z/VM
7.3

CMS Planning and Administration

—

—

- - .

- Y E————
[—— -
- - . .
I S S W E—
I 7 E—

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
1109.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-08-31

© Copyright International Business Machines Corporation 1991, 2022.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

FiBUI @S e iuiieiiiiieiieiieiiiiieiiiietieitetiettettastentastescssssssssssestestastossassassassasssssssssnssassasans vii
L= 1 (= N iX
About This DOCUMENT......ccciuiiiiiiiiiiiiiiiiiiiiiiiiiieiieiteteteecsessestestestastossasssssssssnssnnss Xi
INtENAEA AUGIENCE .. eiiiieeiiiieertc ettt et st e st e st e s be e st e s beesseesabeessaesaseesseesaseenbeesasesnseenseesnseense Xi
Syntax, Message, and RESPONSE CONVENTIONS.cicciiieiieeeiieeeieeeecteeeseeeeaeeeseeesreeeesseeessaeeesesesseessnens Xi
Where To Find More INfOrmMation.......c.iieeiiiinieiienreesieete st sttt sre e sbe e sareesaeesaaeesbeessaesnseesanesnsens Xiii
Links to Other Documents and WEDSITES.cccuuiiciiiieiieecieeecte e e e e e s ar e e aaeesaaee s Xiii

How to Send Your Comments to IBM......cccciieiiuiiieiiniiiieiiieiieniieciecesiecscessecsssesens XV
Summary of Changes for z/VM: CMS Planning and Administration..........cccccevaueeae Xvii
SC24-6264-73,z/VM 7.3 (SePtemMbEr 2022).....c.ccceiiireiireeeerreseeseseeseesseseesseseessesssessesssesseessesssessessns Xvii
SC24-6264-02,Z/VM 7.2 (MArCh 2021)...ccuveieeciirieesieeieseesiesesseseessessessessessesssessssssesssessesssessesssessesses Xvii
SC24-6264-01, z/VM 7.2 (September 2020).......cceivuirerrereeriereesesreeseesseseesseseessesssesesssesssssesssessessns Xvii
SC24-6264-00, Z/VM 7.1 (SeptemMber 2018)......cccerviererirereerierresreseeseesseseesseseessesssessesssesssessesssessessns Xvii
Chapter 1. Planning for CMS...... ..o iiiiiiiiiieiieiieiieiieiecseciesiesiestsssastsssasssscsssssssnsss 1
WA CMS DOBS.c.uuiiiiiiiieiieinteeieeste et st e ste s ttestessbeesasessbaesasessbeesssesaseessaessseensaessseenseessseensesssseenseessseensannns 2
CMS COMMEANT LANGUAEE. . cccvvieeerieeitieeeiieeeitteeeiteeestseeessseesssseeesssaeesssseesssaesasssesasseesnsssessssessnssessnsesennses 2
(e Yo (cl A= To [U LT =T a U= oAU 2

1Y (oIS U] o] o To & ST 3

] T = U [T OO OO OO PRSP PRRPPRROUPROPPO 4
Libraries on the CMS SYStEM DiSK.....cccciiieiiiieeiieiciie ettt etee e te e e e te e e etae e s taesentaeeentaeeesaeesnseeanns 4
Program LangUage FaCilities......uiuciii ettt ettt e et e e ctee e ete e e etae e sbae s sbaeesbaeesnsaeessaeennns 7
Limited Support of OS and VSE iNCMS........eeiieeeeeeetee ettt et s v e e te e st e e e ba e e e nsae e asea s 7

Disk and File ManageMENt........ccccuiiieiiieieiie et eeee et ceee e tee e e te e e etee e stae e e taeesataeesaseeeentaeesnteeesnsaesnees 8

1oL] VT o] 0 1o] SO OO PPPPPPRRRN 11

0oyl 2t ot e IRSTU] o] o Yo] SRS 11

] = T=Te IRTT =40 V=T o AP 11
Configurations SUPPOIEA DY CMS......o ettt e e te e et e e s tte e s ate e sesteeseateesesteessteeseseeaanns 11
Planning for SFS, BFS @aNd CRR......ccuuiiieieecteecte ettt e e ette e s tee e e te e e sbae e svae e sbaeesbaeesbaeesaseeesasaeennes 12
Estimating DASD Storage Requirements fOr CMS.........ui ittt e e e 12
Estimating DASD Storage Requirements for CMS MiNidiSKS.......cccuveeviiieeiieeciieeecieeeeeeeiee e 13
Estimating DASD Storage Requirements for File POOLS.......c.ccicieeiecie it 14
Estimating DASD Storage Requirements for CRR File POOLS.......ccccuiieiiieeciieccieecceeccee e, 14

CMS RESTIICTIONS.c.utiiieietiiiteeeteest et et e sttt st s e e sbe e bt e sabeesbeesabe e baesabeebeesaseesbeesasesnbeesasesnteenssesnseensaessseenses 14

b4 Y (o] a1} (=To 10 =3 O 1 1 TR 17

b4 L0\ ST o1 Tod 13 (o= YA o1 TSR 17

USING Z/CMS... ittt ettt te st et e et e s be et e s et e be st e s be e s e e saeessessaesbeeseeseeessesraesbesseesseensesseessesseesennns 18
Chapter 2. Planning for VSE Simulation and VSAM Support......ccccceiieiieiieiencencennes 21
Planning for CMS VSAM and AcCesS Method SEIrVICES......ccuuiiiciieieiie ettt et eeeree e 21
Hardware Devices SUPPOrTEA DY VSE......cuuiiiiiecieeccieeecte et e e e ve e e te e e te e e aee s vaesenvae s nneas 22

Using Data Compression With the VSE SYSteM......cccviiiiiiieiieecieeccee ettt et e e aee s 22
PLlanNing fOr CMS/DOS... oottt ettt ettt etee e et e e e te e e ete e e ebaeesbaeessbaeessbaeesnsesesnsaeaanseeeansaeesnsaeesnseeennes 23
VSE System Generation CONSIAEratioNS.........ccciiiiiieeieiee ettt cere e erte e e eee e eree e s aee e s ree e ereeeenneas 23

When the VSE System MuUst Be ONLINE.....cccuii ittt et e et e e eate e e eae e s nae e e 24

CMS/DOS TAPE HANAUING. ceeuvieieiieieiieieiieeeiteeest e es sttt e siteessaeeesbeeessbeeessaeeesseeesssseesseassnsseesnsseesnssnesnnees 24
CMS/DOS Disk Label INfOrmMation ArCa.....cceeeeueeeeeeiiieeeeeeeeeee e eeeeeeeeeee e e et s s e s s e e s e e eaaaaeenes 25

Chapter 3. TAIloring CMS......cccciiiiiiiiiiiiirentenienieiiaiisiisiscsessessesressessasssssassssssscsecs 27

Using the SYSPROF EXEC to Tailor the CMS ENVIFONMENT...cciiciiiiiieiieeiriee ettt ssee e ssae e s see e s 27
SYSTEM Profile FUNCIIONS. .. .iiiiieiiiee ettt ettt e et e e e et re e e e eenteee s senbeeeseeensaeeeeesnnseeeesannes 27
Modifying the SYSPROF EXEC......ccuttiiiiiiiieiriieesitessitessttessitessteessbaesssaesssaesssaesssssesssseessseesssseeens 28
Invoking the IPL CMS COMMANG......iiiiiiiriiieiiiteeiieessiiee st e st e s et e sseeessaeaessabeesssbeesssseessnseesssseessnnens 28
Selecting @ REXX RUNTIME LIDIary.....cooiiiiiiiieiecceccteete ettt s 28
How to Change the SYSPROF EXEC......cutiiiiiiiiiieiiiteniitesiieessieessitesseeessaeessseesssbeesssseessssessssseessanes 30
How t0 Bypass the SYStemM Profile...... ettt e e ree e e eaee e e e e enaae e e 32
Setting Up a Protected Application ENVIFONMENT......c.ccciiiiiiiiiieirteeeeecsee et 32
What the System Profile Can Do for INStallations.........coeecciieeeieciiiee e 32

DEFNUGC MACIO0...ceittiiiitieiitieeite sttt ettt srt e st e s et e s et e s st e sse e sme e e s se e e s se e e s mee e s neeesasaeesnenesnenesanenens 34

Sharing File Directory INfOrmMation......ciuciei ittt sttt e st e e ssbe e e sate e sbee s sbaessasaeesane 39

Sharing EXeCS aNd XEDIT MaACIOS.....cciicieiiiieiiiieeriieesiteessieeessiteeseseesssseesssseessaseesssseesssseesssseesssseesssseessssees 40

Enlarging the CMS Nucleus to Contain the Y Minidisk Directory (Y-STAT)....cccceeveerveerseeseeereeseeeveeneeens 40

Use the SYSTEM NETID File to Configure Communication Across an NJE Network.......cceccueevcveeriinennnne 44

Chapter 4. The Programmable Operator Facility......c.cccocuvieiiincrcieciecrecnecinccnccnnna . 47

Using the Programmable Operator Facility in Various System Environments.......cccccveveeveceeinvieesnceeennne 47
USE IN @ SINGLE SYSTOMtiiiiiiiiiie ittt ettt e et e e st e s s bt e s s beessbaesssteesssbaessssaesssseessnsaesssaesns a7
Use in DiStributed Z/VM SYSTEMS ettt sttt ctee e e e ctee e e e e aee e e s s nt e e e s s ntaeeesenseneesennnes 47
Use in @ MiXed ENVIFONMENT....ciiiiiiiiieeie ettt sttt sttt et st e ne e sae e e reesae e s b e smeeeareesneeeanes 48

THE LOZICAl OPOIator. . uiiieiieieiieieite ettt ettt e e s ee s st e e st e e s bee e sbeeesbeeesseeesseeessseaesnseaesnseaesnsseesnsenas 48

ROULING Table INTOrMation....ccuiiiiiieiieeeiee ettt st et e st e e st e e s sbe e s abaessssaessaseesnnsaesan 48

ACTION ROUTINES. ...eiiiiiieiiieee ettt ettt e st e e bt e st e bt e sae e e beesaee e beesmeesase e neesabe e seesnnesnreanns 49

] ==t TSP PR TSP 49

HOW Tt WOTKS. . ettt sttt et sttt s et et s et et e s ae e st e e s be e s b e e sbeesaseebeesmseeabeesmeeenreesnnesnreas 49

[T 1 Vo) O] 01T = o 1SR 50

=T F= Y (o]] a1 o B (o T ST O3 TSR 50

Programmable Operator Virtual MacChine.......c.iiiiiiiiieeieceectess ettt 51
Installing the Programmable Operator FACIlity.......ccciecieiriieinieeeteesee et 51
Invoking the Programmable Operator FACility......ccvviiiecieiiiiiieieceieecsiee et e s sve e 51
MeSSAZE OULPUL FOIMAT.... ittt ettt ettt e e et e e e et e e e s aee e e e seanneeeeesannee 55
Stopping the Programmable Operator FACIlItY.....ccccveiiiiiiiiiiiiieniecsieessie ettt e s 55

Running the Programmable Operator Facility from NCCF or NetVIeW.......cccvvceeiriieinieeinieenee e 56
The Programmable Operator/NCCF Message EXChange.......coccuiivviieiniiiiniieiniessee e sseeesee e 56
INSTALlING The PMX . ettt ettt sttt see e st st e e st e s s bt e e sbee s sbeeesabeeesabeeesasaessaseessnnens 56
Communication between the Programmable Operator and NCCF or NetVieW......ccccoevevreeeeicieeennnen. 58
Y (0] o] o =R { LI 7 USRI 58

THE LOZICAl OPOIator. . uiiieiieieiieieiteeett ettt ettt e st e s et e e st e e s bee e s beeesbeeesseeessaeessseaesssaesnseaesnssaesnsenas 58
The Default LOZICal OPEIator....ccciiiciieiiiieiiiteseitesstee st e st e seteessateesssteesesteessseeessseaessseeessseeessnsaesanes 59
The NCCF or NetView LOGICal OPerator.....cc.uiiiiiiiiiieriiiesiiteesitessieessieessreessseessseessseesssseesssseesssnes 59
Assigning or Changing the LOgIiCal OPerator........cciiiiiiiiiieriieeirieessieessieessiee st e ssreessreessbeesssaeens 60

ThE ROUTING TaDLe....eiiiiiieceeece ettt sttt e s be e s ab e e s s abe e s abe e s s abeesssbeessabeeesaseesnnses 61
How the Programmable Operator Facility Uses the Routing Table........cccceveeirviiiinviiiiniiiennieennieenne 61
Routing Table Configuration Entry STatemMents.......coccviiieiieiniiiieiecctecere et seee s ene s 62
Routing Table Configuration EXAMPLe.....cuiiiiiiiiiiiieieeieieesrtee st ssreesste e seee e ssseeessseeessateessneeessseeesans 65
Routing Table Comparison Entry StatementsS......cuii ittt see e s e s saeeeas 66
Tailoring the ROUTING Table.....cii ittt e s s be e s s be e s s e e s sbeeesaneas 69

THE LOG Ll ittt ettt st e s te e s b e e s s te e s st e e ssteesseeesantaesasteesntaesnteesnneaesnseeennns 75
Logging NCCF or NetView Messages in the LOZ File......uuuiiiiiieinieiriieceiieeeie e 76
ENSUMING @ COMPLETE LOZ....iiiiiiiiiieiiiieieite et seite st s st e s st e s st e s ste e s sata e s ssbaesssbaeesstaessssaessnsaessnseesnns 77

The FEEUDACK File.....iiiiiiiieeieeeeee ettt sttt st e s e s b e s e e st e e s neesbe e neesaneeneean 78

CommMUNICATIONS CHECKING....ciiiiiiiieeiee ettt e s ee e s ebee e sbee e sbee e s aee e sbeeesneesssseessanens 79

Invoking Programmable Operator Facility COMMAaNAS......cccviiiiiiiiiiieiiiieiniieceiee e seieeeseeesseeesseeesnaee 80

Issuing Commands in the Single System ENVIrONMENT.....ccuiiiiiiiiieieeeceie e ee e 81

Issuing Commands in the Distributed z/VM ENVIFONMENT......coociiiiiiiiiiieiciecciteceee e eee e 82
Issuing Commands in a Mixed ENVIFONMENT......cooiiiiiiiiiiieeeieeeie et see e s see e s seeessaeeessaeeas 84
ACTION ROUTINES. .. itittieiiiieie ettt e e et e eee e babbe e e e e e eeeeeeseesassbaeaeeaseeeeeseessasssssbsassaeseeesesesasssssrareeereeeens 85
ACHION ROUTING INtEITACE....iiiii ittt et e e e eee bbb e e e e e e e e eeeeesssssseseeeseeeeeseesnssssssnens 86
Description of Supplied ACTION ROULINES........uiii ittt eecee e eeree e e s ree e e e e ebaee e e eenreeeeeennns 90
EXIT BB CS ittt ettt e ettt eeee bbb e e e eeeeeeee e s s b b bbb aaaaaeeeeeeeaaa s b bbb raraeaaeeeeeeaaasrabarararaeeeeeeeeannns 92
e I = o L (=T - (e T USROS 92
Problem Determination—DebuUg MOE........coccuiiiiiiiiiiieiiieete sttt s e e s ae e s beessabeessabeeeas 94

Chapter 5. Programmable Operator Facility Commands........ccccceevuiinincnecnnceecnenns. 95

CMD et e et ee e ee et e e et ee et et e s e ee et et e e e et et e e ee et eeeeeena e ee et eeene %
FEEDBACK ... veeve et eeeeeeeseeeeeeeseeseeesesaseseeseseseseseeseseeesesaseseseeeeseseseseeseeeeseseease e sseseseseeeseeeesesesese e eeeeesenenens 98
BT et eeee et e e e e e et e et e e et et e et et e e et et eee e e e ereeere 99
LGLOPR .ot eee e eeeeeeeeeeeseeeeeeeeeseeeee e ee e seseeeee e eeeeeseseseee e eeeeeseeeeeee e eeeeeeeee et et eeeee s ee et eenene e 100
LOADTBL ettt eeee e eeeeeeeeeese e eeeeeeeeeeeee e eseeeseeeeeee s esaeeseeeeeee e eeeeeseeeseeeeeeeeeeeeeeeeeeeeeseeeseeeeaeeeeeneeseseeeeens 102
LG et eeeeee e eeeeeeee e e et e e e e ee et ee e e e e et et e e et et et ee s e e et ee e e e e ee et eeeeee et eeeeeeeeee e eeeeeee e e eeeeenene 104
QUERY «. ettt ee e ee e e e eee e e e e e e e e e e e eeeeee e e e e e ee e e e se s ee e e ene s e e ee et ee s ee e ee et eeeane e 105
SE T et eeee e e et e e et e e et et e e et et e et e et e et e s e e et e e et e e e eee e s e eeeneeenene 108
ST 0P ettt e et ee e et et e e e et et eee e et et e e et e e e e et eee e e e ee e eeeeeree 111

Chapter 6. Managing the CMS Batch Facility......c.ccccceuvirnirneiiniiniirnciniincinecnanene. 113

Rl LCN O S S F Lol g1 = Tod | 1 SRR 113
UsSINg the CMS BatCh FACIliTy....ueiicieiiieiiiee ettt ettt st e s s be e s sbe e s sbeeesaneas 113
Starting the Batch Virtual Maching. ...ttt st e s e s saee s 113
(011 ISR S =Y o o T @ 1011 01U SRR 114
Purging, Reordering, and Restarting BatCh JODS.......coociiiriiiiiiiiinieetecctecste et 115
Stopping the Batch Virtual Maching.. ...ttt 115
Installing the CMS BatCh MaChine........iiiiiiiiiiiiiecitecte ettt e s e e sveas 115
Resetting the CMS Batch Facility System LimitS.....cocciiiivieiniieniiieniiesniee e ssee e sveeesvee s 116
Exec Procedures for the Batch Facility Virtual Maching.........coooeciiieiiccieee e 117
Data Security under the BatCh FACIlity.....cccuuiieiicciiie ettt e e e nree e e e 117
Improved IPL Performance Using a Saved SYSTEM.....cccuiiiiieiriiienieeeiieeeiie st seneesseeeessneeesneeessneeens 117
Customizing the CMS BatCh FACIlitY.....ccueireiiiiiieiiieesciee sttt ste e sre e seaee e sate e srae e snee e sveeesans 117
BATEXIT1: Processing a Non-CMS Control LANgUAgE.......cocvueeriiieriiieriieeriieesiieessreessieeessneeessneeens 118
BATEXIT2: Special Processing of /JOB Control Cards.......cceecueeeriierrieeniieennieessieessieeeseeesseeessnees 118

[\ 0] (o =Y - TSRS B L.

Programming Interface INformation......couciei ettt re e s be e s e s 120
N =Te (=10 g B U S4TSR S P UUTTRURRRRRRRRRN 120
Terms and Conditions for Product DOCUMENTATION.......uuuviiiiiieiiiiieetiteeee e eeeerrrreee e e e e e e e eeeennenes 120
IBM ONliNg Privacy Stat@mMENt....cc i eiee ettt e cree e e e ette e e e s ette e e e senee e e e s nsaaeesesnsaneesennnsenenaan 121

=11 FT0T = - ¥ 1|7 1~

Where 10 Get Z/VM INTOrmMation. ..o oot e e et e e e e e e e e e e e e e e e e eaaa b b sesseeeeaeaanes 123
Z/VM BASE LIDIAIY .. ueeiiiei i ctiee ettt e ettt e s sttt e e e s et e e e e e e taeeeeesasteeeeeenbaeeesansseaeeeanssteeeeenstneesennsenes 123
Z/VM FaCIlitieS A0 FEATUIES....cciiiieiieeeeeeeeee ettt e e e ettt bbb s seessesseeesaesseeseeeeerssssssnes 124
PrErEQUISITE PrOQUCTS. . uiii i cieie e ettt e cecttte e ce et e e e e ctte e e e e et te e e e eesteeeesesasseeeseenssaeeeeanssasessennssneessanssensesannes 126
RELIATEA PrOQUCTS.c.iiiiiii ittt eeec e r e e e e e e eese e sbabbaaeaeseseeesessasssssssesresaeeeessennnnnes 126

T =) I .1

Figures

1. SYSPROF $EXEC Comments fOr DMSTOEAG........coctetrtrtrtetetetetetet ettt et ettt ettt et ettt et 29
2. LGLOPR Command Authorization for an NCCF or NetView Operator.......ccccceeecveeeeeeciiieeeeeecreeeeeecneeee e 57
3. QUERY Command Authorization for an NCCF or NetView Operator......ccccceeecieeeeiieeecieessieeesveeecveeesveens 59
4. Sample LGLOPR Command Entries in @ ROUTING Table....cccuiiiriiiiiiieiriecteeee et 61
5. The Programmable Operator Facility in a Distributed SyStem.......cccciieiciiiccieecceeeee e 66
6. Partial ROUTING TabL...iiiciiiiiiee ettt bee e s aee e s bee e s e e e sbee e s beeesbeaesaseaesaseessnseeesnses 68
7. Routing Entries to Send Messages to an NCCF or NetView Operator........ccccveeecieeecieeccieeccieeccreeecinee s 72
8. Routing Entries to Filter Responses to Routing CoOMMAaNdS.......ccveieiiiieiieeiiiieeieieeeeieeeeieeeeeeeeseeesseeeenns 73
9. UNCONTrolled AUTNOZATION. .. ittt ettt b e s s b et e s st e e e eae 74
10. Restricting AUthorization DY NOGE ID....cccuiiiiciiiiiieeciee ettt sste e este e see e e sree e s saaeessseeesssseesssseesnnseaen 74
11. Restricting Authorization by User ID and NOAE ID.....ccciieiiieiiiieeiieeeciee ettt e vee e vee e e 74
12. Restricting Command Use t0 SPECITIC USEIS....uiiiiiiiiiiiiiiieiiieriieessiee st e ssree st e ssaeesssee e s aeesssseessnseess 75
13. Example of Communication in the Single System Environment.........cccoeccveieiiieciieeccieeccee e 81
14. Example of Communication in the Distributed ENVIroNmMeNt..........coiieeiiiiiiecciiiee e e 83
15. Example of Communication in the Mixed ENVIFONMENt........cccuiiiiiieeiieeccee et 84
16. Register Conventions for Invoking an ACtion ROUTINE........ciiiiiiiiiiiiiiienciieseteessieessee e e s sveesseee s 87
17. User Directory Entry for CMS BatCh Maching........cccueiieiiieiiieceeee ettt e 116

vii

Tables

1. Examples of Syntax Diagram CONVENTIONS.cccuviiciiieeeitieeeieeeeieeeeteeeeteeeeteeeeteeesteeesseeesnseeessseeessasssssasans Xi
2. Devices Supported by @ CMS Virtual MacChing........cooiouiiii ittt rree e e tree e e e rae e e e anns 3
3. CMS SyStemM DiSK LIDIariES. . .uuiiciiieiie ettt ettt e et e et e e sate e s s te e s ste e s asae e sseeesnsaeessseeennsasennsneans 5
4. Volume Label Contents for CMS Formatted DiSKS.......ccceeueriierieriiieiieniiesee sttt st 9
5. Unit Record Devices SUPPOIrted DY CMS.... . ettt e e ae e et esabe e s naeesnaaeens 11
LI O\ RSN 2] Fo o = o T=Y O8] T T =Y TN 13
AV ET= Yo Lol N 2 1o o T=Y g 08V 11 Ve L= R 13
8. Maximum Size 0f CMS MiNIISKS...ccoueririiriiriierteee ettt ettt sttt e sae e e bt e sneeereesaeesanens 15
9. Effective REAU/WIITE CACNE SiZE....ouviiiiiiiieeeeeeeeeeee ettt e e e e et eeee e e e e sesssaaabrsaeeeeeeeeesesanan 37
10. ESA/390 CMS Nucleus Size and Location on the 190 MinidiSK......eeeeeeeeiiiiiiiiiiiiiiieiieeieeeeean 38
11. z/CMS Nucleus Size and Location on the 990 MiNIAiSK.....uuueeiiiiiiiiiiiieiieieieeeeeeeeee e e e s esessanns 38
12. IBM-Defined Values for the ESA/390 CMS Nucleus and the z/CMS NUCLEUS.....ccceeeveeiviiiieiiiiiieieieeeieenn, 40

About This Document

This document explains how to plan for, tailor, and administer the Conversational Monitor System (CMS)
component of IBM z/VM. It also contains information about setting up and using the programmable
operator facility and managing the CMS batch facility.

Intended Audience

This information is for anyone who needs to plan for, tailor, or administer CMS and CMS facilities.

Syntax, Message, and Response Conventions

The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

e The =~ ~——symbol indicates the beginning of the syntax diagram.

« The —= symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.

« The =——symbol, at the beginning of a line, indicates that the syntax diagram is continued from the
previous line.

e The — < symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xi.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants »»— KEYWORD <

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or

constant in uppercase letters, lowercase letters, or

any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

Abbreviations »— KEYWOrd >«

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

© Copyright IBM Corp. 1991, 2022 xi

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example
Symbols *
You must specify these symbols exactly as they appear in the Asterisk
syntax diagram. :
Colon
Comma
Equal Sign
Hyphen
0
Parentheses
Period

Variables »— KEYWOrd — var_name >«

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

Repetitions
An arrow returning to the left means that the item can be { . l
repea

repeated.
A character within the arrow means that you must separate ,
each repetition of the item with that character. £
repeat

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated. £ 1

. . repeat
Syntax notes may also be used to explain other special
aspects of the syntax. Notes:

1 Specify repeat up to 5 times.

Required Item or Choice — A -pd

When an item is on the line, it is required. In this example,

you must specify A. A
B
When two or more items are in a stack and one of them is c

on the line, you must specify one item. In this example, you
must choose A, B, or C.

Optional Item or Choice »ﬁn
A

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of A
them are optional. In this example, you can choose A, B, C, B
or nothing at all. c

xii About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Defaults

When an item is above the ling, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

O W >

In this example, A is the default. You can override A by
choosing B or C.

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

. 0O w »

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

A Fragment

In this example, the fragment is named "A Fragment."

O W >

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

XXX
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

Brackets enclose optional text that might be displayed.

{1
Braces enclose alternative versions of text, one of which will be displayed.

The vertical bar separates items within brackets or braces.

The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

Where To Find More Information

For other documents about CMS and other parts of z/VM, see the “Bibliography” on page 123.

Links to Other Documents and Websites

The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,

About This Document xiii

and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xiv z/VM: 7.3 CMS Planning and Administration

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/

campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

« Contact your IBM service representative.
 Contact IBM technical support.
« See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).

« Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1991, 2022

XV

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xvi z/VM: 7.3 CMS Planning and Administration

Summary of Changes for z/VM: CMS Planning and
Administration

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (]) to the
left of the change.

SC24-6264-73, z/VM 7.3 (September 2022)

This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6264-02, z/VM 7.2 (March 2021)

[VM66201, VM66425] z/Architecture Extended Configuration (z/XC) support

With the PTFs for APARs VM66201 (CP) and VM66425 (CMS), z/Architecture® Extended Configuration
(z/XC) support is added. CMS applications that run in z/Architecture can use multiple address spaces.
A z/XC guest can use VM data spaces with z/Architecture in the same way that an ESA/XC guest can
use VM data spaces with Enterprise Systems Architecture. z/Architecture CMS (z/CMS) can use VM data
spaces to access Shared File System (SFS) Directory Control (DIRCONTROL) directories. Programs can
use z/Architecture instructions and registers (within the limits of z/CMS support) and can use VM data
spaces in the same CMS session. For more information, see z/VM: z/Architecture Extended Configuration
(z/XC) Principles of Operation.

Information in the following topic is updated:

« Chapter 1, “Planning for CMS,” on page 1

SC24-6264-01, z/VM 7.2 (September 2020)

This edition supports the general availability of z/VM 7.2.

SC24-6264-00, z/VM 7.1 (September 2018)

This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1991, 2022 xvii

xviii z/VM: 7.3 CMS Planning and Administration

CMS Planning

Chapter 1. Planning for CMS

As a system administrator, you are responsible for managing system use for your installation. Your
duties might vary depending on the size of your organization. For example, you might be involved in the
day-to-day operation and control of the computer system's resources. You might also be responsible for
designing or planning for additional resources as the need arises.

This chapter describes the general tasks for planning a system in the Conversational Monitor System
(CMS) environment.

z/VM provides two versions of CMS:

ESA/390 CMS (generally referred to simply as CMS)
CMS runs in the following virtual machine architectures:

ESA/390 (ESA or XA virtual machine)
An ESA virtual machine simulates IBM Enterprise Systems Architecture/390 (ESA/390), which is
a superset of IBM Enterprise Systems Architecture/370 (ESA/370), which is a superset of IBM
System/370 Extended Architecture (370-XA). The XA virtual machine designation is supported for
compatibility; an XA virtual machine is functionally equivalent to an ESA virtual machine.

ESA/XC (XC virtual machine)
An XC virtual machine processes according to IBM Enterprise Systems Architecture/Extended
Configuration (ESA/XC), which is an architecture unique to virtual machines. Although XC virtual
machines run with dynamic address translation off, they can take advantage of a subset of
dynamic address translation architectural features, and in particular, data spaces.

z/Architecture CMS (z/CMS)
z/CMS runs in the following virtual machine architectures:

z/Architecture (ESA or XA virtual machine)
z/Architecture uses 31-bit addressing mode in an ESA, XA, or Z virtual machine. CMS programs
can use z/Architecture instructions, including those that operate on 64-bit registers, while
permitting existing ESA/390 architecture CMS programs to continue to function without change.

When z/CMS is IPLed in an ESA/390 (ESA or XA) virtual machine, z/CMS switches the virtual
machine to z/Architecture mode and thereafter executes in z/Architecture mode.

z/XC (XC virtual machine)
A z/XC guest uses VM Data Spaces with z/Architecture in the same way that an ESA/XC guest uses
VM Data Spaces with Enterprise Systems Architecture. CMS applications that run in z/Architecture
can use multiple address spaces. z/CMS can use VM Data Spaces for accessing Shared File
System (SFS) Directory Control (DIRCONTROL) directories. z/XC supports programs that employ
z/Architecture instructions and registers (within the limits of z/CMS support) and programs that
exploit data spaces in the same CMS session.

When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC mode
and thereafter executes in z/XC mode.

Unless otherwise indicated, "CMS" means either version, and descriptions of CMS functions apply to both
CMS and z/CMS. For information on the differences between z/CMS and CMS and how to use z/CMS, see
“z/Architecture CMS” on page 17.

Note: CP does not support IBM System/370 architecture (370 mode) virtual machines. However, the
370 Accommodation Facility allows many CMS applications written for System/370 virtual machines

to runin ESA/390 and ESA/XC virtual machines. The CP level of the 370 Accommodation Facility is
activated with the CP SET 370ACCOM command. The CMS level of the 370 Accommodation Facility is
activated with the CMS SET CMS370AC command. In addition, although the 370 option of the GENMOD
command is not supported, modules generated with the 370 option can be run in an ESA/390 or ESA/XC
virtual machine by issuing the CMS SET GEN370 OFF command. For more information about the 370
Accommodation Facility, see z/VM: CP Programming Services. See z/VM: CP Commands and Utilities

© Copyright IBM Corp. 1991, 2022 1

CMS Planning

Reference for information on the SET 370ACCOM command and see z/VM: CMS Commands and Utilities
Reference for information on the SET CMS370AC and SET GEN370 commands.

Complex tasks involving more design and control of the system might require interaction with the CP
environment.

What CMS Does

CMS provides conversational facilities for virtual machine users. CMS operates only in a virtual machine,
and together with CP, provides a timesharing system suitable for program development, problem solving,
and general timesharing work.

CMS Command Language

The CMS command language lets you converse with CMS. This command language lets you use the
following:

« Language compilers

< An assembler

- CMS file management system

« Context editing and line editing
« Execution control

« Debugging programs

« z/VVM HELP Facility

You can also use the CP commands available to all virtual machines under z/VM directly from CMS. By
using these CP commands, you can send messages to the operator or to other users, change your virtual
machine's configuration, and use spooling facilities.

To use CMS, you must first gain access to a virtual machine by the CP LOGON command and then IPL
CMS. Then, you can enter commands or data from the terminal. Upon completion, each command returns
control to you.

Note: If your system was built with your national language, you might be able to enter CMS commands in
your own national language, rather than American English.

For information about how to use CMS, see z/VM: CMS User's Guide. For a complete description of all the
CMS commands, see z/VM: CMS Commands and Utilities Reference.

Storage Requirements

CMS requires virtual storage and auxiliary storage. A minimum of 2 MB of virtual storage is required for a
CMS virtual machine if CMS is IPLed from a named saved system. If you use a nonshared copy of CMS,
your virtual machine size must be at least 20 MB.

Auxiliary Storage
The CMS auxiliary storage requirements are distributed as follows:
» System residence for CMS—

— The CMS system and the ESA/390 CMS nucleus reside on the 190 minidisk. The z/CMS nucleus
resides on the 990 minidisk, but the CMS system disk for z/CMS is still the 190 minidisk. The CMS
system must reside on a minidisk. It cannot reside in a file pool. For information about the CMS
nucleus size and location on supported DASD, see Table 10 on page 38 and Table 11 on page 38.

— The CMS system S-disk and Y-disk should be formatted as 4 KB block sizes and should be 4 KB page
aligned. This means that the starting block should be divisible by 8. Formatting at 4 KB block size is
especially important if the installation has expanded storage and uses minidisk caching.

2 z/VM: 7.3 CMS Planning and Administration

CMS Planning

« Resident minidisk space or Shared File System (SFS) file pool space for application programs (CMS
commands, user programs, IBM licensed programs)—the space needed is program-dependent and
must be assigned by you.

« Work space (either minidisk space or file pool space) for application programs—the space needed is
program-dependent and must be assigned by you.

Device Support
Table 2 on page 3 shows the IBM virtual machine devices supported by CMS.

Table 2. Devices Supported by a CMS Virtual Machine

Virtual Device Type Virtual Symbolic Name Device Use
Addressl Default

3210, 3215, 1052, vdev? CON1 System console

3066, 3270

3380, 3390, 9336 190 DSK8 CMS System disk (read-only)
1913 DSK1 Primary disk (user files)
vdev DSK2 Minidisk (user files)
vdev DSK3 Minidisk (user files)
192 DSK4 Minidisk (user files)
vdev DSK5 Minidisk (user files)
vdev DSK6 Minidisk (user files)
vdev DSK7 Minidisk (user files)
19E DSK9 Minidisk (user files)
vdev DSKO Minidisk (user files)
vdev DSKH Minidisk (user files)
vdev DSKI Minidisk (user files)
vdev DSKJ Minidisk (user files)
vdev DSKK Minidisk (user files)
vdev DSKL Minidisk (user files)
vdev DSKM Minidisk (user files)
vdev DSKN Minidisk (user files)
vdev DSKO Minidisk (user files)
vdev DSKP Minidisk (user files)
vdev DSKQ Minidisk (user files)
vdev DSKR Minidisk (user files)
vdev DSKT Minidisk (user files)
vdev DSKU Minidisk (user files)
vdev DSKV Minidisk (user files)
vdev DSKW Minidisk (user files)
vdev DSKX Minidisk (user files)

Notes:

1 The device addresses shown are those that are preassembled into the CMS resident device table.
These need only be modified and a new device table made resident to change the addresses.

2 The virtual address of the system console can be any valid multiplexer address.

3 The 191 minidisk is automatically accessed as file mode A unless it is dynamically changed by an
ACCESS at CMS initial program load (IPL). If the user ID is enrolled in an SFS file pool, the virtual
machine can be set up so that the user's top directory is accessed as file mode A instead of a

191 minidisk. In this case, a 191 minidisk is optional. (The top directory is the SFS directory that is
automatically created when the user ID is enrolled in an SFS file pool.)

Chapter 1. Planning for CMS 3

CMS Planning

Under CP, unit record devices and the system console can be simulated and mapped to addresses and
devices other than the real ones. For instance, CMS expects a 3215, 3210, 1052, or 3270 type of
operator's console, but some terminals are 2741s. Regardless of the real device type, the virtual system
console is a 3215. CP handles all channel program modifications necessary for this simulation. CMS
virtual disk addresses are mapped by CP to different real device numbers.

Disks

The read-only CMS system disk (S-disk), usually located at virtual address 190, contains the ESA/390
CMS nucleus functions and disk-resident CMS command modules. The z/CMS nucleus is located on the
990 disk. The CMS nucleus is loaded into virtual storage when you enter the CP IPL command. CMS
remains resident until you enter another IPL command or until you log off. The disk-resident modules are
loaded into virtual storage only when their services are needed.

In addition to the system disk (file mode S) and the primary DASD storage, which can be either a minidisk
or an SFS directory, each CMS user can access up to 24 additional disks or SFS directories at one time.
Files that you wish to retain for later use can be stored on one of your accessed minidisks or SFS
directories. Information stored on a minidisk or SFS directory remains there until you or some other
authorized user erases it. Exceptions to this are the temporary minidisk (temporary disk) and the virtual
disk in storage. Files written on a temporary disk or virtual disk in storage are lost when you log off. See
z/VM: CMS User's Guide for more information about CMS disks and SFS directories.

Libraries
CMS supports simulated partitioned data sets that contain:

« CMS and OS macroinstruction/copy files to be used at compilation or assembly time (source/
macroinstruction libraries). The CMS file type for these files is MACLIB.

 Object routines to be referred to at load and/or execution time (text libraries). The CMS file type for
these files is TXTLIB.

« Callable services library (CSL) routines contained in VMLIB and VMMTLIB.

« Executable routines that are loaded by OS SVCs that CMS simulates. The CMS file type for these files is
LOADLIB.

« Executable routines that are fetched by DOS SVCs that CMS simulates. The CMS file type for these files
is DOSLIB.

These simulated partitioned data sets can reside on a minidisk or in an SFS directory.

Libraries on the CMS System Disk

The CMS system disk contains the various libraries described in Table 3 on page 5.

4 z/VM: 7.3 CMS Planning and Administration

CMS Planning

Table 3. CMS System Disk Libraries

Library Type Description
System Library
Macroinstruction Contents
Libraries DMSGPI

(File type is MACLIB)

CMS macroinstructions that are part of the intended programming interface. In prior
releases, these macroinstructions were in DMSSP MACLIB and CMSLIB MACLIB,
which no longer exist.

OSMACRO
Macroinstructions that CMS provides for execution of programs using MVS™
interfaces.

MVSXA
Simulated MVS/XA versions of the OS/MVS macroinstructions for the execution of
programs using MVS interfaces.

OSMACRO1
Nonsimulated versions of OS/MVS macroinstructions that are used only for assembly
on CMS.

OSVSAM
Subset of supported OS/VSAM macroinstructions.

DMSOM
CMS intended programming interface macros and internal assembler
macroinstructions for source maintenance.

FPLOM
CMS Pipelines intended programming interface macros and internal assembler
macroinstructions for source maintenance.

IXXOM
Internal assembler macroinstructions used by the REXX component for source
maintenance.

FPLGPI
CMS Pipelines intended programming interface macroinstructions.

HCPGPI
CP intended programming interface macroinstructions.

HCPPSI
CP intended programming interface macroinstructions.

If you plan to assemble VSE programs containing VSE macros in CMS/DOS, you must
first create a CMS macroinstruction library that contains all the VSE macroinstructions
you need. The z/VM: CMS Commands and Utilities Reference contains procedures

for copying an entire macroinstruction library. The procedure for copying individual
macroinstructions is described in the section Creating CMS MACLIB's in z/VM: CMS
Application Development Guide for Assembler.

