

When function code X'0002' is specified, general register R2 contains the guest logical address of a
response buffer, which must be on a 4 KB boundary or a specification exception is recognized. The size of
the response buffer as an unsigned number of 4 KB pages must be specified in general register R1 (bits
0-15 in ESA/390 or ESA/XC mode, or bits 32-47 in z/Architecture or z/XC mode). If the value is zero, then
a specification exception is recognized. No checking is done for address wrapping. No checking is done for
access to pages of the buffer beyond the last page of the actual response data.

When the instruction completes with condition code 0, a list of logged on guests will be returned in the
buffer at the guest logical address specified by register R2.

The possible nonzero return codes for this function code are:
CC=3 RC=4

Unsupported function code. Buffer is unchanged.
CC=3 RC=8

Not authorized for the function code. Buffer is unchanged.
CC=3 RC=20

Response buffer is too small. INFCRQSZ specifies required buffer size. Values are also provided in
INFCVRSN, INFCHDLN and INFCTOTL. Other response buffer contents are unpredictable.

Function Code X'0002' Response Buffer Format (INF2BK)
INF2BK DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The common header section (INFCHDR DSECT) is placed at the beginning of the response buffer and
identifies the length of the response.

The common header includes list designation fields for the following:

• List of logged on guests mapped by INF2GST DSECT

Valid lists have nonzero count, offset and length values in the header.

The version number (INF2VRSN) in the function code X'0002' response header can be used to clearly
identify whether the function code is at the required service level and can be used by applications to show
actual and required version in messages when required support is missing.

Function Code X'0002' Response Header (INF2BK DSECT)

 +---+
 0 | |
 = INF2CHDR =
 | |
 +---+
 40

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 955

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF2BK Mappings for STHYI
0000 0 Bitstring 64 INF2CHDR Common section of header mapped
 by INFCHDR DSECT.
0000 0 Unsigned 2 INF2VRSN Response buffer version.
 00000001 INF2V00001 X'0001' INF2V00001 Initial
 version. APAR VM66105.
 00000040 INF2BSB1 *-INF2BK Version 1 length in
 bytes of the Guest List header.
 00000008 INF2BSD1 (*-INF2BK+7)/8 Version 1 length
 in doublewords of the Guest List
 header.
 00000040 INF2BSZB *-INF2BK Length in bytes for
 newest version of the Guest List
 header.
 00000008 INF2BSZD (*-INF2BK+7)/8 Length in
 doublewords for newest version of
 the Guest List header.

Function Code X'0002' Response List Entry (INF2GST DSECT)

 +---+
 0 | INF2GUID |
 +---+
 8 | INF2GACN |
 +---------------------------+------+------+------+------+
 10 | INF2GTOD |:2GFLG|:CMOD |:AFFN |:PRTP |
 +------+--------------------+------+------+------+------+
 18 |:PRDT |//|
 +------+--+
 20

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF2GST Mappings for STHYI
 Function code X'0002' Response Buffer
 Guest List Entry Description
0000 0 EBCDIC 8 INF2GUID Guest's userid, in EBCDIC format.
0008 8 EBCDIC 8 INF2GACN User accounting number in EBCDIC
 format.
0010 16 Unsigned 4 INF2GTOD Bits 0-31 of host TOD at guest
 logon.
0014 20 Bitstring 1 INF2GFLG Guest list entry flag byte 1.
 1... INF2GLINI X'08' INF2GLINI Guest identified
 itself as running Linux using a
 control program identification
 interface.
 1.. INF2GLINH X'04' INF2GLINH Guest may be
 running Linux based on
 heuristics. Set only if INF2GLINI
 is not set.
0015 21 Unsigned 1 INF2GCMOD Virtual Configuration Mode
 00000080 INF2GCMGN X'80' INF2GCMGN General (ESA390)
 virtual configuration mode
 00000040 INF2GCMLI X'40' INF2GCMLI Linux virtual
 configuration mode
 00000020 INF2GCMVM X'20' INF2GCMVM VM virtual
 configuration mode
 00000010 INF2GCMCF X'10' INF2GCMCF CF virtual
 configuration mode
0016 22 Bitstring 1 INF2GAFFN Guest CPUAFFINITY settings.
 1... INF2GAFON X'80' INF2GAFON CPUAFFINITY is
 ON, but may be suppressed. If
 off, then INF2GAFSUP will not be
 on.
 .1.. INF2GAFSUP X'40' INF2GAFSUP CPUAFFINTY is
 suppressed.
0017 23 Bitstring 1 INF2GPRTP Guest primary virtual CPU type.
 00000000 INF2PUCCP X'00' INF2PUCCP General Purpose
 (CP)
 00000003 INF2PUCIFL X'03' INF2PUCIFL Integrated Fac
 for Linux (IFL).
0018 24 Bitstring 1 INF2GPRDT Guest primary vCPU dispatch type.
 00000000 INF2PUCCP X'00' INF2PUCCP General Purpose
 (CP)

Store Hypervisor Information (STHYI) Instruction

956 z/VM: 7.3 CP Programming Services

 00000003 INF2PUCIFL X'03' INF2PUCIFL Integrated Fac
 for Linux (IFL).
0019 25 Bitstring 7 * Reserved for IBM use.
 00000020 INF2GSB1 *-INF2GST Version 1 length in
 bytes of the Guest List entry.
 00000004 INF2GSD1 (*-INF2GST+7)/8 Version 1 length
 in doublewords of the Guest List
 entry.
 00000020 INF2GSZB *-INF2GST Length in bytes for
 newest version of the Guest List
 entry.
 00000004 INF2GSZD (*-INF2GST+7)/8 Length in
 doublewords for newest version of
 the Guest List entry.

Function Code X'0003' - Designated Guest Information
Function code X'0003' returns guest CPU resource information useful to an authorized application
performing CPU performance monitoring and management.

Use of this function code is authorized in the user directory by OPTION STHYI-GUEST.

When function code X'0003' is specified, general register R2 contains the guest logical address of a 4 KB
response buffer, which must be on a 4 KB boundary or a specification exception is recognized.

This function code provides information for the Guest specified in the 8-byte buffer located at the guest
logical address in R1+1. If the buffer is not aligned on a doubleword boundary a specification exception is
recognized.

When the instruction completes with condition code 3, the response buffer located by the guest logical
address in R2 is unchanged. When the instruction completes with condition code 0, guest information will
be stored into the buffer at the guest logical address specified by register R2.

The possible nonzero return codes for this function code are:
CC=3 RC=4

Unsupported function code. Buffer is unchanged.
CC=3 RC=8

Not authorized for the function code. Buffer is unchanged.
CC=3 RC=12

Missing or invalid guest name. Buffer is unchanged.
CC=3 RC=16

Named guest is not logged on. Buffer is unchanged.

Function Code X'0003' Response Buffer Format (INF3BK)
INF3BK DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The common header section (INFCHDR DSECT) is placed at the beginning of the response buffer and
identifies the length of the response.

The list designation fields in the common header are stored as zeroes.

The guest information follows the common header at INF3GSTI and is mapped by INF3GST DSECT.

The high-frequency counters starting at field INF3GIWSC report data collected when Monitor high-
frequency sampling is active. The values are reset to zero when Monitor commands are issued that
deactivate high-frequency sampling, and remain zero while it is inactive. MONITOR SAMPLE RATE is
used to set the frequency of the guest state sampling which should be more frequent than the sampling
interval. The high-frequency sampling is activated using MONITOR SAMPLE ENABLE USER for the users of
interest.

The version number (INF3VRSN) in the function code X'0003' response header can be used to clearly
identify whether the function code is at the required service level and can be used by applications to show
actual and required version in messages when required support is missing.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 957

Function Code X'0003' Response Header (INF3BK DSECT)

 +---+
 0 | |
 = INF3CHDR =
 | |
 +---+
 40 | |
 = INF3GSTI =
 | |
 +---+
 180

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF3BK Mappings for STHYI
 Function code x'0003': Designated Guest Information
 This function code returns the description of the
 specified guest.
 Use of this function code is authorized in the User
 Directory by OPTION STHYI-GUEST.
 Error responses:
 - CC=3 RC=4 - Unsupported function code
 - The response buffer is not modified.
 - CC=3 RC=8 - Not authorized for function code
 - The response buffer is not modified.
 - CC=3 RC=12 - Missing or invalid guest name.
 - The response buffer is not modified.
 - CC=3 RC=16 - Named guest is not logged on.
 - The response buffer is not modified.
 Update Log - see equates under INF3VRSN.
 Function code X'0003' Response Buffer
0000 0 Bitstring 64 INF3CHDR Common section of header mapped
 by INFCHDR DSECT.
0000 0 Unsigned 2 INF3VRSN Response buffer version.
 00000001 INF3V00001 X'0001' INF3V00001 Initial
 version. APAR VM66105.
0040 64 Bitstring 320 INF3GSTI Guest Information section mapped
 by INF3GST DSECT.
 00000180 INF3BSB1 *-INF3BK Version 1 length in
 bytes of the Guest Information
 response.
 00000030 INF3BSD1 (*-INF3BK+7)/8 Version 1 length
 in doublewords of the Guest
 Information response.
 00000180 INF3BSZB *-INF3BK Length in bytes for
 newest version of the Guest
 Information response.
 00000030 INF3BSZD (*-INF3BK+7)/8 Length in
 doublewords for newest version of
 the Guest Information response.

Function Code X'0003' Response Guest Information (INF3GST DSECT)

 +---+
 0 | INF3GUID |
 +---+
 8 | INF3GACN |
 +------+------+------+------+---------------------------+
 10 |:3GFLG|:3GVAL|:CMOD |:PRTP | INF3GTOD |
 +------+------+------+------+---------------------------+
 18 | INF3GPNA |
 +---------------------------+---------------------------+
 20 | INF3GIWSC | INF3GCFSC |
 +---------------------------+---------------------------+
 28 | INF3GSMSC | INF3GPWSC |
 +---------------------------+---------------------------+
 30 | INF3GLSC | INF3GDSC |
 +---------------------------+---------------------------+
 38 | INF3GCSC | INF3GESSC |
 +---------------------------+---------------------------+
 40 | INF3GLDSC | INF3GDLSC |
 +---------------------------+---------------------------+
 48 | INF3GDSSC | INF3GIASC |
 +---------------------------+---------------------------+

Store Hypervisor Information (STHYI) Instruction

958 z/VM: 7.3 CP Programming Services

 50 | INF3GTISC | INF3GTSSC |
 +---------------------------+---------------------------+
 58 | INF3GPASC | INF3GOSC |
 +---------------------------+---------------------------+
 60 | INF3GTSC | INF3GIWSI |
 +---------------------------+---------------------------+
 68 | INF3GCFSI | INF3GSMSI |
 +---------------------------+---------------------------+
 70 | INF3GPWSI | INF3GLSI |
 +---------------------------+---------------------------+
 78 | INF3GDSI | INF3GCSI |
 +---------------------------+---------------------------+
 80 | INF3GESSI | INF3GLDSI |
 +---------------------------+---------------------------+
 88 | INF3GDLSI | INF3GDSSI |
 +---------------------------+---------------------------+
 90 | INF3GIASI | INF3GTISI |
 +---------------------------+---------------------------+
 98 | INF3GTSSI | INF3GPASI |
 +---------------------------+---------------------------+
 A0 | INF3GOSI | INF3GTSI |
 +------+------+-------------+---------------------------+
 A8 |:3CFLG|:AFFN | INF3CMCPU |///////////////////////////|
 +------+------+-------------+---------------------------+
 B0 | INF3CTCPP |
 +---+
 B8 | INF3CTCPS |
 +---+
 C0 | INF3CTCRP |
 +---+
 C8 | INF3CTCRS |
 +-------------+-------------+-------------+-------------+
 D0 | INF3CSCP | INF3CDCP | INF3CRCP |/////////////|
 +------+------+------+------+-------------+-------------+
 D8 |:3CCDT|:CSCF |:ISCF |//////| INF3CCNSC |
 +------+------+------+------+---------------------------+
 E0 | INF3CCASC | INF3CCMSC |
 +---------------------------+---------------------------+
 E8 | INF3CINSC | INF3CIASC |
 +---------------------------+---------------------------+
 F0 | INF3CIMSC |///////////////////////////|
 +---------------------------+---------------------------+
 F8 | INF3CTIPP |
 +---+
 100 | INF3CTIPS |
 +---+
 108 | INF3CTIRP |
 +---+
 110 | INF3CTIRS |
 +-------------+-------------+-------------+-------------+
 118 | INF3CSIF | INF3CDIF | INF3CRIF |/////////////|
 +------+------+------+------+-------------+-------------+
 120 |:3CIDT|:CSIF |:ISIF |//////| INF3CCNSI |
 +------+------+------+------+---------------------------+
 128 | INF3CCASI | INF3CCMSI |
 +---------------------------+---------------------------+
 130 | INF3CINSI | INF3CIASI |
 +---------------------------+---------------------------+
 138 | INF3CIMSI |///////////////////////////|
 +---------------------------+---------------------------+
 140

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF3GST Mappings for STHYI
 Function code X'0003' Response Buffer
 Guest Description section
 This DSECT is also used for the guest section of the
 function code 1 response buffer.
0000 0 EBCDIC 8 INF3GUID Guest's userid, in EBCDIC format.
0008 8 EBCDIC 8 INF3GACN User accounting number in EBCDIC
 format.
0010 16 Bitstring 1 INF3GFLG Guest Flag Byte
 1... INF3GMOB X'80' INF3GMOB Guest mobility is
 enabled.
 1... INF3GLINI X'08' INF3GLINI Guest identified
 itself as running Linux using a
 control program identification
 interface.
 1.. INF3GLINH X'04' INF3GLINH Guest may be
 running Linux based on

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 959

 heuristics. Set only if INF3GLINI
 is not set.
0011 17 Bitstring 1 INF3GVAL Reserved for IBM use
0012 18 Unsigned 1 INF3GCMOD Virtual Configuration Mode
 00000080 INF3GCMGN X'80' INF3GCMGN General (ESA390)
 virtual configuration mode
 00000040 INF3GCMLI X'40' INF3GCMLI Linux virtual
 configuration mode
 00000020 INF3GCMVM X'20' INF3GCMVM VM virtual
 configuration mode
 00000010 INF3GCMCF X'10' INF3GCMCF CF virtual
 configuration mode
0013 19 Bitstring 1 INF3GPRTP Guest primary virtual CPU type.
 00000000 INF3PUCCP X'00' INF3PUCCP General Purpose
 (CP)
 00000003 INF3PUCIFL X'03' INF3PUCIFL Integrated Fac
 for Linux (IFL).
0014 20 Unsigned 4 INF3GTOD Bits 0-31 of host TOD at guest
 logon.
0018 24 EBCDIC 8 INF3GPNA Resource pool name. Blanks if not
 in a Resource Pool.
 High frequency sampler counts
 These counts are the number of times that CP and IFL CPUs of the
 guest are observed in each state. These counts are reset to zero
 when Monitor commands are issued that disable high-frequency
 sampling. Otherwise they are monotonically increasing values.
 INF1YMONH provides the high-frequency sampling interval for the
 state testing. For each virtual CPU type, the order of the count
 fields is the order that the states are tested so that if a vCPU
 is in multiple states, it is counted with the first state that
 matches so that it is counted in one and only one state. The one
 exception is that when a guest is on the dormant list and SVM wait
 they are counted in both INF3GDLSC and INF3GDSSC for virtual CPs
 and for IFLs, both INF3GDLSI and INF3GDSSI. The values are
 aggregate values for all guest virtual CPUs of that type. See
 Monitor record MRUSEINT D4 R4 for additional information.
0020 32 Unsigned 4 INF3GIWSC I/O Wait Samples for CPs. Times
 vCPU found in I/O wait for
 asynchronous I/O.
0024 36 Unsigned 4 INF3GCFSC Console Function Wait samples
 for CPs. Times vCPU found in
 console function wait.
0028 40 Unsigned 4 INF3GSMSC Simulation Wait samples for CPs.
 Times vCPU found using CPU.
002C 44 Unsigned 4 INF3GPWSC Page Wait Samples for CPs. Times
 vCPU found in page wait.
0030 48 Unsigned 4 INF3GLSC Limit list Samples for CPs. Times
 vCPU found on limit list.
0034 52 Unsigned 4 INF3GDSC CPU Delay Samples for CPs. Times
 vCPU found waiting for CPU.
0038 56 Unsigned 4 INF3GCSC CPU Using Samples for CPs. Times
 vCPU found using CPU.
003C 60 Unsigned 4 INF3GESSC E-list SVM Wait Samples for CPs.
 Times vCPU found on the eligible
 list and in SVM wait.
0040 64 Unsigned 4 INF3GLDSC Loading User Samples for CPs.
 Times vCPU considered to be a
 loading user and not on the
 dormant list.
0044 68 Unsigned 4 INF3GDLSC Dormant User Samples for CPs.
 Times vCPU was found to be on the
 dormant list.
0048 72 Unsigned 4 INF3GDSSC SVM Wait Samples for CPs. Times
 vCPU found in the dormant list
 and in SVM wait. Also counted in
 INF3GDLSC.
004C 76 Unsigned 4 INF3GIASC I/O Active Samples for CPs. Times
 vCPU found with asynchronous I/O
 outstanding, causing it to be
 left in the Dispatch List.
0050 80 Unsigned 4 INF3GTISC Test Idle Samples for CPs. Times
 vCPU found in test idle and not
 in SVM wait.
0054 84 Unsigned 4 INF3GTSSC Test Idle & SVM Wait Samples for
 CPs. Times vCPU found in test
 idle and SVM wait.
0058 88 Unsigned 4 INF3GPASC Page Fault Active Samples for
 CPs. Times vCPU had active page
 fault requests active but was not
 in page wait.
005C 92 Unsigned 4 INF3GOSC Other Samples for CPs. Times vCPU
 found in other state.

Store Hypervisor Information (STHYI) Instruction

960 z/VM: 7.3 CP Programming Services

0060 96 Unsigned 4 INF3GTSC Total Samples for CPs. Times vCPU
 state sampled.
0064 100 Unsigned 4 INF3GIWSI I/O Wait Samples for IFLs. Times
 vCPU found in I/O wait for
 asynchronous I/O.
0068 104 Unsigned 4 INF3GCFSI Console Function Wait samples
 for IFLs. Times vCPU found in
 console function wait.
006C 108 Unsigned 4 INF3GSMSI Simulation Wait samples for IFLs.
 Times vCPU found using CPU.
0070 112 Unsigned 4 INF3GPWSI Page Wait Samples for IFLs. Times
 vCPU found in page wait.
0074 116 Unsigned 4 INF3GLSI Limit list Samples for IFLs.
 Times vCPU found on limit list.
0078 120 Unsigned 4 INF3GDSI CPU Delay Samples for IFLs. Times
 vCPU found waiting for CPU.
007C 124 Unsigned 4 INF3GCSI CPU Using Samples for IFLs. Times
 vCPU found using CPU.
0080 128 Unsigned 4 INF3GESSI E-list SVM Wait Samples for IFLs.
 Times vCPU found on the eligible
 list and in SVM wait.
0084 132 Unsigned 4 INF3GLDSI Loading User Samples for IFLs.
 Times vCPU considered to be a
 loading user and not on the
 dormant list.
0088 136 Unsigned 4 INF3GDLSI Dormant User Samples for IFLs.
 Times vCPU was found to be on the
 dormant list.
008C 140 Unsigned 4 INF3GDSSI SVM Wait Samples for IFLs. Times
 vCPU found in the dormant list
 and in SVM wait. Also counted in
 INF3GDLSC.
0090 144 Unsigned 4 INF3GIASI I/O Active Samples for IFLs.
 Times vCPU found with
 asynchronous I/O outstanding,
 causing it to be left in the
 Dispatch List.
0094 148 Unsigned 4 INF3GTISI Test Idle Samples for IFLs. Times
 vCPU found in test idle and not
 in SVM wait.
0098 152 Unsigned 4 INF3GTSSI Test Idle & SVM Wait Samples for
 IFLs. Times vCPU found in test
 idle and SVM wait.
009C 156 Unsigned 4 INF3GPASI Page Fault Active Samples for
 IFLs. Times vCPU had active page
 fault requests active but was not
 in page wait.
00A0 160 Unsigned 4 INF3GOSI Other Samples for IFLs. Times
 vCPU found in other state.
00A4 164 Unsigned 4 INF3GTSI Total Samples for IFLs. Times
 vCPU state sampled.
 CPU resources information
00A8 168 Bitstring 1 INF3CFLG Guest CPU Flag Byte
 .1.. INF3CMCT X'40' INF3CMCT Guest has multiple
 CPU types
 ..1. INF3CVCT X'20' INF3CVCT Virtual CPs are
 thread dispatched
 ...1 INF3CVIT X'10' INF3CVIT Virtual IFLs are
 thread dispatched
00A9 169 Bitstring 1 INF3CAFFN Guest CPUAFFINITY settings.
 1... INF3CAFON X'80' INF3CAFON CPUAFFINITY is
 ON, but may be suppressed. If
 off, then INF3CAFSUP will not be on.
 .1.. INF3CAFSUP X'40' INF3CAFSUP CPUAFFINTY is
 suppressed.
00AA 170 Unsigned 2 INF3CMCPU Maximum number of guest CPUs
 based on user directory setting.
00AC 172 Unsigned 4 * Reserved for IBM use.
00B0 176 Unsigned 8 INF3CTCPP Total virtual and simulation time
 while running a virtual CP on a
 primary CPU, in prorated core
 time microseconds. Only provided
 when SMT is enabled
 (INF1YFL1.INF1YMTE).
 Monotonically increasing.
00B8 184 Unsigned 8 INF3CTCPS Total virtual and simulation time
 while running a virtual CP on a
 2ndary CPU, in prorated core time
 microseconds. Only provided when
 SMT is enabled
 (INF1YFL1.INF1YMTE).
 Monotonically increasing.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 961

00C0 192 Unsigned 8 INF3CTCRP Total virtual and simulation time
 while running a virtual CP on a
 primary CPU, in raw core time
 microseconds. Monotonically
 increasing.
00C8 200 Unsigned 8 INF3CTCRS Total virtual and simulation time
 while running a virtual CP on a
 secondary CPU, in raw core time
 microseconds. Monotonically
 increasing.
00D0 208 Unsigned 2 INF3CSCP Number of guest shared CPs.
00D2 210 Unsigned 2 INF3CDCP Number of guest dedicated CPs.
00D4 212 Unsigned 2 INF3CRCP Number of non-stopped guest CPs.
00D6 214 Unsigned 2 * Reserved for IBM use.
00D8 216 Unsigned 1 INF3CCDT Dispatch type for guest CPs This
 field is valid if INF3SCPS,
 INF3CDCP or INF3CRCP is greater
 than zero. Always INF3PUCCP.
00D9 217 Bitstring 1 INF3CCSCF Current share flags for CPs.
 .1.. INF3CCLHC X'40' INF3CCLHC Current max share
 for CP-dispatched vCPUs is
 LIMITHARD if on. Max share for
 type CP is LIMITSOFT if off.
 ..1. INF3CCNAC X'20' INF3CCNAC Current normal
 share for CP-dispatched vCPUs is
 ABSOLUTE if on. Normal share for
 type CP is RELATIVE if off.
 ...1 INF3CCMAC X'10' INF3CCMAC Current max share
 for CP-dispatched vCPUs is
 ABSOLUTE if on. Max share for
 type CP is RELATIVE if off.
00DA 218 Bitstring 1 INF3CISCF Initial share flags for CPs.
 .1.. INF3CILHC X'40' INF3CILHC Initial max share
 for CP-dispatched vCPUs is
 LIMITHARD if on. Max share for
 type CP is LIMITSOFT if off. This
 is the setting at logon.
 ..1. INF3CINAC X'20' INF3CINAC Initial normal
 share for CP-dispatched vCPUs is
 ABSOLUTE if on. Normal share for
 type CP is RELATIVE if off. This
 is the setting at logon.
 ...1 INF3CIMAC X'10' INF3CIMAC Initial max share
 for CP-dispatched vCPUs is
 ABSOLUTE if on. Max share for
 type CP is RELATIVE if off. This
 is the setting at logon.
00DB 219 Bitstring 1 * Reserved for IBM use
00DC 220 Unsigned 4 INF3CCNSC Current normal relative share for
 CP-dispatched vCPUs. The value is
 zero when the user has an ABSOLUTE
 share value for CPs, or has a
 dedicated virtual CPU, or is in
 the process of being logged off.
00E0 224 Unsigned 4 INF3CCASC Current ABSOLUTE
share for CP-dispatched vCPUs.
Unit of value is a
hexadecimal factor scaled 16
bits. For example, X'00010000'
= 1.00(100%), X'0000C000' =
0.75(75%), X'00008000' = 0.50(50%),
etc. Set to zero when the user
has a RELATIVE share value for CPs.
00E4 228 Unsigned 4 INF3CCMSC Current Max share for
CP-dispatched vCPUs. This value is
set to zero if no Max share
exists for CPs. If the Max share
is Absolute, then the units of
the value are the same as for
INFCCASC. Otherwise as for INF3CCNSC.
00E8 232 Unsigned 4 INF3CINSC Initial (logon) normal relative
 share for CP-dispatched vCPUs.
 This value will be zero when the
 initial (logon) share is ABSOLUTE
 for CPs, or the user has a
 dedicated virtual CPU, or is in
 the process of being logged off.
00EC 236 Unsigned 4 INF3CIASC Initial (logon) ABSOLUTE share
 for CP-dispatched vCPUs. Unit of
 value is a hexadecimal factor
 scaled 16 bits. For example,
 X'00010000' = 1.00(100%),

Store Hypervisor Information (STHYI) Instruction

962 z/VM: 7.3 CP Programming Services

 X'0000C000' = 0.75(75%),
 X'00008000' = 0.50(50%), etc.
 This value will be zero when the
 initial (logon) share for CPs
 is relative.
00F0 240 Unsigned 4 INF3CIMSC Initial (logon) Max share for
 CP-dispatched vCPUs. This value
 will be zero if no initial
 (logon) Max share exists for CPs.
 If the Max share is Absolute,
 then the units of the value
 are the same as for INF3CIASC.
 Otherwise as for INF3CINSC.
00F4 244 Unsigned 4 * Reserved for IBM use.
00F8 248 Unsigned 8 INF3CTIPP Total virtual and simulation time
 while running a virtual IFL on a
 primary CPU, in prorated core
 time microseconds. Only provided
 when SMT is enabled
 (INF1YFL1.INF1YMTE).
 Monotonically increasing.
0100 256 Unsigned 8 INF3CTIPS Total virtual and simulation time
 while running a virtual IFL on a
 2ndary CPU, in prorated core time
 microseconds. Only provided when
 SMT is enabled
 (INF1YFL1.INF1YMTE).
 Monotonically increasing.
0108 264 Unsigned 8 INF3CTIRP Total virtual and simulation time
 while running a virtual IFL on a
 primary CPU, in raw core time
 microseconds. Monotonically
 increasing.
0110 272 Unsigned 8 INF3CTIRS Total virtual and simulation time
 while running a virtual IFL on a
 secondary CPU, in raw core time
 microseconds. Monotonically
 increasing.
0118 280 Unsigned 2 INF3CSIF Number of guest shared IFLs.
011A 282 Unsigned 2 INF3CDIF Number of guest dedicated IFLs.
011C 284 Unsigned 2 INF3CRIF Number of non-stopped guest IFLs.
011E 286 Unsigned 2 * Reserved for IBM use.
0120 288 Unsigned 1 INF3CIDT Dispatch type for guest IFLs.
 This field is valid if INF3SCPS,
 INF3CDCP or INF3CRCP is greater
 than zero.
 00000000 INF3PUCCP X'00' INF3PUCCP General Purpose
 (CP)
 00000003 INF3PUCIFL X'03' INF3PUCIFL Integrated Fac
 for Linux (IFL).
0121 289 Bitstring 1 INF3CCSIF Current share flags for IFLs.
 .1.. INF3CCLHI X'40' INF3CCLHI Current max share
 for IFL-dispatched vCPUs is
 LIMITHARD if on. Max share for
 type IFL is LIMITSOFT if off.
 ..1. INF3CCNAI X'20' INF3CCNAI Current normal
 share for IFL-dispatched vCPUs is
 ABSOLUTE if on. Normal share for
 type IFL is RELATIVE if off.
 ...1 INF3CCMAI X'10' INF3CCMAI Current max share
 for IFL-dispatched vCPUs is
 ABSOLUTE if on. Max share for
 type IFL is RELATIVE if off.
0122 290 Bitstring 1 INF3CISIF Initial share flags for IFLs.
 .1.. INF3CILHI X'40' INF3CILHI Initial max share
 for IFL-dispatched vCPUs is
 LIMITHARD if on. Max share for
 type IFL is LIMITSOFT if off.
 This is the setting at logon.
 ..1. INF3CINAI X'20' INF3CINAI Initial normal
 share for IFL-dispatched vCPUs is
 ABSOLUTE if on. Normal share for
 type IFL is RELATIVE if off. This
 is the setting at logon.
 ...1 INF3CIMAI X'10' INF3CIMAI Initial max share
 for IFL-dispatched vCPUs is
 ABSOLUTE if on. Max share for
 type IFL is RELATIVE if off. This
 is the setting at logon.
0123 291 Bitstring 1 * Reserved for IBM use
0124 292 Unsigned 4 INF3CCNSI Current normal relative
share for IFL-dispatched vCPUs. The value

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 963

is zero when the user has an
ABSOLUTE share value for IFLs, or
has a dedicated virtual CPU, or is
in the process of being logged off.
0128 296 Unsigned 4 INF3CCASI Current ABSOLUTE
share for IFL-dispatched vCPUs.
Unit of value is a
hexadecimal factor scaled 16
bits. For example, X'00010000'
= 1.00(100%), X'0000C000' =
0.75(75%), X'00008000' = 0.50(50%),
etc. The value is zero when the
user has a RELATIVE share value for IFLs.
012C 300 Unsigned 4 INF3CCMSI Current Max share
for IFL-dispatched vCPUs. This value
will be zero if no Max share
exists for IFLs. If the Max share
is Absolute, then the units of
the value are the same as for
INF3CCASI. Otherwise as for INF3CCNSI.
0130 304 Unsigned 4 INF3CINSI Initial (logon) normal relative
 share for IFL-dispatched vCPUs.
 This value will be zero when the
 initial (logon) share is ABSOLUTE
 for IFLs, or the user has a
 dedicated virtual CPU, or is in
 the process of being logged off.
0134 308 Unsigned 4 INF3CIASI Initial (logon) ABSOLUTE share
 for IFL-dispatched vCPUs. Unit of
 value is a hexadecimal factor
 scaled 16 bits. For example,
 X'00010000' = 1.00(100%),
 X'0000C000' = 0.75(75%),
 X'00008000' = 0.50(50%), etc.
 This value will be zero when the
 initial (logon) share is relative
 for IFLs.
0138 312 Unsigned 4 INF3CIMSI Initial (logon) Max share for
 IFL-dispatched vCPUs. This value
 will be zero if no initial
 (logon) Max share exists for IFLs.
 If the Max share is Absolute,
 then the units of the value
 are the same as for INF3CIASI.
 Otherwise as for INF3CINSI.
013C 316 Unsigned 4 * Reserved for IBM use.
 00000140 INF3GSB1 *-INF3GST Version 1 length in
 bytes of the Guest Description.
 00000028 INF3GSD1 (*-INF3GST+7)/8 Version 1 length
 in doublewords of the Guest
 Description.
 00000140 INF3GSZB *-INF3GST Length in bytes for
 newest version of the Guest
 Description.
 00000028 INF3GSZD (*-INF3GST+7)/8 Length in
 doublewords for newest version of
 the Guest Description.

Function Code X'0004' - Resource Pool List
Function code X'0004' returns a list of defined resource pools.

Use of this function code is authorized in the user directory by OPTION STHYI-RESPOOL.

When function code X'0004' is specified, general register R2 contains the guest logical address of a
response buffer, which must be on a 4 KB boundary or a specification exception is recognized. The size of
the response buffer as an unsigned number of 4 KB pages must be specified in general register R1 (bits
0-15 in ESA/390 or ESA/XC mode, or bits 32-47 in z/Architecture or z/XC mode). If the value is zero, then
a specification exception is recognized. No checking is done for address wrapping. No checking is done for
access to pages of the buffer beyond the last page of the actual response data.

When the instruction completes with condition code 0, a list of defined Resource Pools will be returned in
the buffer at the guest logical address specified by register R2.

The possible nonzero return codes for this function code are:

Store Hypervisor Information (STHYI) Instruction

964 z/VM: 7.3 CP Programming Services

CC=3 RC=4
Unsupported function code. Buffer is unchanged.

CC=3 RC=8
Not authorized for the function code. Buffer is unchanged.

CC=3 RC=20
Response buffer is too small. INFCRQSZ specifies required buffer size. Values are also provided in
INFCVRSN, INFCHDLN and INFCTOTL. Other response buffer contents are unpredictable.

Function Code X'0004' Response Buffer Format (INF4BK)
INF4BK DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The common header section (INFCHDR DSECT) is placed at the beginning of the response buffer and
identifies the length of the response.

The common header includes list designation fields for the following:

• List of defined Resource Pools mapped by INF4POOL DSECT

Valid lists have nonzero count, offset and length values in the header.

The version number (INF4VRSN) in the function code X'0004' response header can be used to clearly
identify whether the function code is at the required service level and can be used by applications to show
actual and required version in messages when required support is missing.

Function Code X'0004' Response Header (INF4BK DSECT)

 +---+
 0 | |
 = INF4CHDR =
 | |
 +---+
 40

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF4BK Mappings for STHYI
 Function code x'0004': Resource Pool List
 This function code returns a list of all Resource
 Pools defined on the system.
 This function code requires the length of the buffer as
 a number of 4K pages to be specified. See the STHYI
 documentation for details of how this is specified.
 The response buffer for function code x'0004' consists
 of 2 sections of data:
 - Header Section (INF2BK DSECT, imbeds INFCHDR DSECT)
 - use offset to Resource Pool list, length of entry,
 and count of entries to process the list.
 - The offset in INFCLSOF is from the beginning
 of the INF4BK.
 - if the count is zero there is no list so the offset
 and length will be zero.
 - Resource Pool list. The list is returned as an array
 with the count of entries, offset to the first entry
 and the entry length defined by the common header.
 - The array entry structure is defined by INF4POOL DSECT.
 Use of this function code is authorized in the User
 Directory by OPTION STHYI-RESPOOL.
 Error responses:
 - CC=3 RC=4 - Unsupported function code
 - The response buffer is not modified.
 - CC=3 RC=8 - Not authorized for function code
 - The response buffer is not modified.
 - CC=3 RC=20 - Response buffer is too small.
 - INFCRQSZ specifies required buffer size.
 - Values are also provided in INFCVRSN,
 INFCHDLN and INFCTOTL. Other response
 buffer contents are unpredictable.
 Update Log - see equates under INF4VRSN.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 965

 Function code X'0004' Response Buffer
 Header Section
0000 0 Bitstring 64 INF4CHDR Common section of header mapped
 by INFCHDR DSECT.
0000 0 Unsigned 2 INF4VRSN Response buffer version.
 00000001 INF4V00001 X'0001' INF4V00001 Initial
 version. APAR VM66105.
 00000040 INF4BSB1 *-INF4BK Version 1 length in
 bytes of the Resource Pool List
 header.
 00000008 INF4BSD1 (*-INF4BK+7)/8 Version 1 length
 in doublewords of the Resource
 Pool List header.
 00000040 INF4BSZB *-INF4BK Length in bytes for
 newest version of the Resource
 Pool List header.
 00000008 INF4BSZD (*-INF4BK+7)/8 Length in
 doublewords for newest version of
 the Resource Pool List header.

Function Code X'0004' Response List Entry (INF4POOL DSECT)

 +---+
 0 | INF4PNAM |
 +---+
 8 | INF4PCRE |
 +---+
 10

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF4POOL Mappings for STHYI
 Function code X'0004' Response Buffer
 Resource Pool List Entry Description
0000 0 EBCDIC 8 INF4PNAM Resource Pool name.
0008 8 EBCDIC 8 INF4PCRE Resource Pool creator userid.
 00000010 INF4PSB1 *-INF4POOL Version 1 length in
 bytes of the Resource Pool List
 entry.
 00000002 INF4PSD1 (*-INF4POOL+7)/8 Version 1 length
 in doublewords of the Resource
 Pool List entry.
 00000010 INF4PSZB *-INF4POOL Length in bytes for
 newest version of the Resource
 Pool List entry.
 00000002 INF4PSZD (*-INF4POOL+7)/8 Length in
 doublewords for newest version of
 the Resource Pool List entry.

Function Code X'0005' - Designated Resource Pool Information
Function code X'0005' returns a resource pool description for the specified resource pool.

Use of this function code is authorized in the user directory by OPTION STHYI-RESPOOL.

When function code X'0005' is specified, general register R2 contains the guest logical address of a 4 KB
response buffer, which must be on a 4 KB boundary or a specification exception is recognized.

This function code provides information for the resource pool specified in the 8-byte buffer located at
the guest logical address in R1+1. If the buffer is not aligned on a doubleword boundary a specification
exception is recognized.

When the instruction completes with condition code 3, the response buffer located by the guest logical
address in R2 is unchanged. When the instruction completes with condition code 0, guest CPU resource
information will be stored into the buffer at the guest logical address specified by register R2.

The possible nonzero return codes for this function code are:
CC=3 RC=4

Unsupported function code. Buffer is unchanged.

Store Hypervisor Information (STHYI) Instruction

966 z/VM: 7.3 CP Programming Services

CC=3 RC=8
Not authorized for the function code. Buffer is unchanged.

CC=3 RC=12
Missing or invalid Resource Pool Name. Buffer is unchanged.

CC=3 RC=16
Named Resource Pool does not exist. Buffer is unchanged.

Function Code X'0005' Response Buffer Format (INF5BK)
INF5BK DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The common header section (INFCHDR DSECT) is placed at the beginning of the response buffer and
identifies the length of the response.

The list designation fields in the common header are stored as zeroes.

The resource pool information follows the common header as described by the INF5BK DSECT.

The version number (INF5VRSN) in the function code X'0005' response header can be used to clearly
identify whether the function code is at the required service level and can be used by applications to show
actual and required version in messages when required support is missing.

Function Code X'0005' Response Header (INF5BK DSECT)

 +---+
 0 | |
 = INF5CHDR =
 | |
 +---+
 40 | INF5PLNA |
 +---+
 48 | INF5PCRE |
 +---+
 50 | INF5STMP |
 +------+--------------------+---------------------------+
 58 |:5CFLG|////////////////////| INF5CLIM |
 +------+--------------------+---------------------------+
 60 | INF5CTIM |
 +---------------------------+---------------------------+
 68 | INF5CLMN | INF5CCTL |
 +---------------------------+---------------------------+
 70 | INF5CTML |
 +---------------------------+---------------------------+
 78 | INF5CIFLA |///////////////////////////|
 +---------------------------+---------------------------+
 80

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF5BK Mappings for STHYI
 Function code x'0005': Designated Resource Pool Info
 This function code returns the description of the
 specified Resource Pool.
 Use of this function code is authorized in the User
 Directory by OPTION STHYI-RESPOOL.
 Error responses:
 - CC=3 RC=4 - Unsupported function code
 - The response buffer is not modified.
 - CC=3 RC=8 - Not authorized for function code
 - The response buffer is not modified.
 - CC=3 RC=12 - Missing or invalid Resource Pool Name.
 - The response buffer is not modified.
 - CC=3 RC=16 - Named Resource Pool does not exist.
 - The response buffer is not modified.
 Update Log - see equates under INF5VRSN.
 Function code X'0005' Response Buffer
0000 0 Bitstring 64 INF5CHDR Common section of header mapped
 by INFCHDR DSECT.
0000 0 Unsigned 2 INF5VRSN Response buffer version.
 00000001 INF5V00001 X'0001' INF5V00001 Initial

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 967

 version. APAR VM66105.
0040 64 EBCDIC 8 INF5PLNA Resource pool name.
0048 72 EBCDIC 8 INF5PCRE Resource Pool creator's user ID.
0050 80 Unsigned 8 INF5STMP Host TOD value at the time of the
 last change to the Resource Pool
 definition.
 Resource Pool CPU Limits and usage information.
 A CPU can have a capacity limit for either CP or IFL
 virtual CPU type. That limit can be specified as either
 a CAPACITY or LIMITHARD limit. Therefore never more than
 one of INF5CCCL,INF5CCCC,INF5CICL or INF5CICC will be on.
0058 88 Bitstring 1 INF5CFLG Resource Pool CPU Capping Flags
 1... INF5CCLC X'80' INF5CCLC Resource Pool's CP
 virtual type has LIMITHARD cap.
 .1.. INF5CCCC X'40' INF5CCCC Resource Pool's CP
 virtual type has CAPACITY cap.
 ..1. INF5CILC X'20' INF5CILC Resource Pool's
 IFL virtual type has LIMITHARD
 cap.
 ...1 INF5CICC X'10' INF5CICC Resource Pool's
 IFL virtual type has CAPACITY
 cap.
 1... INF5CPCT X'08' INF5CPCT Resource Pool uses
 prorated core time.
 1.. INF5CSUP X'04' INF5CSUP IFL CPUAFFINITY is
 suppressed. Not set for CP
 resource pools.
0059 89 Bitstring 3 * Reserved for IBM use.
005C 92 Unsigned 4 INF5CLIM Resource pool maximum share for
 shared virtual CPUs. Scaled
 number where X'00010000'
 represents 1 core if the cap is a
 CAPACITY cap, or 100% of the real
 processors if the cap is a
 LIMITHARD cap. Zero if not
 capped. INF5CFLG specifies the
 capped CPU type.
0060 96 Unsigned 8 INF5CTIM Total Time consumed by guests
 vCPUs in the Resource Pool since
 it was created. Monotonically
 increasing in microseconds. If MT
 is enabled, this field contains
 prorated core time; Otherwise,
 this field contains raw CPU time.
0068 104 Unsigned 4 INF5CLMN Total number of times the
 Resource Pool was limited since
 it was created. Monotonically
 increasing. Incremented at end of
 group limit.
006C 108 Unsigned 4 INF5CCTL Total number of times vCPUs of
 members of the resource pool were
 limited since it was created.
 Monotonically increasing. Updated
 at the start of the vCPU limit.
0070 112 Unsigned 8 INF5CTML Total time limited for vCPUs of
 all members of the Resource Pool
 since it was created.
 Monotonically increasing in
 microseconds. Updated at the
 start of the vCPU limit.
0078 120 Unsigned 4 INF5CIFLA IFL CPUAFFINITY toggle sequence
 number. It is incremented when
 IFL CPUAFFINITY suppression is
 turned on or off for pools with
 members.
007C 124 Unsigned 4 * Reserved for IBM use.
 00000080 INF5BSB1 *-INF5BK Version 1 length in
 bytes of the Resource Pool
 Information response.
 00000010 INF5BSD1 (*-INF5BK+7)/8 Version 1 length
 in doublewordss of the Resource
 Pool Information response.
 00000080 INF5BSZB *-INF5BK Length in bytes for
 newest version of the Resource
 Pool Information response.
 00000010 INF5BSZD (*-INF5BK+7)/8 Length in
 doublewords for newest version of
 the Resource Pool Information
 response

Store Hypervisor Information (STHYI) Instruction

968 z/VM: 7.3 CP Programming Services

Function Code X'0006' - Resource Pool Member List
Function code X'0006' returns a list of resource pool members for the specified resource pool.

Use of this function code is authorized in the user directory by OPTION STHYI-RESPOOL.

When function code X'0006' is specified, general register R2 contains the guest logical address of a
response buffer, which must be on a 4 KB boundary or a specification exception is recognized. The size of
the response buffer as an unsigned number of 4 KB pages must be specified in general register R1 (bits
0-15 in ESA/390 or ESA/XC mode, or bits 32-47 in z/Architecture or z/XC mode). If the value is zero, then
a specification exception is recognized. No checking is done for address wrapping. No checking is done for
access to pages of the buffer beyond the last page of the actual response data.

This function code provides information for the resource pool specified in the 8-byte buffer located at
the guest logical address in R1+1. If the buffer is not aligned on a doubleword boundary a specification
exception is recognized.

When the instruction completes with condition code 0, a list of members of the specified resource pool
will be returned in the buffer at the guest logical address specified by register R2.

The possible nonzero return codes for this function code are:
CC=3 RC=4

Unsupported function code. Buffer is unchanged.
CC=3 RC=8

Not authorized for the function code. Buffer is unchanged.
CC=3 RC=12

Missing or invalid Resource Pool Name. Buffer is unchanged.
CC=3 RC=16

Named Resource Pool does not exist. Buffer is unchanged.
CC=3 RC=20

Response buffer is too small. INFCRQSZ specifies required buffer size. Values are also provided in
INFCVRSN, INFCHDLN and INFCTOTL. Other response buffer contents are unpredictable.

Function Code X'0006' Response Buffer Format (INF6BK)
INF6BK DSECT in HCPINFBK COPY of HCPGPI MACLIB describes the response buffer format and might
include information regarding usage of the fields in the DSECT.

The common header section (INFCHDR DSECT) is placed at the beginning of the response buffer and
identifies the length of the response.

The common header includes list designation fields for the following:

• List of members of the defined Resource Pool mapped by INF6MEM DSECT

Valid lists have nonzero count, offset and length values in the header.

The version number (INF6VRSN) in the function code X'0006' response header can be used to clearly
identify whether the function code is at the required service level and can be used by applications to show
actual and required version in messages when required support is missing.

Function Code X'0006' Response Header (INF6BK DSECT)

 +---+
 0 | |
 = INF6CHDR =
 | |
 +---+
 40 | INF6PLNA |
 +---+
 48

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 969

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF6BK Mappings for STHYI
 Function code x'0006': Resource Pool Member List
 This function code returns the list of members of the
 specified Resource Pool.
 This function code requires the length of the buffer as
 a number of 4K pages to be specified. See the STHYI
 documentation for details of how this is specified.
 The response buffer for function code x'0006' consists
 of 2 sections of data:
 - Header Section (INF2BK DSECT, imbeds INFCHDR DSECT)
 - use offset to Resource Pool member list, length of
 entry, and count of entries to process the list.
 - The offset in INFCLSOF is from the beginning
 of the INF6BK.
 - if the count is zero there is no list so the offset
 and length will be zero.
 - Resource Pool Member list is returned as an array
 with the count of entries, offset to the first entry
 and the entry length defined by the common header.
 - The array entry structure is defined by INF6MEM DSECT.
 Use of this function code is authorized in the User
 Directory by OPTION STHYI-RESPOOL.
 Error responses:
 - CC=3 RC=4 - Unsupported function code
 - The response buffer is not modified.
 - CC=3 RC=8 - Not authorized for function code
 - The response buffer is not modified.
 - CC=3 RC=12 - Missing or invalid Resource Pool Name.
 - The response buffer is not modified.
 - CC=3 RC=16 - Named Resource Pool does not exist.
 - The response buffer is not modified.
 - CC=3 RC=20 - Response buffer is too small.
 - INFCRQSZ specifies required buffer size.
 - Values are also provided in INFCVRSN,
 INFCHDLN and INFCTOTL. Other response
 buffer contents are unpredictable.
 Update Log - see equates under INF6VRSN.
 Function code X'0006' Response Buffer
 Header Section
0000 0 Bitstring 64 INF6CHDR Common section of header mapped
 by INFCHDR DSECT.
0000 0 Unsigned 2 INF6VRSN Response buffer version.
 00000001 INF6V00001 X'0001' INF6V00001 Initial
 version. APAR VM66105.
0040 64 EBCDIC 8 INF6PLNA Resource pool name.
 00000048 INF6BSB1 *-INF6BK Version 1 length in
 bytes of the Resource Pool Member
 List header.
 00000009 INF6BSD1 (*-INF6BK+7)/8 Version 1 length
 in doublewords of the Resource
 Pool Member List header.
 00000048 INF6BSZB *-INF6BK Length in bytes for
 newest version of the Resource
 Pool Member List header.
 00000009 INF6BSZD (*-INF6BK+7)/8 Length in
 doublewords for newest version of
 the Resource Pool Member List
 header.

Function Code X'0006' Response List Entry (INF6MEM DSECT)

 +---+
 0 | INF6MNAM |
 +---+
 8

Hex Dec Type/Val Lng Label (dup) Comments
---- ---- --------- ---- -------------- --------
0000 0 Structure INF6MEM Mappings for STHYI
 Function code X'0006' Response Buffer
 Resource Pool Member List Entry Description
0000 0 EBCDIC 8 INF6MNAM Resource Pool member name.
 00000008 INF6MSB1 *-INF6MEM Version 1 length in
 bytes of the Resource Pool Member
 List entry.

Store Hypervisor Information (STHYI) Instruction

970 z/VM: 7.3 CP Programming Services

 00000001 INF6MSD1 (*-INF6MEM+7)/8 Version 1 length
 in doublewords of the Resource
 Pool Member List entry.
 00000008 INF6MSZB *-INF6MEM Length in bytes for
 newest version of the Resource
 Pool Member List entry.
 00000001 INF6MSZD (*-INF6MEM+7)/8 Length in
 doublewords for newest version of
 the Resource Pool Member List
 entry.

Special Conditions, Exceptions, and Usage Notes

Special Conditions
A specification exception is recognized and no other action is taken if any of the following occurs:

• The R1 or R2 field designates an odd-numbered register.
• The R1 and R2 fields designate the same register.
• The response buffer is not on a 4 KB boundary.
• For function codes 2, 4 and 6, the value for the number of pages is zero.
• For function codes 3, 5 and 6, if the search key buffer address specified in R1+1 is not aligned on a

doubleword boundary.

Program Exceptions
• Access (store, response buffer). When an access exception occurs while storing into any part of the

response buffer, the contents of any accessible portion of the response buffer are unpredictable. This is
true even if the exception is defined to suppress or nullify execution of the instruction.

• Operation (if the store-hypervisor-information facility is not installed)
• Specification

Usage Notes
1. Support for function codes 1-6 is available on z/VM 6.4 with APAR VM66105, or on later releases

of z/VM. Each Hypervisor section in the function code 0 response contains a mask of the supported
function codes and a mask of function codes that the guest is authorized to use. When the response
to function code 0 is too short to contain the masks, then only function code 0 is supported and
authorized.

2. DirMaint support for the user directory options for STHYI authorization is provided with APAR
VM66109 for function level 640, or with later releases of z/VM.

3. Running z/VM second level or higher, a complete response for function code 1 requires that all
hypervisor levels support function code 1, and the guest at each level is authorized for function code
1 by that hypervisor level.

4. Use of the STHYI instruction within a transaction will cause the transaction to abort with either a
restricted-instruction transaction-abort code or a transaction-constraint exception.

5. If the partition where z/VM is running has Global Performance Data off, function codes 0 and 1 will
not be able to return certain information because it is not available to z/VM. Validity bits will be off for
sets of information that are not available. The state of the validity bits should be checked before the
contents of any associated fields are used to ensure the contents are valid.

6. All pages of the response buffer must be resident in guest memory for the STHYI instruction to
complete. A guest access exception is presented each time a page of the buffer is found to be
non-resident, and the instruction must be re-executed completely. Therefore performance might be
improved by ensuring each 4 KB block of the response buffer is initialized before issuing STHYI.

Store Hypervisor Information (STHYI) Instruction

Chapter 29. Store Hypervisor Information (STHYI) Instruction 971

7. Use of STHYI in an SSI cluster may encounter problems if members do not have the same level of
support. For example:

• If a member that is authorized for STHYI function codes 1-6 is relocated to a member that does not
support those function codes and then is relocated back to a member that does have the support,
they will no longer be authorized.

• Guest initial share settings reported by STHYI function code 1 and function code 3 are not accurate
if the guest had at any time relocated to a member without support for those function codes.

8. Counts of dedicated cores in the machine and partition layers refer to cores in use in dedicated
partitions. The counts of dedicated cores in the hypervisor and guest layers refer to processors
dedicated to guest virtual CPUs. z/VM hypervisors no longer support dedication of processors to
guest virtual CPUs as of 7.1.0.

9. zIIP support necessary for z/OS guests running zCX is added by APAR VM66329. When zCX is running
in a z/OS guest of z/VM, there are two layers of hypervisor. For correct reporting of zIIP configuration
information, the zIIP validity bits must be on in each reported layer. Fields were not added for counts
of dedicated zIIP cores in the hypervisor and guest layers because guest dedication is no longer
supported.

10. In most cases, virtual CPUs are dispatched on processors of a matching CPU type. z/VM
CPUAFFINITY settings could change the dispatch type of a specialty CPU type so that they are
dispatched on CPs. In either case, for each CPU type the dispatch type field indicates on which
processor type the virtual CPUs are dispatched. However, z/OS supports a spillover function that
allows virtual zIIPs to be dispatched on CP processors (general CPUs) if zIIP processors are
unavailable. In this case, the dispatch type will be INFGPUCZCP indicating that the virtual CPUs
may be dispatched on either zIIP or CP processors.

11. Resource pool related fields are used to report z/OS tenant resource group settings when the
hypervisor is zCX.

Store Hypervisor Information (STHYI) Instruction

972 z/VM: 7.3 CP Programming Services

Part 7. Symptom Record Reporting

This part contains the following chapter:

• Chapter 30, “Symptom Record Reporting,” on page 975

© Copyright IBM Corp. 1991, 2023 973

974 z/VM: 7.3 CP Programming Services

Chapter 30. Symptom Record Reporting

This document, with its emphasis on application programming, describes symptom record reporting
within this chapter as well as in the material covering DIAGNOSE code X'94' on “DIAGNOSE Code X'94' –
VMDUMP and Symptom Record Service” on page 113. For more information on the VMDUMP command,
refer specifically to z/VM: CP Commands and Utilities Reference, and for more information about symptom
records, see z/VM: System Operation and z/VM: Dump Viewing Facility.

Reporting Software Error Symptoms (Symptom Records)
DIAGNOSE code X'94' provides a mechanism by which a program running in a virtual machine may
provide a symptom record to be recorded by CP, either with or independent of, a virtual machine dump.
Refer to Chapter 22, “Symptom System Service (*SYMPTOM),” on page 771 for details on how symptom
records are recorded by CP.

The program-created symptom record contains a description of some programming failure, along with a
description of the environment in which the failure occurred. The format of this information is indicated
in the ADSR macro, which is in HCPGPI MACLIB. CP uses the same format to document symptom record
information.

The VM Dump Tool's VMDUMPTL command and SYMPTOM subcommand can be used to view symptom
record information. For more information on this command and subcommand, see z/VM: VM Dump Tool.

The Format of the Symptom Record
The symptom record consists of six sections that are structured according to the format shown in the
ADSR macro. These sections are numbered 1 through 5, including an additional section that is numbered
2.1. Because sections 2.1, 3, 4, and 5 of the symptom record are variable in length, they do not need
to be sequentially ordered within the record. In section 2, the application (the program running in the
virtual machine) supplies the offset and the length of the nonfixed sections. The purpose of each section,
including material showing its format, is described in the following sections.

Section 1 (Environmental Data)
Section 1 contains the record header with basic environmental data. The application initializes this area
to binary zeros and stores the characters SR in the record header. The environmental data of section 1 is
filled in automatically when DIAGNOSE code X'94' SR processing is invoked. The environmental data that
is stored in this section provides a system context within which the software errors can be viewed. Section
1 includes items such as the:

• CPU model and serial number
• Date and time, with a time zone conversion factor
• Customer-assigned system name
• Product ID of the control program.

Section 2 (Control Data)
Section 2 contains control information with the lengths and offsets of the sections that follow. The
application must initialize the control information before invoking DIAGNOSE code X'94'. Section 2
immediately follows section 1 in the symptom record structure.

Symptom Record Reporting

© Copyright IBM Corp. 1991, 2023 975

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb1_v7r3.pdf#nameddest=hcpb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc3_v7r3.pdf#nameddest=hcpc3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe5_v7r3.pdf#nameddest=hcpe5_v7r3

Section 2.1 (Component Data)
Section 2.1 contains the name of the component in which the error occurred, as well as other specific
component-related data. The application must also initialize section 2.1 before invoking the DIAGNOSE
code.

Section 3 (Primary SDB—Structured Data Base—Symptoms)
Section 3 contains the primary symptom string of problem symptoms, which may be used to perform
tasks such as duplicate problem recognition. When an application detects an error, it must store a
string of symptoms in section 3, and this string becomes the primary symptom for the error. This string
should be a unique and complete description of the error. All incidences of that error should produce the
same string in section 3. When problems are analyzed, problems that have identical strings in section 3
represent the same error. Note that an application does not store any primary symptom string or invoke
DIAGNOSE code X'94' unless it detects an error in its own processing.

Section 4 (Secondary SDB Symptoms)
Section 4 contains an optional secondary symptom string. The purpose of the secondary string is to
provide additional symptoms that may supplement the symptoms in section 3.

Section 5 (Free-Format Data)
Section 5 contains logical segments of optional problem-related data to aid in problem diagnosis.
However, the data in section 5 is not in the SDB format, which is found only in sections 3 and 4. Each
logical segment in section 5 is structured in a key-length-data format.

Symptom Strings — SDB Format
The symptom strings placed in sections 3 and 4 of the symptom record must be in the SDB (structured
database) format. In this format, the individual symptoms in sections 3 and 4 of the symptom record
consist of a prefix and its associated data. Examples of typical prefixes are:
Prefix

Data
PIDS/

A component name
RIDS/

A routine name
AB/

An abend code
PRCS/

A return code

Notes for Applications Using DIAGNOSE Code X'94' SR Option
This section contains programming notes on how the various fields of the ADSR data area (symptom
record) are set. Some fields of this area must be set by the caller of the DIAGNOSE code, and other
fields are set by the system when the application invokes the DIAGNOSE code. The fields that the caller
must always set are indicated by an RC code in the following sections. The fields that are set by CP are
indicated by an RS code.

The RA code designates certain flag fields that need to be set only when certain kinds of alterations
and substitutions are made in the symptom record after the incident occurs. These alterations and
substitutions must be obvious to the user who interprets the data. Setting these flag fields is the
responsibility of the program that alters or substitutes the data. If a program changes a symptom
record that has already been recorded, it should set the appropriate RA-designated flag-bit fields as
an indication of how the record has been altered.

Symptom Record Reporting

976 z/VM: 7.3 CP Programming Services

The remaining fields, those not marked by RC, RS, or RA, are optionally set by the caller of DIAGNOSE
code X'94'. When DIAGNOSE code X'94' is invoked, it checks that all the required input fields in the
symptom record are set by the caller. If the required input fields are not set, DIAGNOSE code X'94' issues
appropriate return and reason codes.

Programming Notes for Section 1
Notes in this section pertain to the following fields, which are in section 1 of the ADSR data area.

ADSRID Record header (SR) (RC)

ADSRCPM CPU model number

ADSRCPS CPU serial number

ADSRGMT Local time zone conversion factor

ADSRTIME Time stamp (RS)

ADSRTOD Time stamp (HHMMSSTH)

ADSRDATE Date (YYMMDD)

ADSRSID Customer-assigned system/node name (RS)

ADSRSYS Product ID of the base system (BCP) (RS)

ADSRCML Feature and level of Symrec Service (RS)

ADSRTRNC Truncated flag (RS)

ADSRPMOD Section 3 modified flag (RA)

ADSRSGEN Surrogate record flag (RA)

ADSRSMOD Section 4 modified flag

ADSRNOTD ADSRTOD and ADSRDATE not-computed flag (RS)

Symptom Record Reporting

Chapter 30. Symptom Record Reporting 977

ADSRASYN Asynchronous event flag (RA)

ADSRDTP Name of dump

Notes:

1. The application invoking DIAGNOSE code X'94' must provide the space for the entire symptom record,
and must initialize that space to binary zeros. The application must also store the value SR into
ADSRID.

2. DIAGNOSE code X'94' stores the TOD clock value into ADSRTIME when the incident occurs. However,
it does not compute ADSRTOD and ADSRDATE when the incident occurs, but afterward, when it
formats the output. When the incident occurs, DIAGNOSE code X'94' also sets ADSRNOTD to 1 as an
indication that ADSRTOD and ADSRDATE have not been computed.

3. DIAGNOSE code X'94' stores the customer-assigned system node name into ADSRSID.
4. DIAGNOSE code X'94' stores the first four digits of the base control program component ID into

ADSRSYS.
5. If DIAGNOSE code X'94' truncates the symptom record, it sets ADSRTRNC to 1. This can happen when

the size of the symptom record provided by the invoking application exceeds 3500 decimal bytes.
6. ADSRSGEN, if 1, indicates that the symptom record was not provided as first time data capture by

the invoking application. Another program created the symptom record. The identification of the other
program might be included with other optional information, for example, in section 5.

