
z/VM
7.3

CMS Macros and Functions Reference

IBM

SC24-6262-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
565.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2025-06-16
© Copyright International Business Machines Corporation 1991, 2025.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Syntax, Message, and Response Conventions..xiii
Where to Find More Information...xvi

Links to Other Documents and Websites.. xvi

How to provide feedback to IBM... xvii

Summary of Changes for z/VM: CMS Macros and Functions Reference.................. xix
SC24-6262-73, z/VM 7.3 (June 2025)... xix
SC24-6262-73, z/VM 7.3 (December 2023).. xix
SC24-6262-73, z/VM 7.3 (September 2022)...xix

Part 1. CMS Preferred Programming Interface.. 1

Chapter 1. CMS Programming Interface... 3
CMS Interface Groups.. 4
CMS Preferred Interface...5

CMS Preferred Macros.. 5
CMS Preferred Routines..9
CMS Preferred Functions.. 9

CMS Compatibility Interface.. 10
CMS Compatibility Macros and Suggested Replacements.. 10
CMS Functions and Suggested Replacements...10

Simulated OS/MVS Macros.. 11
OS/MVS Macros for Assembly Only..14

Chapter 2. Preferred CMS Macro Instructions.. 15
CMS Macro Coding Conventions.. 15
CMS Macro Formats... 15
Using the Online HELP Facility... 16
ABNEXIT... 18
AMODESW.. 23
AMODESW CALL... 24
AMODESW QRY.. 26
AMODESW RETURN... 27
AMODESW SET... 29
ANCHOR..31
APPLMSG.. 34
BATLIMIT..46
CMSCALL...47
CMSCVT.. 54
CMSDEV.. 56
CMSECVT.. 60
CMSIUCV.. 61

 iii

CMSIUCV ACCEPT.. 62
CMSIUCV CONNECT... 67
CMSIUCV QCMSWID.. 74
CMSIUCV RESOLVE.. 77
CMSIUCV SEVER...80
CMSLEVEL...84
CMSRET.. 86
CMSSTACK.. 87
CMSSTOR..90
CMSSTOR OBTAIN..91
CMSSTOR RELEASE..100
COMPSWT.. 106
CONSOLE.. 107
CONSOLE CLOSE.. 108
CONSOLE EXCP.. 110
CONSOLE MODIFY... 113
CONSOLE OPEN..116
CONSOLE QUERY... 121
CONSOLE READ..125
CONSOLE WAIT..129
CONSOLE WRITE..132
CQYSECT...138
CSFCB... 140
CSLENTRY...141
CSLEXIT..144
CSLFPI.. 146
CSLGETP... 150
CSRCMPSC... 152
CSRYCMPD... 155
CSRYCMPS..160
DIRBUFF...163
DMSABEXP... 168
DMSABN... 169
DMSFST.. 170
DMSJNEPL..171
DMSQEFL..172
DMSSDWA.. 173
DMSSTATE.. 176
ENABLE...178
EPLIST.. 180
EXITBUFF... 182
EXSBUFF...185
EXTUAREA.. 188
EXTXCTL... 189
FPERROR.. 190
FSCB... 191
FSCBD...194
FSCLOSE... 196
FSERASE...199
FSOPEN.. 202
FSPOINT...213
FSREAD...217
FSSTATE..224
FSTD... 230
FSWRITE...232
GETSID... 239
HNDEXT.. 242
HNDINT.. 247

iv

HNDIO.. 250
HNDIUCV.. 257
HNDIUCV CLR (Clear)...258
HNDIUCV HLD (Hold)... 261
HNDIUCV REP (Replace)..263
HNDIUCV RES (Resume)..267
HNDIUCV SET...269
HNDSVC..273
HSVCSAVE.. 277
IMMBLOK..278
IMMCMD... 279
INTBLOK...283
LABSECT...285
LANGBLK.. 287
LINERD... 289
LINEWRT.. 301
LRDD... 308
LWRD.. 310
NUCEXT.. 317
NUCEXT ANCHOR...318
NUCEXT CLR...320
NUCEXT QUERY..322
NUCEXT RENAME...324
NUCEXT SET... 326
NUCON..333
PARSECMD... 334
PARSERCB.. 340
PARSERUF.. 342
PRINTL..343
PUNCHC..350
PVCENTRY.. 352
RDCARD..354
RDTAPE...357
REGEQU..362
REXEXIT... 363
RXITDEF... 369
RXITPARM.. 370
SCAN...372
SCBLOCK.. 376
SEGMENT... 378
SGMTEXIT.. 386
SHVBLOCK..387
SUBCOM... 389
SUBCOM ANCHOR..390
SUBCOM CLR..392
SUBCOM QUERY...394
SUBCOM SET.. 396
SUBPOOL..401
SUBPOOL CREATE..402
SUBPOOL DELETE and RELEASE... 406
TAPECTL... 410
TAPESL..418
TRANTBL.. 423
TVISECT..424
USERSAVE.. 427
USERSECT.. 428
VOLSECT...429
WAITD.. 430

 v

WAITECB.. 432
WAITT...435
WRTAPE.. 436
WUERROR...442

Chapter 3. CMS Preferred Functions...443
DISKID..444
DMSSEQ..446
LANGADD... 447
LANGFIND.. 449

Part 2. Compatibility Programming Interface..451

Chapter 4. CMS Compatibility Macros...453
CMSCB.. 454
DISPW...459
DMSEXS.. 460
DMSFREE..461
DMSFRES..463
DMSFRET..464
DMSKEY.. 466
IO.. 468
LINEDIT.. 472
RDTERM..482
STRINIT.. 485
TEOVEXIT... 486
WRTERM... 490

Chapter 5. CMS Compatibility Functions.. 493
ATTN... 494
NUCEXT.. 495
SUBCOM... 500
TODACCNT..503
WAITRD.. 505

Appendix A. Simplified RACROUTE Macro Functions... 509
External Interfaces Supported for REXX Callers.. 509

IBM-Provided Binding Files... 510
IBM-Provided REXX EXECs..510

External Interfaces supported for REXX, Assembler, and C Callers.. 513
Testing Whether a Class is Active with DMSWSESM .. 513
Creating an Audit Log Entry with DMSWSAUD ... 515
Testing a User's Authority to Access a Resource with DMSWSAUT ...517

Calling Using the IBM-Provided REXX EXECs... 519
Calling Without Using the IBM-Provided REXX EXECs... 522

Appendix B. VSE Macros.. 527
VSE Assembler Language Macros Supported...527
VSE Supervisor and I/O Macros Supported by CMS/DOS...529

Appendix C. CRR Participation Macros... 545
ADAPTRC..546

Appendix D. NETDATA Format.. 551
Exception... 552
Control Record Formats.. 552
Text Units... 552

vi

Dates and Times.. 553
Numeric Values..553
Text Unit Keys.. 553
File Block Size..554
File Name... 555
File Organization.. 555
Receive Results..556
Receipt Request...556
File Mode..556
Node of Originator... 557
Time of Transmission...557
User ID of Originator..557
Date of Last Change...557
Logical Record Length... 557
Number of Files... 558
Record Format... 558
File Size.. 559
Note File...559
Target Node..559
Target User ID.. 559
Program Name... 559
Header Record (INMR01)..560
File Utility Control Record (INMR02).. 561
Data Control Record (INMR03)... 562
User Control Record (INMR04)... 563
Trailer Control Record (INMR06).. 563
Acknowledgement Control Record (INMR07).. 563

Notices..565
Programming Interface Information...566
Trademarks.. 566
Terms and Conditions for Product Documentation.. 566
IBM Online Privacy Statement.. 567

Bibliography.. 569
Where to Get z/VM Information.. 569
z/VM Base Library..569
z/VM Facilities and Features... 570
Prerequisite Products.. 572
Related Products... 572

ANCHOR Identifier Registration Form...573

Index.. 575

 vii

viii

Figures

1. NETDATA File Format..551

2. Data and Control Record Formats.. 551

3. INMR02 Control Record Format... 552

4. Text Units...552

 ix

x

Tables

1. Examples of Syntax Diagram Conventions...xiii

2. Comparison of CMS Virtual Machine Architectures..4

3. CMS Preferred Macros...6

4. CMS Preferred Functions...9

5. CMS Compatibility Macros and Suggested Replacements.. 10

6. CMS Functions and Suggested Replacements... 10

7. Simulated OS/MVS Macros... 12

8. CMSCALL Call Chart...51

9. SVC 202 Call Chart.. 51

10. PSW Settings When a Called Routine Starts.. 52

11. Register Contents When a Called Routine Starts... 52

12. ABEND Codes Specific to CMSCALL... 53

13. Releasing Storage Allocation..104

14. CSRYCMPD Macro... 157

15. CMPSCDICT_SD DSECT.. 158

16. CMPSCDICT_SDE DSECT.. 158

17. CMPSCDICT_UE DSECT.. 158

18. CMPSCDICT_PE DSECT.. 159

19. Summary of Interrupt Types Affected by ENABLE INTTYPE Options...179

20. General Data Buffer Fields... 183

21. Virtual Printer Maximum Data Bytes.. 347

22. Equate statements generated by REGEQU.. 362

23. TVIFUNCT keyword meanings..425

 xi

24. TVIRFMT byte meanings...426

25. TODACCNT 16-byte timing information... 503

26. Service Module Results.. 521

27. VSE Macros Supported by CMS.. 527

28. Physical IOCS Macros Supported by CMS/DOS... 529

29. SVC Support Routines and Their Operation... 529

30. CMS/DOS Support of DTFCD Macro..537

31. CMS/DOS Support of DTFCN macro... 538

32. CMS/DOS Support of DTFDI Macro.. 539

33. CMS/DOS Support of DTFMT Macro... 540

34. CMS/DOS Support of DTFPR Macro..541

35. CMS/DOS Support of DTFSD Macro..542

xii

About This Document

This document provides information to enable you to:

• Use CMS macroinstructions when you write programs to run in the CMS environment.
• Use the CMSIUCV and HNDIUCV assembler language macros to start or end communications with

another program in an Inter-User Communications Vehicle (IUCV) or Advanced Program-to-Program
Communication/VM (APPC/VM) environment.

• Run CMS functions from programs.

Intended Audience
This information is for application programmers and system programmers who work with IBM® assembler
language and want to use z/VM® CMS macros and functions.

You should be knowledgeable about assembler language programming or have at least a two-year
programming certificate.

Syntax, Message, and Response Conventions
The following topics provide information on the conventions used in syntax diagrams and in examples of
messages and responses.

How to Read Syntax Diagrams

Special diagrams (often called railroad tracks) are used to show the syntax of external interfaces.

To read a syntax diagram, follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of the syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram is continued on the next line.
• The ►─── symbol, at the beginning of a line, indicates that the syntax diagram is continued from the

previous line.
• The ───►◄ symbol indicates the end of the syntax diagram.

Within the syntax diagram, items on the line are required, items below the line are optional, and items
above the line are defaults. See the examples in Table 1 on page xiii.

Table 1. Examples of Syntax Diagram Conventions

Syntax Diagram Convention Example

Keywords and Constants

A keyword or constant appears in uppercase letters. In this
example, you must specify the item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase letters, or
any combination. However, some applications may have
additional conventions for using all-uppercase or all-
lowercase.

KEYWORD

© Copyright IBM Corp. 1991, 2025 xiii

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Abbreviations

Uppercase letters denote the shortest acceptable
abbreviation of an item, and lowercase letters denote the
part that can be omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO, KEYWOR, or
KEYWORD.

KEYWOrd

Symbols

You must specify these symbols exactly as they appear in the
syntax diagram.

*
Asterisk

:
Colon

,
Comma

=
Equal Sign

-
Hyphen

()
Parentheses

.
Period

Variables

A variable appears in highlighted lowercase, usually italics.

In this example, var_name represents a variable that you
must specify following KEYWORD.

KEYWOrd var_name

Repetitions

An arrow returning to the left means that the item can be
repeated.

A character within the arrow means that you must separate
each repetition of the item with that character.

A number (1) by the arrow references a syntax note at the
bottom of the diagram. The syntax note tells you how many
times the item can be repeated.

Syntax notes may also be used to explain other special
aspects of the syntax.

repeat

,

repeat

repeat
1

Notes:
1 Specify repeat up to 5 times.

Required Item or Choice

When an item is on the line, it is required. In this example,
you must specify A.

When two or more items are in a stack and one of them is
on the line, you must specify one item. In this example, you
must choose A, B, or C.

A

A

B

C

xiv About This Document

Table 1. Examples of Syntax Diagram Conventions (continued)

Syntax Diagram Convention Example

Optional Item or Choice

When an item is below the line, it is optional. In this example,
you can choose A or nothing at all.

When two or more items are in a stack below the line, all of
them are optional. In this example, you can choose A, B, C,
or nothing at all.

A

A

B

C

Defaults

When an item is above the line, it is the default. The system
will use the default unless you override it. You can override
the default by specifying an option from the stack below the
line.

In this example, A is the default. You can override A by
choosing B or C.

A

B

C

Repeatable Choice

A stack of items followed by an arrow returning to the left
means that you can select more than one item or, in some
cases, repeat a single item.

In this example, you can choose any combination of A, B, or
C.

A

B

C

Syntax Fragment

Some diagrams, because of their length, must fragment the
syntax. The fragment name appears between vertical bars in
the diagram. The expanded fragment appears in the diagram
after a heading with the same fragment name.

In this example, the fragment is named "A Fragment."

A Fragment

A Fragment
A

B

C

Examples of Messages and Responses

Although most examples of messages and responses are shown exactly as they would appear, some
content might depend on the specific situation. The following notation is used to show variable, optional,
or alternative content:

xxx
Highlighted text (usually italics) indicates a variable that represents the data that will be displayed.

[]
Brackets enclose optional text that might be displayed.

{ }
Braces enclose alternative versions of text, one of which will be displayed.

|
The vertical bar separates items within brackets or braces.

…
The ellipsis indicates that the preceding item might be repeated. A vertical ellipsis indicates that the
preceding line, or a variation of that line, might be repeated.

About This Document xv

Where to Find More Information
For information about related publications, see the “Bibliography” on page 569.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

xvi z/VM: 7.3 CMS Macros and Functions Reference

How to provide feedback to IBM

We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of
the information. See How to send feedback to IBM for additional information.

© Copyright IBM Corp. 1991, 2025 xvii

https://www.ibm.com/docs/zvm/7.3?topic=how-send-feedback

xviii z/VM: 7.3 CMS Macros and Functions Reference

Summary of Changes for z/VM: CMS Macros and Functions
Reference

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6262-73, z/VM 7.3 (June 2025)
This edition includes changes that are provided or announced after the general availability of z/VM 7.3.

SC24-6262-73, z/VM 7.3 (December 2023)
This edition includes changes to support product changes provided or announced after the general
availability of z/VM 7.3.

[VM66724] CMS Tape Block Size Increase
With the PTF for APAR VM66724, z/VM 7.3 increases the block size supported by CMS native tape I/O
functions from 65,535 (64K-1) bytes to approximately 1 megabyte (1,114,094 bytes).

The following CMS macros are updated:

• “RDTAPE” on page 357
• “WRTAPE” on page 436

SC24-6262-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

© Copyright IBM Corp. 1991, 2025 xix

xx z/VM: 7.3 CMS Macros and Functions Reference

Part 1. CMS Preferred Programming Interface

This section of the book introduces the CMS programming interfaces and defines the macros and
functions that make up the CMS preferred interface. It contains the following chapters:

• Chapter 1, “CMS Programming Interface,” on page 3 introduces and defines the CMS programming
interface.

• Chapter 2, “Preferred CMS Macro Instructions,” on page 15 describes the CMS macros in the preferred
interface group.

• Chapter 3, “CMS Preferred Functions,” on page 443 describes the CMS functions that are considered a
part of the preferred interface group.

© Copyright IBM Corp. 1991, 2025 1

2 z/VM: 7.3 CMS Macros and Functions Reference

Chapter 1. CMS Programming Interface

This chapter introduces and defines the CMS programming interface. It describes the different interface
groups, the intent of each group, and the facilities that make up the group.

The CMS programming interface is a way for you to get CMS to do work for you. It is made up of:

• CMS preferred interface group
• CMS compatibility group
• OS/MVS and DOS/VSE group.

To understand the concept of the CMS programming interface groups, you should first understand the
virtual machine environments in which CMS runs.

z/VM provides two versions of CMS:
ESA/390 CMS (generally referred to simply as CMS)

CMS runs in the following virtual machine architectures:
ESA/390 (ESA or XA virtual machine)

An ESA virtual machine simulates IBM Enterprise Systems Architecture/390 (ESA/390), which is
a superset of IBM Enterprise Systems Architecture/370 (ESA/370), which is a superset of IBM
System/370 Extended Architecture (370-XA). The XA virtual machine designation is supported for
compatibility; an XA virtual machine is functionally equivalent to an ESA virtual machine.

ESA/XC (XC virtual machine)
An XC virtual machine processes according to IBM Enterprise Systems Architecture/Extended
Configuration (ESA/XC), which is an architecture unique to virtual machines. Although XC virtual
machines run with dynamic address translation off, they can take advantage of a subset of
dynamic address translation architectural features, and in particular, data spaces.

z/Architecture® CMS (z/CMS)
z/CMS runs in the following virtual machine architectures:
z/Architecture (ESA or XA virtual machine)

z/Architecture uses 31-bit addressing mode in an ESA ,XA, or Z virtual machine. CMS programs
can use z/Architecture instructions, including those that operate on 64-bit registers, while
permitting existing ESA/390 architecture CMS programs to continue to function without change.

When z/CMS is IPLed in an ESA/390 (ESA or XA) virtual machine, z/CMS switches the virtual
machine to z/Architecture mode and thereafter executes in z/Architecture mode.

z/XC (XC virtual machine)
A z/XC guest uses VM Data Spaces with z/Architecture in the same way that an ESA/XC guest uses
VM Data Spaces with Enterprise Systems Architecture. CMS applications that run in z/Architecture
can use multiple address spaces. z/CMS can use VM Data Spaces for accessing Shared File
System (SFS) Directory Control (DIRCONTROL) directories. z/XC supports programs that employ
z/Architecture instructions and registers (within the limits of z/CMS support) and programs that
exploit data spaces in the same CMS session.

When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC mode
and thereafter executes in z/XC mode.

Unless otherwise indicated, "CMS" means either version, and descriptions of CMS functions apply to both
CMS and z/CMS. For information on the z/CMS specifications and how to use z/CMS, see z/VM: CMS
Planning and Administration.

The virtual machine mode is defined by using the MACHINE or GLOBALOPTS directory statement, the CP
SET MACHINE command, or the Systems Management application programming interfaces.

Note: CP does not support System/370 architecture (370 mode) virtual machines. However, the 370
Accommodation Facility allows many CMS applications written for System/370 virtual machines to run in

CMS Programming Interface

© Copyright IBM Corp. 1991, 2025 3

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3

ESA/390 and ESA/XC virtual machines. The CP level of the 370 Accommodation Facility is activated with
the CP SET 370ACCOM command. The CMS level of the 370 Accommodation Facility is activated with
the CMS SET CMS370AC command. In addition, although the 370 option of the GENMOD command is
not supported, modules previously generated with the 370 option can be run in an ESA/390 or ESA/XC
virtual machine by issuing the CMS SET GEN370 OFF command. For more information about the 370
Accommodation Facility, see z/VM: CP Programming Services. See z/VM: CP Commands and Utilities
Reference for information on the SET 370ACCOM command and see z/VM: CMS Commands and Utilities
Reference for information on the SET CMS370AC and SET GEN370 commands.

The relationships between the virtual machine modes are summarized in Table 2 on page 4.

Table 2. Comparison of CMS Virtual Machine Architectures

CMS
Version

Virtual Machine
Architecture
Mode1

Virtual Machine
Architecture

Addressing
Scheme

Addressable
Primary Storage

Addressable Data
Space2

CMS ESA, XA3 ESA/390 31-bit 2047 MB 2 GB per data
space4

CMS XC ESA/XC 31-bit and access
registers

2047 MB 2 GB per data
space

z/CMS ESA, XA3, Z z/Architecture5 31-bit6 2047 MB7 2 GB per data
space4

z/CMS XC z/XC8 31-bit6 and access
registers

2047 MB7 2 GB per data
space

Notes:

1. Architecture mode is set by using the SET MACHINE command and the MACHINE statement of the directory
entry.

2. Multiple data spaces are possible.
3. The XA designation is supported for compatibility. An XA virtual machine is functionally equivalent to an ESA

virtual machine.
4. Data spaces can be read but cannot be modified. Data spaces can be modified only in virtual machines that

run in XC architectur mode.
5. When z/CMS is IPLed in an ESA/390 virtual machine, z/CMS switches the virtual machine to z/Architecture

and thereafter executes in z/Architecture mode.
6. Although z/CMS does not exploit or explicitly support 64-bit addressing mode, programs running on z/CMS

can enter 64-bit addressing mode.
7. Although z/CMS does not directly exploit storage above 2047 MB, z/CMS can be IPLed in a virtual machine

with more than 2 GB of storage and allows programs to use storage above 2 GB.
8. When z/CMS is IPLed in an XC virtual machine, z/CMS switches the virtual machine to z/XC and thereafter

executes in z/XC mode.

With the CMS preferred interface, you can use macros, callable services (routines), and functions to
code an application that is architecture-independent. The application can run in ESA, XA, and XC virtual
machines. Therefore, you can write and assemble applications that are portable across the architectures.

CMS Interface Groups
Understanding the content and purpose of each group within the programming interface can help you
select the CMS facility that is most appropriate for your program.

1. CMS preferred interface group—These macros, routines, and functions make up the heart of the CMS
programming interface. They provide you with a means of making program calls, managing storage,
performing I/O, providing communications with other systems, handling interrupts, and processing

CMS Programming Interface

4 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

abends. They run in ESA, XA, and XC virtual machines and support 24-bit and 31-bit addressing.
They help you avoid architecture-constrained facilities like I/O instructions, they reduce your need
to reference CMS internal data areas and control blocks, and they make it easier for you to develop
programs that are portable across architectures.

IBM encourages you to use the preferred interface when writing your CMS application programs.
“CMS Preferred Interface” on page 5 lists the macros, routines, and functions that make up
the preferred interface and summarizes the services they perform. The macros and functions are
described later in this book. For more information on the routines, see “CMS Preferred Routines” on
page 9.

2. CMS compatibility group—These are macros, functions, and services that CMS maintains for
compatibility with previous releases. Existing programs that use interfaces in the compatibility group
can run in 24-bit addressing mode in an ESA, XA, or XC virtual machine. Compatibility group interfaces
may cause unpredictable results in 31-bit addressing mode.

For new programs, IBM recommends that you use interfaces in the preferred group rather
than interfaces in the compatibility group. “CMS Compatibility Interface” on page 10 lists the
compatibility group interfaces and their suggested replacements.

3. OS/MVS and DOS/VSE group—These are macros also provided by the OS/MVS and DOS/VSE
operating systems. CMS supports these macros to make it easier to run programs developed for
OS/MVS or DOS/VSE on CMS. The OS/MVS and DOS/VSE group consists of the following sub-groups:

a. Simulated OS/MVS macros—CMS simulates the function of these OS/MVS macros so that you can
use them in your programs. While these macros provide some portability between VM and OS/MVS
systems, the CMS simulation of these macros is not necessarily the same as the current MVS™

support. CMS simulates only a selected subset of OS/MVS macros and, because of operational
differences between VM and MVS, macros that are supported may work differently between
the two systems. For more information on how to use the OS/MVS macros, see the OS/MVS
publications.

For CMS application programs, IBM recommends that you use macros in the preferred group
rather than OS/MVS macros. “Simulated OS/MVS Macros” on page 11 lists the simulated
OS/MVS macros.

b. Nonsimulated OS/MVS macros—You can use these macros to develop and compile programs for
execution on MVS systems; however, because CMS does not simulate these macros, programs that
use them will not run on CMS. “OS/MVS Macros for Assembly Only” on page 14 lists these macros.

c. DOS/VSE macros—These are DOS/VSE macros that CMS simulates. The CMS simulation of these
macros is not necessarily the same as the current DOS/VSE support. For information on these
macros see Appendix B, “VSE Macros,” on page 527.

For CMS application programs, IBM recommends that you use macros in the preferred group
rather than DOS/VSE macros.

Note: CMS macros, control blocks, and functions that are not part of the defined programming interface
are considered CMS internal interfaces. They should not be used by programs other than CMS.

CMS Preferred Interface
Table 3 on page 6 lists the assembler macros in the CMS preferred interface and describes what
function each macro provides. All of the macros in the preferred interface support 24-bit and 31-bit
addressing.

Table 4 on page 9 defines the CMS functions DISKID, DMSSEQ, LANGADD, and LANGFIND, which are
considered part of the preferred interface group.

CMS Preferred Macros
Note: OpenExtensions™ macros are also considered part of the preferred interface. These macros, which
provide mapping for OpenExtensions callable services, are not listed in Table 3 on page 6 or described
in this book. For more information, see z/VM: OpenExtensions Callable Services Reference.

CMS Programming Interface

Chapter 1. CMS Programming Interface 5

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp1_v7r3.pdf#nameddest=dmsp1_v7r3

Table 3. CMS Preferred Macros

Macro Function

ABNEXIT Sets or clears abend exit routines.

AMODESW Switches or sets a program's addressing mode (AMODE) and provides an architecture-
independent replacement to assembler language linkage instructions (BAL, BALR, BSM,
BASSM, BAS, BASR).

ANCHOR Allows setting, querying, and clearing a fullword that can be used to save the address of
a program's data between calls.

APPLMSG Accesses and displays messages from a message repository file.

BATLIMIT Is a table of processor, punch, and printer limits for CMS batch jobs.

CMSCALL Calls other programs. Use it as a replacement for SVC 202.

CMSCVT Communications vector table.

CMSDEV Places information about device characteristics in a user-provided buffer.

CMSECVT Extended communications vector table.

CMSIUCV For IUCV: establish or end IUCV communications with another program or with CP. For
APPC/VM: establish or end an APPC/VM conversation, resolve a symbolic destination
name, or query a workunit associated with a conversation.

CMSLEVEL Maps the value of the feature or licensed program returned by the QUERY CMSLEVEL
command.

Note: You can also use the DMSQEFL CSL routine to return information about the level of
CMS to a program.

CMSRET Program return mechanism. Use it with CMSCALL.

CMSSTACK Places data on the program stack. Use it as a replacement for the ATTN function.

CMSSTOR Obtains and releases free storage. Use it as a replacement for the DMSFREE and
DMSFRET macros.

COMPSWT Sets the compiler switch on or off.

CONSOLE Performs full-screen I/O services.

CQYSECT Maps console path and device information to the buffer a user specifies on the CONSOLE
OPEN or CONSOLE QUERY macro.

CSFCB Maps the data referenced by the fourth word in the Extended Plist for the CMS
subcommand interface when inhibiting implicit recursion of execs.

CSLENTRY Provides the entry logic for a callable services library (CSL) routine.

CSLEXIT Provides the exit logic for a CSL routine.

CSLFPI Allows an application to invoke a CSL routine using a fast path.

CSLGETP Allows a CSL routine to get information about passed parameters.

CSRCMPSC Calls Data Compression Services to compress and expand data.

CSRYCMPD Maps compression and expansion dictionary entries.

CSRYCMPS Maps the CBLOCK parameter list for calls to Data Compression Services.

DIRBUFF Maps the records returned by a Get Directory request.

DMSABEXP Used with the DCB abend exit to map the parameter list.

CMS Programming Interface

6 z/VM: 7.3 CMS Macros and Functions Reference

Table 3. CMS Preferred Macros (continued)

Macro Function

DMSABN Abends a virtual machine.

DMSFST Maps the file status table for a given file.

DMSJNEPL Maps the parameter list used by the DMSJNE exit routine.

DMSSDWA Maps the area pointed to by register 1 upon entry to an ABNEXIT routine.

DMSSTATE Conditions preferred-group macros so that access-register mode toleration code is
expanded at assembly time.

ENABLE Enables and disables the PSW interrupt mask.

EPLIST Maps the extended parameter list passed in register 0.

EXITBUFF Generates a DSECT for the general data buffer that SFS provides for the File Space
Usage and User Storage Group Full exits.

EXSBUFF Maps the records returned by an Exist request for a file or a directory.

EXTUAREA Contains external interrupt status information.

EXTXCTL Resumes execution of code that was suspended by a X'2603' external interrupt after
this interrupt occurred.

FPERROR Maps the file pool extended error information returned in the wuerror parameter of CSL
routines.

FSCB Sets up a file system control block.

FSCBD Maps the file system control block.

FSCLOSE Closes a file.

FSERASE Erases a file.

FSOPEN Opens a file.

FSPOINT Resets the write and/or read pointers for a file.

FSREAD Reads a record from a file.

FSSTATE Checks for an existing file.

FSTD Maps the FST area.

FSWRITE Writes a record into a disk file.

GETSID Stores a device's subchannel identification number (SID) in register 1.

HNDEXT Defines handler routines for external interrupts.

HNDINT Defines handler routines for I/O interrupts.

HNDIO Defines handler routines for I/O interrupts and returns device-related information.

HNDIUCV Initializes or ends a program's IUCV or APPC/VM environment.

HNDSVC Defines handler routines for SVCs.

HSVCSAVE Maps the save area passed to interrupt handlers defined by HNDSVC.

IMMBLOK Maps the immediate command name block.

IMMCMD Declares, clears, and queries immediate commands.

INTBLOK Maps the I/O information that the HNDIO macro returns.

CMS Programming Interface

Chapter 1. CMS Programming Interface 7

Table 3. CMS Preferred Macros (continued)

Macro Function

LABSECT Maps control block for tape label processing.

LANGBLK Generates a language control block for an application.

LINERD Reads a line of input from the terminal.

LINEWRT Writes a line of output to the terminal.

LRDD Used with the LINERD macro to map the LINERD descriptors for multiple inputs.

LWRD Used with the LINEWRT macro to map the LINEWRT descriptors for multiple outputs.

NUCEXT Declares, clears, and queries nucleus extensions.

NUCON Generates a mapping of the ACMSCVT, ADEVTAB, AEXEC, NUCXFRES, and USERLVL
fields of the NUCON macro.

Note: These are the only fields in NUCON that are supported as programming interfaces.

PARSECMD Parses command arguments.

PARSERCB Generates a parser control block DSECT.

PARSERUF Generates a mapping for the user token validation parameter function control block.

PRINTL Prints one or more lines on the printer.

PUNCHC Punches a card.

PVCENTRY Maps the parser validation code table.

RDCARD Reads a card from the reader.

RDTAPE Reads a record from tape.

REGEQU Generates symbolic register equates.

REXEXIT Invokes and maintains a list of user specified global exits for REXX programs.

RXITDEF Assigns correct values to the symbols used for the exit routine function and subfunction
codes.

RXITPARM Maps the parameter list used to pass information between the language processor and
an exit routine.

SCAN Creates tokenized and extended parameter lists from input data.

SCBLOCK Maps the subcommand block.

SEGMENT Manages saved segments and segment spaces.

SGMTEXIT Maps the SGMTEXIT control block.

SHVBLOCK Maps the shared variable block.

SUBCOM Defines, clears, and queries subcommand environments.

SUBPOOL Manages free storage subpools.

TAPECTL Positions a tape.

TAPESL Processes standard HDR1 and EOF1 tape labels.

TRANTBL Generates a DSECT mapping of system translation tables.

TVISECT Generates a DSECT mapping for a nucleus extension module named DMSTVI.

CMS Programming Interface

8 z/VM: 7.3 CMS Macros and Functions Reference

Table 3. CMS Preferred Macros (continued)

Macro Function

USERSAVE Maps control block for call status information.

USERSECT An 18-fullword scratch area for user-defined purposes.

VOLSECT Maps control block for tape label processing - used when more than 16 volume IDs are
specified by the user.

WAITD Suspends program execution until the next interrupt occurs for the specified device.

WAITECB Suspends program execution until the specified event or events occur.

WAITT Suspends program execution until all pending terminal I/O has completed.

WRTAPE Writes a record to tape.

WUERROR Maps the work unit extended error information returned in the wuerror parameter of CSL
routines.

CMS Preferred Routines
All of the routines in the CMS preferred interface group support 24-bit and 31-bit addressing. The
routines are documented in the following books:

• z/VM: CMS Callable Services Reference describes routines that perform various general programming
tasks, such as:

– File pool and minidisk file I/O
– File pool administration
– Accessing REXX variables
– Extract/Replace
– Manipulating the CMS program stack
– Resource recovery
– Using VM data spaces
– Error checking and debugging

• z/VM: CMS Application Multitasking describes routines that perform multitasking and related
programming tasks.

• z/VM: OpenExtensions Callable Services Reference describes routines that manipulate OpenExtensions
Byte File System (BFS) data.

• z/VM: Systems Management Application Programming describes routines that perform systems
management functions for virtual systems (guests) in a z/VM environment.

CMS Preferred Functions
Table 4. CMS Preferred Functions

Function Description

DISKID Obtains information on the physical organization of a reserved minidisk.

DMSSEQ Counts the number of logical lines in the terminal input buffer.

LANGADD Adds a LANGBLK to the language block chain.

LANGFIND Gets the address of an application's language control block.

CMS Programming Interface

Chapter 1. CMS Programming Interface 9

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp1_v7r3.pdf#nameddest=dmsp1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3

CMS Compatibility Interface
Table 5 on page 10 below and Table 6 on page 10 list the macros and functions that CMS supports for
compatibility only. Replacements are suggested when applicable. Existing programs can continue to use
compatibility interfaces in programs that do not support 31-bit addressing.

Note:

1. The interfaces in the compatibility group are documented only in this reference.
2. The SVC 202 instruction is also considered part of the compatibility group. The CMSCALL macro is its

suggested replacement.
3. The DMSEXS and DMSKEY macros allow users to modify CMS internal data areas; their use is not

encouraged.

CMS Compatibility Macros and Suggested Replacements
Table 5. CMS Compatibility Macros and Suggested Replacements

Macro Suggested Replacement

DISPW Use the CONSOLE macro to perform full-screen I/O and the LINEWRT
and LINERD macros to perform line mode I/O.

DMSEXS None—its use is not encouraged.

DMSFREE CMSSTOR macro

DMSFRES No replacement required; CMS performs the function internally.

DMSFRET CMSSTOR macro

DMSKEY None—its use is not encouraged.

LINEDIT APPLMSG macro

RDTERM LINERD macro

SCAN system service SCAN macro

STRINIT By default, CMS treats the STRINIT macro as a no-op. If necessary, you
can use the SET STORECLR command to retain GETMAIN storage until
end-of-command and enable STRINIT. If possible, programs should use
the CMSSTOR macro rather than GETMAIN to obtain free storage.

TEOVEXIT None.

WRTERM LINEWRT macro. Unlike WRTERM, the LINEWRT macro does not allow
you to specify text on the macro call itself (you have to specify the text in
a buffer). You can use the APPLMSG macro to specify text on the macro
call and display it at a terminal.

TEOVEXIT is documented in “TEOVEXIT” on page 486.

CMS Functions and Suggested Replacements
The following CMS functions are considered part of the compatibility group.

Table 6. CMS Functions and Suggested Replacements

Function Suggested Replacement

ATTN CMSSTACK macro, or StackWrite routine

NUCEXT NUCEXT macro

CMS Programming Interface

10 z/VM: 7.3 CMS Macros and Functions Reference

Table 6. CMS Functions and Suggested Replacements (continued)

Function Suggested Replacement

SUBCOM SUBCOM macro

TODACCNT None

WAITRD LINERD macro, or StackRead routine

Simulated OS/MVS Macros
CMS simulates some programming interfaces defined by the MVS operating system. These MVS interfaces
are documented in the appropriate MVS book.

Table 7 on page 12 lists the MVS/XA macros that CMS simulates. For more information on the supported
parameters for each macro, usage notes, and considerations for using OS/MVS macros in CMS programs,
see z/VM: CMS Application Development Guide for Assembler.

1 The DEVTYPE interface will not return valid track or cylinder details that can be used for DASD space
calculations. It is intended only to give access to default device characteristics. If detailed real DASD device
characteristics are needed, see CP DIAGNOSE code X'210' in z/VM: CP Programming Services or the CMS
DEVTYPE command in z/VM: CMS Commands and Utilities Reference.

CMS Programming Interface

Chapter 1. CMS Programming Interface 11

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Table 7. Simulated OS/MVS Macros

Macro Function

ABEND Terminates processing with user-specified completion and reason codes.

ATTACH Passes control to another program at a new task level.

BLDL Builds a directory list for a partitioned data set.

BSP Backs up a record on a tape or disk.

BUILDRCD Causes a buffer pool and a record area to be constructed.

CALL Transfers control to a control section at a specified entry.

CHAP No-op.

CHECK Verifies READ/WRITE completion.

CHKPT No-op.

CLOSE Completes and secures I/O processing on a DCB.

CLOSE TYPE=T Temporarily closes and deactivates the file.

CNTRL No-op.

DCB Constructs a data control block.

DCBD Generates a DSECT for a data control block.

DELETE Deletes a loaded program.

DEQ No-op.

DETACH No-op.

DEVTYPE1 Obtains device-type physical characteristics.

ENQ No-op.

ESPIE Sets up handlers for program interrupts. The caller can be in either 24-bit or 31-bit addressing mode.

ESTAE Sets up abend exit routines.

EXCP Executes a channel program for graphic access method (GAM).

EXTRACT No-op.

FEOV Forces an EOV condition on a tape or DASD file.

FIND Locates a member of a partitioned data set.

FREEBUF Returns a buffer to the DCB buffer pool.

FREEDBUF Releases a simulated BDAM buffer.

FREEMAIN Releases user-acquired storage.

FREEPOOL Releases the DCB buffer pool.

GET Reads system-blocked data (QSAM).

GETBUF Acquires DCB buffer storage.

GETMAIN Acquires user storage.

GETPOOL Constructs a buffer pool for a DCB.

IDENTIFY Adds an entry name to a loaded program.

IHAEPIE EPIE work area mapping macro.

IHASDWA Mapping macro for the system diagnostic work area used in ESTAE.

IHAVRA Mapping macro for the system diagnostic work area variable recording area.

LINK Passes control to another program at the same task level and returns to the calling program.

LOAD Reads a program into storage.

CMS Programming Interface

12 z/VM: 7.3 CMS Macros and Functions Reference

Table 7. Simulated OS/MVS Macros (continued)

Macro Function

NOTE Manages data set positioning.

OPEN Prepares a DCB for I/O processing.

OPEN TYPE=J Prepares a DCB for I/O processing after an RDJFCB has been issued.

PGLOAD No-op.

PGOUT No-op.

PGRLSE No-op.

PGSER No-op.

POINT Manages data set positioning.

POST Signals event completion.

PUT Writes system-blocked data (QSAM).

PUTX Returns the updated record to the data set from which it was read.

RDJFCB Obtains information from FILEDEF command about an OS/MVS data set.

READ Reads a physical input record (BSAM, BDAM, BPAM).

RELSE No-op.

RETURN Returns from a called program.

SAVE Saves program registers.

SETRP Makes requests for recovery from an ESTAE/ESTAI exit.

SNAP Dumps specified areas of storage.

SPIE Sets up an exit to be given control under user selected program interrupts. The caller must be in 24-bit
addressing mode.

SPLEVEL Sets macro expansion.

STAE Sets up an abend exit routine.

STAX Sets or cancels user exit for terminal attention interrupts.

STIMER Sets the timer interval and the timer exit routine.

STIMERM Sets, tests, or cancels multiple timer intervals and the timer exit routines.

STOW Updates partitioned dataset directories.

SYNADAF Provides SYNAD analysis function.

SYNADRLS Releases SYNADAF message and save areas.

SYSSTATE Conditions preferred-group macros so that access-register mode toleration code is expanded at
assembly time.

TCLEARQ Clears terminal input queue.

TGET/TPUT Reads or writes a terminal line.

TIME Gets the time of day.

TTIMER Tests or cancels the timer.

WAIT Waits for one or more events.

WRITE Writes a physical record (BSAM, BDAM, BPAM).

WTO/WTOR Writes a message to the operator's terminal.

XCTL Passes control to another program at the same task level and does not return to the calling program.

XDAP Reads or writes direct access volumes.

CMS Programming Interface

Chapter 1. CMS Programming Interface 13

OS/MVS Macros for Assembly Only
In addition to the OS/MVS macros that CMS simulates, CMS includes many nonsimulated OS/MVS macros.
The macros are contained in OSMACRO1 MACLIB.

These macros, which are listed below, are for assembly purposes only. Because CMS does not simulate
these macros you should not use them in programs you intend to run on CMS.

For more information on these macros, see OS/390® MVS Assembly Service or DFSMS Access Service
Macros.

ATSET LOCASCB SCHEDULE
AXEXT LXFRE SDUMP
AXFRE LXRES SEGLD
AXRES MGCR SEGWT
AXSET MODESET SETFRR
BLSABDPL NIL SETL
BLSQMDEF NUCLKUP SETLOCK
BLSRESSY OIL SETPRT
BUILD PCLINK SPOST
CALLDISP PDAB SRBSTAT
CALLRTM PDABD SRBTIMER
CHANGKEY PGANY STATUS
CIRB PGFIX SUSPEND
CPOOL PGFIXA SVCUPDTE
CPUTIMER PGFREEA SYNCH
CVT PROTPSA SYSEVENT
DATOFF PRTOV TCTL
DOM PTRACE TESTAUTH
DSGNL PURGEDQ TRUNC
DYNALLOC QEDIT VRADATA
ECVT RACDEF VSMLIST
ESETL RACHECK VSMLOC
ETCON RACINIT VSMREGN
ETCRE RACLIST WTL
ETDES RACROUTE XLATE
ETDIS RACSTAT
EVENTS RACXTRT
FESTAE RELEX
FRACHECK RESERVE
GQSCAN RESUME
IOSINFO RISGNL
IOSLOOK RPSGNL

CMS Programming Interface

14 z/VM: 7.3 CMS Macros and Functions Reference

Chapter 2. Preferred CMS Macro Instructions

This chapter describes the formats of the preferred CMS assembler language macros. These macros run
in ESA, XA, and XC virtual machines and they are all capable of supporting 31-bit addressing. For more
information on the CMS programming interface, see the discussion in Chapter 1, “CMS Programming
Interface,” on page 3.

IBM recommends that you use these macros when you write assembler language programs to run in
the CMS environment. To assemble a program using any of these macros, you must issue the GLOBAL
command specifying MACLIB DMSGPI. This macro library is usually located on the system disk.

Note: References made to floating-point registers in this book refer to floating-point registers 0, 2, 4, and
6 unless indicated otherwise.

CMS Macro Coding Conventions
Coding conventions for CMS macros are the same as those for all assembler language macros. The macro
format descriptions show optional operands in the format:

,operand

indicating that if you are going to use this operand, it must be preceded by a comma (unless it is the first
operand coded). If a macro statement overflows to a second line, you must use a continuation character
in column 72.

Note: No blanks may appear between operands.

When a macro offers a choice of operands, one and only one of which must be specified, the operands are
stacked one per line and shown below the line of the syntax diagram.

Many operands can be specified with an argument in the form of either an expression or a register
containing a value. When this is the case, the macro expects a register designation to begin with a
left parenthesis. Therefore, specifying an expression that starts with a left parenthesis will produce
unpredictable results, just as specifying a register without parentheses would.

Incorrect coding of any macro may result in assembler errors and MNOTEs. MNOTES are unnumbered
responses that can result from executing system generation macroinstructions or service programs. They
are documented in logic listings only.

Where applicable, the end of a macro description contains a list of the possible error conditions that
may occur during the execution of the macro, and the associated return codes. These return codes are
always placed in register 15. The macros that produce these return codes have ERROR= operands that
allow you to specify the address of an error handling routine that can check for particular errors during
macro processing. If an error occurs during macro processing and no error address is provided, execution
continues with the next sequential instruction following the macro.

CMS Macro Formats
CMS provides four macro formats:

Standard Format
is specified by omitting the MF macro form parameter. The standard format of the macro generates
a series of assembler statements that declares the parameters inline and then calls the specified
function. If the value of any parameter involves a substitution, then the macro generates nonreentrant
code. If an optional parameter is omitted, the standard format substitutes the default value. If a
required parameter is omitted, an MNOTE is issued and the parameter list is not valid.

© Copyright IBM Corp. 1991, 2025 15

MF=(E,addr)
MF=(E,(reg))

specifies the execute format of the macro, which generates code to execute the specified function.
While you can use the execute format to fill in or modify a parameter list, you cannot use it to generate
a parameter list. Before you issue the execute format of a macro, you must use the list or complex
list format of the macro to create a valid parameter list—a parameter list that contains all required
parameters with no conflicting options or extraneous parameters from previous macro calls. In many
cases, you must reinitialize the parameter list before each new invocation of the execute format.

MF=L
specifies the list format of the macro, which generates an inline parameter list, substitutes default
values for optional parameters you omit, and reserves a space for required parameters you omit. (To
reserve a space, the list form issues the appropriate DC instruction with the correct length and data
type.) The list format does not generate code to execute the specified function. To generate code to
execute the specified function, use the execute format of the macro.

When you use the list format of the macro, do not use parameter forms that imply register use or
indirect reference.

MF=(L,addr,label)
MF=(L,(reg),label)

specifies the complex list format, which generates a parameter list at the specified address. The
complex list format does not substitute default values for parameters that are not specified, nor does
it generate code to execute the specified function.

Specify the address of the parameter list as an assembler program label or as general register 1-12,
enclosed in parentheses, that contains the address. If you code the optional parameter label, it is
equated to the size of the parameter list.

Note: Because the complex list format produces executable code to move data into the specified
area, you must invoke it before you invoke the execute format of the macro.

Note:

1. All parameters are optional except when you specify the standard format.
2. The MF=L format reserves space in the parameter list for required parameters; however, if you omit a

required parameter on the MF=L macro format, you must use the MF=(L,addr) or MF=(E,addr) formats
to specify the required value before you execute the function.

3. If you use a combination of the MF=(E,addr) and MF=(L,addr) formats of a macro, make sure that you
specify a valid combination of parameters. The MF=(E,addr) and MF=(L,addr) formats change only the
parameters specified on the macro invocation; they do not supply default values for parameters you
omit. (Note that the standard and MF=L formats do supply default values for optional parameters you
omit.)

4. The Standard and MF=(E,addr) forms of the macro alter the contents of registers 1 and 15. The
MF=(L,addr) form alters register 1.

5. Not every CMS macroinstruction is available in each of these formats. Each, however, is available in the
standard format.

6. The MF=(E,addr) format requires that the parameter list be in nonshared storage. Even if no
parameters are specified on the macro invocation, the parameter list may be modified.

Using the Online HELP Facility
You can receive online information about the macros described in this book using the z/VM HELP Facility.
For example, to display a menu of macros, enter:

help macro menu

To display information about a specific macro (ANCHOR in this example), enter:

help macro anchor

16 z/VM: 7.3 CMS Macros and Functions Reference

For more information about using the HELP Facility, see z/VM: CMS User's Guide. To display the main HELP
Task Menu, enter:

help

For more information about the HELP command, see z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

Chapter 2. Preferred CMS Macro Instructions 17

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

ABNEXIT

label

ABNEXIT

SET SET parameters

CLR

, EXIT = exit_label

( reg)

RESET

1

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

SET parameters

, UWORD = uword_label

( reg)

, SYSTEM = NO

, SYSTEM = YES

( reg)

( addr , mask)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose

Use the ABNEXIT macroinstruction to create (SET) or delete (CLR) an abend exit routine. The ABNEXIT
RESET option allows your abend exit routine to be recalled if subsequent abends occur.

Parameters
Required Parameters:

SET
establishes an exit routine. This exit routine is added to the list of exit routines and becomes the
current exit routine.

ABNEXIT

18 z/VM: 7.3 CMS Macros and Functions Reference

CLR
removes the specified exit routine from the list of exit routines. If it was the current exit routine, the
previous exit routine on the list becomes the current exit routine. Exits can be cleared independently
of their position in the list.

RESET
allows an abend exit routine to be recalled should a subsequent abend occur. In other words, CMS
calls an abend exit routine only once unless, during its processing, the abend exit routine specifies
ABNEXIT RESET. If the abend exit routine doesn't specify ABNEXIT RESET, CMS bypasses the abend
exit routine should a subsequent abend occur.

Note: The RESET option can be specified from within an exit routine only.

EXIT=
specifies the address of the exit routine to be added or deleted. Acceptable values are:
exit_label

the assembler program label marks the address of the exit routine.
(reg)

the specified register contains the address of the exit routine.

Optional Parameters:

label
is an optional assembler label for the statement.

UWORD=
is an optional fullword that can be specified for any purpose you desire. When the exit routine gains
control, the fullword is available to the exit, as described in Usage Note “3” on page 20. Acceptable
values are:
uword_label

specifies the address of the UWORD.
(reg)

specifies a register whose contents are stored as the UWORD.
SYSTEM=

specifies whether the abend exit routine survives CMS abend processing. Acceptable values are:
NO

specifies that the abend exit routine does not survive. This is the default value.
YES

specifies that the abend exit routine does survive. If you specify SYSTEM=YES, the abend exit
routine must reside in storage that is not reclaimed during abend processing.

(reg)
specifies the register that contains the value for SYSTEM. The macro checks the value of the
specified register and, if it is 0, sets SYSTEM to NO. If the register contains a nonzero value, the
macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM
parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO. To
set the value at execution time, specify SYSTEM=(reg) or SYSTEM=(addr,mask).

ABNEXIT

Chapter 2. Preferred CMS Macro Instructions 19

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. CMS gives control to abend exit routines in the addressing mode of the program that issues the

ABNEXIT macro.
2. In an XC virtual machine, your abend exit routine always receives control in primary space address

translation mode and always must return control to CMS in primary space mode.
3. You must provide the proper entry and exit linkage for your abend exit routine. The abend exit routine

receives control with the nucleus protect key and is disabled for interrupts. When your routine receives
control, the register contents are as follows:
Register

Contents
R1

Address of an area of storage mapped by the CMSSDWA DSECT. To obtain the CMSSDWA
expansion, call the DMSSDWA macro in the abend exit routine. UWORD can be found at the
location SDWUWORD in the DMSSDWA DSECT.

R13
Address of an 18-fullword save area (for your use).

R14
Return address (see Usage Note “5” on page 21).

R15
Entry point address of your exit routine.

You can use the DMSSDWA macro, described on page “Purpose” on page 173, to map the area pointed
to by register 1.

4. In addition to register 1, the macro expansion for RESET uses registers 14 and 15. Your program must
have a DSECT for NUCON when it uses ABNEXIT RESET or when it uses the MF=(E,addr) form of the
macro and does not specify a function.

ABNEXIT

20 z/VM: 7.3 CMS Macros and Functions Reference

5. At completion, the abend exit routine can do one of the following:

• Branch on register 14 to return to CMS. CMS calls any previous abend exits if they exist; if none exist,
CMS continues with normal CMS abend recovery.

• Load the PSW (or a modified version of the PSW) at the time of abend to return somewhere other
than to CMS abend processing. Before it loads the PSW, the exit routine should issue an ABNEXIT
RESET macro.

6. Abend exit routines cannot clear or set other abend exit routines.
7. If a program check occurs during an exit routine and ABNEXIT RESET has not been issued, control

goes to the previous exit routine in the list. If there are no previous exits, CMS abend recovery occurs.
8. Abend exit routines are disabled in two ways:

• You can issue the ABNEXIT CLR macro at any time except from within an exit routine.
• When CMS abend recovery occurs, CMS automatically clears all exit routines known to the system.

That is, CMS exit routines defined without the SYSTEM attribute will have their definition structures
cleaned up, therefore removing the linkage mechanism to the exit routine.

Note: Abend exits are not cleared at CMS end-of-command.
9. ABNEXIT processing is only one component of CMS abend recovery. Abend recovery can also be done

through other facilities, including VMERROR event handlers. The following list summarizes the order of
processing, organized by class of abend:

• Program Check

a. SPIE and ESPIE exits
b. STAE and ESTAE exits
c. VMERROR event handlers
d. VMERRORCHILD event handlers
e. ABNEXIT routines

• MVS ABEND macro

a. STAE and ESTAE exits
b. VMERROR event handlers
c. VMERRORCHILD event handlers
d. ABNEXIT routines

• DMSABN macro

a. VMERROR event handlers
b. VMERRORCHILD event handlers
c. ABNEXIT routines
d. STAE and ESTAE exits

• AbnormalEnd call

a. VMERROR event handlers
b. VMERRORCHILD event handlers
c. ABNEXIT routines
d. STAE and ESTAE exits

Only those STAE, ESTAE, SPIE, and ESPIE exits defined in the abending process are driven. ABNEXITs
are driven regardless of the process that created them.

Return Codes
If an error occurs, register 15 contains one of the following return codes:

ABNEXIT

Chapter 2. Preferred CMS Macro Instructions 21

Code
Meaning

8
No exit routines exist for the specified address.

12
ABNEXIT SET or CLR was issued from within an exit routine.

16
ABNEXIT RESET was issued from outside an exit routine.

24
Invalid function was specified.

104
Not enough storage is available to create the exit routine.

ABNEXIT

22 z/VM: 7.3 CMS Macros and Functions Reference

AMODESW

Purpose
Use the AMODESW macro to switch and, optionally, save a program's current addressing mode and switch
addressing modes as a part of subroutine calls and returns.

Note: The AMODESW macro generates dual-path (System/370 or 370-XA) code. System/370 (370 mode)
virtual machines are not supported. To eliminate the System/370 code path, use the MODE=NO370
option.

The general formats of the AMODESW macro are:
AMODESW CALL

Make a subroutine call with an appropriate mode switch.
AMODESW QRY

Determine current addressing mode.
AMODESW RETURN

Return from a subroutine.
AMODESW SET

Switch addressing modes.

Note: While the AMODESW macro allows a program to switch addressing modes, the user must make
sure programs follow 24-bit or 31-bit addressing conventions as appropriate. For more information on
using 31-bit addressing and the AMODESW macro, see the z/VM: CMS Application Development Guide for
Assembler.

AMODESW

Chapter 2. Preferred CMS Macro Instructions 23

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

AMODESW CALL

label

AMODESW CALL
1

,AMODE= 24

31

( reg)

,ADDRESS= addr

( reg)

,REGS=(14,15)

,REGS=(
14

return_reg

,15

,

, link_reg

)

,MODE=NO370

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use AMODESW CALL to make a subroutine call with an appropriate mode switch.

Parameters
Required Parameters:
CALL

calls a subroutine and makes the specified change in addressing mode.

Optional Parameters:

label
is an optional assembler label for the statement.

AMODE=
specifies the addressing mode of the called routine. Acceptable values are:
24

calls the routine in 24-bit addressing mode.
31

calls the routine in 31-bit addressing mode.
(reg)

sets the addressing mode according to the value of bit 0 of the specified register. A value of 0
gives you 24-bit addressing mode and a value of 1 gives you 31-bit addressing mode. The register
specified must not be the same as the register used on the ADDRESS parameter or the register
used as the return register.

AMODESW CALL

24 z/VM: 7.3 CMS Macros and Functions Reference

If you do not specify AMODE, CMS sets the addressing mode as follows:

1. If you specify ADDRESS=, CMS obtains the new addressing mode from bit 0 of the address.
2. If you do not specify the AMODE or the ADDRESS parameter, CMS obtains the new addressing

mode from bit 0 of the linkage register (see the description of the REGS parameter).

ADDRESS=
defines the location where control is transferred. Acceptable values are:
addr

specifies an address where control is transferred.
(reg)

specifies a register that contains the address where control is transferred. Valid registers are 1-15
enclosed in parentheses.

Note: If you do not specify ADDRESS, CMS passes control to the address in the linkage register (see
the description of the REGS parameter).

REGS=
specifies the linkage registers for this call. Valid registers for return_reg or link_reg are 1-15. If
you do not specify REGS, CMS uses register 15 for the link_reg and register 14 for the return_reg
(REGS=(14,15)).

CMS uses the registers specified on the REGS parameter in the branch instruction for the subroutine
call. AMODESW CALL issues a BASSM return_reg,link_reg instruction.

MODE=NO370
specifies that the macro should not create a System/370 code path.

Usage Notes
1. Users must restore their program's addressability (set up the proper base register) on return from the

call. You can use the address CMS returns in the return_reg to set up program addressability.
2. AMODESW CALL and AMODESW RETURN allow you to call and return from subroutines. You can use

them anywhere you can use a BALR and BR sequence. The sequence of instructions

 .
 .
 .
 AMODESW CALL,ADDRESS=MYSUB,AMODE=31
 .
 .
 .
MYSUB EQU *
 .
 .
 .
 AMODESW RETURN

(a) calls the subroutine at label MYSUB using a BASSM instruction, (b) switches to 31-bit addressing
mode, and (c) saves the return address and the addressing mode in register 14 (the default value). The
AMODESW RETURN instruction returns to the caller, restoring the addressing mode saved in register
14. You can use the REGS and REG parameters on CALL and RETURN to override the registers used for
the BASSM linkage.

AMODESW CALL

Chapter 2. Preferred CMS Macro Instructions 25

AMODESW QRY

label

AMODESW QRY

,MODE=NO370

Purpose
Use AMODESW QRY to determine the current addressing mode of a program.

Parameters
Required Parameters:
QRY

determines the virtual machine's current addressing mode. Upon completion, register 1 contains all
0's for 24-bit addressing mode or a nonzero (X'80000000') for 31-bit addressing mode.

Note: Register 1 is the only register AMODESW QRY alters.

Optional Parameters:
label

is an optional assembler label for the statement.
MODE=NO370

specifies that the macro should not create a System/370 code path.

AMODESW QRY

26 z/VM: 7.3 CMS Macros and Functions Reference

AMODESW RETURN

label

AMODESW RETURN
1

,AMODE= 24

31

( reg)

,REG=(14)

,REG=( return_reg) ,MODE=NO370

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use the AMODESW RETURN macro to return from a subroutine.

Parameters
Required Parameters:
RETURN

makes a return to the caller of the subroutine.

Optional Parameters:
label

is an optional assembler label for the statement.
AMODE=

specifies the new addressing mode to be set on the return. Acceptable values are:
24

returns to the caller in 24-bit addressing mode.
31

returns to the caller in 31-bit addressing mode.
(reg)

sets the addressing mode according to the value of bit 0 of the specified register. A value of 0
gives you 24-bit addressing mode and a value of 1 gives you 31-bit addressing mode. The register
must be different from the one used as the return register (14 or the value specified on the REG
parameter). When you specify AMODE=(reg) the specified register, (reg), is altered. For example,
the macro call

AMODESW RETURN,AMODE=(2)

alters the contents of register 2.

If you do not specify AMODE, CMS sets the addressing mode according to the value of bit 0 of the
return register (see the description of the REG parameter).

REG=
specifies the register that contains the address (and, optionally, the addressing mode) where control
is returned. If you do not specify REG, CMS uses register 14 as the return register (REG=(14)).

AMODESW RETURN

Chapter 2. Preferred CMS Macro Instructions 27

CMS uses the register specified on the REG parameter in the branch instruction for the subroutine
return. AMODESW RETURN issues a BSM 0,return_reg instruction.

MODE=NO370
specifies that the macro should not create a System/370 code path.

AMODESW RETURN

28 z/VM: 7.3 CMS Macros and Functions Reference

AMODESW SET

label

AMODESW SET ,AMODE= 24

31

( reg)

,SAVE=( reg)

,MODE=NO370

Purpose
Use AMODESW SET to cause an inline switch in a program's addressing mode.

Parameters
Required Parameters:
SET

switches the addressing mode to a new value.
AMODE=

specifies the desired addressing mode. Acceptable values are:
24

switches to 24-bit addressing mode.
31

switches to 31-bit addressing mode.
(reg)

sets the addressing mode according to the value of bit 0 of the specified register. A value of 0 gives
you 24-bit addressing mode and a value of 1 gives you 31-bit addressing mode.

Optional Parameters:
label

is an optional assembler label for the statement.
SAVE=(reg)

saves the current addressing mode in bit 0 of the specified register. If you do not specify SAVE, then
the current mode is not saved. The valid registers are 1-14.

MODE=NO370
specifies that the macro should not create a System/370 code path.

Usage Notes
1. AMODESW SET alters register 15.
2. AMODESW SET switches a program's addressing mode without requiring a branch to a subroutine. For

example, to switch the current addressing mode to 31-bit addressing, a program might use:

AMODESW SET,AMODE=31

3. To switch to a new mode from an unknown addressing mode and save the unknown mode for when
you return, use the SAVE parameter. For example, the macroinstruction

AMODESW SET,AMODE=31,SAVE=(2)

AMODESW SET

Chapter 2. Preferred CMS Macro Instructions 29

switches a program to 31-bit addressing mode and saves the current addressing mode as bit 0 of
register 2. Only bit 0 of the SAVE register is altered.

You can then use the value set by the SAVE parameter on AMODESW SET to restore the original
addressing mode:

AMODESW SET,AMODE=(2)

AMODESW SET

30 z/VM: 7.3 CMS Macros and Functions Reference

ANCHOR

label

ANCHOR SET

QUERY

CLEAR

1
,IDENT=  ident ,ERROR= addr

( reg)

,VALUE=0

,VALUE= addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use the ANCHOR macro to set, query, and clear a fullword that can be used by a program to save the
address of its data between calls.

The ANCHOR macro is for programs with critical performance needs, such as one called multiple times
per second. ANCHOR provides quick access to an anchor word, which is a fullword that points to one or
more control blocks allocated in free storage by a program. This avoids the overhead of obtaining dynamic
storage each time the program is called. This anchor word persists between calls to the program and
persists after an abend occurs.

Before using ANCHOR, you must request an anchor identifier from IBM. This is necessary to ensure that
your identifier is unique among all programs using the anchor facility.

To request your anchor identifier, complete the ANCHOR Identifier Registration Form in the back of this
book and mail it to IBM. IBM will assign you an anchor identifier and notify you by mail.

Parameters
Required Parameters:
SET

initializes the anchor word to the value specified in VALUE. If VALUE is omitted, the anchor word is set
to 0.

SET checks to see if an anchor slot has been assigned for your identifier. If an assignment has been
made, the anchor word is updated with the data specified for VALUE. If an anchor slot has not been
assigned, SET allocates one, fills in the anchor identifier, and sets the anchor word with the data
specified for VALUE.

If there is not enough storage available to allocate the anchor block, or there are no anchor slots left
in the anchor block, the routine specified in the ERROR parameter is run.

QUERY
returns the contents of the anchor word.

QUERY checks to see if an anchor slot has been assigned for your identifier. If it has, QUERY returns
the anchor word in register 1.

If your program’s anchor identifier was not found, the routine specified in the ERROR parameter is run.

QUERY is usually the first call of the Anchor facility from an application program.

ANCHOR

Chapter 2. Preferred CMS Macro Instructions 31

CLEAR
sets the anchor entry in the anchor table to 0, making it available for other programs.

CLEAR checks to see if an anchor slot has been assigned for your identifier. If it has, CLEAR sets the
anchor identifier and the anchor word to binary zeros.

If your program’s anchor identifier was not found, the routine specified in the ERROR parameter is run.

IDENT=ident
is a 3-character anchor identifier that uniquely differentiates your program from other programs
using the anchor facility. IDENT must be specified as an absolute expression. This identifier must be
registered with IBM.

ERROR=
specifies an action taken if an error occurs. See Usage Note “7” on page 33 for how an error is
indicated. Acceptable values are:
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register. Valid registers are 2 through 12.

Optional Parameters:
label

is an optional assembler label for the statement.
VALUE=

specifies the data placed in the anchor word. Acceptable values are:
addr

specifies the address of the 4-byte storage area containing the anchor word data. This can be any
valid assembler expression.

(reg)
specifies a register containing the anchor word data. Valid registers are 2 through 12.

If VALUE is omitted, the anchor word is set to 0. VALUE is ignored for the QUERY and CLEAR functions.

Usage Notes
1. The anchor facility keeps a list of 16 anchor words and their associated anchor identifiers. The number

of anchor slots is limited to 16 for two reasons:

a. To reduce the time to search the list
b. Because it is highly unlikely that more than 16 performance-critical applications would be

competing for execution at the same time during a CMS session.

Programs that do not have critical performance needs should use a nucleus extension to keep their
anchor word. For more information on the description of user words in nucleus extensions, see the
z/VM: CMS Application Development Guide for Assembler.

2. The anchor identifier is passed to the anchor facility in register 0.
3. If you want to clear your anchor word after an abend to prevent reuse of possibly corrupted data

areas, you can call the ABNEXIT macro or establish a nucleus extension that is called during abend
cleanup processing. For more information on the nucleus extensions, see the z/VM: CMS Application
Development Guide for Assembler.

4. To obtain the fastest possible anchor word lookup time, ensure that your program is the first to set its
anchor word after IPL of the virtual machine.

5. If you have a very large program that contains many subprograms needing anchors, you do not need
multiple anchor identifiers. Instead, allocate storage for an array that points to each data area for a
particular subprogram. The anchor word can then point to this array.

6. Anchor support does not save and restore translation mode (primary space or access register mode) or
access registers.

ANCHOR

32 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

7. Register 15 will not contain a return code after ANCHOR processing. Instead, a nonzero condition code
will cause the routine specified in the ERROR parameter to be run.

Anchor Entry Conditions: When your program calls the anchor facility, the register contents are:

Register
Contents

R0
Your 3-character anchor identifier and a blank.

R1
During an ANCHOR SET, this register contains the anchor word data.

R14
Return address.

R15
Entry point address.

ANCHOR

Chapter 2. Preferred CMS Macro Instructions 33

APPLMSG

label

APPLMSG
1

Choice 1

Choice 2

Choice 1

APPLID =  applid

, MF = L , MAXSUBS =  num

Choice 2

, BUFFA = addr

( reg)

, COMP = YES

, COMP = NO , SUB = ( sublist)

, TYPCALL = SVC

, TYPCALL = NONE

CSECT Parms

TEXT Parms

CSECT Parms
, CSECT = *

, CSECT =  name

, CSECTA = addr

( reg)

, APPLID =  applid

, NUM = num

( reg)

, NUMA = addr

( reg)

, FMT = 01

, FMT = num

( reg)

, FMTA = addr

( reg)

, LINE = *

, LINE = num

( reg)

, LINEA = addr

( reg)

, HEADER = YES

, HEADER = NO

, DISP = ERRMSG

, DISP = NONE

TYPE

CPMSG

EXECCOMM

variable

, LET = *

, LET = char

( reg)

, LETA = addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.

TEXT Parms

APPLMSG

34 z/VM: 7.3 CMS Macros and Functions Reference

1

MF = (E , addr

, ( reg)

)

, TEXT = ' message-text '

, TEXTA = addr

( reg)

, APPLID =  applid , HEADER = NO

, DISP = TYPE

, DISP = ERRMSG

NONE

CPMSG

EXECCOMM

variable

1

MF = L

(E , addr

, ( reg)

)

Notes:
1 Default is the standard macro format.

Purpose
Use the APPLMSG macro in an assembler program to retrieve a message from a message repository. (A
message repository contains translated versions of system messages in the specified language.) You can
optionally display the message at your terminal.

Parameters
APPLID=applid

specifies the name of the application that issues the message. CMS compares the 3-character
application ID to the application ID in the repository information chain to retrieve the message from
the proper repository. The application ID is also displayed in the message header.

Note: The APPLID parameter is optional when you specify TEXT or TEXTA unless you specify the SUB
parameter with a type of DICT.

label
is an optional assembler label for the statement.

MF=
specifies the macro format. Using different macro formats, you can either code parameters directly in
the macro call or put them at a place in the program where they can be referenced later.

The standard format (without the MF= operand) generates an inline operand list and invokes the
message facility. This is the default format. You can specify a maximum of 20 substitutions with this
macro format. Other acceptable formats are:

L
the list format is used only together with the MF=(E,...) macro format of APPLMSG. MF=L
generates a storage area for the parameter list; this storage area later gets filled in when you
use the execute form, MF=(E,...).

The size of the parameter list area you want to reserve depends on the number of substitutions
to be made. Use the MAXSUBS operand to specify the size of this area. For example, the following
would reserve space for a parameter list that can hold up to five substitutions.

MF=L,MAXSUBS=5,...

APPLMSG

Chapter 2. Preferred CMS Macro Instructions 35

(E,addr)
generates code to fill in the parameter list at the address you specify, and invokes the message
facility. For example:

MF=(E,label),...

(E,(reg))
generates code to fill in the parameter list at the address you specify (contained in (reg)) and
invokes the message facility.

CSECT=
overrides the default CSECT identifier that goes in the message header. Acceptable values are:
*

specifies to use the default CSECT identifier. This is the default value.
name

specifies the name of the CSECT identifier.

By default, APPLMSG uses the first 3 characters of the module name if they are different from the
application ID; if the 3 characters are the same as the application ID, then APPLMSG uses the next 3
characters of the module name.

You cannot specify CSECTA, TEXT, or TEXTA with CSECT.

Note: You cannot set CSECT to a variable. Use the CSECTA parameter to specify a variable CSECT
identifier.

CSECTA=
overrides the default CSECT identifier that goes in the message header. Acceptable values are:
addr

specifies the address of a variable containing the name of the CSECT identifier. The length of the
address or variable should be declared as a character length of 6.

(reg)
specifies a register containing the address of a variable which contains the CSECT identifier name.

For both forms, the length of the address or variable should be declared as a character length of 6.
Neither form can be specified with MF=L.

You cannot specify CSECT, TEXT, or TEXTA with CSECTA.

BUFFA=
specifies the address of a buffer where APPLMSG copies the complete message. Acceptable values
are:
addr

specifies the address.
(reg)

specifies a register that contains the address.

Use DISP=NONE when you want to copy the message to the buffer but not display it.

When text is copied into a buffer, the length of the message is in the first byte of the buffer, preceding
the text. The message header (for example, DMSxxxnnns) is also part of the copied information
(unless you specify HEADER=NO).

Note: Store the length of the buffer, not including the length byte, in the first byte of the buffer before
you call APPLMSG. This ensures that CMS does not overwrite any data immediately following the
buffer.

COMP=
specifies whether multiple blanks in the message text are to be removed, including those preceding
and following a substitution field. Acceptable values are:

APPLMSG

36 z/VM: 7.3 CMS Macros and Functions Reference

YES
specifies to remove multiple blanks. This is the default value.

NO
specifies not to remove multiple blanks. If you specify COMP=NO without the SUB operand, the
message, as defined in the message repository, is not scanned. Extra blanks are not removed and
substitution indicators are not removed or replaced.

For example, if a message is defined in the repository with a substitution indicator of &1 and
the message is invoked with no SUB operand and COMP=NO specified, then the &1 appears in
the displayed message. To prevent the &1 substitution indicator from appearing in the message,
a substitution must be specified on the message invocation. This can be done by coding a SUB
operand for a single substitution. Specifying a null character as the substitution on the APPLMSG
invocation causes the message text to be scanned to remove substitution indicators such as &1,
&2, and so on.

When a double-byte character set (DBCS) language is being used (GENMSG is issued with the
DBCS option), the message is always scanned.

DISP=
specifies the display format (disposition) of the message. Acceptable values are:
ERRMSG

specifies that the message line is displayed according to the CP EMSG setting. If EMSG is set to:

• ON - the entire message is displayed, header plus text
• OFF - no message is displayed
• TEXT - only the text portion is displayed
• CODE - only the 10- or 11-character header is displayed.

ERRMSG is the default DISP value unless you specify TEXT, TEXTA, or HEADER=NO. If you specify
TEXT, TEXTA, or HEADER=NO, TYPE is the default DISP value.

NONE
specifies that no output occurs. DISP=NONE is useful with the BUFFA operand.

TYPE
specifies that the message is displayed on the terminal. This would be the same as DISP=ERRMSG
with EMSG TEXT. TYPE is the default if you specify TEXT, TEXTA, or HEADER=NO; otherwise,
ERRMSG is the default.

Note: If the message text wraps to a second line, a split can occur in the middle of a word.

CPMSG
specifies that the message is passed to CP to be issued as a CP message.

EXECCOMM
specifies that the message is returned to a variable in the calling exec. The complete message is
copied into the variable ‘MESSAGE’, with the first line in ‘MESSAGE.1’, the second in ‘MESSAGE.2’,
and so on. The number of lines in the message is copied into ‘MESSAGE.0’. This is only used
when the module issuing APPLMSG is called from an exec. If TEXT or TEXTA is also specified,
only ‘MESSAGE.1’ is filled in and ‘MESSAGE.0’ is given a value of 1. This line is limited to 256
characters.

variable
specifies that a variable shows the message display format to be used. The variable must be 1
byte long, and the low-order 3 bits of the byte must be set to the desired disposition as follows:

ERRMSG = 000
TYPE = 001
NONE = 010
CPMSG = 011
EXECCOMM = 100

APPLMSG

Chapter 2. Preferred CMS Macro Instructions 37

HEADER=
specifies whether you want a header created for the message. The repository describes how many
digits of the message number to display. Acceptable values are:
YES

specifies a header. You cannot specify HEADER=YES with the TEXT or TEXTA option. This is the
default. If you specify DISP=ERRMSG, HEADER=YES is ignored.

NO
specifies no header. You cannot specify HEADER=NO with the DISP=ERRMSG option.