If you plan to assemble VSE programs containing VSE/VSAM macroinstructions, you
must first create a CMS MACLIB containing the VSE/VSAM macroinstructions.

Chapter 1. Planning for CMS 5

CMS Planning

Table 3. CMS System Disk Libraries (continued)

Library Type Description
System Text Library
Libraries Contents

(File type is TXTLIB) | CMSLIB
CMS System Text Library

TSOLIB
Selected TSO routines necessary to support certain features of the language
licensed programs

CMSSAA
Common Programming Interface (CPI) Communications Text Library

DMSBASE
CMS Kernel Text Library

DMSAENV
Assembler Language Environment® manager routines for multitasking

DMSCENV
C Language Environment manager routines for multitasking

DMSAMT
Multitasking initialization routines for assembler applications

DMSCMT
Multitasking initialization routines for C applications
VMLIB
Direct call stubs for routines in VMLIB callable services library

VMMTLIB
Direct call stubs for routines in VMMTLIB callable services library

Callable Services Library
Libraries Contents
VMLIB CSLSEG

Main CMS Callable Services Library, which can be placed into a saved segment with
the SEGGEN command

VMLIB CSLLIB
Callable services library which can be loaded into user free storage

VMMTLIB TEXT
Callable services library included in the CMS nucleus, which contains the CMS
Multitasking kernel and the OpenExtensions callable services.

Other Libraries Library
Contents

CMSBAM DOSLIB
Used to build the CMSBAM saved segment used with CMS/DOS.

PROPLIB LOADLIB
Supports the programmable operator facility.

Execution-time libraries are available with the licensed program language processors.

You can generate your own libraries and add, delete, or list entries in them by the MACLIB and TXTLIB
commands. You can also specify which libraries (system and user) to use for program compilation and
execution by way of the GLOBAL command. Up to 63 libraries can be specified (subject to system limits,
such as command line length). Although CMS library files are similar in function to OS partitioned data
sets, OS macroinstructions should not be used to update them.

6 z/VM: 7.3 CMS Planning and Administration

CMS Planning

Program Language Facilities
Languages supported by CMS include:

« COBOL (0S/VS COBOL and VS COBOL II)
« OS PL/I

- VS Pascal

« VS FORTRAN

e« Cand C++

- Ada

« Assembler

« APL2°

« REXX

Assembler F is distributed with z/VM. Language compilers that are licensed programs must be ordered
separately. The IBM High Level Assembler, or an equivalent product, is required for many z/VM
programming tasks.

CMS runs the compilers by way of the interface modules. Users should always recompile their

programs and compiler interfaces under the system they are using to ensure any interface changes are
incorporated (that is, control block changes). CMS commands are provided to use the compilers within the
conversational environment of CMS.

Limited Support of OS and VSE in CMS

Object programs (TEXT files) produced under CMS or OS can be executed under CMS if they do not use
certain OS functions not simulated by CMS. Object programs using nonsimulated OS macroinstruction
functions must be transferred to an appropriate real or virtual OS machine for execution.

Sequential and partitioned data sets residing on OS disks can be read by OS programs running under CMS.
Also, certain CMS commands can process data sets on OS disks.

CMS does not support multi-buffering for non-DASD devices. There is one DCB per device, not per file.

CMS simulates the control blocks, supervisor and I/O macroinstructions, linkage editor and fetch routines
necessary to compile, test, and run VSE programs under CMS. The support for the VSE user is comparable
to that for the OS user.

CMS supports VSAM and Access Method Services for VSE and OS users. See z/VM: CMS Commands
and Utilities Reference for the restrictions on using VSE/VSAM and Access Method Services in CMS.
CMS also supports the VSE/VSAM macroinstructions and their options and a subset of the OS/VSAM
macroinstructions.

CMS/DOS support of VSAM is based on the VSE/VSAM licensed program.

Application programmers who usually use CMS to interactively create, modify, and test programs might
require facilities not supported in CMS (for example, an OS program using ISAM). They can alternately run
CMS and another operating system in the same virtual machine.

A description of the actual processes for reading OS or VSE files is in z/VM: CMS Commands and Utilities
Reference. The z/VM: Running Guest Operating Systems contains a description of alternating operating
systems.

DL/I in the CMS/DOS Environment

Batch DL/I application programs can be written and tested in the CMS/DOS environment. This includes all
batch application programs written in COBOL, PL/I, RPG II, and Assembler languages.

You can run any database description generation and program specification block generation. The
database recovery and reorganization utilities must be run in a VSE virtual machine.

Chapter 1. Planning for CMS 7

CMS Planning

See z/VM: CMS Application Development Guide for Assembler and DL/I DOS/VS General Information for
more information.

Disk and File Management

For many CMS commands and application programs to use DASD storage, CMS must be made aware of
that storage. To do this, the user must enter an ACCESS command. Up to 26 units of DASD storage can
be accessed at the same time. The accessed items can be either SFS directories, minidisks, or full packs.
Minidisks or full packs (often called virtual disks) can be in the following formats:

CMS
CMS disks are formatted with the CMS FORMAT command. Files contained on these disks are in a
format unique to CMS, and cannot be read or written using other operating systems.

0S or VSE
OS or DOS disks or minidisks can be used in CMS. OS or VSE programs running in CMS can read
data sets or files on OS or DOS disks, but may not write or update them. OS and DOS minidisks can
be formatted with the Device Support Facility or with an appropriate OS/VS or VSE disk initialization
program, if the disk is a full pack.

VSAM
Minidisks used with VSAM must be formatted with the Device Support Facility. Full disks must be
initialized using the appropriate OS/VS, Device Support Facility, or VSE disk initialization program.

Unlike minidisks or full packs, SFS file spaces and the directories created within them are not formatted.
Instead, file spaces are allocated when someone administering a file pool enrolls a user and gives them
space in the file pool (by using a CMS ENROLL USER command). Within this file space, one directory
(known as the top directory) is automatically created for the user. The user can create a hierarchy of
directories beneath this top directory by using the CMS CREATE DIRECTORY command.

Within an SFS directory, users can create and use CMS files, just as they can on CMS formatted minidisks.
And, like CMS formatted minidisks, SFS directories can contain partitioned data sets of the forms
supported by the CMS simulations of OS and DOS.

Although SFS directories can contain partitioned data sets, they cannot represent an OS, VSE, or VSAM
disk. This means, you cannot format an SFS directory using the Device Support Facility. Also, you cannot
format an SFS directory with an OS/VS or VSE disk initialization program.

While users typically access SFS directories, many CMS commands and program functions do not require
the SFS directory to be accessed. Instead, the desired SFS directory is specified in the command or
program function. CMS then directly accesses the chosen directory. There is no limit to the number of SFS
directories that CMS can access at the same time in this manner.

Disk Access

Disks can be accessed so that files can only be read (read-only), or so that files can be read and written
(read/write).

Both CP and CMS can control read/write access. If a disk is designated read/write by CP, then CMS
determines if the access is read or write. If a disk is designated read-only by CP, then it can only be read
by CMS.

To access a disk, you must:

- Identify the disk to CP as part of your virtual machine configuration. This disk is available if it is defined
in your user directory entry, or it can be acquired with the CP LINK or DEFINE commands.

« Identify the disk to CMS by assigning it a file mode letter. You do this using the ACCESS command in
CMS.

Or you can use the CMS VMLINK command to link and access the disk.

You can have many virtual disks known to CP in your virtual machine configuration at one time. CMS lets
a maximum of 26 disks be accessed, with file mode letters A through Z. File mode S (usually at virtual

8 z/VM: 7.3 CMS Planning and Administration

CMS Planning

address 190) is the CMS system disk. File mode A is your primary read/write file mode. It can be either a
minidisk, in which case it is usually at virtual address 191, or an SFS directory.

When you access a minidisk or SFS directory, a list of files is stored in your virtual machine. Large amounts
of virtual storage can be used when many minidisks and SFS directories are accessed or when they
contain a very large number of files. See the CMS ACCESS command in z/VM: CMS Commands and Utilities
Reference for more information.

SFS Directory Access

Like disks, SFS directories can be accessed so that files can be read (read-only), or so that files can be
read and written (read/write).

Unlike minidisks, however, CP has nothing to do with the mode in which SFS directories are accessed.
Only CMS controls whether a particular SFS directory is accessed read or read/write. Directories that the
user owns (or is authorized to access) can be accessed read or write depending on the ACCESS or VMLINK
command options specified.

It is not necessary to use CP LINK and DEFINE commands to make an SFS directory a part of the virtual
machine configuration. An authorized user only needs to enter an ACCESS command.

File Sharing

The CMS Shared File System lets users share files with others. Any number of readers and one writer can
use a file at one time. SFS includes an automatic locking mechanism to prohibit multiple writers. The files
can be shared within a processor. If connections via TSAF, ISFC links, or AVS and VTAM® are used, the files
can be shared with users of other processors. For more information about using SFS to share files, see
z/VM: CMS User's Guide.

If, for some reason, SFS is not available to users, they can use CP to share disks and minidisks. In

this case, entire minidisks or disks are shared by using CP LINK commands. LINK command operands
determine the type of access (multiple users read-only or read/write). CMS does not provide any control
for multiple writes to minidisk files. Therefore it is not recommended that CMS disks be used with multiple
write access. Password protection is provided for minidisks.

Disk File Format

All disks that contain CMS files must be formatted before first use. A disk can be formatted into one of
four disk block sizes: 512 bytes, 1024 bytes (1 KB), 2048 bytes (2 KB), or 4096 bytes (4 KB).

To format the disk, use the CMS FORMAT command. The CMS FORMAT command initializes disks in CMS
format and writes a label on the disk. See z/VM: CMS Commands and Utilities Reference for details.

The volume label is written on record 3 of cylinder 0, track 0 for ECKD™ devices and on block 1 (origin
zero) for FB-512 devices. The volume label contents are detailed in Table 4 on page 9.

Table 4. Volume Label Contents for CMS Formatted Disks

Field Description Byte Displacement, Contents by Disk Block Size
Length (512-Byte, 1 KB, 2 KB, 4

KB)

Label identifier 0,4 C‘CMSsT’

Volid 4,6 user label

Version identifier 10,2 X'0000'

Disk block size 12,4 F512’, F1024°, F'2048’, or
F‘4096’

Disk origin pointer 16,4 F‘4’ or F'5’

Number of usable cylinders/blocks 20,4 Fn’

Chapter 1. Planning for CMS 9

CMS Planning

Table 4. Volume Label Contents for CMS Formatted Disks (continued)

Field Description Byte Displacement, Contents by Disk Block Size
Length (512-Byte, 1 KB, 2 KB, 4

KB)

Maximum number of formatted cylinders/blocks 24,4 Fn’

Disk size in CMS blocks 28,4 F'n’

Number of CMS blocks in use 32,4 F'n’

FST size in bytes 36,4 F‘64’

Number of FSTs per CMS block 40,4 F'n’

Disk FORMAT date 44,6 X'yymmddhhmmss'

Reserved for IBM use 50,2 not used, zeros

Disk offset when reserved 52,4 F'n’

Allocation Map Block with next hole 56,4 F'n’

Displacement into HBLK data of next hole 60,4 F'n’

Displacement into user part of Allocation map 64,4 F'n’

Reserved for IBM use 68,4 not used, zeros

Name of shared segment 72,8 segment name

On ECKD devices, each 512-byte, 1 KB, 2 KB, or 4 KB block (called a CMS block) represents one physical
record of that size on disk. For FB-512 devices, each CMS block consists of the appropriate number of
contiguous FB-512 (512-byte) blocks, logically concatenated to form the correct number of data bytes for
that CMS block.

Files placed on CMS disks can have logical records that are fixed or variable length. In either case, the
CMS file system places these file records contiguously into fixed length CMS blocks, spanning blocks
where necessary. As a file grows or contracts, its space is expanded or reduced as needed.

Files on a CMS disk are identified by a file directory. The file directory is updated when a command is
entered that changes the status of the file on the disk.

A single CMS file can contain up to approximately (231-1)-132,000 disk blocks of data, grouped into as
many as 231-1 logical records, all of which must be on the same minidisk.

To ensure that the saved copy of the S-STAT or Y-STAT? is current, a validity check is done when a saved
system is IPLed. The validity checking consists of comparing the date when the saved directory was last
updated with the date when the current disk was last updated. If the dates for the S-STAT are different,
then the S-STAT is built in user storage. If the dates for the Y-STAT are different, then the Y-disk is
accessed using the CMS ACCESS command:

ACCESS 19E Y/S * * Y22

This means that even when the S-disk and Y-disk are accessed in read/write mode and then released, this
message will result:

DMSINS100W S-STAT and/or Y-STAT NOT AVAILABLE

1 The S-STAT and Y-STAT are blocks of storage that contain the file status tables associated with the S-disk
and Y-disk.

2 DASD address of the Y-disk is whatever was specified when CMS was generated. For the standard system,
this is 19E.

10 z/VM: 7.3 CMS Planning and Administration

CMS Planning

Identifying Disk Files

CMS commands can list the identifications of files on CMS and non-CMS formatted disks and minidisks.
The LISTFILE and FILELIST commands list the entries in the master file directory for CMS disks. The
LISTDS command lists the entries in the VTOC (Volume Table of Contents) for OS and DOS disks, or data
spaces on VSAM volumes.

Tape Support

CMS supports any tape device that can be attached to a virtual machine. All kinds of tape devices are
equally usable with CMS, within constraints imposed by the devices themselves. CMS provides the ability
to read and write any tape recording format that the device is capable of reading or writing.

CMS uses virtual tape devices. To have a virtual tape device, you have to dedicate a real tape device for
the purpose (for example, by having a z/VM operator issue a CP ATTACH command).

For information about tape handling in the CMS/DOS environment, see “Planning for CMS/DOS” on
page 23. For more information about tape support, see z/VM: CMS Application Development Guide for
Assembler and z/VM: CMS User's Guide.

Unit Record Support
Table 5 on page 11 lists the IBM unit record devices supported by CMS.

Table 5. Unit Record Devices Supported by CMS

Virtual Device Type Virtual Address Symbolic Name Default Device Use
3505 0ocC RDR1 Virtual reader
3525 00D PCH1 Virtual punch
1403, 3203, 3262, OOE PRN1 Line printer

3800, 4245, 6262

Note: The virtual addresses shown are those that are preassembled into the CMS resident device table.

Under z/VM, these devices are spooled. CMS does not support real or dedicated unit record devices. Table
2 on page 3 lists the devices supported as virtual devices by CMS.

Shared Segments

The default system definition files place the CMS nucleus in the 15 MB to 20 MB address range. Some
parts of the CMS nucleus are installed and supported only below the 16 MB line.

If a user's virtual machine size extends beyond the start location of the CMS nucleus, then the CMS
nucleus will exist within the user's virtual storage. This might prevent a user with a small virtual machine
size from acquiring a large contiguous CMSSTOR (GETMAIN) area.

Configurations Supported by CMS

CMS supports:

« A maximum virtual storage size of 2047 MB.

z/CMS can be IPLed in a virtual machine with more than 2047 MB of storage and provides limited
support for exploiting storage above 2047 MB.

« Foravirtual console, any terminal supported by CP as a virtual machine operator's console.

« The same unit record devices (card readers, punches, and printers) supported by z/VM as spooling
devices, except the 2520 Punch.

Chapter 1. Planning for CMS 11

CMS Planning

« Upto 26 logical 3380, 3390, 9345 or FB-512 DASDs. See “CMS Restrictions” on page 14 for the
maximum size of a CMS minidisk.

« Up to sixteen virtual tape devices. A tape device must have one of the following virtual device numbers:
0180-0187, 0288-028F. Most CMS functions use the device at 0181 by default.

CMS users can be authorized to use DASD space within CMS Shared File System (SFS) file pools. A file
pool is a collection of minidisks managed by a virtual machine. One file pool can contain the files for many
CMS users. Virtual machines that manage file pools are called file pool server machines.

Any number of file pools can be defined on your z/VM system. A CMS user can be authorized to use space
in more than one file pool.

Planning for SFS, BFS and CRR

During z/VM installation, you are given a choice of loading the following IBM-supplied file pools from the
z/VM system DDR image:

VMSYS
VMSYS is a repository file pool that is managed by the VMSERVS server machine and is used to hold
system data.

VMSYSU
VMSYSU is an repository file pool that is managed by the VMSERVU server machine and is used as a
production file pool to hold users' data.

VMSYSR

VMSYSR is a CRR file pool that is managed by the VMSERVR server machine, which is the CRR
recovery server.

Before you begin the z/VM installation process (see z/VM: Installation Guide), you should consider the
benefits of loading the IBM-supplied file pools. It is quicker and easier to load the IBM-supplied file
pools then tailor them, than to create your own. See z/VM: CMS File Pool Planning, Administration, and
Operation for detailed information about planning for file pools.

You might want to consider installing the DFSMS/VM optional feature to help manage user storage within
SFS. (If you plan to install DFSMS/VM, the VMSYS file pool is required.) See z/VM: DFSMS/VM Planning
Guide for detailed information about planning for DFSMS/VM.

Estimating DASD Storage Requirements for CMS

You can let CMS users use two forms of DASD space:

1. You can allocate minidisks directly to the user's virtual machine.

2. You can authorize them to use DASD space within a file pool. (There are various file pools and file pool
servers depending on how your installation has set up the definitions.) For a complete description of
these types of file pools, see z/VM: CMS File Pool Planning, Administration, and Operation. This space
is known as the user's file space. A user can organize the files in his or her file space into a hierarchy
of directories. When the file space is created, one directory is automatically created for the file space.
This directory is known as the top directory.

In many commands, directories are used as rough equivalents to minidisks. For instance, to make CMS
aware of either a minidisk or file pool directory, users enter an ACCESS command for the minidisk or
directory.

In a z/VM system, CMS users can have several kinds of DASD storage. You might, for example, allow one
user to use only an SFS file space, a second user to use only a minidisk, a third user to use BFS file spaces,
and a fourth user to use some combination of these. When planning for z/VM, you should decide what
kinds of DASD storage your CMS users will have. In making your decisions, consider:

12 z/VM: 7.3 CMS Planning and Administration

CMS Planning

« SFS and BFS do not allocate DASD space until it is actually used. When a minidisk is allocated to a user,
on the other hand, any unused space on the minidisk is wasted.

- SFS and BFS let users organize their files into a hierarchy of directories. Files that reside on minidisks
cannot be organized into directories.

- SFS and BFS let users share files concurrently. Note that although multiple users can share minidisks
by using the CP LINK command, the sharing is limited. Multiple users can read from a minidisk, but only
one user can safely write to it at the same time. More than one user writing to the same virtual device
can result in a permanent loss of data. (CMS does not protect a user from loss of data when multiple
users have write access to the minidisk.) Unpredictable results can occur when one user has a read-only
link to a device that is being updated by a user who has the device in write status.

« SFS and BFS ease DASD management. Rather than divide a DASD volume into multiple user minidisks,
you can allocate an entire DASD volume to a SFS or BFS file pool and let the file pool manage that space.

« Remote users can access data in file pools.

« Minidisks generally provide better performance than SFS or BFS file spaces. If users have applications
that demand optimal file I/O performance, consider giving those users minidisk space instead of or in
addition to SFS or BFS file spaces.

For more about the CMS file pools and file pool servers, see z/VM: CMS User's Guide and z/VM: CMS File
Pool Planning, Administration, and Operation.

Estimating DASD Storage Requirements for CMS Minidisks

The following tables list the disk capacities for all DASD supported by CMS for the four supported block
sizes. Table 6 on page 13 and Table 7 on page 13 can help you allocate enough DASD space for CMS
minidisks.

Table 6. CMS Blocks per Cylinder

Disk/Blocksize 512 1024 2048 4096
3380 690 465 270 150
3390 735 495 315 180
9345 615 420 255 150
FB-512 CMS blocks/FBA block 1 0.5 0.25 0.125

Table 7. Usable KBs per Cylinder

Disk/Blocksize 512 1024 2048 4096
3380 345 465 540 600
3390 367 495 630 720
9345 307 420 510 600
FB-512 KB/FBA block 0.5 0.5 0.5 0.5

Note: For FB-512 devices, 512 bytes multiplied by the number of FBA blocks will yield the number of
usable bytes.

Table 7 on page 13 displays the maximum amount of space available for CMS data on the DASD. However,
this space includes:

« Space required for the file directory

» Space required for the disk allocation map

« Space required for pointer structures of files
« Space wasted due to partially used blocks.

Chapter 1. Planning for CMS 13

CMS Planning

In addition, when calculating actual useful space, you might want to consider reducing the values above
by as much as 30%. The actual amount will vary greatly based on the size of your files and the number of
files on the disk.

Each physical disk contains file control information as well as your data. Data requires more file control
information if put into many small files instead of a few large files.

For an average CMS user, the following minidisk space should be sufficient; if the user also has an SFS file
space or BFS file space, you can reduce these amounts proportionally.

Device Type Space Required
3380 8 cylinders

3390 5 cylinders

9345 5 cylinders

FB-512 6000 512-byte blocks

Estimating DASD Storage Requirements for File Pools

Because a file pool allocates DASD space dynamically, the initial amount of DASD space you would need
for an average user is somewhat less than the amounts shown in the previous section. A file pool does
require, however, additional DASD space beyond the space used strictly for user data. This additional
DASD space is needed for file pool control data and for file pool log minidisks.

File pool server processing uses the control data to keep track of the objects in a file pool. The control
data also maps the DASD space used within a file pool. The log minidisks help protect the integrity of a file
pool from system failures or device errors.

The amount of space needed for file pool control data and for log minidisks varies with factors such as the
number of files and directories, the rate of change activity, and the size of the file pool.

Even with the extra DASD overhead, however, the initial total DASD space requirement per average user is
less than the amounts shown in the previous section. For a rough estimate, reduce the amounts shown by
about 25 %. Remember that this is a rough estimate, because your average user could consume more or
less space than the numbers shown in the chart.

After z/VM is installed and users begin consuming file pool space, you can more accurately project your
DASD needs and plan accordingly. File pools are expandable. You can add DASD storage to them as it is
needed. For more information on file pools and determining the allocations needed for them, see z/VM:
CMS File Pool Planning, Administration, and Operation.

Estimating DASD Storage Requirements for CRR File Pools

The CRR facility requires a recovery server for CRR logging and CRR resynchronization functions. The
CRR recovery server runs as a part of a file pool server. If you plan to use SFS or BFS (either locally or
remotely), IBM recommends that you install one and only one CRR recovery server on each system. The
CRR recovery server can optionally be generated during z/VM installation (see z/VM: Installation Guide),
or you can generate your own CRR recovery server. See z/VM: CMS File Pool Planning, Administration, and
Operation for more information on CRR.

The CRR recovery server's file pool requires minimal DASD space (compared to a SFS or BFS (repository)
file pool). Additionally, CRR file pools require two CRR log minidisks. Generally, you can plan for each
minidisk in the CRR file pool to be one to two cylinders on any ECKD DASD model or 2000 to 2000 blocks
on FB-512 devices. This should be more than sufficient in nearly all cases.

For more specific information on determining the minidisk allocations needed for CRR file pools, see z/VM:
CMS File Pool Planning, Administration, and Operation.

CMS Restrictions

The following restrictions apply to CMS:

14 z/VM: 7.3 CMS Planning and Administration

CMS Planning

1. CMS runs only on a virtual processor provided by z/VM.
2. The maximum sizes (in cylinders or blocks) of CMS minidisks are as follows:

Table 8. Maximum Size of CMS Minidisks

CMS/VSAM,
CMS 512-Byte, 1 KB,
Device Type Models 2 KB, or 4 KB Format
3380 A04, AA4, B04, AD4, BD4, AJ4, B4, 885 cylinders
CJ2
3380 AE4, BE4 1770 cylinders
3380 AK4, BK4 2655 cylinders
3390¢ Al4, A18,B14,B18, B1C 1113 cylinders
3390¢ A24, A28, B24,B28, B2C 2226 cylinders
3390°¢ A34, A38,B34,B38,B3C 3339 cylinders
33907 A98, B9C 10017 cylinders &, °, 1*
9336 010 920115 blocks
9336 020 2147483640 blocks *°, 1*
FB-512 (virtual (not applicable) 4194296 blocks

disk in storage)

Notes:
¢ These capacities apply to 3390 mode and 3380 track compatibility mode.
73380 track compatibility mode is not supported for these 3390 models.

8 Minidisks used with VSAM are limited to 65536 tracks (4369 3390-cylinders). This is not a
limitation of CMS, but rather is a limitation of the VSE/VSAM licensed program on which the CMS
support of VSAM is based.

° Value can be up to the maximum number of cylinders on the DASD (CMS is limited to 32767
cylinders).

10 z/VM supports EDEVICEs that are emulated on a SCSI or NVMe device. The EDEVICE is managed
like a real 9336 FBA disk and has a maximum capacity of 2147483640 512-byte blocks (1 TB less
one 4096-byte page). Note, however, that directory, paging, and spooling allocations must reside
within the first 16777216 blocks (blocks 0 to 16777215) of a CP-formatted disk.

11 Because the CMS file system requires file status and control information to reside below 16 MB in
virtual storage, there is a practical limitation on the size of CMS minidisks. As a minidisk increases
in size or more files reside on the disk, the amount of virtual storage that is associated with the disk
for CMS file system status and control increases in storage below 16 MB. The current ECKD™ DASD
limitation is 65520 cylinders for a 3390 disk on an IBM TotalStorage DASD subsystem, or about 45
GB of data. The maximum size for real or emulated FBA disks that are supported for use by CMS

or GCS is 381 GB. Consider a practical limit of about 22 GB. The file status and control information
for larger disks is decreased if the disk contains fewer files. If disks that are larger than 22 GB are
defined and contain many files, then the CMS file system might not be able to obtain enough virtual
storage below 16 MB to format or access those disks. For more information, see CMS ACCESS in
z/VM: CMS Commands and Utilities Reference.

3. Programs that operate under CMS should use documented interfaces. Those programs that modify
internal CMS control blocks to communicate with the CMS system might hamper the performance
and reliability of the system.

Chapter 1. Planning for CMS 15

CMS Planning

4. CMS uses z/VM spooling to perform unit record I/O. However, a program running under CMS can issue
its own SIOs to attached dedicated unit record devices.

5. Only those OS and VSE tasks that are simulated by CMS can be used to run OS and VSE programs
produced by language processors under CMS.

6. Many types of object programs produced by CMS (and 0OS) languages can be run under CMS using
CMS simulation of OS supervisory functions. Although supported in OS and VSE virtual machines
under z/VM, the writing and updating of non-VSAM 0S data sets and VSE files are not supported
under CMS.

7. CMS can read sequential and partitioned OS data sets and sequential VSE files, by simulating certain
OS and VSE system services.

The following restrictions apply when CMS reads OS data sets that reside on OS disks:

» Read-password-protected data sets are not read unless they are VSAM data sets.

« Multivolume data sets are read as single volume data sets. End-of-volume is treated as end-of-file
and there is no end-of-volume switching.

- BDAM and ISAM data sets are not read.
« Keys in data sets with keys are ignored and only the data is read, except for VSAM.
» User labels in user labeled data sets are ignored.

The following restrictions apply when CMS reads VSE files that reside on DOS disks:

« Only VSE sequential files can be read. CMS options and operands that do not apply to OS sequential
data sets (such as the MEMBER and CONCAT options of FILEDEF and the PDS option of MOVEFILE)
also do not apply to VSE sequential files.

« The following types of VSE files cannot be read:

— VSE DAM and ISAM files
— Files with the input security indicator on

— VSE files that contain more than 16 extents. Note: Because user labels occupy the first extent,
the file can hold only 15 additional data extents.

 Multivolume files are read as single volume files. End-of-volume is treated as end-of-file and there
is no end-of-volume switching.

 User labels in user labeled files are ignored.

 Because VSE files do not contain BLKSIZE, RECFM, or LRECL parameters, these parameters must
be specified in the FILEDEF command or DCB macroinstruction; otherwise, BLKSIZE=32760 and
RECFM=U are assigned. LRECL is not used for RECFM=U files.

« CMS does not support the use of 0S/VS DUMMY VSAM data sets at program execution
time, because the CMS/DOS implementation of the DUMMY statement corresponds to VSE
implementation. Specifying the DUMMY option with the DLBL command will cause an execution-
time error.

8. Assembler program usage of the ISAM Interface Program (IIP) is not supported.

9. CMS/DOS support is based on the VSE/Advanced Functions licensed program. With VSE, prior
releases of VSAM are not supported under CMS/DOS.

10. System logical units (SYSIN, SYSRDR, SYSIPT, SYSLST, and SYSPCH) are not supported for VSE
formatted FB-512 devices because the SYSFIL function of VSE is not supported under CMS/DOS.

11. Programs created using CMS/DOS are not recommended for transfer directly to a VSE machine
because:

- The CMS/DOS VSE linkage editor is designed to link edit VSE programs under CMS/DOS only.

» Programs created using the CMS/DOS assembler might have incorrect ESDs. In this case, the OS
assembler is used. The OS assembler is not compatible with VSE.

« Some VSE macroinstructions and SVCs are simulated. The code generated is not complete under
CMS/DOS.

16 z/VM: 7.3 CMS Planning and Administration

CMS Planning

12. To ensure that the saved copy of the S-STAT or Y-STAT is current, a validity check is performed
when a saved system is IPLed. (The S-STAT and Y-STAT are blocks of storage that contain the
file status tables associated with the S-disk and Y-disk.) This check is performed only for S-disks
and Y-disks formatted in 512-byte, 1024-byte, 2048-byte, or 4096-byte CMS blocks. The validity
checking consists of comparing the date when the saved directory was last updated with the date
when the current disk was last updated. If the dates for the S-STAT are different, then the S-STAT is
built in user storage. If the dates for the Y-STAT are different, then the Y-disk is accessed using the
CMS ACCESS command:

ACCESS 19E Y/S * * Y2

This means that even when the S-disk and Y-disk are accessed in read/write mode and then released,
this message will result:

DMSINS100W S-STAT and/or Y-STAT NOT AVAILABLE

13. Programs that modify the file ID of an FST can destroy the integrity of the file system, and they are
not supported by CMS. These programs might cause a "file not found" condition for the file until the
disk is accessed again.

14. When loading text that contains dummy sections or defines pseudo registers, their cumulative length
must not exceed 32767 (decimal) or X'7FFF'. If this limit is exceeded, the values stored by the CXD
entry will not be accurate and the load map will not contain the correct cumulative length values.

15. Applications dependent on 370-mode instructions cannot execute without the 370 Accommodation
Facility being enabled first.

z/Architecture CMS

In addition to the ESA/390 version of CMS, z/VM also provides z/Architecture CMS (z/CMS). z/CMS runs
in z/Architecture 31-bit addressing mode in an ESA or XA virtual machine and enables CMS programs to
use z/Architecture instructions, including those that operate on 64-bit registers, while permitting existing
ESA/390 architecture CMS programs to continue to function without change.

z/CMS Specifications

Before using z/CMS, make sure you understand its specifications. Unless otherwise indicated, z/CMS has
the same requirements and provides the same support as ESA/390 CMS.

64-Bit Addressing Mode

z/CMS does not exploit or explicitly support 64-bit addressing mode. For example, z/CMS does not allow
you to specify AMODE 64 on the GENMOD command. But z/CMS does not impose serious restrictions on
programs that enter 64-bit addressing mode themselves.

Storage

z/CMS does not directly exploit storage above 2 GB. However, z/CMS can be IPLed in a virtual machine
with more than 2 GB of storage, and programs can specify the SUBPOOL='USERG' parameter on the
CMSSTOR OBTAIN macro to allocate storage above 2 GB. The number of pages of storage to be allocated
is specified using the BYTES= parameter of CMSSTOR OBTAIN. For example, the following statement will
allocate 1 page of storage above 2 GB:

CMSSTOR OBTAIN,BYTES=1,SUBPOOL="'USERG"

The 64-bit address of the allocated storage is returned in general-purpose register 1. All storage allocated
above 2 GB is aligned on a page boundary.

The z/Architecture version of the CMSSTOR macro is located in the DMSZGPI MACLIB.

Chapter 1. Planning for CMS 17

CMS Planning

The REXX STORAGE() function will accept an address that is up to 16 hexadecimal digits long, and
therefore can be used to obtain the 64-bit virtual machine size and to examine and alter virtual machine
storage using 64-bit addresses.

Execution of programs above 2 GB is not supported by CMS interruption handlers.

In a virtual machine with more than 2047 MB of storage, z/CMS does not use the megabyte at 2047 MB.

Auxiliary Storage Requirements

z/CMS has the same auxiliary storage requirements as ESA/390 CMS (see “Auxiliary Storage” on page 2),
except that the z/CMS nucleus resides on the MAINT 990 minidisk.

Large Registers

The high-order halves of the general-purpose registers are for the most part not used by z/CMS, but they
are saved and restored across interruptions and are provided to application programs by interruption
handling interfaces such as the one supported by the HNDEXT macro.

NUCON

The CMS nucleus constants area, NUCON, has been redesigned to accommodate the requirements of
z/Architecture, including new PSW locations and an 8 KB prefix area. Programs that usurp CMS ESA/390
architecture fields might not function correctly. However, programs that steal CMS ESA/390 architecture
PSWs should work as expected.

Note: Only certain fields within NUCON are supported as programming interfaces.

Mapping Files

In addition to NUCON, several other mapping macros and copy files have been updated, including
DBGSECT, EXTSECT, EXTUAREA, IHAEPIE, IHASDWA, IOSECT, PGMSECT, PSA, STRUCPRA, SVCSAVE,
SVCSECT, and USERSAVE. Programs that refer to these data areas might need to be recompiled. The
updated DBGSECT, IOSECT, NUCON, SVCSAVE, and SVCSECT macros are provided in the DMSZGPI
MACLIB.

Note: Only certain data areas are supported as programming interfaces.

XC Mode

CP does not support XC-mode z/Architecture virtual machines, so data spaces and associated
applications that require them are not supported in z/CMS.

Diagnose Support

Some CP Diagnose instructions are not enabled for use by a z/Architecture virtual machine. This might
affect the operation of some programs in z/CMS.

Using z/CMS

z/CMS is supplied as a predefined named saved system called ZCMS and as an IPLable nucleus on

the MAINT 990 minidisk. The system disk (S-disk) for z/CMS is still the MAINT 190 minidisk. The
z/CMS nucleus is built using VMSES/E in a manner similar to building the CMS nucleus, except that

the ZCMSLOAD build list is used instead of the CMSLOAD build list, and the responses to the system for
prompts issued during nucleus generation are obtained from the DEFNUC macro in the DMSZNGP file
instead of the DMSNGP file. For more information, see “DEFNUC Macro” on page 34.

To use z/CMS, you can IPL the ZCMS named saved system or you can link to the MAINT 990 minidisk and
then IPL 990. To IPL 990 you need at least 20 MB of virtual storage. After being IPLed in an ESA/390
(ESA or XA) virtual machine, z/CMS switches the virtual machine to z/Architecture mode and thereafter
executes in that mode.

18 z/VM: 7.3 CMS Planning and Administration

CMS Planning

If you have programs that have dependencies on control blocks changed for z/CMS (see “Mapping Files”
on page 18), you will need to reassemble those programs. To use any of the z/Architecture macros, you
must issue a GLOBAL MACLIB command to specify the DMSZGPI MACLIB ahead of the DMSGPI MACLIB.
For example:

global maclib dmszgpi dmsgpi

Chapter 1. Planning for CMS 19

CMS Planning

20 z/VM: 7.3 CMS Planning and Administration

VSE and VSAM Planning

Chapter 2. Planning for VSE Simulation and VSAM
Support

CMS supports interactive program development for Operating System (OS) and Virtual Storage Extended
(VSE) programs using Virtual Storage Access Method (VSAM). It also supports VSAM macroinstructions
used in CMS programs. All of the VSE/VSAM macroinstructions and their options and a subset of the
0S/VSAM macroinstructions are supported by CMS.

Access method services to manipulate OS, VSE VSAM, and SAM data sets, and VSAM for use with DOS/VS
SORT/MERGE are also supported by CMS.

Planning for CMS VSAM and Access Method Services

Under CMS, VSAM data sets can span up to 25 DASD volumes. CMS does not support VSAM data set
sharing. However, CMS does support the sharing of minidisks or full pack minidisks. Only one user may
have write access to the VSAM master catalog, but many other users may read and reference the catalog.

VSAM data sets created in CMS are not in the CMS file format. Therefore, CMS commands currently used
to manipulate CMS files cannot be used for VSAM data sets that are read or written in CMS. VSAM data
sets cannot be stored in a CMS Shared File System (SFS) file pool.

Because VSAM data sets in CMS are not a part of the CMS file system, CMS file size, record length, and
minidisk size restrictions do not apply. The VSAM data sets are manipulated with access method services
programs running under CMS, instead of with the CMS file system commands. Also, all VSAM minidisks
and full packs used in CMS must be initialized with the Device Support Facility or an appropriate VSE or
0S/VS disk initialization program (if the minidisk is a full pack); the CMS FORMAT command must not be
used.

Both CMS and GCS support the VSE/VSAM for VM Version 6 Release 1 Data Compression Services, which
allows automatic compression and expansion of data records on clusters DEFINEd as COMPRESS. VSAM
Data Compression Services require a 'VSAM.COMPRESS.CONTROL' KSDS cluster to be defined in each
catalog where compressed data will reside as a central control for Data Compression Services. ESDS,
KSDS, and VRDS clusters can then be defined as COMPRESS and related to the compression control data
set in the catalog where the cluster is defined. RRDS and SAM-ESDS cluster types cannot be defined as
COMPRESS. Note that clusters defined as COMPRESS type cannot be opened in control interval mode.
Compressed data is under the control of the VSE/VSAM program.

Existing customer data clusters can be redefined as COMPRESS and reloaded with data records through
REPRO copy services. No application program changes are necessary to use these compressed data files.
The VSE/VSAM program automatically compresses records on VSAM write requests and re-expands them
again for VSAM read requests by the application.

Data Compression Services will take advantage of the CMPSC hardware compression instruction, if
available, to improve performance. Otherwise, a software simulation of the instruction will be used to
execute the actual data compression.

Some return codes and feedback reason codes for Data Compression Services differ between MVS/VSAM
and VSE/VSAM environments. For more detailed information on these differences, refer to the 'OS/VSAM
Error Codes' section of z/VM: CMS Application Development Guide for Assembler for OPEN, CLOSE, and I/O
Request error code tables.

GCS users can find error code information in the 'VSAM Data Management Service Macros' section of
z/VM: Group Control System.

© Copyright IBM Corp. 1991, 2022 21

VSE and VSAM Planning

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM Version 6 Release 1
Commands, VSE/VSAM Version 6 Release 1 User's Guide and Application Programming , and VSE/ESA
Version 2 Release 1 Messages and Codes.

Hardware Devices Supported by VSE

CMS support of VSAM data sets is based on VSE/VSAM. Disks supported by VSE/VSAM can be used for
VSAM data sets in CMS. These disks are:

Device Number Model Number

3380 Direct Access Storage

3390 Direct Access Storage

9336 Direct Access Storage Models 010 and 020

When the z/VM processor is attached to a Mass Storage System (MSS), the CMS disk may be defined as a
3330 Model 1 that is mapped by z/VM to all or part of a 3330V volume.

CMS disk files used as input to or output from Access Method Services can reside in an SFS file pool or on
any disk supported by CMS.