7. If some application creates the record asynchronously, that application should set ADSRASYN to 1.
This means that the data is derived from sources outside the normal execution environment, such as
human analysis or some type of machine post-processing.

Programming Notes for Section 2
Notes in this section pertain to the following fields, which are in section 2 of the ADSR data area.

ADSRARID Architectural level designation (RS)

ADSRL Length of section 2 (RC)

ADSRCSL Length of section 2.1 (RC)

ADSRCSO Offset of section 2.1 (RC)

ADSRDBL Length of section 3 (RC)

ADSRDBO Offset of section 3 (RC)

ADSRROSL Length of section 4

Symptom Record Reporting

978 z/VM: 7.3 CP Programming Services

ADSRROSA Offset of section 4

ADSRRONL Length of section 5

ADSRRONA Offset of section 5

ADSRRISL Length of section 6

ADSRRISA Offset of section 6

ADSRSRES Reserved for system use

Notes:

1. The invoking application must ensure that the actual lengths of supplied data agree with the lengths
indicated in the ADSR data area. The application should not assume that DIAGNOSE code X'94'
validates these lengths and offsets.

2. The lengths and offsets in section 2 are intended to make the indicated portions of the record
indirectly addressable. Invoking applications should not depend on the sections following one another,
and thus should not use computed absolute offsets into the data area.

3. The value of the ADSRARID field is the architectural level at which the DIAGNOSE code X'94' SR
support is operating. This field is supplied by DIAGNOSE code X'94'.

4. Section 2 has a fixed length of 48 bytes. Optional fields (not marked with RC, RS, or RA) contain binary
zeros when the invoking application provides no values for them.

Programming Notes for Section 2.1
Notes in this section pertain to the following fields, which are in section 2.1 of the ADSR data area.

ADSRC C'SR21' Section 2.1 Identifier (RC)

ADSRCRL Architectural level of record (RC)

ADSRCID Component identifier

ADSRFLC Component status flags

ADSRNIBM Non-IBM program flag (RC)

ADSRLVL Component release level (RC)

ADSRPTF Service level

ADSRPID PID number (RC)

Symptom Record Reporting

Chapter 30. Symptom Record Reporting 979

ADSRPIDL PID release level (RC)

ADSRCDSC Text description

ADSRRET Return code (RS)

ADSRREA Reason code (RS)

ADSRPRID Problem identifier

ADSRSSID Subsystem identifier

Notes:

1. This section has a fixed length of 100 bytes, and cannot be truncated. Optional fields (not marked
with RC, RS, or RA) appear as binary zeros, if no values are provided.

2. ADSRCRL is the architectural level of the record. Note that ADSRARID (section 2) is the architectural
level of DIAGNOSE code X'94'.

3. ADSRCID is the component ID of the application that incurred the error.

Under some circumstances, there can be more than one component ID involved. For ADSRCID, select
the component ID that is most indicative of the source of the error. Additional and clarifying data
(such as, another component ID involved) is optional, and may be placed in optional entries, such as
ADSRCDSC of section 2.1, section 4, or section 5.

ADSRCID is not a required field in this section, although it is required in section 3 after the PIDS/
prefix of the symptom string. Repeating this value in section 2.1 is desirable but not required. Where
the component ID is not given in section 2.1, this field must contain binary zeros.

4. ADSRNIBM is a flag indicating that a non-IBM program originated the symptom record.
5. ADSRLVL is the release level of the component indicated in ADSRCID, or zero if ADSRCID is zero.
6. ADSRPTF is the service level. It may differ from ADSRLVL because the program may be at a higher

level than the release. ADSRPTF can contain any number indicative of the service level. For example,
a PTF, FMID, APAR number, or user modification number. This field is not required, but it should be
provided if possible.

ADSRPID is the program identification number assigned to the program that incurred the error. When
the symptom record is being created by an IBM program, ADSRPID must be provided only if it
does not have an assigned component ID. Therefore, ADSRCID contains binary zeros if ADSRPID is
provided.

7. ADSRPIDL is the release level of the program designated by ADSRPID.
8. ADSRCDSC is a 32-byte area that contains text, and it is only provided at the discretion of the

reporting component. It provides clarifying information.
9. ADSRRET is the return code, and ADSRREA is the reason code from the execution of DIAGNOSE code

X'94'. DIAGNOSE code X'94' places these values in registers 0 and 15 and in these two fields as part
of its execution. The fields are right-justified, and identical to the contents of registers 0 and 15.

10. ADSRPRID is a value that can be used to associate the symptom record with other symptom records.
This value must be in EBCDIC, but it is not otherwise restricted.

11. ADSRSSID is the name of a subsystem. A zero value is interpreted as no name.

Programming Notes for Section 3
Section 3 of the symptom record contains the primary symptoms associated with the error, and is
provided by the application that incurred the error, or by some program that acts on its behalf. The
internal format of the data in section 3 is the SDB format, with a blank separating each entry. Once this
data has been passed to DIAGNOSE code X'94' by the invoker, it may not be added to or modified without
setting ADSRPMOD (in Section 1) to 1. The data in this section is EBCDIC, and no binary zeros may appear.
The symptoms are in the form K/D where K is a keyword of one to eight characters and D is at least one
character. D can only be an alphanumeric or @, $, and #.

Symptom Record Reporting

980 z/VM: 7.3 CP Programming Services

Notes:

1. The symptom K/D can have no imbedded blanks, but the pound sign, #, can be used to substitute for
desired blanks. Each symptom (K/D combination) must be separated by at least one blank. The first
symptom may start at ADSRRSCS with no starting blank, but the final symptom must have at least one
trailing blank. The total length of each symptom (K/D combination) cannot exceed 15 characters.

2. This section is provided by the component that reports the failure to the system.
3. The PIDS/ entry is required, with the component ID following the slash, from all programs that

originate a symptom record and have a component ID assigned. Further, it must be identical to the
value in ADSRCID (section 2.1) if that is provided. (ADSRCID is not a required field).

Programming Notes for Section 4
Section 4 of the symptom record contains the secondary symptoms associated with the error incident,
and it is provided by the application that incurred the error, or by some program that acts in its behalf. The
internal format of the data in section 4 is the SDB format, with a single blank separating each entry. Once
this data has been passed to DIAGNOSE code X'94' by the invoker, it may not be added to or modified
without setting ADSRSMOD to 1.

Programming Notes for Section 5
Section 5 of the symptom record contains logical segments of data that are provided by the application or
by some program that acts in its behalf. The application stores data in section 5 before DIAGNOSE code
X'94' is invoked.

Notes:

1. The first segment must be stored at symbolic location ADSR5ST. In each segment, the first two
characters are a hex key value, and the second two characters are the hexadecimal length of the data
string, which must immediately follow the 2-byte length field. Adjacent segments must be packed
together. The length of section 5 is in the ADSRRONL field in section 2, and this field should be
correctly updated as a result of all additions or deletions to section 5.

2. There are 64K key values grouped in 13 ranges representing 13 potential categories. The data type
(that is, hexadecimal, EBCDIC, and so forth) of section 5 is indicated by the category of the key value.
Thus, the key value indicates both the user category and the data type that are associated with the
information in section 5. Because the component ID is a higher order qualifier of the key, it is only
necessary to control the assignment of keys within each component ID or, if a component ID is not
assigned, within each PID number.

Key Value
Category and Data Type

0001-00FF
Reserved

0100-0FFF
MVS system programs

1000-18FF
VM system programs

1900-1FFF
DOS/VSE system programs

2000-BFFF
Reserved

C000-CFFF
Product programs and nonprintable hex data

D000-DFFF
Product programs and printable EBCDIC data

Symptom Record Reporting

Chapter 30. Symptom Record Reporting 981

E000-EFFF
Reserved

F000
Any program and printable EBCDIC data

F001-F0FF
Not assignable

F100-FEFF
Reserved

FF00
Any program and nonprintable hex data

FF01-FFFF
Not assignable

Symptom Record Reporting

982 z/VM: 7.3 CP Programming Services

Appendix A. Data Areas Used by DIAGNOSE Codes

This appendix contains descriptions of data areas and control blocks referred to by DIAGNOSE codes
X'14', X'24', X'D8', X'B4' and X'B8', and X'210'.

Data Areas Used by DIAGNOSE Codes X'24' and X'210'
The following information is returned as output from DIAGNOSE codes X'24' and X'210'. Information
returned from DIAGNOSE code X'210' only is indicated by an asterisk (*). Symbolic names can be used by
including DEVTYPES COPY from the HCPGPI library in your program.

Note: DIAGNOSE code X'24' will no longer be upgraded for new device support. Applications using
DIAGNOSE code X'24' should use DIAGNOSE code X'210' to take advantage of new device support. z/VM
includes DIAGNOSE code X'24' primarily for VM/SP, VM/SP HPO, and VM/ESA (370 Feature) compatibility.

CP370 Device Classes
These are the virtual and real device classes returned in byte 0 of Ry and Ry+1, respectively, for
DIAGNOSE code X'24' and bytes 4 and 8, respectively, of the VRDCBLOK for DIAGNOSE code X'210'.

 CLASTERM EQU X'80' TERMINAL DEVICE CLASS
 CLASGRAF EQU X'40' GRAPHICS DEVICE CLASS
 CLASURI EQU X'20' UNIT RECORD INPUT DEVICE CLASS
 CLASURO EQU X'10' UNIT RECORD OUTPUT DEVICE CLASS
 CLASTAPE EQU X'08' MAGNETIC TAPE DEVICE CLASS
 CLASDASD EQU X'04' CKD DIRECT ACCESS STORAGE DEVICE
 CLASSPEC EQU X'02' SPECIAL DEVICE CLASS
 CLASFBA EQU X'01' FIXED BLOCK STORAGE DEVICE CLASS

CP370 Device Types
These are the virtual and real device types within each class returned in byte 1 of Ry and Ry+1,
respectively, for DIAGNOSE code X'24' and bytes 5 and 9, respectively, of the VRDCBLOK for DIAGNOSE
code X'210'.

Codes for devices that are marked with an asterisk (*) are returned only by using DIAGNOSE code X'210'.

CLASTERM (Terminals):

 TYPBSC X'80' BISYNC LINE FOR 3270 REMOTE
 TYP2700 X'40' 2700 BISYNC LINE
 TYP2955 X'40' 2955 COMMUNICATIONS LINE
 TYPTELE2 X'20' TELEGRAPH TERM CONTROL TYPE II
 TYPTTY X'20' TELETYPE TERMINAL
 TYP2741 X'18' 2741 COMMUNICATIONS TERMINAL
 TYPIBM1 X'10' IBM TERMINAL CONTROL TYPE I
 TYPSDLC X'08' synchronous data link control(ICA)
 TYP3210 X'00' 3210 CONSOLE
 TYP3215 X'00' 3215 CONSOLE
 TYP2150 X'00' 2150 CONSOLE
 TYP1052 X'00' 1052 CONSOLE

CLASGRAF (Graphics Devices):

 TYPHFGD X'.C0' 5080 HIGH FUNCTION GRAPHICS
 TYP2250 X'.80' 2250 DISPLAY UNIT
 TYP3277 X'.04' 3277 DISPLAY STATION
 TYP3138 X'.04' 3138 DISPLAY CONSOLE
 TYP3148 X'.04' 3148 DISPLAY CONSOLE
 TYP3158 X'.04' 3158 CONSOLE
 TYP3284 X'.02' 3284 PRINTER
 TYP3286 X'.02' 3286 PRINTER
 TYP3287 X'.02' 3287 PRINTER

© Copyright IBM Corp. 1991, 2023 983

 TYP3288 X'.02' 3288 PRINTER
 TYP3278 X'.01' 3278 DISPLAY STATION

CLASURI (Unit Record Input Devices):

 TYP3505 X'84' 3505 CARD READER
 TYP2540R X'82' 2540 CARD READER
 TYP2501 X'81' 2501 CARD READER

CLASURO (Unit Record Output Devices):

 TYP3525 X'84' 3525 CARD PUNCH
 TYP2540P X'82' 2540 CARD PUNCH
 TYP3820 X'4F' 3820 PRINTER
 TYPAFP1 X'4E' ADVANCED FUNCTION PRINTER
 TYP38008 X'4D' 3800 MODEL 8 PRINTER
 TYP4248 X'4B' 4248 PRINTER
 TYP4245 X'4A' 4245 PRINTER
 TYP38003 X'49' 3800 MODEL 3 PRINTER
 TYPVAFP X'48' VAFP PRINTER
 TYP3262 X'47' 3262 PRINTER MODEL 5
 TYP3800 X'45' 3800 MODEL 1 PRINTER
 TYP3203 X'43' 3203 PRINTER
 TYP3211 X'42' 3211 PRINTER
 TYP1403 X'41' 1403 PRINTER

CLASTAPE (Tape Devices):

 TYP3422 X'82' 3422 TAPE DRIVE
* TYP3490 X'81' 3490 TAPE DRIVE
 TYP3420 X'10' 3420 TAPE DRIVE
 TYP3430 X'02' 3430 TAPE DRIVE
 TYP3480 X'01' 3480 TAPE DRIVE
 TYP3424 X'42' 3424 TAPE DRIVE
 TYP3590 X'83' 3590 TAPE DRIVE
 TYP9348 X'44' 9348 TAPE DRIVE

CLASDASD (DASD Devices):

* TYP3390 X'82' 3390 DISK STORAGE FACILITY
* TYP9345 X'81' 9345 DISK STORAGE FACILITY
 TYP3380 X'20' 3380 DISK STORAGE FACILITY
 TYP3330 X'10' 3330 DISK STORAGE FACILITY
 TYP3333 X'10' 3333 DISK STORAGE FACILITY
 TYP3350 X'08' 3350 DISK STORAGE FACILITY
 TYP3375 X'04' 3375 DISK STORAGE FACILITY
 TYP2305 X'02' 2305 FIXED HEAD STORAGE DEVICE
 TYP3340 X'01' 3340 DISK STORAGE FACILITY

CLASFBA (FBA Devices):

 TYP3370 X'02' FBA Disk Storage Device
 TYP9336 X'40' FBA Disk Storage Device
 TYP9332 X'08' FBA Disk Storage Device
 TYP9335 X'04' FBA Disk Storage Device
 TYPFBA X'00' FBA Disk Storage Device

CLASSPEC (Special Devices):

 TYPCTCA X'80' CHANNEL TO CHANNEL ADAPTER
 TYP3704 X'40' 3704 PROGRAMMABLE COMM. CTL UNIT
 TYP3705 X'40' 3705 PROGRAMMABLE COMM. CTL UNIT
* TYPOSA X'20' OPEN SYSTEMS ADAPTER DEVICE
* TYP9033 X'08' 9033 DYNAMIC SWITCH
* TYP9032 X'02' 9032 DYNAMIC SWITCH
 TYPUNSUP X'01' DEVICE UNSUPPORTED BY VM/370

984 z/VM: 7.3 CP Programming Services

CP370 Device Features
These are the real device feature codes returned in byte 3 of Ry+1 for DIAGNOSE code X'24' and byte 11
of the VRDCBLOK for DIAGNOSE code X'210'.

Codes for features that are marked with an asterisk (*) are returned only by using DIAGNOSE code X'210'.

Terminals:

 FTRDIAL X'01' 3275 WITH SWITCHED LINE SUPPORT
 FTR3270 X'02' 3270 MODE, VIRTUAL 3215 DEVICE

Graphics Devices:

 FTROPRDR X'80' OPERATOR ID CARD READER

Unit Record Output Devices:

 FTRUCS X'01' UCS FEATURE
 FTR4WCGM X'80' 3800, 4 Writable Generation Char Mods
 FTREXTSN X'40' IS ALSO USED FOR A 3800 PRINTER

Tape Devices:

 FTR7TRK X'80' 7-TRACK FEATURE
 FTRDLDNS X'40' DUAL DENSITY FEATURE
 FTRTRANS X'20' TRANSLATE FEATURE
 FTRDCONV X'10' DATA CONVERSION FEATURE
* FTRCMPCT X'08' 3480 DATA COMPACTION FEATURE

DASD Devices:

 FTRRPS X'80' ROTATIONAL POSITIONAL SENSING (RPS)
 FTRFH X'80' FIXED HEAD DEVICE
 FTREXTSN X'40' EXTENDED SENSE BYTES (24 BYTES)
* FTRDYNP X'40' DYNAMIC PATHING
 FTR2311T X'20' TOP HALF OF 2314 USED AS 2311
 SYSVIRT X'20' DEVICE IS A 3330V 'SYSVIRT'
* FTRVUA X'20' 3330V THAT MAY BE DEDICATED TO
 A VIRTUAL MACHINE
 FTR2311B X'10' BOTTOM HALF OF 2314 USED AS 2311
 FTR35MB X'08' 35 MB DATA MODULE MOUNTED (3340)
 FTR70MB X'04' 70 MB DATA MODULE MOUNTED (3340)
 FTRRSRL X'02' RESERVE/RELEASE ARE VALID CCW OP CODES
 VIRTUAL X'01' DEVICE IS A 3330V 'VIRTUAL'
 FTRVIRT X'01' 3330 VIRTUAL (MSS) VOLUME
* FTRCOMP X'01' 3350 in 3330 COMPATIBLE MODE

Special Devices:

 FTR3088 X'40' CTCA IS TYPE 3088
 FTRTYP1 X'10' TYPE ONE CHANNEL ADAPTER (3704/5)
 FTRTYP4 X'10' TREAT AS TYPE1 CHAN ADAPT (370X)
 FTR3088 X'40' CTCA IS TYPE 3088
* FTRTERM X'80' Unsupported Terminal Device
* FTRGRAF X'40' Unsupported Graphic Display
* FTRSPOOL X'20' Unsupported Unit Record Spooling Device
* FTRTAPE X'08' Unsupported Tape Device
* FTRDASD X'04' Unsupported DASD Device
* FTRSWCH X'01' Unsupported Dynamic Switch

CP370 Virtual Device Status
This is the virtual device status returned in byte 2 of Ry for DIAGNOSE code X'24' and byte 6 of the
VRDCBLOK for DIAGNOSE code X'210'.

 X'20' VIRTUAL DEVICE IS BUSY
 X'04' VIRTUAL DEVICE IS NOT READY
 X'01' DEVICE IS DEDICATED

Appendix A. Data Areas Used by DIAGNOSE Codes 985

CP370 Virtual Device Flags
These are the virtual device flags returned in byte 3 of Ry for DIAGNOSE code X'24' and byte 7 of the
VRDCBLOK for DIAGNOSE code X'210'.

 X'80' DASD - READ ONLY
 X'80' IF VIRTUAL 270X, LINE ENABLED
 X'40' IF DASD, TDISK OR VIRTUAL DISK IN STORAGE SPACE ALLOCATED BY CP
 X'40' IF VIRTUAL 270X, LINE CONNECTED
 X'10' IF CONS/SPOOLING, PROCESSING 1ST CCW
 X'08' IF DASD, VIRTUAL DISK IN STORAGE SPACE ALLOCATED BY CP
 X'02' IF DASD, RESERVE/RELEASE ARE VALID CCW OP CODES
* X'01' DEVICE SUPPORTS MIDAWs

Data Areas Used by DIAGNOSE Codes X'14' and X'D8'
You might need to refer to one of the following data areas when using DIAGNOSE code X'14' or X'D8':

• SFBLOK — VM/SP 370 spool file control block
• SPLINK — VM/SP 370 spool file data block
• Extended spool file block for DIAGNOSE code X'D8'.

SFBLOK - VM/SP 370 Spool File Control Block
SFBLOK is in HCPGPI MACLIB as SFBLOK COPY.

 NAME: SFBLOK
 DESCRIPTIVE NAME: VM/SP 370 SPOOL FILE CONTROL BLOCK
 DSECT NAME - SFBLOK
 FUNCTION: THIS DSECT IS USED TO WHEN SPOOL FILES ARE TO BE
 TRANSLATED TO VM/SP FORMAT. (IT IS ANALOGOUS TO
 THE VM/XA SPFBK.)
 CREATED BY:
 HCPSXSFB FOR SPFBK TO SFBLOK TRANSLATIONS. THIS IS
 DONE FOR DIAGNOSE X'14' AND *SPL OUTPUT.
 DELETED BY:
 NOT APPLICABLE

Offsets Type Len Name (Dim) Description

Dec Hex

0 (0) SIGNED 4 RESERVED FOR IBM USE

4 (4) SIGNED 4 RESERVED FOR IBM USE

8 (8) CHARACTER 8 SFBUSER VMUSER IDENTIFICATION OF FILE OWNER

16 (10) CHARACTER 8 SFBORIG VMUSER IDENTIFICATION OF FILE ORIGIN

24 (18) SIGNED 4 SFBRECNO NUMBER OF DATA RECORDS IN FILE

28 (1C) SIGNED 2 SFBRECSZ LOGICAL RECORD SIZE - EXCLD. CCWS

30 (1E) SIGNED 2 SFBFILID BINARY SYSTEM FILE NUMBER

BITS DEFINED IN SFBFLAG:

32 (20) BITSTRING 1 SFBFLAG S 1 SFBLOK CONTROL FLAGS

 1...

SFBINUSE X'80' FILE BEING PROCESSED

 .1..

SFBRECOK X'40' ALLOCATION RECORDS COMPLETE

 ..1.

SFBUHOLD X'20' FILE IN USER HOLD STATUS

 ...1

SFBDUMP X'10' FILE IS A CP SYSTEM DUMP

SFBLOK

986 z/VM: 7.3 CP Programming Services

Offsets Type Len Name (Dim) Description

Dec Hex

 1...

SFBOPEN X'08' INPUT FILE HAS BEEN OPENED

1..

SFBSHOLD X'04' FILE IN SYSTEM HOLD STATUS

1.

SFBEOF X'02' INPUT FILE HAS REACHED EOF

1

SFBRECER X'01' SFBREC CHAIN INCOMPLETE

33 (21) BITSTRING 1 SFBTYPE DEVICE TYPE FOR SPOOL OUTPUT

34 (22) SIGNED 2 RESERVED FOR IBM USE

36 (24) SIGNED 4 RESERVED FOR IBM USE

40 (28) CHARACTER 12 SFBFNAME FILE NAME

52 (34) CHARACTER 12 SFBFTYPE FILE TYPE

64 (40) CHARACTER 8 SFBDATE CREATION DATE OF SPOOL FILE

72 (48) CHARACTER 8 SFBTIME CREATION TIME OF SPOOL FILE

80 (50) SIGNED 4 RESERVED FOR IBM USE

84 (54) SIGNED 2 SFBCOPY NUMBER OF COPIES REQUESTED

86 (56) BITSTRING 1 SFBCLAS SPOOL FILE CLASS CHARACTER

BITS DEFINED IN SFBFLAG2:

87 (57) BITSTRING 1 SFBFLAG2 SFBLOK CONTROL FLAGS - BYTE 2

 1...

SFBHOLD X'80' SAVE INPUT FILE; HOLD OUTPUT FILE

 .1..

SFBNOHLD X'40' DELETE INPUT FILE; NOHOLD OUTPUT

88 (58) CHARACTER 8 SFBDIST DISTRIBUTION CODE

96 (60) CHARACTER 4 RESERVED FOR IBM USE

100 (64) BITSTRING 1 SFBSTCPY CURRENT STARTING COPY NUMBER

BITS DEFINED IN SFBFLAG3:

101 (65) BITSTRING 1 SFBFLAG3 SFBLOK CONTROL FLAGS - BYTE 3

 1...

SFBLDBEG X'80' 3800 LOAD CCWS AT BEGINNING

 .1..

SFBLDMID X'40' 3800 LOAD CCWS ALL THRU FILE

 ..1.

SFBFCB X'20' INDICATE FCB CCWS NOW IN FILE

1..

SFBACNT X'04' ACCOUNTING TYPE FILE

1.

SFBSEEN X'02' 'FILE PREVIOUSLY SEEN' FLAG

1

SFBXFER X'01' 'FILE TRANSFERRED' FLAG

102 (66) BITSTRING 1 RESERVED FOR IBM USE

BITS DEFINED IN SFBFLAG4:

SFBLOK

Appendix A. Data Areas Used by DIAGNOSE Codes 987

Offsets Type Len Name (Dim) Description

Dec Hex

103 (67) BITSTRING 1 SFBFLAG4 MORE STATUS FLAGS - BYTE 4

 1...

SFBINVS X'80' SFBLOK IS IN SYSSPOOL's VIRTUAL
STORAGE

 .1..

SFBTUSE X'40' FILE IN TEMPORARY USE BY SYSTEM

 ..1.

SFBNORET X'20' NORETURN FLAG

 ...1

SFBVLEN X'10' Original record length available

 1...

SFBPURGD X'08' File is 'to be purged'

1..

SFBCONV X'04' File has been converted

1.

SFBBCONV X'02' File being converted

1

SFBXABER X'01' AN XAB DISK RECORD IS INCORRECT
SFBFLASH CONTAINS THE DISK ADDRESS OF THE
INCORRECT RECORD.

 11.1

SFBDSIZE (*-SFBLOK)/8 DEFAULT SIZE, NON EXTENDED

104 (68) DBL WORD 8 SFBUFORM USER SPECIFIED FORM NUMBER

112 (70) DBL WORD 8 SFBOFORM OPERATOR SPECIFIED FORM NUMBER

 1111

SFBR2SIZ (*-SFBLOK)/8 VM/SP RELEASE 2 SIZE IN DBL WDS

120 (78) SIGNED 2 SFBFCBNL LONGEST IMBEDDED FCB (3211-TYPE)

122 (7A) SIGNED 2 SFBFCBXL LONGEST IMBEDDED FCB (EXTENDED)

 The following 4 bytes are reserved for compatibility
when Diagnose X'14' and *SPL return an SFBLOK
to the user. In particular, the bits that are useful
to Diagnose X'14' and *SPL are the ones which
indicate the KEEP/NOKEEP status (SFBXKEEP) and
the MSG/NOMSG status (SFBXMSG) of the file.

124 (7C) BITSTRING 1 SFBXSPT(4) RESERVED FOR Diag X'14' and *SPL use

128 (80) DBL WORD 8 SFBDEST USER SPECIFIED DESTINATION

136 (88) SIGNED 4 RESERVED FOR IBM USE

140 (8C) SIGNED 2 SFBXABL LENGTH OF XAB EXTENDED ATTRIBUTE BUFFER

BITS DEFINED IN SFBFLG4A:

142 (8E) BITSTRING 1 SFBFLG4A SFBLOK FLAG

 1...

SFBREAD X'80' INPUT SPOOL FILE HAS BEEN READ

 .1..

SFBPCHEK X'40' ALREADY CHECKED FOR PURGE

 ..1.

SFBORIGN X'20' DIAGNOSE X'F8' ORIGINATING NODE AND
USERID ARE STORED IN THE FIRST SPLINK

 ...1

SFBVAFP FILE CREATED ON VAFP PRINTER

SFBLOK

988 z/VM: 7.3 CP Programming Services

Offsets Type Len Name (Dim) Description

Dec Hex

143 (8F) BITSTRING 1 SFBCENT HEXADECIMAL REPRESENTATION OF THE
CENTURY PORTION OF THE YEAR IN SFBDATE

144 (90) SIGNED 4 RESERVED FOR IBM USE

BITS DEFINED IN SFBFLAG5:

148 (94) BITSTRING 1 SFBFLAG5 FLAG

 1...

SFBCDMP X'80' INDICATE CURRENT DUMP SFBLOK

 .1..

SFBCONTO X'40' CONSOLE SPOOLED TO ANOTHER VM

 ..1.

 X'20' RESERVED FOR IBM USE

 ...1

SFBOPFRE X'10' COPY OF AN OPEN READER FILE

149 (95) ADDRESS 3 RESERVED FOR IBM USE

152 (98) CHARACTER 1 RESERVED FOR IBM USE

152 (98) BITSTRING 1 RESERVED FOR IBM USE

153 (99) BITSTRING 1 SFBORGIX BITMAP INDICATING WHICH MEMBER
OF AN SSI CLUSTER CREATED THIS FILE:
 X'00000001' - MEMBER #1,
 X'00000010 - MEMBER #2, ETC.

154 (9A) SIGNED 2 RESERVED FOR IBM USE

156 (9C) BITSTRING 1 RESERVED FOR IBM USE

157 (9D) BITSTRING 1 RESERVED FOR IBM USE

158 (9E) BITSTRING 1 RESERVED FOR IBM USE

159 (9F) BITSTRING 1 RESERVED FOR IBM USE

160 (A0) CHARACTER 1 (0) RESERVED FOR IBM USE

160 (A0) DBL WORD 8 RESERVED FOR FUTURE USE

168 (A8) UNSIGNED 1 Slot number of originating system

184 (B8) CHARACTER 8 SFBSCLAB SPOOL FILE SECLABEL

 ...1 1...

SFBSIZE (*-SFBLOK)/8 SIZE IN DOUBLE WORDS

 ...1 1...

SFBFNFT L'SFBFNAME+L'SFBFTYPE

124 (7C) BITSTRING 1 SFBXQUE SPFQUEUE saved here for Diag X'14'

125 (7D) BITSTRING 1 SFBXSYTY SPFSYSTY saved here for Diag X'14'

BITS DEFINED IN SFBXSTAT:

126 (7E) BITSTRING 1 SFBXSTAT SPFSTAT saved here for Diag X'14'

 1...

SFBXINUS X'80' SPFINUSE (always turned off because
SPTAPE LOAD restored the entire byte and should
never load a file with the in use flag on. SPTAPE
is no longer supported but this flag is saved
for compatibility in Diag X'14' and *SPL output.)
The real in-use status of the file is recorded in
SFBFLAG.SFBINUSE flag.

 1...

SFBXKEEP X'08' SPFKEEP

SFBLOK

Appendix A. Data Areas Used by DIAGNOSE Codes 989

Offsets Type Len Name (Dim) Description

Dec Hex

1..

SFBXMSG X'04' SPFMSG

127 (7F) BITSTRING 1 SFBXTYPE SPFTYPE saved here for Diag X'14' and *SPL output
compatibility

SPLINK - VM/SP 370 Spool File Data Block
SPLINK is in HCPGPI MACLIB as SPLINK COPY.

 NAME: SPLINK
 DESCRIPTIVE NAME: VM/SP 370 SPOOL FILE DATA BLOCK
 DSECT NAME - SPLINK
 FUNCTION: THIS DSECT WHEN SPOOL FILES NEED TO BE TRANS-
 LATED TO VM/SP FORMAT. (IT IS ANALOGOUS TO
 THE VM/XA SPDBK.)
 CREATED BY:
 HCPSXSPL FOR DIAGNOSE X'14' AND *SPL OUTPUT.
 DELETED BY:
 NOT APPLICABLE

Offsets Type Len Name (Dim) Description

Dec Hex

0 (0) SIGNED 4 RESERVED FOR IBM USE

4 (4) SIGNED 4 RESERVED FOR IBM USE

8 (8) SIGNED 4 RESERVED FOR IBM USE

12 (C) SIGNED 4 SPRECNUM NUMBER OF DATA RECORDS IN BUFFER

16 (10) BITSTRING 1 SPLKDATA(0) START OF SPLINK DATA AREA

 ...1

SPSIZE (*-SPLINK) SIZE IN BYTES

16 (10) SIGNED 4016 AREA FOR CCW'S AND DATA

4032 (FC0) SPSIZORG (*-SPLINK) SIZE WITH ORIGINAL NODE/USERID

4032 (FC0) CHARACTER 8 SPORIGID DIAGNOSE X'F8' ORIGINATING USERID

4040 (FC8) CHARACTER 8 SPNODEID DIAGNOSE X'F8' ORIGINATING NODE

4048 (FD0) SPDATLEN (*-SPLINK) SIZE WITHOUT ORIGINAL NODE/
USERID

4048 (FD0) CHARACTER 4 SPCHAR 3800 CHAR ARR TABLE 0 FOR FILE

4052 (FD4) SIGNED 4 SPSPLNKC COUNT OF SPLINKS FOR THIS FILE

4056 (FD8) SIGNED 2 SPRECMAX MAX CCW DATA LENGTH IN FILE

4058 (FDA) CHARACTER 6 RESERVED FOR FUTURE USE

4064 (FE0) CHARACTER 4 SPFCB 3800 FCB FOR FILE

4068 (FE4) CHARACTER 4 SPCMOD 3800 COPY MOD FOR FILE

4072 (FE8) CHARACTER 4 SPCHAR1 3800 ARR TABLE 1 FOR FILE

4076 (FEC) CHARACTER 4 SPCHAR2 3800 ARR TABLE 2 FOR FILE

4080 (FF0) CHARACTER 4 SPCHAR3 3800 ARR TABLE 3 FOR FILE

4084 (FF4) BITSTRING 1 SPFLSHC S 1 3800 FLASH COUNT

BITS DEFINED IN SPFLAG1:

SPLINK

990 z/VM: 7.3 CP Programming Services

Offsets Type Len Name (Dim) Description

Dec Hex

4085 (FF5) BITSTRING 1 SPFLAG1 S 2 3800 FLAG BYTE

 1...

SPCOPYFG X'80' MULT COPIES IN ONE TRANSMISSION

 .1..

SPBTSTAC X'40' 3800 BTS SPECIFIED

4086 (FF6) BITSTRING 1 SPCMCHR S 3 COPY MODIFICATION TRANSLATE NUM

4087 (FF7) BITSTRING 1 SPPGLEN S 4 PAPER LENGTH (1/2 - INCHES)

4088 (FF8) SPNDATLN (*-SPLINK) PTR END OF DATA UNLESS FIRST
SPLINK

4088 (FF8) SIGNED 2 SPFILID FILID USED FOR VERIFICATION

4090 (FFA) CHARACTER 6 SPTIME SFBTIME- USED FOR VERIFICATION

 ..11

SPENDSIZ *-SPCHAR END OF BUFFER SIZE IN BYTES

4090 (FFA) SPLKDSZ *-SPLKDATA Length of the data area

4 (4) SIGNED 2 RESERVED FOR IBM USE

6 (6) SIGNED 2 RESERVED FOR IBM USE

 1... 1...

SPTAGSZ 136 VM/SP 370 TAG RECORD LENGTH

 11..

SPTAG 12 OFFSET BEYOND SPDATA TO TAG DATA

Extended Spool File Block for DIAGNOSE Code X'D8'

10 SPFSTAT 1X SPOOL FILE STATUS FLAGS
 X'80' = CLOSED FILE IS IN USE.
 X'40' = FILE IS OPEN (BEING CREATED)

Extended Spool File Block

Appendix A. Data Areas Used by DIAGNOSE Codes 991

 X'20' = FILE HAS USER HOLD
 X'10' = FILE HAS SYSTEM HOLD
 X'08' = FILE HAS 'KEEP' OPTION SET
 X'04' = FILE HAS 'MSG' OPTION SET
11 SPFFLAG 1X SPOOL FILE ACTION FLAGS
 X'40' = LAST RECORD PROCESSED (USUALLY RDR FILES)
12 SPFTYPE 1X SPOOL FILE ORIGINATING DEVICE TYPE
 X'80' = CAME FROM REAL READER
 X'40' = CAME FROM VIRTUAL PUNCH
 X'22' = CAME FROM VIRTUAL PRINTER
 X'23' = CAME FROM VIRTUAL 3800 MODEL 3 PRINTER
 X'20' = CAME FROM VIRTUAL CONSOLE
 X'10' = SYSTEM CREATED SPOOL FILE
13 SPFQUEUE 1X SPOOL FILE QUEUE LOCATION
 X'80' = FILE IS ON THE RDR QUEUE
 X'40' = FILE IS ON THE PUNCH QUEUE
 X'20' = FILE IS ON THE PRINTER QUEUE
16 SPFPRTFL 1X FLAGS FOR ADVANCED FUNCTION PRINTERS
 X'80' = 3800 LOAD CCWS APPEAR AT BEGINNING
 X'40' = 3800 LOAD CCWS APPEAR THROUGHOUT FILE
 X'20' = LOAD WCGM OR GRAPHMOD CCWS APPEAR
 X'10' = FILE IS NOT EMPTY FLAG
 X'08' = FLASH ALL COPIES OF THE FILE
 X'04' = FILE CONTAINS X'5A' CCWS - AFP CONTROL
 X'02' = FILE HAS AN XAB ASSOCIATED WITH IT
 X'01' = FILE TRANSFERRED
17 SPFSPCL 1C SPOOL FILE CLASS
18 SPFCOPY 1X FILE COPY COUNT
19 SPFSTCPY 1X NUMBER OF COPIES AT PRINT START
1A SPFPGPY 1X PAGE COPY COUNT (USED ONLY FOR 3800)
1B SPFMODNO 1X COPY MOD CHARACTER SET NUMBER (0-3)
1C SPFFLSHC 1X FLASH COUNT
1D SPFDVTYP 1X BITS DEFINED FOR SPFDVTYP AS FOLLOWS:
 X'80' = TYPRDR SPOL - CARD READER DEVICE
 X'81' = TYP2501 SPOL - 2501 CARD READER
 X'82' = TYP2540R SPOL - 2540 CARD READER
 X'84' = TYP3505 SPOL - 3505 CARD READER
 X'40' = TYPPUN SPOL - CARD PUNCH DEVICE
 X'42' = TYP2540P SPOL - 2540 CARD PUNCH
 X'44' = TYP3525 SPOL - 3525 CARD PUNCH
 X'20' = TYPPRT SPOL - PRINTER TYPE DEVICE
 X'21' = TYP1403 SPOL - 1403 PRINTER
 X'22' = TYP32XX SPOL - 3203 OR 3211 PRINTER
 X'26' = TYP3203 SPOL - 3203 PRINTER
 X'22' = TYP3211 SPOL - 3211 PRINTER
 X'28' = TYP3800 SPOL - 3800 PRINTER
 X'23' = TYP3262 SPOL - 3262 PRINTER
 X'24' = TYP4245 SPOL - 4245 PRINTER
 X'29' = TYP4248 SPOL - 4248 PRINTER
 X'25' = TYP3820 SPOL - 3820 PRINTER - dedicated only
 X'27' = TYPAFP1 SPOL - AFP1 PRINTER - dedicated only
 X'2A' = TYPVAFP SPOL - VAFP PRINTER - simulated only

1E SPFPGLEN 1X PAPER LENGTH
1F SPFPSFF 1X FLAGS FOR PRINT SERVICES FACILITY
 X'80' = FILE IS BEING CONVERTED (CAN BE STOPPED)
 X'40' = FILE HAS BEEN CONVERTED (CANNOT DELETE)
 X'20' = FILE HAS BEEN CONVERTED ON ANOTHER SYSTEM IN THE CSE
 COMPLEX. DO NOT SELECT THIS FILE FOR CONVERSION.
 X'10' = 3800 BTS SPECIFIED
20 SPFSPID 1H USER SPOOL FILE ID NUMBER (NOT UNIQUE)
22 SPFDEV 1H REAL OR VIRT NUMBER OF DEVICE PROCESSING FILE
26 SPFLRECL 1H LENGTH OF SPOOL FILE RECORDS
28 SPFRCNT 1F TOTAL NUMBER OF LOGICAL RECORDS
30 SPFCLKOP 1D TOD (FULL) AT 'OPEN' TIME
38 SPFCLKCL 1F TOD HIGH ORDER WORD AT 'CLOSE' TIME
3C SPFFLASH CL4 FORMS OVERLAY (FLASH) NAME
40 SPFUSER CL8 USER IDENTIFICATION OF FILE OWNER
48 SPFDIST CL8 DISTRIBUTION CODE
50 SPFORIG CL8 USER IDENTIFICATION OF FILE ORIGINATOR
58 SPFFINAM CL8 FILE NAME
60 SPFFITYP CL8 FILE TYPE
68 SPFUFORM CL8 USER FORM NAME
70 SPFOFORM CL8 OPERATOR FORM NUMBER
78 SPFCHAR0 CL4 CHARACTER SET NAME - FIRST
7C SPFCHAR1 CL4 CHARACTER SET NAME - SECOND
80 SPFCHAR2 CL4 CHARACTER SET NAME - THIRD
84 SPFCHAR3 CL4 CHARACTER SET NAME - FOURTH
88 SPFFCB CL4 FCB NAME OR LINES/INCH
8C SPFCMOD CL4 COPY MODIFICATION MODULE NAME
90 SPFDEST 1D DESTINATION VALUE

Extended Spool File Block

992 z/VM: 7.3 CP Programming Services

98 SPFDPCNT 1F COUNT OF DATA PAGES
9C SPFXLEN 1F LENGTH OF THE XAB IF ANY
A1 SPFORGIX 1X BITMAP INDICATING WHICH MEMBER OF AN
 SSI CLUSTER CREATED THIS FILE:
 X'00000001' -> MEMBER #1,
 X'00000010 -> MEMBER #2, ETC.
A2 SPFSHPST 1X CSE STATUS
 X'01' = EXTENDED FCB IS IMBEDDED
A8 SPFCCW XL2 MAX CCW DATA LENGTH IN FILE
AA SPFFCBLN 1H MAX LOAD FCB CCW LENGTH

External Attribute Buffer Used by DIAGNOSE Codes X'B4', X'B8',
and X'290'

The external attribute buffer (XAB) is a control block that contains data you create to specify additional
information about a print file. Each print file has its own XAB, and CP has the facilities to maintain XABs.

Suggested Format for an External Attribute Buffer
Figure 106 on page 993 shows the suggested format for data contained in an external attribute buffer.
The basic design of the format is to create or locate a specific block without affecting other blocks within
the XAB.

Figure 106. Suggested Format of an External Attribute Buffer

Lx
is the length of a block. This is a 2-byte field that specifies the total number of bytes for this block.

00
is reserved.

Hx
is the length of the header. This is a 2-byte field that specifies the total number of bytes used for
header information. The value is the size of the header + 2 (for the size of the Hx field itself).

header
is the header data. This is a variable size field which identifies the block.

For multiple independent blocks to be contained in the XAB, it is necessary for each block to have a
unique header.

• The first part of the header should be a name or character string that uniquely identifies who or what
is defining the block. For example, a company name or trademark.

• The second part of the header should be the name of the product associated with the company or
trademark.

• The third part of the header should be the name of the block.
• The fourth part of the header should be format level for the block. If a change is made to a defined

block, it is reflected in the format level for that block.

The following are examples of headers.

Blocks defined for products from IBM might use a header like:

IBM - VM - BLOCK XYZ - LEVEL 0.0.0

And if IBM changed this block, the header might look like:

IBM - VM - BLOCK XYZ - LEVEL 1.0.0

Blocks defined for products from company JJKKLL might use a header like:

External Attribute Buffer

Appendix A. Data Areas Used by DIAGNOSE Codes 993

JJKKLL - PROD1 - BLOCK OPQ - LEVEL 0.0.0

data
is the actual data for the block. This is a variable size field.

Note: CP has no restrictions on the content of an XAB except that the total size of the XAB cannot exceed
32KB-1 bytes (32,767 bytes). Although CP does not check to see that the standard format has been
followed, we recommend that each user of an XAB use the suggested format for multiple uses of the XAB.

External Attribute Buffer

994 z/VM: 7.3 CP Programming Services

Appendix B. Sample Programs Using DASD Block I/O
System Service

Following are two sample programs using the DASD Block I/O system service (*BLOCKIO). The first
program verifies writing to a DASD device using *BLOCKIO and the second program verifies reading a
DASD device using *BLOCKIO. Both programs use CMS IUCV support. For more information on CMS IUCV
support, see z/VM: CMS Macros and Functions Reference and z/VM: CMS Application Development Guide
for Assembler.

Also, for more information on *BLOCKIO itself, see Chapter 14, “DASD Block I/O System Service
(*BLOCKIO),” on page 719.

Note: These programs work, however, they could be easily enhanced. They are presented as samples and
should be viewed as such.

Write Program

* *
* SAMPLE PROGRAM ID - BLKWRITE *
* *
* TYPE SYSTEM - CPIUCV/BLOCKIO *
* *
* PURPOSE OF SAMPLE PROGRAM - *
* VERIFY WRITING TO A DASD DEVICE USING THE *
* CP BLOCK I/O INTERFACE *
* *
* METHOD - *
* CONNECTION IS MADE TO A DASD DEVICE THRU BLOCK *
* I/O.THE ENDING BLOCK NUMBER IS OBTAINED AND A LOOP *
* IS SET UP TO START WRITING AT BLOCK 1 THRU THE ENDING *
* BLOCK. *
* *
* EXPECTED RESULTS (NORMAL) - *
* MSGS - CONNECTION COMPLETE *
* - SEND DONE *
* *
* EXPECTED RESULTS (ABNORMAL) - ANYTHING OTHER THAN ABOVE. *
* *
* EXECUTION INSTRUCTIONS: BEFORE LOADING AND STARTING THE *
* FOLLOWING STEPS MUST BE PREFORMED: *
* *
* - FORMAT THE DASD(512,1K,2K,OR 4K) *
* - ISSUE THE RESERVE COMMAND FOR THE DASD *
* - ISSUE 'FILEDEF BLKPGM DISK XXX' WHERE XXX *
* IS THE VIRTUAL ADDRESS OF THE DASD *
* *
* NOTE: THIS PROGRAM CAN BE RUN AGAINST ALL DASD *
* AND ALL BLOCKSIZES. *
* *

IUCV01 CSECT
 BALR 12,0
 USING *,12
 USING NUCON,0
 ST 14,SAVE
 LA 1,BDISK ISSUE DISK ID
 SVC 202
 DC AL4(1)
 LA 6,SMPPGM
 IMMCMD SET,NAME='GO',EXIT=OUT IMMCMD FOR WAIT
*
 HNDIUCV SET,EXIT=BCON,NAME=(6) ENABLE IUCV
 LTR 15,15 TEST
 BNZ ERRSET BRANCH ON ERROR
 LA 5,PLIST GET PLIST
 USING IPARML,5 ADDRESSABILITY
 XC 0(IPSIZE*8,5),0(5) CLEAR PLIST
 MVC VDEVA(2),DSKAD VIRT.DEV ADDRESS
 MVC PACK01+2(2),DBLK BLOCKSIZE

Sample Programs Using *BLOCKIO

© Copyright IBM Corp. 1991, 2023 995

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

 MVC OFFSET(4),DSKOFF DISK OFFSET
*
 IUCV CONNECT,PRMLIST=(5),USERID=ID,USERDTA=PACK01,PRMDATA=YES, *
 MSGLIM=TEN,MF=L ISSUE CONNECT
 CMSIUCV CONNECT,PRMLIST=(5),NAME=SMPPGM,EXIT=BCON
 LTR 15,15 CONNECT OK
 BZ OKS YES BRANCH
 LR 7,5 NO SHOW WHY
 LINEDIT TEXT='BAD CONNECT PLIST FOLLOWS'
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 B EXIT
*
OKS EQU *
 WRTERM 'CONNECT OK ENTER GO TO CONTINUE'
*
WT NI ECB1,X'00' WAIT FOR CONNECT
 WAIT ECB=ECB1
 LA 11,1 SET UP TO WRITE RECORDS
 ST 11,MGSS STORE BLK NUMBER FOR PRMMSG
 ST 11,NXB STORE IT FOR COMPARE
*
SND LH 7,PATH
 XC IPARML(40),IPARML CLEAR PARMLIST
 IUCV SEND,PRMLIST=(5),DATA=PRMMSG,PRMMSG=MGSS, *
 TYPE=2WAY,PATHID=(7),TRGCLS=WRT SEND IT
 BZ OKS2 SEND OK BRANCH
 LR 7,5 OTHER WISE PRINT OUT THE PLIST
 DMSKEY NUCLEUS
 LINEDIT TEXT='BAD SEND PLIST ', *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
*
OKS2 EQU *
 L 10,ENDBLK
 L 11,NXB LOAD BLOCK NUMBER JUST SENT
 LA 11,1(11) UP BLOCK COUNT
 CR 11,10 LAST RECORD
 BH FIN YES GO TELL USER
 ST 11,NXB NO SAVE THIS BLK NUMB
 ST 11,MGSS AND STORE IT FOR PRMMSG
 B SND
*
ERRSET LINEDIT TEXT='=BAD SET'
*
FIN WRTERM 'SEND ALL DONE ENTER GO TO EXIT'
 NI ECB1,X'00' WAIT FOR SEND TO COMPLETE
 WAIT ECB=ECB1
*
EXIT HNDIUCV CLR,NAME=SMPPGM
 L 14,SAVE
 BR 14
 DROP 5
*
OUT EQU * OUT IS IMMCMD EXIT TO TURN OFF WAIT
 DROP 12
 LR 9,15
 LR 8,14
 USING OUT,9
 OI ECB1,X'C0'
 BR 8
*
BCON DS 0D
 STM 0,15,0(13)
 LR 12,15
 USING BCON,12
 USING IPARML,2
 CLI IPTYPE,X'03' CHECK FOR SEVER

Sample Programs Using *BLOCKIO

996 z/VM: 7.3 CP Programming Services

 BE SEV GO SHOW WHY
 CLI IPTYPE,X'02' CONNECTION COMPLETE
 BNE NOTC BRANCH IF NOT OTHERWISE
 MVC ENDBLK(4),IPUSER+4 STOR LAST BLOCK
 LH 7,IPPATHID GET PATHID
 STH 7,PATH STOR IT
 B OT GO SEND FIRST RECORD
*
NOTC CLI IPTYPE,X'07' MSG COMPLETE
 BNE OT IF NOT RETURN OTHERWISE
 LH 7,IPPATHID GET PATHID
 STH 7,PATH SAVE IT
 L 5,IPRMMSG1 GET RETURN CODE
 LTR 5,5 CHECK IT
 BZ OT IF ZERO BRANCH OTHERWISE PRINT BUF
 DMSKEY NUCLEUS
 LR 7,2
 LINEDIT TEXT='BAD SEND PLIST FOLLOWS', *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 B OT AND RETURN
*
* IF SEVER IPTYPE SHOW BUFFER
SEV DMSKEY NUCLEUS
 LR 7,2
 LINEDIT TEXT='SEVER PLIST FOLLOWS', *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
*
OT LM 0,15,0(13)
 BR 14
*
ALIGN DS 0D
MSK DC X'00'
PLIST DS 5D
WRT DC F'01'
ERRBLK DC F'400'
ECB1 DC F'0'
ENDBLK DC F'0'
SAVE DC F'0'
SMPPGM DC CL8'SMPPGM'
PACK01 DC F'0'
OFFSET DC F'0'
VDEVA DC H'0'
 DC 3H'0'
ID DC CL8'*BLOCKIO'
BDISK DC CL8'DISKID'
 DC CL8'BLKPGM'
DSKAD DS XL2
DBLK DS H
DSKOFF DS F
R15 EQU 15
MGSS DC F'0'
 DC AL4(BUF)
TEN DC H'255'
BUF DC 1024CL1'F'
NXB DC F'0'
PATH DC H'0'
 COPY IPARML
 NUCON
 END

Sample Programs Using *BLOCKIO

Appendix B. Sample Programs Using DASD Block I/O System Service 997

Read Program

* *
* SAMPLE PROGRAM ID - BLKREAD *
* *
* TYPE SYSTEM - CPIUCV/BLOCKIO *
* *
* PURPOSE OF SAMPLE PROGRAM - *
* VERIFY READING A DASD DEVICE USING THE *
* CP BLOCK I/O INTERFACE *
* *
* METHOD - *
* CONNECTION IS MADE TO A DASD DEVICE THRU BLOCK *
* I/O.THE ENDING BLOCK NUMBER IS OBTAINED AND A LOOP *
* IS SET UP TO START READING AT BLOCK 1 THRU THE ENDING *
* BLOCK.THE FINAL BLOCK IS WRITTEN OUT. *
* *
* EXPECTED RESULTS (NORMAL) - *
* MSGS - CONNECTION COMPLETE *
* - SEND DONE *
* - THE FINAL BLOCK OF DATA(F'S INS THIS CASE) *
* *
* EXPECTED RESULTS (ABNORMAL) - ANYTHING OTHER THAN ABOVE. *
* *
* EXECUTION INSTRUCTIONS: BEFORE LOADING AND STARTING THE *
* FOLLOWING STEPS MUST BE PREFORMED: *
* *
* - FORMAT THE DASD(512,1K,2K,OR 4K) *
* - ISSUE THE RESERVE COMMAND FOR THE DASD *
* - ISSUE 'FILEDEF BLKPGM DISK XXX' WHERE XXX *
* IS THE VIRTUAL ADDRESS OF THE DASD *
* *

*
IUCV01 CSECT
 BALR 12,0
 USING *,12
 USING NUCON,0
 ST 14,SAVE
 LA 1,BDISK ISSUE DISK ID
 SVC 202
 DC AL4(1)
 LA 6,SMPPGM
 IMMCMD SET,NAME='GO',EXIT=OUT IMMCMD FOR WAIT
*
 HNDIUCV SET,EXIT=BCON,NAME=(6) ENABLE IUCV
 LTR 15,15 TEST
 BNZ ERRSET BRANCH ON ERROR
 LA 5,PLIST GET PLIST
 USING IPARML,5 ADDRESSABILITY
 XC 0(IPSIZE*8,5),0(5) CLEAR PLIST
 MVC VDEVA(2),DSKAD VIRT.DEV ADDRESS
 MVC PACK01+2(2),DBLK BLOCKSIZE
 MVC OFFSET(4),DSKOFF DISK OFFSET
*
 IUCV CONNECT,PRMLIST=(5),USERID=ID,USERDTA=PACK01,PRMDATA=YES, *
 MSGLIM=TEN,MF=L ISSUE CONNECT
 CMSIUCV CONNECT,PRMLIST=(5),NAME=SMPPGM,EXIT=BCON
 LTR 15,15 CONNECT OK
 BZ OKS YES BRANCH
 LR 7,5 NO SHOW WHY
 LINEDIT TEXT='BAD CONNECT PLIST FOLLOWS'
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 B EXIT
*
OKS EQU *
 WRTERM 'CONNECT OK ENTER GO TO CONTINUE'
*
WT NI ECB1,X'00' WAIT FOR CONNECT
 WAIT ECB=ECB1
 LA 11,1 SET UP TO WRITE RECORDS
 ST 11,MGSS STORE BLK NUMBER FOR PRMMSG
 ST 11,NXB STORE IT FOR COMPARE

Sample Programs Using *BLOCKIO

998 z/VM: 7.3 CP Programming Services

*
SND LH 7,PATH
 XC IPARML(40),IPARML CLEAR PARMLIST
 IUCV SEND,PRMLIST=(5),DATA=PRMMSG,PRMMSG=MGSS, *
 TYPE=2WAY,PATHID=(7),TRGCLS=WRT SEND IT
 BZ OKS2 SEND OK BRANCH
 LR 7,5 OTHER WISE PRINT OUT THE PLIST
 DMSKEY NUCLEUS
 LINEDIT TEXT='BAD SEND PLIST ', *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
*
OKS2 EQU *
 L 10,ENDBLK
 L 11,NXB LOAD BLOCK NUMBER JUST SENT
 LA 11,1(11) UP BLOCK COUNT
 CR 11,10 LAST RECORD
 BH FIN YES GO TELL USER
 ST 11,NXB NO SAVE THIS BLK NUMB
 ST 11,MGSS AND STORE IT FOR PRMMSG
 B SND
*
ERRSET LINEDIT TEXT='=BAD SET'
*
FIN WRTERM 'SEND ALL DONE ENTER GO TO EXIT'
 NI ECB1,X'00' WAIT FOR SEND TO COMPLETE
 WAIT ECB=ECB1
 WRTERM BUF,1024,EDIT=LONG,COLOR=B
*
EXIT HNDIUCV CLR,NAME=SMPPGM
 L 14,SAVE
 BR 14
 DROP 5
*
OUT EQU * OUT IS IMMCMD EXIT TO TURN OFF WAIT
 DROP 12
 LR 9,15
 LR 8,14
 USING OUT,9
 OI ECB1,X'C0'
 BR 8
*
BCON DS 0D
 STM 0,15,0(13)
 LR 12,15
 USING BCON,12
 USING IPARML,2
 CLI IPTYPE,X'03' CHECK FOR SEVER
 BE SEV GO SHOW WHY
 CLI IPTYPE,X'02' CONNECTION COMPLETE
 BNE NOTC BRANCH IF NOT OTHERWISE
 MVC ENDBLK(4),IPUSER+4 STOR LAST BLOCK
 LH 7,IPPATHID GET PATHID
 STH 7,PATH STOR IT
 B OT GO SEND FIRST RECORD
*
NOTC CLI IPTYPE,X'07' MSG COMPLETE
 BNE OT IF NOT RETURN OTHERWISE
 LH 7,IPPATHID GET PATHID
 STH 7,PATH SAVE IT
 L 5,IPRMMSG1 GET RETURN CODE
 LTR 5,5 CHECK IT
 BZ OT IF ZERO BRANCH OTHERWISE PRINT BUF
 DMSKEY NUCLEUS
 LR 7,2
 LINEDIT TEXT='BAD SEND PLIST FOLLOWS', *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *

Sample Programs Using *BLOCKIO

Appendix B. Sample Programs Using DASD Block I/O System Service 999

 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 B OT AND RETURN
*
* IF SEVER IPTYPE SHOW BUFFER
SEV DMSKEY NUCLEUS
 LR 7,2
 LINEDIT TEXT='SEVER PLIST FOLLOWS', *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
 DMSKEY NUCLEUS
 LINEDIT TEXT='BUFFER = ...*
 ',SUB=(HEX4A,(7)), *
 DISP=SIO,TYPCALL=NONE
 L 15,ADMSERR
 BALR 14,15
 DMSKEY RESET
*
OT LM 0,15,0(13)
 BR 14
*
ALIGN DS 0D
MSK DC X'00'
PLIST DS 5D
WRT DC F'02'
ERRBLK DC F'400'
ECB1 DC F'0'
ENDBLK DC F'0'
SAVE DC F'0'
SMPPGM DC CL8'SMPPGM'
PACK01 DC F'0'
OFFSET DC F'0'
VDEVA DC H'0'
 DC 3H'0'
ID DC CL8'*BLOCKIO'
BDISK DC CL8'DISKID'
 DC CL8'BLKPGM'
DSKAD DS XL2
DBLK DS H
DSKOFF DS F
R15 EQU 15
MGSS DC F'0'
 DC AL4(BUF)
TEN DC H'255'
BUF DC 1024CL1' '
NXB DC F'0'
PATH DC H'0'
 COPY IPARML
 NUCON
 END

Sample Programs Using *BLOCKIO

1000 z/VM: 7.3 CP Programming Services

Appendix C. DIAGNOSE Code X'68' and VMCF

DIAGNOSE Code X'68'
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'68' to initiate a function of the Virtual Machine Communication Facility (VMCF).

Note: VMCF is maintained in z/VM only for compatibility; all new programs should use APPC/VM
for communication. See the appendixes in the VM/ESA V2.4: Conversion Guide and Notebook (https://
www.vm.ibm.com/pubs/hcse9a10.pdf), GC24-5839 for information on how to migrate your programs to
APPC/VM or IUCV.

VMCF provides virtual machines with the ability to send data to, and receive data from, any other virtual
machine.

VMCF is made up of control functions, data transfer functions, the VMCPARM parameter list, a special
external interrupt (code X'4001') to asynchronously alert virtual machines to pending messages, and an
external interrupt message header (VMCMHDR) to pass control information to another user.

See “The Virtual Machine Communication Facility” on page 1003 for more information on VMCF protocol
and details of VMCF functions.

Notes:

1. Before you can use any other VMCF function, you must use the AUTHORIZE function for
communications. Before you can communicate with another user, that user must also have used the
AUTHORIZE function.

2. In an XC virtual machine, DIAGNOSE code X'68' may not be issued in access-register mode.

Entry Values:
Rx

Contains the address of a parameter list (VMCPARM). The address of VMCPARM must be in guest real
storage in the host-primary address space and must be doubleword-aligned. (See “The VMCPARM
Parameter List” on page 1014 for the format of VMCPARM and a description of the contents of each of
its fields.) One of the entries in this parameter list is a subcode, specifying the particular request being
initiated. The functions and their subcodes are listed under the description of the VMCPFUNC field.

Ry
Not used.

Exit Values:
Ry

Contains the return code upon successful or unsuccessful completion of DIAGNOSE code X'68'
function invocation. For a list of VMCF return codes and their meanings, see Table 213 on page 1002
or Table 218 on page 1021. Note that return codes also are found in Final Response Interrupts in the
VMCMEFLG field. See Table 219 on page 1024.

Usage Notes
1. Rx and Ry can be any general register, R0 through R15. They may also be the same register.
2. You may not be authorized to issue this DIAGNOSE code if an external security manager is installed on

your system. For additional information, contact your security administrator.