The standard header format of VM error messages is

xxxmmmnnns or xxxmmmnnnns

where:

• xxx is the application ID
• mmm is the CSECT name
• nnn or nnnn is the message number
• s is the severity code

The following is a list of the most commonly used severity codes:
Code

Message Type
E

Error
I

Information
R

Response
S

Severe
T

Terminal
W

Warning

LET=
specifies a severity letter for the message. A default severity code letter is already provided in the
message repository; you should use this parameter only when you want to override the provided
severity.

You cannot specify LETA, TEXT, or TEXTA with LET. When TEXT or TEXTA is specified, DISP defaults to
TYPE.

Acceptable values are:

*
specifies the default severity. This is the default value.

char
specifies the severity code letter.

(reg)
specifies the register that contains the severity code letter.

LETA=
specifies a severity letter for the message. Acceptable values are:
addr

specifies the address of the severity letter.

APPLMSG

38 z/VM: 7.3 CMS Macros and Functions Reference

(reg)
specifies the register containing the address of the severity letter.

You cannot specify LET, TEXT, or TEXTA with LETA.
NUM=

specifies the number of the message you want. The message number is one to four digits and it
locates the associated message text in the repository. This parameter is required with all formats
except the list format.

You cannot specify NUMA, TEXT, or TEXTA with NUM. When TEXT or TEXTA is specified, DISP defaults
to TYPE.

Acceptable values are:

num
specifies the message number.

(reg)
specifies the register containing the message number.

NUMA=
specifies the number of the message you want. The message number is one to four digits and it
locates the associated message text in the repository. If NUMA is used, then the message number
should be defined as a halfword. This parameter is required with all formats except the list format.
Acceptable values are:
addr

specifies the address of the message number.
(reg)

specifies the register containing the address of the message number.
You cannot specify NUM, TEXT, or TEXTA with NUMA.

FMT=
specifies the message format number. The format number is a 1- or 2-digit number that identifies
different versions of the same message which have the same message number. The formats are
numbered from 01 to 99. The default is 01. A format of 00 is not allowed.

You cannot specify FMTA, TEXT, or TEXTA with FMT. When TEXT or TEXTA is specified, DISP defaults
to TYPE.

Acceptable values are:

num
specifies the number.

(reg)
specifies the register containing the number.

FMTA=
specifies the message format number. The format number is a 1- or 2-digit number that identifies
different versions of the same message which have the same message number. The formats are
numbered from 01 to 99. A blank format defaults to 01. A format of 00 is not allowed. If FMTA is used,
then the message format should be defined as one byte. Acceptable values are:
addr

specifies the address of the message format number.
(reg)

specifies the register containing the address of the message format number.
You cannot specify FMT, TEXT, or TEXTA with FMTA.

LINE=
specifies the line number of a message. The line number is a 1- or 2-digit number that identifies each
line of a multi-line message.

Lines are numbered from 01 to 99.

APPLMSG

Chapter 2. Preferred CMS Macro Instructions 39

You cannot specify LINEA, TEXT, or TEXTA with LINE. When TEXT or TEXTA is specified, DISP defaults
to TYPE.

If BUFFA is not specified, the default for LINE is an asterisk (*). If BUFFA is specified, the default
for LINE is 01. A line number of 00 is not allowed. Each line may be up to 240 characters long.
Acceptable values are:

num
specifies the line number.

(reg)
specifies the register that contains the line number.

*
specifies that all lines for a certain message number and format are to be retrieved. You may only
specify an asterisk with the LINE option (not with LINEA), and the asterisk must be hardcoded (not
used in a register). You may not specify an asterisk for a line number if you use the BUFFA option.

LINEA=
specifies the line number of a message. The line number is a 1- or 2-digit number that identifies each
line of a multi-line message. Lines are numbered from 01 to 99. If you use LINEA, you must define the
line number as 1 byte. Acceptable values are:
addr

specifies the address of the line number.
(reg)

specifies the register that contains the address of the line number.
You cannot specify LINE, TEXT, or TEXTA with LINEA.

SUB=(sublist)
specifies the type of substitution to be performed on those portions of the message where
substitutions are indicated.

Acceptable values for sublist are:

(type,(value,length))
specifies the type of data, its address, and the length of the substitution.

(type,value)
specifies a number used to retrieve the substitution information from the repository.

If you specify a length, you must enclose the value and length in parentheses. Otherwise, do not
enclose the value in parentheses.

You can specify both the value and length using register notation. When you specify the length, it is
interpreted to be the length of the input field, except when used with the HEX, HEXA, HEX4A, DEC
and DECA parameters. For these parameters, the length represents the length of the converted result.
Following are the possible values of type.

DICT,number
DICT,(reg)

indicates that the substitution is a dictionary item. The number of the dictionary item in the
repository is specified by number or the value in (reg).

You cannot specify a length with DICT. Also, it is recommended that you use only system
keywords (for example, PROFILE, NOPROFILE, or XEDIT) to specify a dictionary item.

If you specify DICT, the APPLID parameter is required.

HEX,expression
HEX,(reg)

converts to graphic hexadecimal the expression or the value in the specified register. The length
indicates the number of digits of the converted fullword to be displayed. The default length is 8
hexadecimal digits (4 bytes). The word is truncated from the left.

APPLMSG

40 z/VM: 7.3 CMS Macros and Functions Reference

HEXA,address
HEXA,(reg)

converts to graphic hexadecimal the fullword at the specified address or indicated at the address
in (reg). You may specify a length with type HEXA; the default is 8 hexadecimal digits (4 bytes).
The length indicates the number of digits of the converted fullword to be displayed. The word is
truncated from the left.

HEX4A,address
HEX4A,(reg)

converts to graphic hexadecimal the data at the specified address or at the address indicated in
(reg). The value you specify is converted and substituted into the message text. Leading zeros are
not suppressed. A blank character is inserted following every 4 bytes (8 characters of output). The
data to be converted does not have to be on a fullword boundary.

The length field is required with type HEX4A. The length you specify indicates the number of bytes
of the converted data to be displayed. This length does not include the blanks that are inserted
following every 4 bytes. The data is truncated from the right.

DEC,expression
DEC,(reg)

converts to graphic decimal the expression or the value in the specified register.

You can specify a length with type DEC; the default is 15 digits (excluding the sign if the number
is negative). The length indicates the number of digits of the converted fullword to be displayed,
excluding the minus sign. The word is truncated from the left.

DECA,address
DECA,(reg)

converts to graphic decimal the fullword at the specified address or at the address in (reg). The
value you specify is converted and substituted in the message text. Leading zeros are suppressed.
If the number is negative, a leading minus sign is inserted.

You can specify a length with type DECA; the default is 15 digits (excluding the sign if the number
is negative). The length indicates the number of digits of the converted fullword to be displayed,
excluding the minus sign. The word is truncated from the left.

DEV,expression
DEV,(reg)

specifies a value, expression, or a register, reg, that contains a value, which can be up to a fullword
of binary or hexadecimal data.

If the value is hexadecimal data, then no conversion is performed. If the value is binary data, then
it is converted to a hexadecimal number.

If the hexadecimal number is greater than 4 digits, then the rightmost 4 digits are used. If the
hexadecimal number is less than 4 digits long, then it is padded on the left with zeros to bring its
length to 4 digits.

If the leftmost digit of the hexadecimal number is 0, then it is dropped and the rightmost 3 digits
are used; otherwise, all 4 digits are used.

DEVA,address
DEVA,(reg)

specifies an address, address, or a register, reg, that contains an address, which points to a
halfword in storage. The 2 bytes of data consist of 4 hexadecimal digits.

If the leftmost digit of the 4-digit group is 0, then it is dropped and the rightmost 3 digits are used;
otherwise, all 4 digits are used.

DEVCA,address
DEVCA,(reg)

specifies an address, address, or a register, reg, that contains an address, which points to a
fullword in storage that contains character data.

APPLMSG

Chapter 2. Preferred CMS Macro Instructions 41

The character data at this fullword in storage is converted to its EBCDIC value, resulting in a
4-digit number.

If the leftmost digit of the 4-digit number is 0, then it is dropped and the rightmost 3 digits are
used; otherwise, all 4 digits are used.

CHARA,address
CHARA,(reg)

substitutes into the message text the character data at the specified address or at the address
indicated in (reg).

The length field is mandatory with type CHARA.

CHAR8A,address
CHAR8A,(reg)

substitutes into the message text the character data at the specified address or at the address
indicated in (reg) and inserts a blank character following each 8 characters of output.

The length field is mandatory with type CHAR8A. This length indicates the number of actual
characters to be displayed, not including the blanks that are inserted after each 8 characters.

MAXSUBS=num
reserves program storage to build the parameter list. The number you specify is the maximum number
of substitutions, and that determines the size of the area saved. It is used only with the MF=L macro
form.

If you specify MAXSUBS and a SUB list, APPLMSG takes the maximum number of substitutions. That
is, if you specify both MAXSUBS=1 and

SUB=(TYPE,(VALUE,LENGTH),TYPE,(VALUE,LENGTH))

then 2 is the value used. The number of substitutions is multiplied by the amount of space required
for each substitution and added to the storage required for the remainder of the parameter list.

The maximum number of substitutions is 20.

TEXT=‘message-text’
directly specifies the message text to be used, instead of using a repository.

The substitution character defaults to ‘&’ if you specify TEXT. A header is not created for the message,
so the message header must be included as part of the text when the DISP=ERRMSG option is used
with the TEXT or TEXTA option. The header option may not be specified when DISP=ERRMSG is used
with TEXT or TEXTA. The HEADER=YES option may not be specified with TEXT or TEXTA.

You cannot specify CSECT, CSECTA, FMT, LET, LINE, NUM, or TEXTA with TEXT. When TEXT is
specified, DISP defaults to TYPE.

The APPLID parameter is optional when you specify TEXT or TEXTA unless you specify the SUB
parameter with a type of DICT.

If you code TEXT or TEXTA to display a message, that message always appears in the same language,
even if your current language changes.

TEXTA=
directly specifies the message text to be used, instead of using a repository.

The substitution character defaults to ‘&’ if you specify TEXTA. A header is not created for the
message, so the message header must be included as part of the text when the DISP=ERRMSG option
is used with the TEXT or TEXTA option. The header option may not be specified when DISP=ERRMSG
is used with TEXT or TEXTA. The HEADER=YES option may not be specified with TEXT or TEXTA.

You cannot specify CSECT, CSECTA, FMT, LET, LINE, NUM, or TEXT with TEXTA. When TEXTA is
specified, DISP defaults to TYPE.

The APPLID parameter is optional when you specify TEXT or TEXTA unless you specify the SUB
parameter with a type of DICT.

APPLMSG

42 z/VM: 7.3 CMS Macros and Functions Reference

If you code TEXT or TEXTA to display a message, that message always appears in the same language,
even if your current language changes. Acceptable values are:

addr
specifies the address of the message text

(reg)
specifies the register containing the address of the message text

If you specify TEXTA, the first byte at the address specified must contain the length of the message
text. For example:

APPLMSG TEXTA=MESSAGE
 .
 .
 .
MESSAGE DC X'16'
 DC CL22'THIS IS A LINE OF TEXT'

TYPCALL=
specifies the type of call you want to generate. Acceptable values are:
SVC

the macro generates a CMSCALL to call the DMSMGM module. This is the default value.
NONE

no call to DMSMGM module is generated.

The processing that takes place in the macro depends on the value of the MF parameter and the
TYPCALL parameter.

(MF= operand not specified)
generates a series of assembler statements that declare the parameters inline for use by the
message processor module (DMSMGM). If you use substitutions whose values and lengths do not
use registers or are not hardcoded, then nonreentrant code is generated for this macro format.
The macro then generates a call to DMSMGM module depending on the value of the TYPCALL
parameter.

MF=L
generates a DS assembler statement to reserve a storage area APPLMSG can use later. The size
of the area of storage reserved depends on the value of the MAXSUBS parameter. No call to
DMSMGM is generated, and no parameter information is set up.

MF=E
generates a series of assembler statements that build a record in the specified buffer area. This
record contains the parameters for use by DMSMGM module.

The macro then generates a call to DMSMGM module depending on the value of the TYPCALL
parameter as described for the standard format.

Usage Notes
1. For more information on developing and managing message repositories, see the z/VM: CMS

Application Development Guide. The z/VM: CMS Application Development Guide for Assembler also
contains a sample program using the APPLMSG macro to access messages in a repository.

2. APPLMSG contains many of the functions of the LINEDIT macro; it also lets you specify just a message
number rather than coding the entire message text. This allows for more flexibility, because a different
repository can be in storage and the same message would come up, only it would be in a different
language.

3. You should have a copy of the message repository you want to access. This way you can see the
message numbers, formats, lines, and substitution slots.

4. When you use the DEV, DEVA, or DEVCA substitution types, the support device address must contain 4
digits.

APPLMSG

Chapter 2. Preferred CMS Macro Instructions 43

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

5. For more information on installing a different system national language and on using other national
languages supported by z/VM, see z/VM: Installation Guide.

Examples

See z/VM: CMS Application Development Guide for Assembler for usage examples of the APPLMSG macro.

For the examples in this section, assume a message repository contains the following messages and
dictionary items:

Messages:

08750101e Attempt to divide by &1 is invalid
08750201e Attempt to &2 by &1 is invalid
08760101e Error &X-1 rc = &X-3
08770101e This is a multi-line message.
 NOCOMP must be specified in
 08770102e order to keep the
 return codes lined up on the next line.

 08770103e RC 1 = &X-1 RC 2 = &X-2
 _ |
 __ _ |_ |
 | | ||________severity code
 | | |______line of message
 | |_____format of message
 |____number of message

Dictionary items:

90250101 divide 90260101 reading from &2 90270101 tape

Sample code that displays error messages when it attempts to divide by zero:

SAMP CSECT
 ENTRY T
* TRY SOME APPLMSG MACRO CALLS T DS 0H
 LR 10,15
 USING SAMP,10
* SET UP THE REGISTERS FOR THE DIVIDE
 L 3,=F'0' R3=0
 L 4,=F'10' R4=10
 L 5,=F'0' R5=0
 CR 3,5 COMPARE REGISTER 5 TO 0
 BE ERR0 IF REG 5 IS 0, ISSUE AN ERROR MESSAGE
 DR 4,5 OTHERWISE, DO THE DIVIDE
 B DONE
 ------ issue error message; see cases below ------
 .
 .
 .
DONE DS 0H
 BR 14
ERR1 APPLMSG MF=L,MAXSUBS=2

Case 1: This call accesses the repository to print CMS message 875, format 1. The parameter list for
APPLMSG is set up inline. (The substitution is a 1-digit decimal number in register 5.)

ERR0 APPLMSG NUM=875,FMT=1,
 APPLID=CMS,COMP=YES,SUB=(DEC,((5),1)),
 DISP=TYPE,TYPCALL=SVC

Case 2: This call accesses the repository to print the message. The parameter list for APPLMSG is set up
at ERR1. (Again, the substitution is a 1-digit decimal number in register 5.)

ERR0 APPLMSG MF=(E,ERR1),NUM=875,FMT=1,
 APPLID=CMS,COMP=YES,SUB=(DEC,((5),1)),
 DISP=TYPE,TYPCALL=SVC

APPLMSG

44 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa2_v7r3.pdf#nameddest=hcpa2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Case 3: This call uses a dictionary item for the second substitution in the message.

ERR0 APPLMSG MF=(E,ERR1),NUM=875,FMT=02,
 APPLID=CMS,COMP=YES,SUB=(DEC,((5),1),DICT,9025),
 DISP=TYPE,TYPCALL=SVC

Note: In this case, the dictionary item is a system keyword (DICT=DIVIDE).

Case 4: This call uses the TEXT parameter to print the message directly, without using the repository:

ERR0 APPLMSG APPLID=CMS,COMP=YES,SUB=(DEC,((5),1)),
 DISP=TYPE,TYPCALL=SVC,
 TEXT='ATTEMPT TO DIVIDE BY &&1 IS INVALID'

To get the substitution character (&1) to appear in the message text, it is necessary to code two
ampersands.

Note that this method was used prior to VM/SP Release 5, but is no longer recommended. Cases 1
through 3 show the preferred methods for text substitution.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
4

A message was produced, but the text was truncated because the:

• User buffer is too short to contain the message text
• Final message text with substitutions is longer than 240 characters.

Execution continues.
40

An invalid DISP value was received; APPLMSG macro terminates as a result of DISP parameter
validation, the macro request was not performed, and processing continues with next sequential
instruction.

104
EXECCOMM failed; APPLMSG macro terminates as a result of DISP parameter validation, the macro
request was not performed, and processing continues with next sequential instruction.

APPLMSG

Chapter 2. Preferred CMS Macro Instructions 45

BATLIMIT

BATLIMIT

Purpose

Use the BATLIMIT macro to generate a DSECT for the BATLSECT DSECT.

Usage Notes
1. For more information on the BATLIMIT macro, see z/VM: CMS Planning and Administration.
2. The BATLIMIT macroinstruction expands as follows:

 BATLIMIT
BATLSECT DSECT
*
*
* CMS BATCH USER JOB LIMITS
*
BATCPUL DC F'131068' - VIRT.CPU LIMIT (SEC.) - CAN BE RESET
BATCPUC DC F'0' - CURRENT CPU COUNT - DO NOT RESET
BATPRTL DC F'131068' - NO. PRINTED LINES LIMIT - CAN BE RESET
BATPRTC DC F'0' - CURRENT LINE COUNT - DO NOT RESET
BATPUNL DC F'131068' - NO. PUNCHED CARDS LIMIT - CAN BE RESET
BATPUNC DC F'0' - CURRENT CARD COUNT - DO NOT RESET

BATLIMIT

46 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3

CMSCALL

label

CMSCALL
1

PLIST = (1)

PLIST = addr

( reg)

, EPLIST = addr

( reg)

, CALLTYP = PROGRAM

EPLIST

SUBCOM

NONUCXE

NONUCXT

FUNCTION

CMS

value

( reg)

, UFLAGS = addr

( reg)

value

, COPY = YES

, COPY = NO

( reg)

( addr , mask)

, MODIFY = NO

, MODIFY = YES

( reg)

( addr , mask)

, FENCE = YES

, FENCE = NO

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

'ABEND'

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use the CMSCALL macroinstruction to invoke a CMS command, CMS function, EXEC, or user MODULE.
Your program must build the standard tokenized parameter list that the routine being invoked needs. The
first token is the name of the routine CMSCALL invokes. The CMSCALL macro has only the standard macro
form, which generates reentrant code.

CMSCALL

Chapter 2. Preferred CMS Macro Instructions 47

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
PLIST=

specifies the address of the tokenized parameter list for the command. CMSCALL loads the address
into register 1. Acceptable values are:
(1)

specifies that register 1 contains the address of the tokenized parameter list. This is the default.
addr

specifies the address of the tokenized parameter list. This may be any valid assembler expression.
(reg)

specifies a general register (2-12) in parentheses which contains the address of the tokenized
parameter list.

Note: You can use the SCAN macro to create the tokenized parameter list and the extended
parameter list.

EPLIST=
specifies the address of an extended parameter list for the command. CMSCALL loads the address
into register 0 and sets to 1 a bit (USEPLIST) in the user save area (USERSAVE). Acceptable values
are:
addr

specifies the address of the extended parameter list. This may be any valid assembler expression.
(reg)

specifies a general register (0, 2-12) in parentheses which contains the address of the extended
parameter list.

CALLTYP=
specifies the type of invocation for this call. These types correspond to the codes found in the
high-order byte of SVC 202; they are available in the user save area, which register 13 points to on
invocation of the program. Acceptable values are:
PROGRAM

X'00'—instructs the macro to pass a tokenized parameter list. This is the default value unless you
specify the EPLIST parameter.

EPLIST
X'01'—instructs the macro to pass a tokenized parameter list and an extended parameter list.
This is the default value if you specify the EPLIST parameter. A program invoked by REXX when
'ADDRESS COMMAND' is in effect will have a call type of X'01'.

SUBCOM
X'02'—instructs the macro to use the SUBCOM interface to make the call.

NONUCXE
X'03'—instructs the macro to pass an extended parameter list and then, during the command
search, bypass the search of the list of nucleus extensions.

NONUCXT
X'04'—instructs the macro to pass a tokenized parameter list and then, during the command
search, bypass the search of the list of nucleus extensions.

FUNCTION
X'05'—instructs the macro to call a REXX function or subroutine. This call type acts as if it was
invoked using ‘ADDRESS COMMAND’ from REXX/VM.

CMSCALL

48 z/VM: 7.3 CMS Macros and Functions Reference

CMS
X'0B'—instructs the macro to simulate invocation from a console and to pass a tokenized
parameter list and an extended parameter list. A program invoked by REXX when 'ADDRESS CMS'
is in effect will have a call type of X'0B'.

value
specifies a 1-byte constant that represents other call-type codes. The constant can be any 1-byte
self-defining term, such asX'F2', C"2", or B'11110010'. Also, the constant must be an X, C, or B
type data constant, it cannot use length modifiers, and it must not be greater than 1 byte in length.

(reg)
specifies a register in the range 2-12 enclosed in parentheses, that contains a call-type code in
the low-order byte. Note that CMSCALL modifies the contents of the register.

If you specify the EPLIST parameter, the valid CALLTYPs are EPLIST, SUBCOM, FUNCTION, NONUCXE,
CMS, (reg), or value. If you do not specify the EPLIST parameter, the valid CALLTYPs are PROGRAM
(the default), SUBCOM, NONUCXT, (reg), or value. If you specify CALLTYP as value or (reg), CMSCALL
does not check the code for conflicts (this is because you may define your own call-type codes).

To determine what CALLTYP was made, the program being invoked can interrogate the field USECTYP
in USERSAVE.

UFLAGS=
is an optional 1-byte parameter stored in the USEUFLG byte of the user save area (USERSAVE). (Upon
invocation, register 13 points to USERSAVE.) Acceptable values are:
addr

specifies an address of a 1-byte field that contains the user flags.
(reg)

specifies a register in the range 2-12 that contains the flag information in the low-order byte. (If
you specify a register, CMSCALL clears its contents after it executes.)

value
specifies the user flags as a 1-byte constant. If you specify a constant, it can be any 1-byte
self-defining term, such as X'F2', C"2", or B'11110010'. It must be an X, C, or B type data
constant, it cannot use length modifiers, and it must not be greater than 1 byte in length.

COPY=
specifies whether CMSCALL copies the extended and tokenized parameter lists if their addresses are
above 16 MB and the called program has an addressing mode of 24. CMSCALL copies the extended
parameter list only if it was provided using the EPLIST parameter. If it does copy the extended
parameter list, CMSCALL copies the parameter block, the command verb and the argument string.
CMSCALL alters the addresses in the first 3 words of the EPLIST parameter block, mapped by the
EPLIST macro, to reflect the new addresses. The remainder of the parameter block is not changed.
Acceptable values are:
YES

specifies that CMSCALL copy the extended and tokenized parameter lists. This is the default value.
NO

specifies that CMSCALL does not copy the lists.
(reg)

the macro checks the value of the specified register and, if it is 0, sets COPY to NO. If the register
contains a nonzero value, the macro sets COPY to YES.

(addr,mask)
defines a single bit in storage that sets the value of the COPY parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then COPY is set to NO. If the bit is 1, then COPY is set to YES. For example, to test the first bit in
the single byte of storage at location APPFLAG, specify the COPY parameter as

COPY=(APPFLAG,X'80')

CMSCALL

Chapter 2. Preferred CMS Macro Instructions 49

To set the value of the COPY parameter at assembly time, specify COPY=YES or COPY=NO. To set
the value at execution time, specify COPY=(reg) or COPY=(addr,mask). If, at execution time, CMSCALL
determines that COPY=NO, it ignores the MODIFY and FENCE parameters.

MODIFY=
specifies whether the tokenized parameter list is to be modified by the called program. If the
called program modifies the parameter list, CMSCALL makes the same modifications to the original
parameter list. The MODIFY parameter is valid only when COPY=YES. It is not valid if COPY=NO was
specified at assembly time; it is ignored if COPY=NO is set at execution time. Acceptable values are:
NO

specifies the tokenized parameter list is not modified. This is the default value.
YES

specifies the tokenized parameter list is modified.
(reg)

the macro checks the value of the specified register and, if it is 0, sets MODIFY to NO. If the
register contains a nonzero value, the macro sets MODIFY to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MODIFY parameter. The addr is the
address of a byte in storage and the mask determines which bit within the byte the macro tests.
You can specify addr and mask in any form allowed on a TM assembler instruction. If the specified
bit is 0, then MODIFY is set to NO. If the bit is 1, then MODIFY is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the MODIFY parameter as

MODIFY=(APPFLAG,X'80')

To set the value of the MODIFY parameter at assembly time, specify MODIFY=YES or MODIFY=NO. To
set the value at execution time, specify MODIFY=(reg) or MODIFY=(addr,mask).

FENCE=
indicates whether the last token in the tokenized parameter list is the standard fence, which has
a doubleword value ofX'FF'. If FENCE=NO, CMSCALL copies the 68 doublewords beginning at the
address of the tokenized parameter list. If FENCE=YES, CMSCALL copies everything up to and
including the fence in the tokenized parameter list.

The FENCE parameter is valid only when COPY=YES. It is not valid if COPY=NO was specified at
assembly time; it is ignored if COPY=NO is set at execution time. Acceptable values are:

YES
specifies the last token in the tokenized list as the standard fence. This is the default value.

NO
specifies the last token in the tokenized list is not the standard fence.

(reg)
the macro checks the value of the specified register and, if it is 0, sets FENCE to NO. If the register
contains a nonzero value, the macro sets FENCE to YES.

(addr,mask)
defines a single bit in storage that sets the value of the FENCE parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then FENCE is set to NO. If the bit is 1, then FENCE is set to YES. For example, to test the first bit in
the single byte of storage at location APPFLAG, specify the FENCE parameter as

FENCE=(APPFLAG,X'80')

To set the value of the FENCE parameter at assembly time, specify FENCE=YES or FENCE=NO. To set
the value at execution time, specify FENCE=(reg) or FENCE=(addr,mask).

CMSCALL

50 z/VM: 7.3 CMS Macros and Functions Reference

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.
'ABEND'

abends the program.

Usage Notes
Call Charts: Table 8 on page 51 and Table 9 on page 51 summarize how SVC 202 and CMSCALL work.
Note that CMSCALL always treats the address of the tokenized parameter list as a 31-bit address; SVC
202 always treats it as a 24-bit address.

Table 8. CMSCALL Call Chart

Parameter List Location AMODE of Program Being
Called

Action to Parameter List

Below 16 MB 24 CMS copies the information specified on the CALLTYP
parameter of CMSCALL into the high-order byte of
register 1. This allows CMSCALL to call a routine that
has not been changed (that is, a routine that expects
information about the call in the high-order byte of
register 1 instead of in the user save area).

Above 16 MB 24 Unless you code the COPY=NO parameter on the
CMSCALL macro, CMS copies the parameter list below
the 16 MB line. If you do not specify COPY=NO,
CMS copies the information specified on the CALLTYP
parameter of CMSCALL into the high-order byte of
general register 1. If you do code the COPY=NO
parameter on the CMSCALL macro, the program
terminates with an abend code of X'1CC'.

Anywhere 31, ANY Leave intact. If the caller is AMODE 24 and the callee
is AMODE ANY, CMS copies the information specified
on the CALLTYP parameter of CMSCALL into the high-
order byte of general register 1.

Note: CMS passes register 0, which may contain the address of the extended parameter list, intact to the caller.
It does not check to determine what type of address you pass unless you specify the COPY parameter on the
CMSCALL macro.

Table 9. SVC 202 Call Chart

Callers Location AMODE of Program Being
Called

Action to Parameter List

Below 16 MB 24 Leave intact.

Above 16 MB 24, 31, ANY Abend code X'1CA'—SVC 202 does not work from
above 16 MB.

CMSCALL

Chapter 2. Preferred CMS Macro Instructions 51

Table 9. SVC 202 Call Chart (continued)

Callers Location AMODE of Program Being
Called

Action to Parameter List

Below 16 MB 31, ANY CMS stores 0's in the high-order byte of register 1 in
order to pass a 31-bit address.

PSW Settings When A Called Routine Starts: The following table shows how the PSW is set up when the
called routine is entered.

Table 10. PSW Settings When a Called Routine Starts

Call Mechanism - Target Program Interrupts Storage Key

CMSCALL - Nucleus Extension
Module

Defined by NUCEXT macro Defined by NUCEXT macro

CMSCALL - Transient Area Module Disabled Defined by GENMOD or SET
PROTECT command

CMSCALL - User Area Module Enabled Defined by GENMOD or SET
PROTECT command

SVC 202 - Nucleus Extension
Module

Defined by NUCEXT macro Defined by NUCEXT macro

SVC 202 - Transient Area Module Disabled Defined by GENMOD or SET
PROTECT command

SVC 202 - User Area Module Enabled Defined by GENMOD or SET
PROTECT command

User-defined Disabled User

Note: When a user defined SVC interrupt handler is invoked, the interrupt mask is disabled.

Register Contents When A Called Routine Starts: The following table shows how the general registers
are set up when the called routine is entered.

Table 11. Register Contents When a Called Routine Starts

Type Reg 0-1 Reg 2 Reg 3-11 Reg 12 Reg 13 Reg 14 Reg 15

CMSCALL Same as
caller

See note Not defined Address of
called
routine

Address of
user save
area

Return
address

Address of
called
routine

SVC 202 Same as
caller

See note Not defined Address of
called
routine

Address of
user save
area

Return
address

Address of
called
routine

Other SVCs Same as
caller

Same as
caller

Same as
caller

Address of
called
routine

Address of
user save
area

Return
address

Same as
caller

Note: If the called routine is a nucleus extension or subcommand processor, then register 2 has the address of
the SCBLOCK and the bit USESCBLK in USERSAVE is set to 1.

Return Codes
If an error occurs, register 15 contains one of the following return codes:

CMSCALL

52 z/VM: 7.3 CMS Macros and Functions Reference

Code
Meaning

-0015
A multitasking program was invoked while CMS/DOS mode was active.

-0014
SVC resulted in an implicitly created process that abended before completion.

-0006
An attempt was made to invoke a CMS function or macro from the command line or from a REXX EXEC
with ADDRESS CMS or an EXEC 2 EXEC with &PRESUME &SUBCOMMAND. The function should be
invoked from a program using SVC 202 or CMSCALL with a proper parameter list.

-0005
A LOADMOD was attempted with the wrong environment (for example, the module was generated by
the GENMOD command with the OS option and LOADMOD was attempted with DOS=ON specified).

-0004
The LOADMOD failed (for example, there was an error with the module).

-0003
No CMS command, using name passed in parameter list, was found.

-0002
Error 32 on LOADMOD.

CMSCALL Abend Codes: Table 12 on page 53 describes the CMSCALL abend codes.

Table 12. ABEND Codes Specific to CMSCALL

ABEND code Module name Cause of ABEND Action

0F0 DMSITS Insufficient free storage
is available to allocate
a save area for a
CMSCALL or SVC 202 call.
Insufficient free storage
is available to copy the
parameter lists.

Define more storage

1CA DMSITS A program residing above
16 MB issued an SVC 202.

Change program to
use CMSCALL, or move
program below 16 MB.

1CB DMSITS A program residing above
16 MB issued an SVC 203.

Change program to
use CMSCALL, or move
program below 16 MB.

1CC DMSITS CMSCALL was used to
invoke an AMODE 24
program with a parameter
list above 16 MB.

Move the parameter list
below 16 MB. This
can be done using the
COPY parameter on the
CMSCALL macro.

CMSCALL

Chapter 2. Preferred CMS Macro Instructions 53

CMSCVT

label

CMSCVT

Purpose
Use the CMSCVT macro to generate a DSECT for the communications vector table.

Parameters
Optional Parameter:
label

is an optional assembler label for the statement. The first statement in the CMSCVT macro expansion
is labeled CVTSECT.

Usage Notes
1. The CVTFLAG2 field indicates whether or not Data Compression Services and the hardware instruction

(CMPSC) are supported. If Data Compression Services are supported, the CVTCMPSC bit will be on. If
the machine supports hardware compression, the CVTCMPSH bit will be on.

2. The CMSCVT macroinstruction expands as follows:

CVTSECT DSECT
*
*** COMMUNICATION VECTOR TABLE AS SUPPORTED BY CMS
*
 DC H'0' - RESERVED
CVTMDL DC H'0' - CPU MODEL ID
 DC CL4'CSPR' VM SYSTEM PRODUCT RELEASE
*
*** END OF CVT PREFIX AREA **
*
CMSCVT DS 0D - CVT START
 DC V(DMSNUCEL) Simulated CEL Anchor linkage
 DC F'-1' - NOT SUPPORTED
CVTLINK DC F'-1' - RESERVED
 DC 11F'-1' - NOT SUPPORTED
CVTDATE DC PL4'0' - CURRENT DATE IN PACKED DECIMAL
 DC 3F'-1' - NOT SUPPORTED
 DC A(0) - NOT SUPPORTED
CVTVPRM DS 0F - VECTOR FACILITY PARAMETERS
CVTVSS DC H'0' - VECTOR SECTION SIZE
CVTVPSM DC H'0' - VECTOR PARTIAL SUM NUMBER
CVTEXIT DC XL2'0A03' - AN SVC 3 INSTRUCTION (EXIT)
CVTBRET DC XL2'07FE' - A BCR 15,14 INSTRUCTION
 DC 8F'-1' - NOT SUPPORTED
CVTDCB DC AL1(CVTMVSE+CVT1SSS+CVTOSEXT) System is XA+CMS
CVTMVSE EQU X'80' - S/370-XA mode execution
CVT1SSS EQU X'40' - Option 1 (PCP) SSS also CMS
CVT2SPS EQU X'20' - Option 2 (MFT) or VSE on VM
CVTOSEXT EQU X'08' - indicator that the CVTOSLVL area
* is present and may be referenced.

 DC FL3'-1' - NOT SUPPORTED
CVTR13 DC F'0' - R13 SAVED DURING 'OPEN'
 DC F'-1' - NOT SUPPORTED
CVTNUCB DC A(0) - RESERVED
 DC 2F'-1' - NOT SUPPORTED
CVTECVT DC A(0) ADDR OF EXTENDED CVT
 DC 5F'-1' - NOT SUPPORTED
CVTMZ00 DC A(0) - HIGHEST STORAGE ADDRESS IN MACHINE
 DC 3F'-1' - NOT SUPPORTED
 DC XL2'00' - NOT SUPPORTED
CVTOPTA DC XL2'00' - BIT 7 - EXT-PREC FP HRDWRE IN CPU

CMSCVT

54 z/VM: 7.3 CMS Macros and Functions Reference

 DC 2F'-1' - NOT SUPPORTED
 DC 2A(0) - NOT SUPPORTED
CVTABEND DC V(CMSSCVT) ADDR OF SECONDARY CVT
CVTUSER DC F'0' - FIELD AVAILABLE TO USER
 DC 7F'-1' - NOT SUPPORTED
CVTGTF DC F'-1' GENERALIZED TRACE FACILITY
 DC 2F'-1' - NOT SUPPORTED
CVTSAF DC A(0) ADDR OF SAF VECTOR TABLE
 DC F'-1' - NOT SUPPORTED
CVTACBM DC V(DMSCBM) ADDR OF CBMM ROUTINE
 DC 11F'-1' NOT SUPPORTED
CVTTZ DC XL4'00' DIFFERENCE BETWEEN LOCAL TIME
* AND GREENWICH MEAN TIME
 DC 5F'-1' -NOT SUPPORTED-
CVTEXT2 DC A(0) ADDR OF OS/VS2 COMMON EXTENSION
 DC 11F'-1' -NOT SUPPORTED-
CVTFLAGS DS 0A - SYSTEM GLOBAL FLAGS
CVTFLAG1 DC AL1(0) - -NOT SUPPORTED-
CVTFLAG2 DC AL1(0) - FLAG BYTE 2
CVTCMPSC EQU X'80' - Compression Services supported
CVTCMPSH EQU X'40' - 'CMPSC' HW instruction available
CVTFLAG3 DC X'00' - -NOT SUPPORTED-
CVTFLAG4 DC X'00' - -NOT SUPPORTED-
 DC 23F'-1' -NOT SUPPORTED-
*
CVTSTCK DC F'0' TSO STACK ADDR
 DC 74F'-1' -NOT SUPPORTED-
CVTXSFT DC A(0) ADDR OF SYSTEM FUNCTION TABLE
 DC 92F'-1' -NOT SUPPORTED-
CVTSREGN DC A(0) ADDR OF VSM REGION SIZE ROUTINE
 DC 17F'-1' -NOT SUPPORTED-
CVTDFA DC A(0) ADDR OF DFP ID TABLE
 DC 11F'-1' -NOT SUPPORTED-

*
*
CVTOSLVL DS 0XL16 SYSTEM LEVEL INDICATORS
* BYTE 0 OF CVTOSLVL has...
CVTOSLV0 DC AL1(CVTXAX+CVTCADS) System ESA & Data Spaces
CVTXAX EQU X'80' 'EXTENDED XA' = ESA/370 SUPPORTED
CVTHIPER EQU X'10' HIPERSPACES ARE SUPPORTED
CVTCADS EQU X'04' COMMON DATA SPACES SUPPORTED
*
CVTOSLV1 DC AL1(0) BYTE 1 OF CVTOSLVL
CVTOSLV2 DC AL1(0) BYTE 2 OF CVTOSLVL
CVTOSLV3 DC AL1(0) BYTE 3 OF CVTOSLVL
CVTOSLV4 DC AL1(0) BYTE 4 OF CVTOSLVL
CVTOSLV5 DC AL1(0) BYTE 5 OF CVTOSLVL
CVTOSLV6 DC AL1(0) BYTE 6 OF CVTOSLVL
CVTOSLV7 DC AL1(0) BYTE 7 OF CVTOSLVL
CVTOSLV8 DC AL1(0) BYTE 8 OF CVTOSLVL
CVTOSLV9 DC AL1(0) BYTE 9 OF CVTOSLVL
CVTOSLVA DC AL1(0) BYTE 10 OF CVTOSLVL
CVTOSLVB DC AL1(0) BYTE 11 OF CVTOSLVL
CVTOSLVC DC AL1(0) BYTE 12 OF CVTOSLVL
CVTOSLVD DC AL1(0) BYTE 13 OF CVTOSLVL
CVTOSLVE DC AL1(0) BYTE 14 OF CVTOSLVL
CVTOSLVF DC AL1(0) BYTE 15 OF CVTOSLVL
* OS/VS2 COMMON EXTENSION
* ADDRESS OF EXTENSION IS IN CVTREXT2
CVTXTNT2 DSECT
CVT2R000 DC CL4'EXT2' RESERVED - EYECATCHER
 DC 13F'-1' -NOT SUPPORTED-
CVTLDTO DS 0D LOCAL TIME/DATE OFFSET
CVTLDTOL DC F'0' HIGH WORD
CVTLDTOR DC F'0' LOW WORD
 DC 17F'-1' -NOT SUPPORTED-

CMSCVT

Chapter 2. Preferred CMS Macro Instructions 55

CMSDEV

label

CMSDEV device, area
,ERROR=*

,ERROR= addr

( reg)

1

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Default is the standard macro format.

Purpose

Use the CMSDEV macroinstruction to obtain the characteristics of a virtual device. CMS returns the results
to a specified storage area.

Parameters
Required Parameters:
device

specifies the virtual device whose characteristics CMSDEV obtains. It may be one of the following:
CONS

a virtual console.
PRT

the virtual printer.
RDR

the virtual reader.
PUN

the virtual punch.
TAPn

a tape device attached to your virtual machine. Valid values for n are X'0' to X'1F'.
vdev

a hexadecimal address of a virtual device attached to your virtual machine.
(reg)

a register (2-12) containing the device address in the low-order two bytes.
area

is the name of a 12-byte storage area to contain the device information. It may be one of the
following:
addr

an assembler program label for the address of the storage area.

CMSDEV

56 z/VM: 7.3 CMS Macros and Functions Reference

(reg)
a specified register (2-12) containing the address of the storage area.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. Use the CMSDEV macro with the PRINTL macro to obtain the device characteristics of the virtual

printer. This avoids the need to perform either a DIAGNOSE code X'24' or a DIAGNOSE code X'210'
each time you want to write to the same virtual printer. The CMSDEV macro is an easier way to get the
information generated by the Diagnose instructions.

2. When the CMSDEV macro completes, the defined 12-byte storage area contains the device
characteristics.

If the virtual device exists, the first 4 bytes contain:
Bytes

Virtual Device Information
0

Type class
1

Type
2

Status
3

Flags

If the virtual device is associated with a local real device, bytes 4 through 7 contain:
Bytes

Local Real Device Information

CMSDEV

Chapter 2. Preferred CMS Macro Instructions 57

4
Type class

5
Type

6
Model number

7
Current device line length for a virtual console, or the device feature code for other devices.

If the virtual device is associated with a remote real device, bytes 4 through 7 contain:
Bytes

Remote Real Device Information
4

Type class
5

Type for a remote 3270 console
6

Model number for a remote 3270 console
7

Current device line length for a remote virtual console.

If the virtual device is a local virtual console or a remote 3270 virtual console (device specified as
CONS), bytes 8 through 11 contain:
Byte

Information
8

The terminal code bits defining the type of virtual console and the translate table the console uses.
9

Reserved
10-11

Virtual device number

For virtual devices other than CONS, bytes 8 through 11 contain:
Bytes

Information
8

Reserved
9

Reserved
10-11

Virtual device number
For more information on DIAGNOSE codes X'24' or X'210', and device information see z/VM: CP
Programming Services.

Return Codes
When the CMSDEV macro completes, register 15 contains one of the following return codes:
Code

Meaning
0

The virtual device is attached and a real device is associated with it.

CMSDEV

58 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

1
The virtual device is attached and a real device is not associated with it. This is normal for spooled
devices.

2
The virtual device is not attached or an invalid device address was specified.

CMSDEV

Chapter 2. Preferred CMS Macro Instructions 59

CMSECVT

label

CMSECVT

Purpose
Use the CMSECVT macro to generate a DSECT for the extended communication vector table.

Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the CMSECVT macro
expansion is labeled ECVTSECT.

Usage Notes
1. The CMSECVT macroinstruction expands as follows: ECVTSECT DSECT

*
*** Extended Communication Vector Table (ECVT) as supported by CMS
*
CMSECVT DS 0D ECVT start
 DC CL4'ECVT' Eyecatcher
 DC 59F'-1' Not supported - reserved for IBM use
ECVTOCVT DS 0A Anchor for OpenMVS CVT
ECVTOMVS DC XL1'1' OpenMVS Feature Bit
 DC XL3'0'
ECVTOEXT DC A(0) Anchor for OpenMVS External data
ECVTCMPS DC A(0) Addr of Compression Services routine
* Either -
* A(DMSCMSSH + X'80000000') Hardware co
* A(DMSCMSSS + X'80000000') Software co
 DC 17F'-1' Not supported - reserved for IBM use
ECVTLENB EQU (*-ECVTSECT) Length in bytes of ECVTSECT
ECVTLEND EQU ((ECVTLENB+7)/8) Length in dwords of ECVTSECT

2. The system compression routine is found through the CMSCVT and CMSECVT tables. Once the
CSRCMPSC macro is invoked, it branches to the correct service entry point to do the data compression
or expansion.

3. If Data Compression Services are supported, the pointer entry for ECVTCMPS (for the compression
services routine address) will be set to either:

• DMSCMSSH, if the hardware instruction is supported or
• DMSCMSSS, for the software simulation of the hardware compression feature, since the hardware

instruction is not supported.

An example of this is:

 A(DMSCMSSH + X'80000000') - Hardware compression
 A(DMSCMSSS + X'80000000') - Software compression

CMSECVT

60 z/VM: 7.3 CMS Macros and Functions Reference

CMSIUCV

Purpose

Use the CMSIUCV macro to start or end communications with another program in an IUCV (Inter-
User Communications Vehicle) or APPC/VM (Advanced Program-to-Program Communications/VM)
environment.

The basic functions of the CMSIUCV macro are:
CMSIUCV ACCEPT

Accepts the connection from a requesting program to complete a path, and notifies CMS.
CMSIUCV CONNECT

Establishes and reserves a path to communicate with another program, and lets CMS know about the
connection.

CMSIUCV QCMSWID
Gets the current CMS work unit identifier associated with a path.

CMSIUCV RESOLVE
Gets values from a CMS communications directory file for examination.

CMSIUCV SEVER
Ends communications with another program, and lets CMS know about it.

For more information on how to use the CMSIUCV macro, see the z/VM: CMS Application Development
Guide for Assembler.

CMSIUCV

Chapter 2. Preferred CMS Macro Instructions 61

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

CMSIUCV ACCEPT

label

CMSIUCV ACCEPT
1 2

, NAME = addr

( reg)

2

, PRMLIST = addr

( reg)

2

, EXIT = addr

( reg)

, UWORD = addr

( reg)

, PERSIST = NO

, PERSIST = YES

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Parameters ACCEPT, NAME, and PRMLIST are optional if MF= is specified (non-standard format).
3 Default is the standard macro format.

Purpose
Use the ACCEPT function of the CMSIUCV macro to request that CMS perform an ACCEPT.

Before issuing this function, an IUCV ACCEPT parameter list must be set up by the program and passed to
CMS using the MF=L operand on the IUCV ACCEPT macro.

Parameters
Required Parameters:
ACCEPT

Accepts the connection from a requesting program to complete a path, and notifies CMS.
NAME=

specifies the name that identifies the program associated with this path. A program with this name
must have previously issued an HNDIUCV SET function to identify itself as an APPC/VM program to
CMS.

CMSIUCV ACCEPT

62 z/VM: 7.3 CMS Macros and Functions Reference

addr
specifies the address of an 8 character symbolic name.

(reg)
specifies a register that contains the address of the 8 character symbolic name.

If the program requests an ACCEPT for a specific path and the NAME specified does not correspond
with the owner of that path, the ACCEPT is not permitted.

PRMLIST=
specifies the storage address that contains the IUCV ACCEPT parameter list. Your program must
prepare this parameter list before it issues the CMSIUCV ACCEPT. To prepare the parameter list,
your program must use the list form (MF=L) of the IUCV ACCEPT macro. (This lets you set up the
IUCV parameter list using macro keyword parameters instead of storing information with IPARML
DSECT labels.) The address must be a guest real address, that is, the address must be within the
virtual machine's real address space (guest=real). Also, the parameter list must be on a doubleword
boundary.
addr

specifies the address of the program's IUCV parameter list.
(reg)

specifies a register that contains the address of the program's IUCV parameter list.

Optional Parameters:
label

is an optional assembler label for the statement.
EXIT=

specifies the address of an exit routine to receive control whenever an APPC/VM external interrupt
occurs on this APPC/VM path. If you do not specify EXIT, the exit address defaults to the address
specified on the HNDIUCV macro for this program.

APPC/VM exit routines are called in the addressing mode (24- or 31-bit) of the program that issues
CMSIUCV ACCEPT.

addr
specifies an assembler program label as the address of the exit routine.

(reg)
specifies a register that contains the address of the exit routine.

When the program's APPC/VM external interrupt routine is given control, all interrupts are disabled.
The exit routine is responsible for providing proper entry and exit linkage for its APPC/VM external
interrupt handling routine. The exit routine:

• Should not enable itself for any type of interrupts.
• Should not perform any I/O operations, because all interrupts are disabled.
• Must return control to the address in register 14.

When the routine receives control, the significant registers contain:

Register Contents

0 UWORD Field

CMSIUCV ACCEPT

Chapter 2. Preferred CMS Macro Instructions 63

Register Contents

1 If the pending interrupt is for a private resource connection, register 1 contains a
X'00'.

If a connection to a global or local resource, register 1 points to a SAVEAREA in this
format:

Label Displacement Contents
 Dec Hex
GRS 0 0 General purpose registers 0-15
 at the time of the interrupt.
FRS 64 40 Floating point registers 0-7
 at the time of the interrupt.
PSW 96 60 External Old PSW at the time
 of the interrupt.
UAREA 104 68 Register save area for exit
 routine's use.
END 176 B0 End of save area.

2 Address of the APPC/VM External Interrupt Buffer

3 Address of the connection pending extended data (if the exit is driven by a
connection pending interrupt), or the address of the connection complete extended
data (if the exit is driven by a connection complete interrupt).

4 Address of the PIP variable (if the exit is driven by a connection pending interrupt).

13 Points to the register save area at label UAREA for use by the exit routine. (If
register 1 contains a X'00', register 13 points to a standard register save area.)

14 Return address

15 Entry point address

UWORD=
specifies an optional fullword that the invoking program can pass to the exit routine for any
purpose desired. When the exit routine receives control, register 0 contains either an address (if
UWORD=addr) or the value of the register (if UWORD=(reg)). If UWORD is not specified here, it is set
to zero.

If you do not specify UWORD here, the UWORD value defaults to the value specified on the HNDIUCV
macro for this program.

addr
specifies the address where the UWORD value is stored.

(reg)
specifies a register that contains the UWORD value.

PERSIST=
lets you specify whether an APPC/VM conversation is deallocated when work unit processing
completes. Work unit processing completes at end-of-command, end-of-subset, or when DMSPURWU
(purge work unit) or DMSRETWU (return work unit) routines are issued.
NO

specifies that CMS will automatically deallocate the APPC/VM conversation when work unit
processing completes.

YES
specifies that CMS will not automatically deallocate the APPC/VM conversation when work unit
processing completes. This cannot be used with protected conversations (SYNCLVL=SYNCPT).

Note: When you use MF=(E,addr), the execute format of CMSIUCV ACCEPT, there is no default for the
PERSIST parameter.

CMSIUCV ACCEPT

64 z/VM: 7.3 CMS Macros and Functions Reference

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes

Upon completion of the CMSIUCV ACCEPT function, register 15 contains either:

• A 5-digit reason code returned by a CSL routine that was called by CMSIUCV ACCEPT processing. These
are described in z/VM: CMS and REXX/VM Messages and Codes, or

• One of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 CMSIUCV ACCEPT completed successfully. (For a protected
conversation this path may have been previously accepted by CMS
on behalf of the application. Only the path's exit address and user
word were updated (if appropriate). The actual ACCEPT was not
reflected to CP.)

X'02' 2 An IUCV parameter list was passed as input to the CMSIUCV
ACCEPT, and the ACCEPT completed immediately. The function
complete information is in the parameter list. The user's path-
specific exit is not called because CP does not reflect an interrupt to
the virtual machine. (This reflects a CC=2 for the IUCV ACCEPT.)

X'08' 8 No HNDIUCV SET has been issued for this program.

X'0C' 12 The program does not own the path.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'18' 24 The PRMLIST parameter was not specified or its address is equal to
0.

CMSIUCV ACCEPT

Chapter 2. Preferred CMS Macro Instructions 65

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3

Hex
Code

Decimal
Code

Meaning

X'28' 40 An invalid CMSIUCV function was specified; must be CONNECT,
ACCEPT, SEVER, RESOLVE, or QCMSWID.

X'46' 70 PERSIST=YES was specified for a SYNCLVL=SYNCPT conversation.

X'3E8' + xxx 1ddd Indicates that an APPC/VM error occurred. The xxx is the IPRCODE
field that was returned by the IUCV ACCEPT macro to aid in
diagnosing the error. The ddd is the decimal equivalent of this
IPRCODE value. For more information on the IUCV ACCEPT return
codes, see z/VM: CP Programming Services.

CMSIUCV ACCEPT

66 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

CMSIUCV CONNECT

label

CMSIUCV CONNECT
1 2

, NAME = addr

( reg)

2

, PRMLIST = addr

( reg)

2

, EXIT = addr

( reg)

, UWORD = addr

( reg)

, COMDIR = YES

, COMDIR = NO

, PERSIST = NO

, PERSIST = YES

, BUFFER = addr

( reg)

, BUFLEN = addr

( reg)

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Parameters CONNECT, NAME, and PRMLIST are optional if MF= is specified (non-standard format).
3 Default is the standard macro format.

Purpose
Use the CONNECT function of the CMSIUCV macro to request that CMS perform a CONNECT.

Before issuing this function, the program must set up an APPCVM CONNECT parameter list and pass it to
CMS.

Parameters
Required Parameters:
CONNECT

Establishes and reserves a path to communicate with another program, and lets CMS know about the
connection.

CMSIUCV CONNECT

Chapter 2. Preferred CMS Macro Instructions 67

NAME=
specifies the program name associated with this connection path. A program with this name must
have previously issued an HNDIUCV SET to identify itself as an APPC/VM program to CMS.
addr

specifies the address of an 8 character program name.
(reg)

specifies a register that contains the address of the 8-character program name.
PRMLIST=

specifies the storage address that contains the APPCVM CONNECT parameter list. Your program must
prepare this parameter list before it issues the CMSIUCV CONNECT. To prepare the parameter list,
your program must use the list form (MF=L) of the APPCVM CONNECT macro. (This lets you set up the
APPC/VM parameter list using macro keyword parameters instead of storing information with IPARML
DSECT labels.) The address must be a guest real address, that is, the address must be within the
virtual machine's real address space (guest=real). Also, the parameter list must be on a doubleword
boundary.
addr

specifies the address of the program's APPC/VM parameter list.
(reg)

specifies a register that contains the address of the program's APPC/VM parameter list.

Optional Parameters:
label

is an optional assembler label for the statement.
EXIT=

specifies the address of an exit routine to receive control whenever an APPC/VM external interrupt
occurs on this APPC/VM path. If you do not specify EXIT, the exit address defaults to the address
specified in the HNDIUCV macro for this program.

APPC/VM exit routines are called in the addressing mode of the program that issues this CMSIUCV
CONNECT.

addr
specifies an assembler program label as the address of the exit routine.

(reg)
specifies a register that contains the address of the exit routine.

When the program's APPC/VM external interrupt routine is given control, all interrupts are disabled.
The exit routine is responsible for providing proper entry and exit linkage for its APPC/VM external
interrupt handling routine. The exit routine:

• Should not enable itself for any type of interrupts.
• Should not perform any I/O operations, because all interrupts are disabled.
• Must return control to the address in register 14.

When the routine receives control, the significant registers contain:

Register Contents

0 UWORD Field

CMSIUCV CONNECT

68 z/VM: 7.3 CMS Macros and Functions Reference

Register Contents

1 If the pending interrupt is for a private resource connection, register 1 contains a
X'00'.

If a connection to a global or local resource, register 1 points to a SAVEAREA in this
format:

Label Displacement Contents
 Dec Hex
GRS 0 0 General purpose registers 0-15
 at the time of the interrupt.
FRS 64 40 Floating point registers 0-7
 at the time of the interrupt.

PSW 96 60 External Old PSW at the time
 of the interrupt.
UAREA 104 68 Register save area for exit
 routine's use.
END 176 B0 End of save area.

2 Address of the APPC/VM External Interrupt Buffer

3 Address of the connection pending extended data (if the exit is driven by a
connection pending interrupt), or the address of the connection complete extended
data (if the exit is driven by a connection complete interrupt).

4 Address of the PIP variable (if the exit is driven by a connection pending interrupt).

13 Points to the register save area at label UAREA for use by the exit routine. (If
register 1 contains a X'00', register 13 points to a standard register save area.)

14 Return address

15 Entry point address

UWORD=
specifies a fullword (user word) containing information that the invoking program can specify. CMS
passes this user word to the exit routine when an interrupt is presented for this APPC/VM path. The
exit routine can use this information if it desires to do so. When the exit routine receives control,
register 0 contains either an address where the user word is stored (if UWORD=addr) or the value of a
register that contains the user word (if UWORD=(reg)).

If you do not specify UWORD here, the user word value defaults to the value specified on the
HNDIUCV SET macro for this program name.

addr
specifies the address where the user word value is stored.

(reg)
specifies a register that contains the user word value.

COMDIR=
indicates whether you want communications directory resolution to be performed.
YES

indicates that communications directory resolution will be performed conditionally, depending
on the setting specified by the SET COMDIR command. For more information on SET COMDIR,
see the z/VM: CMS Commands and Utilities Reference. This causes the RESID parameter on the
APPCVM CONNECT to map to values in a CMS communications directory file. CMS uses these
values to fill in the connection parameter list extension for you, transparently.

If the connection parameter list extension contains allocate data (FMH5 is specified on the
APPCVM CONNECT), communications directory resolution is disabled.

CMSIUCV CONNECT

Chapter 2. Preferred CMS Macro Instructions 69

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

If you omit the COMDIR= parameter, it defaults to YES. If you are using the execute form (MF=E)
of the CMSIUCV CONNECT macro and omit COMDIR=, the macro will not use YES if NO is stored in
the COMDIR field of the CMSIUCV parameter list.

See Usage Note “2” on page 71, which describes the process used by CMS to perform
communications directory resolution.

NO
indicates that communications directory resolution is not performed.

Note: When you use the MF=(E,addr), the execute format of CMSIUCV CONNECT, there is no default
for the COMDIR parameter.

PERSIST=
lets you specify whether an APPC/VM conversation is deallocated when work unit processing
completes. Work unit processing completes at end-of-command, end-of-subset, or when DMSPURWU
(purge work unit) or DMSRETWU (return work unit) routines are issued.
NO

specifies that CMS will automatically deallocate the APPC/VM conversation when work unit
processing completes.

YES
specifies that CMS will not automatically deallocate the APPC/VM conversation when work unit
processing completes. This cannot be used with protected conversations (SYNCLVL=SYNCPT).

Note: When you use the MF=(E,addr), the execute format of CMSIUCV CONNECT, there is no default
for the PERSIST parameter.

BUFFER=
specifies the address of the user supplied location where connection complete extended data (CCED)
will be placed when APPCVM CONNECT completes with CC=2 or CC=3.
addr

specifies a label in storage for the address.
(reg)

specifies a register that contains the address where the CCED data will be moved.
BUFLEN=

specifies the address of the user-supplied location that contains the length of BUFFER.
addr

specifies the label of the fullword containing the length.
(reg)

specifies a register that contains the address of the location containing the BUFFER length.

If the BUFLEN value is smaller than the length of the CCED, as much of the CCED data as will fit is
copied into the buffer. If the CCED does not fill the BUFFER area allocated for it, the unused portion is
undefined.

Note:

1. If either BUFFER or BUFLEN is specified, the other must also be specified.
2. If neither BUFFER nor BUFLEN is specified and APPCVM CONNECT completed with CC=2 or CC=3,

the application will not get the CCED.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.

CMSIUCV CONNECT

70 z/VM: 7.3 CMS Macros and Functions Reference

addr
passes control to the specified address.

(reg)
passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. The first 8 characters in the IPUSER field of the IUCV parameter list must contain the name specified

in the target virtual machine’s HNDIUCV SET. For more information, see the z/VM: CMS Application
Development Guide for Assembler.

2. When CMS resolves a symbolic destination name (the RESID= parameter on APPCVM CONNECT), the
user-level communications directory file (if it exists) is checked first. If the user-level communications
directory does not contain the specified symbolic destination name, CMS searches the system-level
communications directory. If the same symbolic destination name is defined in both the user and
system levels, the information in the system-level file is ignored. Lastly, when a symbolic destination
name is found in neither the user-level file nor the system-level file, the IBM-level communication
directory file, ICOMDIR NAMES, is searched.

Note: The communications directory entries in the IBM-level file are intended for use by IBM and
should not be changed.

If the resource identified in the connection request does not match a symbolic destination name
defined in any of the CMS communications directories, then the connection request is processed using
the specified resource ID as the name of a resource located in the same TSAF or CS collection as the
user program issuing CMSIUCV CONNECT.

Return Codes

Upon completion of the CMSIUCV ACCEPT function, register 15 contains either:

• A 5-digit reason code returned by a CSL routine that was called by CMSIUCV ACCEPT processing. These
are described in z/VM: CMS and REXX/VM Messages and Codes, or

• One of the following return codes:

CMSIUCV CONNECT

Chapter 2. Preferred CMS Macro Instructions 71

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3

Hex
Code

Decimal
Code

Meaning

X'00' 0 For an IUCV CONNECT, your function completed normally.
For an APPCVM CONNECT, the CONNECT started
successfully, but has not completed. For more information
on IUCV CONNECT and APPCVM CONNECT, see the z/VM: CP
Programming Services (This corresponds to a CC=0 for either
APPCVM CONNECT or IUCV CONNECT.)

X'02' 2 An APPC/VM parameter list was passed as input to the
CMSIUCV CONNECT, and the APPCVM CONNECT completed
immediately. The function complete information is in the
parameter list. The user's path-specific exit is not called
because CP does not reflect an interrupt to the virtual
machine. (This corresponds to a CC=2 for the APPCVM
CONNECT.)

X'03' 3 An APPC/VM parameter list was passed as input to the
CMSIUCV CONNECT, and the APPCVM CONNECT completed
immediately. CP stored error information related to PIP data
in the IPAUDIT field of the CP APPC/VM parameter list
and/or there was truncation of the CCED. The user's path-
specific exit is not called because CP does not reflect an
interrupt to the virtual machine. (This corresponds to a CC=3
for the APPCVM CONNECT.)

X'08' 8 No HNDIUCV SET has been issued for this program.

X'10' 16 The NAME parameter was not specified or its address is
equal to 0.

X'18' 24 The PRMLIST parameter was not specified or its address is
equal to 0.

X'1E' 30 The LUWID could not be obtained because of a CSL error (for
SYNCLVL=SYNCPT).

X'26' 38 The work unit is not in a valid state for issuing CMSIUCV
CONNECT (for SYNCLVL=SYNCPT).

X'28' 40 An invalid CMSIUCV function was specified; it must be
CONNECT, ACCEPT, SEVER, RESOLVE, or QCMSWID.

X'2E' 46 Either the BUFFER or BUFLEN parameter was specified
without the other.

X'32' 50 Initialization for CSL support for CMS communication failed.

X'34' 52 The APPCVM CONNECT parameter list is invalid—only the
reserved username, !CMS, can specify CONTROL=YES. (!CMS
is a reserved name for CMS. CMS uses !CMS as a user ID so it
can use its own APPC/VM support.)

X'36' 54 SYNCLVL=SYNCPT is not allowed on a control path.

X'46' 70 PERSIST=YES was specified for a SYNCLVL=SYNCPT
conversation.

X'4A' 74 CP support for coordinated resource recovery is not
available.

X'5C' 92 An invalid security tag field was found in the communications
directory.

CMSIUCV CONNECT

72 z/VM: 7.3 CMS Macros and Functions Reference

Hex
Code

Decimal
Code

Meaning

X'68' 104 Out of storage.

X'3E8' + xxx 1ddd Indicates that an APPC/VM or IUCV error occurred. The
xxx is the IPRCODE field that was returned by APPCVM
CONNECT or IUCV CONNECT to aid in diagnosing the error;
the ddd is the decimal equivalent of this IPRCODE value.
(This corresponds to a CC=1 for the APPC/VM Connect.) For
more information on APPCVM CONNECT and IUCV CONNECT
return codes, see the z/VM: CP Programming Services.

CMSIUCV CONNECT

Chapter 2. Preferred CMS Macro Instructions 73

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

CMSIUCV QCMSWID

label

CMSIUCV QCMSWID
1 2

, NAME = addr

( reg)

2

, PRMLIST = addr

( reg)

2
, CMSWID = addr

( reg)

2

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Parameters QCMSWID, NAME, PRMLIST, and CMSWID are optional if MF= is specified (non-standard
format).
3 Default is the standard macro format.

Purpose
Use the QCMSWID function of the CMSIUCV macro to query the CMS work unit ID associated with the
path ID given in PRMLIST.

Parameters
Required Parameters:
QCMSWID

Gets the current CMS work unit identifier associated with a path.
NAME=

specifies the program name associated with this path. A program with this name must have previously
issued an HNDIUCV SET to identify itself as an APPC/VM program to CMS.
addr

specifies the address of an 8 character program name.
(reg)

specifies a register that contains the address of the 8 character program name.
PRMLIST=

specifies the address of the storage area containing the APPC/VM or IUCV parameter list. Your
program must prepare this parameter list before it issues the CMSIUCV QCMSWID. (This is the
parameter list your program should have prepared using the list form (MF=L) of the APPCVM
CONNECT or IUCV ACCEPT macro.) The address must be a guest real address, that is, the address

CMSIUCV QCMSWID

74 z/VM: 7.3 CMS Macros and Functions Reference

must be within the virtual machine's real address space (guest=real). Also, the parameter list must be
on a doubleword boundary.
addr

specifies the address of the program's parameter list.
(reg)

specifies a register that contains the address of the program's parameter list.
CMSWID=

specifies the address of the 4-byte user-defined location where the CMS work unit ID for this path
ID will be moved into. For an outbound connection, this CMS work unit ID is the current work unit ID
when the CONNECT function was initiated for this path. For an inbound connection, this CMS work unit
ID is the work unit ID obtained during connection pending interrupt processing for this path.
addr

specifies the label in storage of the location where the CMS work unit ID will be stored.
(reg)

specifies a register that contains the address of the location where the CMS work unit ID will be
stored.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes

Upon completion of the CMSIUCV QCMSWID function, register 15 contains one of the following return
codes:

CMSIUCV QCMSWID

Chapter 2. Preferred CMS Macro Instructions 75

Hex
Code

Decimal
Code

Meaning

X'00' 0 The CMS work unit ID has been placed at the address specified by
CMSWID.

X'08' 8 No HNDIUCV SET has been issued for this program.

X'0A' 10 The path ID specified is invalid.

X'0C' 12 The program does not own the path.

X'0E' 14 The path ID specified is not associated with a CMS work unit.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'18' 24 The PRMLIST parameter was not specified or its address is equal to
0.

X'28' 40 An invalid CMSIUCV function was specified; it must be ACCEPT,
CONNECT, QCMSWID, SEVER, or RESOLVE.

CMSIUCV QCMSWID

76 z/VM: 7.3 CMS Macros and Functions Reference

CMSIUCV RESOLVE

label

CMSIUCV RESOLVE
1 2

, PRMLIST = addr

( reg)

2

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Parameters RESOLVE, and PRMLIST are optional if MF= is specified (non-standard format).
3 Default is the standard macro format.

Purpose
Use the RESOLVE function to let an application get the results of a CMS communications directory
symbolic destination name resolution without connecting to the resource. The result of the RESOLVE
function is placed in the PRMLIST and connection parameter list extension so that the application can
examine it. Before applications can issue RESOLVE, you or the system administrator should set up a CMS
communications directory file and enable communications directory processing.

When CMS resolves the symbolic destination name, the user-level directory (if it exists) is checked first.
If the user-level communication directory file does not contain the specified symbolic destination name,
CMS searches the system-level communications directory file. If the same symbolic destination name
is defined in both the user-level and system-level communication directory files, the information in the
system-level file is ignored. Lastly, when a symbolic destination name is found in neither the user-level file
nor the system-level file, the IBM-level communication directory file, ICOMDIR NAMES, is searched.

Note: The communications directory entries in the IBM-level file are intended for use by IBM and should
not be changed.

For more information on how to set up and control your CMS communications directories using the SET
COMDIR command, see the z/VM: CMS Commands and Utilities Reference. For more information on the
contents of the CMS communications directory files, see z/VM: Connectivity.

Parameters
Required Parameters:
RESOLVE

Gets values from a CMS communications directory file for examination.

CMSIUCV RESOLVE

Chapter 2. Preferred CMS Macro Instructions 77

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3

PRMLIST=
specifies the address of the block of storage that contains the APPCVM CONNECT parameter list. Your
program must prepare this parameter list before it issues the CMSIUCV RESOLVE macro. The address
must be a guest real address, that is, the address must be within the virtual machine's real address
space (guest=real). Also, the parameter list must be on a doubleword boundary.

Your application should issue an APPCVM CONNECT that includes the following operands:

• RESID, along with the symbolic destination name, that will map to the communications directory file
values

• BUFFER, along with the address that will contain the connection parameter list extension
• BUFLEN=any valid length for an APPCVM CONNECT connection parameter list extension greater

than 120 bytes
• FMH5=NO
• MF=L to only format the parameter list.

Note: The CMS communications directory does not fill the connection parameter list extension fields
that relate to PIP data or the logical unit of work ID.

addr
specifies the address identified by the APPCVM CONNECT PRMLIST.

(reg)
specifies a register that contains the address identified by the APPCVM CONNECT PRMLIST.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes

CMSIUCV RESOLVE

78 z/VM: 7.3 CMS Macros and Functions Reference

Upon completion of the CMSIUCV RESOLVE function, register 15 contains one of the following return
codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 CMSIUCV RESOLVE completed successfully.

X'18' 24 The PRMLIST parameter was not specified or its address is equal to 0.

X'28' 40 An invalid CMSIUCV function was specified; must be CONNECT, ACCEPT, SEVER,
RESOLVE, or QCMSWID.

X'50' 80 No communications directory entry was found because SET COMDIR OFF was in
effect.

X'54' 84 SET COMDIR ON was in effect but no entry was found in the communications directory
for the specified symbolic destination name.

X'58' 88 This return code can result for any of the following reasons:

• The connection parameter list passed to CMSIUCV CONNECT was not an APPC
parameter list.

• The connection parameter list extension length specified as BUFLEN= parameter
on APPCVM Connect was less than 120 bytes or was not valid. See the z/VM: CP
Programming Services for valid BUFLEN= values.

• Communications directory resolution was disabled because a connection parameter
list extension was provided in FMH5 format.

X'5C' 92 An invalid security tag field was found in the communications directory.

X'7D0' + xxx 2ddd CMSIUCV was unable to complete the RESOLVE function because an error was
encountered in the NAMEFIND routine. The xxx is the hexadecimal return code
received from NAMEFIND; the ddd is the decimal equivalent of this return code.

Check the communications directory files you are using. If you are not sure of the
names of these files, you can find out by issuing the QUERY COMDIR command; the
response from that command will indicate what files the system is currently using to
perform COMDIR resolution.

You should then ensure that those files contain correct information. For more
information about NAMEFIND return codes, see the z/VM: CMS Commands and
Utilities Reference.

After you are satisfied that the content of the files is correct (and the disk(s) they
are on have been reaccessed if necessary), you should issue the command SET
COMDIR RELOAD. If the problem persists, consult your system administrator. For more
information on communications directory files, see z/VM: Connectivity.

CMSIUCV RESOLVE

Chapter 2. Preferred CMS Macro Instructions 79

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3

CMSIUCV SEVER

label

CMSIUCV SEVER
1 2

, NAME = addr

( reg)

2

, PRMLIST = addr

( reg)

2
, CODE = ONE

, CODE = ALL

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Parameters SEVER, NAME, and PRMLIST are optional if MF= is specified (non-standard format).
3 Default is the standard macro format.

Purpose
Use the SEVER function to request that CMS perform a SEVER.

Before issuing this function, a program must set up an APPCVM SEVER parameter list and pass it to CMS.
CMS severs any exit routines established for the path.

Parameters
Required Parameters:
SEVER

Ends communications with another program, and lets CMS know about it.
NAME=

specifies the symbolic name that identifies the program associated with this path. A program with this
name must have previously issued an HNDIUCV macro to identify itself as an APPC/VM program to
CMS.
addr

specifies the address of an 8 character symbolic name.
(reg)

specifies a register that contains the address of the 8-character symbolic name.

If the program requests a SEVER for a specific path and the NAME specified does not correspond with
the owner of that path, the SEVER is not permitted.

PRMLIST=
specifies the storage address that contains the IUCV SEVER or APPCVM SEVER parameter list. Your
program must prepare this parameter list before it issues the CMSIUCV SEVER. To prepare the
parameter list, your program must use the list form (MF=L) of the IUCV SEVER or APPCVM SEVER

CMSIUCV SEVER

80 z/VM: 7.3 CMS Macros and Functions Reference

macro. (This lets you set up the APPC/VM parameter list using macro keyword parameters instead of
storing information with IPARML DSECT labels.) The address must be a guest real address, that is, the
address must be within the virtual machine's real address space (guest=real). Also, the parameter list
must be on a doubleword boundary.
addr

specifies the address of the program's APPC/VM parameter list.
(reg)

specifies a register that contains the address of the program's APPC/VM parameter list.

Optional Parameters:
label

is an optional assembler label for the statement.
CODE=

specifies whether one or all paths owned by the program are severed.
ALL

severs all APPC/VM paths owned by the program.

If the program requests a SEVER function with CODE=ALL, all APPC/VM paths owned by that
program are severed. The IPUSER field of the APPCVM SEVER parameter list is set to binary 1's.
The CP parameter list passed as input on the CMSIUCV SEVER, CODE=ALL should be an IUCV
parameter list.

ONE
severs only one APPC/VM path, which was specified with the PATHID parameter on APPCVM
SEVER or IUCV SEVER. This is the default value unless MF=(E,addr) is specified.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If you issue a CMSIUCV SEVER on a protected (SYNCLVL=SYNCPT) conversation, you should roll back

the work unit associated with that conversation before doing any other processing on that work unit.
For more information on when the work unit may need to be rolled back, see Synchronizing Updates to
Multiple Resources section in z/VM: CMS Application Development Guide for Assembler. For information

CMSIUCV SEVER

Chapter 2. Preferred CMS Macro Instructions 81

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

about protected conversations and the Coordinated Resource Recovery (CRR) facility in CMS, see
z/VM: CMS Application Development Guide.