Data Set Compatibility Considerations

CMS can read and update VSAM data sets created under VSE/VSAM or OS/VS. VSAM data sets with
physical record sizes .5K, 1K, 2K, or 4K created under CMS can be read and updated by OS/VS VSAM. See
the VSE/VSAM General Information Manual for more information about VSE/VSAM and OS/VS VSAM.

If you perform allocation on a minidisk in CMS, you cannot use that minidisk in an OS virtual machine in
any manner that causes further allocation. VSE/VSAM (and thus CMS) ignores the format-5, free space
DSCB on VSAM disks when it allocates extents. If allocation later occurs in an OS machine, OS attempts to
create an accurate format-5 DSCB. However, the format-5 DSCB created by OS does not correctly reflect
the free space on the minidisk because OS expects it to be a full pack. In CMS, allocation occurs whenever
data spaces or data sets are defined, and space is released whenever data spaces, catalogs, and data sets
are erased.

ISAM Interface Program (IIP)

CMS does not support the VSAM ISAM Interface Program (IIP). Thus, any program that creates and
accesses ISAM (indexed sequential access method) data sets cannot access VSAM key sequential data
sets.

There is one exception to this restriction. If you have OS PL/I programs that have files declared as
ENV(INDEXED) and if the library routines detect that the data set being accessed is a VSAM data set, your
programs will execute VSAM I/0 requests.

Planning Considerations for Installing VSAM under CMS

CMS support of VSAM and Access Method Services is based on the VSE/VSAM licensed program. You
must order the supported level of the VSE/VSAM product and follow its installation instructions to install
VSAM under CMS.

VSAM installation under CMS requires that the DOSINST saved segment be generated. Information on
generating these segments is in the z/VM: Installation Guide.

Using Data Compression with the VSE System

The VSE/VSAM Version 6.1.0 (program number 5686-066) supports Data Compression to save DASD
space in large customer databases. CMS and GCS also support the VSE/VSAM for VM Version 6 Release

22 z/VM: 7.3 CMS Planning and Administration

VSE and VSAM Planning

1 interface for Data Compression. Compressed data sets created on the VSE system can also be used by
applications used by CMS and GCS.

Creating a Compressed CLUSTER

Two things must be done to create a new data set in compressed format:

1. A'VSAM.COMPRESS.CONTROL' KSDS compression control data set must be defined in each catalog
where compressed data will reside.

2. The new data set CLUSTER must be defined as COMPRESS format.

When you use AMSERV to create a VSAM cluster, the COMPRESS parameter of the DEFINE function

will allow record data to be compressed when it is written and will expand data when it is read. This
parameter automatically lets VSAM know if the data is to be converted by VSAM when it is read or written;
no application program changes are necessary.

For information on how to define compression control data sets and use the COMPRESS parameter on
VM, see z/VM: CMS Application Development Guide for Assembler. For information on VSE/VSAM Data
Compression Services, see VSE/VSAM Version 6 Release 1 User's Guide and Application Programming.

Application Migration Considerations

An existing application can take advantage of these VSAM Data Compression Services without the
need for program changes. The compression controls are in the VSAM product and are not tied to the
application code. Two things must be done to migrate existing data sets to compressed format:

1. A'VSAM.COMPRESS.CONTROL' KSDS compression control data set must be defined in each catalog
where compressed data will reside.

2. The existing data set CLUSTER must be redefined as COMPRESS format.

Existing data sets can be unloaded temporarily so that the cluster can be redefined as compressed.

The cluster can then be reloaded to create the compressed database which is immediately usable by
application programs.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM Version 6 Release 1
Commands and VSE/VSAM Version 6 Release 1 User's Guide and Application Programming.

Planning for CMS/DOS

Users of CMS/DOS must, in certain cases, have available a VSE SYSRES. To use either the DOS/VS COBOL
or PL/I compilers under CMS/DOS, you must first install a VSE system and install the compilers on this
system.

Note: CMS/DOS support is based on the VSE/AF 1.3.5 licensed program and does not support the VSE/AF
2.1 librarian.

If you plan to use CMS/DOS, you must also generate the CMSDOS and CMSBAM saved segments. These
segments contain simulated VSE services that are necessary for running VSAM and other VSE programs
under CMS. Running VSAM under CMS is dependent on the generation of CMSDOS and CMSBAM.

See the z/VM: Installation Guide for more details on installing CMSDOS and CMSBAM saved segments.

VSE System Generation Considerations

CMS/DOS support in CMS uses a real VSE system disk in read-only mode. CMS/DOS provides the
necessary interface, and then gets VSE logical transients and system routines directly from the VSE
system libraries. Also, CMS/DOS gets the DOS/VS COBOL and DOS PL/I compilers directly from the VSE
system or private core image libraries.

It is your responsibility to install the appropriate VSE system and then generate it. If you plan to use VSE
compilers, you must order the DOS/VS COBOL and DOS PL/I optimizing compilers and install them on this
VSE system.

Chapter 2. Planning for VSE Simulation and VSAM Support 23

VSE and VSAM Planning

When you install the compilers on the VSE system, you must link-edit all the compiler relocatable
modules using the linkage editor control statement:

ACTION REL

You can place link-edited phases in either the system or the private core image library.

When you later invoke compilers from CMS/DQS, the library (system or private) containing the compiler
phases must be identified to CMS. You identify all system libraries to CMS using the file mode letter
that corresponds to that VSE system disk. Do this by specifying the file mode letter on the SET DOS ON
command when you invoke the CMS/DOS environment. You identify a private library by coding ASSGN
and DLBL commands that describe it. These VSE system and private disks must be linked to your virtual
machine and accessed before you enter the commands to identify them for CMS.

CMS/DOS has no effect on the update procedures for VSE, DOS/VS COBOL, DOS/VS RPG II, or DOS PL/I.
You should follow the usual update procedure for applying IBM-distributed coding changes to them.

When the VSE System Must Be Online

Much of what you do in the CMS/DOS environment requires that the VSE system pack and/or the VSE
private libraries be available to CMS/DOS. In general, you need these VSE volumes whenever you do the
following:

« You use the DOS/VS COBOL or DOS PL/I compilers. These compilers are run from the system or private
core image libraries.

« Your DOS/VS COBOL or DOS PL/I source programs contain COPY, LIBRARY, %INCLUDE, or CBL
statements. These statements copy code from your system or private source library. This function
requires that the CMSBAM shared segment be generated and available to CMS/DOS.

« You invoke one of the librarian programs: DSERV, RSERV, SSERV, PSERV, or ESERV.

« You link-edit VSE programs that use nondisk LIOCS modules. CMS/DOS link-edits LIOCS routines with
the VSE program from VSE system or private relocatable libraries.

 You run VSE programs that get phases directly from VSE system or private core-image libraries.
A VSE system pack is usable when it is:

 Defined for your virtual machine

« Accessed

« Specified, by mode letter, on the SET DOS ON command.

A VSE private library is usable when it is:

« Defined for your virtual machine

« Accessed

- Identified by the ASSGN and DLBL commands.

The VSE system pack and private libraries may reside on full packs or minidisks.

CMS/DOS Tape Handling

You can use the CMS tape label processing features described in z/VM: CMS Application Development
Guide for Assembler to process tapes defined with a DTFMT. The features described there let you define
input and output tapes that have standard or nonstandard labels or are nonlabeled tapes. They also let
you specify your own exits for processing user standard or nonstandard labels. Before CMS prepares your
tape files for processing, it returns control to the tape label processing routines.

The CMS LABELDEF command, which is described in z/VM: CMS Commands and Utilities Reference, is
equivalent to the VSE TLB control statement for standard label tapes.

When a tape is defined as a work file, it is treated as nonlabeled and any labels encountered on the tape
are written over.

24 z/VM: 7.3 CMS Planning and Administration

VSE and VSAM Planning

Tape labels are not supported on tape files defined with DTFCP or DTFDI. Existing IBM standard header
labels are bypassed on such tapes when they are used for input and any existing labels are written over
when the tapes are used for output.

CMS/DOS Disk Label Information Area

CMS/DOS does not support a disk label information area. If the real VSE system pack used by CMS/DOS
has a label information area, it is not used.

In CMS/DOS, ASSGN and DLBL commands provide functions similar to those provided by the VSE ASSGN,
DLBL, and EXTENT control statements. In VSE, those control statements are in effect for only one job.
Thus, it is convenient to place often used DLBL and EXTENT control statements on the label information
area.

However, in CMS/DOS, there is no such thing as a job. Consequently, ASSGN and DLBL commands remain
in effect for an entire CMS/DOS session, unless they are reset by another ASSGN or DLBL command. Also,

in CMS, you can place all the commands you need to compile and run a program in an exec file and invoke
that exec file by its file name.

Chapter 2. Planning for VSE Simulation and VSAM Support 25

VSE and VSAM Planning

26 z/VM: 7.3 CMS Planning and Administration

Chapter 3. Tailoring CMS

This chapter explains the following things that you can do to tailor CMS:

« Use the system profile exec (SYSPROF EXEC) to tailor the CMS environment.

« Use the DEFNUC macro to define responses to the prompts issued by the system during the CMS
nucleus generation procedure.

- Place file directory information for a shared minidisk into a saved segment.

« Place frequently used execs and XEDIT macros into a saved segment.

- Enlarge the CMS nucleus to contain the Y-STAT.

« Use the SYSTEM NETID file to configure communication across an NJE network.

Using the SYSPROF EXEC to Tailor the CMS Environment

The system profile (SYSPROF EXEC) is an installation-wide exit that performs some of the CMS
initialization function previously done in a module. You can tailor the CMS environment at initialization
time by modifying this exec. You can do such things as access additional system disks or bring up
application programs automatically. You can also tailor the SYSPROF EXEC to automatically access an
SFS directory. See z/VM: CMS File Pool Planning, Administration, and Operation for more information.
Decisions to tailor the environment are made on the basis of user ID, responses to prompting, CMS
parameters on the IPL command (see z/VM: CP Commands and Utilities Reference), or other conditions
defined by your installation.

You can also bypass the system profile. The system profile is not meant to force users into an
environment. Instead, it enables you to change the default CMS environment without modifying a CMS
module and rebuilding CMS.

CMS initialization calls the SYSPROF EXEC and executes it from a saved segment, the system disk, or the
system disk extension. This is done before any user disks are accessed. When you enter the IPL CMS
command, SYSPROF EXEC is executed unless you:

« Specify the NOSPROF parameter on the command line
« IPL a non-DASD virtual device, such as a reader
« Do not have SYSPROF EXEC in the CMS search order.

The default SYSPROF EXEC creates a standard CMS execution environment.

System Profile Functions
SYSPROF EXEC performs the following functions:
« Processes the parameters passed on the IPL command
« Displays the CMS system identification (system ID)
- Issues the initial console read
- Handles the first command entered at this read
« Accesses either the top directory in the default file pool (if defined) or the 191 minidisk as file mode A
 Issues the S-STAT/Y-STAT messages
« Issues other initialization related messages
 Sets defaults for CMS communications directory support and sets name resolution ON
- Executes the PROFILE EXEC if the user has one.
- Selects the REXX runtime library used for the system.

© Copyright IBM Corp. 1991, 2022 27

If a minidisk is defined as virtual device number 192, the following special rules apply:

- If 192 is an unformatted temporary minidisk or virtual disk in storage, it is formatted for CMS and
accessed as file mode D.

« If 192 is a CP-formatted temporary minidisk or virtual disk in storage, it is reformatted for CMS use and
accessed as file mode D.

« If 192 is a CMS-formatted temporary minidisk, virtual disk in storage, or permanent minidisk accessed
as a file mode other than D, it is reaccessed as file mode D.

« If 192 is an unformatted or CP-formatted permanent minidisk, it is not automatically formatted,
reformatted, accessed, or reaccessed.

When CMS accesses a 192 minidisk as file mode D, any minidisk or SFS directory already accessed as D is
released.

If a protected user drops into CP, CP automatically re-IPLs. (See “Setting Up a Protected Application
Environment” on page 32 for a discussion of protected users.) Information indicating the nature of the
problem is passed to SYSPROF EXEC. SYSPROF EXEC displays a message when one of these conditions is
found. By modifying the exec, however, you can choose a different action, such as sending a message to
an administrator.

Modifying the SYSPROF EXEC

You can also modify the SYSPROF EXEC to tailor your system to the requirements of your installation.

Attention: The System Profile completes initialization of the CMS environment so any
modifications that you make must be carefully fitted into the existing code to ensure that you don't
refer to any and do not make use of the communications directory until after the SET COMDIR
commands. Violating this rule may have unintended consequences. For additional information on
tailoring your system, see z/VM: CMS User's Guide.

Invoking the IPL CMS Command

You can put the IPL CMS command in your user directory entry or issue it after you log on. The IPL
command has a PARM keyword marking the start of any CMS parameters. These parameters can be up to
64 bytes of data (excluding all leading blank characters after the keyword, PARM, but including all other
embedded and trailing blanks).

Note: If you are IPLing a non-DASD device, such as a reader, all CMS parameters are ignored.

All parameters following the PARM keyword, except a valid SAVESYS parameter, are passed to the
SYSPROF EXEC. You can modify the SYSPROF EXEC to recognize the passed parameters. When a

valid SAVESYS parameter is encountered, an attempt is made to save the system, and the SAVESYS
parameter is cleared. When an invalid SAVESYS parameter is encountered, all parameters are ignored,
and the SAVESYS error parameter is passed to the SYSPROF EXEC. See z/VM: CP Commands and Utilities
Reference for more information on the IPL command.

To properly use the system profile and the CMS parameters, PARMREGS=0-15 must be coded in the
DEFSYS command for the CMS named system.

Selecting a REXX Runtime Library

In the SYSPROF EXEC, you can also specify which REXX library will be used to run the IBM-compiled z/VM
REXX parts on your system. These parts consist of compiled system REXX execs and REXX Xedit macros.

IBM supplies the DMSTOEAG module, which enables you to use the REXX/370 library program product
(EAGRTxxx) instead of the CMS library (DMSRTxxx) on your system. The DMSTOEAG modaule is used
when the REXX/370 Library program product, 5695-014, Release 3 or later, is available on your system.
DMSTOEAG makes the name of the runtime library supplied with CMS (DMSRTPRC) an alias of the
REXX/370 Library (EAGRTPRC).

28 z/VM: 7.3 CMS Planning and Administration

Invoking DMSTOEAG
DMSTOEAG has the following syntax:

»— DMSTOEAG »«

The module can be invoked at any time but it would usually be invoked from the system profile, SYSPROF
EXEC. As Figure 1 on page 29 shows, the SYSPROF $EXEC file supplied with your system contains

instructions for modifying your SYSPROF EXEC.

/*! khkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkhkhkhkkkhkkhkhkkkhkhkhkhkhkhkhkkhkhkkkkhkhkkhkhkhkkhkhhkikkik */

/%! */
/x! If the Rexx/370 Library product, 5695-014, is to be used x/
/*! instead of DMSRTPRC, do the following */
/! */
/%! 1) Make sure DMSRTPRC is not in storage. It won't be in =x/
/! storage if no compiled CMS Rexx exec or macro has */
/*! been executed yet. If necessary, you may do the */
/! following: */
/*x! "NUCXDROP DMSRTPRC' */
/! */
/*! 2) Load the Rexx/370 Library into storage. You may do */
/%! the following as necessary: */
/! a) Access the disk or directory containing the */
/*x! Rexx/370 Library */
/%! b) Uncomment the following command: */
/! "EAGRTPRC' */
/! */
/*! 3) Uncomment the following command. */
/! Note that DMSRTPRC must *notx be in storage at this x/
/! time and EAGRTPRC xmustx be in storage at this time */
/*! and the appropriate EAG message repository set. */
/! 'DMSTOEAG' */
/! */
/%! See "z/VM CMS Planning and Administration" for the */
/*! return codes from DMSTOEAG. */
[*! */

/*! khkkkkkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkkhkhkkkhkhkkkhkhkhkkkhkhkhkkhkhkkkkhkhkkhkhkhkkkhkhkhkkktk */

Figure 1. SYSPROF $EXEC Comments for DMSTOEAG

Usage Notes

1. The CMS library DMSRTPRC must not be in storage when DMSTOEAG is invoked. You must purge the

segment and drop the nucleus extension, as appropriate.

2. The Rexx/370 Library EAGRTPRC must be in storage and the corresponding EAG message repository

set when DMSTOEAG is invoked.

The saved segment that contains EAGRTPRC can be loaded. Or, you can run the EAGRTPRC module

to load the library and set the message repository; however, the module will return a non-zero return
code. (The EAGRTPRC modaule is usually invoked by CMS when the first compiled exec is executed and
assumes there is an exec to run. Invoking EAGRTPRC directly fails to provide it with an exec to run and
the library initialization routine then assumes it was called by an internal routine that requested the
address of a certain data field be returned in register 15. The result is a non-zero return code the value

of which will vary depending on where the library is loaded in storage.)

3. DMSTOEAG will check that the loaded EAGRTPRC library is at Release 3 or later and that it is not the

REXX/370 Alternate Library.

If the REXX/370 Library product, Release 3 or later, is not available or if only the REXX/370 Alternate

Library is available, DMSTOEAG should not be used.
4. DMSTOEAG issues the following return codes:
0

Operation successful; DMSRTPRC is now an alias for EAGRTPRC and EAGRTPRC is a Release 3 or

later REXX/370 Library.

Chapter 3. Tailoring CMS 29

DMSRTPRC was located in storage (NucExt Query).
EAGRTPRC could not be located in storage (NucExt Query).
The loaded EAGRTPRC is the REXX/370 Alternate Library.
The loaded EAGRTPRC is not a REXX/370 Library.

The loaded EAGRTPRC is not at Release 3 or later.

The set EAG message repository could not be found (LangFind).

25
Insufficient storage to create an alias (NucExt Set).

How to Change the SYSPROF EXEC

z/VM provides a default SYSPROF EXEC that can reside in a saved segment or on the system disk or
system disk extension. If it resides on a system disk, it must have a file mode number of 2. For better
performance, the SYSPROF EXEC should reside in a saved segment. However, if it resides in a saved
segment and a user IPLs with INSTSEG NO, the SYSPROF EXEC is not invoked unless a copy also resides
on the system disk or system disk extension.

The system profile is shipped as file SYSPROF $EXEC. To change SYSPROF $EXEC you should use

the VMSES/E Local Modification procedure. For more information on the VMSES/E Local Modification
procedure, see either the z/VM: Installation Guide or the z/VM: Service Guide. This procedure uses the
XEDIT command with the CTL option, the VMFEXUPD command and the VMFBLD command to apply an
update to the SYSPROF $EXEC file to generate the updated SYSPROF EXEC.

Notes:

1. The SYSPROF $EXEC is a packed file (1024) on MAINTvrm’s 3B2 disk.

2. IBM recommends that you do not compile the SYSPROF EXEC. If you compile the SYSPROF EXEC, your
CMS session will be initialized to use the REXX/370 runtime library instead of the CMS REXX runtime
library. You must decide if this acceptable.

If the exec resides on a system disk, it can be changed by anyone who has write access to that disk.
After the exec has been modified, if the system is to be IPLed as a named system, or if the S-STAT or
Y-STAT capability is to be available, the system must be resaved. If the exec resides in a saved segment,
the administrator must follow documented procedures for rebuilding and saving the saved segment
after making changes to the exec. In any case, all users currently logged on must re-IPL the system or
unpredictable results occur. It is recommended, therefore, that any logic in SYSPROF EXEC that changes
frequently should be:

 Putin another exec that is called by the system profile.
« Placed on a disk other than file mode S or file mode V.

Modifications to execs that reside on other disks do not necessitate the re-saving of the system and
re-IPL by all users. In SYSPROF EXEC, however, you must remember to access the disks these execs
reside on.

Input to the SYSPROF EXEC

CMS initialization passes SYSPROF EXEC a string as an argument. This string is parsed by SYSPROF EXEC
into four parts, each part separated by a single byte of X'FF'. Each of these four parts might in turn be
parsed for further analysis and action. The four parts and the possible values for each are:

1. Keyword flags which indicate the occurrence of certain events or actions to be taken during CMS
initialization. Possible values are:

30 z/VM: 7.3 CMS Planning and Administration

Parameter Meaning

AUTOCR AUTOCR parameter specified on IPL command

BATCH BATCH parameter specified on IPL command

NOSSTAT S-STATs are unavailable

NOYSTAT Y-STATs are unavailable

ACCD -or- FORM Disk at address 192 should be accessed as D. Disk at address 192 was
formatted and was accessed as D

NOWM iucv-rc IUCV failed, with return code iucv-rc; windowing cannot be started

SAVERR -or- CONFLICT SAVESYS specified without system name. SAVESYS specified with other
parameters

INSEGER1 -or- INSTSEG value is missing and no shared execs are loaded The CMS

INSEGER2 segname installation saved segment segname could not be loaded

MTSEGER1 MTSEG value is missing and no multitasking segment is loaded

NOFPOOL Filepool identifier not specified with the FILEPOOL keyword

Note:

a. If multiple keywords appear in this part, each is separated by at least one blank.
b. Where “-or-” appears, the keywords immediately above and below are mutually exclusive.

c. When NOWM appears, the IUCV return code will be placed after the keyword and at least one
blank.

2. A keyword and possibly other relevant information indicating whether or not a CMS re-IPL has
occurred and the reason. Possible values are:

Parameter Meaning
CMSERROR CP entered; Information unavailable
DWAITPSW psw CP entered; Disabled wait PSW ‘psw’
EXTINTLP psw CP entered; External interrupt loop
PAGERROR CP entered; Paging error
PRGINTLP psw CP entered; Program interrupt loop
SPAGEALT sname hexloc CP entered; sname shared page hexloc altered
TRANEXCP CP entered; Translation exception: While in non-EC mode
NOTREIPL This was not an automatic re-IPL
Note:
a. All of the above keywords are mutually exclusive.
b. Where the keyword is followed by additional information (such as psw) there is at least one blank
between the keyword and the additional information. In the case of SPAGEALT, at least one blank
separates sname and hexloc.

3. The text to be displayed to announce the IPL (CMS system version ID). When the CMS nucleus was
built, this text was obtained from the VERSION parameter of the “DEFNUC Macro” on page 34, or
supplied in response to the DMSINI611R prompt if the value specified on the VERSION parameter was
a question mark (?), or constructed by the system if no value was specified on the VERSION parameter.

Chapter 3. Tailoring CMS 31

4. The IPL parameters, if any. These parameters include all parameters specified after the PARM keyword
on the CP IPL statement. For example, AUTOCR when an IPL CMS PARM AUTOCR is executed. The
passing of parameters to CMS is documented in z/VM: CP Commands and Utilities Reference under the
descriptions of IPL and DEFSYS.

Output from the SYSPROF EXEC

Some of the parameters passed to the SYSPROF EXEC cause messages to be displayed. You can
modify SYSPROF EXEC to take further action when one of these parameters is found or to ignore these
parameters completely.

When CP re-IPLs, it passes restart information to SYSPROF EXEC. This information indicates the nature of
the problem. The default system profile issues a warning message when it finds this information. You can
modify the exec, however, to take different action.

How to Bypass the System Profile

To bypass the system profile, you can specify the NOSPROF parameter in the PARM field of the IPL
command or IPL a non-DASD device.

A warning message is displayed if the SYSPROF EXEC cannot be located.

Setting Up a Protected Application Environment

If you are interested in using only application programs, you can build a protected application
environment. A protected user is automatically placed in an application environment at logon time and
prevented from inadvertently dropping into CP. To set up this type of environment, you should use the
CONCEAL entry on the OPTION directory statement in the user's user directory entry. This prevents entry
into CP by errors.

You should tailor SYSPROF EXEC, or any of the execs that it calls, to set up the proper application
environment for the user. This environment can be set up based on user IDs, parameters passed

in the PARM field of the IPL command, or any other function. Tailoring can range from simply
accessing additional disks to suppressing normal CMS initialization messages and completely tailoring
an application environment.

You should decide what degree of protection is required to make this environment. For example, you may
want to turn off the CMS immediate commands such as HX, HI, and TS, for the duration of SYSPROF
EXEC. Keep in mind, however, that since this must be done within SYSPROF EXEC, there is only a short
period of time when the user can type in one of these immediate commands during CMS initialization.

If the protected user drops into CP, CMS re-IPLs. Information indicating the nature of the problem is
passed to SYSPROF EXEC. Based upon the user and the reason for entry into CP, you may want to take
action. For example, you may want to inform the system administrator.

What the System Profile Can Do for Installations

The system profile can set up several environments on a single system. Here are some examples of
functions that can be done with SYSPROF EXEC at initialization time:

« New parameters can be recognized in the PARM field of the IPL command. For example, you can add the
following IPL statement in a user's directory:

IPL CMS PARM OFFICE

Since OFFICE is an unrecognized parameter, it would be passed to the SYSPROF EXEC where it would
be recognized and then set up for the particular user. By recognizing several parameters, different
environments can be tailored.

- Additional system disks can be accessed, or some defaults currently provided can be changed.
« Specific users or groups of users can be recognized and placed into an application or other environment.

32 z/VM: 7.3 CMS Planning and Administration

- The initial console read can be suppressed, or the default can be changed to AUTOCR.
« Novice users can be prompted for information.

« Certain system messages, such as the CMS system version ID, can be suppressed or overridden to hide
the complexity of the system.

« Installations can decide for themselves how to handle conditions where protected users enter CP and
are re-IPLed. For example, a message can be sent to the system administrator.

« System and user Communication Directory names can be set or changed, and name resolution can be
set ON or OFF.

For additional information on the IPL statement and system profile, see z/VM: CP Planning and
Administration, and see them used in the z/VM: Installation Guide.

Chapter 3. Tailoring CMS 33

DEFNUC

DEFNUC Macro

>
»

»i— DEFNUC
label L

190 J
,SYSDISK= f_ j

t”dev
?

L,YDISK: [19ETJ L,HELP: "

A 4

Y
v

AMENG J L
L ,LANGID= I_ T ,DBCS= —<

S 20
L ,LANGLEV= I_ J L ,BUFFSIZ=
level size
? ?
L —J L
,MDBUFSZ= ,SAVESYS= —<
size
?

A 4
v

-

Y
\4

»
»

1 Yes
L ,SYSNAME= J L J L LUSEINST=
Esname 1
? No
0
?

>—| Additional Parameters |—><

Additional Parameters

v

34 z/VM: 7.3 CMS Planning and Administration

DEFNUC

v

L (—CMSINSTT J L Yes
JINSTSEG= ,USEMTSG=

M name — 1
— 7 No
0

A 4
v

L (— VMMTLIB j J L
,MTSEG= ,REWRITE= —<

M name —

— 22— J

A 4

—
v

LJP'—ADDR= I_ ?jJ L,CYLADDR: f_

A 4

—
v

?

,IPLCYLO=

\ 4
y
A

==

Notes:

1 The default is CMS for the ESA/390 CMS nucleus, ZCMS for the z/CMS nucleus.
2 The text is constructed by the system when the nucleus is built.

Purpose

The DEFNUC macro defines responses to the system for prompts that are issued during the CMS nucleus
generation procedure. For the ESA/390 CMS nucleus, the DEFNUC macro is contained in the DMSNGP
(CMS nucleus generation profile) file. For the z/CMS nucleus, the DEFNUC macro is contained in the
DMSZNGP file.

CMS nucleus generation reads the responses from the DMSNGP or DMSZNGP text file. A prompt is issued
for aresponse if:

« The text deck is not present.
« The parameter is omitted from the macro.

Chapter 3. Tailoring CMS 35

DEFNUC

« The response in the macro is a question mark (?).
- The response in the macro is not valid.
« The first character of the response in the macro is a blank.

IBM supplies DMSNGP and DMSZNGP text files that contain predefined responses. To change a response,
update the DEFNUC macro in the DMSNGP or DMSZNGP assemble file and assemble it to create a new
text file.

To rebuild the CMS nucleus, see the procedure in z/VM: Service Guide.

Parameters

label
is any desired user label

SYSDISK=
defines the system disk (S-disk) address. This value can be four characters or less. A ? indicates that
the prompt should be issued. If SYSDISK= is specified without a value, a null response is issued for
the prompt and the default value 190 is used.

The IBM-supplied DMSNGP and DMSZNGP files specify SYSDISK=190.

YDISK=
defines the Y-disk address. This value can be four characters or less. A ? indicates that the prompt
should be issued. If YDISK= is specified without a value, a null response is issued for the prompt and
the default value 19E is used.

The IBM-supplied DMSNGP and DMSZNGP files specify YDISK=19E.

HELP=
defines the HELP disk address. This value can be four characters or less. A ? indicates that the prompt
should be issued. If HELP= is specified without a value, a null response is issued for the prompt and
the default value 19D is used.

The IBM-supplied DMSNGP and DMSZNGP files specify HELP=19D.

LANGID=
specifies the language identifier of the default language. This value can be five characters or less. A ?
indicates that the prompt should be issued. If LANGID= is specified without a value, a null response is
issued for the prompt and the default value AMENG (American English) is used.

The IBM-supplied DMSNGP and DMSZNGP files specify LANGID=AMENG.

DBCS=
indicates whether the system national language is a Double-Byte Character Set (DBCS) language. A
value of YES, Y, or 1 indicates the default language is a DBCS language. A value of NO, N, or O indicates
it is not a DBCS language. A ? indicates that the prompt should be issued. If DBCS=is specified
without a value, a null response is issued for the prompt and the default value NO is used.

The IBM-supplied DMSNGP and DMSZNGP files specify DBCS=NO.

LANGLEV=
specifies the level of the saved segment for the default language. This value can be one alphanumeric
character, Ato Zor 0 t0 9. A ? indicates that the prompt should be issued. If LANGLEV= is specified
without a value, a null response is issued for the prompt and the default value S is used.

The IBM-supplied DMSNGP and DMSZNGP files specify LANGLEV=S.

BUFFSIZ=
specifies the maximum size in KB to be used by the file system for Read/Write caching for files
residing in Shared File System file pools. This value can be any number 1 - 96. A ? indicates that the
prompt should be issued. If BUFFSIZ= is specified without a value, a null response is issued for the
prompt and the default value 20 is used.

The IBM-supplied DMSNGP and DMSZNGP files specify BUFFSIZ=20.

36 z/VM: 7.3 CMS Planning and Administration

DEFNUC

MDBUFSZ=
specifies the maximum size in KB to be used by the file system for Read/Write caching for files
residing on minidisks. This value can be any number 1 - 96. A ? indicates that the prompt should be
issued. If MDBUFSZ= is specified without a value, a null response is issued for the prompt and the
default value 5 is used.

The IBM-supplied DMSNGP and DMSZNGP files specify MDBUFSZ=8.

Note that the effective Read/Write cache will be in the range of 1 - 24 disk blocks. Thus, open files on
minidisks that are formatted at small block sizes may not take advantage of the maximum cache size
specified. Table 9 on page 37 shows the maximum and minimum effective cache size possible for
different disk block sizes.

Table 9. Effective Read/Write Cache Size
Disk Block Size Maximum Effective Minidisk Minimum Effective Minidisk
Cache Cache

4096 bytes 96 KB 4 KB

2048 bytes 48 KB 2KB

1024 bytes 24 KB 1 KB

512 bytes 12 KB 1 KB

SAVESYS=

indicates whether the CMS nucleus is to be saved as a named saved system. A value of YES, Y, or

1 indicates the system should be saved. A value of NO, N, or O indicates it should not be saved. A ?
indicates that the prompt should be issued. If SAVESYS= is specified without a value, a null response
is issued for the prompt and the default value YES is used, and an attempt is made to save an NSS.

The IBM-supplied DMSNGP and DMSZNGP files specify SAVESYS=NO.

SYSNAME=
defines the name of the CMS named saved system. This name can be 1 - 8 alphanumeric characters,
AtoZand 0to 9. A?indicates that the prompt should be issued. If SYSNAME= is specified without a
value, a null response is issued and the default system name is used. The default name is determined
by the type of nucleus being built. The default is CMS for the ESA/390 CMS nucleus and ZCMS for the
z/CMS nucleus.

The IBM-supplied DMSNGP file specifies SYSNAME=CMS. The IBM-supplied DMSZNGP file specifies
SYSNAME=ZCMS.

USEINST=
indicates whether the CMS installation saved segment will be created. A value of YES, Y, or 1 indicates
the installation saved segment will be created. A value of NO, N, or 0 indicates it will not be created.
A ?indicates that the prompt should be issued. If USEINST= is specified without a value, a null
response is issued for the prompt and the default value YES is used.

The IBM-supplied DMSNGP and DMSZNGP files specify USEINST=YES.

INSTSEG=
defines the name of the CMS installation saved segment. This name can be 1 - 8 alphanumeric
characters, Ato Z and 0 to 9. A ? indicates that the prompt should be issued. If INSTSEG= is specified
without a value, a null response is issued for the prompt and the default value CMSINST is used.

The IBM-supplied DMSNGP and DMSZNGP files specify INSTSEG=CMSINST.

USEMTSG=
indicates whether a saved segment will be created for the VMMTLIB callable service library (CMS
multitasking routines). A value of YES, Y, or 1 indicates the saved segment will be created. A value
of NO, N, or 0 indicates it will not be created. A ? indicates that the prompt should be issued. If
USEMTSG= is specified without a value, a null response is issued for the prompt and the default value
YES is used.

Chapter 3. Tailoring CMS 37

DEFNUC

The IBM-supplied DMSNGP and DMSZNGP files specify USEMTSEG=YES.

Note: VMMTLIB is no longer created as a saved segment; it now resides within the CMS nucleus.
Therefore, this parameter has no effect and is retained only for compatibility.

MTSEG=
defines the name of the saved segment for the VMMTLIB callable services library. This name can be
1 - 8 alphanumeric characters, Ato Zand 0 to 9. A ? indicates that the prompt should be issued. If
MTSEG= is specified without a value, a null response is issued for the prompt and the default value
VMMTLIB is used.

The IBM-supplied DMSNGP and DMSZNGP files specify MTSEG=VMMTLIB.

Note: VMMTLIB is no longer created as a saved segment; it now resides within the CMS nucleus.
Therefore, this parameter has no effect and is retained only for compatibility.

REWRITE=
indicates whether the CMS nucleus should be written to disk. A value of YES, Y, or 1 indicates the
nucleus will be written to disk. A value of NO, N, or O indicates it will not be written to disk. A ?
indicates that the prompt should be issued. If REWRITE= is specified without a value, an MNOTE will
appear in the text deck and the prompt will be issued.

The IBM-supplied DMSNGP and DMSZNGP files specify REWRITE=YES.

IPLADDR=
defines the disk address at which the CMS nucleus will be written. This value can be three characters
or less. A ? indicates that the prompt should be issued. If IPLADDR= is specified without a value, an
MNOTE will appear in the text deck and the prompt will be issued.

The IBM-supplied DMSNGP file specifies IPLADDR=190. The IBM-supplied DMSZNGP file specifies
IPLADDR=990.

CYLADDR=
defines the cylinder or block address at which the CMS nucleus will be written on the disk defined by
the IPLADDR parameter. This value can be 10 characters or less. A ? indicates that the prompt should
be issued. If CYLADDR= is specified without a value, an MNOTE will appear in the text deck and the
prompt will be issued.

The IBM-supplied DMSNGP and DMSZNGP files specify CYLADDR=?. When prompted, enter the value
from the table that is correct for your system.

The nucleus resides on the last cylinder(s) or block(s) of the IPL minidisk. The following table shows
the relative position from the beginning of the minidisk, for each supported DASD type.

Table 10. ESA/390 CMS Nucleus Size and Location on the 190 Minidisk

Device Type |190 Allocation Nucleus Size Cylinder/Block Address
3390 214 cylinders 7 cylinders Cylinder 207
FB-512 308,160 blocks 10,080 blocks Block 298,080

Table 11. z/CMS Nucleus Size and Location on the 990 Minidisk

Device Type |990 Allocation Nucleus Size Cylinder/Block Address
3390 60 cylinders 10 cylinders Cylinder 50
FB-512 86,400 blocks 14,400 blocks Block 72,000

IPLCYLO=

indicates whether the cylinder or block address of the nucleus on the disk defined by the IPLADDR
parameter should be written in cylinder or block 0 of that disk. This enables you to IPL the nucleus by
specifying only the disk address without having to specify the cylinder or block address of the nucleus.

38 z/VM: 7.3 CMS Planning and Administration

Tailoring CMS

A value of YES, VY, or 1 indicates the nucleus location will be written. A value of NO, N, or O indicates
the nucleus location will not be written. A ? indicates that the prompt should be issued. If IPLCYLO= is
specified without a value, an MNOTE will appear in the text deck and the prompt will be issued.

The IBM-supplied DMSNGP and DMSZNGP files specify IPLCYLO=YES.

VERSION=
defines the version identification that will be displayed each time a user IPLs this CMS system. This
character string can be up to 32 characters, and must be enclosed in single quotation marks. Special
assembler characters & and ' require special handling, but may be used if specified twice in the string.
For example:

VERSION="'A&&B' becomes A&B;
VERSION='Don''t worry' becomes Don't worry.

A ?indicates that the prompt should be issued. If VERSION= is specified without a value, a version
identification is constructed during the nucleus build. The format of the identification constructed for
the ESA/390 CMS nucleus is:

z/VM Vu.r.m yyyy-mm-dd hh:mm
The format of the identification constructed for the z/CMS nucleus is:
z/CMS Vv.r.m yyyy-mm-dd hh:mm

The IBM-supplied DMSNGP and DMSZNGP files specify VERSION= with no value.

INSTID=
defines the heading that will appear at the beginning of each output file. This character string can be
up to 64 characters, and must be enclosed in single quotation marks. Special assembler characters &
and ' require special handling, but may be used if specified twice in the string. For example:

INSTID="A&&B' becomes A&B;
INSTID='Don''t worry' becomes Don't worry.

A ?indicates that the prompt should be issued. If INSTID= is specified without a value, an installation
heading is constructed during the nucleus build. The heading constructed for the ESA/390 CMS
nucleus is:

z/VM Conversational Monitor System
The heading constructed for the z/CMS nucleus is:

z/Architecture CMS

The IBM-supplied DMSNGP and DMSZNGP files specify INSTID= with no value.

Sharing File Directory Information

You can place file directory information for a shared minidisk into a saved segment. The saved segment is
then available to users who link to the minidisk and access it read/only. This helps to reduce your working
set as well as the system paging rate and response time.

Note: As a guideline for determining the appropriate size of any saved file directory, multiply the length of
a minidisk FST (currently 64 bytes) by the number of files on the disk and convert that to pages.

You can build this saved segment in one of two ways:

« As a logical saved segment. This method uses the SEGGEN command. For information about how to
create the records that define a logical saved segment, see z/VM: CP Planning and Administration. For
information about the SEGGEN command, see z/VM: CMS Commands and Utilities Reference.

« As a member of a segment space or as a discontinuous saved segment. This method uses the SAVEFD
command. For information about defining member saved segments and discontinuous saved segments,

Chapter 3. Tailoring CMS 39

Enlarging the CMS Nucleus

see z/VM: CP Planning and Administration. For information about the SAVEFD command, see z/VM: CMS
Commands and Utilities Reference.

Note: If you use SAVEFD to save file directory information in a member of a segment space, you will
be unable to resave a file directory when other users on your system are using other members of the
segment space. Users must purge the members they are using, or re-IPL, or log off before SAVEFD can
be completed successfully. Saving file directory information in a logical saved segment does not have
such a restriction.