© Copyright IBM Corp. 1991, 2023 1001

https://www.vm.ibm.com/pubs/hcse9a10.pdf
https://www.vm.ibm.com/pubs/hcse9a10.pdf

Responses
Return Codes: The virtual machine initiating a VMCF request receives a return code that may be returned
in the general register specified as Ry in the DIAGNOSE instruction or in VMCMEFLG upon receiving an
interrupt associated with a data transfer operation. The return code indicates successful completion of
the request or error conditions associated with the request.

Upon completion of DIAGNOSE code X'68', the following return codes may be received:

Table 213. VMCF Return Codes from DIAGNOSE code X'68'

Return Code in Ry Meaning

0 (X'00') Successful completion of a request

1 (X'01') Invalid buffer address or length

2 (X'02') Invalid subcode

3 (X'03') Protocol violation

4 (X'04') Source virtual machine not authorized

5 (X'05') User not available

6 (X'06') Store or fetch protection violation

7 (X'07') SENDX data too large

8 (X'08') Duplicate message

9 (X'09') Target virtual machine in quiesce status

10 (X'0A') Message limit for outgoing messages is exceeded by source or message limit
for incoming messages at target exceeded. The outgoing message limit may be
changed using the SETLIMIT function. A VMCF user, using the directory option
MAXVMCFI, may specify an incoming message limit from 1 to 2,147,483,647. The
default is 2,147,483,647.

11 (X'0B') REPLY cancelled

12 (X'0C') Message not found

13 (X'0D') Synchronization error

14 (X'0E') CANCEL too late

15 (X'0F') Paging I/O error

16 (X'10') Incorrect length

17 (X'11') Destructive overlap. A virtual machine executed a RECEIVE or REPLY function and
specified a receive buffer address that overlapped the source virtual machine send
data address or specified a reply data address that overlapped the source virtual
machine reply buffer address.

18 (X'12') User not authorized for priority messages

19 (X'13') Data transfer error

20 (X'14') Cancel–busy. A virtual machine attempted to cancel a message being processed.
If this is a SEND/RECV request and the RECEIVE function is in process, repeated
retries may cancel the REPLY function.

Program Exceptions: These program exceptions can occur if the DIAGNOSE X'68' is given incorrect input
data:

1002 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Special-operation exception DIAGNOSE code X'68' cannot run in an XC virtual machine
that is in access register mode.

Privilege-operation exception The virtual machine is in the problem state.

Access exception (See “Access
Exceptions” on page 8.)

An error occurred trying to fetch the parameter list.

The Virtual Machine Communication Facility
Note: VMCF is maintained in z/VM only for compatibility; all new programs should use APPC/VM
for communication. See VM/ESA V2.4: Conversion Guide and Notebook (https://www.vm.ibm.com/pubs/
hcse9a10.pdf), GC24-5839 for information on how to migrate your programs to APPC/VM or IUCV.

The Virtual Machine Communication Facility (VMCF) is part of the CP component of VM. VMCF provides
virtual machines with the ability to send data to and receive data from any other virtual machine.

VMCF is made up of five data transfer functions, seven control functions, a special external interrupt
(code X'4001') to asynchronously alert virtual machines to pending messages, and an external interrupt
message header to pass control information (and data, at times) to another user.

VMCF is implemented by means of functions invoked using the DIAGNOSE instruction code X'68' and
a special 40-byte parameter list called VMCPARM. (VMCPARM DSECT is in HCPGPI MACLIB.) A VMCF
function is indicated by a particular function subcode in the VMCPFUNC field in the parameter list.

Note: Before you can use any other VMCF function, you must use the AUTHORIZE function for
communications. Before you can communicate with another user, that user must also have used the
AUTHORIZE function.

A special external interrupt (code X'4001') notifies one virtual machine of a pending transfer of data. This
interrupt is also used to synchronize sending and receiving of data.

Along with this interrupt, the virtual machine receives a message header that is logged into a preassigned
virtual storage area called VMCMHDR. (VMCMHDR DSECT is in HCPGPI MACLIB.) This message header
is used to define the type of request and to provide data transfer information, such as length of data.
The message header is also used to notify the originator of a transaction of the success or failure of
the transaction. In this case, the message header includes such information as residual counts and data
transfer return codes.

See Table 214 on page 1003 for a list of the VMCF functions and a brief description of each. The functions
are described in detail starting on page “Descriptions of VMCF Functions” on page 1009.

Messages and data are directed to other virtual machines logically through the user ID. The amount of
data that can be moved in a single transfer is limited only by the sizes of virtual machine storage of the
respective virtual machines. Use of real storage is minimal. Only 1 real storage page per virtual machine (a
total of 2 pages, 1 for the sender and 1 for the receiver) needs to be locked during the data transfer.

The special message facility (SMSG) uses VMCF to send messages from 1 virtual machine storage area
to another virtual machine storage area. For a description of the special message facility and how it uses
VMCF, see Appendix D, “The Special Message Facility,” on page 1025.

Table 214 on page 1003 describes the purpose of each function.

Table 214. Virtual Machine Communication Facility (VMCF) Functions

Function Type Description

AUTHORIZE * Control Initializes VMCF for a given virtual processor. Once
AUTHORIZE is executed, the virtual processor can
execute other VMCF functions and receive messages or
requests from other users.

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1003

https://www.vm.ibm.com/pubs/hcse9a10.pdf
https://www.vm.ibm.com/pubs/hcse9a10.pdf

Table 214. Virtual Machine Communication Facility (VMCF) Functions (continued)

Function Type Description

UNAUTHORIZE * Control Terminates VMCF activity on a virtual processor

SEND Data Transfer Directs a message or block of data to another virtual
machine

SEND/RECV Data Transfer Directs a message or block of data to another virtual
machine, and requests notification of a reply

SENDX Data Transfer Directs data to another virtual machine on a faster but
more restrictive protocol than the SEND function

RECEIVE Data Transfer Allows you to accept selective messages or data sent
through a SEND or SEND/RECV function

SETLIMIT Control Allows you to set the maximum number of outgoing
messages that you can have pending.

CANCEL Control Cancels a message or data transfer directed to another
user but not yet accepted by that user

REPLY Data Transfer Allows you to direct data back to the originator
of a SEND/RECV function, simulating full duplex
communication

QUIESCE * Control Temporarily rejects further SEND, SENDX, SEND/RECV,
or IDENTIFY requests from other users to the virtual
machine

RESUME * Control Resets the status set by the QUIESCE function and
allows execution of subsequent requests from other
users to the virtual machine

IDENTIFY Control Notifies another user that your virtual machine is
available for VMCF communication

REJECT Control Allows you to reject specific SEND or SEND/RECV
requests pending for your virtual machine

*These functions have different meanings in a virtual MP environment. For more information about a
virtual MP environment, see “VMCF in an MP Environment” on page 1020.

Using the Virtual Machine Communication Facility
The following discussion presents ideas and suggestions for using the Virtual Machine Communication
Facility (VMCF).

VMCF Applications
The VM system with VMCF provides the user with the potential to apply new and different techniques to
current applications.

Resource Sharing
VMCF provides a clear and concise method for sharing and serializing resources between virtual
machines. The resources can range from multi-write minidisks to entire processors. The control functions
for resource sharing (such as resource management, serialization) can be contained in a virtual machine.

Virtual Extensions to VM
It is conceivable that functions could be added to VM without altering the control program (CP). A
special privilege class virtual machine could be used to provide additional functions to nonprivilege class

VMCF

1004 z/VM: 7.3 CP Programming Services

users using the VMCF interface. Similarly, CMS capabilities could be expanded (or at least appear to be
expanded) by linking CMS with other virtual machines.

Program Testing
The program testing capabilities offered by VMCF can range from device simulation to teleprocessing
network simulation. In particular, VMCF can be used to provide external interactions from one virtual
machine to another. A simulated teleprocessing network could be constructed with virtual machines.
Each virtual machine would effectively become a node within the network. The network structure could
range from a simple tree type structure to a complicated multi-path mesh type structure. The program
logic within each node virtual machine would be the same logic as required for a real teleprocessing
node. In theory, a reasonably complicated structure could be simulated without requiring the physical
hardware.

The significant testing capability provided by VMCF is the ability to link the test system with test/
simulation routines in another virtual machine.

Intra-Virtual Machine Communication
Although the VMCF interface is intended for communication from one virtual machine to another, it can
also be used to communicate within a single virtual machine (wrap connection). The VMCF interface
could conceivably be used to link one or more operating system tasks that are logically separated by the
software. This would allow task-to-task communication rather than virtual machine-to-virtual machine
communication.

Security and Data Integrity
The VMCF interface provides the following security aids:

• The user doubleword in the external interrupt message header can be used to contain a security code to
prevent unwarranted users from accessing a shared database or other confidential information.

• The AUTHORIZE SPECIFIC option allows a user to restrict messages sent to his virtual machine. This
option is useful when worker machines are to communicate only with a host machine. The worker
machines can AUTHORIZE SPECIFIC with the host and prevent unwarranted users from clogging their
message queues.

• The design of VMCF prevents malicious users from intercepting transactions in process for other users
(for example, user D cannot execute a RECEIVE, REPLY, REJECT or CANCEL to a message sent to user B
from user A).

The VMCF support module is designed so a user is always informed of conditions that could threaten
the integrity of his own data. The user is notified either with a DIAGNOSE code X'68' return code or data
transfer error code. There is no internal buffering of user data within the control program (CP). A message
is always retained by either the SOURCE or TARGET virtual machine. If a SEND type request fails, the
SOURCE still has a copy of the original message. If a TARGET REPLY fails, the TARGET user still has a copy
of the REPLY data. The DIAGNOSE return code or data transfer error code can indicate to a user that a
transaction failed. It is up to the user to preserve the associated transaction data. A VMCF user should
consider the following notes:

1. The buffer used for SOURCE data in a SEND, SENDX or SEND/RECV request should not be freed or
reused until the final response external interrupt is received by the SOURCE.

2. The buffer used for TARGET data in a REPLY function can be reused by the TARGET after the
DIAGNOSE instruction (REPLY) has successfully completed.

3. The user parameter list, VMCPARM, may be re-used upon completion of the DIAGNOSE instruction.
At that point the VMCPARM data has been copied to a VMCF control block by the control program. A
user should, however, maintain queues of VMCPARM data to associate an external interrupt message
header, VMCMHDR, with a particular request.

4. A user should always interrogate the DIAGNOSE return code or data transfer error code for possible
error conditions. It is the user's responsibility to determine the types and extent of error recovery. The
DIAGNOSE return code 19 (X'13') for a SOURCE SEND, SEND/RECV or SENDX request indicates that

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1005

an error was associated with the TARGET user and for a TARGET RECEIVE or REPLY request indicates
that an error was associated with the SOURCE user. The user who receives this return code does not
have to invoke error recovery for himself but only be aware that the transaction did not complete
successfully because of an error associated with the other user.

Performance Considerations
There are several factors that can affect the performance of VMCF:

• It is to a user's benefit to have the user parameter list, VMCPARM, in the same 4K page as the
DIAGNOSE code X'68' instruction. This may eliminate a paging operation.

• User support modules using the VMCF interface should be written as reentrant modules and be
contained within a CP shared segment whenever possible. This helps reduce CP paging overhead.

• For applications that involve serial message processing, the SENDX function is the most efficient. The
SENDX function eliminates the need for the TARGET to do a RECEIVE operation.

Note: Overall system VM performance is not affected when VMCF is not being used by an installation.

General Considerations
The SENDX function is a fast way to transfer messages or data and can be used in place of the CP MSG
command where the message length exceeds the capacity of the terminal input line. Its use is somewhat
restricted in that the maximum data length must be agreed upon by all VMCF users and then remains
fixed unless renegotiated.

The SEND and SEND/RECV functions are better suited to transfer high volume database type information.
This type of data transfer requires the flexibility of a wide range of data lengths along with rigorous
management and control techniques.

The QUIESCE function allows a virtual machine to stop receiving messages. The virtual machine can
process those messages already stacked and then use the RESUME function to continue reception. The
QUIESCE function also allows a virtual machine to process all queued messages prior to terminating
VMCF operation.

The user parameter list, VMCPARM, is designed so it can be used for any function by simply varying the
contents of its fields.

Users should keep copies of VMCPARMs for all requests made through the SEND, SEND/RECV, or SENDX
functions. When a final response interrupt is received and the interrupt message header indicates no data
transfer errors, the corresponding VMCPARM copy can be released. If a data transfer error is indicated,
the copy can be used to reinitiate the transaction.

VMCF Protocol
VMCF provides four types of protocol:

• SEND
• SEND/RECV
• SENDX
• IDENTIFY.

The protocol used to communicate between two virtual machines depends on the application of VMCF
and conventions established by virtual machine users authorized to use VMCF. A virtual machine must
invoke the AUTHORIZE function before it is allowed to use any of the other functions.

The types of transactions that virtual machines can be involved in are described by a series of VMCF
protocols. In these protocols the originating virtual machine is called the source virtual machine. The
destination virtual machine is called the target virtual machine.

The protocol for a transaction remains in effect for the duration of the transaction.

VMCF

1006 z/VM: 7.3 CP Programming Services

The SEND Protocol
The SEND protocol defines a one-way transfer of data from source virtual machine storage to target
virtual machine storage. The SEND protocol uses the SEND and RECEIVE functions, as described in Figure
107 on page 1007. The source virtual machine first transfers data to the target virtual machine. This is
done by executing the SEND function which specifies the user ID of the target virtual machine, a message
ID, and the address and length of the data being sent. The target virtual machine receives an external
interrupt from CP notifying it of the data transfer request. The target virtual machine can then respond
through the RECEIVE function. The RECEIVE request specifies the address and the length of the TARGET
buffer that is to receive the data and causes the data to be transferred from source virtual machine
storage to target virtual machine storage. When the data transfer is complete, the source virtual machine
receives an external interrupt from CP, indicating that the transaction is complete and that the target
virtual machine has received the data.

All virtual machines authorized to use VMCF can send data using this protocol.

The amount of data transferred is limited only by virtual machine storage size. Data is transferred in
blocks of up to 2K (when necessary) and only one real page frame is locked during the data transfer
operation.

Figure 107. The SEND Protocol

The SEND/RECV Protocol
The SEND/RECV protocol defines a transaction calling for two-way transfer of data, as described in Figure
108 on page 1008. The SEND/RECV protocol uses the SEND/RECV, RECEIVE, and REPLY functions.

The source virtual machine initiates the transaction using the SEND/RECV function. Using an external
interrupt, CP notifies the target virtual machine that there is a message waiting. The target virtual machine
uses the RECEIVE function to cause the data to be transferred from the source virtual machine's storage
to the target virtual machine storage. The target virtual machine now uses the REPLY function to cause
data to be transferred from its storage to the source virtual machine's storage. When the REPLY function
completes processing, CP causes an external interrupt in the source virtual machine, notifying it that the
transaction is complete.

The SEND/RECV request requires that the source virtual machine specify the address and length of
the data to be transferred and the address where data is expected from the REPLY function. (Both
addresses are in source virtual machine storage.) These addresses, along with the length of the data to be
transferred, are specified through the VMCPARM parameter list. See “The VMCPARM Parameter List” on
page 1014.

When RECEIVE is issued by the target virtual machine in response to the SEND/RECV request, VMCPARM
contains the address in target virtual machine storage where data is to be received. Finally, when the
REPLY request is issued, VMCPARM contains the address in the target virtual machine storage from which
data is to be transferred.

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1007

Figure 108. The SEND/RECV Protocol

The SENDX Protocol
The SENDX protocol defines a transaction calling for an expedited one-way transfer of data. Figure 109
on page 1009 shows the SENDX protocol visually. SENDX differs from the SEND protocol in that the target
virtual machine need not issue the RECEIVE function; data is transferred from source virtual machine
storage to target virtual machine storage at the same time the external interrupt from CP notifies the
target virtual machine of the transaction. Data sent by the source virtual machine is placed in the external
interrupt buffer of the target virtual machine.

Virtual machines using the SENDX protocol are responsible for specifying the user ID for the target
virtual machine, a message ID, the address and length of the data being sent, and the external interrupt
buffer address and data length for the target virtual machine. A virtual machine to be used as a target
virtual machine with the SENDX protocol must specify this information through VMCPARM when that
virtual machine issues the AUTHORIZE function. The data length specified must be at least as long as
the maximum amount of data to be transferred during a transaction; it need not be limited to the usual
40-byte external interrupt buffer. Effective use of the SENDX protocol requires that VMCF users agree on
a maximum size for SENDX data and then issue the AUTHORIZE function with the appropriate external
interrupt buffer size.

If the target virtual machine has not provided enough SENDX buffer area in the external interrupt buffer,
CP notifies the source virtual machine that the transaction was not completed.

When a SENDX data transfer is complete, CP directs a response external interrupt to the source virtual
machine, notifying it that the transaction is complete.

VMCF

1008 z/VM: 7.3 CP Programming Services

Figure 109. The SENDX Protocol

The IDENTIFY Protocol
The IDENTIFY protocol defines a means for virtual machines to identify themselves to other virtual
machines by passing user-defined control information through a standard VMCF message header. Figure
110 on page 1009 shows the IDENTIFY protocol visually.

When the IDENTIFY function is issued, CP directs an external interrupt to the target virtual machine.
Along with the external interrupt, the target virtual machine receives a standard VMCF message header
that contains user-defined information. The IDENTIFY protocol does not cause a response external
interrupt to be directed to the source virtual machine.

Figure 110. The IDENTIFY Protocol

Descriptions of VMCF Functions
There are two types of VMCF functions:

• Control functions
• Data transfer functions.

The Control Functions
The VMCF control functions allow efficient management of data transfer operations from your virtual
machine console. The control functions are:

• AUTHORIZE
• UNAUTHORIZE
• CANCEL
• QUIESCE
• RESUME
• IDENTIFY

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1009

• REJECT.

AUTHORIZE: DIAGNOSE Code X'68' Subcode X'0000'
AUTHORIZE enables VMCF for a virtual machine; once an AUTHORIZE has been executed, the virtual
machine can execute other VMCF functions and receive messages and data from other authorized
VMCF virtual machines. It is possible to specify three options with the AUTHORIZE function: SPECIFIC,
PRIORITY, and VMCPSMSG.

The SPECIFIC option authorizes communication with a specific virtual machine. Any messages sent to the
virtual machine from other than the specified virtual machine will be rejected. The SPECIFIC option can
be used in an application where virtual machines desire to communicate with a host virtual machine but
not among themselves. Under the special message facility, CP is authorized with every virtual machine
that is to receive messages sent with the SMSG command. Virtual machines that are to receive messages
must authorize themselves. The VMCPSMSG option allows a virtual machine to receive special messages.

The PRIORITY option allows a virtual machine to authorize the receipt of priority messages. A virtual
machine is allowed to send priority messages to another virtual machine only if the other virtual machine
is authorized to receive priority messages. A priority message is queued ahead of nonpriority messages
and therefore accepted first.

When you execute the AUTHORIZE function, you must specify the address and length of the external
interrupt buffer for your virtual machine. The buffer must be large enough to contain a fixed message
header (40 bytes). The message header identifies messages sent by other virtual machines or responses
to messages you might send to your own virtual machine.

If you are going to accept SENDX-type communications, you must specify the size of the external interrupt
buffer as 40 plus the maximum size of SENDX data that you plan to accept. This has the effect of
authorizing SENDX protocol. That is, a virtual machine may receive data along with the external interrupt
in its external interrupt buffer. When a virtual machine sends data to another virtual machine through
the SENDX function the data must fit in that virtual machine's external interrupt buffer or the function is
rejected. It is recommended that you specify a buffer length of 280 bytes.

Any AUTHORIZE options in effect can be reset or changed by executing the AUTHORIZE function again. If
there are errors during execution of the AUTHORIZE function, a virtual machine's authorization status is
not changed.

UNAUTHORIZE: DIAGNOSE Code X'68' Subcode X'0001'
UNAUTHORIZE terminates VMCF activity for a virtual machine. The UNAUTHORIZE function causes any
stacked or queued messages associated with the virtual machine to be purged. A virtual machine should
execute the QUIESCE function before executing UNAUTHORIZE if messages that are already queued are
to be handled. When a virtual machine executing UNAUTHORIZE has pending final response external
interrupts, the interrupts are purged. If a virtual machine has pending SEND external interrupts from
another source virtual machine, a RESPONSE interrupt is reflected to the source indicating that the virtual
machine is no longer available.

CANCEL: DIAGNOSE Code X'68' Subcode X'0006'
CANCEL cancels a message or data transfer pending for but not accepted by another VMCF virtual
machine. A virtual machine can CANCEL messages it originates with SEND, SENDX, or SEND/RECV
functions. A message cannot be cancelled if any of the following conditions exist and the request was:

• SENDX or IDENTIFY and the target had already received the SEND external interrupt.
• SEND and the target had already executed the RECEIVE or REJECT functions.
• SEND/RECV and the target had already executed the REPLY or REJECT functions.

If the original request was SEND/RECV and the target virtual machine had executed the RECEIVE function
but not the REPLY, the REPLY can be cancelled. A virtual machine is notified of this condition with a
DIAGNOSE return code. (For a description of the return codes, see Table 216 on page 1017.)

VMCF

1010 z/VM: 7.3 CP Programming Services

QUIESCE: DIAGNOSE Code X'68' Subcode X'0008'
QUIESCE temporarily rejects SEND, SENDX, SEND/RECV, or IDENTIFY requests from other virtual
machines. QUIESCE allows a virtual machine to receive any stacked or queued messages but reject
further SEND, SENDX, IDENTIFY, or SEND/RECV requests from other virtual machines. QUIESCE can be
used to indicate to other virtual machines that the virtual machine is in QUIESCE status, authorized
for communication but not able to accept messages at this time (for example, entering slowdown, my
buffers are full, try again later). The IDENTIFY function could be used to inform other virtual machines
that a particular user is no longer in QUIESCE status. You should execute the QUIESCE function before
executing the UNAUTHORIZE function to avoid losing messages (see “UNAUTHORIZE: DIAGNOSE Code
X'68' Subcode X'0001'” on page 1010). A virtual machine can reset the QUIESCE status (exit slowdown)
by executing the RESUME function. (See “RESUME: DIAGNOSE Code X'68' Subcode X'0009'” on page
1011.) A virtual machine in QUIESCE status may continue to send messages to other virtual machines.
QUIESCE status for a virtual machine only affects messages sent from other virtual machines.

RESUME: DIAGNOSE Code X'68' Subcode X'0009'
RESUME cancels the QUIESCE status, allowing your virtual machine to resume reception of VMCF
requests from other virtual machines. You can use the IDENTIFY function to inform other virtual machines
that your virtual machine is no longer in QUIESCE status. (See “IDENTIFY: DIAGNOSE Code X'68'
Subcode X'000A'” on page 1011.)

IDENTIFY: DIAGNOSE Code X'68' Subcode X'000A'
IDENTIFY notifies another virtual machine that your virtual machine is available for VMCF communication.
Use the IDENTIFY function after issuing the AUTHORIZE function or after your virtual machine has been
in the VMCF QUIESCE state and you have issued the RESUME function. IDENTIFY causes an external
interrupt to be stacked for a specified virtual machine. The virtual machine executing the IDENTIFY
function specifies the user ID of the user to receive the external interrupt. The external interrupt identifies
the virtual machine executing the IDENTIFY function. The IDENTIFY function is provided to inform a
host or controller virtual machine that a virtual machine is activated (logged on) and ready for VMCF
communication. The IDENTIFY function can also be used to inform other virtual machines that your
virtual machine has exited QUIESCE state. There is no response external interrupt associated with the
IDENTIFY function.

The IDENTIFY function can also be used to pass virtual machine defined control information. The fields
in the VMCF parameter list, VMCPARM, not used by the IDENTIFY function may be used to contain
additional virtual machine data.

REJECT: DIAGNOSE Code X'68' Subcode X'000B'
REJECT selectively rejects pending SEND or SEND/RECV requests from other VMCF virtual machines.
REJECT causes a response external interrupt to be reflected to the originator of a message. The
external interrupt indicates to the originator that the message was rejected. (See VMCMRJCT on page
“The External Interrupt Message Header (VMCMHDR)” on page 1019.) The user doubleword within
the external interrupt header may tell a user why the message was rejected. (See VMCPUSE on page
“The VMCPARM Parameter List” on page 1014 and VMCMUSE on page “The External Interrupt Message
Header (VMCMHDR)” on page 1019.) When the user of a virtual machine executes the REJECT function,
he specifies within the VMCF parameter list, VMCPARM, the message ID of the message to be rejected.
A virtual machine cannot reject a message sent with the SENDX function since the message is received
at the same time the external interrupt is received. The REJECT function can be executed as response to
either SEND or SEND/RECV requests.

The Data Transfer Functions
The data transfer functions are:

• SEND
• SEND/RECV
• SENDX

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1011

• RECEIVE
• REPLY
• SETLIMIT

These operations involve the movement of data from one virtual machine storage to another virtual
machine storage.

SEND: DIAGNOSE Code X'68' Subcode X'0002'
SEND directs a message or block of data to another virtual machine. Specify the virtual address and
length of data to be sent within the user parameter list, VMCPARM. Also, specify in the parameter list a
message ID to be associated with the message and the user ID of the user to receive the message data.
You can also send a doubleword of data to be transmitted within the external interrupt message header
(refer to the section “VMCF User Doubleword” on page 1020). If the SEND function is executed with a
data length of 0, only the user doubleword is transmitted to the target virtual machine. The target virtual
machine can then respond with a RECEIVE function (0 length) and pass back a doubleword of data to
the source virtual machine. The external interrupt message header identifies the SEND request. When
the target virtual machine executes a RECEIVE function, the message is transmitted from the source
virtual machine storage to the target virtual storage. There is no internal buffering of data within the
control program (CP). When the data transfer function is complete, the source virtual machine receives
a response external interrupt indicating that the SEND request is complete. The target virtual machine
receives a DIAGNOSE code X'68' return code indicating that the RECEIVE function is complete. The return
code can indicate error conditions associated with the RECEIVE function or normal completion.

The target virtual machine has the option to reject a message rather than execute the RECEIVE function.
(See “REJECT: DIAGNOSE Code X'68' Subcode X'000B'” on page 1011.) The source virtual machine may
cancel a SEND request before the target virtual machine has executed a RECEIVE function or REJECT
function. (See “CANCEL: DIAGNOSE Code X'68' Subcode X'0006'” on page 1010.)

If you are executing the SEND function, you may specify the PRIORITY option. The PRIORITY option
causes the external interrupt for the target virtual machine to be queued ahead of all other nonpriority
external interrupts. If there are other PRIORITY external interrupts pending for the target virtual machine,
the queuing is done in a first-in-first-out manner. That is, PRIORITY interrupts are queued FIFO among
themselves but ahead of all nonpriority interrupts.

SEND/RECV: DIAGNOSE Code X'68' Subcode X'0003'
SEND/RECV provides the capability to both send and receive data in a single VMCF transaction. The
SEND/RECV function causes an external interrupt to be queued for the target virtual machine. When the
target virtual machine receives the external interrupt, it can respond with the RECEIVE function. The
RECEIVE function causes data to be transferred from the source virtual storage to target virtual storage.
The target virtual machine can then respond with a REPLY function. The REPLY function causes data to
be transferred from specified target virtual storage to a reply buffer in the source virtual storage. The
source virtual machine then receives a response external interrupt indicating that the SEND/RECV request
is complete.

When the source virtual machine executes the SEND/RECV function it specifies the address and length
of both the SEND buffer and reply buffer. The address and length specifications are contained within the
user parameter list, VMCPARM. The user parameter list also contains a message ID and user ID of the
user to receive the data. (See the “The VMCPARM Parameter List” on page 1014.)

The source virtual machine can cancel a previously executed SEND/RECV request provided the target
virtual machine has not yet executed the REPLY or REJECT function. If the target virtual machine has
already executed the RECEIVE function, only the REPLY can be cancelled. (See “CANCEL: DIAGNOSE
Code X'68' Subcode X'0006'” on page 1010.)

The target virtual machine can execute the REJECT function in response to the SEND/RECV request and
cause the entire operation to be terminated. (See “REJECT: DIAGNOSE Code X'68' Subcode X'000B'” on
page 1011.)

VMCF

1012 z/VM: 7.3 CP Programming Services

The target virtual machine can respond to a SEND/RECV request with the REPLY function without
executing the RECEIVE function. This has the effect of informing the source virtual machine that the
target virtual machine cannot accept data but that it can send data. The source virtual machine could have
executed the SEND/RECV function only as a means to solicit data from the target virtual machine. The
application of this protocol is up to VMCF users. The user doubleword can be used as a means to control
such an application. (See “VMCF User Doubleword” on page 1020.)

You can execute a SEND/RECV request using the PRIORITY option. The PRIORITY option causes the
target external interrupt for the SEND/RECV request to be queued ahead of any other nonpriority external
interrupts. Response external interrupts directed to the source of a PRIORITY message are also queued in
priority order.

SENDX: DIAGNOSE Code X'68' Subcode X'0004'
SENDX directs data to another virtual machine through a faster but more restrictive protocol than the
SEND function. SENDX function data reaches the target virtual machine at the same time the SEND
external interrupt reaches the target. To use the SENDX function, the target virtual machine must
have an external interrupt buffer large enough to contain both the standard message header and the
data. The size of the external interrupt buffer is specified when you execute the AUTHORIZE function.
Attempts to execute SENDX are rejected when the target virtual machine's external interrupt buffer is not
large enough to contain the data. After the target virtual machine receives the SEND external interrupt
and data, a response external interrupt is directed to the source virtual machine. The SENDX function
eliminates the need for a target virtual machine to execute a RECEIVE function.

A SENDX request can be cancelled by the source virtual machine provided the SENDX external interrupt
has not yet been reflected to the target virtual machine. (See “CANCEL: DIAGNOSE Code X'68' Subcode
X'0006'” on page 1010.)

Specify the SENDX buffer address and length in the user parameter list, VMCPARM. The message ID and
user ID of the target virtual machine are also specified in VMCPARM.

The SENDX function can be executed with the PRIORITY option allowing the SEND external interrupt to be
queued ahead of all nonpriority external interrupts for the target virtual machine.

A SENDX request cannot be rejected by the target virtual machine since the message is received at the
same time the external interrupt is received.

You can execute the SENDX function with a 0 data length causing only the message header and user
doubleword to be transmitted.

RECEIVE: DIAGNOSE Code X'68' Subcode X'0005'
RECEIVE allows you to selectively accept messages or data sent through the SEND or SEND/RECV
functions. You must specify in the user parameter list, VMCPARM, the virtual address and length of the
RECEIVE buffer. The parameter list also contains the message ID of the message to be received and user
ID of the virtual machine that originated the SEND or SEND/RECV request. When a virtual machine has
more than one message pending, the RECEIVE function can be executed to select messages in any order
by message ID.

You can execute the REJECT function to reject messages sent by other virtual machines. The REJECT
function terminates the SEND or SEND/RECV request. (See “REJECT: DIAGNOSE Code X'68' Subcode
X'000B'” on page 1011.)

You can execute the RECEIVE function in response to a SEND/RECV request and then execute a REJECT
function rather than a REPLY. The user doubleword passed back with the REJECT function could indicate
RESEND, for example, if the original data was not received correctly (depending on how you want to use
the protocol).

REPLY: DIAGNOSE Code X'68' Subcode X'0007'
REPLY allows you to direct data back to the sender of a SEND/RECV function. This simulates full duplex
communication. The REPLY function is used with the SEND/RECV function. A user who receives a SEND/
RECV external interrupt normally responds by executing the RECEIVE function. The RECEIVE function

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1013

causes data to be transferred from the source virtual storage to the target virtual storage. The target
virtual machine can then respond with the REPLY function causing data to be transferred from specified
target virtual storage to the source virtual storage. The REPLY function causes a response external
interrupt to be reflected to the source virtual machine.

The user parameter list, VMCPARM identifies the virtual buffer address and length of reply data. When
the REPLY function is executed, the user parameter list, VMCPARM, also contains the message ID and the
user ID of the virtual machine to receive the reply.

The REPLY function can be executed with a 0 data length indicating no response. You can transmit a reply,
0 length or otherwise, using the user doubleword.

A reply can be executed in response to a SEND/RECV request without executing the RECEIVE function.
This indicates that you do not want to receive the message but may want to send a reply. A reply of
0 length could be executed simply to terminate the SEND/RECV request. The application of the REPLY
function is a user decision. It must be used to terminate a SEND/RECV request, however, unless the
REJECT function is executed. (See “REJECT: DIAGNOSE Code X'68' Subcode X'000B'” on page 1011.) The
reply is complete when the source virtual machine receives the external interrupt response.

A REPLY function cannot be executed in response to a SEND request, this is a protocol violation.

SETLIMIT: DIAGNOSE Code X'68' Subcode X'000C'
SETLIMIT determines the maximum number of VMCF messages that a virtual machine can have
outstanding (that is, sent but not received, cancelled, or rejected) at any one time. When a virtual
machine uses the AUTHORIZE function, the message limit is set to the default value of 50. Thereafter, the
SETLIMIT function can be used to change the limit at any time. If the limit value is specified as zero, the
limit is set to the default value of 50. Only the low-order halfword of the specified limit is used, so the
maximum value that can be set is 65535.

If a virtual machine sets its maximum number of messages to a value less than its current number of
outstanding outgoing VMCF messages, the user is not allowed to send additional messages until the
number outstanding is reduced to less than the limit.

Invoking VMCF Functions
VMCF functions are invoked by means of:

• DIAGNOSE code X'68' subcodes
• The VMCPARM parameter list
• External interrupt code X'4001'
• The external interrupt message header (VMCMHDR).

DIAGNOSE Code X'68'
All VMCF functions are invoked from within assembler language programs by means of DIAGNOSE code
X'68'. For more information, see “DIAGNOSE Code X'68'” on page 1001.

The VMCPARM Parameter List
The Rx register of DIAGNOSE code X'68' contains the address of a parameter list, VMCPARM. This
parameter list specifies the VMCF function to be executed, along with other information required by VMCF
to execute that function. The address of VMCPARM must be doubleword-aligned and must be in second
level storage (the storage that appears real to the virtual machine).

The following is the format of the VMCPARM parameter list, provided as VMCPARM COPY in the HCPGPI
macro library:

VMCPARM DSECT

VMCF

1014 z/VM: 7.3 CP Programming Services

V*1 (VMCPFLG1)
is a flag byte used to specify options associated with a particular function. This flag byte can be set to
the following values:
VMCPAUTS (X'80')

indicates, for the AUTHORIZE function, an AUTHORIZE SPECIFIC request. When this bit is set, the
VMCPUSER field must contain the user ID of the target virtual machine. The target virtual machine
is the receiving virtual machine. The status of the specified target virtual machine is not checked
by the control program (CP) at this time.

VMCPPRTY (X'40')
indicates, for SEND, SEND/RECV, SENDX, and IDENTIFY requests, a priority message request. For
an AUTHORIZE request, it indicates an AUTHORIZE PRIORITY request. You cannot send priority
messages to another virtual machine unless that virtual machine has been authorized for priority
messages. The send and response external interrupts for a priority message are queued ahead of
pending nonpriority external interrupts.

VMCPSMSG (X'20')
indicates that the virtual machine is authorized to receive special messages. This bit can be turned
either on or off by the SET SMSG ON command.

Bits 3 through 7 are reserved for IBM use.

VMCPFUNC
Contains the halfword DIAGNOSE code X'68' subcode that defines the VMCF function being requested
as shown in Table 215 on page 1015.

Table 215. VMCF Function Codes for DIAGNOSE Code X'68'

Field Attributes in the DSECT Hexadecimal Code Function

VMCPAUTH X'0000' AUTHORIZE

VMCPUAUT X'0001' UNAUTHORIZE

VMCPSEND X'0002' SEND

VMCPSENR X'0003' SEND/RECV

VMCPSENX X'0004' SENDX

VMCPRECV X'0005' RECEIVE

VMCPCANC X'0006' CANCEL

VMCPREPL X'0007' REPLY

VMCPQUIE X'0008' QUIESCE

VMCPRESM X'0009' RESUME

VMCPIDEN X'000A' IDENTIFY

VMCPRJCT X'000B' REJECT

VMCPSETL X'000C' SETLIMIT

VMCPMID
contains a unique message identifier associated with a transaction. The source virtual machine must
originate the message ID for SEND, SEND/RECV, and SENDX requests. The message ID is used by
the target virtual machine (along with VMCPUSER) to respond to the source request with a RECEIVE,
REPLY, or REJECT request. The message ID allows the target virtual machine to selectively Receive,

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1015

REPLY, or REJECT messages when more than one message is enqueued. The message ID is used by
both the source and target as a unique identification for all messages. You may send messages with
the same message ID to multiple users; you cannot send multiple messages with the same message
ID to one user. Once a transaction is completed, however, the message ID may be reused.

This field is also used to specify the message limit for the SETLIMIT function.

VMCPUSER
specifies the user ID of the target virtual machine for SEND, SEND/RECV, SENDX, IDENTIFY, and
CANCEL requests, and the user ID of the source virtual machine for RECEIVE, REPLY, and REJECT
requests. The target virtual machine uses this field in combination with the message ID (VMCPMID) to
respond to source requests. When the original source parameter list VMCPARM is passed to the target
as the message header VMCMHDR, the user ID is changed from target to source.

This field is also used to specify the specific user ID for an AUTHORIZE SPECIFIC request.

VMCPVADA
contains one of the following addresses, depending upon which VMCF function is requested for:

• SEND, SEND/RECV, and SENDX requests, the address of the source virtual machine data.
• RECEIVE requests, the address of a target virtual machine receive buffer.
• REPLY requests, the address in target virtual machine storage where reply data is located.
• An AUTHORIZE request, the address of the virtual machine external interrupt buffer.

All of these addresses are in guest absolute addresses in the host-primary address space.

For the AUTHORIZE function, the interrupt buffer is checked during execution of DIAGNOSE code
X'68' for storage-protection violations. All storage-protection mechanisms applicable to synchronous
stores are enforced. Subsequently, when each interrupt is presented, the buffer is again checked for
key-controlled protection according to the PSW key at the time of the AUTHORIZE. If this check fails,
the interruption is discarded and, if it was not a final response or IDENTIFY interrupt, then a final
response interrupt indicating a data transfer error (VMCMEFLG=19) is presented to the sender.

For functions other than AUTHORIZE, the PSW key at the time of the DIAGNOSE code X'68' instruction
is used to enforce key-controlled protection when data is transferred. Low-address protection, fetch-
protection override, and storage-protection override do not apply.

The length of the associated data or buffer is specified in the VMCPLENA field.

VMCPLENA
contains the length of the data sent by a user, the length of a receive buffer, or the length of an
external interrupt buffer, whichever is specified in the field VMCPVADA. The size of the value specified
in VMCPLENA is restricted only by virtual machine storage size.

The target virtual machine can use the value in this field as the data length for Receive operations.

VMCPVADB
contains the address of a source virtual machine's reply buffer for a SEND/RECV request. The address
a guest absolute address in the host-primary address space. When the target virtual machine issues
a REPLY in response to a SEND/RECV from the source virtual machine, the reply data is moved in this
buffer. The length of the reply buffer is contained in the field VMCPLENB.

The PSW key at the time of the DIAGNOSE code X'68' instruction is used to enforce key-controlled
protection when data is transferred. Low-address protection, fetch-protection override, and storage-
protection override do not apply.

VMCPLENB
specifies the length of the source virtual machine's reply buffer. The target virtual machine uses
this field to determine the maximum length of the reply. A corresponding field within the response
message header contains a residual data count. The source virtual machine uses this residual count to
determine the length of the target reply. The original reply buffer length (less the residual count) is the
length of the reply from the target virtual machine.

VMCF

1016 z/VM: 7.3 CP Programming Services

VMCPUSE
contains the VMCF user doubleword. The user doubleword is transmitted to the target virtual machine
in the send message header for SEND, SEND/RECV, SENDX, and IDENTIFY requests. For RECEIVE,
REPLY, and REJECT requests, the user doubleword is transmitted to the source virtual machine within
the response message header. The target virtual machine can transmit the user doubleword to the
source virtual machine with REJECT or REPLY requests only if the original request was a SEND/RECV.
The user doubleword is transmitted only with requests that result in send or response external
interrupts.

See Table 216 on page 1017 for a summary of the VMCPARM fields required for execution of each of the
VMCF functions. Possible return codes (in decimal) associated with each function are also listed. For a list
of the return codes, hexadecimal values, and their meanings, see “Responses” on page 1002.

Table 216. Required VMCPARM Fields for VMCF Functions

VMCF Function Applicable VMCPARM Parameters Return Codes

AUTHORIZE VMCPFLG1 – Specific/Priority option
VMCPFUNC – X'0000'–subcode
VMCPUSER – Specific user ID
VMCPVADA – External interrupt buffer address
VMCPLENA – External interrupt buffer length

0, 1, 6, 15

UNAUTHORIZE VMCPFUNC – X'0001'–subcode 0, 4

SEND VMCPFLG1 – Priority option
VMCPFUNC – X'0002'–subcode
VMCPMID – Message identifier
VMCPUSER – Target user ID
VMCPVADA – Send data address
VMCPLENA – Send data length
VMCPUSE – User doubleword

(See Note)

0, 1, 4, 5, 8, 9, 10,
18

SEND/RECV VMCPFLG1 – Priority option
VMCPFUNC – X'0003'–subcode
VMCPMID – Message identifier
VMCPUSER – Target user ID
VMCPVADA – Send data address
VMCPLENA – Send data length
VMCPVADB – Reply buffer address
VMCPLENB – Reply buffer length
VMCPUSE – User doubleword

0, 1, 4, 5, 8, 9, 10,
18

SENDX VMCPFLG1 – Priority option
VMCPFUNC – X'0004'–subcode
VMCPMID – Message identifier
VMCPUSER – Target user ID
VMCPVADA – Send data address
VMCPLENA – Send data length
VMCPUSE – User doubleword

(See Note)

0, 1, 4, 5, 7, 8, 9,
10, 18

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1017

Table 216. Required VMCPARM Fields for VMCF Functions (continued)

VMCF Function Applicable VMCPARM Parameters Return Codes

RECEIVE VMCPFUNC – X'0005'–subcode
VMCPMID – Message identifier
VMCPUSER – Source user ID
VMCPVADA – Receive buffer address
VMCPLENA – Receive buffer length
VMCPUSE – User doubleword

0, 1, 3, 4, 5, 6, 12
13, 15, 16, 17, 19

CANCEL VMCPFUNC – X'0006'–subcode
VMCPMID – Message identifier
VMCPUSER – Target user ID

0, 3, 4, 5, 11, 12,
14, 20

REPLY VMCPFUNC – X'0007'–subcode
VMCPMID – Message identifier
VMCPUSER – Source user ID
VMCPVADA – Reply data address
VMCPLENA – Reply data length
VMCPUSE – User doubleword

0, 1, 3, 4, 5, 6, 12,
13, 15, 16, 17, 19

QUIESCE VMCPFUNC – X'0008'–subcode 0, 4

RESUME VMCPFUNC – X'0009'–subcode 0, 4

IDENTIFY VMCPFLG1 – Priority option
VMCPFUNC – X'000A'–subcode
VMCPUSER – Target user ID
VMCPUSE – User doubleword

(See Note)

0, 4, 5, 9, 10, 18

REJECT VMCPFUNC – X'000B'–subcode
VMCPMID – Message identifier
VMCPUSER – Source user ID
VMCPUSE – User doubleword

0, 3, 4, 5, 12, 13

SETLIMIT VMCPFUNC – X'000C'–subcode
VMCPMID – Message limit

4, 10

Note: Fields within the user parameter list that are not used by a particular function may be used to
contain additional user data. The data, however, can only be passed to the target virtual machine by
the source virtual machine. The reply buffer address and length fields (VMCPVADB + VMCPLENB) may
be used to transmit additional user data for SEND and SENDX requests. All fields except VMCPFLG1,
VMCPFUNC, and VMCPUSER may be used to pass control information with an IDENTIFY request.

External Interrupt Code X'4001'
External interruption code X'4001' is a special interrupt code recognized by CP as part of a VMCF
transaction. Just as virtual machines use the DIAGNOSE instruction to communicate with CP, so too
CP uses this interrupt code to communicate with virtual machines. External interrupt code X'4001' and
DIAGNOSE code X'68' provide the mechanism VMCF uses to synchronize message processing.

VMCF

1018 z/VM: 7.3 CP Programming Services

The External Interrupt Message Header (VMCMHDR)
Associated with external interruption code X'4001' is a storage area referred to as the external
interruption message header. The external interrupt message header (VMCMHDR) contains the control
information required to send and receive messages. The fields within the message header are, for the
most part, a copy of VMCPARM parameter list fields.

CP passes the external interruption buffer (containing the external interruption message header) to the
user's interruption handler for processing. The user must specify the address and length of this buffer
when he executes the AUTHORIZE function. This address must be in second-level storage (the storage
that appears real to the virtual machine). Then, when the user sends or receives messages, CP knows the
address of the buffer and passes it to the appropriate interruption handler routine.

Fields VMCMFUNC through VMCMUSE correspond to the fields VMCPFUNC through VMCPUSE in the
VMCMHDR DSECT parameter list transmitted by the source virtual machine. The VMCMHDR COPY file is
provided in the HCPGPI macro library.

The format of the message header and optional SENDX data buffer is:

VMCMHDR DSECT

V*1 (VMCMSTAT)
is a status byte associated with the message header. The bits within the status byte are defined as
follows:
VMCMRESP (X'80')

indicates final external interrupt (transaction complete).
VMCMRJCT (X'40')

is set in a response external interrupt to indicate that the target virtual machine rejected the
message by means of the REJECT function.

VMCMPRTY (X'20')
is set in both send and response external interrupts to indicate a priority message.

V*2 (VMCMEFLG)
contains a data transfer error code indicating success or errors associated with a data transfer
operation. This is only valid for Final Response Interrupts.

VMCMFUNC
contains the subcode of the original request. The target virtual machine uses this field to determine
the type of request. The possible subcodes are shown in Table 217 on page 1019.

Table 217. VMCMFUNC Subcodes - DIAGNOSE Code X'68'

Field Attributes in the DSECT Hexadecimal Code Function

VMCPSEND X'0002' SEND

VMCPSENR X'0003' SEND/RECV

VMCPSENX X'0004' SENDX

VMCPIDEN X'000A' IDENTIFY

VMCMMID
contains the message ID associated with the original source request.

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1019

VMCMUSER
contains the user ID of the source virtual machine for send external interrupts and the user ID of the
target virtual machine for response external interrupts.

VMCMVADA
contains the address of the original send data for SEND requests.

VMCMLENA
indicates the length of send data for send external interrupts. It indicates a data transfer residual
count for response external interruptions.

VMCMVADB
contains the address of the reply buffer for SEND/RECV requests.

VMCMLENB
contains the length of the source virtual machine reply buffer for SEND/RECV external interrupts;
contains the residual reply count for response external interrupts. The target virtual machine uses
this field to determine the maximum length of the reply; the source virtual machine uses this field to
determine the length of the target virtual machine reply data.

VMCMUSE
contains the user doubleword, which is transmitted to the target virtual machine with send external
interrupts and to the source virtual machine with response external interrupts.

VMCMBUF
This is the optional data buffer used by the SENDX function. The data sent with the SENDX function
is moved into this buffer. The buffer size is specified when a virtual machine executes the VMCF
AUTHORIZE function.

VMCF User Doubleword
VMCF provides a doubleword for user data that can be transmitted within the external interrupt message
header. A user supplies the doubleword of data within the parameter list (VMCPARM) for certain VMCF
requests (SEND, SENDX, SEND/RECV, RECEIVE, REPLY, IDENTIFY, and REJECT). You can use the user
doubleword in any manner you desire. The doubleword is transmitted within the external interrupt
message header for both send and response external interrupts.

The user doubleword can be used for control information in a user-defined higher level protocol. That is,
you could have your own message headers defined within the data transmitted from one virtual machine
to another. The user doubleword could be used to control such a protocol.

The user doubleword can also be used as a security code or provide additional information for functions
such as IDENTIFY and REJECT. You can specify a 0 data length for any VMCF transaction. The effect of
this is that only the external interrupt message header with user doubleword is transmitted or received.

VMCF in an MP Environment
VMCF includes support for a virtual multiprocessor (MP) environment. If you use VMCF, but do not use
virtual multiprocessing, you are not impacted by this support. The following list is intended to provide
some guidance on using VMCF in a virtual MP environment:

• As long as one processor in a virtual configuration has authorized for VMCF, any virtual processor within
the virtual configuration can invoke VMCF functions.

• If you run with multiple virtual processors defined and only one virtual processor has issued a VMCF
AUTHORIZE, note the following:

– The virtual processor that issued the AUTHORIZE will be presented with all VMCF external interrupts
if enabled. The buffer length may be changed on subsequent AUTHORIZE commands issued by the
one authorized virtual processor. Any virtual processor in the complex can invoke VMCF functions.

– All other VMCF functions will remain the same.
• If you run with multiple virtual processors defined and two or more virtual processors have issued a

VMCF AUTHORIZE, note the following:

VMCF

1020 z/VM: 7.3 CP Programming Services

– The VMCF functions of QUIESCE and RESUME apply to the entire virtual processor complex.
– Any processor in a virtual MP complex can issue a VMCF function as long as at least one processor in

the virtual MP complex has issued a VMCF AUTHORIZE. Multiple virtual processors may AUTHORIZE.
– The external interrupt buffer length (VMCPLENA) on the first VMCF AUTHORIZE in a virtual MP

complex is the required length for all other interrupt buffers defined in that virtual MP complex
by subsequent AUTHORIZEs. If a subsequent AUTHORIZE on another virtual processor is issued
with an interrupt buffer length that does not match the length defined in the initial AUTHORIZE, a
return code of 1 is received from the AUTHORIZE command. The buffer length for the virtual MP
complex can be changed after the entire MP complex unauthorizes, or when one processor remains
authorized and that processor issues another authorize with a new length (this corresponds to a
non-MP environment).

– Each processor that has issued a VMCF AUTHORIZE in the virtual MP complex has its own interrupt
buffer.

– In the virtual MP environment, VMCF interrupts are treated as "floating" external interrupts. Any
virtual processor that issued an AUTHORIZE and has enabled for VMCF external interrupts may
receive a VMCF interrupt.

– The type of authorization is complex-wide for all processors that issue an AUTHORIZE, and is of the
type of the last AUTHORIZE issued. For example, if the last AUTHORIZE issued is an AUTHORIZE
SPECIFIC, then all processors in the virtual MP complex are authorized specific. AUTHORIZE
PRIORITY and authorization for SMSG are treated the same way.

– UNAUTHORIZE is a processor-specific function. The entire complex is not unauthorized until the last
authorized processor issues an UNAUTHORIZE.

– CMS can only handle VMCF interrupts on its base processor, that is, the IPLed processor.
Therefore, in order to run a CMS VMCF application, the application must first issue VCPUSELECT
VM_CPU_BASE_ONLY.

• Regardless of the number of virtual processors defined, the message limit established by the SETLIMIT
function (see “SETLIMIT: DIAGNOSE Code X'68' Subcode X'000C'” on page 1014) applies to all
processors collectively.

DIAGNOSE Code X'68' Return Codes
The virtual machine initiating a VMCF request receives a return code in the general purpose register
specified as Ry in the DIAGNOSE instruction. The return code indicates successful completion of the
request or error conditions associated with the request. Table 218 on page 1021 is a description of all
possible return codes returned to a virtual machine executing DIAGNOSE code X'68'.

Table 218. DIAGNOSE Code X‘68’ Return Codes

Return Code Meaning

0 (X'00') The normal response. Indicates successful completion of a request or successful
initiation of a request. For example, for an AUTHORIZE request, 0 indicates that the
AUTHORIZE function is complete; for a SEND request, 0 indicates that the SEND
was successfully initiated. The SEND request, of course, would not be complete
until the final RESPONSE external interrupt was received by the source virtual
machine.

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1021

Table 218. DIAGNOSE Code X‘68’ Return Codes (continued)

Return Code Meaning

1 (X'01') Invalid virtual buffer address or length. A virtual machine tried to execute a VMCF
function but specified an invalid address or length:

• External interrupt buffer not within virtual storage.
• External interrupt buffer address not doubleword aligned.
• Message data or buffer not within virtual storage.
• External interrupt buffer less than the standard message header length.
• In a virtual MP complex, if this is not the first AUTHORIZE, this return code may

indicate that your interrupt buffer length does not match the initial length on the
first AUTHORIZE.

2 (X'02') Invalid function code. A virtual machine tried to execute a VMCF function but
specified an unsupported subcode.

3 (X'03') Protocol violation. A virtual machine tried to execute a function which would violate
the defined protocol:

• Cancel a message it did not originate.
• Reply to a message not sent via SEND/RECV.
• Executed more than one RECEIVE to a SEND or SEND/RECV request.

4 (X'04') Source virtual machine not authorized. A virtual machine tried to execute a function
(other than AUTHORIZE) but was not authorized to use VMCF (had not successfully
executed the AUTHORIZE function).

5 (X'05') User not available. A virtual machine tried to execute a function and specified a
virtual machine currently not available for VMCF communication:

• Not logged on.
• Not authorized for VMCF communication.
• Virtual machine authorized SPECIFIC for some other virtual machine.

6 (X'06') Protection violation. A virtual machine tried to execute a VMCF function that would
result in a STORE or FETCH protection violation. The virtual machine specified a
data or buffer address that contained a storage key other than its current PSW key
(assume the key was nonzero). This return code is also set if a virtual machine tries
to receive data in a CP-owned shared segment.

7 (X'07') SENDX data too large. A virtual machine tried to execute a SENDX request but
specified a SENDX data length larger than the target virtual machine external
interrupt buffer.

8 (X'08') Duplicate message. A virtual machine tried to execute a SEND-type function and
specified a message ID and virtual machine user ID for which there was already an
active message.

9 (X'09') Target virtual machine in QUIESCE status. A virtual machine tried to execute a
SEND-type function and specified a target virtual machine user ID of a virtual
machine in QUIESCE status.

10 (X'0A') Message limit exceeded. A virtual machine tried to execute a SEND function
but already had the maximum number of messages active as specified by the
SETLIMIT function, or the partner virtual machine has as many active incoming
messages as are allowed by the MAXVMCFI limit in his directory. The virtual
machine should clear any pending RESPONSE external interrupts or CANCEL
previously sent messages to continue processing.

VMCF

1022 z/VM: 7.3 CP Programming Services

Table 218. DIAGNOSE Code X‘68’ Return Codes (continued)

Return Code Meaning

11 (X'0B') REPLY cancelled. The source virtual machine executed a CANCEL to a previous
SEND/RECV request. The target virtual machine had already RECEIVED the
message but had not yet executed a REPLY. The target virtual machine REPLY in
this case is cancelled. The target virtual machine receives return code 12 - X'0C' -
(message not found) when it executes the REPLY function.

12 (X'0C') Message not found. A virtual machine tried to execute a function and specified a
message ID and virtual machine user ID for a message that does not exist. The
message may have existed at one time but could have been cancelled by the
originator.

13 (X'0D') Synchronization error. The target virtual machine tried to respond to a message for
which it had not yet received the SEND external interrupt. This condition can occur
if the target virtual machine is anticipating certain messages but does not wait for
the SEND external interrupt.

14 (X'0E') CANCEL too late. A virtual machine tried to CANCEL a message that had already
been processed. The target virtual machine had already responded with RECEIVE
or REJECT (SEND request) or REPLY or REJECT (SEND/RECV request). This return
code is also set if a virtual machine tries to CANCEL a SENDX request for which the
target virtual machine had already received the SEND external interrupt.

15 (X'0F') Paging I/O error. A virtual machine tried to execute a function which resulted in an
uncorrectable paging I/O error. This is a hardware failure.

16 (X'10') Incorrect length. A virtual machine executed a RECEIVE or REPLY function and
specified a RECEIVE buffer length less than the source virtual machine SEND data
length or a REPLY data length larger than the source virtual machine reply buffer
length. The source virtual machine receives a data transfer return code identifying
the condition.

17 (X'11') Destructive overlap. A virtual machine executed a RECEIVE or REPLY function and
specified a RECEIVE buffer address which overlapped the source virtual machine
SEND data address or a REPLY data address that overlapped the source virtual
machine reply buffer address. This condition can occur only when a virtual machine
is sending messages to itself (a wrap connection).

18 (X'12') User not authorized for PRIORITY messages. A virtual machine tried to send
a PRIORITY message to a virtual machine that was not authorized to accept
PRIORITY messages (that is, had not executed the AUTHORIZE function with the
PRIORITY option).

19 (X'13') Data transfer error. A virtual machine executed a request that resulted in a data
transfer error condition associated with the other virtual machine. The return code
is returned to the target virtual machine to indicate that the transaction did not
complete successfully.

20 (X'14') CANCEL - busy. A virtual machine tried to cancel a message being processed. If this
is a SEND/RECV request and the RECEIVE function is in process, repeated retries
may cancel the REPLY function.

Data Transfer Error Codes
When a virtual machine executes a SEND, SENDX, or SEND/RECV function, the normal DIAGNOSE return
code is 0, indicating that the request was successfully initiated. However, when the actual data transfer
takes place, errors can occur. All errors occurring at data transfer time are communicated to the source
virtual machine in the Final Response external interrupt message header, VMCMHDR. Table 219 on page

VMCF

Appendix C. DIAGNOSE Code X'68' and VMCF 1023

1024 shows error codes indicating conditions that are possible after the SENDX, SEND, or SEND/RECV
request is initiated. The error codes correspond to DIAGNOSE return code numbers.

Table 219. DIAGNOSE Code X‘68’ Data Transfer Error Codes

Error Code Meaning

0 (X'00') The normal response (no errors).

1 (X'01') Invalid buffer address or length. The SEND and/or RECEIVE buffers used for a
data transfer operation are not within the virtual machine's virtual storage. The
beginning and ending addresses were valid when a request was initiated but all
addresses are not valid.

5 (X'05') User not available. The target virtual machine executed the UNAUTHORIZE
function, executed the AUTHORIZE SPECIFIC function again, or implicitly reset his
virtual machine after the source virtual machine request was initiated.

6 (X'06') Protection violation. The storage key for a virtual machine's SEND or RECEIVE
buffer did not match its PSW key at the time the transfer was initiated (assume the
key was nonzero). This error code is also set if a virtual machine tries to RECEIVE
data into a CP-owned shared segment.

7 (X'07') SENDX data is too large. The target virtual machine executed AUTHORIZE again
and specified an external interrupt buffer size less than the buffer size at the time
a SENDX function was executed. The SENDX data no longer fits in the target virtual
machine buffer.

15 (X'0F') Paging I/O error. An uncorrectable paging I/O error occurred during the data
transfer operation trying to fetch a virtual machine SEND or RECEIVE buffer. This is
a hardware failure.

16 (X'10') Incorrect length. The target virtual machine executed a RECEIVE function with a
data length (VMCPLENA) smaller than the original SEND data length or a REPLY
function with a REPLY data length larger than the source virtual machine reply
buffer length. The data is transferred for the smaller length.

17 (X'11') Destructive overlap. A virtual machine was communicating with itself in a wrap
connection and his SEND or RECEIVE buffers overlapped one another (intra-virtual
machine communication).

19 (X'13') Data transfer error. A data transfer error occurred which was associated with the
other virtual machine. The transaction did not complete successfully.

VMCF

1024 z/VM: 7.3 CP Programming Services

Appendix D. The Special Message Facility

The Special Message Facility enables a virtual machine to send messages to another virtual machine
by issuing the CP SMSG command. The Special Message Facility may be used with the Virtual
Machine Communication Facility (VMCF) or with the Inter-User Communications Vehicle (IUCV). However,
the sending virtual machine does not need to perform the initialization required by VMCF or IUCV.
Initialization is handled by CP and is described later in this topic.

To send a message, a virtual machine need only prepare the message text and issue the class G SMSG
command. Parameters on the SMSG command identify the user ID of the receiving virtual machine and
specify the message text. The format of the message text must be acceptable to the receiving virtual
machine. The SMSG command is described in the z/VM: CP Commands and Utilities Reference.

For VMCF: Before the receiving virtual machine can receive special messages through VMCF, it must:

• Enable itself to receive external interrupts.
• Set bit 31 of control register 0 to a value of 1.
• Authorize itself by issuing DIAGNOSE code X'68', AUTHORIZE. The parameter list, VMCPARM, specified

with DIAGNOSE code X'68' must contain a pointer to an external-interrupt buffer, should specify a
buffer length of 280 bytes, and must have the special message flag (VMCPSMSG) turned on.