Return Codes

Upon completion of the CMSIUCV SEVER function, register 15 contains either:

• A 5-digit reason code returned by a CSL routine that was called by CMSIUCV SEVER processing. These
are described in z/VM: CMS and REXX/VM Messages and Codes, or

• One of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 For an IUCV SEVER, your function completed normally. For an
APPCVM SEVER, the SEVER started successfully, but has not
completed. For more information on IUCV SEVER and APPCVM
SEVER, see the z/VM: CP Programming Services (This corresponds
to a CC=0 for either APPCVM SEVER or IUCV SEVER.)

X'02' 2 An APPC/VM parameter list was passed as input to CMSIUCV
SEVER, and the APPCVM SEVER completed immediately. The
function complete information is in the parameter list. The user's
path-specific exit is not called because CP does not reflect an
interrupt to the virtual machine. (This reflects a CC=2 for the
APPCVM SEVER.)

X'03' 3 An APPCVM SEVER function was requested, and completed
immediately. CP stored error information in the IPAUDIT field of
the CP APPC/VM parameter list. The user's path-specific exit is
not called because CP does not reflect an interrupt to the virtual
machine. (This reflects a CC=3 for the APPCVM SEVER.)

X'08' 8 No HNDIUCV SET has been issued for this program.

X'0C' 12 The program does not own the path.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'18' 24 The PRMLIST parameter was not specified or its address is equal to
0.

X'1C' 28 An IUCV SEVER with ALL=YES is not allowed.

X'27' 39 An IUCV SEVER with KEEP=YES is not allowed as input on a
CMSIUCV SEVER with CODE=ALL.

X'28' 40 An invalid CMSIUCV function was specified; must be CONNECT,
ACCEPT, SEVER, RESOLVE, or QCMSWID.

X'34' 52 The APPCVM CONNECT parameter list is invalid—only the reserved
username, !CMS, can specify CONTROL=YES. (!CMS is a reserved
name for CMS. CMS uses !CMS as a user ID so it can use its own
APPC/VM support.)

X'3A' 58 An allocation error sever (sever code = X'1xx') to a
SYNCLVL=SYNCPT path was not allowed because there are other
resources registered in the same work unit.

X'44' 68 An APPC/VM parameter list is not allowed as input on a CMSIUCV
SEVER, CODE=ALL.

CMSIUCV SEVER

82 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3

Hex
Code

Decimal
Code

Meaning

X'C8' + xx 2dd An error was encountered in getting CMS free storage. The xx is
the hexadecimal return code from CMSSTOR. The dd is the decimal
equivalent of this return code.

X'3E8' + xxx 1ddd Indicates that an APPC/VM or IUCV error occurred. The xxx is the
IPRCODE field returned by the APPCVM SEVER or IUCV SEVER
macro to aid in diagnosing the error. The ddd is the decimal
equivalent of this IPRCODE value. For more information on the
APPCVM SEVER or IUCV SEVER return codes, see z/VM: CP
Programming Services.

CMSIUCV SEVER

Chapter 2. Preferred CMS Macro Instructions 83

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

CMSLEVEL

CMSLEVEL

Purpose

Use the CMSLEVEL macroinstruction with the CMS command QUERY CMSLEVEL to map the release level
of the CMS you are running on.

Usage Notes
1. If you just want to obtain the register contents, you may want to suppress the response associated

with the CMS command QUERY CMSLEVEL. You can suppress the typing of the response by:

• Issuing the SET CMSTYPE HT command before issuing QUERY CMSLEVEL and issuing SET CMSTYPE
RT afterward

• Using the Extract/Replace CSL routine (described in the z/VM: CMS Callable Services Reference) to
set HT using the NO_TYPE_HT information name.

2. After issuing QUERY CMSLEVEL from your assembler language program, register 0 contains the
fullword at USERLVL in NUCON. This field is reserved for the user. Register 1 contains:
 bit

description
 0-7

Reserved
 8-15

Release number
16-31

Service level

The service level is a halfword field in binary format.
3. The CMSLEVEL mapping macro expands as follows:

 MACRO
 CMSLEVEL
*
* THE CODE FOR RELEASE IS DEFINED AS:
*
VMR6 EQU X'00' - VM/370 RELEASE 6
VMBSEP EQU X'01' - VM/BSEP RELEASE 2
VMSEP EQU X'02' - VM/SEP RELEASE 2
VMSP1 EQU X'03' - VM/SP RELEASE 1
VMSP2 EQU X'04' - VM/SP RELEASE 2
VMSP3 EQU X'05' - VM/SP RELEASE 3
VMSP4 EQU X'06' - VM/SP RELEASE 4
VMSP5 EQU X'07' - VM/SP RELEASE 5
VMSP55 EQU X'08' - VM/SP RELEASE 5.5
VMSP56 EQU X'08' - VM/SP RELEASE 5.6
VMSP6 EQU X'09' - VM/SP RELEASE 6
CMS7 EQU X'0A' - VM/ESA RELEASE 1 and 1.5; CMS Level 7
CMS8 EQU X'0B' - VM/ESA Release 1.1; CMS Level 8
CMS9 EQU X'0C' - VM/ESA Release 2; CMS Level 9
CMS10 EQU X'0D' - VM/ESA Release 2.1; CMS Level 10
CMS11 EQU X'0E' - VM/ESA Release 2.2; CMS Level 11
CMS12 EQU X'0F' - VM/ESA CMS Level 12 and later
*
VMPC EQU X'10' - VM/PC VERSION 1.00
VMPC2 EQU X'20' - VM/PC VERSION 2.00
* CMSLEVEL is frozen at X'0F' for CMS 12 and above.
* Use DMSQEFL macro or DMSQEFL CSL routine instead.

CMSLEVEL

84 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

4. You can also use the DMSQEFL CSL routine to return information about the level of CMS to a program.
5. A value of X'0F' indicates CMS 12 or higher. To determine CMS level on VM/ESA® Version 2 Release 1 or

later, use the DMSQEFL CSL routine or DMSQEFL macroinstruction.

CMSLEVEL

Chapter 2. Preferred CMS Macro Instructions 85

CMSRET

label

CMSRET
1

RC=(15)

RC= code

( reg)

,GR=(

,

n

n- m
)

,GR= n

,FPR=(

,

n)

,FRR= n

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use the CMSRET macro to return to the caller from a program which was invoked by SVC 202 or CMSCALL.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
RC=

specifies the return code to be placed in register 15. If you do not specify RC=, CMS returns register
15 unchanged to the caller. Acceptable values are:
code

specifies the actual return code.
(reg)

specifies the register containing the return code.
GR=

lists the general registers CMS passes unchanged to the caller. Specify registers as decimal numbers
with no leading zeros and separated by commas. You can list them in any order. Specify a range as
n-m, where n and m are decimal numbers. If you specify only one register, the parentheses are not
required. CMS restores all other general registers to their values at entry, except register 15, which
CMS always uses to pass the return code.

FPR=
lists the floating point registers CMS passes unchanged to the caller. Specify the registers as decimal
numbers with no leading zeros and separated by commas. You can list them in any order. If you
specify only one register, the parentheses are not required. Floating point registers other than 0, 2, 4,
and 6 cannot be used with this parameter.

Usage Notes
1. Immediate commands must use BR 14 rather than CMSRET to return control. Using CMSRET may

cause the program that invoked the immediate command to end, rather than causing just the
immediate command itself to end.

CMSRET

86 z/VM: 7.3 CMS Macros and Functions Reference

CMSSTACK

label

CMSSTACK TEXT= ' text '

( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

1

,ORDER=FIFO

,ORDER= LIFO

( reg)

( addr , mask)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the CMSSTACK macro to place data on the program stack.

Parameters
Required Parameters:
TEXT=

specifies the data to be stacked. Acceptable values are:
‘text’

explicitly defines the data to be stacked. If ‘text’ contains mixed DBCS data, CMS will not validate
the data if it is truncated.

(addr,length)
specifies the address of the data as an assembler expression and, optionally, the length as an
absolute expression.

(addr,(reg))
specifies the address of the data as an assembler expression and, optionally, the length as a value
contained in a register. Valid registers are 2-12 enclosed in parentheses.

CMSSTACK

Chapter 2. Preferred CMS Macro Instructions 87

((reg),length)
specifies a register that contains the address of the data and the length as an absolute expression.
If you use a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the data and a register that contains the length.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
ORDER=

specifies the order CMS uses to operate on records in the stack. Acceptable values are:
FIFO

instructs CMS to treat the stack as a queue (first in first out). FIFO is the default value.
LIFO

instructs CMS to treat it as a push down stack (last in first out).
(reg)

instructs the macro to check the value of the specified register and, if it is 0, sets ORDER to FIFO.
If the register contains a nonzero value, the macro sets ORDER to LIFO.

(addr,mask)
defines a single bit in storage that sets the value of the ORDER parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then ORDER is set to FIFO. If the bit is 1, then ORDER is set to LIFO. For example, to test the first
bit in the single byte of storage at location APPFLAG, specify the ORDER parameter as

ORDER=(APPFLAG,X'80')

To set the value of the ORDER parameter at assembly time, specify ORDER=FIFO or ORDER=LIFO.

To set the value at execution time, specify ORDER=(reg) or ORDER=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

CMSSTACK

88 z/VM: 7.3 CMS Macros and Functions Reference

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
15

The input parameter list contains a data length greater than the allowed maximum of 255 bytes. No
data is placed onto the program stack.

25
CMS is unable to obtain storage. No data is placed onto the program stack.

CMSSTACK

Chapter 2. Preferred CMS Macro Instructions 89

CMSSTOR

Purpose
Use the CMSSTOR macro to allocate and release free storage. CMSSTOR has two functions:
CMSSTOR OBTAIN

allocates free storage
CMSSTOR RELEASE

releases free storage.

CMSSTOR

90 z/VM: 7.3 CMS Macros and Functions Reference

CMSSTOR OBTAIN

label

CMSSTOR OBTAIN , DWORDS

BYTES

= max

( max , min)

1

, SUBPOOL = 'USER '

, SUBPOOL = ' USERG '

' NUCLEUS '

( subpool
, GLOBAL

)

, ADDR = addr

( reg)

, TYPCALL = SVC

, TYPCALL = BRANCH

, MSG = YES

, MSG = NO

( reg)

( addr , mask)

, LOC = SAME

, LOC = ANY

ABOVE

BELOW

, BNDRY = DWORD

, BNDRY = PAGE

( reg)

( addr , mask)

, ERROR = ' ABEND '

, ERROR = addr

( reg)

*

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the CMSSTOR OBTAIN macro to allocate free storage.

CMSSTOR OBTAIN

Chapter 2. Preferred CMS Macro Instructions 91

Parameters
Required Parameters:
OBTAIN

allocates CMS free storage.
DWORDS=

requests free storage in doublewords. DWORDS and BYTES are mutually exclusive parameters; they
cannot be specified on the same macro call. Acceptable values are:
max

is the number of doublewords of free storage you request. Specifying max without min, indicates a
fixed request for free storage.

Note: If you use the standard macro form, you must specify max.

min
indicates a variable free storage request. If max number of doublewords is not available, CMS
obtains the largest block of storage greater than or equal to the minimum, min.

Both max and min must be greater than 0. Specify max and min as any valid assembler expression
or as a register that contains the number. Valid registers are 2-12; register 0 may be specified for
max only. In addition, register 1 may be specified for min only when using the standard or execute
macro form. Specifying register 1 for min when using the standard format results in the generation of
nonreentrant code.

The possible combinations of the DWORDS parameters for requesting free storage are as follows:

Fixed request (only max specified)

 DWORDS=n
 DWORDS=(reg)

Variable request (max and min specified)

 DWORDS=(n,n)
 DWORDS=(n,(reg))
 DWORDS=((reg),n)
 DWORDS=((reg),(reg))

BYTES=
requests free storage in bytes. DWORDS and BYTES are mutually exclusive parameters; they cannot
be specified on the same macro call. For BYTES, CMS rounds the amount up to the next doubleword
multiple if it is not already a doubleword value.
max

is the number of bytes of free storage you request. Specifying max without min, indicates a fixed
request for free storage.

Note: If you use the standard macro form, you must specify max.

min
indicates a variable free storage request. If max number of bytes is not available, CMS obtains the
largest block of storage greater than or equal to the minimum, min.

Both max and min must be greater than 0. Specify max and min as any valid assembler expression or
as a register that contains the number. Valid registers are 2-12; register 0 may be specified for max
only. In addition, register 1 may be specified for min only when using the standard or execute macro
form. Note that specifying register 1 for min when using the standard format results in the generation
of nonreentrant code.

The possible combinations of the BYTES parameters for requesting free storage are as follows:

CMSSTOR OBTAIN

92 z/VM: 7.3 CMS Macros and Functions Reference

Fixed request (only max specified)

 BYTES=n
 BYTES=(reg)

Variable request (max and min specified)

 BYTES=(n,n)
 BYTES=(n,(reg))
 BYTES=((reg),n)
 BYTES=((reg),(reg))

Optional Parameters:
label

is an optional assembler label for the statement.
SUBPOOL=

indicates the subpool from where CMS obtains the free storage. For more information on specifying
subpool names, see the usage notes. Acceptable values are:
'USER'

obtains storage from the USER subpool, which has storage protect key X'E'. This is the default.
'USERG'

when z/CMS is running in the virtual machine, obtains storage above 2 GB from the USERG
subpool, which has storage protect key X'E'. See usage note “7” on page 98.

'NUCLEUS'
obtains storage from the NUCLEUS subpool, which has storage protect key X'F'.

subpool
indicates the user-identified subpool name.
'name'

obtains storage from a named user storage subpool. 'name' must be from 1 to 8 characters in
length. If 'name' is less than 8 characters, it is padded on the right with blanks (as are 'USER',
'USERG', and 'NUCLEUS').

addr
obtains storage from the subpool named at the specified address. This may be any assembler
expression.

(reg)
obtains storage from the subpool named at the address contained in the specified register.
The valid registers are 2-12 enclosed in parentheses.

('name',GLOBAL)
obtains storage from the GLOBAL subpool with the specified name. 'name' must be from 1 to 8
characters in length. If 'name' is less than 8 characters, it is padded on the right with blanks.

(addr,GLOBAL)
obtains storage from the GLOBAL subpool named at the specified address. The variable addr
may be any assembler expression.

((reg),GLOBAL)
obtains storage from the GLOBAL subpool named at the address contained in the specified
register. The valid registers are 2-12 enclosed in parentheses.

ADDR=
specifies that CMSSTOR must allocate storage from the specified address. If CMSSTOR cannot
allocate the requested amount of storage from the specified address, it generates an out-of-storage
condition. ADDR must be aligned on a doubleword boundary. Acceptable values are:
addr

allocates storage from the address specified by addr. This can be any assembler expression other
than a label.

CMSSTOR OBTAIN

Chapter 2. Preferred CMS Macro Instructions 93

(reg)
allocates storage from the address contained in the specified register. The valid registers are 2-12
enclosed in parentheses.

Note: Specifying BNDRY and ADDR or LOC and ADDR on the same macro call causes an error. If
specified on separate macro calls to build a single parameter list, ADDR is honored and BNDRY or LOC
ignored.

TYPCALL=
indicates how control is passed to CMSSTOR. Because CMSSTOR is a nucleus resident routine, use
TYPCALL=BRANCH if the calling routine is nucleus resident. Use TYPCALL=SVC if the calling routine is
not nucleus resident. Acceptable values are:
SVC

indicates the calling routine is not nucleus resident. This is the default value.
BRANCH

indicates the calling routine is nucleus resident.

Note: The calling routine must make sure it calls CMSSTOR with the proper storage key and with
interrupts disabled.

MSG=
indicates whether CMS displays an error message if it cannot allocate sufficient storage to satisfy the
request. Acceptable values are:
YES

indicates CMS displays an error message. This is the default value.
NO

indicates CMS does not display an error message.
(reg)

CMSSTOR checks the value of the specified register and, if it is 0, sets MSG to NO. If the register
contains a nonzero value, the macro sets MSG to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MSG parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then MSG is set to NO. If the bit is 1, then MSG is set to YES. For example, to test the first bit in the
single byte of storage at location APPFLAG, specify the MSG parameter as

MSG=(APPFLAG,X'80')

To set the value of the MSG parameter at assembly time, specify MSG=YES or MSG=NO. To set the
value at execution time, specify MSG=(reg) or MSG=(addr,mask).

LOC=
indicates from where CMS can allocate storage. Acceptable values are:
SAME

allocates storage based on the current addressing mode. If the caller is running in 31-bit
addressing mode, LOC=SAME allocates storage from above the 16 MB line if available. If storage
is not available above 16 MB, CMSSTOR allocates it from below 16 MB. If the caller is running in
24-bit addressing mode, LOC=SAME allocates storage from below the 16 MB line. LOC=SAME is
the default.

ANY
allocates storage from above or below the 16 MB line. If possible, CMS obtains storage from above
the 16 MB line; if none is available, CMS allocates it from below the 16 MB line. Note that a 24-bit
mode program can allocate storage from above 16 MB.

ABOVE
allocates storage from above the 16 MB line.

CMSSTOR OBTAIN

94 z/VM: 7.3 CMS Macros and Functions Reference

BELOW
allocates storage from below the 16 MB line.

Note: Specifying LOC and ADDR on the same call causes an error. If specified on separate macro calls
to build a single parameter list, ADDR is honored and LOC ignored.

BNDRY=
indicates the type of boundary alignment required for the storage. Acceptable values are:
DWORD

aligns storage on a doubleword boundary. This is the default value.

Note: Specifying BNDRY=DWORD does not ensure that successive calls to CMSSTOR OBTAIN will
obtain adjacent areas of storage even if the adjacent area is free.

PAGE
aligns storage on a 4 KB page boundary.

(reg)
CMSCALL checks the value of the specified register and, if it is 0, sets BNDRY to DWORD. If the
register contains a nonzero value, the macro sets BNDRY to PAGE.

(addr,mask)
defines a single bit in storage that sets the value of the BNDRY parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then BNDRY is set to DWORD. If the bit is 1, then BNDRY is set to PAGE. For example, to test the
first bit in the single byte of storage at location APPFLAG, specify the BNDRY parameter as

BNDRY=(APPFLAG,X'80')

To set the value of the BNDRY parameter at assembly time, specify BNDRY=PAGE or BNDRY=DWORD.
To set the value at execution time, specify BNDRY=(reg) or BNDRY=(addr,mask).

Note: Specifying BNDRY and ADDR on the same call causes an error. If specified on separate macro
calls to build a single parameter list, ADDR is honored and BNDRY ignored.

ERROR=
specifies an action to be taken if an error occurs. Acceptable values are:
'ABEND'

abends the program. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register. Registers 2-12 are valid.
*

passes control to the next sequential instruction.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

CMSSTOR OBTAIN

Chapter 2. Preferred CMS Macro Instructions 95

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If CMSSTOR OBTAIN is successful, it stores:

a. A 0 return code in register 15
b. The number of BYTES/DWORDS allocated in register 0 (the number of BYTES/DWORDS is a

doubleword multiple).
c. The address of the storage allocated in register 1. This address replaces the address of the

parameter list passed to the CMSSTOR macro upon invocation. If an error occurs during CMSSTOR
processing and control returns to the caller, register 1 is not changed; it still points to the parameter
list.

2. CMSSTOR OBTAIN places max (the number of BYTES or DWORDS of storage requested) into register 0
before the invocation of the storage management system.

3. The rules for subpool naming are:

a. Subpool names can use any characters. (Note that this implies that subpool names are case
sensitive and SUBPOOL='XYZ' is not the equivalent of SUBPOOL='xyz'.)

b. The subpool names DMSxxxxx are reserved for system use, and the names USER, USERG, and
NUCLEUS are for reserved system subpools; otherwise, there are no restrictions on the names you
give subpools.

c. You cannot use CMSSTOR OBTAIN to create SHARED subpools; you can use it to create PRIVATE
and GLOBAL subpools.

d. If you specify a named subpool that has not been previously created, CMS creates a new subpool.
If you specify GLOBAL, CMS creates a global subpool. Otherwise CMS creates a private subpool.

e. To create named subpools for nucleus key storage, you must use the SUBPOOL macro; you cannot
use CMSSTOR OBTAIN. To obtain storage in nucleus key, you can specify the NUCLEUS subpool;
however, this subpool is shared with all applications running in your virtual machine.

For more information on subpools, see “SUBPOOL” on page 401.
4. CMSSTOR always treats the address on the ADDR= parameter as a 31-bit address. Therefore, if a

program specifies a 24-bit address for ADDR=, the program must make sure that bits 1-7 are 0s. Bit 0
is always ignored.

5. Specifying the LOC parameter returns free storage as follows:

Specification 24-bit Addressing 31-bit Addressing

AMODE

24 31

LOC=SAME BELOW BELOW ABV/BEL (see LOC=ANY)

LOC=BELOW BELOW BELOW BELOW

LOC=ABOVE ERROR ABOVE ABOVE

LOC=ANY BELOW ABOVE/BELOW - if sufficient storage exists ABOVE the
16 MB line, otherwise BELOW

6. Reentrant code can be produced with the standard macro form or a combination of MF=L and MF=(E,
addr) forms of macro expansions for CMSSTOR OBTAIN. To build a parameter list without involving
parameter substitutions, the following restrictions must be met:

On the standard macro form the:

• DWORDS/BYTES max parameter can be any valid value and is always loaded into register 0.

CMSSTOR OBTAIN

96 z/VM: 7.3 CMS Macros and Functions Reference

• DWORDS/BYTES min parameter, if specified, must be a register form or constant. Do not use register
1 for this when using the standard macro form.

• ADDR= parameter, if specified, must be a register form or constant. Do not use register 1 for this
when using the standard macro form.

• SUBPOOL= parameter, must be a quoted constant, for example, SUBPOOL='XYZ' or
SUBPOOL=('XYZ',GLOBAL).

• BNDRY= and MSG=, if specified, cannot be the (addr,mask) form.

For example:

CMSSTOR OBTAIN,BYTES=((R3),50),ADDR=(R2),MSG=NO,ERROR=*

On the MF=(E,addr) form:

The only parameter you can specify in variable form is the max portion of the BYTES/DWORDS
parameter, which is loaded into register 0 before invoking the storage management system. If you
specify this parameter, you must specify max in register notation with the MF=(E,addr) macro format.
If max were specified as a number, it would be stored into the parameter list before being loaded into
register 0. As a result, the previously-set default for max would be replaced by the specified number.

This means that:

• Only max, TYPCALL=, and ERROR= can be specified on the MF=(E,addr) form.
• Defaults are not recognized on the MF=(E,addr) form, and to specify a default would cause storing

into the parameter list. For example, specifying SUBPOOL='USER' on the MF=(E,addr) form is
nonreentrant. To allow the combination of MF=L and MF=(E,addr) macro formats to create inline
reentrant parameter lists, the MF=(E,addr) format does not store default values into the parameter
list. For example, while other CMS macros with an MF=(E,addr) format store the name of the function
being called, CMSSTOR does not store the function name into the parameter list. The MF=(L,addr)
macro format can be used to store the function name and other values into an uninitialized
parameter list.

The action taken by the macro for the max portion of the BYTES/DWORDS parameter depends upon
the macro form and the specification of the parameter:

Standard MF=L MF=(L,addr) MF=(E,addr)

Register Loaded Error Stored Loaded

Number Inline Loaded Inline Stored Stored Loaded

Unspecified Error Skipped Skipped Loaded

The action taken by the macro for the min portion of the BYTES/DWORDS parameter and the ADDR=
parameter depends upon the macro form and the specification of the parameter:

Standard MF=L MF=(L,addr) MF=(E,addr)

Register Inline“6.a” on page 97 Error Stored Stored

Number Inline Inline Stored Stored

Unspecified Skipped Skipped Skipped Skipped

Note:

a. If register 1 is used, the action taken by the macro will be stored.

Where:
Inline

The value or register equate number is generated as an inline constant within the parameter list.
The register is not manipulated.

CMSSTOR OBTAIN

Chapter 2. Preferred CMS Macro Instructions 97

Stored
The value is stored into the parameter list. If the parameter is max it may be loaded into R0 on the
same macro invocation, see below.

Loaded
Only applies to the max portion of the BYTES/DWORDS parameter and indicates the value is
placed into R0 from the source. If the source is a register, the parameter list is not stored into or
read from, even if a value was placed there by a previous macro invocation.

If the source is not a register, the value is read from the parameter list. The value may have been
placed into the parameter list on this macro call, or a previous one.

Note: This mechanism provides the ability to store a default value into a parameter list on an MF=L
call, and override the value if required by invoking an MF=(E,addr) call with a register specification.
The register value is used and the value in the parameter list ignored. If a call is made with
an MF=(E,addr) form without any specification for BYTES/DWORDS, the default value would be
loaded from the parameter list into register 0.

Skipped
Indicates that no action is taken whatsoever.

Error
Indicates that an MNOTE is generated.

7. z/CMS does not directly exploit storage above 2 GB. However, z/CMS can be IPLed in a virtual machine
with more than 2 GB of storage, and programs can use SUBPOOL='USERG' to allocate storage above
2 GB. The number of pages of storage to be allocated is specified using the BYTES= parameter of
CMSSTOR OBTAIN. For example, the following statement will allocate 1 page of storage above 2 GB:

CMSSTOR OBTAIN,BYTES=1,SUBPOOL='USERG'

The 64-bit address of the allocated storage is returned in general-purpose register 1. All storage
allocated above 2 GB is aligned on a page boundary and the BNDRY= parameter is ignored. In addition,
the ADDR=, TYPCALL=, and LOC= parameters should not be specified. TYPCALL=SVC is the only
TYPCALL value supported.

SUBPOOL='USERG' is supported only under z/CMS. Before assembling a program that uses
SUBPOOL='USERG', you must issue the GLOBAL MACLIB command to specify the DMSZGPI macro
library ahead of the DMSGPI library. For example:

global maclib dmszgpi dmsgpi

8. Although CMSSTOR and OS/MVS macro calls for storage management are implemented via the same
CMS storage management subsystem, mixing these calls is not recommended. The default subpool
name in which CMSSTOR obtains storage is USER, while the default subpool name used by the OS/MVS
macro calls (GETMAIN/FREEMAIN) is DMSOS000. Also, GETMAIN automatic storage cleanup might be
affected by the CMS STORECLR setting.

Return Codes
When CMSSTOR OBTAIN completes, register 15 contains one of the following return codes:
Code

Meaning
0

Normal completion. Register 0 contains the amount of storage allocated and register 1 contains the
address of the storage.

1
Insufficient storage space is available to satisfy the request for free storage. In the case of the
variable request, even the minimum request could not be satisfied.

CMSSTOR OBTAIN

98 z/VM: 7.3 CMS Macros and Functions Reference

If the ADDR parameter was specified, this error indicates that insufficient storage was available to
satisfy the request at the specified address; there may still be sufficient amounts of free storage at
other locations.

If the BNDRY=PAGE parameter was specified, sufficient storage may exist to satisfy the request,
however, all pages of free storage have been at least partially used and storage to satisfy the request
cannot be found on a page boundary.

2
USER key storage pointers destroyed.

3
NUCLEUS key storage pointers destroyed.

4
An invalid size was requested. This error is taken if the requested size is not greater than 0. In the
case of variable requests, this error exit is taken if the minimum request is greater than the maximum
request. (However, the latter error is not detected if CMSSTOR is able to satisfy the maximum
request.)

7
The address given for an OBTAIN is not doubleword aligned or the specified address plus the amount
of storage requested would cross either the 16 MB boundary or the storage size of the virtual
machine.

9
Unexpected and unexplained error in the storage management routine.

11
A register specified for either the min portion of BYTES/DWORDS or the ADDR= parameter is not in the
range 2-12.

12
The subpool name USERG is allowed only when running in z/CMS.

CMSSTOR OBTAIN

Chapter 2. Preferred CMS Macro Instructions 99

CMSSTOR RELEASE

label

CMSSTOR RELEASE , DWORDS

BYTES

= n

( reg)

1

, ADDR = addr

( reg)

, SUBPOOL = ' USER '

' USERG '

' NUCLEUS '

(subpool

, GLOBAL

)

, TYPCALL = SVC

, TYPCALL = BRANCH

, MSG = YES

, MSG = NO

( reg)

( addr , mask)

, ERROR = ' ABEND '

, ERROR = addr

( reg)

*

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose

Use CMSSTOR RELEASE to release free storage.

Parameters
Required Parameters:

CMSSTOR RELEASE

100 z/VM: 7.3 CMS Macros and Functions Reference

RELEASE
releases free storage previously allocated by CMSSTOR OBTAIN.

DWORDS=
is the number of doublewords of free storage to be released. DWORDS and BYTES are mutually
exclusive parameters; you cannot specify both on the same macro call. Acceptable values are:
n

specifies the number of doublewords to be released.
(reg)

releases the number of doublewords specified in the register. Valid registers are 0 and 2-12
enclosed in parentheses.

Note: If you use the standard macro form, you must specify either BYTES or DWORDS.

BYTES=
is the number of bytes of free storage to be released. DWORDS and BYTES are mutually exclusive
parameters; you cannot specify both on the same macro call. When you specify BYTES, the value is
rounded up to the next doubleword multiple if not already a doubleword value. Acceptable values are:
n

specifies the number of bytes to be released.
(reg)

releases the number of bytes specified in the register. Valid registers are 0 and 2-12 enclosed in
parentheses.

Note: If you use the standard macro form, you must specify either BYTES or DWORDS.

ADDR=
specifies the address of the storage to be released. Acceptable values are:
addr

releases storage at the specified location.
(reg)

releases storage from the address in the specified register. Registers 2-12 are valid; register 1 can
also be specified when using the standard or execute macro form. Note that specifying register 1
when using the standard format results in the generation of nonreentrant code.

Note: If you use the standard macro form, you must specify ADDR.

Optional Parameters:
label

is an optional assembler label for the statement.
SUBPOOL=

the subpool from which the storage was allocated. Using SUBPOOL= allows CMSSTOR to verify that
the subpool specified is the one from which the storage was obtained. If the storage specified by
ADDR= is not within the subpool specified, no release occurs; an error code is returned. If you omit
SUBPOOL=, this verification is not done. The purpose of using SUBPOOL is to reduce the possibility of
releasing the wrong storage.

Acceptable values are:

'USER'
returns storage obtained from the USER subpool, which has a storage protect key X'E'.

'USERG'
when z/CMS is running in the virtual machine, returns storage above 2 GB obtained from the
USERG subpool, which has a storage protect key X'E'. See usage note “6” on page 104.

'NUCLEUS'
returns storage obtained from the NUCLEUS subpool, which has a storage protect key X'F'.

subpool
indicates the user-identified subpool name. Acceptable values are:

CMSSTOR RELEASE

Chapter 2. Preferred CMS Macro Instructions 101

'name'
returns storage obtained from a named user storage subpool. If 'name' is less than 8
characters in length, it is padded on the right with blanks (as are 'USER', 'USERG', and
'NUCLEUS').

addr
returns storage obtained from the subpool named at the specified address. addr may be any
assembler expression.

(reg)
returns storage obtained from the subpool named at the address contained in the specified
register. The valid registers are 2-12 enclosed in parentheses.

('name',GLOBAL)
returns storage obtained from the GLOBAL subpool with the specified name. If 'name' is less
than 8 characters in length, it is padded on the right with blanks.

(addr,GLOBAL)
returns storage obtained from the GLOBAL subpool named at the specified address. addr may
be any assembler expression.

((reg),GLOBAL)
returns storage obtained from the GLOBAL subpool named at the address contained in the
specified register. The valid registers are 2-12 enclosed in parentheses.

Note: Private subpools are not hidden across SVC levels for calls to CMSSTOR RELEASE as they are for
CMSSTOR OBTAIN. You cannot use CMSSTOR OBTAIN to allocate storage from a private subpool that
was created at a different SVC level. If storage is allocated to a private subpool at a different SVC level
and you specify the name of that subpool on the CMSSTOR RELEASE SUBPOOL parameter, CMSSTOR
releases the storage, even though it is at a different SVC level.

TYPCALL=
indicates how control is passed to CMSSTOR. Because CMSSTOR is a nucleus resident routine, use
TYPCALL=BRANCH if the calling routine is nucleus resident. Use TYPCALL=SVC if the calling routine is
not nucleus resident. Acceptable values are:
SVC

indicates the calling routine is not nucleus resident. This is the default value.
BRANCH

indicates the calling routine is nucleus resident.

Note: The calling routine must make sure it calls CMSSTOR with the proper storage key and with
interrupts disabled.

MSG=
indicates whether CMS displays an error message if it cannot release the storage as requested.
Acceptable values are:
YES

indicates CMS displays an error message. This is the default value.
NO

indicates CMS does not display an error message.
(reg)

CMSSTOR checks the value of the specified register and, if it is 0, sets MSG to NO. If the register
contains a nonzero value, the macro sets MSG to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MSG parameter. addr is the address of a
byte in storage and mask determines which bit within the byte the macro tests. You can specify
addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0, then
MSG is set to NO. If the bit is 1, then MSG is set to YES. For example, to test the first bit in the
single byte of storage at location APPFLAG, specify the MSG parameter as

MSG=(APPFLAG,X'80')

CMSSTOR RELEASE

102 z/VM: 7.3 CMS Macros and Functions Reference

To set the value of the MSG parameter at assembly time, specify MSG=YES or MSG=NO. To set the
value at execution time, specify MSG=(reg) or MSG=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. Acceptable values are:
'ABEND'

abends the program. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register. Registers 2-12 are valid.
*

passes control to the next sequential instruction.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If CMSSTOR RELEASE is successful, it stores a 0 return code in register 15 and leaves in register 0

the number of BYTES/DWORDS released. Note that the number of BYTES/DWORDS in register 0 is a
doubleword multiple.

2. Subpool naming:

a. Subpool names can use any characters. (Note that this implies that subpool names are case
sensitive and SUBPOOL='XYZ' is not the equivalent of SUBPOOL='xyz'.)

b. The subpool names DMSxxxxx are reserved for system use, and the names USER, USERG, and
NUCLEUS are for reserved system subpools; otherwise, there are no restrictions on the names you
give subpools.

3. CMSSTOR always treats the address on the ADDR= parameter as a 31-bit address. Therefore, if a
program specifies a 24-bit address for ADDR=, it (the program) must make sure that bits 1-7 are 0s.
Bit 0 is always ignored.

4. You can produce reentrant code with the standard macro form or with a combination of the MF=L
and MF=(E,addr) forms of CMSSTOR RELEASE. To build a parameter list without using parameter
substitutions, you must meet the following restrictions:

On the standard macro form:

• The DWORDS/BYTES parameter can be any valid value and is always loaded into register 0.
• The ADDR= parameter must be a register form or constant. Do not use register 1 for this when using

the standard macro form.
• The SUBPOOL= parameter, if specified, must be a quoted constant (for example, SUBPOOL='XYZ' or

SUBPOOL=('XYZ',GLOBAL)).

For example,

CMSSTOR RELEASE

Chapter 2. Preferred CMS Macro Instructions 103

CMSSTOR RELEASE,BYTES=(R0),ADDR=(R3),ERROR=*

On the MF=(E,addr) form:

• The only parameters you can specify are BYTES/DWORDS, TYPCALL=, and ERROR=. The only
parameter you can specify in variable form is the DWORDS/BYTES parameter because the value
is stored into register 0 before to invoking the storage management routines. If you specify this
parameter, you must specify its value in register notation with the MF=(E,addr) macro format. If
specified as a number, it would be stored into the parameter list before being loaded into register
0. As a result, the previously-set default for DWORDS/BYTES would be replaced by the specified
number.

• Defaults are not recognized on the MF=(E,addr) form; specifying a default causes storing into the
parameter list. For example, specifying MSG=YES on the MF=(E,addr) form would not be reentrant.

• To allow the combination of MF=L and MF=(E,addr) macro formats to create inline reentrant
parameter lists, the MF=(E,addr) format does not store default values into the parameter list. For
example, while other CMS macros with an MF=(E,addr) format store the name of the function being
called, CMSSTOR does not store the function name into the parameter list. The MF=(L,addr) macro
format can be used to store the function name and other values into an uninitialized parameter list.

5. The CMSSTOR RELEASE macro can release specific blocks of storage allocated by the CMSSTOR
OBTAIN macro. In addition, a specific subpool of such storage may be released or deleted as follows:

Table 13. Releasing Storage Allocation

Action USER or
USERG
Subpool

NUCLEUS Subpool USER/
Shared

GLOBAL Subpool
SYSTEM= YES

GLOBAL Subpool
SYSTEM= NO

SVC 202 or CMSCALL
Termination

retain retain delete retain retain

abend recovery release retain delete retain delete

SUBPOOL DELETE error error delete delete delete

SUBPOOL RELEASE error error release release release

Note:

• SYSTEM=YES—as specified on the SUBPOOL macro, the GLOBAL subpool is to survive abend processing.
• SYSTEM=NO—as specified on the SUBPOOL macro, the GLOBAL subpool is not to survive abend processing.
• Error—indicates the action is not allowed for the particular type of subpool.
• Retain—the subpool is not affected by the action.
• Release—the subpool is RELEASED.
• Delete—the subpool is DELETED.

6. To release storage above 2 GB when z/CMS is running in the virtual machine, you must specify
SUBPOOL='USERG'. The ADDR= parameter must contain the 64-bit address of the storage to be
released and the BYTES= parameter must contain the number of pages to be released. For example,
the following statement will release 1 page of storage at the 64-bit address specified in register 10:

CMSSTOR RELEASE,BYTES=1,ADDR=(R10),SUBPOOL='USERG'

The DWORDS= and TYPCALL= parameters should not be specified. TYPCALL=SVC is the default, and it
is the only TYPCALL value supported when releasing storage above 2 GB.

SUBPOOL='USERG' is supported only under z/CMS. Before assembling a program that uses
SUBPOOL='USERG', you must issue the GLOBAL MACLIB command to specify the DMSZGPI macro
library ahead of the DMSGPI library. For example:

global maclib dmszgpi dmsgpi

7. Although CMSSTOR and OS/MVS macro calls for storage management are implemented via the same
CMS storage management subsystem, mixing these calls is not recommended. The default subpool

CMSSTOR RELEASE

104 z/VM: 7.3 CMS Macros and Functions Reference

name in which CMSSTOR obtains storage is USER, while the default subpool name used by the OS/MVS
macro calls (GETMAIN/FREEMAIN) is DMSOS000. Also, GETMAIN automatic storage cleanup might be
affected by the CMS STORECLR setting.

Return Codes
When CMSSTOR RELEASE completes, register 15 contains one of the following return codes:
Code

Meaning
0

Normal completion. Register 0 specifies the amount of storage released.
2

The USER key storage pointers were destroyed.
3

The NUCLEUS key storage pointers were destroyed.
5

The size value specified on the BYTES or DWORDS parameter was invalid. This error occurs if the
specified value is not positive.

6
The specified block of storage was never allocated by CMSSTOR OBTAIN. This error can occur
because the block:

• Does not lie entirely within the virtual machine's free storage area.
• Crosses a page boundary that separates a page allocated for USER storage from a page allocated for

NUCLEUS type storage.
• Overlaps another block already on the free storage chain.

7
The specified address is not doubleword aligned.

9
An unexpected and unexplained error occurred in the storage management routine.

10
The block specified on the CMSSTOR RELEASE SUBPOOL parameter does not match the subpool
name specified on the CMSSTOR OBTAIN macro. No storage is released.

11
A register specified for the ADDR= parameter is not in the range 2-12.

CMSSTOR RELEASE

Chapter 2. Preferred CMS Macro Instructions 105

COMPSWT

label

COMPSWT ON

OFF

Purpose

Use the COMPSWT macroinstruction to turn the compiler switch (COMPSWT) flag on or off.

Parameters
Required Parameters:
ON

turns the COMPSWT flag on. When this flag is on, any program called by a LINK, LOAD, XCTL, or
ATTACH macroinstruction must be a module file with a file type of MODULE; CMS first searches private
storage for that entry point already loaded. If it is not found then CMS uses the LOADMOD command
to load it.

OFF
turns the COMPSWT flag off. When this flag is off, any program called by a LINK, LOAD, XCTL, or
ATTACH macroinstruction must be a relocatable object module residing in a file with a file type of
TEXT, LOADLIB, or TXTLIB; CMS uses the INCLUDE command to load it.

Note: COMPSWT is initially set to OFF by the compiler.

Optional Parameter:
label

is an optional assembler label for the statement.

COMPSWT

106 z/VM: 7.3 CMS Macros and Functions Reference

CONSOLE

Purpose

Use the CONSOLE macroinstruction to access CMS full-screen console services. The CONSOLE macro
performs 3270 I/O operations, including building the Channel Command Word (CCW), issuing the
DIAGNOSE code X'58', SSCH instruction, or SIO instruction, waiting for the I/O to complete, and checking
any error status from the device. Applications must construct a valid 3270 data stream to write to the
screen and a 3270 data stream is returned when a CONSOLE READ is performed. For line-mode I/O
operations or for 3215-type devices, use the LINERD and LINEWRT macros.

The CONSOLE macro allows programs to open ‘paths’ to a display device. The CONSOLE macro
coordinates screen use by indicating to an application doing a write that the screen was last updated
by another ‘path’ and that the screen must be reformatted. Full-screen applications thus do not have to
rewrite the entire screen every time a write is done.

The basic functions of the CONSOLE macro are:
CONSOLE CLOSE

Closes a specific path to a device.
CONSOLE EXCP

Lets you specify your own channel program to read or write I/O. Note that CONSOLE EXCP requires
the user to distinguish between dedicated devices and the virtual console, because DIAGNOSE code
X'58' CCWs must be provided for I/O to the console.

CONSOLE MODIFY
Changes the exit address, user word, or RESET parameter setting without closing and reopening the
path.

CONSOLE OPEN
Opens a specific path to a device.

CONSOLE QUERY
Gets information about the device attributes (DIAGNOSE code X'24' and X'8C' information) or about a
specific path and its associated device (if the path is open).

CONSOLE READ
Reads information from the display device.

CONSOLE WAIT
Waits for an interrupt (for example, an I/O interrupt from the console device).

CONSOLE WRITE
Writes buffers that have 3270 data streams built by the application.

For more information on how to use the CONSOLE macro, see the z/VM: CMS Application Development
Guide for Assembler.

CONSOLE

Chapter 2. Preferred CMS Macro Instructions 107

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

CONSOLE CLOSE

label

CONSOLE CLOSE
1

,PATH= ' name '

( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE CLOSE to close a path to a device.

Parameters
Required Parameters:
CLOSE

closes a specific path to a device.
PATH=

specifies the path to be closed.
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

CONSOLE CLOSE

108 z/VM: 7.3 CMS Macros and Functions Reference

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If RESET=YES was specified when the path was opened or modified, a CP RESET command is issued

when you close the last path to a dedicated 3270 device.

Return Codes
Upon completion of the CONSOLE CLOSE function, register 15 contains one of the following return codes:
Code

Meaning
0

The path is closed.
3

The requested path has been closed, but other paths to the associated device are still open.
24

The parameter list is invalid; a path was not specified.
28

Path not found.

CONSOLE CLOSE

Chapter 2. Preferred CMS Macro Instructions 109

CONSOLE EXCP

label

CONSOLE EXCP
1

, PATH = ' name '

( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, CCW

, ORB

= addr

( reg)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE EXCP when you specify your own channel program to read or write.

Parameters
Required Parameters:
EXCP

lets you specify your own channel program to read or write full-screen I/O.
PATH=

specifies the path name.
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

CONSOLE EXCP

110 z/VM: 7.3 CMS Macros and Functions Reference

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

CCW=
specifies the address of a channel program, which consists of one or more format-0 CCWs that
indicate the operation(s) to be performed. You must specify either CCW or operation request block
(ORB), but not both. CCW specifies that the necessary ORB will be built by Console indicating format-0
CCWs. Acceptable values are:
addr

specifies the address of a channel program.
(reg)

specifies a register that contains the address of a channel program. Valid registers are 2-12
enclosed in parentheses.

ORB=
specifies the address of an operation request block (ORB) for a channel program. The ORB can
indicate either format-0 or format-1 CCWs. The ORB must contain a field that points to a channel
program for the operation(s) to be performed. You must specify either CCW or ORB, but not both. ORB
is invalid for paths to the virtual console. Acceptable values are shown in the previous CCW parameter.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

CONSOLE EXCP

Chapter 2. Preferred CMS Macro Instructions 111

Usage Notes
1. If you issue the EXCP request, you are responsible for generating a valid channel program; therefore,

you require a knowledge of the virtual machine architecture and the console support implementation.
There is no attempt made to validate the channel program or to convert it to a form appropriate to the
implementation. The EXCP parameter is not recommended for use with a virtual console.

2. Depending on whether CP console communications services or the logical device support facility is
being used instead of CP native support, some I/O errors may not be reflected to the application
issuing a DIAGNOSE code X'58', SIO instruction, or CONSOLE macro. In this case, the CMS console
facility may see a channel end/device end from the I/O and therefore return a return code of 0. If an
application that uses the console facility does not get expected results, the data stream or CCW (for
EXCP) should be checked for user errors.

3. If you have issued a CONSOLE READ and are waiting for input when CP breaks in and writes a screen
(such as a CP warning message), the read is performed and a channel end/device end is returned to
CMS. The Console Facility gives your application a return code of 0. Your application should examine
the data stream attention identification (AID) to determine whether there are any modified fields to
process. An AID byte of X'60' indicates no operation or an unsolicited attention. In this case, the
CSW/SCSW will contain X'8E' on the next fullscreen write, causing CONSOLE to give return code 32.

4. All applications whose paths are using the same device are notified of device changes through return
code 2 the next time I/O is done. The device characteristics may have changed because the device
was disconnected and then reconnected, or another application attempted an OPEN and the device
characteristics do not match what is currently in the device table. On the next I/O, regardless of the
type of change in device characteristics, CONSOLE will not attempt the I/O. The return code of 2 is
returned to the application indicating to query, if necessary, and then reissue the I/O.

Return Codes
Upon completion of the CONSOLE EXCP function, register 15 contains one of the following return codes:
Code

Meaning
0

I/O successful. See Usage Notes “2” on page 112 and “3” on page 112 for additional information.
1

A path has been opened to the virtual device, but no real device is currently connected to that virtual
device.

2
You should issue a CONSOLE QUERY for the device before any more I/O is requested. See Usage
Notes for additional information.

24
The parameter list is invalid; the function name is unknown, a required parameter is missing, or
conflicting options were specified.

28
Path not found. This return code occurs if the path was never opened, or if a device receives an
I/O error because it was detached after the path was opened. The console facility closes all paths
associated with the device, and indicates that the path no longer exists.

32
A full-screen read or write was requested, but another application wrote to the screen. For a read
request, the screen may not belong to your application. An Erase/Write must be issued to reformat the
screen and return ownership to the current application.

100
An I/O error has occurred. You can obtain the CSW/SCSW status by issuing a CONSOLE QUERY and
specifying a buffer that contains the information.

CONSOLE EXCP

112 z/VM: 7.3 CMS Macros and Functions Reference

CONSOLE MODIFY

label

CONSOLE MODIFY
1

,PATH= ' name '

( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,EXIT= addr

( reg)

,UWORD= addr

( reg)

,RESET= YES

NO

,ERROR=*

, ERROR = addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE MODIFY to dynamically set up or change the EXIT=, UWORD=, or RESET= parameter
values without closing and reopening the path.

Parameters
Required Parameters:
MODIFY

changes the exit address, user word, or RESET setting without closing and reopening the path. If an
application did not originally set up one of these parameters when the path was opened, it can also be
used to set these parameters up any time after the path has been opened.

PATH=
specifies the path name. Acceptable values are:
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

CONSOLE MODIFY

Chapter 2. Preferred CMS Macro Instructions 113

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
EXIT=

specifies the address of a routine to get control in the event of an unsolicited interrupt. The address of
the exit routine can be initially set up, changed, or deleted by the MODIFY function. As with CONSOLE
OPEN, the exit routine will be established in the same addressing mode (AMODE) as the application
issuing the CONSOLE MODIFY call. Acceptable values are:
addr

specifies the address of the exit routine as an assembler expression. CMS passes the address to
the exit routine.

(reg)
specifies a register that contains the address of the exit routine. Valid registers are 2-12 enclosed
in parentheses. If you specify a register, CMS passes the contents of the register to the exit
routine.

For more information on exit routines, see the “Usage Notes” on page 115 in the description of the
CONSOLE OPEN function.

UWORD=
specifies an optional fullword parameter you can pass to the exit routine. You can set up a user word
or change the contents of the UWORD= parameter specified on a CONSOLE OPEN request. When the
exit routine gains control, register 0 contains the UWORD, which can contain any value. If you do not
specify a value, UWORD remains unchanged. Acceptable values are:
addr

passes the value of the expression to the routine.
(reg)

passes the contents of the register to the routine. Valid registers are 2-12 enclosed in
parentheses.

RESET=
specifies whether a CP RESET command will be issued by the Console Facility when the specified path
is the last path to a dedicated device and the path is being deleted. If this parameter is not specified,
no default is assumed and the setting remains the same as it was when the path was established by
the CONSOLE OPEN request. If the RESET= parameter is specified for the virtual console, it is ignored.
Acceptable values are:
YES

specifies that a CP RESET command will be issued when the specified path is the last path to a
dedicated device and the path is being deleted.

CONSOLE MODIFY

114 z/VM: 7.3 CMS Macros and Functions Reference

NO
specifies that a CP RESET command will not be issued by the Console Facility and the application
must issue a CP RESET to free up the device.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If a path is opened to the device and the device is subsequently detached (using a CP DETACH

command) or redefined at a new address (using a CP DEFINE or REDEFINE command), then all paths
to the device are cleared.

Return Codes
Upon completion of the CONSOLE MODIFY function, register 15 contains one of the following return
codes:
Code

Meaning
0

The function completed successfully.
24

The parameter list is invalid; a path was not specified.
28

The path was not found.

CONSOLE MODIFY

Chapter 2. Preferred CMS Macro Instructions 115

CONSOLE OPEN

label

CONSOLE OPEN
1

, PATH = ' name '

( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, DEVICE = vdev

( reg)

, EXIT = addr

( reg)

, UWORD = addr

( reg)

, RESET = YES

, RESET = NO

, BUFFER = ( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE OPEN to define a path to a device.

CONSOLE OPEN

116 z/VM: 7.3 CMS Macros and Functions Reference

Parameters
Required Parameters:
OPEN

opens a specific path to a device.
PATH=

assigns a unique name to the path. Acceptable values are:
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
DEVICE=

specifies the virtual device number of the console or dedicated device to be associated with the path.
If you omit device on the standard format or list format, the default value is the virtual console.
The execute and complex list formats (MF=E and MF=(L,addr)) do not substitute default values.
Acceptable values are:
vdev

defines the device number as a hexadecimal constant. A decimal constant of -1 or a hexadecimal
constant ofX'FFFFFFFF' specifies the virtual console.

(reg)
specifies a register that contains the device number in the low-order 2 bytes and zeros in the rest.
Valid registers are 2-12 enclosed in parentheses.

EXIT=
specifies the address of a routine to get control in the event of an unsolicited interrupt. Acceptable
values are:
addr

specifies the address of the exit routine as an assembler expression. CMS passes the address to
the exit routine.

(reg)
specifies a register that contains the address of the exit routine. Valid registers are 2-12 enclosed
in parentheses. If you specify a register, CMS passes the contents of the register to the exit
routine.

For more information on exit routines, see “Usage Notes” on page 119.

CONSOLE OPEN

Chapter 2. Preferred CMS Macro Instructions 117

UWORD=
specifies an optional fullword parameter you can pass to the exit routine. When the exit routine gains
control, register 0 contains the UWORD, which can contain any value. If you do not specify a value, a
UWORD of F'0' is passed. Acceptable values are:
addr

passes the value of the expression to the routine.
(reg)

passes the contents of the register to the routine. Valid registers are 2-12 enclosed in
parentheses.

BUFFER=
specifies the area where the CONSOLE function returns data about the device on the path being
opened. Acceptable values are:
(addr,length)

specifies the buffer address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the buffer address and the length as an absolute expression.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

((reg),(reg))
specifies a register that contains the address of the buffer and a register that contains the length.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

The buffer is mapped by the CQYSECT macro. If the buffer length is less than the length of CQYSECT,
the data in the buffer is truncated. Upon completion of a CONSOLE OPEN function, if register 15
contains return codes 0 or 28, register 0 contains the length of the data moved into the buffer.
CQYSECT provides length values.

RESET=
specifies whether a CP RESET command will be issued by the Console Facility when the specified
path is the last path to a dedicated device and the path is being deleted. This parameter is applicable
only for dedicated devices. If the RESET= parameter is specified for the virtual console, it is ignored.
Acceptable values are:
YES

specifies that a CP RESET command will be issued when the specified path is the last path to a
dedicated device and the path is being deleted. This is the default value.

NO
specifies that a CP RESET command will not be issued by the Console Facility and the application
must issue a CP RESET to free up the device.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.

CONSOLE OPEN

118 z/VM: 7.3 CMS Macros and Functions Reference

(reg)
passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. The addressing mode (AMODE) of the exit routine is the same as the AMODE of the program that

issued the CONSOLE OPEN to define the exit routine.

The exit routine should be prepared to handle all interrupts it receives. For more information on
Console exits, see the z/VM: CMS Application Development Guide for Assembler. You are responsible for
establishing proper entry and exit linkage for your routine. When your exit routine receives control, the
significant registers contain:
Registers

Contents
R0

UWORD (user word)
R13

Address of 72-byte save area
R14

Return address
R15

Entry point address

Your routine must return control to the address specified in register 14 upon entry.
2. To obtain information about the CSW/SCSW at the time of interrupt, the interrupting device address,

or other information about the path and associated device, the exit should issue the CONSOLE QUERY
function, specifying PATH and providing a buffer. Use the CQYSECT macro to map the information
moved into the buffer.

3. When an unsolicited interrupt occurs, CMS gives control to the exit routine of the path that did the last
I/O. If no previous I/O was done, CMS gives control to the exit routine of the path that was last opened.

The exit routine receives control as an extension of CMS I/O interrupt handling; the PSW is set up with
a system storage key and is disabled for interrupts. Register 0 contains the user word (see UWORD
parameter description).

If the interrupt results from a line mode operation issued by CMS, the interrupt is passed to CMS rather
than the exit routine. While in fullscreen mode, virtual console exits receive only attention interrupts,
while dedicated device exits can receive all interrupts. For more information on device exits, see the
z/VM: CMS Application Development Guide for Assembler.

4. To avoid confusion, you should not define an exit routine (using the EXIT parameter) and an HNDINT or
HNDIO interrupt handler for the same device.

CONSOLE OPEN

Chapter 2. Preferred CMS Macro Instructions 119

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

5. If a path is opened to the device and the device is subsequently detached (using a CP DETACH
command) or redefined at a new address (using a CP DEFINE or REDEFINE command), then all paths
to the device are cleared.

Return Codes
Upon completion of the CONSOLE OPEN function, register 15 contains one of the following return codes:
Code

Meaning
0

The path is opened. If a buffer is provided, the length of the data stored in the buffer is returned in
register 0.

1
A path has been opened to the virtual device, but no real device is currently connected to that virtual
device.

24
The parameter list is invalid; a path was not specified.

28
The path is already open. If a buffer is provided, the length of the data stored in the buffer is returned
in register 0.

40
The virtual device is invalid or not defined.

88
The virtual device is not supported by the Console Facility for full-screen I/O. For a typewriter-type
device (TTY), a Console path is not opened and device characteristics are not saved in a Console
device entry. However, if the application provides a buffer, the DIAGNOSE code X'24' and any
DIAGNOSE code X'8C' is returned in the buffer.

104
Unable to obtain storage to process the request.

CONSOLE OPEN

120 z/VM: 7.3 CMS Macros and Functions Reference

CONSOLE QUERY

label

CONSOLE QUERY
1

,PATH= ' name '

( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,DEVICE= vdev

( reg)

,BUFFER= ( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE QUERY to get information about a specific device or about a specific path and its
corresponding device.

You must specify either the PATH or DEVICE parameter. If you specify both, PATH is ignored.

Parameters
Required Parameters:

CONSOLE QUERY

Chapter 2. Preferred CMS Macro Instructions 121

QUERY
gets information about the device attributes or about a specific path and its associated device (if the
path is open).

PATH=
specifies the path name. Acceptable values are:
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

DEVICE=
specifies the virtual device number of the console or dedicated device to be queried. Acceptable
values are:
vdev

defines the device address as a hexadecimal constant. A decimal constant of -1 or a hexadecimal
constant of X'FFFFFFFF' specifies the virtual console.

(reg)
specifies a register that contains the device address in the low-order 2 bytes and zeros in the rest.
Valid registers are 2-12 enclosed in parentheses.

Because this function explicitly queries a given path or device, there is no default value for the
DEVICE= parameter. You must specify either the PATH or DEVICE parameter. If you specify both,
PATH is ignored.

Optional Parameters:
label

is an optional assembler label for the statement.
BUFFER=

specifies the area where the CONSOLE function returns data about the device or path being queried.
Acceptable values are:
(addr,length)

specifies the buffer address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the buffer address and the length as an absolute expression.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

CONSOLE QUERY

122 z/VM: 7.3 CMS Macros and Functions Reference

((reg),(reg))
specifies a register that contains the address of the buffer and a register that contains the length.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

The buffer is mapped by the CQYSECT macro. If the buffer length is less than the length of CQYSECT,
the data in the buffer is truncated. Upon completion of a CONSOLE QUERY function, if register 15
contains return code 0, register 0 contains the length of the data moved into the buffer. CQYSECT
provides length values.

Also, if you specify PATH and the buffer is large enough, CONSOLE returns device and path
information. If you specify DEVICE, CONSOLE returns information about the device only.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. A CONSOLE QUERY PATH extracts whatever information is in the path and device entries. This

information reflects the state of the path and associated device either when the path was opened
or at the time of the last I/O if any I/O was performed for that path. Therefore, when disconnecting
and reconnecting to another device, there is a possibility that the original device information will be
returned when a CONSOLE QUERY PATH is done.

2. A CONSOLE QUERY DEVICE updates any device information in the console device entry by issuing a
new DIAGNOSE code X'24' and X'8C', and returns the latest device information to your application.

Return Codes
Upon completion of the CONSOLE QUERY function, register 15 contains one of the following return codes:
Code

Meaning
0

If querying a path, the path is open. If querying a device, the device is defined, connected to a real
device, and supported by the console facility. If a buffer is provided, the length of data stored in the
buffer is returned in register 0.

CONSOLE QUERY

Chapter 2. Preferred CMS Macro Instructions 123

1
The virtual device is defined and supported by the console facility, but it was not connected to a real
device when the console facility issued a DIAGNOSE code X'24' to the device.

24
The parameter list is invalid; a path or a device must be specified.

28
Path not found.

40
The virtual device is invalid or not defined.

88
The virtual device associated with the path is not supported by the console facility for full-screen I/O.

CONSOLE QUERY

124 z/VM: 7.3 CMS Macros and Functions Reference

CONSOLE READ

label

CONSOLE READ
1

, PATH = ' name '

( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, BUFFER = ( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, OPTIONS = (
2

WAIT

NOWAIT

,RDMOD

, RDBUF

( reg)

)

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Parameters within the parenthesis can be entered in any order.
3 Default is the standard macro format.

Purpose
Use CONSOLE READ to read from a display device.

Parameters
Required Parameters:

CONSOLE READ

Chapter 2. Preferred CMS Macro Instructions 125

READ
reads information from the display device.

PATH=
specifies the path name. Acceptable values are:
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

BUFFER=
specifies the address of an area in storage where the data is to be read into. After the read, if register
15 contains return code 0, register 0 contains the length of the data moved into the buffer. The
BUFFER parameter is required on CONSOLE READ.
(addr,length)

specifies the buffer address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the buffer address and the length as an absolute expression.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

((reg),(reg))
specifies a register that contains the address of the buffer and a register that contains the length.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
OPTIONS=

specifies optional processing for this buffer.

Note: Options may be specified in any order. For example, (WAIT,RDMOD) or (RDMOD,WAIT) are both
valid. Acceptable values are:

WAIT
specifies that processing of the request is suspended until an I/O interrupt is received from the
device after the last write operation is complete. If WAIT or NOWAIT is not specified, then WAIT is
the default.

CONSOLE READ

126 z/VM: 7.3 CMS Macros and Functions Reference

NOWAIT
specifies that the read request is processed immediately.

RDMOD
specifies that the request is processed as Read Modified and transmits only the modified fields
from the screen. If RDMOD or RDBUF is not specified, RDMOD is the default.

RDBUF
specifies that the request is processed as Read Buffer and transmits the entire contents of the
screen.

(reg)
specifies a register 2-12, whose low-order byte contains the option or options to be used. The
hexadecimal value of the byte must be set to one of the following:

 X'00' = WAIT,RDMOD
 X'01' = WAIT,RDBUF
 X'80' = NOWAIT,RDMOD
 X'81' = NOWAIT,RDBUF

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. Depending on whether CP console communications services or the logical device support facility is

being used instead of CP native support, some I/O errors may not be reflected to the application
issuing a DIAGNOSE code X'58', SIO instruction, or CONSOLE macro. In this case, the CMS console
facility may see a channel end/device end from the I/O and therefore return a return code of 0. If an
application that uses the console facility does not get expected results, the data stream or CCW (for
EXCP) should be checked for user errors.

2. If you have issued a CONSOLE READ and are waiting for input when CP breaks in and writes a screen
(such as a CP warning message), the read is performed and a channel end/device end is returned to
CMS. The Console Facility gives your application a return code of 0. Your application should examine
the data stream attention identification (AID) to determine whether there are any modified fields to
process. An AID byte of X'60' indicates no operation or an unsolicited attention. In this case, the
CSW/SCSW will contain X'8E' on the next fullscreen write, causing CONSOLE to give return code 32.

CONSOLE READ

Chapter 2. Preferred CMS Macro Instructions 127

3. All applications whose paths are using the same device are notified of device changes through return
code 2 the next time I/O is done. The device characteristics may have changed because the device
was disconnected and then reconnected, or another application attempted an OPEN and the device
characteristics do not match what is currently in the device table. On the next I/O, regardless of the
type of change in device characteristics, CONSOLE will not attempt the I/O. The return code of 2 is
returned to the application indicating to query, if necessary, and then reissue the I/O.

Examples

The following are some examples of a CONSOLE READ invocation using the register specification of the
OPTIONS parameter:

 LA R2,RDBUF Read full buffer
 CONSOLE READ,PATH='TEST',BUFFER=(BUF,BUFL),OPTIONS=((R2)) X
*
 LA R2,NWRDBF Nowait, Read buffer
 CONSOLE READ,PATH='TEST',BUFFER=(BUF,BUFL),OPTIONS=((R2)) X
*
 LA R2,0 Wait, Read Modified
 CONSOLE READ,PATH='TEST',BUFFER=(BUF,BUFL),OPTIONS=((R2)) X
 .
 .
 RDBUF EQU X'01'
 NWRDBF EQU X'81'
 R2 EQU 2
 BUF DS CL2000
 BUFL EQU *-BUF

Return Codes
Upon completion of the CONSOLE READ function, register 15 contains one of the following return codes:
Code

Meaning
0

I/O successful. The length of data stored in the provided buffer is returned in register 0. See Usage
Notes “1” on page 127 and “2” on page 127 for additional information.

1
A path has been opened to the virtual device, but no real device is currently connected to that virtual
device.

2
You should issue a CONSOLE QUERY for the device before any more I/O is requested. See Usage
Notes for additional information.

24
The parameter list is invalid; the function name is unknown, a required parameter is missing, or
conflicting or invalid options were specified.

28
Path not found. This return code occurs if the path was never opened, or if a device receives an
I/O error because it was detached after the path was opened. The console facility closes all paths
associated with the device, and indicates that the path no longer exists.

32
A full-screen read was requested, but another application wrote to the screen. For a read request, the
screen may not belong to your application. An Erase/Write must be issued to reformat the screen and
return ownership to the current application. See Usage Note “2” on page 127 for more information.

100
An I/O error has occurred. You can obtain the CSW/SCSW status by issuing a CONSOLE QUERY and
specifying a buffer that contains the information.

104
Insufficient storage space is available for an IDAL (Indirect Address List) on a CONSOLE READ
request.

CONSOLE READ

128 z/VM: 7.3 CMS Macros and Functions Reference

CONSOLE WAIT

label

CONSOLE WAIT
1

,PATH= ' name '

( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE WAIT to wait for an interrupt from a display device.

Parameters
Required Parameters:
WAIT

waits for an interrupt.
PATH=

specifies the path name. Acceptable values are:
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

CONSOLE WAIT

Chapter 2. Preferred CMS Macro Instructions 129

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. A CONSOLE WAIT must be followed by a CONSOLE READ after the interrupt is received. Do not use the

WAIT option on CONSOLE READ in this case. Issuing the WAIT option on CONSOLE READ would cause
another enabled wait before the read is issued, thus resulting in a hung terminal condition.

2. All applications whose paths are using the same device are notified of device changes through return
code 2 the next time I/O is done. The device characteristics may have changed because the device
was disconnected and then reconnected, or another application attempted an OPEN and the device
characteristics do not match what is currently in the device table. On the next I/O, regardless of the
type of change in device characteristics, CONSOLE will not attempt the I/O. The return code of 2 is
returned to the application indicating to query, if necessary, and then reissue the I/O.

Return Codes
Upon completion of the CONSOLE WAIT function, register 15 contains one of the following return codes:
Code

Meaning
0

The WAIT completed successfully.

CONSOLE WAIT

130 z/VM: 7.3 CMS Macros and Functions Reference

2
You should issue a CONSOLE QUERY for the device before any more I/O is requested. See Usage
Notes for additional information.

24
The parameter list is invalid; a path was not specified.

28
Path not found.

CONSOLE WAIT

Chapter 2. Preferred CMS Macro Instructions 131

CONSOLE WRITE

label

CONSOLE WRITE
1

, PATH = ' name '

( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, BUFFER = ( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, OPTIONS = (
NOCLEAR

CLEAR

,W

, EW

, EWA

, WSF

( reg)

)

, BRKKEY = NO

, BRKKEY = YES

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use CONSOLE WRITE to write a 3270 data stream.

CONSOLE WRITE

132 z/VM: 7.3 CMS Macros and Functions Reference

Parameters
Required Parameters:
WRITE

writes buffers that have 3270 data streams built by the application.
PATH=

specifies the path name. Acceptable values are:
‘name’

specifies the path name as a 1- to 16-character literal string enclosed in quotation marks.
Anything greater than this will be truncated when the CONSOLE request is processed.

(addr,length)
specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the path name and a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
BUFFER=

specifies the area that contains the 3270 data stream (control characters and data) to be written to
the device. Acceptable values are:
(addr,length)

specifies the buffer address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the buffer address and the length as an absolute expression.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

((reg),(reg))
specifies a register that contains the address of the buffer and a register that contains the length.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

OPTIONS=
specifies optional processing for this buffer. Options may be specified in any order. For example,
(NOCLEAR,W) or (W,NOCLEAR) are both valid. Acceptable values are:
NOCLEAR

specifies that the physical screen is not cleared by the CONSOLE macro. The operating system
may require you to clear the screen manually before the buffer is written. If you do not specify
CLEAR or NOCLEAR, NOCLEAR is assumed.

CONSOLE WRITE

Chapter 2. Preferred CMS Macro Instructions 133

CLEAR
specifies that the physical screen is cleared before the buffer (if there is one) is written.
You can specify this option without the BUFFER parameter to simply clear the screen. If you
specify both the BUFFER parameter and the CLEAR option, you should also specify EW, EWA,
or WSF. If OPTIONS=CLEAR,W is specified, only a clear is done; the W is ignored because the
application must return to full screen mode with EW or EWA before a W is done. CLEAR is a line
mode operation that takes the application out of full-screen mode. To return to fullscreen, the
application must use EW or EWA.

W
specifies that the buffer is written with an ordinary Write command, overlaying the current
contents of the display screen. If W, EW, EWA, or WSF are not specified, W is assumed.

EW
specifies that the buffer is written with the Erase/Write option. This option reformats the screen by
causing a complete erasure of the screen before the write operation is started.

EWA
specifies that the buffer is written with the Erase/Write Alternate option to establish the alternate
screen mode for the device.

WSF
specifies that the buffer is written with the Write Structured Field option to provide control
information to the device.

(reg)
specifies a register 2-12, whose low-order byte contains the option or options to be used. The
hexadecimal value of the byte must be set to one of the following:

 X'00' = NOCLEAR,W
 X'01' = NOCLEAR,EW
 X'02' = NOCLEAR,EWA
 X'04' = NOCLEAR,WSF
 X'80' = CLEAR
 X'81' = CLEAR,EW
 X'82' = CLEAR,EWA
 X'84' = CLEAR,WSF

BRKKEY=
specifies whether or not the break key interrupt is reflected to the virtual machine application, thus
allowing the application full control of the keyboard. The BRKKEY parameter is only valid for the
virtual console for EW and EWA operations. If specified for dedicated 3270 devices or options other
than EW or EWA, the BRKKEY parameter will be ignored.
NO

specifies that if the break key is pressed, CP posts an attention interrupt to the virtual machine.
If the application responds with a READ, or the break key is pressed a second time, the virtual
machine is put in line mode and a CP READ is displayed on the screen's status area.

YES
specifies that if the break key is pressed, CP posts an attention interrupt to the virtual machine. If
the application responds with a READ, the break key is passed to the application. If the application
does not respond with a READ and the break key is pressed a second (or more) time, CP posts
another attention interrupt to the virtual machine. In both cases, the passing of the break key
interrupt to the virtual machine overrides the CP TERMINAL BRKKEY setting.

(reg)
instructs the macro to check the value of the specified register and, if it is 0, sets BRKKEY to NO. If
the register contains a nonzero value, the macro sets BRKKEY to YES.

(addr,mask)
defines a single bit in storage that sets the value of the BRKKEY parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit the macro tests. You
can specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit

CONSOLE WRITE

134 z/VM: 7.3 CMS Macros and Functions Reference

is 0, then BRKKEY is set to NO. If the bit is 1, then BRKKEY is set to YES. For example, to test the
first bit in the single byte of storage at location APPFLAG, specify the BRKKEY parameter as

BRKKEY=(APPFLAG,X'80')

To set the value of the BRKKEY parameter at assembly time, specify BRKKEY=YES or BRKKEY=NO.
To set the value at execution time, specify BRKKEY=(reg) or BRKKEY=(addr,mask)

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter,
control passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If the console facility receives X'8E' in the channel status word (CSW) or subchannel status word

(SCSW) from a W operation, then Console returns to your application with return code 32 to indicate
that the screen must be reformatted (returned to full-screen mode) by EW/EWA or an appropriate
WSF.

2. If the console facility receives X'8E' in the channel status word or subchannel status word on an
EW/EWA operation, the application is in line mode and there is line mode data to be read (CP more...
status). The console facility issues a line mode read (3215 SIO/SSCH) to clear the status and then
reissues the original EW/EWA operation. The information on the more... screen is placed on the CMS
input queue to be handled by CMS later.

3. Depending on whether CP console communications services or the logical device support facility is
being used instead of CP native support, some I/O errors may not be reflected to the application
issuing a DIAGNOSE code X'58', SIO instruction, or CONSOLE macro. In this case, the CMS console
facility may see a channel end/device end from the I/O and therefore return a return code of 0. If an
application that uses the console facility does not get expected results, the data stream or CCW (for
EXCP) should be checked for user errors.

4. The BUFFER parameter must contain the address of the 3270 data stream to be written. The console
facility does not scan this buffer or verify its contents. Therefore, for WSF, it is the application's
responsibility to determine when to reformat the screen with EW/EWA operations when more than one
application is writing to the screen. However, a return code of 32 is still returned if the screen is in line
mode, such as when CP breaks in and writes to the screen. The field CQYPLIO can be checked with a
CONSOLE QUERY path to determine if your application was the last path to write to the screen.

CONSOLE WRITE

Chapter 2. Preferred CMS Macro Instructions 135

5. The CQYDLINE bit defined in the CQYSECT macro can aid in the determination of knowing whether or
not to reformat the screen. CQYDLINE represents the virtual console's state at the last I/O interrupt
(1=linemode, 0=fullscreen mode). Along with checking this bit prior to issuing a CONSOLE WRITE,
your application should also specifically check for return code 32. This is because CQYDLINE does not
reflect the status of the screen properly when the I/O to the virtual console is initiated by CP.

6. All applications whose paths are using the same device are notified of device changes through return
code 2 the next time I/O is done. The device characteristics may have changed because the device
was disconnected and then reconnected, or another application attempted an OPEN and the device
characteristics do not match what is currently in the device table. On the next I/O, regardless of the
type of change in device characteristics, CONSOLE will not attempt the I/O. The return code of 2 is
returned to the application indicating to query, if necessary, and then reissue the I/O.

7. When BRKKEY=YES is specified for the virtual console, the break key interrupt will be reflected to
the virtual machine. This replaces the normal break key function of returning the virtual machine to
CP mode, and allows a virtual machine application to have full control of the keyboard. Normal break
key function is restored when full screen mode is reset with a subsequent Erase/Write or Erase/Write
Alternate.

8. When BRKKEY=YES is specified for the virtual console, CP's passing of the break key interrupt to the
virtual machine overrides the BRKKEY setting as defined by the CP TERMINAL BRKKEY command. For
more information about the CP TERMINAL BRKKEY command, and the possible break key settings, see
the z/VM: CP Commands and Utilities Reference.