It is recommended that you define and build your saved segment through VMSES/E. Defining your saved
segment to VMSES/E means using the VMFSGMAP EXEC to create a saved segment definition. The
advantage of using VMFSGMAP is that it lets you customize the saved segment definition and to see the
results in a map of all the saved segments and saved systems defined on your system before you actually
build the saved segment. When you are satisfied with the definition, you can use the VMFBLD EXEC to
build the saved segment. VMFBLD issues the SEGGEN or SAVEFD command, according to how you have
set up the definition.

Sharing Execs and XEDIT Macros

You can place frequently used execs and XEDIT macros into a saved segment. This allows many users to
share the same executing copies of the execs and XEDIT macros.

You can build this saved segment in one of two ways:

 As a logical saved segment. This method uses the SEGGEN command. For information about how to
create the records that define a logical saved segment, see z/VM: CP Planning and Administration. For
information about the SEGGEN command, see z/VM: CMS Commands and Utilities Reference.

« As a member of a segment space or as a discontinuous saved segment. This method uses the DCSSGEN
command. For information about defining member saved segments and discontinuous saved segments,
see z/VM: CP Planning and Administration. For information about the DCSSGEN command, see z/VM:
CMS Commands and Utilities Reference.

It is recommended that you define and build your saved segment through VMSES/E. Defining your saved
segment to VMSES/E means using the VMFSGMAP EXEC to create a saved segment definition. The
advantage of using VMFSGMAP is that it lets you customize the saved segment definition and to see the
results in a map of all the saved segments and saved systems defined on your system before you actually
build the saved segment. When you are satisfied with the definition, you can use the VMFBLD EXEC to
build the saved segment. VMFBLD issues the SEGGEN or DCSSGEN command, according to how you have
set up the definition.

Enlarging the CMS Nucleus to Contain the Y Minidisk Directory
(Y-STAT)

Because CMS is designed to run as a shared system, performance is generally improved when the S and
Y minidisk directories (also called the file status tables, or S-STAT and Y-STAT) are included in the CMS
nucleus.

This procedure applies to both the ESA/390 CMS nucleus and the z/CMS nucleus. Values that are different
for each type of nucleus are indicated with variables. The IBM-defined values are shown in the following
table.

Table 12. IBM-Defined Values for the ESA/390 CMS Nucleus and the z/CMS Nucleus

Variable Meaning Value for ESA/390 CMS | Value for z/CMS
cmsname CMS named saved CMS ZCMS
system

40 z/VM: 7.3 CMS Planning and Administration

Enlarging the CMS Nucleus

Table 12. IBM-Defined Values for the ESA/390 CMS Nucleus and the z/CMS Nucleus (continued)
Variable Meaning Value for ESA/390 CMS | Value for z/CMS

prod_ipladdr Production CMS IPL 190 990
minidisk address

This value is defined in
the IPLADDR parameter
of the DEFNUC macro.

loadlist CMS load list name CMSLOAD ZCMSLOAD
cmsngp CMS nucleus generation | DMSNGP DMSZNGP
profile

This file contains the
DEFNUC macro.

When you IPL the CMS named saved system (ipl cmsname), if you receive these two messages:

DMSACC723I Y (19E) R/O
DMSWSP100W Shared Y-STAT not available

the 19E disk has changed. You should resave the CMS named saved system. Use the following procedure:

1. Define the CMS named saved system. The SAMPNSS command issues the DEFSYS command to
define a skeleton system data file for the specified CMS named saved system. Users will receive the
new level of CMS whenever they enter the command IPL cmsname.

access 493 z
sampnss cmsname

2. Save the CMS named saved system. IPL the CMS nucleus to save it as the specified named saved
system.

ipl prod_ipladdr clear parm savesys cmsname

However, if you receive only the following message when you IPL the CMS named saved system:
DMSACC723I Y (19E) R/0

the Y-STAT could not fit within the CMS nucleus at the time the system was saved. In that case, every user
who IPLs CMS gets the Y minidisk accessed in nonshared user free storage, which is less efficient. If you
wish to enlarge the CMS nucleus to contain the Y-STAT, you must expand the CMS nucleus segment by 1
MB. Use the following procedure:

1. Log on as MAINT vrm.
logon maintvrm

2. Access the CMS minidisks. Note the file mode of the CMS LOCALMOD minidisk (3C4), the test build
tools disk (493), the production tools disk (193), and the base disk (3B2). You will use it in the next
substeps.

vmisetup servp2p cms

3. Modify the CMS load list (loadlist EXEC) by creating and applying update files for local modifications.
The following is an example of this method.

a. Create an auxiliary control file for loadlist EXEC. You will add your local modifications at the top
of the file.

xedit loadlist auxlcl

Chapter 3. Tailoring CMS 41

Enlarging the CMS Nucleus

At the XEDIT command line, enter the following;:

input ZLEOO1DS LCL LCLEOGO1 *UPDATE loadlist EXEC

In this example. ZLOGOLDS is the file type of the update file, and LCLOOOL is the local tracking
number. The rest of the line, beginning with the asterisk (*), is a comment explaining the purpose of
this modification.

Now, enter:
file = = fm-3c4

Jm-3c4 is the file mode of the CMS LOCALMOD minidisk (3C4).

b. The shared portion of the CMS nucleus must reside in a contiguous 5 MB space. The IBM-supplied
CMS named saved system is contained in storage location X'FO0000'-X'13FFFFF'. The code from
DMSALP to DMSSIG must remain below the 16 MB line. The other 4 MB of the CMS nucleus may
reside either above or below the 16 MB line, but the 5 MB of CMS nucleus must remain contiguous.

The storage locations where the CMS nucleus is loaded are determined by the SLC (Set Location
Counter) statements in the CMS load list.

The SLC statement preceding the DMSALP entry defines the starting location of the CMS nucleus.
The IBM-supplied load list statement is SLC LFO0000.

The minidisk directories for the S-disk and the Y-disk are saved between DMSSIG and DMSPHI and
must remain below the 16 MB line. In the IBM-supplied load list, DMSPHI is placed at the 16 MB
mark (X'1000000"). The IBM-supplied load list statement is SLC L1000000. If you are moving all

or part of the CMS nucleus below the 16 MB line, you must leave enough space between DMSSIG
and DMSPHI to contain these minidisk directories. Leaving DMSPHI on a MB boundary should leave
enough space to save these minidisk directories.

The SLC statement preceding the DMSOME entry defines the end of the CMS nucleus. The IBM-
supplied load list statement is SLC L1400000.

i) Edit the CMS load list and change the SLC statements to tailor the location of the CMS
nucleus.

xedit loadlist $exec (ctl dmsvm

You will receive the following messages only if there are updates for the load list file you are
editing.

DMSXUP178I Applying loadlist ELnnnnDS

You will receive the following messages if your update file cannot be found because you have
not created it yet.

DMSXUP180W Missing PTF file loadlist ZLOOO1DS A

i) Change the SLC statement that contains the address of the starting location for loading the
main part of the CMS nucleus. The SLC statement that precedes the DMSALP entry in the load
list contains the address of the starting location for loading the main part of the CMS nucleus.

At the XEDIT command line, enter the following;:

set case upper

top

locate /&3 DMSALP/

up 2

change / SLC LFOGEOO / SLC 1n /

n is the address of the starting location for the main part of the CMS nucleus.

42 z/VM: 7.3 CMS Planning and Administration

Enlarging the CMS Nucleus

iii) Change the existing SLC statement to the new starting statement. The SLC statement that
precedes the DMSPHI entry in the load list marks the start of the high part of the nucleus.

top
locate /&3 DMSPHI/
up 2
change / SLC L1000000 / SLC Ln /
n is the address of the starting location for the high part of the CMS nucleus.
iv) Change the existing SLC statement to the new end statement. The SLC statement that
precedes the DMSOME entry in the load list marks the end of the nucleus.

top
locate /&3 DMSOME/

up 2
change / SLC L1400000 / SLC Ln /

n is the address of the end location of the CMS nucleus.
v) File the CMS load list file.

file = = fm-3c4
c. Invoke the VMFEXUPD command to update the CMS load list.

vmfexupd loadlist exec servp2p cms (logmod filetype excl@OO1 outmode
localmod sid nohist

4. Create the new SLC files to match the new load list. Repeat this step for each new SLC value you
added to the load list.

xedit SLC Ln fm-3b2

n is the address of the starting main location, starting high location, or end location of the CMS
nucleus. fm-3b2 is the file mode of the CMS OBJECT minidisk (3B2).

At the XEDIT command line, enter the following:

input $SLC n
set hex on
change/$/Xx'02'/
fm mode2

file

There must be two blanks between $SLC and the address, n. X' 02" is an unprintable loader control
character. mode? is the file mode of the 3B2 disk concatenated with the number 2. For example, N2, if
N is the file mode of the 3B2 disk.

5. Calculate the new page numbers for the DEFSYS entry for CMS in SAMPNSS.

a. To calculate the hexadecimal page numbers where the CMS named saved system begins, take the
starting address location and drop the three low-order zeros. This is the new strtcms value to use
when updating SAMPNSS. For example, X' FOOO00 ' becomes X'FO0O'.

b. To calculate the hexadecimal page numbers where the CMS named saved system ends, take the
ending address location, subtract one, and drop the low-order 12 bits. This is the new endcms
value to use when updating SAMPNSS. For example, X' 1400000 "' becomes X' 13FF".

6. Modify the SAMPNSS EXEC to show the new page numbers by creating and applying update files for
local modifications. The following is an example of this method.

a. Create an auxiliary control file for SAMPNSS EXEC.

xedit sampnss auxlcl

Chapter 3. Tailoring CMS 43

SYSTEM NETID File

At the XEDIT command line, enter the following;:

input ELOOO1DS LCL LCLOOO1 *UPDATE SAMPNSS
file = = fm-3c4

Jm-3c4 is the file mode of the CMS LOCALMOD minidisk (3C4).
b. Create the update file and apply the updates.

xedit sampnss $exec (ctl dmsvm
You will see these messages only if there are updates for the SAMPNSS file you are editing.
DMSXUP178I Applying SAMPNSS VnnnnnDS

You will see these messages only if your update file cannot be found because you have not created
it yet.

DMSXUP180W Missing PTF file SAMPNSS ELGOO1DS A

c. Change the old starting and ending page numbers to the numbers you calculated in step “5” on
page 43.

At the XEDIT command line, enter the following;:

locate /DEFSYS/
change /F0O-13FF SR/strtcms-endcms SR/
file = = fm-3c4

Jm-3c4 is the file mode of the CMS LOCALMOD minidisk (3C4).
d. Invoke the VMFEXUPD command to update SAMPNSS.
vmfexupd sampnss exec servp2p cms (logmod outmode localmod sid $select

e. Copy the updated SAMPNSS file to the alternate and production TOOLS disks.

vmfbld ppf servp2p cms dmsbl493 sampnss.exec (serviced setup
vmfcopy sampnss exec fm-493 = = fm-193 (prodid 7vmcms30%cms replace olddate

Jm-493 is the file mode of the test build TOOLS disk. fm-193 is the file mode of the production
TOOLS disk.

7. Rebuild the CMS nucleus. See the procedure in z/VM: Service Guide.

Use the SYSTEM NETID File to Configure Communication Across an
NJE Network

The SYSTEM NETID file is referenced when you use CMS commands SENDFILE, RECEIVE, TELL, and NOTE
to communicate across an NJE network. CMS uses the CPUIDs in the SYSTEM NETID file to determine the
NJE node ID and the name of the RSCS virtual machine to be used to send files and messages through

the NJE network. The node ID is also used by other subsystems, such as TCP/IP, to determine which
configuration to use.

Record Format:

The records in the SYSTEM NETID file have the following two formats:

cpuid nodeid netid

*comment

Operands:

44 z/VM: 7.3 CMS Planning and Administration

SYSTEM NETID File

cpuid
is the processor (CPU) serial number found in CPUID positions 3-8. If this is an LPAR, the CPU serial
number is proceeded by the LPAR numbers.

nodeid
is the NJE node ID of this system, if you are using RSCS to communicate through an NJE network. If

this system does not participate in an NJE network, then nodeid is a unique arbitrary value chosen by
you to represent this system.

In order to avoid confusion, it is suggested that it be the same value as the System_ID in the SYSTEM
CONFIG file. In fact, if you do not use RSCS, it is suggested that you do not modify the SYSTEM NETID
file at all; CMS will automatically use the System_ID as the nodeid.

netid
is the user ID of the RSCS virtual machine, as defined in the user directory.

*comment
is a comment line. In a comment, each line must begin with an asterisk in column one. A comment
line must have a logical record length no greater than 80.

Usage Notes:

When you enter commands to communicate across the network, the SYSTEM NETID file is referenced as
follows:

1. To transmit notes, files, and messages, the NOTE, SENDFILE, TELL, and RDRLIST commands enter the
IDENTIFY command.

2. The IDENTIFY command:

a. Issues the QUERY CPUID command to retrieve the processor's serial number, and searches the
SYSTEM NETID file for a matching serial number.

b. Issues the QUERY USERID command to retrieve the node identification, and compares it to the
node in the SYSTEM NETID record.

If there is a conflict in nodes between the SYSTEM NETID file and the response from QUERY USERID,
the node in SYSTEM NETID takes precedence.

Separate CPUIDs are generated for each processor in a multiprocessor configuration and for each logical
processor in an LPAR configuration. If you plan to run this system on multiple processors or in an LPAR
environment, you must do one of these two steps:

- Create a record in the SYSTEM NETID file with the CPUID for each processor that you want to be able to
IPL.

« OR update each user's directory to include an OPTION control statement containing the CPUID
parameter, and place that CPUID parameter value into a record in the SYSTEM NETID file.

The value specified on the CPUID parameter overrides all of the actual processor CPUIDs, and allows
CMS network communications to function independently of the real processor configuration.

Chapter 3. Tailoring CMS 45

SYSTEM NETID File

46 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

Chapter 4. The Programmable Operator Facility

The programmable operator facility is designed to increase the efficiency of system operation and to allow
remote operation of systems in a distributed data processing environment. It does this by intercepting all
messages and requests directed to its virtual machine and by handling them according to preprogrammed
actions. It determines whether a message is to be simply recorded for future reference, or the message is
to be acted upon, or the message is to be sent on to the operator to handle.

Note: The programmable operator should always run with American English as the system national
language. Routing tables and messages to the programmable operator should always be in American
English to ensure that the uppercasing and routing table comparisons are handled correctly.

The tasks that can be performed by the programmable operator facility include:

« Logging messages

« Suppressing message display and routing messages to a logical (real) operator
« Executing commands

« Responding with preprogrammed message responses.

Using the Programmable Operator Facility in Various System
Environments

The programmable operator facility can be used in the following environments:
« Single system

- Distributed z/VM system

« Mixed systems

Use in a Single System

When the programmable operator facility is operational in a single-system environment, it can:
- Ease message traffic to the system operator, by:

— Filtering (logging) nonessential, information-only messages
— Routing messages (for example, I/0 intervention requests) to someone else for specialized action.

« Increase productivity, by freeing the system operator from certain routine responses or tasks. Such
responses (whether they consist of one or a series of commands, whether z/VM or guest operating
system) may be preprogrammed to execute automatically upon receipt of a given message.

Thus, only essential, nonroutine messages (that is, those requiring the skill and experience of a system
operator to handle) are sent on to the operator for response or action.

Use in Distributed z/VM Systems

The capabilities of the programmable operator, outlined above, also allow for the remote operation of
systems in a distributed z/VM environment. When the programmable operator facility is operationalin a
distributed z/VM system, it can:

« Issue responses and perform tasks that do not require an on-site operator
« Filter (log) nonessential, information-only messages

« Route messages requiring on-site (that is, manual) intervention to someone, not necessarily an
operator, at the distributed site for action

« Route messages that require the skill and experience of a system operator to handle to the operator at
the host system. The operator at the host site can also send commands to the programmable operator

© Copyright IBM Corp. 1991, 2022 47

Programmable Operator Facility

facility to control its operation, as well as commands to execute on the distributed system to control the
system itself.

By running the programmable operator facility on z/VM systems distributed at several different locations
(network nodes), one operator at a host site can control a network of systems.

Use in a Mixed Environment

The programmable operator facility also provides for distributed data processing in an SNA environment
with mixed z/VM, OS/VS, and VSE distributed systems and host systems. This is called a mixed
environment. The Programmable Operator/NCCF Message Exchange (PMX) provides an interface with the
Network Communications Control Facility (NCCF) or the NetView® program so that an NCCF or NetView
operator can operate a z/VM distributed system, whether the operator is on a z/VM, OS/VS, or VSE
system.

Note:

1. The Group Control System (GCS) is a requirement to use the programmable operator in a mixed
environment. The Programmable Operator/NCCF Message Exchange (PMX) uses facilities unique to
GCS, and therefore cannot run on any other supervisor. For more information on GCS, see z/VM: Group
Control System.

2. NCCF and NetView are network management VTAM applications. NCCF requires the Advanced
Communications Function/Virtual Telecommunications Access Method (ACF/VTAM) Version 3 for z/VM.
NetView requires the Advanced Communications Function/Virtual Telecommunications Access Method
(ACF/VTAM) Version 3 Release 1 Modification Level 1 for z/VM. NCCF and NetView run on subsequent
releases of ACF/VTAM unless otherwise stated.

3. The programmable operator facility does not allow a user logged on to a z/VM virtual machine
to enter NCCF or NetView commands. A z/VM user cannot try to control NCCF or NetView as
an authorized operator. The system only lets authorized NCCF or NetView operators enter z/VM
commands within the programmable operator virtual machine.

4. The maximum message length that the programmable operator facility can process is 240 bytes.
Messages received that exceed this limit are truncated and the remainder is rejected. Normal
processing continues for the portion that is received.

The Logical Operator

Occasionally the programmable operator must send messages to another virtual machine. To ensure that
the programmable operator will function properly, a user (other than the programmable operator virtual
machine on the local system, in a distributed system, or in a mixed environment) is identified to the
programmable operator to receive these messages. This user is called the logical operator, as opposed

to the CP system operator. When the programmable operator starts (in the CP system operator virtual
machine, for example), the logical operator receives an initiation message. The logical operator also
receives error messages for severe errors, such as logging errors, and receives all messages routed to the
logical operator explicitly or by default.

In a mixed environment, an NCCF or NetView operator can be assigned as the logical operator to control
a z/VM distributed system. For more information, see “The NCCF or NetView Logical Operator” on page
59.

The default logical operator is specified in the LGLOPR statement of the routing table. However, other
logical operators can be dynamically assigned, released, or replaced using the LGLOPR command of the
programmable operator facility. Both methods of identifying the logical operator are described in detail
later in this section.

Routing Table Information

The programmable operator routing table identifies the programmable operator facility environment,
including the default logical operator's user ID and node ID. It also specifies the action to take for
each message, and authorizes certain users to invoke specific programmable operator commands. For a

48 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

complete description of the information contained in a routing table, see “The Routing Table” on page
61.

The routing table is a separate CMS file that must be tailored for a specific use. The first routing table
to be used is specified when the programmable operator facility is invoked. If no routing table name is
specified, the default file name PROP is used.

The installation may define multiple routing tables to cover varying situations. For example, multiple
routing tables can be defined to cover shift changes. Only one routing table can be active at a time. The
active routing table may be replaced by issuing the LOADTBL command. Any person authorized in the
active routing table may enter this command.

Action Routines

Action routines are programs or execs that receive control in response to the match of a message

and a routing table entry. They handle a particular type of message or command intercepted by the
programmable operator facility. A set of action routines is provided with the programmable operator
facility. These need no tailoring to provide you with the control and function needed to operate the
programmable operator facility. You can extend the programmable operator facility by writing a new
action routine and adding it to the appropriate routing table. Action routines can be execs or written

in Basic Assembler Language. (Basic Assembler Language action routines must also be added to the
PROPLIB LOADLIB. The PROPLIB LOADLIB is built by the VMSES/E VMFBLD EXEC using the DMSBLPRP
build list.)

Exit Execs

Exit execs receive control from the programmable operator facility in certain error and communication
status situations. IBM supplies sample exit execs that can be used in their sample form, modified, or
replaced with user-written exit execs.

How It Works

The programmable operator facility runs in a CMS virtual machine. Although it can run in any virtual
machine, because of its programmed capability to log, handle, or redirect messages, it is most commonly
run in the CP system operator's virtual machine.

The programmable operator facility compares all messages directed to it against entries listed in a routing
table (a CMS file). When a match occurs, the prescribed action is performed. Any messages requiring

a real operator's response or action are sent on to the defined operator (system, network, NCCF, and
other defined operators) at another console, a logical operator console. If the logical operator is on a
virtual machine in the same system, the programmable operator sends the messages with either the CP
MESSAGE or CP MSGNOH command. If the logical operator is on a virtual machine in a different z/VM
system (network node), a host system for example, it sends the messages using RSCS.

Consider this example: The OPER1 user ID is defined as the CP system operator when the CP system is
configured. Set up the programmable operator to run in the OPER1 virtual machine and establish another
virtual machine with a user ID of OPERX. In the routing table file(s), specify OPERX as the logical operator.
Now any CP or user messages sent to the system operator virtual machine can be handled or filtered by
the programmable operator or routed to the OPERX user ID.

Note: The logical operator cannot receive the messages when the logical operator virtual machine

is not receiving, such as (but not limited to), being logged off, disconnected, has SET MSG OFF, or

passed through to another system. If another user sends messages to the virtual machine running the
programmable operator, the originator of the messages receives message HCP045 or HCP0O57. This
happens because the TELL command, which sends the messages from the programmable operator virtual
machine to the logical operator virtual machine, verifies the ability of the logical operator to receive
messages.

Chapter 4. The Programmable Operator Facility 49

Programmable Operator Facility

If the logical operator is an NCCF or NetView operator, the programmable operator sends messages
though the Programmable Operator/NCCF Message Exchange (PMX) portion of the programmable
operator facility.

Flow of Operation

When the programmable operator facility is running in a virtual machine, CP intercepts all messages
intended for that virtual machine console. CP then passes these messages to the programmable operator
facility by IUCV (the maximum number of outstanding messages that IUCV can queue for presentation to
the programmable operator facility is 65535). The messages are logged in a CMS file. The programmable
operator facility then uses the active routing table to analyze the message and determine if further action
is needed. Based on the contents of the routing table (such as message texts, message types, and user
authorizations), the message can be passed to some specified action routine for further action.

Note: When the programmable operator facility is designated to run in the CP system operator virtual
machine, message filtering is affected by the CP message handler. Message filtering will only occur
when the programmable operator facility is running in the virtual machine recognized as the primary
system operator. For more information, see the MESSAGE command in z/VM: CP Commands and Utilities
Reference.

Before the message is logged or passed to any action routines, the programmable operator facility deletes
any leading blanks from the message text. Thus, the message text is considered to start at its first
nonblank character.

If the message is to be routed to the logical operator, and that person is on another virtual machine in
the same physical machine, the programmable operator facility routes the message directly to the logical
operator. To do this, it uses the CP MSGNOH or CP MESSAGE command depending on the classification
of the programmable operator virtual machine. If the logical operator is on a different physical machine,
the programmable operator facility prefaces the message with the appropriate tag information and sends
the message to RSCS using the CP SMSG command. If the logical operator is an NCCF or NetView
operator, the programmable operator facility sends the message through the Programmable Operator/
NCCF Message Exchange (PMX) which passes the message on to the NCCF or NetView logical operator.

The programmable operator facility usually operates in a disconnected virtual machine. If someone logs
on to this disconnected virtual machine with the programmable operator facility running, no messages
are displayed (unless the programmable operator facility is running in DEBUG mode). All messages are
being intercepted or received by the programmable operator program from IUCV. If that person should
enter a command, the programmable operator facility gets control and reads the command entered. Only
two commands are accepted from this environment; the STOP command and the SET command. The
programmable operator facility rejects any other commands. However, in some situations the redisplay
of the entered command is CP console I/O and is presented to the programmable operator facility

as a type-3 message. If the text of this command matches a record in the active routing table, the
programmable operator facility may invoke an action routine.

If a CMS ABEND occurs while the programmable operator facility is executing, all files are closed and
abend error messages are sent to the logical operator. A dump of the virtual machine storage is taken
using the CP VMDUMP command and the last system or device that was IPLed is re-IPLed. If the abend
occurs while an action routine is executing, abend error messages are sent to the logical operator and
the requester (if any). Control is returned to the point in the programmable operator facility immediately
following the action routine call.

Relationship to RSCS

When the programmable operator facility is running in a z/VM network environment, it is a normal user of
RSCS Networking. This means that the programmable operator facility communicates to RSCS using the
CP SMSG command. Any configuration of systems and networks supported by RSCS Networking can use
the programmable operator facility. The time needed for a message to go from the system at a distributed
site to the logical operator at the host system, or to go from the logical operator at the host system to

the system at a distributed site, depends on the number and type of communications links between the
message sources and destinations.

50 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

When the logical operator is an NCCF or NetView operator, the programmable operator does not use RSCS
to route messages to the logical operator. It, instead, passes the messages to NCCF or NetView through
the Message Queuing Service so that the messages are presented at the appropriate NCCF or NetView
operator console.

A programmable operator can check on its ability to communicate with a host or distributed system. See
“Communications Checking” on page 79.

Programmable Operator Virtual Machine

This section describes how to install, invoke, and stop the programmable operator facility. It also tells you
about the messages that it sends and their format.

Installing the Programmable Operator Facility

The z/VM product contains the file PROPLIB LOADLIB which is the basis for the programmable operator
facility. After receiving and installing z/VM, take the following steps before running the programmable
operator facility.

1. The programmable operator facility manages the log file(s) and feedback file. It manages these files
in the virtual machine in which the programmable operator will be running. You should ensure that
the virtual machine has enough free space on a minidisk or in an SFS file space to contain the files.
The amount of space needed depends on the amount of message traffic that will be going through the
programmable operator facility, and on the number of comments you expect users to place in the log
and feedback files. To help you determine the amount of space needed for the log and feedback files,
see “The Log File” on page 75 and “The Feedback File” on page 78.

2. The sample routing table is located on the CMS 190 minidisk. To use the sample PROP RTABLE, take
the following steps:

access 190 c/a
copyfile prop rtable ¢ = = a

This places the sample routing table on the minidisk or SFS directory accessed as A. Edit the sample
routing table (PROP RTABLE) to include the functions and authorizations to meet the various needs
of the installation. For more information on tailoring the routing table, see “The Routing Table” on
page 61. Place the edited file on a minidisk or SFS directory accessed by the programmable operator
facility virtual machine.

3. PROPLIB LOADLIB is built by the VMSES/E VMFBLD EXEC using the DMSBLPRP build list. If you need
to make any changes to the supplied action routines, you must create local modifications to those
routines. If you want to add your own routines, you must provide a local modification to the DMSBLPRP
build list. See the discussion on installing local service in the z/VM: Service Guide for information on
creating local modifications.

Action routines written in Basic Assembler Language must be put in the PROPLIB LOADLIB. Exec
action routines need not be put in the PROPLIB LOADLIB, but can reside on any minidisk or SFS
directory accessible to the programmable operator.

If you are operating in a mixed environment and need the Programmable Operator/NCCF Message
Exchange (PMX) to route messages to the NCCF or NetView logical operator, you must first install the
PMX. For details on the installation procedure, see “Installing the PMX” on page 56.

Invoking the Programmable Operator Facility

You can invoke the programmable operator facility manually or you can set it up to start automatically.

Manual Invocation

Before loading and invoking the programmable operator facility, IPL CMS in the virtual machine that will
be running the programmable operator facility.

Chapter 4. The Programmable Operator Facility 51

Programmable Operator Facility

Use the PROPST EXEC to invoke the programmable operator facility manually. The PROPST EXEC drops
any IBM-supplied programmable operator routines that are currently loaded as a nucleus extension, and
loads the programmable operator as a nucleus extension. It then invokes the programmable operator
facility with the specified RTABLE. If you do not specify a routing table, the default RTABLE name is PROP.
You may specify a disconnect parameter to disconnect the programmable operator before it is invoked.
PROPST EXEC is located on the CMS system disk (190) and can be tailored to your needs. The format of
the invocation exec is as follows:

PROP

J—___
»— PROPST >«
L rtable-name J L DISConn J

Alternatively, you can take the following steps before each time you invoke the programmable operator
facility:

1. Enter the following FILEDEF command to assign a CMS file name to the PROPLIB LOADLIB file so CMS
can read and load from it:

filedef proplib disk proplib loadlib =*

2. Next, load the programmable operator program as a CMS nucleus extension by the NUCXLOAD
command. Enter the command as follows:

nucxload prop dmspop proplib
(See z/VM: CMS Commands and Utilities Reference for more details on the NUCXLOAD command.)
These first two steps may be omitted for subsequent invocations as long as you do not:
« IPLCMS

« Have a CMS ABEND from which the programmable operator does not automatically recover.

3. Following its loading as a CMS nucleus extension, invoke the programmable operator facility as if it
were a CMS command. The format of the invocation is:

PROP rtable-name

rtable-name is the file name of the routing table that is to be used for the programmable operator
facility. PROP is the default file name of the routing table if no other is specified at invocation.

Automatic Invocation

If you wish, you can set up the programmable operator facility to start running when the system is IPLed
and to restart automatically in the event of CP system restart. This can be done as follows:

1. Place an IPL CMS PARM AUTOCR statement in the user directory entry for the programmable operator
virtual machine. You can do this even if the programmable operator virtual machine is the CP system
operator.

2. Place the following entry in the PROFILE EXEC of the programmable operator virtual machine:

EXEC PROPST rtable-name [DISConn]

You can precede or follow the invocation of the PROPST EXEC by issuing any virtual machine
commands that you wish to have executed before or after the programmable operator facility is
invoked. Virtual machine commands that are placed after the invocation of the PROPST EXEC are not
executed until the programmable operator facility is stopped.

3. If you want the programmable operator to run in other than the operator's virtual machine, place an
AUTOLOG entry for the programmable operator's virtual machine in the PROFILE EXEC of the system
operator or the AUTOLOG1 user.

52 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

4. After this is complete, if not already logged on, the logical operator should log on to the appropriate
system.

The following example shows how to place statements in the user directory and the PROFILE EXEC of

the operator's virtual machine. These statements automatically invoke the programmable operator facility
in the operator's virtual machine when the system is IPLed. The user ID of the programmable operator
virtual machine is OPERATOR. The name of the routing table being used is the default, PROP RTABLE.

« Additional statement in the user directory:

IDENTITY OPERATOR password 32M 32M ABCDEFG
IPL CMS PARM AUTOCR

« Additional statement in the PROFILE EXEC of the operator's virtual machine:

EXEC PROPST DISCONN

After these changes (or similar ones) have been made, IPLing the system causes the programmable
operator to be invoked automatically in the disconnected system operator virtual machine. After the
DISCONNECTED message has been written to the console, indicating that the system operator virtual
machine is disconnected, the operator can log on to whatever virtual machine is normally used, for
example, the default logical operator virtual machine specified in the routing table.

Initialization

The programmable operator facility is initiated by IPLing CMS in a virtual machine and invoking the
programmable operator facility. When the programmable operator facility gets control, it locates the
specified or default routing table and loads it into virtual storage. The action routines named in this
routing table are in turn loaded as CMS nucleus extensions. For each action routine specified in the
routing table, an exec file or a corresponding member in a CMS simulated OS load library named PROPLIB
LOADLIB must exist. If an exec does not exist, the LOADLIB member is loaded as a nucleus extension by
the NUCXLOAD command. If both exist, the exec takes precedence.

If upon invocation, the programmable operator facility cannot find an action routine named in the

routing table, an error message is issued, and, after displaying all detectable routing table errors, the
programmable operator facility terminates operation. Otherwise, the programmable operator facility is
fully initialized, and writes a message to the programmable operator's console, to the logical operator, and
to the LOG file, indicating that the programmable operator facility has started.

The programmable operator facility then waits for either an incoming message or a programmable
operator console command (STOP and SET are the only valid commands). The operator can disconnect at
this point by having specified the DISConn parameter for the PROPST EXEC, by entering CP (pressing the
PA1 key or equivalent) and typing CP DISCONN or by issuing #CP DISCONN where # is the logical line end
character. After the DISCONNECTED message has been written to the console, indicating that the system
operator virtual machine is disconnected, the operator can log on to whatever virtual machine is normally
used, for example, the default logical operator virtual machine specified in the routing table.

When the programmable operator starts, it executes an exec called PROPPROF, which is located on the
CMS System Disk (190). This exec can be copied to file mode A and tailored. PROPPROF is called after
the programmable operator initialization is complete, that is, after the programmable operator message
environment has been set up. PROPPROF tailors the programmable operator message environment to
your specific needs.

For example, to prevent the programmable operator from trapping warning messages, PROPPROF could
look like this:

Chapter 4. The Programmable Operator Facility 53

Programmable Operator Facility

/* PROPPROF Example x/
"CP SET WNG ON"
Exit

Parameters passed to the PROPPROF EXEC are listed in “Exec Action Routines” on page 88. Some do
not have meaning to the PROPPROF EXEC. These parameters are the requester user ID, requester node
ID, and the message class.

PROPPROF can be used for any special programmable operator start processing desired without having
to rewrite the PROPST EXEC or create a new exec to invoke the programmable operator facility. After
executing PROPPROF, the programmable operator then begins routing messages as defined by the
routing table entries and the LGLOPR statement in the specified routing table.

When the programmable operator facility is automatically restarted following an abend, it, if possible,
uses the routing table in effect at the time of the abend rather than that specified at invocation. Also, if a
logical operator (other than the default logical operator) had been assigned, that assignment is restored.

Note: If the user enters a node ID into the SYSTEM NETID file that is not valid as a CMS file type, the
programmable operator cannot start because it is not able to open the log file. For more information, see
“Use the SYSTEM NETID File to Configure Communication Across an NJE Network” on page 44.

How the Programmable Operator Establishes Communications with IUCV

The programmable operator facility automatically establishes communications with CP through the Inter-
User Communications Vehicle (IUCV). When the programmable operator facility is initialized, a CMSIUCV
CONNECT, specifying * MSG and an application ID of PROP, is issued to establish the communications
path with the Message System Service. This allows the programmable operator program to read and
evaluate messages directly from CP.

Several CP command settings determine the types of messages that the programmable operator facility
can receive. The programmable operator facility issues these SET commands when initializing, and resets
them when terminating. The commands issued during initialization are:

SET MSG IUCV

SET WNG IUCV

SET SMSG IUCV
SET EMSG IUCV
SET IMSG IUCV
SET CPCONIO IUuCV
SET VMCONIO OFF

VMCONIO is set OFF so that any messages produced by CMS or the programmable operator during
initialization of the programmable operator facility are typed on its virtual machine console. If VMCONIO
was set to IUCV, such data would be trapped by IUCV and not displayed.

When the programmable operator STOP command is issued, the following SET commands are issued:

SET MSG ON

SET WNG ON

SET SMSG OFF
SET EMSG ON

SET IMSG ON

SET CPCONIO OFF
SET VMCONIO OFF

Then, after the existing messages are handled, the IUCV connection is severed using the IUCV SEVER
function.

Some other virtual machine settings that the programmable operator facility modifies are SET RUN ON,
SET TIMER REAL, and TERMINAL MODE VM at initialization, and SET RUN OFF and SET TIMER ON at
termination. (The SET TIMER command is not issued when the machine is running in XC mode.) SET
RUN ON is issued to ensure that the programmable operator is not held up in CP console function mode
for excessive periods of time, either because of some operator command entry or because of logging

54 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

on to a disconnected programmable operator virtual machine. TERMINAL MODE VM is to ensure that
programmable operator console commands are handled correctly.

Note:

1. Single Console Image Facility (SCIF) operation supersedes IUCV Message System Service operation.
If the programmable operator virtual machine has a SCIF secondary user, messages would be sent
by SCIF to the secondary user rather than handled by the programmable operator virtual machine
through the IUCV Message System Service. However, the programmable operator facility may be
a SCIF secondary user for another virtual machine. For example, this can be used to control the
operation of a guest operating system running in another virtual machine. In this case, SCIF messages
are presented to the programmable operator virtual machine as IUCV message-type 8.

2. If you plan to run the programmable operator facility in the operator's virtual machine, you must
remove the secondary user from the operator's virtual machine definition in the user directory.
Otherwise, the Single Console Image Facility (SCIF) overrides the programmable operator facility.

3. The receive buffer declared for IUCV is 240 bytes. Therefore, only the first 240 characters of a
message are processed. The programmable operator facility rejects (IUCV REJECT) the remainder of
any message that exceeds 240 bytes.

Message Output Format

The messages and responses from the programmable operator facility are sent to local z/VM users by

the CP MSGNOH command if the programmable operator virtual machine has user class B authorization.
Otherwise, the CP MESSAGE command is used. Regardless of which message command is used the
messages from another user that are routed to the logical operator are prefixed with the user ID and node
ID of the originating user. The format of these messages appears as follows:

col 1 col 10 col 20
| |

userid nodeid: text

Messages that the programmable operator facility sends as responses to the issuer of a programmable
operator command or an asynchronous message to the CP operator originating at the programmable
operator virtual machine have no such prefix. These responses are displayed in the language that is set
for the programmable operator virtual machine. This language should always be American English.

Stopping the Programmable Operator Facility

The programmable operator facility is easily stopped with the programmable operator STOP command.
This command can be entered by a user logged on to the programmable operator facility virtual machine
by typing STOP and pressing the ENTER key (or its equivalent). The programmable operator facility
completes processing of all pending messages before stopping and returning control to CMS.

An alternative way to stop the programmable operator facility is for an authorized user to pass the STOP
command to the programmable operator facility virtual machine from another virtual machine. The facility
will stop processing as described above and return control to CMS. If the programmable operator facility
virtual machine was running disconnected, it is left disconnected and the programmable operator facility
is not active. To restart the programmable operator facility, someone must log on to the programmable
operator facility virtual machine and invoke the facility as described in “Invoking the Programmable
Operator Facility” on page 51.

PROPEPIF EXEC

Before the programmable operator facility terminates completely, it executes an exec called PROPEPIF,
which is located on the CMS System Disk (190). This exec can be copied to file mode A and tailored.
PROPEPIF lets you restore any virtual machine settings that the programmable operator may have
modified during operation. For example, when the programmable operator stops, it issues the command

Chapter 4. The Programmable Operator Facility 55

Programmable Operator Facility

SET EMSG ON. If you want the final setting of EMSG to be something other than ON, simply put a
command in the PROPEPIF EXEC, such as:

/* PROPEPIF Example x/
"CP SET EMSG TEXT"
Exit

Parameters passed to the PROPEPIF EXEC are listed in “Exec Action Routines” on page 88. Some do not
have meaning to the PROPEPIF EXEC. These parameters are the requester user ID, requester node 1D,
and the message class.

PROPEPIF, along with PROPPROF, simply gives you more control over the changes that the programmable
operator makes to a virtual machine while operating.

Effect on an NCCF or NetView Logical Operator

If you use the STOP command to stop the programmable operator facility, the system sends a message

to you (the NCCF or NetView logical operator). Someone must then log on to the programmable operator
virtual machine and restart the programmable operator facility to continue operating in the mixed
environment. If the programmable operator stops because of an abend and is able to recover, the
programmable operator facility tries to re-establish the IUCV connection between the programmable
operator and the PMX. In either case (STOP or ABEND), the programmable operator informs any assigned
(using the LGLOPR ASN command) NCCF or NetView logical operator of its status (stopped or abended) by
the PMX.