Note that you may receive a message, Message too large, if you issue the SMSG command from a
3279 or 3287 Model 5 terminal to send a message longer than what the receiving virtual machine has
specified.

• Turn on this special message flag (VMCPSMSG) by setting VMCPSMSG to a value of B‘1’ or by issuing
the class G command, SET SMSG ON. For information on using DIAGNOSE code X'68', see “DIAGNOSE
Code X'68'” on page 1001, and “The Virtual Machine Communication Facility” on page 1003.

To understand how a special message is presented to the receiving virtual machine through VMCF, see
“The SENDX Protocol” on page 1008.

For IUCV: Before the receiving virtual machine can receive special messages through IUCV, it must do the
following:

• Enable itself to receive external interrupts
• Set bit 30 of control register 0 to a value of 1
• Issue the IUCV DECLARE BUFFER function
• Issue the IUCV CONNECT function to the CP Message System Service
• Turn on the special message flag by issuing the class G command SET SMSG IUCV.

When VMCF or IUCV message are no longer required, reset the corresponding bit in the contents of
control register 0. The IUCV mask is set and cleared by CMS support for IUCV and APPC/VM, and should
be used to receive special messages through IUCV.

When a virtual machine no longer wishes to accept special messages, it may turn off the special message
flag by issuing the command SET SMSG OFF. To resume receiving messages, the virtual machine may
issue the command SET SMSG ON or SET SMSG IUCV. CP sends an error message to any virtual machine
that tries to send a special message to another virtual machine that is not accepting special messages.

Special messages are queued only as long as the virtual machine is logged on. If the virtual machine sets
SMSG off or logs off, this queue of SMSGs is lost. A system IPL also loses this queue of messages for the
virtual machine.

CP handles VMCF/IUCV initialization and special message processing as follows. When the SMSG
command is issued, CP verifies that no invalid options were specified and that a valid user ID was
specified. CP also verifies that the receiving virtual machine is accepting special messages. CP then
obtains storage for the message, builds the appropriate parameter list, and sends the message to the
receiving virtual machine.

Special Message Facility

© Copyright IBM Corp. 1991, 2023 1025

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

Special Message Facility

1026 z/VM: 7.3 CP Programming Services

Appendix E. Logical Device Support Facility

The Logical Device Support Facility allows an application running in a virtual machine to create within
CP one or more logical devices. 3270 extended data streams are supported to enable logical devices
to utilize full color, programmed symbol sets, and extended highlighting capabilities. 3284, 6, 7, 8, 9
logical printer devices are supported to allow the presentation of status from a logical device printer.
Applications are allowed to create logical 328x printers in addition to logical 327x display devices. Except
for the logical device support facility, CP is unaware of the fact that this device has no real existence and is
driven by the application program. In particular, CP sees it as a local 3270 device. Any output directed to
a logical device is redirected to the virtual machine for which the device was created. The virtual machine
can also transfer data to CP to be entered as input from a specific logical device, as if it were interactively
produced on a real terminal.

The logical device support facility is made up of two data transfer functions, four control functions, a
special external interrupt (code X'2402'), and an external control word for passing control information
with the external interrupt.

To implement this facility, functions are invoked using DIAGNOSE code X'7C'. Registers Rx, Rx+1, Ry, and
Ry+1 indicate the function, logical device identification, and other function-dependent information.

A special interrupt code (X'2402') notifies a virtual machine of pending logical device status for a logical
device created for that virtual machine. Along with this interrupt, the virtual machine receives a control
word at a virtual storage location indicating the ID of the associated logical device and the reason for the
interrupt.

See Table 220 on page 1027 for a summary of logical device support facility functions. More complete
information about each of these functions is included under “Logical Device Support Facility Functions”
on page 89.

Data is directed to a logical device using the logical device ID. This ID is assigned by CP during execution
of the INITIATE function. Data transfer takes place within CP at a channel command level. I/O directed
to a logical device proceeds within CP through the normal path for a local device up to the point where
the I/O is to be started. At that point, control passes to the logical device support modules to process the
CCW string. Channel commands requiring interaction cause external interrupts to the virtual machine for
which the associated logical device was created.

The format of data from the virtual machine must conform to 3270 architecture for local devices.

The default maximum number of logical devices for the system is 4096. The maximum number of logical
devices allowed may be changed with the CP command SET MAXLDEV. There is no limit to the number of
hosts as long as the number of logical devices does not exceed the system limit.

Table 220. Summary of Logical Device Support Facility Functions

Function Description

INITIATE Initiate logical device communications

ACCEPT Transfer data written to logical device to virtual machine storage.

PRESENT Transfer data from virtual machine to CP as input from logical device.

TERMINATE Drop a specific logical device.

TERMINATE ALL Drop all logical devices created for this virtual machine.

STATUS Allows status to be returned to CP after an ACCEPT function is performed.

The VM/Pass-Through Facility licensed program is an example of an application using the logical device
support facility. Through the combined support of these two facilities, a z/VM user attached to system

Logical Device Support Facility

© Copyright IBM Corp. 1991, 2023 1027

A through a 3270 Display Station can access z/VM system B as though the display station were locally
attached to system B.

Logical Device Support Facility

1028 z/VM: 7.3 CP Programming Services

Appendix F. Reserved DIAGNOSE Codes

Attention:

This appendix contains information that is NOT Programming Interface information. These
DIAGNOSE codes are reserved for IBM use.

DIAGNOSE Code X'40' – Clean-Up After Virtual IPL by Device
Privilege class: Any

Addressing Mode: 24-bit or 31-bit

This code is valid only during virtual IPL, and is for system use only. Other use may cause unpredictable
results.

Entry Values: The Rx and Ry fields are used together to specify flag fields, and do not specify general
registers. A value of X'00' in the RxRy field requests the IPL clean-up function. A value of X'FF' in the RxRy
field requests relocation of the IPL simulator to another page in storage.
RxRy field=X'00'

When the simulation of the IPL function is complete, DIAGNOSE code X'40' with RxRy code X'00' is
issued to cause CP to clean up the page in the virtual machine's storage that was used to contain the
IPL simulator.

RxRy field=X'FF'
HCPVMI resides in a page in virtual machine storage and simulates the virtual IPL function. If a CCW
is going to write into the page occupied by HCPVMI, DIAGNOSE X'40' with RxRy code X'FF' is issued
to move the IPL simulator to another page in storage. CP relocates the virtual machine's registers and
the PSW to the new page.

Usage Note
If DIAGNOSE X'40' is issued with an RxRy field having a value other than X'00' or X'FF', a specification
exception is reflected to the virtual machine.

Responses
None.

DIAGNOSE Code X'E0' – System Trace File Interface
Privilege Class: Any

DIAGNOSE X'E0' provides a virtual machine access to system trace files. The WRITE function of
DIAGNOSE X'E0' is a programming interface for customers. For more information see “DIAGNOSE Code
X'E0' – System Trace File Interface” on page 170. The remaining functions allow the owner of a system
trace file to read trace blocks sequentially from the file. These functions are not programming interfaces
for customers. The TRACERED command of the Dump Viewing Facility is the preferred interface for
reading system trace files.

To use the open, read, and close subcodes of this DIAGNOSE code, the virtual machine must be
authorized using the TRSAVE command. The virtual machine can process (open, read, or close) system
trace files if a TRSAVE command was issued to specify its user ID as the receiver. It can also process
these trace files if it is the default receiver for a file that is completed. In this case, it is the owner of the
file.

The virtual machine can use this facility to read system trace files created by the following in various
combinations:

DIAGNOSE X'40'

© Copyright IBM Corp. 1991, 2023 1029

• The Monitor Call Class 10 interface
• The DIAGNOSE Code X'E0' write interface
• The TRSOURCE command
• The TRSAVE command.

The TRSOURCE command supports the definitions and control of I/O, data, and guest tracing, while
TRSAVE specifies where the TRSOURCE and CPTRACE data is to be stored. The Monitor Call interface is
only one of the ways data can be collected. Refer to the description in this manual for further details on
the Monitor Call Class 10 interface.

Event trace records are formatted by CP into blocks that have the header format described below.

Entry values:
Rx

Contains the guest real address of a 4-character spool ID (SPID) of a system trace file that it owns.

Note: For the READ function, Rx cannot be specified as register 15.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET
for the address space containing the spool ID. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the spool ID is in the host-primary address
space.

Ry
Is the DIAGNOSE subcode that specifies the function requested.
Value

Operation performed
X'00000008'

Open (read only)
X'0000000C'

Read
X'00000010'

Close (read only)

Note: Do not specify Ry as register 15 for the close operation.

Rx+1
For the READ function, contains the address of the buffer into which to read the next block of data.
The first two bytes of this buffer must contain the length of the buffer. The length must be a multiple
of 4KB.

Ax+1
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the buffer to receive the data. If Rx+1 designates general register 0
(when Rx is general register 15), if Ax+1 contains X'00000000', or if the virtual machine is not in XC
mode, the buffer is in the host-primary address space.

Exit values:

On return from the DIAGNOSE processor, a return code is set in the Ry+1 register. The return codes are
right-justified in the register and padded with zeros. Only the rightmost byte value is given below.

Unsupported subcode:

Return Code Meaning

48 (X'30') Invalid subcode

Program Exceptions:

DIAGNOSE X'E0'

1030 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Specification exception Ry is register 15

Subcode X'00000008' — Open (read-only)
The system trace file indicated by Rx is opened if the virtual machine is the owner of this file. The virtual
machine is the owner of a system trace file if its ID was designated as the trace receiver (‘TO userid’) on
the TRSAVE command used to start the trace.

Entry values:
Ry+1

On return, contains the return code from this DIAGNOSE open operation.

Exit values:

On return from the DIAGNOSE processor, a return code is set in the Ry+1 register. The return codes are
right-justified in the register and padded with zeros. Only the rightmost byte value is given below.

Return Code Meaning

0 (X'00') Successful open of trace data defined by TRSOURCE

4 (X'04') Successful open of CP system trace data

8 (X'08') Buffer too small for block

12 (X'0C') I/O error

16 (X'10') Invalid spool ID

20 (X'14') File not found

24 (X'18') File in use

36 (X'24') Protection exception condition

44 (X'2C') Invalid spool ID address

52 (X'34') Rx, Ry, and Ry+1 registers overlap

56 (X'38') Severe error

60 (X'3C') ALET-specification exception condition: For an XC virtual machine in access-
register mode, Ax or Ax+1 contains an ALET that has an unexpected bit setting.
See “Access Exceptions” on page 8 for more information.

64 (X'40') ALEN-translation exception condition: For an XC virtual machine in access-register
mode, Ax or Ax+1 contains an ALET that cannot be translated. See “Access
Exceptions” on page 8 for more information.

68 (X'44') Addressing-capability exception condition: For an XC virtual machine in access-
register mode, Ax or Ax+1 contains an ALET that designates an address space for
which your virtual machine's access has been revoked. (See usage note “5” on
page 1033and “Access Exceptions” on page 8 for more information.)

Subcode X'0000000C' — Read
The next block of trace data is read from the file into the buffer provided by the virtual machine. When an
end-of-file is reached, the files are not closed. To close them, the virtual machine must issue a DIAGNOSE
code X'E0' CLOSE. If the buffer size specified is insufficient to read the next block of data, an error code is
returned to the virtual machine and the file is positioned to reread the same block. The Blength field in the
truncated record can be used to determine the required buffer size except for blocks containing CP trace
table entries which are always 4096 bytes long.

DIAGNOSE X'E0'

Appendix F. Reserved DIAGNOSE Codes 1031

Exit values:

On return from the DIAGNOSE processor, a return code is set in the Ry+1 register. The return codes are
right-justified in the register and padded with zeros. Only the rightmost byte value is given below.

Return Code Meaning

0 (X'00') Successful read

4 (X'04') End-of-file

8 (X'08') Buffer too small for block

12 (X'0C') I/O error

16 (X'10') Invalid spool ID

20 (X'14') No file open

28 (X'1C') Invalid buffer address

32 (X'20') Invalid buffer length

36 (X'24') Protection exception condition

44 (X'2C') Invalid spool ID address

52 (X'34') Rx, Ry, and Ry+1 registers overlap or Rx is register 15

56 (X'38') Severe error

60 (X'3C') ALET-specification exception condition: For an XC virtual machine in access-
register mode, Ax or Ax+1 contains an ALET that has an unexpected bit setting.
See “Access Exceptions” on page 8 for more information.

64 (X'40') ALEN-translation exception condition: For an XC virtual machine in access-register
mode, Ax or Ax+1 contains an ALET that cannot be translated. See “Access
Exceptions” on page 8 for more information.

68 (X'44') Addressing-capability exception condition: For an XC virtual machine in access-
register mode, Ax or Ax+1 contains an ALET that designates an address space for
which your virtual machine's access has been revoked. (See usage note “5” on
page 1033 and “Access Exceptions” on page 8 for more information.)

Subcode X'00000010' — Close (read-only)
When reading a file, close is used to close an open file. Note that when an end-of-file is reached on a read
operation, the file is not closed. To close the file, issue DIAGNOSE code X'E0' CLOSE.

Exit values:

On return from the DIAGNOSE processor, a return code is set in the Ry+1 register. The return codes are
right-justified in the register and padded with zeros. Only the rightmost byte value is given below.

Return Code Meaning

0 (X'00') Successful close

12 (X'0C') I/O error

16 (X'10') Invalid spool ID

20 (X'14') File not opened

36 (X'24') Protection exception condition

44 (X'2C') Invalid spool ID address

DIAGNOSE X'E0'

1032 z/VM: 7.3 CP Programming Services

Return Code Meaning

52 (X'34') Rx, Ry, and Ry+1 registers overlap

60 (X'3C') ALET-specification exception condition: For an XC virtual machine in access-
register mode, Ax contains an ALET that has an unexpected bit setting. See “Access
Exceptions” on page 8 for more information.

64 (X'40') ALEN-translation exception condition: For an XC virtual machine in access-register
mode, Ax contains an ALET that cannot be translated. See “Access Exceptions” on
page 8 for more information.

68 (X'44') Addressing-capability exception condition: For an XC virtual machine in access-
register mode, Ax contains an ALET that designates an address space for which
your virtual machine's access has been revoked. (See usage note “5” on page 1033
and “Access Exceptions” on page 8 for more information.)

Usage Notes
1. In order for CP trace entry data to be independent of the TRSOURCE trace entry data, the DIAGNOSE

OPEN differentiates between the two types and sets a return code to identify which type of data the
file contains. If RC=X'00', a TRSOURCE trace file was opened; if RC= X'04', a CP system trace file was
opened.

2. Multiple files may be opened simultaneously for reading by a user. Only one file is open for write for an
IO, DATA, or individual trace ID. There is one system trace file open for each guest virtual machine in
the enabled trace ID.

3. If an I/O error occurs on a DIAGNOSE read request, CP does not attempt to close the file, and
RC=X'0C' is returned to the caller.

4. An RC=X'38' (severe error) probably is caused by a programming error. Contact your IBM service
representative.

5. An addressing-capability exception condition (RC=X'44') can occur after reading has begun.

Trace Block Containing CP Trace Table Entries
The following diagram describes the format of a block of trace data collected from CP trace tables as a
result of a TRSAVE FOR CP ON command.

Time-of-day clock
Is the 8-byte time-of-day clock.

Verification string
Is the 24-character string CP TRACE SERVICE TOOLS__.

Time Zone Differential
Is the fullword time-of-day clock time zone differential.

Trace Entries
Are trace table entries.

DIAGNOSE Code X'214' – Pending Page Release
Privilege class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE X'214'

Appendix F. Reserved DIAGNOSE Codes 1033

DIAGNOSE X'214' is used by CMS storage manager to establish and cancel pending page releases. Prior
to VM/ESA Release 1.1, DIAGNOSE X'10' was used for this purpose. Unlike DIAGNOSE X'10', DIAGNOSE
X'214' allows CP to delay or omit the reclamation of host resources. DIAGNOSE X'10' is intended for
general use while DIAGNOSE X'214' is not.

Attention: DIAGNOSE X'214' is not intended for use in access-register mode in an XC virtual
machine. To do so yields unpredictable results.

DIAGNOSE X'214' will fail if executed when VMRELOCATION is in progress.

Entry Values:
Rx, Rx+1

Represents an even-odd register pair. The third byte of the odd register always contains a function
code. For certain function codes the Rx and Rx+1 registers identify a range of pages. In these cases,
bits 1-19 of the even register (Rx) designates the first page in the range and bits 1-19 of the odd
register (Rx+1) designates the last page in the range. These page addresses are guest absolute
addresses in the host-primary space.

Ry
For function code X'01' and X'03' (see below), Ry may designate a register that contains a guest key
value in bits 24-28. When Ry designates register 0 the operand is ignored as are the contents of GPR
0.

Function Code Meaning

X'00' Establish Pending Release (EPR). EPR is used to establish pending releases for the
range of pages designated by bits 1-19 of Rx and bits 1-19 of Rx+1. It permits CP
to reclaim any resources backing the pages whenever CP may see fit as long as the
page release remains pending.

X'01' Cancel Pending Release (CPR). CPR is used to cancel any pending releases that
may be in effect for the pages within the range specified in bits bits 1-19 of Rx and
bits 1-19 of Rx+1. Optionally, if Ry designates a GPR other than GPR0, CP will set
the guest keys for the specified range. It will use bits 24-27 of the contents of Ry to
set the access key and bit 28 to set the fetch protect bit. The state of the reference
and change bits is unpredictable.

X'02' Cancel All Pending Releases (CAPR). CAPR is used to cancel all pending releases
for this guest. For a CAPR, only the function code is examined. The contents of Rx,
Ry, and bits 0-23 of Rx+1 are ignored.

X'03' Cancel Pending Release and Validate (CPRV). CPRV is identical to CPR except that
CP is notified of the CMS storage manager's intention to immediately reference the
final page of the specified range. CP therefore will respond to CPRV by validating
that page (if not currently valid) before returning to the guest.

Other Reserved for future IBM use. The guest receives a specification exception if the
function code is other than X'00', X'01', X'02', or X'03'.

Rx, Rx+1 contents for CPR(V) and EPR:

Ry contents (if Ry does not designate GPR 0) for CPR(V):

DIAGNOSE X'214'

1034 z/VM: 7.3 CP Programming Services

The condition code is set to 1 if key action was requested by a CPR(V) (i.e. Ry was not specified as 0) and
the keys were not all successfully set. Otherwise, the condition code is set to zero.

Responses
Program Exceptions: You may receive one of the following program checks if the DIAGNOSE X'214' input
data is invalid:

Problem Encountered Cause

Specification exception Any of the following:

• Rx is not even register
• In an MP virtual machine, the issuer was not running on the

base processor
• Function code is invalid
• Function code is not CAPR (X'02') and address in Rx

(starting address) is greater than address in Rx+1 (ending
address)

• Function code is not CAPR (X'02') and address in Rx or Rx+1
is not in range of guest's real storage.

DIAGNOSE Code X'23C' – Address Space Services
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE X'23C' is invoked from the guest ADRSPACE macro to perform address space management
functions. For more information on the functions of the ADRSPACE macro, including a description of the
possible return codes and program exceptions, refer to “ADRSPACE — Address Space Services” on page
811.

Notes:

1. This DIAGNOSE code is reserved for IBM use; it is not a supported programming interface. It is
included here to be used only in the diagnosis task. The supported method of invocation for the
address-space services is the ADRSPACE macro.

2. You may not be authorized to issue function X'03' of this DIAGNOSE code if an external security
manager is installed on your system. For additional information, contact your security administrator.

The following address-space service functions can be invoked using this DIAGNOSE code:

• Create space
• Destroy space
• Query space
• Permit access
• Isolate space.

Entry Values:

DIAGNOSE X'23C'

Appendix F. Reserved DIAGNOSE Codes 1035

Rx
The real address of a function parameter list, the format of which is determined by the function code
in the parameter list. The parameter list is built by the ADRSPACE macro expansion in the macro's
work area.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

Exit Values:
Ry

On return, contains a return code, as stated in under the address-space service functions of the
ADRSPACE macro starting at “ADRSPACE — Address Space Services” on page 811.

Create-Space Function
This function creates a new address space and returns the ASIT associated with the new address space.

Your virtual machine must be an ESA/XC or z/XC virtual machine to use this function.

For the create-space function, the Rx register contains the real address of a doubleword-aligned
parameter list in the following format:

DSSDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal DIAGNOSE code, X'023C'.

DSSFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the DIAGNOSE. A
function code of X'0000' indicates the create-space function.

DSSDWLEN
Bytes 4 and 5 of the parameter list contain the length of the parameter list in doublewords.

DSSVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

Reserved-Z
Bytes 16 through 23, and bytes 53 through 55 of the parameter list are reserved and contain binary
zeros.

DSSPACNM
Bytes 24 through 47 of the parameter list contain the address-space name to be assigned to the new
address space.

DSSPAGCT
Bytes 48 through 51 of the parameter list contain a fullword that is the size of the new address space
in pages; each page is 4096 bytes.

DSSSKEY
Bits 0 through 4 of byte 52 of the parameter list contain the access-control and fetch-protection bits
of the storage keys for the new address space. Bits 0 through 3 designate the access-control bits, and
bit 4 is the fetch-protection bit.

Bits 5 through 7 of byte 52 of the parameter list are reserved and contain binary zeros.

DIAGNOSE X'23C'

1036 z/VM: 7.3 CP Programming Services

DSSASIT
Bytes 56 through 63 of the parameter list are set by CP to be the ASIT associated with the newly-
created address space.

Bytes 8 through 15 of the parameter list are ignored.

Destroy-Space Function
This function destroys an address space previously created by your virtual machine.

Your virtual machine must be an ESA/XC or z/XC virtual machine to use this function.

For the destroy-space function, the Rx register contains the real address of a doubleword-aligned
parameter list in the following format:

DSSDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal DIAGNOSE code, X'023C'.

DSSFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the DIAGNOSE. A
function code of X'0001' indicates the destroy-space function.

DSSDWLEN
Bytes 4 and 5 of the parameter list contain the length of the parameter list in doublewords.

DSSVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

Reserved-Z
Bytes 16 through 23 and bytes 52 through 55 of the parameter list are reserved and contain binary
zeros.

DSSASIT
Bytes 56 through 63 of the parameter list contain the ASIT associated with the address space to be
deleted.

Bytes 8 through 15 and 24 through 51 of the parameter list are ignored.

Query-Space Function
This function returns the ASIT and size associated with an address space your virtual machine owns or is
authorized to access.

For the query-space function, the Rx register contains the real address of a doubleword-aligned
parameter list in the following format:

DIAGNOSE X'23C'

Appendix F. Reserved DIAGNOSE Codes 1037

DSSDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal DIAGNOSE code, X'023C'.

DSSFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the DIAGNOSE. A
function code of X'0002' indicates the query-space function.

DSSDWLEN
Bytes 4 and 5 of the parameter list contain the length of the parameter list in doublewords.

DSSVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

DSSUSRID
Bytes 8 through 15 of the parameter list contain the user ID of the virtual machine owning the address
space for which data is requested. The user ID can be from one to eight characters long; if it is less
than eight characters long, it must be left-justified in the field, and the remainder of the field padded
with spaces. If this field contains binary zeros, your virtual machine is the owner of the address space.

Reserved-Z
Bytes 16 through 23 and bytes 52 through 55 of the parameter list are reserved and contain binary
zeros.

DSSPACNM
Bytes 24 through 47 of the parameter list contain the name of the address space for which
information is to be returned.

DSSPAGCT
Bytes 48 through 51 of the parameter list are set by CP to be a fullword that is the size of the named
address space in pages; each page is 4096 bytes.

DSSASIT
Bytes 56 through 63 of the parameter list are set by CP to be the ASIT associated with the named
address space.

Permit-Access Function
This function authorizes a virtual machine to use the add-ALE function of DIAGNOSE X'240' to add to its
host access list an ALE designating an address space owned by your virtual machine.

For the permit-access function, the Rx register contains the real address of a doubleword-aligned
parameter list in the following format:

DSSDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal DIAGNOSE code, X'023C'.

DSSFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the DIAGNOSE. A
function code of X'0003' indicates the permit-access function.

DSSDWLEN
Bytes 4 and 5 of the parameter list contain the length of the parameter list in doublewords.

DSSVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

DIAGNOSE X'23C'

1038 z/VM: 7.3 CP Programming Services

DSSUSRID/DSSVCIT
Bytes 8 through 15 of the parameter list contain either the user ID or the VCIT of the virtual machine
that is to be given access authorization. When this field contains a user ID, the user ID can be from
one to eight characters long; if it is less than eight characters long, it must be left-justified in the field,
and the remainder of the field padded with spaces. Whether this field contains a user ID or a VCIT is
indicated by bit 4 of byte 53 (DSSTYPFG) as described below.

Reserved-Z
Bytes 16 through 23, byte 52, bits 1 through 7 of byte 53, and bytes 54 and 55 of the parameter list
are reserved and contain binary zeros.

DSSTYPFG
Bit 0 of byte 53 of the parameter list controls whether the virtual machine specified in the DSSUSRID
field is to be given read-only or read-write access authority. If this bit is zero, the virtual machine is
given authority for read-only access to the address space. If this bit is 1, the virtual machine is given
authority for read-write access to the address space.

Bit 4 of byte 53 of the parameter list controls whether the field at bytes 8 through 15 of the parameter
list is interpreted as containing the user ID or the VCIT of the virtual machine to be permitted. If this
bit is zero, bytes 8 through 15 of the parameter list are treated as the user ID of the virtual machine to
be permitted. If this bit is one, bytes 8 through 15 of the parameter list are treated as the VCIT of the
virtual machine to be permitted.

DSSASIT
Bytes 56 through 63 of the parameter list contain the ASIT associated with the address space for
which access authorization is to be given.

Bytes 24 through 51 of the parameter list are ignored.

Isolate-Space Function
This function restores to a private state an address space owned by your virtual machine.

For the isolate-space function, the Rx register contains the real address of a doubleword-aligned
parameter list in the following format:

DSSDIAGC
Bytes 0 and 1 of the parameter list contain the hexadecimal DIAGNOSE code, X'023C'.

DSSFCODE
Bytes 2 and 3 of the parameter list contain the hexadecimal function code for the DIAGNOSE. A
function code of X'0005' indicates the isolate-space function.

DSSDWLEN
Bytes 4 and 5 of the parameter list contain the length of the parameter list in doublewords.

DSSVERSN
Bytes 6 and 7 of the parameter list contain a version code of X'0001'.

Reserved-Z
Bytes 16 through 23 and bytes 52 through 55 of the parameter list are reserved and contain binary
zeros.

DSSASIT
Bytes 56 through 63 of the parameter list contain the ASIT associated with the address space to be
isolated.

DIAGNOSE X'23C'

Appendix F. Reserved DIAGNOSE Codes 1039

Bytes 8 through 5 and bytes 24 through 51 of the parameter list are ignored.

Responses
Program Exceptions: The program exceptions for DIAGNOSE X'23C' are the same as those documented
for the “ADRSPACE — Address Space Services” on page 811.

DIAGNOSE Code X'240' – Access List Services
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE X'240' is invoked from the guest ALSERV macro to perform access-list management functions.

Notes:

1. This DIAGNOSE code is reserved for IBM use; it is not a supported programming interface. It is
included here to be used only in the diagnosis task. The supported method of invocation of the
access-list services is the guest ALSERV macro. For more information on the ALSERV macro, refer to
“ALSERV — Access List Services” on page 829.

2. This DIAGNOSE code does not support HyperPAV alias devices.

The following access-list service functions can be invoked using this DIAGNOSE code:

• Add-ALE
• Remove-ALE.

Entry Values:
Rx

Real address of a function parameter list, the format of which is determined by the function code in
the parameter list. The parameter list is built by the ALSERV macro expansion in the macro's work
area.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

Exit Values:
Ry

On return, the Ry register contains a return code, as stated in the access-list services described under
the “ALSERV — Access List Services” on page 829.

Add-ALE Function
This function establishes a valid ALE in your virtual machine's host access list.

For the add-ALE function, the Rx register contains the real address of a doubleword-aligned parameter list
in the following format:

Where:
ALSDIAGC

Bytes 0-1 of the parameter list contain the hexadecimal diagnose code, X'0240'.

DIAGNOSE X'240'

1040 z/VM: 7.3 CP Programming Services

ALSFCODE
Bytes 2-3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0000' indicates the add-ale function.

ALSDWLEN
Bytes 4-5 of the parameter list contain the length of this parameter list in doublewords.

ALSVERSN
Bytes 6-7 of the parameter list contain a version number ofX'0001'.

ALSASIT
Bytes 8-15 of the parameter list contain the ASIT associated with the address space to be designated
by the new ALE.

ALSALET
Bytes 16-19 of the parameter list are set by CP to be the ALET that your virtual machine can use to
reference the address space specified by the ALSASIT field.

ALSTYPFG
Bit 0 of byte 20 of the parameter list controls whether the new ALE allows read-only or read-write
access to the designated address space. If this bit is zero, then the ALE is set to provide read-only
access to the address space. If this bit is one, then the ALE is set to provide read-write access to the
address space.

If the ALSASIT field specifies an address space owned by another virtual machine, then that virtual
machine must have authorized your virtual machine for the requested type of access.

Bit 1 of byte 20 of the parameter list controls whether page-fault handshaking is to be activated.
If this bit is zero, then page-fault handshaking should not be activated. If this bit is one then,
whenever the address of a page-fault handshaking token is established for the virtual CPU, page-fault
handshaking should be activated to notify both initiation of a page fault and completion of a page
fault.

The address space is eligible for page-fault handshaking while a page-fault handshaking token is
established for the virtual CPU until the address space is either explicitly or implicitly removed.

Reserved-Z
Bits 2-7 of byte 20, and bytes 21-23 of the parameter list are reserved and contain binary zeros.

Remove-ALE Function
This function sets a specified ALE in your virtual machine's host access list to the unused state. For the
remove-ALE function, the Rx register contains the real address of a doubleword-aligned parameter list in
the following format:

Where:
ALSDIAGC

Bytes 0-1 of the parameter list contain the hexadecimal diagnose code. A specification exception is
recognized if this field is not X'0240'.

ALSFCODE
Bytes 2-3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0001' indicates the remove-ALE function.

ALSDWLEN
Bytes 4-5 of the parameter list contain the length of the parameter list in doublewords.

ALSVERSN
Bytes 6-7 of the parameter list contain a version number of X'0001'.

ALSALET
Bytes 16-19 of the parameter list contain an ALET which designates the ALE to be removed.

DIAGNOSE X'240'

Appendix F. Reserved DIAGNOSE Codes 1041

Reserved-Z
Bytes 20-23 of the parameter list are reserved and contain binary zeros.

Bytes 8-15 are ignored.

Responses
Program Exceptions: The program exceptions for DIAGNOSE X'240' are the same as those documented
for the ALSERV macro; refer to “ALSERV — Access List Services” on page 829 for more information.

DIAGNOSE Code X'244' – Mapping Services
Privilege Class: Any (XC virtual machines only)

Addressing Mode: 24-bit or 31-bit

DIAGNOSE X'244' is invoked from the guest MAPMDISK macro to perform mapping-service functions.

Note: This diagnose is reserved for IBM use; it is not a supported programming interface. The information
is included here to be used only in the diagnosis task. The supported method of invocation for the
mapping services is the MAPMDISK macro. For more information on the MAPDISK macro, refer to
“MAPMDISK — Mapping Services” on page 838.

The following mapping-service functions can be invoked using this DIAGNOSE:

• Identify-pool
• Define-mapping
• Remove-mapping
• Save-list.

Entry Values:
Rx

Address of a function parameter list, the format of which is determined by the function code in the
parameter list. The parameter list is built by the MAPMDISK macro expansion in the macro's work
area.

Ax
Is used only in access-register mode. Ax contains the ALET for the address space containing the
parameter list.

When Rx is general register 0, Ax is not examined. The ALET is assumed to be X'00000000', which
indicates the host-primary address space.

Exit Values:
Ry

On return, register Ry contains a return code, as stated in the mapping-service functions described
under the “MAPMDISK — Mapping Services” on page 838.

Ry+1
On an error return, register Ry+1 contains the address of the parameter, definition block, or entry
where the error was encountered.

Ay+1
Is used only in access-register mode. Ay+1 contains the ALET for the address space containing the
address returned in Ry+1.

Identify-pool Function
This function identifies the minidisk pool that will participate in mappings, and defines the assignment of
pool-relative block numbers to the blocks contained in the minidisk pool. For the identify-pool function,
register Rx contains the real address of a doubleword-aligned parameter list in the following format:

DIAGNOSE X'244'

1042 z/VM: 7.3 CP Programming Services

Where:
MPLDIAGC

Bytes 0-1 of the parameter list contain the hexadecimal diagnose code, X'0244'.
MPLFCODE

Bytes 2-3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0000' indicates the identify-pool function.

MPLDWLEN
Bytes 4-5 of the parameter list contain the length of this parameter list in doublewords.

MPLVERSN
Bytes 6-7 of the parameter list contain a version code of X'0001'.

Reserved-Z
Bytes 16-19 and 28-31 of the parameter list are reserved and contain binary zeros.

MPLEXTCT
Bytes 24-27 of the parameter list contains the total number of extents in the extent list.

MPLXLDAL
Bytes 32-35 of the parameter list contain the ALET for the address space containing the first extent-
list definition block in the chain of extent-list definition blocks. The contents of this field are ignored in
primary space mode.

MPLXLDBA
Bytes 36-39 of the parameter list contain the address of the first extent-list definition block in the
chain of extent-list definition blocks for this request.

Bytes 8-15 and bytes 20-23 of the parameter list are ignored.

Define-mapping Function
This function establishes a mapping between a range of pages in an address space, and, indirectly via
pool-relative block numbers, a set of blocks residing in the minidisk pool.

For the define-mapping function, register Rx contains the address of a doubleword-aligned parameter list
in the following format:

Where:
MPLDIAGC

Bytes 0-1 of the parameter list contain the hexadecimal diagnose code, X'0244'.
MPLFCODE

Bytes 2-3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0001' indicates the define-mapping function.

MPLDWLEN
Bytes 4-5 of the parameter list contain the length of this parameter list in doublewords.

MPLVERSN
Bytes 6-7 of the parameter list contain a version code of X'0001'.

DIAGNOSE X'244'

Appendix F. Reserved DIAGNOSE Codes 1043

MPLASIT
Bytes 8-15 of the parameter list contain the ASIT associated with the address space that is to be the
target of the mapping.

Reserved-Z
Bytes 16-19, bits 1-7 of byte 28, and bytes 30-31 are reserved and contain binary zeros.

MPLSPAGE
Bytes 20-23 of the parameter list contain the absolute address of the first page in the consecutive
range of pages to be mapped.

MPLPAGCT
Bytes 24-27 of the parameter list contains the number of consecutive pages to be mapped by this
request.

C
Bit 0 of byte 28 of the parameter list controls whether the pool-relative block numbers to be
associated with the mapped pages are specified as a consecutive range, or by a list.

If this bit is zero, then the mapping is to be established using a specified list of pool-relative block
numbers. If this bit is one, then the mapping is to be established using a consecutive range of
pool-relative block numbers.

VIEW
Byte 29 of the parameter list contains the page view codes.

A value of binary 0 indicates that the current contents of the pages are discarded and the contents of
the associated minidisk blocks are made available in the mapped pages. A value of binary 1 indicates
the current contents of the pages are retained.

A value of binary 2 indicates the current contents of the pages are discarded and the mapped pages
are considered to contain binary zeros.

MPLMLDAL
When bit 0 of byte 28 is zero, bytes 32-35 contain the ALET of the address space containing the first
mapping list definition block. This field is ignored if the virtual machine is in primary space mode or if
the pages are to be mapped to consecutive block numbers.

MPLMLDBA
When the C field (bit 0 of byte 28) is zero, bytes 36-39 of the parameter list contain the address of the
first mapping list definition block in the chain of mapping definition blocks for this request.

MPLSPRBN
When the C field (bit 0 of byte 28) is one, bytes 36-39 of the parameter list contain the pool-relative
block number to be associated with the page identified by the MPLSPAGE field. Each subsequent page
in the range of pages to be mapped is associated with the next larger pool-relative block number.

Remove-mapping function
This function removes a mapping between a range of pages in an address space, and a set of blocks
residing in the minidisk pool.

For the remove-mapping function, register Rx contains the address of a doubleword-aligned parameter
list in the following format:

Where:
MPLDIAGC

Bytes 0-1 of the parameter list contain the hexadecimal diagnose code, X'0244'.

DIAGNOSE X'244'

1044 z/VM: 7.3 CP Programming Services

MPLFCODE
Bytes 2-3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0002' indicates the remove-mapping function.

MPLDWLEN
Bytes 4-5 of the parameter list contain the length of this parameter list in doublewords.

MPLVERSN
Bytes 6-7 of the parameter list contain a version code of X'0001'.

MPLASIT
Bytes 8-15 of the parameter list contain the ASIT associated with the address space that is the target
of the mapping.

Reserved-Z
Bytes 16-19 and bytes 28-35 of the parameter list are reserved and must be zeros.

MPLSPAGE
Bytes 20-23 of the parameter list contain the address of the first page in the range of pages for which
the mapping is to be removed.

MPLPAGCT
Bytes 24-27 of the parameter list contains the count of pages for which the mapping is to be removed.

Bytes 36-39 of the parameter list are ignored.

Save-list Function
This function saves a specified range of pages in an address space.

For the save-list function, register Rx contains the address of a doubleword-aligned parameter list in the
following format:

Where:
MPLDIAGC

Bytes 0-1 of the parameter list contain the hexadecimal diagnose code, X'0244'.
MPLFCODE

Bytes 2-3 of the parameter list contain the hexadecimal function code for the diagnose. A function
code of X'0003' indicates the save-list function.

MPLDWLEN
Bytes 4-5 of the parameter list contain the length of this parameter list in doublewords.

MPLVERSN
Bytes 6-7 of the parameter list contain a version code of X'0001'.

Reserved-Z
Bytes 8-23, 29-31, and bits 1-7 of byte 28 of the parameter list are reserved and contain binary zeros.

MPLENTCT
Bytes 24-27 of the parameter list contain the total count of entries in the SLDBK.

B
when bit 0 of byte 28 is one it indicates that the SLDBK is in block form.

If bit 0 of byte 28 is zero then the SLDBK is in the list form.

MPLSLDAL
Bytes 32-35 contain the ALET of the first save-list definition block. This field is ignored if the virtual
machine is in primary space mode.

DIAGNOSE X'244'

Appendix F. Reserved DIAGNOSE Codes 1045

MPLSLDBA
bytes 36-39 of the parameter list contain the address of the first save-list definition block in the chain
of save-list definition blocks for this request.

The format of the save-list definition block chain is described in “MAPMDISK SAVE” on page 860.

Responses
Program Exceptions: The program exceptions for DIAGNOSE X'244' are the same as those documented
for the MAPMDISK macro at “MAPMDISK — Mapping Services” on page 838.

DIAGNOSE Code X'254' – Access Real Subsystem
Privilege Class: Any, with the LIBRARY CTL option of the STDEVOPT directory control statement.

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'254' to issue a limited set of channel programs to select tape control unit
subsystems. DIAGNOSE X'254' provides a virtual machine with asynchronous access to a subsystem
even if all devices in that subsystem are dedicated to other virtual machines or CP. The initiating virtual
machine is not required to have a device from the target subsystem in its virtual configuration.

Function Codes:
X'00'

Open CP Connection
X'01'

Close CP Connection
X'02'

Perform I/O

Entry Values:
Rx

is a general register that contains the guest real address of the Access Real Subsystem Parameter List
(HCPARSPL). The ARSPL must be on a doubleword boundary.

Ry
is a general register. It is not examined as input. Rx and Ry can be the same register.

Exit Values:
Ry

contains a return code indicating the result of the request. Refer to “Responses” on page 1052 for a
description of the possible values.

The entire ARSPL may be replaced in guest storage upon completion of a Diagnose X'254' function.

Hardware Specifications

Tape Subsystems
Select tape subsystems are supported by this DIAGNOSE. A small subset of CCWs are supported. The
intent is to give a virtual machine the ability to issue library function CCWs to a tape library subsystem
without requiring that the virtual machine acquire a dedicated tape drive from the library.

Supported TAPE Subsystems
• 3490 controller subsystems
• 3590 controller subsystems
• 3494 library subsystems
• 3495 library subsystems

DIAGNOSE Code X'254'

1046 z/VM: 7.3 CP Programming Services

Subsystem Identifiers
Controller

Subsystem ID can be found in bytes 112 - 125 of the response to the Read Configuration Data CCW.
Bytes 112 - 113 are the Token NED's Plant of Manufacture, and bytes 114 - 125 are the Token NED's
Sequence Number.

Library
Subsystem ID can be found in bytes 80 - 93 of the response to the Read Configuration Data CCW.
Bytes 80 - 81 are the Library NED's Plant of Manufacture, and bytes 82 - 93 are the Library NED's
Sequence Number.

The Subsystem ID will be needed as input to execute all functions of this DIAGNOSE.

Supported CCWs
• Channel Path Nop
• Perform Subsystem Function
• Read Subsystem Data
• Read Configuration Data
• Read Device Characteristics
• Sense Id

Further Restrictions
• The MAINTCCW option of the OPTION directory control statement is required to issue the Pin and Unpin

orders of the Perform Subsystem function CCW.
• Because this DIAGNOSE allows I/O to be issued to a drive that may be dedicated to another VM guest,

or may be shared by another real host, I/O issued by this DIAGNOSE is subject to Dynamic Partitioning
(DP) Unit Checks. If a DP Unit Check occurs and the DIAGNOSE user has not indicated a specific drive
to issue the I/O on, VM will attempt to find another drive in the specified subsystem. If VM receives DP
Unit Checks from all available drives, VM will reflect the last Unit Check to the DIAGNOSE user. If VM
starts I/O to another drive because of a previous DP Unit Check and receives a non-DP error, the non-DP
error will be reflected to the DIAGNOSE user. Use the Dynamic Partitioning Override bit to avoid DP Unit
Checks on applicable CCW orders.

• Use of a CCW order in a way that produces an unsolicited interrupt accompanied by an attention
message is not advised. This diagnose will have no knowledge of the interrupt message pair when
presented by the subsystem. The interrupt message pair will be presented to the virtual machine that
has dedicated to it the device that reflected the interrupt message pair, or VM will throw away the
interrupt message pair if the associated device isn't attached to a guest. Leave off the Message Required
bit associated with any applicable orders to avoid unsolicited interrupts and attention messages.

• When using this DIAGNOSE to issue I/O to a tape library subsystem, the Library Manager must be online
when the first device on a controller in the library subsystem is defined and varied on (for example,
VM initialization). VM will not be able to access devices on a controller if the Library Manager was
offline because VM will have no knowledge of the Library Subsystem ID. You can correct this situation
by deleting all RDEVs (for example, DELETE RDEVICE command) for devices on a controller and then
recreating and varying on the RDEVS (for example, SET RDEVICE and VARY commands) when the
Library Manager is online. This restriction does not apply to the Controller Subsystem ID.

• The Open CP Connection function will not be allowed for a tape library subsystem that has an active
DIAGNOSE X'254' environment on a controller subsystem that is part of the library subsystem. Use
the Open function consistently on either a library subsystem or a controller subsystem. An active
environment on a library subsystem will give access to all controller subsystems in the library. See
“Open CP Connection” on page 1047 for details on the DIAGNOSE X'254' environment.

Open CP Connection
This function establishes the necessary environment to invoke subsequent functions of this DIAGNOSE.

DIAGNOSE Code X'254'

Appendix F. Reserved DIAGNOSE Codes 1047

The function code for this request is X'00'. The ARSPL is defined as follows:

Diagnose Number
(Input) Byte 0 of word 0 starts a halfword field that defines the DIAGNOSE number. The field must
contain the halfword X'0254'.

Function Code
(Input) Byte 2 of word 0 is a 1-byte field that defines the function code of this request. The byte must
contain X'00'.

Parameter List Length
(Input) Byte 3 of word 0 is a 1-byte field that defines the length, in bytes, of the ARSPL. Because the
ARSPL is a fixed size, the byte must contain X'58'.

Subsystem ID
(Input) Byte 0 of word 2 starts a 14-byte field that defines the Subsystem ID of the subsystem that
will be the target of subsequent DIAGNOSE X'254' requests. The contents of the field must be right
justified and padded on the left with binary zeros, if necessary, to fill all 14 bytes. Refer to “Hardware
Specifications” on page 1046 for more information on subsystem identifiers.

Hardware Flags
(Input) Byte 0 of word 6 is a 1-byte field containing a set of flags related to the hardware in the
subsystem. The following table describes all defined flag bits, all other bits are reserved and must
contain binary zeros.

Table 221. Hardware Flags

Bit Description

0 Indicates the type of tape subsystem specified by the Subsystem ID field. If 1, the
Subsystem ID represents a tape library subsystem. If 0, a tape controller subsystem
is assumed.

1 Indicates whether VM should ignore the Plant of Manufacture bytes in the Subsystem
ID field if applicable for the hardware. If 1, the Plant bytes, if applicable, will be
ignored. If 0, the Plant bytes, if applicable, will be included in VM's search for the
specified subsystem.

Reserved
The remaining fields in the block are reserved and must contain binary zeros.

Usage Notes:

1. The subsystem must be supported by this DIAGNOSE and must not be defined to CP as 'unsupported'.
Refer to “Hardware Specifications” on page 1046 for a list of supported subsystems.

2. A given Subsystem ID can have only one active DIAGNOSE X'254' environment at a time among all
users on a VM system.

DIAGNOSE Code X'254'

1048 z/VM: 7.3 CP Programming Services

Close CP Connection
This function removes the environment established by the Open CP Connection function of this
DIAGNOSE.

The environment established by the Open CP Connection function remains in effect until you explicitly
terminate the environment using this function or until an I/O reset is performed for the virtual machine,
for example by the SYSTEM RESET, IPL, or LOGOFF commands.

This function, as well as an I/O reset, will terminate any pending DIAGNOSE X'254' I/O on the subsystem.

The function code for this request is X'01'. The ARSPL is defined as follows:

Diagnose Number
(Input) Byte 0 of word 0 starts a halfword field that defines the DIAGNOSE number. The field must
contain the halfword X'0254'.

Function Code
(Input) Byte 2 of word 0 is a 1-byte field that defines the function code of this request. The byte must
contain X'01'.

Parameter List Length
(Input) Byte 3 of word 0 is a 1-byte field that defines the length, in bytes, of the ARSPL. Because the
ARSPL is a fixed size, the byte must contain X'58'.

Subsystem ID
(Input) Byte 0 of word 2 starts a 14-byte field that defines the Subsystem ID of the subsystem that
will have its DIAGNOSE X'254' environment removed. The contents of the field must be right justified
and padded on the left with binary zeros, if necessary, to fill all 14 bytes.

Hardware Flags
(Input) Byte 0 of word 6 is a 1-byte field containing a set of flags related to the hardware in the
subsystem. The following table describes all defined flag bits, all other bits are reserved and must
contain binary zeros.

Table 222. Hardware Flags

Bit Description

0 Indicates the type of tape subsystem specified by the Subsystem ID field. If 1, the
Subsystem ID represents a tape library subsystem. If 0, a tape controller subsystem
is assumed.

1 Indicates whether VM should ignore the Plant of Manufacture bytes in the Subsystem
ID field if applicable for the hardware. If 1, the Plant bytes, if applicable, will be
ignored. If 0, the Plant bytes, if applicable, will be included in VM's search for the
specified subsystem.

Reserved
The remaining fields in the block are reserved and must contain binary zeros.

DIAGNOSE Code X'254'

Appendix F. Reserved DIAGNOSE Codes 1049

Perform I/O
This function allows the issuer to issue select channel programs to a subsystem. Refer to “Hardware
Specifications” on page 1046 for a list of supported CCWs.

The function code for this request is X'02'. The ARSPL is defined as follows:

Diagnose Number
(Input) Byte 0 of word 0 starts a halfword field that defines the DIAGNOSE number. The field must
contain the halfword X'0254'.

Function Code
(Input) Byte 2 of word 0 is a 1-byte field that defines the function code of this request. The byte must
contain X'02'.

Parameter List Length
(Input) Byte 3 of word 0 is a 1-byte field that defines the length, in bytes, of the ARSPL. Because the
ARSPL is a fixed size, the byte must contain X'58'.

Subsystem ID
(Input) Byte 0 of word 2 starts a 14-byte field that defines the Subsystem ID of the subsystem that
will be the target of the DIAGNOSE X'254' I/O request. The contents of the field must be right justified
and padded on the left with binary zeros, if necessary, to fill all 14 bytes.

Device Number
(Input) Byte 2 of word 5 starts a halfword field that defines the Real Device Number of the device
that will be the target of the DIAGNOSE X'254' I/O request. The device must be a member of the
subsystem specified by the Subsystem ID and its number must be in the range X'0000' - X'FFFF'. This
field is optional, and VM will choose the device from the specified subsystem if omitted as indicated in
the I/O Request Flags field.

Hardware Flags
(Input) Byte 0 of word 6 is a 1-byte field containing a set of flags related to the hardware in the
subsystem. The following table describes all defined flag bits, all other bits are reserved and must
contain binary zeros.

Table 223. Hardware Flags

Bit Description

0 Indicates the type of tape subsystem specified by the Subsystem ID field. If 1, the
Subsystem ID represents a tape library subsystem. If 0, a tape controller subsystem
is assumed.

1 Indicates whether VM should ignore the Plant of Manufacture bytes in the Subsystem
ID field if applicable for the hardware. If 1, the Plant bytes, if applicable, will be
ignored. If 0, the Plant bytes, if applicable, will be included in VM's search for the
specified subsystem.

DIAGNOSE Code X'254'

1050 z/VM: 7.3 CP Programming Services

I/O Request Flags
(Input) Byte 1 of word 6 is a 1-byte field containing a set of flags for the I/O request. The following
table describes all defined flag bits, all other bits are reserved and must contain binary zeros.

Table 224. I/O Request Flags

Bit Description

0 Indicates the format of the CCWs which make up the channel program. If 1, format-1
CCWs are specified. If 0, format-0 CCWs are specified.

1 Indicates whether the device number is indicated in the ARSPL Device Number field.
If 1, the device is specified. If 0, the Device Number field is ignored and the device will
be chosen by VM.

Storage Key
(Input) Bits 0-3 of byte 2, word 6 contain the Storage Protection Key for fetching all CCWs and
CCW related output data, and for storing all CCW related input data. The key is matched against the
appropriate guest real storage key during all CCW related storage references. Bits 4-7 of byte 2, word
6 are reserved and must contain binary zeros.

Interruption Parameter
(Input) Byte 0 of word 7 starts a fullword field that defines user data to be stored at guest real
storage locations 128-131 upon presentation of the Access Real Subsystem External Interruption at
the completion of the I/O request. Refer to “Access Real Subsystem External Interruption” on page
1054 for a complete description.

Channel Program Address
(Input) Byte 0 of word 8 starts a fullword field that designates the location of the channel program's
first CCW in guest absolute storage. If format-0 CCWs have been specified in the I/O Request Flags,
then bits 0 thru 7 of the Channel Program Address must be binary zeros. If format-1 CCWs have been
specified, then bit 0 must be zero. Also, the three rightmost bits of the Channel Program Address must
be binary zeros. This indicates that the first CCW is on a doubleword boundary.

CCW Address at Interrupt
(Output) Byte 0 of word 9 starts a fullword field that designates the guest absolute address of the last
executed CCW + 8 in the channel program.

Device Status
(Output) Byte 0 of word 10 is a 1-byte field identifying the conditions in the device, that is, the device
in the subsystem to which the I/O was issued, when the channel program ended. The conditions that
this byte can represent are defined in the IBM ESA/390 Common I/O-Device Commands, SA22-7204.

Subchannel Status
(Output) Byte 1 of word 10 is a 1-byte field identifying the conditions in the subchannel when
the channel program ended. The conditions that this byte can represent are defined in Enterprise
Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf)
and z/Architecture Principles of Operation (https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf).

Residual Count
(Output) Byte 2 of word 10 starts a halfword field that identifies the Residual Count from the channel
program's ending CCW as defined in Enterprise Systems Architecture/390 Principles of Operation
(publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf) and z/Architecture Principles of Operation (https://
publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf).

Sense Count
(Output) Byte 0 of word 11 starts a halfword field that defines the number of bytes of sense data
present if Unit Check is indicated in the Device Status field.

Sense Data
(Output) Byte 0 of word 14 starts a 32-byte field that contains the sense data, as limited by the Sense
Count field, if Unit Check is indicated in the Device Status field.

Reserved
The remaining fields in the block are reserved and must contain binary zeros.

DIAGNOSE Code X'254'

Appendix F. Reserved DIAGNOSE Codes 1051

http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/a227832d.pdf

Usage Notes:

1. The guest will receive control back after the I/O request has been accepted. If an error prevents
acceptance of the I/O, the error will be indicated by the DIAGNOSE condition code and return code.
The completion of any I/O performed will be reflected to the guest by an external interruption.
The results of the I/O can be found by first examining the external interruption status and then, if
appropriate, the output fields of the ARSPL. Refer to “Access Real Subsystem External Interruption” on
page 1054 for a complete description of the external interruption.

2. It is possible that queued or started I/O could be ended by the Close CP Connection function of this
DIAGNOSE. This could happen if the Close CP Connection function is processed before the I/O is
complete. The Access Real Subsystem External Interruption will indicate this condition if it occurs.
It is also possible that a virtual machine I/O reset (for example, caused by SYSTEM RESET, IPL, or
LOGOFF commands) could end queued or started I/O before it is complete. In this case, there will be
no indication that the I/O was ended because the virtual machine ends up being reset.

3. Unsupported CCWs will receive an indication of Unit Check in the Device Status field and Command
Reject in the Sense Data field.

4. The Interruption Parameter field can be used to associate an Access Real Subsystem External
Interruption with a particular invocation of the Perform I/O function. Refer to “Access Real Subsystem
External Interruption” on page 1054 for more details.

Responses
Condition Codes and Return Codes: Upon completion of DIAGNOSE X'254', control is returned to the
issuer with a condition code and return code set to indicate the status of the requested function. The
return code is set in Ry.

Table 225. General condition code descriptions for all functions

Condition Code Description

0 Function was successful.

2 Subsystem is busy.

3 Subsystem is not operational.

Table 226. Condition codes and return codes for the Open CP Connection function

Condition Code Return Code in Ry Description

0 0 (X'00') Initialization of the DIAGNOSE X'254' environment for the
specified subsystem has completed successfully.

2 32 (X'20') The issuer already has a DIAGNOSE X'254' environment
active for the specified subsystem.

2 36 (X'24') Another user currently has a DIAGNOSE X'254' environment
active for the specified subsystem.

2 40 (X'28') A CP Close Connection Function is currently pending for the
specified subsystem.

3 52 (X'34') The specified subsystem is not known in VM's real I/O
configuration or is not supported by VM for this DIAGNOSE.

3 60 (X'3C') Reserved.

3 64 (X'40') Reserved.

3 255 (X'FF') An unexpected error occurred. The error is unrecoverable. It
will be accompanied by a soft abend.

DIAGNOSE Code X'254'

1052 z/VM: 7.3 CP Programming Services

Table 227. Condition codes and return codes for the Close CP Connection function

Condition Code Return Code in Ry Description

0 0 (X'00') The active DIAGNOSE X'254' environment has been
successfully deleted. Any pending DIAGNOSE X'254' I/O to
the subsystem has been terminated.

2 40 (X'28') A CP Close Connection Function is currently pending for the
specified subsystem.

3 120 (X'78') A DIAGNOSE X'254' environment was not previously
established for the specified subsystem using the Open CP
Connection function.

3 255 (X'FF') An unexpected error occurred. The error is unrecoverable. It
will be accompanied by a soft abend.

Table 228. Condition codes and return codes for the Perform I/O function

Condition Code Return Code in Ry Description

0 0 (X'00') The I/O request has accepted.

2 40 (X'28') A CP Close Connection Function is currently pending for the
specified subsystem.

3 120 (X'78') A DIAGNOSE X'254' environment was not previously
established for the specified subsystem using the Open CP
Connection function.

3 148 (X'94') VM is unable to find an available device. Either the specified
device or all devices associated with the specified subsystem
are offline, or they do not exist.

3 255 (X'FF') An unexpected error occurred. The error is unrecoverable. It
will be accompanied by a soft abend.

Program Exceptions: DIAGNOSE X'254' may result in one of the following program exceptions:

Problem Encountered Cause

Addressing exception The ARSPL is not within addressable guest real storage.

Operand exception Any of the following:

• The ARSPL Channel Program Address does not indicate a
CCW that is on a doubleword boundary.

• Bits required to be binary zero are set in the high-order byte
of the ARSPL Channel Program Address.

• Bits required to be binary zero are set in the ARSPL byte
containing the Storage Protection Key.

Privileged-operation exception The guest is not authorized to issue this DIAGNOSE.

Protection exception The ARSPL is store or fetch protected.

DIAGNOSE Code X'254'

Appendix F. Reserved DIAGNOSE Codes 1053

Problem Encountered Cause

Specification exception Any of the following:

• The ARSPL is not on a doubleword boundary.
• The ARSPL Diagnose Number field does not contain

X'0254'.
• The ARSPL Function Code field contains an invalid value.
• The ARSPL Parameter List Length field does not contain

X'58'.
• Reserved bits are set in the ARSPL Hardware Flags.
• Reserved bits are set in the ARSPL I/O Request Flags.
• A reserved field in the ARSPL does not contain binary zeros.

Access Real Subsystem External Interruption
An Access Real Subsystem External Interruption is generated if a Perform I/O function request has
completed at a device.

The external interruption is a floating interruption condition and is presented to the first virtual CPU in
the virtual configuration that is enabled for the interruption. The condition is cleared once the interruption
is presented or if a virtual machine reset occurs, for example, by the SYSTEM RESET, IPL, or LOGOFF
commands.

The subclass mask to enable for the interruption is bit 22 of control register 0.

The Access Real Subsystem condition is indicated by an external interruption code of X'2603' stored at
guest real locations 134-135, and a subinterruption code of X'04' stored at guest real location 132. The
Interruption Parameter, as specified in the ARSPL on the Perform I/O request, is stored at guest real
locations 128-131. In addition, one of the following status codes will be stored at guest real location 133.

Table 229. Perform I/O function completion status codes

Code Meaning

X'00' The I/O completed as indicated in the updated ARSPL.

X'01' The updated ARSPL could not be stored into guest storage. The results of the I/O
operation are indeterminate.

X'02' The user-specified or VM chosen device became unavailable after the I/O request
was queued to be issued to the device. Retry the request to see if the user
specified device is now available or if VM can find a different device in which to
issue the I/O on.

X'03' The I/O, which was queued but not yet started, was terminated due to a Close CP
Connection function request.

X'04' The I/O, which was already started at the device but not yet complete, was
terminated due to a Close CP Connection function request.

X'05' A missing interrupt condition was detected. The I/O request may or may not have
been started.

X'FF' An unexpected error occurred. The error is unrecoverable. It will be accompanied
by a soft abend.

DIAGNOSE Code X'25C' – Directory Query
Privilege Class: B

DIAGNOSE X'25C'

1054 z/VM: 7.3 CP Programming Services

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'25C' is a privileged function provided to allow applications access to the data in the CP
user directory. Applications should use the VMUDQ macro to invoke the functions contained herein. For
more information on the VMUDQ macro, refer to “VMUDQ – VM User Directory Query” on page 889.

Entry Values:
Rx

contains the address of the parameter list.
Ax

is used only in access-register mode in an XC virtual machine. Ax contains the ALET of the address
space containing the parameter list.

Ry
contains the address of the data buffer. Register 0 selects the virtual machine's primary address
space.

Ay
contains the ALET of the address space.

Ry+1
contains the size of the data buffer in bytes.

Exit Values:
Rx

is modified to contain the length in bytes of the results of the query if successful or the number of
bytes needed for the query if the buffer length is not sufficient. Otherwise, it remains unchanged.

Rx+1
might or might not be used. See the description of the function in the Table 230 on page 1056 for
details.

Ry and ARy
remains unchanged, describing the location of the data buffer.

Ry+1
is modified to contain the length in bytes of the results of the query.

DIAGNOSE X'25C'

Appendix F. Reserved DIAGNOSE Codes 1055

Table 230. DIAGNOSE X'25C' Function List

Function Description and Parameters

LSTMDISK Creates a list of MDISK definitions based on, or qualified by, the owners to which they
belong, virtual device number, serial number of the volume, and the SSI member on which
they reside. An asterisk (*) can be used as a trailing wild card to select a wider group of
definitions. The list is built in the buffer provided by the caller.