Examples

The following are some examples of a CONSOLE WRITE invocation using the BRKKEY parameter:

 LA R2,EW Erase/Write variable
 CONSOLE WRITE,PATH='TEST', X
 BUFFER=(BUF,BUFL), X
 OPTIONS=((R2)), X
 BRKKEY=YES
 LA R2,CEWA Clear,Erase/Write Alternate
 CONSOLE WRITE,PATH='TEST', X
 BUFFER=(BUF,BUFL), X
 OPTIONS=((R2)),BRKKEY=NO
 CONSOLE WRITE,PATH='TEST', X
 BUFFER=(BUF,BUFL), X
 OPTIONS=(EWA), X
 BRKKEY=(APPFLAG,X'80')
 LA R2,0 Do not reflect break key interrupt
 CONSOLE WRITE,PATH='TEST', X
 BUFFER=(BUF,BUFL), X
 OPTIONS=(EW), X
 BRKKEY=(R2)
 .
 .

R2 EQU X'02'
EW EQU X'01'
CEWA EQU X'82'
APPFLAG DC X'FF'
BUF DC X'C21140401D60'
 DC C'HELLO'
BUFL DC *-BUF

Return Codes
Upon completion of the CONSOLE WRITE function, register 15 contains one of the following return codes:
Code

Meaning
0

I/O successful. See Usage Notes “2” on page 135 and “3” on page 135 for additional information.

CONSOLE WRITE

136 z/VM: 7.3 CMS Macros and Functions Reference

1
A path has been opened to the virtual device, but no real device is currently connected to that virtual
device.

2
You should issue a CONSOLE QUERY for the device before any more I/O is requested. See Usage
Notes for additional information.

24
The parameter list is invalid; the function name is unknown, a required parameter is missing, or
conflicting or invalid options were specified.

28
Path not found. This return code occurs if the path was never opened, or if a device receives an
I/O error because it was detached after the path was opened. The console facility closes all paths
associated with the device, and indicates that the path no longer exists.

32
A full-screen write was requested, but another application wrote to the screen. An Erase/Write must
be issued to reformat the screen and return ownership to the current application. See Usage Notes
“1” on page 135 and “2” on page 135 for more information.

100
An I/O error has occurred. You can obtain the CSW/SCSW status by issuing a CONSOLE QUERY and
specifying a buffer that contains the information.

104
Insufficient storage space is available for an IDAL (Indirect Address List) on a CONSOLE WRITE
request.

CONSOLE WRITE

Chapter 2. Preferred CMS Macro Instructions 137

CQYSECT

label

CQYSECT

Purpose
Use the CQYSECT macro to generate a DSECT for the CQYSECT control block. CQYSECT maps the device-
type and path-type information returned by the CONSOLE macroinstruction.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the CQYSECT macro expansion
is labeled CQYSECT.

Usage Notes
1. For more information regarding the DIAGNOSE codes X'24' and X'8C', see z/VM: CP Programming

Services.
2. The CQYSECT macroinstruction expands the Control Block Format as follows:

 CQYSECT
CQYSECT DSECT QUERY RETURN INFORMATION
CQYHEAD DS 0D REPLY BUFFER HEADER
CQYHPLEN DS F LENGTH OF PATH SECTION
CQYHDLEN DS F LENGTH OF DEVICE SECTION
CQYHEADL EQU *-CQYHEAD REPLY BUFFER HEADER LENGTH
*
*** Device Section ***
*
CQYDEV DS 0D DEVICE DATA SECTION
CQYDUSCT DS F NO. PATHS OPENED TO THIS DEVICE
CQYDNUMB DS F VIRTUAL DEVICE NUMBER
* DIAGNOSE X'24' INFO
CQYDVIRT DS 0XL4 VIRTUAL DEVICE INFO
CQYDVCLS DS X VIRTUAL DEV TYPE CLASS
CQYDVTYP DS X VIRTUAL DEVICE TYPE
CQYDVSTT DS X VIRTUAL DEVICE STATUS
CQYDVFLG DS X VIRTUAL DEVICE FLAGS
*
CQYDREAL DS 0XL4 REAL DEVICE INFO
CQYDRCLS DS X REAL DEVICE TYPE CLASS
CQYDRTYP DS X REAL DEVICE TYPE
CQYDRMDL DS X REAL MODEL NUMBER
CQYDRFTR DS X REAL FEATURE CODE
CQYDVCNS DS 0XL2 MORE DIAG X'24' INFO
CQYDLLEN DS X VIRT. CONSOLE LINE LENGTH
CQYDTMCD DS X VIRT. CONSOLE TERMINAL CODE
*
CQYDATTR DS X DEVICE ATTRIBUTE FLAGS
CQYDARMT EQU X'04' DEV. IS A REMOTE 3270
CQYDADSP EQU X'02' DEV. IS A DISPLAY
CQYDAVCN EQU X'01' DEV. IS THE VIRTUAL CONSOLE
*
CQYDSTAT DS X DEVICE STATUS FLAG 1
CQYDATTN EQU X'80' ATTENTION PENDING
CQYDDISC EQU X'40' DEVICE IS DISCONNECTED
CQYDLINE EQU X'20' VIRTUAL CONSOLE STATE
* AT LAST I/O INTERRUPT
* (1=LINEMODE, 0=FSCR)
*
CQYDQR EQU * FIRST 6 BYTES DIAG X'8C' INFO
CQYDQRFL DS X FLAGS
CQYDQREC EQU X'80' EXTENDED COLOR SUPPORTED

CQYSECT

138 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

CQYDQREH EQU X'40' EXTENDED HIGHLIGHT SUPPORTED
CQYDQRPS EQU X'20' PSS SUPPORTED
CQYDQREF EQU X'02' 3270 EMULATION FEATURE
CQYDQR14 EQU X'01' 14-BIT ADDRESSING SUPPORTED
CQYDQRPN DS X NUMBER OF PARTITIONS
CQYDQRCL DS H NUMBER OF COLUMNS
CQYDQRRW DS H NUMBER OF ROWS
*
CQYDQYCD DS X DEVICE QUERY CODE
 DS X RESERVED
*
CQYD8CL DS F LENGTH OF REMAINING DIAG X'8C' INFO
CQYD8CP DS A PTR TO WSF INFO AFTER THE 1ST 6
* BYTES OF DIAG 8C INFO
 DS F RESERVED
CQYDEVL EQU *-CQYDEV LENGTH OF DEVICE SECTION
CQYDHL EQU (CQYHEADL+CQYDEVL) LENGTH OF DEV + HDR SECTIONS
*
*** Path Section ***
*
CQYPATH DS 0D PATH DATA SECTION
CQYPEXIT DS A USER EXIT ADDRESS
CQYPXWRD DS F USER WORD
CQYPFLG DS X PATH FLAG
CQYPLIO EQU X'80' PATH DID LAST I/O
CQYPNRST EQU X'10' NO DEVICE RESET REQUESTED
 DS XL3 RESERVED
 DS F RESERVED
CQYPSCSW DS 0XL12 CHANNEL STATUS WORD
CQYPSLCC DS X LOGOUT PENDING/COND. CODES
CQYPKSL EQU X'F8' KEY/SUSPEND/LOG BITS
CQYPLOG EQU X'04' LOGOUT PENDING
CQYPCC EQU X'03' DEFERRED CONDITION CODE
CQYPCTL DS XL3 ORB AND SUBCHANNEL CONTROL BITS
CQYPCCW DS F LAST CCW EXECUTED
CQYPUST DS X UNIT STATUS BYTE
CQYPATTN EQU X'80' ATTENTION
CQYPSTMD EQU X'40' STATUS MODIFIER
CQYPCUE EQU X'20' CONTROL UNIT END
CQYPBUSY EQU X'10' BUSY
CQYPCHEN EQU X'08' CHANNEL END
CQYPDVEN EQU X'04' DEVICE END
CQYPUNCK EQU X'02' UNIT CHECK
CQYPUNEX EQU X'01' UNIT EXCEPTION
CQYPCST DS X CHANNEL STATUS BYTE
CQYPPCI EQU X'80' PROGRAM-CONTROLLED
* INTERRUPTION
CQYPICL EQU X'40' INCORRECT LENGTH
CQYPPGCK EQU X'20' PROGRAM CHECK
CQYPPRCK EQU X'10' PROTECTION CHECK
CQYPCDCK EQU X'08' CHANNEL DATA CHECK
CQYPCCCK EQU X'04' CHANNEL CONTROL CHECK
CQYPICCK EQU X'02' INTERFACE CONTROL CHECK
CQYPCHCK EQU X'01' CHAINING CHECK
CQYPRCT DS H RESIDUAL COUNT
*
CQYPSCNT DS F SENSE COUNT
CQYPSDTA DS XL32 SENSE DATA
CQYPATHL EQU *-CQYPATH PATH SECTION LENGTH
CQYSIZE EQU (CQYHEADL+CQYDEVL+CQYPATHL) TOTAL
* CQYSECT LENGTH
CQYDBSZ EQU ((CQYSIZE+7)/8) SIZE OF ALL SECTIONS
* IN DBWRDS

CQYSECT

Chapter 2. Preferred CMS Macro Instructions 139

CSFCB

label

CSFCB

Purpose

Use the CSFCB macro to map the data referenced by the fourth word in the extended plist for the CMS
subcommand interface when inhibiting implicit recursion of execs.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the CSFCB macro expansion is
labeled CSFCB.

Usage Notes
1. The CSFCB macroinstruction expands as follows:

 CSFCB
CSFCB DSECT
CSFNMPTR DS A Pointer to file name of current exec
CSFFLAGS DS F Reserved for IBM use;
CSFFNBL EQU *-CSFCB Length (in bytes)

2. Only the CSFNMPTR field is intended as a programming interface.
3. An alternate format exec processor uses the name pointed to by the CSFNMPTR field to inhibit implicit

recursion of the current exec. This is only effective when the name pointed to is the name of the
current exec.

4. The CSFFLAGS field is reserved for use by IBM. It should be initialized to zero each time this interface
is used.

CSFCB

140 z/VM: 7.3 CMS Macros and Functions Reference

CSLENTRY

label

CSLENTRY

DIRECT

OPENVM (

req , opt

NOCNT

)

,

(

,

parmn
1

)

, MODE = NO370

Notes:
1 Specify up to 99 times.

Purpose
Use the CSLENTRY macro when writing a callable services library (CSL) routine to identify the module
entry point, and generate the proper entry code.

You must specify the CSLENTRY macro before any executable code or data in a CSL routine.

CSLENTRY performs the following:

• Saves the calling program's registers
• Puts the number of parameters passed to the CSL routine in register 0
• Checks parameter list length and issues the proper return codes for improper length plists, if requested

(DIRECT option only)
• Generates the USING statement for register 15.

Parameters
Required Parameters:
parmn

specifies the name for a parameter expected by the CSL routine. You must define a name for each
expected parameter.

Note: You should use the special parameter names RETURN and REASON in your program when
referring to the return code and reason code parameters. If you specify the OPENVM option on
CSLENTRY, you should also use the special parameter name VALUE when referring to the return value
parameter. Do not use these special names for any other parameters.

Optional Parameters:
label

is an optional assembler label for the statement.
DIRECT

specifies that the routine will be directly callable.

CSLENTRY

Chapter 2. Preferred CMS Macro Instructions 141

OPENVM
specifies that the routine will be directly callable and:

• The return code parameter is not required and may appear anywhere in the parameter list.
• The positions of the return code, reason code, and return value in the parameter list are marked

using special data types in the CSL template file.

req,opt
supplies the number of required and optional entries in the parameter list. The sum of req and opt
must be between 1 and 99 and req must be greater than 0.

NOCNT
indicates that no counting of parameters is to be done. No return codes will be set by the macro
generated code. Register 0 will not be updated.

MODE=NO370
specifies that the macro should not create a System/370 code path.

Usage Notes
1. Upon completion of CSLENTRY, register 0 contains the number of parameters passed (if requested)

and register 1 points to the parameter list. If these two values are to be used later in the CSL routine
code, they should be saved in different registers or in storage. Otherwise, various functions, including
CSLGETP, may overwrite the contents of registers 0 and 1.

2. The number of parameters passed is treated differently depending on what information you supply to
CSLENTRY.

a. If CSLENTRY (parmn), CSLENTRY DIRECT,(parmn), or CSLENTRY OPENVM,(parmn) is
specified, the number of parameters passed is placed in register 0. No return codes for an incorrect
parameter list will be returned. If DIRECT is specified, 100 is placed in register 0 when the
parameter list size exceeds 99.

b. If CSLENTRY DIRECT(req,opt) is specified, the number of parameters passed is placed in
register 0. If req is greater than the number of parameters passed, a return code of -11 is returned
to the caller. If the sum of req and opt is less than the number of parameters passed, a return code
of -10 is returned to the caller.

c. If CSLENTRY OPENVM(req,opt) is specified, the number of parameters passed is placed in
register 0.

How CSLENTRY handles a parameter list size error depends on whether a return code or return
value is defined in the parameter list:

• If req is greater than the number of parameters passed, and a return value or return code or both
exists in the parameter list, then a return value of -1 and a return code of -11 are returned to the
caller.

• If the sum of req and opt is less than the number of parameters passed, and a return value or
return code or both exists in the parameter list, then a return value of -1 and a return code of -10
are returned to the caller.

• In either of these error situations, if no return value or return code is defined in the parameter list,
then CSLENTRY initiates an ABEND.

d. If CSLENTRY DIRECT(NOCNT) or CSLENTRY OPENVM(NOCNT) is specified, then the number of
parameters is ignored. No return codes are returned for an incorrect parameter list size. Register 0
is not updated.

3. You can use the parameter names specified on this macro with the CSLGETP macro to get information
about the parameters passed to your CSL routine. For more information on using this macro, see the
z/VM: CMS Application Development Guide for Assembler.

4. Specifying the DIRECT or OPENVM operand does not make a CSL routine a direct call routine. You must
specify a path on the ROUTINE line or lines which use this routine's text file. The ROUTINE lines are

CSLENTRY

142 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

found in the CSLCNTRL file used by CSLGEN. You must also specify DIRECT or OPENVM on the first
noncomment line of the template file.

Return Codes
Code

Meaning
-10

The sum of req and opt is less than the number of parameters passed.
-11

req is greater than the number of parameters passed.

CSLENTRY

Chapter 2. Preferred CMS Macro Instructions 143

CSLEXIT

label

CSLEXIT

RETURN= addr

( reg)

,REASON= addr

( reg)

1
, VALUE = addr

( reg)

Notes:
1 The VALUE option can be used only when OPENVM is specified on the CSLENTRY macro.

Purpose
Use the CSLEXIT macro when writing a callable services library (CSL) routine to generate the proper exit
code.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
RETURN=

specifies a 4-byte numeric return code for the CSL routine to pass back to the calling application.
When control is returned to the calling program, the return code value will be in register 15.
addr

is the label on a 4-byte field containing the return code that will be put in register 15.
(reg)

specifies a general register (other than register 1 or 13) which contains the 4-byte numeric return
code that will be put in register 15.

In addition, if the name RETURN was used to identify a parameter on the CSLENTRY macro, the calling
program also gets the return code value in the first four bytes of the parameter that corresponds to
RETURN.

REASON=
specifies a 4-byte numeric reason code for the CSL routine to pass back to the calling application.
When control is returned to the calling program, the reason code value will be in register 0.
addr

is the label on a 4-byte field containing the reason code that will be put in register 0.
(reg)

specifies the register (other than register 1 or register 13) which contains the reason code that will
be put in register 0.

In addition, if the name REASON was used to identify a parameter on the CSLENTRY macro, the calling
program also gets the reason code value in the first four bytes of the parameter that corresponds to
REASON.

CSLEXIT

144 z/VM: 7.3 CMS Macros and Functions Reference

VALUE=
specifies a 4-byte numeric return value for the CSL routine to pass back to the calling application.
When control is returned to the calling program, the return value is stored in the first four bytes of the
parameter that corresponds to VALUE.
addr

is the label on a 4-byte field containing the return value that will be put in the parameter list.
(reg)

specifies the register (other than register 1 or register 13) which contains the return value.

This option can be used only in routines that specify the OPENVM option on the CSLENTRY macro.

Usage Notes
1. Before invoking CSLEXIT, a CSL routine must ensure that register 13 contains the value it did at

completion of CSLENTRY.

CSLEXIT

Chapter 2. Preferred CMS Macro Instructions 145

CSLFPI

label CSLFPI TYPE= AREA

DSECT

Service Parms

label

CSLFPI AREA=  arealab ,TYPE= Type choices

,MODE=NO370

Type choices
INIT

INITD

Service

Parms

SET Parms

CALL

Parms

Parms

,PARMS=(

,
1

( name
,

valn

( reg)

, lenn

,( reg)

))

Service

,SERVICE= routine

( reg)

Notes:
1 Specify up to 99 times.

Purpose
Use the CSLFPI macro to set up parameters and invoke callable services library (CSL) routines using a fast
path. A program should use a fast path when it calls the same CSL routine several times and optimum
performance is important.

To call a CSL routine using the fast path method, your program must perform the following steps, each
using a form of CSLFPI:

1. Set up an area called a fast path area to contain the name, value, and length for all the parameters
that the CSL routine expects. You can directly build the area (using TYPE=AREA) or set up the area for
mapping onto a DSECT (using TYPE=DSECT).

2. Initialize the fast path area for the routine you intend to call.
3. Modify parameter information in the fast path area. You can establish initial values using TYPE=INIT or

INITD, or modify values using TYPE=SET.
4. Invoke the CSL routine (using TYPE=CALL). You can also modify parameter values at this time.

CSLFPI

146 z/VM: 7.3 CMS Macros and Functions Reference

Parameters
Required Parameters:
label

When TYPE=AREA or DSECT is specified, the label parameter is required and must be a 1- to
4-character label. This label will be used to reference the fast path area. The following labels are
generated for the calling program to use:

• labelCSL1—is equated to the length of the fast path area generated
• labelCSL2—is equated to the number of parameters
• labelXCSA—is an area used to save the translation mode and access registers at the time of

the CSLFPI TYPE=CALL transfer if the application is executing in access register mode (and the
DMSSTATE macro has been called with ASCENV=ARM).

When TYPE=INIT, INITD, SET, or CALL, label is an optional assembler label for the statement.

TYPE=
specifies which form of CSLFPI you are using. Acceptable values are:
AREA

means that you are building a fast path area to contain information about a CSL routine and its
parameters.

If this fast path area is to be included as part of a larger area mapped by a DSECT, TYPE=AREA
should be used within that DSECT; otherwise, TYPE=AREA generates the fast path area in a
CSECT.

DSECT
means that you are building a fast path area to contain information about a CSL routine and its
parameters. The fast path area will be mapped by a DSECT whose name is specified by label.

Note: If you specify parameter information when building a fast path area for mapping
(TYPE=DSECT, or TYPE=AREA call within a DSECT), you must still specify parameter information
before invoking the CSL routine (using TYPE=INITD or SET).

INIT
means that you are initializing the fast path area that contains information about a CSL routine and
its parameters.

INITD
means that you are initializing the fast path area that contains information about a CSL routine and
its parameters. Use INITD (rather than INIT) if you previously mapped the fast path area inside a
DSECT using CSLFPI with TYPE=AREA or DSECT.

SET
means that you are setting or changing CSL parameter values or lengths. You can use SET to give
an initial value or to modify a value.

CALL
means that you are invoking the CSL routine.

Note: Before a CSL routine is invoked, you must specify a name and value for each parameter that
the CSL routine expects. See the description of the optional PARMS parameter. You can modify
parameter values when invoking CSLFPI with TYPE=CALL and with TYPE=SET, INIT, or INITD.

AREA=arealab
specifies the 1- to 4-character label for the fast path area that was specified on a previous CSLFPI
with TYPE=AREA or DSECT.

Optional Parameters:
PARMS=

specifies information about CSL routine parameters.

Note:

CSLFPI

Chapter 2. Preferred CMS Macro Instructions 147

1. PARMS is required when TYPE=AREA, DSECT, or SET is specified.
2. When using PARMS with TYPE=INIT, INITD, SET, or CALL, you must supply a value or length for at

least one parameter.

Acceptable values are:
name

is a 1- to 4-character name that identifies a parameter.
valn

is a label used to reference the associated parameter's value.
(reg)

is a register containing the address of the associated parameter's value.

Note: If you do not specify a parameter value but want to specify a length, you must code the comma
as a place holder. notations:

lenn
is the length of the associated parameter.

(reg)
is a register containing the length of the associated parameter.

Note: If the parameter is a character string, you must specify a length, unless the length is implied or
the CSL routine defines the length for you.

SERVICE=
specifies the name of the CSL routine to be invoked. SERVICE must be specified when either building
or initializing the fast path area. Acceptable values are:
routine

is the name of the CSL routine.
(reg)

is a register containing the address of the name of the CSL routine.
MODE=NO370

specifies that the macro should not create a System/370 code path.

Usage Notes
1. If your application is executing in an XC virtual machine in access register mode, CSL routines must be

called such that transfer to the service results in primary space mode entry. You can ensure the correct
entry condition by preceding your CSLFPI macro call with a

DMSSTATE SET,ASCENV=ARM

macro specification. You should also ensure that access registers 12 and 13 contain the value 0 to
avoid the inadvertent modification of an address space or the occurrence of a program check. For more
information, see the z/VM: CMS Application Development Guide.

2. If you must reinitialize a fastpath area, you should also reinitialize the parameters. The integrity of the
fastpath area is not guaranteed after the first reinitialization.

3. Directly callable CSL routines cannot access the parameter length information provided by the indirect
CSL interface. Therefore, parameter lengths, other than for parameters specified in the routine
template as FCHR 0, will be ignored. These lengths are still saved for routines using the indirect
CSL interface.

4. Additional labels, labelCSL4 - labelCSLB, may be generated. These labels are for CSLFPI use only.

Return Codes
Code

Meaning

CSLFPI

148 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

-07
Routine not loaded. (TYPE=INIT/INITD only)

-08
Routine has been dropped. (TYPE=CALL only)

-09
Insufficient virtual storage available. (TYPE=INIT/INITD only)

-10
Too many parameters specified. (TYPE=INIT/INITD only)

-11
Not enough parameters specified. (TYPE=INIT/INITD only)

-12
CSL does not exist on the release. (TYPE=CALL only)

-13
The CSLFPI fast path area provided cannot be used to call the service specified. (TYPE=INIT/INITD,
TYPE=CALL)

The fast path area was created by a CSLFPI macro which cannot provide parameters in the standard
plist format required by the currently loaded routine version. The routine was specified by the
SERVICE operand. Recompiling all of the programs which use the CSLFPI workarea is required.

CSLFPI

Chapter 2. Preferred CMS Macro Instructions 149

CSLGETP

label

CSLGETP
1

PLIST= addr

( reg)

,PARM=  parmname
2

,ADDRESS= addr

( reg)

,LENGTH= addr

( reg)

,TYPE= addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.
2 One of the following optional parameters (ADDRESS, LENGTH, or TYPE) must be specified.

Purpose
Use the CSLGETP macro in the callable services library (CSL) routine you are writing to get information
about a parameter passed to the routine. CSLGETP uses the parameter names defined on the CSLENTRY
macro.

Parameters
Required Parameters:
PLIST=

specifies the address of the parameter list. (When CSLENTRY completes, the address of the
parameter list is contained in register 1, but do not assume this when using CSLGETP because the
contents of register 1 are overwritten by CSLGETP.)
addr

is the name of a 4-byte field containing the address of the parameter list.
(reg)

is a register containing the address of the parameter list.
PARM=parmname

specifies the name of the parameter you want information about. The parameter name (parmname)
must have been previously defined on the preceding CSLENTRY macro call.

Optional Parameters:
label

is an optional assembler label for the statement.

Note: At least one of the following three optional parameters must be specified.

ADDRESS=
specifies that you want to get the address of parmname. Acceptable values are:
addr

is the name of a 4-byte field in which to store the address of the parameter.
(reg)

is a register where the address of the parameter will be stored. It may be any register other than
register 1.

CSLGETP

150 z/VM: 7.3 CMS Macros and Functions Reference

LENGTH=
specifies that you want to get the length of parameter. This cannot be used when DIRECT is specified
on the CSLENTRY macro.
addr

is the name of a 4-byte field in which to store the length of the parameter.
(reg)

is a register where the length of the parameter will be stored. It may be any register other than
register 1.

TYPE=
specifies that you want to get the data type of parmname. This cannot be used when DIRECT is
specified on the CSLENTRY macro. The data type is returned as a 1-byte code, equated to one of the
following labels:
Label

Data Type
CSLTSBIN

Signed binary number
CSLTUBIN

Unsigned binary number
CSLTBIT

Bit string
CSLTLEN

Unsigned binary length parameter for a previous parameter; can also indicate the number of rows
for a table

CSLTCHAR
Character string

CSLTFCHR
Fixed-length character string (compatibility)

You can use these labels to check the data type code that is returned. Acceptable values for TYPE are:

addr
is the name of a 1-byte field in which to store the data type code.

(reg)
is a register containing the address of a 1-byte field in which to store the data type code. It may be
any register other than register 1.

Usage Notes
1. CSLGETP will return a value for the address, length, and type for optional parameters (defined on

CSLENTRY) that are not supplied by the calling program. Your program should use the value in register
0 at the completion of CSLENTRY to determine how many optional parameters are being passed in.

2. CSLGETP overwrites the contents of register 1.
3. Length and type cannot be specified when DIRECT is coded on the CSLENTRY macro.

CSLGETP

Chapter 2. Preferred CMS Macro Instructions 151

CSRCMPSC

label

CSRCMPSC CBLOCK =  address

, RETCODE =  address

Purpose

CSRCMPSC is an interface to system Data Compression Services. It:

• Compresses data
• Expands previously compressed data

This interface uses the S/390® hardware compression instruction CMPSC. If your hardware does not
support the CMPSC compression instruction, the system software simulation of the instruction will be
used to perform the service.

Parameters
Required Parameters:
CBLOCK=

is the parameter list for compression services mapped by the CSRYCMPS macro. This parameter list is
36 bytes and contains:

• Bit fields for compression service control
• Addresses of the compression and expansion dictionaries
• Source and target area addresses and associated lengths
• Source and target ALET definitions, if Access Register (AR) mode is being used
• Address of a compression services work area.

Optional Parameters:
label

is an optional assembler label for the statement.
RETCODE=

Is the output return code from the compression service.
address

Is an RS-type address or a register specification. CBLOCK can be used with registers (2)-(12).
RETCODE can be used with registers (2)-(12).

Note: The register save area pointed to by register 13 must be 144 bytes.

Usage Notes
1. The compression and expansion dictionaries specified in the CBLOCK must both be defined on page

boundaries and must be contiguous in storage.
2. Printing of the macro expansion is controlled by the ZPRINT global macro variable. Any value other

than 'NO' will result in the macro expansion being printed. The default is 'YES'. The following examples
illustrate how the ZPRINT variable should be set.

 GBLC &ZPRINT
 &ZPRINT SETC 'YES'
 &ZPRINT SETC 'NO'

CSRCMPSC

152 z/VM: 7.3 CMS Macros and Functions Reference

Examples

1. The following is an example of compression.

 LA 13,SAVEAREA Get address of save area
 LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
 Symbol size is 5+8. Dictionary has
 2**(5+8) entries
 L 3,DICTADDR
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,COMPADDR
 ST 3,CMPSC_TARGETADDR Set compression area
 L 3,COMPLEN
 ST 3,CMPSC_TARGETLEN Set compression length
 L 3,EXPADDR
 ST 3,CMPSC_SOURCEADDR Set expansion area
 L 3,EXPLEN
 ST 3,CMPSC_SOURCELEN Set expansion length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set workarea address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK parameter
COMPADDR DS A Output "To" (compression) area
COMPLEN DS F Length of "To" area
EXPADDR DS A Input "From" (expansion) area
EXPLEN DS F Length of "From" area
DICTADDR DS A Address of compression dictionary
 DS 0D Doubleword align workarea
WORKAREA DS CL192 Work area
SAVEAREA DS CL144 Register save area
 CSRYCMPS ,

The expansion dictionary must immediately follow the compression dictionary and both must be
aligned on page boundaries.

2. The following is an example of expansion.

 LA 13,SAVEAREA Get address of save area
 LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
 Symbol size is 5+8. Dictionary has
 2**(5+8) entries
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND Do expansion
 L 3,EDICTADDR
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR
 ST 3,CMPSC_TARGETADDR Set expansion area
 L 3,EXPLEN
 ST 3,CMPSC_TARGETLEN Set expansion length
 L 3,COMPADDR
 ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,COMPLEN
 ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set workarea address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Output "To" (expansion) area
EXPLEN DS F Length of "To" area
COMPADDR DS A Input "From" (compression) area
COMPLEN DS F Length of "From" area
EDICTADDR DS A Address of expansion dictionary
 DS 0D Doubleword align workarea
WORKAREA DS CL192 Work area
SAVEAREA DS CL144 Register save area
 CSRYCMPS ,

CSRCMPSC

Chapter 2. Preferred CMS Macro Instructions 153

Note: The expansion dictionary must be aligned on a page boundary.

Return Codes
When this macro completes processing, it passes a return code in register 15 to the caller.
Code

Meaning
0

No errors detected.
4

Target operand exhausted before source.
16

An operand is missing.
20

Value in CMPSC_SYMSIZE is not supported. Must be 1-5.
24

No work to do. The compression area length (the target for compression, the source for expansion) is
not large enough to hold even one compression symbol.

28
Compression dictionary processing exceeded the limit of 260 for the length of a compressed symbol.

32
A dictionary entry exceeded the limit of 260 total children.

36
A dictionary entry exceeded the limit of a child count of 6.

40
A dictionary entry exceeded the limit of 4 extension characters when there were 0 or 1 children.

44
A sibling descriptor dictionary entry has a count of 0.

48
Extension of a symbol used more than 127 dictionary entries.

ABEND Code
Meaning

0C4
The user may get this completion code if a user-provided data area is not accessible.

0C6
The user may get this completion code if the symbol size value within the CBLOCK area is not 1-5.

0C7
The user may get this completion code in the following circumstances when the dictionary is built
incorrectly:

• If the length of a string to be represented by a single compression symbol, encountered during a
compression operation, exceeds 260 characters.

• If a dictionary entry has more than 260 total children.
• If the "child count" in a dictionary entry indicates more than 6 children.
• If the number of extension characters for a dictionary entry with 0 or 1 children exceeds 4.
• If a sibling descriptor dictionary entry has a sibling count of 0.
• If expansion of a compression symbol uses more than 260 characters.
• If expansion of a compression symbol uses more than 127 dictionary entries.

In all these cases, the user must fix the dictionary.

CSRCMPSC

154 z/VM: 7.3 CMS Macros and Functions Reference

CSRYCMPD

label

CSRYCMPD
DSECT = YES

DSECT = NO

CMPSCDICT_CE = YES

CMPSCDICT_CE = NO

CMPSCDICT_SD = COND

CMPSCDICT_SD = YES

CMPSCDICT_SD = NO

CMPSCDICT_SDE = COND

CMPSCDICT_SDE = YES

CMPSCDICT_SDE = NO

CMPSCDICT_UE = COND

CMPSCDICT_UE = YES

CMPSCDICT_UE = NO

CMPSCDICT_PE = COND

CMPSCDICT_PE = YES

CMPSCDICT_PE = NO

Purpose

Use the CSRYCMPD macro to map the compression and expansion dictionaries.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
DSECT=

indicates that you are about to specify whether the template produced will be a DSECT (dummy
control section).
YES

indicates that the template will be created as a DSECT. If you omit the DSECT parameter
altogether, then the template is produced as a DSECT. This is the default.

NO
indicates that the DSECT statement should not be generated.

CMPSCDICT_CE=
indicates a request for mapping of the child entries in the compression dictionary.
YES

indicates that the mapping will be created for the child entries in the compression dictionary. This
is the default.

NO
indicates that the mapping will not be created for the child entries in the compression dictionary.

CMPSCDICT_SD=
indicates a request for mapping of the sibling descriptors in the compression dictionary.
COND

indicates that the mapping is included if DSECT=YES, but not if DSECT=NO. This is the default.
YES

indicates that the mapping will be created for the sibling descriptors in the compression
dictionary.

CSRYCMPD

Chapter 2. Preferred CMS Macro Instructions 155

NO
indicates that the mapping will not be created for the sibling descriptors in the compression
dictionary.

CMPSCDICT_SDE=
indicates a request for mapping of the sibling descriptor extensions in the compression dictionary.
COND

indicates that the mapping is included if DSECT=YES, but not if DSECT=NO. This is the default.
YES

indicates that the mapping will be created for the sibling descriptor extensions in the compression
dictionary. Note that they are physically located within the expansion dictionary.

NO
indicates that the mapping will not be created for the sibling descriptor extensions in the
compression dictionary.

CMPSCDICT_UE=
indicates a request for mapping of the unpreceded entries in the expansion dictionary.
COND

indicates that the mapping is included if DSECT=YES, but not if DSECT=NO. This is the default.
YES

indicates that the mapping will be created for the unpreceded entries in the expansion dictionary.
NO

indicates that the mapping will not be created for the unpreceded entries in the expansion
dictionary.

CMPSCDICT_PE=
indicates a request for mapping of the preceded entries in the expansion dictionary.
COND

indicates that the mapping is included if DSECT=YES, but not if DSECT=NO. This is the default.
YES

indicates that the mapping will be created for the preceded entries in the expansion dictionary.
NO

indicates that the mapping will not be created for the preceded entries in the expansion
dictionary.

Usage Notes
1. The compression and expansion dictionaries must both begin on page boundaries. When compressing,

the expansion dictionary must immediately follow (be contiguous to) the compression dictionary.
2. Each dictionary consists of 512, 1024, 2048, 4096, or 8192 8-byte entries. These are indicated by a

value of 1, 2, 3, 4, or 5 in the CMPSC_SYMSIZE field which is part of the parameter information passed
to the CSRCMPSC service.

The compression dictionary consists of child entries (DSECT CMPSCDICT_CE), sibling descriptors
(DSECT CMPSCDICT_SD), sibling descriptor extensions (DSECT CMPSCDICT_SDE). Note that the latter
are physically resident within the expansion dictionary.

The expansion dictionary consists of unpreceded entries (DSECT CMPSCDICT_UE) and preceded
entries (DSECT CMPSCDICT_PE).

3. The following fields are generated by the CSRYCMPD macro:

CSRYCMPD

156 z/VM: 7.3 CMS Macros and Functions Reference

Table 14. CSRYCMPD Macro

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(0) 0 BITSTRING 1 CMPSCDICT_CE_H1

First byte of header

 111.

CMPSCDICT_CE_CHILDCT

X'E0' Child character count

 ...1 1111

CMPSCDICT_CE_EXCHILD

X'1F' Examine child bits

(1) 1 BITSTRING 2 CMPSCDICT_CE_H23

Second/third bytes of header

 111. CMPSCDICT_CE_AECCT

X'E0' Additional extension count

 11.. CMPSCDICT_CE_EXSIB

X'C0' Examine sibling bits

 ..1. CMPSCDICT_CE_ADDEXTCHAR

X'20' If on, add ext character

(1) 1 BITSTRING 1 CMPSCDICT_CE_FIRSTCHILDINDEX_REPLACED (0)

BITSTRING CMPSCDICT_CE_FIRSTCHILDINDEX

X'1FFF' This mask can be used to isolate the 13-
bits of field CMPSCDICT_CE_H23 that represent
the index of the first child

(3) 3 CHARACTER 5 CMPSCDICT_CE_CHILDCHAR

Child character entries

 ..1.

CMPSCDICT_CE_CHILDCT_1

"B'00100000'"Value of 1 for
CMPSCDICT_CE_CHILDCT within field
CMPSCDICT_CE_H1

 ..1. CMPSCDICT_CE_AECCT_1

"B'00100000'"Value of 1 for
CMPSCDICT_CE_AECCT within field
CMPSCDICT_CE_H23

X'8' CMPSCDICT_CE_LEN

"*-CMPSCDICT_CE"

CSRYCMPD

Chapter 2. Preferred CMS Macro Instructions 157

Table 15. CMPSCDICT_SD DSECT

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(0) 0 BITSTRING 2 CMPSCDICT_SD_HD

Header

 1111

CMPSCDICT_SD_SIBCT

X'F0' Sibling count

(0) 0 BITSTRING 1 CMPSCDICT_SD_EXSIB_REPLACED (0)

BITSTRING CMPSCDICT_SD_EXSIB

X'0FFF' This represents a 12-bit subfield
of CMPSCDICT_SD_HD. Each bit indicates to
examine the corresponding sibling.

(2) 2 CHARACTER 6 CMPSCDICT_SD_CHILDCHAR

Sibling character entries

 ...1 CMPSCDICT_SD_SIBCT_1

"B'00010000'"Value of 1 for
CMPSCDICT_SD_SIBCT within field
CMPSCDICT_SD_HD

X'8' CMPSCDICT_SD_LEN

"*-CMPSCDICT_SD"

Table 16. CMPSCDICT_SDE DSECT

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(0) 0 CHARACTER 8 CMPSCDICT_SDE_CHILDCHAR

Sibling character entries

X'8' CMPSCDICT_SDE_LEN

"*-CMPSCDICT_SDE"

Table 17. CMPSCDICT_UE DSECT

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(0) 0 BITSTRING 1 CMPSCDICT_UE_HD

Header

 111.

CMPSCDICT_UE_PARTSYMLEN

X'E0' Partial symbol length = 0

CSRYCMPD

158 z/VM: 7.3 CMS Macros and Functions Reference

Table 17. CMPSCDICT_UE DSECT (continued)

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

111

CMPSCDICT_UE_COMPSYMLEN

X'07' Completed symbol length

(1) 1 CHARACTER 7 CMPSCDICT_UE_CHARS

Extension characters

1

CMPSCDICT_UE_COMPSYMLEN_1

"B'00000001'"Value of 1 for
CMPSCDICT_UE_COMPSYMLEN within field
CMPSCDICT_UE_HD

X'8' CMPSCDICT_UE_LEN

"*-CMPSCDICT_UE"

Table 18. CMPSCDICT_PE DSECT

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(0) 0 CHARACTER 2 CMPSCDICT_PE_HD

Header

 111. CMPSCDICT_PE_PARTSYMLEN

X'E0' Partial symbol length ¬= 0

(0) 0 BITSTRING 1 CMPSCDICT_PE_PRECENTINDEX_REPLACED (0)

BITSTRING CMPSCDICT_PE_PRECENTINDEX

X'1FFF' This mask can be used to isolate the 13-
bits of field CMPSCDICT_PE_HD that represent
the index of the preceding entry

(2) 2 CHARACTER 5 CMPSCDICT_PE_CHARS

Extension characters

(7) 7 SIGNED 1 CMPSCDICT_PE_OFFSET

Offset where first character in
CMPSCDICT_PE_CHARS belongs

 ..1.

CMPSCDICT_PE_PARTSYMLEN_1

"B'00100000'"Value of 1 for
CMPSCDICT_PE_PARTSYMLEN within field
CMPSCDICT_PE_HD

X'8' CMPSCDICT_PE_LEN

"*-CMPSCDICT_PE"

CSRYCMPD

Chapter 2. Preferred CMS Macro Instructions 159

CSRYCMPS

label

CSRYCMPS

DSECT = YES,

DSECT = NO, ,

CMPSC = YES

CMPSC = NO

Purpose

Use the CSRYCMPS macro to map the compression services parameter list which is required to call Data
Compression Services.

The fields in the CBLOCK parameter list are filled in by the user of Data Compression Services. The
address of the CBLOCK is passed to Data Compression Services through the CBLOCK parameter of the
CSRCMPSC macro. The CSRYCMPS macro also provides equates used to map error codes returned by
Data Compression Services.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
DSECT=

indicates that you are about to specify whether the template produced will be a DSECT (dummy
control section).
YES

indicates that the template will be created as a DSECT. If you omit the DSECT parameter
altogether, then the template is produced as a DSECT. This is the default.

NO
indicates that the DSECT statement should not be generated.

CMPSC=
indicates that you are about to specify whether the template produced will be a DSECT (dummy
control section).
YES

indicates that a mapping of CMPSC has been requested. This is the default.
NO

indicates that a mapping of CMPSC has not been requested.

Usage Notes
1. All the CMPSC_FLAGS bits should be zero, except for the CMPSC_SYMSIZE and CMPSC_EXPAND bits

in the CMPSC_FLAG2 byte. If other bits are found on, unpredictable results may occur.
2. The following fields are generated by the CSRYCMPS macro:

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(0) 0 STRUCTURE CMPSC , Compression parameter block

(0) 0 BITSTRING 4 CMPSC_FLAGS

CSRYCMPS

160 z/VM: 7.3 CMS Macros and Functions Reference

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

Flag bits within which only the SymSize and
Expand fields should be set. All other fields must
be 0.

(0) 0 BITSTRING 1 CMPSC_FLAGS_BYTE0

Byte 0 of flags

(1) 1 BITSTRING 1 CMPSC_FLAGS_BYTE1

Byte 1 of flags

(2) 2 BITSTRING 1 CMPSC_FLAGS_BYTE2

Byte 2 of flags

 1111

CMPSC_SYMSIZE

X'F0' When 8 is added, indicates size in bits
of a compressed entry. Must be 1-5. You can
use the assembler CMPSC_SYMSIZE equate to
define a value that you can use to clear the field
prior to use. You can use the assembler equates
CMPSC_SYMSIZE_n to set the field

 1 CMPSC_EXPAND

X'01' If on, do an expand operation. Otherwise
compress

(3) 3 BITSTRING 1 CMPSC_FLAGS_BYTE3

Byte 3 of flags

(4) 4 ADDRESS 4 CMPSC_DICTADDR

Address of the dictionary for the compress/
expand function on a page boundary. Low order
12 bits of the field are treated as 0s when
forming the address. Low order 3 bits contain a
bit number.

(4) 4 BITSTRING 3

(7) 7 BITSTRING 1 CMPSC_DICTADDR_BYTE3

111

CMPSC_BITNUM

X'07' If compressing, place the first compression
symbol at this bit in the leftmost byte.
If expanding, expand beginning with the
compression symbol that begins with this bit in
the left-most byte. Normally, this bit should be set
to 0 for the start of compression. For expansion,
it should be set to the same value used for the
start of compression. Upon completion of the
operation, the value is set to the bit number of
the bit following the last bit of compressed data.

CSRYCMPS

Chapter 2. Preferred CMS Macro Instructions 161

Offsets Type/Value Len Name (Dim) Description

He
x

Dec

(8) 8 ADDRESS 4 CMPSC_TARGETADDR

Address of area to which compression/expansion
is to be done. Upon completion of the request,
this address has been increased by the number of
bytes processed.

(C) 12 SIGNED 4 CMPSC_TARGETLEN

Length of area to which compression/expansion
is to be done. Upon completion of the request,
this length has been decreased by the number of
bytes processed.

(10
)

16 ADDRESS 4 CMPSC_SOURCEADDR

Address of area from which compression/
expansion is to be done. Upon completion of the
request, this address has been increased by the
number of bytes processed.

(14
)

20 SIGNED 4 CMPSC_SOURCELEN

Length of area from which compression/
expansion is to be done. For expansion, the length
should be the difference between the TargetLen
at completion of compression and the TargetLen
at start of compression, incremented by 1 if field
CMPSC_BITNUM was non-zero upon completion
of compression. Upon completion of the request,
this length has been decreased by the number of
bytes processed.

(18
)

24 SIGNED 4 CMPSC_TARGETALET

The ALET of the space in which the target area
resides. Should be 0 for primary ASC mode
callers.

(1C
)

28 SIGNED 4 CMPSC_SOURCEALET

The ALET of the space in which the source area
resides. Also the ALET of the space in which
the dictionary resides. Should be 0 for primary
addressing mode callers.

(20
)

32 ADDRESS 4 CMPSC_WORKAREAADDR

Address of a 192-byte work area for use by the
compression service. This area does not need to
be provided if you have verified, by checking that
bit CVTCMPSH is on, that the hardware CMPSC
instruction is present. This work area should begin
on a doubleword boundary.

CSRYCMPS

162 z/VM: 7.3 CMS Macros and Functions Reference

DIRBUFF

DIRBUFF intent

, DNAME = DIRBUFF

, DNAME =  dname

Purpose

Use the DIRBUFF macroinstruction to map the records returned by a Get Directory request.

Parameters
Required Parameters:
intent

specifies the type of directory record to be mapped. Legal types are:

• FILE
• FILEEXT
• SEARCHAUTH
• SEARCHALL
• ALIAS
• AUTH
• LOCK
• DIR
• ALL.

If ALL is specified, all of the record mappings are generated. This is used when one program uses Get
Directory for more than one type of record.

Optional Parameters:
DNAME=dname

specifies an optional DSECT label. If none is provided, the default label is DIRBUFF.

Usage Notes
1. Mapping of these buffers is also possible using the Get Directory (DMSGETDI) callable services library

(CSL) routine and its companion routines for deblocking the various buffers. For more information on
Get Directory and the output mapped by DIRBUFF, see the z/VM: CMS Callable Services Reference.

2. The DIRBUFF mapping macro expands the Directory Record Types as follows:

&DNAME DSECT
DIRTYPE DS CL1 Type of record
DIRFSTYP DS CL1 Filesystemtype (used only for
* FILEEXT, and LOCK
DIRRECL DS H Length of record
*
* Constants
*
DIRTFILE EQU C'1' DIRTYPE of FILE
DIRTSRHL EQU C'2' DIRTYPE of SEARCHALL
DIRTSRHU EQU C'3' DIRTYPE of SEARCHAUTH (same as SEARCHALL)
DIRTALIA EQU C'4' DIRTYPE of ALIAS
DIRTAUTH EQU C'5' DIRTYPE of AUTH
DIRTLOCK EQU C'6' DIRTYPE of LOCK

DIRBUFF

Chapter 2. Preferred CMS Macro Instructions 163

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

DIRTDIR EQU C'7' DIRTYPE of DIR
DIRTEXT EQU C'8' DIRTYPE of FILEEXT
*
DIRCBASE EQU C'1' status = BASE
DIRCALIA EQU C'2' status = ALIAS
DIRCERAS EQU C'3' status = ERASED
DIRCREVO EQU C'4' status = REVOKED
DIRCDIR EQU C'5' status = DIR
DIRCEXT EQU C'6' status = EXTRNL
*
DIRCMD EQU C'7' status = Minidisk
DIRCFIX EQU C'F' rec. format = fixed
DIRCVAR EQU C'V' rec. format = variable
DIRCDIRF EQU C'D' rec. format = dir
DIRCERSF EQU C'-' rec. format = erased
*
DIRCSHAR EQU C'1' lock type = shared
DIRCEXCL EQU C'2' lock type = exclusive
DIRCUPDT EQU C'3' lock type = update
DIRCSESS EQU C'1' lock length = session
DIRCLAST EQU C'2' lock length = lasting
*
DIROSFS EQU C'0' Filesystemtype = SFS file space
DIROBFS EQU C'1' Filesystemtype = BFS file space
*
DIRDATA DS 0F Start of records
*
* Get Directory record for FILE
*
*
 AIF ('&INTENT' EQ 'ALL').FILEMAP
 AIF ('&INTENT' NE 'FILE').FILEEXT
.FILEMAP ANOP
 ORG DIRDATA
DIRFILE DS 0F Get Directory for FILE
DIRFFN DS CL8 Filename
DIRFFT DS CL8 Filetype
 ORG DIRFFN
DIRFSUBD DS CL16 Subdirectory name(16 characters)
DIRFFMN DS CL1 Filemode number
DIRFRECF DS CL1 Record Format
 DS CL1 Reserved
DIRFFM DS CL1 File Mode (blank if Dir)
DIRFRECL DS F Record length
DIRFBLKS DS F Number of Blocks
DIRFRECS DS F Number of Records
DIRFDATD DS XL3 Date (decimal yymmdd)
DIRFATTR DS CL1 Directory attribute
DIRFTIMD DS XL3 Time (decimal hhmmss)
DIRFMIGR DS CL1 Migrated file
DIRFDATC DS CL8 Date (character yy/mm/dd)
DIRFTIMC DS CL8 Time (character hh:mm:ss)
DIRFUSER DS CL8 Userid
DIRFSTAT DS CL1 Status
DIRFRATH DS CL1 Read Authority
DIRFWATH DS CL1 Write Authority
DIRFPROT DS CL1 External protection indicator
DIRFUNQD DS CL16 Unique Id
DIRFDAXD DS XL4 Date (decimal yyyymmdd)
DIRFDAXC DS CL10 Date (character yyyy/mm/dd)
DIRFDAXI DS CL10 Date (character yyyy-mm-dd)
DIRFCEND DS 0F
DIRFLEN EQU *-&DNAME Length of FILE record
DIRFR1L EQU DIRFLEN-(DIRFCEND-DIRFUNQD) R1 Length
DIRFLV13 EQU DIRFLEN-(DIRFCEND-DIRFDAXD) cmslevel 13 len
*
*
* Get Directory record for FILEEXT
*
*
 AIF ('&INTENT' EQ 'ALL').EXTMAP
.FILEEXT AIF ('&INTENT' NE 'FILEEXT').SRCHA
.EXTMAP ANOP
 ORG DIRDATA
DIREXT DS 0F Get Directory for FILEEXT
DIREFN DS CL8 Filename
DIREFT DS CL8 Filetype
 ORG DIREFN
DIRESUBD DS CL16 Subdirectory name (16 chars)
DIREFMN DS CL1 Filemode number
DIRERECF DS CL1 Record Format
DIRERECV DS CL1 Recoverability

DIRBUFF

164 z/VM: 7.3 CMS Macros and Functions Reference

DIREOVWR DS CL1 Over Write
DIRERECL DS F Record length
DIREBLKS DS F Number of Blocks
DIRERECS DS F Number of Records
DIREDATD DS XL3 Date (decimal yymmdd)
DIREATTR DS CL1 Directory attribute
DIRETIMD DS XL3 Time (decimal hhmmss)
DIREMIGR DS CL1 Migrated file
DIREDATC DS CL8 Date (character yy/mm/dd)
DIRETIMC DS CL8 Time (character hh:mm:ss)
DIREUSER DS CL8 Userid
DIRESTAT DS CL1 Status
DIRERATH DS CL1 Read Authority
DIREWATH DS CL1 Write Authority
DIREPROT DS CL1 External protection indicator
DIREDLRD DS XL3 Date of Last Ref(decimal yymmdd)
 DS XL1 Reserved
DIREDLRC DS CL8 Date of Last Ref (char yy/mm/dd)
DIRECDTD DS XL3 Creation Date (decimal yymmdd)
 DS XL1 Reserved
DIRECTMD DS XL3 Creation Time (decimal hhmmss)
 DS XL1 Reserved
DIRECDTC DS CL8 Creation Date (char yy/mm/dd)
DIRECTMC DS CL8 Creation Time (char hh:mm:ss)
DIREMAXB DS F Maximum Blocks
DIREDATB DS F Data Blocks
DIRESYSB DS F System Blocks
 DS XL1 Reserved
DIREDRA1 DS CL8 DRA field 1
DIREDRA2 DS CL8 DRA field 2
DIREDRA3 DS CL8 DRA field 3
 ORG DIREDRA1
DIREDRAS DS CL24 DRA fields
DIREUNQD DS CL16 Unique Id
 ORG DIREMAXB
DIRETDFM DS CL53
DIREDLCD DS XL3 Date Of Last Change (yymmdd)
 DS XL1
DIRETLCD DS XL3 Time Of Last Change (hhmmss)
 DS XL1
DIREDLCC DS CL8 Date Of Last Change (yy/mm/dd)
DIRETLCC DS CL8 Time Of Last Change (hh:mm:ss)
 ORG DIREDLCD
DIREDFDS DS CL24DIREPAD DS CL50
DIREDEND DS 0F
 ORG DIREPAD
DIREDAXD DS XL4 Date (decimal yyyymmdd)
DIREDAXC DS CL10 Date (character yyyy/mm/dd)
DIREDAXI DS CL10 Date (character yyyy-mm-dd)
DIREDRXD DS XL4 Date of Last Ref (dec yyyymmdd)
DIREDRXC DS CL10 Date of Last Ref(char yyyy/mm/dd)
DIREDRXI DS CL10 Date of Last Ref(char yyyy-mm-dd)
DIRECDXD DS XL4 Creation Date (decimal yyyymmdd)
DIRECDXC DS CL10 Creation Date (char yyyy/mm/dd)
DIRECDXI DS CL10 Creation Date (char yyyy-mm-dd)
DIREDCXD DS XL4 Date of Last Change(dec yyyymmdd)
DIREDCXC DS CL10 Date of Last Chg(char yyyy/mm/dd)
DIREDCXI DS CL10 Date of Last Chg(char yyyy-mm-dd)
 DS CL3 Reserved
DIRECEND DS 0F
DIRELEN EQU *-&DNAME Length of FILEEXT record
DIRER21L EQU DIRELEN-(DIRECEND-DIREDFDS-11) Rel 2.1 Length
DIRELV13 EQU DIRELEN-(DIRECEND-DIREDEND+1) cmslvl 13 length
*
*
* Get Directory record for SEARCHALL and SEARCHAUTH
*
*
 AIF ('&INTENT' EQ 'ALL').SRCHMAP
.SRCHA AIF ('&INTENT' EQ 'SEARCHALL').SRCHMAP
 AIF ('&INTENT' NE 'SEARCHAUTH').ALIAS
.SRCHMAP ANOP
 ORG DIRDATA
DIRSRCH DS 0F Get Directory for SEARCHALL/SEARCHAUTH
DIRSFN DS CL8 Filename
DIRSFT DS CL8 Filetype
 ORG DIRSFN
DIRSSUBD DS CL16 Subdirectory name(16 characters)
DIRSFMN DS CL1 Filemode number
DIRSRECF DS CL1 Record Format
 DS CL2 Reserved
DIRSRECL DS F Record length

DIRBUFF

Chapter 2. Preferred CMS Macro Instructions 165

DIRSBLKS DS F Number of Blocks
DIRSRECS DS F Number of Records
DIRSDATD DS XL3 Date (decimal yymmdd)
DIRSATTR DS CL1 Directory attribute
DIRSTIMD DS XL3 Time (decimal hhmmss)
DIRSMIGR DS CL1 Migrated file
DIRSDATC DS CL8 Date (character yy/mm/dd)
DIRSTIMC DS CL8 Time (character hh:mm:ss)
DIRSUSER DS CL8 Userid
DIRSSTAT DS CL1 Status
DIRSRATH DS CL1 Read Authority
DIRSWATH DS CL1 Write Authority
DIRSPROT DS CL1 External protection indicator
DIRSDIR DS 0F Directory id
DIRSNLEN DS X Directory name length
DIRSNAME DS CL153 Directory name
 DS CL2 Reserved
DIRSDAXD DS XL4 Date (decimal yyyymmdd)
DIRSDAXC DS CL10 Date (character yyyy/mm/dd)
DIRSDAXI DS CL10 Date (character yyyy-mm-dd)
DIRSCEND DS 0F
DIRSLEN EQU *-&DNAME Length of SEARCH record
DIRSLV13 EQU DIRSLEN-(DIRSCEND-DIRSDAXD+2) cmslvl 13 length
*
*
* Get Directory record for ALIAS
*
*

 AIF ('&INTENT' EQ 'ALL').ALSMAP
.ALIAS AIF ('&INTENT' NE 'ALIAS').AUTH
.ALSMAP ANOP
 ORG DIRDATA
DIRALIAS DS 0F Get Directory for ALIAS
DIRAINFN DS CL8 Input Filename
DIRAINFT DS CL8 Input Filetype
DIRAINMN DS CL1 Input Filemode number
DIRASTAT DS CL1 Status
DIRAMIGR DS CL1 Migrated file
 DS CL1 Reserved
DIRAALNM DS F Number of aliases
DIRADIR DS 0F Directory id
DIRANLEN DS X Directory name length
DIRANAME DS CL153 Directory name
DIRAOTFN DS CL8 Output Filename
DIRAOTFT DS CL8 Output Filetype
DIRAOTMN DS CL1 Output Filemode number
DIRAUSER DS CL8 Owner userid
DIRALEN EQU *-&DNAME Length of ALIAS record
*
*
* Get Directory record for AUTH
*
*
 AIF ('&INTENT' EQ 'ALL').AUTHMAP
.AUTH AIF ('&INTENT' NE 'AUTH').LOCK
.AUTHMAP ANOP
 ORG DIRDATA
DIRAUTH DS 0F Get Directory for AUTH
DIRUFN DS CL8 Filename
DIRUFT DS CL8 Filetype
 ORG DIRUFN
DIRUSUBD DS CL16 Subdirectory name(16 characters)
DIRUFMN DS CL1 Filemode number
DIRUSTAT DS CL1 Status
DIRURATH DS CL1 Read Authority
DIRUWATH DS CL1 Write Authority
DIRUPROT DS CL1 External protection
DIRUOWNR DS CL8 Owner userid
DIRUDRAT DS CL1 Directory read authority
DIRUDWAT DS CL1 Directory write authority
DIRUNRAT DS CL1 NEWREAD authority
DIRUNWAT DS CL1 NEWWRITE authority
DIRUATTR DS CL1 Directory attribute
DIRUMIGR DS CL1 Migrated file
DIRUCEND DS 0F
DIRULEN EQU *-&DNAME Length of AUTH record
DIRUR7L EQU DIRULEN-(DIRUCEND-DIRUMIGR) Rel 1 Length
DIRUR6L EQU DIRULEN-(DIRUCEND-DIRUATTR) Rel 6 Length
*
*
* Get Directory record for LOCK

DIRBUFF

166 z/VM: 7.3 CMS Macros and Functions Reference

*
*
 AIF ('&INTENT' EQ 'ALL').LOCKMAP
.LOCK AIF ('&INTENT' NE 'LOCK').DIR
.LOCKMAP ANOP
 ORG DIRDATA
DIRLOCK DS 0F Get Directory for LOCK
DIRLFN DS CL8 Filename
DIRLFT DS CL8 Filetype
 ORG DIRLFN
DIRLSUBD DS CL16 Subdirectory name(16 characters)
DIRLFMN DS CL1 Filemode number
DIRLSTAT DS CL1 Status
DIRLTYPE DS CL1 Lock Type
DIRLLNTH DS CL1 Lock Length
DIRLUSER DS CL8 Lock holder userid
DIRLATTR DS CL1 Directory attr.
DIRLMIGR DS CL1 Migrated file
DIRLCEND DS 0F
DIRLLEN EQU *-&DNAME Length of LOCK record
DIRLR1L EQU DIRLLEN-(DIRLCEND-DIRLMIGR) R1 Length
DIRLR6L EQU DIRLLEN-(DIRLCEND-DIRLATTR) SP6 length
*
*
* Get Directory record for DIR
*
*
 AIF ('&INTENT' EQ 'ALL').DIRMAP
.DIR AIF ('&INTENT' NE 'DIR').DIREND
.DIRMAP ANOP
 ORG DIRDATA
DIRDIR DS 0F Get Directory for DIR
DIRDDIRD DS 0F Directory id
DIRDNLEN DS X Directory name length
DIRDNAME DS CL153 Directory name
DIRDATTR DS CL1 Directory attribute
DIRDCEND DS 0F
DIRDLEN EQU *-&DNAME Length of DIR record
DIRDR6L EQU DIRDLEN-(DIRDCEND-DIRDATTR) SP6 length

DIRBUFF

Chapter 2. Preferred CMS Macro Instructions 167

DMSABEXP

DMSABEXP

Purpose

Use the DMSABEXP macroinstruction with the DCB abend exit to map the parameter list. For an example
of how to use this macro, see the z/VM: CMS Application Development Guide for Assembler.

Usage Notes
1. The DMSABEXP mapping macro expands as follows:

ABENDEXP DSECT DCB abend exit parameter list
ABEXPARM DS 0F Parameters:
ABEXSCC DS H System completion code
ABEXRC DS X Return code
ABEXOPT DS X Options mask

ABEIGNOR EQU X'04' Indicates that the error can be ignored
ABEXDCB DS A Address of the DCB with the error
ABEXWAA DS A Work area address, unsupported
ABEXRSV DS X Reserved
ABEXRWA DS 3X Recovery work area address, not supported
ABEDWLGT EQU ((*-ABENDEXP)+7)/8 Length of the parameter list in
* doublewords
ABEBYLGT EQU *-ABENDEXP Length of the parameter list in bytes

DMSABEXP

168 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

DMSABN

label

DMSABN hexcode

( reg)

,TYPCALL=SVC

,TYPCALL=BALR

Purpose
Use the DMSABN macro to abnormally end (abend) a program. The first three hexadecimal digits of the
system abend code appear in the CMS abend message, DMSABE148T.

Parameters
Required Parameters:
hexcode

is the abnormal termination code (0 through FFF) that appears in the DMSABE148T system
termination message.

(reg)
is a register containing the abnormal termination code.

Optional Parameters:
label

is an optional assembler label for the statement.
TYPCALL=

specifies how control is passed to the CMS abnormal termination routine. Acceptable values are:
SVC

generates CMSCALL linkage to the CMS abnormal termination routine. Routines that do not reside
in the nucleus should use TYPCALL=SVC. This is the default value.

BALR
generates a direct branch to the CMS abnormal termination routine. Nucleus-resident routines
should specify TYPCALL=BALR.

DMSABN

Chapter 2. Preferred CMS Macro Instructions 169

DMSFST

label

DMSFST ( filename
,MODULE

, filetype

)

, aliasname

,FORM=E

Purpose
Use the DMSFST macro to set up a file status table for a specific file when building an auxiliary directory.

Parameters
Required Parameters:
filename

is the name of the module whose file status table (FST) information is to be copied.

Optional Parameters:
label

is an optional assembler label for the statement.
filetype

is the module type whose file status table (FST) information is to be copied. The default file type is
MODULE.

aliasname
is another name for the module.

FORM=E
specifies that 64-byte FST entries are to be generated rather than 40-byte entries. Either length FST
entry operates correctly on CMS; however, the 40-byte form does not contain such information as
date/time after initialization by GENDIRT.

DMSFST

170 z/VM: 7.3 CMS Macros and Functions Reference

DMSJNEPL

DMSJNEPL

Purpose

Use the DMSJNEPL macro to map the parameter list used by the DMSJNE exit routine.

Usage Notes
1. For more information on the DMSJNEPL macro, see z/VM: CMS File Pool Planning, Administration, and

Operation.
2. The DMSJNEPL macro expands as follows:

 MACRO
 DMSJNEPL
JNEPL DSECT

* Plist used when calling DMSJNE *

*
JNEMOD DS CL8 Identifies Namelist user exit
* (always 'DMSJNE ')
JNEFUNCT DS CL8 Function call
* 'USERNODE' - Return a localid when
* passed a user ID and node
JNEUSER DS CL8 User ID
JNENODE DS CL8 Node
JNEFPID DS CL8 Filepool id (without ':')
JNELOCID DS CL8 User supplied localid
JNEPLSIZ EQU *-JNEPL Length of JNEPL

DMSJNEPL

Chapter 2. Preferred CMS Macro Instructions 171

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3

DMSQEFL

DMSQEFL

Purpose

Use the DMSQEFL macroinstruction to determine the level of CMS as defined by the DMSQEFL CSL
routine.

The CMS level value is returned in Register 15.

For mapping returned values to CMS levels, see DMSQEFL CSL in the z/VM: CMS Callable Services
Reference.

DMSQEFL

172 z/VM: 7.3 CMS Macros and Functions Reference

DMSSDWA

DMSSDWA

Purpose

Use the DMSSDWA macroinstruction to generate a DSECT for the CMS-provided System Diagnostic Work
Area, which maps the area pointed to by register 1 upon entry to an ABNEXIT routine. This area contains
information concerning the original error that initiated the abend process.

Usage Notes
1. The DMSSDWA macro expands as follows:

 MACRO
 DMSSDWA
CMSSDWA DSECT ,
**
* CMS provided System Diagnostic Work Area
* The following fields applies to all CMS virtual machine
* modes and is considered the CMS SDWA base section.
**
SDWREGS DS XL64 GP regs at time of ABEND
SDWPSW DS XL8 PSW at time of ABEND
SDWSA DS XL72 Savearea pointed to by R13
SDWSALNT EQU *-SDWSA Length of save area
SDWFPRS DS XL32 FP regs at time of ABEND
 DS 0D
SDWOPSWS DS 0XL40 Old PSW fields
SDWEOPSW DS XL8 External old PSW
SDWSOPSW DS XL8 Supervisor-call old PSW
SDWPOPSW DS XL8 Program old PSW
SDWMOPSW DS XL8 Machine-check PSW
SDWIOPSW DS XL8 I/O old PSW
SDWVSTR DS XL8 Vector Status Register
SDWTXID DS XL1 Contains the ID of the access
* reg involved with the program
* chk that occurred on an AR
x reference. On non XC-mode
* virtual machines, contains the
* ID of the general reg involved
* with the program chk that
* occurred on an AR reference
SDWFLAG1 DS XL1 The SDWFLAG1 field may be used
* by the ABNEXIT rtn to further
* determine abend cause.
SDWMCKAB EQU X'80' When on abend caused by MCH Ck
SDWPCKAB EQU X'40' When on abend caused by PGM Ck
SDWSVCAB EQU X'10' When on abend initiated by SVC
* DMSABN (SVC) or ABEND macro
* initiated. If flags SDWPCKAB,
* SDWMCKAB, SDWAVCAB are off, the
* abend was initiated via DMSABN
* (BALR) or direct branch to
* CMS native abend processing.
SDWFLAG2 DS XL1 The SDWFLAG2 field is used to
* convey information between CMS and
* the ABNEXIT rtn. Recovery action
* may need to be performed that is
* related to certain abend codes.
* This action may have been
* performed by CMS prior to entry
* to the ABNEXIT rtn. In some
* cases CMS may not be able to
* perform the recovery action, in
* this case the ABNEXIT should
* attempt the action. If successful,
* the corresponding flag should be
* be set by the exit, telling CMS

DMSSDWA

Chapter 2. Preferred CMS Macro Instructions 173

* the recovery action has been
* completed.
SDWFSPRL EQU X'80' Indicates that the failing
* storage page within the Data
* Space identified by the SDWASIT
* field has been released. This
* may be set prior to invoking the
* ABNEXIT rtn, indicating CMS has
* already done the release. If CMS
* couldn't do the release, the
* exit should do it and set the
* flag. This flag is applicable to
* X'1F4' abends.
 DS XL1 Reserved for future IBM use
 DS 1F Reserved for future IBM use
SDWMCIC DS XL8 Mach chk int code,
* valid when mach chk initiated
* abend, else will be 0's
SDWIINFO DS 0XL4 Following 4 bytes relate to XA
* PSW interrupt information
 DS XL1 Reserved for IBM use
SDWPILC DS XL1 ILC associated with XA PSW at
* abend. For 370-mode machine
* ILC part of PSW.
SDWINTCD DS XL2 Int code, related with XA PSW
* - Pgm chk abend, = to int code
* - SVC initiated abend, = to
* svc int code.
* - Branch entered, will be 0
SDWUWORD DS XL4 User word specified via ABNEXIT
SDWABNCD DS XL4 Abend code on entry to exit rtn
SDWABNRC DS XL4 Reason code on entry to exit rtn
SDWEXPTR DC A(SDWEPTRS) Pntr to CMS SDWA extention pntrs
SDWENDBS DS 0D End of CMS's base SDWA section

* The following section applies to XC-mode virtual machines,
* for non XC-mode virtual machines the fields are present
* but the content has no meaning.

SDWXCS DSECT ,
SDWREGAR DS XL64 AR regs at time of ABEND
SDWALET DS XL4 ALET value related to prog chk
* that occured during an AR ref
SDWASIT DS XL8 ASIT value related to Mach chk
* that occured during an AR ref
* that gets reported as a stg ck
* used to identify the data space.
SDWFSA DS XL4 For a stg chk in a data space,
* this field contains the failing
* storage address. It can be used
* to determine the page address
* in which the error occured.
SDWENDXC DS 0D End of CMS's SDWA XC-mode ext

* The following section applies to Z-mode virtual machines,
* for non Z-mode virtual machines the fields are present
* but the content has no meaning.

SDWZMS DSECT ,
ZDWREGSG DS XL128 64-bit regs at time of ABEND
ZDWPSW DS XL16 PSW at abend time
ZDWOPSWS DS 0XL80 Old PSW fields
ZDWEOPSW DS XL16 External old PSW
ZDWSOPSW DS XL16 Supervisor-call old PSW
ZDWPOPSW DS XL16 Program old PSW
ZDWMOPSW DS XL16 Machine-check PSW
ZDWIOPSW DS XL16 I/O old PSW
SDWENDZM DS 0D End of CMS's SDWA Z-mode ext

* The following section contains the pointers to other CMS
* SDWA extentions.
* This section must be at least a double word in length,
* any other SDWA section extentions referred to by the
* pointer addresses must be at least a double word in
* length.
* - this section is pointed to by the SDWEXPTR field in
* the CMSSDWA DSECT.

SDWEPTRS DSECT , Pointed to by SDWEXPTR
SDWXCSP DS A Pointer to CMS's XC-mode sect
SDWZMSP DS A Pointer to CMS's Z/mode sect
SDWENDPS DS 0D End of CMS's SDWA pointers sect

DMSSDWA

174 z/VM: 7.3 CMS Macros and Functions Reference

* The following contains the length calculations of the
* individual CMS SDWA sections as well as the overall
* length of the CMS SDWA with all its section extensions.

SDWPTLEN EQU SDWENDPS-SDWEPTRS Length of Pointer section
SDWBSLEN EQU SDWENDBS-CMSSDWA Length of Base section
SDWXCLEN EQU SDWENDXC-SDWXCS Length of XC section
SDWZMLEN EQU SDWENDZM-SDWZMS Length of ZM section
SDWLNTH EQU SDWBSLEN+SDWXCLEN+SDWZMLEN+SDWPTLEN Real length

DMSSDWA

Chapter 2. Preferred CMS Macro Instructions 175

DMSSTATE

label

DMSSTATE SET

,ASCENV=NOARM

,ASCENV=ARM

TEST

Purpose
Use the DMSSTATE macro in programs that call CMS preferred group macros while executing in access
register (AR) mode on an XC virtual machine. By coding a DMSSTATE SET,ASCENV=ARM as the first macro
in your program, you will ensure that subsequent preferred group macros will have the proper macro
expansion for operating in AR mode. This allows programs to remain in AR mode even when calling CMS
services.

Note: If DMSSTATE SET,ASCENV=ARM is coded at the beginning of an existing program that has a number
of CMS preferred group macros and is near its base register addressing limits, addressability errors may
occur during re-assembly due to the increase of code because of the new macro expansions. In this case,
selective use of DMSSTATE should be considered. See Usage Note “3” on page 177 for more information.

Parameters
Required Parameters:
SET

specifies that you want to set the assembler global variable according to the specification of the
ASCENV= parameter. If the ASCENV= parameter is not specified, the global variable is set to the
default mode. The default mode that is provided by DMSSTATE is NOARM.

TEST
specifies that you want to set the assembler global variable to the default mode if it is not currently
set.

Optional Parameters:
label

is an optional assembler label for the statement.
ASCENV=

specifies the translation mode, either AR mode or primary-space mode, for subsequent CMS preferred
group macros within the same assembly as this DMSSTATE macro. An assembler global variable is set
accordingly to cause the proper macro expansion.
NOARM

specifies that CMS preferred group macros should be expanded for operation in primary-space
mode. This bypasses the additional code expansion required for the AR mode environment. This is
the default value.

ARM
specifies that CMS preferred group macros should be expanded for operation in AR mode on an XC
virtual machine. The macro expansion also provides for bypassing this code when execution is not
on an XC virtual machine.

Usage Notes
1. The DMSSTATE macro does not affect the macro expansions of CMS preferred group macros in prior

CMS releases.

DMSSTATE

176 z/VM: 7.3 CMS Macros and Functions Reference

2. The ASCENV=ARM parameter sets an assembler global variable that causes applicable CMS preferred
macros to expand with code appropriate for execution in an XC virtual machine. This code is executed
when in AR mode and is bypassed when execution is not in an XC virtual machine.

3. The DMSSTATE macro can be used selectively within a program to cause correct expansion for a
specific section of code. You can code a DMSSTATE SET,ASCENV=ARM just before the CMS preferred
group macro that will be operating in AR mode and then code a DMSSTATE SET,ASCENV=NOARM after
the last macro that will be executing in AR mode. This will cause only the group of macros between the
DMSSTATE calls to have the AR mode expansion.

4. As far as the application is concerned, DMSSTATE has no executable code associated with it. It works
more like a compiler directive than a CMS service macro.

DMSSTATE

Chapter 2. Preferred CMS Macro Instructions 177

ENABLE

label

ENABLE INTTYPE= NONE

IO

CONSOLE

NONCONIO

EXTERNAL

ALL

(EXTERNAL,CONSOLE)

(EXTERNAL,NONCONIO)

1

,MF= L

(L, addr

, mf_label

)

(E, addr)

, MODE = NO370

Notes:
1 Default is the standard macro format.

Purpose
Use the ENABLE macro to manipulate the PSW interrupt mask.