Running the Programmable Operator Facility from NCCF or
NetView

To enhance the use of the programmable operator, it can be controlled by an NCCF or NetView operator,
thus giving this operator control over mixed z/VM, OS/VS, and VSE distributed systems and host systems.

The Programmable Operator/NCCF Message Exchange

The Programmable Operator/NCCF Message Exchange (PMX) serves as a pipeline to transfer
programmable operator commands from NCCF or NetView to the programmable operator virtual machine
and to transfer routed messages and programmable operator responses to NCCF or NetView. The

PMX executes in a GCS virtual machine with NCCF or NetView thus making GCS a requirement for
programmable operator and NCCF or NetView communication. PMX uses IUCV to communicate with

the programmable operator facility. The PMX also uses an NCCF or NetView command processor and

the DSIMQS macro to communicate with NCCF or NetView logical operators. See the NCCF or NetView
documentation for more information.

Installing the PMX

To use the Programmable Operator/NCCF or NetView connection, the user must:

1. Authorize the programmable operator virtual machine and the GCS virtual machine in which the PMX
will execute to obtain IUCV connections with each other. The maximum number of IUCV connections
allowed for the programmable operator must be at least three. For the PMX it must be at least two.

Make this authorization by adding IUCV statements for each of these users in the user directory. For
more information on the user directory, see z/VM: CP Planning and Administration.

2. Set up the GCS virtual machine in which the PMX (along with NCCF or NetView) will run as an
authorized GCS virtual machine. See the NetView Program Directory for information about setting up
the virtual machine. The PROPMX LOADLIB is located on the 190/490 disk and must be accessed prior
to installation of PMX.

56 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

3. Specify in the GCS PROFILE (file name, file type, PROFILE GCS) that the PMX should start when GCS is
IPLed. The format of the GCS command provided by NCCF for invoking the PMX is:

NCCF START PMX PARM userid

where userid is the user ID of the programmable operator virtual machine. Do this by modifying the
exec NCCFSTRT GCS that is provided with NCCF.

The format of the GCS command provided by NetView for invoking the PMX is:

NETVIEW START PMX PARM userid (LOCAL)

where userid is the user ID of the programmable operator virtual machine. Do this by modifying the
exec NETSTRT GCS that is provided with NetView.

If you do not specify this in the GCS PROFILE or the execs mentioned above, then the PMX must

start manually after the programmable operator is started by issuing the same GCS command. When
started, the PMX ATTACHes NCCF or NetView; that is, it runs as a subtask of the PMX in the same
GCS virtual machine. When you specify the LOCAL option, the PMX attaches the hardware component
of NetView which captures LOCAL device errors. See the NCCF and Netview documentation for more
information.

4., Use the VMFBLD command to build the PROPMX LOADLIB from which the PMX module is loaded by
the NCCF or NetView command. The PROPMX LOADLIB must then be placed on a minidisk which
is accessed by the virtual machine running PMX and NCCF or NetView. (An SFS directory cannot be
used from a virtual machine in which GCS is running.) For example, it could be placed on the same
minidisk as the NCCF LOADLIB. The PROPMX LOADLIB must also be GLOBALed (that is, GLOBAL
LOADLIB PROPMX), along with the NCCF LOADLIB prior to invoking the NCCF or NetView command.
This GLOBAL command can also be issued in the NCCFSTRT or NETSTRT GCS EXEC. The commentary
in the exec describes how to do this. The format of the command is:

VMFBLD PPF ppfname GCS buildlst object (ALL

5. Ensure that entries are added to the appropriate routing table files to authorize one or more NCCF
or NetView operators to be assigned as the logical operator; that is, authorize them to enter the
programmable operator LGLOPR command. For more uses of the LGLOPR command, see “Assigning or
Changing the Logical Operator” on page 60.

Figure 2 on page 57 would authorize any NCCF or NetView operator to enter the LGLOPR command.
Restricted or specific authorization would be provided by putting the desired NCCF or NetView
operator ID in the user field of the RTABLE entry.

Figure 2. LGLOPR Command Authorization for an NCCF or NetView Operator

6. A PROP command name must be supplied to NCCF or NetView through the CMDMDL statement in the
file DSICMD NCCFLST, such as,

PROP CMDMDL MOD=GCTPNP

For more information on NCCF, NetView, and GCS, read the appropriate documentation for each
product.

Chapter 4. The Programmable Operator Facility 57

Programmable Operator Facility

Communication between the Programmable Operator and NCCF or NetView

An NCCF or NetView operator (not necessarily the logical operator) and the programmable operator
interact through both the NCCF or NetView PROP command and the Programmable Operator/NCCF
Message Exchange (PMX). The PROP command is the NCCF or NetView operator's only means of sending
data (commands) to the programmable operator. The PMX mediates all messages intended for NCCF or
NetView logical operators.

An NCCF or NetView operator enters a programmable operator command by using PROP, an NCCF or
NetView command, like this:

PROP CMD DETACH OOA FROM USER1

In a different domain, the operator must first establish an NCCF or NetView cross-domain session with
the NCCF or NetView START command. Then, any programmable operator commands to be issued in that
domain must be encapsulated in an NCCF or NetView ROUTE command. For example,

START DOMAIN=DOMN2

ROUTE DOMN2,PROP CMD SET LOGMSG 1 SHUTDOWN IS AT 7PM TONIGHT

See NCCF or NetView documentation for further information on domains and cross-domain sessions.

Stopping the PMX

If PMX stops or the NCCF or NetView operator session that is controlling the programmable operator
stops, the NCCF or NetView logical operator (if any) is implicitly released. The programmable operator
continues with the default logical operator specified on the LGLOPR statement of the active routing table.

The PMX may stop because:
« VM GCS stops

« NCCF or NetView stops (or the hardware monitor component of NetView, if the LOCAL option of the GCS
NETVIEW command was used when starting the PMX)

« The PMX abends.
There are no PMX commands, per se; stopping NCCF or NetView normally stops the PMX.

When the PMX stops, NCCF or NetView does not necessarily stop—the PMX tries to wait until NCCF or
NetView has stopped. However, you must stop NCCF or NetView before restarting the PMX.

The Logical Operator

The programmable operator facility is most commonly run in the CP system operator's virtual machine. It
intercepts messages to the system operator, logs them in a CMS file and then performs additional actions
on the messages, as defined by the active routing table. Sometimes, it is necessary for the programmable
operator to send an intercepted message to another user for handling, because the programmable
operator does not know or is not capable of performing the required action. (One example would be a
message requesting that a tape be mounted. Since the programmable operator cannot perform physical
tasks, such as mounting tapes, it simply sends the message to another user for handling.) For this reason,
a user, other than the programmable operator virtual machine, is identified to the programmable operator
to receive these messages. This user is called the logical operator, as opposed to the CP system operator.

When the programmable operator starts, the logical operator is sent an initiation message. While the
programmable operator is active, the logical operator receives error messages for severe errors, such as
logging errors, as well as all messages routed to the logical operator, either explicitly or by default. The
logical operator also receives a message when the programmable operator is stopped.

The programmable operator facility can have only one logical operator at any given time. However, the
role of the logical operator can be passed dynamically between several z/VM users and/or NCCF or
NetView operators by means of the programmable operator LGLOPR command. Refer to “Assigning or
Changing the Logical Operator” on page 60 and to “LGLOPR” on page 100 for more information.

58 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

The Default Logical Operator

Although the role of the logical operator can be passed from one z/VM or NCCF (or NetView) user to
another, a single z/VM user must still be identified to the programmable operator. This user is called the
DEFAULT logical operator and is identified to the programmable operator facility by means of the LGLOPR
statement of the active routing table. The programmable operator facility begins routing messages to this
DEFAULT logical operator when no other logical operator has been assigned or when the current logical
operator issues the LGLOPR RLS command, implicitly or explicitly.

During programmable operator initialization, a message is sent to the logical operator indicating that

the programmable operator facility is running. Normally (that is, unless the programmable operator is
restarting after an abend situation), this logical operator is the DEFAULT logical operator specified in

the active routing table, since the programmable operator is just starting up and no other users have

been assigned yet. The DEFAULT logical operator will continue to be the current logical operator until an
authorized z/VM or NCCF (or NetView) user enters the programmable operator LGLOPR command. Thus, if
the active routing table does not authorize ANY users to enter the LGLOPR command, the DEFAULT logical
operator will ALWAYS be the logical operator, until a new routing table is loaded.

Again, the DEFAULT logical operator MUST be a local or remote z/VM user; that is, the DEFAULT logical
operator CANNOT be an NCCF or NetView operator.

Note: To avoid ambiguity, it should be noted that the term logical operator throughout this section is
actually referring to the currently assigned logical operator, which MAY also be the DEFAULT logical
operator. References to the DEFAULT logical operator are made when the information being discussed
pertains ONLY to the DEFAULT logical operator.

The NCCF or NetView Logical Operator

To run a z/VM system from NCCF or NetView an NCCF or NetView operator must be assigned as the
logical operator of the programmable operator in that particular system. This operator is the NCCF
logical operator or the NetView logical operator. The routing table should specify which NCCF or NetView
operators may be assigned as logical operators. The network installation through NCCF or NetView and
VTAM defines where such NCCF or NetView operators may be logged on. This is independent of the
programmable operator facility.

An NCCF or NetView operator may be authorized to be the logical operator by allowing that

person to enter the programmable operator LGLOPR command. An NCCF or NetView operator can

also be authorized to enter other programmable operator commands (QUERY, SET, CMD, and other
programmable operator commands) without being authorized to use the LGLOPR command. That is, an
NCCF or NetView operator can enter programmable operator commands without being authorized to be a
logical operator. For example, assume the following record was in the active routing table.

*T S E T U N A P

*E C C Y s 0 c A

*X 0 0 P E D T R

*T L L E R E N M
roococoooooocooooooconoo0os SO0 CoS OO CoCOoOSD SoOCOCOooS CoOCOoooo Cocooooo
/QUERY / 1 6 30 NTWKOP1 «NCCF DMSPOR QUERY

Figure 3. QUERY Command Authorization for an NCCF or NetView Operator

The entry above allows the NCCF or NetView operator, NTWKOP1, to enter the programmable operator
QUERY command and receive the responses, even if he is not authorized to use the programmable
operator LGLOPR command to assign himself as logical operator.

Chapter 4. The Programmable Operator Facility 59

Programmable Operator Facility

Assigning or Changing the Logical Operator

The LGLOPR command provides three options for assigning and releasing logical operators. These three
options allow the role of logical operator to be passed back and forth between z/VM users and/or NCCF or
NetView operators. For the format of this command, see “LGLOPR” on page 100. To authorize operators
to use the LGLOPR command, place an entry for “/LGLOPR /” in the routing table to be used. Specify
DMSPOR as the action routine, and LGLOPR as the parameter to DMSPOR.

Using the ASN (assign) and RLS (release) options is sufficient for many installations where perhaps there
is only one z/VM operator or key operator (specified as the default logical operator) and one NCCF or
NetView operator.

When more than one NCCF or NetView operator is capable of controlling the system or when a
combination of multiple z/VM and NCCF or NetView logical operators are capable, the installation might
want to allow some or all of the logical operators to use the RPL (replace) option. RPL forces the issuer
of the command to be assigned as the logical operator, whether or not a logical operator is already
assigned. This ensures that no messages are lost while changing logical operators because no messages
are handled during the change.

For example, in establishment X, two NCCF or NetView operators on an MVS host system share
responsibility for control of a set of z/VM distributed systems. The role of logical operator is passed

back and forth between them depending on their individual workload. These operators pass control using
the RPL option of the LGLOPR command so that no messages are routed to the default logical operator
between releasing the old logical operator and assigning the new one.

The RPL option is also useful for forcing the assignment of a logical operator when the current logical
operator is for some reason cut off from communication with the programmable operator and cannot do a
RLS (release).

For example, a communications line connecting the terminal for an NCCF or NetView logical operator to
the NCCF or NetView subsystem has gone down. The NCCF or NetView logical operator informs a local
z/VM operator by telephone that the z/VM operator will have to take over as logical operator until the
communications line can be brought back up. The z/VM operator, if authorized, can enter a LGLOPR RPL
command to take over the role of logical operator.

When the logical operator is re-assigned, the programmable operator tries the HOSTCHK function, if
specified, following the re-assignment. However, if the new logical operator is an NCCF or NetView
operator or a z/VM user on the same system as the programmable operator, the HOSTCHK function
is suspended until a remote z/VM user is again assigned as the logical operator. For information on
the HOSTCHK function, see “Communications Checking” on page 79 and the HOSTCHK statement in
“Routing Table Configuration Entry Statements” on page 62.

If a user is assigned as the logical operator by the LGLOPR command, the assignment is accepted. The
user specified on the LGLOPR statement remains a default logical operator in the event that the assigned
logical operator is released. The user specified on the LGLOPR statement is always maintained as the
default, and can never be released.

See Figure 4 on page 61 for some sample uses of the LGLOPR command. In the samples, ACTIONX

is an action routine that is executed each time an unauthorized user issues some form of the LGLOPR
command. ACTIONX could be DMSPOS sending the offending command to the logical operator or it could
be a user-written routine taking some other action against the issuer.

60 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

/LGLOPR / 1 7 NTWKOP1 xNCCF DMSPOR LGLOPR
oo ochmomoocoooooomoooD moo Soo 5o Cooooooe Soomcooo Sooomooe coooooos
* EXPLICIT AUTHORIZATION FOR LGLOPR REPLACE

oo cocommooonEnononEnonon o0 Goo 0O CEOooo00 CoOOEmOn Go@Ono60 SOooo00c
/LGLOPR /RPL/ 1 16 OPER2 HOSTSYS DMSPOR LGLOPR
/LGLOPR /RPL/ ACTIONX

/LGLOPR /ASN/ 1 16 NTWKOP4 xNCCF DMSPOR LGLOPR
/LGLOPR /ASN/ ACTIONX

An entry or entries could also be added as follows:

*
/LGLOPR /-RPL/ 1 NTWKOP5 xNCCF DMSPOR LGLOPR

Figure 4. Sample LGLOPR Command Entries in a Routing Table

The Routing Table

The routing table is a CMS file that contains the information used to control the operation of the
programmable operator facility. It can reside on either a minidisk or SFS directory. The routing table
enables the programmable operator facility to recognize a message as a command, to determine the
action to take when a message comes in, and to recognize the authorized users of programmable operator
functions.

If the routing table resides in an SFS directory, it can be shared with other users. You should, however,
be aware of the implications of sharing files as described in the z/VM: CMS User's Guide. If, for example,
someone has the routing table file exclusively locked when you start the programmable operator facility,
programmable operator initialization fails because it cannot read the file.

Note: The routing table should always be coded in American English. Messages to the programmable
operator should also always be in American English to ensure that the uppercasing and routing table
comparisons are handled correctly.

How the Programmable Operator Facility Uses the Routing Table

When the programmable operator facility receives an IUCV interrupt with an incoming message, the active
routing table is searched to find a matching entry. When the routing table is searched, all fields are
checked. For a match to occur, each field must either match or be blank. If a matching entry is found,

that entry contains information pertaining to any action to be taken. The action routine name tells the
programmable operator facility which action routine to invoke when a routing table entry matches the
incoming message. If no matching entry is found in the active routing table, no action is taken besides
logging the message.

The order that the entries are placed in the routing table affects the way the programmable operator
facility performs. The routing table is searched from top to bottom until a match is found. As the table

is searched, lines that begin with an asterisk (*) in column 1 are ignored, and therefore may be used to
place comments in the routing table. Also, lines that are completely blank are ignored in the routing table
search and can be used to separate lines of text for easier reading. All entries must be made in upper
case.

Chapter 4. The Programmable Operator Facility 61

Programmable Operator Facility

Routing Table Configuration Entry Statements

Every routing table must have specific configuration information in the first records of the routing table
file (file type RTABLE) that are not comments or blank lines. These statements are in free format, meaning
that they need not be positioned in any particular columns. See Figure 6 on page 68 for an example of a
partial routing table. The statements and their parameters are as follows:

LGLOPR Statement

The LGLOPR statement identifies the default logical operator. The logical operator assignment can be
changed using the LGLOPR command, but if a logical operator is released but not replaced the user
specified in this statement resumes logical operator responsibilities. This user ID or nickname must be on
a z/VM system.

»— LGLOPR userid L J >
nodeid
nickname

userid
is a valid user ID on the specified z/VM node.

nodeid
is a valid ID of a z/VM system in the network. If no node ID is specified, the local system's node ID is
used.

nickname
is a nickname defined in the programmable operator facility virtual machine CMS NAMES file.

Note: If a nickname is used to identify the logical operator, the nickname entry must specify a single
user ID. The nickname entry must also include node information when the logical operator is located
on a different machine. Since PROP allows only 1 LGLOPR, the nickname entry cannot be another
nickname or a list of nicknames or user IDs.

Either a nickname or a user ID must be specified. If a user ID is specified, a node ID may be specified. If
both a user ID and a node ID are specified, they must be separated by one or more blanks. If the name
specified is both a local user ID and a nickname, the programmable operator regards it as a nickname.

IMPORTANT NOTE: The programmable operator virtual machine should not be identified as the logical
operator. This causes the programmable operator to go into a loop in the event it tries to do the routing.
This includes specifying a user ID of OPERATOR (or any abbreviation thereof) in the LGLOPR statement.
This also causes the message to be sent to the system operator virtual machine, even if the system
operator virtual machine has a different user ID.

TEXTSYM Statement

The optional TEXTSYM statement specifies the characters that the programmable operator facility
interprets as special symbols in the text field of the routing table entries. All three parameters must

be specified if the statement is specified. If the statement is not specified, the default characters listed for
each parameter are used.

»— TEXTSYM — blank_sep — arbchar_sep — not_symbol -»«

blank_sep
is a separator character indicating that blanks are to be skipped over when scanning the message.
A message is scanned for the next nonblank character string. This nonblank character string is

62 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

then compared to the text in the routing table entry following this separator character. The default
characteris /.

arbchar_sep
is a separator character indicating that all nonmatching characters are to be skipped over when
scanning the message. A message is scanned for the text specified in the routing table entry until it is
found or until the end of the message is reached. The default character is $.

not_symbol
when it immediately follows a separator is the character indicating that the text should not be found in
the message. If the text following the not_symbol is found in the message, then the message does not
match that routing table entry. The default character is =.

See “Filtering Messages” on page 72 and “Routing Text Comparison Examples” on page 69 for the use
of TEXTSYM characters in routing table entries.

PROPCHK Statement

The optional PROPCHK statement identifies the distributed nodes that the host system is to check on.
The RSCS node IDs of these distributed systems must be specified in this statement. A programmable
operator must be running in the system operator virtual machine on the distributed systems being
checked. Specify as many nodes on one statement as fit in an 80-column record. The programmable
operator facility only reads the first 80 columns. Enter any number of PROPCHK statements to specify
different checking or response wait intervals for different RSCS nodes. The PROPCHK statement must be
after the LGLOPR statement.

»— PROPCHK — ccc — ww fnoc:eia’jn

ccc
is the checking interval. This interval, in minutes, indicates how often acknowledgment requests are
sent out to the specified nodes.

ww
is the response wait interval. This interval is the number of minutes permitted to pass before a
response must be received from the specified node(s).

nodeid
is a valid ID of a system in the network.

Note:

1. The checking interval specified must be greater than or equal to the response wait interval.
2. The node ID of the logical operator must not be specified as a node ID on this statement.

HOSTCHK Statement

The optional HOSTCHK statement specifies the time interval for checking communication with the RSCS
virtual machine at the logical operator node and the wait time for a response. The HOSTCHK statement
must be after the LGLOPR statement.

»w— HOSTCHK — ccc — ww <«

ccc
is the checking interval. This interval, in minutes, indicates how often acknowledgment requests are
sent out to the logical operator's node.

Chapter 4. The Programmable Operator Facility 63

Programmable Operator Facility

ww
is the response wait interval. This interval is the number of minutes permitted to pass before a
response must be received from the logical operator's node.

Note:

1. The checking interval specified must be greater than or equal to the response wait interval.

2. The HOSTCHK function is suspended when an NCCF or NetView operator or a local z/VM user is
assigned as the logical operator. It is resumed when a remote z/VM user is assigned as the logical
operator.

LOGGING Statement

The optional LOGGING statement specifies whether messages or messages and command responses are
to be logged or not logged. If the LOGGING statement is not in the routing table, messages are logged in
uppercase format (LOGGING is ON and UPCASE). If the LOGGING statement is in the routing table, one of
the three operands (ON, ALL, or OFF) must also be specified.

UPcase

»— LOGGING ON f_ >«
1 L ALL _J L LOwcase J J

OFF

ON
indicates that messages are to be logged while this RTABLE is active, unless it is explicitly turned off
using the SET LOGGING command.

ALL
indicates that messages and programmable operator command responses are to be logged while this
RTABLE is active, unless it is explicitly turned off using the SET LOGGING command.

UPcase
indicates that messages are to be logged in uppercase. This is the default.

LOwcase
indicates that messages are to be logged with no change to the original message text.

OFF
indicates that messages are not to be logged while this RTABLE is active, unless it is explicitly turned
on using the SET LOGGING command.

ROUTE Statement

The ROUTE statement indicates the end of the configuration statements and the start of the routing
entries.

»— ROUTE >«

The ROUTE statement must follow the other statements specified in this section.

MSGLIMIT Statement

The optional MSGLIMIT statement can be used to control the Message System Service (*MSG) message
limit.

64 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

»— MSGLIMIT — nnnnn »«

nnnnn

is the value to be used in establishing the message limit on the Message System Service IUCV path.
Any value between 1 and 65535 may be used.

Note:

1. See “How the Programmable Operator Establishes Communications with IUCV” on page 54 and z/VM:
CP Programming Services for additional information on Message System Service (*MSG) and IUCV.

2. The path to *MSG is established on PROP initialization. As a result, control over the message limit
is only available when RTABLE is used for initialization. LOADTBL cannot be used to establish a new
MSGLIMIT value. A bad MSGLIMIT statement in a LOADTBL rtable will cause an error message to be
issued and the new rtable will not load.

Routing Table Configuration Example

The LGLOPR and ROUTE statements are required in every routing table. The TEXTSYM, LOGGING,
PROPCHK, and HOSTCHK statements are optional. An example of these statements in a routing table
is as follows:

LGLOPR OPERATNS HOSTNODE
TEXTSYM / $ -

PROPCHK 5 1 NODE1 NODE2 NODE3
PROPCHK 3 1 NODE4 NODE5
HOSTCHK 2 1

LOGGING ALL

ROUTE

These special statements may be specified for each routing table in any order (as long as LGLOPR is first
and ROUTE is last) and with at least one blank separating each parameter. The statements depend on the
installation and, therefore, must be supplied by the installation for each routing table. These entries are
processed only when the routing table is loaded, so they are not searched during programmable operator
message handling.

The configuration shown in Figure 5 on page 66 can be described in a routing table with the first few
lines like those in Figure 6 on page 68.

Chapter 4. The Programmable Operator Facility 65

Programmable Operator Facility

Local System
Node ID = NODE1

Distributed System
Node ID = NODE2

RSCS Virtual

Machine

ID = NET1
User Logical
Virtual Operator
Machine Virtual

Machine

User ID = User 1D =
USER11 LGLOPR

RSCS Virtual
Machine
ID = NETZ2
User Programmable
Virtual Operator
Machine Virtual
Machine
User 1D = User ID =
USERZ1 OPERATOR

Figure 5. The Programmable Operator Facility in a Distributed System

Routing Table Comparison Entry Statements

The routing table entries to be searched must be in the following fixed format. The contents of the
fields described below may appear anywhere in the defined columns for that field (unaligned) unless the
description for that field explicitly states that alignment is required.

Note: The words in parentheses correspond to the vertically aligned words in the comment records in
Figure 6 on page 68 through Figure 11 on page 74, and also in the IBM sample routing table file.

FIELD LENGTH

FIELD EXAMPLE COLUMNS OF FIELD
COMPARISON TEXT (TEXT) /FEEDBACK / 1-25 25
STARTING COLUMN (SCOL) 1 27-29 3
ENDING COLUMN (ECOL) 9 31-33 3
MESSAGE CLASS (TYPE) 1 35-36 2
USERID (USER) USER21 38-45 8
NODEID (NODE) NODE2 47-54 8
ACTION ROUTINE NAME (ACTN) DMSPOR 56-63 8
PARAMETER TO ACTION ROUTINE (PARM) TOFB 65-72 8

COMPARISON TEXT

is a particular character string that the programmable operator facility searches for in the incoming
message. If this field is left blank, any text compared with this field is considered a match. Multiple
texts may be specified, with the capability to skip over intervening blank or nonblank characters.

66 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

STARTING COLUMN
is the column in the incoming message where the programmable operator facility starts looking
for the character string mentioned in the COMPARISON TEXT field. If this field is left blank, the
programmable operator facility starts scanning at the beginning of the message.

ENDING COLUMN
is the column in the incoming message where the programmable operator facility stops looking
for the character string(s) mentioned in the COMPARISON TEXT field. If this field is left blank, the
programmable operator facility continues scanning until the end of the message.

MESSAGE CLASS
identifies the origin of the incoming message according to the message type. Classes 1-9 are IUCV
message types; class 30 is strictly a programmable operator facility message type for NCCF or
NetView messages. For more details on IUCV message types, see the Message System Service section
in the z/VM: CP Programming Services. If this field is left blank, any value compared with this field is
considered a match.

The message types available to the programmable operator facility are:

Class
Message Types
1
Message sent using CP MESSAGE and CP MSGNOH.
2
Message sent using CP WARNING.
3
Asynchronous CP messages, CP responses to a CP command executed by the programmable
operator facility virtual machine, and any other console I/O initiated by CP.
4
Message sent using CP SMSG command.
5
Any data directed to the virtual console by the virtual machine (WRTERM, LINEDIT, and others).
6
Error messages from CP (EMSG).
7
Information messages from CP (IMSG).
8

Single Console Image Facility (SCIF) message from CP.

30
Message coming from the Network Communication Control Facility or NetView (*NCCF).

Note: CP responses that are trapped in a buffer using the extended DIAGNOSE code X'08' do
not become type-3 messages. For example, CP responses from the programmable operator CMD
command are not type-3 messages, and therefore are not logged when LOGGING is set to ON.

USERID
is the character string compared to the user ID of the user that sent the incoming message to
the programmable operator facility. It determines the authority of the user to cause an action to
be performed. The identifiers for all NCCF or NetView operators, who may use the programmable
operator, must be unique. If this field is left blank, all user IDs compared with this field are assumed
to match. If this field is not left blank, the user ID must be left-justified in the field or you will receive
an error message.

NODEID
is the character string compared to the node ID of the user that sent the incoming message to the
programmable operator facility. Again, it determines the authority of the user to cause an action to
be performed. To authorize an NCCF or NetView operator, *NCCF or blanks must be in the node ID
field of the routing table. Also, the identifiers for all NCCF or NetView operators, who may use the
programmable operator, must be unique. If this field is left blank, all node IDs compared with this

Chapter 4. The Programmable Operator Facility 67

Programmable Operator Facility

field are assumed to match. If this field is not left blank, the node ID must be left-justified in the field
or you will receive an error message.

ACTION ROUTINE NAME
is the name of the LOADLIB member (a Basic Assembler Language routine) that the programmable
operator facility is to NUCXLOAD when the LOADTBL function is performed, or the name of an exec,
and subsequently, the routine that the programmable operator is to call when a match occurs on the
entry in which the name is specified. If this field is left blank, no action is performed. If this field is
not left blank, the action routine name must be left-justified in the field or you will receive an error
message.

PARAMETER TO ACTION ROUTINE
is a character string of up to eight bytes passed as a parameter to the action routine by way of the
programmable operator PARMLIST for a Basic Assembler Language routine or by way of a program
stack for an exec. Often, this is used to specify a particular subroutine in the action routine. If this field
is left blank, no parameter is passed. If this field is not left blank, the action routine parameter must
be left-justified in the field or you will receive an error message.

Column 73 and beyond are reserved for future use.

Figure 6 on page 68 illustrates an example of a partial routing table.

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION.

* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE.
* LOGICAL OPERATOR (NICKNAME "LOP") IS "OPERATOR" AT NODEID "NODE1".
LGLOPR LOP

* THE TEXT SEPARATOR CHARACTERS.

TEXTSYM / $ -

* ESTABLISH 1,024 AS THE *MSG VALUE.

MSGLIMIT 1024

* WHICH NODES TO CHECK, AND AT WHAT INTERVAL.

HOSTCHK 5 1

* THE ROUTING ENTRIES START

ROUTE

* AUTHORIZE NCCF OR NETVIEW OPERATORS TO CHANGE LGLOPR
* WITH THE LGLOPR COMMAND

* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEED NOT SEE THEM
* BUT LET "FORCED" LOGOFF MESSAGES THROUGH

/LOGON 21 26 3
/LOGOFF$-FORCED 21 80 3

/CMD /SYSTEM WARNING
/CMD /SET /EC WARNING

$ OOE 3 DMSPOS SPOOLOP
WARNING
represents a user action routine which may send a warning message to the user issuing that command.
SPOOLOP

represents a nickname or user ID of the spool operator.

Figure 6. Partial Routing Table

68 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

Tailoring the Routing Table

Routing table entries determine what messages the programmable operator facility ignores (filtering),
who is authorized to enter a particular command (authorization), and what action routines to invoke for
a given circumstance. You can tailor the routing table to suit your system's individual needs by adding or
changing entries in the routing table.

The programmable operator facility comes with a general purpose routing table named PROP RTABLE.
(See “Installing the Programmable Operator Facility” on page 51 to locate the PROP RTABLE.) You

can use this supplied routing table only after the LGLOPR, HOSTCHK, and PROPCHK statements are
modified. You may also have to modify the routing table entries. Use XEDIT to make these changes.

The programmable operator facility operates satisfactorily with no further changes. However, if you
choose, you can modify the supplied routing table to change the operation of the programmable operator
facility. You can also create different routing tables to cover varying circumstances. These tables can be
dynamically loaded using the LOADTBL command. Only one routing table may be active at a time.

Routing Text Comparison Examples

Here are more examples of text comparisons for the programmable operator facility.

$

is the arbitrary character separator.
is the blank separator.

is the not_symbol.

These characters are specified by the TEXTSYM statement, which is described in “TEXTSYM Statement”
on page 62. In all of these examples, it is assumed that the starting and ending columns do not interfere
with the matching.

RTABLE Examples
« The RTABLE entry

$LOGOFF

is matched by any message containing the word LOGOFF. If one text is preceded by the arbitrary
character separator ($), the text can appear anywhere in the message to be a match.

« The RTABLE entry
/LOGOFF
matches the message
LOGOFF USER1 IN 5 minutes

as there are no nonblank characters preceding the word LOGOFF, but the entry does not match the
message

11:20:15 GRAF OAO LOGOFF AS USER1 USERS = 020

If only one text is preceded by the blank character separator (/), the text must be the first nonblank
string in the message order to be a match.

« The RTABLE entry
$AUTO$LOGONSAUTOLOG
matches the message

11:09:02 AUTO LOGON **x USER2 USERS = 021 BY AUTOLOG1

Chapter 4. The Programmable Operator Facility 69

Programmable Operator Facility

and the message

11:09:02 AUTO LOGON ***x AUTOLOG2 USERS

021 BY SYSTEM

but not the message

11:09:02 GRAF OAO LOGON AS AUTOLOG1 USERS = 023

or the message

AUTOLOG WILL NOT LOGON TOMORROW

A text with two or more texts preceded by arbitrary character separators ($), is matched by a message
with all those texts appearing in that order.

The texts in the message are scanned in the order that they appear in the routing table entry. One text is
searched for at a time. If the arbitrary character separator ($) precedes the text in the entry, a message
is scanned until a match is found or the end of the message is reached. If the blank character separator
(/) precedes the comparison text, blanks are skipped over and the first nonblank string of characters is
compared to the comparison text, which may or may not match.

Routing table entries and messages are also affected if the text is preceded by a not_symbol (). The
not_symbol is always used with one of the other separator characters; it never stands alone. If matching
text is found and the text in the routing table is preceded only by a $ or a /, the position following the
last matched text is remembered. If there are no more RTABLE texts to be searched for, the entry is

a match. If there is another text in that RTABLE entry to be searched for, the scan continues from the
position following the last matched text.

A match depends on the rest of the message text and the routing table entry. If matching text is found
but the text in the routing table is preceded by the not_symbol (=), the entry is not a match and checking
goes no further. Similarly, if a matching text is not found but the text in the routing table is not preceded
by the not_symbol, the entry is not a match. If a match is not found and the text is preceded by the
not_symbol (=), and if there is no more text, the entry matches the message. If there is more text to
scan for, the scan continues as above starting with the character following the last match. A match
depends on the rest of the message text and the routing table entry.

« The RTABLE entry
$-AUTO$LOGON
does match the message
12:04:28 GRAF OAQ LOGON AS USER1 USERS = 027

Because the first text in the RTABLE entry (AUTO) is preceded by the arbitrary character separator

(%), the entire text is searched for AUTO. No match is found. Because the text is preceded by the
not_symbol (=), the text is still a match at this point. The scan for the next text (LOGON) begins at the
end of the last match. Because there was no previous match, the scan begins again at the start of the
message. The LOGON text is preceded by the arbitrary character separator ($), so the search proceeds
through the message until LOGON is matched. Because LOGON appears in the message, this RTABLE
entry and message do match.

« The RTABLE entry
$~AUTO/LOGON

does not match the same message

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027

The message is scanned for AUTO as above. The search for LOGON again begins at the beginning of the
message. In this case, however, the LOGON text is preceded by the blank separator (/), so only blanks
are skipped prior to the comparison. No blanks are found, so the comparison is made at the beginning of

70 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

the text and LOGON is compared with 12:04:. This is not a match. Because this text was not preceded
by the not_symbol, this RTABLE entry and message do not match.

« The RTABLE entry
$-AUTO/LOGON
does not match the message

12:04:28 AUTO LOGON *** USER1 USERS = 027 BY AUTOLOG1

Because AUTO is found in the message and is preceded in the RTABLE entry by the arbitrary character
separator ($) and the not_symbol (=), the RTABLE entry and message do not match.

« The RTABLE entry

$LOGOFF$-030/FORCED

does not match the message
12:04:28 USER DSC LOGOFF AS USER1 USERS = 026 FORCED

The first text, LOGOFF, is preceded by the arbitrary character separator ($) and is scanned for through
the text. LOGOFF is found. Because LOGOFF is not preceded by the not_symbol, the next text is
scanned. The scan continues from the end of the previous match, which is the character following

the LOGOFF text. Since the arbitrary character separator ($), precedes 030, the entire remaining text
is searched for 030. It is not found but because 030 is preceded by the not_symbol, the message

and RTABLE entry still match. Finally, FORCED is scanned for. It is preceded by the blank separator

(/). Blanks are skipped, and starting with the character following the last matched string (which was
LOGOFF), FORCED is compared to AS USE. This is not a match. Because FORCED is not matched and is
not preceded by the not_symbol, this RTABLE entry and message do not match.

Here are routing table entries that do match this message:
$LOGOFF$-030$FORCED
would match because arbitrary characters would be skipped before comparison for FORCED and

$LOGOFF$-030/-FORCED

would match because the first nonblank string after LOGOFF is not FORCED.

Routing Messages to an NCCF or NetView Operator

To route a message to an NCCF or NetView logical operator, that NCCF or NetView operator must
have entered a LGLOPR ASN or LGLOPR RPL command. Be sure that the appropriate NCCF or NetView
operators are authorized in the active routing table to enter the command.

For example, to route the message
12:04:15 GRAF 0A@ LOGOFF AS USER1 USERS = 020 FORCED

to the NCCF or NetView logical operator, the routing table should have the following entries, as shown in
Figure 7 on page 72.

Chapter 4. The Programmable Operator Facility 71

Programmable Operator Facility

*T S E T U N A P
*E c C Y s 0 € A

*X 0 0 P E D T R

*T L L ER E N M
N SR
* AUTHORIZE OPERATORS TO CHANGE LGLOPR ASSIGNMENT
e
/LGLOPR / 1 730 DMSPOR LGLOPR
i —Cco——oDo-—o-o-—oco—coc-——oD-D=—o= —D—o= —Do= D= DC—oo—c—D- Do-o-D——C— —CoO-o-oo=—o —co-—ooo
* FILTER OUT SPECIFIC MESSAGES
R
$GRAF$LOGOFF AS$FORCED$ 3 DMSPOS LGLOPR

Figure 7. Routing Entries to Send Messages to an NCCF or NetView Operator

DMSPOR LGLOPR specifies that the programmable operator LGLOPR command can be executed. Message
type 30 says that the user executing the LGLOPR command must be an NCCF or NetView operator.
DMSPOS LGLOPR specifies that the desired action is to send the matching message to the logical
operator. First, the NCCF or NetView logical operator must have entered LGLOPR ASN or LGLOPR

RPL command to the programmable operator facility. Then, when the above message arrives at the
programmable operator virtual machine, it is routed to the assigned NCCF or NetView logical operator.

If you wish to put an ID in the node ID field of the routing table entries for the NCCF or NetView operator,
it must be *NCCF.

Filtering Messages

This is the simplest application of the programmable operator facility. Entries can be placed in the routing
table to filter informational messages. The messages are filtered because no action routine is specified in
the routing table entries. For example, when the programmable operator facility is running in the system
operator's virtual machine, informational messages resulting from commands such as, LOGON, LOGOFF,
and DISCONN, can be prevented from being displayed at the logical operator's console. Although the
messages are not displayed at the operator's console, they can be logged in the current day's log file.

The routing table entries must identify the texts in the message that makes it unique and identify the
columns between which the texts should be found in the message. With single or multiple texts, TEXTSYM
characters should be selected accordingly. Figure 8 on page 73 shows an example of how entries may be
placed in the routing table to filter unwanted responses directed to the logical operator. For example, the
message

12:04:50 GRAF 055 LOGON AS USER1

would match the second routing table entry (/~AUTO$LOGON). This RTABLE specification means that,
starting in column 9 (SCOL) of the message, AUTO cannot be the first nonblank string and that LOGON
must appear somewhere in the message. The message would be filtered out but logged in the current
day's log file.

However, the message

12:04:28 AUTO LOGON **x USER BY AUTOLOG1

would not match the second routing table entry (/~AUTO$LOGON) because AUTO is the first nonblank
string in the message appearing in the columns between the SCOL and ECOL fields. Thus, the message
would not be filtered out and would be routed to the logical operator, as specified in the last entry in
Figure 8 on page 73.

72 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION.

* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE.
LGLOPR LOP

* THE TEXT SEPARATOR CHARACTERS.

TEXTSYM / $ -

* WHICH NODES TO CHECK, AND AT WHAT INTERVAL.

PROPCHK 5 1 NODE2A NODE2B

PROPCHK 2 1 NODEIA NODE1B

* THE ROUTING ENTRIES START

ROUTE
feocccocooccsccococsococsoococs oo ooo SO SooooocoSS CoccoooS SooScooS coocooooo
*T S E T U N A P

*E © C Y S 0 © A

*X 0 0 P E D T R

*T L L E R E N M

$OUTPUT/OF 19 36 3
/-AUTO$LOGON 9 33 3
$LOGOFF 19 34 3
$DSCONNECT 19 36 3
$RECONNECT 19 36 3
$DIAL 19 32 3
$DROP 19 32 3

3 DMSPOS LGLOPR

Figure 8. Routing Entries to Filter Responses to Routine Commands

In Figure 8 on page 73, the entries that appear in the TEXT field (OUTPUT OF, LOGON, and other entries)
are the texts contained in the messages that are to be trapped by the programmable operator facility
when they are issued by CP.