Input Parameter List: Consists of six doublewords as shown in the following example:

 0 | Length | ///////// Reserved ///////// |
 |---|
 8 | LSTMDISK |
 |---|
 16| *|userid|use* |
 |---|
 24| *|vdevno|vdev* |
 |---|
 32| *|volser|vols* |
 |---|
 40| *|systemid|sys* |

The parameter list is a maximum of six doublewords long. It must be on a doubleword
boundary and must not span a page boundary.
length

The length is a fullword containing the length in bytes of the length field itself, the
reserved field, and the parameter string that follows. The length field must be one of the
following values: 16, 24, 32, 40, or 48.

LSTMDISK
is the name of the function to be performed by the DIAGNOSE. The function must be
LSTMDISK.

* | userid | use*
selects MDISK definitions that belong to the specified user IDs. The user ID from a USER
or IDENTITY directory statement can be used. SUBCONFIG IDs cannot be specified.
Definitions belonging to multiple owner ID's are selected by the use of an asterisk (*). An
asterisk (*) by itself indicates that all definitions are to be analyzed regardless of userid.
An asterisk (*) used as a trailing wild card selects definitions that belong to a group of
userids that begin with the specified character combination. The value is left-justified in
the field and padded to eight characters with blanks. The default assumed if the field is
blank is an asterisk (*).

* | vdevno | vdev*
selects MDISK definitions that are defined to the specified virtual device numbers.
Multiple vdevnos are specified by the use of the asterisk (*). An asterisk (*) by itself
causes all MDISK definitions to be selected regardless of vdevno. An asterisk (*) used
as a trailing wild card causes selection of MDISK definitions found on the selected
virtual devices where the combined value indicates a range of addresses beginning with
a common value. A four-digit address is assumed; therefore, 000* would mean 0000
through 000F, and 04* would mean 0400 through 04FF. The value is left-justified in the
field and padded to eight characters with blanks. The default assumed if the field is
blank is an asterisk (*).

DIAGNOSE X'25C'

1056 z/VM: 7.3 CP Programming Services

Table 230. DIAGNOSE X'25C' Function List (continued)

Function Description and Parameters

LSTMDISK
(cont'd.)

* | volser | vols*
selects MDISK definitions that are found on the volume containing the specified volume
serial number. An asterisk (*) can be used as a trailing wild card to select a range of
volsers that begin with a common set of characters. An asterisk (*) by itself indicates
that the definitions on all the volumes are to be analyzed. The value is left-justified in
the field and padded to eight characters with blanks. The default assumed if the field is
blank is an asterisk (*).

* | systemid | sys*
selects MDISK definitions that are found on the specified SSI member system. An
asterisk (*) can be used as a trailing wild card to select a range of systems that begin
with a common set of characters. An asterisk (*) by itself indicates that the MDISK
definitions on all member systems are to be analyzed. The value is left-justified in
the field and padded to eight characters with blanks. If the field is blank, the default
assumed is blank, indicating that only the MDISK definitions on the current system are
to be analyzed. Specifying a system other than by an asterisk or a blank is allowed only
when an SSI-enabled directory is in use.

Output Buffer Format: Consists of seven blank-delimited fields containing the information
indicated in the example below:

OWNERID- VDEV VOLSER DEVTYPE- START----- SIZE------ System
12345678 1234 123456 12345678 1234567890 1234567890 12345678
---------+---------+---------+---------+---------+---------+-------
User123 0191 ABC123 3390 0000000010 0000000200
User456 0191 CCC123 FB-512 0000000010 0000200000
User789 0222 CCC222 3380 0000000010 END
UserABC 0223 ABC223 3370 0000000000 0000200000 SYSTEMABC

Notes:

1. In the above example the "START" field can contain either the starting cylinder or block
number. The "SIZE" field contains the remaining number of cylinders or blocks. The
non-device specific "END" in the size field denotes the end of the volume. Also, the
header lines are not part of the returned data.

2. If the MDISK was defined with a size of "END", then the size returned in the output buffer
is simply "END".

3. Temporary disks (T-disks) and virtual disks in storage are ignored by the LSTMDISK
function and are not included in the output buffer.

4. If the MDISK is defined within a SUBCONFIG stanza, the system ID to which the MDISK
is restricted is included in the output buffer. If the MDISK is defined within a user or
identity stanza, then no system ID is specified because the MDISK is not restricted to a
particular system.

Usage Notes
1. The application programmer uses the VMUDQ macro to invoke this DIAGNOSE because this

DIAGNOSE code is reserved for IBM use.
2. An address space is acquired in blocks of 256 pages; therefore the number of bytes in the buffer to be

passed on the call would equal:

(number pages requested+255/256) * 1048576.

3. In an SSI-enabled directory, MDISK definitions can be global or local. A global MDISK definition is one
that is included in a user or identity stanza and the minidisk being defined can be linked by virtual
machines on any member system of the SSI cluster. A local MDISK definition is one that is included

DIAGNOSE X'25C'

Appendix F. Reserved DIAGNOSE Codes 1057

in a SUBCONFIG stanza and the minidisk being defined can be linked only by virtual machines on
the SSI member system to which the SUBCONFIG stanza applies. When specifying the system ID
parameter (* | systemid | sys*), you are requesting all MDISK definitions that are global and local to
a particular system. If you specify a system ID that is not specified on any BUILD statements in the
directory, then all global MDISK definitions are reported. If you specify a system ID that is specified on
a BUILD statement in the directory, then all global MDISK definitions and local MDISK definitions for
the specified system are reported.

Responses
Condition codes and return codes are described in Table 231 on page 1058 and Table 232 on page 1058.

Table 231. DIAGNOSE X'25C'—Condition codes

Condition Code Meaning

0 A normal exit from DIAGNOSE X'25C'. The guest Ry+1 register contains the return
code.

1 DIAGNOSE code X'25C' has detected an error.

3 DIAGNOSE code X'25C' has encountered a paging error while trying to access the
target area in the data space or an object directory page.

Table 232. Diagnose X'25C' - Return codes

Function Return Code in
Ry+1

Description

General X'00' Successful. The guest Rx register contains the length of bytes
moved as the result of the query.

X'04' No records were found to match criteria specified.

X'08' The buffer length supplied is insufficient. The guest Rx
register contains the number of bytes needed for the query.

LSTMDISK X'100' An invalid user ID was specified.

X'104' An invalid virtual device number was specified.

X'108' An invalid volume serial number was specified.

X'10C' An invalid system ID was specified.

Program Exceptions: The program exceptions for DIAGNOSE X'25C' are the same as those documented
for the VMUDQ macro; refer to “VMUDQ – VM User Directory Query” on page 889 for more information.

DIAGNOSE Code X'264' – CP Communication
Privilege Class: ANY

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'264' defines an area in which CP stores notification of certain events.

Entry Values:
Rx, Rx+1, Ry+1

Depends on the subcode specified in Ry (see description below).
Ry

Function subcode.

DIAGNOSE X'264'

1058 z/VM: 7.3 CP Programming Services

Program Exceptions: CP returns a specification exception if the subcode specified in the Ry register is
invalid.

Subcode X'00000000'—Establish CP communication area
Table 233. CP Subfunctions

Name Bits # Definition

CPCRECON 0 Set to one (1) when a RECONNECT of the virtual machine
occurs

CPCFSLM 1 Set to one (1) when a virtual line-mode write has completed
successfully and set to zero (0) when a virtual full-screen
write has completed successfully.

CPCSHORT 2 Set to one (1) when the virtual machine default date format is
SHOrtdate.

CPCFULL 3 Set to one (1) when the virtual machine default date format is
FULldate.

CPCISO 4 Set to one (1) when the virtual machine default date format is
ISOdate.

Entry Values:
Rx

Contains the guest absolute address of CP communication area in the host-primary space. The
communication area must not be in read-only storage and must not cross a page boundary. Key-
controlled protection and low-address protection do not apply to references to the communication
area.

Rx+1
Contains the size of CP communication area in fullwords

Usage Notes:

1. Once established, the CP communication area remains active until the virtual configuration is reset or
until DIAGNOSE X'264' function subcode X'00000004' removes it.

2. The communication area may become inaccessible or read-only as, for example, through DIAGNOSE
X'64'. As long as this prevails, the area is not updated.

3. The guest should use Compare and Swap when modifying the CP communication area.
4. Only bits defined within the established CP communication area are updated.

Program Exceptions:

Problem Encountered Cause

Specification exception Any of the following:

• The CP communication area is not aligned on a fullword
boundary.

• The CP communication area crosses a page boundary.
• The CP communication area is already active for the virtual
configuration.

• The size, in fullwords, in the Rx+1 register is not positive.

Addressing exception The address of the CP communication area is not valid.

Protection exception The specified communication area is in read-only storage.

DIAGNOSE X'264'

Appendix F. Reserved DIAGNOSE Codes 1059

Subcode X'00000004'—Remove CP communication area
Entry Values:
Rx

Not used.
Rx+1

Not used.
Ry+1

Not used.

Usage Note: If the CP communication area has not been established, no error is presented.

Responses: None.

DIAGNOSE Code X'278' – Extract XLINK Control Blocks
Privilege Class: G

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'278' extracts XLINK Control Block data from CP and returns it to a virtual machine.

Note: This DIAGNOSE is reserved for IBM use. It is not a supported programming interface. It is included
here only for diagnostic purposes.

Entry Values:

Rx
Request flags in byte 0; bytes 1 through 3 must be zero.

X'80'
DXLSYINR — Request for System Include list

X'40'
DXLSYEXR — Request for System Exclude list

X'20'
DXLDTABR — Request for Device Table

X'10'
DXLVLINR — Request for Volume Include list

X'08'
DXLVLEXR — Request for Volume Exclude list

All undefined bits must be 0; otherwise, a specification exception occurs.

Ry
Address of doubleword-aligned parameter list, HCPDXLPL. Bit 0 of Ry must be zero.

Ay
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the override parameter list file name. If Ry designates general register 0,
if Ay contains X'00000000', or if the virtual machine is not in XC mode, the override parameter list file
name is in the host-primary address space.

Exit Values: The following are normal exit situations.

Condition Code Meaning

0 Normal completion. The response area was large enough for the data, and
DXLDLEN and DXLDATA have been updated.

3 The response area was not large enough for the data. DXLDLEN has been updated,
but DXLDATA is unpredictable.

DIAGNOSE X'278'

1060 z/VM: 7.3 CP Programming Services

On entry, the parameter list must be filled in as follows:

DXLHDR
indicates the beginning of the input fields.

DXLPLID
is a halfword identifier for the parameter list. This field must contain the value X'0278'.

DXLBLEN
is a halfword containing the number of doublewords available in the DXLPL area. The DXLPL area
comprises both the header and the response area. This value must be at least 1.

Between the parameter list and the response area, there is a field set by CP:

DXLDLEN
is a halfword containing the actual number of doublewords of DXLPL into which results have been (or
will be) placed. This number includes one doubleword for the header. If the guest condition code is
0, then DXLDATA contains data. If the guest condition code is 3, then the contents of DXLDATA are
unpredictable.

The response area, DXLDATA, immediately follows DXLDLEN:

where:

DXLDATA
is the data from CP, consisting of the fields listed below. Only the fields pertaining to the data items
requested in Rx are meaningful; the contents of the other fields are unpredictable.
DXLSYINR

XLINK included system names:
DXLSYINO

shows the offset, in doublewords, from the beginning of the parameter list to the system
include list. DXLSYINO is two bytes long.

DXLSYINC
shows the number of entries in the system include list. DXLSYINC is two bytes long.

DXLSYINL
is the length of each entry in bytes. DXLSYINL is two bytes long.

The last two bytes of the field are reserved.

The response for each entry will be the following:

Eight-byte system name

DXLSYEXR
XLINK excluded system names:
DXLSYEXO

shows the offset, in doublewords, from the beginning of the parameter list to the system
exclude list. DXLSYEXO is two bytes long.

DIAGNOSE X'278'

Appendix F. Reserved DIAGNOSE Codes 1061

DXLSYEXC
shows the number of entries in the system exclude list. DXLSYEXC is two bytes long.

DXLSYEXL
is the length of each entry in bytes. DXLSYEXL is two bytes long.

The last two bytes of the field are reserved.

The response for each entry will be the following:

Eight-byte system name

DXLVLINR
XLINK volume include list:
DXLVLINO

shows the offset, in doublewords, from the beginning of the parameter list to the volume
include list. DXLVLINO is two bytes long.

DXLVLINC
shows the number of entries in the volume include list. DXLVLINC is two bytes long.

DXLVLINL
is the length of each entry in bytes. DXLVLINL is two bytes long.

The last two bytes of the field are reserved.

The response for each entry will be the following:

Six-byte volume serial pattern
Two-byte cylinder number
Two-byte track number
Two-byte record length
Two-byte records

DXLVLEXR
XLINK volume exclude list:
DXLVLEXO

shows the offset, in doublewords, from the beginning of the parameter list to the volume
exclude list. DXLVLEXO is two bytes long.

DXLVLEXC
shows the number of entries in the volume exclude list. DXLVLEXC is two bytes long.

DXLVLEXL
is the length of each entry in bytes. DXLVLEXL is two bytes long.

The last two bytes of the field are reserved.

The response for each entry will be the following:

Six-byte volume serial pattern

DXLDTABR
XLINK device table:
DXLDTABO

shows the offset, in doublewords, from the beginning of the parameter list to the device table.
DXLDTABO is two bytes long.

DXLDTABC
shows the number of entries in the device table. DXLDTABC is two bytes long.

DXLDTABL
is the length of each entry in bytes. DXLDTABL is two bytes long.

The last two bytes of the field are reserved.

The response for each entry will be the following:

DIAGNOSE X'278'

1062 z/VM: 7.3 CP Programming Services

One-byte device type (from HCPDVTYP)
One-byte model/etc. information
Two-byte cylinder number
Two-byte track number
Two-byte record length
Two-byte records

Responses
Program Exceptions:

Problem Encountered Cause

Specification exception One of the following occurred:

• Undefined bits were set in Rx
• Parameter list address was negative or not doubleword-

aligned
• Field DXLPLID was not X'0278'
• Field DXLBLEN was less than or equal to zero.

Access exception An error occurred either while fetching from the parameter
list or while storing in the response area.

DIAGNOSE Code X'280' – Set POSIX IDs - security values
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'280' securely sets POSIX security values for one of the family of exec() functions. If the
file to be processed is not a set_UID or set_GID file, it sets the saved set-IDs to the effective ID values. If
the file is a set_UID or set_GID file, it communicates with the server and then sets the effective and saved
set-IDs to the specified values.

Entry Values:

Rx
is the general register that contains the guest real address of the exec() parameter list (HCPEXCBK).
The EXCBK must be on a doubleword boundary.

The entire EXCBK may be replaced in guest storage when this function completes.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the exec() parameter list (HCPEXCBK). If Rx designates general register
0, if Ax contains X'00000000', or if the virtual machine is not in XC mode, the exec() parameter list is
in the host-primary address space.

Active Process ID
The active process is specified in the active process ID (PID) field in the POSIX communication
area. (Before DIAGNOSE X'280' is used, DIAGNOSE X'2A4' must have been issued in this virtual
configuration to define the communication area and allocate one or more PIDs.)

Exit Values:
Ry

Contains the return code indicating the result of this request. Refer to “Responses” on page 1066 for a
description of the possible values of this field. Ry cannot be the same register as Rx.

Format of the DIAGNOSE X‘280’ parameter list - HCPEXCBK: The EXCBK consists of two major
sections: the header, and the function-specific section. The function-specific section is mapped

DIAGNOSE X'280'

Appendix F. Reserved DIAGNOSE Codes 1063

differently for each function, and may include both fixed-length and variable length portions. For upward
compatibility, the field EXCFFXLN, the length of the fixed-length portion of the function-specific section,
must be filled in during the execution-time creation of the block. Any subsequent references to the
variable-length portion must always be based on the address of the beginning of the block plus the
lengths of the header and the fixed-length portion of the function-specific section.

The format of the header is:

Function EXCSETID - Request changes in POSIX security values for an exec()
function call

This function is called when the virtual configuration's POSIX security values must be changed on behalf
of one of the exec() functions.

Format of the HCPEXCBK for function EXCSETID

Input:
EXCDIAGC

is a halfword field containing the hexadecimal DIAGNOSE code, X'0280'.
EXCFUNCD

is a halfword field containing the function code. For this function, EXCFUNCD must contain the value
of EXCSETID (0).

EXCDWLEN
is an unsigned halfword field containing the length of this parameter list in doublewords. The length
must include the length of the header, the length of the fixed-length section, and the length of any
specified variable-length sections. It must be no more than one page (512 doublewords) in length.

EXCFFXLN
is an unsigned fullword field containing the length in bytes of the fixed-length portion of the function-
specific area of the control block. This area starts immediately after the header, and includes the
fields up to, but not including, the beginning of the object token length field (EXCOBJLN).

Reserved header fields
The rest of the fields in the header are reserved and must contain binary zeros.

EXCTPNLN
is an unsigned fullword field containing the length in bytes of the TPN specified in EXCTPN. The
minimum TPN length is 1 byte, and the maximum length is 64 bytes.

EXCTPN
is a 64-byte field containing the resource name of the server in which the object to be executed
resides. The TPN may be between 1 and 64 bytes in length and must be left-justified.

DIAGNOSE X'280'

1064 z/VM: 7.3 CP Programming Services

EXCLOCLU
is a 16-byte field containing the locally-known LUname of the target server. This field contains 2
8-byte parts: the luname qualifier (EXCLUQUL), and the target luname (EXCLUTGT), and must follow
the rules for specifying a locally-known luname for a global resource.

EXCMODE
is an 8-byte field containing the SNA modename.

EXCSRET
is an unsigned fullword field set by this function to contain the return code set by the server.

EXCSREAS
is an unsigned fullword field set by this function to contain the reason code set by the server.

EXCNUID
is an unsigned fullword field set by this function. If the function completed successfully, the field
contains the current effective UID.

EXCNGID
is an unsigned fullword field set by this function. If the function completed successfully, the field
contains the current effective GID.

EXCOBJLN
is an unsigned fullword field containing the length of the object token data (in bytes). The value in this
field must include the length of this field and the length of the object token specified in EXCOBJTK,
and thus must be at least equal to the length of this field. The maximum value for this field is
EXCOBJMX bytes.

EXCOBJLN must immediately follow the fixed-length portion of this function's information.

EXCOBJTK
is a variable-length character field containing the token representing the file to be executed. The
token must be left-justified.

Reserved
The rest of the fields in this block are reserved and should contain binary zeros.

All other flag bits must be binary zeros.

All other fields of the parameter list are reserved and should contain binary zeros. If they do not, the
results of DIAGNOSE X'280' are unpredictable.

Output: See return codes.

Function EXCSSID - Request changes in saved set-IDs for an exec() function
call

This function is called when an application in a virtual machine performs an exec() function call, and only
the saved set-ID values must be changed.

Format of the HCPEXCBK for function EXCSSID

Input:
EXCDIAGC

is a halfword field containing the hexadecimal DIAGNOSE code, X'0280'.
EXCFUNCD

is a halfword field containing the function code. For this function, EXCFUNCD must contain the value
of EXCSSID (1).

DIAGNOSE X'280'

Appendix F. Reserved DIAGNOSE Codes 1065

EXCDWLEN
is an unsigned halfword field containing the length of this parameter list in doublewords. The length
must include the length of the header and the length of the fixed-length section. It must be no more
than one page (512 doublewords) in length.

EXCFFXLN
is an unsigned fullword field containing the length in bytes of the fixed-length portion of the function-
specific area of the control block. This area starts immediately after the header, and includes the
fields up to and including field EXCSSGID (the end of the parameter list for this function).

Reserved header fields
The rest of the fields in the header are reserved and must contain binary zeros.

EXCSSUID
is an unsigned fullword field set by this function. If the function completed successfully, the field
contains the current saved set-UID.

EXCSSGID
is an unsigned fullword field set by this function. If the function completed successfully, the field
contains the current saved set-GID.

Reserved
The rest of the fields in this block are reserved and should contain binary zeros.

All other fields of the parameter list are reserved and should contain binary zeros. If they do not, the
results of DIAGNOSE X'029C' are unpredictable.

Output: See return codes.

Responses
Upon completion of DIAGNOSE code X'280', control is returned to the invoker with a condition code set to
indicate the status of both input parameter list processing and the function requested. A return code in Ry
further defines that status.

The condition code and the return code in Ry supersede all other status information, including that in the
return and reason code fields in the EXCBK. Those fields are set by the server, but are only valid if the
return code in Ry indicates that they should be checked for further information.

Table 234 on page 1066 contains a general description of each of the condition codes.

Table 234. DIAGNOSE X'280' condition codes

Condition Code Meaning

0 Function completed successfully.

1 Function failed. HCPEXCBK indicates the return and reason codes from the server.

2 Function failed. The return code in Ry indicates the reason for the failure.

Return codes and their corresponding condition codes for the function to set POSIX security values for an
exec() function call are listed in Table 235 on page 1066.

Table 235. Condition codes and return codes for changing effective and saved set-IDs.

Condition Code Return Code in Ry Description

Decimal value Hex value Symbol

0 0 X'00' EXCOK The function completed
successfully.

2 4 X'04' EXCIDIAG The DIAGNOSE code specified in
EXCDIAGC is incorrect.

DIAGNOSE X'280'

1066 z/VM: 7.3 CP Programming Services

Table 235. Condition codes and return codes for changing effective and saved set-IDs. (continued)

Condition Code Return Code in Ry Description

Decimal value Hex value Symbol

2 8 X'08' EXCBDFUN The function code specified in
EXCFUNCD is incorrect.

2 12 X'0C' EXCNZERO Reserved fields do not contain
binary zeros.

2 16 X'10' EXCBDDWL The length specified in EXCDWLEN
is not valid. It must be

• greater than or equal to the
header length (EXCHDRLN)

• less than or equal to a page (512
doublewords) in length

• greater than or equal to the
minimum specified for the
function

• equal to the sum of the header,
the function-specific fixed-length
section, and the variable section
of the block.

2 20 X'14' EXCBDFXL The length specified in EXCFFXLN is
not valid.

2 24 X'18' EXCBDTPL The length specified in EXCTPNLN
is not valid. It must be greater than
or equal to EXCTPNMN and less
than or equal to EXCTPNMX.

2 28 X'1C' EXCBDOBL The length specified for the
object token is not valid. It must
be greater than or equal to
EXCOBJMN and less than or equal
to EXCOBJMX.

2 32 X'20' EXCINVLU The locally-known LU name is not
valid.

2 36 X'24' EXCNOGAT The gateway was not found.

2 40 X'28' EXCNORES The resource was not found.

2 44 X'2C' EXCNORPY The request was terminated
because the server did not reply
within the allotted time.

2 48 X'30' EXCNOSRV The server is unable to handle a
request for POSIX security values
for one or more of the following
reasons:

• the server has not identified itself
as prepared to handle a request
for POSIX security values

• the server is not permitted to set
POSIX security values.

DIAGNOSE X'280'

Appendix F. Reserved DIAGNOSE Codes 1067

Table 235. Condition codes and return codes for changing effective and saved set-IDs. (continued)

Condition Code Return Code in Ry Description

Decimal value Hex value Symbol

2 52 X'34' EXCSVREJ The server rejected the request.

1 56 X'38' EXCSVERR The server has returned an error
condition. Refer to the return and
reason codes in the EXCBK for
details.

2 60 X'3C' EXCSVINV The information the server returned
was invalid.

2 64 X'40' EXCUAUTH The user is not permitted to have
his POSIX security values set.

2 68 X'44' EXCESMRJ The External Security Manager
rejected the specified POSIX
security values.

2 72 X'48' EXCNOCOM There is no POSIX communication
area defined.

2 76 X'4C' EXCNPROC There is no valid active POSIX
process for which to change the
POSIX security values.

2 80 X'50' EXCTERM The request was terminated at the
user's request (for example, by an
exigent command).

2 255 X'FF' EXCFATAL An unrecoverable error occurred
while processing the DIAGNOSE
and a soft abend dump may have
been taken.

Return codes and their corresponding condition codes for the function to set saved set-IDs for an exec()
function call are listed in Table 236 on page 1068.

Table 236. Condition codes and return codes for changing saved set-IDs only.

Condition Code Return Code in Ry Description

Decimal value Hex value Symbol

0 0 X'00' EXCOK The function completed
successfully.

2 4 X'04' EXCIDIAG The DIAGNOSE code specified in
EXCDIAGC is incorrect.

2 8 X'08' EXCBDFUN The function code specified in
EXCFUNCD is incorrect.

2 12 X'0C' EXCNZERO Reserved fields do not contain
binary zeros.

DIAGNOSE X'280'

1068 z/VM: 7.3 CP Programming Services

Table 236. Condition codes and return codes for changing saved set-IDs only. (continued)

Condition Code Return Code in Ry Description

Decimal value Hex value Symbol

2 16 X'10' EXCBDDWL The length specified in EXCDWLEN
is not valid. It must be

• greater than or equal to the
header length (EXCHDRLN)

• less than or equal to a page (512
doublewords) in length

• greater than or equal to the
minimum specified for the
function

• equal to the sum of the header,
the function-specific fixed-length
section, and the variable section
of the block.

2 20 X'14' EXCBDFXL The length specified in EXCFFXLN is
not valid.

2 72 X'48' EXCNOCOM There is no POSIX communication
area defined.

2 76 X'4C' EXCNPROC There is no valid active POSIX
process for which to change the
POSIX security values.

2 255 X'FF' EXCFATAL An unrecoverable error occurred
while processing the DIAGNOSE
and a soft abend dump may have
been taken.

Program Exceptions: One of the following program exceptions may be reflected to the issuing virtual
machine indicating guest or host error conditions. In all cases, no meaningful return code is given, and the
guest instruction (Diagnose) is nullified, suppressed, or terminated according to the architecture.

DIAGNOSE code X'280' may result in one of the following program exceptions:

Problem Encountered Cause

Specification exception Any of the following:

• Rx is the same register as Ry.
• The address of the parameter list (EXCBK) specified in Rx is

not on a doubleword boundary.

Access exception (See “Access
Exceptions” on page 8.)

Attempt to fetch from or store into the HCPEXCBK failed.

Regardless of the value of EXCDWLEN, an access exception
may be recognized for a minimum of one doubleword at the
EXCBK address. Conversely, an access exception may not be
recognized for the portion of the operand beyond the length
supported by CP for the function requested.

DIAGNOSE Code X'29C' – Set-POSIX-IDs Services
Privilege Class: Any

DIAGNOSE X'29C'

Appendix F. Reserved DIAGNOSE Codes 1069

Addressing Mode: 24-bit or 31-bit

DIAGNOSE X'29C' specifies one of several function codes that designate Set-POSIX-IDs services. The
services alter the user IDs (UIDs) and group IDs (GIDs) of the active POSIX process. DIAGNOSE code
X'29C' uses the parameter list (SPXBK) to receive input data and, depending on the function requested, to
return results. The SPXBK and the codes named below are defined in member HCPSPXBK and HCPOM1
MACLIB.

Any virtual machine can use this diagnose. However certain operations are privileged and require either
permission from an External Security Manager (ESM) or authorization in the CP directory.

The following Set-POSIX-IDs services can be invoked using this DIAGNOSE code:

• Set user IDs (UIDs) for the active process — function code SPXFUSER (0)
• Set group IDs (GIDs) for the active process — function code SPXFGRP (1)
• Change the active process' GIDs to designate another group to which the logged-on user belongs —

function code SPXFNGRP (2)
• Change the active process' supplementary group id list — function code SPXFSGID (3)

Entry Values:
Rx

The real address of a function parameter list (SPXBK) in guest storage. The SPXBK must be on a
doubleword boundary. The format of the parameter list is determined by the function code which is
also in the parameter list. The SPXBK contains all the input parameters.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

Active Process ID
The active process is specified in the active process ID (PID) field in the POSIX communication
area. (Before DIAGNOSE X'29C' is used, DIAGNOSE X'2A4' must have been issued in this virtual
configuration to define this area and to allocate one or more PIDs.)

Exit Values:
Ry

On return, contains a return code. Ry can not be the same as Rx.

Format of the HCPSPXBK:

Function SPXFUSER - Set User IDs (UIDs) for the Active Process
This function sets the effective user ID (UID) for the active POSIX process to a given user ID. For a process
with appropriate privileges, this function optionally sets the real and saved set-user-IDs for the process to
that same user ID as well.

Input:
SPXDIAGC

Contains the hexadecimal DIAGNOSE code, SPXDIAGV (value X'029C').
SPXFCODE

Contains the function code, SPXFUSER (value 0).
SPXDWLEN

Contains the length of this parameter list in doublewords. this value must be at least 2.

DIAGNOSE X'29C'

1070 z/VM: 7.3 CP Programming Services

SPXFLAGS
Contains flags as follows:
SPXALLID

(bit 1) If this bit is on and the active process has appropriate privileges, set all three UIDs (real,
effective, and saved set). If this bit is off, only the effective UID is changed.

If the process is not authorized, this bit is ignored. Only the effective UID is changed.

All other flag bits must be binary zeros.

SPXRSVD1
Reserved for IBM used; must contain binary zeros.

SPXUID
Value to which this process' UID(s) are to be changed. If this process does not have appropriate
privileges, then this must be the process' current real or saved set-UID.

All other fields of the parameter list are reserved and should contain binary zeros. If they do not, the
results of DIAGNOSE X'029C' are unpredictable.

Output: See return codes.

Return Codes for Set User IDs for the Active Process:
SPXEOK (0)

Effective UID has been changed. Real and saved set-UIDs have not been changed.
SPXEOKAL (10)

Real, effective, and saved set-UIDs have been changed (not presented unless SPXALLID is specified).
SPXECODE (1)

Incorrect value in SPXDIAGC.
SPXEFUNC (2)

Invalid function code in SPXFCODE.
SPXELEN (3)

Length in SPXDWLEN is below the minimum allowed.
SPXEFLAG (4)

Invalid option flags in SPXFLAGS or SPXRSVD1 field is nonzero.
SPXEPXCA (11)

POSIX communication area has not been defined.
SPXEAPID (12)

Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.
SPXEID (8)

External Security Manager (ESM) has rejected the specified UID as invalid.
SPXEAUTH (5)

Active process not authorized to change to specified UID.
SPXENFND (6)

Specified user ID or user name not found in user database.
SPXEDBAS (9)

User database is invalid or inaccessible.

See Program Exceptions and Machine Checks for possible guest interruptions.

Note: When an External Security Manager (ESM) is not installed or defers the decision to CP, CP will
consider a process to have appropriate privileges to change all IDs (SPXALLID) and to set IDs to a value
other than the real or saved set-ID if and only if the process' effective UID is 0.

DIAGNOSE X'29C'

Appendix F. Reserved DIAGNOSE Codes 1071

Function SPXFGRP - Set Group IDs (GIDs) for the Active Process
This function sets the effective group ID (GID) for the active POSIX process to a given group ID. For an
authorized process, this function optionally sets the real and saved set-group-IDs for the process to that
same group ID as well.

Input:
SPXDIAGC

Contains the hexadecimal DIAGNOSE code, SPXDIAGV (value X'029C').
SPXFCODE

Contains the function code, SPXFGRP (value 1).
SPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 3.
SPXFLAGS

Contains flags as follows:
SPXALLID

(bit 1) If this bit is on and the active process has appropriate privileges, set all three GIDs (real,
effective, and saved set-ID). If this bit is off, only the effective GID is changed.

If the process does not have appropriate privileges, this bit is ignored. Only the effective GID is
changed.

SPXNAMIN
(bit 2) If this bit is on, set the GID(s) to the GID associated with the group name specified in
SPXGNAME.

SPXIDIN
(bit 3) If this bit is on, set the GID(s) to the value specified in SPXGID.

Exactly one of SPXNAMIN and SPXIDIN must be set. All other flag bits not listed must be binary zeros.

SPXRSVD1
Reserved for IBM use; must contain binary zeros.

SPXGID
Value to which this process' GID(s) are to be changed when SPXNAMIN is on. If this process does not
have appropriate privileges, then this must be the process' current real or saved set-GID. This field is
ignored when SPXNAMIN is off.

SPXGNAME
Group name to whose GID this process' GID(s) are to be changed, when SPXNAMIN is on. If this
process does not have appropriate privileges, then this name must correspond to the process' current
real or saved set-GID. This field is ignored when SPXNAMIN is off.

All other fields of the parameter list are reserved and should contain binary zeros. If they do not, the
results of DIAGNOSE X'029C' are unpredictable.

Output: See return codes.

Return Codes for Set Group IDs for the Active Process:
SPXEOK (0)

Effective GID has been changed. Real and saved set-GIDs have not been changed.
SPXEOKAL (10)

Real, effective, and saved set-GIDs have been changed (not presented unless SPXALLID is specified).
SPXECODE (1)

Incorrect value in SPXDIAGC.
SPXEFUNC (2)

Invalid function code in SPXFCODE.
SPXELEN (3)

Length in SPXDWLEN is below the minimum allowed.

DIAGNOSE X'29C'

1072 z/VM: 7.3 CP Programming Services

SPXEFLAG (4)
Invalid option flags in SPXFLAGS or SPXRSVD1 field is nonzero.

SPXEPXCA (11)
POSIX communication area has not been defined.

SPXEAPID (12)
Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.

SPXEID (8)
External Security Manager (ESM) has rejected the specified GID as invalid.

SPXEAUTH (5)
Active process not authorized to change to specified group.

SPXENFND(6)
Specified group ID or group name not found in group database.

SPXEDBAS (9)
Group database is invalid or inaccessible

See Program Exceptions and Machine Checks for possible guest interruptions.

Notes:

1. When an External Security Manager (ESM) is not installed or defers the decision to CP, CP will consider
a process to have appropriate privileges to change all IDs (SPXALLID) and to set IDs to a value other
than the real or saved set-ID if and only if the process' effective user ID (UID) is 0.

2. This function does not change any supplementary group IDs of the process.

Function SPXFNGRP — Change to a New Group
This function changes the real, effective and saved set-group-IDs (GIDs) for the active POSIX process to
a specified GID or to the GID associated with a specified group name, or resets them to their database
value. If a GID or group name is specified, the requesting virtual configuration's login name must be a
member of the specified group.

Input:
SPXDIAGC

Contains the hexadecimal DIAGNOSE code, SPXDIAGV (value X'029C').
SPXFCODE

Contains the function code, SPXFNGRP (value 2).
SPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 3.
SPXFLAGS

Contains flags as follows:
SPXNAMIN

(bit 2) If this bit is on, set the real, effective and saved set-GIDs to the GID associated with the
group name specified in SPXGNAME.

SPXIDIN
(bit 3) If this bit is on, set the real, effective and saved set-GIDs to the value specified in SPXGID.

All other flag bits must be binary zeros.

It is not valid to set both SPXIDIN and SPXNAMIN on. If both SPXIDIN and SPXNAMIN are off, then
the real, effective and saved-set GIDs will be reset to the GID assigned to the user in the user's
database entry.

SPXRSVD1
Reserved for IBM use; must contain binary zeros.

DIAGNOSE X'29C'

Appendix F. Reserved DIAGNOSE Codes 1073

SPXGID
Value to which this process' GIDs are to be changed when SPXIDIN is on. The virtual configuration's
user name must be a member of a group with which this GID is associated. If more than one group
is assigned to this GID, it is unpredictable which of them is considered to be associated with the GID.
This field is ignored when SPXIDIN is off.

SPXGNAME
Group name to whose GID this process' GIDs are to be changed, when SPXNAMIN is on. The virtual
configuration's login name must be a member of this group. This field is ignored when SPXNAMIN is
off.

All other fields of the parameter list are reserved and should contain binary zeros. If they do not, the
results of a DIAGNOSE X'029C' are unpredictable.

Output:

When return code is SPXEOK:

SPXGID is set to the new value of the real, effective, and save-set GIDs. (This is the unchanged
input value if SPXIDIN was on, or the GID corresponding to SPXGNAME if SPXNAMIN was on, or the
database value if both flags were off.)

Return Codes for Change to a New Group:
SPXEOK (0)

Real, effective and saved set-GIDs have been set as requested. SPXGID contains the GID value to
which they were set.

SPXECODE (1)
Incorrect value in SPXDIAGC.

SPXEFUNC (2)
Invalid function code in SPXFCODE.

SPXELEN (3)
Length in SPXDWLEN is below the minimum allowed.

SPXEFLAG (4)
Invalid option flags in SPXFLAGS or SPXRSVD1 field is nonzero.

SPXEPXCA (11)
POSIX communication area has not been defined.

SPXEAPID (12)
Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.

SPXEID (8)
External Security Manager (ESM) has rejected the specified GID as invalid.

SPXENFND (6)
Specified group ID or group name not found in group database.

SPXEAUTH (5)
Requesting login name is not a member of the specified group.

SPXEDBAS
Group database is invalid or inaccessible.

See Program Exceptions and Machine Checks for possible guest interruptions.

Notes:

1. If a user belongs to more than {NGROUPS_MAX} groups, or the database has changed since the
process was created, or an External Security Manager (ESM) authorizes the request, then function
SPXFNGRP may be issued specifying a group which is not in the process' supplementary GID list. If CP
performs the authorization checks, the only requirement is that the user be a member of the specified
group. An ESM may have additional or different authorization rules.

2. This function does not change any supplementary group IDs of the process.

DIAGNOSE X'29C'

1074 z/VM: 7.3 CP Programming Services

Function SPXFSGID — Change the supplementary group ID list
This function changes supplementary group ID list (SGID list) for the active POSIX process to the list
specified. This function is used in conjunction with function codes 0 and 1 or 2 to change the identity of
the active process to that of a particular user. The active process must have appropriate privileges to use
this function.

Input:
SPXDIAGC

Contains the hexadecimal DIAGNOSE code, SPXDIAGV (value X'029C').
SPXFCODE

Contains the function code, SPXFSGID (value 3).
SPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 3.
SPXFLAGS

Must contain binary zeros.
SPXRSVD1

Reserved for IBM use; must contain binary zeros.
SPXSGCNT

Contains the size of the SGID-list area in units of 4 bytes, or zero if the SGID list is to be cleared. Note:
the SGID list for the active process will contain only the effective GID if the count is specified as zero.
To return the SGID list to its database values, the DIAGNOSE issuer must request that information
from the database via DIAGNOSE code X'2A0' and then explicitly set the values via this function code.

SPXSGAL
When SPXSGCNT is not zero, contains the ALET for the address space in which the SGID-list area
resides. This field is used only by XC virtual machines in access-register mode.

SPXSGAD
When SPXSGCNT is not zero, contains the address of the SGID-list area. It is unpredictable whether
this address is treated as guest real or guest absolute.

All other fields of the parameter list are reserved and should contain binary zeros. If they do not, the
results of a DIAGNOSE code X'029C' are unpredictable.

Output:

When return code is SPXEOK:

The active processes's SGID list is set to that specified on this diagnose.

Return Codes for Change the Supplementary Group ID List:
SPXEOK (0)

The active processes's supplementary group ID list has been changed as requested.
SPXECODE (1)

Incorrect value in SPXDIAGC.
SPXEFUNC (2)

Invalid function code in SPXFCODE.
SPXELEN (3)

Length in SPXDWLEN is below the minimum allowed.
SPXEFLAG (4)

Invalid option flags in SPXFLAGS or SPXRSVD1 field is nonzero.
SPXEAUTH (5)

The user is not authorized to perform this function.
SPXEPXCA (11)

POSIX communication area has not been defined.

DIAGNOSE X'29C'

Appendix F. Reserved DIAGNOSE Codes 1075

SPXEAPID (12)
Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.

SPXERRCP (13)
Active PID in POSIX communication area is not a PID allocated

See Program Exceptions and Machine Checks for possible guest interruptions.

Responses
Program Exceptions and Machine Checks: One of the following Program Exceptions or Machine Checks
may be reflected to the issuing virtual machine indicating guest or host error conditions. In all cases,
no meaningful return code is given, and the guest instruction (Diagnose) is nullified, suppressed, or
terminated according to the architecture.

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

Specification exception Any of the following:

• Rx is the same register as Ry.
• The address of the parameter list (SPXBK) specified in Rx is

not on a doubleword boundary.

Access exception (See “Access
Exceptions” on page 8.)

Attempt to fetch from or store into the SPXBK failed.

Regardless of the value of SPXDWLEN, an access exception
may be recognized for a minimum of one doubleword at the
SPXBK address. Conversely, an access exception may not be
recognized for the portion of the operand beyond the length
supported by CP for the function requested.

Storage-error machine check A real storage or paging error was encountered.

Processing-damage machine check A CP internal logic error occurred. (A CP abend usually
accompanies this result.)

DIAGNOSE Code X'2A0' – Query POSIX IDs
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'2A0' specifies one of several function codes that designate Query-POSIX-ID services.
DIAGNOSE code X'2A0' uses the parameter list (QPXBK) to receive input data and return output data.
Optionally the services return information to another guest-specified data area.

Any virtual machine can use this DIAGNOSE. However functions which interrogate information about
other users or groups may require permission from an External Security Manager (ESM), if any, or
authorization in the CP directory or system configuration definition.

The following Query-POSIX-ID data functions can be invoked using this DIAGNOSE code:

• Query process attributes — function code QPXFPROC (value 0)
• Query the user database — function code QPXFUSER (value 1)
• Query the group database — function code QPXFGRP (value 2)
• Query the supplementary group IDs (SGIDs) for the active process or for a given user name — function

code QPXFSGID (value 3)
• Query POSIX configuration information — function code QPXFCONF (value 4)

Entry Values:

DIAGNOSE X'2A0'

1076 z/VM: 7.3 CP Programming Services

Rx
The real address of a function parameter list (QPXBK) in guest storage. The QPXBK must be on a
doubleword boundary. The format of the parameter list is determined by the function code. The
QPXBK contains all the input parameters.

Ax
Is used only for XC virtual machines in access-register mode, in which case it contains the ALET for
the address space containing the parameter list. If Rx designates general register 0, if Ax contains
X'00000000', or if the virtual machine is not in XC mode, the parameter list is in the host-primary
address space.

Active Process ID
The active process is specified in the active process ID (PID) field in the POSIX communication area.
(Before DIAGNOSE code X'2A0' is used, DIAGNOSE code X'2A4' must have been issued in this virtual
configuration to define this area and to allocate one or more PIDs.)

Exit Values:
Rx

The real address of the function parameter list supplied as input. If sufficient length (QPXDWLEN) is
specified, the parameter list output area contains the values of the DIAGNOSE function. The format of
this output parameter list is function dependent.

Ry
On return, contains a return code. Ry can not be register 15 and can not be the same as Rx.

Ry+1
On return, contains additional information based on the function requested. Ry+1 can not be same as
Rx.

Function QPXFPROC - Query Process Attributes
This function returns the real, effective, and saved set IDs of the active POSIX process or of a specified
process within the requesting virtual configuration (specified by a process ID (PID)).

Format of the HCPQPXBK for Query Process Attributes:

Input:
QPXDIAGC

Contains the hexadecimal DIAGNOSE code, QPXDIAGV (value X'02A0').
QPXFCODE

Contains the function code, QPXFPROC (value 0).
QPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 6.
QPXFLAGS

Contains flags as follows:
QPXIDIN

(bit 0) If this bit is on then report on the process whose PID is specified in QPXPID. If it is off then
report on the active process.

All other flag bits must be binary zeros.

QPXRSVD1
Reserved for IBM use; must contain binary zeros.

DIAGNOSE X'2A0'

Appendix F. Reserved DIAGNOSE Codes 1077

QPXPID
Contains the process ID (PID) of the target process. This PID must have been allocated to the
requesting virtual configuration (with DIAGNOSE code X'2A4'). QPXPID is used only if QPXIDIN is on.

All fields of the parameter list not listed by name are reserved and should contain binary zeros. If they do
not, the results of DIAGNOSE code X'2A0' are unpredictable.

Output: When the return code is QPXEOK, the following information is returned:

QPXRUID
Set to the real user ID of the target process.

QPXRGID
Set to the real group ID of the target process.

QPXEUID
Set to the effective user ID of the target process.

QPXEGID
Set to the effective group ID of the target process.

QPXSSUID
Set to the saved set-user-ID of the target process.

QPXSSGID
Set to the saved set-group-ID of the target process.

Ry+1
Set to the meaningful length of the QPXBK in bytes (the offset just beyond the last output field in).

Return Codes for Query Process Attributes:
QPXEOK (0)

Output fields have been set.
QPXECODE (1)

Incorrect value in QPXDIAGC.
QPXEFUNC (2)

Invalid function code in QPXFCODE.
QPXELEN (3)

Length in QPXDWLEN is below the minimum allowed.
QPXEFLAG (4)

Invalid option flags in QPXFLAGS or QPXRSVD1 field is nonzero.
QPXEPXCA (10)

POSIX communication area has not been defined.
QPXEAPID (11)

Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.
QPXENFND (6)

Process id QPXPID was not found. (The PID does not exist or was not allowed to the requesting virtual
configuration.)

See Program Exceptions and Machine Checks for possible guest interruptions.

Function QPXFUSER - Query the User Database
This function gets the POSIX attributes of a user. You can specify the user by POSIX user ID (UID) or user
name.

To be authorized to obtain a user database entry, either:

• the ESM must grant the requestor authority to read the entry, or
• the ESM must not be installed or must defer authorization to CP, and

– the UID in the entry must match the active process's real or effective UID, or

DIAGNOSE X'2A0'

1078 z/VM: 7.3 CP Programming Services

– the active process's effective UID must be 0, or
– the requesting VM user ID must have the attribute POSIXOPT QUERYDB ALLOW, either through

a statement in its CP directory entry or through a setting, specified or defaulted, in the system
configuration file, which is not overridden in the directory entry, or

– the requesting VM user ID is requesting information about themself.

Format of the HCPQPXBK for Query the User Database:

Input:
QPXDIAGC

Contains the hexadecimal DIAGNOSE code, QPXDIAGV (value X'02A0').
QPXFCODE

Contains the function code, QPXFUSER (value 1).
QPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 6.
QPXFLAGS

Contains flags as follows:
QPXIDIN

(bit 0) If this bit is on then report on the UID specified in QPXUID.
QPXNAMIN

(bit 1) If this bit is on then report on the user name specified in QPXUNAME.

If neither of these flags are set, information is returned on the current POSIX process environment.
If no process environment has been established, information is returned on the default POSIX
environment for the issuing user ID, or for the alternate user ID if one has been established.

QPXRSVD1
Reserved for IBM use; must contain binary zeros.

QPXUID
Contains the search argument user ID. QPXUID is used only if QPXIDIN is on.

QPXUNAME
Contains the search argument user name. QPXUNAME is used only if QPXNAMIN is on.

QPXUDBAL
When QPXUDBSZ is not zero, contains the ALET for the address space in which a user-database
information area resides. This field is used only in XC virtual machine access-register mode.

QPXUDBAD
When QPXUDBSZ is not zero, contains the address of a user-database information area. It is
unpredictable whether this address is treated as guest real or guest absolute.

QPXUDBSZ
Contains the size of the user-database information area in bytes, or zero if user-database information
is not to be returned.

All fields of the parameter list not listed by name are reserved and should contain binary zeros. If they do
not, the results of DIAGNOSE code X'2A0' are unpredictable.

Output:

When the return code is QPXEOK, the following information is returned in the parameter list and user-
database area:

DIAGNOSE X'2A0'

Appendix F. Reserved DIAGNOSE Codes 1079

QPXUID
Set to the user ID corresponding to the given QPXUNAME when QPXNAMIN is on. Set to the user
ID corresponding to the current user name when QPXIDIN and QPXNAMIN are off and no POSIX
environment exists.

QPXGID
Set to the primary group ID assigned to this user.

QPXUNAME
Set to the user name corresponding to the given QPXUID when QPXIDIN is on. Set to the user name
corresponding to the given QPXUNAME when QPXNAMIN is on; in this case, the input QPXUNAME and
the output QPXUNAME can be different. Set to the user name corresponding to the current user's UID
when QPXIDIN and QPXNAMIN are off and a POSIX environment exists.

QPXGNAME
Set to the primary group name assigned to this user.

When QPXUDBSZ is not zero, the user-database information area contains the following data in
immediate succession.

iwdir length
Four-byte field containing the length of the user's initial working directory.

iwdir
Contains the user's initial working directory. It is a variable-length string of characters from 0 to 1023
bytes long.

iupgm length
Four-byte field containing the length of the user's initial user program. It immediately follows the end
of IWDIR.

iupgm
Contains the user's initial user program, a variable-length string of characters from 0 to 1023 bytes
long.

fsroot length
Four-byte field containing the length of the user's file system root. It immediately follows the end of
the IUPGM.

fsroot
Contains the name of a user's file system root, a variable-length string of characters from 0 to 1023
bytes long.

ffffffff
Contains a four-byte value X'FFFFFFFF' as end-of-data delimiter.

These string values are not null-terminated; that is, they do not end in the null character (X'00'). String
values not specified in the user database entry are returned as null strings (length zero).

When the return code is QPXEOLEN, the following information is returned:
Ry + 1

Set to the actual length required for the user-database area, in bytes.

When the return code is not QPXEOK, the contents of any portion of the user-database information area
which is not subject to an access exception are unpredictable.

Return Codes for Query the User Database:

DIAGNOSE X'2A0'

1080 z/VM: 7.3 CP Programming Services

QPXEOK (0)
Output fields have been set.

QPXECODE (1)
Incorrect value in QPXDIAGC.

QPXEFUNC (2)
Invalid function code in QPXFCODE.

QPXELEN (3)
Length in QPXDWLEN is below the minimum allowed.

QPXEFLAG (4)
Invalid option flags in QPXFLAGS, or QPXRSVD1 field is nonzero.

QPXEPXCA (10)
POSIX communication area has not been defined.

QPXEAPID (11)
Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.

QPXEAUTH (5)
Requestor is not authorized to obtain requested information.

QPXENFND (6)
Specified UID or UNAME is not found in user database.

QPXEOLEN (7)
User-database information area size specified in QPXUDBSZ is too small to contain the information.
The actual length required, in bytes, is returned in register Ry+1.

QPXEOADR (8)
The ALET or address range of the user-database information area is invalid, or the designated area is
protected against storing.

QPXEDBAS (9)
The user database contents are invalid or inaccessible.

See Program Exceptions and Machine Checks for possible guest interruptions.

Notes:

1. If the QPXIDIN flag is on, the information returned is from a random CP directory entry or External
Security Manager (ESM) entry which contains a UID matching the specified UID. If there is more than
one such entry, it is unpredictable which one is returned.

2. If the named user has no UID defined in the CP directory entry or the ESM user database, the default
value 4294967295 (X'FFFFFFFF') is returned in the QPXUID field.

3. If the named user has no GID defined in the CP directory entry or the ESM user database, the default
value 4294967295 (X'FFFFFFFF') is returned in the QPXGID field.

4. If both QPXIDIN and QPXNAMIN are OFF, this command can be used to query information about
yourself without starting the POSIX environment.

Function QPXFGRP - Query the Group Database
This function gets the attributes of a given group ID (GID) or POSIX group name, and optionally, a list of its
members.

To be authorized to obtain a group database entry, either

• the ESM must grant the requestor authority to read the entry, or
• the ESM must not be installed or must defer authorization to CP, and

– the active process's effective UID must be 0, or
– the active process's real or effective GID must match the GID of the designated group, or
– the requesting user name must be a member of the designated group, or

DIAGNOSE X'2A0'

Appendix F. Reserved DIAGNOSE Codes 1081

– the requesting VM user ID must have the attribute POSIXOPT QUERYDB ALLOW, either through
a statement in its CP directory entry or through a setting, specified or defaulted, in the system
configuration file, which is not overridden in the directory entry.

Format of the HCPQPXBK for Query the Group Database:

Input:
QPXDIAGC

Contains the hexadecimal DIAGNOSE code, QPXDIAGV (value X'02A0').
QPXFCODE

Contains the function code, QPXFGRP (value 2).
QPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 6.
QPXFLAGS

Contains flags as follows:
QPXIDIN

(bit 0) If on then report on the group with GID as specified in QPXGID.
QPXNAMIN

(bit 1) If on then report on the group name specified in QPXGNAME.

Exactly one of these bits must be set. All other flag bits must be binary zeros.

QPXRSVD1
Reserved for IBM use; must contain binary zeros.

QPXGID
Contains the search argument group id. QPXGID is used only if QPXIDIN is on.

If there are multiple groups associated with this GID, then it is unpredictable which of them is
considered the designated group.

QPXGNAME
Contains the search argument group name. QPXGNAME is used only if QPXNAMIN is on.

QPXUNMSZ
Contains the size of the member-list area in units of 8 bytes, or zero if no member list is to be
returned.

QPXUNMAL
When QPXUNMSZ is not zero, contains the ALET for the address space in which the member-list area
resides. This field is used only by XC virtual machines in access-register mode.

QPXUNMAD
When QPXUNMSZ is not zero, contains the address of the member-list area. It is unpredictable
whether this address is treated as guest real or guest absolute.

All fields of the parameter list not listed by name are reserved and should contain binary zeros. If they do
not, the results of DIAGNOSE code X'02A0' are unpredictable.

Output:

When the return code is QPXEOK, the following information is returned in the parameter list and member-
list area:

DIAGNOSE X'2A0'

1082 z/VM: 7.3 CP Programming Services

QPXGID
Set to the group ID corresponding to the given QPXGNAME when QPXNAMIN is on, unchanged
otherwise.

QPXGNAME
Set to the group name corresponding to the given QPXGID when QPXIDIN is on, unchanged
otherwise.

QPXUNMCT
Set to the actual count of members in the group.

When QPXUNMSZ is not zero, an array of user names which belong to the designated group is stored in
the member-list area. Each name is left-justified and blank-padded to 8 bytes.

When the return code is QPXEOLEN, the following information is returned in the parameter list:

QPXUNMCT
Set to the actual length required for the member-list area in units of 8 bytes.

When the return code is not QPXEOK, the contents of any portion of the member-list area which is not
subject to an access exception is unpredictable.

Return Codes for Query the Group Database:
QPXEOK (0)

Output fields have been set.
QPXECODE (1)

Incorrect value in QPXDIAGC.
QPXEFUNC (2)

Invalid function code in QPXFCODE.
QPXELEN (3)

Length in QPXDWLEN is below the minimum allowed.
QPXEFLAG (4)

Invalid option flags in QPXFLAGS or QPXRSVD1 field is nonzero.
QPXEPXCA (10)

POSIX communication area has not been defined.
QPXEAPID (11)

Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.
QPXEAUTH (5)

Requestor is not authorized to obtain requested information.
QPXENFND (6)

Specified group ID or group name not found in group database.
QPXEOLEN (7)

Value in QPXUNMSZ is not zero but is smaller than the number of members in the group. The
member-list area is too small. Output fields have been set.

QPXEOADR (8)
The ALET or address range of the member-list area is invalid, or the designated area is protected
against storing.

QPXEDBAS (9)
The group database contents are invalid or inaccessible.

See Program Exceptions and Machine Checks for possible guest interruptions.

Function QPXFSGID - Query the Supplementary Group IDs
This function gets the number, and optionally the list, of supplementary group IDs (SGIDs) currently
associated with the active POSIX process, or associated with the given user name in the user database.

DIAGNOSE X'2A0'

Appendix F. Reserved DIAGNOSE Codes 1083

A process is always authorized to obtain its own SGID list. To be authorized to obtain a SGID list for a user
name either

• the ESM must grant the requestor authority to obtain the list, or
• the ESM must not be installed or must defer authorization to CP, and

– the UID in the entry must match the active process's real or effective UID, or
– the active process's effective UID must be 0, or
– the requesting VM user ID must have the attribute POSIXOPT QUERYDB ALLOW, either through

a statement in its CP directory entry or through a setting, specified or defaulted, in the system
configuration file, which is not overridden in the directory entry.

Format of the HCPQPXBK for Query the Group Database:

Input:
QPXDIAGC

Contains the hexadecimal DIAGNOSE code, QPXDIAGV (X'02A0').
QPXFCODE

Contains the function code, QPXFSGID (value 3).
QPXDWLEN

Contains the length of this parameter list in doublewords. This value must be at least 6.
QPXFLAGS

Contains flags as follows:
QPXNAMIN

(bit 1) If on then report the information from the user database on the user name specified in
QPXUNAME. If off then report the current attributes of the active process.

All other flag bits must be binary zeros.

QPXRSVD1
Reserved for IBM use; must contain binary zeros.

QPXUNAME
Contains the search argument user name. QPXUNAME is used only if QPXNAMIN is on.

QPXGIDSZ
Contains the size of the SGID-list area in units of 4 bytes, or zero if no SGID list is to be returned.

QPXGIDAL
When QPXGIDSZ is not zero, contains the ALET for the address space in which the SGID-list area
resides. This field is used only by XC virtual machines in access-register mode.

QPXGIDAD
When QPXGIDSZ is not zero, contains the address of the SGID-list area. It is unpredictable whether
this address is treated as guest real or guest absolute.

All fields of the parameter list not listed by name are reserved and should contain binary zeros. If they do
not, the results of DIAGNOSE code X'02A0' are unpredictable.

Output:

When the return code is QPXEOK, the following information is returned in the parameter list and SGID-list
area:

DIAGNOSE X'2A0'

1084 z/VM: 7.3 CP Programming Services

QPXGIDCT
Set to the actual count of SGIDs stored in the SGID-list area or count of SGIDs assigned if
QPXGIDSZ=0.

When QPXGIDSZ is not zero, an array of 4-byte unsigned supplementary group IDs assigned to the
designated process or user is stored in the SGID-list area.

When the return code is QPXEOADR, the contents of any portion of the SGID-list area which is not subject
to an access exception is unpredictable.

Return Codes for Query the Supplementary Groups IDs:
QPXEOK (0)

Output fields have been set.
QPXECODE (1)

Incorrect value in QPXDIAGC.
QPXEFUNC (2)

Invalid function code in QPXFCODE.
QPXELEN (3)

Length in QPXDWLEN is below the minimum allowed.
QPXEFLAG (4)

Invalid option flags in QPXFLAGS or QPXRSVD1 field is nonzero.
QPXEPXCA (10)

POSIX communication area has not been defined.
QPXEAPID (11)

Active PID in POSIX communication area is not a PID allocated to the requesting virtual configuration.
QPXEAUTH (5)

Requestor is not authorized to obtain requested information.
QPXENFND (6)

Specified user name not found in user database. Returned only when QPXNAMIN is on.
QPXEOLEN (7)

Value in QPXGIDSZ is not zero but is too small to contain the SGID-list. The actual length required is
returned in QPXGIDCT, in units of 4 bytes.

QPXEOADR (8)
The ALET or address range of the SGID-list area is invalid, or the designated area is protected against
storing.

QPXEDBAS (9)
The user database contents are invalid or inaccessible. Returned only when QPXNAMIN is on.

See Program Exceptions and Machine Checks for possible guest interruptions.

Note:

1. The list of the supplementary group IDs is only returned to the storage area pointed to by QPXGIDAD if
the number in the QPXGIDSZ field is greater than or equal to the total number of supplementary group
IDs for the specified user name or process.

Function QPXFCONF - Query POSIX Configuration Information
This function returns POSIX system configuration parameters and environmental information.

Format of the HCPQPXBK for Query POSIX Configuration Information:

Input:

DIAGNOSE X'2A0'

Appendix F. Reserved DIAGNOSE Codes 1085

QPXDIAGC
Contains the hexadecimal DIAGNOSE code, QPXDIAGV (value X'02A0').

QPXFCODE
Contains the function code, QPXFCONF (value 4).

QPXDWLEN
Contains the length of this parameter list in doublewords. This value must be at least 3.

QPXFLAGS
All flag bits must be binary zeros.

QPXRSVD1
Reserved for IBM use; must contain binary zeros.

All fields of the parameter list not listed by name are reserved and should contain binary zeros. If they do
not, the results of DIAGNOSE code X'02A0' are unpredictable.

Output:

When the return code is QPXEOK, the following information is returned:
Ry + 1

Set to the meaningful length of the QPXBK in bytes (the offset just beyond the last output filled in).
QPXNGMAX

Set to the POSIX {NGROUPS_MAX} value supported in the current environment. This is the maximum
number of entries in the supplementary group ID list for a user name or process.

QPXRSVD2
Reserved for IBM use; contents are unpredictable.

QPXUNAME
Set to the user (login) name of the requesting virtual configuration.