Parameters
Required Parameters:
INTTYPE=

indicates the types of interrupts to be enabled. Any interrupt types not specified are disabled. Table
19 on page 179 summarizes what types of interrupts are enabled for each option. Acceptable values
are:
NONE

disables all interrupts.
IO

enables all I/O interrupts.
CONSOLE

enables only for I/O interrupts from the virtual machine console. The interrupt subclass (ISC) for
the console is enabled.

NONCONIO
enables for only nonconsole I/O interrupts. All ISCs except for the console ISC are enabled.

EXTERNAL
enables for external interrupts.

ALL
enables for all interrupts.

ENABLE

178 z/VM: 7.3 CMS Macros and Functions Reference

(EXTERNAL,CONSOLE)
enables for external interrupts and for I/O interrupts from the virtual machine console. The
interrupt subclass (ISC) for the console is enabled.

(EXTERNAL,NONCONIO)
enables for external interrupts and nonconsole I/O interrupts. All ISCs except for the console ISC
are enabled.

Optional Parameters:
label

is an optional assembler label for the statement.
MF=

specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

MODE=NO370
specifies that the macro should not create a System/370 code path.

Usage Notes
1. The following table summarizes the types of interrupts enabled for each option:

Table 19. Summary of Interrupt Types Affected by ENABLE INTTYPE Options

Options External Console I/O Other I/O

NONE Disabled Disabled Disabled

EXTERNAL Enabled Disabled Disabled

CONSOLE Disabled Enabled Disabled

NONCONIO Disabled Disabled Enabled

EXTERNAL,CONSOLE Enabled Enabled Disabled

EXTERNAL,NONCONIO Enabled Disabled Enabled

IO Disabled Enabled Enabled

ALL Enabled Enabled Enabled

ENABLE

Chapter 2. Preferred CMS Macro Instructions 179

EPLIST

label

EPLIST

Purpose
Use the EPLIST macro to generate a DSECT for the extended parameter list.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the EPLIST macro expansion is
labeled EPLIST.

Usage Notes
1. For more information on the EPLIST macro, see z/VM: CMS Application Development Guide for

Assembler and z/VM: REXX/VM Reference.
2. The EPLIST macroinstruction expands as follows:

 EPLIST
*
*** EPLIST - EXTENDED PLIST DSECT
*
EPLIST DSECT
EPLCMD DS A ADDRESS OF COMMAND TOKEN.
EPLARGBG DS A ADDR OF BEGINNING OF ARGUMENTS.
EPLARGND DS A ADDR OF END OF ARGUMENTS.
EPLUWORD DS A USER WORD
*
EPL4LNBY EQU *-EPLIST 4 WORD HEADER LENGTH IN BYTES
EPL4LNDW EQU (*-EPLIST+7)/8 4 WORD HEADER LENGTH IN DWORDS
EPARGLST DS A ADDRESS OF FUNCTION ARGUMENT LIST.
EPFUNRET DS A ADDRESS FOR RETURN OF FUNCTION
* DATA.
EPL6LNBY EQU *-EPLIST 6 WORD HEADER LENGTH IN BYTES
EPL6LNDW EQU (*-EPLIST+7)/8 6 WORD HEADER LENGTH IN DWORDS
*
 DS 2A PADDING (FOR USE WITH SCAN MACRO)
EPLSCANT DS 0CL8 BEGINNING OF TOKENIZED PLIST
* BUILT BY SCAN MACRO.
*
EPLRSRVD EQU EPLUWORD,4,C'A' (OLD NAME, FOR COMPATIBILITY)
* *
* *
* THE EXTENDED PLIST FLAGS INDICATE THE PRESENCE *
* OF AN EXTENDED PLIST IN REGISTER 0. THE HIGH *
* ORDER BYTE OF REGISTER 1 WILL CONTAIN EITHER *
* EPLCMDFL OR EPLFNCFL TO INDICATE THE EXTENDED *
* PLIST IS AVAILABLE. ONLY THE FIRST 4 WORDS OF *
* OF THE EXTENDED PLIST ARE AVAILABLE WITH THESE *
* CODES. *
* *
* IF THE HIGH ORDER BYTE OF REGISTER 1 CONTAINS *
* EPFUNSUB, THEN THE INVOCATION IS AN EXTERNAL *
* FUNCTION/SUBROUTINE CALL FROM REXX. WITH THIS *
* PLIST, ALL 6 WORDS OF THE PLIST ARE AVAILABLE. *
* WORD 5 POINTS TO A LIST OF DOUBLEWORD ADLENS *
* (ADDRESS-LENGTH PAIRS) WHICH DESCRIBE THE *
* ARGUMENTS TO THE ROUTINE (EPARGLST). WORD 6 *
* (EPFUNRET) IS THE LOCATION FOR THE CALLED *
* ROUTINE TO STORE THE ADDRESS OF AN EVALBLOK *
* TO RETURN DATA TO THE CALLING PROGRAM. *
* *

EPLIST

180 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

* **** NOTE **** *
* IF THE CALLED PROGRAM IS AN AMODE 24 *
* PROGRAM, THE HIGH ORDER BYTE OF REGISTER 1 *
* CONTAINS THIS CALL TYPE INFORMATION. *
* IF THE CALLED PROGRAM IS AMODE 31 OR AMODE *
* ANY, THE HIGH ORDER BYTE OF REGISTER 1 IS *
* PART OF THE ADDRESS. *
* THE USECTYP FIELD IN THE USER SAVE AREA ALSO *
* CONTAINS CALL TYPE INFORMATION REGARDLESS *
* OF THE CALLING PROGRAMS AMODE. *
* *
* *
EPLCMDFL EQU X'0B' EXTENDED PLIST AVAILABLE FLAG.
EPLFNCFL EQU X'01' EXTENDED PLIST AVAILABLE FLAG.
EPFUNSUB EQU X'05' EXTERNAL FUNCTION PLIST AVAILABLE
*
* FLAG DEFINITIONS. EXCEPT AS NOTED, ONLY THE FIRST FOUR
* WORDS OF THE EXTENDED PLIST ARE AVAILABLE.
* EPLIST
* FLAG VALUE AVAIL? MEANING
EPLFPROG EQU X'00' N PROGRAM
EPLFCMND EQU X'01' Y ADDRESS COMMAND
EPLFSBCM EQU X'02' Y SUBCOM
EPLFNNUE EQU X'03' Y NO NUCEXT, EXTENDED
EPLFNNUT EQU X'04' N NO NUCEXT, TOKENIZED
EPLFRXFN EQU X'05' Y REXX EXTERNAL FUNCTION,
* 6 WORD EXTENDED PLIST PRESENT
EPLFIMMD EQU X'06' Y IMMEDIATE COMMAND
EPLFSRCH EQU X'0B' Y COMMAND SEARCH
EPLFEXEC EQU X'10' N INVOKED BY BPX1EXC
EPLFENDC EQU X'FE' N END OF COMMAND
EPLFABEN EQU X'FF' N ABEND OR NUCXDROP

EPLIST

Chapter 2. Preferred CMS Macro Instructions 181

EXITBUFF

EXITBUFF
DNAME = EXITBUFF

DNAME =  dname

Purpose

Use the EXITBUFF macro to generate a DSECT for the general data buffer that SFS provides for the File
Space Usage and User Storage Group Full exits.

Parameters
Optional Parameters:
DNAME=dname

specifies an optional DSECT label. The default is EXITBUFF.

Usage Notes
1. For more information on the EXITBUFF macro, see z/VM: CMS File Pool Planning, Administration, and

Operation.
2. The EXITBUFF macro expands as follows:

*
 EXITBUFF &DNAME=EXITBUFF
*
* ***
* Constants
EXICSLN DC C'DMSSFSEX' Other CSL name
EXIEYECA DC C'EXITBUFF' Eye catcher
EXIEYECB DC C'EXITFSRW' Eye catcher
EXIEYECC DC C'EXILIST ' Eye catcher
&DNAME DSECT
* ***
* EXITBUFF MAPPING MACRO
* ***
EXIEYEC DS CL8 Eye catcher - "EXITBUFF"
EXIFUNC DS 0CL4 Function Code
EXITID DS X Exit ID
 DS CL3 Reserved
EXIMACID DS CL8 SFS Machine ID
EXIFPID DS CL8 Filepoolid
EXIREQID DS CL8 Requester ID
EXIRSRVD DS CL24 Reserved
EXIRPTR DS A Remainder pointer
EXIBSIZE EQU *-&DNAME Size of EXITBUFF
*
EXITFSRW DSECT
EXIEYE1 DS CL8 Eye catcher - "EXITFSRW"
EXIPTR1 DS A Pointer to first entry in
* following list
EXILCNT DS F List count
EXISG DS H Storage group
EXISGTHR DS H Storage group threshold
EXISGSIZ DS F Storage group size
EXISGAVA DS F SG blocks available
EXICSIZE EQU *-EXITFSRW Size of EXITFSRW
*
EXILIST DSECT
EXIEYE2 DS CL8 Eye catcher - "EXILIST"
EXINPTR DS A Pointer to next list entry
EXICONID DS CL8 Owner of connection
EXIALTID DS CL8 Alternate user ID

EXITBUFF

182 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3

EXINEWID DS CL8 New connect user ID
EXILUWGP DS F LUW grouping
EXIFSID DS CL8 Filespace ID
EXIFSTHR DS F Filespace threshold
EXIFSSIZ DS F Filespace size
EXIFSCOM DS F FS blocks committed
EXIWUFUN DS F FS blocks uncommitted
EXIINFL DS XL1 In flags
EXIINCOM EQU X'80' In process of committing
EXIINTRI EQU X'40' This connection triggered
* the exit
EXIOUTFL DS XL1 Out flags
EXIOUTRO EQU X'80' Rollback this connection
 DS CL2 Reserved
EXILSIZE EQU *-EXILIST Size of EXILIST
*
* Constants
* Other Exit ID definitions
*
EXIFSU EQU X'2' 2-Filespace Usage
EXIRAW EQU X'3' 3-User Storage Group Full
*
* CSL Routine return codes
*
EXISUCC EQU X'0' Successful
EXINSCON EQU X'4' Function not supported,
* continue to call.
EXINSSUP EQU X'5' Function not supported,
* suppress further calls.
EXIOTHER EQU 2 2-Other exit type

3. The fields in the general data buffer are defined as follows:

Table 20. General Data Buffer Fields

Field Data Meaning

Beginning of General Data Buffer:

EYE CATCHER CHAR(8) the eye catcher "EXITBUFF".

FUNCTION CODE CHAR(4) is a 4-byte field where:

a. Byte 1: is the EXIT ID. It has a value of X'2' (File Space Usage) or X'3' (User Storage
Group Full)

b. Bytes 2, 3, 4: are reserved and have a value of binary 0.

SFS MACHINE ID CHAR(8) is the virtual machine identification (VMID) of the SFS server machine.

FILEPOOLID CHAR(8) is the file pool ID of the SFS server. It may be, but is not necessarily, the same as the SFS
MACHINE ID.

REQUESTER ID CHAR(8) is the SFS-known ID of the user triggering the exit.

RESERVED CHAR(24) is an area reserved for IBM use. SFS sets this area to binary 0.

REMAINDER POINTER PTR(31) is a pointer to the remaining part of the buffer (EXITFSRW).

Part of General Data Buffer Common to Both Exits:

EYE CATCHER CHAR(8) is the eye catcher "EXITFSRW".

POINTER TO TOP PTR(31) is a pointer to the first list entry. There is only one list entry for the File Space Usage
exit. There are one or more entries for the User Storage Group Full exit, where there is
a corresponding entry for each work unit and connection to a file space in the storage
group.

NUMBER OF ENTRIES FIXED(32) is the number of list entries which follows.

STORAGE GROUP FIXED(16) is the storage group number.

GROUP THRESH FIXED(16) is the storage group threshold number.

BLOCKS IN SG FIXED(32) is the number of 4K blocks in the storage group.

BLOCKS AVAILABLE FIXED(32) is the number of 4K blocks available in the storage group.

List Entries:

EYE CATCHER CHAR(8) is the eye catcher "EXILIST".

EXITBUFF

Chapter 2. Preferred CMS Macro Instructions 183

Table 20. General Data Buffer Fields (continued)

Field Data Meaning

NEXT POINTER PTR(31) is a pointer to the next list entry. The pointer is zero for the last list entry.

CONNECTION ID CHAR(8) is the real VM user ID of the owner of the connection. The same user ID appears
in multiple entries in the list if the user has multiple work units or is connected to
multiple file spaces. If the user connected to SFS after issuing DIAGNOSE code X'D4' for
specifying an alternate user ID, this field still contains the user's real VM user ID.

ALTERNATE ID CHAR(8) is the alternate user ID specified by the DIAGNOSE code X'D4', or is the user ID of the
owner of the connection. The same user ID appears in multiple entries in the list if the
user has multiple work units or is connected to multiple file spaces.

NEW CONNECT ID CHAR(8) If the user connected to SFS changed the user ID by specifying the optional userid
parameter of DMSGETWU, this field contains the specified 'new user connect' user ID.
Otherwise it contains the alternate user ID.

LUW GROUPING FIXED(32) is an identifier that groups together all list entries associated with the same logical unit
of work.

FILESPACE ID CHAR(8) is the user ID of the owner of the file space.

FILESPACE THRESH FIXED(32) is the file space threshold value.

SIZE OF FILESPACE FIXED(32) is the number of the blocks in the file space.

COMMITTED IN FS FIXED(32) is the number of file space blocks committed in the file space. A rollback of this work unit
will not affect this number.

UNCOMMITTED IN FS FIXED(32) is the number of uncommitted file space blocks in the file space allocated in this work
unit by this user. This number only includes new allocations. A rollback of this work unit
will make this number of blocks available.

IN FLAGS BIT(8) are flags set by SFS; a flag of '1'B means the condition is met. Flags are defined for:

• Bit 0: This connection has done a Prepare to Commit or is doing a commit and
therefore is not eligible to be rolled back. The data associated with this connection
is included for informational purposes only.

• Bit 1: This connection triggered the exit.
• Bits 2-7: Reserved.

OUT FLAGS BIT(8) are flags set by the exit and used by SFS upon return from the exit, when the return code
is 0; a flag of '1'B means the condition is met. Flags are defined for:

• Bit 0: Roll back this connection. The exit can select any or all of the active users
for whom there is a list entry (except those not eligible in the IN FLAGS above) for
rollback. If the exit doesn't pick one, the server implements its current policy for the
exit type:

– File Space Usage: Continue normal processing.
– User Storage Group Full: Roll back the logical unit of work that triggered the storage

group full condition.
• Bits 1-7: Reserved.

EXITBUFF

184 z/VM: 7.3 CMS Macros and Functions Reference

EXSBUFF

EXSBUFF intent

, DNAME = EXSBUFF

, DNAME =  dname

Purpose

Use the EXSBUFF macroinstruction to map the records returned by an Exist request for a file or a
directory.

Parameters
Required Parameters:
intent

specifies the type of directory record to be mapped. Legal types are FILE, DIR, and ALL. If ALL is
specified, both record mappings are generated.

Optional Parameters:
DNAME=dname

specifies an optional DSECT label. If none is provided, the default label is EXSBUFF.

Usage Notes
1. Mapping of these buffers is also possible using the callable services library (CSL) routine Exist

(DMSEXIST). These buffers can be mapped into variables by using the CSL routines Exist - Directory
(DMSEXIDI) and Exist - File (DMSEXIFI). These routines are discussed in z/VM: CMS Callable Services
Reference.

2. The EXSBUFF mapping macro expands as follows:

 EXSBUFF
EXSTYPE DS CL1 Type of record
EXSTFILE EQU C'1' EXSTYPE of FILE
EXSTDIR EQU C'2' EXSTYPE of DIR
EXSFSTYP DS CL1 Filesystemtype
EXSOSFS EQU C'0' Filesystemtype = SFS file space
EXSOBFS EQU C'1' Filesystemtype = BFS file space
EXSOMD EQU C'2' Filesystemtype = minidisk
EXSLEN DS H Length of actual data passed back*
EXSDATA DS 0F Start of records
*
* Exist record for FILE
*
*
 AIF ('&INTENT' EQ 'ALL').FILEMAP
 AIF ('&INTENT' NE 'FILE').DIRMAP
.FILEMAP ANOP
 ORG EXSDATA
EXSFILE DS 0F Exist for FILE
EXSFFN DS CL8 Filename
EXSFFT DS CL8 Filetype
 ORG EXSFFN
EXSFSUBD DS CL16 Subdirectory name(16 characters)
EXSFFMN DS CL1 Filemode number
EXSFRECF DS CL1 Record Format
EXSFRECV DS CL1 Recoverability
EXSFOVWR DS CL1 Overwrite
EXSFRECL DS F Record length
EXSFBLKS DS F Number of Blocks
EXSFRECS DS F Number of Records

EXSBUFF

Chapter 2. Preferred CMS Macro Instructions 185

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

EXSFDATD DS XL3 Date (decimal yymmdd)
EXSFFM DS CL1 File mode
EXSFTIMD DS XL3 Time (decimal hhmmss)
EXSFRFM DS CL1 Real File Mode
EXSFDATC DS CL8 Date (character yy/mm/dd)
EXSFTIMC DS CL8 Time (character hh:mm:ss)
EXSFUSER DS CL8 Userid
EXSFSTAT DS CL1 Status
EXSFSTB EQU C'1' Base
EXSFSTA EQU C'2' Alias
EXSFSTE EQU C'3' Erased
EXSFSTR EQU C'4' Revoked
EXSFSTO EQU C'6' External Object
EXSFSTM EQU C'7' Minidisk
EXSFSTD EQU C'8' OS or DOS formatted minidisk
EXSFRATH DS CL1 Read Authority
EXSFRYES EQU C'1' Read Authority exists
EXSFRNO EQU C'0' No Read Authority
EXSFWATH DS CL1 Write Authority
EXSFWYES EQU C'1' Write Authority exists
EXSFWNO EQU C'0' No Write Authority
EXSFPROT DS CL1 External protection indicator
EXSFPYES EQU C'1' External protection exists
EXSFPNO EQU C'0' No External protection
EXSFDLRD DS XL3 DoLR (decimal yymmdd)
 DS XL1 Reserved
EXSFDLRC DS CL8 DoLR (character yy/mm/dd)
 ORG EXSFDLRD DoLR extended attributes
EXSFDOLR DS CL12
EXSFCDTD DS XL3 Creation Date (decimal yymmdd)
 DS XL1 Reserved
EXSFCTMD DS XL3 Creation Time (decimal hhmmss)
 DS XL1 Reserved
EXSFCDTC DS CL8 Creation Date (char yy/mm/dd)
EXSFCTMC DS CL8 Creation Time (char hh:mm:ss)
 ORG EXSFCDTD DTOC extended attributes
EXSFDTOC DS CL24
EXSFMAXB DS F Maximum Blocks
EXSFDATB DS F Data Blocks
EXSFSYSB DS F System Blocks
EXSFMIGR DS CL1 Migrated file
EXSFDRA1 DS CL8 DRA field 1
EXSFDRA2 DS CL8 DRA field 2
EXSFDRA3 DS CL8 DRA field 3
 ORG EXSFDRA1
EXSFDRAS DS CL24 DRA values
EXSFUNQD DS CL16 Unique id
 ORG EXSFMAXB
EXSFTDFM DS CL53
EXSFDIRL DS X Length of Directory ID
EXSFDIRD DS CL153 Directory ID
 ORG EXSFDIRL
EXSFCONV DS CL154 Dirname and length values
EXSFDLCD DS XL3 DOLC (decimal yymmdd)
 DS XL1 Reserved
EXSFTLCD DS XL3 TOLC (decimal hhmmss)
 DS XL1 Reserved
EXSFDLCC DS CL8 DOLC (char yy/mm/dd)
EXSFTLCC DS CL8 TOLC (char hh:mm:ss)
 ORG EXSFDLCD DTOLC extended attributes
EXSFDTLC DS CL24
EXSFDAXD DS XL4 Date (decimal yyyymmdd)
EXSFDAXC DS CL10 Date (character yyyy/mm/dd)
EXSFDAXI DS CL10 Date (character yyyy-mm-dd)
EXSFDRXD DS XL4 DoLR (decimal yyyymmdd)
EXSFDRXC DS CL10 DoLR (character yyyy/mm/dd)
EXSFDRXI DS CL10 DoLR (character yyyy-mm-dd)
EXSFCDXD DS XL4 Creation Date (decimal yyyymmdd)
EXSFCDXC DS CL10 Creation Date (char yyyy/mm/dd)
EXSFCDXI DS CL10 Creation Date (char yyyy-mm-dd)
EXSFDCXD DS XL4 DOLC (decimal yyyymmdd)
EXSFDCXC DS CL10 DOLC (character yyyy/mm/dd)
EXSFDCXI DS CL10 DOLC (character yyyy-mm-dd)
 ORG EXSFDAXD Date Extensions, added cmslvl 13
EXSF2000 DS CL96 these are for year 2000
EXSFRES DS CL1 Reserved for future
EXSFCEND DS 0F
EXSFLEN EQU *-&DNAME Length of FILE record
EXSFLV13 EQU EXSFLEN-(EXSFCEND-EXSFDAXD-76) cmslevel 13 length
EXSFCNVL EQU EXSFLEN-(EXSFCEND-EXSFDLCD)
EXSFTDFL EQU EXSFLEN-(EXSFCEND-EXSFDIRL)
EXSFCDTL EQU EXSFLEN-(EXSFCEND-EXSFMAXB)

EXSBUFF

186 z/VM: 7.3 CMS Macros and Functions Reference

EXSFDLRL EQU EXSFLEN-(EXSFCEND-EXSFCDTD)
EXSFLEN6 EQU EXSFLEN-(EXSFCEND-EXSFDLRD)
*
*
* Exist record for DIR
*
*
 AIF ('&INTENT' EQ 'ALL').DIRMAP
 AGO .DIREND
.DIRMAP ANOP
 ORG EXSDATA
EXSDIR DS 0F Exist for DIR
EXSDDIRL DS X Length of Directory ID
EXSDDIRD DS CL153 Directory ID
EXSDRATH DS CL1 Read Authority
EXSDRYES EQU C'1' Read Authority exists
EXSDRNO EQU C'0' No Read Authority
EXSDWATH DS CL1 Write Authority
EXSDWYES EQU C'1' Write Authority exists
EXSDWNO EQU C'0' No Write Authority
EXSDPROT DS CL1 External protection
EXSDPYES EQU C'1' External protection exists
EXSDPNO EQU C'0' No External protection
EXSDDRAT DS CL1 Directory Read Authority
EXSDDWAT DS CL1 Directory Write Authority
EXSDATTR DS CL1 Directory Attribute
EXSDNRAT DS CL1 Directory NEWREAD Authority
EXSDNWAT DS CL1 Directory NEWWRITE Authority
 ORG EXSDDRAT
EXSDMCDS DS CL5
EXSDDRA1 DS CL8 DRA field 1
EXSDDRA2 DS CL8 DRA field 2
EXSDDRA3 DS CL8 DRA field 3
 ORG EXSDDRA1
EXSDDRAS DS CL24 DRA values
EXSDUNQD DS CL16 Unique Id
EXSDDLCD DS XL3 DOLC (decimal yymmdd)
 DS XL1 Reserved
EXSDTLCD DS XL3 TOLC (decimal hhmmss)
 DS XL1 Reserved
EXSDDLCC DS CL8 DOLC (char yy/mm/dd)
EXSDTLCC DS CL8 TOLC (char hh:mm:ss)
 ORG EXSDDLCD DTOLC extended attributes
EXSDDTLC DS CL24
EXSDCDTD DS XL3 Creation Date (decimal yymmdd)
 DS XL1 Reserved
EXSDCTMD DS XL3 Creation Time (decimal hhmmss)
 DS XL1 Reserved
EXSDCDTC DS CL8 Creation Date (char yy/mm/dd)
EXSDCTMC DS CL8 Creation Time (char hh:mm:ss)
 ORG EXSDCDTD DTOC extended attributes
EXSDDTOC DS CL24
EXSDDCXD DS XL4 DOLC (decimal yyyymmdd)
EXSDDCXC DS CL10 DOLC (character yyyy/mm/dd)
EXSDDCXI DS CL10 DOLC (character yyyy-mm-dd)
EXSDCDXD DS XL4 Creation Date (decimal yyyymmdd)
EXSDCDXC DS CL10 Creation Date (char yyyy/mm/dd)
EXSDCDXI DS CL10 Creation Date (char yyyy-mm-dd)
 ORG EXSDDCXD Date Extensions, added cmslvl 13
EXSD2000 DS CL48 These are for Year 2000
EXSDRES DS CL6 Reserved for future
EXSDDEND DS 0F
EXSDLEN EQU *-&DNAME Length of DIR record
EXSDLV13 EQU EXSDLEN-(EXSDDEND-EXSDDCXD-52) cmslevel 13 length
EXSDCNVL EQU EXSDLEN-(EXSDDEND-EXSDDLCD)
EXSDTDFL EQU EXSDLEN-(EXSDDEND-EXSDUNQD)
EXSDMCDL EQU EXSDLEN-(EXSDDEND-EXSDDRA1)
EXSDLEN6 EQU EXSDLEN-(EXSDDEND-EXSDDRAT)

EXSBUFF

Chapter 2. Preferred CMS Macro Instructions 187

EXTUAREA

label

EXTUAREA

Purpose
Use the EXTUAREA macro to generate a DSECT for the EXTUAREA control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the EXTUAREA macro
expansion is labeled EXTUAREA.

Usage Notes
1. The EXTUAREA macroinstruction expands as follows:

 EXTUAREA
EXTUAREA DSECT
EXTUGPRS DS 16F General registers at interrupt time
EXTUFRS DS 4D Floating point registers at interrupt time
EXTUPSW DS 1D External Old PSW at interrupt time
EXTUSAVE DS 20F Save area for handler routine; pointed to
* by R13 when control passed to handler rtn.
 DS 0F Need fullword boundary
EXTUINT DS 0XL8 Length of 8
EXTUCPID DS H 2 bytes = CPU ID bytes
EXTUCODE DS H 2 bytes = external interrupt code
EXTUPARM DS F 4 bytes = external interrupt parm, for
* service signal
EXTUPREV DS F Pointer to previous user area
EXTUARS DS 0F Access Registers
EXTUAR0 DS F Access Register 0
EXTUAR1 DS F Access Register 1
EXTUAR2 DS F Access Register 2
EXTUAR3 DS F Access Register 3
EXTUAR4 DS F Access Register 4
EXTUAR5 DS F Access Register 5
EXTUAR6 DS F Access Register 6
EXTUAR7 DS F Access Register 7
EXTUAR8 DS F Access Register 8
EXTUAR9 DS F Access Register 9
EXTUAR10 DS F Access Register 10
EXTUAR11 DS F Access Register 11
EXTUAR12 DS F Access Register 12
EXTUAR13 DS F Access Register 13
EXTUAR14 DS F Access Register 14
EXTUAR15 DS F Access Register 15
 DS F Reserved for IBM use
EXTUGPRH DS 16F 64-bit saved entry high regs
 DS 16F Reserved for IBM use
EXTUSIZE EQU (*-EXTUAREA) Size of EXTUAREA in bytes

EXTUAREA

188 z/VM: 7.3 CMS Macros and Functions Reference

EXTXCTL

label

EXTXCTL

Purpose
Use the EXTXCTL macroinstruction to resume execution of code that was suspended by a X'2603'
external interrupt (page fault initiation) after the X'2603' external interrupt (page fault completion) has
occurred.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.

Usage Notes
1. The routine using this macro must have a DSECT for NUCON.
2. The calling routine must make sure it calls EXTXCTL with interrupts disabled.
3. Register 1 must point to an area that is mapped by the EXTUAREA macro when EXTXCTL is called. The

address in register 1 is treated as a 31-bit address.
4. The general registers, floating-point registers, and access registers are loaded from the EXTUGPRS,

EXTUFRS, and EXTUARS fields respectively in the area mapped by the EXTUAREA macro. Upon
successful completion, control is transferred by way of the PSW in the EXTUPSW field of the area
mapped by EXTUAREA. No error checking is performed on the PSW.

5. A second-level interrupt handler (SLIH) should not use this macro because the first-level interrupt
handler (FLIH) will not regain control.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
8

The macro was not issued from an XC virtual machine.

EXTXCTL

Chapter 2. Preferred CMS Macro Instructions 189

FPERROR

FPERROR

Purpose

Use the FPERROR macro to map the file pool extended error information returned in the wuerror
parameter of callable services library (CSL) routines.

Usage Notes
1. The information in the WUERROR and FPERROR buffers can also be accessed as individual variables by

using the CSL routine DMSWUERR (Work Unit Error Data Deblocker). This routine is described in z/VM:
CMS Callable Services Reference.

2. This macro must be used in conjunction with the WUERROR macro.
3. If the FPEREAS field (error reason code) contains reason code 71800, the FPEAUGMT field will

contain the recovery token of the conflicting Coordinated Resource Recovery (CRR) resynchronization
activity. Any display of this value should be hexadecimal. If your application is unable to access the
required resource it should inform the user that the resource is unavailable and provide the following
information for the user to pass on to the file pool administrator:

• The recovery token (contents of FPEAUGMT field)
• The file pool ID (contents of the FPEFPOOL field).

For information on CRR, see z/VM: CMS File Pool Planning, Administration, and Operation.
4. If the FPEREAS field (error reason code) contains reason code 50500, the FPEAUGMT field will contain

the specific reason for the failure. (50500 means that your request succeeded, but the work unit could
not be committed.)

5. If the error was generated by an SFS error during an implicit recall of a file in migrated status (residing
in the DFSMS/VM storage repository), the FPEAUGMT field will contain the CSL reason code of the
specific request that generated the error, and the FPEDETFP field will contain the file pool ID of the
failing resource.

6. File pool extended error information can also be returned for byte file system (BFS) files when CSL
routines are used to access them.

7. There can be one or more instances of FPERROR data within the WUERROR data area returned. The
FPERROR macroinstruction expands as follows:

FPEFPOOL DS CL8 File pool ID
 DS CL8 Reserved
FPEUWORK DS F Work unit ID
FPEREAS DS F Error reason code
 DS F Reserved
 DS F Reserved
FPRETCD DS F Return code
FPEWRN DS 16F Warning reason codes
FPEUSERI DS F User ID index
FPELEVEL DS 0FL8
FPERELLV DS CL4 FPELEVEL subfield 1
FPECOMLV DS CL4 FPELEVEL subfield 2
FPEAUGMT DS F Reason code augmentation field
FPEDETFP DS CL8 File pool ID of failing resource
 DS CL12 Reserved
FPENLEN EQU *-FPERROR Length of FPERROR
FPEDBSZ EQU ((FPENLEN+7)/8) Size of FPERROR in doublewords

FPERROR

190 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3

FSCB

label

FSCB

' fileid '

1
, RECFM = F

, RECFM = V , BUFFER =  addr

, FORM = E
2 , BSIZE =  size

, RECNO = 0

, RECNO =  number

, NOREC = 1

, NOREC =  numrec

, CACHE = DEFAULT

, CACHE = YES

NO

2

, OPENTYP = NONE

, OPENTYP = READ

WRITE

NEW

REPLACE

2

Notes:
1 Keyword parameters can be entered in any order.
2 The FORM parameter is required if using CACHE or OPENTYP parameters.

Purpose
Use the FSCB macroinstruction to create a file system control block (FSCB) for a CMS input or output disk
file.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement
‘fileid’

specifies the CMS file identifier, which must be enclosed in single quotation marks and separated by
blanks (‘filename filetype filemode’). An asterisk (*) is allowed in place of the file name, file type, or file
mode. If file mode is omitted, A1 is assumed. See the individual file system (FS) macros to determine
the validity of an asterisk in a given position. Before using such an FSCB in another FS macro (such as
FSOPEN or FSREAD), you must supply the omitted fields in the file ID at execution time.

RECFM=
specifies the format of the records in the file. Acceptable values are:
F

specifies the fixed-length format (RECFM=F). This is the default value.
V

specifies variable length format (RECFM=V).

FSCB

Chapter 2. Preferred CMS Macro Instructions 191

BUFFER=addr
specifies the address of the I/O buffer for reading or writing records. This address must be specified
as a relocatable expression.

Note: The buffer address is interpreted as a 31-bit field and the high order bit is ignored.

FORM=E
generates an extended format FSCB. An extended format FSCB lets you specify a value up to (2³¹ - 1)
for RECNO and NOREC. If you do not specify FORM=E, the RECNO and NOREC values cannot exceed
65535. Specifying FORM=E also results in more efficient code being generated, whether or not you
need the larger values for RECNO and NOREC.

The specification of the FORM parameter on FSCB should agree with the specification of the FORM
parameter on any FSOPEN, FSREAD, FSWRITE, FSPOINT, or FSSTATE macros which reference this
FSCB.

BSIZE=size
specifies the number of bytes to be read or written for each read or write request. The value for size
must be specified as an absolute expression.

RECNO=number
specifies the record number of the next record to be accessed, relative to the beginning of the file,
record 1. The value for number must be specified as an absolute expression. The default is 0, which
indicates that records are accessed sequentially.

NOREC=numrec
specifies the number of records to be read in the next read operation. The value for numrec must be
specified as an absolute expression. The default is 1.

CACHE=
indicates whether caching of multiple data blocks is to be performed for this file. This option applies
only to SFS files and EDF minidisk files.

The CACHE parameter is pertinent only for explicit opens of the file and cannot be changed on later
FSREADs or FSWRITEs by using an FSCB with a different CACHE value specified. The value for CACHE
that is in the FSCB when the file is explicitly opened will be used. The file would be explicitly opened
by an FSOPEN with OPENTYP of READ, WRITE, NEW, or REPLACE in effect.

To use the CACHE parameter, FORM=E must also be specified. If FORM=E is not specified, or the file
is not explicitly opened, then CACHE=DEFAULT is assumed when the file is opened by way of the first
FSREAD, FSWRITE, or FSPOINT.

Acceptable values are:

DEFAULT
indicates that the file system should determine whether to cache multiple data blocks, based on
the file’s characteristics and the actual or anticipated accesses to the file. This is the default value.
In most cases, this will be equivalent to CACHE=YES. If your application requires a specific value
for the CACHE option, you should specify that value for CACHE rather than rely on the default.

YES
indicates the file system should cache multiple data blocks for the file. When specified, the file
system will employ a ‘read-ahead’ and ‘write-behind’ method of I/O to the file. This will generally
reduce the number of separate I/O operations performed on the file.

NO
indicates that the file system should not cache multiple data blocks.

For more information on the CACHE option, see z/VM: CMS Application Development Guide for
Assembler.

OPENTYP=
is the type of open to be performed on the file. OPENTYP is an FSOPEN macro parameter, provided on
the FSCB macro for convenience. The OPENTYP parameter on the FSCB will be ignored if no FSOPEN
is issued.

FSCB

192 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Also, this operand cannot be used unless the code containing the FSOPEN macro is reassembled at
the VM/SP Release 6 level or above, regardless of whether it was specified on the FSOPEN macro or
the FSCB macro. To use the OPENTYP parameter, FORM=E must also be specified. Acceptable values
are:

NONE
indicates that the file is not actually opened. The file is implicitly opened when the first FSREAD,
FSWRITE, or FSPOINT is issued to the file. This is the default value.

READ
indicates that the file exists and will only be read.

WRITE
indicates that the file may be read or modified. All changed and added records are written. Other
records remain unchanged. If the file does not exist, it is created.

NEW
indicates that the file does not exist and is created. It may then be written to or read from. If the
file already exists, it is an error and the file is not opened.

REPLACE
indicates that the file is replaced with only the subsequently written records. If the file does not
exist, it is created.

Usage Notes
1. To access fields within the FSCB, use the FSCBD macro. Refer to the FSCBD macro description for the

layout of the file system control block.
2. IBM recommends that you do not use the same FSCB to reference several different files. If you

must, you can override the fileid and any of the other options on the FSOPEN, FSWRITE, or FSREAD
macroinstructions when you reference a file by way of its FSCB. If, however, you use the FSOPEN
macro to open an existing file, CMS resets the BSIZE and RECFM fields in the FSCB to reflect actual file
characteristics, not necessarily the characteristics you specify on FSOPEN.

When you use the same FSCB for multiple files, care must be taken to specify the appropriate FSCB
options on any other macros that reference the FSCB, particularly when the options differ from file to
file. Each time these options are specified on another macro (FSOPEN, FSREAD, FSWRITE) the FSCB is
modified. This may lead to an error if a subsequent operation for a different file is issued which allows
an option to default to the value present in the FSCB.

For example:

 FSWRITE 'NEW FILE A1',FSCB=OUTFSCB,RECFM=F,FORM=E
 FSWRITE 'OLD FILE A1',FSCB=OUTFSCB,FORM=E
 . . .
 OUTFSCB FSCB RECFM=V,BUFFER=RECAREA,BSIZE=80,FORM=E

Even though OUTFSCB has RECFM=V specified, the FSWRITE to 'NEW FILE A1' with RECFM=F will
change OUTFSCB to contain RECFM=F. The second FSWRITE to 'OLD FILE A1' will assume RECFM=F
(not V) because that is the value that is now in the FSCB. Thus, if the file 'OLD FILE A1' on disk is
actually RECFM=V, an error will occur on the second FSWRITE, even though the FSCB had specified
RECFM=V. To avoid this problem, the preferable approach is to code a separate FSCB for each file
which is being used. Otherwise, you must specify the option (in this example, RECFM) on each
FSWRITE, FSREAD, or FSOPEN which references the same FSCB. For further information, see z/VM:
CMS Application Development Guide for Assembler.

3. You can use multiple FSCBs to reference the same file, for example, if you want one FSCB for writing
and a different FSCB for reading the file. Remember, the file characteristics are inherent to the file and
not to the FSCB. If you establish a read or write pointer using the RECNO option in one FSCB, that
pointer remains unchanged unless you specify the RECNO option again on the same or any other FSCB
for that file.

FSCB

Chapter 2. Preferred CMS Macro Instructions 193

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

FSCBD

label

FSCBD

Purpose

Use the FSCBD macroinstruction to generate a DSECT for the file system control block (FSCB).

Parameters
Optional Parameter:
label

is an optional assembler label for the statement. The first statement in the FSCBD macro expansion is
labeled FSCBD.

Usage Notes
1. The FSCBD macroinstruction expands as follows:

 FSCBD
FSCBD DSECT
FSCBCOMM DS CL8 File system command (e.g. ERASE)
FSCBFILE DS CL18 File ID (name, type, and mode)
 ORG FSCBFILE
FSCBFNFT DS CL16 File name and file type
 ORG FSCBFNFT
FSCBFN DS CL8 File name
FSCBFT DS CL8 File type
FSCBFM DS CL2 File mode (letter and number)
 ORG FSCBFM
FSCBFML DS CL1 File mode letter
FSCBFMN DS CL1 File mode number
FSCBITNO DS H Relative record number to be accessed on
 FSREAD and FSWRITE (applies only to the
 non-extended FSCB)
FSCBBUFF DS A Address of the input/output buffer for
 FSREAD and FSWRITE (also used on calls
 to STATE routines for the FST address)
FSCBSIZE DS F Length (in bytes) of the input/output
 buffer (also used to return the record
 length on FSOPEN)
FSCBFV DS CL2 Record format and first flag byte
 ORG FSCBFV
FSCBRECF DS CL1 Record format - F or V
FSCBFLG DS XL1 First flag byte
*
* 'FSCBFLG' flag byte definition
*
FSCBTHEX EQU X'80' Space threshold exceeded (SFS only)
FSCBITAV EQU X'40' Item available (no longer used)
FSCBEPL EQU X'20' Extended PLIST (FORM=E)
FSCBMSG EQU X'10' MSG=YES on FSSTATE or FSOPEN
FSCBSTW EQU X'08' STATEW specified on FSSTATE
FSCBCACY EQU X'04' CACHE=YES specified
FSCBCACN EQU X'02' CACHE=NO specified
FSCBRCAV EQU X'01' Previous record null (no longer used)
FSCBNOIT DS H Number of records to be accessed on
 FSREAD and FSWRITE (applies only to the
 non-extended FSCB)
 ORG FSCBNOIT Extended format fields defined
 over non-extended FSCBNOIT
FSCBFLG2 DS XL1 Second flag byte
*
* 'FSCBFLG2' flag byte definition (FORM=E only)

FSCBD

194 z/VM: 7.3 CMS Macros and Functions Reference

*
FSCBNMAC EQU X'80' NOMSG=ACTIVE specified on FSOPEN
FSCBNMNF EQU X'40' NOMSG=NOTFOUND specified on FSOPEN
FSCBNMOS EQU X'20' NOMSG=OSDOS specified on FSOPEN
FSCBOTYP DS CL1 OPENTYP value
*
* 'FSCBOTYP' Values (FORM=E only)
*
FSCBTNON EQU X'00' OPENTYP=NONE specified
FSCBTRD EQU C'R' OPENTYP=READ specified
FSCBTWR EQU C'W' OPENTYP=WRITE specified
FSCBTNEW EQU C'N' OPENTYP=NEW specified
FSCBTREP EQU C'X' OPENTYP=REPLACE specified
FSCBNORD DS F Number of bytes actually read on
 FSREAD
 ORG FSCBNORD
*
* 'FSCBFST' is returned on FSOPEN. Its value is based on
* the OPENTYP specified and whether the file exists.
* Note that a non-extended format FSCB (FORM=E not specified)
* implies OPENTYP=NONE. The values are as follows:
*
* File doesn't exist FSCBFST=A(0)
*
* File exists:
* Not FORM=E FSCBFST=A(Copy of 40 byte FST)
* OPENTYP=NONE FSCBFST=A(Copy of 64 byte FST)
* OPENTYP=READ FSCBFST=A(Copy of 64 byte FST)
* OPENTYP=WRITE FSCBFST=A(Copy of 64 byte FST)
* OPENTYP=REPLACE FSCBFST=A(-1)
* OPENTYP=NEW Error, FSCBFST is unchanged
*
FSCBFST DS A Address of a copy of the FST
 returned on FSOPEN
*
* The following fields apply only to the extended form FSCB
* (for example, FORM=E was specified).
*
FSCBAITN DS F Relative record number to be accessed on
 FSREAD and FSWRITE (also referred to as
 the "alternate item number")
FSCBANIT DS F Number of records to be accessed on
 FSREAD and FSWRITE (also referred to as
 the "alternate number of items")
FSCBWPTR DS F Extended write pointer (input on FSPOINT
 FORM=E, output on FSOPEN)
FSCBRPTR DS F Extended read pointer (input on FSPOINT
 FORM=E, output on FSOPEN)
FSCBLNBY EQU *-FSCBD Length (in bytes) of the extended FSCB

2. You can use the labels in the FSCBD DSECT to access the fields in an FSCB for a particular file. An
FSCB is created explicitly by the FSCB macroinstruction, and implicitly by the FSREAD, FSWRITE, and
FSOPEN macroinstructions when the FSCB parameter is not specified. Also note that the fields within
the FSCB are modified by the macros FSREAD, FSWRITE, FSOPEN, FSCLOSE, FSPOINT, FSSTATE, and
FSERASE.

3. When you specify FORM=E on the FSCB macroinstruction (or on FSREAD, FSWRITE, FSPOINT,
FSOPEN, or FSSTATE):

• The fields FSCBAITN and FSCBANIT are used for the RECNO and NOREC macro options instead of
FSCBITNO and FSCBNOIT, which are reserved for other purposes.

• The fields FSCBFLG2, FSCBOTYP, FSCBWPTR, and FSCBRPTR are also used.
• The FSCBEPL flag is turned on (X'20' in FSCBFLG).

You must use FORM=E FSCBs to manipulate files larger than 65,535 items.

FSCBD

Chapter 2. Preferred CMS Macro Instructions 195

FSCLOSE

label

FSCLOSE fileid

,FSCB= fscb_label

( reg)

FSCB= fscb_label

( reg)

,ERROR=*

,ERROR= addr

( reg)

Purpose
Use the FSCLOSE macroinstruction to close an open file. FSCLOSE can only be used to close files opened
by other file system macros. You cannot use FSCLOSE to close a file opened by the DMSOPEN routine.

Parameters
Required Parameters:
fileid

specifies the CMS file identifier. It may be:
‘fn ft fm’

file ID enclosed in single quotation marks and separated by blanks. An asterisk (*) may be
specified for fn, ft, or fm, or any combination, indicating all file names, file types or file modes
respectively. If fm is omitted, A1 is assumed.

(reg)
a register, other than 0 or 1, containing the address of the file ID (18 characters). When you
specify (reg), the file ID must be exactly 18 characters in length; 8 for the file name, 8 for the file
type, and 2 for the file mode. Shorter names must be padded with blanks. If the file mode is left
blank, it is treated the same as an asterisk (*), meaning all file mode occurrences of the specified
file name and file type.

FSCB=
specifies the address of an FSCB. Acceptable values are:
fscb_label

specifies the label on the FSCB macroinstruction.
(reg)

specifies a register containing the address of an FSCB.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:

FSCLOSE

196 z/VM: 7.3 CMS Macros and Functions Reference

*
passes control to the next sequential instruction. This is the default value.

addr
passes control to the specified address.

(reg)
passes control to the address in the specified register.

You can specify any general register other than 0, 1, or 15.

Usage Notes
1. Within your application, you should close any files that you open, whether the files were opened

explicitly by FSOPEN or implicitly by FSREAD, FSWRITE, or FSPOINT. If you do not close files that you
have opened, CMS will close them at end-of-command (Ready;). However, if your application is called
from another application program (for example, from an EXEC), failure to close your files can lead to
problems, such as:

• Delayed commit of data. FSCLOSE cannot commit updates to the shared file system on a work unit
which has files open, nor can it commit updates to a minidisk if there are files open for output on the
given minidisk.

• Incorrect records being read or written. The read and write pointers for a file are initialized when a
file is opened. Each time you read or write a file, the corresponding pointer gets adjusted. Thus, if
the application which calls your program uses sequential processing and references the same files
as your program, failure to close your files can lead to unpredictable results because of the read
and write pointers not being re-initialized. This could occur when the calling application follows your
program with an FSREAD, FSWRITE, or EXECIO using sequential processing, expecting the operation
to implicitly open the file. The read and write pointers, however, would remain where your program
left them, rather than being set to the beginning and end of the file, respectively, by an open.

2. If you code fileid and the FSCB parameter, CMS uses the fileid to fill in the FSCB.
3. If you want reentrant code, you must specify the FSCB parameter.
4. Even though an FSCLOSE macro is issued for a file on a CMS minidisk, the directory cannot be updated

on disk as long as other files are open for output on that disk.
5. When using FSCLOSE to close a file residing in the Shared File System, changes are committed based

on the default work unit that was in effect when the file was opened. However, the commit will not be
performed unless you are closing one of the following:

• The last file open for output on a work unit
• The last file open on a work unit.

This applies only to files that have been opened through macros or non-SFS statements (for example:
CMS FS macros, EXECIO command). The commit performed by FSCLOSE is a coordinated commit,
meaning that all changes to protected resources on the work unit are committed in unison (or rolled
back if any of the resources cannot commit). If the program using FSCLOSE to close an SFS file has a
protected conversation with another application that has open SFS files on the work unit associated
with the conversation, the other application's open files do not prevent the commit. Changes to those
files are also committed. This applies regardless of how the other application opened its SFS files.

6. When an open minidisk file cannot be successfully closed and that file is in an inconsistent state, a
message is issued and CMS is terminated. For SFS files, when the close is unsuccessful:

• If an implicit rollback occurred because of the nature of the failure, a message is issued to that
effect.

• If an implicit rollback did not occur, FSCLOSE initiates a rollback for the work unit on which the file
was opened. A message is issued reflecting the error.

• If FSCLOSE initiates a rollback but the rollback fails, a message is issued and CMS is terminated.

FSCLOSE

Chapter 2. Preferred CMS Macro Instructions 197

7. For a file open for output, the FSCBTHEX (X'80') indicator bit of the FSCBFLG byte indicates when you
have reached your SFS file space threshold. (For more information on the SFS file space threshold,
see the SET THRESHOLD command in z/VM: CMS Commands and Utilities Reference.) Because the CMS
portion of the file system does buffering, you will only see the indicator when it is necessary to write
the buffers to the file pool. This can occur during a read, write, or close. For small files, the indicator
might not be returned until the close.

Return Codes
Register 15 contains the following return codes:
Code

Meaning
0

One or more files closed successfully and/or one or more files opened using the DMSOPEN or
DMSOPDBK interfaces were committed to disk.

6
No open files matching the input file ID were found or invalid file ID (fn ft fm) specified.

31
Close failed for one or more SFS files. Rollback performed on each affected work unit.

An application error, system error, or lack of required resource can be the cause of this return code.
If the error persists, refer to the z/VM: Diagnosis Guide for more information about diagnosing the
problem.

FSCLOSE

198 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

FSERASE

label

FSERASE fileid

, FSCB = fscb_label

( reg)

FSCB = fscb_label

( reg)

, ERROR = *

, ERROR = addr

( reg)

Purpose
Use the FSERASE macroinstruction to delete a CMS file from a minidisk or SFS directory. FSERASE cannot
be used to erase directories.

To erase a file in another user's directory, you must have write authority to both the directory and the file
and you must have the directory accessed in read/write status. (Use the FORCERW option of the ACCESS
command to access another user's directory in read/write status.)

Parameters
Required Parameters:
fileid

specifies the CMS file identifier. Acceptable values are:
‘fn ft fm’

file ID enclosed in single quotation marks and separated by blanks. An asterisk (*) may be
specified for fn, ft, or fm (fn ft cannot both be *, unless the file mode letter and file mode number
are both specified for file mode), indicating all file names, file types, or file modes respectively. If
fm is omitted, A1 is assumed.

(reg)
a register, other than 0 or 1, containing the address of the file ID (18 characters). When you
specify (reg), the file ID must be exactly 18 characters in length: 8 for the file name, 8 for the file
type, and 2 for the file mode. Shorter names must be filled with blanks. If the file mode is left
blank, only the A disk is searched.

FSCB=
specifies the address of an FSCB. Acceptable values are:
fscb_label

specifies the label of an FSCB macroinstruction.
(reg)

specifies a register containing the address of an FSCB.

Optional Parameters:
label

is an optional assembler label for the statement.

FSERASE

Chapter 2. Preferred CMS Macro Instructions 199

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

You can specify any general register other than 0, 1, or 15.

Usage Notes
1. On return from the FSERASE macro, register 1 points to a parameter list. The second doubleword

contains the file name; the third doubleword contains the file type; and the next halfword contains the
file mode of the file.

2. If you code both fileid and the FSCB parameter, CMS uses the fileid to fill in the FSCB.
3. When fileid refers to an SFS alias, only the alias is erased. The base file remains intact. When fileid

refers to an SFS base file, all authorities and aliases to that file are dropped. If the file is later
recreated, none of the previous authorities or aliases will apply to the new file.

Return Codes
Register 15 contains one of the following return codes:
Code

Meaning
20

Invalid character in file name or file type.
24

Invalid file mode.
25

Insufficient storage available.
28

File not found.
31

Erase failed. Rollback Performed.
36

Disk or directory is not accessed or is accessed read only.
40

One of the following errors occurred:

• A required CSL routine was dropped.
• A required CSL routine was not loaded.
• There was an error in a user exit routine.
• There was an error calling the user accounting exit routine (DMS2AB).

55
APPC/VM error.

70
SFS file sharing conflict or minidisk file is already open by DMSOPEN or DMSOPDBK

FSERASE

200 z/VM: 7.3 CMS Macros and Functions Reference

99
A required system resource is unavailable for one of the following reasons:

• There is insufficient virtual storage for the file pool.
• The file pool server is unavailable.

104
Supervisor or file pool supervisor error.

FSERASE

Chapter 2. Preferred CMS Macro Instructions 201

FSOPEN

label

FSOPEN fileid

, FSCB = fscb_label

( reg)

FSCB = fscb_label

( reg)

1

, BUFFER = addr

( reg)

, BSIZE = size

( reg)

, RECFM = F

V

( reg)

, RECNO = number

( reg)

, NOREC = numrec

( reg)

, MSG = NO

, MSG = YES

( reg)

( addr , mask)

NOMSG parameter
, FORM = E

2

, ERROR = *

, ERROR = addr

( reg)

, CACHE = YES

NO

DEFAULT

2

, OPENTYP = READ

WRITE

NEW

REPLACE

NONE

( reg)

2

NOMSG parameter

, NOMSG = (

ACTIVE ,NOTFOUND ,OSDOS

)
2

Notes:

FSOPEN

202 z/VM: 7.3 CMS Macros and Functions Reference

1 Keyword parameters can be entered in any order.
2 The FORM parameter is required if using the NOMSG,CACHE, or the OPENTYP parameters.

Purpose
Use the FSOPEN macro to open a file for input or output.

Parameters
Required Parameters:
fileid

specifies the CMS file identifier.
‘fn ft fm’

identifies the file ID enclosed in single quotation marks and separated by blanks. If fm is omitted,
A1 is assumed.

(reg)
identifies the register (other than 0 or 1) containing the address of the file ID. The file ID must
be exactly 18 characters in length; 8 for the file name, 8 for the file type, and 2 for the file mode.
Shorter names must be padded with blanks.

An asterisk (*) is not allowed for the file name or file type. When the fileid specified has a file
mode of blank or *, the file with the specified file name and file type on the first accessed mode
(in alphabetic order) will be opened. If no file is found to match, the open will fail, regardless of
the value of OPENTYP. Note that for OPENTYP=NEW, a file mode of blank or * is invalid. Also, when
OPENTYP=NEW, REPLACE, or WRITE only the file modes accessed as Read/Write will be checked for a
match.

For OPENTYP=READ, WRITE, or REPLACE, the file mode where the match occurs will be returned in
the fileid in the FSCB. For OPENTYP=READ (with a file mode of blank or *), if the match occurs on a
read-only extension of another file mode, the file mode that is returned is the file mode of the parent
disk, and not the file mode of the actual disk or directory containing the file.

The file mode of blank defaults to ‘A’ when ‘fn ft’ (omitting file mode) is used to specify a file ID. This is
passed through the file system and subsequently treated as an asterisk (*) only when:

The file mode number in fileid (whether specified on FSOPEN or on the corresponding FSCB) is
assigned to a new file. The rules for determining the file mode number are as follows:

For a file which did not previously exist:

• When specified (a number, 0-6), it is used for OPENTYP=NEW, WRITE, or REPLACE.
• When omitted (blank), it defaults to 1 for OPENTYP=NEW, WRITE, or REPLACE.
• For OPENTYP=READ or NONE, it is an error if the file does not exist, and the specified file mode

number is not used.

For a file which did previously exist:

• When specified (a number, 0-6), it is for OPENTYP=REPLACE; otherwise, it is ignored.
• When omitted (blank), it defaults to the previous file mode number of the replaced file for

OPENTYP=REPLACE.
• For OPENTYP=READ, WRITE, or NONE, the specified value is not used. The file mode number of the

existing file remains in effect.
• For OPENTYP=NEW, it is an error if the file exists, and the specified file mode number is not used.

Regardless of whether the specified file mode number is used, or whether the file exists, the specified
file mode number must be valid, or an error occurs. Valid file mode numbers are 0-6 and blank
(omitted). If the file mode is specified as *, the file mode number must be blank.

FSOPEN

Chapter 2. Preferred CMS Macro Instructions 203

FSCB=
specifies the address of an FSCB. Acceptable values are:
fscb_label

specifies the label on an FSCB macroinstruction.
(reg)

specifies a register that contains the address of an FSCB.

Note: The referenced FSCB must have the same specification for FORM as this FSOPEN.

Optional Parameters:
label

is an optional assembler label for the statement.
BUFFER=

specifies the address of the I/O buffer for reading or writing records. Acceptable values are:
addr

specifies the address of the I/O buffer as a relocatable expression.
(reg)

specifies the register (other than register 1) containing the address of the I/O buffer.

Note: buffer address is interpreted as a 31-bit field and the high order bit is ignored.

BSIZE=
specifies the number of bytes to be read or written for each read or write request. Acceptable values
are:
size

specifies the number of bytes to be read or written as an absolute expression.
(reg)

specifies the register (other than register 1) containing the number of bytes to be read or written.
RECFM=

specifies the format of the records in the file. Acceptable values are:
F

specifies the fixed-length format (RECFM=F). If omitted, RECFM assumes the value specified in
the FSCB. This is the default value if FSCB is not specified.

V
specifies variable length format (RECFM=V).

(reg)
specifies the register (other than register 1) whose low-order byte contains the record format (C‘F’
or C‘V’).

RECNO=
specifies the record number of the next record to be accessed, relative to the beginning of the file
(record 1). If FSCB is not specified, the default is 0, which indicates that the next sequential record is
accessed. Acceptable values are:
number

specifies the record number as an absolute expression.
(reg)

specifies the register (other than register 1) containing the record number.

NOREC=
specifies the number of records to be read in the next read operation. If FSCB is not specified, the
default is 1, which is also the only valid value for files with variable-length records. Acceptable values
are:

FSOPEN

204 z/VM: 7.3 CMS Macros and Functions Reference

numrec
specifies the number of records as an absolute expression.

(reg)
specifies the register (other than register 1) containing the number of records.

MSG=
indicates whether an error message is displayed if an error occurs. Acceptable values are:
NO

means no messages will be issued. NO is the default. If OPENTYP=NONE, MSG=NO is treated the
same as with FSSTATE.

YES
means all messages will be issued (except for those suppressed by the NOMSG option).

(reg)
the macro checks the value of the specified register (other than register 1) and, if it is 0, sets MSG
to NO. If the register contains a nonzero value, the macro sets MSG to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MSG parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then MSG is set to NO. If the bit is 1, then MSG is set to YES. For example, to test
the first bit in the single byte of storage at location MSGFLAG, specify the MSG parameter as

MSG=(MSGFLAG,X'80')

To set the value of the MSG parameter at assembly time, specify MSG=YES or MSG=NO. To set the
value at execution time, specify MSG=(reg) or MSG=(addr,mask).

NOMSG=
indicates that although MSG=YES is in effect, error messages are to be suppressed in one or more
cases. This allows the MSG=YES parameter to be used so FSOPEN can issue error messages except
for the case(s) where failure to open the file is not considered an error. If MSG=YES is not in effect,
this parameter has no meaning and is ignored. FORM=E is required when specifying this parameter.
NOMSG does not apply when OPENTYP=NONE. The acceptable values are:
ACTIVE

indicates that a message should not be issued if you already have the file open by an FSOPEN,
FSREAD, FSWRITE or FSPOINT (or EXECIO command). A return code of 37 is returned in this
situation, whether or not a message is issued.

NOTFOUND
indicates that a message should not be issued when trying to open a file that does not exist or
when trying to open a file that you do not have authority for. A return code of 28 is returned in this
situation, whether or not a message is issued.

OSDOS
indicates that a message should not be issued when trying to open a file on an OS or DOS
formatted disk. A return code of 84 is returned in this situation, whether or not a message is
issued.

You cannot read from or write to an OS or DOS disk using the FS macros. Return codes 80 through 83
additionally imply that the file is not accessible through CMS OS or DOS simulation access methods.

ACTIVE, NOTFOUND, or OSDOS may be specified individually or they may be specified in combination.
The order of specification is of no importance as long as the parameters are separated by a
comma and enclosed in parentheses when combined. The (address,mask) and (reg) formats are not
supported.

NOMSG overrides MSG=YES in the following cases:

• ACTIVE

– file was already active through the FS macro interface and

FSOPEN

Chapter 2. Preferred CMS Macro Instructions 205

– return code was 37 and
– OPENTYP was READ, WRITE, NEW or REPLACE

• NOTFOUND

– file was not found or not authorized and
– return code was 28 and
– OPENTYP was

- READ or
- WRITE or REPLACE and file mode was *

Note: NOMSG=NOTFOUND does not apply when:

– file was not authorized and
– return code was 28 and
– OPENTYP was WRITE or REPLACE and
– file mode was a letter

• OSDOS

– file is on an OS or DOS disk and
– return code was 84 and
– OPENTYP was READ

FORM=E
must be specified when the extended format is being used. An extended format FSCB lets you specify
a value up to 2³¹ - 1 for RECNO and NOREC. If you do not specify FORM=E, the RECNO and NOREC
values cannot exceed 65535. Specifying FORM=E also results in more efficient code being generated,
whether or not you need the larger values for RECNO and NOREC.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.
You can specify any general register other than 0, 1, or 15.

CACHE=
indicates whether caching of multiple data blocks is to be performed for this file. This option applies
only to SFS files and EDF minidisk files.

The CACHE parameter is pertinent only for explicit opens of the file. CACHE is ignored if
OPENTYPE=NONE. It cannot be changed on later FSREADs or FSWRITEs by using an FSCB with a
different CACHE value specified. The value for CACHE that is in the FSCB when the file is explicitly
opened will be used. The file would be explicitly opened by an FSOPEN with OPENTYP=READ, WRITE,
NEW, or REPLACE in effect.

To use the CACHE parameter, FORM=E must also be specified. If FORM=E is not specified, or the file
is not explicitly opened, then CACHE=DEFAULT is assumed when the file is opened by way of the first
FSREAD, FSWRITE, or FSPOINT.

Acceptable values are:

FSOPEN

206 z/VM: 7.3 CMS Macros and Functions Reference

YES
indicates the file system should cache multiple data blocks for the file. When specified, the file
system will employ a ‘read-ahead’ and ‘write-behind’ method of I/O to the file. This will generally
reduce the number of separate I/O operations performed on the file.

NO
indicates that the file system should not cache multiple data blocks.

DEFAULT
indicates that the file system should determine whether to cache multiple data blocks, based on
the file’s characteristics and the actual or anticipated accesses to the file. In most cases, this will
be equivalent to CACHE=YES. This is the default value when FSCB is not coded. If an FSCB was
coded, the value specified in it is used.

Under some conditions, the file system does not cache multiple data blocks for a file, even when
CACHE=YES. For example, ‘read-ahead’ may not be done if the caller's request is completely satisfied
by reading all data directly into the caller's buffer.

For more information on the CACHE option, see z/VM: CMS Application Development Guide for
Assembler.

OPENTYP=
is the type of open to be performed on the file. Acceptable values are:
READ

indicates that the file exists and will only be read.
WRITE

indicates that the file may be written to or read from. All changed and added records are written.
Other records remain unchanged. If the file does not exist, it is created.

NEW
indicates that the file does not exist and is then created. It may then be written to or read from. If
the file already exists, it is an error and the file is not opened.

REPLACE
indicates that the file is replaced with only the subsequently written records. If the file does not
exist, it is created.

NONE
indicates that the file is not actually opened. The file is implicitly opened when the first FSREAD,
FSWRITE, or FSPOINT is issued to the file. Use of FSOPEN with OPENTYP=NONE is essentially
equivalent to an FSSTATE, and differs from an FSSTATE in that it may be used to create an FSCB
for the file. The CACHE parameter is ignored if OPENTYPE=NONE.

(reg)
indicates the register (other than register 1) whose low-order byte contains the OPENTYP value,
as defined in the FSCBD macro:
Field

Value
FSCBTNON

X'00' (OPENTYP=NONE)
FSCBTRD

C'R' (OPENTYP=READ)
FSCBTWR

C'W' (OPENTYP=WRITE)
FSCBTNEW

C'N' (OPENTYP=NEW)
FSCBTREP

C'X' (OPENTYP=REPLACE)

If omitted, OPENTYP assumes the value specified in the FSCB. If no FSCB parameter is coded, the
default value for OPENTYP is NONE. If OPENTYP=WRITE, REPLACE, or NEW is specified, the file mode

FSOPEN

Chapter 2. Preferred CMS Macro Instructions 207

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

specified in the fileid must be accessed as Read/Write. To use OPENTYP=READ, WRITE, NEW, or
REPLACE, FORM=E must also be specified.

Usage Notes
1. On return from the FSOPEN macro, register 1 contains the address of the FSCB for the file. If you did

not specify FSCB on the FSOPEN macro, one is created for you as part of the generated code. Thus,
you can use FSOPEN to create an FSCB for a file.

2. If you use FSOPEN on an existing file, the BSIZE, RECFM, and file mode fields in the FSCB are set to
reflect the actual file characteristics (note that BSIZE is set to the logical record length).

3. If you code both fileid and the FSCB parameter, CMS uses fileid to fill in the FSCB. This applies to the
BUFFER, BSIZE, CACHE, FORM, OPENTYP, RECFM, RECNO, and NOREC parameters as well.

4. If you want reentrant code, you must specify the FSCB parameter.
5. If a file is opened for NEW or REPLACE, or is new and opened for WRITE, an FSREAD issued before

any FSWRITE to the file returns an end of file return code.
6. If a new file is being created and is closed before an FSWRITE is issued, the file will not exist after it is

closed.
7. On return from FSOPEN, FSCBFST in the FSCB is updated as follows:

• For a successful open of an existing file:

– For OPENTYP=READ, WRITE, or NONE (note that a nonextended form FSCB implies an
OPENTYP=NONE), FSCBFST will contain the address of a copy of the file's FST.

– For OPENTYP=REPLACE, FSCBFST=-1.
– For OPENTYP=NEW, it is an error if the file exists, and the contents of FSCBFST are not modified.

• For a successful open of a new file:

– For OPENTYP=NEW, WRITE, or REPLACE, FSCBFST=0.
– For OPENTYP=READ or NONE (or if a nonextended form FSCB is used), it is an error if the file

does not exist, and FSCBFST remains unchanged.
• For RC=37, FSCBFST will contain the address of a copy of the opened file's FST. If the file is active

for write (for example, you previously opened it for NEW, WRITE, or REPLACE with FSOPEN or
FSWRITE), the FST will reflect the updates you have made to the file. Note that RC=37 does not
occur for OPENTYP=NONE. The logical record length field in the FST may not be available on a new
file currently open for output. This may be detected by a number of records of zero.

When a copy of the FST is returned, it is up to the caller to extract any information from this FST copy
immediately, as any use of the file system will potentially change its contents. Use the FSTD macro
to map the information in the FST. The format of the FST returned depends on whether FORM=E was
specified, and is identical to that returned by FSSTATE. See FSSTATE for a description of the FST and
see FSCBD for a description of the FSCB.

8. FSOPEN will produce different results for files in the Shared File System and files on minidisks.
FSOPEN for REPLACE causes immediate erasure of a minidisk file. However, if the file resides on an
SFS directory, the old version of the file will be available until an FSWRITE has occurred and updates
on that work unit are subsequently committed. For example, an FSOPEN for REPLACE followed
immediately by an FSCLOSE to that same file will create different results depending upon the location
of that file. If the specified file resides on a:

• minidisk—the file will be erased
• SFS directory—the original version will be unaltered.

Prior to Release 2.1, applications that used FSOPEN for REPLACE for an SFS file were allowed to
continue to write records even when the SFS file space limit was exceeded. The attempt to commit
when the file space limit was exceeded would result in a rollback of all the changes.

When writing to a file in a Release 2.1 or above SFS file pool server, the behavior of FSWRITE has
changed. FSWRITE will return an error when it detects that the file space limit is reached. An attempt

FSOPEN

208 z/VM: 7.3 CMS Macros and Functions Reference

to commit at that point will commit all changes. If you want your application to restore the original file
when using FSOPEN for REPLACE of an SFS file, you will need to issue a rollback request.

9. An SFS file can be opened only once for output at any given time. Hence, an attempt to process a file
with FSOPEN OPENTYP=WRITE, REPLACE or NEW when it is already opened for WRITE, REPLACE,
or NEW will fail regardless of whether it was previously opened with the FSOPEN macro, FSWRITE
macro, or the DMSOPEN callable services library (CSL) routine. Open for output will fail even if
another user has the file opened for output.

10. A minidisk file opened for output cannot be open for input simultaneously. Hence, an attempt to
process a file with FSOPEN OPENTYP=WRITE, REPLACE or NEW will fail when it has been opened
for any intent, regardless of whether it was previously opened by FSOPEN, FSREAD, FSWRITE or
FSPOINT macros, or the DMSOPEN or DMSOPDBK CSL routines. Any attempt to process a minidisk
file with FSOPEN will fail if it is already open for output by any CMS file system service.

11. For SFS files, the file is opened using the current default work unit ID.
12. The ‘update-in-place’ facility lets you write blocks back to their previous location on disk. For files on

minidisks, the ‘update-in-place’ attribute is indicated by a file mode number of 6.

Attention: Neither the integrity of the file nor of the disk on which it resides is guaranteed
when updating an existing file mode number 6 on a minidisk. For details, see 'EDF Data
Integrity' in z/VM: CMS Application Development Guide for Assembler. For SFS files, file
mode number 6 is treated the same as file mode number 1. ‘Update-in-place’ on SFS files
is achieved by specifying the overwrite attribute as INPLACE. For details, see 'Overwrite
Attribute' in z/VM: CMS Application Development Guide.

Note: For a variable format file, ‘update-in-place’ applies only if a record is replaced by a record with
the same length.

13. When opening and updating an SFS file with FSOPEN:

• In general, you cannot see another user's uncommitted changes. However, as a reader of an
update-in-place file, this is not necessarily true. It is possible that a reader may see a writer's
updates without either one closing the file or committing the data. Note that because CMS buffers
the file's data, the writer's updates must first be written to DASD and the reader's buffers must then
be read from DASD before the reader sees these updates. However, the timing of when the buffers
get read or written is highly dependent on the file size, the caching options specified when the file
was opened, and the record access patterns of both the reader and the writer.

• Although you generally cannot see another user's uncommitted changes you can see your own
uncommitted changes on the same work unit. If you update and close a file and then reopen it on
the same work unit, you will see the updated version. If you do not close the file and open it a
second time, or if you open it on another work unit, you will only see the last committed version of
the file.

14. A single user cannot open a given fileid more than once using the file system macros (FSOPEN,
FSWRITE, FSREAD, FSPOINT). Thus, an attempt to open a file with FSOPEN OPENTYP=READ, WRITE,
NEW or REPLACE is an error if the file is currently open as a result of a previous:

• FSOPEN with OPENTYP=READ, WRITE, NEW, or REPLACE
• FSREAD, FSWRITE, or FSPOINT.

In these cases, it would be necessary to close the file with FSCLOSE prior to reopening it. Note that
an earlier FSOPEN with OPENTYP=NONE specified does not actually open the file, and thus would
not cause an error on the subsequent FSOPEN with OPENTYP=READ, WRITE, NEW, or REPLACE
specified. Likewise, an FSOPEN with OPENTYP=NONE specified would not result in an error if the file
was already opened.

15. For OPENTYP=NEW or REPLACE, or when creating a new file with OPENTYP=WRITE, the RECFM
in the FSCB establishes the record format of the file at time of FSOPEN. For an existing file on
OPENTYP=READ, WRITE, or NONE, the RECFM in the FSCB is updated to reflect the actual file
characteristics.

FSOPEN

Chapter 2. Preferred CMS Macro Instructions 209

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

Note that for OPENTYP=WRITE, NEW, or REPLACE, the RECFM in the FSCB must contain an F or V
(even for OPENTYP=WRITE of an existing file). For OPENTYP=READ or NONE, the value is ignored.

16. For OPENTYP=READ, WRITE, NEW or REPLACE, the read and write pointers in the FSCBRPTR
(extended read pointer) and FSCBWPTR (extended write pointer) will be returned in the FSCB field,
even when the return code is 37. This information is not returned for OPENTYP=NONE, or when the
FORM=E is omitted (which implies OPENTYP=NONE).

17. For return code 37 (meaning the file has already been opened through the file system macro
interface) the FST will be updated with return information even though the open was not performed.
The file mode letter, file mode number, record format, logical record length, read and write pointers,
and address of a copy of the FST are all returned.

18. By default, SFS files created by FSOPEN have the RECOVER and NOTINPLACE attributes. To override
these defaults on FSOPEN, you must use the DMSPUSHA (SFS Push Attributes) CSL routine to set
the default recoverability and overwrite attributes you want for a specific file mode number. For
information about DMSPUSHA, see z/VM: CMS Callable Services Reference.

Return Codes
Register 15 contains one of the following return codes:
Code

Meaning
0

Open was successful.
3

Failing I/O operation to an existing minidisk file for OPENTYP=READ or WRITE.
7

The file has an invalid record format.
11

Invalid RECFM specified (neither F nor V) for OPENTYP=WRITE, NEW, or REPLACE.
12

Disk or directory not accessed R/W for OPENTYP=WRITE, NEW, or REPLACE.
20

Invalid character in file name or file type.
24

Invalid file mode. Allowable file modes are any alphabetic character, blank, or *, except that blank and
* are not allowed for OPENTYP=NEW. When file mode is alphabetic, an optional file mode number
(0-6) may also be specified.

25
Insufficient virtual storage available.

28
File not found for one of the following reasons:

• OPENTYP=WRITE or REPLACE with file mode of blank or * specified
• OPENTYP=NONE or READ with any legal file mode
• Insufficient authority for any OPENTYP and legal file mode.

30
Error opening an SFS file (other than listed specifically) but no rollback occurred.

31
Error opening an SFS file, and a rollback has occurred on the current default work unit ID.

An application error, system error, or lack of required resource can be the cause of this return code.
If the error persists, refer to the z/VM: Diagnosis Guide for more information about diagnosing the
problem.

FSOPEN

210 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

33
Invalid OPENTYP specified.

34
Invalid CACHE specified.

35
File already exists for OPENTYP=NEW.

36
Disk or directory not accessed.

37
File is already opened through macro interface, and you specified OPENTYP=READ, WRITE, NEW, or
REPLACE on this request.