No user IDs and node IDs are specified for these entries because they are issued by CP. Because no
action routine is specified, the only action taken is the logging of the messages in the current day's log file.

Looking at the last line in Figure 8 on page 73, you can see that if a type-3 IUCV message is received
that does not have a corresponding entry in the routing table, action routine DMSPOS together with the
LGLOPR parameter routes the message to the logical operator. In this case, this entry has to be placed
after the specific text entries that you want filtered from the message stream. If this entry appeared
before the text entries in Figure 8 on page 73, all type-3 IUCV messages would be routed to the logical
operator.

Controlling Authorization

The routing table determines who is authorized to enter specific commands in the programmable
operator facility. Programmable operator authorization is based entirely on the contents of the routing
table. Therefore, controlling authorization is a relatively simple procedure. Authorization checking uses
either the user ID, node ID, the command text, or any combination of these fields in a routing table
entry. A change to any of these fields can result in a change in authorization. You can easily tailor the
authorization structure to your particular needs by changing only these fields in the routing table entries,
without changing the action routines.

When a user ID and node ID are not specified for a routing table entry, all users are authorized to

match that entry and to use the function that it describes. Figure 9 on page 74 shows an example of
unrestricted authorization for the FEEDBACK command. A message sent with the FEEDBACK command is
passed to module DMSPOR, which supports most of the programmable operator commands. The TOFB
parameter invokes the proper action routine contained in module DMSPOR that writes the message to the
FEEDBACK file. See “The Feedback File” on page 78 or “FEEDBACK” on page 98 for more information.

Note: In the following examples, the TYPE (message class) field is left blank to allow the FEEDBACK (or
FB) command to be entered with any class of IUCV message. The ECOL fields are 9 and 3 because the
character string being looked for is FEEDBACK or FB followed by a blank, for example, FEEDBACK or
FB would match.

Chapter 4. The Programmable Operator Facility 73

Programmable Operator Facility

/FEEDBACK / 1 9 DMSPOR TOFB
/FB / 1 3 DMSPOR TOFB

Figure 9. Uncontrolled Authorization

Authorization can be restricted to users at a particular network node by specifying only the node ID. In
Figure 10 on page 74, only users at NODE1 are authorized to enter the FEEDBACK command.

*T S E T U N A P

*E c €© Y 8 0 c A

*X 0 0 P E D T R

*T L L E R E N M
frococococoooocoooocoooocSoos Soo oSO 0o CoCoSoSC SooOOSoS COSooooSS CoSSoooo
* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE
roccsocooccsocococsococooococs oo ooo SO SOoSoCoSS CoScoooS SooScooS ocooooooo
/FEEDBACK / 1 9 NODE1 DMSPOR TOFB

/FB / 1 3 NODE1 DMSPOR TOFB

Figure 10. Restricting Authorization by Node ID

When a user ID and node ID are specified, only that user at the specified node is authorized to match
that entry. In Figure 11 on page 74, only JOHNDOE at NODE1 and JANEDOE at NODE2 are authorized to
place messages in the feedback file.

/FEEDBACK / 1 9 JOHNDOE NODE1 DMSPOR TOFB
/FEEDBACK / 1 9 JANEDOE NODE2 DMSPOR TOFB

/FB / 1 3 JOHNDOE NODE1 DMSPOR TOFB

/FB / 1 3 JANEDOE NODE2 DMSPOR TOFB

K- mmm e e e e e e e m e e e e e e e e ms mmm mmm mm mmmmmmm= EmEmmEmmmmm mEmmmmmm= mmmm———-—-
* SEND REMAINING REQUESTS AND COMMANDS TO THE LOGICAL OPERATOR

oo oomoEooneEEoooenemonon Oon GO0 00 CEOoOeos CoeCoooon Sooooons Cooooo0c

DMSPOS LGLOPR

Figure 11. Restricting Authorization by User ID and Node ID

Since the user must explicitly enter the FEEDBACK or FB command to have a message placed in the
feedback file, action routine DMSPOR TOFB must be specified in the routing table to carry out the
required action. Any user trying to enter the FEEDBACK command that is not authorized by the routing
table in Figure 11 on page 74 will have their command sent to the logical operator as a message by action
routine DMSPOS with parameter LGLOPR, as specified by the last record of the routing table.

Additional user IDs and node IDs may be added to the table to grant authorization to enter these
commands. Conversely, user IDs and node IDs may be removed to revoke authorization.

74 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

Restricting Command Use

You can easily restrict command use to a specific group of users. You can specify first entries for those
users who should be allowed to use the command, then specify an entry to trap the use of that command
by any other user. Finally have an entry for any users who should have general command usage except for
the restriction. The following example demonstrates command restriction.

frfcCcCcCcocococococococoocococoooooooo CoC CoC o CoCcooooC CoocooooS Coocooooo Cooooooo
*T S E T U N A P
*E C C Y S 0 C A
*X 0 0 P E D T R
*T L L E R E N M
P cCcCcCcococococococococoococoooooooo CoC CoC oo CoCcooooo CoCcooooS Coocooooo Cooooooo
/CMD /SHUTDOWN / 1 12 LGLOPR HOSTNODE DMSPOR TOVM
/CMD /SHUTDOWN / ACTIONX
/CMD /NETWORK /SHUTDOWN / 1 25 NETOP1 HOSTNODE DMSPOR TOVM
/CMD /NETWORK /SHUTDOWN / ACTIONX
/CMD /NETWORK / 1 20 NETOPL HOSTNODE DMSPOR TOVM
/CMD /NETWORK / 1 20 NETOP RMTNODE DMSPOR TOVM
/CMD /NETWORK / ACTIONX
/CMD / 1 4 LGLOPR HOSTNODE DMSPOR TOVM
/CMD / 1 4 MAINT HOSTNODE DMSPOR TOVM
/CMD / 1 4 MAINT PROPNODE DMSPOR TOVM
o e EmEEEanaEonmEonns ton Con 06 SemEEEeE DonEEonE ShoEaNEE SotomaE
Figure 12. Restricting Command Use to Specific Users

An RTABLE containing these entries allows LGLOPR at HOSTNODE to use the SHUTDOWN command,
but anyone else trying to use it invokes ACTIONX. ACTIONX could be DMSPOS sending the offending
command to the logical operator or it could be a user-written action routine taking some other

action against the issuer, depending of the severity of the offense. The same description applies to
the NETWORK SHUTDOWN and NETWORK commands. So, routing table coding provides considerable
flexibility in granting or restricting command authority.

The Log File

If LOGGING is set to ON or ALL, every incoming message that the programmable operator facility receives
is put into a CMS file referred to as the log file. The log file can reside on either a minidisk or an

SFS directory. If LOGGING is set to ALL, all error messages and command responses generated by the
programmable operator facility are also put in the log file. If LOGGING is set ON, responses from CP, CMS,
and programmable operator facility commands are not logged; messages are.

When the log file resides in an SFS directory, it can be shared with other users. You should, however,
ensure that no one will be writing to the file and that no one has the file locked when the programmable
operator is running. If other users have write authority to the log file, consider locking the file before
starting the programmable operator. See the CREATE LOCK command in the z/VM: CMS Commands and
Utilities Reference.

Each message is identified by the date and time received. The user ID and node ID appear only if the text
was sent by a CP MSG, SMSG, WNG, or sent using SCIF (Single Console Image Facility). The user ID and
node ID are blank for a message sent by CP. A message sent by a remote RSCS network virtual machine
has a node ID, but no user ID. A message sent from an NCCF or NetView operator console has *NCCF as
the node ID.

Log entries generated and logged by the programmable operator have a user ID of PROP. The log file has
the following format:

col 1 col 10 col 19 col 28 col 39

| | | | |
yy/mm/dd hh:mm:ssiuserid nodeid}: text

The log file contains variable length records. The maximum record length that the programmable operator
facility can place in the log file is 132 characters. Because the prefix uses 38 of the 132 characters, the

Chapter 4. The Programmable Operator Facility 75

Programmable Operator Facility

text can be only 94 characters long. Therefore if the text of a message exceeds the maximum length of 94
characters the overflow is continued on the next record. This continued record has the same prefix as the
preceding record, with no colon (:) preceding the text in column 37.

A separate log file is started for each day. The name of the file is:

LGyymmdd nodeid A5

yy
is the current year

mm
is the current month

dd
is the current day

nodeid
is the current RSCS node ID of the system on which the programmable operator facility is running. (If
the node ID is not available, then the file type for the logfile will default to PROPFILE.

When the programmable operator facility is started, stopped, or debug mode is changed, a record is
written to the log file. The messages written to the file have the normal log prefix and a text corresponding
to the changed function. Generally, responses to the programmable operator console commands are
written to the log file when LOGGING is set to ON or ALL. It is also possible to have responses from

the programmable operator commands written to the log file. See the LOGGING statement of the routing
table or the programmable operator SET command for more information. The log file may be used

as an alternative to spooling the virtual console when LOGGING is set to ALL and LOWCASE. When
node-checking is in effect, by having PROPCHK or HOSTCHK statements in the RTABLE, if a node changes
status from UP to DOWN or from DOWN to UP, a message is also written to the log file.

If a virtual machine resource limit is reached, such as disk full or file space full, it may not be possible

to write another record to the programmable operator facility log file. If this happens, the programmable
operator facility invokes the PROPLGER EXEC for recovery. IBM supplies a sample PROPLGER EXEC. See
“Log Error Exit (PROPLGER)” on page 93. You can use the sample PROPLGER EXEC, modify it, or replace
it with a user-written exec.

When using an SFS directory accessed as file mode A, PROPLGER EXEC is invoked whenever the file
space threshold limit is exceeded. However, if the threshold is set too high or other users are writing to
this storage group, the programmable operator facility may not detect certain resource limits until it tries
to close the log file. At that point the programmable operator will not be able to invoke the PROPLGER
EXEC, and some log data could be lost. If it is important for you to minimize the potential loss of log data,
consider using a minidisk for the log file instead of an SFS directory.

Any z/VM user authorized in the active routing table3 can obtain the log file as a reader spool file by using
the programmable operator GET LOG command (this does not include NCCF or NetView users). Messages
can be placed in the log file by authorized users by using the programmable operator LOG command with
no other action being taken.

An old log file can be purged by any user authorized in the active routing table to use the programmable
operator CMD command by issuing the CMS ERASE command.

Logging NCCF or NetView Messages in the Log File

A message from an NCCF or NetView operator is logged just as any other message sent to the
programmable operator. When logging a message or command from an NCCF or NetView operator, the
keyword *NCCF is placed in the node ID field of the log record. You must ensure that the identifiers for

all of the NCCF or NetView operators who may access the programmable operator facility are unique. This
is also an NCCF or NetView requirement. As a result, the operator identifier with the *NCCF node ID is

3 An NCCF or NetView operator cannot use the GET command to obtain the log file. Use CMS commands (and
the programmable operator CMD command) to type the file or portions of the file or to send the file to a
user ID where you can process it.

76 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

sufficient to identify the issuer of the programmable operator command. Also, messages received by the
programmable operator facility from NCCF or NetView have the message type of 30.

Ensuring a Complete Log

When the programmable operator facility routes a message to the logical operator, the message contains
the user ID of the sender. The operator, in responding to the message, may choose to send a message
directly to the user without going through the programmable operator facility. However, if this is done, the
message is not logged in the log file. To ensure that these messages are logged, the operator should send
the message to the user through the programmable operator facility by using the programmable operator
facility CMD command. For information about the programmable operator facility CMD command, see
“CMD” on page 96.

Whether the message was sent through the programmable operator or not has little significance

to the user. However, so that the messages received by the user always have the same ID (the
programmable operator facility ID), the message should always be sent from the logical operator through
the programmable operator facility.

In a Single System: To route a message through the programmable operator facility where the operator
and user are on the same physical system, use the MSG command:

MSG operator CMD MSG user1 - RESPONDING TO YOUR REQUEST

operator

is the user ID of the programmable operator facility virtual machine.
CMD

is the programmable operator facility CMD command.
MSG

is the z/VM command that the programmable operator facility will execute.

userl
is the user ID of the user who will receive the message.

RESPONDING TO YOUR REQUEST
is the message text sent to the user.

In z/VM Distributed Systems: To route a message through the programmable operator facility where the
operator and user are not on the same physical z/VM system, use the SMSG command:

SMSG netl1 MSG nodel operator CMD MSG userl1 - RESPONDING TO YOUR REQUEST

netl

is the user ID of the network machine at the user's node.
MSG

(first appearance) is the RSCS message command.
nodel

is the node ID of the programmable operator facility virtual machine.
operator

is the user ID of the programmable operator facility virtual machine.
CMD

is the programmable operator facility CMD command.
MSG

(second appearance) is the z/VM command that the programmable operator facility executes.

userl
is the user ID of the user to receive the message.

RESPONDING TO YOUR REQUEST
is the message text sent to the user.

Chapter 4. The Programmable Operator Facility 77

Programmable Operator Facility

In a Mixed Environment: To route a message through the programmable operator facility from the logical
operator who is an NCCF or NetView operator to the user on a z/VM system, use PROP, an NCCF and
NetView command as follows:

PROP CMD MSG userl - RESPONDING TO YOUR REQUEST

PROP
is the NCCF or NetView command that sends the message from an NCCF or NetView operator to the
programmable operator facility.

CMD
is the programmable operator CMD command.

MSG
is the z/VM command that the programmable operator facility will execute.

userl
is the user ID of the z/VM user who will receive the message.

RESPONDING TO YOUR REQUEST
is the message text sent to the user.

Note: See “Helpful Hints” on page 85 for ways to reduce typing of long text strings.

The Feedback File

The feedback file is another CMS file that the programmable operator facility manages. The file is named
FEEDBACK nodeid A5 (nodeid will default to PROPFILE if a node ID is not available). The feedback file,

like the log file, can reside on either a minidisk or SFS directory. If the feedback file resides in an SFS
directory, it can be shared, but no other user should write to the file, or have the file locked while the
programmable operator is running. The feedback file, unlike the log file, is not automatically written by the
programmable operator facility. Authorized users can write time stamped notes and complaints about the
operation of the system to this feedback file. To write a notice to the feedback file, you, as a user, must
explicitly use the FEEDBACK (or FB) command. An example of such a message is:

m op feedback response time was slow during morning shift.

Because the feedback file is normally smaller than the log file, it is easier for the personnel in charge of
the programmable operator facility's maintenance to review the users' comments and identify when and
where particular problems occurred.

Each record in the feedback file is prefixed with the date and time the message was logged along with the
sender's user ID and node ID. The feedback file has the following format:

col 1 col 10 col 19 col 28 col 39

| | | | |
yy/mm/dd hh:mm:ss userid nodeid: text

The feedback file contains variable length records. The maximum record length that the programmable
operator facility can place in the feedback file is 132 characters. Because the prefix uses 38 of the

132 characters, the text can be only 94 characters long. Therefore if the text of a message exceeds the
maximum length of 94 characters the overflow is continued on the next record. This continued record has
the same prefix as the preceding record, with no colon preceding the text.

Any user authorized in the active routing table, except an NCCF or NetView operator?, can obtain the
feedback file as a reader spool file by using the programmable operator GET FEEDBACK or GET FB
command.

An old feedback file can be purged by any user authorized in the active routing table to use the
programmable operator CMD command by issuing the CMS ERASE command.

4 An NCCF or NetView operator cannot use the GET command to obtain the feedback file. Use CMS
commands (and the programmable operator CMD command) to type the file or portions of the file or to
send the file to a user ID where you can process it.

78 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

Communications Checking

In a z/VM-only environment, the programmable operator facility can operate either from the host system
or from a distributed system in a network or from both sides. Special functions can be performed
depending on the ability of the programmable operators to communicate through RSCS Networking. The
purpose of these functions is:

« To provide the host operator (logical operator) with timely information and/or action in the event of a
break in communication with the programmable operator on one of the network's distributed systems.

« To provide a distributed system with timely information and/or capability for action in the event of a
break in communication with the host system.

A programmable operator can periodically check on the link with another system to determine whether it
is possible to communicate with that system. The systems to be checked must be identified in the routing
table of the programmable operator doing the checking. This may be either the programmable operator
at the host system checking on specified distributed systems or a distributed programmable operator
checking on communications with its host system. When the programmable operator at the host system is
checking on the distributed systems, the programmable operator needs another programmable operator
running in the system operator virtual machine on the distributed system. This is not required when a
distributed system is checking on the host system. In other words, for host checking, no programmable
operator is required at the host system, but for distributed system checking programmable operators must
be running at the distributed systems. These various types of checking may be collectively referred to as
node-checking.

Note that the roles of the host and distributed systems need not be strictly defined. For example, a
programmable operator may use the PROPCHK function to check communication with any other system
(node) running a programmable operator in its system operator virtual machine in the network. With the
HOSTCHK function, the system being checked is simply the system defined as the checking system's
logical operator, and not necessarily the host system for the network.

The programmable operator facility that has been instructed to check on its distributed system(s)
periodically tries to communicate with those systems by sending a message that causes a response.

The programmable operator then waits a specified time for a response. For checking the host system
(HOSTCHK), the acknowledgement request goes to the RSCS on the logical operator node. For checking
the distributed systems (PROPCHK), it goes to the programmable operator on the distributed system. No
response indicates that something has prevented communication between the host and the distributed
system(s). Getting a response after being delinquent for a time indicates that communication between the
programmable operators has been restored. With the SET command, the user is able to set the checking
function ON or OFF.

Any time that the programmable operator detects that a node has exceeded the time allowed for
responding, that fact is recorded in the programmable operator log. Also logged is the fact that a node has
resumed responding.

When one of these conditions (no response or a late response) is detected, the programmable operator
doing the checking invokes a communication error exit routine.

For example, if a programmable operator on a distributed system has a HOSTCHK statement in its

routing table, the programmable operator would invoke the PROPHCHK EXEC if communication with the
host system were lost long enough to prevent the checking request or response from getting through.
Similarly, if a programmable operator on a host system has a PROPCHK statement in its routing table, that
programmable operator would invoke the PROPPCHK EXEC if communication with one of the specified
distributed nodes were lost for such a period.

IBM supplies sample PROPHCHK and PROPPCHK EXECs. See “Communication Exit (PROPHCHK/
PROPPCHK)” on page 93. You can use the sample PROPHCHK and PROPPCHK EXECs, modify them,
or replace them with user-written execs.

Chapter 4. The Programmable Operator Facility 79

Programmable Operator Facility

Invoking Programmable Operator Facility Commands

The commands used with the programmable operator facility can be executed by anyone who is
authorized by the active routing table. If an unauthorized user enters a programmable operator facility
command, the command is not executed but is routed to the logical operator. To send a command to the
programmable operator facility you must send a message to the programmable operator facility virtual
machine. The text of the message is the command to be issued. Unless otherwise noted, the response
from the command is returned to the user who sent the command to the programmable operator facility
virtual machine. Responses are sent one line at a time by the CP MSGNOH or MESSAGE commands.

For NCCF or NetView operators, the responses are sent by the Programmable Operator/NCCF Message
Exchange (PMX). These responses are displayed in the language in which the programmable operator
virtual machine is set.

The format of the message sent to the programmable operator facility virtual machine is the same as used
with the CP MESSAGE command for local use and the CP SMSG command for distributed (network) use.
In a mixed environment, an NCCF or NetView operator uses PROP, an NCCF or NetView command, to send
messages to the programmable operator facility virtual machine.

The local format is:

»d

Message userid — propcmd L J »><
[MSG l parameters

The distributed (network) format is:

»— SMsg — netid — Msg — nodeid — userid — propcmd L J >«
parameters

netid
is the user ID of the RSCS network machine at the user's node.

Msg
is the required RSCS message command. It can be entered as M or MSG.

nodeid
is the node ID of the programmable operator facility virtual machine.

userid
is the user ID of the programmable operator facility virtual machine.

propcmd
is the command to be executed by the programmable operator facility. See Chapter 5, “Programmable
Operator Facility Commands,” on page 95 for information about the commands.

parameters
are the parameters associated with the command to be executed. The parameters will be either
optional or required depending on the command that they are associated with.

The format for an NCCF or NetView operator station is:

»— PROP — propcmd L _J >
parameters

propcmd
is the command that the programmable operator facility will execute.

80 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

parameters

are the parameters associated with the command to be executed. The parameters will be either
optional or required depending on the command that they are associated with.

Notes:

1. To use this format, you must be authorized by NCCF or NetView.

2. If you (NCCF or NetView operator) are not attached to the local system, use the NCCF or NetView
ROUTE command to specify the domain where you want to execute the command.

Issuing Commands in the Single System Environment

If the programmable operator facility is running in the operator's virtual machine, a user on the same
physical machine might send the messages:

MESSAGE OPERATOR QUERY RTABLE

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN?

where QUERY is a programmable operator facility command. See “QUERY” on page 105 for information
about the programmable operator facility QUERY command.

Figure 13 on page 81 shows how messages are transferred between a user, the programmable operator
facility, and the logical operator when all are located on the same physical system.

Local System

Logical Operator
Virtual Machine

ID = LGLOPR

Programmable | «(1)— User
Operator Virtual
Virtual —(2)*> | Machine
Machine

“(3)—
User ID = (4> User ID =
OPERATOR USER1

Figure 13. Example of Communication in the Single System Environment

Chapter 4. The Programmable Operator Facility 81

Programmable Operator Facility

1. USER1 enters the message:
message operator query rtable

2. The programmable operator facility responds by sending the following message to USER1:
PROP running with routing table ‘PROP RTABLE A5’

3. USER1 enters the message:
message operator what time is shut down?

Because this message cannot be processed by the programmable operator facility, the message is
routed to the logical operator.

4. The logical operator responds to USER1's message by sending a message to USER1 through the
programmable operator facility. (See “Ensuring a Complete Log” on page 77.)

Issuing Commands in the Distributed z/VM Environment
A user (USER21) on another z/VM system (assuming a remote system with the node ID of NODE2, a

network machine with the ID of NET2, and that the programmable operator facility is running in the
operator's virtual machine with a user ID of OPERATOR) might send the messages:

message operator query rtable

message operator what time is shut down?

where QUERY is a programmable operator facility command. See “QUERY” on page 105 for information
about the programmable operator facility QUERY command.

Figure 14 on page 83 shows how a user on one physical system exchanges messages with the
programmable operator facility on a different physical system and how the programmable operator
facility responds directly to a user on the same physical system or routes messages to the logical operator
who is located on a different physical system.

82 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

Local System Distributed System
Node ID = NODE1 Node ID = NODE2
RSCS Virtual (1) » RSCS Virtual
Machine < (2) Machine
P S (5)
ID = NET1 (6) > ID = NET2

R

6) (5) (2) (1)

(1) (2) (5) (6)

vy L 4
User Logical User ~(3) Programmable
Virtual Operator Virtual Operator
Machine Virtual Machine |«(4)- Virtual

Machine Machine
—(5

User ID = User ID = User ID = User ID =
USER11 LGLOPR userz1 [*(6) OPERATOR

Figure 14. Example of Communication in the Distributed Environment

1. LGLOPR enters the message:
cp smsg netl msg node2 operator query rtable

2. The programmable operator facility responds by sending the following message to LGLOPR:
PROP running with routing table ‘PROP RTABLE A5’

3. USER21 enters the message:
message operator query rtable

4. The programmable operator facility responds by sending the following message to USER21.:
PROP running with routing table ‘PROP RTABLE A5’

5. USER21 enters the message:
message operator what time is shut down?

Because this message cannot be processed by the programmable operator facility, the message is
routed to the logical operator.

6. The logical operator responds to USER21's message by sending a message to USER21 through the
programmable operator facility. (See “Ensuring a Complete Log” on page 77.)

Chapter 4. The Programmable Operator Facility 83

Programmable Operator Facility

Issuing Commands in a Mixed Environment

In a mixed environment, message paths are more complex. A user on a z/VM system (VMUSER3) might
send the messages:

message operator query rtable

message operator what time is shut down?

where QUERY is a programmable operator facility command. See “QUERY” on page 105 for information
about the programmable operator QUERY command.

The message sent containing the QUERY command simply follows the paths of a message sent by
a user to the programmable operator facility in the same system. The message is processed by the
programmable operator facility and a response is returned to the user (VMUSER3).

Figure 15 on page 84 shows how messages are transferred between a user, the programmable operator
facility, and an NCCF or NetView logical operator. It also shows how messages and commands are
transferred from an NCCF or NetView operator to the programmable operator facility and its z/VM system.

User CP Sys Op SNA Serv. Mach.
Userid = N N - [NccF
VMUSER3 Programmable | pP—(3)}—+» C e M/ . lor NetView
<4 (4) Operator Med{d)4—C t | yram Operator
X «—{5) F—V —— Station
Userid = {8}
OPERATOR o e | |Operator
row . |id = LGLOPR
C C A A A
M M GCS
S S

| m—
Y ﬂ) —A4— 1uCV

{EY
KBJ
{7%
i?I

Figure 15. Example of Communication in the Mixed Environment

1. VMUSER3 enters the message:
message operator what time is shut down?
that reaches the programmable operator facility through the IUCV *MSG service. The programmable

operator facility determines that the message is to be routed to the logical operator.

2. The programmable operator determines that the logical operator is an NCCF or NetView operator and
sends the message though IUCV to the PMX.

3. The PMX, upon receiving the message from IUCV, queues (through the NCCF or NetView Message
Queueing Service) the message for display on the specified NCCF or NetView operator's console.

84 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

4. Upon receiving the message from VMUSER3, the NCCF or NetView logical operator issues the
command:

prop cmd msg vmuser3 shutdown is at 10:00 pm.

which travels back through the PMX, IUCV, and the programmable operator facility, before the
response reaches VMUSER3's screen.

5. An NCCF or NetView operator enters a programmable operator command:
prop query rtable

which is queued for the PMX.
6. The PMX sends the command as an IUCV message to the programmable operator.

7. The programmable operator receives the message from IUCV and processes it. Upon determining that
the requester was an NCCF or NetView operator, the programmable operator sends any responses
through IUCV to the PMX.

8. The PMX receives the response:

PROP running with routing table 'PROP RTABLE A5'

from IUCV and queues the response for display on the specified NCCF or NetView operator's terminal.

Helpful Hints

The typing of large text strings, such as the message command string preceding the message text, can be
minimized by assigning the string, up to the user ID, to a PF key. An exec can also be used that prompts
for, or accepts as parameters, that part of the message command that the user must type in.

For example:

set pfO1 immed smsg netl msg node2 operator query rtable
will allow the logical operator to press PFO1 to find out the name of the active routing table when the
logical operator and programmable operator facility are located on different physical systems.

The logical operator can use the CMS NAMES command to set up nicknames for remote users and can
use the CMS TELL command to send messages to those users. If the logical operator has a NAMES file
entry assigning the nickname PROP1 to OP at node NODEZ1, the logical operator could send the following
messages:

tell propl query rtable
tell propl cmd wng all ...will re-ipl in 5 min - pls logoff.

These commands are described in z/VM: CMS Commands and Utilities Reference and z/VM: CMS User's
Guide.

Action Routines

Action routines are programs or execs that receive control in response to the match of a message

and a routing table entry. They handle a particular type of message or command intercepted by the
programmable operator facility. The action routines supplied with the programmable operator facility are
DMSPOR, DMSPQS, and DMSPOL. These routines (or subroutines in the case DMSPOR) correspond to
the programmable operator facility commands described in Chapter 5, “Programmable Operator Facility
Commands,” on page 95. The supplied action routines need no tailoring to provide you with the control
and function needed to operate the programmable operator facility.

You can extend the programmable operator facility by writing new action routines and adding them to
the appropriate routing tables. Action routines can be written as execs or Basic Assembler Language

Chapter 4. The Programmable Operator Facility 85

Programmable Operator Facility

programs. (Basic Assembler Language routines must also be added to the PROPLIB LOADLIB. PROPLIB
LOADLIB is built by the VMSES/E VMFBLD EXEC using the DMSBLPRP build list. If you want to add your
own routines, you must provide a local modification to the DMSBLPRP build list. See the discussion on
installing local service in the z/VM: Service Guide for information on creating local modifications.)

When the programmable operator facility invokes an action routine, it assumes that the originator of the
message (the requester) is authorized to receive any responses or error messages issued. Therefore, all
VMCONIO responses (such as console I/O generated by LINEDIT, WRTERM, DMSERR, &TYPE, or SAY) or
error messages resulting from CP commands are returned to the requester. However, if the action routine
uses the extended DIAGNOSE code X'08' to issue a CP command and receive the responses in a buffer,
the programmable operator facility never sees these responses, and therefore, cannot send them to the
requester. (For more information on DIAGNOSE code X'08', refer to the z/VM: CP Programming Services.)

An action routine is provided with the programmable operator facility that uses the extended DIAGNOSE
code X'08' to issue a CP command and receive the responses in a buffer. This method ensures that

the responses, error messages, or informational messages from the CP command are NOT presented

to the programmable operator facility as IUCV message types 3, 4, or 7, respectively. Instead, the
programmable operator will send the buffered messages or responses to the requester. (To review the
IUCV message types, see information under the description of MESSAGE CLASS in section “Routing Table
Comparison Entry Statements” on page 66.)

If an action routine abends, abend error messages are sent to the logical operator and the requester
(if any). Control is returned to the point in the programmable operator facility immediately following the
action routine call.

Note: Programs written in Basic Assembler Language can access the parameter list built by the
programmable operator facility. The programmable operator parameters are available in a different
fashion for EXEC action routines; execs may be written using the REXX, EXEC 2, or CMS EXEC languages.

Action Routine Interface

Action Routine Call Interface

Action routines are loaded by the programmable operator facility as CMS nucleus extensions. As a result,
they must be invoked by the programmable operator facility as CMS commands by SVC 202. Also,
addresses cannot be resolved between separate nucleus extensions; they must be passed dynamically if
they are desired.

Action Routine Parameter Interface

An installation can write additional action routines in assembler language. Action routines may also be
written as execs. Programs written in assembler language can access the parameter list built by the
programmable operator facility. (The programmable operator parameters are available in a different
fashion for EXEC action routines.) The parameter list contains a list of addresses pointing to data that may
be significant to the action routine invoked. The programmable operator facility then passes the address
of the list as a parameter when it invokes the required action routine.

The register conventions used for invoking an action routine are:
« Register 1 points to a list of eight-byte tokens (CMS PLIST) containing the following information:

TOKEN 1
Contains the command name (action routine name).

TOKEN 2
Contains two fullwords. These fullwords contain the following:

Fullword 1 -
Reserved for IBM use.

Fullword 2 -
Contains the address of a list of addresses that point to data that may be needed by the action
routine. This list is described by the PARMLIST DSECT.

86 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

TOKEN 3
Contains eight X'FF's to mark the end of the parameter list.

 Register 13 points to a standard OS 18 word save area.

« Register 14 points to the address that receives control when the action routine completes processing,
that is, the address to which the action routine must return control.

 Register 15 points to the action routine entry point and may be used as a base register.

Figure 16 on page 87 offers a graphic representation of the previous discussion. It illustrates the data
areas that can be accessed through Register 1.

: 0 <«— TOKEN 1
Command Name
(Action
Routine Name)

Fullword 1—> 8 <+— TOKEN 2

reserved
for IBM
use

Foterd 2} > ©

address list

pointer
10 <«— TOKEN 3
8X’FF?
18
PLIST of three
8-byte tokens

Name Data Item Length
0 —» PARMMSG Message text 240 bytes
) —» PARMMLN Message length 4 bytes
é —>» PARMMSGT Message text (tokenized) 256 bytes(1)
¢ —» PARMNETM ID of network machine 8 bytes
10 —» PARMRUSR Requestor’s user ID 8 bytes
H —>» PARMRNOD Requestor’s node ID 8 bytes
ii —» PARMPUSR Programmable operator’s user ID 8 bytes

—>» PARMPNOD Programmable operator’s node ID 8 bytes

20 —» PARMOUSR Logical operator’s user ID 8 bytes
2 — PARMONOD Logical operator’s node ID 8 bytes
28 —» PARMRTFI Routing table file ID 18 bytes(2)
. —>» PARMRTPM Parameter from routing table 8 bytes
30 — PARMMTYP Message type (message class) 1 byte
j: —>» PARMARTN Action routing name 8 bytes(3)

Figure 16. Register Conventions for Invoking an Action Routine

Address List described by PARMLIST DSECT

Chapter 4. The Programmable Operator Facility 87

Programmable Operator Facility

Notes:

1. In addition to the original message text, the message text is also provided in CMS tokenized form
(8-byte tokens followed by 8 X'FF's).

2. The Routing table file ID is made up of the file name (8 bytes), file type (8 bytes), and file mode (2
bytes).

3. The high-order bit (X'80") of the last fullword of this list of addresses is set to one to indicate that it is
the last entry in the list according to standard OS linkage conventions.

Exec Action Routines

Action routines may also be written as execs in the REXX, EXEC 2, or CMS EXEC languages. The
programmable operator parameters are available in a different fashion for exec action routines. The
method is described below.

1. Having determined that the action routine is an exec, the programmable operator facility calls the
action routine accordingly.

2. The following information is passed as parameters (arguments) on the exec invocation, in this order:

« Requester's user ID
« Requester's node ID
« Logical operator's user ID
- Logical operator's node ID
« Message type class
« The programmable operator facility's user ID
« The programmable operator facility's node ID
« Networking machine user ID
- RTABLE file name.
3. The following parameters are stacked LIFO for the exec in this order:

« RTABLE PARAMETER field contents
« Message text.

To ease handling by an exec, if the requester is CP, the requester's user ID and node ID are “CP”.

Writing Action Routines

How an action routine is written using Basic Assembler Language depends on the functions that the
action routine performs and the conditions under which it runs. Since the programmable operator can use
message content and message origin to determine which action routine to call, it may not be necessary
for the action routine to check any further conditions. However, by using the PARMLIST supplied by the
programmable operator facility, the action routine may obtain additional information about the message.
Each entry in the PARMLIST points to some item of data about the message just received or about the
programmable operator environment.

As described in the section, “Action Routine Parameter Interface” on page 86, the information initially
provided to the action routine is in the form of a CMS tokenized PLIST. By loading the second fullword
of the second token of that PLIST into a register, the user can establish addressability to the PROP

PARMLIST.
For example,
SAVE (14,12) SAVE REGISTERS
LR R12,R15 LOAD BASE REGISTER
USING ROUTINEX,R12 ESTABLISH ADDRESSABILITY
L R2,12(,R1) LOAD PROP PARMLIST ADDRESS
USING PARMLIST,R2 PARM ADDRESSABILITY

88 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

These instructions would be sufficient for many action routines to establish addressability for the action
routine and the PROP PARMLIST. The following instructions could then be used to obtain the addresses of
the requester's (message originator's) user ID and node ID.

L R4, PARMRUSR GET REQUESTER'S USER ID ADDRESS
L R6, PARMRNOD GET REQUESTER'S NODE ID ADDRESS

The programmable operator facility DSECTs, such as PARMLIST, define the above labels. To access the
PROP DSECT, global the DMSGPI MACLIB. To include the PROP DSECT in the action routine insert the
following assembler instruction in the source file for the routine:

COPY PROP

In addition, it may be desirable to include the CMS REGEQU macroinstruction for register equates. When
the action routine is complete, it is necessary to restore registers and branch to the address in register 14,
or use the OS RETURN macro.

Action Routine Error Message and Response Handling

It is sometimes necessary to issue error messages and/or responses from an action routine that are

to be sent to the message originator (requester). To do this, the action routine should simply TYPE the
messages/responses (by LINEDIT, DMSERR, or WRTERM for action routines written in BAL, and &TYPE or
SAY for EXEC action routines). Upon completion of the action routine, the programmable operator facility
collects these VMCONIO messages (IUCV type 5 messages), as well as any error messages (IUCV type

6 messages), and sends them back to the requester. To prevent the programmable operator facility from
sending error messages from CP commands back to the requester, the action routine should be coded to
use the extended DIAGNOSE code X'08' to obtain the responses in a buffer.

Handling Console I/0 in an Action Routine

The installation must determine how an action routine is to handle console I/O generated by the virtual
machine and CP. Normal operation of the programmable operator facility sets VMCONIO to IUCV (by
default) before calling an action routine and sends the VMCONIO to the message originator (requester). If
it is desired that console I/O (VMCONIO) produced by the action routine be typed on the programmable
operator virtual machine console, the action routine must SET VMCONIO OFF. However, because there
would not normally be an operator at the programmable operator virtual machine console, an installation
can code an action routine to receive and handle VMCONIO instead of allowing the programmable
operator to receive it and send it to the requester (message originator). To accomplish this, the action
routine can receive the VMCONIO that was generated by using the IUCV RECEIVE function with message
type 5 specified as the IUCV target class (TRGCLS). For details on using IUCV, see z/VM: CP Programming
Services.

An example of this may be found in the subroutine CALLARTN of the IBM-supplied module DMSPOA. To
use IUCV, it is necessary to include the CP COPY files, IPARML and EQU.

CP generated console I/O (CPCONIO) should be handled differently than above. The CPCONIO setting
should not be changed because this could cause the programmable operator facility to miss some
asynchronous CP messages.

If the action routine is to receive the responses from CP commands that it issues, it should use the
DIAGNOSE code X'08' support with a command response buffer, rather than trying to receive it with IUCV.
(See z/VM: CP Programming Services for information about DIAGNOSE code X'08'.) The reason for this is
that other CP messages can be mixed in with the command response, and therefore the program cannot
be assured of receiving its response in consecutive IUCV messages.

If the CP command response is to be typed on the programmable operator's virtual machine console,
the action routine should use a CMS function, such as WRTERM, to write the lines in the program's CP
command response buffer to the terminal.

Chapter 4. The Programmable Operator Facility 89

Programmable Operator Facility

Description of Supplied Action Routines

The action routines supplied with the programmable operator facility are DMSPOR, DMSPOS, and
DMSPOL. A parameter must be supplied for module DMSPOR. This parameter is the name of the function
or action that DMSPOR is to perform. DMSPOS may be invoked along with a parameter, which, in this case,
is a user ID or nickname. DMSPOL may be invoked with a parameter, which is a routing table name.

Note that new action routines are not required to be in this format. The programmable operator facility
supports any desired number of action routines. Each one is loaded separately when the programmable
operator facility is initialized, or when a LOADTBL command is issued.

The following sections describe the action routines that are supplied with the programmable operator
facility. These action routines (or subroutines in the case of DMSPOR) correspond to the programmable
operator commands described in Chapter 5, “Programmable Operator Facility Commands,” on page 95.

DMSPOR — Miscellaneous Action Subroutines

The DMSPOR action routine must be invoked with one of the following parameters, which is the name of
the subroutine for the function or action that DMSPOR is to perform.

GET - Send the indicated file to an authorized user

This routine sends programmable operator files, such as log and feedback files, to requesting user. The
files are sent using the CMS DISK DUMP command.

LGLOPR - Process the LGLOPR command

This routine processes the LGLOPR command to assign (ASN), release (RLS), or replace (RPL) the
logical operator as specified by an authorized user of the LGLOPR command.

QUERY - Return a response to a user query
- This routine returns only one of the following information types:

— Name of the active routing table (RTABLE parameter)
— Status of PROPCHK node-checking (PROPCHK parameter)
— Status of HOSTCHK node-checking (HOSTCHK parameter)
— Name of the currently assigned logical operator (LOGOPR parameter)
— Status of the logging messages (LOGGING parameter)
— Message prefixes for virtual machines (OUTID parameter).
SET - Change the status of specific functions

This routine stops or resumes: the periodic checking of the distributed systems or the host system, the
logging of messages in the log file, or the appending of the message prefix.