Return Codes for Query POSIX Configuration Information:
QPXEOK (0)

Output fields have been set.
QPXECODE (1)

Incorrect value in QPXDIAGC.
QPXEFUNC (2)

Invalid function code in QPXFCODE.
QPXELEN (3)

Length in QPXDWLEN is below the minimum allowed.
QPXEFLAG (4)

Invalid option flags in QPXFLAGS or QPXRSVD1 field is nonzero.

See Program Exceptions and Machine Checks for possible guest interruptions.

Usage Note
Certain functions and options of DIAGNOSE code X'2A0' report POSIX database contents rather than
attributes of the active process. For these that report database contents, the active PID may still be used
by an ESM for authority checking. Therefore, it is unpredictable whether or not the requirements to define
a POSIX communication area and to supply a valid active PID are enforced for these functions.

Responses
Program Exceptions and Machine Checks: One of the following Program Exceptions or Machine Checks
may be reflected to the issuing virtual machine indicating guest or host error conditions. In all cases,
no meaningful return code is given, and the guest instruction (Diagnose) is nullified, suppressed, or
terminated according to the architecture.

DIAGNOSE X'2A0'

1086 z/VM: 7.3 CP Programming Services

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

Specification exception Any of the following:

• Rx is the same register as Ry or Ry+1.
• Ry is register 15.
• The address of the parameter list (QPXBK) specified in Rx is

not on a doubleword boundary.

Access exception (See “Access
Exceptions” on page 8.)

Attempt to fetch from or store into the QPXBK failed.
Regardless of the value of QPXDWLEN, an access exception
may be recognized for a minimum of one doubleword at the
QPXBK address. Conversely, an access exception may not be
recognized for the portion of the operand beyond the length
supported by CP for the function requested.

Storage-error machine check A real storage or paging error was encountered.

Processing-damage machine check A CP internal logic error occurred. (A CP abend usually
accompanies this result.)

DIAGNOSE Code X'2A4' – POSIX Process ID (PID) Services
Privilege Class: Any

Addressing Mode: 24-bit or 31-bit

DIAGNOSE code X'2A4' supports several function codes that designate various POSIX process ID
services. They assist in the creation, deletion, identification and execution of POSIX processes in the
virtual configuration.

Entry Values:
Rx

contains a function code specifying which function DIAGNOSE code X'2A4' is to perform. Rx can
not be register 15 and can not be the same as Ry or Ry+1. Additional inputs for each function are
described below.

The following POSIX process ID services can be invoked using this DIAGNOSE code:

• Function 0 - Identify the POSIX communication area
• Function 1 - Allocate a PID
• Function 2 - Deallocate a PID

Ry + 1
may contain additional information based upon the specific function being performed.

Exit Values:
Ry

on return, contains a return code. Ry can not be register 15 and can not be the same as Rx or Rx+1.
The return codes and additional outputs for each function are described below.

Rx + 1
may contain additional information based upon the specific function being performed.

Function 0 - Identify the POSIX communication area
This function identifies the invoking virtual machine's POSIX communication area to CP.

Input:

DIAGNOSE X'2A4'

Appendix F. Reserved DIAGNOSE Codes 1087

Rx+1
specifies the length and location of the virtual machine's POSIX communication area. The POSIX
communication area must reside entirely in the prefix area, above location 511 (decimal), and it
must be at least 4 bytes in length. Bytes 0 and 1 of Rx+1 contain the length, in bytes, of the POSIX
communication area. Bytes 2 and 3 contain the displacement into the prefix area of the first byte of
the POSIX communication area. Key-controlled protection and low-address protection do not apply to
accesses to this area.

The virtual subsystem reset operation causes the length and location of the POSIX communication
area to become undefined to CP. This operation is performed during the system-reset-clear or system-
reset-normal function performed by commands such as IPL, SYSTEM CLEAR, SYSTEM RESET and
DETACH CPU.

The POSIX communication area has the following format:

Offset
0-3

is used by the virtual machine to identify to CP the "active" POSIX process executing on a virtual CPU.
This process is identified by its PID. A value of X'00000000' indicates to CP that there is no currently
active POSIX process executing on the virtual CPU.

Return Codes for Identify the POSIX communication area:
0

The POSIX communication area has been successfully identified to CP
4

Rx+1 contains an invalid length and/or address

See Program Exceptions for possible guest interruptions.

Notes:

1. This area may be referenced during the execution of other DIAGNOSES such as X'280', X'29C' and
X'2A0'.

2. In a virtual machine with multiple virtual CPUs, the program controlling the virtual machine need only
invoke this function once, because it identifies the displacement into each virtual CPU's prefix area.
These programs normally use prefixing to identify a separate prefix area for each virtual CPU. This
results in a separate POSIX communication area for each virtual CPU.

Function 1 - Allocate a PID
This function allocates a PID for use by a new POSIX process and initializes the new process' POSIX IDs.
The POSIX IDs are the real UID, effective UID, saved set-UID, real GID, effective GID, saved set-GID and
the supplementary GIDs.

Input:
Rx+1

contains the PID of the newly created process' parent process, or X'00000000'. If Rx+1 contains a
valid, non-zero PID, the new process' POSIX IDs are initialized to those of the identified process. If
Rx+1 contains X'00000000', the new process' POSIX IDs are initialized to the POSIX database values
that were in effect when the invoker logged on; the most recent supplementary GID list from the ESM
will be in effect for the new process.

Output:
Ry+1

upon successful completion, contains the newly allocated PID.

Return Codes for Allocate a PID:
0

A PID has been successfully allocated, and the new process' POSIX IDs have been initialized as
described above. The new PID is returned to the invoker in Ry+1.

DIAGNOSE X'2A4'

1088 z/VM: 7.3 CP Programming Services

4
Rx+1 contains an invalid PID. The PID may be invalid for any of the following reasons:

• It is outside the valid range
• It is not currently allocated
• It is not allocated to the invoking virtual configuration

8
The system has no available PIDs to allocate

12
Allocating a new PID would exceed the invoking virtual configuration's PID limit

See Program Exceptions for possible guest interruptions.

Notes:

1. When the process associated with the PID is deleted, the virtual configuration should issue the
Deallocate a PID function so CP will deallocate the PID and make it available for later use by the
system.

2. The virtual subsystem reset operation causes all PIDs currently allocated to the virtual configuration
to be deallocated. This operation is performed during the system-reset-clear or system-reset-normal
function performed by commands such as IPL, SYSTEM CLEAR, SYSTEM RESET and DETACH CPU.

Function 2 - Deallocate a PID
This function deallocates a PID and makes it available for later use by the system.

Input:
Rx+1

contains the PID to be deallocated. This PID must be currently allocated to the invoking virtual
configuration. It must have been allocated by a successful invocation of the Allocate a PID function.

Return Codes for Deallocate a PID:
0

The specified PID has been deallocated.
4

Rx+1 contains an invalid PID. The PID may be invalid for any of the following reasons:

• It is outside the valid range
• It is not currently allocated
• It is not allocated to the invoking virtual configuration

See Program Exceptions for possible guest interruptions.

Responses
Program Exceptions: One of the following Program Exceptions may be reflected to the issuing virtual
machine indicating guest or host error conditions. In all cases, no meaningful return code is given, and the
guest instruction (Diagnose) is nullified, suppressed, or terminated according to the architecture.

Problem Encountered Cause

Privileged-operation exception The virtual machine is in the problem state.

DIAGNOSE X'2A4'

Appendix F. Reserved DIAGNOSE Codes 1089

Problem Encountered Cause

Specification exception Any of the following:

• An invalid function code is specified.
• Rx is register 15.
• Ry is register 15.
• Rx is the same register as Ry or Ry+1.
• Ry is the same register as Rx+1.

DIAGNOSE Code X'2AC' – HCD Dynamic I/O
Privilege Class: B

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'2AC' to enable the HCD service virtual machine to query I/O configuration
information stored in CP (ICIBK) and to execute dynamic changes to CP's I/O configuration.

Function Codes:
X'00'

Query I/O Configuration Information
X'01'

Perform Dynamic I/O Changes

Entry Values (Function 00 and 01):
Rx

is a general register that contains the desired function code
Ry

is a general register that contains the guest real address of a buffer to store the I/O configuration
information (function 0) or the guest real address of the configuration control block (CCB) that
describes the dynamic I/O change requests (function 1).

Note: All addresses passed on DIAGNOSE code X'2AC' are guest absolute addresses in the host-
primary address space.

Exit Values (Function 01 Only):
Rx

contains a return code indicating the result of the request. Refer to “Responses” on page 1090 for a
description of the possible values.

Ry
when Rx is non-zero, Ry may contain a value that helps further describe the error. Refer to
“Responses” on page 1090 for a description of the possible values.

The entire ARSPL may be replaced in guest storage upon completion of a DIAGNOSE code X'254'
function.

Responses
Condition Codes and Return Codes: Upon completion of DIAGNOSE code X'2AC', control is returned to
the issuer with a condition code and, when applicable, a return code set to indicate the status of the
requested function.

DIAGNOSE Code X'2AC'

1090 z/VM: 7.3 CP Programming Services

Table 237. Condition Codes for Query I/O Configuration Information (Function 0)

Condition Code Return Code in Rx Description

0 N/A I/O configuration information was successfully stored in the
guest's buffer

3 N/A I/O configuration information is unavailable; HCD is not
controlling CP's I/O configuration

Table 238. Condition Codes and Return Codes for Perform Dynamic I/O Changes (Function 1)

Condition Code Return Code in Rx Description

0 N/A All change requests were successfully executed

1 4 (X'04') The specified IOCDS could not be switched to make it
the active IOCDS. However, all other change requests (if
any), were successfully executed. The guest Ry is set to a
hardware response code indicating why the IOCDS file could
not be made active. For more information about the hardware
response code see z/VM: I/O Configuration.

1 8 (X'08') None of the change requests were processed because pre-
processing checks with one or more of the requests failed.
No backout is required. The guest Ry is set to the number of
requests that failed pre-processing. Each request (CCB entry)
contains a return code indicating its pre-processing status.

• RC0 - Request passed pre-processing
• RC2 - CHPID type is unknown
• RC4 - CHPID specified is a managed CHPID
• RC8 - CHPID specified by or associated with the change was

online
• RC12 - CHPID is physically available
• RC20 - FORCE was not specified
• RC28 - Device is not subchannel disabled
• RC32 - Device is a PAV base with a PAV alias still associated

with it
• RC36 - RDEV is not offline
• RC40 - RDEV is offline but attached (boxed)
• RC44 - RDEV class mismatch
• RC48 - RDEV is an HCPRIO RDEV
• RC56 - RDEV has an active I/O operation associated with it
• RC60 - Unsupported request
• RC76 - PCI Function is not offline

1 12 (X'0C') None of the change requests were processed because it was
determined that there was not enough Hardware System Area
(HSA) storage to carry out the requested hardware changes.
No backout is required. The guest's Ry is set to zero if this is
the only error. If pre-processing checks with one or more of
the individual requests failed also, then the guest's Ry is set
to the number of requests that failed pre-processing. Each
request (CCB entry) contains a return code (listed above)
indicating its pre-processing status.

DIAGNOSE Code X'2AC'

Appendix F. Reserved DIAGNOSE Codes 1091

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3

Table 238. Condition Codes and Return Codes for Perform Dynamic I/O Changes (Function 1) (continued)

Condition Code Return Code in Rx Description

1 16 (X'10') All of the change requests passed pre-processing checks
but none of them were actually processed due to the fact
that CP could not cause the processor to enter configuration
mode to perform dynamic hardware changes. No backout
is required. The guest's Ry contains the hardware response
code indicating why CP could not enter configuration mode.
For more information about the hardware response code see
z/VM: I/O Configuration.

1 20 (X'14') An error was encountered during the processing of a dynamic
change request. Backout is required! The guest's Ry contains
the CCB entry index number of the request that failed. The
request (CCB entry) that failed contains a non-zero return
code (and possibly a hardware response code — for more
information about the hardware response code see z/VM:
I/O Configuration). All previous requests were processed
successfully (RC0) while all subsequent requests were not
executed.

• RC64 - Hardware command failed (possibly accompanied
by a hardware response code).

• RC68 - Backout is required; backout is requested from this
point

• RC72 - Software command failed

1 24 (X'18') Recovery information could not be retrieved.

1 92 (X'5C') The data area size specified in the CCB header or CCBX
header was zero or negative.

1 96 (X'60') The dynamic I/O change request was too large for CP to
process.

2 N/A A dynamic I/O change request is currently being processed

3 N/A I/O configuration information is unavailable; HCD is not
controlling the I/O configuration

Program Exceptions: DIAGNOSE code X'2AC' may result in one of the following program exceptions:

Problem Encountered Cause

Addressing exception The guest real address specified in Ry is not within
addressable guest real storage.

Protection exception The guest real address specified in Ry is store or fetch
protected.

DIAGNOSE Code X'2AC'

1092 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3

Problem Encountered Cause

Specification exception Any of the following:

• The function code value in Rx is invalid.
• No guest real address was specified in Ry (Ry = 0).
• The guest real address specified in Ry is not on a

doubleword boundary.
• The guest real address specified in Ry did not point to a

CCB.
• The guest does not have the privilege class necessary to

issue this DIAGNOSE code.

DIAGNOSE Code X'2C0' – HMC Data Source Load
Privilege Class: A

Addressing Mode: 24-bit or 31-bit

Use DIAGNOSE code X'2C0' to load binary image files from z/Architecture Hardware Management
Console's data sources. Using DIAGNOSE code X'2C0' ensures that CP will construct an appropriate
Service Call instruction.

Results of the I/O operation are contained in the R15 register and the storage buffer pointed to by Ry
before the instruction's execution will be overlaid with the data retrieved from the SCLP device.

Issuing DIAGNOSE code X'2C0' with Ry equal to zero will cause the system to return the size of the CP
Buffer in R15. The size of the CP Buffer is fixed and may not be changed.

With Ry nonzero, the DIAGNOSE operates by first allocating a permanent CP internal buffer and clearing it
to X'FF's. Next, the file is loaded from one of two sources, depending on the operating environment of the
system: If z/VM is operating as a first level system within an LPAR, then a Service Call (Type 7) instruction
is executed and the filename file is loaded into CP's buffer from the Hardware Console's DVD disk drive
or FTP source from which the LPAR was IPLed. If z/VM is operating as a guest under z/VM, then the file
"filename IMAGE *" is loaded from a CPACCESSed minidisk.

The operation of the DIAGNOSE fills the CP buffer with X'FF' bytes and then reads the requested file into
the start of the buffer. If, for example, the buffer is 4MB in length and the file that is loaded is 800K long,
then the buffer from 0K to 800K contains the file and from 800K to 4096K contains X'FF's. The entire
4MB buffer is then copied into the virtual machine's buffer area specified in Ry.

Note: If the requested file exceeds the length of the CP buffer, then host real storage will be overlaid
and the system's integrity will be compromised. In the event of an overlay the z/VM operating system will
probably abend with an LDF001 hard abend.

Entry Values:
Rx, Rx+1

Contains the eight-byte EBCDIC name of the file to be loaded. When running under the z/VM operating
system, the file "filename IMAGE *" is loaded from a CPACCESS'ed minidisk.

Ry
Two different operations may be performed depending upon the value in Ry.

A value of 0 indicates that the size of the CP defined buffer is to be returned. This is the amount of
data that the X'2C0' DIAGNOSE will return, regardless of the file's size, which is 4MB.

A nonzero value is the address of the buffer in the guest virtual machine where the data is to be
placed. This buffer must be the size that is reported by issuing an Ry=0 call and the buffer must be
page-aligned.

Example:

DIAGNOSE Code X'2C0'

Appendix F. Reserved DIAGNOSE Codes 1093

SR Ry,Ry
DIAG 0,Ry,X'2C0'
ST R15,BUFSIZE

CMSSTOR OBTAIN,BYTES=(R15),BNDRY=PAGE
ST R1,BUFFERAD

LM Rx,Rx+1,=CL8'filename'
L Ry,BUFFERAD
DIAG Rx,Ry,X'2C0'
LTR R15,R15
BNZ ERROR
...

Return Values:

A return code is provided in R15.

The Condition Code is unspecified.

When called with Ry=0, then the returned value in R15 is the size of the required virtual buffer.

When Ry specifies the virtual buffer address, the results of the data operation are returned in R15.

Return Code Meaning

0 (X'00') The buffer has been loaded with the specified file.

1 (X'01') The virtual buffer pointed to by Ry is not page aligned.

2 (X'02') The SCLP interface is currently is use. Retry at a later time.

4 (X'04') The SCLP returned a "Not Normal" indication.

5 (X'05') The SCLP returned a "Not Complete" indication.

6 (X'06') Invalid virtual address supplied in Ry.

7 (X'07') Invalid i-ASIT for address in Ry.

8 (X'08') Paging subsystem error.

1000–1999 SCLP start request failed. Value is HCPPCRRQ return code + 1000.

2000–2999 SCLP completion error. Value is xxx + 2000. (NOTE: 2003 is SCLP File Load Error.)

3000–3999 Virtual page address translation error. Value is HCPTRANS RC + 3000.

4000–4999 z/VM HCPCLVLH failed. Value is HCPCLVLH return + 4000. (NOTE: 4059 is File Not
Found.)

DIAGNOSE Code X'2C4' – FTP Services
Privilege Class: B (See notes below)

Addressing Mode: 24-bit, 31-bit or 64-bit

DIAGNOSE X'2C4' provides FTP services for files residing on a removable medium in an HMC device.

Notes:

1. A class Any user may issue DIAGNOSE X'2C4' if the user's directory includes the OPTION LXAPP
statement, and if the user specifies a location indicator (any of bits 32-39 turned on).

2. If the user's directory does not include the OPTION LXAPP statement, then that user must be class B.

Entry Values:
Rx

The general register containing the guest absolute address of the FTP services parameter list (FPL).
The FPL must be on a doubleword boundary.

DIAGNOSE X'2C4'

1094 z/VM: 7.3 CP Programming Services

Ry
The general register containing the FTP function code and the location indicator. The function code is
in bits 56-63. The possible function codes are:
X'00'

NOOP
X'01'

GET
X'02'

PUT
X'03'

APPEND
X'04'

DIR
X'05'

NLST
X'06'

DELETE

The location indicator is in bits 32-39 and all values are reserved for IBM use.

Exit Values:
Ry

On return, contains a return code indicating the result of the request. See “Responses” on page 1096
for a description of the possible return codes.

FPL
The parameter list consists of an input area, an output area, and a file identifier. The area must be aligned
on a doubleword boundary. The FPL format is as follows:

Figure 111. DIAGNOSE X'2C4' FPL Parameter List Format

Buffer Address
Is a doubleword containing the guest real address of the buffer to be used for the FTP function. The
buffer must be aligned on a 4K page boundary.

Buffer Length
Is a doubleword containing the length of the buffer to be used for the FTP function.

DIAGNOSE X'2C4'

Appendix F. Reserved DIAGNOSE Codes 1095

File Offset
Is a doubleword containing the offset in the file to be used for the FTP function.

Interruption Parameter
Is a fullword field containing user data to be stored at guest real storage location 128-131 in the host-
primary address space upon presentation of the FTP services external interruption, at the completion
of the FTP services request.

Bytes Transferred
Is a doubleword that returns the number of bytes transferred by the FTP function, at the completion
of the FTP services request.

File Size
Is a doubleword that returns the size in bytes of the file being processed by the FTP function, at the
completion of the FTP services request.

Failing Address
Is a doubleword that returns the address in the buffer associated with a failure of the FTP function, at
the completion of the FTP services request.

File Identifier
Is a 192-byte field containing the file identifier on which the FTP function is to operate, followed by a
X'00' to mark the end of the identifier.

Responses
Upon completion, DIAGNOSE X'2C4' sets one of the following return codes in Ry:

Table 239. DIAGNOSE Code X'2C4' Return Codes in Ry

Return Code in Register
Ry

Meaning

0 (X'00') FTP function initiated.

4 (X'04') FTP interface in use.

8 (X'08') Interface error.

Program Exceptions: These program exceptions can occur if DIAGNOSE X'2C4' is given incorrect data:

Problem Encountered Cause

Privileged-operation exception The issuer of DIAGNOSE X'2C4' does not have the appropriate
privilege class or directory authorization.

Specification exception Any of the following:

• The address contained in Rx is not on a doubleword
boundary.

• The value contained in Ry is not in range.
• The buffer is not on a page boundary.
• The buffer length is not in range.
• The buffer is not addressable.
• The buffer is not read/write.

FTP Services External Interruption: An FTP services external interruption is presented when a
DIAGNOSE X'2C4' request has completed. The interruption is a floating condition and is presented to the
first virtual CPU in the virtual configuration that is enabled for the interruption subclass. The interruption
condition is cleared once the interruption has been presented, as well as by a virtual subsystem reset (for
example, a SYSTEM RESET or IPL command).

The subclass mask to enable for the interruption is bit 22 of control register 0.

DIAGNOSE X'2C4'

1096 z/VM: 7.3 CP Programming Services

The FTP services condition is indicated by an external-interruption code of X'2603' stored at guest
real location 134-135 and a sub-interruption code of X'08' stored at guest real location 132. The
interruption parameter associated with the original DIAGNOSE X'2C4' request is stored at guest real
locations 128-131. In addition, one of the following status codes will be stored at guest real location 133:
X'00'

Request completed successfully.
X'04'

Program check condition detected when storing results in original request buffer.
X'08'

Paging I/O error encountered when storing results in original request buffer.
X'0C'

Request was cancelled due to time out condition sensed by z/VM. The function can now be retried by
the guest.

X'10 + error code'
Request completed with error.

Note: All locations updated as a result of the external interruption are in the host-primary address space.

The Bytes Transferred, File Size, and Failing Address fields in the original FPL are filled in when an FTP
services external interruption is made pending. In the case of a X'0C' status code, these fields are not
returned to the guest.

DIAGNOSE X'2C4'

Appendix F. Reserved DIAGNOSE Codes 1097

DIAGNOSE X'2C4'

1098 z/VM: 7.3 CP Programming Services

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2023 1099

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This information primarily documents intended Programming Interfaces that allow the customer to write
programs to obtain services of z/VM.

This information also documents information that is NOT intended to be used as Programming Interfaces
of z/VM. This information is identified where it occurs by an introductory statement to a chapter or
section.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

1100 z/VM: 7.3 CP Programming Services

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 1101

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

1102 z/VM: 7.3 CP Programming Services

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2023 1103

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/i1343772.pdf#nameddest=i1343772
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa2_v7r3.pdf#nameddest=hcpa2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpf2_v7r3.pdf#nameddest=hcpf2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa4_v7r3.pdf#nameddest=hcpa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa3_v7r3.pdf#nameddest=hcpa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl0_v7r3.pdf#nameddest=hcpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa7_v7r3.pdf#nameddest=hcpa7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpg4_v7r3.pdf#nameddest=hcpg4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcps0_v7r3.pdf#nameddest=hcps0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb2_v7r3.pdf#nameddest=dmsb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

1104 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb1_v7r3.pdf#nameddest=hcpb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb2_v7r3.pdf#nameddest=hcpb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb6_v7r3.pdf#nameddest=dmsb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb5_v7r3.pdf#nameddest=dmsb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb5_v7r3.pdf#nameddest=hcpb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ceeb7_v7r3.pdf#nameddest=ceeb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp1_v7r3.pdf#nameddest=dmsp1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp0_v7r3.pdf#nameddest=dmsp0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsl0_v7r3.pdf#nameddest=dmsl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsk7_v7r3.pdf#nameddest=dmsk7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb0_v7r3.pdf#nameddest=dmsb0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw0_v7r3.pdf#nameddest=hcpw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc1_v7r3.pdf#nameddest=hcpc1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc3_v7r3.pdf#nameddest=hcpc3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe5_v7r3.pdf#nameddest=hcpe5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt1_v7r3.pdf#nameddest=hcpt1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt5_v7r3.pdf#nameddest=hcpt5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt2_v7r3.pdf#nameddest=hcpt2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt0_v7r3.pdf#nameddest=hcpt0_v7r3

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580
• Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?

topic=osa-icc-3215-support), SA23-2247
• Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/ioa2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

• z/VM: Performance, SC24-6301. See z/VM Performance Data Pump.
• z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 1105

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt3_v7r3.pdf#nameddest=hcpt3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt4_v7r3.pdf#nameddest=hcpt4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk4_v7r3.pdf#nameddest=hcpk4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk2_v7r3.pdf#nameddest=hcpk2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk3_v7r3.pdf#nameddest=hcpk3_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl8_v7r3.pdf#nameddest=hcpl8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl7_v7r3.pdf#nameddest=hcpl7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha8_v7r3.pdf#nameddest=icha8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha4_v7r3.pdf#nameddest=icha4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichb2_v7r3.pdf#nameddest=ichb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha1_v7r3.pdf#nameddest=icha1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha3_v7r3.pdf#nameddest=icha3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha6_v7r3.pdf#nameddest=icha6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha7_v7r3.pdf#nameddest=icha7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha2_v7r3.pdf#nameddest=icha2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta7_v7r3.pdf#nameddest=dmta7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta4_v7r3.pdf#nameddest=dmta4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta3_v7r3.pdf#nameddest=dmta3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta2_v7r3.pdf#nameddest=dmta2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta1_v7r3.pdf#nameddest=dmta1_v7r3

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf), GC35-0152
• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/

docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf), GC35-0151

Related Products

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

z/OS
IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

1106 z/VM: 7.3 CP Programming Services

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kdpl0_v7r3.pdf#nameddest=kdpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kldl0_v7r3.pdf#nameddest=kldl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kinl0_v7r3.pdf#nameddest=kinl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kiml0_v7r3.pdf#nameddest=kiml0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/vmcug_v7r3.pdf#nameddest=vmcug_v7r3
https://www.ibm.com/docs/en/zos

Index

Special Characters
*ACCOUNT 697
*ACCOUNT (account system service) 697
*ASYNCMD 717
*ASYNCMD (asynchronous CP command response system
service) 717
*BLOCKIO

condition and return codes 722, 724
ending communication 725
IUCV ACCEPT 720
IUCV CONNECT 771
IUCV SEND 721
IUCV SEVER 720
multiple chained block I/O 723
sample programs 995
single block I/O 721

*BLOCKIO (DASD block I/O system
service)

condition and return codes 722, 724
ending communication 725
establishing communication 719
IUCV ACCEPT 720
IUCV CONNECT 719, 771
IUCV SEND 721
IUCV SEVER 720
multiple chained block I/O 723
sample programs 995
single block I/O 721

*IDENT 393, 729
*IDENT (identify system service)

establishing a connection 729
processing requests to manage a resource 731
sever reason codes 734

*IDENT (LU name qualifier) 419
*LOGREC

IUCV ACCEPT 727
IUCV CONNECT 727
IUCV SEVER 727

*LOGREC (error logging system service)
IUCV ACCEPT 727
IUCV CONNECT 727
IUCV SEVER 727

*MSG 737
*MSG (message system service) 737
*MSGALL 739
*MSGALL (message all system service) 739
*RPI 589
*RPI (access verification system service) 589
*RPI system service, defining 591
*SIGNAL

connecting with 745
establishing communications with 745
leaving 748
receiving signals 747
sending signals 747

*SIGNAL (signal system service)

*SIGNAL (signal system service) (continued)
connecting with 745
establishing communications with 745

*SPL 750
*SPL (spool system service)

AFP printing interface 750
CLOSE function 755
DISABLE function 761
ENABLE function 761
generic interface 763
MESSAGE function 756
NOTIFY function 763
PURGE function 763
READ-SFBLOK function
757
READ-SPLINK function 760
READ-XAB function 759
SELECT function 752
SEND function 762

*SYMPTOM
disconnecting 772
IUCV ACCEPT 771
IUCV SEVER 771

*SYMPTOM (symptom system service)
disconnecting 772
IUCV ACCEPT 771
IUCV SEVER 771

*USERID (LU name qualifier) 419

Numerics
3270 display information, accessing with DIAGNOSE code
X'8C' 110
370 accommodation services, DIAGNOSE code X'268' 224
370 accommodation support

370-mode constraints 907
architecture 915
background 907
CMS 370 accommodation facility 923
CMS370AC 923
definition 915
ESA-family instructions 916
facilities not provided 912
high-level description 907
how to activate it 909
hybrid interruptions 920, 921
interruption parameters 920
interval timer 917
mapped PSWs 918, 919, 924
other instructions 917
overview 907
possible adverse effects on working programs 912
PSW conversions 918
PSW stealing programs 908, 909, 920, 922, 923
running a restricted CMS MODULE 911
SET CMS370AC ON 923
System/370 channel-status word (CSW) 921

Index 1107

370 accommodation support (continued)
System/370 I/O instructions 915
System/370 instructions 915
vestigial status 915–917, 921
when to activate it 908

370 synchronous I/O, DIAGNOSE code X'20' 38

A
abend codes, DIAGNOSE code X'84' 103
abend conditions, APPC

ALLOCATE 576
CONFIRM 577
CONFIRMED 577
DEALLOCATE 578
RECEIVE_AND_WAIT 582
REQUEST_TO_SEND 582
SEND_DATA 583
SEND_ERROR 585

ACCEPT
IUCV function

condition codes 321
connection complete interrupt 322
format 319
from the DASD block I/O system service
720
from the error logging system service 727
from the Symptom system service 771
parameter descriptions 319
parameter list format 321
program exceptions 322
return codes 322
using 319

IUCV function used in APPC/VM
completion 528
condition codes 527
format 524
parameter descriptions 524
parameter list format 526
parameters for communication servers 525
program exceptions 527
return codes 527
state changes 528
using 524

logical device support facility function
DIAGNOSE code X'7C' subcode X'00000002' 90
status returned to CP 1027

access
an address space 803
data space storage 802

access 3270 display information, X'8C' 110
access exception

ADRSPACE macro 813
ALSERV macro 830
DIAGNOSE code X'00' 16
DIAGNOSE code X'04' 19
DIAGNOSE code X'08' 22
DIAGNOSE code X'10' 24, 25
DIAGNOSE code X'14' 36
DIAGNOSE code X'210' 196
DIAGNOSE code X'220' 224, 262
DIAGNOSE code X'248' 202
DIAGNOSE code X'250' 214
DIAGNOSE code X'2E0' 290

access exception (continued)
DIAGNOSE code X'34' 45
DIAGNOSE code X'4C' 50
DIAGNOSE code X'5C' 62
DIAGNOSE code X'64' 80
DIAGNOSE code X'68' 1003
DIAGNOSE code X'70' 82
DIAGNOSE code X'74' 84
DIAGNOSE code X'84' 105
DIAGNOSE code X'88' 110
DIAGNOSE code X'8C' 112
DIAGNOSE code X'90' 113
DIAGNOSE code X'98' 132
DIAGNOSE code X'A0' 135
DIAGNOSE code X'A4' 143
DIAGNOSE code X'A8' 147
DIAGNOSE code X'B0' 150
DIAGNOSE code X'B4' 152
DIAGNOSE code X'B8' 154
DIAGNOSE code X'BC' 158
DIAGNOSE code X'CC' 160
DIAGNOSE code X'D4' 163
DIAGNOSE code X'D8' 165
DIAGNOSE code X'DC' 170
DIAGNOSE code X'E4' 184
DIAGNOSE code X'EC' 186
DIAGNOSE code X'F8' 189
general definition 8
MAPMDISK macro 841
PFAULT macro 869
REFPAGE macro 878
VMUDQ macro 894

access list services, ALSERV macro 829
access list services, DIAGNOSE code X'240' 1040
Access real subsystem external interruption 1054
access real subsystem, DIAGNOSE code X'254' 1046
access security types

of APPC ALLOCATE 575
with APPCVM CONNECT 420

access system information, DIAGNOSE code X'26C' 225
access verification system service (*RPI) 589
access virtual machine information, DIAGNOSE code X'260'
221
access-list entry (ALE) 829
Access-List Entry (ALE) 802
access-list-entry token (ALET) 830
Access-List-Entry token (ALET) 7, 802
access-register mode

execution of DIAGNOSE codes and 5
ACCESSLIST directory control statement 801
account system service (*ACCOUNT)

*ACCOUNT user ID 697
disconnecting from 698
establishing communication 697
receiving accounting records 698

accounting
accounting record formats 716
adding your own source code 716
record

adding your own 716
CPU capability 713
dedicated device 700
format of 698

1108 z/VM: 7.3 CP Programming Services

accounting (continued)
record (continued)

Inter-System Facility for Communications
706
journaling 702
SET PRIVCLASS 708, 711
SNA/CCS 705
temporary disk space 701
type 04 702
type 05 703
type 06 703
type 07 705
type 08 704
type 09 706
type 0A 708
type 0I 705
type 1 699
type 2 700
type 3 701
type B 710
type C 711
type C0 716
type D 713
type E 713
type F 715
user-initiated 716
virtual disk space 710
virtual machine resource usage 699, 715

record formats 698
accounting interface for time-of day clock, DIAGNOSE code
X'70' 80
accounting records, generating, DIAGNOSE code X'4C' 47
accounting records, receiving 698
ACI (Access Control Interface)

*RPI system service 591
ACIPARMS formats

APPC CONNECT 676
APPC SEVER 678
AUTOLOG command 639
CHANGE TO command 642, 663
CLOSE TO command 643
COUPLE command 644
COUPLEN command 645
DIAGNOSE code X'14' 668
DIAGNOSE code X'23C' 675
DIAGNOSE code X'290' 674
DIAGNOSE code X'64' 668
DIAGNOSE code X'68' 669, 670
DIAGNOSE code X'94' 666, 670
DIAGNOSE code X'B8' 671
DIAGNOSE code X'BC' 671
DIAGNOSE code X'D4' 672
DIAGNOSE code X'E4' 673
GIVE command 647
IUCV CONNECT 679
IUCV SEVER 680
LINK command 648
LOGOFF command 649
LOGON command 650
MDISK command 681
MESSAGE command 654
POSIX group database query function 684
POSIX Set ID functions 683
POSIX user database query function 686

ACI (Access Control Interface) (continued)
ACIPARMS formats (continued)

PURGE command 655
QUERY RDR/PRT/PUN command 656
QUERY TAG command 655
Resource access authorization check 689
RSTDSEG command 691
SCIF event 691, 692
SEND command 657
SPOOL command 658
SPXTAPE DUMP command 659
SPXTAPE LOAD command 659
START command 659
STORE HOST command 660
TAG command 661
TAG QUERY command 655
TRANSFER command 662, 663
TRSAVE TO command 663
TRSOURCE command 664
TRSOURCE ENABLE command 665
VMDUMP TO command 666
VMRELOCATE command 666
XAUTOLOG command 639, 667

called by ESM 600
commands that support calls to ACI 607
data area 604
DIAGNOSE code X'A0' processor 597
DIAGNOSE codes that support calls to ACI 607
function 589
HCPRPD module

function 597
interface specifications 597
return codes 600

HCPRPE module 600
HCPRPF module 604
HCPRPG module 604
HCPRPI module

*RPI system service 591
IUCV interface 591
request services from ESM 592

HCPRPL module 604
HCPRPP module 604
HCPRPW module

interface specifications 594, 596
HCPRPWEP module

function 594
HCPRWA module 605
IUCV interface 591
logon password prompting routine 596
logon password verification routine 594
overview 590
request services from ESM 592
security bits 607
security bits, checking 609
security bits, setting of 608
security process 590
work area 605

ACIPARMS control block (format) 620
ACIPARMS parameter list

call formats
APPC CONNECT 676
APPC SEVER 678
AUTOLOG command 639
CHANGE TO command 642, 663

Index 1109

ACIPARMS parameter list (continued)
call formats (continued)

CLOSE TO command 643
COUPLE command 644
COUPLEN command 645
DIAGNOSE code X'14' 668
DIAGNOSE code X'23C' 675
DIAGNOSE code X'290' 674
DIAGNOSE code X'64' 668
DIAGNOSE code X'68' 669, 670
DIAGNOSE code X'94' 666, 670
DIAGNOSE code X'B8' 671
DIAGNOSE code X'BC' 671
DIAGNOSE code X'D4' 672
DIAGNOSE code X'E4' 673
GIVE command 647
IUCV CONNECT 679
IUCV SEVER 680
LINK command 648
LOGOFF command 649
LOGON command 650
MDISK command 681
MESSAGE command 654
POSIX group database query function 684
POSIX Set ID functions 683
POSIX user database query function 686
PURGE command 655
QUERY RDR/PRT/PUN command 656
QUERY TAG command 655
Resource access authorization check 689
RSTDSEG command 691
SCIF event 691, 692
SEND command 657
SPOOL command 658
SPXTAPE DUMP command 659
SPXTAPE LOAD command 659
START command 659
STORE HOST command 660
TAG command 661
TAG QUERY command 655
TRANSFER command 662, 663
TRSAVE TO command 663
TRSOURCE command 664
TRSOURCE ENABLE command 665
VMDUMP TO command 666
VMRELOCATE command 666
XAUTOLOG command 639, 667

function 590
ACNT command 699, 715
activate CP directory, DIAGNOSE code X'3C' 45
add

your own accounting records and source code 716
ADD function of ALSERV macro 831
adding an ALE to an access list 802
address

absolute 5
guest 5
processing of 5
real 5
spaces, selection of 7

address lists 306, 453, 479, 493, 512
address space identification token (ASIT) 801
address space services, ADRSPACE macro 811
address space services, DIAGNOSE code X'23C' 1035

address spaces
access-list entry (ALE)

X'240' 1040
creating 814
definition 797
destroying 818
dropping addressability 803
identification 812
identification token (ASIT) 812
isolating a shared 804
management functions

X'23C' 1035
mapping

X'244' 1042
mapping minidisks to 804
name 812
permitting another user to access 801
primary 799
querying information 826
restoring to private state 820
selection of 7
states 812, 820
support 799

addressability to an address space, establish 802
addressability, parameter 394
addresses

absolute 297
guest 297
processing of 297
real 297

addressing exception
APPCVM CONNECT 428
APPCVM QRYSTATE 450
APPCVM RECEIVE 460
APPCVM SENDCNF 469
APPCVM SENDCNFD 474
APPCVM SENDDATA 486
APPCVM SENDERR 498
APPCVM SENDREQ 503
APPCVM SETMODFY 507
APPCVM SEVER 517
DIAGNOSE code X'254' 1053
DIAGNOSE code X'D0' 161
general definition 8
IUCV ACCEPT 322, 528
IUCV CONNECT 329, 532
IUCV DECLARE BUFFER 332, 536
IUCV DESCRIBE 336, 539
IUCV INTERRUPT POLL 339, 542
IUCV PURGE 343
IUCV QUERY 546
IUCV QUIESCE 346
IUCV RECEIVE 351
IUCV REJECT 354
IUCV REPLY 358
IUCV RESUME 363
IUCV SEND 370
IUCV SET CONTROL MASK 552
IUCV SET MASK 555
IUCV SEVER 378, 559
IUCV TEST COMPLETION 382, 564

addressing-capability
DIAGNOSE code X'E0' 1031–1033
exception 1031, 1032

1110 z/VM: 7.3 CP Programming Services

addressing-capability (continued)
exception condition 1033

addressing-capability exception 8
ADRSPACE macro

CREATE function
address space identification token (ASIT) 801

creating a remote work area example 810
DECLARE function 817
DESTROY function 804, 818
forcing unique work areas example 809
ISOLATE function 804, 820
PERMIT function 801, 804, 822
QUERY function 826

ADSR macro 975
advanced function printer *SPL interface 750
Advanced Program-to-Program Communication (APPC)

conversation states 572
conversations in 571
currently-defined error codes 402
currently-defined sense codes 403
currently-defined sever codes 399
definition 387
error conditions 399
functions 574, 585
interrupts 571
mapped with APPC/VM 571
operator control verbs mapped to AVS commands 574
return codes 573
states

basic 388
for coordinated resource recovery 405

states, APPC/VM implementation of 572
verb names mapped to APPC/VM macro functions

ALLOCATE 574
CONFIRM 576
CONFIRMED 577
DEALLOCATE 578
FLUSH 579
GET_ATTRIBUTES 579
PREPARE_TO_RECEIVE 579
RECEIVE_AND_WAIT 580

Advanced Program-to-Program Communication/VM
(APPC/VM)

APPC verb names mapped to APPC/VM macro functions
573
basics 387
condition codes and return codes 396
defined SENDERR codes 494
differences from IUCV 567
error/sever codes 399
example format of PIP variable 423
functions, assembler

CONNECT 412
invoking 390
QRYSTATE 447
RECEIVE 451
SENDCNF 465
SENDCNFD 471
SENDDATA 475
SENDERR 490
SENDREQ 501
SETMODFY 505
settings for optional parameters 395
SEVER 509

Advanced Program-to-Program Communication/VM (APPC/VM) (continued)
functions, assembler (continued)

state table 403
using 392

implementation of APPC conversation states 572
interrupts 388, 390, 571
IUCV functions for use in

ACCEPT 524
CONNECT 529
DCLBFR 533
DESCRIBE 538
IPOLL 540
QUERY 543
RTRVBFR 548
SETCMASK 550
SETMASK 553
SEVER 556
TESTCMPL 562
TESTMSG 566
using HELP for 523

IUCV macro functions for use in 521
logical record format 478
managing a resource 393
mapped with APPC 571
overview 387
parameter lists

formatting with MF=L 395
reading 395

paths 387
performance 534
pip variables 445
return codes 573
security subfield in an attach FMH5 for VM 439
shared functions that can be used in CMS 521
shared functions that should be avoided in 521
starting a conversation 392
state table for error conditions 407
state table for functions 403
states 388
VM communication server area 445

AFP printing *SPL interface 750
ALE (access-list entry) 829
ALE (Access-List Entry) 802
ALEN

DIAGNOSE code X'D0' 161
ALEN-translation exception

DIAGNOSE code X'E0' 1031, 1032
translation exception 1031, 1032

ALEN-translation exception condition
DIAGNOSE code X'E0' 1033
translation exception 1033

ALET (access-list-entry token) 830
ALET (Access-List-Entry token) 7, 802
ALET-specification exception

DIAGNOSE code X'E0' 1031, 1032
ALET-specification exception condition

DIAGNOSE code X'E0' 1033
allocate data

examples 444
receiving 451

ALLOCATE, APPC verb
abend conditions 576
mapped with APPC/VM 574
parameters 575

Index 1111

ALLOCATE, APPC verb (continued)
state changes 576

ALLOCD parameter of APPCVM CONNECT 415
ALSERV macro

ADD function 802, 831, 866
DECLARE function 834
list of functions 829
REMOVE function 804, 835

alternate user ID 161
answer data, APPCVM SENDDATA 475
APPC (Advanced Program-to-Program Communication)

conversation states 572
conversations in 571
currently-defined error codes 402
currently-defined sense codes 403
currently-defined sever codes 399
definition 387
error conditions 399
functions 574, 585
interrupts 571
mapped with APPC/VM 571
operator control verbs mapped to AVS commands 574
return codes 573
states

basic 388
for coordinated resource recovery 405

states, APPC/VM implementation of 572
verb names mapped to APPC/VM macro functions

ALLOCATE 574
CONFIRM 576
CONFIRMED 577
DEALLOCATE 578
FLUSH 579
GET_ATTRIBUTES 579
PREPARE_TO_RECEIVE 579
RECEIVE_AND_WAIT 580

APPC data 478
APPC/VM (Advanced Program-to-Program

Communication/VM)
APPC verb names mapped to APPC/VM macro functions
573
basics 387
condition codes and return codes 396
defined SENDERR codes 494
differences from IUCV 567
error/sever codes 399
example format of PIP variable 423
functions, assembler

CONNECT 412
invoking 390
QRYSTATE 447
RECEIVE 451
SENDCNF 465
SENDCNFD 471
SENDDATA 475
SENDERR 490
SENDREQ 501
SETMODFY 505
settings for optional parameters 395
SEVER 509
state table 403
using 392

implementation of APPC conversation states 572
interrupts 388, 390, 571

APPC/VM (Advanced Program-to-Program Communication/VM) (continued)
IUCV functions for use in

ACCEPT 524
CONNECT 529
DCLBFR 533
DESCRIBE 538
IPOLL 540
QUERY 543
RTRVBFR 548
SETCMASK 550
SETMASK 553
SEVER 556
TESTCMPL 562
TESTMSG 566
using HELP for 523

IUCV macro functions for use in 521
logical record format 478
managing a resource 393
mapped with APPC 571
overview 387
parameter lists

formatting with MF=L 395
reading 395

paths 387
performance 534
pip variables 445
return codes 573
security subfield in an attach FMH5 for VM 439
shared functions that can be used in CMS 521
shared functions that should be avoided in 521
starting a conversation 392
state table for error conditions 407
state table for functions 403
states 388
VM communication server area 445

APPCPASS directory statement 421
APPCVM macro functions

APPC verb names mapped to 573
CONNECT 412
invoking 390
QRYSTATE 447
RECEIVE 451
SENDCNF 465
SENDCNFD 471
SENDDATA 475
SENDERR 490
SENDREQ 501
SETMODFY 505
settings for optional parameters 395
SEVER 509
state table 403
using 392
using HELP for 411

APPCVM return codes
CONNECT 424
QRYSTATE 448
RECEIVE 454
SENDCNF 467
SENDCNFD 472
SENDDATA 480
SENDERR 495
SENDREQ 502
SETMODFY 506
SEVER 514

1112 z/VM: 7.3 CP Programming Services

appendix of data areas used by DIAGNOSE codes 983
application programs' use for VM data spaces 798
applications, VMCF 1004
architecture changes for 370 Accommodation Facility 915
architecture, ESA/XC

ESA/XC architecture 798
area for VM allocate data 434, 441
areas, macro work 837
ASIT (address space identification token) 801, 812
assigned storage locations, collaborative memory
management 900
asynchronous communications

not based on APPC 571
asynchronous CP command response (*ASYNCMD)

establishing communication 717
message limit 717
record types 718
sending and receiving data 717

authorization
connect to *IDENT 393
revoking a resource 394

AUTHORIZE function of VMCF 1010, 1015
AUTOLOG command 698
avoiding IUCV external interrupts 301

B
background information on 370 accommodation facility 907
Backout_Received conversation state 406
backout_received state 406
Backout_Required conversation state 406
backout_required state 406
backspace one record 29
base set of APPC verbs and APPC/VM functions 573
BASIC conversation type 415
bit map fields for DIAGNOSE code X'00' 13
block form of ordered paging-referencing 877
block I/O entry, format of 208
block I/O external interruption 214
block I/O operations for DASD in standard CMS blocksize
202
block numbers, pool-relative 838
block-content state 898
block-usage state 897
block-volatility exception 901
BPLBK DSECT 724
buffer extension, interrupt 535
buffer information

subcode X'0000', DIAGNOSE code X'BC' 154
subcode X'0004', DIAGNOSE code X'BC' 156

buffers
application 534
control 304, 534
IUCV external interrupt 303
use by APPC 478
used by IUCV 302

bypass minidisk cache 721, 723

C
CANCEL function of PFAULT macro 871
CANCEL function of VMCF 1010, 1015
CCED 429, 430

chained block I/O, multiple 723
changes, state

ALLOCATE (APPC) 576
APPCVM CONNECT 429
APPCVM QRYSTATE 450
APPCVM RECEIVE 461
APPCVM SENDCNF 469
APPCVM SENDCNFD 474
APPCVM SENDDATA 486
APPCVM SENDERR 499
APPCVM SENDREQ 503
APPCVM SETMODFY 508
APPCVM SEVER 518
CONFIRM (APPC) 577
CONFIRMED (APPC) 577
DEALLOCATE (APPC) 578
IUCV ACCEPT 528
IUCV DCLBFR 536
IUCV RTRVBFR 548
RECEIVE_AND_WAIT (APPC) 582
REQUEST_TO_SEND (APPC) 582
SEND_DATA (APPC) 583
SEND_ERROR (APPC) 585

changing data flow direction 476
channel program modification, DIAGNOSE code X'28' 42
CLASDASD 984
CLASFBA 984
CLASGRAF 984
CLASSPEC 984
CLASTAPE 984
CLASTERM 983
CLASURI 984
CLASURO 984
clean-up after virtual IPL by device, DIAGNOSE code X'40'
1029
CLEAR I/O (CLRIO) instruction 908, 915
CLEAR SUBCHANNEL (CSCH) instruction 917, 922
CLOSE function of spool system service 755
CLRIO (CLEAR I/O) instruction 908, 915
CMS communications directory, use in APPCVM CONNECT
392, 413, 414, 417, 418, 440
CMS interface to APPC/VM 731
coding example for the DIAGNOSE instruction 4
collaborative memory management assist

assigned storage locations 900
block-content states 898
block-usage states 897
block-volatility exception 901
EXTRACT AND SET STORAGE ATTRIBUTES 902
implications for ESA/390 and ESA/XC guests 906
implications for saved systems and segments 906
implications for the DIAGNOSE instruction and non-CPU
accesses 905
implications for the VMDUMP command 906
interruptions 901
overview 897
program exceptions 902
resets 900

collection of z/VM systems (TSAF Collection)
revoking gateways when merging 394
revoking resources when merging 394

command
ACNT 699, 715
AUTOLOG 698

Index 1113

command (continued)
FORCE 698
LINK 698
LOGON 698
SHUTDOWN 698
XAUTOLOG 698

communication
between virtual machines 297, 1003
IUCV

DASD block I/O system service
719
example 302
identify system service 729

communication, signals between virtual machine groups 745
communications partner

connecting to 432
receiving from 463
sending to (SENDCNF) 470
sending to (SENDCNFD) 474
sending to (SENDDATA) 488
sending to (SENDERR) 500
sending to (SENDREQ) 504
severing from 519
severing paths 549

communications servers
accepting connections 525
making connections 441
parameters on IUCV ACCEPT 525

comparing APPC with APPC/VM 571
completion codes for DIAGNOSE codes in general 9
completion of functions

ACCEPT 528
APPCVM CONNECT 429
DCLBFR 537
DESCRIBE 539
RECEIVE 462
RETRIEVE BUFFER 549
SENDCNF 470
SENDCNFD 474
SENDDATA 488
SENDERR 499
SENDREQ 504
SETCMASK 552
SETMASK 555
SETMODFY 508
SEVER (APPCVM) 518
TESTCMPL 565
TESTMSG 566

COMSRV parameter of IUCV ACCEPT 525
condition codes

APPCVM
CONNECT 424
overview 396
QRYSTATE 448
RECEIVE 454
SENDCNF 467
SENDCNFD 472
SENDDATA 480
SENDERR 495
SENDREQ 502
SETMODFY 506
SEVER 514

DIAGNOSE codes
general description 9

condition codes (continued)
DIAGNOSE codes (continued)

X'08' 21
X'14' 35
X'18' 37
X'20' 39
X'210' 196
X'24' 42
X'250' 211
X'254' 1052
X'268' 225
X'28' 43
X'2AC' 1090
X'34' 45
X'3C' 46
X'4C' 50
X'5C' 61
X'64' 78, 79
X'74' 83
X'7C' 86, 87
X'84' 102
X'90' 112
X'94' 120
X'A4' 141, 142
X'A8' 146, 147
X'B4' 151
X'B8' 153
X'BC' 157
X'D0' 161
X'D8' 165
X'DC' 169
X'E4' 182
X'EC' 185

IUCV
ACCEPT 321, 527
CONNECT 328, 531
DECLARE BUFFER 332, 536
DESCRIBE 335, 538
INTERRUPT POLL 338, 541
PURGE 341
QUERY 344, 545
QUIESCE 346
RECEIVE 350
REJECT 353
REPLY 357
RESUME 363
RETRIEVE BUFFER 365, 548
SEND 370
SET CONTROL MASK 373, 551
SET MASK 375, 554
SEVER 377, 558
TEST COMPLETION 382, 563
TEST MESSAGE 383, 566

multiple block I/O 724
single block I/O 722
VMUDQ macro 893

conditions necessary for handshaking 868
Confirm state 388, 403, 404
CONFIRM synchronization level 414
CONFIRM, APPC verb

abend conditions 577
mapped with APPC/VM 576
parameters 576
state changes 577

1114 z/VM: 7.3 CP Programming Services

CONFIRMED, APPC verb
abend conditions 577
mapped with APPC/VM 577
parameters 577
state changes 577

CONNECT function of APPCVM
allocate data 433
communication servers 441
completion 429
condition codes 424
connection complete extended data 429, 430
connection pending extended data 433, 434, 438
connection pending interrupt 432
description 412
FMH5 438
format 412
input parameter list 416
mapped with APPC 574
output parameter list 426
parameter descriptions 413
parameter list extension 417, 418
parameter list format 416
pip variables 422, 445
program exceptions 428
return codes 424
security subfield in an attach FMH5 for VM 439
state changes 429
to communication partner 432
to start a conversation 392
VM architected area 434, 441
VM communication server area 445

CONNECT function of IUCV
*IDENT sever reason codes 734
condition codes 328
connection pending interrupt 329
format 324
parameter descriptions 324
parameter list format 327
program exceptions 329
return codes 328
signal system service 745
to DASD block I/O system service
719
to error logging system service 727
to signal system service 745
to spool system service 750, 764
to symptom system service 771
used in APPC/VM

condition codes 531
format 529
parameter descriptions 529
parameter list format 531
program exceptions 532
return codes 531
to revoke a resource 394
using 529

using 324
Connect state 388, 403, 404
connect to *IDENT

to manage a resource 394
to revoke a resource 394

connect to programs
resource manager 394

connection complete interrupts

connection complete interrupts (continued)
extended data 429, 430
format 426, 429

connection parameter list extension 417, 418
connection pending interrupts

extended data 433, 434, 438
format 432

connection quiesced interrupt 347
connection resumed interrupt 364
connection severed interrupt 378
control application monitor data generation, DIAGNOSE code
X'DC' 166
control blocks used by DIAGNOSE codes 983
control buffer, IUCV 304, 331, 534
control functions of VMCF 1009
control path, IUCV 304, 331, 534
control the PA2 function key, DIAGNOSE code X'54' 50
Control Virtual Machine Time Bomb, DIAGNOSE code X'288'
268
conversations

APPC 571
starting an APPC one 571
states 388
states, APPC/VM 572

copy-to-primary service, DIAGNOSE code X'248' 201
CP (Control Program)

ACI (access control interface)
*RPI system service 591
ACIPARMS formats 637
ACIPARMS general format 620
called by ESM 600
commands that support calls to ACI 607
data area 604
DIAGNOSE code X'A0' processor 597
DIAGNOSE codes that support calls to ACI 607
function 589
HCPA0LBK format 615
HCPA0UBK general format 618
HCPRPD module 597
HCPRPE module 600
HCPRPF module 604
HCPRPG module 604
HCPRPI module 591
HCPRPL module 604
HCPRPP module 604
HCPRPW module 594
HCPRWA module 605
IUCV interface 591
logon password verification routine 594, 596
overview 590
request services from ESM 592
security bits 607
security bits, checking 609
security bits, setting of 608
security process 590
work area 605

command
ACNT 699, 715
AUTOLOG 698
FORCE 698
LINK 698
LOGON 698
SHUTDOWN 698
XAUTOLOG 698

Index 1115

CP (Control Program) (continued)
exits

access control interface 589
external security manager 589
HCPRPD module 597
HCPRPI module 591
HCPRPW module 594

macros
HCPEXIT 594, 596, 597, 600

system services and list of user IDs 317
CP and IFL capacity information, STHYI instruction 928
CP communication, DIAGNOSE code X'264' 1058
CP directory activation, DIAGNOSE code X'3C' 45
CP macros

ADSR 975
APPCVM

CONNECT 412
QRYSTATE 447
RECEIVE 451
SENDCNF 465
SENDCNFD 471
SENDDATA 475
SENDERR 490
SENDREQ 501
SEVER 509

data space
ADRSPACE 811
ALSERV 829
coding 807
DEFWORKA 837
MAPMDISK 838
PFAULT 866
preferred use 807
REFPAGE 877
using HELP for 807

data space considerations 800
DIAG 4
execution in access-register mode 5
IUCV

ACCEPT 319, 524
advantages of using 306
application considerations for virtual MP 308
condition codes and return codes 522
CONNECT 324, 529
DECLARE BUFFER 331, 533
DESCRIBE 334, 538
for use in APPC/VM 521
in a distributed environment 309
INTERRUPT POLL (IPOLL) 337, 540
PURGE 340
QUERY 344, 543
QUIESCE 345
RECEIVE 348
REJECT 352
related to APPC/VM 391
REPLY 355
RESUME 362
RETRIEVE BUFFER 365, 548
SEND 366
SET CONTROL MASK 372, 550
SET MASK 374, 553
SEVER 376, 556
shared function that can be used in CMS 521
shared function that should be avoided in 521

CP macros (continued)
IUCV (continued)

terminology 306
TEST COMPLETION 379, 562
TEST MESSAGE 383, 566

VMUDQ 889
work areas 807

CP SET commands with an IUCV option 737
CP system services

access verification (*RPI) 589
account (*ACCOUNT) 697
asynchronous CP command response (*ASYNCMD) 717
DASD block I/O (*BLOCKIO) 719
error logging (*LOGREC) 727
identify (*IDENT) 729
IUCV communication 317
list of user IDs 317
message (*MSG) 737
message all (*MSGALL) 739
sample programs using DASD block I/O (*BLOCKIO)
995
signal (*SIGNAL) 745
spool (*SPL)

AFP printing interface 750
generic interface 763

symptom (*SYMPTOM) 771
CP370 device classes 983
CP370 device features 985
CP370 device types 983
CP370 virtual device flags 986
CP370 virtual device status 985
CPED 433, 434, 438, 445
CPU capability accounting records 713
CPU identification, real 196
create

a data space 800
remote work area example, data spaces 810

create a full-pack overlay minidisk with DIAGNOSE code
X'E4' 173
CREATE function of ADRSPACE macro 814
created data spaces being shared with other users 797
creating

a remote work area example, data spaces 810
address spaces 811, 814
data spaces 800, 801

CSCH (CLEAR SUBCHANNEL) instruction 917, 922
currently-defined APPC/VM error codes 402
currently-defined APPC/VM sense codes 403
currently-defined APPC/VM sever codes 399

D
DASD Block I/O system service

condition and return codes 722, 724
ending communication 725
establishing communication 719
IUCV ACCEPT 720
IUCV CONNECT 719, 771
IUCV SEND 721
IUCV SEVER 720
multiple chained block I/O 723
sample programs 995
single block I/O 721

DASD I/O, standard, DIAGNOSE code X'18' 36

1116 z/VM: 7.3 CP Programming Services

DASD in standard CMS blocksize, block I/O operations 202
data areas used by DIAGNOSE codes 983
DATA parameter (APPC)

of RECEIVE_AND_WAIT 580
of SEND_DATA 583

data space macros
ADRSPACE 811
ALSERV 829
coding 807
DEFWORKA 837
MAPMDISK 838
overview 797
PFAULT 866
REFPAGE 877
use considerations 800
using HELP for 807

data spaces
accessing storage 802
adding an ALE to an access list 802
address space identification token (ASIT) 801
coding macros 807
CP macro use considerations 800
created data spaces being shared with other users 797
creating 800
creating a remote work area example 810
creating with ADRSPACE CREATE 801
definition 797
DIAGNOSE code use considerations 800
forcing unique work areas example 809
instance 801
nonreentrant program example 808
overview 797
reentrant program example 808
summary of operations 799
use in applications 800
uses 798

data transfer error codes, VMCF 1023
data transfer functions of VMCF 1011
data transfer, IUCV two-way 298
data, how it is sent

details 478
overview 393

DD8PARM0 DSECT 164
DEALLOCATE, APPC verb

abend conditions 578
mapped with APPC/VM 578
parameters 578
state changes 578

DECLARE BUFFER function of IUCV
condition codes 332
format 331
parameter descriptions 331
parameter list format 332
program exceptions 332
return codes 332
used with APPC/VM

condition codes 536
format 533
interrupt buffer extension 535
parameter descriptions 533
parameter list format 535
program exceptions 536
return codes 536
state changes 536

DECLARE BUFFER function of IUCV (continued)
used with APPC/VM (continued)

using 533
using 331

DECLARE function
ADRSPACE macro 817
ALSERV macro 834
MAPMDISK macro 842
PFAULT macro 872
REFPAGE macro 879

declaring buffers for interrupts 388
dedicated

device accounting record 700
Defer_Receive conversation state 405
defer_receive state 405
Defer_Sever conversation 405
defer_sever state 405
define

full-pack overlay minidisk with DIAGNOSE code X'E4'
173
macro work areas with DEFWORKA macro 837

DEFINE function of the MAPMDISK 843
definition of 370 Accommodation Facility 915
DEFWORKA macro

forcing unique work areas example 809
nonreentrant program example 808
reentrant program example 808