40
One of the following errors occurred:

• A required CSL routine was dropped.
• A required CSL routine was not loaded.
• There was an error in a user exit routine.
• There was an error calling the user accounting exit routine (DMS2AB).
• You are already writing to a different resource such as another SFS file pool, and your environment

is not set up for CRR. For example, the CRR Recovery Server is not available, or you are writing to a
file in a VM/SP 6 file pool.

49
External object cannot be opened.

50
File is in DFSMS/VM migrated status and implicit RECALL is set to OFF.

51
Error occurred during DFSMS/VM file recall processing.

55
APPC/VM error.

70
One of the following sharing conflicts occurred:

• The file is locked.
• A deadlock was detected.
• The file is open for write through SFS OPEN and OPENTYP of WRITE or REPLACE is specified on this

request.
• The file is open for write by another user and OPENTYP of WRITE or REPLACE is specified on this

open.
• There was an attempt to make uncommitted updates to more than one file pool on a single work

unit.
• The minidisk file is already open by DMSOPEN or DMSOPDBK with an output intent when issuing an

FSOPEN for intent of READ.
• The minidisk file is already open by DMSOPEN or DMSOPDBK when issuing an FSOPEN for intents

NEW, WRITE, or REPLACE.

80
I/O error accessing OS dataset.

81
OS read password protected dataset.

82
OS dataset organization is not BSAM, QSAM, or BPAM.

FSOPEN

Chapter 2. Preferred CMS Macro Instructions 211

83
OS dataset has more than 16 extents.

84
Attempt to open a file on an OS or DOS formatted minidisk.

88
Nonextended format FSCB supplied and a nonextended format copy of the FST cannot be built
(number of records or number of data blocks exceeds 65535).

99
A required system resource is unavailable for one of the following reasons:

• There is insufficient virtual storage for the file pool server.
• The file pool server is unavailable.
• File is in migrated status and DFSMS is not enabled.

FSOPEN

212 z/VM: 7.3 CMS Macros and Functions Reference

FSPOINT

label

FSPOINT fileid

,FSCB= label

( reg)

FSCB= label

( reg)

,WRPNT=0

,WRPNT= number

( reg)

,RDPNT=0

,RDPNT= number

( reg)

,FORM=E

,ERROR=*

,ERROR= addr

( reg)

Purpose
Use the FSPOINT macroinstruction to reset the write and read pointers for a file. You must have read or
write authority on the target file.

Parameters
Required Parameters:
fileid

specifies the CMS file identifier. It cannot be an erased or revoked alias. Acceptable values are:
‘fn ft fm’

specifies the file ID enclosed in quotation marks and separated by blanks. If fm is omitted, A1 is
assumed.

(reg)
specifies a register, other than 0 or 1, that contains the address of the file ID (18 characters).
When you specify (reg), the file ID must be exactly 18 characters in length; 8 for the file name, 8
for the file type, and 2 for the file mode. Shorter names must be padded with blanks. If the file
mode is left blank, it is treated the same as an asterisk.

An asterisk (*) is not allowed for the file name or file type. An asterisk is allowed for the file mode, but
is not generally recommended—see Usage Note “5” on page 214.

FSCB=
specifies the address of an FSCB. Acceptable values are:
label

specifies the label of an FSCB macroinstruction.
(reg)

specifies a register containing the address of an FSCB.

Note: The referenced FSCB should have the same specification for FORM as this FSPOINT.

Optional Parameters:

FSPOINT

Chapter 2. Preferred CMS Macro Instructions 213

label
is an optional assembler label for the statement.

WRPNT=
specifies the new value of the write pointer. A write pointer of negative 1 (-1) indicates that the next
item is to be put at the end of the file. A value of 0 specifies no change. If WRPNT is not specified,
WRPNT=0 is the default. Acceptable values are:
number

specifies the new value of the write pointer as an absolute expression.
(reg)

specifies a register other than 1 containing the binary number.

RDPNT=
specifies the new value of the read pointer. A value of 0 specifies no change. If RDPNT is not specified,
RDPNT=0 is the default. Acceptable values are:
number

specifies the new value of the read pointer as an absolute expression.
(reg)

specifies a register other than 1 containing the binary number.

FORM=E
specifies that an extended format FSCB is used. An extended format FSCB lets you specify a value
up to 2³¹ - 1 for WRPNT and RDPNT. If you do not specify FORM=E, the RDPNT value cannot exceed
65535 and the WRPNT value cannot exceed 65534.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

You can specify any general register other than 0, 1, or 15.

Usage Notes
1. You can use the same macroinstruction to change both the write and read pointers.
2. The file is implicitly opened for read in the following cases:

• The file has not been explicitly opened with an earlier FSOPEN OPENTYP=READ, WRITE, NEW, or
REPLACE.

• The file has not been implicitly opened by an earlier FSREAD, FSWRITE, or FSPOINT.
3. When accessing SFS files, if the file is not already open, it is opened using the current default work unit

identifier.
4. If you want reentrant code, you must specify the FSCB parameter.
5. When you specify the file mode as an asterisk, this usually means to locate the file with the specified

file name and file type on the first accessed mode (in alphabetic order). However, if there are any files
opened through an earlier FSOPEN, FSREAD, FSWRITE, or FSPOINT which match the file name and file
type, one of these will be located first (because CMS checks for open files first) and the match is not
guaranteed to follow the normal CMS file mode search order. Unexpected results may occur when you

FSPOINT

214 z/VM: 7.3 CMS Macros and Functions Reference

access the same file name and file type inconsistently, using a specific file mode letter in some cases
and an asterisk in others, and the given file ID exists on more than one accessed file mode.

If you want to access the file on the first accessed mode where it exists, the recommended approach is
to:

a. Set up an FSCB for the given file.
b. Use FSOPEN to open it, specifying the file mode as an asterisk. If the FSOPEN is successful,

FSOPEN will update the file mode appropriately in the FSCB.
c. Use FSPOINT, specifying the same FSCB you used to open the file with FSOPEN. The file ID is

already in the FSCB (and thus you would not specify it on FSPOINT) and has the file mode filled in
(no longer an asterisk).

Return Codes
Register 15 contains one of the following return codes:
Code

Meaning
0

Successful operation.
1

File not found or not authorized.
2

Invalid read pointer or write pointer specified:

• The read pointer was not in the range of 0 to 2³¹ - 1 when FORM=E was specified.
• The write pointer was not in the range of -1 to 2³¹ - 1 when FORM=E was specified.

Note: If FORM=E is not coded, out-of-range conditions are not checked.

3
I/O operation to a minidisk failed.

4
First character of file mode is illegal.

7
The file was not previously opened and the file has an invalid record format.

20
Invalid character detected in file name.

21
Invalid character detected in file type.

25
Insufficient virtual storage available.

30
Some error, other than those in this list of codes, occurred when trying to implicitly open an SFS file.
No rollback occurred.

31
Rollback occurred trying to implicitly open an SFS file. The work unit ID on which the rollback
occurred is the current default work unit ID.

36
Disk or directory not accessed.

40
One of the following errors occurred:

• A required CSL routine was dropped.
• A required CSL routine was not loaded.

FSPOINT

Chapter 2. Preferred CMS Macro Instructions 215

• There was an error in a user exit routine.
• There was an error calling the user accounting exit routine (DMS2AB).

55
APPC/VM error.

70
SFS file sharing conflict or minidisk file is already open by DMSOPEN or DMSOPDBK

80
I/O error accessing OS dataset.

81
OS read password protected dataset.

82
OS dataset organization is not BSAM, QSAM, or BPAM.

83
OS dataset has more than 16 extents.

84
Attempt to point to a file on an OS or DOS formatted minidisk.

99
A required system resource is unavailable for one of the following reasons:

• There is insufficient virtual storage for the file pool.
• The file pool server is unavailable.

FSPOINT

216 z/VM: 7.3 CMS Macros and Functions Reference

FSREAD

label

FSREAD fileid

, FSCB = fscb_label

( reg)

FSCB = fscb_label

( reg)

, FORM = E , BUFFER = addr

( reg)

, BSIZE = size

( reg)

, RECFM = F

V

( reg)

, RECNO = number

( reg)

, NOREC = numrec

( reg)

, ERROR = *

, ERROR = addr

( reg)

Purpose
Use the FSREAD macroinstruction to read one or more records from a file into your I/O buffer. The file
must be on a minidisk or in an accessed directory to which you have read or write authority.

Parameters
Required Parameters:
fileid

specifies the CMS file identifier. It cannot be an erased or revoked alias. Also, you must have read or
write authority to the file. Acceptable values are:
‘fn ft fm’

the file ID enclosed in single quotation marks and separated by blanks. If fm is omitted, A1 is
assumed.

(reg)
a register, other than 0 or 1, containing the address of the file ID (18 characters). When you
specify (reg), the file ID must be exactly 18 characters in length: 8 for the file name, 8 for the file
type, and 2 for the file mode. Shorter names must be padded with blanks. If the file mode is left
blank, it is treated the same as an asterisk.

An asterisk is not allowed for the file name or file type. An asterisk is allowed for the file mode, but is
not generally recommended— see Usage Note “19” on page 220.

FSREAD

Chapter 2. Preferred CMS Macro Instructions 217

FSCB=
specifies the address of an FSCB. Acceptable values are:
fscb_label

specifies the label of an FSCB macroinstruction.
(reg)

specifies a register containing the address of an FSCB.

Note: The referenced FSCB should have the same specification for FORM as this FSREAD.

Optional Parameters:
label

is an optional assembler label for the statement.
FORM=E

must be specified when you use the extended format FSCB. (An extended format FSCB lets you
specify a value up to 2³¹ - 1 for RECNO and NOREC. If you do not specify FORM=E, the RECNO and
NOREC values cannot exceed 65535.

BUFFER=
specifies the address of the I/O buffer into which the records are to be read. Acceptable values are:
addr

specifies the address of the I/O buffer as a relocatable expression.
(reg)

specifies the register (other than register 1) containing the address of the I/O buffer.

Note: The buffer address is interpreted as a 31-bit field and the high order bit is ignored.

BSIZE=
specifies the number of bytes to be read. For a file with variable-length records, this parameter
specifies the length of the record to be read. For a file with fixed-length records, this parameter must
be equal to the product of the NOREC parameter and the logical record length. This must be a positive
signed binary integer. Acceptable values are:
size

specifies the number of bytes to be read or written as an absolute expression.
(reg)

specifies the register (other than register 1) containing the number of bytes to be read or written.

RECFM=
specifies the format in the file. Acceptable values are:
F

specifies that every record in the file has the same length. This is the default value if FSCB is not
specified.

V
specifies that records in the file may have different lengths.

(reg)
specifies the register (other than register 1) whose low-order byte contains the record format (C'F'
or C'V').

RECNO=
specifies the record number of the first (or only) record to be read, relative to the beginning of the file,
record 1. If FSCB is not specified, the default is 0, which indicates that the first (or only) record to be
read is the record which follows the last record read by the previous FSREAD. Acceptable values are:
number

specifies the record number as an absolute expression.

FSREAD

218 z/VM: 7.3 CMS Macros and Functions Reference

(reg)
specifies the register (other than register 1) containing the record number.

NOREC=
specifies the number of records to be read. If FSCB is not specified, the default is 1, which is also the
only valid value for files with variable-length records. Acceptable values are:
numrec

specifies the number of records as an absolute expression.
(reg)

specifies the register (other than register 1) containing the number of records.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter,
control passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.
You can specify any general register other than 0, 1, or 15.

Usage Notes
1. FSREAD updates the read pointer so that, if RECNO=0 on the next FSREAD operation, reading begins

following the last record read by this FSREAD.
2. On return from the FSREAD macro, register 1 contains the address of the FSCB for the file. (If the

FSCB parameter was not specified, the FSREAD macro creates one as part of the generated code.)
Register 0 contains the number of bytes actually read. Register 0 is set on both the error and nonerror
paths. The number of bytes read is zero for any return code other than 0 or 8. This information is also
contained in the FSCBNORD field of the FSCB.

3. If an FSCB macroinstruction has not been coded for a file (and you do not code the FSCB parameter
on FSREAD), you must specify the BUFFER and BSIZE parameters. If the file contains variable-length
records, you must also specify RECFM=V.

4. If you code both fileid and the FSCB parameter, CMS uses fileid to fill in the FSCB. This applies to the
BUFFER, BSIZE, FORM, RECFM, RECNO, and NOREC parameters as well.

5. If you want reentrant code, you must specify the FSCB parameter.
6. For the first read operation in a newly-opened existing file, reading begins with record 1 unless

otherwise specified by the RECNO parameter. For subsequent read operations, reading begins
following the last record read unless the RECNO parameter is specified with a nonzero value to
indicate the number of the record to be read.

To read records sequentially beginning with a particular record number, use the RECNO parameter
to specify the first record to be read. On the next FSREAD macroinstruction, use RECNO=0 so that
reading continues sequentially, following the first record read. This can also be accomplished by
coding an FSPOINT macro with the RDPNT operand set to the record number of the first record to be
read.

7. If an attempt is made to read a record which has never been written (referred to as a sparse record)
in a file of fixed-length records, CMS returns a record of all X'00'. You can read a sparse record by
specifying an unused record number for the RECNO parameter.

8. The CMS file system does not support null (zero-length) records. The FSREAD macro cannot be used
to read records with a length of 0.

FSREAD

Chapter 2. Preferred CMS Macro Instructions 219

9. To read more than one record on a single FSREAD (valid for fixed-length files only), use the BSIZE
and NOREC parameters to specify the sum of the lengths of the records to be read and the number
of records to be read, respectively. For example, to read ten 80-byte records, you should specify
BSIZE=800 and NOREC=10. The buffer you use must be at least 800 bytes long.

10. Variable-length records can be up to 65,535 bytes. Variable-length records are read one at a time.
When reading variable-length records, a record that is longer than the buffer length is truncated.

11. If a record is longer than the buffer length, FSREAD truncates the record. If the length of a group
of records to be read is longer than the buffer length, all data beyond the length of the buffer is
truncated, but the read pointer is still positioned at the end of the group of records read.

To avoid a truncation warning, the value specified on BSIZE must be the product of the logical record
length and NOREC. However, it is not considered an error if the BSIZE value is not equal to this
product. When it is not, it is possible to skip data during sequential reads. For example, suppose a
file has twenty 80-byte fixed-length records. If the first read from the file requests five records and
specifies a data length of 300, the data from the first three records and the first 60 bytes of the fourth
record will be placed in the buffer and a truncation warning will be returned. If the next read does
not specify a position number, reading will begin with record 6, thereby skipping the last 20 bytes in
record 4 and all of record 5.

12. The BSIZE parameter specifies the maximum number of bytes to be read. The amount of data placed
in the buffer is less than the value specified in the BSIZE parameter when:

• The position parameter (or its default value) specifies a record beyond the current end of the file. In
this case, no data is placed in BUFFER and an end-of-file warning is returned to the caller.

• The end of the file is reached before filling BUFFER because more records were requested than
remained in the file. No end-of-file warning is returned.

• For a file with fixed-length records, the product of the NOREC parameter times the logical record
length is less than the value specified by the BSIZE parameter. In this case, the product specifies
the number of bytes placed in the user’s buffer and no warning is returned to the caller.

• The file has variable-length records and the length of the record being read is less than the value in
the BSIZE parameter.

When the read is successful but the amount of data placed in the buffer is less than the size specified,
the buffer space beyond the record(s) read in may contain unpredictable characters because FSREAD
reads the record(s) without clearing the buffer first.

13. An end-of-file warning (return code 12) is returned only when no data is placed in the buffer. FSREAD
does not return a warning (return code 12) when it reads fewer records than requested because of
reaching the end of the file.

14. The read is considered successful if the return code is 0, 8, or 12.
15. The contents of the buffer are unpredictable when the read is not successful; data in the buffer

before the FSREAD may be partially modified.
16. The file is implicitly opened for read when the file has not been:

• Explicitly opened with an earlier FSOPEN OPENTYP=READ, WRITE, NEW, or REPLACE
• Implicitly opened by an earlier FSREAD, FSWRITE, or FSPOINT.

17. When accessing SFS files, if the file is not already open, it is opened using the current default work
unit identifier.

18. For a file open for output, the FSCBTHEX (X'80') indicator bit of the FSCBFLG byte indicates when you
have reached your SFS file space threshold. (For more information on the SFS file space threshold,
see the SET THRESHOLD command in z/VM: CMS Commands and Utilities Reference.) Because the
CMS portion of the file system does buffering, you will only see the indicator when it is necessary
to write the buffers to the file pool. This can occur during a read, write, or close. For small files, the
indicator might not be returned until the close.

19. When you specify the file mode as an asterisk, this ordinarily means to locate the file with the
specified file name and file type on the first accessed mode (in alphabetic order). However, if there
are any files opened through an earlier FSOPEN, FSREAD, FSWRITE, or FSPOINT which match the file

FSREAD

220 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

name and file type, one of these will be located first (because CMS checks for open files first) and
the match is not guaranteed to follow the normal CMS file mode search order. Unexpected results
may occur when you access the same file name and file type inconsistently, using a specific file mode
letter in some cases and an asterisk in others, and the given file ID exists on more than one accessed
file mode.

If you want to access the file on the first accessed mode where it exists, the recommended approach
is to:

• Set up an FSCB for the given file.
• Use FSOPEN to open it, specifying the file mode as an asterisk. If the FSOPEN is successful,

FSOPEN will update the file mode appropriately in the FSCB.
• Use FSREAD, specifying the same FSCB you used to open the file with FSOPEN. The file ID is

already in the FSCB (and thus you would not specify it on FSREAD) and has the file mode filled in
(no longer an asterisk).

Return Codes
Register 15 contains one of the following return codes:
Code

Meaning
0

Successful execution (also used for SFS reason code 51050 = successful operation, but SFS file pool
block threshold was reached during the operation).

1
File not found, disk not accessed, or insufficient authority.

2
Invalid buffer address.

3
I/O operation to a minidisk failed.

This may occur if you link to and access another user's disk, then try to read a file that was refiled by
its owner after you issued the ACCESS command. Re-issue the ACCESS command and try to read the
file again.

It is also possible that the disk was detached (through the DETACH command) without having been
released (through the RELEASE command), or the disk is an unsupported device.

4
First character of file mode is illegal.

5
Number of records to read is equal to zero.

7
AFT is not marked with a record format of F or of V. If the file was not previously opened, this indicates
that the file has an invalid record format.

8
Successful operation, but the buffer was too small to hold all of the requested data. The buffer was
filled with as much data as it would hold.

11
Number of records to read is not exactly one for a file with variable-length records.

12
No records were read because end of file was reached or because the position parameter specified a
record number greater than the number of records in the file.

13
Found an invalid displacement in the AFT for a file with variable-length records (this indicates a coding
error: it should not occur).

FSREAD

Chapter 2. Preferred CMS Macro Instructions 221

20
Invalid character detected in file name.

21
Invalid character detected in file type.

25
Insufficient free virtual storage available for file system control blocks (also used for SFS reason code
91028 = unable to obtain space on the system stack).

26
Position is negative, the number of records to read is negative, or position plus the number of records
to process exceeds 231 - 1, the file system capacity.

29
Storage group space limit reached.

30
Some error, other than those in this list of codes, occurred while accessing an SFS file. No rollback
occurred.

31
Rollback occurred while trying to access an SFS file. The work unit ID on which the rollback occurred
is the default work unit ID at the time the file was opened by the first operation to the file.

An application error, system error, or lack of required resource can be the cause of this return code.
If the error persists, refer to the z/VM: Diagnosis Guide for more information about diagnosing the
problem.

40
One of the following errors occurred:

• A required CSL routine was dropped.
• A required CSL routine was not loaded.
• There was an error in a user exit routine.
• There was an error calling the user accounting exit routine (DMS2AB).

42
Invalid record length detected while attempting to read a variable length record.

43
Logical record length is non-positive.

44
Last record number is non-positive.

47
File type is unsupported for a block operation.

48
File is empty.

49
External object cannot be opened.

50
File is in DFSMS/VM migrated status and implicit RECALL is set to OFF.

51
Error occurred during DFSMS/VM file recall processing.

55
APPC/VM error.

70
SFS file sharing conflict or minidisk file is already open by DMSOPEN or DMSOPDBK with an output
intent.

FSREAD

222 z/VM: 7.3 CMS Macros and Functions Reference

80
I/O error accessing OS dataset.

81
OS read password protected dataset.

82
OS dataset organization is not BSAM, QSAM, or BPAM.

83
OS dataset has more than 16 extents.

84
Attempt to read a file on an OS or DOS formatted minidisk.

99
A required system resource is unavailable for one of the following reasons:

• There is insufficient virtual storage for the file pool server.
• The file pool server is unavailable.
• File is in migrated status and DFSMS is not enabled.

FSREAD

Chapter 2. Preferred CMS Macro Instructions 223

FSSTATE

label

FSSTATE fileid

,FSCB= fscb_label

( reg)

FSCB= fscb_label

( reg)

,FORM=E

,STATEW=NO

,STATEW= YES

( reg)

( addr , mask)

,MSG=NO

,MSG= YES

( reg)

( addr , mask)

,ERROR=*

,ERROR= addr

( reg)

Purpose
Use the FSSTATE macroinstruction to determine whether a particular file exists.

Parameters
Required Parameters:
fileid

specifies the CMS file identifier. Acceptable values are:
‘fn ft fm’

specifies the file ID enclosed in single quotation marks and separated by blanks. If fm is omitted,
A1 is assumed. An asterisk (*) can be specified for fn, ft, or fm, or any combination. Specifying
asterisks for both fn and ft indicates that you want to check for the existence of any file. Specifying
an asterisk for fm means that the file with the specified file name and file type on the first
accessed mode (in alphabetic order) will be found.

(reg)
specifies a register, other than 0 or 1, that contains the address of the file ID (18 characters).
When you specify (reg), the file ID must be exactly 18 characters in length: 8 for the file name, 8
for the file type, and 2 for the file mode. Shorter names must be padded with blanks. If the file
mode is left blank, it is treated the same as an asterisk, meaning that the file with the specified file
name and file type on the first accessed mode (in alphabetic order) will be found.

Note: Because CMS checks for open files first, you may get unexpected results when specifying an
asterisk for fm if there are open files matching the file name and file type specified.

FSCB=
specifies the address of an FSCB. Acceptable values are:

FSSTATE

224 z/VM: 7.3 CMS Macros and Functions Reference

fscb_label
specifies the label on an FSCB macroinstruction.

(reg)
specifies a register that contains the address of an FSCB.

Note: The referenced FSCB should have the same specification for FORM as this FSSTATE.

Optional Parameters:
label

is an optional assembler label for the statement.
FORM=E

must be specified when the extended format FSCB is being used. An extended format FSCB is
required to process files with more than 65535 records or more than 65535 data blocks.

STATEW=
specifies whether STATEW processing is to be performed. STATEW is a CMS command that you can
use to verify the existence of a file on a disk. However, STATEW will not find a file for which you do not
have write authority nor a file which is on a file mode accessed read only. For more information, see
z/VM: CMS Commands and Utilities Reference. Acceptable values are:
NO

specifies that STATEW processing is not to be performed. This is the default value.
YES

specifies that STATEW processing is to be performed.
(reg)

the macro checks the value of the specified register (other than register 1) and, if it is 0, sets
STATEW to NO. If the register contains a nonzero value, the macro sets STATEW to YES.

(addr,mask)
defines a single bit in storage that sets the value of the STATEW parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then STATEW is set to NO. If the bit is 1, then STATEW is set to YES. For
example, to test the first bit in the single byte of storage at location FLAGS, specify the STATEW
parameter as

STATEW=(FLAGS,X'80')

To set the value of the STATEW parameter at assembly time, specify STATEW=YES or STATEW=NO. To
set the value at execution time, specify STATEW=(reg) or STATEW=(addr,mask).

MSG=
specifies whether messages are to be displayed during STATE processing. Acceptable values are:
NO

specifies that messages are not to be displayed. This is the default value.
YES

specifies that messages are to be displayed.
(reg)

the macro checks the value of the specified register (other than register 1) and, if it is 0, sets MSG
to NO. If the register contains a nonzero value, the macro sets MSG to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MSG parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the

FSSTATE

Chapter 2. Preferred CMS Macro Instructions 225

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

specified bit is 0, then MSG is set to NO. If the bit is 1, then MSG is set to YES. For example, to test
the first bit in the single byte of storage at location MSGFLAG, specify the MSG parameter as

MSG=(MSGFLAG,X'80')

To set the value of the MSG parameter at assembly time, specify MSG=YES or MSG=NO. To set the
value at execution time, specify MSG=(reg) or MSG=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

You can specify any general register other than 0, 1, or 15.

Usage Notes
1. FSSTATE will not find aliases that have been erased or revoked, nor files for which the user does not

have read (STATEW=NO) or write (STATEW=YES) authority.
2. If the specified file exists, FSSTATE returns a 0 return code in register 15.

Register 1 contains the address of a copy of the file status table (FST) information for the specified
file. Use the FSTD macro to map information about CMS disk files in the FST returned by FSSTATE. Any
information needed from the FST should be extracted immediately after the FSSTATE call because any
use of the file system may change its contents.

For FORM=E, the FST contains the following information:

Decimal
Displace-
ment

Field Description

0 File name

8 File type

16 Reserved

24 File mode

26 Reserved

30 Record format (F/V)

31 FST Flag Byte

32 Logical record length

36 Reserved

40 Alternate file origin pointer

44 Alternate number of data blocks

48 Alternate item count

52 Number of pointer block levels

53 Length of pointer element

FSSTATE

226 z/VM: 7.3 CMS Macros and Functions Reference

Decimal
Displace-
ment

Field Description

54 Alternate date/time (yy mm dd hh mm ss)

60 Real file mode

When FORM=E is not specified, the FST contains the following information:

Decimal
Displace-
ment

Field Description

0 File name

8 File type

16 Date (mmdd) last written

18 Time (hhmm) last written

20 Write pointer (number of item)

22 Read pointer (number of item)

24 File mode

26 Number of records in file

28 Disk address of first chain link

30 Record format (F/V)

31 FST Flag Byte

32 Logical record length

36 Number of 800-byte data blocks

38 Year (yy) last written

Flag settings for the FST Flag Byte for both forms:

Bits 0 and 1 describe how the disk containing the file is accessed:
Value

Meaning
X'C0'

Extension of read/write disk
X'80'

Read/write disk
X'40'

Extension of read-only disk
X'00'

Read-only disk

Bit 3 indicates whether the file is a Shared File System (SFS) file or a minidisk file:
Value

Meaning
X'10'

The file resides in the Shared File System

FSSTATE

Chapter 2. Preferred CMS Macro Instructions 227

Bit 4 indicates the century the file was last written or updated. If bit 4 is off, then the year is in the
1900s. If bit 4 is on, then the year is in the 2000s.
Value

Meaning
X'08'

Century for date last written (0 = 19, 1 = 20). This corresponds to both Alternate date/time year yy
and the Year (yy) last written.

Bits 5, 6, and 7 describe whether the file is open (active) through the file system macro interface
(FSOPEN, FSREAD, FSWRITE, and FSPOINT):
Value

Meaning
X'04'

Active for reading
X'02'

Active for writing
X'01'

Active from a point

Note: The logical record length of a file field in the FST may not be available on an FSSTATE of a new
file currently open for output. This may be detected by a number of records of zero.

3. The FSSTATE macroinstruction disregards the file mode number specified when both the file name and
file type are explicitly specified. When the file name or file type (or both) are specified as asterisk (*),
the file mode number is respected.

4. The MSG parameter of the FSSTATE macroinstruction provides message control. MSG=YES issues
error messages for any nonzero return code. MSG=NO issues all error messages except:

• 002E File not found, RC=28.
• 069E Mode not accessed, RC=36.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
20

Invalid character in file name or file type.
24

Invalid file mode. Allowable file modes are any alphabetic character, blank, or *. When file mode is
alphabetic, an optional file mode number (0-6) may also be specified.

28
File not found or not authorized, or not accessed R/W when STATEW=YES.

36
Disk or directory not accessed.

80
I/O error accessing OS dataset.

81
OS read password protected dataset.

82
OS dataset organization is not BSAM, QSAM, or BPAM.

83
OS dataset has more than 16 extents.

FSSTATE

228 z/VM: 7.3 CMS Macros and Functions Reference

88
Non-extended format FSCB supplied and a non-extended CDF format copy of the FST cannot be built
(number of records or number of data blocks exceeds 65535).

FSSTATE

Chapter 2. Preferred CMS Macro Instructions 229

FSTD

label

FSTD

Purpose
Use the FSTD macro to generate a DSECT for the FST control block. FSTD maps information about CMS
disk files in the FST returned by FSSTATE and FSOPEN.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the FSTD macro expansion is
labeled FSTD.

Usage Notes
1. The FSTD macroinstruction expands as follows:

 FSTD
FSTD DSECT
FSTDFNFT DS 0CL16 filename and filetype
FSTFNAME DS CL8 - filename
FSTFTYPE DS CL8 - filetype
FSTDATEW DS 1H - DATE LAST WRITTEN - MMDD
FSTTIMEW DS 1H - TIME LAST WRITTEN - HHMM
FSTWRPNT DS 1H - WRITE POINTER - ITEM NUMBER
FSTRDPNT DS 1H - READ POINTER - ITEM NUMBER
FSTFMODE DS 1H - FILE MODE - LETTER AND NUMBER
FSTRECCT DS 1H - NUMBER OF LOGICAL RECORDS
FSTFCLPT DS 1H - FIRST CHAIN LINK POINTER
FSTRECFM DS 1C - F*1 - RECORD FORMAT - F OR V
*
* FSTRECFM flag byte definitions
*
FSTDFIX EQU C'F' - Fixed record format
FSTDVAR EQU C'V' - Variable record format
*
FSTFLAGS DS 1X - F*2 - FST FLAG BYTE
*
* FSTFLAGS DESCRIPTION
*
FSTRWDSK EQU X'80' - READ/WRITE DISK
FSTRODSK EQU X'00' - READ/ONLY DISK
FSTDSFS EQU X'10' - Shared File FST
FSTXRDSK EQU X'40' - EXTENSION OF R/O DISK
FSTXWDSK EQU X'C0' - EXTENSION OF R/W DISK
FSTEPL EQU X'20' - EXTENDED PLIST
FSTDIA EQU X'40' - ITEM AVAILABLE
FSTDRA EQU X'01' - PREVIOUS RECORD NULL
 SPACE 1
FSTCNTRY EQU X'08' - Century for date last written
* (0=19, 1=20), corresponds to
* FSTYEARW, FSTADATI.
 SPACE 1
FSTACTRD EQU X'04' - ACTIVE FOR READING
FSTACTWR EQU X'02' - ACTIVE FOR WRITING
FSTACTPT EQU X'01' - ACTIVE FROM A POINT
FSTFILEA EQU X'07' - THE FILE IS ACTIVE
*
FSTLRECL DS 1F - LOGICAL RECORD LENGTH
FSTBLKCT DS 1H - NUMBER OF 800 BYTE BLOCKS
FSTYEARW DS 1H - YEAR LAST WRITTEN
FSTFOP DS F ALT. FILE ORIGIN POINTER
FSTADBC DS F ALT. NUMBER OF DATA BLOCKS

FSTD

230 z/VM: 7.3 CMS Macros and Functions Reference

FSTAIC DS F ALT. ITEM COUNT
FSTNLVL DS XL1 NUMBER OF POINTER BLOCK LEVELS
FSTPTRSZ DS XL1 LENGTH OF A POINTER ELEMENT
FSTADATI DS CL6 ALT. DATE/TIME(YY MM DD HH MM SS)
FSTREALM DS CL1 Real filemode
FSTFLAG2 DS 1X - F*3 - FST FLAG BYTE 2
* FSTFLAG2 DESCRIPTION
*
FSTPIPEU EQU X'10' - Reserved for CMS PIPELINES usage
 DS CL2 - reserved -
FSTDSIZE EQU (*-FSTD) - FST SIZE IN BYTES

FSTD

Chapter 2. Preferred CMS Macro Instructions 231

FSWRITE

label

FSWRITE fileid

, FSCB = fscb_label

( reg)

FSCB = fscb_label

( reg)

, FORM = E , BUFFER = addr

( reg)

, BSIZE = size

( reg)

, RECFM = F

V

( reg)

, RECNO = number

( reg)

, NOREC = numrec

( reg)

, ERROR = *

, ERROR = addr

( reg)

Purpose
Use the FSWRITE macroinstruction to write a record from an I/O buffer to a CMS file. The file must be
on a read/write minidisk or in an SFS directory accessed in read/write status. If the file is in an SFS
directory, you must have the proper authorities. (Use the FORCERW option of the ACCESS command to
access another user's directory in read/write status.)

Parameters
Required Parameters:
fileid

specifies the CMS file identifier. The file specified cannot be an erased or revoked alias.
‘fn ft fm’

the file ID enclosed in single quotation marks and separated by blanks. If fm is omitted, A1 is
assumed.

(reg)
a register, other than 0 or 1, containing the address of the file ID (18 characters). When you
specify (reg), the file ID must be exactly 18 characters in length: 8 for the file name, 8 for the file
type, and 2 for the file mode. Shorter names must be padded with blanks. The file mode letter
must be specified; if the file mode number is left blank, it is assumed to be the same as the
existing file or 1 in the case of a new file.

An asterisk (*) is not allowed for fn, ft, or fm.

FSWRITE

232 z/VM: 7.3 CMS Macros and Functions Reference

FSCB=
specifies the address of an FSCB. Acceptable values are:
fscb_label

specifies the label on an FSCB macroinstruction.
(reg)

specifies a register containing the address of an FSCB.

Note: The referenced FSCB must have the same specification for FORM as this FSWRITE.

Optional Parameters:
label

is an optional assembler label for the statement.
FORM=E

must be specified when the extended format FSCB is being used. (An extended format FSCB lets you
specify a value up to 2³¹ - 1 for RECNO and NOREC. If you do not specify FORM=E, the RECNO and
NOREC values cannot exceed 65535.

BUFFER=
specifies the address of the I/O buffer containing the record(s) to be written. Acceptable values are:
addr

specifies the address of the I/O buffer as a relocatable expression.
(reg)

specifies the register (other than register 1) containing the address of the I/O buffer.

Note: The buffer address is interpreted as a 31-bit field and the high order bit is ignored.

BSIZE=
specifies the size in bytes to be written. For a file with variable-length records, this parameter
specifies the length of the record to be written. For a file with fixed-length records, this parameter
must be equal to the product of the records parameter and the logical record length. This must be a
positive signed binary integer. Acceptable values are:
size

specifies the number of bytes to be read or written as an absolute expression.
(reg)

specifies the register (other than register 1) containing the number of bytes to be read or written.

RECFM=
specifies the format in the file. Acceptable values are:
F

specifies that every record in the file has the same length. This is the default value if FSCB is
omitted.

V
specifies that records in the file may have different lengths.

(reg)
specifies the register (other than register 1) whose low-order byte contains the record format (C'F'
or C'V').

RECNO=
specifies the record number of the first (or only) record to be written, relative to the beginning of the
file, record 1. The default is 0 if FSCB is omitted, which indicates that the first (or only) record to be
written is to follow the last record written by the previous FSWRITE. Acceptable values are:
number

specifies the record number as an absolute expression.

FSWRITE

Chapter 2. Preferred CMS Macro Instructions 233

(reg)
specifies the register (other than register 1) containing the record number.

NOREC=
specifies the number of records to be written. The default is 1 if FSCB is omitted, which is also the
only valid value for a file with variable-length records. Acceptable values are:
numrec

specifies the number of records as an absolute expression.
(reg)

specifies the register (other than register 1) containing the number of records.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter,
control passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.
n specify any general register other than 0, 1, or 15.

Usage Notes
1. FSWRITE updates the write pointer so that, if RECNO=0 is specified on the next FSWRITE operation,

writing begins following the last record written by this FSWRITE.
2. On return from the FSWRITE macroinstruction, register 1 contains the address of the FSCB for

the file. (If the FSCB parameter was not specified, the FSWRITE macro creates one as part of the
generated code.)

3. If an FSCB macroinstruction has not been coded for a file (and you do not code the FSCB parameter
on FSWRITE), you must specify the BUFFER and BSIZE parameters. If the file has variable-length
records, you must also specify RECFM=V.

4. If you code both fileid and the FSCB parameter, CMS uses fileid to fill in the FSCB. This applies to
FORM, BUFFER, BSIZE, RECFM, RECNO, and NOREC parameters as well.

5. If you want reentrant code, you must specify the FSCB parameter.
6. For new files, writing begins with record 1 unless otherwise specified by the RECNO parameter. For

existing files, writing begins following the last record written unless the RECNO parameter is specified
with a nonzero value to indicate the number of the record to be written.

To write records sequentially beginning with a particular record number, use the RECNO parameter to
specify the first record to be written. On the next FSWRITE macroinstruction, use RECNO=0 so that
writing continues sequentially, following the first record written.

7. For files with fixed-length records only, it is permissible to write a record with a position number more
than one greater than the number of the last record. Records that have a skipped position numbers
are referred to as sparse records. Sparse records are not written to a file, however, when you open
a file you can write to a record that was previously sparse. If an attempt is made to read a sparse
record it will be retrieved as all X'00' bytes. You can read a sparse record by specifying an unused
record number for the RECNO parameter.

8. The CMS file system does not support null (zero-length) records. The FSWRITE macroinstruction
cannot be used to write records with a length of 0.

9. To write more than one record on a single FSWRITE (valid for fixed-length files only), use the BSIZE
and NOREC parameters to specify the sum of the lengths of the records to be written and the number

FSWRITE

234 z/VM: 7.3 CMS Macros and Functions Reference

of records to be written, respectively. For example, to write ten 80-byte records, you should specify
BSIZE=800 and NOREC=10. The buffer you use must be at least 800 bytes long.

10. Variable-length records can be up to 65,535 bytes long. When you use the FSWRITE
macroinstruction to update an existing file of variable-length records, the replacement record must
be the same length as the original record. If it is not, the results are as follows:

• In the EDF file system, an attempt to write a record shorter or longer than the original record on a
disk formatted with 512-byte, 1 KB, 2 KB, or 4 KB block size results in truncation of the file at the
specified record number with no error return codes.

• An attempt to write a record shorter or longer than the original record in an SFS file with the
FSWRITE macro results in truncation of the file at the specified record number with no error return
codes. (If you are using the shared file system and do not need to use minidisk files, it would be
worthwhile for you to consider using DMSWRITE, the callable services library (CSL) interface.)

11. The ‘update-in-place’ facility lets you write blocks back to their previous location on disk. For files on
minidisks, the ‘update-in-place’ attribute is indicated by a file mode number of 6.

Attention: Neither the integrity of the file nor of the disk on which it resides is guaranteed
when updating an existing file mode number 6 on a minidisk. For details, see 'EDF Data
Integrity' in z/VM: CMS Application Development Guide for Assembler. For SFS files, file
mode number 6 is treated the same as file mode number 1. ‘Update-in-place’ on SFS files
is achieved by specifying the overwrite attribute as INPLACE. For details, see 'Overwrite
Attribute' in z/VM: CMS Application Development Guide.

Note: For a variable format file, ‘update-in-place’ applies only if a record is replaced by a record with
the same length.

12. The FSWRITE fails if the file has been explicitly opened with an FSOPEN OPENTYP=READ.
13. FSWRITE causes the file to be implicitly opened for write if the file has not been explicitly opened

with an FSOPEN OPENTYP=WRITE, NEW, or REPLACE, or if the file has not been opened by an earlier
FSWRITE. If the file has been implicitly opened for read by an earlier FSREAD or FSPOINT, the file is
then upgraded to an implicit open for write.

14. When accessing SFS files, if the file is not already open, it is opened using the current default work
unit identifier.

15. If the file is in an SFS directory, you must have write authority to the file. If you are creating a new file
in the directory, you must have write authority to the directory.

16. For a file open for output, the FSCBTHEX (X'80') indicator bit of the FSCBFLG byte indicates when you
have reached your SFS file space threshold. (For more information on the SFS file space threshold,
see the SET THRESHOLD command in z/VM: CMS Commands and Utilities Reference.) Because the
CMS portion of the file system does buffering, you will only see the indicator when it is necessary
to write the buffers to the file pool. This can occur during a read, write, or close. For small files, the
indicator might not be returned until the close.

17. An FSWRITE to a file in an SFS directory will fail when CMS detects that the file space is full2. If all the
conditions listed below are true, a file space full condition will imply that there is sufficient space left
on the SFS file space to close and commit all updated files. In other words, a subsequent commit will
commit all updates prior to the failing FSWRITE.

• There is no concurrent write sharing to the file space (that is file pool and user ID) among users.
• All SFS files being updated by your applications are at VM/ESA Release 2.1 or above. Note that files

can reside in more than one file space, and in more than one file pool.
• Your application modifies SFS files exclusively using:

– FS macros,

2 FSWRITE will not fail for a file space full condition when writing to pre-VM/ESA Release 2.1 SFS file pool
servers.

FSWRITE

Chapter 2. Preferred CMS Macro Instructions 235

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

– EXECIO, or
– OS Simulation WRITE/PUT macros.

• Your application does not acquire work unit IDs for SFS processing. In other words, your application
does not use the DMSGETWU, DMSPUSWU, or DMSPOPWU CSL routines to manipulate work unit
IDs.

If the above conditions are not met and a file space full condition is detected, you may have written
more blocks than are available in the file space. In the case where you have written more blocks than
are available, a rollback will be performed.

If you cannot guarantee that your application will be run exclusively in an environment where the
conditions listed above are met, you may use the FSCBTHEX (X'80') indicator bit of the FSCBFLG byte
to monitor file space usage to better anticipate a file space full condition.

18. It may appear from QUERY DISK or QUERY LIMITS output that there are enough blocks available to
write a record, but the FSWRITE fails with a return code 13. CMS is conservative in determining the
number of blocks needed to complete a write. Several factors influence this determination, including:

• system blocks written in addition to the data blocks,
• shadowing required to preserve data integrity, and
• system buffering of write requests.

Return Codes
Register 15 contains one of the following return codes:
Code

Meaning
0

Successful execution (also used for SFS reason code 51050 = successful operation, but SFS file pool
block threshold was reached during the operation).

1
Not authorized to write to file.

2
Invalid buffer address.

3
I/O operation to a minidisk failed.

This may occur if the disk was detached (through the DETACH command) without having been
released (through the RELEASE command), or the disk is an unsupported device.

4
First character of file mode is illegal or disk not accessed.

5
Second character of file mode is illegal.

6
The last record number to be written is too large (more than 65535) to fit in a halfword and an
extended plist is not specified.

7
Position specifies a record number that is more than one greater than the current number of records
in a file with variable-length records.

8
Size of output buffer is not greater than zero or an attempt was made to write a null record to a file
with variable length records.

11
FSCB is not marked with a record format of F nor of V.

FSWRITE

236 z/VM: 7.3 CMS Macros and Functions Reference

12
Disk or directory not accessed R/W.

13
Your minidisk is full or your SFS file space limit is reached.

14
Size of output buffer is not evenly divisible by the number of records for a file with fixed-length
records.

15
Attempt to alter the record length of a file with fixed-length records.

16
Record format specified not the same as file.

17
Size of output buffer is greater than 65535 for a file with variable-length records.

18
Number of records to write is not exactly one for a file with variable-length records.

20
Invalid character detected in file name.

21
Invalid character detected in file type.

24
File specified on FSCB does not satisfy input conditions.

25
Insufficient free storage available for file system control blocks (also used for SFS reason code 91028
= unable to obtain space on the system stack).

26
Position specifies a negative record number or number of records to write is negative or position plus
the number of records exceeds the file system capacity (231 - 1) or logical block number computed by
system exceeds the file system capacity (231 -1).

29
The storage group space limit was reached.

30
Some error, other than those in this list of codes, occurred while accessing an SFS file. No rollback
occurred.

31
Rollback occurred while trying to access an SFS file. The work unit on which the rollback occurred is
the default work unit at the time the file was opened by the first operation to the file.

An application error, system error, or lack of required resource can be the cause of this return code.
If the error persists, refer to the z/VM: Diagnosis Guide for more information about diagnosing the
problem.

38
File explicitly opened with read intent.

39
A disk is accessed as a read only extension of another, and a given file exists on the extension disk but
not on the parent disk. The file has been opened through FSREAD, FSPOINT or FSOPEN with a read
intent and the file mode specified on the original FS Macro is that of the parent disk. An FSWRITE was
subsequently issued using the same file ID. This may occur when the parent disk is accessed as Read
Only or Read Write.

40
One of the following errors occurred:

• A required CSL routine was dropped.

FSWRITE

Chapter 2. Preferred CMS Macro Instructions 237

• A required CSL routine was not loaded.
• There was an error in a user exit routine.
• There was an error calling the accounting exit routine (DMS2AB).

42
Block contains a variable-length record whose length is outside the range 1. n, where n is the value
specified during block interface initialization as the maximum length of any record in the file.

43
Logical record length is non-positive.

44
Last record number is non-positive.

47
File type is unsupported for a block operation.

49
External object cannot be opened.

50
File is in DFSMS/VM migrated status and implicit RECALL is set to OFF.

51
Error occurred during DFSMS/VM file recall processing.

55
APPC/VM error.

70
One of the following sharing conflicts occurred:

• The file is locked.
• The file pool server detected a deadlock.
• The file is open for write through SFS OPEN.
• The file is open for write by another user.
• You attempted to write to a file that is currently implicitly open for READ, but the file has been

changed since it was originally opened.
• The minidisk file is already open by DMSOPEN or DMSOPDBK when issuing an FSWRITE.

80
I/O error accessing OS dataset.

81
OS read password protected dataset.

82
OS dataset organization is not BSAM, QSAM, or BPAM.

83
OS dataset has more than 16 extents.

84
Attempt to write a file on an OS or DOS formatted minidisk.

99
A required system resource is unavailable for one of the following reasons:

• There is insufficient virtual storage for the file pool server.
• The file pool server is unavailable.
• File is in migrated status and DFSMS is not enabled.

FSWRITE

238 z/VM: 7.3 CMS Macros and Functions Reference

GETSID

label

GETSID DEVICE = ' vdev '

addr

( reg)

DEVNAME = ' devname '

addr

( reg)

, ERROR = *

, ERROR = addr

( reg)

1

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Default is the standard macro format.

Purpose
Use the GETSID macro to store in register 1 the Subsystem-Identification word (SID) for a device number
or name.

Parameters
Required Parameters:
DEVICE=

specifies the virtual device number of the device for which the Subsystem-Identification (SID) is to be
stored in register 1. The virtual device must be in the virtual device configuration. Acceptable values
are:
‘vdev’

is a quoted string of up to 4 characters designating the virtual device number of the device.
addr

is the address of a fullword containing the device number.
(reg)

specifies a register containing the device number. Valid registers are 2-12 enclosed in
parentheses.

DEVNAME=
specifies the symbolic name of the device for which the SID is stored in register 1. The device name
must be one of the standard CMS device names (for example, TAP1) or have been defined by a
previous HNDIO or HNDINT macroinstruction. Acceptable values are:

GETSID

Chapter 2. Preferred CMS Macro Instructions 239

‘devname’
is a quoted string of up to 4 characters designating the symbolic device name of the device.

addr
is the address of a four-byte character string containing the symbolic device name.

(reg)
specifies a register containing the address of the symbolic device name (a four-byte character
string). Valid registers are 2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. All I/O instructions that reference a subchannel require register 1 to contain the SID that corresponds

to a previously-defined virtual device or CMS device name. Because the GETSID macro returns the SID
in register 1, it should be invoked before issuing the first I/O instruction.

For example, the following sequence of instructions starts I/O to device TAP1.

GETSID DEVNAME='TAP1' * Get SID of TAP1 in R1
SSCH CCWS * Start I/O using the CCWs at loc CCWS.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
4

The specified device was not found.

GETSID

240 z/VM: 7.3 CMS Macros and Functions Reference

16
Reserved Not used.

GETSID

Chapter 2. Preferred CMS Macro Instructions 241

HNDEXT

label

HNDEXT SET , rtnaddr

'DUMMY'

SET Parameters

CLR ,

CODE =  extcode

CLRLIST = addr

( reg)

1

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

SET Parameters

, CODE =  extcode

, ECB = ( addr ,

OS

VSE)

, KEEP = NO

, KEEP = YES

( reg)

( addr , mask)

, SYSTEM = NO

, SYSTEM = YES

( reg)

( addr , mask)

, UWORD = addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the HNDEXT macroinstruction to create or delete external interrupt handlers. You can create interrupt
handlers for specific interrupt codes and you can establish a default external interrupt handler to process
interrupts that do not have specific handlers.

HNDEXT

242 z/VM: 7.3 CMS Macros and Functions Reference

Parameters
Required Parameters:
SET

defines an external interrupt handler. The CODE parameter implies the handler is for a specific
interrupt code. Omitting the CODE parameter defines a default external interrupt handler.

CLR
clears the interrupt handler routine for the specified code. Interrupt handling routines should not
issue HNDEXT CLR. If you do not specify a code to be cleared, the default handler is cleared.

rtnaddr
specifies the address of the interrupt handler.

‘DUMMY’
specifies that there is no handling routine for the defined interrupt code. When you specify ‘DUMMY’,
you must also specify ECB. If the interrupt for which you specify ‘DUMMY’ occurs, the first-level
interrupt handler posts the ECB for this code. Use the WAITECB macro to determine when this
happens.

CODE=extcode
specifies the external interrupt code you wish to handle or clear. Codes may be specified in the range
of X'0000' to X'FFFE'. If you specify interrupt code X'0000' for SET, HNDEXT creates a default external
interrupt handler.

CLRLIST=
clears the interrupt handlers listed at the specified address. The list should contain 2-byte external
interrupt codes for the handlers you want cleared. It should end with an 8-byte fence of X'FF'.
Acceptable values are:
addr

specifies the list of handlers to be cleared as an address.
(reg)

specifies the register containing the address of the list of handlers.

Optional Parameters:
label

is an optional assembler label for the statement.
ECB=

specifies the address and format (OS or VSE) of an event control block (ECB) to be posted in
connection with each such interrupt. Acceptable values are:
addr

specifies the address of an event control block.
OS

specifies the event control block in OS format. This is the default value.
VSE

specifies the event control block in VSE format.
(To suppress posting, the second-level interrupt handler can issue a return code of 4.)

If you specify the ‘DUMMY’ and ECB parameters, CMS posts the event control block as soon as
the interrupt is detected. To suspend execution until the specified event control block is posted, a
program can issue the WAITECB macro.

For more information on OS and VSE format event control blocks, see “WAITECB” on page 432.

KEEP=
specifies whether the interrupt handler is cleared at end-of-command. Acceptable values are:
NO

specifies that the interrupt handler is cleared. This is the default value.

HNDEXT

Chapter 2. Preferred CMS Macro Instructions 243

YES
specifies that the interrupt handler is not cleared. If you issue KEEP=YES, make sure the handler
routine itself survives end-of-command processing.

(reg)
specifies the register that contains the value for KEEP. The macro checks the value of the specified
register and, if it is 0, sets KEEP to NO. If the register contains a nonzero value, the macro sets
KEEP to YES.

(addr,mask)
defines a single bit in storage that sets the value of the KEEP parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then KEEP is set to NO. If the bit is 1, then KEEP is set to YES. For example, to
test the first bit in the single byte of storage at location APPFLAG, specify the KEEP parameter as

KEEP=(APPFLAG,X'80')

To set the value of the KEEP parameter at assembly time, specify KEEP=YES or KEEP=NO. To set the
value at execution time, specify KEEP=(reg) or KEEP=(addr,mask).

SYSTEM=
specifies whether the handler survives ABEND processing. Acceptable values are:
NO

specifies that the handler does not survive. This is the default value.
YES

specifies that the handler does survive. If you issue SYSTEM=YES, make sure the handler
routine itself survives abend processing. (For example, you can define the handler as a nucleus
extension.)

(reg)
specifies the register that contains the value for SYSTEM. The macro checks the value of the
specified register and, if it is 0, sets SYSTEM to NO. If the register contains a nonzero value, the
macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM
parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO. To
set the value at execution time, specify SYSTEM=(reg) or SYSTEM=(addr,mask).

End-of-command processing follows abend processing; therefore, if you want interrupt handlers to
survive abend processing and end-of-command processing, specify SYSTEM=YES and KEEP=YES.

UWORD=
specifies an optional fullword available to the handling routine. The address of the UWORD is
contained in register 0 when the handler routine is invoked. Acceptable values are:
addr

specifies the address of the UWORD.
(reg)

specifies a register that contains the address of the UWORD. Valid registers are 2-12 enclosed in
parentheses.

HNDEXT

244 z/VM: 7.3 CMS Macros and Functions Reference

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. External interrupt handler routines are called in the addressing mode of the program that issues the

HNDEXT macro.
2. External interrupt handler routines are called with the PSW disabled for external and I/O interrupts

and in storage key 0.
3. In an XC virtual machine, your second-level interrupt handler always receives control in primary space

address translation mode and always must return control to CMS in primary space mode.
4. You are responsible for providing the proper entry and exit linkage for your interrupt handling routine.

When your program receives control, the register contents are as follows:
Register

Contents
R0

Address of the user word (UWORD) specified on the HNDEXT macro.
R1

Address of the area containing the state of the machine at the time of interrupt. See “Purpose” on
page 188 for a description of the EXTUAREA macro, which maps this area.

R2-R11
Unspecified

R12
Handling routine entry address

R13
A pointer to the user save area (label EXTUSAVE) within the EXTUAREA

R14
Return address

R15
Handling routine entry address.

HNDEXT

Chapter 2. Preferred CMS Macro Instructions 245

Your routine must return control to the address in register 14, and must store one of the following
return codes in register 15:

• Zero (0)—Indicates the second-level handler is through handling the interrupt and the first-level
handler should post the ECB, if one was specified.

• Four (4)—Indicates the second-level handler has completed, and the first-level handler should not
post the ECB.

• Eight (8)—Indicates that CMS passes the interrupt to a user-specified default handler, if one exists;
otherwise CMS passes the interrupt to the system default handler.

5. The HNDEXT SET function cannot define handlers for codes that already have handlers. To define a
new handler for an interrupt code, you must clear the existing one and then define a new one.

6. CMS issues HNDEXT SET for all of the following external interrupt codes:
X'1202'

VCPU SIGP - use CMS Multitasking instead.
X'4000'

IUCV - use HNDIUCV instead.
X'0080'

Clock comparator or interval timer - use Timer Services or OS timer support instead.
X'2603'

VM Data Spaces -- use CSLs for Data Spaces instead.
X'2004'

Time zone change interrupt -- use Event Services instead.

Customers should use higher-level interfaces for these purposes instead of trying to intercept these
external interrupts directly.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
2

A handler already exists for the specified interrupt code. Before you can define a new handler, use
HNDEXT CLR to delete the existing handler.

3
The handler to be cleared was not found. If you specify the CLRLIST parameter and a handler
definition in the list was not previously SET, the operation terminates with a return code of 3. Register
1 contains the code of the nonexistent handler. HNDEXT CLR processing terminates when the first
invalid code in the list is detected; handlers specified after the code for the nonexistent handler are
not cleared.

11
Parameter list error; invalid function specified. The function was not SET or CLR.

12
Parameter list error; invalid CODE value specified. The CODE must be in the range of X'0000' to
X'FFFE'.

13
Parameter list error; ‘DUMMY’ was specified but no ECB parameter was provided.

14
Parameter list error; CLR of default handler specified with other handler entries. A parameter list was
built indicating the default entry (all 0s in the parameter list) but was not followed with a fence.

HNDEXT

246 z/VM: 7.3 CMS Macros and Functions Reference

HNDINT

label

HNDINT

SET ,

,

( devn , addr

0

,  vdev , ASAP

WAIT

)

CLR,

,

( devn)

, ERROR = *

, ERROR = addr

( reg)

Purpose

Use the HNDINT macroinstruction to trap interrupts for a specified I/O device. To receive device-specific
information, use the HNDIO macro. HNDIO is also recommended for use in new programs.

Parameters
Required Parameters:
SET

specifies that you want to trap interrupts for the specified device.
devn

specifies a 4-character symbolic name for the device whose interrupts are to be trapped.
addr

specifies the address of the interrupt handler routine. An address of 0 indicates that interrupts for the
device are to be ignored.

vdev
specifies the virtual device number, in hexadecimal, of the device whose interrupts are to be trapped.

ASAP
specifies that the routine at addr receive control as soon as the interrupt occurs.

WAIT
specifies that the routine at addr receives control after the WAITD macro is issued for the device.

CLR
specifies that you no longer want to trap interrupts for the specified device.

Note: Do not issue HNDINT CLR from within the interrupt handling routine.

Optional Parameters:
label

is an optional assembler label for the statement.

HNDINT

Chapter 2. Preferred CMS Macro Instructions 247

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Usage Notes
1. The specified handler routine runs in the addressing mode of the program that issues the HNDINT

macro.
2. In an XC virtual machine, your second-level interrupt handler always receives control in primary

space address translation mode and always must return control to CMS in primary space mode.
3. You are responsible for establishing proper entry and exit linkage for your interrupt handling routine.

When your routine receives control, the significant registers contain:
Register

Contents
R0-R1

I/O old PSW—This is a reconstructed PSW in basic control (BC) format. A program may extract the
real I/O old PSW from the INTBLOK.

R2-R3
Channel status word (CSW)—This is a reconstructed CSW. A program may extract the real I/O
status from the INTBLOK's IRB contents.

R4
Address of interrupting device

R5-R6
Contain zeros

R7-R13
Unspecified

R14
Return address

R15
Entry point address.

Your routine must return control to the address in register 14 and store a return code in register 15
to indicate whether processing is complete. A zero (0) in register 15 means that you are finished
handling the interrupt; any nonzero return code indicates that you expect another interrupt.

Note: Register 13 does not point to a save area for your use.
4. When your interrupt handler receives control, all I/O interrupts and external interrupts are disabled.

Your handler should not perform any I/O operations.
5. For I/O operations to a 3270-type device, use the CONSOLE macro rather than the HNDIO or HNDINT

macros to handle interrupts. (For more information on interrupt handling, see z/VM: CMS Application
Development Guide for Assembler.) Exit routines specified by the CONSOLE macro support multiple
applications for a 3270-type display device, while HNDINT supports only one. Furthermore, HNDINT
interrupt routines override CONSOLE only in the case of an unsolicited interrupt when no one issued a
CONSOLE WAIT.

6. I/O operations initiated by some forms of the DIAGNOSE instruction do not produce I/O interrupts
and are not trapped by HNDINT. If the I/O operation initiated by DIAGNOSE does produce I/O

HNDINT

248 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

interrupts for a device specified for HNDINT, then HNDINT traps the interrupts. For more information
about I/O operations initiated by the DIAGNOSE instruction, see z/VM: CP Programming Services.

7. You can use one HNDINT macroinstruction to define interrupt handling routines for more than one
device. The argument list for each device must be enclosed in parentheses and separated from the
next list by a comma.

8. If you specify WAIT, your interrupt handler receives control when a WAITD macroinstruction that
specifies the same symbolic device name is issued. If the WAITD macroinstruction is issued before
the interrupt occurs, then your interrupt handler receives control immediately after the interrupt is
received.

9. If you specify HNDINT with a different DEVNAME to create an additional handler for a specific device,
the new handler is inactive until all existing handlers are deleted. If you specify HNDIO with a
different DEVNAME to create an additional handler for a specific device, the new handler becomes
active immediately.

10. If a device for which an interrupt handler is defined is subsequently detached (using a CP DETACH
command) or redefined at a new address (using a CP DEFINE or REDEFINE command), then the
interrupt handler is cleared.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
1

An invalid device number (vdev) or interrupt handling routine address (addr) was specified.
2

Trap item replaces another of same device name.
3

An attempt was made to clear a nonexisting interrupt.
104

An out of storage condition occurred during processing.

HNDINT

Chapter 2. Preferred CMS Macro Instructions 249

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

HNDIO

label

HNDIO
1

SET SET Parameters

CLR CLR Parameters

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

SET Parameters
,DEVNAME= devname

( reg)

,EXIT= addr

( reg)

0

,DEVICE= vdev

( reg)

,NOTIFY=ASAP

,NOTIFY=WAIT ,INTBLOK=(intadr

( reg)

, intlen

( reg)

)

,UWORD= addr

( reg)

,KEEP=NO

,KEEP= YES

( reg)

( addr , mask)

,SYSTEM=NO

,SYSTEM= YES

( reg)

( addr , mask)

,PERSIST=NO

,PERSIST= YES

( reg)

( addr , mask)

CLR Parameters
,DEVNAME= devname

( reg)

,CLRLIST= addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

HNDIO

250 z/VM: 7.3 CMS Macros and Functions Reference

Purpose
Use the HNDIO macro to handle interrupts and to obtain complete I/O interrupt status for specified I/O
devices.

Parameters
Required Parameters:
SET

specifies that you want to handle interrupts for the specified device.
DEVNAME=

specifies a 4-character symbolic name for the device whose interrupts are to be handled (after SET) or
whose interrupts are to be cleared (after CLR). Acceptable values are:
devname

is a 4-character symbolic name for the device.
(reg)

specifies a register that contains the address of the 4-character symbolic name for the device.
EXIT=

specifies the address of the handling routine entry point that receives control when the interrupt
occurs. By default, interrupts are disabled when the handling routine assumes control. Acceptable
values are:
addr

specifies the address of the handling routine entry point.
(reg)

specifies a register that contains the address of the handling routine entry point.
0

causes CMS to ignore interrupts for the specified device.
DEVICE=

specifies in hexadecimal the virtual device number of the device that you handle interrupts for.
Acceptable values are:
vdev

specifies the virtual device number.
(reg)

specifies a register that contains the device address.
CLR

clears an interrupt handler routine for the specified device.

Note: Do not issue HNDIO CLR from within the interrupt handling routine.

CLRLIST=
clears the interrupt handlers listed at the specified address. Acceptable values are:
addr

specifies the address of the list.
(reg)

specifies a register that contains the address of the list. See the Usage Notes for examples.

Optional Parameters:
label

is an optional assembler label for the statement.
NOTIFY=

specifies when your program is notified of the interrupt. Acceptable values are:
ASAP

passes control to the handling routine as soon as the interrupt occurs. This is the default.

HNDIO

Chapter 2. Preferred CMS Macro Instructions 251

WAIT
passes control to the handling routine after the WAITD macro is issued for the device.

INTBLOK=
specifies the address of a user-provided area where, prior to transferring control to the specified
handling routine, CMS copies information about the interrupt. INTBLOK returns information from the
IRB (interrupt response block). Acceptable values are:
intadr

specifies the INTBLOK address
(reg)

specifies the INTBLOK address as a register that contains the address.
intlen

specifies the INTBLOK length as a label
(reg)

specifies the INTBLOK length as a register that contains the length.

The INTBLOK DSECT maps this area and contains a label, INTBLKSZ, which indicates the required size
of the INTBLOK.

UWORD=
specifies an optional fullword available to the handling routine. The address of the UWORD is
contained in general register 6 when the handler routine is invoked. Acceptable values are:
addr

specifies the address of the UWORD.
(reg)

specifies a register that contains an address of the UWORD. Valid registers are 2-12 enclosed in
parentheses.

KEEP=
specifies whether the interrupt handler is cleared at end-of-command. Acceptable values are:
NO

specifies that the interrupt handler is cleared. This is the default value.
YES

specifies that the interrupt handler is not cleared. If you issue KEEP=YES, make sure the handler
routine itself survives end-of-command processing.

(reg)
specifies the register that contains the value for KEEP. The macro checks the value of the specified
register and, if it is 0, sets KEEP to NO. If the register contains a nonzero value, the macro sets
KEEP to YES.

(addr,mask)
defines a single bit in storage that sets the value of the KEEP parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then KEEP is set to NO. If the bit is 1, then KEEP is set to YES. For example, to
test the first bit in the single byte of storage at location APPFLAG, specify the KEEP parameter as

KEEP=(APPFLAG,X'80')

To set the value of the KEEP parameter at assembly time, specify KEEP=YES or KEEP=NO. To set the
value at execution time, specify KEEP=(reg) or KEEP=(addr,mask).

SYSTEM=
specifies whether the handler survives abend processing. Acceptable values are:
NO

specifies that the handler does not survive. This is the default value.

HNDIO

252 z/VM: 7.3 CMS Macros and Functions Reference

YES
specifies that the handler does survive. If you issue SYSTEM=YES and KEEP=YES, make sure that
the trap routines themselves survive abend processing.

(reg)
specifies the register that contains the value for SYSTEM. The macro checks the value of the
specified register and, if it is 0, sets SYSTEM to NO. If the register contains a nonzero value, the
macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM
parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO. To
set the value at execution time, specify SYSTEM=(reg) or SYSTEM=(addr,mask).

End-of-command processing follows abend processing; therefore, if you want interrupt handlers to
survive abend processing and end-of-command processing, specify SYSTEM=YES and KEEP=YES.

PERSIST=
specifies whether the handler survives machine check processing for DETACH/DEFINE of the device.
Acceptable values are:
NO

specifies that the handler does not survive. This is the default value.
YES

specifies that the handler does survive. If you issue PERSIST=YES and KEEP=YES, make sure that
the handler routine itself survives end of command processing.

(reg)
specifies the register that contains the value for PERSIST. The macro checks the value of the
specified register and, if it is 0, sets PERSIST to NO. If the register contains a nonzero value, the
macro sets PERSIST to YES.

(addr,mask)
defines a single bit in storage that sets the value of the PERSIST parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then PERSIST is set to NO. If the bit is 1, then PERSIST is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the PERSIST
parameter as

PERSIST=(APPFLAG,X'80')

To set the value of the PERSIST parameter at assembly time, specify PERSIST=YES or PERSIST=NO.
To set the value at execution time, specify PERSIST=(reg) or PERSIST=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

HNDIO

Chapter 2. Preferred CMS Macro Instructions 253

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. I/O interrupt handler routines are called in the addressing mode of the program that issues the

HNDIO macro.
2. In an XC virtual machine, your second-level interrupt handler always receives control in primary

space address translation mode and always must return control to CMS in primary space mode.
3. You must provide the proper entry and exit linkage for your interrupt handling routine. With two

exceptions, handlers defined by HNDIO and HNDINT follow the same linkage conventions. For
HNDIO, register 5 points to the INTBLOK and register 6 contains the UWORD, if specified. For
interrupt handlers created by HNDINT, registers 5 and 6 contain zeros.
Register

Contents
R0-R1

I/O old PSW—This is a reconstructed PSW in basic control (BC) format. A program may extract the
real I/O old PSW from the INTBLOK.

R2-R3
Channel status word (CSW)—This is a reconstructed CSW. A program may extract the real I/O
status from the INTBLOK's IRB contents.

R4
The device number. A program may obtain more complete device information from the INTBLOK.

R5
A pointer to the INTBLOK specified on the HNDIO macro—This area contains the virtual machine
interrupt information, such as the I/O old PSW, I/O interrupt code, and the IRB. If you do not
specify the INTBLOK parameter, then register 5 is set to 0.

R6
The user word (UWORD)—If the UWORD parameter is not specified, then this register is set to 0.

R7-R11
Unspecified.

R12
Interrupt handling routine entry address.

R13
Pointer to a 24-word save area provided by the first-level handler.

R14
Return address.

R15
Interrupt handling routine entry address.

HNDIO

254 z/VM: 7.3 CMS Macros and Functions Reference

The routine must return control to the address in register 14, and indicate by return code in register
15 whether processing is complete. A zero (0) return code indicates that the second-level handler is
complete; any nonzero return code indicates that the second-level handler expects another interrupt
before processing is complete.

4. When your interrupt handler receives control, all I/O interrupts and external interrupts are disabled.
Your interrupt handling routine should remain in this state through its processing. It should not
perform any I/O operations, nor should it issue a HNDIO CLR or a HNDINT CLR for the device
associated with the handling routine.

5. The first-level interrupt handler issues the TSCH (test subchannel) instruction to clear the interrupt. If
the TSCH fails, the INTFAIL flag is set; the related IRB information is invalid for this interrupt.

6. The CLRLIST parameter clears interrupt handlers for a list of devices. Specify each device in the list
as a 4-character symbolic name. To make sure that only the specified device interrupt handlers are
cleared, end the list with a fence (8X'FF').

If a routine attempts to clear a handler for an unspecified device, the invalid device name is returned
in register 1. Devices prior to the invalid device are cleared; devices following the invalid device are
not.

The following example shows how to use the CLRLIST parameter to clear handling routines DSK1,
DSK2, DSK3, and DSK4:

 HNDIO CLR,CLRLIST=LISTADDR
 .
 .
 .
LISTADDR DS 0H
 DC CL4'DSK1'
 DC CL4'DSK2'
 DC CL4'DSK3'
 DC CL4'DSK4'
 DC 8X'FF'

7. If you specify HNDIO with a different DEVNAME to create an additional handler for a specific device,
the new handler processes subsequent interrupts. If you specify HNDINT with a different DEVNAME
to create an additional handler for a specific device, the new handler is inactive until all existing
handlers are deleted.

8. For I/O operations to a 3270-type device, use the CONSOLE macro rather than the HNDIO macro
to handle interrupts. (For more information on interrupt handling, see the z/VM: CMS Application
Development Guide for Assembler.)

9. If a device for which an interrupt handler is defined is subsequently detached (using a CP DETACH
command) or redefined at a new address (using a CP DEFINE or REDEFINE command), then the
interrupt handler is cleared unless PERSIST=YES has been specified.

10. If PERSIST=YES is specified and the user DETACHes the current device and reDEFINEs the device
address as a different type of device, then the exit routine must be able to handle the new device type
or unexpected results may occur.

11. If PERSIST=YES and KEEP=YES are specified, then the user must reissue the HNDIO macro with a
CLR parameter to clear the exit for the specified device when the exit is no longer wanted to receive
interrupt control. PERSIST=YES and KEEP=YES disable the normal system actions to automatically
clear the exit routine.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
1

An invalid device number (vdev) or interrupt handling routine address (addr) was specified.

HNDIO

Chapter 2. Preferred CMS Macro Instructions 255

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

2
Trap item replaces another of same device name.

3
An attempt was made to clear a nonexisting interrupt.

4
The device name specified is already in use by another device address.

11
The device name was specified as all blanks or 0.

15
INTBLOK specification error.

104
An out of storage condition occurred during processing.

HNDIO

256 z/VM: 7.3 CMS Macros and Functions Reference

HNDIUCV

Purpose

Use the HNDIUCV macro to start or end a program's IUCV (Inter-User Communications Vehicle) or
APPC/VM (Advanced Program-to-Program Communication/VM) environment.

The basic functions of the HNDIUCV macro are:
HNDIUCV CLEAR

Removes an APPC/VM program name from the list of APPC/VM programs that are active in CMS.
HNDIUCV HOLD

Temporarily places private resource connection requests on a CMS queue.
HNDIUCV REPLACE

Replaces the exit address and UWORD for APPC/VM programs that have been declared to CMS.
HNDIUCV RESUME

Releases previously-held private resource connection requests from a CMS queue.
HNDIUCV SET

Declares an APPC/VM program name to CMS.

For more information on how to use the HNDIUCV macro, see z/VM: CMS Application Development Guide
for Assembler.

HNDIUCV

Chapter 2. Preferred CMS Macro Instructions 257

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

HNDIUCV CLR (Clear)

label

HNDIUCV CLR,NAME= addr

( reg)

1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the CLR (Clear) function to remove an APPC/VM program from the list of active APPC/VM programs
in CMS. This function should be issued when the program no longer wishes to do any more APPC/VM
communications.

CLR severs any paths associated with this program. The IPUSER field of the APPCVM SEVER parameter
list is set to binary ones to indicate the SEVER was done by CMS.

Parameters
Required Parameters:
CLR

Removes an APPC/VM program name from the list of APPC/VM programs that are active in CMS.
NAME=

specifies the name of the APPC/VM program in CMS. This name must be the same as a name
previously specified on an HNDIUCV SET.
addr

specifies the address of an 8 character symbolic name.
(reg)

specifies a register that contains the address of an 8 character symbolic name.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:

HNDIUCV CLR (Clear)

258 z/VM: 7.3 CMS Macros and Functions Reference

*
passes control to the next sequential instruction. This is the default value.

addr
passes control to the specified address.

(reg)
passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If protected (SYNCLVL=SYNCPT) conversations are deallocated as a result of executing HNDIUCV CLR,

then the work units associated with the conversations should be rolled back before doing any other
processing on those work units. See the Synchronizing Updates to Multiple Resources section in z/VM:
CMS Application Development Guide for Assembler for a detailed discussion of when the work unit may
need to be rolled back. For information about protected conversations and the Coordinated Resource
Recovery (CRR) facility in CMS, see z/VM: CMS Application Development Guide.

Return Codes

Upon completion of the HNDIUCV CLR function, register 15 contains either:

• A 5-digit reason code returned by a CSL routine that was called by HNDIUCV CLR processing. These are
described in z/VM: CMS and REXX/VM Messages and Codes, or

• One of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 HNDIUCV CLR completed successfully.

X'08' 8 No HNDIUCV SET has been issued for the specified program name.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'28' 40 An invalid HNDIUCV function was specified; must be SET, CLR, REP,
HLD, or RES.