STOP - Stop the programmable operator facility

This routine stops the programmable operator operation after processing currently queued messages.
The programmable operator virtual machine returns control to CMS.

TOFB - Write a message to the feedback file

This routine attaches the date and time received to the head of the incoming message and writes it to
the feedback file. See “The Feedback File” on page 78 for more information.

TOVM - Execute a CP/CMS command

- This routine is invoked when the programmable operator CMD command is issued. The text following
CMD is regarded as the CP or CMS command to be executed in the programmable operator virtual
machine. The command is treated as if it were entered at a CMS console (that is, such things as
synonyms and the IMPCP and IMPEX settings apply to its interpretation as supported by the CMS
COMMAND SUBCOM environment). The response to the executed CP or CMS command is returned to
the authorized user who invoked the CMD command.

90 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

« Authorized users of the CMD command should be aware of the following:

— Issuing commands that alter or overlay CMS storage, such as CP DEFINE STORAGE, CP IPL CMS, CP
SHUTDOWN, and so on, has an adverse effect on the operation of the programmable operator facility.

— Reissuing the PROP command once the programmable operator facility is running causes the
programmable operator facility to stop operating correctly. The user must re-IPL CMS and restart the
programmable operator facility using the procedure described under “Invoking the Programmable
Operator Facility” on page 51.

— Issuing commands that cause a VM READ or CP READ (interactive commands such as the DDR
command) stop the operation of the programmable operator facility. The programmable operator
facility must then be restarted in the manner described under “Invoking the Programmable Operator
Facility” on page 51.

— Line-editing characters (pound sign (#), for example), as defined by the CP TERMINAL command, are
not recognized as line-editing characters by the programmable operator facility.

— The CMS immediate commands (for example, HB, HI, HO, HT, HX, RO, RT, SO, TE, and TS) are
not recognized by the programmable operator facility. If a user enters any of these commands, he
receives an Unknown CP/CMS command response from the programmable operator facility.

« In general, the programmable operator facility does no checking to ensure or prevent any of the above
circumstances from occurring.

DMSPOS — Route a Message

DMSPOS sends (routes) a message to the user specified in the RTABLE PARAMETER field. The user is
identified by a nickname from the CMS userid NAMES file or by a user ID. If the user is on another
system, identification must be through a nickname. LGLOPR may be specified in the PARAMETER field
of the routing table, which would indicate that DMSPOS uses the value of the currently assigned logical
operator. If no logical operator has been explicitly assighed, DMSPOS uses the value specified in the
LGLOPR statement in the routing table. This is the default if the parameter field is left blank.

A message longer than 94 characters (including the 19-character programmable operator origin ID) is
split and sent as multiple messages. The first piece is no more than 94 characters. The remaining pieces
are no longer than 91 characters, and preceded by a continuation mark (...). This splitting ensures that the
message is small enough to be sent through an RSCS network. One exception to this message splitting

is when the logical operator is NetView. For this case, DMSPOS does not split messages routed to the
NetView operator.

If an error occurs because of an incorrect target ID, for example, the nickname was not in the userid
NAMES file, the programmable operator tries to send the message to the logical operator.

Messages are sent with the CMS TELL command. If the programmable operator virtual machine is
authorized (class B), the CP MSGNOH command is used. If the virtual machine is not authorized to use the
CP MSGNOH command, then the CP MESSAGE command is used. For more information on the CMS TELL
command, see z/VM: CMS Commands and Utilities Reference.

Notes:

1. Using the CMS TELL command requires the user to have a SYSTEM NETID file set up. For more
information, see “Use the SYSTEM NETID File to Configure Communication Across an NJE Network” on
page 44.

2. DMSPOS must not be invoked if the logical operator virtual machine is the same as the programmable
operator virtual machine. Also, a parameter should not be specified that directs the message to the
programmable operator virtual machine.

To prevent a LOOP condition, a message being handled may not be sent on to the routing target by the
DMSPOS routine. A message is not sent if it falls into any one of the following categories:

1. The preceding message could not be sent, and the current message is the same as the preceding
message. In other words, the programmable operator receives an error return code when trying to
send consecutive identical messages.

Chapter 4. The Programmable Operator Facility 91

Programmable Operator Facility

2. The programmable operator tries to route a message that originated from the networking virtual
machine on the programmable operator's node. The message is identical with the last message from
that virtual machine that the programmable operator tried to route. For example, a local network
machine detects that a link is down.

3. The programmable operator tries to route a message that originated from the networking virtual
machine on another system (node), and that message is identical with the last message that the
programmable operator tried to route. For example, messages are being routed from system A to the
logical operator who is supposed to be on another system (B), but is not logged on. The networking
virtual machine on system B sends the programmable operator an error message each time it tries to
route a message to the logical operator. This could cause a loop if not detected.

If the DMSPOS routine tries to send a message to the logical operator, but for some reason the logical
operator's network node is unavailable for messages (not logged on, SMSG and/or MSG off), DMSPOS
detects this condition and stops any further attempts to send that message. The unsent message,
although logged in the current day's log file, is not displayed at the logical operator's console.

DMSPOL — Load a Routing Table

This routine dynamically loads the routing table indicated by the programmable operator LOADTBL
command. The routing table name must be filename RTABLE, where filename can be any name that
conforms to CMS file naming conventions. Although the routing table name specified with the LOADTBL
command takes precedence, it is also possible to specify in a routing table the file name of the table to
be loaded as a parameter to the action routine. (This can be used as a default.) Therefore, any message
selected by the system programmer can cause a new RTABLE to be loaded. Also, the programmer can
change the LOADTBL default of “PROP” to whatever is desired without changing the LOADTBL action
routine.

Note: With the loading of the routing table done by a separate action routine, it is possible for the other
routines, DMSPOR and DMSPOS and any user-written routines, to be replaced when a LOADTBL occurs.
This permits changes to action routines other than DMSPOL to be made dynamically without stopping the
programmable operator.

Exit Execs

Exit execs receive control when the programmable operator facility encounters certain error and
communication status conditions. PROPLGER EXEC is invoked when there is a log error. PROPHCHK

EXEC or PROPPCHK EXEC is invoked when there is a change in communication status. The programmable
operator facility provides sample exit execs which are used in their sample form. These sample exit execs
can be modified or replaced with user-written execs with the same naming convention.

Exit Exec Interface

The programmable operator facility exit execs have the same parameter list provided as an exec action
routine, with the exception that no RTABLE parameter field value and no message text are stacked for
the exec. See “Exec Action Routines” on page 88 for a list of these parameters. When an exit exec is
called, contents of the program stack depend upon which exit is being invoked. Descriptions of the stack
contents for the different types of exits follow.

Notes:

1. Some of the parameter values have no meaning for a particular exit exec and their use is left to the
discretion of the exec writer. For example, the requester's user ID and node ID, and the message class
have no meaning for the log error exec, PROPLGER, and the communication exit execs, PROPPCHK and
PROPHCHK.

2. The programmable operator facility does not trap VMCONIO-type or CP EMSGs produced by exit execs
as it does for action routines.

92 z/VM: 7.3 CMS Planning and Administration

Programmable Operator Facility

Log Error Exit (PROPLGER)

If a virtual machine resource limit is reached, such as disk full or file space full, the programmable
operator may not be able to write another record in the log file. If this happens, the programmable
operator facility stacks (LIFO) the error code received from the CMS FSWRITE function and calls the
PROPLGER EXEC for recovery.

The IBM-supplied PROPLGER EXEC:

1. Closes the current log file.
2. Sends the oldest two log files to the logical operator.

Note: PROPLGER does not try to send the log files to the logical operator if the logical operator is an
NCCF or NetView operator. The files are instead sent to the programmable operator's virtual reader.

3. Erases the oldest two log files.
4. Issues one of the following return codes:

RC=0
Recovered from error. The programmable operator facility should retry logging. If it is still unable
to log, the programmable operator sends an error message to the logical operator.

RC=4
Unable to do recovery. The programmable operator should send an error message to the logical
operator.

If the PROPLGER EXEC cannot be found, the programmable operator facility acts as if RC=4 has been
returned and sends an error message to the logical operator. Whatever action is taken, the programmable
operator continues operation.

If the same logging error occurs on two successive logging attempts (for example, two consecutive
incoming messages cause the same logging error), the programmable operator sets LOGGING to OFF.
This prevents unpredictable looping in some situations. Note, though, that the logical operator may
receive only two error messages when logging errors occur.

When using an SFS directory accessed as file mode A, PROPLGER EXEC is invoked whenever the file
space threshold limit is exceeded. However, if the threshold is set too high or other users are writing to
this storage group, the programmable operator facility may not detect certain resource limits until it tries
to close the log file. At that point the programmable operator will not be able to invoke the PROPLGER
EXEC, and some log data could be lost. If it is important for you to minimize the potential loss of log data,
consider using a minidisk for the log file instead of an SFS directory.

Communication Exit (PROPHCHK/PROPPCHK)

The programmable operator facility does communication checking (node-checking) based on the
checking intervals and response wait intervals specified on the HOSTCHK statement or PROPCHK
statement in the routing table. When a change in communication status is detected, the programmable
operator facility stacks (LIFO) an entry having the following format:

nodeid UP|DOWN
nodeid

is the RSCS node ID of a node that has changed communication status.

upP
indicates that the node had not been responding and now has resumed responding to
acknowledgement requests.

DOWN
indicates that the node had been responding and has ceased to respond.

Also stacked will be the total number of node ID entires that are stacked.

Chapter 4. The Programmable Operator Facility 93

Programmable Operator Facility

When the communication checking is complete, if any entries were placed in the stack, the programmable
operator calls one of the following execs:

« PROPHCHK EXEC if the programmable operator was checking the logical operator's node as specified in
the HOSTCHK statement.

The IBM-supplied PROPPCHK EXEC types a message on the programmable operator console and sends
a message to the MAINT user ID indicating that communication with the logical operator (the host) has
been broken or restored.

« PROPPCHK EXEC if the programmable operator was checking the nodes specified in the PROPCHK
statement.

The IBM-supplied PROPPCHK EXEC notifies the logical operator about each node that has failed to
respond or has resumed responding. A return code of 0 should be returned by the exec.

Note: PROPPCHK does not try to send a message to the logical operator if the logical operator is an
NCCF or NetView operator.

Problem Determination—Debug Mode

Debug mode determines problems with the programmable operator facility itself. It allows responses to
commands issued from the programmable operator virtual machine console to be returned to the console
without being intercepted by the programmable operator facility. This permits any CP command to be
issued without having its response trapped by the programmable operator facility.

SET DEBUG ON may be used after the programmable operator facility responds with the message:
PROP running - enter STOP to terminate

indicating that the programmable operator facility is running and operational. The programmable operator
facility then responds with the message:

PROP is running in DEBUG mode

which is also written to the log file. In debug mode, the programmable operator facility waits to receive
messages from another virtual machine, or for the system programmer to enter input from the console.
Because only two commands, STOP and SET are accepted from the programmable operator virtual
machine console, the system programmer must enter the CP environment (using the PA1 key) to enter
any CP commands. Otherwise, the commands are intercepted and rejected as incorrect programmable
operator commands.

Pressing the PA1 key or entering the BEGIN command returns control to the programmable operator
facility. From this environment, entering SET DEBUG OFF returns the programmable operator facility to its
normal function of trapping messages.

94 z/VM: 7.3 CMS Planning and Administration

Chapter 5. Programmable Operator Facility
Commands

The programmable operator facility increases the efficiency of system operation by allowing systems
to be operated remotely. To do this, the programmable operator facility handles all messages and
requests sent to its virtual machine according to preprogrammed actions. For further information on
the programmable operator facility, see Chapter 4, “The Programmable Operator Facility,” on page 47.

This chapter contains commands used with the programmable operator facility. These commands can be
executed by anyone who is authorized by the active routing table. An authorized user must have a routing
table entry for the command he or she wants to issue. If an unauthorized user issues a programmable
operator facility command, the command is not executed but is routed to the logical operator.

All programmable operator facility commands are sent by users as messages; these messages should be
in English to ensure that they get routed properly.

© Copyright IBM Corp. 1991, 2022 95

CMD

CMD

»— CMD — vmcmd >«

Purpose

Use the CMD command to execute CP or CMS commands in the programmable operator facility virtual
machine. The command is accepted or rejected by CP based on the CP user class defined for the
programmable operator facility virtual machine. Also, the programmable operator facility may reject or
accept the command based on the authorization granted in the active routing table. The user class
assigned to the programmable operator facility virtual machine is determined by the installation. If
accepted, the response from the command is returned to the issuer of the command.

Operands

vmcmd
is the z/VM command sent to the programmable operator facility virtual machine for execution
according to the CMS IMPCP and IMPEX settings.

Usage Notes

1. Any commands that alter or overlay CMS storage (CP DEFINE STORAGE, CP IPL CMS, CP SHUTDOWN,
and so forth) will have an adverse effect on the operation of the programmable operator facility and
should not be issued under the programmable operator facility.

2. Reissuing the PROP command after the programmable operator facility is running will cause it to stop
operating correctly. The user must then re-IPL CMS and restart the programmable operator facility
using the procedure described in “Invoking the Programmable Operator Facility” on page 51.

3. Entering commands that cause a VM READ or a CP READ (such as the DDR command) will stop the
programmable operator facility. It must then be restarted using the procedure described in “Invoking
the Programmable Operator Facility” on page 51, or the read must be answered from the console of
the programmable operator facility virtual machine. Commands of this type should not be sent to the
programmable operator facility.

4. Line-editing characters (CHARDEL, LINEDEL, LINEND, and ESCAPE), although interpreted by your
terminal when you have SET LINEDIT ON in effect, are not interpreted as line-editing characters when
sent to the programmable operator facility. In other words, they are interpreted as the characters they
are (that is, @, ¢, #, :). For example, the string:

m op cmd access 191 a"i#receive

will cause an Invalid filemode message to be returned to the issuer. The default line-editing
characters may be defined by the installation. You may also define your own line-editing characters by
using the CP TERMINAL command.

5. The programmable operator facility does not recognize the CMS immediate commands (HB, HI, HO,
HT, HX, RO, RT, SO, TE, and TS). If you issue any of these commands, the programmable operator
facility issues the message, Unknown CP/CMS command.

Examples

The following is a list of examples that show how the programmable operator CMD command could be
issued from a virtual machine console:

m op cmd indicate

m op cmd query files

96 z/VM: 7.3 CMS Planning and Administration

CMD

m op cmd query printer all

m op cmd erase 1g861015 nodel ab
m op cmd query search

m op cmd listfile

The following is a list of examples that show how the programmable operator CMD command could be
issued from an NCCF or NetView® operator terminal:

prop cmd indicate

prop cmd query files

prop cmd query printer all

prop cmd erase 1g861015 nodel a5
prop cmd query search

prop cmd listfile

Responses

The response returned by CP or CMS is sent to the issuer of the command. After the response from CP or
CMS, the programmable operator facility responds with:

Command complete

Chapter 5. Programmable Operator Facility Commands 97

FEEDBACK

FEEDBACK

T T
FB

Purpose

Use the FEEDBACK command to place comments about the operation of the system and/or the
programmable operator facility in the feedback file. These comments are available for review by
personnel responsible for maintenance of the programmable operator facility. The comment (preceded
by the date and time it was received, and the sender's user ID and node ID) is placed in a file named
FEEDBACK nodeid A5. (If the node ID is not available, the file type for the feedback file will default to
PROPFILE.)

Operands

text
is the user's comments to be placed in the feedback file

Usage Notes

1. Authorized z/VM users can retrieve the feedback file using the GET FEEDBACK command (this does
not include NCCF or NetView users).

2. The length of the message is limited by the maximum length of the command used to send the
message to the programmable operator facility. If the user desires to send a longer message, the
command must be used multiple times.

Examples

The following example shows how the programmable operator FEEDBACK command could be issued
from a virtual machine console:

m op feedback system response was slow during the morning shift.

The following example shows how the programmable operator FEEDBACK command could be issued
from an NCCF or NetView operator terminal:

prop feedback system response was slow during the morning shift.

Responses

The programmable operator facility responds with:

Command complete

98 z/VM: 7.3 CMS Planning and Administration

GET

GET

»— GET —5———— FEEDBACK ——— 9«
FB

— LOG 7

U ymaa J

Purpose

Use the GET command to retrieve one of the programmable operator facility files; the feedback file (FB
or FEEDBACK) or the log file (LOG). The file is sent to the requesting user if he is authorized in the active
routing table to receive it. If LOG is specified, the user will receive the log file for either the current day or
the specified day.

Operands

FEEDBACK or FB
indicates that the feedback file is to be retrieved.

LOG
indicates that the log file for date yymmdd is to be retrieved. If no date is given, the log file for the
current day is retrieved.

Usage Notes

1. An NCCF or NetView operator cannot use the GET command to retrieve the LOG and FEEDBACK files.
Use CMS commands (and the programmable operator CMD command) to type the file(s) or portions of
the files, or send the file(s) to some user ID where you can process them.

2. The file appears in the requesting user's virtual reader in DISK DUMP format. The user must execute a
DISK LOAD or RECEIVE command to read the file.

Examples

The following examples show how the programmable operator GET command could be issued from a
virtual machine console:

m op get fb

or

m op get log 920206

Responses

The programmable operator facility responds with:

Command complete

Chapter 5. Programmable Operator Facility Commands 99

LGLOPR

LGLOPR

»— LGLOPR ASN
{;E RLSE;}
RPL

Purpose

Use the LGLOPR command to assign or release yourself as the logical operator for the programmable
operator facility under which the command is executed. This programmable operator command can be
used by a z/VM user or an NCCF or NetView operator.

Users are authorized in the active programmable operator routing table.

Operands

ASN
assigns the issuer of the command as the logical operator, if a logical operator is not currently
assigned (that is, the current LGLOPR is the default). If a logical operator is already assigned to the
programmable operator facility, an error response is given.

RLS
releases the issuer from being the logical operator, if he currently is the logical operator and assigns
the default LGLOPR. If the issuer is not the logical operator, no operation is performed and the system
gives the following response:

DMS763E Not currently assigned as LGLOPR, cannot be released

RPL
replaces the current logical operator with the issuer of the command. The programmable operator
determines if a logical operator is currently assigned. If there is, an implicit release is done. Then the
issuer of the command becomes the logical operator.

Usage Notes

1. The system keeps the logical operator that is specified on the LGLOPR statement in the routing table
as a default. You cannot release this logical operator. The LGLOPR ASN and LGLOPR RPL commands
override the default.

2. To ensure that messages are not lost when changing logical operators, the new logical operator
should issue a LGLOPR RPL command, rather than the current logical operator issuing a LGLOPR RLS
command and the new logical operator issuing a LGLOPR ASN command.

3. If the default logical operator is the current logical operator and he issues the LGLOPR ASN command,
CP will send a message stating that he already assigned as the logical operator

4. The HOSTCHK function is suspended when an NCCF or NetView operator or a local z/VM user is
assigned as the logical operator. It is resumed when a remote z/VM user is assigned as the logical
operator.

5. PROP uses the CP MSG facility to send messages to the logical operator. If the operator ID is
OPERATOR, the message is sent to the system operator regardless of the user ID. If the system
operator has been changed with the SET SYSOPER command, be aware that the logical operator still
can not have an ID of OPERATOR.

100 z/VM: 7.3 CMS Planning and Administration

LGLOPR

Examples

The following example shows how the programmable operator LGLOPR command could be issued from a
virtual machine console:

msg op lglopr asn

The following example shows how the programmable operator LGLOPR command could be issued from
an NCCF or NetView operator terminal:

prop lglopr asn

Responses

Both the new and old logical operators receive the message:
DMSPOR758I {NCCF|VM$ user userid [nodeid] is now LGLOPR for PROP on node nodeid
to notify them of the change of logical operators. The requester also receives the response:

Command complete

Chapter 5. Programmable Operator Facility Commands 101

LOADTBL

LOADTBL

»— LOADTBL <
L filename —J L (RPL ﬁ—j
)

Purpose

Use the LOADTBL command to dynamically load a new routing table. You, as a z/VM user or an NCCF or
NetView operator, can specify whether the currently assigned logical operator should be replaced by the
logical operator specified in the new routing table.

Operands

filename
is the name of the routing table to be loaded. If the file name is not given, the default routing table (file
name = PROP) is used.

RPL
replaces the currently assigned logical operator with the logical operator specified in the new routing
table. The logical operator is replaced only after the new routing table has been successfully loaded.

If RPL is not specified, the logical operator in the new routing table simply becomes the new default
logical operator, and any explicitly assigned logical operator (that is, a logical operator assigned by the
LGLOPR command) remains the logical operator.

Usage Notes

1. If any action routines named in the specified routing table can not be located or loaded, an
error message is issued, and the programmable operator facility drops any action routine modules
associated with the specified routing table. It then tries to reload the action routine modules
associated with the routing table that was active before the LOADTBL command was issued. If it
cannot load these modules, the programmable operator facility terminates operation.

Note: If any of the action routines associated with the previous routing table were modified (that

is, replaced in LOADLIB) between the time the programmable operator facility dropped the specified
routing table modules and reloaded the previously active routing table modules, the modified version
of the action routines are used when the previous routing table is reloaded.

2. Only the file name is used to identify the routing table file to the LOADTBL command.

3. Because DMSPOL is the action routine module executing the LOADTBL command, it is not dropped
and reloaded as are the other action routine modules listed in the routing table. If you want to alter
or replace DMSPOL, you must stop the programmable operator facility (using the STOP command),
make the desired changes or replacement, and invoke the programmable operator facility again.
See “Invoking the Programmable Operator Facility” on page 51 for information about starting the
programmable operator facility and “Stopping the Programmable Operator Facility” on page 55 for
information about stopping the programmable operator facility. For information about writing a new
programmable operator facility action routine, see “Writing Action Routines” on page 88.

If the programmable operator virtual machine is set up so that the programmable operator is started
automatically when CMS is IPLed in that virtual machine, it is sufficient to do the replacement and then
IPL CMS again.

4. With the loading done by DMSPOL, it is possible for the other routines in DMSPOR to be replaced
when a LOADTBL occurs. This permits changes to action routines other than DMSPOL to be made
dynamically, without stopping the programmable operator. It is also possible to specify the name of

102 z/VM: 7.3 CMS Planning and Administration

LOADTBL

a table to be loaded as a parameter to the action routine. The logical operator will be notified of the
loading.

5. If the current logical operator is the default logical operator (not explicitly assigned), then the current
logical operator will be replaced even if the RPL option is not specified.

6. When you issue LOADTBL and replace the logical operator, both the old and new logical operators
receive the following message:

DMSPOR758I {NCCF|VM$% user userid [nodeid] is now LGLOPR
for PROP on node nodeid

Both operators receive this message, even if you have not specified the RPL option.

Examples

The following example shows how the programmable operator LOADTBL command could be issued from
a virtual machine console:

msg op loadtbl route3 (rpl

The following example shows how the programmable operator LOADTBL command could be issued from
an NCCF or NetView operator terminal:

prop loadtbl route3 (xpl

Responses

The programmable operator facility responds with:

New RTABLE not loaded
PROP terminated

PROP running with routing table fn ft fm

Chapter 5. Programmable Operator Facility Commands 103

LOG

LOG

»— LOG — text >«

Purpose

Use the LOG command to write a message to the log file. Use of the LOG command allows messages to be
placed in the log file with no action taken by the programmable operator facility.

Operands

text...
is the message text to be placed in the log file.

Usage Notes

1. All messages are logged whether the LOG command is explicitly used.

2. Authorized z/VM users can retrieve the log file using the GET LOG command (this does not include
NCCF or NetView users). The log file has a file ID of LGyymmdd nodeid A5 where yy is the year, mm is
the month, dd is the day, and nodeid is the node ID of the system on which the programmable operator
facility is running. (If the node ID is not available, the file type for the feedback file will default to
PROPFILE).

The user ID and node ID of the sender is recorded along with the message.

3. The length of the message is limited by the maximum length of the command used to send the

message to the programmable operator facility. If you want to send a longer message, you must use
the command multiple times.

Examples

The following example shows how the programmable operator LOG command could be issued from a
virtual machine console:

m op log this message is to be logged.

The following example shows how the programmable operator LOG command could be issued from an
NCCF or NetView operator terminal:

prop log this message is to be logged.

Responses

The programmable operator facility responds with:

Command complete

104 z/VM: 7.3 CMS Planning and Administration

QUERY

QUERY
»- QUERY —————— RTABLE ——————— <«
M PROPCHK
L nodeid J
M——— HOSTCHK ————
M LOGGING ————
M LGLOPR —————
—— OUTID
L userid —J
Purpose

Use QUERY RTABLE to find the name of the active routing table.

Use QUERY PROPCHK and QUERY HOSTCHK to query the status of the programmable operator node-
checking.

Use QUERY LOGGING to query the status of the logging messages.
Use QUERY LGLOPR to find the name of the currently assigned logical operator.
Use QUERY OUTID to find out the message prefix(s) for a virtual machine(s).

Operands

RTABLE
displays the name of the active routing table.

PROPCHK
displays a message with node-checking status. The message will state whether PROPCHK is set ON or
OFF. If a nodeid is supplied, only the node specified is checked.

HOSTCHK
displays a message with node-checking status. The message will state whether HOSTCHK is set ON or
OFF.

LOGGING
displays a message with logging status. The message will state whether messages and responses are
being logged (LOGGING ALL), incoming messages and special programmable operator messages are
being logged (LOGGING ON), or there is no log (LOGGING OFF). Also, if messages are being logged, it
will state whether the messages are logged in uppercase format (UPCASE) or in their original format
(LOWCASE).

LGLOPR
for a z/VM logical operator, displays a message with the user ID and node ID of the operator. For
an NCCF or NetView logical operator, LGLOPR displays only the user ID (that is, operator ID) of the
operator.

OuUTID
displays one or more output identifiers (which will be prefixed to command output responses) and the
associated virtual machine. If you specify the userid option, only the output identifier for that virtual
machine will be displayed.

Examples

The following is a list of examples that show how the programmable operator QUERY command could be
issued from a virtual machine console:

Chapter 5. Programmable Operator Facility Commands 105

QUERY

m op query rtable

m op query propchk nodel
m op query hostchk

m op query logging

m op query lglopr

m op query outid crrservil

The following is a list of examples that show how the programmable operator QUERY command could be
issued from an NCCF or NetView operator terminal:

prop query rtable

prop query propchk vmsysl
prop query hostchk

prop query logging

prop query lglopr

prop query outid crrserv2

Responses

Programmable operator facility responses:
PROP running with routing table fn

is received if the programmable operator facility is running, where fn is the file name of the active routing
table.

§PROPCHK|HOSTCHK? is ON
is received if node-checking is in effect.
§PROPCHK | HOSTCHK? is OFF
is received if node-checking was specified in the RTABLE but is currently off.
PROPCHK is $ON|OFF% for nodeid nodeid
is received if a specified node ID is being queried
DMSPOR762E Host checking is suspended -- LGLOPR not on a checkable node
is received if the logical operator is an NCCF or NetView operator or a local z/VM user.
DMSPOR69OE {PROPCHK|HOSTCHK? not specified in RTABLE
is received if node-checking was not specified in the current RTABLE.
DMSPOR709E PROPCHK not specified in RTABLE for nodeid nodeid

is received if a node ID was specified on the QUERY command and node-checking was not specified in the
current RTABLE for that node.

Logging ALL SUPCASE|LOWCASE?

is received if incoming messages and all programmable operator responses are being logged.

106 z/VM: 7.3 CMS Planning and Administration

QUERY

Logging ON fUPCASE|LOWCASE}
is received if incoming messages and special programmable operator responses are being logged.
Logging OFF
is received if no logging is being done.
DMSPOR758I $NCCF|VM$ user userid {nodeidi is now LGLOPR for PROP on node nodeid
is received when the logical operator is being queried.
userid set output identifier for user userid to msgprefix
is received when the QUERY OUTID is successful.
No output identifier is defined.

is received from QUERY OUTID when no output identifiers are active.

Chapter 5. Programmable Operator Facility Commands 107

SET

SET

»— SET DEBUG ON fm
L HOSTCHK J L OFF
M——- PROPCHK ON
L OFF J L nodeid J

UPcase

M LOGGING ON I_
1 L ALL _J L LOwcase J

OFF J

~— OUTID (0]

N — userid
L msgprefix J

OFF — userid —

Purpose

Use SET DEBUG to enter or exit the programmable operator facility DEBUG mode. DEBUG mode is used to
do problem determination on the programmable operator facility.

Use SET PROPCHK to set the periodic checking of the programmable operator on the distributed systems
ON or OFF. The distributed systems are identified by the PROPCHK statements in the routing table of

the host programmable operator. The programmable operator facility with the PROPCHK statement (for
example, the host system) does the checking.

Use SET HOSTCHK to set the periodic checking of the link to the host system ON or OFF. HOSTCHK

must be specified in the routing table of the programmable operator at the distributed system. The
programmable operator facility with the HOSTCHK statement (for example, the distributed system) does
the checking.

Use SET LOGGING to control messages going to the programmable operator log file. SET LOGGING
lets the message sender control the logging level: no logging, logging incoming messages and special
programmable operator messages, or incoming messages plus response messages.

Use SET OUTID to specify that each message generated by a virtual machine using the CP MESSAGE
command be appended with a message prefix. The message prefix will be used by NetView to package
any command output and route it to the proper administrator. This option is useful when administrators
are trying to debug a server across systems, since all of the messages from the server are grouped
together and sent to the administrator at the same time.

Operands

DEBUG
SET DEBUG ON stops the programmable operator facility from intercepting responses to CP
commands. SET DEBUG OFF allows the programmable operator facility to return to its normal
function of intercepting messages and responses from CP. SET DEBUG OFF is the initial setting.

HOSTCHK
SET HOSTCHK OFF halts checking of the host system by the distributed system. SET HOSTCHK ON
restarts the checking. The initial setting is determined by the existence of a HOSTCHK statement in
the RTABLE (ON if it exists, OFF if it does not).

PROPCHK
SET PROPCHK OFF halts checking of the programmable operators on the distributed systems until
this command is reissued to set the checking back on, or until the programmable operator is stopped

108 z/VM: 7.3 CMS Planning and Administration

SET

and restarted, or the PROP LOADTBL command is issued. SET PROPCHK ON restarts the checking. If
nodeid is specified, PROPCHK applies to the specified node only. The initial setting is determined by
the existence of the PROPCHK statement(s) in the RTABLE (ON if they exist, OFF if they do not).

An error message is received if the SET PROPCHK command is given and the routing table does not
contain a PROPCHK statement or if the node ID specified in the SET PROPCHK command is not found
in a PROPCHK statement in the routing table.

LOGGING
SET LOGGING OFF causes the programmable operator facility to stop writing any messages to the
log file. SET LOGGING ON or ALL causes logging to be resumed. SET LOGGING ALL causes logging of
all programmable operator command responses, such as virtual machine console I/O generated by
action routines. Specifying UPCASE causes the incoming messages to be logged in uppercase while
specifying LOWCASE means the incoming messages are to be logged with no change to the original
message text. UPCASE is the default.

The LOGGING statement in the configuration portion of the routing table determines the initial setting.
If no LOGGING statement appears in the routing table, the default is ON and UPCASE.

OUTID
SET OUTID ON causes a message prefix to be appended to any command output from userid. If
msgprefix is specified, then it is used as the message prefix; otherwise, the userid is used as the
message prefix. SET OUTID OFF stops the appending of the message prefix.

Usage Notes

1. The SET DEBUG command is only valid from the console of the programmable operator facility virtual
machine.

2. The SET DEBUG ON command permits an authorized user to stop the programmable operator
facility from intercepting messages associated with CP commands entered from the console of the
programmable operator facility virtual machine. The programmable operator facility responds to CP
messages (MSG), warnings (WNG), and special messages (SMSG), and messages sent using the Single
Console Image Facility (SCIF), but not to responses from CP.

3. When SET DEBUG OFF is in effect, all responses to CP commands are intercepted by the
programmable operator facility. SET DEBUG OFF is in effect when the programmable operator facility
is initialized.

4, If the logical operator is on a noncheckable node (for example an NCCF or NetView operator) when he
turns HOSTCHK ON, the issuer of the SET command receives an error message.

Examples
The following is a list of examples that show how the programmable operator SET command could be
issued from a programmable operator virtual machine console:

set debug on

set debug off
The following is a list of examples that show how the programmable operator SET command could be
issued from a virtual machine console:

m op set hostchk off

m op set propchk on sys2

m op set logging off

m op set logging on upcase

m op set outid on roverk9 xxx

m op set outid off roverk9

Chapter 5. Programmable Operator Facility Commands 109

SET

The following is a list of examples that show how the programmable operator SET command could be
issued from an NCCF or NetView operator terminal:

prop set hostchk off

prop set propchk on sys2

prop set logging off

Responses
The programmable operator facility responds with:

e For commands sent by message:

Command complete
Output identifier set {ON|OFF% successfully.

Authorization failure: userid set output identifier for
user userid to msgprefix.

« For commands issued at the programmable operator console:

{PROPCHK|HOSTCHK? has been started
{PROPCHK|HOSTCHK} has been stopped
Logging has been started

Logging has been stopped

PROP running in DEBUG mode

PROP has exited DEBUG mode

110 z/VM: 7.3 CMS Planning and Administration

STOP

STOP

»— STOP >«

Purpose

Use the STOP command to stop the operation of the programmable operator facility. When the STOP
command is issued, the programmable operator facility processes all outstanding messages, closes files,
stops operation, and returns control to CMS. The STOP command is logged in the log file for the current
day.

Usage Notes

1. The STOP command is also valid from the console of the programmable operator facility virtual
machine if an operator is logged on to the programmable operator facility virtual machine.

Responses

The programmable operator facility responds with:

PROP has terminated

Chapter 5. Programmable Operator Facility Commands 111

STOP

112 z/VM: 7.3 CMS Planning and Administration

Managing Batch

Chapter 6. Managing the CMS Batch Facility

The CMS batch facility is a programming facility that runs under the CMS subsystem.

Note: If a batch job relies on 370-mode instructions, you must first ensure that the CP 370
Accommodation Facility is enabled through the BATPROF EXEC, BATEXIT1 exit routine, or from within
the batch job itself.

The CMS Batch Facility

The CMS batch facility allows VM users to run their jobs in batch mode by sending jobs either from their
virtual machines or through the real (system) card reader to a virtual machine dedicated to running batch
jobs. The CMS batch facility then executes these jobs freeing user machines for other uses.

If both the CMS batch facility and the Remote Spooling Communications Subsystem (RSCS) Networking
feature are being executed under the same VM system, job input streams can be transmitted to the batch
facility from remote stations by communication lines. Also, the output of the batch processing can be
transmitted back to the remote station.

The CMS batch facility virtual machine is generated and controlled on a user ID dedicated to execution of
jobs in batch mode. The system operator generates the batch machine either by:

« Entering the BATCH parameter in the PARM field of the IPL command, or

« Specifying the NOSPROF parameter of the IPL command and entering the CMSBATCH command when
the VM READ status appears.

After each job is executed, the batch facility IPLs itself, thereby providing a continuously processing batch
machine. The batch processor IPLs itself by using the PARM option of the CP IPL command followed by

a character string that CMS recognizes as peculiar to a batch virtual machine performing its IPL. Jobs are
sent to the batch machine's virtual card reader from users' terminals and executed sequentially. When
there are no jobs waiting for execution, the CMS batch facility remains in a wait state ready to execute a
user job.

The CMS batch facility is particularly useful for compute-bound jobs such as assemblies and compilations
and for execution of large user programs, since interactive users can continue working at their terminals
while their time-consuming jobs are run in another virtual machine.

The system programmer controls the batch facility virtual machine environment by resetting the CMS
batch facility machine's system limits, by writing routines that handle special installation input to the
batch facility, and by writing exec procedures that make the CMS batch facility easier to use.

Using the CMS Batch Facility

The batch facility is a z/VM programming facility that runs under CMS. It lets a z/VM user run jobs in
batch mode by sending jobs from either his or her own virtual machine or the real card reader to a virtual
machine dedicated to running batch jobs under the batch facility. This dedicated machine is generally set
up at a terminal in the installation's computer room and controlled by the system operator.

The batch facility virtual machine runs continuously, executing all jobs spooled to its virtual card reader
from other virtual machines or from the real card reader. The batch operator need pay no attention to the
batch machine after he or she has started and disconnected it.

Starting the Batch Virtual Machine

The system operator starts the batch virtual machine by logging on with a batch user ID and loading CMS
using the CP IPL command.

© Copyright IBM Corp. 1991, 2022 113

Managing Batch

Batch User ID

Every installation in which the CMS batch facility is available should establish one or more user IDs for the
CMS batch virtual machines. You can then spool your files for execution to the card reader for that batch
user ID.

Itis the operator's responsibility to log on the z/VM system using the batch user ID established for his or
her installation.

The user ID established for the batch facility virtual machine must have a read/write disk in its directory
at virtual address 195. The 195 disk is erased when it is accessed as file mode A at the beginning of each
job.

Invoking the Batch Facility

The batch facility virtual machine is invoked by the batch operator when he or she enters the CP IPL
command with PARM BATCH or CP IPL followed by the CMSBATCH command. The latter method follows:

ipl cms parm nosprof

The system responds with:
z/VM V4.3.0 2002-05-31 15:55
Then enter:
cmsbhatch
The system responds with:

Y/S (19E) R/O

The following names are undefined:
BATEXIT1 BATEXIT2

Ready; T=0.14/0.39 08:47:40

Waiting for reader

The operator can now disconnect the batch machine terminal, if he or she wishes, using the #CP
DISCONN command. The batch facility will IPL itself after each job is executed.

All virtual machine (CMS) console output is automatically spooled to a file to be printed after the program
output at the real system printer. All commands entered through the virtual reader are displayed on the
console to let them appear in the console output file. If the batch terminal is disconnected, only CP and
batch initialization messages are displayed at the terminal.

If an installation wishes to use a saved system in running batch jobs, the operator must enter the name of
the saved system in the CMSBATCH command line.

CMS Batch Output

The batch virtual machine spools output resulting from program execution to the system printer. Output is
printed under the submitting user ID, with the submitting user ID's distribution code, a spool file name of
CMSBATCH, and a spool file type of JOB (unless a job name was specified on the /JOB card).

The console output is always spooled. Therefore, if the console is disconnected, the CMS console output
is spooled to a file that is printed following your program execution output at the real system printer, with
the submitting user ID's distribution code, a spool file name of BATCH, and a spool file type of CONSOLE.

If the CP TAG command identifies spool files or directs these files to other virtual machines or remote
work stations, BATCH resets the spooling devices for the next job.

A more complete description regarding control of the CMS Batch virtual machine is contained in z/VM:
CMS Application Development Guide. It describes the user control cards and suggests control techniques
as well as how to control the batch machine using exec procedures.

114 z/VM: 7.3 CMS Planning and Administration

Managing Batch

Purging, Reordering, and Restarting Batch Jobs

When required, the spooling operator can control the execution of batch virtual machine jobs by purging,
reordering, and restarting them; by the same token, because all the closed printer files are queued for
system output under the submitting user ID, the submitting user can change, purge, or reorder these files
before processing on the system printer.

To purge a job executing under the batch monitor, follow the procedure below:

1. Signal attention and enter the virtual machine environment.
2. Enter the HX (halt execution) immediate command.
3. Disconnect the virtual machine using the #CP DISCONN command.