DESCRIBE function of IUCV
condition codes 335
format 334
parameter list format 334
program exceptions 335
required parameters 334
return codes 335
used with APPC/VM

completion 539
condition codes 538
format 538
parameter descriptions 538
program exceptions 539
state changes 539
using 538

using 334
description of IUCV functions in general 306
designated guest information, STHYI instruction 957
designated resource pool information, STHYI instruction 966
DESTROY function of ADRSPACE macro 818
destroying

address spaces 811, 818
destroying a data space 804
determine virtual machine storage size, DIAGNOSE code
X'60' 62
device

classes, CP370 983
features, CP370 985
information, DIAGNOSE code X'210' 189
types and features, DIAGNOSE code X'24' 40
types, CP370 983

DIAG macro
example 5
format 4

DIAGNOSE code
bit map fields for X'00' 13
condition codes and return codes 9

Index 1117

DIAGNOSE code (continued)
control blocks used by 983
data areas used by 983
data space considerations 800
examine host storage X'04' 16
example of coding 4
how address spaces are selected 7
how addresses are processed 5
how error conditions are reported 7
mode restrictions 5
overview 3
using to initiate accounting records 716
X'00', store extended-identification code 13
X'04', examine host storage 16
X'08', virtual console function 19
X'0C', pseudo timer 23
X'10', release pages 24
X'14', input spool file manipulation

subcode X'0000' 26
subcode X'0004' 27
subcode X'0008' 28
subcode X'000C' 28
subcode X'0010' 28
subcode X'0014' 29
subcode X'0018' 29
subcode X'001C' 29
subcode X'0020' 30
subcode X'0024' 30
subcode X'0028' 30
subcode X'002C' 31
subcode X'0FFE' 31
subcode X'0FFF' 34

X'18', standard DASD I/O 36
X'20', 370 synchronous I/O 38
X'210', retrieve device information

condition codes 196
program checks 196

X'214' 1033
X'218', Real CPU identification 196
X'238', Time-Based Unique Identifiers 200
X'24', device types and features 40
X'240' 1040
X'244' 1042
X'248', copy-to-primary service 201
X'248', use with address spaces 801
X'250', block I/O operations 202
X'254', access real subsystem 1046
X'258', page-reference services 215
X'260', access virtual machine information 221
X'268', 370 accommodation services 224
X'26C', access system information 225
X'270', pseudo timer extended 262
X'274', set timezone interrupt flag 264
X'27C', product enablement verification 265
X'28', dynamic channel program modification 42
X'288', Control Virtual Machine Time Bomb 268
X'290', perform privileged spool functions 269
X'2A8', Network Diagnose 273
X'2AC', HCD dynamic I/O 1090
X'2C0', HMC data source load 1093
X'2CC', SSI Diagnose 287
X'2E0', SYSEVENT Query Virtual Server (QVS) 289
X'2FC', obtain certain guest performance data 290
X'34', read system dump spool file 44

DIAGNOSE code (continued)
X'3C', activate CP directory 45
X'44', voluntary time slice end 46
X'48', second level SVC 76 47
X'4C' 716
X'4C', generate accounting records 47
X'54', control the PA2 function key 50
X'58', 3270 virtual console interface 51
X'5C', error message editing 60
X'60', determine virtual machine storage size 62
X'64', named saved segment manipulation

FINDSEG function 65
FINDSEG function (64-bit) 73
LOADNOLY function 66
LOADNSHR function 64
LOADNSHR function (64-bit) 73
LOADSHR function 63
LOADSHR function (64-bit) 73
PURGESEG function 65
SEGEXT function 66
SEGEXT function (64-bit) 73

X'68', VMCF function 1001, 1003
X'70', time-of-day clock accounting interface 80
X'74', saving and loading an image library file 82
X'7C', logical device support facility 84
X'84', directory update in-place

abend codes 103
condition codes 102
operations 93
return codes 103

X'88', validate user authorization 105
X'8C', access 3270 display information

program exceptions 111
return codes 111

X'90', read symbol table 112
X'94', VMDUMP and symptom record service

applications using SR option 976
condition codes 120
dump address list 116
parameters different than VMDUMP 115
reason codes 123
return codes 120
SR parameter 115
SRDW parameter 116
supported parameters 113
symptom record processing return codes 122
symptom record reporting 975

X'98', real I/O
Block DiagnoseX'98' 126
program exceptions 132
return codes 124–126

X'9C', voluntary time slice 133
X'A0', obtain ACI groupname

program exceptions 135
X'A4', synchronous I/O operations

condition codes 141, 142
HCPSBIOP (synchronous block I/O parameter list)
136
return codes 141, 142

X'A8', synchronous I/O operations
HCPSGIOP (synchronous general I/O parameter
list) 143
return codes and condition codes 147

X'B0', access re-IPL data

1118 z/VM: 7.3 CP Programming Services

DIAGNOSE code (continued)
X'B0', access re-IPL data (continued)

program exceptions 150
X'B4', read, write, and erase the virtual printer external

attribute buffer
program exceptions 152
return codes 151

X'B8', spool file external attribute buffer manipulation
program checks 154
return codes 153

X'BC', open and query spool file characteristics
condition codes and return codes 157
subcode X'0000' 154
subcode X'0004' 156

X'C8', set language
program checks 159
return codes 158

X'CC', save message repository
program checks 160
return codes 159

X'D0', volume serial support
condition codes and return codes 161

X'D4', set alternate user ID
condition codes 282
program checks 163
return codes 109, 163

X'D8', reading spool file blocks on the system spool file
queues

condition codes 165
program exceptions 165

X'DC', control application monitor data generation
condition codes and return codes 169
program exceptions 170

X'E0', system trace file interface 170
X'E4', define a full-pack overlay minidisk 173
X'E4', return minidisk real device information

condition codes and return codes 182
X'EC', query GUEST trace status

condition codes and return codes 185
program checks 186

X'F8', spool file origin information
program exceptions 188
return codes 188

DIAGNOSE code X'10'
protection exception 25

DIAGNOSE codes, reserved
X'040' 1029
X'214' 1033
X'23C' 1035
X'240' 1040
X'244' 1042
X'254' 1046
X'25C' 1054
X'264' 1058
X'278' 1060
X'280' 1063
X'29C' 1069
X'2A0' 1076
X'2A4' 1087
X'2AC' 1090
X'2C0' 1093
X'2C4' 1094
X'E0' 1029

DIAGNOSE instruction

DIAGNOSE instruction (continued)
370 accommodation services, X'268' 224
370 synchronous I/O, X'20' 38
access 3270 display information, X'8C' 110
access re-IPL data, X'B0' 148
access real subsystem, X'254' 1046
access system information, X'26C' 225
access virtual machine information, X'260' 221
activate CP directory, X'3C' 45
bit map fields for DIAGNOSE code X'00' 13
block I/O operations, X'250' 202
condition codes and return codes 9
control application monitor data generation,X' DC' 166
control blocks used by 983
control the PA2 function key, X'54' 50
Control Virtual Machine Time Bomb, X'288' 268
copy-to-primary service, X'248' 201
data space considerations 800
define a full-pack overlay minidisk, X'E4' 173
determine virtual machine storage size, X'60' 62
device types and features, X'24' 40
directory update in-place, X'84' 91
dynamic channel program modification, X'28' 42
dynamic I/O, HCD, X'2AC' 1090
error message editing, X'5C' 60
example of coding 4
execution in access-register mode 5
generate accounting records, X'4C' 47
HMC data source load, X'2C0' 1093
how address spaces are selected 7
how addresses are processed 5
how error conditions are reported 7
input spool file manipulation, X'14' 25
instruction format 3
logical device support facility, X'7C' 84
macro format 4
mode restrictions 5
named saved segment manipulation, X'64' 62
obtain ACI groupname, X'A0' 134
obtain certain guest performance data, X'2FC' 290
open and query spool file characteristics, X'BC' 154
page-reference services, X'258' 215
privileged spool functions, X'290' 269
product enablement verification, X'27C' 265
pseudo timer extended, X'270' 262
pseudo timer, X'0C' 23
query GUEST trace status, X'EC' 184
read symbol table, X'90' 112
read system dump spool file, X'34' 44
read, write, and erase the virtual printer external
attribute buffer, X'B4' 150
reading spool file blocks on the system spool file
queues, X'D8' 163
Real CPU identification, X'218' 196
real I/O, X'98' 124
release pages, X'10' 24
retrieve device information, X'210' 189
return minidisk real device information, X'E4' 173
save message repository, X'CC' 159
saving and loading an image library file, X'74' 82
second level SVC 76, X'48' 47
set alternate user ID, X'D4' 161
set language, X'C8' 158
set timezone interrupt flag, X'274' 264

Index 1119

DIAGNOSE instruction (continued)
spool file external attribute buffer manipulation, X'B8'
152
spool file origin information, X'F8' 186
standard DASD I/O, X'18' 36
store extended-identification code, X'00' 13
synchronous I/O operations, X'A4' 135
synchronous I/O operations, X'A8' 143
SYSEVENT Query Virtual Server (QVS), X'2E0' 289
system trace file interface, X'E0' 170
Time-Based Unique Identifiers, X'238' 200
time-of-day clock accounting interface, X'70' 80
validate user authorization, X'88' 105
virtual console function, X'08' 19
VMCF function, X'68'

data transfer error codes 1023
return codes 1021
VMCPARM parameter list 1014

VMDUMP and symptom record service, X'94' 113
volume serial support, X'D0' 160
voluntary time slice end, X'44' 46
voluntary time slice, X'9C' 133

directory
authorization for IUCV 301
control statement for IUCV 297, 299, 302, 320, 325
entries in IUCV 301, 320, 326
update in-place, DIAGNOSE code X'84' 91
VMUDQ macro 889

directory operations
ACCOUNT 93
CPU 94
DATEFMT 94
DISTRIB 94
EDITCHAR 95
IACCOUNT 95
IPL 95
LOGPASS 96
MACHINE 96
MAXSTOR 96
MDISK 97
OPTIONS 98
PRIORITY 98
PRIVLEGE 98
RMDISK 99
SCREEN 100
SPOOLF 100
STORAGE 101
TACCOUNT 102
XAUTOLOG 102
XSTORE 102

directory query, DIAGNOSE code X'25C' 1054
DISABLE function of Spool system service 761
double-byte character set (DBCS) 58
dropping addressability to an address space 803
DSECT, IPARMLX 418
dump

address list, DIAGNOSE Code X'094' 116
Dump Viewing Facility and DIAGNOSE code X'94' 113
dynamic channel program modification, DIAGNOSE code
X'28' 42

E
editing error messages, DIAGNOSE code X'5C' 60

effects of mapping 839
ENABLE function of Spool system service 761
entry point

to ACI CP modules
HCPPWAPF 605
HCPRPEEP 600
HCPRPEPX 601
HCPRPESG 602
HCPRPGPH 604
HCPRPICN 591
HCPRPIIL 591
HCPRPIQS 591
HCPRPIRA 592
HCPRPIRM 591
HCPRPISV 591
HCPRPWEP 594, 597
HCPRPWPR 596
HCPRWACP 605

erasing the virtual printer XAB 150
error codes, APPC/VM 399
error conditions state table, APPC/VM 407
error log GDS variable format 494, 513
error logging system service (*LOGREC)

IUCV ACCEPT 727
IUCV CONNECT 727
IUCV SEVER 727

error message editing, DIAGNOSE code X'5C' 60
ESA/XC address spaces

creating 814
definition 797
destroying 818
dropping addressability 803
identification 812
identification token (ASIT) 812
isolating a shared 804
mapping minidisks to 804
name 812
permitting another user to access 801
querying information 826
restoring to private state 820
selection of 7
states 812, 820

ESA/XC architecture 798
ESA/XC macros

ADRSPACE 811
ALSERV 829
coding 807
DEFWORKA 837
MAPMDISK 838
overview 797
PFAULT 866
REFPAGE 877
use considerations 800
using HELP for 807

ESM (External Security Manager)
CP interface

*RPI system service 591
ACIPARMS formats 637
ACIPARMS general format 620
called by ESM 600
checking ACI Security bits 609
commands that support calls to ACI 607
data area 604
DIAGNOSE code X'A0' processor 597

1120 z/VM: 7.3 CP Programming Services

ESM (External Security Manager) (continued)
CP interface (continued)

DIAGNOSE codes that support calls to ACI 607
HCPA0LBK format 615
HCPA0UBK general format 618
HCPRPD exit module 597
HCPRPE module 600
HCPRPF module 604
HCPRPG module 604
HCPRPI exit module 591
HCPRPL module 604
HCPRPP module 604
HCPRPW exit module 594
HCPRWA module 605
IUCV interface 591
logon password prompting routine 596
logon password verification routine 594
overview 590
request services from ESM 592
security process 590
work area 605

establish addressability to an address space 802
establish an APPC conversation 571
establish communication

account system service 697
asynchronous CP command response system service
717
DASD block I/O system service 719
error logging system service 727
identify system service 729
message system service 737
signal system service 745
spool system service 750, 763
symptom system service 771

examine host storage, DIAGNOSE code X'04' 16
example of

coding the DIAGNOSE instruction 4
creating a remote work area, data spaces 810
forcing unique work areas, data spaces 809
format of PIP variable 423
IUCV virtual machine communication 302
nonreentrant program, data spaces 808
reentrant program, data spaces 808

exception
addressing-capability 1031, 1032
ADRSPACE macro 813
ALEN translation 1031–1033
ALSERV macro 830
APPCVM

CONNECT 428
QRYSTATE 450
RECEIVE 460
SENDCNF 469
SENDCNFD 474
SENDDATA 486
SENDERR 498
SENDREQ 503
SETMODFY 507
SEVER 517

DIAGNOSE code 7
DIAGNOSE code X'00' 16
DIAGNOSE code X'04' 19
DIAGNOSE code X'08' 22
DIAGNOSE code X'0C' 23

exception (continued)
DIAGNOSE code X'10' 25
DIAGNOSE code X'14' 35
DIAGNOSE code X'210' 196
DIAGNOSE code X'238' 200
DIAGNOSE code X'248' 202
DIAGNOSE code X'250' 213
DIAGNOSE code X'254' 1053
DIAGNOSE code X'258' 221
DIAGNOSE code X'260' 223
DIAGNOSE code X'268' 225
DIAGNOSE code X'26C' 262
DIAGNOSE code X'27C' 267
DIAGNOSE code X'288' 268
DIAGNOSE code X'2A4' 1089
DIAGNOSE code X'2AC' 1092
DIAGNOSE code X'2E0' 290
DIAGNOSE code X'34' 45
DIAGNOSE code X'3C' 46
DIAGNOSE code X'4C' 50
DIAGNOSE code X'5C' 61
DIAGNOSE code X'64' 79
DIAGNOSE code X'68' 88, 1002
DIAGNOSE code X'70' 82
DIAGNOSE code X'74' 83
DIAGNOSE code X'84' 104
DIAGNOSE code X'88' 110
DIAGNOSE code X'8C' 111
DIAGNOSE code X'90' 113
DIAGNOSE code X'98' 132
DIAGNOSE code X'9C' 133
DIAGNOSE code X'A0' 135
DIAGNOSE code X'A4' 142
DIAGNOSE code X'A8' 147
DIAGNOSE code X'B0' 150
DIAGNOSE code X'B4' 152
DIAGNOSE code X'B8' 154
DIAGNOSE code X'BC' 157
DIAGNOSE code X'C8' 159
DIAGNOSE code X'CC' 160
DIAGNOSE code X'D4' 110, 163
DIAGNOSE code X'D8' 165
DIAGNOSE code X'DC' 170
DIAGNOSE code X'E0' 172, 1031, 1032
DIAGNOSE code X'E4' 184
DIAGNOSE code X'EC' 186
DIAGNOSE code X'F8' 188
IUCV

ACCEPT 322, 527
CONNECT 329, 532
DECLARE BUFFER 332, 536
DESCRIBE 335, 539
INTERRUPT POLL 338
IPOLL 542
PURGE 343
QUERY 344, 546
QUIESCE 346
RECEIVE 351
REJECT 354
REPLY 358
RESUME 363
RETRIEVE BUFFER 365, 548
SEND 370
SET CONTROL MASK 373, 552

Index 1121

exception (continued)
IUCV (continued)

SET MASK 375, 555
SEVER 377, 559
TEST COMPLETION 382, 564
TEST MESSAGE 383, 566

MAPMDISK macro 840
PFAULT macro 869
REFPAGE macro 878
VMUDQ macro 893

exception condition
addressing-capability 1033
DIAGNOSE code X'E0' 1033

exit results from the SEGEXT function, normal 77
exit with error results from DIAGNOSE code X'64' 78, 79
exits

CP
access control interface 589
external security manager 589
HCPRPD module 597
HCPRPI module 591
HCPRPW module 594

external security manager
CP 589

HCPRPD module 597
HCPRPI module 591
HCPRPW module 594
installation-wide

CP access control interface 589
HCPRPD module 597
HCPRPI module 591
HCPRPW module 594

extended data, connection complete 429, 430
extended data, connection pending 433, 434, 438
Extended Spool File Block 991
extended-identification code, DIAGNOSE code X'00' 13
extension for connection parameter list 417, 418
extension, interrupt buffer 535
extent-list format, MAPMDISK 853
External Attribute Buffer 994
external attribute buffer (XAB) 150, 152
External Attribute Buffer (XAB)

format 993
external interrupt

APPC/VM
buffer 388
connection complete 390, 426
connection pending 389
creating buffers for 388
function complete 390
message pending 389, 489
request-to-send 389
SENDREQ 389
sever 389, 519

code X'2402', logical device 88
code X'2603' subcode X'02' from PFAULT 868
IUCV

avoiding 301
connection complete 322
connection pending 329
connection quiesced 347
connection resumed 364
connection severed 378
control 300

external interrupt (continued)
IUCV (continued)

control, enabling or disabling 300
enabling or disabling 300
functions controlling 307
message 300
message complete 358
message pending 370
sever 519

MAPMDISK SAVE
code X'2603' subcode X'01' 864

VMCF
message header 1019

External interruption, access real subsystem 1054
external interruption, block I/O 214
External Security Manager (ESM) 589
EXTRACT AND SET STORAGE ATTRIBUTES 902
extract XLINK control blocks, DIAGNOSE code X'278' 1060

F
fault resolution flag 802
fcode field of IUCV CONNECT 530, 729
features and types for devices, DIAGNOSE code X'24' 40
fetch-protection override (FPO) 9
fields

in VRDCBLOK DSECT 189
FILL parameter (APPC)

of RECEIVE_AND_WAIT 580
FINDNSSA operation code 73
FINDNSSA operation code (64-bit) 74
FINDSEG function (64-bit), DIAGNOSE code X'64' 73
FINDSEG function, DIAGNOSE code X'64' 65
FINDSEGA operation code 69
FINDSEGA operation code (64-bit) 74
FINDSKEL operation code 69
FINDSKEL operation code (64-bit) 74
FINDSKEL or FINDSEG operation, format of user-supplied
areas 70
FINDSKEL, FINDSEGA, or FINDNSSA operation (64-bit),
format of user-supplied areas 74
FINDSPACE operation (64-bit), format of user-supplied areas
73
FINDSPACE operation code 68
FINDSPACE operation code (64-bit) 73
FINDSPACE operation, format of user-supplied areas 68
FLAG field

of CONNECT request (*IDENT) 530, 729
FLUSH, APPC verb 579
FMH5 (Functional Management Header 5)

description 438
FORCE command 698
forcing unique work areas example, data spaces 809
foreign language, set 158
format of

PIP variable, example 423
user-supplied areas for FINDSKEL or FINDSEG
operation 70
user-supplied areas for FINDSKEL, FINDSEGA, or
FINDNSSA operation (64-bit) 74
user-supplied areas for FINDSPACE operation 68
user-supplied areas for FINDSPACE operation (64-bit)
73
user-supplied areas for SEGEXT function 66

1122 z/VM: 7.3 CP Programming Services

format of (continued)
user-supplied output area — 64-bit member list 74
user-supplied output area — member list 71

format of a block I/O entry 208
format of symptom record 975
formatting IUCV and APPC/VM parameter lists with MF=L
395
FPO (fetch-protection override) 9
FTP

management functions
X'2C4' 1094

FTP services, DIAGNOSE code X'2C4' 1094
full-duplex communications 567
full-pack overlay minidisk 173
function complete interrupts

APPCVM RECEIVE 456
APPCVM SENDCNF 468
APPCVM SENDCNFD 473, 474
APPCVM SENDDATA 482
APPCVM SENDERR 496
APPCVM SEVER 515
connection complete interrupt 322
message complete interrupt 358

function completion
APPCVM CONNECT 429
IUCV ACCEPT 321, 322
IUCV CONNECT 326, 328
IUCV DCLBFR 332, 537
IUCV DESCRIBE 334, 335, 539
IUCV IPOLL 338
IUCV PURGE 341, 343
IUCV QUERY 344
IUCV QUIESCE 346
IUCV RECEIVE 350, 351
IUCV REJECT 353
IUCV REPLY 357, 358
IUCV RESUME 363
IUCV RTRVBFR 365, 549
IUCV SEND 369
IUCV SETCMASK 373
IUCV SETMASK 375, 555
IUCV SEVER 377, 559
IUCV TESTCMPL 380
IUCV TESTMSG 383
SENDERR 499
SENDREQ 504
SETCMASK 552
TESTCMPL 565
TESTMSG 566

G
gateways

managing, using *IDENT 729, 735
GDS (General Data Stream) log data variable format 513
GDS (General Data Stream) Log Data variable format 494
General data stream (GDS) Log Data variable format 494
General Data Stream (GDS) log data variable format 513
general description of IUCV functions 306
generate accounting records, DIAGNOSE code X'4C' 47
generic *SPL interface 763
GET_ATTRIBUTES, APPC verb

mapped with APPC/VM 579
GIDs

GIDs (continued)
X'280' 1063
X'29C' 1070

global resources
managing 393, 729
revoking your own 394
virtual machines connecting to 394

group, virtual machine 745
guest list, STHYI instruction 955

H
HALT DEVICE (HDV) instruction 908, 915, 922
HALT I/O (HIO) instruction 908, 915, 922
HALT SUBCHANNEL (HSCH) instruction 917, 922
handling page faults asynchronously 866
handshaking

necessary conditions 868
page-fault 867
process 868
services, page-fault 866

HCD dynamic I/O, DIAGNOSE code X'2AC' 1090
HCPA0LBK control block (format) 615
HCPA0UBK control block (format) 618
HCPEXIT macro

HCPRPD module 600
HCPRPI module 594
HCPRPW module 596, 597

HCPRPD exit module
function 597
HCPRPDEP entry point

interface specifications 597
return codes 600

HCPRPE module 600
HCPRPF module 604
HCPRPG module 604
HCPRPI exit module

HCPRPICN entry point
function 591
interface specifications 591

HCPRPIIL entry point
function 591
interface specifications 591

HCPRPIQS entry point
function 591
interface specifications 591

HCPRPIRA entry point
function 592
interface specifications 593

HCPRPIRM entry point
function 591
interface specifications 591

HCPRPISV entry point
function 591
interface specifications 591

HCPRPL module 604
HCPRPP module 604
HCPRPWEP exit module

function 594
HCPRPWEP entry point

interface specifications 594
HCPRPWPR exit module

HCPRPWPR entry point
interface specifications 596

Index 1123

HCPRWA module
HCPPWAPF entry point

interface specifications 605
HCPSBIOP (synchronous block I/O parameter list) 136
HCPSGIOP (synchronous general I/O parameter list) 143
HDV (HALT DEVICE) instruction 908, 915, 922
HELP for APPCVM functions 411
HELP for CP macros 807
HELP for IUCV macro functions with APPC/VM 523
HIO (HALT I/O) instruction 908, 915, 922
HMC data source load, DIAGNOSE code X'2C0' 1093
host access-list entries 829
host access-list-controlled protection 10
host address space

definition 7
host page protection 10
host storage, examine 16
host-primary address space

access list 801
adding an ALE to an access list 802

how address spaces are selected 7
how addresses are processed 5, 297
how error conditions are reported

access exceptions 8
condition and return codes 9
program interruptions 7
storage protection mechanisms 9

HSCH (HALT SUBCHANNEL) instruction 917, 922
hybrid interruptions 920, 921
hypervisor environment information, STHYI instruction 940

I
I/O operations (block) for DASD in standard CMS blocksize
202
I/O, standard DASD, DIAGNOSE code X'18' 36
identification of address spaces 812
IDENTIFY function of MAPMDISK macro 851
IDENTIFY function of VMCF

protocol, VMCF 1009
identify system service (*IDENT)

connecting to 393, 529
establishing a connection 729
overview 394
processing requests to manage a resource 731
sever reason codes 734
severing connection to 394

image library file, saving and loading with DIAGNOSE code
X'74' 82
IMMED value on APPCVM CONNECT 415
INFORMB function of REFPAGE macro 880
INFORML function of REFPAGE macro 886
initialize block I/O to a device 203
INITIATE function, logical device support facility

DIAGNOSE code X'7C' subcode X'00000001' 89
input parameter lists

APPCVM
CONNECT 416
QRYSTATE 447
RECEIVE 453
SENDCNF 466
SENDCNFD 471
SENDDATA 477
SENDERR 492

input parameter lists (continued)
APPCVM (continued)

SENDREQ 501
SETMODFY 506
SEVER 511

IPARML 304
IUCV

ACCEPT 321, 526
CONNECT 327, 531
DECLARE BUFFER 332, 535
DESCRIBE 334
INTERRUPT POLL 338, 541
PURGE 341
QUERY 544
QUIESCE 346
RECEIVE 349
REJECT 353
REPLY 356
RESUME 362
SEND 368
SET CONTROL MASK 372, 551
SET MASK 375, 554
SEVER 377, 557
TEST COMPLETION 380, 562

VMCF 1014
VMCPARM 1014

input spool file manipulation, DIAGNOSE code X'14' 25
INSERT STORAGE KEY (ISK) instruction 908, 916
instance of a data space 801
intermediate communications servers

accepting connections 525
making connections 441
parameters on IUCV ACCEPT 525

interrupt buffer extension 535
INTERRUPT POLL function of IUCV

condition codes 338
format 337
parameter list format 338
program exceptions 338
return codes 338
used with APPC/VM

condition codes 541
format 540
parameter descriptions 540
parameter list format 541
program exceptions 542
return codes 542

using 337
interrupt, external

APPC/VM 388
creating buffers for 388
IUCV

avoiding 301
control 300
control, enabling or disabling 300
enabling or disabling 300
functions controlling 307
message 300

message pending 370
interruption parameters 920
interrupts

APPC/VM 388, 571
connection complete 390, 426, 429
connection pending 389, 432

1124 z/VM: 7.3 CP Programming Services

interrupts (continued)
disabling for 550, 553
enabling for 550, 553
function complete 390, 456, 468, 482, 496
message pending 389, 489
SENDREQ 389, 504
sever 389, 519

interval timer 908, 909, 917
IPARML

DASD block I/O system service
720
signal system service 745

IPARML COPY file 304, 307, 394
IPARMLX COPY file 418
IPARMLX DSECT 418
IPAUDIT field, description 396, 397
IPCODE field, description 396, 398
IPOLL function of IUCV

condition codes 338
format 337
parameter list format 338
program exceptions 338
return codes 338
used with APPC/VM

condition codes 541
format 540
parameter descriptions 540
parameter list format 541
program exceptions 542
return codes 542

using 337
IPRCODE field, description 396, 397
IPTYPE, external interrupt field

APPCVM function complete 457, 468, 473, 482, 496,
503, 516
connection complete 323, 427
connection pending 329
connection quiesced 347
connection resumed 364
connection severed 378, 427, 560
message complete 359
message pending 371, 539
request-to-send 539
to differentiate IUCV and APPC/VM interrupts 567

IPWHATRC field, description 396, 397
ISFC (Inter-System Facility for

Communications)
accounting record 706

ISK (INSERT STORAGE KEY) instruction 908, 916
ISOLATE function of ADRSPACE macro 820
isolating a shared address space 804
IUCV (Inter-User Communication Vehicle)

interface to external security manager 591
IUCV (Inter-User Communications Vehicle)

authorization 301
basic communication functions 307
communication

account system service 697
asynchronous CP command response system
service 717
DASD block I/O system service 719
error logging system service 727
example 302
identify system service 729

IUCV (Inter-User Communications Vehicle) (continued)
communication (continued)

message system service 737
signal system service 745
spool system service 750, 763
symptom system service 771
using control paths 304
using data in a buffer 302
using data in a parameter list 303
with CP system services 317

condition codes and return codes with APPC/VM 522
control paths 304
CP system services and list of user IDs 317
differences from APPC/VM 567
directory control statement 297
directory entries 301
external interrupt

avoiding 301
connection complete 322
connection pending 329
connection quiesced 347
connection resumed 364
connection severed 378
control 300
control, enabling or disabling 300
enabling or disabling 300
message 300
message complete 358
message pending 370

functions controlling external interrupts 307
general description of functions 306
introduction 297
invoking 306
macro description 306
macro functions for use in APPC/VM 521
messages

data transfer 298
identification 299

option on CP SET commands 737
parameters, specifying 306
paths

control 304
protocols

CONNECT/ACCEPT 311
SEND 314
SEND, logic flow 315
SEND/RECEIVE 312
SEND/RECEIVE, logic flow 312
SEND/RECEIVE/REPLY 313
SEND/RECEIVE/REPLY, logic flow 313
SEND/REPLY 315
SEND/REPLY, logic flow 315

receiving messages from the special message facility
1025
security considerations 301
sequence of functions 302, 303
shared functions that can be used in CMS 521
shared functions that should be avoided in 521
special message facility 1025
system services

identify 729
two-way data transfer 298

IUCV control paths 304
IUCV in a distributed environment 309

Index 1125

IUCV macro functions
ACCEPT

from the DASD block I/O system service
720
from the error logging system service 727
from the Symptom system service 771
parameter list format 321, 526
return codes 322, 527
using 319, 524

CONNECT
parameter list format 327, 531
return codes 328, 531
to DASD block I/O system service
719
to error logging system service 727
to signal system service 745
to symptom system service 771
using 324, 529

DECLARE BUFFER
parameter list format 332, 535
return codes 332, 536
using 331, 533

DESCRIBE
parameter list format 334, 539
return codes 335
using 334, 538

for use in APPC/VM 521
INTERRUPT POLL

IPOLL 542
parameter list format 338, 541
return codes 338
using 337, 540

PURGE
parameter list format 341
return codes 343
using 340

QUERY 344, 543
QUIESCE

parameter list format 346
return codes 346
using 345

RECEIVE
parameter list format 349
return codes 351
using 348

REJECT
parameter list format 353
return codes 353
using 352

related to APPC/VM 391
REPLY

parameter list format 356
return codes 358
using 355

RESUME
parameter list format 362
return codes 363
using 362

RETRIEVE BUFFER 365, 548
SEND

parameter list format 368
return codes 369
to the DASD block I/O system service
721

IUCV macro functions (continued)
SEND (continued)

to the signal system service 747
using 366

SET CONTROL MASK
parameter list format 372
return codes 373
using 372

SET MASK
parameter list format 375, 554
return codes 375
using 374, 553

settings for optional parameters 395
SEVER

from the DASD block I/O system service
720
from the error logging system service 727
from the signal system service 748
from the symptom system service 771
parameter list format 377, 557
return codes 377, 559
using 376, 556

shared functions that can be used in CMS 521
shared functions that should be avoided in 521
terminology 306
TEST COMPLETION

parameter list format 380
return codes 382, 564
using 379, 562

TEST MESSAGE 383, 566
using HELP for 523

IUCV return codes
ACCEPT 322, 527
CONNECT 328, 531
DECLARE BUFFER (DCLBFR) 332, 536
DESCRIBE 335
INTERRUPT POLL (IPOLL) 338, 542
PURGE 343
QUIESCE 346
RECEIVE 351
REJECT 353
REPLY 358
RESUME 363
SEND 369
SET CONTROL MASK 373
SETMASK 375
SEVER 377, 559
TEST COMPLETION 382, 564

J
journal

accounting record 702

K
key-controlled protection

fetch-protection override (FPO) 9
host access-list-controlled protection 10
host page protection 10
low-address protection (LAP) 10
storage-protection override (SPO) 10

1126 z/VM: 7.3 CP Programming Services

L
language, set 158
LAP (low-address protection) 10
leave the signal system service 748
LENGTH parameter (APPC)

of RECEIVE_AND_WAIT 580
of SEND_DATA 583

linemode console output
double-byte character set (DBCS) 58
single-byte character set (SBCS) 58

LINK command 698
list

dump address 116
list form of ordered paging-referencing 878
list format for macros

formatting parameter lists 395
IUCV DECLARE BUFFER 331

list of CP system services and user IDs 317
lists, address 306, 453, 479, 493, 512
LOAD PSW (LPSW) instruction 908, 918
loading and saving an image library file, DIAGNOSE code
X'74' 82
LOADNOLY function, DIAGNOSE code X'64' 66
LOADNSHR function (64-bit), DIAGNOSE code X'64' 73
LOADNSHR function, DIAGNOSE code X'64' 64
LOADSHR function (64-bit), DIAGNOSE code X'64' 73
LOADSHR function, DIAGNOSE code X'64' 63
local resources

managing 393, 729
revoking your own 394
virtual machines connecting to 394

locally known LU name 419
log data

specifying 512
log data GDS variable format 513
Log Data GDS variable format 494
LOG_DATA parameter (APPC)

of DEALLOCATE 578
of SEND_ERROR 584

logical device support facility
description 1027
DIAGNOSE code X'7C' 84
external interrupt code X'2402' 88

logical records
definition 480
description 478
format 478
length 480

LOGON command 698
logon password prompting routine 596
logon password verification routine 594
low-address protection (LAP) 10
LPSW (LOAD PSW) instruction 908, 918
LSTMDISK function of VMUDQ macro

parameter list 890
LU name, locally known 419
LU_NAME parameter (APPC)

of ALLOCATE 575

M
macro work areas 837
macroinstruction

macroinstruction (continued)
CP

HCPEXIT 594, 596, 597, 600
macros

ADSR 975
APPCVM

CONNECT 412
QRYSTATE 447
RECEIVE 451
SENDCNF 465
SENDCNFD 471
SENDDATA 475
SENDERR 490
SENDREQ 501
SEVER 509

data space
ADRSPACE 811
ALSERV 829
coding 807
DEFWORKA 837
MAPMDISK 838
PFAULT 866
preferred use 807
REFPAGE 877
using HELP for 807

data space considerations 800
DIAG 4
execution in access-register mode 5
IUCV

ACCEPT 319, 524
advantages of using 306
application considerations for virtual MP 308
condition codes and return codes 522
CONNECT 324, 529
DECLARE BUFFER 331, 533
DESCRIBE 334, 538
for use in APPC/VM 521
in a distributed environment 309
INTERRUPT POLL (IPOLL) 337, 540
PURGE 340
QUERY 344, 543
QUIESCE 345
RECEIVE 348
REJECT 352
related to APPC/VM 391
REPLY 355
RESUME 362
RETRIEVE BUFFER 365, 548
SEND 366
SET CONTROL MASK 372, 550
SET MASK 374, 553
SEVER 376, 556
shared function that can be used in CMS 521
shared function that should be avoided in 521
terminology 306
TEST COMPLETION 379, 562
TEST MESSAGE 383, 566

VMUDQ 889
work areas 807

managing a resource 393
manipulation of saved segments with DIAGNOSE code X'64'
62
MAPMDISK macro

DECLARE function 842

Index 1127

MAPMDISK macro (continued)
DEFINE function 805, 843
extent-list format 853
IDENTIFY function 805, 851
list of functions 838
mapping-list format 846
REMOVE function 805, 857
SAVE function 805, 860
save-list format 862

MAPPED conversation type 415
mapped page of a data space 805
mapping APPC with APPC/VM

parameters and conditions 574
mapping minidisks to address spaces 804
mapping services, DIAGNOSE code X'244' 1042
mapping-list format, MAPMDISK macro 846
mapping, effects of 839
MDISK parameter list 890
member list, 64-bit, format of user-supplied output area 74
member list, format of user-supplied output area 71
merging collections

revoking gateways in 394
revoking resources in 394

message all system service (*MSGALL) 739
message complete external interrupt, IUCV 358
message editing, error, with DIAGNOSE code X'5C' 60
message examples, notation used in xxxvii
MESSAGE function of Spool system service 756
message pending interrupts

format 370, 489
message repository, saving, DIAGNOSE code X'CC' 159
message system service (*MSG) 737
messages

IUCV
data transfer 298
identification 299

messages, sending 478
MF=L parameter

formatting parameter lists 395
IUCV DECLARE BUFFER 331

minidisk cache, bypass 721, 723
minidisk real device information 173
minidisks to address spaces, mapping 804
mode name 419
MODE_NAME parameter (APPC)

of ALLOCATE 575
modes, types of

DIAGNOSE code restrictions 5
MODIFY SUBCHANNEL (MSCH) instruction 917, 922
modules for ACI

HCPRPD 589, 597
HCPRPF 589
HCPRPG 589, 604
HCPRPI 589, 591
HCPRPL 604
HCPRPPF 604
HCPRPW 589, 594
HCPRWA 589, 605

MSCH (MODIFY SUBCHANNEL) instruction 917, 922
multiple block I/O parameter list 723
multiple chained block I/O 723

N
named saved segment manipulation with DIAGNOSE code
X'64' 62
national language, set 158
Network Diagnose, DIAGNOSE code X'2A8' 273
non-CMS environment 569
non-CMS environment, shared IUCV function for use in 521
NONE synchronization level 414
nonreentrant program example, data spaces 808
normal exit results from the SEGEXT function 77
not programming interfaces

DIAGNOSE code 1029
notation used in message and response examples xxxvii
NOTIFY function of Spool system service 763
notifying CP of future reference patterns 805

O
obtain ACI groupname, X'A0' 134
obtain certain guest performance data, DIAGNOSE code
X'2FC' 290
online HELP for APPCVM functions 411
online HELP for CP macros 807
online HELP for IUCV macro functions with APPC/VM 523
open and query spool file characteristics with DIAGNOSE
code X'BC' 154
operand exception

DIAGNOSE code X'254' 1053
DIAGNOSE code X'A4' 143
DIAGNOSE code X'A8' 147
general definition 8

operation exception
APPCVM CONNECT 428
APPCVM QRYSTATE 450
APPCVM RECEIVE 460
APPCVM SENDCNF 469
APPCVM SENDCNFD 474
APPCVM SENDDATA 486
APPCVM SENDERR 498
APPCVM SENDREQ 503
APPCVM SETMODFY 508
APPCVM SEVER 517
DIAGNOSE code X'98' 132
general definition 7
IUCV ACCEPT 322, 528
IUCV CONNECT 329, 532
IUCV DECLARE BUFFER 333, 536
IUCV DESCRIBE 336, 539
IUCV INTERRUPT POLL 338, 542
IUCV PURGE 343
IUCV QUERY 344, 546
IUCV QUIESCE 346
IUCV RECEIVE 351
IUCV REJECT 354
IUCV REPLY 358
IUCV RESUME 363
IUCV RETRIEVE BUFFER 365, 548
IUCV SEND 370
IUCV SET CONTROL MASK 373, 552
IUCV SET MASK 375, 555
IUCV SEVER 378, 559
IUCV TEST COMPLETION 382, 564
IUCV TEST MESSAGE 383, 566

1128 z/VM: 7.3 CP Programming Services

operations of DIAGNOSE code X'84' 93
order a file to the front of a queue 28
order of functions in IUCV 302, 303
ordered paging-referencing

block form 877
list form 878

output parameter lists
APPCVM

CONNECT 426
QRYSTATE 448
RECEIVE 456
SENDCNF 468
SENDCNFD 473
SENDDATA 482
SENDERR 496
SENDREQ 503
SETMODFY 507
SEVER 515

IPARML 304
IUCV

ACCEPT 321, 527
CONNECT 328, 531
DECLARE BUFFER 332, 536
DESCRIBE 335, 539
PURGE 341
QUERY 545
QUIESCE 346
RECEIVE 350
REJECT 353
REPLY 357
RESUME 363
SEND 369
SET CONTROL MASK 373
SET MASK 375
SEVER 377, 558
TEST COMPLETION 380, 563

SEVER (APPCVM) 515
VMCF 1014
VMCPARM 1014

overview
370 Accommodation Facility 907
APPC/VM assembler interface 387
DIAGNOSE instruction 3
VM data spaces 797

P
PA2 function key, DIAGNOSE code X'54' 50
page-fault handshaking

necessary conditions 868
page-fault 867
process 868
services, page-fault 866

page-fault-cancel function 218
page-fault-token function 215
page-reference services 215
page-reference-inform function 218
paging-referencing, ordered

block form 877
list form 878

parameter addressability 394
parameter list

ACIPARMS
formats 637

parameter list (continued)
ACIPARMS (continued)

function 590
general format 620
when created by CP 590

APPCVM
CONNECT 416
formatting with MF=L 395
QRYSTATE 447, 448
reading 395
RECEIVE 453, 456
SENDCNF 466, 468
SENDCNFD 471, 473
SENDDATA 477, 482
SENDERR 492, 496
SENDREQ 501, 503
SETMODFY 506, 507
SEVER 511, 515

DIAGNOSE code
X'D8', DD8PARM0 DSECT 164
X'E4' 175, 179, 181

IPARML 304, 307
IUCV

ACCEPT 321, 526
CONNECT 327, 531
DECLARE BUFFER 332, 535
DESCRIBE 334
formatting with MF=L 395
INTERRUPT POLL 338, 541
parameter list data 303
PURGE 341
QUERY 544
QUIESCE 346
reading 395
RECEIVE 349
REJECT 353
REPLY 356
RESUME 362
SEND 368
SET CONTROL MASK 372, 551
SET MASK 375, 554
SEVER 377, 557
TEST COMPLETION 380, 562

LSTMDISK function 890
MDISK 890
multiple block I/O 723
VMCF 1014
VMCPARM 1014

parameters for communication servers on IUCV ACCEPT 525
parameters unique to DIAGNOSE code X'94' 115
parameters, APPC

on ALLOCATE 575
on CONFIRM 576
on CONFIRMED 577
on DEALLOCATE 578
on RECEIVE_AND_WAIT 580
on REQUEST_TO_SEND 582
on SEND_DATA 582
on SEND_ERROR 584

parameters, IUCV, specifying 306
partner, communications

connecting to 432
receiving from 463
sending to (SENDCNF) 470

Index 1129

partner, communications (continued)
sending to (SENDCNFD) 474
sending to (SENDDATA) 488
sending to (SENDERR) 500
sending to (SENDREQ) 504
severing from 519
severing paths 549

passwords
replacing directory stanza 91

paths
APPC/VM 387
IUCV 297
IUCV control 304

pending interrupt, message 370, 489
pending page release, DIAGNOSE code X'214' 1033
performance

APPC/VM 534
PERMIT function of ADRSPACE macro 822
permitting another user to access an address space 801
PFAULT macro

CANCEL function 871
DECLARE function 872
handling page faults asynchronously 866
list of functions 867
TOKEN function 866, 873

PIP parameter of APPC ALLOCATE 575
PIP variable

example format 423
handling 445
receiving 451
specifying 422

pool-relative block numbers 838
position a spool file to the designated record 30
POSIX IDs

process services 1087
querying 1076
setting 1063, 1069

POSIX process ID (PID) services, DIAGNOSE code X'2A4'
1087
Prepare_Received conversation state 405
prepare_received state 405
PREPARE_TO_RECEIVE, APPC verb 579
PRESENT function, logical device support facility

DIAGNOSE code X'7C' subcode X'00000003' 90
primary address space

access list 801
adding an ALE to an access list 802

priority messages 1010, 1013
PRIORITY option of VMCF AUTHORIZE 1010
PRIORITY option of VMCF SEND/RECV 1013
privilege classes

accounting record 708, 711
privilege-operation exception

DIAGNOSE code X'00' 16
DIAGNOSE code X'04' 19
DIAGNOSE code X'08' 22
DIAGNOSE code X'0C' 24
DIAGNOSE code X'10' 25
DIAGNOSE code X'14' 36
DIAGNOSE code X'210' 196
DIAGNOSE code X'238' 201
DIAGNOSE code X'248' 202
DIAGNOSE code X'254' 1053
DIAGNOSE code X'260' 224

privilege-operation exception (continued)
DIAGNOSE code X'268' 225
DIAGNOSE code X'26C' 262
DIAGNOSE code X'2A4' 1089
DIAGNOSE code X'34' 45
DIAGNOSE code X'4C' 50
DIAGNOSE code X'5C' 62
DIAGNOSE code X'64' 80
DIAGNOSE code X'68' 1003
DIAGNOSE code X'70' 82
DIAGNOSE code X'74' 84
DIAGNOSE code X'7C' 88
DIAGNOSE code X'84' 104
DIAGNOSE code X'88' 110
DIAGNOSE code X'8C' 112
DIAGNOSE code X'90' 113
DIAGNOSE code X'98' 132
DIAGNOSE code X'9C' 134
DIAGNOSE code X'A0' 135
DIAGNOSE code X'A4' 143
DIAGNOSE code X'A8' 147
DIAGNOSE code X'B0' 150
DIAGNOSE code X'B4' 152
DIAGNOSE code X'B8' 154
DIAGNOSE code X'BC' 158
DIAGNOSE code X'C8' 159
DIAGNOSE code X'CC' 160
DIAGNOSE code X'D4' 163
DIAGNOSE code X'D8' 165
DIAGNOSE code X'DC' 170
DIAGNOSE code X'E4' 184
DIAGNOSE code X'EC' 186
DIAGNOSE code X'F8' 188

process, handshaking 868
product enablement verification, DIAGNOSE code X'27C'
265
program exception

ADRSPACE macro 813
ALSERV macro 830
APPCVM

CONNECT 428
QRYSTATE 450
RECEIVE 460
SENDCNF 469
SENDCNFD 474
SENDDATA 486
SENDERR 498
SENDREQ 503
SETMODFY 507
SEVER 517

DIAGNOSE code 7
DIAGNOSE code X'00' 16
DIAGNOSE code X'04' 19
DIAGNOSE code X'08' 22
DIAGNOSE code X'0C' 23
DIAGNOSE code X'10' 25
DIAGNOSE code X'14' 35
DIAGNOSE code X'210' 196
DIAGNOSE code X'238' 200
DIAGNOSE code X'248' 202
DIAGNOSE code X'250' 213
DIAGNOSE code X'254' 1053
DIAGNOSE code X'258' 221
DIAGNOSE code X'260' 223

1130 z/VM: 7.3 CP Programming Services

program exception (continued)
DIAGNOSE code X'268' 225
DIAGNOSE code X'26C' 262
DIAGNOSE code X'27C' 267
DIAGNOSE code X'288' 268
DIAGNOSE code X'2A4' 1089
DIAGNOSE code X'2AC' 1092
DIAGNOSE code X'2E0' 290
DIAGNOSE code X'34' 45
DIAGNOSE code X'3C' 46
DIAGNOSE code X'4C' 50
DIAGNOSE code X'5C' 61
DIAGNOSE code X'64' 79
DIAGNOSE code X'68' 88, 1002
DIAGNOSE code X'70' 82
DIAGNOSE code X'74' 83
DIAGNOSE code X'84' 104
DIAGNOSE code X'88' 110
DIAGNOSE code X'8C' 111
DIAGNOSE code X'90' 113
DIAGNOSE code X'98' 132
DIAGNOSE code X'9C' 133
DIAGNOSE code X'A0' 135
DIAGNOSE code X'A4' 142
DIAGNOSE code X'A8' 147
DIAGNOSE code X'B0' 150
DIAGNOSE code X'B4' 152
DIAGNOSE code X'B8' 154
DIAGNOSE code X'BC' 157
DIAGNOSE code X'C8' 159
DIAGNOSE code X'CC' 160
DIAGNOSE code X'D4' 110, 163
DIAGNOSE code X'D8' 165
DIAGNOSE code X'DC' 170
DIAGNOSE code X'E0' 172
DIAGNOSE code X'E4' 184
DIAGNOSE code X'EC' 186
DIAGNOSE code X'F8' 188
IUCV

ACCEPT 322, 527
CONNECT 329, 532
DECLARE BUFFER 332, 536
DESCRIBE 335, 539
INTERRUPT POLL 338
IPOLL 542
PURGE 343
QUERY 344, 546
QUIESCE 346
RECEIVE 351
REJECT 354
REPLY 358
RESUME 363
RETRIEVE BUFFER 365, 548
SEND 370
SET CONTROL MASK 373, 552
SET MASK 375, 555
SEVER 377, 559
TEST COMPLETION 382, 564
TEST MESSAGE 383, 566

MAPMDISK macro 840
PFAULT macro 869
REFPAGE macro 878
VMUDQ macro 893

protection exception

protection exception (continued)
APPCVM CONNECT 428
APPCVM QRYSTATE 450
APPCVM RECEIVE 461
APPCVM SENDCNF 469
APPCVM SENDCNFD 474
APPCVM SENDDATA 486
APPCVM SENDERR 498
APPCVM SENDREQ 503
APPCVM SETMODFY 508
APPCVM SEVER 517
DIAGNOSE code X'254' 1053
general definition 8
IUCV ACCEPT 322, 528
IUCV CONNECT 329, 532
IUCV DECLARE BUFFER 333, 536
IUCV DESCRIBE 336, 539
IUCV PURGE 343
IUCV QUERY 546
IUCV QUIESCE 347
IUCV RECEIVE 351
IUCV REJECT 354
IUCV REPLY 358
IUCV RESUME 363
IUCV SEND 370
IUCV SET CONTROL MASK 373, 552
IUCV SET MASK 375, 555
IUCV SEVER 378, 559
IUCV TEST COMPLETION 382, 564

protection mechanisms, storage 9
protocol

IUCV 311
VMCF

IDENTIFY 1009
SEND 1007
SEND/RECV 1007
SENDX 1008

pseudo timer, DIAGNOSE code X'0C' 23
PSW stealing programs 920
PURGE

IUCV function
condition codes 341
format 340
parameter descriptions 340
parameter list format 341
program exceptions 343
return codes 343
using 340

Spool system service function 763
PURGESEG function, DIAGNOSE code X'64' 65

Q
QRYSTATE function of APPCVM

condition codes 448
description 447
format 447
input parameter list format 447
output parameter list format 448
parameter description 447
program exceptions 450
state changes 450

QUERY
ADRSPACE function 826

Index 1131

QUERY (continued)
IUCV function

condition codes 344
format 344
program exceptions 344
using 344

IUCV function used with APPC/VM
condition codes 545
format 543
parameter description 543
parameter list format 544
program exceptions 546
using 543

query GUEST trace status with DIAGNOSE code X'EC' 184
query POSIX IDs, DIAGNOSE code X'2A0' 1076
query spool file characteristics with DIAGNOSE code X'BC'
154
QUIESCE

IUCV function
condition codes 346
connection quiesced interrupt 347
format 345
parameter descriptions 345
parameter list format 346
return codes 346
using 345

VMCF function 1011, 1015

R
R2 APAR VM51599 1057
RACF (Resource Access Control Facility) 589
read next print spool file block 27
read next punch spool file block 28
read next spool file buffer 26
read symbol table, DIAGNOSE code X'90' 112
read system dump spool file, X'34' 44
read the last spool file buffer 30
read the next monitor spool file block 29
read the next monitor spool record 30
READ-SFBLOK function 757
READ-SPLINK function of Spool system service 760
READ-XAB function of Spool system service 759
read/write to DASD 205
reading IUCV and APPV/VM parameter lists 395
reading spool file blocks on the system spool file queues,
DIAGNOSE code X'D8' 163
reading the virtual printer XAB 150
real CPU identification, DIAGNOSE code X'218' 196
real device feature code 41, 191
real device model 191
real device model number 41
real device type 41, 191
real device type class 41, 191
real I/O, DIAGNOSE code X'98' 124
reason codes for DIAGNOSE code X'94' 123
reason codes from *IDENT, sever 734
reason codes, SEVER

identify system service (*IDENT) 734
RECEIVE

IUCV function
condition codes 350
format 348
parameter descriptions 348

RECEIVE (continued)
IUCV function (continued)

parameter list format 349
program exceptions 351
return codes 351
using 348

VMCF function 1013, 1015
receive accounting records 698
RECEIVE function of APPCVM

addressing for 453
completion 462
condition codes 454
description 451
format 451
from communication partner 463
input parameter list format 453
mapped with APPC 580
output parameter list format 456
overview 393
parameter descriptions 451
program exceptions 460
return codes 454
state changes 461
state checks 461

receive signals from the signal system service 747
Receive state 388, 393, 403, 404
RECEIVE_AND_WAIT, APPC verb

abend conditions 582
mapped with APPC/VM 580
parameters 580
state changes 582

receiving data using APPC/VM 393
reentrant program example, data spaces 808
REFPAGE macro

DECLARE function 879
INFORMB function 880
INFORML function 886
list of functions 877
notifying CP of future reference patterns 805

REJECT
IUCV function

condition codes 353
format 352
parameter descriptions 352
parameter list format 353
program exceptions 354
return codes 353
using 352

VMCF function 1011, 1015
relating APPC with APPC/VM 571
release pages, DIAGNOSE code X'10' 24
REMOVE

ALSERV function 835
MAPMDISK function 857

remove the block I/O environment 211
repeat the active file a specified number of times 28
REPLY

IUCV function
condition codes 357
format 355
message complete interrupt 358
parameter descriptions 355
parameter list format 356
return codes 358

1132 z/VM: 7.3 CP Programming Services

REPLY (continued)
IUCV function (continued)

using 355
VMCF function 1013, 1015

reporting symptom records 975
repository, saving the message 159
REQUEST_TO_SEND_RECEIVED parameter (APPC)

of CONFIRM 576
of RECEIVE_AND_WAIT 580
of SEND_DATA 583
of SEND_ERROR 584

REQUEST_TO_SEND, APPC verb
abend conditions 582
mapped with APPC/VM 582
parameters 582
state changes 582

request-to-send interrupts 389
required VMCPARM fields for VMCF functions 1017
reserved DIAGNOSE codes 1029
RESET REFERENCE BIT (RRB) instruction 908, 916
Reset state 388, 403, 404
Resource Access Control Facility (RACF) 589
resource access verification 589
resource ID

connecting to virtual machine 731
on CONNECT request to *IDENT 530
using *IDENT 729

RESOURCE ID field
of CONNECT request (*IDENT) 729

RESOURCE parameter (APPC)
of ALLOCATE 575
of CONFIRM 576
of CONFIRMED 577
of DEALLOCATE 578
of RECEIVE_AND_WAIT 580
of REQUEST_TO_SEND 582
of SEND_DATA 583
of SEND_ERROR 584

resource pool list, STHYI instruction 964
resource pool member list, STHYI instruction 969
resources

managing local, global, or system 393
managing or revoking local, global, or system 729
requesting to manage - how *IDENT processes 731
revoking your own 394
virtual machines connecting to 394

response examples, notation used in xxxvii
restart an active file at the beginning 29
results of exit with error from DIAGNOSE code X'64' 78, 79
RESUME

IUCV function
condition codes 363
connection resumed interrupt 364
parameter descriptions 362
parameter list format 362
program exceptions 363
return codes 363
using 362

VMCF function 1011, 1015
RESUME SUBCHANNEL (RSCH) instruction 917, 922
RETRIEVE BUFFER function of IUCV

condition codes 365
format 365
program interruptions 365

RETRIEVE BUFFER function of IUCV (continued)
used in APPC/VM

completion 549
condition codes 548
format 548
program exceptions 548
state changes 548
using 548

using 365
retrieve device information, DIAGNOSE code X'210' 189
retrieve next file descriptor 34
return codes

ADRSPACE
CREATE function 816
DESTROY function 819
ISOLATE function 821
PERMIT function 825
QUERY function 828

ALSERV
ADD function 833
REMOVE function 836

APPC/VM 573
APPCVM

CONNECT 424
overview 396, 397
QRYSTATE 448
RECEIVE 454
SENDCNF 467
SENDCNFD 472
SENDDATA 480
SENDERR 495
SENDREQ 502
SETMODFY 506
SEVER 514

DIAGNOSE codes
general description 9
X'14' 35
X'18' 37
X'20' 39
X'218' 198
X'250' 211
X'254' 1052
X'28' 43
X'2A8' 282
X'2AC' 1090
X'34' 45
X'64' 78, 79
X'68' 1002, 1017, 1021
X'74' 83
X'7C' 87
X'84' 103
X'88' 109
X'8C' 111
X'94' 120
X'94' for symptom records 122
X'98' 124–126
X'A4' 141, 142
X'A8' 147
X'B4' 151
X'B8' 153
X'BC' 157
X'C8' 158
X'CC' 159
X'D0' 161

Index 1133

return codes (continued)
DIAGNOSE codes (continued)

X'D4' 163
X'DC' 169
X'E4' 182
X'F8' 188

IUCV
ACCEPT 322
CONNECT 328
DCLBFR function 536
DECLARE BUFFER 332
DESCRIBE 335
INTERRUPT POLL 338
IPOLL 542
IUCV ACCEPT 527
IUCV CONNECT 531
PURGE 343
QUIESCE 346
RECEIVE 351
REJECT 353
REPLY 358
RESUME 363
SEND 369
SET CONTROL MASK 373
SETMASK 375
SEVER 377, 559
TEST COMPLETION 382, 564

MAPMDISK
DEFINE function 848
IDENTIFY function 855
REMOVE function 858
SAVE function 863

multiple block I/O 724
PFAULT

CANCEL function 871
TOKEN function 876

REFPAGE
INFORMB function 883
INFORML function 887

single block I/O 722
VMCF 1021
VMUDQ

LSTMDISK function 893
return minidisk real device information, DIAGNOSE code
X'E4' 173
RETURN_CODE parameter (APPC)

of ALLOCATE 575
of CONFIRM 576
of DEALLOCATE 578
of RECEIVE_AND_WAIT 581
of SEND_DATA 583
of SEND_ERROR 584

RETURN_CONTROL (WHEN_SESSION_ALLOCATED)
parameter (APPC) 575
revoking

resources you do not own 394
your own resources 394

RRB (RESET REFERENCE BIT) instruction 908, 916
RSCH (RESUME SUBCHANNEL) instruction 917, 922

S
sample programs using the DASD Block I/O system service
995

SAVE function of MAPMDISK macro 860
save message repository, DIAGNOSE code X'CC' 159
save-list format, MAPMDISK macro 862
saved segment manipulation with DIAGNOSE code X'64' 62
saving and loading an image library file, DIAGNOSE code
X'74' 82
second level SVC 76, DIAGNOSE code X'48' 47
sections of a symptom record 975
security

CP interface to external security manager
*RPI system service 591
ACI bits 607
ACI bits, setting of 608
ACI Security bits and calling the ESM 609
ACIPARMS formats 637
ACIPARMS general format 620
called by ESM 600
commands that support calls to ACI 607
data area 604
DIAGNOSE code X'A0' processor 597
DIAGNOSE codes that support calls to ACI 607
event, definition 607
HCPA0LBK general format 615
HCPA0UBK general format 618
HCPRPD exit module 597
HCPRPE module 600
HCPRPF module 604
HCPRPG module 604
HCPRPI exit module 591
HCPRPL module 604
HCPRPP module 604
HCPRPW exit module 594
HCPRWA module 605
IUCV interface 591
logon password prompting routine 596
logon password verification routine 594
overview 590
request services from ESM 592
security process 590
work area 605

external security manager
calling 609
CP interface 589

security considerations, IUCV 301
security subfield in an attach FMH5 for VM 439
SEGEXT function (64-bit), DIAGNOSE code X'64' 73
SEGEXT function operation codes 68
SEGEXT function, DIAGNOSE code X'64' 66
SEGEXT function, format of user-supplied areas 66
select a file for processing and read the next spool buffer 31
SELECT function of spool system service 752
SELECT function of Spool system service 764
select the next file not previously selected 31
SEND

IUCV function
condition codes 369
format 366
message pending interrupt 370
parameter descriptions 367
parameter list format 368
program exceptions 370
return codes 369
to the DASD block I/O system service
721

1134 z/VM: 7.3 CP Programming Services

SEND (continued)
IUCV function (continued)

to the signal system service 747
to the spool system service 752, 764
using 366

protocol, VMCF 1007
Spool system service function 762
VMCF function 1012, 1015

send signals to the signal system service 747
Send state 388, 393, 403, 404
SEND_DATA, APPC verb

abend conditions 583
mapped with APPC/VM 582
parameters 582
state changes 583

SEND_ERROR, APPC verb
abend conditions 585
mapped with APPC/VM 583
parameters 584
state changes 585