X'30' 48 The IUCV RTRVBFR failed, as indicated by CP.

X'3C' 60 !CMS cannot issue the HNDIUCV CLR function. (!CMS is a reserved
name for CMS. CMS uses !CMS as a user ID so it can use its own
APPC/VM support.)

HNDIUCV CLR (Clear)

Chapter 2. Preferred CMS Macro Instructions 259

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3

Hex
Code

Decimal
Code

Meaning

X'68' 104 Out of Storage.

X'C8' + xx 2dd An error was encountered in getting CMS free storage. The xx is
the hexadecimal return code from CMSSTOR. The dd is the decimal
equivalent of this return code.

X'3E8' + 1xxx 1ddd While trying to SEVER all of the program's paths, an APPCVM SEVER
error occurred. The xxx is the IPRCODE field that was returned by
the APPCVM SEVER to aid in diagnosing the error. The ddd is the
decimal equivalent of this IPRCODE. For more information on the
APPCVM SEVER return codes, see z/VM: CP Programming Services.

HNDIUCV CLR (Clear)

260 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3

HNDIUCV HLD (Hold)

label

HNDIUCV HLD , NAME = addr

( reg)

1

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the HLD (Hold) function in a private resource manager program to queue private resource connection
requests for the program without presenting them to the interrupt-processing exit routine.

After a HLD is issued for a program name, CMS severs any local or global resource connection requests for
that program name.

HLD does not affect active paths, other APPC/VM or IUCV functions in CMS, or private resource
connection requests that were previously queued.

Parameters
Required Parameters:
HLD

Temporarily places private resource connection requests on a CMS queue.
NAME=

specifies the name that identifies the program on this APPC/VM path. This name must have been
previously specified on an HNDIUCV SET.

When this program issues the CMSIUCV macro to perform an APPC/VM function, the NAME parameter
specified on the CMSIUCV macro must be the same as the one specified here.

addr
specifies the address of an eight-character symbolic name.

(reg)
specifies a register that contains the address of an eight-character symbolic name.

Optional Parameters:

HNDIUCV HLD (Hold)

Chapter 2. Preferred CMS Macro Instructions 261

label
is an optional assembler label for the statement.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes

Upon completion of the HNDIUCV HLD function, register 15 contains either:

• A 5-digit reason code returned by a CSL routine that was called by HNDIUCV HLD processing. These are
described in z/VM: CMS and REXX/VM Messages and Codes, or

• One of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 HNDIUCV HLD completed successfully.

X'08' 8 No HNDIUCV SET has been issued for this program.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'28' 40 An invalid HNDIUCV function was specified; must be SET, CLR, REP,
HLD, or RES.

X'30' 48 The IUCV DCLBFR CONTROL=YES failed, as indicated by CP.

X'3C' 60 !CMS cannot issue the HNDIUCV HLD function. (!CMS is a reserved
name for CMS. CMS uses !CMS as a user ID so it can use its own
APPC/VM support.)

X'C8' + xx 2dd An error was encountered in getting CMS free storage. The xx is
the hexadecimal return code from CMSSTOR; the dd is the decimal
equivalent of this return code.

HNDIUCV HLD (Hold)

262 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3

HNDIUCV REP (Replace)

label

HNDIUCV REP , NAME = addr

( reg)

1

, EXIT = addr

( reg)

, UWORD = addr

( reg)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the REP (Replace) function to replace the currently defined exit address or UWORD field for a
specified program. Only the parameters specified are replaced.

The REP function replaces only the general exit address or UWORD set up by your program by the
HNDIUCV SET function. If your program had previously issued any CMSIUCV CONNECTs and had the EXIT
address or UWORD default to the HNDIUCV SET's EXIT and UWORD, the HNDIUCV REP function does not
replace the path specific EXIT or UWORD set up by the CMSIUCV function. The EXIT and UWORD remain
as established when the CMSIUCV function was issued.

Parameters
Required Parameters:
REP

Replaces the exit address and UWORD for APPC/VM programs that have been declared to CMS.
NAME=

specifies the name that identifies your program. This name must have been previously specified on an
HNDIUCV SET.

When this program issues the CMSIUCV macro to perform an APPC/VM function, the NAME parameter
specified on the CMSIUCV macro must be the same as the one specified here.

addr
specifies the address of an 8 character symbolic name.

HNDIUCV REP (Replace)

Chapter 2. Preferred CMS Macro Instructions 263

(reg)
specifies a register that contains the address of an 8 character symbolic name.

Optional Parameters:

label
is an optional assembler label for the statement.

EXIT=
specifies the address of an exit routine that receives control when an APPC/VM connection pending
interrupt occurs for this program. To activate this exit, the connecting program must specify the same
name for RESID on the APPCVM CONNECT as the NAME parameter specified for this target program.

The exit address is the default address associated with any path owned by this program. This default
address receives control if an APPC/VM external interrupt is presented to the program on a path that
does not have a exit address specifically established. Two conditions could cause the default exit
address to get control:

1. A connect pending interrupt had previously occurred on the path, but the program has not yet
issued CMSIUCV ACCEPT.

2. A program established a path using CMSIUCV CONNECT or CMSIUCV ACCEPT, but did not specify
the EXIT parameter.

The APPC/VM exit routine is called in the addressing mode of the program issuing this HNDIUCV REP
function.

addr
specifies the address of the exit routine.

(reg)
specifies a register that contains the address of the exit routine.

When the program's APPC/VM external interrupt routine is given control, all interrupts are disabled.
The exit routine is responsible for providing proper entry and exit linkage for its APPC/VM external
interrupt handling routine. The exit routine:

• Should not enable itself for any type of interrupts
• Should not perform any I/O operations, because all interrupts are disabled
• Must save and restore the return address in register 14.

When the routine receives control, the significant registers contain:

Register Contents

0 UWORD Field

1 If the pending interrupt is for a private resource connection, register 1 contains a X'00'.

If a connection to a global or local resource, register 1 points to a SAVEAREA in this format:

Label Displacement Contents
 Dec Hex
GRS 0 0 General purpose registers 0-15
 at the time of the interrupt.
FRS 64 40 Floating point registers 0-7
 at the time of the interrupt.
PSW 96 60 External Old PSW at the time
 of the interrupt.
UAREA 104 68 Register save area for exit
 routine's use.
END 176 B0 End of save area.

2 Address of the APPC/VM External Interrupt Buffer

3 Address of the connection pending extended data (if the exit is driven by a connection pending
interrupt), or the address of the connection complete extended data (if the exit is driven by a connection
complete interrupt).

4 Address of the PIP variable (if the exit is driven by a connection pending interrupt).

HNDIUCV REP (Replace)

264 z/VM: 7.3 CMS Macros and Functions Reference

Register Contents

13 Points to the register save area at label UAREA for use by the exit routine. (If register 1 contains a X'00',
register 13 points to a standard register save area.)

14 Return address

15 Entry point address

UWORD=
specifies a fullword (user word) containing information that the invoking program can specify. CMS
passes this user word to the exit routine when an interrupt is presented for this APPC/VM path. The
exit routine can use this information if it desires to do so. When the exit routine receives control,
register 0 contains either an address where the user word is stored (if UWORD=addr) or the value of a
register that contains the user word (if UWORD=(reg)).

If a UWORD value is not specified on a CMSIUCV ACCEPT or CMSIUCV CONNECT macro, it defaults to
the UWORD value specified here. If you do not specify UWORD here, the user word value defaults to
the value specified on the HNDIUCV SET macro for this program name.

addr
specifies the address where the user word value is stored.

(reg)
specifies a register that contains the user word value.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter,
control passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes

Upon completion of the HNDIUCV REP function, register 15 contains one of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 HNDIUCV REP completed successfully.

HNDIUCV REP (Replace)

Chapter 2. Preferred CMS Macro Instructions 265

Hex
Code

Decimal
Code

Meaning

X'08' 8 No HNDIUCV SET has been issued for this program.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'14' 20 The EXIT parameter specified an address equal to 0.

X'28' 40 An invalid HNDIUCV function was specified; must be SET, CLR, REP, HLD, or RES.

X'3C' 60 !CMS cannot issue the HNDIUCV REP function. (!CMS is a reserved name for CMS. CMS
uses !CMS as a user ID so it can use its own APPC/VM support.)

X'C8' + xx 2dd An error was encountered in getting CMS free storage. The xx is the hexadecimal
return code from CMSSTOR; the dd is the decimal equivalent of this return code.

HNDIUCV REP (Replace)

266 z/VM: 7.3 CMS Macros and Functions Reference

HNDIUCV RES (Resume)

label

HNDIUCV RES , NAME = addr

( reg)

1

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the RES (Resume) function in a private resource manager program to trigger the processing of queued
private resource connection requests:

• Queued private resource connection requests for the specified program name are released.
• New private resource connection requests are presented to the interrupt-processing exit routine.

RES undoes the function of HOLD.

Note: HNDIUCV RES should not be issued from a user APPC/VM interrupt processing exit routine. If an
APPC/VM interrupt event causes an HNDIUCV SET situation, the interrupt processing exit routine should
set a flag (or post an ECB) to alert the calling program to issue the HNDIUCV RES.

Parameters
Required Parameters:
RES

Releases previously-held private resource connection requests from a CMS queue.
NAME=

specifies the name of the APPC/VM program in CMS. The program name specified on this function
must have previously been specified on an HLD (hold) function.

When this program issues the CMSIUCV macro to perform an APPC/VM function, the NAME parameter
specified on the CMSIUCV macro must be the same as the one specified here.

addr
specifies the address of an 8 character symbolic name.

(reg)
specifies a register that contains the address of an 8 character symbolic name.

HNDIUCV RES (Resume)

Chapter 2. Preferred CMS Macro Instructions 267

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes

Upon completion of the HNDIUCV RES function, register 15 contains one of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 HNDIUCV REP completed successfully.

X'08' 8 No HNDIUCV SET has been issued for this program.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'28' 40 An invalid HNDIUCV function was specified; must be SET, CLR, REP, HLD, or RES.

X'3C' 60 !CMS cannot issue the HNDIUCV RES function. (!CMS is a reserved name for CMS. CMS
uses !CMS as a user ID so it can use its own APPC/VM support.)

X'C8' + xx 2dd An error was encountered in getting CMS free storage. The xx is the hexadecimal
return code from CMSSTOR. The dd is the decimal equivalent of this return code.

HNDIUCV RES (Resume)

268 z/VM: 7.3 CMS Macros and Functions Reference

HNDIUCV SET

label

HNDIUCV SET , NAME = addr

( reg)

1
, EXIT = addr

( reg)

, UWORD = addr

( reg)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the SET function to identify an APPC/VM program to CMS. A program must issue this SET function
before issuing any functions with the CMSIUCV macro.

Here are some key values that are returned in registers:
Register

What It Contains
R0

The maximum number of possible connections for the virtual machine, upon error free completion of
HNDIUCV SET.

R1
The size in bytes, rounded up to the nearest multiple of 8, of the interrupt buffer extension, upon error
free completion of HNDIUCV SET.

Note: HNDIUCV SET should not be issued from a user APPC/VM interrupt processing exit routine. If an
APPC/VM interrupt event causes an HNDIUCV SET situation, the interrupt processing exit routine should
set a flag (or post an ECB) to alert the calling program to issue the HNDIUCV SET.

Parameters
Required Parameters:
SET

Declares an APPC/VM program name to CMS.
NAME=

specifies the name of the APPC/VM program to CMS. When this program issues subsequent HNDIUCV
macros or CMSIUCV macros to perform APPC/VM functions, the NAME parameter specified on the
CMSIUCV macro must be the same as the one specified here.

HNDIUCV SET

Chapter 2. Preferred CMS Macro Instructions 269

addr
specifies the address of an 8 character symbolic name.

(reg)
specifies a register that contains the address of an 8-character symbolic name.

See Usage Note “1” on page 272 for more information.

EXIT=
specifies the address of an exit routine that receives control when an APPC/VM connection pending
interrupt occurs for this program. To activate this exit, the connecting program must specify the same
name for RESID on the APPCVM CONNECT as the NAME parameter specified for this target program.

The exit address is the default address associated with any path owned by this program. This default
address receives control if an APPC/VM external interrupt is presented to the program on a path that
does not have a exit address specifically established. Two conditions could cause the default exit
address to get control:

• A connect pending interrupt had previously occurred on the path, but the program has not yet
issued CMSIUCV ACCEPT.

• A program established a path using CMSIUCV CONNECT or CMSIUCV ACCEPT, but did not specify
the EXIT parameter.

The APPC/VM exit routine is called in the addressing mode (24- or 31-bit) of the program issuing this
HNDIUCV SET function.

addr
specifies the address of the exit routine.

(reg)
specifies a register that contains the address of the exit routine.

When the program's APPC/VM external interrupt routine is given control, all interrupts are disabled.
The exit routine is responsible for providing proper entry and exit linkage for its APPC/VM external
interrupt handling routine. The exit routine has the following requirements:

• The routine should not enable itself for any type of interrupts.
• The routine should not perform any I/O operations, because all interrupts are disabled.
• The routine must save and restore the return address in register 14.

When the routine receives control, the significant registers contain:

Register Contents

0 UWORD Field

1 If the pending interrupt is for a private resource connection, register 1 contains a X'00'.

If a connection to a global or local resource, register 1 points to a SAVEAREA in this format:

Label Displacement Contents
 Dec Hex
GRS 0 0 General purpose registers 0-15
 at the time of the interrupt.
FRS 64 40 Floating point registers 0-7
 at the time of the interrupt.
PSW 96 60 External Old PSW at the time
 of the interrupt.
UAREA 104 68 Register save area for exit
 routine's use.
END 176 B0 End of save area.

2 Address of the APPC/VM External Interrupt Buffer

3 Address of the connection pending extended data (if the exit is driven by a connection pending
interrupt), or the address of the connection complete extended data (if the exit is driven by a connection
complete interrupt).

4 Address of the PIP variable (if the exit is driven by a connection pending interrupt).

HNDIUCV SET

270 z/VM: 7.3 CMS Macros and Functions Reference

Register Contents

13 Points to the register save area at label UAREA for use by the exit routine. (If register 1 contains a X'00',
register 13 points to a standard register save area.)

14 Return address

15 Entry point address

Optional Parameters:
label

is an optional assembler label for the statement.
UWORD=

specifies a fullword (user word) containing information that the invoking program can specify. CMS
passes this user word to the exit routine when an interrupt is presented for this APPC/VM path. The
exit routine can use this information if it desires to do so. When the exit routine receives control,
register 0 contains either an address where the user word is stored (if UWORD=addr) or the value of a
register that contains the user word (if UWORD=(reg)).

If the UWORD value is not specified on a CMSIUCV ACCEPT or CMSIUCV CONNECT macro, it defaults
to the UWORD value specified here or on an HNDIUCV REP. If you do not specify UWORD here, the
user word value is set to zero.

addr
specifies the address where the user word value is stored.

(reg)
specifies a register that contains the user word value.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

HNDIUCV SET

Chapter 2. Preferred CMS Macro Instructions 271

Usage Notes
1. Because more than one HNDIUCV SET can be issued by an application, the name specified in the

NAME= parameter generally has the following meaning for a target virtual machine:

• For APPC/VM— the name of an APPC/VM resource being managed by the application.
• For IUCV— the name should be specified in the IPUSER field of the source virtual machine’s IUCV

CONNECT parameter list.

For more information regarding IUCV and APPC/VM communications, refer to z/VM: CMS Application
Development Guide for Assembler.

Return Codes

Upon completion of the HNDIUCV SET function, register 15 contains one of the following return codes:

Hex
Code

Decimal
Code

Meaning

X'00' 0 HNDIUCV SET completed successfully.

X'04' 4 A program with this name has previously issued an HNDIUCV SET.

X'10' 16 The NAME parameter was not specified or its address is equal to 0.

X'14' 20 The EXIT parameter was not specified or its address is equal to 0.

X'20' 32 An IUCV DCLBFR has already been issued by a non-CMS IUCV program. CMS IUCV
support cannot be initialized.

X'24' 36 Errors were encountered reading the directory for the virtual machine during CMS
IUCV initialization.

X'28' 40 An invalid HNDIUCV function was specified; it must be SET, CLR, REP, HLD, or RES.

X'30' 48 The IUCV DCLBFR CONTROL=YES failed, as indicated by CP.

X'48' 72 A zero value was found for the MAXCONN definition during CMS initialization, or the
HNDIUCV SET cannot be performed because the SET for !CMS failed during IPL. (!CMS
is a reserved name for CMS.

X'68' 104 Out of storage.

X'C8' + xx 2dd An error was encountered in getting CMS free storage. The xx is the hexadecimal
return code from CMSSTOR; the dd is the decimal equivalent of this return code.

If this error occurred because there was insufficient storage during CMS initialization,
the storage calculation consisted of the MAXCONN value times 64, the size of a single
path table entry (in bytes). Other storage is also included in the storage request, but
it is not considered a major factor. The user can increase the virtual machine storage
through the CP DEFINE STORAGE command. The user may have to contact the system
administrator to increase the maximum storage size for the virtual machine or to
reduce the MAXCONN value.

X'7D0' + xxx 2ddd HNDIUCV was unable to create a second-level handler for IUCV external interrupts.
The xxx is the hexadecimal return code from HNDEXT; the ddd is the decimal
equivalent of this return code.

HNDIUCV SET

272 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

HNDSVC

label

HNDSVC SET SET parameters

CLR,

,

svcnum

1

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

SET parameters

, (

,

 svcnum ,  address ,

, UWORD = addr

( reg)

)

, KEEP = NO

, KEEP = YES

( reg)

( addr , mask)

, SYSTEM = NO

, SYSTEM = YES

( reg)

( addr , mask)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the HNDSVC macro to set or clear routines that trap interrupts caused by specific supervisor call
(SVC) instructions.

Parameters
Required Parameters:
SET

specifies that you want to trap SVCs of the specified number(s).

HNDSVC

Chapter 2. Preferred CMS Macro Instructions 273

svcnum
specifies the number of the SVC you want to trap. SVC numbers 0 through 198 and 206 through 255
are valid.

address
specifies the address of the routine in your program that should receive control whenever the
specified SVC is issued.

CLR
specifies that you no longer want to trap the specified SVC(s).

svcnum
specifies the number of the SVC you want to clear. SVC numbers 0 through 200 and 206 through 255
are valid.

Optional Parameters:
label

is an optional assembler label for the statement.
UWORD=

is an optional fullword parameter available to SVC trap routines. When the SVC trap routine gets
control, UWORD is contained in the HSVUWORD field of the HSVCSAVE control block, which register
13 points to. Acceptable values are:
addr

specifies UWORD as an assembler expression.
(reg)

specifies a register that contains the address of the UWORD. Valid registers are 2-12 enclosed in
parentheses.

KEEP=
specifies whether the SVC handler definitions are cleared at end-of-command. Acceptable values are:
NO

specifies that the SVC handler definitions are cleared. This is the default value.
YES

specifies that the SVC handler definitions are not cleared. If you issue KEEP=YES, make sure the
SVC trap routines themselves survive end-of-command processing.

(reg)
specifies the register that contains the value for KEEP. The macro checks the value of the specified
register and, if it is 0, sets KEEP to NO. If the register contains a nonzero value, the macro sets
KEEP to YES.

(addr,mask)
defines a single bit in storage that sets the value of the KEEP parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then KEEP is set to NO. If the bit is 1, then KEEP is set to YES. For example, to
test the first bit in the single byte of storage at location APPFLAG, specify the KEEP parameter as

KEEP=(APPFLAG,X'80')

Note that when you specify KEEP on an HNDSVC macro call, the KEEP attribute applies to all user SVC
handler definitions you specify on that macro call.

To set the value of the KEEP parameter at assembly time, specify KEEP=YES or KEEP=NO. To set the
value at execution time, specify KEEP=(reg) or KEEP=(addr,mask).

SYSTEM=
specifies whether the SVC handler definitions survive abend processing. Acceptable values are:
NO

specifies that the SVC handler does not survive. This is the default value.

HNDSVC

274 z/VM: 7.3 CMS Macros and Functions Reference

YES
specifies that the SVC handler does survive. If you issue SYSTEM=YES, make sure the SVC trap
routines themselves survive abend processing.

(reg)
specifies the register that contains the value for SYSTEM. The macro checks the value of the
specified register and, if it is 0, sets SYSTEM to NO. If the register contains a nonzero value, the
macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM
parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO. To
set the value at execution time, specify SYSTEM=(reg) or SYSTEM=(addr,mask).

End-of-command processing follows abend processing; therefore, if you want SVC handlers to survive
abend processing and end-of-command processing, specify SYSTEM=YES and KEEP=YES.

When you specify SYSTEM on an HNDSVC macro call, the SYSTEM attribute applies to all user SVC
handler definitions you specify on that macro call.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. SVC trap routines receive control in the addressing mode of the program that issues the HNDSVC

macro, not in the addressing mode of the program that issues the trapped SVC. To change or set the
addressing mode of an SVC trap routine, use the AMODESW macro.

HNDSVC

Chapter 2. Preferred CMS Macro Instructions 275

2. In an XC virtual machine, your second-level interrupt handler always receives control in primary space
address translation mode and always must return control to CMS in primary space mode.

3. You must provide the proper entry and exit linkage for your SVC handling routine. When your program
receives control, the register contents are as follows:
Register

Contents
R0-R11

Remain the same as when the SVC was issued.
R12

If the current addressing mode is AMODE 24, register 12 contains the SVC number in the high-
order byte and a 3-byte address of the routine. If the addressing mode is AMODE 31, register 12
contains only the address of the SVC trap routine. For both addressing modes, the address of the
SVC trap routine is in register 12 and the UWORD and SVC number can be found in the HSVCSAVE
pointed to by register 13.

R13
The address of an HSVCSAVE save area.

R14
The return address to the SVC handler.

R15
Remains the same as when the SVC was issued.

When complete, your routine must return control to the address in register 14. You do not need to
restore any registers. The registers are restored to the contents they held at the time the SVC was
issued.

4. In multiprocessor mode CMS internally uses SVC 199, so this code should not be handled by
multiprocessor applications. If the application uses the direct call CSL interface or takes advantage
of multitasking, CMS will also use SVC 200.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
1

Invalid SVC number or address.
2

SVC number set replaced previously set number.
3

SVC number cleared was not set.

HNDSVC

276 z/VM: 7.3 CMS Macros and Functions Reference

HSVCSAVE

label

HSVCSAVE

Purpose
Use the HSVCSAVE macro to generate a DSECT for the HSVCSAVE control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the HSVCSAVE macro
expansion is labeled HSVCSAVE.

Usage Notes
1. The HSVCSAVE macroinstruction expands as follows:

 HSVCSAVE
HSVCSAVE DSECT
HSVUSAVE DS 12D USER REGISTER SAVE AREA
HSVUWORD DS 1F USER WORD
HSVCNUMB DS 1X SVC NUMBER CAUSING CONTROL
 DS 3X RESERVED FOR IBM USE

HSVCSAVE

Chapter 2. Preferred CMS Macro Instructions 277

IMMBLOK

label

IMMBLOK

Purpose
Use the IMMBLOK macro to generate a DSECT for the IMMBLOK control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the IMMBLOK macro
expansion is labeled IMMBLOK.

Usage Notes
1. For more information on the IMMBLOK macroinstruction, see the macroinstruction “IMMCMD” on page

279.
2. The IMMBLOK macroinstruction expands as follows:

 IMMBLOK
*
* IMMEDIATE COMMAND NAME BLOCK
*
*
IMMBLOK DSECT
IMMNEXTD EQU *-IMMBLOK IMMNEXT DISP INTO IMMBLOK
IMMNEXT DS A POINTER TO NEXT IMMBLOK
IMMNEXTL EQU 4 LENGTH OF IMMNEXT FIELD
IMMUWORD DS F USER WORD
IMMNAME DS CL8 IMMEDIATE COMMAND NAME
IMMFLAG1 DS X FLAGS
IMMSYS EQU X'80' IMMEDIATE COMMAND IS A NUCLEUS
* EXTENSION WITH SYSTEM
* ATTRIBUTE
IMMCOUNT EQU X'40' IMMEDIATE COMMAND ESTABLISHED
* VIA IMMCMD COMMAND
IMMNUCX EQU X'20' IMMEDIATE COMMAND IS A NUCLEUS
* EXTENSION
IMMAM31 EQU X'10' AMODE OF EXIT IS AMODE 31
IMMFLAG2 DS 3X FLAGS
IMMADDR DS A ADDRESS OF EXIT ROUTINE
IMMHIDE DS F NUMBER OF NUCLEUS EXTENSIONS
* THAT ARE HIDING THIS
* IMMEDIATE COMMAND
IMMEND DS 0D
IMMDWDS EQU (*-IMMBLOK)/8 SIZE IN DOUBLEWORDS
IMMBYTES EQU (*-IMMBLOK) SIZE IN BYTES

IMMBLOK

278 z/VM: 7.3 CMS Macros and Functions Reference

IMMCMD

label

IMMCMD SET SET parameters

CLR

QRY

,NAME= ' name '

( reg)

1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

SET parameters
,EXIT= addr

( reg) ,UWORD= addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the IMMCMD macroinstruction to declare, clear, and obtain information about immediate commands.

Parameters
Required Parameters:
SET

establishes an immediate command. If an immediate command with the same name already exists, it
is overridden in a stack-like manner.

CLR
clears an immediate command. Any previously overridden immediate command with the same name
is reinstated.

QRY
indicates that the caller is requesting information about an immediate command. A return code from
QRY indicates whether the immediate command exists.

NAME=
is the name of the immediate command. This parameter is always required. Acceptable values are:
‘name’

specifies a 1- to 8-character name enclosed within single quotation marks.

IMMCMD

Chapter 2. Preferred CMS Macro Instructions 279

(reg)
specifies a register enclosed in parentheses that contains the address of the immediate command
name.

EXIT=
is the address of the routine that receives control when the immediate command is entered from the
terminal. Acceptable values are:
addr

specifies an assembler program label that is the address of the exit routine.
(reg)

specifies a general register. Its value is the address of the exit routine.

Optional Parameters:
label

is an optional assembler label for the statement.
UWORD=

is an optional fullword that can be specified for any purpose desired. When the exit routine gains
control, UWORD is available to it in the IMMBLOK. Register 2 points to the IMMBLOK (see the Usage
Notes for more details). Acceptable values are:
addr

specifies an assembler program label as the address that is stored as the UWORD.
(reg)

specifies a register that contains the UWORD.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. Immediate command routines receive control in the addressing mode of the program that issues the

IMMCMD macro, not in the addressing mode of the program that issues the immediate command.

IMMCMD

280 z/VM: 7.3 CMS Macros and Functions Reference

2. The IMMCMD EXIT parameter lets you give control to an exit routine whenever a specific immediate
command is invoked. These exit routines receive control as an extension of CMS I/O interrupt handling
—with a PSW key of 0 and disabled for interrupts. The exit routine must not perform any I/O
operations, issue any SVCs that result in I/O operations, or enable itself for interrupts. DIAGNOSE
instructions can be used within the exit, but the exit routine must not enable itself for interrupts that
may be caused by the DIAGNOSE (for example, DIAGNOSE code X'58'). On entry, the exit routine is
passed the following information:
Register

Contents
R0

Address of immediate command line in extended parameter list format.
R1

Address of immediate command line in standard parameter list format. For a 31-bit mode
program, register 1 contains only the address. For a program running in 24-bit mode, the high-
order byte of register 1 is set to X'06' to indicate that this routine was invoked as a result of an
immediate command.

R2
Address of the IMMBLOK. The IMMBLOK contains the user word and other relevant information.
The format of the IMMBLOK is as follows:
Bytes

Information
0-3

Address of next IMMBLOK
4-7

User word
8-15

Command name
16-19

Reserved
20-23

Entry point address
R3-R11

Unspecified
R12

Entry address
R13

A thirteen doubleword save area mapped by the USERSAVE macro. The USECTYP field of
USERSAVE is set to X'06' to indicate that the routine was invoked as an immediate command.

R14
Return address

R15
Entry address

3. Immediate commands must use BR 14 rather than CMSRET to return control. Using CMSRET may
cause the program that invoked the immediate command to end, rather than cause just the immediate
command itself to end.

4. Immediate commands created by the IMMCMD macro are automatically deleted when a program
returns to the CMS command environment (except when in CMS subset mode), or when CMS performs
abend recovery. To explicitly delete an immediate command that was created by IMMCMD SET, use
IMMCMD CLR. Any previously overridden immediate command with the same name is reinstated by
this action.

For example, to delete the immediate command named DOIT, code:

IMMCMD

Chapter 2. Preferred CMS Macro Instructions 281

IMMCMD CLR,NAME='DOIT'

Note: To delete an immediate command that was created by the NUCXLOAD command, the NUCEXT
function, or the NUCEXT macro, use the NUCXDROP command, the NUCEXT CANCEL function, or the
NUCEXT CLR macro.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
24

Invalid parameter list.
44

Immediate command not found.
48

Specified immediate command is a nucleus extension and cannot be cleared.
104

Not enough storage available to initialize the immediate command.

IMMCMD

282 z/VM: 7.3 CMS Macros and Functions Reference

INTBLOK

label

INTBLOK

Purpose
Use the INTBLOK macro to generate a DSECT for the INTBLOK control block. The INTBLOK control block
contains device information returned by the HNDIO macro.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the INTBLOK macro expansion
is labeled INTBLOK.

Usage Notes
1. The INTBLOK macroinstruction expands as follows:

Note: 370 fields are no longer used.

INTBLOK DSECT
INTXACOD DS 0XL8 Interrupt information
INTPARM DS F For XA/XC, interruption
 parameter; for 370, 0
INTIDENT DS 0XL4 For XA/XC, subsystem ID word
 (SID); for 370, see individual
 components
 DS H For XA/XC, X'0001'; for 370, 0
INTSUBCH DS H For XA/XC, subchannel number; for
 370, use INTDEVAD
 ORG INTSUBCH
INTDEVAD DS H For XA/XC, use INTSUBCH; for 370,
 device address
INTPSW DS D I/O old PSW
INTXAIRB DS 0XL64 For XA/XC, actual interruption
 response block (IRB); for 370,
 constructed IRB
INTSCSW DS 0XL12 For XA/XC, actual subchannel
 status word (SCSW); for 370,
 constructed SCSW
INTSCCTL DS X Key, S, L, and CC
 DS X For XA/XC, miscellaneous SCSW
 bits; for 370, 0
INTCCWFM EQU X'80' For XA/XC, CCW format; for 370, 0
 DS XL2 For XA/XC, more miscellaneous
 SCSW bits; for 370, 0
INTCCWAD DS A For XA/XC, CCW address; for 370,
 X'00' and 3-byte CCW address
INTDEVST DS X Device status
INTSCHST DS X For XA/XC, subchannel status; for
 370, channel status
INTRCNT DS H Residual byte count
 DS 13F For XA/XC, extended status word
 (ESW) and extended control word
 (ECW); for 370, 0
INTSTAT DS X Status of INTBLOK information
INTFAIL EQU X'80' For XA/XC, if 1, TSCH failed and
 IRB is not valid; for 370, always
 0
INTPS370 EQU X'40' For XA/XC, always 0 (actual
 information given); for 370,
 always 1 (constructed, or
 "pseudo", information given)
 DS 1X Reserved

INTBLOK

Chapter 2. Preferred CMS Macro Instructions 283

INTDEVNO DS 1H Saved device addr for user exit
INTBLKSZ EQU *-INTBLOK INTBLOK length

INTBLOK

284 z/VM: 7.3 CMS Macros and Functions Reference

LABSECT

LABSECT

Purpose
Use the LABSECT macroinstruction to generate a DSECT for holding user tape label information.

Usage Notes
1. LABSECT is supported for use with the tape label processing routines. For more information, see z/VM:

CMS Application Development Guide for Assembler.
2. The LABSECT control block is built from information supplied when:

• A LABELDEF command is issued.
• Either a user or the system issues a FILEDEF command for a tape.

For more information on FILEDEF and LABELDEF commands, see z/VM: CMS Commands and Utilities
Reference and z/VM: CMS Application Development Guide for Assembler.

3. A total of 16 volume IDs can be specified in this control block. If additional volumes are needed, a
VOLSECT control block is used for each additional 24 volume IDs. See “VOLSECT” on page 429 for
more information.

4. Scratch tape processing is either specified by the user or as a result of system action as follows:

• If a specific volume is not identified, then any scratch tape from the tape library free pool is selected.
• By specifying SCRATCH in the LABELDEF command.
• When no tape volume ID is specified in the LABELDEF command.
• When the list of specified volume IDs has been exhausted and yet another volume is needed.
• When the list of the specified volume IDs has SCRATCH entered.

5. The following control bits in the LABFLAG2 field have the following meaning:

• LABSCRAT—bit on means that scratch processing is in effect.
• LABSCRSP—user specifically requested scratch as the volume ID.
• LABLBDSC—scratch processing set as a default because no volume IDs were entered.
• LABFDEF—this LABSECT was created as a default block by the FILEDEF command.

6. The LABSECT macro expands as follows:

 MACRO
 LABSECT
*
* LABSECT - FOR HOLDING USER SUPPLIED TAPE LABEL INFORMATION
*
LABSECT DSECT
LABNEXT DS A RESERVED
LABFCBPT DS A POINTER TO FCBSECT OR ZERO
LABFILE DS CL8 NAME OF FILE (DDNAME) FOR BLOCK
LABFID DS CL17 FILE ID (RIGHTMOST 17 CHARACTERS)
LABSEC DS CL1 SECURITY
LABVOLID DS CL6 VOLUME SERIAL NUMBER (VOLID)
LABVSEQ DS CL4 VOLUME SEQUENCE NUMBER
LABFSEQ DS CL4 FILE SEQUENCE NUMBER
LABGENN DS CL4 GENERATION NUMBER
LABGENV DS CL2 GENERATION VERSION
LABCRD DS CL6 CREATION DATE
LABEXD DS CL6 EXPIRATION DATE
 SPACE
LABFLAG1 DS 1X THIS BYTE HAS DEFAULT FLAGS:
LABDFID EQU X'80' DEFAULT FILE ID

LABSECT

Chapter 2. Preferred CMS Macro Instructions 285

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

LABDSEC EQU X'40' DEFAULT SECURITY
LABDVID EQU X'20' DEFAULT VOLUME SERIAL NUMBER
LABDVSEQ EQU X'10' DEFAULT VOLUME SEQUENCE NUMBER
LABDFSEQ EQU X'08' DEFAULT FILE SEQUENCE NUMBER
LABDGENN EQU X'04' DEFAULT GENERATION NUMBER
LABDGENV EQU X'02' DEFAULT GENERATION VERSION
LABDCRD EQU X'01' DEFAULT CREATION DATE
 SPACE
LABFLAG2 DS 1X MISCELLANEOUS FLAGS BYTE:
LABDEXD EQU X'80' DEFAULT EXPIRATION DATE
LABSCRAT EQU X'40' DO 'SCRATCH' VOLID PROCESSING
LABSCRSP EQU X'20' SCRATCH SPECIFIED; NOT DEFAULT
LABLBDSC EQU X'10' LABSCRAT set by LABELDEF
LABFDEF EQU X'04' LABSECT GOTTEN BY FILEDEF
LABPERM EQU X'02' PERMANENT SPECIFIED
LABNOCHG EQU X'01' NOCHANGE SPECIFIED
 SPACE
LABCUVOL DS A POINTER TO CURRENT VOLID MOUNTED
LABNXVOL DS A POINTER TO NEXT VOLID TO MOUNT
LABVSECT DS A FORWARD CHAIN POINTER TO VOLSECT
LABCSECT DS A VOLSECT ADDR OF CURRENT VOLID
LABVOLS DS CL120 SPACE FOR 15 ADDITIONAL VOLIDS
LABEND DS XL4'FF' FENCE FOR END OF VOLIDS
LABFILID DS CL44 FILE IDENTIFIER
LABSIZE EQU (*-LABSECT+7)/8 SIZE OF LABSECT IN DOUBLE WORDS

LABSECT

286 z/VM: 7.3 CMS Macros and Functions Reference

LANGBLK

label

LANGBLK

Purpose
Use the LANGBLK macro to generate a DSECT for the LANGBLK control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the LANGBLK macro expansion
is labeled LANGBLK.

Usage Notes
1. The LANGBLK macroinstruction expands as follows:

 LANGBLK
LANGBLK DSECT
LANGNEXT DC AL4(0) Pointer to next LANGBLK
LANGAPID DC CL3'DMS' Application ID
LANGFLG1 DC X'78' Flag byte
LANGET EQU X'80' On indicates DBCS language
LANGUSSY EQU X'40' User synonyms wanted
LANGUSTR EQU X'20' User translations wanted
LANGSYSY EQU X'10' System synonyms wanted
LANGSYTR EQU X'08' System translations wanted
LANGLANG DC CL5' ' Language identifier
 DC X'00' Reserved for IBM use
LANGDISK DC XL2'00' HELP (or application) disk address
LANGMSG DC AL4(0) Message repository
LANGSPA DC AL4(0) System parser table
LANGUPA DC AL4(0) User parser table
LANGSSY DC AL4(0) System Synonym and Abbreviation table
LANGUSY DC AL4(0) User Synonym and Abbreviation table
LANGTRTS DC AL4(0) NLS translation tables
LANGUSER DC AL4(0) Reserved for application's use
LANGUME DC AL4(0) User additions to message repository
LANGBLKB EQU *-LANGBLK Bytes of storage for LANGBLK
LANGBLKD EQU (LANGBLKB+7)/8 Double words of storage for LANGBLK

2. The LANGBLK fields are used as follow:

• LANGBLK fields are modified indirectly, with the exception of LANGUSER, using one or a combination
of:

– SET LANGUAGE command, for more information see, z/VM: CMS Commands and Utilities
Reference.

– LANGADD function, refer to “LANGADD” on page 447 for more information.
– LANGFIND function, refer to “LANGFIND” on page 449 for more information.

• Most fields are used indirectly by using system facilities such as APPLMSG or PARSECMD.
LANGFLG1, LANGDISK, and LANGTRTS are used by CMS only if the LANGAPID='DMS'.

• LANGAPID and LANGLANG are set by an application in LANGBLKs used as input to the LANGFIND
and LANGADD functions.

• LANGMSG, LANGSPA, LANGSSY, LANGDISK, and LANGTRTS are set by an application using the
LANGADD function when the NLS information does not reside in a system language segment.

LANGBLK

Chapter 2. Preferred CMS Macro Instructions 287

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

• LANGDISK and LANGTRTS may be referenced by an application after using the LANGFIND function.
• LANGUSER is an application only usage field. It may be directly modified using the LANGFIND

function to locate the LANGBLK.

LANGBLK

288 z/VM: 7.3 CMS Macros and Functions Reference

LINERD

label

LINERD
1

DATA= ( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

, PROMPT= ' text '

( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,VNAME='CMS'

,VNAME= ' name '

addr

( reg)

,LINE= addr

( reg)

,COL= addr

( reg)

,FORM=SINGLE

,FORM=MULTIPLE

,NUMRD=(

addr1

( reg1)

, addr2

,( reg2)

)

,LOGICAL=YES

,LOGICAL=NO

,PAD=BLANK

,PAD= NULL

NONE

,TRANS=YES

, TRANS=NO

,CASE=UPPER

,CASE=MIXED

,TYPE=STACK

,TYPE= DIRECT

NOSTACK

INVISIBLE

,WAIT=NO

, WAIT = YES

,ATTREST=YES

, ATTREST=NO

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:

LINERD

Chapter 2. Preferred CMS Macro Instructions 289

1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the LINERD macroinstruction to read one or more lines of input from the terminal. The LINERD macro
can be used for single or multiple reads in full screen mode (SET FULLSCREEN ON) and can be used for
single reads in line mode (SET FULLSCREEN OFF or SET FULLSCREEN SUSPEND).

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
DATA=

specifies the address and length of the text to be read when the FORM parameter is omitted or
specified as SINGLE. When FORM=MULTIPLE is specified, the address designates the beginning of the
chain of input descriptors and the length field specifies in bytes the length of the buffer for the chain of
descriptors. Acceptable values are:
(addr,length)

specifies the address as an assembler expression and, optionally, the length as an absolute
expression. If a label specifies the address and the length is not specified, the length associated
with the label will be used.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses. If a label specifies the address and
the length is not specified, the length associated with the label will be used.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address and a register that contains the length. If you use
a register to specify the address, you must specify a length. Valid registers are 2-12 enclosed in
parentheses.

Note: The DATA parameter is required with the standard format of the LINERD macro.

PROMPT=
specifies the address and length of the prompt information written when a line is read. If you omit
PROMPT, no prompt information is displayed. Acceptable values are:
‘text’

specifies the prompt text as a literal string enclosed in quotation marks.
(addr,length)

specifies the address of the text as an assembler expression and, optionally, specifies the length
as an absolute expression. If a label specifies the address and the length is not specified, the
length associated with the label will be used.

(addr,(reg))
specifies the address of the text as an assembler expression and, optionally, specifies the length
as a value contained in a register. Valid registers are 2-12 enclosed in parentheses. If a label
specifies the address and the length is not specified, the length associated with the label will be
used.

LINERD

290 z/VM: 7.3 CMS Macros and Functions Reference

((reg),length)
specifies a register that contains the address of the text and specifies the length as an absolute
expression. If you use a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the text and specifies a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

If you specify length but not an address, CMS assumes the prompt information is in the read buffer.

VNAME=
specifies the name of the virtual screen to be read. If you omit VNAME, the default vscreen name is
CMS. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in quotation marks.
addr

specifies the name as an assembler label.
(reg)

specifies a register that contains the address of an 8-byte name.
LINE=

specifies the virtual screen line from which the data was read. This information is not available if
VNAME='CMS' (or default) and CMS is in line mode. Acceptable values are:
addr

specifies the address of a fullword in storage where LINERD stores the virtual screen line of the
data read.

(reg)
specifies a general register (2-12) enclosed in parentheses that contains the address of a fullword
in storage containing the virtual screen line of the data read.

COL=
specifies the virtual screen column from which the data was read. This information is not available if
VNAME='CMS' (or default) and CMS is in line mode. Acceptable values are:
addr

specifies the address of a fullword in storage where LINERD stores the virtual screen column of
the data read.

(reg)
specifies a general register (2-12) enclosed in parentheses that contains the address of a fullword
in storage containing the virtual screen column of the data read.

FORM=
specifies whether more than one input is requested in the application buffer. Acceptable values are:
SINGLE

means that only one input is requested. This is the default.
MULTIPLE

means that a chain of input descriptors is requested in the application buffer. The first input
descriptor in the chain only returns information on the cursor position and the key pressed. The
other input descriptors return the information for each modified field.

NUMRD=
returns the number of inputs read (number of modified fields plus one for the descriptor returning the
cursor and key information) and the length of the next input if there are more inputs to be read (see
Usage Note “15” on page 299). This parameter should be used when FORM=MULTIPLE is specified.
Acceptable values are:
addr1

specifies a fullword of storage to return the number of inputs read.

LINERD

Chapter 2. Preferred CMS Macro Instructions 291

(reg1)
specifies a register (2-12) which contains the address of a fullword of storage to return the
number of inputs read.

addr2
specifies a fullword of storage in which to return the length of the next input if there are more
inputs to be read.

(reg2)
specifies a register (2-12) which contains the address of a fullword of storage to return the length
of the next input if there are more inputs to be read.

LOGICAL=
specifies whether new-line characters in the input data are interpreted as a logical end-of-line.
Processing of the line-end symbol only occurs for data entered in the CMS virtual screen. Acceptable
values are:
YES

only the logical line is returned. This is the default value.
NO

the new-line characters are ignored and the entire line is returned.
PAD=

specifies whether the input data is padded with nulls or blanks to the length of the input buffer.
Acceptable values are:
BLANK

pads with blanks. This is the default value.
NULL

pads with nulls.
NONE

specifies that no padding is requested. If the data you read does not fill the input buffer, the
remainder of the input buffer contains its previous contents.

PAD=NONE is invalid when CMS is in line mode (SET FULLSCREEN OFF or SET FULLSCREEN
SUSPEND).

TRANS=
specifies whether the input data is translated according to the user input translate table, if any,
defined by the SET INPUT command. Acceptable values are:
YES

translates input data according to the user input table. This is the default value.
NO

specifies the macro does not translate input data.
CASE=

specifies whether the input data is translated to upper case. Acceptable values are:
UPPER

translates input data to upper case. This is the default value.
MIXED

specifies that the macro does not translate data to upper case; the data is left as is.
TYPE=

specifies the type of read request. Acceptable values are:
STACK

reads a line (a) from the program stack if a line is available, (b) from the input queue of the
specified virtual screen if the queue is not empty, or (c) directly from the console. LINERD does
not perform user input translation or logical line editing for lines read from the program stack. This
is the default value.

LINERD

292 z/VM: 7.3 CMS Macros and Functions Reference

DIRECT
reads the input line directly from the virtual machine console, bypassing the program stack and
the input queue associated with the virtual screen. If TYPE=DIRECT, LINERD redisplays the input
data on the virtual machine console.

NOSTACK
bypasses the program stack and reads a line from the virtual screen input queue or directly from
the virtual machine console.

INVISIBLE
like TYPE=DIRECT, TYPE=INVISIBLE reads the input line directly from the virtual machine
console, bypassing the input queue associated with the virtual screen and the program stack.
Unlike TYPE=DIRECT, TYPE=INVISIBLE does not redisplay the input data on the virtual machine
console.

WAIT=
specifies the status area message. This can help you to distinguish between system read requests and
program read requests during program execution. Acceptable values are:
NO

specifies that there is no distinction between system reads and program reads. If FULLSCREEN
is ON, the status area message is: Enter a command or press a PF or PA key. If
FULLSCREEN is OFF or SUSPEND and VNAME is CMS (or default), the status area message is
RUNNING. The default is NO.

YES
specifies the status area message (when FULLSCREEN is ON) as: Enter your response
in vscreen VNAME. This shows that your program is requesting input (a program read). If
FULLSCREEN is OFF or SUSPEND and VNAME is CMS (or default), the status area message is VM
READ.

If you specify TYPE=DIRECT or INVISIBLE, or if you specify the PROMPT parameter and the read is
satisfied from the virtual console, the WAIT parameter, if specified, is ignored and the status area
message is Enter your response in vscreen VNAME or VM READ.

Note: If FULLSCREEN is OFF or SUSPEND and VNAME is not CMS (or default), then no status
information is available.

ATTREST=
specifies whether an attention interrupt during a read request restarts the read operation. If CMS is in
line mode (SET FULLSCREEN OFF or SET FULLSCREEN SUSPEND) then ATTREST=NO can be used only
when reading physical lines (LOGICAL=NO).

The ATTREST operand is ignored when reading from a virtual screen. Acceptable values are:

YES
specifies that an attention interrupt during a read operation restarts the read operation. This is the
default value.

NO
specifies that an attention interrupt during a read operation signals the end of the line.
ATTREST=NO is valid only when CMS is in line mode (SET FULLSCREEN OFF or SET FULLSCREEN
SUSPEND) and you specify LOGICAL=NO.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.

LINERD

Chapter 2. Preferred CMS Macro Instructions 293

(reg)
passes control to the address in the specified register.

label
is an optional assembler label for the statement.

DATA=
specifies the address and length of the text to be read when the FORM parameter is omitted or
specified as SINGLE. When FORM=MULTIPLE is specified, the address designates the beginning of the
chain of input descriptors and the length field specifies in bytes the length of the buffer for the chain of
descriptors. Acceptable values are:
(addr,length)

specifies the address as an assembler expression and, optionally, the length as an absolute
expression. If a label specifies the address and the length is not specified, the length associated
with the label will be used.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses. If a label specifies the address and
the length is not specified, the length associated with the label will be used.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address and a register that contains the length. If you use
a register to specify the address, you must specify a length. Valid registers are 2-12 enclosed in
parentheses.

Note: The DATA parameter is required with the standard format of the LINERD macro.

PROMPT=
specifies the address and length of the prompt information written when a line is read. If you omit
PROMPT, no prompt information is displayed. Acceptable values are:
‘text’

specifies the prompt text as a literal string enclosed in quotation marks.
(addr,length)

specifies the address of the text as an assembler expression and, optionally, specifies the length
as an absolute expression. If a label specifies the address and the length is not specified, the
length associated with the label will be used.

(addr,(reg))
specifies the address of the text as an assembler expression and, optionally, specifies the length
as a value contained in a register. Valid registers are 2-12 enclosed in parentheses. If a label
specifies the address and the length is not specified, the length associated with the label will be
used.

((reg),length)
specifies a register that contains the address of the text and specifies the length as an absolute
expression. If you use a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the text and specifies a register that contains the
length. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

If you specify length but not an address, CMS assumes the prompt information is in the read buffer.

VNAME=
specifies the name of the virtual screen to be read. If you omit VNAME, the default vscreen name is
CMS. Acceptable values are:

LINERD

294 z/VM: 7.3 CMS Macros and Functions Reference

‘name’
specifies the name as a 1- to 8-character literal string enclosed in quotation marks.

addr
specifies the name as an assembler label.

(reg)
specifies a register that contains the address of an 8-byte name.

LINE=
specifies the virtual screen line from which the data was read. This information is not available if
VNAME='CMS' (or default) and CMS is in line mode. Acceptable values are:
addr

specifies the address of a fullword in storage where LINERD stores the virtual screen line of the
data read.

(reg)
specifies a general register (2-12) enclosed in parentheses that contains the address of a fullword
in storage containing the virtual screen line of the data read.

COL=
specifies the virtual screen column from which the data was read. This information is not available if
VNAME='CMS' (or default) and CMS is in line mode. Acceptable values are:
addr

specifies the address of a fullword in storage where LINERD stores the virtual screen column of
the data read.

(reg)
specifies a general register (2-12) enclosed in parentheses that contains the address of a fullword
in storage containing the virtual screen column of the data read.

FORM=
specifies whether more than one input is requested in the application buffer. Acceptable values are:
SINGLE

means that only one input is requested. This is the default.
MULTIPLE

means that a chain of input descriptors is requested in the application buffer. The first input
descriptor in the chain only returns information on the cursor position and the key pressed. The
other input descriptors return the information for each modified field.

NUMRD=
returns the number of inputs read (number of modified fields plus one for the descriptor returning the
cursor and key information) and the length of the next input if there are more inputs to be read (see
Usage Note “15” on page 299). This parameter should be used when FORM=MULTIPLE is specified.
Acceptable values are:
addr1

specifies a fullword of storage to return the number of inputs read.
(reg1)

specifies a register (2-12) which contains the address of a fullword of storage to return the
number of inputs read.

addr2
specifies a fullword of storage in which to return the length of the next input if there are more
inputs to be read.

(reg2)
specifies a register (2-12) which contains the address of a fullword of storage to return the length
of the next input if there are more inputs to be read.

LINERD

Chapter 2. Preferred CMS Macro Instructions 295

LOGICAL=
specifies whether new-line characters in the input data are interpreted as a logical end-of-line.
Processing of the line-end symbol only occurs for data entered in the CMS virtual screen. Acceptable
values are:
YES

only the logical line is returned. This is the default value.
NO

the new-line characters are ignored and the entire line is returned.
PAD=

specifies whether the input data is padded with nulls or blanks to the length of the input buffer.
Acceptable values are:
BLANK

pads with blanks. This is the default value.
NULL

pads with nulls.
NONE

specifies that no padding is requested. If the data you read does not fill the input buffer, the
remainder of the input buffer contains its previous contents.

PAD=NONE is invalid when CMS is in line mode (SET FULLSCREEN OFF or SET FULLSCREEN
SUSPEND).

TRANS=
specifies whether the input data is translated according to the user input translate table, if any,
defined by the SET INPUT command. Acceptable values are:
YES

translates input data according to the user input table. This is the default value.
NO

specifies the macro does not translate input data.
CASE=

specifies whether the input data is translated to upper case. Acceptable values are:
UPPER

translates input data to upper case. This is the default value.
MIXED

specifies that the macro does not translate data to upper case; the data is left as is.
TYPE=

specifies the type of read request. Acceptable values are:
STACK

reads a line (a) from the program stack if a line is available, (b) from the input queue of the
specified virtual screen if the queue is not empty, or (c) directly from the console. LINERD does
not perform user input translation or logical line editing for lines read from the program stack. This
is the default value.

DIRECT
reads the input line directly from the virtual machine console, bypassing the program stack and
the input queue associated with the virtual screen. If TYPE=DIRECT, LINERD redisplays the input
data on the virtual machine console.

NOSTACK
bypasses the program stack and reads a line from the virtual screen input queue or directly from
the virtual machine console.

INVISIBLE
like TYPE=DIRECT, TYPE=INVISIBLE reads the input line directly from the virtual machine
console, bypassing the input queue associated with the virtual screen and the program stack.

LINERD

296 z/VM: 7.3 CMS Macros and Functions Reference

Unlike TYPE=DIRECT, TYPE=INVISIBLE does not redisplay the input data on the virtual machine
console.

WAIT=
specifies the status area message. This can help you to distinguish between system read requests and
program read requests during program execution. Acceptable values are:
NO

specifies that there is no distinction between system reads and program reads. If FULLSCREEN
is ON, the status area message is: Enter a command or press a PF or PA key. If
FULLSCREEN is OFF or SUSPEND and VNAME is CMS (or default), the status area message is
RUNNING. The default is NO.

YES
specifies the status area message (when FULLSCREEN is ON) as: Enter your response
in vscreen VNAME. This shows that your program is requesting input (a program read). If
FULLSCREEN is OFF or SUSPEND and VNAME is CMS (or default), the status area message is VM
READ.

If you specify TYPE=DIRECT or INVISIBLE, or if you specify the PROMPT parameter and the read is
satisfied from the virtual console, the WAIT parameter, if specified, is ignored and the status area
message is Enter your response in vscreen VNAME or VM READ.

Note: If FULLSCREEN is OFF or SUSPEND and VNAME is not CMS (or default), then no status
information is available.

ATTREST=
specifies whether an attention interrupt during a read request restarts the read operation. If CMS is in
line mode (SET FULLSCREEN OFF or SET FULLSCREEN SUSPEND) then ATTREST=NO can be used only
when reading physical lines (LOGICAL=NO).

The ATTREST operand is ignored when reading from a virtual screen. Acceptable values are:

YES
specifies that an attention interrupt during a read operation restarts the read operation. This is the
default value.

NO
specifies that an attention interrupt during a read operation signals the end of the line.
ATTREST=NO is valid only when CMS is in line mode (SET FULLSCREEN OFF or SET FULLSCREEN
SUSPEND) and you specify LOGICAL=NO.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.

LINERD

Chapter 2. Preferred CMS Macro Instructions 297

(L,addr,mf_label)
specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If the length of the data buffer is specified as 0, then the length will be assumed to be 130 bytes.
2. When LINERD for a single input completes, register 0 contains the number of characters read.

Register 0 is unchanged when multiple input format is used.
3. When the virtual screen name is CMS (which is also the default virtual screen name), the action taken

by LINERD depends on the setting of full-screen CMS. If SET FULLSCREEN is ON, LINERD waits for
input into the CMS virtual screen. When the LINERD function is executed with CMS in line mode (SET
FULLSCREEN OFF or SET FULLSCREEN SUSPEND), LINERD calls the RDTERM function to do the read.
To support the length parameter, RDTERM must be called with the EDIT=PHYS option. In this case,
data padding is restricted to BLANK or NULL because the RDTERM function clears the entire data
buffer before doing the read.

4. If LOGICAL=YES, the maximum length for a read request is 240 bytes. If LOGICAL=NO, the maximum
length is 2030 bytes.

5. If you specify LOGICAL=NO, do not store prompt data in the read buffer because the read buffer may
be cleared prior to the execution of the function.

6. When a part of a field from a virtual screen is modified, the entire field is returned as a modified
field. The LINE and COL parameters are the virtual screen line and column of the field. For more
information on display of windows and modified fields in a fullscreen environment, see the VSCREEN
WAITREAD command documented in the z/VM: CMS Commands and Utilities Reference.

7. In fullscreen CMS or when VNAME is specified, the PROMPT parameter defines two fields in the
virtual screen: one field for the prompt (which continues on the first line from the end of the prompt
text to the end of the line) and one field for the user response (which starts on the second line). If the
response to be entered cannot fit in the first field (up to the end of the first line), then place the cursor
on the second line and enter the response on the second line (which can accept a response longer
then one line). If TYPE is not specified as INVISIBLE, the cursor is positioned at the beginning of the
response field. Specifying TYPE=INVISIBLE causes the cursor to be positioned on the line following
the prompt.

8. The lines in a window that are not reserved lines or data lines are called pad lines. When
TYPE=INVISIBLE is specified, the pad lines will be invisible. In addition, if VNAME='CMS' (the default)
is specified, the command line will also be invisible. All other lines in the window will be protected.

9. The LRDD mapping macro can be used to map the fields of the LINERD input descriptors.
10. Because of the similar structure of the LINERD and LINEWRT descriptors, the virtual screen can be

updated with the inputs by using the input descriptors (LRDD) as output descriptors (LWRD) with the
LINEWRT macro.

11. More details of the physical screen display of windows and wait functions are documented in the
z/VM: CMS Commands and Utilities Reference under the WAITREAD command.

12. Modified fields are returned in either of two different formats:

• Multiple input format, in which a chain of input descriptors (LRDDs) is used
• Single input format, in which the input is placed at the location specified by the DATA operand.

If the value at addr1 of NUMRD is greater than 0, the multiple input format is used. The value
returned at addr1 is the number of modified fields plus one (for the cursor and key descriptor). If no
fields were modified, the value at addr1 is 1, and the multiple input format returns the cursor and
key descriptor in the buffer. A value of 0 at addr1 indicates that the input is returned in single input
format.

LINERD

298 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

13. Information regarding the key pressed and cursor position is returned to the application only when
multiple inputs are returned.

14. FORM=MULTIPLE is ignored and only one input is returned in the single input format when:

a. TYPE=STACK is specified (or defaulted to), and the read is satisfied by the program stack.
b. The vscreen name (VNAME parameter) is not specified or the vname is CMS and CMS is running in

line mode.
15. If there are more inputs to be read (RC=13), the value stored at the fullword location specified by

addr2 will include the:

• Length of a cursor and key descriptor (LRDD)
• Length of the next input descriptor (LRDD)
• Text length of the modified field.

If the application buffer was not large enough to hold the cursor and key descriptor, the value stored
at the fullword location specified by addr2 will represent the length of the cursor and key descriptor
only.

16. If the buffer specified by the DATA parameter is not large enough to hold all modified fields, those
remaining are left on the queue, and are available for successive LINERDs from this vscreen.

17. When a LINERD is done in a virtual machine that is IPLed as a batch machine, a buffer length of 130
must be specified.

18. Any translation done on the input buffer that contains both SBCS and DBCS data will only occur on
the SBCS portions of the data provided that the display is capable of supporting mixed DBCS.

19. If truncation occurs because the data being read in is longer than the input buffer, and the truncation
occurs within a mixed DBCS string, then adjustments will be made to validate the truncated string.

20. CMS signals the VMCONINPUT event whenever it receives unsolicited input from the virtual machine
console. It is a broadcast event with session scope and does not synchronize the handling process.
It contains no event data. The monitoring application should perform a read operation to the console
to obtain the input data. It has a loose signal limit of zero, so when an event monitor is created for
this event, previously signaled console input notifications will not be seen by the corresponding event
handler. See z/VM: CMS Application Multitasking for more information.

21. In linemode CMS, WAIT=YES should be used when an EXIT routine created by the STAX macro exists.
WAIT=YES differs from WAIT=NO in that WAIT=NO causes an attention interrupt to be generated by
the user when the enter key is pressed.

Return Codes
When LINERD completes, register 15 contains one of the following return codes:
Code

Meaning
0

The function executed successfully.
4

If VNAME='CMS' (the default) is specified and SET FULLSCREEN is OFF or SUSPEND, then an attention
interrupt ended the read operation. Otherwise, no windows are showing the virtual screen specified.

12
The function is not valid for the virtual screen specified.

13
Application buffer is full.

24
An incorrect parameter list was specified.

28
The virtual screen does not exist.

LINERD

Chapter 2. Preferred CMS Macro Instructions 299

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

88
The virtual device does not support full-screen I/O.

89
The console is a 2741 typewriter terminal.

100
I/O error on screen.

104
Insufficient storage was available to execute the requested function.

LINERD

300 z/VM: 7.3 CMS Macros and Functions Reference

LINEWRT

label

LINEWRT
1

DATA= ( addr

, length

,( reg)

)

(( reg) , length

,( reg)

)

,VNAME='CMS'

,VNAME= ' name '

addr

( reg)

,LINE= n

( reg)

,COL= n

( reg)

,FORM=SINGLE

,FORM=MULTIPLE

,OUTLINE= BOX

BOXDEF

(

,

BOXLEFT

BOXOVER

BOXRIGHT

BOXUNDER

)

,CHARSET= MIXED

SBCS

,COLOR= BLUE

RED

PINK

GREEN

TURQUOISE

YELLOW

WHITE

DEFAULT

,HILITE= HIGH

NOHIGH

,EXTHI= BLINK

REVVIDEO

UNDERLINE

NONE

,PSS= A

B

C

D

E

F

0

1

8

,PROTECT= YES

NO

,PRIOR=NO

,PRIOR=YES

,NOCR=NO

,NOCR=YES

,ALARM=NO

,ALARM=YES

,ERROR=*

,ERROR= addr

( reg)

Notes:

LINEWRT

Chapter 2. Preferred CMS Macro Instructions 301

1 Keyword parameters can be entered in any order.

1

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Default is the standard macro format.

Purpose
Use the LINEWRT macroinstruction to display one or more lines of output at the terminal. You can use the
LINEWRT macroinstruction for single or multiple writes in full-screen mode (SET FULLSCREEN ON) and
for a single output in line mode (SET FULLSCREEN OFF or SET FULLSCREEN SUSPEND).

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
DATA=

specifies the address and length of the text to be written when the FORM parameter is omitted
or specified as SINGLE. The DATA parameter is required with the standard format of the LINEWRT
macro. When FORM=MULTIPLE is specified, the address designates the beginning of the chain of
output descriptors and the length operand is ignored. Acceptable values are:
(addr,length)

specifies the address as an assembler expression and, optionally, the length as an absolute
expression.

(addr,(reg))
specifies the address as an assembler expression and, optionally, the length as a value contained
in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address and the length as an absolute expression. If you use
a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address and a register that contains the length. If you use
a register to specify the address, you must specify a length. Valid registers are 2-12 enclosed in
parentheses.

VNAME=
specifies the name of a previously defined virtual screen where CMS writes the data. You can define
a virtual screen using the VSCREEN command, which is described in the z/VM: CMS Commands and
Utilities Reference. If you omit the VNAME parameter, CMS directs the output to the CMS message
class, which is displayed in the CMS virtual screen by default. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in quotation marks.

LINEWRT

302 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

addr
specifies the name as an assembler label.

(reg)
specifies a register that contains the address of an 8-byte name.

LINE=
specifies the line on the virtual screen where CMS writes the data. If you omit the LINE parameter,
or specify a value of 0, CMS writes the data on the line after the last line it wrote. LINE must be a
nonnegative integer value. Acceptable values are:
n

specifies the line number as an absolute expression.
(reg)

specifies a register (2-12) enclosed in parentheses that contains the line number.
COL=

specifies the column on the virtual screen where CMS writes the data. If you omit the COL parameter,
CMS writes the data in the first column of the virtual screen. COL must be a nonnegative integer value.
Acceptable values are:
n

specifies the column number as an absolute expression.
(reg)

specifies a register (2-12) enclosed in parentheses that contains the column number.
FORM=

specifies whether more than one output is in the application buffer. Acceptable values are:
SINGLE

means that only one output is specified. This is the default.
MULTIPLE

means that a chain of output descriptors contains the outputs. The first output descriptor only
contains cursor information. Each of the other output descriptors represents all of the information
required for one output.

OUTLINE
specifies the field outlining for a PS/55-family device. It may be specified as BOXDEF (the default
outlining for the device), BOX (a full box), or any combination of the following, to obtain the remaining
14 possible valid values:
BOXLEFT

A vertical line on the left of the field
BOXOVER

Overline
BOXRIGHT

A vertical line on the right of the field
BOXUNDER

Underline

Note: Currently on PS/55-family displays, for fields ending at column 80 of the physical screen
outlined on the right (with BOX or BOXRIGHT), the outlining on the right actually appears to the left of
column 1 on the next line.

CHARSET=
specifies the attribute for defining mixed DBCS or SBCS fields.
MIXED

specifies a mixed DBCS (with SO/SI positions) field.
SBCS

specifies a single-byte character set field.

LINEWRT

Chapter 2. Preferred CMS Macro Instructions 303

COLOR=
specifies the color of the data. Only one of the following keywords for color may be specified:

• BLUE
• RED
• PINK
• GREEN
• TURQUOISE
• YELLOW
• WHITE
• DEFAULT

The DEFAULT keyword specifies the default color of the physical device. If you do not specify the
COLOR parameter, CMS uses the default color for the virtual screen.

HILITE=
specifies the highlighting attribute for the data. If HILITE is not specified, the default highlighting for
the virtual screen is used. Acceptable values are:
HIGH

indicates bright (or high intensity).
NOHIGH

indicates normal intensity.

For more information on defining default values for virtual screens, see the VSCREEN DEFINE
command in the z/VM: CMS Commands and Utilities Reference.

EXTHI=
specifies the extended highlighting attribute for the data. You can specify the EXTHI parameter as one
of the following:

• BLINK
• REVVIDEO
• UNDERLINE
• NONE

If you do not specify the EXTHI parameter, CMS uses the default extended highlighting for the virtual
screen.

For more information on defining default values for virtual screens, see the VSCREEN DEFINE
command in the z/VM: CMS Commands and Utilities Reference.

PSS=
specifies the programmed symbol set CMS uses to write the data. Specify symbol sets as A, B, C, D,
E, F, 0, 1, or 8. Only one PSS can be specified. If you specify PSS=1, you must set CHARMODE to ON
to display the text. PSS=8 specifies a pure DBCS field. After you specify PSS=8, you cannot change to
another PSS value without redefining the field. If you do not specify the PSS parameter, CMS uses the
default character set for the virtual screen.

For more information on defining default values for virtual screens, see the VSCREEN DEFINE
command in the z/VM: CMS Commands and Utilities Reference.

PROTECT=
specifies whether the data can be typed over. If you do not specify the PROTECT parameter, CMS uses
the default for the virtual screen. Acceptable values are:
YES

means the data cannot be typed over.
NO

means the data can be typed over.

LINEWRT

304 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

For more information on defining default values for virtual screens, see the VSCREEN DEFINE
command in the z/VM: CMS Commands and Utilities Reference.

PRIOR=
specifies whether CMS writes the data if CMS halt typing is in effect. Acceptable values are:
NO

indicates that the data is not written if halt typing is in effect. This only has an effect on a
virtual screen which is handling message class CMS. (See the ROUTE command in the z/VM: CMS
Commands and Utilities Reference for more information on routing message classes.) This is the
default value.

YES
indicates a priority write. The data is written even if halt typing is in effect.

NOCR=
specifies whether CMS sets the cursor in the column following the data written. Acceptable values
are:
NO

CMS sets the cursor in the line following the data written. This is the default value.
YES

indicates no carriage return—CMS sets the cursor in the column following the data written.

Note: If CMS is in linemode (SET FULLSCREEN is OFF or SUSPEND) and VNAME='CMS', then trailing
blanks are removed when NOCR=NO.

ALARM=
specifies whether the alarm sounds the next time I/O is performed. Acceptable values are:
NO

specifies the alarm does not sound the next time I/O is performed. This is the default value.
YES

specifies the alarm sounds the next time I/O is performed.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

LINEWRT

Chapter 2. Preferred CMS Macro Instructions 305

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Usage Notes
1. The LWRD mapping macro can be used to map the fields of the LINEWRT output descriptors. The

z/VM: CMS Application Development Guide for Assembler contains an example showing how to use
these two macroinstructions to write multiple lines on a single call.

2. Similarities between the LINEWRT and LINERD descriptors allow you to update the vscreen by using
the input descriptors (LRDDs) as output descriptors (LWRDs) with the LINEWRT macro.

3. You cannot specify text on the DATA parameter itself; you must specify a buffer that contains the text.
To specify text on a macro call, use the APPLMSG macro.

4. The buffer whose address is specified on the DATA parameter should contain only data to be
displayed. Any data which is not displayable (such as control characters) is translated according
to the SET NONDISP setting.

5. Using LINEWRT with FORM=SINGLE specified to write data into a virtual screen is equivalent to
issuing a VSCREEN WRITE command with the FIELD option. For more information on the effects
and interactions of parameters when creating fields for a virtual screen, see the VSCREEN WRITE
command in the z/VM: CMS Commands and Utilities Reference.

6. OUTLINE, CHARSET, COLOR, HILITE, EXTHI, and PSS work only on devices that support them;
otherwise they are ignored.

7. When the virtual screen name is CMS (the default virtual screen name), the action taken by LINEWRT
depends on the setting of full-screen CMS. If SET FULLSCREEN is ON, LINEWRT writes the data into
the CMS virtual screen. If CMS is in line mode (SET FULLSCREEN OFF or SET FULLSCREEN SUSPEND),
LINEWRT calls the WRTERM function to display the output and the LINE, ALARM, COL, OUTLINE,
CHARSET, COLOR, HILITE, EXTHI, PSS, and PROTECT parameters are ignored.

When the virtual screen name is not CMS, the setting of full-screen CMS has no effect on the
LINEWRT macro.

8. If FULLSCREEN is ON and NOCR=YES is specified, the cursor is positioned in the field defined
immediately following the data.

9. Some programs embed hexadecimal code X'1D' to affect the highlighting and color attributes of
output in line mode. In full-screen CMS, however, X'1D' is a nondisplayable character and does not
affect the attributes of data following it. The LINEWRT macro (as well as the SET VSCREEN, VSCREEN
DEFINE, and VSCREEN WRITE commands) lets programs specify attributes for data in full-screen
CMS.

10. If the length of the data buffer is specified as 0, then a single blank will be written.
11. The maximum length of data that can be written is the size of the virtual screen you write to.
12. If you write to line zero, any character X'15' is treated as a line-end character; text following an X'15'

is written in the next line.
13. The detection of loaded programmed symbol sets occurs when full-screen CMS is initialized (SET

FULLSCREEN ON), resumed (SET FULLSCREEN RESUME), or when XEDIT is invoked. Therefore,
programmed symbol sets should be loaded prior to invoking these commands. They will then be
available for use by full-screen CMS or XEDIT in displaying the screen.

In line mode CMS, programmed symbol sets are detected the first time a window is displayed or
when XEDIT is invoked. If XEDIT has not been invoked and Session Services commands are used to
display a window, the check to determine if programmed symbol sets are loaded is only done the
first time a window is displayed. If programmed symbol sets are loaded after the initial display of
a window or after XEDIT has been invoked, you must invoke XEDIT to detect the new programmed
symbol sets.

14. PSS=8 lets you define a pure DBCS field in a vscreen when the device is a PS/55-family display with
PS8 capability. You can define a pure DBCS field only when you define a field (with the LINEWRT
macro or the VSCREEN WRITE command with the FIELD option). After you specify PSS=8, you
cannot change to another psset value without redefining the field. If you specify both PSS=8 and
CHARSET=MIXED or SBCS, PSS=8 will override the other two options; they are ignored.

LINEWRT

306 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

15. When MIXED is specified, both DBCS and SBCS characters can be displayed in the field. The SBCS
and DBCS strings are separated in the field by 1-byte SO/SI control codes.

When SBCS is specified, both SBCS and mixed DBCS data may be displayed in the field. However, you
cannot enter SO/SI codes directly from the keyboard.

After you specify MIXED or SBCS, you cannot change the field attributes without redefining the field.

The MIXED and SBCS options are ignored if the PSS=8 option is in effect. If you are writing a MIXED
or SBCS field on a PS8 vscreen, be sure to specify PS0 or the PSS value you want. Otherwise, PS8 is
assumed, and MIXED or SBCS is ignored.

16. When the LINEWRT macro is invoked and logging is in effect (SET LOGFILE command), CMS converts
pure DBCS to mixed DBCS text (by adding SO/SI control codes) before putting the data into a file.
This is done so that you can use XEDIT to view or change the file. Logging does not take place until a
refresh occurs.

For more information about DBCS adjustments when writing to the virtual screen, see the VSCREEN
WRITE command, in the z/VM: CMS Commands and Utilities Reference.

17. Any translation done on the input buffer that contains both SBCS and DBCS data will only occur on
the SBCS portions of the data provided that the display is capable of supporting mixed DBCS.

18. If FORM=MULTIPLE is specified and CMS is in linemode (SET FULLSCREEN is OFF or SUSPEND) and
VNAME='CMS', then descriptors that write color codes, extended highlighting codes, or pss codes
(values of LWRDCLRT, LWRDEXHT, or LWRDPSST for LWRDTXT) are ignored. Also, descriptors that
write to the reserved area of a virtual screen are ignored.

19. CMS signals the VMCONINPUT event whenever it receives unsolicited input from the virtual machine
console. It is a broadcast event with session scope and does not synchronize the handling process.
It contains no event data. The monitoring application should perform a read operation to the console
to obtain the input data. It has a loose signal limit of zero, so when an event monitor is created for
this event, previously signaled console input notifications will not be seen by the corresponding event
handler. See z/VM: CMS Application Multitasking for more information.