The HX command causes the batch facility to abnormally terminate. This provides you with an error
message and a CP dump of the batch facility virtual machine. The batch monitor then loads itself again
and starts the next job (if any).

To purge an individual input spool file that is not yet executing, use the CP PURGE command:

purge reader spoolid

spoolid is the spool file number of the job to be purged from the batch virtual machine's job queue. For
example, the statement

purge reader 123

would purge 123 from the batch virtual machine's job queue.

To reorder individual spool files in the job queue of the batch facility, use the CP ORDER command:

order reader spoolidl spoolid2...

spoolidl and spoolid2 are the assigned spool file identification of the jobs to be reordered.

The operator can determine which jobs are in the queue by using the CP QUERY command:

query reader all

This QUERY command lists the file names and file types of all the jobs in the batch virtual machine's job
gueue. The operator can then reorder them, using the ORDER command.

Stopping the Batch Virtual Machine

To stop batch virtual machine execution after completion of the current job, enter the HB immediate
command and press the attention key or equivalent to cause an attention interruption at anytime during
the job. This causes the batch virtual machine to be logged off at job completion.

When batch facility virtual machine execution is to be immediately stopped, but current files must be
saved, you can use the #CP SPOOL command, in the form SPOOL READER HOLD, and then enter the
#CP LOGOFF command. When you enter the SPOOL READER HOLD command, you may receive message
HCPCSP4241. Ignore this message.

The HOLD option causes CP to retain the virtual machine's current card reader file, so that when the batch
machine is logged on again, execution resumes at the beginning of the held reader file.

If an emergency should occur, all jobs in the batch reader and all spool files are saved.

Installing the CMS Batch Machine

Figure 17 on page 116 shows an example of the user directory entry for a virtual machine intended to be
IPLed as a CMS batch machine.

Chapter 6. Managing the CMS Batch Facility 115

Managing Batch

Note: This example shows the format of the directory entry for CMSBATCH in a two-member z/VM
SSI cluster. For information about directory entry formats and statements, see z/VM: CP Planning and
Administration.

IDENTITY CMSBATCH password 32M 32M X

BUILD ON systemidl USING SUBCONFIG CMSBAT-1
BUILD ON systemid2 USING SUBCONFIG CMSBAT-2
* BUILD ON @@member3name USING SUBCONFIG CMSBAT-3
* BUILD ON @@memberdname USING SUBCONFIG CMSBAT-4
ACCOUNT 3 SYSTEM

MACH ESA

OPTION ACCT

IPL 190 PARM AUTOCR

CONSOLE 009 3215

SPOOL 0OC 2540 READER =*

SPOOL 0OD 2540 PUNCH A

SPOOL OOE 1403 A

SUBCONFIG CMSBAT-1
LINK MAINT 190 190 RR
MDISK 195 3390 3142 002 MNIRES MR RBATCH WBATCH MBATCH

SUBCONFIG CMSBAT-2
LINK MAINT 190 190 RR
MDISK 195 3390 3142 002 MN2RES MR RBATCH WBATCH MBATCH

*SUBCONFIG CMSBAT-3
* LINK MAINT 190 190 RR

*SUBCONFIG CMSBAT-4
* LINK MAINT 190 190 RR

Figure 17. User Directory Entry for CMS Batch Machine

In place of the class G and class ANY commands available to all general users, the example above shows
the CMSBATCH machine being authorized for privilege class X. Note that this class is not a standard class
and must be created using user class modification. Privilege classes have been designed to allow the
CMSBATCH machine to use all class G commands except the CP TRANSFER command. You should restrict
the use of the CP TRANSFER command so that output created by CMSBATCH cannot be rerouted.

Note: There is no 191 MDISK for the CMS batch machine.

To have the CMS batch machine automatically logged on, you should have the following entry in the
autolog virtual machine's (AUTOLOG1) PROFILE EXEC:

AUTOLOG CMSBATCH password CMSBATCH

Otherwise, the operator logs on to the CMS batch machine and at the Ready message follows the
procedure described in “Invoking the Batch Facility” on page 114. Refer to z/VM: CP Commands and
Utilities Reference for more information on the AUTOLOG command.

Note: If your system has password suppression, the correct entry to have in the autolog virtual machine's
PROFILE EXEC would be:

AUTOLOG CMSBATCH CMSBATCH

The ACCT option of the OPTION directory statement must be specified to create an accounting card. This
accounting card assures that the proper user's account is charged for use of the CMSBATCH machine's
time, plus, it transfers the output from the CMSBATCH machine back to the user who sent the job.

Resetting the CMS Batch Facility System Limits

Each job running under the CMS batch facility is limited by default to the maximum value of 32,767
seconds of virtual CPU time, 32,767 punched cards output, and 32,767 printed lines of output. You can
reduce these limits by modifying the BATLIMIT MACRO file, which is found in the DMSGPI macro library,
and then reassembling DMSBTP, the batch processor source file.

116 z/VM: 7.3 CMS Planning and Administration

Managing Batch

Exec Procedures for the Batch Facility Virtual Machine

You can control the CMS batch facility virtual machine using exec procedures. For example, you can use
an exec:

« To produce the proper sequence of CP/CMS commands for users who do not know CMS commands and
controls.

« To provide the sequence of commands needed to execute the most common jobs (assemblies and
compilations) in a particular installation.

For information on how to use execs to control the batch facility virtual machine, see z/VM: CMS
Application Development Guide.

Data Security under the Batch Facility

After each job, the CMS batch facility loads (by IPL) itself destroying all nucleus data and work areas.
All disks where links were established (using a CP LINK in the job stream) during the previous job are
detached.

At the beginning of each job, the batch facility work disk is accessed and then immediately erased
preventing the current user job from accessing files that might remain from the previous job. Because of
this, execution of the PROFILE EXEC is disabled for the CMS batch facility machine. You may, however,
create an exec procedure called BATPROF EXEC and store it on any system disk to be used instead of the
ordinary PROFILE EXEC. The batch facility then executes this exec at each job initialization time.

To prevent the CMSBATCH machine from being able to reroute the output of jobs submitted by previous
users, use of the CP TRANSFER command by the CMSBATCH machine should be restricted. To do this, you
should redefine the privilege class of the CMSBATCH machine to a privilege class other than class G. The
assigned class should allow the use of all of the general user commands except the TRANSFER command.

Improved IPL Performance Using a Saved System

Since the CMS batch processor goes through an IPL procedure after each user job, an installation may
experience a more efficient IPL procedure by using a saved CMS system when processing batch jobs.

This can be accomplished by passing the name of the saved system to the CMS batch facility by the
optional sysname operand in the CMSBATCH command line.

The batch facility saves the name of the saved system until the end of the first job. At this time it stores
the name in the IPL command line both as the device address and as the PARM character string. The
latter entry informs the CMS initialization routine that a saved system has been loaded and that the name
is to be saved for subsequent IPL procedures.

Customizing the CMS Batch Facility

The CMS batch facility provides installation-wide exits for:

 Processing a non-CMS control language
- Installation-specified processing of /JOB control cards.

You must write the routines that make use of these exits. The exit routines must be named BATEXIT1 and
BATEXIT2, respectively. Each routine must have a file type of TEXT and a file mode number of 2 if placed
on the system disk or an extension of the system disk. Your routines are responsible for saving registers,
including general purpose register 12, which saves addressability for the batch facility. If you place your
routines on the system disk, they are included with the CMS batch facility each time it is loaded.

Chapter 6. Managing the CMS Batch Facility 117

Managing Batch

BATEXITA: Processing a Non-CMS Control Language

The BATEXIT1 entry point allows you to write a routine to check batch facility control cards for non-CMS
control statements. For example, you can write a routine to scan for the OS job control language needed
to compile, link edit, and execute a FORTRAN job. BATEXIT1 receives control after each read from the
CMS batch facility virtual card reader is issued. General purpose register 1 contains the address of the
batch facility read buffer, which contains the 80-byte card image to be executed by the batch facility. This
enables the BATEXIT1 routine to scan each card it receives as input for the type of control information you
specify.

After processing the card, the BATEXIT1 routine must place a return code in general purpose register

15 and return to CMS by branching to the address in register 14. If the return code from the BATEXIT1
routine is nonzero, the batch facility stops processing the card and reads the next card. If the return code
from the BATEXIT1 routine is zero, the batch facility continues processing by passing the card to CMS for
execution.

BATEXIT2: Special Processing of /JOB Control Cards

The BATEXIT2 entry point allows you to write a routine to do special processing of batch facility /JOB
control cards. BATEXIT2 receives control after CMS has scanned the /JOB card and built the parameter
list, but before the batch routine used to process the /JOB card begins its processing. General purpose
register 1 points to the CMS parameter list buffer. This buffer consists of the following 8-byte fields
containing data from the /JOB card:

1./J0B

2. userid

3. acentnum

4. jobname (optional)

Your routine can redefine the contents of fields 2, 3 and 4.

After processing the /JOB card, the BATEXIT2 routine must place a return code in register 15 and return
to CMS by branching to the address in register 14. If the return code from the BATEXIT2 routine is
nonzero, the batch facility issues CMS error message 106E and flushes the job. If the return code from
the BATEXIT2 routine is zero, the batch facility assumes that register 1 points to the /JOB control card
information. The batch facility then does its normal checking of the /JOB control card information for a
valid user ID and the existence of an account number and optional job name. Finally, execution of the job
begins.

118 z/VM: 7.3 CMS Planning and Administration

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119
Armonk, NY 10504-1785

us

© Copyright IBM Corp. 1991, 2022 119

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information

This book primarily documents information that is NOT intended to be used as Programming Interfaces of
z/VM.

This book also documents intended Programming Interfaces that allow the customer to write programs
to obtain the services of z/VM. This information is identified where it occurs, either by an introductory
statement to a chapter or section or by the following marking:

<...Programming Interface information...>

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Terms and Conditions for Product Documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

120 z/VM: 7.3 CMS Planning and Administration

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use

You may reproduce, distribute and display these publications solely within your enterprise provided

that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS

ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,

to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

« The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)

« Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 121

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

122 z/VM: 7.3 CMS Planning and Administration

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information

The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview

« z/VM: License Information, GI113-4377
« z/VM: General Information, GC24-6286

Installation, Migration, and Service

« z/VM: Installation Guide, GC24-6292

e z/VM: Migration Guide, GC24-6294

« z/VM: Service Guide, GC24-6325

« z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration

= z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
« z/VM: CMS Planning and Administration, SC24-6264

« z/VM: Connectivity, SC24-6267

= z/VM: CP Planning and Administration, SC24-6271

« z/VM: Getting Started with Linux on IBM Z, SC24-6287

« z/VM: Group Control System, SC24-6289

= z/VM: I/O Configuration, SC24-6291

« z/VM: Running Guest Operating Systems, SC24-6321

« z/VM: Saved Segments Planning and Administration, SC24-6322

z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning

« z/VM: CP Exit Customization, SC24-6269
» z/VM: Performance, SC24-6301

Operation and Use

« z/VM: CMS Commands and Utilities Reference, SC24-6260
e z/VM: CMS Primer, SC24-6265

« z/VM: CMS User's Guide, SC24-6266

« z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2022 123

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

z/VM: System Operation, SC24-6326

« z/VM: Virtual Machine Operation, SC24-6334

z/VM: XEDIT Commands and Macros Reference, SC24-6337
z/VM: XEDIT User's Guide, SC24-6338

Application Programming

- z/VM: CMS Application Development Guide, SC24-6256

« z/VM: CMS Application Development Guide for Assembler, SC24-6257

= z/VM: CMS Application Multitasking, SC24-6258

« z/VM: CMS Callable Services Reference, SC24-6259

« z/VM: CMS Macros and Functions Reference, SC24-6262

« z/VM: CMS Pipelines User's Guide and Reference, SC24-6252

 z/VM: CP Programming Services, SC24-6272

« z/VM: CPI Communications User's Guide, SC24-6273

« z/VM: ESA/XC Principles of Operation, SC24-6285

« z/VM: Language Environment User's Guide, SC24-6293

« z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
« z/VM: OpenExtensions Callable Services Reference, SC24-6296

« z/VM: OpenExtensions Commands Reference, SC24-6297

» z/VM: OpenExtensions POSIX Conformance Document, GC24-6298

« z/VM: OpenExtensions User's Guide, SC24-6299

« z/VM: Program Management Binder for CMS, SC24-6304

« z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
« z/VM: REXX/VM Reference, SC24-6314

« z/VM: REXX/VM User's Guide, SC24-6315

- z/VM: Systems Management Application Programming, SC24-6327

 z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis

e z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
z/VM: CP Messages and Codes, GC24-6270

z/VM: Diagnosis Guide, GC24-6280

z/VM: Dump Viewing Facility, GC24-6284

z/VM: Other Components Messages and Codes, GC24-6300
z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM

« z/VVM: DFSMS/VM Customization, SC24-6274

« z/VM: DFSMS/VM Diagnosis Guide, GC24-6275

« z/VM: DFSMS/VM Messages and Codes, GC24-6276
e z/VM: DFSMS/VM Planning Guide, SC24-6277

124 z/VM: 7.3 CMS Planning and Administration

« z/VM: DFSMS/VM Removable Media Services, SC24-6278
« z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM

« z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
= z/VM: Directory Maintenance Facility Messages, GC24-6282
 z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
« Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/
pages/node/6019492), SA22-7935

« Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/
support/pages/node/6019810), SC27-9003

« Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/
docs/en/SSLTBW_2.1.0/com.ibm.zos.v2rl.ioa/ioa.htm), SA23-2247

« Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/
docs/en/SSLTBW_2.1.0/com.ibm.zos.v2rl.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM

 z/VM: Performance Toolkit Guide, SC24-6302
« z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM

« z/VM: RACF Security Server Auditor's Guide, SC24-6305

« z/VM: RACF Security Server Command Language Reference, SC24-6306
« z/VM: RACF Security Server Diagnosis Guide, GC24-6307

« z/VM: RACF Security Server General User's Guide, SC24-6308

« z/VM: RACF Security Server Macros and Interfaces, SC24-6309

« z/VM: RACF Security Server Messages and Codes, GC24-6310

« z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
« z/VM: RACF Security Server System Programmer's Guide, SC24-6312

« z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM

 z/VM: RSCS Networking Diagnosis, GC24-6316

z/VM: RSCS Networking Exit Customization, SC24-6317

z/VM: RSCS Networking Messages and Codes, GC24-6318
z/VM: RSCS Networking Operation and Use, SC24-6319

z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM

« z/VM: TCP/IP Diagnosis Guide, GC24-6328

« z/VVM: TCP/IP LDAP Administration Guide, SC24-6329
« z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 125

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

= z/VM: TCP/IP Planning and Customization, SC24-6331
« z/VM: TCP/IP Programmer's Reference, SC24-6332
« z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities

Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/

resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program

Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/

resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/

servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/0S

Common Programming Interface Communications Reference (https.//publibfp.dhe.ibm.com/epubs/pdf/

€2643999.pdf), SC26-4399

z/0S and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/

resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

z/0S and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/

resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequl00_v2r5.pdf), SC34-2670

z/0S: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5sa320988/$file/hasab00_v2r5.pdf), SA32-0988

z/0S: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/

resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

z/0S: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

z/0S: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5ga320908/$file/ceeal00_v2r5.pdf), GA32-0908

z/0S: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

z/0S: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

z/0S: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

z/0S: Language Environment Writing Interlanguage Communication Applications (https://

www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceead00_v2r5.pdf),

SA38-0684
z/0S: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/

svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

z/0S: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/

resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieabl00_v2r5.pdf), SA23-1393

126 z/VM: 7.3 CMS Planning and Administration

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM

« XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
« XL C/C++ for z/VM: User's Guide, SC09-7625

Bibliography 127

128 z/VM: 7.3 CMS Planning and Administration

Index

Special Characters
*NCCF 67, 75, 76

Numerics

3380 DASD

capacity for CMS minidisks 13
3390 DASD

capacity for CMS minidisks 13
370 Accommodation Facility 1
9345 DASD

capacity for CMS minidisks 13

A

A-disk
accessing 9
CMS primary user disk 4
ABENDs
programmable operator facility 86
abnormal termination (abend)
programmable operator facility 50, 86
ACCESS command in CMS 8
access file modes in CMS files 8
action routines
call interface 86
DMSPOL 92
DMSPOR
GET 90
LGLOPR 90
QUERY 90
SET 90
STOP 90
TOFB 90
TOVM 90
DMSPOS 91
error message and response handling 89
exec 88
handling console I/0O 89
interface 86
parameter interface 86
writing 88
Ada program language 7
AMS (Access Method Services)
DASD devices supported 22
DOS VSAM data set support 21
OS data set support 21
SAM data set support 21
supported under CMS 21
APL2 program language 7
Assembler (High Level Assembler, Assembler H, and
Assembler F) 7
assign
logical operator 60, 90
automatic
invocation of the programmable operator 52

auxiliary storage required by CMS 2

batch facility
BATLIMIT MACRO file 116
data security 117
description 113
exec procedures 117
installing 115
invoking 114
IPL performance 117
resetting system limits 116
system limits 116
using 113
batch jobs
purging 115
reordering 115
restarting 115
batch virtual machine
starting 113
stopping 115
BATEXIT1 exit routine 117
BATEXIT2 exit routine 117
BATLIMIT macro 116
build list 18

C

C program language 7
C++ program language 7
Callable Services Library 6
capacity, DASD
CMS 13
minidisks 13
changing a logical operator
LGLOPR command 60
CKD (Count-Key-Data)
devices
CMS block 10
CMD command, programmable operator 96
CMS (Conversational Monitor System)
batch facility
BATEXIT1 exit routine 117
BATEXIT2 exit routine 117

job control card, installation-specified processing

118
non-CMS control statements, processing 118
installation saved segment 37
multitasking 6
CMS nucleus
adding segment for Y minidisk directory (Y-STAT)
40
generation profile 35
increasing size 40
CMS/DOS
ASSGN command 24, 25

Index 129

CMS/DOS (continued)
CMSBAM saved segment 23
CMSDOS saved segment 23
disk label information area 25
DLBL command 24, 25
librarian programs 24
planning considerations 23
SET DOS ON command 24
tape handling 24
VSE compilers 23
VSE sysres 23
VSE system and private libraries 23
VSE system generation considerations 23
when VSE system must be online 24
CMSBAM DOSLIB 6
CMSLIB MACLIB 5
CMSLIB TXTLIB 6
CMSLOAD EXEC 41
CMSSAA TXTLIB 6
COBOL (0S/VS COBOL and VS COBOL II) 7
commands
IPL CMS command 27
programmable operator
CMD 96
FEEDBACK 98
GET 99
LGLOPR 100
LOG 104
QUERY 105
SET 108
STOP 111
SAVEFD 39
communication

between the programmable operator and the network

50
in a mixed environment 84
IUCV 54
programmable operator and NCCF or NetView 58
programmable operator with IUCV 54
configurations supported by CMS 11
control block mappings 87
Control Program (CP)
device simulation 4
disk access 8
controlling authorization 73
Conversational Monitor System (CMS)
A-disk 4
assembler used with CMS 7
auxiliary storage requirements 2
batch facility 113
capacity of virtual disks 10
command language 2
DASD storage
BFS 12
SFS 12
default device addresses 3
devices supported 3
disk and file management
CMS 8
0S/DOS 8
VSAM 8
disks
access 8
capacity 10

130 z/VM: 7.3 CMS Planning and Administration

Conversational Monitor System (CMS) (continued)

disks (continued)
file format 9
formatting 9
labels 9
linking 9
FB-512 blocks 10
file directory 10
File Pools
file pool server processing 14
top directory 12
files
access modes 8
format 9
identification 11
sharing 9
using SFS 9
FORMAT command 9
formatted disks volume label contents 9
immediate commands 91
libraries 4
limited support of OS and VSE 7
master file directory 11
nucleus
enlarging for Y-STAT 40,
41
generation profile 35
size and location 38
partitioned data sets 4
planning considerations 1
program language facilities 7
program languages supported under CMS 7
records, maximum usable number per file 10
restrictions 14
Shared File System (SFS)
disk and file management 9
file pool 12,14, 21
file pool server machine 12
file pool space 2
file space 12
top directory 3
shared segments 11
simulated partitioned data sets 4
storage requirements 2
support of DL/I 7
symbolic names for devices 3
system disk (S-disk) 4
system libraries
macroinstruction 5
text 6
tailoring 27
tape support 11
unit record support 4, 11
virtual storage requirements 2

Coordinated Resource Recovery (CRR)

DASD storage requirements 14

DASD storage

space needed by CMS 2
storage
for CMS minidisks 13

data

data (continued)
area mappings 87
security in batch facility 117
data compression
VSAM files 21, 23
debug mode, programmable operator 94
default logical operator 48
DEFINE command 8
DEFNUC macro 34
Device Support Facility
formatting with 8
initializing with 21
devices
default addresses for CMS 3
supported by CMS 3
supported by CMS VSAM 22
direct access storage device (DASD)
space needed by CMS 2
storage
for CMS minidisks 13
directory
CMS file directory 10
Shared File System 4, 8
disk access 8
disk and file management within an SFS directory 8
Disk Operating System (DOS)
assembling VSE programs under CMS 5
macroinstruction library for CMS 5
support under CMS 7
disk space
space needed by CMS 2
storage
for CMS minidisks 13
disks
CMS, access 8
formatting for CMS 9
labels, CMS 9
management
CMS 8
0S/DOS 8
VSAM 8
DL/I support in CMS/DOS environment 7
DMSAENV TXTLIB 6
DMSAMT TXTLIB 6
DMSBASE TXTLIB 6
DMSCENV TXTLIB 6
DMSCMT TXTLIB 6
DMSGPI MACLIB 5
DMSNGP text file 35
DMSOM MACLIB 5
DMSPOL programmable operator action routine 92
DMSPOR programmable operator action routine 90
DMSPOS programmable operator action routine 91
DMSSP MACLIB 5
DMSTOEAG module, invoking 29
DMSZNGP text file 35
DOS (Disk Operating System)
assembling VSE programs under CMS 5
macroinstruction library for CMS 5
support under CMS 7

E

ensuring a complete log

ensuring a complete log (continued)
in a distributed system 77
in a mixed environment 78
in a single system 77
ESA virtual machine 1
ESA/390 architecture 1
ESA/XC architecture 1
establishing communication
programmable operator and NCCF or NetView 58
programmable operator with IUCV 54
estimating
DASD storage requirements for CMS 12
DASD storage requirements for CMS minidisks 13
DASD storage requirements for file pools 14
exec action routines 88
exec procedures for CMS batch 117
exec sharing 40
exec, exit 49
execution-time libraries 6
exit exec 49
exit execs, programmable operator
interface 92
exit EXECs, programmable operator
communication error
PROPPCHK 93

exits
BATEXIT1 routine 117
BATEXIT2 routine 117
CMS
batch facility 117
BATEXIT1 routine 117
BATEXIT2 routine 117
installation-wide
BATEXIT1 routine 117
BATEXIT2 routine 117

F

FB-512
capacity for CMS minidisks 13
CMS block 10

minidisk space allocation 13
FEEDBACK command, programmable operator 98
feedback file 78
file

pool

planning 12
server machine 12

sharing 9
file directory

information 39

updating 10
FILEDEF command

to invoke the programmable operator 52
files

CMS

file modes 9
maximum number of records 10
Shared File System (SFS) 9
sharing 9
management
CMS 8
0S/D0OS 8
VSAM 8

Index 131

filtering messages 72
FORMAT
command (CMS)
as used during disk formatting 9
FPLGPI MACLIB 5
FPLOM MACLIB 5
free storage required by CMS 2

G

GET

command, programmable operator 99
GET action subroutine 90
Group Control System (GCS)

and the programmable operator facility 48, 56

H

hardware devices supported by VSE 22
HCPGPI MACLIB 5

HCPPSI MACLIB 5

HOSTCHK statement 63

I

identification of CMS files 11
identifying disk files 11
immediate commands in CMS 91
initialize
programmable operator 53
install
CMS batch machine 115
PMX 56
programmable operator 51
invoking
CMS batch facility 114
invoking
commands 95
issuing commands 95
programmable operator facility
automatically 52
commands 80, 95
manually 51
invoking DMSTOEAG 29
IPL CMS command
BATCH parameter 113
description of 28
NOSPROF parameter 113
SAVESYS parameter 28
IPL command 27
IPL directory control statement 32, 52, 91
IPL directory statement 28
IPL performance using saved system 117
ISAM Interface Program (IIP) 22
IUCV (Inter-User Communication Vehicle)
communication 54
programmable operator 54
IXXOM MACLIB 5

L

languages supported by CMS 7
LGLOPR

132 z/VM: 7.3 CMS Planning and Administration

LGLOPR (continued)
action subroutine 90
command 90
statement 62
libraries
Callable Services Library 6
CMSBAM DOSLIB 6
execution-time libraries 6
PROPLIB LOADLIB 6
System Macroinstruction Library
CMSLIB MACLIB 5
DMSGPI MACLIB 5
DMSOM MACLIB 5
DMSSP MACLIB 5
FPLGPI MACLIB 5
FPLOM MACLIB 5
HCPGPI MACLIB 5
HCPPSI MACLIB 5
IXXOM MACLIB 5
MVSXA MACLIB 5
OSMACRO MACLIB 5
OSMACRO1 MACLIB 5
OSVSAM MACLIB 5
System Text Library
CMSLIB TXTLIB 6
CMSSAA TXTLIB 6
DMSAENV TXTLIB 6
DMSAMT TXTLIB 6
DMSBASE TXTLIB 6
DMSCENV TXTLIB 6
DMSCMT TXTLIB 6
POSXSOCK TXTLIB 6
TSOLIB TXTLIB 6
VMLIB TXTLIB 6
VMMTLIB TXTLIB 6
VSE system and private libraries 23
limited support of OS and VSE in CMS 7
LINK command
use in disk access 9
linking CMS disks 9
load list 41
LOADTBL command, programmable operator 102
LOG command, programmable operator 104
log file 75
LOGGING statement 64
logical operator
action routine 90
assigning, releasing, replacing 60
command 60, 90, 100
compared to the CP system operator 58
default 48, 59
LGLOPR
command 100
NCCF or NetView 59
statement 62
logical records, CMS 10

M

macroinstruction
CMS macroinstructions 5
DEFNUC 34
OS macroinstructions under CMS, simulating 7
0S/MVS macroinstruction libraries under CMS 5

macroinstruction (continued)
VSAM macroinstruction library under CMS 5
VSE macroinstruction library under CMS 5
manual invocation of the programmable operator 51
master file directory, identifying CMS files 11
message

comparison text used by programmable operator 66

exchange (PMX) 48, 56

format, programmable operator 55

intercepted by CP 50

system service 54

to programmable operator 47
message examples, notation used in xiii
minidisk

file directory of 39

shared, EDF R/O

39
MSGLIMIT statement 64
multitasking 6
MVSXA MACLIB 5

N

NCCF 67, 75
NetView
and the programmable operator facility
logging NetView messages 76
logical operator 59
operator
command authorization 57
QUERY command authorization 59
station 80
PMX 48, 56
when stopping programmable operator 56
Network Communications Control Facility (NCCF)
and the programmable operator facility
logging NCCF messages 76
logical operator 59
operator
command authorization 57
QUERY command authorization 59
routing messages to 72
station 80
PMX 48, 56
when stopping programmable operator 56
notation used in message and response examples xiii
nucleus generation profile 35

o

object programs (TEXT files) under CMS 7
operator
logical 48
NCCF station 80
NetView station 80
0S (Operating System)
macroinstruction libraries for CMS 5
support under CMS 7
OS PL/I program language 7
OSMACRO MACLIB 5
OSMACRO1 MACLIB 5
OSVSAM MACLIB 5

P

PA1 program function key

with

the programmable operator facility 53, 94

partitioned data set (PDS)
CMS, limited support 7

physical

record, CMS 10

planning

CMS1
for SFS, BFS and CRR 12
VSAM support 21

VSE

simulation 21

PMX (Programmable Operator/NCCF Message Exchange) 56

program

languages supported by CMS 7

programmable operator facility
abend 50, 86
action routine interface

call interface 86
parameter interface 86

action routines

com

com

DMSPOL 92

DMSPOR 90

DMSPOS 91

error message and response handling 89
EXEC 86

handling console I/O 89

writing 88

munication

with the network 50

munication error exit exec 79

debug mode 94
default 59
environments

distributed z/VM 82
mixed 84

examples

in a distributed environment 82

exit exec

communication error 93
interface 92
overview 49

PROPLGER EXEC 76
PROPPCHK EXEC 93

initializing 53
installing

PMX 56

invoking

automatically 52

issuing commands 81, 85
LGLOPR

default 48
sample command entries in RTABLE 60
statement 48

log file 75
logical operator 49
message format

distributed 80
local 80

overview

how it works 49

in a distributed z/VM system 47
in a mixed environment 48

in a single system 47

Index 133

programmable operator facility (continued)
overview (continued)
logical operator 48
PMX
stopping 58
PROPLIB LOADLIB 51
PROPPROF EXEC 53
PROPST EXEC 52
relationship with RSCS 50
routing
entries to filter responses to commands 73
routing table
use 61
routing table (RTABLE) 48
routing table statements
TEXTSYM 62
starting 53
virtual machine 51
with NCCF
command authorization 57

Programmable Operator/NCCF Message Exchange (PMX) 56

programming interface information 120
PROPCHK statement 63

PROPEPIF EXEC 55

PROPLGER EXEC 76

PROPLIB LOADLIB 6, 51, 53
PROPPCHK EXEC 93

PROPPROF EXEC 53

PROPST EXEC 52

purging the batch facility 115

Q

QUERY command
action subroutine 90
command, programmable operator 105

R

records, maximum usable number per CMS file 10
releasing a logical operator
LGLOPR command 60

Remote Spooling Communications Subsystem Networking

(RSCS)

relationship with programmable operator facility 50, 79

reordering the batch facility 115
replace

a logical operator

LGLOPR command 60

response examples, notation used in xiii
restarting the batch facility 115
restriction

CMS 14
REXX program language 7
REXX runtime library, selecting 28
ROUTE statement 64
routines, action 49
routing table (RTABLE) 48, 61
routing text comparison example 69
RTABLE (routing table) 48, 61
running programs

programmable operator from NCCF or NetView 56

134 z/VM: 7.3 CMS Planning and Administration

S

S-disk
CMS system disk
accessing 8
System Macroinstruction libraries 5
System Text libraries 6
SAVEFD command 39
selecting REXX runtime library 28
SET
command, programmable operator 108
SET action subroutine 90
Shared File System (SFS)
directory access 9, 51
enrollment 3
planning 2
shared segments, CMS 11
sharing
execs and XEDIT macros 40
file directory information 39
space
space needed by CMS 2
storage
for CMS minidisks 13
specify
routing texts to an NCCF or NetView operator 71
start
programmable operator 53
STOP, programmable operator
action subroutine 90
command 111
stopping
batch virtual machine 115
programmable operator facility 55
storage, DASD
space needed by CMS 2
storage
for CMS minidisks 13
symbolic names for CMS devices 3
syntax diagrams, how to read xi
SYSPROF EXEC
bypassing 32
changing 30
description of 27
functions of 27, 32
inputs 30
modifying 28
output 32
system
definition
considerations for VSE 23
macroinstruction libraries 5
profile 27
text libraries 6
system NETID file 44

T

table, routing 48

tailoring
programmable operator routing table 69
your system 27

tapes
handling, CMS/DOS 24

tapes (continued)
support for CMS 11
terminating the programmable operator facility 55
text libraries, CMS 6
TEXTSYM statement 62
TOFB action subroutine 90
TOVM action subroutine 90
transient area, CMS storage requirements 2
TSO text library for CMS 6
TSOLIB TXTLIB 6

U

unit record device
support for CMS 4, 11

\'}

virtual
disks 8
storage

CMS requirements 2
virtual machine
programmable operator 49, 51
VMLIB CSLLIB 6
VMLIB CSLSEG 6
VMLIB TXTLIB 6
VMMTLIB logical saved segment 37
VMMTLIB TEXT 6
VMMTLIB TXTLIB 6
volume label contents, CMS formatted disks 9
VS FORTRAN program language 7
VS Pascal program language 7
VSAM (Virtual Storage Access Method)
CMS support 21
CMS support for OS and VSE users 7
DASD devices supported 22
data compression 21, 23
data set compatibility with CMS 22
DOS/VS SORT/MERGE support 21
ISAM Interface Program (IIP) 22
macroinstruction library for CMS 5
master catalog 21
minidisks 21
OS macroinstruction support 21
planning 21
planning considerations 22
VSE macroinstruction support 21
VSE (Virtual Storage Extended)
compilers 23
macroinstruction library for CMS 5
planning 21
system and private libraries 23
system generation considerations 23

X

XA virtual machine 1

XC virtual machine
ESA/XC 1
z/XC1

XEDIT macro sharing 40

Y

Y minidisk directory (Y-STAT)
adding segment for Y-STAT
40

Y4

z/Architecture CMS
nucleus size and location 38
responses to prompts issued during nucleus generation
34
specifications 17
using 18
z/CMS 1
z/XC architecture 1
ZCMS named saved system 18
ZCMSLOAD EXEC 41

Index 135

136 z/VM: 7.3 CMS Planning and Administration

Product Number: 5741-A09

Printed in USA

SC24-6264-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where To Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: CMS Planning and Administration
	SC24-6264-73, z/VM 7.3 (September 2022)
	SC24-6264-02, z/VM 7.2 (March 2021)
	SC24-6264-01, z/VM 7.2 (September 2020)
	SC24-6264-00, z/VM 7.1 (September 2018)

	Chapter 1. Planning for CMS
	What CMS Does
	CMS Command Language
	Storage Requirements
	Auxiliary Storage

	Device Support
	Disks

	Libraries
	Libraries on the CMS System Disk
	Program Language Facilities
	Limited Support of OS and VSE in CMS
	DL/I in the CMS/DOS Environment

	Disk and File Management
	Disk Access
	SFS Directory Access
	File Sharing
	Disk File Format
	Identifying Disk Files

	Tape Support
	Unit Record Support
	Shared Segments

	Configurations Supported by CMS
	Planning for SFS, BFS and CRR
	Estimating DASD Storage Requirements for CMS
	Estimating DASD Storage Requirements for CMS Minidisks
	Estimating DASD Storage Requirements for File Pools
	Estimating DASD Storage Requirements for CRR File Pools

	CMS Restrictions
	z/Architecture CMS
	z/CMS Specifications
	64-Bit Addressing Mode
	Storage
	Auxiliary Storage Requirements

	Large Registers
	NUCON
	Mapping Files
	XC Mode
	Diagnose Support

	Using z/CMS

	Chapter 2. Planning for VSE Simulation and VSAM Support
	Planning for CMS VSAM and Access Method Services
	Hardware Devices Supported by VSE
	Data Set Compatibility Considerations
	ISAM Interface Program (IIP)

	Planning Considerations for Installing VSAM under CMS

	Using Data Compression with the VSE System
	Creating a Compressed CLUSTER
	Application Migration Considerations

	Planning for CMS/DOS
	VSE System Generation Considerations
	When the VSE System Must Be Online
	CMS/DOS Tape Handling
	CMS/DOS Disk Label Information Area

	Chapter 3. Tailoring CMS
	Using the SYSPROF EXEC to Tailor the CMS Environment
	System Profile Functions
	Modifying the SYSPROF EXEC
	Invoking the IPL CMS Command
	Selecting a REXX Runtime Library
	Invoking DMSTOEAG
	Usage Notes

	How to Change the SYSPROF EXEC
	Input to the SYSPROF EXEC
	Output from the SYSPROF EXEC

	How to Bypass the System Profile
	Setting Up a Protected Application Environment
	What the System Profile Can Do for Installations

	DEFNUC Macro
	Sharing File Directory Information
	Sharing Execs and XEDIT Macros
	Enlarging the CMS Nucleus to Contain the Y Minidisk Directory (Y-STAT)
	Use the SYSTEM NETID File to Configure Communication Across an NJE Network

	Chapter 4. The Programmable Operator Facility
	Using the Programmable Operator Facility in Various System Environments
	Use in a Single System
	Use in Distributed z/VM Systems
	Use in a Mixed Environment

	The Logical Operator
	Routing Table Information
	Action Routines
	Exit Execs
	How It Works
	Flow of Operation
	Relationship to RSCS
	Programmable Operator Virtual Machine
	Installing the Programmable Operator Facility
	Invoking the Programmable Operator Facility
	Manual Invocation
	Automatic Invocation
	Initialization
	How the Programmable Operator Establishes Communications with IUCV

	Message Output Format
	Stopping the Programmable Operator Facility
	PROPEPIF EXEC
	Effect on an NCCF or NetView Logical Operator

	Running the Programmable Operator Facility from NCCF or NetView
	The Programmable Operator/NCCF Message Exchange
	Installing the PMX
	Communication between the Programmable Operator and NCCF or NetView
	Stopping the PMX

	The Logical Operator
	The Default Logical Operator
	The NCCF or NetView Logical Operator
	Assigning or Changing the Logical Operator

	The Routing Table
	How the Programmable Operator Facility Uses the Routing Table
	Routing Table Configuration Entry Statements
	LGLOPR Statement
	TEXTSYM Statement
	PROPCHK Statement
	HOSTCHK Statement
	LOGGING Statement
	ROUTE Statement
	MSGLIMIT Statement

	Routing Table Configuration Example
	Routing Table Comparison Entry Statements
	Tailoring the Routing Table
	Routing Text Comparison Examples
	RTABLE Examples

	Routing Messages to an NCCF or NetView Operator
	Filtering Messages
	Controlling Authorization
	Restricting Command Use

	The Log File
	Logging NCCF or NetView Messages in the Log File
	Ensuring a Complete Log

	The Feedback File
	Communications Checking
	Invoking Programmable Operator Facility Commands
	Issuing Commands in the Single System Environment
	Issuing Commands in the Distributed z/VM Environment
	Issuing Commands in a Mixed Environment
	Helpful Hints

	Action Routines
	Action Routine Interface
	Action Routine Call Interface
	Action Routine Parameter Interface
	Exec Action Routines
	Writing Action Routines
	Action Routine Error Message and Response Handling
	Handling Console I/O in an Action Routine

	Description of Supplied Action Routines
	DMSPOR — Miscellaneous Action Subroutines
	DMSPOS — Route a Message
	DMSPOL — Load a Routing Table

	Exit Execs
	Exit Exec Interface
	Log Error Exit (PROPLGER)
	Communication Exit (PROPHCHK/PROPPCHK)

	Problem Determination—Debug Mode

	Chapter 5. Programmable Operator Facility Commands
	CMD
	FEEDBACK
	GET
	LGLOPR
	LOADTBL
	LOG
	QUERY
	SET
	STOP

	Chapter 6. Managing the CMS Batch Facility
	The CMS Batch Facility
	Using the CMS Batch Facility
	Starting the Batch Virtual Machine
	Batch User ID
	Invoking the Batch Facility

	CMS Batch Output
	Purging, Reordering, and Restarting Batch Jobs
	Stopping the Batch Virtual Machine
	Installing the CMS Batch Machine
	Resetting the CMS Batch Facility System Limits
	Exec Procedures for the Batch Facility Virtual Machine
	Data Security under the Batch Facility

	Improved IPL Performance Using a Saved System
	Customizing the CMS Batch Facility
	BATEXIT1: Processing a Non-CMS Control Language
	BATEXIT2: Special Processing of /JOB Control Cards

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Y
	Z