SEND/RECV function of VMCF
protocol, VMCF 1007

SENDCNF function of APPCVM
completion 470
condition codes 467
description 465
format 465
input parameter list format 466
mapped with APPC 576, 578–580
output parameter list format 468
parameter descriptions 465
program exceptions 469
return codes 467
state changes 470
state checks 469
to communication partner 470

SENDCNFD function of APPCVM
completion 474
condition codes 472
description 471
format 471
input parameter list format 471
mapped with APPC 577
output parameter list format 473
parameter descriptions 471
program exceptions 474
return codes 472
state changes 474
state checks 474
to communication partner 474

SENDDATA function of APPCVM
addressing for 479
completion 488
condition codes 480
description 475
format 475
input parameter list format 477
logical record format 478
mapped with APPC 579, 582
message pending interrupt 489
multiple 454, 480
output parameter list format 482
overview 393
parameter descriptions 475

SENDDATA function of APPCVM (continued)
program exceptions 486
return codes 480
setting up data 478
specifying buffers 479
state checks and changes 486
to communication partner 488

SENDERR function of APPCVM
addressing for 493, 512
completion 499
condition codes 495
description 490
error codes 494
format 490
input parameter list format 492
mapped with APPC 583
output parameter list format 496
parameter descriptions 490
program exceptions 498
return codes 495
specifying log data 493
state checks and changes 499
to communication partner 500

sending data
details 478
overview 393

SENDREQ function of APPCVM
completion 504
condition codes 502
description 501
format 501
input parameter list format 501
interrupt 504
mapped with APPC 582
output parameter list format 503
parameter descriptions 501
program exceptions 503
return codes 502
state changes 503
state checks 503
to communication partner 504

SENDREQ interrupts
format 504

SENDX function of VMCF
protocol, VMCF 1008

sense codes, currently-defined APPC/VM 403
sequence of functions in IUCV 302, 303
servers, communications

considerations for 441
set alternate user ID, DIAGNOSE code X'D4' 161
SET commands with IUCV options 737
SET CONTROL MASK function of IUCV

description 372
format 372
output from 373
parameter descriptions 372
parameter list format 372
program interruptions 373
return codes 373
used in APPC/VM

completion 552
condition codes 551
format 550
parameter descriptions 550

Index 1135

SET CONTROL MASK function of IUCV (continued)
used in APPC/VM (continued)

parameter list format 551
program exceptions 552
state changes 552
using 550

using 372
set language, DIAGNOSE code X'C8' 158
SET MASK function of IUCV

completion status (condition codes) 375
format 374
parameter descriptions 374
parameter list format 375
program interruptions 375
return codes 375
used in APPC/VM

completion 555
condition codes 554
format 553
parameter descriptions 553
parameter list format 554
program exceptions 555
state changes 555
using 553

using 374
set POSIX IDs - security values, DIAGNOSE code X'280'
1063
SET STORAGE KEY (SSK) instruction 908, 916
SET SYSTEM MASK (SSM) instruction 908
set timezone interrupt flag, DIAGNOSE code X'274' 264
set-POSIX-IDs services, DIAGNOSE code X'29C' 1069
SETMODFY function of APPCVM

completion 508
condition codes 506
description 505
format 505
input parameter list format 506
output parameter list format 507
parameter descriptions 505
program exceptions 507
return codes 506
state checks and changes 508
to communication partner 508

setting for optional parameters on APPC/VM functions 395
sever codes, APPC/VM 399, 513
SEVER function of APPCVM

completion 518
condition codes 514
description 509
error log GDS variable format 513
external interrupt format 519
format 509
from communication partner 519
input parameter list format 511
mapped with APPC 578
output parameter list format 515
overview 393
parameter descriptions 509
program exceptions 517
return codes 514
revoking your own resources 394
sever codes 513
specifying log data 512
state checks and changes 518

SEVER function of IUCV
*IDENT sever reason codes 734
condition codes 377
connection severed interrupt 378
format 376
from the DASD block I/O system service
720
from the error logging system service 727
from the signal system service 748
from the symptom system service 771
parameter descriptions 376
parameter list format 377
program exceptions 377
return codes 377
used in APPC/VM

completion 559
condition codes 558
description 556
external interrupt 560
external interrupt format 519
format 556
overview 393
parameter descriptions 556
parameter list format 557
programming exceptions 559
return codes 559
state checks and state changes 559
to revoke a resource 394
using 556

using 376
sever interrupts

format 519
from IUCV SEVER 393

SEVER reason codes
identify system service (*IDENT) 734

sever reason codes from *IDENT 734
Sever state 388, 403, 405
severing connection to your partner

using APPC/VM 393
using APPCVM SEVER 393
using IUCV SEVER 393

SFBLOK 986
shared functions that can be used in CMS, IUCV 521
shared functions that should be avoided in CMS 521
SHUTDOWN command 698
signal system service (*SIGNAL)

connecting with 745
establishing communications with 745
leaving 748
receiving signals 747
sending signals 747

single block I/O 721
single-byte character set (SBCS) 58
SIO (START I/O) instruction 908, 915, 922
SIOF (START I/O FAST RELEASE) instruction 908, 915, 922
size of messages 478
SMSG command 1025
SNA (System Network Architecture)

relationship to APPC and APPC/VM 387
SNA/CCS (System Network Architecture/Console

Communication Services)
accounting record 705

source code, adding your own 716
Special Message Facility

1136 z/VM: 7.3 CP Programming Services

Special Message Facility (continued)
buffer length 1025
description 1025
introduction 1025
receiving messages through IUCV 1025
receiving messages through VMCF 1025
sending messages 1025
SMSG command 1025

special message flag (VMCPSMSG)
turning on or off 1025

special-operation exception
DIAGNOSE code X'68' 1003
DIAGNOSE code X'7C' 88
DIAGNOSE code X'A0' 135

SPECIFIC option of VMCF AUTHORIZE 1010
specification exceptions

ADRSPACE macro 813
ALSERV macro 830
APPCVM CONNECT 428
APPCVM QRYSTATE 450
APPCVM RECEIVE 461
APPCVM SENDCNF 469
APPCVM SENDCNFD 474
APPCVM SENDDATA 486
APPCVM SENDERR 498
APPCVM SENDREQ 503
APPCVM SETMODFY 508
APPCVM SEVER 517
DIAGNOSE code X'00' 16
DIAGNOSE code X'04' 19
DIAGNOSE code X'08' 22
DIAGNOSE code X'0C' 24
DIAGNOSE code X'10' 25
DIAGNOSE code X'14' 36
DIAGNOSE code X'210' 196
DIAGNOSE code X'238' 201
DIAGNOSE code X'248' 202
DIAGNOSE code X'250' 214
DIAGNOSE code X'254' 1054
DIAGNOSE code X'260' 223
DIAGNOSE code X'268' 225
DIAGNOSE code X'26C' 262
DIAGNOSE code X'27C' 267
DIAGNOSE code X'288' 268
DIAGNOSE code X'2A4' 1090
DIAGNOSE code X'2C4' 1096
DIAGNOSE code X'2E0' 290
DIAGNOSE code X'34' 45
DIAGNOSE code X'4C' 50
DIAGNOSE code X'5C' 61
DIAGNOSE code X'64' 80
DIAGNOSE code X'70' 82
DIAGNOSE code X'74' 84
DIAGNOSE code X'7C' 88
DIAGNOSE code X'88' 110
DIAGNOSE code X'8C' 112
DIAGNOSE code X'90' 113
DIAGNOSE code X'98' 132
DIAGNOSE code X'A0' 135
DIAGNOSE code X'A4' 142
DIAGNOSE code X'A8' 147
DIAGNOSE code X'B0' 150
DIAGNOSE code X'B4' 152
DIAGNOSE code X'B8' 154

specification exceptions (continued)
DIAGNOSE code X'BC' 158
DIAGNOSE code X'C8' 159
DIAGNOSE code X'CC' 160
DIAGNOSE code X'D4' 163
DIAGNOSE code X'D8' 165
DIAGNOSE code X'E0' 172
DIAGNOSE code X'E4' 184
DIAGNOSE code X'EC' 186
DIAGNOSE code X'F8' 188
general definition 8
IUCV ACCEPT 322, 528
IUCV CONNECT 329, 532
IUCV DECLARE BUFFER 332, 536
IUCV DESCRIBE 336, 539
IUCV INTERRUPT POLL 338, 542
IUCV PURGE 343
IUCV QUERY 546
IUCV QUIESCE 346
IUCV RECEIVE 351
IUCV REJECT 354
IUCV REPLY 358
IUCV RESUME 363
IUCV SEND 370
IUCV SET CONTROL MASK 552
IUCV SET MASK 555
IUCV SEVER 378, 559
IUCV TEST COMPLETION 382, 564
MAPMDISK macro 841
PFAULT macro 870
REFPAGE macro 878
VMUDQ macro 894

specifying a PIP variables 422
specifying log data 493, 512
SPLINK 990
SPO (storage-protection override) 10
spool file external attribute buffer manipulation, DIAGNOSE
code X'B8' 152
spool file manipulation for input, DIAGNOSE code X'14' 25
spool file opening and characteristic querying with
DIAGNOSE code X'BC' 154
spool file origin information, DIAGNOSE code X'F8' 186
spool system service (*SPL)

AFP printing interface 750
CLOSE function 755
DISABLE function 761
ENABLE function 761
generic interface 763
MESSAGE function 756
NOTIFY function 763
PURGE function 763
READ-SFBLOK function
757
READ-SPLINK function 760
READ-XAB function 759
SELECT function 752
SEND function 762

SR parameter of DIAGNOSE code X'94' 115
SRDW parameter

SRDW option of DIAGNOSE code X'94' 116
SRDW parameter of DIAGNOSE code X'94' 116
SSCH (START SUBCHANNEL) instruction 917, 922
SSI Diagnose, DIAGNOSE X'2CC' 287
SSK (SET STORAGE KEY) instruction 908, 916

Index 1137

SSM (SET SYSTEM MASK) instruction 908
standard DASD I/O, DIAGNOSE code X'18' 36
START I/O (SIO) instruction 908, 915, 922
START I/O FAST RELEASE (SIOF) instruction 908, 915, 922
START SUBCHANNEL (SSCH) instruction 917, 922
starting a conversation with APPC/VM functions 392
starting an APPC conversation 571
state changes

ALLOCATE (APPC) 576
APPCVM CONNECT 429
APPCVM QRYSTATE 450
APPCVM RECEIVE 461
APPCVM SENDCNF 469
APPCVM SENDCNFD 474
APPCVM SENDDATA 486
APPCVM SENDERR 499
APPCVM SENDREQ 503
APPCVM SETMODFY 508
APPCVM SEVER 518
CONFIRM (APPC) 577
CONFIRMED (APPC) 577
DEALLOCATE (APPC) 578
IUCV ACCEPT 528
IUCV DCLBFR 536
IUCV RTRVBFR 548
RECEIVE_AND_WAIT (APPC) 582
REQUEST_TO_SEND (APPC) 582
SEND_DATA (APPC) 583
SEND_ERROR (APPC) 585

state table for APPC/VM error conditions 407
state table for APPC/VM functions 403
state table for coordinated resource recovery, APPC/VM 405
state table, APPC/VM 403
states, address space 812, 820
states, APPC/VM

backout_received 406
backout_required 406
Confirm 404
Connect 404
defer_receive 405
defer_sever 405
prepare_received 405
Receive 393, 404
Reset 404
Send 393, 404
Sever 405
table for error conditions 407
unsolicited_request_commit_ received 406

STATUS function, logical device support facility
DIAGNOSE code X'7C' subcode X'00000006' 90

STHYI instruction
common header section 939
CP and IFL capacity information 928
designated guest information 957
designated resource pool information 966
guest list 955
hypervisor environment information 940
resource pool list 964
resource pool member list 969
special conditions, exceptions, and usage notes 971

storage protection mechanisms
key-controlled protection

fetch-protection override (FPO) 9
host access-list-controlled protection 10

storage protection mechanisms (continued)
key-controlled protection (continued)

host page protection 10
low-address protection (LAP) 10
storage-protection override (SPO) 10

storage-protection override (SPO) 10
storage, examine host 16
store extended-identification code, DIAGNOSE code X'00' 13
STORE SUBCHANNEL (STSCH) instruction 916, 921
STORE THEN OR SYSTEM MASK (STOSM) instruction 908
STOSM (STORE THEN OR SYSTEM MASK) instruction 908
STSCH (STORE SUBCHANNEL) instruction 916, 921
subcode X'0000' of DIAGNOSE code X'14' 26
subcode X'0004' of DIAGNOSE code X'14' 27
subcode X'0008' of DIAGNOSE code X'14' 28
subcode X'000C' of DIAGNOSE code X'14' 28
subcode X'0010' of DIAGNOSE code X'14' 28
subcode X'0014' of DIAGNOSE code X'14' 29
subcode X'0018' of DIAGNOSE code X'14' 29
subcode X'001C' of DIAGNOSE code X'14' 29
subcode X'0020' of DIAGNOSE code X'14' 30
subcode X'0024' of DIAGNOSE code X'14' 30
subcode X'0028' of DIAGNOSE code X'14' 30
subcode X'002C' of DIAGNOSE code X'14' 31
subcode X'0FFE' of DIAGNOSE code X'14' 31
subcode X'0FFF' of DIAGNOSE code X'14' 34
summaries

state table 403, 405
SVC 76, second level with DIAGNOSE code X'48' 47
symptom records

and VMDUMP, DIAGNOSE code X'94' 113
applications using DIAGNOSE code X'94' SR option 976
description 975
DIAGNOSE code X'94' 975
format 975
processing return codes, DIAGNOSE code X'94' 122
reporting 975
sections 975
SR option of DIAGNOSE code X'94' 115
usage notes from DIAGNOSE code X'94' 119

symptom system service (*SYMPTOM)
disconnecting 772
IUCV ACCEPT 771
IUCV SEVER 771

SYNC_LEVEL parameter (APPC)
of ALLOCATE 575

synchronous block I/O parameter list (HCPSBIOP) 136
synchronous general I/O parameter list (HCPSGIOP) 143
synchronous I/O

370, DIAGNOSE code X'20' 38
operations, DIAGNOSE code X'270' 262
operations, DIAGNOSE code X'A4' 135
operations, DIAGNOSE code X'A8' 143

SYNCPT synchronization level 414
syntax diagrams, how to read xxxv
SYSEVENT Query Virtual Server (QVS), DIAGNOSE code
X'2E0' 289
system dump spool file, DIAGNOSE code X'34' 44
system information, DIAGNOSE code X'26C' 225
System Network Architecture (SNA)

relationship to APPC and APPC/VM 387
system resource

managing 393, 729
virtual machines connecting to 394

1138 z/VM: 7.3 CP Programming Services

system service, CP
access verification (*RPI) 589
account (*ACCOUNT) 697
asynchronous CP command response (*ASYNCMD) 717
DASD block I/O (*BLOCKIO) 719
error logging (*LOGREC) 727
identify (*IDENT) 729
IUCV communication 317
list of user IDs 317
message (*MSG) 737
message all (*MSGALL) 739
sample programs using DASD block I/O (*BLOCKIO)
995
signal (*SIGNAL) 745
spool (*SPL)

AFP printing interface 750
generic interface 763

symptom (*SYMPTOM) 771
system trace file interface, DIAGNOSE code X'E0' 170, 1029

T
TDISK (temporary disk)

accounting record 701
TERMINAL LINESIZE command 59
TERMINATE ALL, logical device support facility function
1027
TERMINATE function, logical device support facility

DIAGNOSE code X'7C' subcode X'00000004' 91
terminology of IUCV macro parameters 306
TEST COMPLETION function of IUCV

condition codes 380
format 379
parameter descriptions 379
parameter list format 380
program exceptions 382
return codes 382
used with APPC/VM

condition codes 563
format 562
parameter descriptions 562
parameter list format 562
program exceptions 564
return codes 564
state changes 564

using 379
TEST I/O (TIO) instruction 908, 915, 922
TEST MESSAGE function of IUCV

condition codes 383
format 383
program exceptions 383
used in APPC/VM

completion 566
condition codes 566
format 566
program exception 566
state changes 566

using 383
TEST PENDING INTERRUPTION (TPI) instruction 916, 922
TEST SUBCHANNEL (TSCH) instruction 916, 921, 922
time slice end, voluntary, DIAGNOSE code X'44' 46
Time-Based Unique Identifiers, DIAGNOSE code X'238' 200
time-of-day clock accounting interface, DIAGNOSE code
X'70' 80

timer, pseudo 23
TIO (TEST I/O) instruction 908, 915, 922
TOD clock accounting interface, DIAGNOSE code X'70' 80
TOKEN function of PFAULT macro 873
TPI (TEST PENDING INTERRUPTION) instruction 916, 922
TPN parameter (APPC)

of ALLOCATE 575
TSAF (Transparent Services Access Facility)

used to revoke a resource 733
TSCH (TEST SUBCHANNEL) instruction 916, 921, 922
two-way data transfer, IUCV 298
TYPE parameter (APPC)

of ALLOCATE 575
of DEALLOCATE 578
of SEND_ERROR 584

types and features for devices, DIAGNOSE code X'24' 40
types of virtual machines

DIAGNOSE code restrictions 5

U
UIDs

X'280' 1063
X'29C' 1070

UNAUTHORIZE function of VMCF 1010, 1015
unmapped page of a data space 805
Unsolicited_Request_Commit_Received conversation state
406
unsolicited_request_commit_received state 406
update directory

for IUCV 301
in-place with DIAGNOSE code X'84' 91

user
accounting record 699, 715

user data field for IUCV CONNECT 530
user doubleword of VMCF 1020
user IDs of CP system services 317
user-initiated accounting records 716
user-supplied areas for FINDSKEL or FINDSEG operation,
format of 70
user-supplied areas for FINDSKEL, FINDSEGA, or FINDNSSA
operation (64-bit), format of 74
user-supplied areas for FINDSPACE operation (64-bit),
format of 73
user-supplied areas for FINDSPACE operation, format of 68
user-supplied areas for SEGEXT function, format of 66
user-supplied output area — 64-bit member list 74
user-supplied output area — member list 71
uses for VM data spaces 798
using a remote macro work area 810
using basic APPC/VM functions 392
using data spaces in your applications 800
using DEFWORKA to force unique macro work areas 809
using DEFWORKA within a nonreentrant program 808
using DEFWORKA within a reentrant program 808

V
validate user authorization, DIAGNOSE code X'88' 105
vestigial status 915, 917, 921
virtual console function, DIAGNOSE code X'08' 19
virtual device class 191
virtual device flag 41, 191

Index 1139

virtual device flags, CP370 986
virtual device status 41, 191
virtual device status, CP370 985
virtual device type 41, 191
virtual device type class 41
virtual disks in storage

accounting record 710
virtual machine

resource usage accounting record 699, 715
virtual machine communication to the spool system service
752
virtual machine group 745
virtual machine information, DIAGNOSE code X'260' 221
virtual machine modes

DIAGNOSE code restrictions 5
virtual machine storage size, DIAGNOSE code X'60' 62
virtual machines, types of

DIAGNOSE code restrictions 5
virtual multiprocessor considerations 308
VM architected area 434, 441
VM communication server area

communication server area, VM 445
VM data spaces

accessing storage 802
adding an ALE to an access list 802
address space identification token (ASIT) 801
coding macros 807
CP macro use considerations 800
created data spaces being shared with other users 797
creating 800
creating a remote work area example 810
creating with ADRSPACE CREATE 801
definition 797
DIAGNOSE code use considerations 800
forcing unique work areas example 809
instance 801
nonreentrant program example 808
overview 797
reentrant program example 808
summary of operations 799
use in applications 800
uses 798

VMBAT mode name 419
VMCF (Virtual Machine Communication Facility)

control functions 1009
data transfer functions 1011
DIAGNOSE code X'68'

data transfer error codes 1023
return codes 1021

external interrupt, X'4001' 1018
functions

AUTHORIZE 1010, 1015
CANCEL 1010, 1015
IDENTIFY 1011, 1015
QUIESCE 1011, 1015
RECEIVE 1013, 1015
REJECT 1011, 1015
REPLY 1013, 1015
RESUME 1011, 1015
SEND 1012, 1015
SEND/RECV 1012, 1015
SENDX 1013, 1015
SETLIMIT 1014, 1015
table of functions 1003

VMCF (Virtual Machine Communication Facility) (continued)
functions (continued)

UNAUTHORIZE 1010, 1015
introduction 1003
invoking functions 1014
protocol

IDENTIFY 1009
SEND 1007
SEND/RECV 1007
SENDX 1008

receiving messages from the special message facility
1025
required VMCPARM fields for VMCF functions 1017
return codes 1021
special message facility 1003
table of functions 1003
user doubleword 1020
using

applications 1004
general considerations 1006
performance considerations 1006
security 1005

VMCMFUNC subcodes 1019
VMCMHDR, VMCF external interrupt message header

VMCMFUNC subcodes 1019
VMCPARM, VMCF parameter list

required fields for VMCF functions 1017
VMDUMP and symptom record service, DIAGNOSE code
X'94' 113
VMINT mode name 419
VMUDQ macro

LSTMDISK function
parameter list 890

volume serial support, DIAGNOSE code X'D0' 160
voluntary time slice end, DIAGNOSE code X'44' 46
voluntary time slice, DIAGNOSE code X'9C' 133
VRDCBLOK DSECT fields 189

W
what are data spaces? 797
WHAT_RECEIVED parameter (APPC)

of RECEIVE_AND_WAIT 581
work areas, macro 837
writing the virtual printer XAB 150

X
X'4001' external interrupt in VMCF 1018
XAB (external attribute buffer)

format 993
XAUTOLOG command

specifying invalid password 698
XC address spaces

primary 799
support 799

XCONFIG ACCESSLIST directory control statement 801
XCONFIG ADDRSPACE directory control statement 800

Z
z/VM

directory

1140 z/VM: 7.3 CP Programming Services

z/VM (continued)
directory (continued)

authorization for IUCV 301
entries in IUCV 301
VMUDQ macro 889

Index 1141

1142 z/VM: 7.3 CP Programming Services

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6272-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: CP Programming Services
	SC24-6272-73, z/VM 7.3 (December 2023)
	SC24-6272-73, z/VM 7.3 (May 2023)
	SC24-6272-73, z/VM 7.3 (September 2022)
	SC24-6272-06, z/VM 7.2 (May 2022)
	SC24-6272-06, z/VM 7.2 (December 2021)
	SC24-6272-05, z/VM 7.2 (July 2021)
	SC24-6272-05, z/VM 7.2 (March 2021)
	SC24-6272-04, z/VM 7.2 (September 2020)

	Part 1. CP DIAGNOSE Instructions
	Chapter 1. The DIAGNOSE Instruction in a Virtual Machine
	Instruction Format
	Macro Format
	Privilege Classes
	Address Translation Modes and Restrictions
	How Addresses Are Processed
	How Address Spaces Are Selected
	How Error Conditions Are Reported
	Access Exceptions
	Condition Codes and Return Codes
	Storage Protection Mechanisms

	DIAGNOSE Codes That Are Not Programming Interfaces

	Chapter 2. The IBM-Supplied DIAGNOSE Codes
	DIAGNOSE Code X'00' – Store Extended-Identification Code
	Usage Notes
	Responses

	DIAGNOSE Code X'04' – Examine Host Storage
	Usage Notes
	Responses

	DIAGNOSE Code X'08' – Virtual Console Function
	Usage Notes
	Responses
	Examples

	DIAGNOSE Code X'0C' – Pseudo Timer
	Usage Notes
	Responses

	DIAGNOSE Code X'10' – Release Pages
	Usage Notes
	Responses

	DIAGNOSE Code X'14' – Input Spool File Manipulation
	Subcode X'0000'—Read the Next Spool File Buffer (Data Record)
	Subcode X'0004'—Read the Next Print Spool File Block
	Subcode X'0008'—Read the Next Punch Spool File Block
	Subcode X'000C'—Order a File to the Front of a Queue
	Subcode X'0010'—Repeat the Active File a Specified Number of Times
	Subcode X'0014'—Restart an Active File at the Beginning
	Subcode X'0018'—Backspace One Record
	Subcode X'001C'—Read the Next Monitor Spool File Block
	Subcode X'0020'—Read the Next Monitor Spool Record
	Subcode X'0024'—Read the Last Spool File Buffer
	Subcode X'0028'—Position a Spool File to the Designated Record
	Subcode X'002C'—Select a File for Processing and Read the Next Spool Buffer
	Subcode X'0FFE'—Select the Next File Not Previously Selected
	Select Next File Not Previously Seen - INIT
	Select Next File Not Previously Seen - Select
	Read to EOF - INIT
	Read to EOF - Select

	Subcode X'0FFF'—Retrieve Next File Descriptor
	Usage Notes
	Responses

	DIAGNOSE Code X'18' – Standard DASD I/O
	Usage Notes
	Responses
	Example

	DIAGNOSE Code X'20' – 370 Synchronous I/O for DIAGNOSE Support
	Usage Notes
	Responses

	DIAGNOSE Code X'24' – Device Type and Features
	Usage Notes
	Rx Information
	Ry Information
	Ry+1 Information

	Responses

	DIAGNOSE Code X'28' – Dynamic Channel Program Modification
	Usage Notes
	Responses

	DIAGNOSE Code X'34' – Read System Dump Spool File
	Usage Notes
	Responses

	DIAGNOSE Code X'3C' – Activate z/VM CP Directory
	Usage Notes
	Responses

	DIAGNOSE Code X'44' – Voluntary Time Slice End
	Usage Notes
	Responses

	DIAGNOSE Code X'48' – Second Level SVC 76
	DIAGNOSE Code X'4C' – Generate Accounting Records
	Usage Notes
	Responses

	DIAGNOSE Code X'54' – Control the Function of the PA2 Key
	Usage Note
	Responses

	DIAGNOSE Code X'58' – 3270 Virtual Console Interface
	Usage Notes
	Responses

	DIAGNOSE Code X'5C' – Error Message Editing
	Usage Notes
	Responses

	DIAGNOSE Code X'60' – Determine Virtual Machine Storage Size
	Responses

	DIAGNOSE Code X'64' – Named Saved Segment Manipulation
	Subcode X'00' — LOADSHR
	Subcode X'04' — LOADNSHR
	Subcode X'08' — PURGESEG
	Subcode X'0C' — FINDSEG
	Subcode X'10' — LOADNOLY
	Subcode X'18' — SEGEXT
	SEGEXT Function Operation Codes
	Opcode X'01' — FINDSPACE
	Opcode X'02' — FINDSKEL
	Opcode X'0C' — FINDSEGA
	Opcode X'0D' — FINDNSSA

	Subcode X'20' — LOADSHR (64-Bit)
	Subcode X'24' — LOADNSHR (64-Bit)
	Subcode X'2C' — FINDSEG (64-Bit)
	Subcode X'38' — SEGEXT (64-Bit)
	Usage Notes
	Responses

	DIAGNOSE Code X'70' – Time-of-Day Clock Accounting Interface
	Usage Notes
	Responses

	DIAGNOSE Code X'74' – Saving and Loading an Image Library File
	Usage Notes
	Responses

	DIAGNOSE Code X'7C' – Logical Device Support Facility
	Usage Notes
	Responses
	Logical Device External Interrupt Code X'2402'
	Logical Device Support Facility Functions
	INITIATE: DIAGNOSE code X'7C' subcode X'00000001'
	ACCEPT: DIAGNOSE code X'7C' subcode X'00000002'
	STATUS: DIAGNOSE code X'7C' subcode X'00000006'
	PRESENT: DIAGNOSE code X'7C' subcode X'00000003'
	TERMINATE: DIAGNOSE code X'7C' subcode X'00000004'
	TERMINATE (All): DIAGNOSE code X'7C' subcode X'00000005'

	DIAGNOSE Code X'84' – Directory Update-in-Place
	Usage Note
	Responses

	DIAGNOSE Code X'88' – Validate User Authorization/Link Minidisk
	Subcode -1 – Verify Authorization to Use DIAGNOSE Code X'88'
	Subcode X'00' – Validate User Authorization
	Subcode X'04' – Link Minidisk
	Subcode X'08' – Validate User Authorization
	Responses

	DIAGNOSE Code X'8C' – Access 3270 Display Device Information
	Usage Notes
	Responses

	DIAGNOSE Code X'90' – Read Symbol Table
	Usage Note
	Responses

	DIAGNOSE Code X'94' – VMDUMP and Symptom Record Service
	Supported Parameters
	Parameters Unique to DIAGNOSE code X'94'

	Dump Address List
	Usage Notes Regarding Dumping a Virtual Machine
	Usage Notes Regarding Dump Address Lists
	Usage Notes Regarding Symptom Records
	Responses

	DIAGNOSE Code X'98' – Real I/O
	LOCK Subfunction
	UNLOCK Subfunction
	SSCH-Real Subfunction
	Block Diagnose X'98' Request
	Diagnose X'98' Multiple Request Block
	LOCK Subfunction FCN Code X'00'
	UNLOCK Subfunction FCN Code X'04'
	RELEASE AND LOCK Subfunction FCN Code X'20'

	Block Diagnose X'98' Request Condition Codes

	Usage Notes
	Responses

	DIAGNOSE Code X'9C' – Voluntary Time Slice Yield
	Usage Notes
	Responses

	DIAGNOSE Code X'A0' – Obtain ACI Information
	Responses

	DIAGNOSE Code X'A4' – Synchronous I/O (Standard CMS Blocksize)
	Synchronous Block I/O Parameter List (HCPSBIOP)
	Block Entries (SBILIST)
	Usage Notes
	Responses

	DIAGNOSE Code X'A8' – Synchronous I/O (for All Devices)
	Synchronous General I/O Parameter List (HCPSGIOP)
	Usage Notes
	Responses

	DIAGNOSE Code X'B0' – Access Re-IPL Data
	Re-IPL Information
	IPL Statement Information
	Usage Notes
	Responses

	DIAGNOSE Code X'B4' – Read/Write/Erase the Virtual Printer XAB
	Responses

	DIAGNOSE Code X'B8' – Spool File XAB Manipulation
	Usage Note
	Responses

	DIAGNOSE Code X'BC' – Open and Query Spool File Characteristics
	Usage Note
	Responses

	DIAGNOSE Code X'C8' – Set Language
	Responses

	DIAGNOSE Code X'CC' – Save Message Repository
	Responses

	DIAGNOSE Code X'D0' – Volume Serial Support
	Usage Note
	Responses

	DIAGNOSE Code X'D4' – Set Alternate User ID
	Responses

	DIAGNOSE Code X'D8' – Read Spool File Blocks on System Queues
	Responses

	DIAGNOSE Code X'DC' – Control Application Monitor Record Collection
	Usage Notes
	Responses

	DIAGNOSE Code X'E0' – System Trace File Interface
	Usage Notes
	Responses
	Content and Format of Trace Blocks

	DIAGNOSE Code X'E4' – Return Minidisk Information/Define Full-Pack Overlay
	Function X'00' and Function X'01'
	Function X'02'
	Function X'03'
	Usage Notes
	Responses

	DIAGNOSE Code X'EC' – Query GUEST Trace Status
	Responses

	DIAGNOSE Code X'F8' – Spool File Origin Information
	Usage Notes
	Responses

	DIAGNOSE Code X'210' – Retrieve Device Information
	Virtual/Real Device Characteristics Block
	Usage Notes
	Responses

	DIAGNOSE Code X'218' – Retrieve Real CPU Identification
	Usage Notes
	Responses
	Examples

	DIAGNOSE Code X'238' – Time-Based Unique Identifiers
	Usage Notes
	Responses

	DIAGNOSE Code X'248' – Copy-To-Primary Service
	Usage Note
	Responses

	DIAGNOSE Code X'250' – Block I/O (Standard Blocksize)
	Initialize Block I/O to a Device
	Read/Write to DASD
	Format of a Block I/O Entry
	Status Codes

	Remove the Block I/O Environment
	Responses
	Block I/O External Interruption

	DIAGNOSE Code X'258' – Page-Reference Services
	Page-Reference Services
	Page-Fault-Token Function
	Comparison and Selection Mask Example
	Usage Notes

	Page-Fault-Cancel Function
	Page-Reference-Inform Function
	List Form
	Block Form

	DIAGNOSE Code X'260' – Access Certain Virtual Machine Information
	Subcode X'00000000'
	Subcode X'00000004'
	Subcode X'00000008'
	Subcode X'0000000C'
	Subcode X'00000010'
	Responses

	DIAGNOSE Code X'268' – 370 Accommodation Services
	Subcode 0 — Convert a BC-mode or mapped PSW to EC mode
	Responses

	DIAGNOSE Code X'26C' – Access Certain System Information
	Subcode X'00000004'—Return the BYUSER ID For a Given User ID
	Subcode X'00000008'—Return Virtual LAN System Information
	Subcode X'0000000C'—Return Controller List
	Subcode X'00000010'—Return Controller Information
	Subcode X'00000014'—Return Guest LAN List
	Subcode X'00000018'—Return Guest LAN Information
	Subcode X'0000001C'—Return Virtual Switch List
	Subcode X'00000020'—Return Virtual Switch Information
	Subcode X'00000024'—Return Virtual Port, Virtual NIC or HiperSockets Logical Port Information
	Subcode X'00000030'—MAC Services
	Responses

	DIAGNOSE Code X'270' – Pseudo Timer Extended
	Usage Note
	Responses

	DIAGNOSE Code X'274' – Set Timezone Interrupt Flag
	Usage Notes

	DIAGNOSE Code X'27C' –Product Enablement Verification
	Usage Note
	Responses

	DIAGNOSE Code X'288' - Control Virtual Machine Time Bomb
	Usage Notes
	Responses

	DIAGNOSE Code X'290' – Perform Privileged Spool Functions
	Subcode X'0000' – Fetch Current Page of Open Spool File
	Usage Note
	Responses

	Subcode X'0004' – Fetch XAB Data from Virtual Printer
	Usage Note
	Responses

	DIAGNOSE Code X'2A8' – Network Diagnose
	Operation code X'00' - Query Interface
	Operation code X'01' - Establish Device Connection
	Operation code X'02' - Send Data Request
	Network Parameter List (NETPL)
	Data Request Block (DRB)

	Operation code X'03' - Receive Data Request
	Operation code X'04' - Multicast MAC Registration
	Operation code X'05' - Network Device Options
	Device Options Parameter List (DOPL)
	DOPL Response Area

	Responses

	DIAGNOSE Code X'2CC' – SSI Interface
	Responses
	Function Code 0: Obtain Local System SSI Identifiers
	Function Code 1: Query SSI Membership

	DIAGNOSE Code X'2E0' – SYSEVENT Query Virtual Server (QVS)
	Usage Notes
	Responses

	DIAGNOSE Code X'2FC' – Obtain Certain Guest Performance Data
	Responses

	Part 2. The Inter-User Communications Vehicle
	Chapter 3. IUCV Overview
	How Addresses Are Processed
	IUCV Paths
	IUCV Messages
	Message Data Transfer
	Message Identification

	IUCV External Interrupts
	Avoiding IUCV External Interrupts

	Security Considerations
	Virtual Machine-to-Virtual Machine Communication
	Using Data in a Buffer
	Using Data in a Parameter List
	Using Control Paths
	Invoking IUCV Functions

	General Description of IUCV Functions
	Virtual MP Considerations for IUCV Applications
	IUCV in a Distributed Environment

	Chapter 4. IUCV Protocols
	Chapter 5. IUCV Function Descriptions
	CP System Services
	ACCEPT Function
	CONNECT Function
	DECLARE BUFFER Function
	DESCRIBE Function
	INTERRUPT POLL Function
	PURGE Function
	QUERY Function
	QUIESCE Function
	RECEIVE Function
	REJECT Function
	REPLY Function
	RESUME Function
	RETRIEVE BUFFER Function
	SEND Function
	SET CONTROL MASK Function
	SET MASK Function
	SEVER Function
	TEST COMPLETION Function
	TEST MESSAGE Function

	Part 3. The Advanced Program-to-Program Communication/VM
	Chapter 6. Overview of the APPC/VM Assembler Interface
	Overview of APPC/VM Assembler Interface
	Basics of APPC/VM
	APPC/VM Paths
	APPC/VM States
	APPC/VM Interrupts
	Connection Pending External Interrupt
	Message Pending External Interrupt
	Request-to-Send External Interrupt
	Sever External Interrupt
	Connection Complete External Interrupt
	Function Complete External Interrupt

	Invoking APPC/VM Communication Functions
	Using Basic APPC/VM Functions
	Starting a Conversation
	Sending and Receiving Data on the Conversation
	Ending a Conversation
	APPCVM SEVER
	IUCV SEVER

	Managing a Resource
	Revoking a Resource

	Understanding APPC/VM Parameter Lists
	Setting for Optional Parameters
	Parameters Reserved for IBM Use Only
	Reading the Parameter Lists
	Formatting the Parameter List with MF=L
	Registers Altered by APPCVM and IUCV Macro Functions

	Condition Codes and Return Codes
	Condition Codes
	Return Codes

	Virtual MP Considerations for APPC/VM Applications
	APPC/VM Sever, Error, and Sense Codes That You Can Get
	Currently-Defined APPC/VM Sever Codes
	Sever Codes Generated by VM
	Currently-Defined Error Codes
	Currently-Defined Sense Code

	State Table for APPC/VM Functions
	Examples of Basic States
	State Table for Error Conditions

	Chapter 7. APPCVM Macro Functions
	Using the Online HELP Facility for APPCVM Functions
	APPCVM CONNECT
	APPCVM QRYSTATE (Query State)
	APPCVM RECEIVE
	APPCVM SENDCNF (Send Confirm)
	APPCVM SENDCNFD (Send Confirmed)
	APPCVM SENDDATA
	APPCVM SENDERR (Send Error)
	APPCVM SENDREQ (Send Request)
	APPCVM SETMODFY (Set Modify)
	APPCVM SEVER

	Chapter 8. IUCV Macro Functions for Use in APPC/VM
	Shared Functions That Can Be Used in CMS
	Shared Functions That Should Be Avoided in CMS
	Condition Codes and Return Codes for IUCV Macro Functions
	Condition Codes
	Return Codes

	Using the Online HELP Facility for IUCV Macro Functions
	IUCV ACCEPT
	IUCV CONNECT
	IUCV DCLBFR (Declare Buffer)
	IUCV DESCRIBE
	IUCV IPOLL (Interrupt Poll)
	IUCV QUERY
	IUCV RTRVBFR (Retrieve Buffer)
	IUCV SETCMASK (Set Control Mask)
	IUCV SETMASK
	IUCV SEVER
	IUCV TESTCMPL (Test Completion)
	IUCV TESTMSG (Test Message)

	Chapter 9. Migrating Programs from IUCV to APPC/VM
	APPC/VM and IUCV Functions That Work Differently
	IUCV Functions Not Supported on APPC/VM Paths
	APPC/VM Functions Not Supported on IUCV Paths
	Shared APPC/VM and IUCV Functions
	Shared Functions That Can Be Used in CMS
	Shared Functions That Should Be Avoided in CMS

	Chapter 10. APPC Mapped with APPC/VM
	APPC Conversations
	Establishing a Conversation
	APPC/VM Interrupts
	APPC/VM Conversation States
	APPC/VM Return Codes

	APPC Verb Names Mapped to APPC/VM Macro Functions
	APPC ALLOCATE
	APPC CONFIRM
	APPC CONFIRMED
	APPC DEALLOCATE
	APPC FLUSH
	APPC GET_ATTRIBUTES
	APPC PREPARE_TO_RECEIVE
	APPC RECEIVE_AND_WAIT
	APPC REQUEST_TO_SEND
	APPC SEND_DATA
	APPC SEND_ERROR

	Part 4. CP System Services
	Chapter 11. Access Verification System Service (*RPI)
	Using the CP Access Control Interface
	Overview
	HCPRPI Module
	Entry Points HCPRPICN, HCPRPIIL, HCPRPISV, HCPRPIQS, and HCPRPIRM - IUCV Interface
	Entry Point HCPRPIRA - Request Services from the ESM
	Exit from HCPRPI

	HCPRPW Module
	Entry Point HCPRPWEP - Logon Password Verification Routine
	Exit from HCPRPWEP
	Entry Point HCPRPWPR - Logon Password Prompting Routine
	Exit from HCPRPWPR

	HCPRPD Module
	Entry Point HCPRPDEP - DIAGNOSE Code X'A0' Processor
	Return Codes
	Exit from HCPRPD

	HCPRPE Module for handling DIAGNOSE X'A0'
	Entry Point HCPRPEEP - Handle DIAGNOSE Code X'A0' subcodes X'00', X'08', and X'48'
	Entry Point HCPRPEPX - Notify CP of POSIX capabilities
	Entry Point HCPRPESG - Refresh a user's POSIX SGID list

	HCPRPF Module
	HCPRPG Module
	HCPRPL Module
	HCPRPP Module
	Entry Point HCPRPPEN
	Entry Point HCPRPPJN
	Entry Point HCPRPPPC
	Entry Point HCPRPPPS
	Entry Point HCPRPPWC
	Entry Point HCPRPPSC
	SSI join time processing

	HCPRWA Module
	CP Callable Services for the ACI
	Entry Point HCPPWAPF

	Summary of CP Modules and Entry Points
	ACI Security Bits
	Setting the ACI Security Bits
	Checking the Security Bits and Calling the ESM

	HCPDA0 Module for Updating ACI Security Bits
	Entry Point HCPDA0RL - Return ACI Security Bit Settings
	Entry Point HCPDA0UL - Update ACI AUDIT and PROTECT Bits
	Entry Point HCPDA0MC - Update ACI MAC Bits
	HCPA0LBK Control Block
	HCPA0UBK Control Block

	ACIPARMS Control Block
	CP Calls to the ACI
	Generic Command and DIAGNOSE Audit Calls
	Generic Audit Call for CP Commands
	Generic Audit Call for DIAGNOSE Codes

	ACIPARMS Parameter Lists for CP Commands
	AUTOLOG and XAUTOLOG Commands
	AUTOLOG and XAUTOLOG Error Case Audit-Only Call
	CHANGE TO Authorization Call
	CHANGE Command Auditing
	CHANGE Command MAC/AUDIT
	CLOSE TO Command Authorization Call
	COUPLE Command MAC/AUDIT
	COUPLE (COUPLEN) Network Command
	FOR Command MAC/AUDIT
	GIVE (Auditing the Return of a Given Device)
	IPL of a RESTRICTED Segment
	LINK Command Authorization/Audit Call
	LINK Audit-Only Call in Error Processing
	LOGOFF Command
	LOGOFF of an AT Command Guest
	LOGON Command
	LOGON of an AT Command Guest
	MESSAGE Command MAC/AUDIT
	MSGNOH Function MAC/AUDIT
	PURGE Command Audit
	QUERY TAG and TAG QUERY Command MAC/AUDIT
	QUERY RDR/PRT/PUN Command
	SEND Command Audit
	SEND Command Security Label MAC Check
	SMSG Function MAC/AUDIT
	SPOOL TO Command
	SPXTAPE Dumping and Loading of Files
	START Real Printer SECLABEL Authorization Call
	STORE HOST Command
	TAG QUERY Command MAC/AUDIT
	TAG Command MAC/DAC/Audit
	TRANSFER Command Authorization
	TRANSFER Command
	TRSAVE TO Command
	TRSOURCE Command
	TRSOURCE ENABLE Command (VMGROUP)
	VMRELOCATE Command
	VMDUMP TO Command and DIAGNOSE X'94'
	WARNING Command MAC/AUDIT
	XAUTOLOG Command

	ACIPARMS Parameter Lists for DIAGNOSE Codes
	DIAGNOSE Code X'14'
	DIAGNOSE Code X'64'
	DIAGNOSE Code X'68'
	DIAGNOSE Code X'88'
	DIAGNOSE Code X'94' with the TO Option
	DIAGNOSE Code X'B8'
	DIAGNOSE Code X'BC'
	DIAGNOSE Code X'D4'
	DIAGNOSE Code X'E4'
	DIAGNOSE Code X'290'
	PERMIT to Address Space MAC (DIAGNOSE Code X'23C' Subcode X'03')

	ACIPARMS Parameter Lists for System Functions
	APPC CONNECT
	APPC Setting of VMDALTID
	APPC SEVER
	APPCPWVL
	Directory Command Audit-Only Call
	IUCV CONNECT
	IUCV SEVER
	MAINTCCW Audit
	MDISK Command
	POSIX Set ID Functions
	POSIX Group Database Query Function
	POSIX User Database Query Function
	Resource Access Authorization Check
	RSTDSEGt
	SCIF Event Audit
	SCIF Event MAC Check
	SPF_OPEN, SPF_CREATE, SDF_OPEN, SDF_CREATE
	SPF_DELETE and SDF_DELETE audit
	SNIFFER_MODE Function
	UTLPRINT Function

	Chapter 12. Account System Service (*ACCOUNT)
	Establishing Communication
	Receiving Accounting Records
	Disconnecting from the Accounting System Service
	Accounting Record Formats
	Accounting Records for Virtual Machine Resource Usage (Record Type 1)
	Accounting Records for Dedicated Devices (Record Type 2)
	Accounting Records for Temporary Disk Space (Record Type 3)
	Accounting Records for Journaling (Record Types 04, 05, 06, 08, and 0I)
	Accounting Records for SNA/CCS (Record Type 07)
	Accounting Records for Inter-System Facility for Communications (Record Type 09)
	Accounting Records for logging changes to a user's privilege (Record Type 0A)
	Accounting Records for virtual disk in storage space (Record Type B)
	Accounting Records Network Data Transmissions (Record Type C)
	Accounting Records for CPU Capability (Record Types D and E)
	Accounting Records for Virtual Machine Resource Usage 2 (Record Type F)

	Adding Your Own Accounting Records and Source Code
	User-Initiated Accounting Records (Record Type C0)

	Chapter 13. Asynchronous CP Command Response System Service (*ASYNCMD)
	Establishing Communication
	Message Limits
	Sending and Receiving Data
	Record Types

	Chapter 14. DASD Block I/O System Service (*BLOCKIO)
	Establishing Communication with the DASD Block I/O System Service
	IUCV CONNECT to the DASD Block I/O System Service
	Usage Notes
	IUCV ACCEPT
	IUCV SEVER

	IUCV SEND to *BLOCKIO
	Single Block I/O
	Usage Notes
	Condition and Return Codes

	Multiple Chained Block I/O
	Usage Notes
	Multiple Block I/O Parameter List
	Condition and Return Codes

	Ending Communication with the DASD Block I/O System Service

	Chapter 15. Error Logging System Service (*LOGREC)
	Establishing Communications with the Error Logging System Service
	Receiving LOGREC Records
	Disconnecting from the Error Logging System Service

	Chapter 16. Identify System Service (*IDENT)
	Establishing Communication with the Identify System Service
	Handling Connection Requests for the Resource or Gateway
	Communicating with CP
	*IDENT Interface for Communication with CP's Support for the Family of POSIX exec Functions

	When Your Resource is Revoked
	*IDENT Sever Reason Codes

	Chapter 17. Message System Service (*MSG)
	Chapter 18. Message All System Service (*MSGALL)
	Chapter 19. SCLP System Service (*SCLP)
	Establishing Communication with the SCLP System Service
	Connecting to the SCLP System Service
	Sending SCLP Events
	Receiving SCLP Events
	Disconnecting from the SCLP System Service

	Chapter 20. Signal System Service (*SIGNAL)
	Establishing Communications with the Signal System Service
	IUCV CONNECT to the Signal System Service
	Sending Signals
	Receiving Signals
	Leaving the Signal System Service

	Chapter 21. Spool System Service (*SPL)
	The AFP Printing *SPL Interface
	Establishing Communication with the Spool System Service
	IUCV CONNECT to the Spool System Service
	For Printer Service
	Example

	For Reader Service
	Reasons the CONNECT Function May Sever

	Virtual Machine Communication to the Spool System Service
	The SELECT Function
	SELECT with Specific or Generic Criteria (DATA=BUFFER)
	REPLY Information
	SELECT by Previously-Specified Criteria (DATA=PRMMSG)
	Reasons the SELECT Function May Sever

	The CLOSE Function
	REPLY Information
	Reasons the CLOSE Function May Sever

	The MESSAGE Function
	REPLY Information
	Reasons the MESSAGE Function May Sever

	The READ-SFBLOK Function
	Reasons the READ-SFBLOK Function May Sever

	The READ-XAB Function
	REPLY Information
	Reasons the READ-XAB Function May Sever

	The READ-SPLINK Function
	REPLY Information
	Reasons the READ-SPLINK Function May Sever

	The ENABLE Function
	REPLY Information

	The DISABLE Function
	REPLY Information

	Spool System Service Communication to a Virtual Machine
	The SEND Function
	The NOTIFY Function
	The PURGE Function

	The Generic *SPL Interface
	Establishing Communication with the Spool System Service
	Processing a File
	Selecting a File To Be Read
	Transferring Information About a Selected File
	Closing a File
	Clearing an Existing Connection

	Chapter 22. Symptom System Service (*SYMPTOM)
	Connecting to the Symptom System Service
	Receiving Symptom Records
	Disconnecting from the Symptom System Service

	Chapter 23. VM Event System Service (*VMEVENT)
	Establishing Communication with the VM Event System Service
	Connecting to the VM Event System Service
	Receiving *VMEVENT Events
	Disconnecting from the VM Event System Service

	Part 5. CP Macros for VM Data Spaces and Other Services
	Chapter 24. VM Data Spaces Overview
	What Are Data Spaces?
	Uses for Data Spaces
	ESA/XC Architecture
	Address Space Support
	Summary of Data Space Operations

	Using Data Spaces in Your Applications
	Creating and Using Data Spaces
	Creating a Data Space
	Permitting Another User to Access an Address Space
	Accessing Data Space Storage
	A state
	An ALET
	An ASIT
	A read/write authorization
	A fault resolution flag

	Dropping Addressability to an Address Space
	Isolating a Shared Address Space
	Destroying a Data Space

	Mapping Minidisks to Address Spaces
	Notifying CP of Future Reference Patterns

	Chapter 25. CP Macros
	Using the Online HELP Facility for CP Macros
	Coding CP Macros
	Preferred Use

	Alternative Methods
	ADRSPACE — Address Space Services
	ADRSPACE CREATE
	ADRSPACE DECLARE
	ADRSPACE DESTROY
	ADRSPACE ISOLATE
	ADRSPACE PERMIT
	ADRSPACE QUERY
	ALSERV — Access List Services
	ALSERV ADD
	ALSERV DECLARE
	ALSERV REMOVE
	DEFWORKA — Define Macro Work Area
	MAPMDISK — Mapping Services
	MAPMDISK DECLARE
	MAPMDISK DEFINE
	MAPMDISK IDENTIFY
	MAPMDISK REMOVE
	MAPMDISK SAVE
	PFAULT Macro -- Page-Fault Handshaking Services
	PFAULT CANCEL
	PFAULT DECLARE
	PFAULT TOKEN
	REFPAGE — Page Reference Services
	REFPAGE DECLARE
	REFPAGE INFORMB
	REFPAGE INFORML
	VMUDQ – VM User Directory Query

	Part 6. Architectural Extensions and Accommodations for Virtual Machines
	Chapter 26. Collaborative Memory Management Assist
	Storage
	Collaborative Memory Management Block State
	Block-usage States
	Block-content States

	Modification of Translation Tables
	Assigned Storage Locations

	Control
	Resets
	Subsystem Reset
	Clear Reset

	Interruptions
	Addressing Exception
	Block-volatility Exception
	Access Exceptions

	Control Instructions
	Program Exceptions
	Storage-key Manipulation Instructions
	TEST PROTECTION
	EXTRACT AND SET STORAGE ATTRIBUTES
	Block-usage State (US)
	Block-content State (CS)
	Associated Functions
	Special Conditions
	Resulting Condition Codes
	Program Exceptions

	Implications for the DIAGNOSE Instruction and Non-CPU Accesses
	Implications for ESA/390, ESA/XC, and z/XC Guests
	Implications for Saved Systems and Segments
	Implications for the VMDUMP Command

	Chapter 27. 370 Accommodation Facility Overview
	Background
	System/370 Constraints
	High-level Description
	When Should 370 Accommodation be Used?
	Choosing a Level of 370 Accommodation
	Activating 370 Accommodation
	Running a Restricted CMS MODULE
	What is Not Provided by the 370 Accommodation Facility
	Possible Adverse Effects on a Working Program

	Chapter 28. 370 Accommodation Facility Definition
	System/370 Instructions
	System/370 I/O Instructions
	SET STORAGE KEY (SSK)
	INSERT STORAGE KEY (ISK)
	RESET REFERENCE BIT (RRB)

	ESA-Family Instructions
	TEST SUBCHANNEL (TSCH)
	STORE SUBCHANNEL (STSCH)
	TEST PENDING INTERRUPTION (TPI)
	Discarding Vestigial Status

	Other Instructions
	DIAGNOSE code X'28'

	The Interval Timer
	PSW Conversions
	BC-mode PSW Conversion
	BC-mode System Mask Conversion
	Mapped PSW Conversion
	PSW Conversions During Interruption Processing
	Mapped PSWs

	Interruption Parameters
	Special Conditions

	Presentation of Interruptions
	Vestigial Status
	The CMS 370 Accommodation Facility
	PSW Mapping Algorithm

	Chapter 29. Store Hypervisor Information (STHYI) Instruction
	Function Code X'0000' - Processor Capacity Information
	Function Code X'0000' Response Buffer Format (INF0HDR)

	Common Header Section (INFCHDR)
	Function Code X'0001' - Hypervisor Environment Information
	Function Code X'0001' Response Buffer Format (INF1BK)

	Function Code X'0002' - Guest List
	Function Code X'0002' Response Buffer Format (INF2BK)

	Function Code X'0003' - Designated Guest Information
	Function Code X'0003' Response Buffer Format (INF3BK)

	Function Code X'0004' - Resource Pool List
	Function Code X'0004' Response Buffer Format (INF4BK)

	Function Code X'0005' - Designated Resource Pool Information
	Function Code X'0005' Response Buffer Format (INF5BK)

	Function Code X'0006' - Resource Pool Member List
	Function Code X'0006' Response Buffer Format (INF6BK)

	Special Conditions, Exceptions, and Usage Notes

	Part 7. Symptom Record Reporting
	Chapter 30. Symptom Record Reporting
	Reporting Software Error Symptoms (Symptom Records)
	The Format of the Symptom Record
	Section 1 (Environmental Data)
	Section 2 (Control Data)
	Section 2.1 (Component Data)
	Section 3 (Primary SDB—Structured Data Base—Symptoms)
	Section 4 (Secondary SDB Symptoms)
	Section 5 (Free-Format Data)
	Symptom Strings — SDB Format
	Notes for Applications Using DIAGNOSE Code X'94' SR Option
	Programming Notes for Section 1
	Programming Notes for Section 2
	Programming Notes for Section 2.1
	Programming Notes for Section 3
	Programming Notes for Section 4
	Programming Notes for Section 5

	Appendix A. Data Areas Used by DIAGNOSE Codes
	Data Areas Used by DIAGNOSE Codes X'24' and X'210'
	CP370 Device Classes
	CP370 Device Types
	CP370 Device Features
	CP370 Virtual Device Status
	CP370 Virtual Device Flags

	Data Areas Used by DIAGNOSE Codes X'14' and X'D8'
	SFBLOK - VM/SP 370 Spool File Control Block
	SPLINK - VM/SP 370 Spool File Data Block
	Extended Spool File Block for DIAGNOSE Code X'D8'

	External Attribute Buffer Used by DIAGNOSE Codes X'B4', X'B8', and X'290'
	Suggested Format for an External Attribute Buffer

	Appendix B. Sample Programs Using DASD Block I/O System Service
	Write Program
	Read Program

	Appendix C. DIAGNOSE Code X'68' and VMCF
	DIAGNOSE Code X'68'
	Usage Notes
	Responses

	The Virtual Machine Communication Facility
	Using the Virtual Machine Communication Facility
	VMCF Applications
	Resource Sharing
	Virtual Extensions to VM
	Program Testing
	Intra-Virtual Machine Communication

	Security and Data Integrity
	Performance Considerations
	General Considerations

	VMCF Protocol
	The SEND Protocol
	The SEND/RECV Protocol
	The SENDX Protocol
	The IDENTIFY Protocol

	Descriptions of VMCF Functions
	The Control Functions
	AUTHORIZE: DIAGNOSE Code X'68' Subcode X'0000'
	UNAUTHORIZE: DIAGNOSE Code X'68' Subcode X'0001'
	CANCEL: DIAGNOSE Code X'68' Subcode X'0006'
	QUIESCE: DIAGNOSE Code X'68' Subcode X'0008'
	RESUME: DIAGNOSE Code X'68' Subcode X'0009'
	IDENTIFY: DIAGNOSE Code X'68' Subcode X'000A'
	REJECT: DIAGNOSE Code X'68' Subcode X'000B'

	The Data Transfer Functions
	SEND: DIAGNOSE Code X'68' Subcode X'0002'
	SEND/RECV: DIAGNOSE Code X'68' Subcode X'0003'
	SENDX: DIAGNOSE Code X'68' Subcode X'0004'
	RECEIVE: DIAGNOSE Code X'68' Subcode X'0005'
	REPLY: DIAGNOSE Code X'68' Subcode X'0007'
	SETLIMIT: DIAGNOSE Code X'68' Subcode X'000C'

	Invoking VMCF Functions
	DIAGNOSE Code X'68'
	The VMCPARM Parameter List
	External Interrupt Code X'4001'
	The External Interrupt Message Header (VMCMHDR)

	VMCF User Doubleword
	VMCF in an MP Environment
	DIAGNOSE Code X'68' Return Codes
	Data Transfer Error Codes

	Appendix D. The Special Message Facility
	Appendix E. Logical Device Support Facility
	Appendix F. Reserved DIAGNOSE Codes
	DIAGNOSE Code X'40' – Clean-Up After Virtual IPL by Device
	Usage Note
	Responses

	DIAGNOSE Code X'E0' – System Trace File Interface
	Subcode X'00000008' — Open (read-only)
	Subcode X'0000000C' — Read
	Subcode X'00000010' — Close (read-only)
	Usage Notes
	Trace Block Containing CP Trace Table Entries

	DIAGNOSE Code X'214' – Pending Page Release
	Responses

	DIAGNOSE Code X'23C' – Address Space Services
	Create-Space Function
	Destroy-Space Function
	Query-Space Function
	Permit-Access Function
	Isolate-Space Function
	Responses

	DIAGNOSE Code X'240' – Access List Services
	Add-ALE Function
	Remove-ALE Function
	Responses

	DIAGNOSE Code X'244' – Mapping Services
	Identify-pool Function
	Define-mapping Function
	Remove-mapping function
	Save-list Function
	Responses

	DIAGNOSE Code X'254' – Access Real Subsystem
	Hardware Specifications
	Tape Subsystems
	Supported TAPE Subsystems
	Subsystem Identifiers
	Supported CCWs
	Further Restrictions

	Open CP Connection
	Close CP Connection
	Perform I/O
	Responses
	Access Real Subsystem External Interruption

	DIAGNOSE Code X'25C' – Directory Query
	Usage Notes
	Responses

	DIAGNOSE Code X'264' – CP Communication
	Subcode X'00000000'—Establish CP communication area
	Subcode X'00000004'—Remove CP communication area

	DIAGNOSE Code X'278' – Extract XLINK Control Blocks
	Responses

	DIAGNOSE Code X'280' – Set POSIX IDs - security values
	Function EXCSETID - Request changes in POSIX security values for an exec() function call
	Function EXCSSID - Request changes in saved set-IDs for an exec() function call
	Responses

	DIAGNOSE Code X'29C' – Set-POSIX-IDs Services
	Function SPXFUSER - Set User IDs (UIDs) for the Active Process
	Function SPXFGRP - Set Group IDs (GIDs) for the Active Process
	Function SPXFNGRP — Change to a New Group
	Function SPXFSGID — Change the supplementary group ID list
	Responses

	DIAGNOSE Code X'2A0' – Query POSIX IDs
	Function QPXFPROC - Query Process Attributes
	Function QPXFUSER - Query the User Database
	Function QPXFGRP - Query the Group Database
	Function QPXFSGID - Query the Supplementary Group IDs
	Function QPXFCONF - Query POSIX Configuration Information
	Usage Note
	Responses

	DIAGNOSE Code X'2A4' – POSIX Process ID (PID) Services
	Function 0 - Identify the POSIX communication area
	Function 1 - Allocate a PID
	Function 2 - Deallocate a PID
	Responses

	DIAGNOSE Code X'2AC' – HCD Dynamic I/O
	Responses

	DIAGNOSE Code X'2C0' – HMC Data Source Load
	DIAGNOSE Code X'2C4' – FTP Services
	FPL
	Responses

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