Return Codes
When LINEWRT completes, register 15 contains one of the following return codes:
Code

Meaning
0

The function executed successfully.
12

The function is invalid for the virtual screen specified.
24

The parameter list is invalid.
28

The virtual screen is not defined.
32

The specified line or column is outside the virtual screen.
104

Insufficient storage was available to execute the requested function.

LINEWRT

Chapter 2. Preferred CMS Macro Instructions 307

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

LRDD

LRDD

Purpose
Use the LRDD macroinstruction in conjunction with the LINERD macro to map the LINERD descriptors for
multiple inputs.

Usage Notes
1. For more information on the LRDD macro, see z/VM: CMS Application Development Guide for

Assembler.
2. The LRDD mapping macro expands as follows:

LRDD DSECT
LRDDNEXT DS A Pointer to next LINERD descriptor (LRDD)
 DS CL8 Reserved
LRDDLINE DS F Line number
LRDDCOL DS F Column number
LRDDTXTA DS A Text address for input LRDD
LRDDTXTL DS F Length of text following this LRDD
* for input LRDD
 DS CL4 Reserved
*
LRDDFLG1 DS XL1 Flag byte #1 for input LRDD
LRDDRESI EQU X'01' X Reserved area of vscreen
LRDDOUTL DS XL1 Field outlining byte for input LRDD
LRDDCSET DS XL1 MIXED/SBCS field attribute for input LRDD
 DS CL6 Reserved
LRDDATTR DS XL1 Attribute byte for input LRDD
LRDDCOLR DS XL1 Color byte for input LRDD
LRDDEXHI DS XL1 Extended highlighting byte for input LRDD
LRDDPSS DS XL1 PSS byte for input LRDD
*
LRDDFLG2 DS XL1 Flag byte #2 for cursor LRDD
LRDDRESC EQU X'01' X Reserved area of vscreen
*
 DS XL1 Reserved
*
LRDDKEY DS XL1 Holds key pressed for cursor LRDD
LRDDLEN EQU *-LRDD Length of LRDD in bytes
LRDDDBSZ EQU ((LRDDLEN+7)/8) Length of LRDD in doublewords
*

Note: The next three usage notes pertain to the cursor & key descriptor only.
3. If the cursor is not located in the vscreen, the value in both LRDDLINE and LRDDCOL is -1. If the

cursor is located between the top and bottom of the vscreen, the line and column are returned. If the
cursor is located on the line following the bottom line, the column number is returned in LRDDCOL
and LRDDLINE is set to 0. If the cursor is located below the line following the bottom line, LRDDLINE
is set to 0 and LRDDCOL is set to 2.

4. If the LRDDRESC flag of the LRDDFLG2 field is not set, the cursor is in the scrollable area of the
vscreen. If this flag is set, the cursor is in the top reserved area of the vscreen if the line number is a
positive value, and if the line number is negative, the cursor is in the bottom reserved area.

5. The LRDDKEY field returns the hexadecimal value of the key pressed. These values are documented
in the IBM 3270 Information Display System Data Stream Programmer's Reference. The valid key
values are:

Code Key Code Key

X'7D' ENTER X'C3' PF15

X'F1' PF1 X'C4' PF16

LRDD

308 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Code Key Code Key

X'F2' PF2 X'C5' PF17

X'F3' PF3 X'C6' PF18

X'F4' PF4 X'C7' PF19

X'F5' PF5 X'C8' PF20

X'F6' PF6 X'C9' PF21

X'F7' PF7 X'4A' PF22

X'F8' PF8 X'4B' PF23

X'F9' PF9 X'4C' PF24

X'7A' PF10 X'6C' PA1

X'7B' PF11 X'6E' PA2

X'7C' PF12 X'6B' PA3

X'C1' PF13 X'6D' CLEAR

X'C2' PF14

Note: The following usage notes pertain to the input descriptors only.
6. The text always immediately follows the LRDD input descriptor, and LRDDTXTA points to that

location.
7. The input length returned in LRDDTXTL may be shorter than the field displayed for user modification

in the vscreen (trailing nulls are removed). If only part of a field from a virtual screen is displayed on
the physical screen and the field is modified, the entire field is returned. If LRDDTXTL is zero, no text
follows the descriptor.

8. If the LRDDRESI flag of the LRDDFLG1 field is not set, the input was read from the scrollable area of
the vscreen. If the flag is set, the input was read from the top reserved area of the vscreen if the line
number is a positive number, and if the line number is a negative number, the input was read from the
bottom reserved area.

9. LRDDCSET returns the character set of the input. X'00' indicates a mixed DBCS field, and X'01'
indicates a SBCS field, or a pure DBCS (PSS 8) field.

10. Valid values for the LRDDOUTL, LRDDATTR, LRDDCOLR, LRDDEXHI, and LRDDPSS fields are
documented in the description of the LWRD macroinstruction.

LRDD

Chapter 2. Preferred CMS Macro Instructions 309

LWRD

LWRD

Purpose
Use the LWRD macroinstruction in conjunction with the LINEWRT macro to map the LINEWRT descriptors
for multiple outputs.

Usage Notes
1. For more information on the LWRD macro, see z/VM: CMS Application Development Guide for

Assembler.
2. The LWRD mapping macro expands as follows:

LWRD DSECT
LWRDNEXT DS A Pointer to next LINEWRT descriptor (LWRD)
 DS CL8 Reserved
LWRDLINE DS F Line number
LWRDCOL DS F Column number
LWRDTXTA DS A Text address for output LWRD
LWRDTXTL DS F Length of text for output LWRD
LWRDFLDL DS F Output length in vscreen for output LWRD
*
LWRDFLG1 DS XL1 Flag byte #1 for output LWRD
LWRDNTRF EQU X'80' X... No nulls translation
LWRDNOTR EQU X'40' .X.. No user translation
* EQU X'20' ..X. Reserved
* EQU X'10' ...X Reserved
LWRDCSEF EQU X'08' X... MIXED/SBCS attribute is
 specified
LWRDOUTF EQU X'04' X.. Field outlining is specified
LWRDPRTY EQU X'02' X. Priority write
LWRDRESO EQU X'01' X Reserved area of vscreen
LWRDOUTL DS XL1 Field outlining byte for output LWRD
LWRDCSET DS XL1 MIXED/SBCS attribute for output LWRD
 DS CL6 Reserved
LWRDATTR DS XL1 Attribute byte for output LWRD
LWRDCOLR DS XL1 Color byte for output LWRD
LWRDEXHI DS XL1 Extended highlighting byte for output LWRD
LWRDPSS DS XL1 PSS byte for output LWRD
*
LWRDFLG2 DS XL1 Flag byte #2 for output LWRD
LWRDPSSF EQU X'80' X... PSS is specified
LWRDEXHF EQU X'40' .X.. Extended highlight is specified
LWRDCLRF EQU X'20' ..X. Color is specified
LWRDDATF EQU X'10' ...X Update data buffer
* EQU X'08' X... Reserved

LWRDCRSF EQU X'04' X.. Position cursor within field
* EQU X'02' X. Reserved
LWRDPADF EQU X'01' X Padding with blanks
*
 ORG LWRDFLG2 Redefine flag byte #2 for cursor LWRD
LWRDLCUR DS X
LWRDSETC EQU X'02' X. Position cursor using curs LWRD
LWRDRESC EQU X'01' X Reserved area of vscreen
*
LWRDTXT DS X Text writes a field,data,color,exthi,pss
**
*** Valid text codes **
**
LWRDFLDV EQU X'00' Define a field with default vscreen attr.
LWRDFLDD EQU X'01' Define a field and use descriptor attr.
LWRDDATT EQU X'02' Text is data to write in predefined field
LWRDCLRT EQU X'03' Text is color codes
LWRDEXHT EQU X'04' Text is extended highlighting codes
LWRDPSST EQU X'05' Text is PSS codes
*
LWRDRC DS X Individual return code

LWRD

310 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

**
*** Valid return codes **
**
*
LWRDOK EQU 0 Function executed successfully
LWRDINVP EQU 24 User did not specify descriptor correctly
LWRDINVL EQU 32 Specified line/column is outside vscreen
LWRDNOST EQU 104 Insufficient storage was available
*
LWRDLEN EQU *-LWRD Length of LWRD
LWRDDBSZ EQU (LWRDLEN+7)/8 Length in doublewords

3. When you place the cursor in the scrollable area of the vscreen (LWRDRESC flag of LWRDFLG2 field
is not set), the value of LWRDLINE must be greater than or equal to zero. When you specify a line
number of zero, the cursor is positioned at the line following the current bottom of the vscreen. If
you are positioning the cursor in the reserved area of the vscreen, a positive line number places the
cursor in the top reserved area. The lines are numbered from the top down, with the top line being
line 1. Specifying a negative line number for the cursor in the reserved area of the vscreen places the
cursor in the bottom reserved area, where the lines are numbered from the bottom of the screen up.
For example, the bottom line is -1, the second line up is -2, and so on. The line number cannot be
zero when positioning the cursor in the reserved area. If the line number is out of the range of the
vscreen area, a return code of 32 is set in the LWRDRC field.

4. The value of LWRDCOL must be greater than or equal to zero. Specifying a column number of zero
is valid only when positioning the cursor in the scrollable area (in which case it is equivalent to
specifying column number 2). If the column number is out of the range of the vscreen area, a return
code of 32 is set in the LWRDRC field. A negative value is invalid, and the LWRDRC field is set to 24.

5. Cursor positioning is determined by the two flags of the LWRDFLG2 field in the cursor descriptor as
follows:

LWRDSETC indicates whether the cursor is to be positioned as specified in the cursor descriptor. If
the flag is set, the cursor is positioned on the specified line and column in the vscreen. If the flag
is not set, the vscreen coordinates specified by the LWRD cursor descriptor are ignored, and the
cursor is placed according to the VSCREEN CURSOR command or the setting of the LWRDCRSF flag
of the LWRDFLG2 field of the last LWRD output descriptor defining a field in the data area. This flag is
described in Usage Note “17” on page 314.

LWRDRESC indicates whether the cursor is to be placed in the reserved area of the vscreen. If the
flag is set, the cursor is placed in the reserved area.

6. When you write in the scrollable area of the vscreen (LWRDRESO flag of the LWRDFLG1 field is not
set), the value of LWRDLINE must be greater than or equal to zero. If an invalid line number is
specified, return code 24 is set in the LWRDRC field.

7. The value specified in the LWRDCOL field must be greater than or equal to zero. A negative column
number is invalid and results in return code 24 being set in the LWRDRC field.

8. The value specified in the LWRDTXTL field must be greater than or equal to zero. If it is zero, the
output for the length of LWRDFLDL is filled with the pad character specified by the LWRDPADF flag of
the LWRDFLG2 field. The details of padding for each vscreen buffer are explained in Usage Note “18”
on page 315. A negative value is invalid and causes a return code of 24 to be set in the LWRDRC field.

9. Use the LWRDFLDL field to specify the length of the output to be written in the vscreen. It must be
greater than or equal to zero. If it is zero, the length of the text is used (this is the value in LWRDTXTL,
plus one byte for the start field if defining a field). If LWRDFLDL is less than the text length, the
text is truncated. If LWRDFLDL is greater than the text length, the text is padded. When the output
defines a field (text code of LWRDFLDD or LWRDFLDV is specified in the LWRDTXT field), LWRDFLDL
is the length of the field. Note that when you are not writing a field, the text is written for the length
specified in LWRDFLDL or until the next field is encountered. The length of a field can range from one
to the size of the vscreen area (the number of lines times the number of columns). A negative value is
invalid and causes a return code of 24 to be set in the LWRDRC field.

10. The flags of the LWRDFLG1 field serve the following purposes:

LWRDNTRF indicates whether nulls are translated when translation of nondisplayable characters is
performed. If the flag is not set, nulls are translated to the character defined by SET NONDISP.

LWRD

Chapter 2. Preferred CMS Macro Instructions 311

Setting the flag on indicates that nulls are not to be translated. Nulls used for padding the data buffer
(when LWRDPADF is not set) are never translated.

LWRDCSEF indicates whether the MIXED or SBCS attribute is specified in the LWRDCSET field.

LWRDOUTF indicates, when set, that the field outlining is specified in the LWRDOUTL field.

LWRDPRTY indicates whether CMS halt typing (HT) setting is to be respected or ignored by the
output. When this flag is set, the output is written to the CMS message class vscreen in CMS
fullscreen or is displayed on the terminal in CMS linemode regardless of the HT setting. Output to be
written to a reserved area is displayed regardless of the HT setting. For other virtual screens, the flag
and HT are ignored.

LWRDRESO indicates whether the output is to be written to the reserved area of the vscreen. If the
flag is set, writing will occur in the top reserved area if the line number is a positive value, and if the
line number is negative, the output is written to the bottom reserved area. If the flag is not set, the
output is written to the scrollable area of the vscreen.

11. Valid values for the LWRDOUTL field, which specifies the field outlining of the output field, are:
X'00'

Device default
X'01'

Underline
X'02'

Vertical line on the right
X'03'

Underline and vertical line on the right
X'04'

Overline
X'05'

Overline and underline
X'06'

Overline and vertical line on the right
X'07'

Overline, underline, and vertical line on the right
X'08'

Vertical line on the left
X'09'

Underline and vertical line on the left
X'0A'

Vertical lines on the left and right
X'0B'

Underline and vertical lines on the left and right
X'0C'

Overline and vertical line on the left
X'0D'

Underline, overline, and vertical line on the left
X'0E'

Overline and vertical lines on the right and left
X'0F'

Complete box
12. LWRDCSET specifies the character set of the field, either MIXED or SBCS. X'00' defines a mixed DBCS

field, and X'01' defines a SBCS field. Any other value is accepted as X'00'.

LWRD

312 z/VM: 7.3 CMS Macros and Functions Reference

13. LWRDATTR specifies the field attributes of the output. These can be any valid field attributes as
documented in the IBM 3270 Information Display System Data Stream Programmer's Reference.
In order to change the field attribute to the value specified in LWRDATTR, you must redefine the
field with the LWRDFLDL text code specified in the LWRDTXT field of the output descriptor. The bit
definitions for 3270 field attributes are as follows:
Bit

Description
0, 1

Make the field attribute an EBCDIC/ASCII translatable graphic character
2

Has the following meanings:

• 0 Unprotected field
• 1 Protected field

3
Has the following meanings:

• 0 Alphanumeric
• 1 Numeric (causes an automatic upshift of data entry keyboard)

Note: Bits 2 and 3 equal to B'11' cause an automatic skip of a protected field.

4, 5
Have the following meanings:

• 00 Display/not selector-pen-detectable
• 01 Display/selector-pen-detectable
• 10 Intensified display/selector-pen-detectable
• 11 Nondisplay, nondetectable (not printable)

6
Reserved; must always be 0

7
Modified data tag (MDT); identifies modified fields during Read Modified command operations

14. Valid values for the LWRDCOLR field, which specifies the color of the output, are:
Value

Description
X'00'

Device or field default. See note below.
X'F1'

Blue
X'F2'

Red
X'F3'

Pink (Magenta)
X'F4'

Green
X'F5'

Turquoise (Cyan)
X'F6'

Yellow
X'F7'

White

LWRD

Chapter 2. Preferred CMS Macro Instructions 313

15. LWRDEXHI specifies the extended highlighting of the output. Valid values are:
Value

Description
X'00'

Device or field default. See note below.
X'F1'

Blink
X'F2'

Reverse Video
X'F4'

Underscore
16. LWRDPSS specifies the programmed symbol set of the output. Valid values are:

Value
Description

X'00'
Device or field default. See note below.

X'C1' through X'C6'
Loadable symbol sets (PSA-PSF)

X'F1'
Nonloadable symbol set (CHARMODE=ON) (PS1)

X'F8'
Pure DBCS field (also nonloadable) (PS8)

If you specify LWRDPSS of X'F1', you must set CHARMODE to ON to display the text.

Note: When defining a field (text code of LWRDFLDD or LWRDFLDV), the default color, extended
highlighting, or PSS is the vscreen default. When writing to a predefined field (text code of
LWRDDATT, LWRDCLRT, LWRDEXHT, or LWRDPSST is specified in the LWRDTXT field), the default
is the color, extended highlighting, or PSS of the field.

17. LWRDFLG2 uses flags to indicate the function to be performed. The details for each flag are:

LWRDPSSF indicates the programmed symbol set code when padding or updating is required for
the PSS buffer. When the flag is set, the programmed symbol set specified in LWRDPSS is used;
otherwise, the default PSS of the virtual screen is used.

LWRDEXHF indicates the extended highlighting code when padding or updating is required for the
extended highlighting buffer. When the flag is set, the extended highlighting specified in LWRDEXHI is
used; otherwise, the default extended highlighting of the virtual screen is used.

LWRDCLRF indicates the color code when padding or updating is required for the color buffer. When
the flag is set, the color specified in LWRDCOLR is used; otherwise, the default color of the virtual
screen is used.

LWRDDATF indicates whether the data buffer of the field is to be updated with a pad character. The
pad character is either a blank or a null (X'00') character, based on the LWRDPADF setting. When this
flag is set, the pad character indicated by LWRDPADF updates the data buffer of the field. This flag is
used only when the output is to write color, extended highlighting, or PSS.

LWRDCRSF indicates whether the cursor is placed within this field. If the flag is set and the text is
shorter than the field, then the cursor is placed in the column following the last character of the text.
If this flag is not set or the text fills the field, then the cursor is placed in the column following the
field. The cursor positioning within a field is ignored when the cursor is set by the cursor descriptor or
the VSCREEN CURSOR command or when the output is to write data, color, extended highlighting, or
PSS (text code of LWRDDATT, LWRDCLRT, LWRDEXHT, or LWRDPSST specified in the LWRDTXT field).
If a WRTERM is issued, LWRDCRSF adds a line end character to the end of the line when the flag is
set.

LWRD

314 z/VM: 7.3 CMS Macros and Functions Reference

LWRDPADF indicates the padding character for the vscreen data buffer when the length of the output
(LWRDFLDL) is greater than the length of the text (LWRDTXTL). If the flag is set, the data buffer is
padded with blanks. Otherwise, it is padded with nulls (X'00').

18. LWRDTXT defines a field or writes text containing data, color, highlighting, or PSS codes for each
character of a predefined field. If an invalid text code is specified, the output is ignored (NO-OP).
When you specify the text code of LWRDCLRT, LWRDEXHT, or LWRDPSST, CHARMODE must be ON to
see the results on the screen. Valid text codes and their definitions are as follows:

LWRDFLDV (code X'00') defines a field in the vscreen at the row and column and for the length
specified. All buffers (attribute, data, color, extended highlighting, and PSS) are updated with the
new information. The attribute buffer is updated with the default vscreen field attribute. The data
buffer is updated with the text associated with the output descriptor. The outlining, color, extended
highlighting, and PSS buffers are updated with the attributes specified in the output descriptor
or with the default vscreen attributes. If the attribute flags (LWRDOUTF, LWRDCSEF, LWRDCLRF,
LWRDEXHF, or LWRDPSSF of the LWRDFLG2 field) are set, the attribute values in LWRDOUTL,
LWRDCSET, LWRDCOLR, LWRDEXHI, or LWRDPSS are used, and if the flags are not set, the default
attributes of the vscreen are used. When a field is defined, the first character contains the start field.
The start field is a one-byte character identifying the attribute for the field. The start field character
is protected and cannot be written to. For more information on fields, see the IBM 3270 Information
Display System Data Stream Programmer's Reference. After a field is defined, you cannot change the
field attributes without redefining the field.

LWRDFLDD (code X'01') defines a field in the vscreen in the same way that LWRDFLDV does, except it
uses the attribute byte of the output descriptor (LWRDATTR).

LWRDDATT (code X'02') indicates that the text associated with the output descriptor consists of
the new character codes for each position within the predefined field in the data buffer. The color,
extended highlighting, or PSS buffers can be updated by setting the attribute flags (LWRDCLRF,
LWRDEXHF, or LWRDPSSF). In this case, these buffers are updated with LWRDCOLR, LWRDEXHI, or
LWRDPSS.

LWRDCLRT (code X'03') indicates that the text associated with the output descriptor consists of the
new character codes for each character position within the predefined field. The text is written to
the color buffer, and a color code is used for padding if it is required. The padding color code is
selected according to the color flag (LWRDCLRF). If LWRDCLRF is set, LWRDCOLR is used for padding,
otherwise the default vscreen color is used. The data, extended highlighting, and PSS buffers can be
updated for the length of the output. If the LWRDDATF flag is set, the data buffer is updated with
blanks or nulls, based on the LWRDPADF setting. The highlighting and PSS buffers are updated with
the LWRDCOLR and LWRDPSS codes if the LWRDCLRF and LWRDPSSF flags are set.

LWRDEXHT (code X'04') indicates that the text associated with the output descriptor consists of the
new highlighting codes for each character position within the predefined field. The text is written to
the extended highlighting buffer, and the padding and updating of the other buffers are performed in
the same manner as described in LWRDCLRT.

LWRDPSST (code X'05') indicates that the text associated with the output descriptor consists of the
new symbol set identifier codes for each character position within the predefined field. The text is
written to the PSS buffer, and the padding and updating of the other buffers are performed in the
same manner as described in LWRDCLRT.

19. LWRDRC is the return code. The return code is set in the LWRDRC field of the output descriptor. The
following return codes are possible for each output processed by LINEWRT.
Code

Meaning
 0

Function executed successfully
 24

User did not specify the descriptor correctly

LWRD

Chapter 2. Preferred CMS Macro Instructions 315

 32
Specified line or column is outside vscreen

104
Insufficient storage was available to execute

If more than one error occurs, the highest return code is put in register 15.

LWRD

316 z/VM: 7.3 CMS Macros and Functions Reference

NUCEXT

Purpose
Use the NUCEXT macroinstruction to access the NUCEXT function. The NUCEXT macro provides all the
functions available with the NUCEXT function; it also lets you specify the addressing mode of the nucleus
extension entry point.

The five basic functions of the NUCEXT macro are:
NUCEXT ANCHOR

Obtains the anchor pointer for the list of SCBLOCKs that describe the current list of nucleus
extensions.

NUCEXT CLR
Deletes a nucleus extension from the chain of SCBLOCKs that describe the current list of nucleus
extensions.

NUCEXT QUERY
Determines if a nucleus extension is defined.

NUCEXT RENAME
Changes the nucleus extension command name field of an SCBLOCK.

NUCEXT SET
Declares a nucleus extension.

NUCEXT

Chapter 2. Preferred CMS Macro Instructions 317

NUCEXT ANCHOR

label

NUCEXT ANCHOR
1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use NUCEXT ANCHOR to obtain the anchor pointer for the chain of SCBLOCKs that describe the current
list of nucleus extension programs.

Parameters
Required Parameter:
ANCHOR

returns in register 1 the pointer to the first entry in the NUCEXT chain of SCBLOCKs.

The ANCHOR option requires a read and write parameter list. If you require reentrant code, use the
execute form (MF=(E,addr)) of the macro.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

NUCEXT ANCHOR

318 z/VM: 7.3 CMS Macros and Functions Reference

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes
There are no error return codes.

NUCEXT ANCHOR

Chapter 2. Preferred CMS Macro Instructions 319

NUCEXT CLR

label

NUCEXT CLR
1

, NAME = ' name '

addr

( reg)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use NUCEXT CLR to delete a nucleus extension from the chain of SCBLOCKs that describe the current list
of nucleus extension programs.

Parameters
Required Parameters:
CLR

deletes the named nucleus extension from the list of nucleus extensions.
NAME=

names the nucleus extension to be cleared. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the name of the nucleus extension. It
can be any valid assembler expression.

(reg)
specifies a register that contains the address of the 8-byte storage area containing the name of
the nucleus extension. Valid registers are 2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.

NUCEXT CLR

320 z/VM: 7.3 CMS Macros and Functions Reference

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
1

‘name’ is not found.

NUCEXT CLR

Chapter 2. Preferred CMS Macro Instructions 321

NUCEXT QUERY

label

NUCEXT QUERY
1

,NAME= ' name '

addr

( reg)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use NUCEXT QUERY to determine whether a specific nucleus extension is currently defined.

Parameters
Required Parameters:
QUERY

returns in register 1 the pointer to the SCBLOCK that describes the named nucleus extension.

The QUERY option requires a read and write parameter list. If you require reentrant code, use the
execute form (MF=(E,addr)) of the macro.

NAME=
names the nucleus extension to be queried. Acceptable values are:
‘name’

specifies the name of the nucleus extension as a 1- to 8-character literal string enclosed in single
quotation marks.

addr
specifies the address of the 8-byte storage area containing the name. It can be any valid
assembler expression.

(reg)
specifies a register that contains the address of the 8-byte storage area containing the name. Valid
registers are 2-12 enclosed in parentheses.

Optional Parameters:

NUCEXT QUERY

322 z/VM: 7.3 CMS Macros and Functions Reference

label
is an optional assembler label for the statement.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. At abend cleanup time NUCEXT SCBLOCKs are moved.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
1

‘name’ is not defined.

NUCEXT QUERY

Chapter 2. Preferred CMS Macro Instructions 323

NUCEXT RENAME

label

NUCEXT RENAME
1

, NAME = ' scbname '

addr

( reg)

,NEW= ' nscbname '

addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use NUCEXT RENAME to change the name field of an SCBLOCK for a nucleus extension.

Parameters
Required Parameters:
RENAME

indicates that the RENAME function is desired.
NAME=

specifies the old name of the nucleus extension that is being renamed. Acceptable values are:
‘scbname’

specifies the current name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the current name. It can be any valid
assembler expression.

(reg)
specifies the register containing the address of the storage area containing the new current name.
Valid registers are 2-12 enclosed in parentheses.

NEW=
specifies the new name of the nucleus extension. Acceptable values are:
‘nscbname’

specifies the new name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the new name. It can be any valid
assembler expression.

(reg)
specifies the register containing the address of the storage area containing the new name. Valid
registers are 2-12 enclosed in parentheses.

Optional Parameters:
label

is any valid assembler language label.

NUCEXT RENAME

324 z/VM: 7.3 CMS Macros and Functions Reference

Usage Notes
1. The NUCEXT RENAME function (called from a program through the NUCEXT macro) requires the

following PLIST:

label DC CL8'NUCEXT'
 DC CL8'oldname'
 DC CL4 ignored
 DC AL4(2) identifies the rename function
 DC CL8'newname'

This changes the name field of the ‘oldname’ nucleus extension to ‘newname’.

Return Codes
If an error occurs, register 15 contains the following return code:

Code
Meaning

1
‘oldname’ is not found.

NUCEXT RENAME

Chapter 2. Preferred CMS Macro Instructions 325

NUCEXT SET

label

NUCEXT SET
1

, NAME = ' name '

addr

( reg)

, ENTRY = addr

( reg)

, UWORD = addr

( reg)

, UFLAGS = addr

( reg)

value

, AMODE = SAME

, AMODE = 24

31

ANY

, INTTYPE = NONE

, INTTYPE = IO

CONSOLE

NONCONIO

EXTERNAL

ALL

(EXTERNAL , CONSOLE)

(EXTERNAL , NONCONIO)

, ORIGIN = (locaddr

( reg)

, proglen

( reg)

)

, KEY = USER

, KEY = NUCLEUS

( reg)

( addr , mask)

, SYSTEM = NO

, SYSTEM = YES

( reg)

( addr , mask)

, SERVICE = NO

, SERVICE = YES

( reg)

( addr , mask)

, ENDCMD = NO

, ENDCMD = YES

( reg)

( addr , mask)

, IMMCMD = NO

, IMMCMD = YES

( reg)

( addr , mask)

, PERM = NO

, PERM = YES

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:

NUCEXT SET

326 z/VM: 7.3 CMS Macros and Functions Reference

1 Keyword parameters be entered in any order.
2 Default is the standard macro format.

Purpose
Use the NUCEXT SET macro to declare a nucleus extension.

Parameters
Required Parameters:
SET

declares the named entry point as a nucleus extension.
NAME=

names the nucleus extension to be defined. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the name. This can be any valid
assembler expression.

(reg)
specifies a register that contains the address of the storage area holding the name. Valid registers
are 2-12 enclosed in parentheses.

ENTRY=
defines the entry point of the nucleus extension. Acceptable values are:
addr

specifies the entry point at the 8-byte storage location defined by addr. This can be any valid
assembler expression.

(reg)
specifies the entry point at the address contained in the register. Valid registers are 2-12 enclosed
in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
UWORD=

specifies an optional fullword available in the SCBWKWRD field of the SCBLOCK, which register 2
points to when the nucleus extension is invoked. Acceptable values are:
addr

specifies the addr of the UWORD. This can be any valid assembler expression.
(reg)

defines the contents of (reg) as the UWORD. Valid registers are 2-12 enclosed in parentheses.
UFLAGS=

specifies an optional 1-byte field available in the SCBUFLAG field of the SCBLOCK, which register 2
points to when the nucleus extension is invoked. Acceptable values are:
addr

specifies the address of the 1-byte UFLAGS field. This can be any valid assembler expression.
(reg)

defines UFLAGS as the contents of low-order byte of (reg). Valid registers are 2-12 enclosed in
parentheses.

NUCEXT SET

Chapter 2. Preferred CMS Macro Instructions 327

value
defines UFLAGS as a self-defining 1-byte constant (such asX'01' or C'F').

AMODE=
specifies the addressing mode in which the nucleus extension is entered. Acceptable values are:
SAME

enters the nucleus extension in the same addressing mode as the program that issues the
NUCEXT macroinstruction. This is the default value.

24
enters the nucleus extension in 24-bit addressing mode.

31
enters the nucleus extension in 31-bit addressing mode.

ANY
enters the nucleus extension in the same addressing mode as the calling routine.

INTTYPE=
specifies the PSW interrupt mask the CMS SVC interrupt handler is to use when invoking the nucleus
extension. Acceptable values are:
NONE

disables all interrupts. This is the default value.
ALL

enables all interrupts.
IO

enables all I/O interrupts.
CONSOLE

enables only I/O interrupts from the virtual machine console. The interrupt subclass (ISC) for the
console is enabled.

NONCONIO
enables only nonconsole I/O interrupts. All ISCs except for the console ISC are enabled.

EXTERNAL
enables external interrupts.

(EXTERNAL,CONSOLE)
enables external interrupts and I/O interrupts from the virtual machine console. The interrupt
subclass (ISC) for the console is enabled.

(EXTERNAL,NONCONIO)
enable for external interrupts and nonconsole I/O interrupts. All ISCs except for the console ISC
are enabled.

See “ENABLE” on page 178 for more information on the INTTYPE parameter.

ORIGIN=
specifies the location and length (in bytes) of the program in virtual storage. NUCXDROP and CMS
abend processing use this value to remove the nucleus extension program from storage. If the length
of the program is specified as zero, NUCXDROP and CMS abend processing will not attempt to free the
module's storage. Acceptable values are:
locaddr

specifies the origin location as an assembler expression.
(reg)

specifies a general register (2-12) in parentheses that contains the location.
proglen

specifies the program's length.
(reg)

specifies a general register (2-12) in parentheses that contains the length of the program in virtual
storage.

NUCEXT SET

328 z/VM: 7.3 CMS Macros and Functions Reference

KEY=
specifies the storage key in which the routine executes (either NUCLEUS or USER key). Acceptable
values are:
USER

sets storage key to USER. This is the default value.
NUCLEUS

sets storage key to NUCLEUS.
(reg)

the macro checks the value of the specified register and, if it is 0, sets KEY to USER. If the register
contains a nonzero value, the macro sets KEY to NUCLEUS.

(addr,mask)
defines a single bit in storage that sets the value of the KEY parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then KEY is set to USER. If the bit is 1, then KEY is set to NUCLEUS. For example, to test the first
bit in the single byte of storage at location APPFLAG, specify the KEY parameter as

KEY=(APPFLAG,X'80')

To set the value of the KEY parameter at assembly time, specify KEY=NUCLEUS or KEY=USER. To set
the value at execution time, specify KEY=(reg) or KEY=(addr,mask).

SYSTEM=
indicates whether the nucleus extension survives CMS abend processing. Acceptable values are:
NO

specifies not to save the nucleus extension. This is the default value.
YES

specifies to save the nucleus extension. You should specify SYSTEM=YES if the nucleus extension
must reside in storage that is not reclaimed during abend processing or which CMS is unable to
reclaim during abend processing without receiving errors.

(reg)
the macro checks the value of the specified register and, if it is 0, sets SYSTEM to NO. If the
register contains a nonzero value, the macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The addr is the
address of a byte in storage and the mask determines which bit within the byte the macro tests.
You can specify addr and mask in any form allowed on a TM assembler instruction. If the specified
bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO. To
set the value at execution time, specify SYSTEM=(reg) or SYSTEM=(addr,mask).

SERVICE=
indicates whether this entry point receives control during CMS abend processing or NUCXDROP.
Acceptable values are:
NO

specifies that this entry point does not receive control. This is the default value.
YES

specifies that this entry point does receive control.
(reg)

the macro checks the value of the specified register and, if it is 0, sets SERVICE to NO. If the
register contains a nonzero value, the macro sets SERVICE to YES.

NUCEXT SET

Chapter 2. Preferred CMS Macro Instructions 329

(addr,mask)
defines a single bit in storage that sets the value of the SERVICE parameter. The addr is the
address of a byte in storage and the mask determines which bit within the byte the macro tests.
You can specify addr and mask in any form allowed on a TM assembler instruction. If the specified
bit is 0, then SERVICE is set to NO. If the bit is 1, then SERVICE is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the SERVICE parameter as

SERVICE=(APPFLAG,X'80')

To set the value of the SERVICE parameter at assembly time, specify SERVICE=YES or SERVICE=NO.
To set the value at execution time, specify SERVICE=(reg) or SERVICE=(addr,mask).

ENDCMD=
indicates whether the nucleus extension receives control at normal end-of-command processing.
Acceptable values are:
NO

indicates that the nucleus extension does not receive control. This is the default value.
YES

indicates that the nucleus extension receives control.
(reg)

the macro checks the value of the specified register and, if it is 0, sets ENDCMD to NO. If the
register contains a nonzero value, the macro sets ENDCMD to YES.

(addr,mask)
defines a single bit in storage that sets the value of the ENDCMD parameter. The addr is the
address of a byte in storage and the mask determines which bit within the byte the macro tests.
You can specify addr and mask in any form allowed on a TM assembler instruction. If the specified
bit is 0, then ENDCMD is set to NO. If the bit is 1, then ENDCMD is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the ENDCMD parameter as

ENDCMD=(APPFLAG,X'80')

To set the value of the ENDCMD parameter at assembly time, specify ENDCMD=YES or ENDCMD=NO.
To set the value at execution time, specify ENDCMD=(reg) or ENDCMD=(addr,mask).

IMMCMD=
indicates whether the nucleus extension can be invoked as an immediate command. Acceptable
values are:
NO

indicates that the nucleus extension cannot be invoked as an immediate command. This is the
default.

YES
indicates that the nucleus extension can be invoked as an immediate command.

(reg)
the macro checks the value of the specified register and, if it is 0, sets IMMCMD to NO. If the
register contains a nonzero value, the macro sets IMMCMD to YES.

(addr,mask)
defines a single bit in storage that sets the value of the IMMCMD parameter. The addr is the
address of a byte in storage and the mask determines which bit within the byte the macro tests.
You can specify addr and mask in any form allowed on a TM assembler instruction. If the specified
bit is 0, then IMMCMD is set to NO. If the bit is 1, then IMMCMD is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the IMMCMD parameter as

IMMCMD=(APPFLAG,X'80')

To set the value of the IMMCMD parameter at assembly time, specify IMMCMD=YES
or IMMCMD=NO. To set the value at execution time, specify IMMCMD=(reg) or
IMMCMD=(addr,mask).

NUCEXT SET

330 z/VM: 7.3 CMS Macros and Functions Reference

PERM=
indicates whether the nucleus extension is to be loaded permanently, that is, whether it can be
dropped by NUCXDROP *. Acceptable values are:
NO

indicates that the nucleus extension can be dropped by NUCXDROP *. This is the default.
YES

indicates that the nucleus extension must be named explicitly on NUCXDROP.
(reg)

the macro checks the value of the specified register and, if it is 0, sets PERM to NO. If the register
contains a nonzero value, the macro sets PERM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the PERM parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then PERM is set to NO. If the bit is 1, then PERM is set to YES. For example, to test the first bit in
the single byte of storage at location APPFLAG, specify the PERM parameter as

PERM=(APPFLAG,X'80')

To set the value of the PERM parameter at assembly time, specify PERM=YES or PERM=NO. To set
the value at execution time, specify PERM=(reg) or PERM=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes

1. On entry to a nucleus extension, the register contents are:
Register

Contents

NUCEXT SET

Chapter 2. Preferred CMS Macro Instructions 331

R0
Address of extended parameter list (if one was provided by the caller)

R1
Address of the command name (and the tokenized parameter list)

R2
Address of SCBLOCK (If the nucleus extension is invoked as an immediate command, R2 contains
the address of an IMMBLOK, not an SCBLOCK.)

R12
Entry point address

R13
User save area. Note that the USECTYP field of the user save area contains call type information.
For 24-bit applications, this information is also found in the high-order byte of register 1. If the
nucleus extension is called during end-of-command processing (ENDCMD=YES), the call type is
X'FE'. If the nucleus extension is called during abend processing (SERVICE=YES), the call type is
X'FF'.

R14
Return address

R15
Entry point address

This is the standard entry point convention except that register 2 points to the SCBLOCK.
2. Nucleus extensions invoked as immediate commands must use BR 14 rather than CMSRET to return

control. Using CMSRET may cause the program that invoked the immediate command to end, rather
than causing just the immediate command itself to end.

3. When a nucleus extension is established by a multitasking application, it becomes associated with
the process that created it, while also being known throughout the session. If a thread in another
process invokes the nucleus extension, a thread is created in the process that established it to run
the nucleus extension. In this way, it runs in the language environment of its process and if it abends,
VMERROR event handlers established in that process can attempt recovery. See z/VM: CMS Application
Multitasking for more information.

4. A program that is to be a nucleus extension must not be built with the multitasking initialization routine
VMSTART. While a nucleus extension can perform multitasking operations, it cannot be the starting
point for a new process. See z/VM: CMS Application Multitasking for more information.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
25

Insufficient storage to allocate SCBLOCK.

NUCEXT SET

332 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

NUCON

label

NUCON

Purpose

Use the NUCON macroinstruction to generate a mapping of the fields of the nucleus constant area
(NUCON) control block that are supported as programming interfaces.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the NUCON macro expansion is
labeled NUCON.

Usage Notes
1. The NUCON macroinstruction expands the six fields of NUCON that are supported as a programming

interface as follows:

NUCON DSECT
ACMSCVT DS 1F Address of simulated OS CVT
ADEVTAB DC V(addr) CMS device information
AEXEC DC V(addr) Address of CMS EXEC interface
NUCXFRES DC F'0' Amount of NUCLEUS free storage to
* survive abend
USERLVL DS F User area; contents returned in reg 0
AUSER DC V(USERSECT) Address of USERSECT

2. The ACMSCVT field contains the address of CMSCVT, the simulated OS CVT.
3. The ADEVTAB field contains the address used to find CON1ECB for the WAITECB macro. It points to

device information for CMS. CON1ECB is located at offset X'C' into this device information. CON1ECB is
the only field of the device information that is supported as a programming interface.

4. The AEXEC field contains the address of the CMS module that serves as the interface to the CMS exec
processors. This address can be used by programs requiring fast-path subcommand processing. For
more information, see the z/VM: REXX/VM Reference.

5. The NUCXFRES field is maintained in NUCON for compatibility, however, it is no longer used to contain
the amount of free storage to survive an abend.

6. The USERLVL field is reserved for use by the user. Its contents are returned in register 0 after QUERY
CMSLEVEL is issued.

NUCON

Chapter 2. Preferred CMS Macro Instructions 333

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

PARSECMD

label

PARSECMD
1

UNIQID = ' uniqueid '

( reg)

addr

,CALLTYP= addr

( reg)

,APPLID= 'DMS'

,APPLID=  applid

,PLIST= (1)

,PLIST= addr

( reg)

,EPLIST= (0)

, EPLIST= addr

( reg)

,UPPER=CMS

,UPPER= YES

NO

,MSGDISP=ERRMSG

,MSGDISP= NONE

EXECCOMM

var

,MSGBUFF=0

,MSGBUFF= addr

( reg)

,TRANSL=CMS

,TRANSL= YES

NO

SAME

,TYPCALL=SVC

,TYPCALL=BALR

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

PARSECMD

334 z/VM: 7.3 CMS Macros and Functions Reference

Purpose
Use the PARSECMD macroinstruction from an assembler program to parse (and translate) the arguments
of a command.

Parameters
Required Parameters:
UNIQID=

specifies the unique identifier of the syntax definition used for parsing. It has a maximum length of 16
characters and is always required. Acceptable values are:
‘uniqueid’

specifies the unique identifier within single quotation marks.
(reg)

specifies a register that contains the address of the unique identifier.
addr

specifies the name as an assembler label.
CALLTYP=

is the call type information passed to the parsing facility. (In previous releases of CMS, this was the
information that was passed in the high-order byte of register 1.) The call type information for a
command invocation is the value found at label USECTYP in the USERSAVE control block. On entry to
a program invoked using SVC 202 or CMSCALL, register 13 points to a USERSAVE control block.

To use the call type your program was invoked with, establish addressability to the USERSAVE control
block and specify CALLTYP=USECTYP. Acceptable values are:

addr
specifies the address containing the CALLTYP information.

(reg)
specifies the register that contains the address of the CALLTYP information.

Optional Parameters:
label

is an optional assembler label for the statement.
APPLID=

specifies an application identifier such as DMS or OFS. It must be 3 alphanumeric characters enclosed
in single quotation marks, and the first character must be alphabetic. The default is DMS, which is the
application identifier for CMS.

PLIST=
specifies the address of the tokenized parameter list for the command. Acceptable values are:
(1)

specifies that register 1 contains the address of the tokenized parameter list. This is the default
value.

addr
specifies the address of the tokenized parameter list.

(reg)
specifies a general register (2-12) enclosed in parentheses which contains the address of the
tokenized parameter list.

Note: In 24-bit addressing mode, as in previous releases of CMS, the high-order byte of the address
indicates if an extended parameter list is available at execution time. In 31-bit addressing mode, you
must use the CALLTYP parameter to specify this information. (You can use the CALLTYP parameter in
24-bit or 31-bit mode; if you do not specify CALLTYP, PARSECMD assumes that register 1 contains a
24-bit address.) See the description of the CALLTYP parameter for more information.

PARSECMD

Chapter 2. Preferred CMS Macro Instructions 335

EPLIST=
specifies the address of the extended parameter list for the command. Acceptable values are:
(0)

specifies that register 0 contains the address of the extended parameter list. This is the default
value.

addr
specifies the address of the extended parameter list.

(reg)
specifies a general register (2-12) in parentheses which contains the address of the extended
parameter list.

UPPER=
specifies whether the parsing facility translates lowercase alphabetic characters in the tokenized
parameter list to uppercase. Acceptable values are:
CMS

specifies that CMS determines whether to perform uppercase translation according to how the
module issuing PARSECMD was invoked. If the command is invoked using the same name by
which the command is specified, then tokens in the tokenized parameter list are translated to
uppercase by the parsing facility (UPPER=YES). If the command is not invoked using the same
name by which the command is specified, the parsing facility does not translate the tokens to
uppercase (UPPER=NO). UPPER=CMS is the default.

YES
specifies that tokens in the tokenized parameter list should be translated to uppercase by the
parsing facility.

NO
specifies that tokens in the tokenized parameter list should not be translated to uppercase by the
parsing facility.

MSGDISP=
specifies how CMS handles parsing facility error messages. Acceptable values are:
ERRMSG

writes parser error messages to the terminal according to the current setting of CP SET EMSG.
This is the default value.

NONE
specifies that no output occurs and is most useful when used with the MSGBUFF option.

EXECCOMM
returns the message to a variable in the exec that called this module. The complete message is
copied into the variable ‘MESSAGE’, with the first line in ‘MESSAGE.1’, the second in ‘MESSAGE.2’,
and so on. The number of lines in the message is copied into ‘MESSAGE.0’. This can only be used
when the module issuing PARSECMD is called from an exec.

var
specifies a variable that defines the message display format to be used.

The variable must be 1 byte long, and the low-order 3 bits of the byte must be set as follows:

000 (for ERRMSG)
010 (for NONE)
100 (for EXECCOMM)

MSGBUFF=
specifies the buffer for error message text. When the text is copied into the buffer, the length of
the message occupies the first byte of the buffer, preceding the text. Place the length of the buffer,
not including the length byte, in the first byte of the buffer before the call to PARSECMD is made.
Acceptable values are:
0

specifies that there is no buffer. This is the default value.

PARSECMD

336 z/VM: 7.3 CMS Macros and Functions Reference

addr
specifies an assembler program label that is the address of the buffer.

(reg)
specifies a register that contains the address of the buffer.

TRANSL=
specifies whether the parsing facility translates keywords found in the parameter list. Acceptable
values are:
CMS

specifies that CMS determines translation status according to how the module issuing PARSECMD
was invoked. TRANSL=CMS is the default; use this unless your program performs its own
command resolution.

When CMS determines translation status, it uses:

• TRANSL=YES if the specified command name is a translation (or a synonym or abbreviation of a
translation) of the command invoked.

• TRANSL=NO if the specified command is a synonym (or an abbreviation of a synonym) set with
the SYNONYM command of the command invoked.

• TRANSL=SAME if the command is invoked using the same name by which the command is
specified.

For more information on how and when CMS translates or creates a synonym of a command name,
see z/VM: CMS Commands and Utilities Reference.

YES
specifies that all keywords should be translated by the parsing facility. In other words, only
keywords defined as nl-names in the Definition Language for Command Syntax (DLCS) syntax
definition are recognized.

NO
specifies keywords should not be translated by the parsing facility. In other words, only keywords
defined as sl-names in the DLCS syntax definition are recognized.

SAME
specifies the parsing facility should determine translation status from the first keyword found
whose nl-name and sl-name DLCS definitions are different. This status is then used for any
remaining keywords.

TYPCALL=
specifies how the parsing facility is to be called. Acceptable values are:
SVC

indicates the parsing facility should be called by a CMSCALL macroinstruction. This is the default
value.

BALR
indicates the parsing facility should be called by a BALR 14,15. Register 13 must point to an
18-fullword save area.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

PARSECMD

Chapter 2. Preferred CMS Macro Instructions 337

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Note:

1. The MF=L and MF=(L,addr,label) formats of the PARSECMD macro generate a data area which is
mapped by the PARSERCB macro.

2. The MF=L format of the PARSECMD macro does not substitute default values for the UNIQID, PLIST, or
EPLIST parameters.

3. The MF=(E,addr) format of the PARSECMD does not substitute default values for any options except
for TYPCALL, which defaults to TYPCALL=SVC.

Some IBM-supplied commands also use the PARSFLG parameter for special purposes. Do not use this
parameter yourself.

Usage Notes
1. The uniqueid you specify in the PARSECMD macro is matched up with the uniqueid specified in

the Command Syntax Definition Language file. For more information on uniqueids, see z/VM: CMS
Application Development Guide.

2. If you have not issued the standard or MF=L formats of this macro and you are not using a message
buffer, code MSGBUFF=0.

3. On exit from the PARSECMD function, general register 1 contains the address of PARSERCB control
block. Refer to the PARSERCB macro and the PVCENTRY macro for details on how to obtain the parsed
and translated arguments.

4. When you call PARSECMD (standard format and execute format), the parsing facility automatically
obtains storage for the parsed (and translated) tokenized and extended parameter lists and the
PVCENTRY table. Do not try to free this storage yourself; it is automatically released at SVC 202/
CMSCALL termination when the module that invoked PARSECMD returns to its caller. For more
information on end-of-SVC, see z/VM: CMS Application Development Guide for Assembler.

5. The parser will do translation when TRANSL=CMS only when called from a program that was invoked
from the command line. The translation is assumed to have been done by the caller when the parser is
invoked from a program that was invoked by another program.

6. The PARSERCB control block contains several bits for controlling translation and uppercasing. The
default setting of these bits requires that the parser set the specific bits describing the actions taken to
process a command. (The actions taken will differ depending on the environment.) If these bit settings
remain in the PARSERCB, they can then be used by subsequent PARSECMD calls to force the parser
to process strings in the same manner it handled the command line. If you are using the execute or
complex list forms of PARSECMD, you need to ensure that these bits (and any reserved bits that may
be defined in the future) are reset before invoking the parser within a new command environment. This
can be done by clearing the PARSERCB storage to binary zeros or by refreshing the working copy of the
PARSERCB with a new copy generated by the simple list form.

Return Codes
If an error occurs, register 15 contains one of the following return codes:

PARSECMD

338 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Code
Meaning

24
Syntax error found.

26
Application not active.

28
Syntax definition not found in the command table or user function not found.

30
CALLTYP parameter is required.

104
Insufficient free storage.

PARSECMD

Chapter 2. Preferred CMS Macro Instructions 339

PARSERCB

label

PARSERCB

Purpose
Use the PARSERCB macroinstruction to generate a DSECT for the PARSECMD control block.

Parameters
Optional Parameter:
label

is an optional assembler label for the statement. The first statement in the PARSERCB macro
expansion is labeled PARSERCB.

Usage Notes
1. For more information on the PARSERCB macro, see the macro “PARSECMD” on page 334.
2. The PARSERCB macroinstruction expands as follows:

PARSERCB DSECT
PARNAME DS CL8 Parser entry point
PARTOKIN DS AL4 Input tokenized plist address
PARTOKPT DS AL4 Parsed (translated) tokenized
* plist address
PAREPLIN DS AL4 Input extended plist address
PAREPLPT DS AL4 Parsed (translated) extended
* plist address
PARPTYPE DS XL1 F*1 Plist Type-High order byte of R1
PARTRANS DS XL1 F*2 Translation flag
PARTRYES EQU X'80' Translation = YES (national lang)
PARTRNO EQU X'40' Translation = NO (system lang)
PARTRSAM EQU X'20' Translation = SAME (system=national)
PARSFLG EQU X'10' Parsflg specified
PARUPYES EQU X'08' Uppercase tokenized plist
PARUPNO EQU X'04' Copy tokenized plist from eplist
PARCALT EQU X'02' CALLTYP specified
PARMSG DS XL1 F*3 Message disposition
PARMSGER EQU X'00' Message disposition is ERRMSG
PARMSGNO EQU X'02' Message disposition is NONE
PARMSGXC EQU X'04' Message disposition is EXECOMM
 DS XL1 F*4 Reserved
PARPVCAD DS AL4 PVC table address
PARPVCNM DS F Number of entries in PVC table
PARMSGAD DS AL4 Message buffer address
PARUNQID DS CL16 Syntax definition unique id
PARAPLID DS CL3 Application identifier
 DS XL5 Reserved
PARLENBY EQU *-PARSERCB Length of PARSERCB in bytes
PARLENDW EQU (PARLENBY+7)/8 Length of PARSERCB in dwords

3. The PARPVCAD field contains the address of the Parser Validation Code Table. Each entry in this table
contains the address, length and validation code for a token in the parsed (and translated) extended
parameter list (PAREPLPT). PARPVCNM gives the number of entries in this table; the entries are
contiguous. Refer to the PVCENTRY macro for the mapping of each entry.

4. If neither the PARUPYES nor the PARUPNO bit has been set on when the parser is invoked, CMS will
determine how to build the tokenized plist based on how the command was invoked and will set the bit
appropriate to its choice.

5. A PARSERCB is created by the standard and list formats of the PARSECMD macro and should be filled
in with the other formats of the macro.

PARSERCB

340 z/VM: 7.3 CMS Macros and Functions Reference

6. If none of the translation bits (PARTRYES, PARTRNO or PARTRSAM) of the PARTRANS flag has been set
on when the parser is invoked, CMS will determine how to build the tokenized PLIST based on how the
command was invoked and will set the bit appropriate to its choice.

PARSERCB

Chapter 2. Preferred CMS Macro Instructions 341

PARSERUF

label

PARSERUF

Purpose
Use the PARSERUF macroinstruction to generate a mapping to the parser interface for user token
validation functions.

Parameters
Optional Parameter:
label

is an optional assembler label for the statement. The first statement in the PARSERUF macro
expansion is labeled PARSERUF.

Usage Notes
1. For more information on the PARSERUF macro, see z/VM: CMS Application Development Guide.
2. The PARSERUF macroinstruction expands as follows:

PARSERUF DSECT
PARUNAME DS CL8 Name of function
PARUTKAD DS A Address of token
PARUTKLG DS F Length of token
PARUPVC DS XL1 User Function Validation Code
 DS CL7 ** RESERVED **
PARUFNCE DS CL8'FF' ** RESERVED **
PARUSZBY EQU *-PARSERUF Length in bytes of this block
PARUSZDW EQU (PARUSZBY+7)/8 Length in DWORDS of this block

PARSERUF

342 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

PRINTL

label

PRINTL line
1

, length

, CC = YES

, CC = NO

c

, TRC = NO

, TRC = YES

n

, FORM = (
BUFFER

LIST

, 55

, count

2

, ccwaddr

)

, CMSDEV = ( reg)

cmsdev_label

, ERROR = *

, ERROR = addr

( reg)

3

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is a 4K buffer.
3 Default is the standard macro format.

Purpose
Use the PRINTL macroinstruction to write a line or multiple lines to a virtual printer.

Parameters
Required Parameters:
line

specifies one of the following:

• Lines to be printed
• Addresses of the buffer containing the fixed-length records to be printed
• Addresses of the list of variable-length records to be printed.

If you write one line to a virtual printer with each PRINTL instruction and you do not specify FORM=,

PRINTL

Chapter 2. Preferred CMS Macro Instructions 343

line
specifies the line to be printed. Acceptable values are:
‘linetext’

text enclosed in quotation marks.
lineaddr

the symbolic address of the line.
(reg)

a register (2-12) containing the address of the line.

If you write multiple lines to a virtual printer with each PRINTL instruction and you specify
FORM=BUFFER,

line
specifies the address of the buffer containing the fixed-length records. Acceptable values are:
lineaddr

the symbolic address of the BUFFER.
(reg)

a register (2-12) containing the address of the BUFFER.

If you write multiple lines to a virtual printer with each PRINTL instruction and you specify
FORM=LIST,

line
specifies the address of the list of variable-length records to be printed. Acceptable values are:
lineaddr

the symbolic address of the LIST.
(reg)

a register (2-12) containing the address of the LIST.

Optional Parameters:
label

is an optional assembler label for the statement.
length

specifies one of the following two conditions:

• The length of the line to be printed
• The length of the records in the buffer.

If you write one line to a virtual printer with each PRINTL instruction and you do not specify FORM=,

length
specifies the length of the line to be printed (see Usage Note “1” on page 347 for information
about line lengths). Acceptable values are:
(reg)

a register (2-12) containing the length.
n

a self-defining term indicating the length.

If you write multiple lines to a virtual printer with each PRINTL instruction and you specify
FORM=BUFFER,

length
specifies the length of the records in the BUFFER. Acceptable values are:
(reg)

a register (2-12) containing the length.
n

a self-defining term indicating the length.

PRINTL

344 z/VM: 7.3 CMS Macros and Functions Reference

If you write multiple lines to a virtual printer with each PRINTL instruction and you specify
FORM=LIST, the length of each record is specified in the list and the length parameter is ignored.

CC=
specifies whether the records to be printed contain a carriage control character in the first byte. The
carriage control character specifies how many lines to skip before the next line prints. Acceptable
values are:
YES

specifies that each line to be printed contains a carriage control character. (See Usage Note “2” on
page 347 for information on carriage control characters.) This is the default value.

NO
specifies that no carriage control characters are present in the lines to be printed. If you specify
CC=NO, the system uses the ASA carriage control character (X'40') to space 1 line before printing.

c
specifies an ASA carriage control character to be used for all lines. CMS assumes the lines to be
printed do not contain carriage control characters. See Usage Note “2” on page 347 for valid ASA
carriage control characters.

TRC=
specifies whether the current print line includes a TRC (table reference character) byte. The TRC byte
indicates which 3800 translate table is selected.
NO

specifies that the line to be printed does not have a TRC byte. This is the default value.
YES

specifies that the line to be printed has a TRC byte. The TRC byte is the second byte when a
carriage control byte is present; otherwise, the TRC byte is the first byte. The value of the TRC byte
determines which 3800 translate table is selected. If an invalid value is found, translate table 0 is
selected.

n
specifies a value for TRC to indicate which 3800 translate table should be selected. The line to be
printed does not contain a TRC byte. If an invalid value is specified, translate table 0 is selected.

The value of the TRC byte corresponds to the order in which you have loaded WCGMs (through the
CHARS keyword on the SETPRT and SPOOL commands). Valid values for TRC are 0, 1, 2, and 3.

FORM=
specifies that each PRINTL instruction prints multiple records.
BUFFER

specifies that fixed length records are in a buffer. The address of the buffer is specified by the line
parameter and the number of records in the buffer is specified by count. The length of the records
is specified by the length parameter. If you specify TRC, it applies to all records in the buffer. The
linetext parameter cannot be used. This is the default value.

LIST
specifies that the addresses of variable length records are in a list. The address of the list is
specified by the line parameter and the number of entries in the list is specified by count. The
length of each record is specified in the list and the length parameter is ignored. If you specify
TRC, it applies to all records in the list. The linetext parameter cannot be used.

Each entry in the list is on a fullword boundary and contains 8 bytes:
Bytes

Information
0-3

Record address
4-5

Reserved

PRINTL

Chapter 2. Preferred CMS Macro Instructions 345

6-7
Record length

count
specifies the number of records to be printed. When FORM=BUFFER, it specifies the number of
records in the BUFFER. When FORM=LIST, it specifies the number of entries in the LIST. The
maximum number of records a single PRINTL instruction can print is 32,767. Acceptable values
are:
n

a self-defining term indicating the number. The default is 55.
(reg)

a register (2-12) containing the number.
countaddr

the address of a halfword containing the number.
ccwaddr

specifies the address of a 4 KB buffer that contains the CCW chains required to perform the
requested I/O. If you do not specify this parameter, the system allocates a 4 KB buffer for you. To
achieve optimum performance, specify this parameter. Acceptable values are:
label

a label containing the symbolic address of the buffer.
(reg)

a register (2-12) containing the address of the buffer.

CMSDEV=
specifies the 12-byte storage area containing the device characteristics provided by the CMSDEV
macro. If not supplied, or if the contents of the area are 0, CMS will perform a DIAGNOSE code X'24'
to determine the device type. Acceptable values are:
(reg)

specifies a register (2-12) containing the address of the 12-byte area provided by the CMSDEV
macro.

cmsdev_label
specifies the symbolic address of the 12-byte storage area provided by the CMSDEV macro.

Note: Do not specify the CMSDEV= parameter with the list (MF=L) macro form.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.

PRINTL

346 z/VM: 7.3 CMS Macros and Functions Reference

(L,addr,mf_label)
specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. The maximum number of data bytes allowed depends on the type of virtual printer:

Table 21. Virtual Printer Maximum Data Bytes

Virtual Printer Type Maximum Data Bytes

1403 132

3203 132

3211 150

3800 204

4248 168

VAFP 32767

To determine the line length, add the following to your bytes of data:

• 1 byte for the carriage control character if CC=YES is specified
• 1 byte for the TRC byte if TRC=YES is specified.

If you do not specify the length, it defaults to 133 characters, unless you specify linetext. In this case,
the length is taken from the length of linetext.

Lines greater than the carriage size are not printed and a return code of 1 is issued. However, lines with
a carriage control character ofX'5A' may have lengths up to 32767 bytes. If you use quoted data with a
X'5A' carriage control, the line length must not be greater than 256 bytes.

Note: The record length written to a virtual printer spool file is the maximum data bytes of the spooled
device as defined by CP (see Table 21 on page 347). This length is not affected by the line,length
parameter and cannot be changed by the CMS user.

2. When CC=YES, the first character of the line is interpreted as a carriage control character, which may
be either ASA (ANSI) or machine code. The valid ASA control characters are:

Character Hex Code Meaning

blank 40 Space 1 line before printing

0 F0 Space 2 lines before printing

- 60 Space 3 lines before printing

+ 4E Suppress space before printing

1 F1 Skip to channel 1

2 F2 Skip to channel 2

3 F3 Skip to channel 3

4 F4 Skip to channel 4

5 F5 Skip to channel 5

6 F6 Skip to channel 6

7 F7 Skip to channel 7

8 F8 Skip to channel 8

PRINTL

Chapter 2. Preferred CMS Macro Instructions 347

Character Hex Code Meaning

9 F9 Skip to channel 9

A C1 Skip to channel 10

B C2 Skip to channel 11

C C3 Skip to channel 12

Hex codes X'C1' and X'C3' are used in both machine code and ASA code. CMS recognizes these codes
as ASA control characters, not as machine control characters.

Hex code X'5A' is recognized as only a machine code character. This code is used with a composed
page data stream record.

When CC=NO or when the line does not begin with a valid carriage control, the line is printed with an
ASA carriage control character to space 1 line before printing (ASA X'40').

3. If you specify the TRC= parameter and the virtual printer is not a 3800, the TRC byte is stripped off
before the line is printed. If the TRC byte is invalid, PRINTL issues the following MNOTE:

MNOTE 8,'INVALID TRC SPECIFICATION'

Translate table 0 is selected if the TRC byte is invalid.
4. For the CMSDEV= parameter, use the CMSDEV macro to obtain printer characteristics and status.
5. All output from the PRINTL macro is directed to device X'00E' regardless of the device type contained

in the 12-byte storage area provided by the CMSDEV maro.
6. When PRINTL completes, register 15 contains a 2 if channel 12 was sensed, or a 3 if channel 9 was

sensed. If you specify the FORM parameter, channels 9 and 12 are ignored. When channel 9 or channel
12 is sensed, the write operation terminates after carriage spacing but before writing the line. If you
want to write the line without additional space, you must modify the carriage control character in the
buffer to a code that writes without spacing (ASA code + or machine code 01).

The location on the page being printed and the corresponding channel is defined by the current forms
control buffer image being used. For information on how to specify the forms control buffer image for
a virtual spooled printer, see the LOADVFCB and SPOOL commands in the z/VM: CP Commands and
Utilities Reference and if you are using a virtual 3800, also see the CMS SETPRT command in the z/VM:
CMS Commands and Utilities Reference.

7. You must issue the CP CLOSE command to close the virtual printer file. Issue the CLOSE command
either from your program (using CMSCALL) or from the CMS environment after your program
completes execution. The printer is automatically closed when you log off or when you use the CMS
PRINT command.

8. If the virtual printer is a 4248 with an extended FCB and the duplication option specified, you should
check to be sure that the duplication offset contained in the extended FCB declaration is valid for the
line length and that the line length is short enough to be duplicated.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
1

Line too long.
2

Channel 12 punch detected.
3

Channel 9 punch detected.

PRINTL

348 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

4
Intervention required.

5
Unknown error.

100
Printer not attached.

104
Not enough storage available to successfully complete the program.

PRINTL

Chapter 2. Preferred CMS Macro Instructions 349

PUNCHC

label

PUNCHC line
1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the PUNCHC macroinstruction to write a line to a virtual punch.

Parameters
Required Parameters:
line

specifies the line to be punched. It may be:
‘linetext’

text enclosed in single quotation marks.
lineaddr

the symbolic address of the line.
(reg)

a register containing the address of the line.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

PUNCHC

350 z/VM: 7.3 CMS Macros and Functions Reference

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. No stacker selecting is allowed. The line length must be 80 characters.
2. You must issue the CP CLOSE command to close the virtual punch file. Issue the CLOSE command

either from your program (using the CMSCALL macro) or from the CMS environment when your
program completes execution. The punch is closed automatically when you log off or when you use the
CMS PUNCH command.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
2

Unit check.
3

Unknown error.
100

Punch not attached.

PUNCHC

Chapter 2. Preferred CMS Macro Instructions 351

PVCENTRY

label

PVCENTRY

Purpose
Use the PVCENTRY macroinstruction to generate a DSECT for the parser validation code table entry. Each
parser validation code table entry contains the address, length, and validation code for a token in the
parsed (and translated) extended parameter list.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the PVCENTRY macro
expansion is labeled PVCENTRY.

Usage Notes
1. For more information on the PVCENTRY macro, see z/VM: CMS Application Development Guide.
2. The PVCENTRY macroinstruction expands as follows:

PVCENTRY DSECT Parser Validation Code Entry
PVCNEXTA DS A Next PVC entry address, or 0 if last
PVCCODE DS XL1 Parser validation code
 DS XL3 Reserved
PVCTTOKA DS A Tokenized token address
PVCETOKA DS A Extended token address
PVCETOKL DS F Extended token length
* EQU X'00' Reserved for IBM use
PVCCNAME EQU X'01' Command Name
PVCKWORD EQU X'02' Keyword
PVCOPTST EQU X'03' Option start (
PVCOPTEN EQU X'04' Option end)
PVCCOMMT EQU X'05' Comment
PVCALNUM EQU X'06' Alphanumeric string
PVCCHAR EQU X'07' A single character
PVCCUU EQU X'08' Device address: X'001',X'002',...,X'FFF'
PVCFN EQU X'09' File name
PVCFT EQU X'0A' File type
PVCEFN EQU X'0B' File name with '*'
PVCEFT EQU X'0C' File type with '*'
PVCEXECN EQU X'0D' Exec name
PVCEXECT EQU X'0E' Exec type
PVCFM EQU X'0F' File mode
PVCHEX EQU X'10' Hexadecimal number
PVCINT EQU X'11' Integer: ..., -2, -1, 0, 1, 2, ...
PVCNINT EQU X'12' Negative integer: ..., -2, -1
PVCPINT EQU X'13' Positive integer: 1, 2, ...
PVCMODE EQU X'14' Alphabetic character
PVCSTRIN EQU X'15' Any character string(no blanks)
PVCTEXT EQU X'16' Any string
PVCDIGIT EQU X'17' Any unsigned integer
PVCAPPID EQU X'18' Application identifier
PVCARBMD EQU X'19' Arbitrary modifier
PVCVDEV EQU X'1A' 4 digit device addr
PVCFPOOL EQU X'1B' File pool ID
PVCNMDEF EQU X'1C' Namedef
PVCDIRID EQU X'1D' Full dirid
PVCDPOOL EQU X'1E' Dirid, w/o user ID
PVCDUSER EQU X'1F' Dirid, w/o file pool ID
PVCDSUB EQU X'20' Subdir only dirid
PVCDMIN EQU X'21' -fm dirid
PVCDPLUS EQU X'22' +fm dirid
PVCDPATH EQU X'23' path1.path2

PVCENTRY

352 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

PVCDRIDN EQU X'24' Full dirid w/nickname
PVCDUSEN EQU X'25' Dirid w/nickname/userid
* EQU X'26'-X'7C' Reserved for IBM use
PVCINVPD EQU X'7D' Invalid fm, fp, or dir
PVCINVFD EQU X'7E' Invalid fm or dirid
PVCINVLD EQU X'7F' Unconditionally invalid
* EQU X'80'-X'FF' Reserved for customer use

3. The parsing facility creates a table containing contiguous PVCENTRY entries addressed by PARSERCB.
See the PARSERCB macroinstruction for details.

PVCENTRY

Chapter 2. Preferred CMS Macro Instructions 353

RDCARD

label

RDCARD buffer
1

,80

, length

,RDAHEAD=NO

,RDAHEAD= YES

CANCEL

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the RDCARD macroinstruction to read a line from a virtual reader.

Parameters
Required Parameters:
buffer

specifies the buffer address where the line is read. Acceptable values are:
bufaddr

the symbolic address of the buffer.
(reg)

a register (2-12) containing the address of the buffer.

Optional Parameters:
label

is an optional assembler label for the statement.
length

specifies the length of card to be read. The minimum length and default value is 80. The maximum
length is 204. Specify the length as:
n

a number indicating the length.
(reg)

a register (2-12) containing the length.

RDCARD

354 z/VM: 7.3 CMS Macros and Functions Reference

RDAHEAD=
specifies whether CMS reads as many lines as possible into an internal I/O buffer before it (CMS)
reads each line into the user-specified buffer. Acceptable values are:
NO

does not read multiple lines into an internal I/O buffer. This is the default value.
YES

reads multiple lines into an internal I/O buffer. See Usage Notes 5 and 6.
CANCEL

releases the internal I/O buffer used for RDAHEAD=YES. Any lines in the buffer are lost.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. No stacker selecting is allowed.
2. When the RDCARD macro completes, register 0 contains the length of the card that was read.
3. Do not use the RDCARD macro in jobs that run under the CMS batch machine.
4. If the reader file being processed contains carriage control characters, the RDCARD macro returns the

records with the carriage control characters stripped off.
5. If you specify RDAHEAD=YES and the virtual card reader is closed before an error condition is detected

(other than wrong-length record, return code=5), lines may still remain in the buffer. Subsequent
RDCARD calls return the next available lines from the internal buffer until it is empty. Changes in the
status of the virtual card reader are not recognized until the buffer is empty and the next physical read
is performed. For most applications that read to end-of-file, RDAHEAD=YES should be specified.

To make sure that the internal I/O buffer is released and that the next RDCARD request reads from the
virtual reader, not the internal buffer, issue RDCARD with RDAHEAD=CANCEL and a length of 0.

6. RDAHEAD=NO is forced if the logical record length is greater than 2028, or if there is insufficient
storage to allocate the internal I/O buffer.

RDCARD

Chapter 2. Preferred CMS Macro Instructions 355

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
1

End of file.
2

Unit check.
3

Unknown error.
5

Length not equal to requested length.
100

Device not attached.

RDCARD

356 z/VM: 7.3 CMS Macros and Functions Reference

RDTAPE

label

RDTAPE buffer
1

, length
,TAP1

, device

,MODE= 3490C

3490B

XF

18

3590C

3590B

(,6250)

(,1600)

(,800)

COMP

NOCOMP

9

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the RDTAPE macroinstruction to read a block from the specified tape device.

Parameters
Required Parameters:
buffer

specifies the address of the buffer into which the block is to be read. It can be:
lineaddr

the symbolic address of the buffer.
(reg)

a register (2-12) containing the address of the buffer.

RDTAPE

Chapter 2. Preferred CMS Macro Instructions 357

length
specifies the length of the buffer into which the block is to be read. If the block is larger than the
buffer, CMS truncates it. Acceptable values are:
n

a number indicating the length.
(reg)

a register (2-12) containing the length.

Optional Parameters:
label

is an optional assembler label for the statement.
device

specifies the device name (TAPn) or virtual device number (vdev) of the virtual tape device from
which the block is to be read. The following values are valid; see z/VM: CMS User's Guide for more
information on tape device names and virtual device numbers for tape devices.

Device Virtual
Name Number

Device Virtual
Name Number

TAP0 0180
TAP1 0181
TAP2 0182
TAP3 0183
TAP4 0184
TAP5 0185
TAP6 0186
TAP7 0187

TAP8 0288
TAP9 0289
TAPA 028A
TAPB 028B
TAPC 028C
TAPD 028D
TAPE 028E
TAPF 028F

If you omit the device value, CMS uses device TAP1.

(reg)
a register containing a pointer to a storage location that contains the device name or virtual device
number.

The following example shows how you might use the register form to identify the device:

 LA 2, MY181 Addr of device assignment
 RDTAPE INBUF,4096,(2),ERROR=MYEMSG
* Read block(4096 bytes)
 .
 .
 .
MY181 DC CL4'0181' vdev definition

MODE=
This parameter indicates a recording format. It has no effect other than to make execution of the
macro expansion fail if the tape device is not capable of writing that recording format (note that the
RDTAPE macro does not cause writing on the tape under any circumstances). The MODE parameter
exists largely for compatibility purposes.

See the description of the MODE parameter on the “WRTAPE” on page 436 macro for details on
coding of the MODE parameter.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.

RDTAPE

358 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

addr
passes control to the specified address.

(reg)
passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. See z/VM: CMS Macros
and Functions Reference for details on the MF parameter. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Note
1. The maximum supported tape block length is recorded in NUCON field MAXTAPBS. If the value in this

field is 0, the maximum block length is 65,535 bytes.

Return Codes
The return codes (found in register 15) from a RDTAPE call are as listed below.
Code

Meaning
0

The RDTAPE call executed normally.
1

Invalid function or parameter list or the specified device is incapable of writing in the specified format.
2

Tape mark detected.
3

I/O error.
4

Invalid device value.
5

Virtual tape device not attached (device does not exist).
7

Specified device is not a tape device.
8

The block read is larger than the buffer provided.
9

Manual rewind/unload of tape.

Return Code 0: RDTAPE executed normally. A block has been successfully read. The data is in the buffer
specified in the RDTAPE parameters and the volume is positioned one block ahead of where it was. The
block on the volume is smaller than or the same size as your buffer. If it is smaller, CMS has placed it at
the beginning of your buffer and not modified bytes in the buffer past the end of the block.

RDTAPE

Chapter 2. Preferred CMS Macro Instructions 359

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3

When the macro completes, register 0 contains the number of bytes read.

Return Code 1: Invalid parameter or bad format. One of the following is true of the RDTAPE call:

• One of the parameter values is not valid.
• The parameter values are not compatible with each other.
• The MODE parameter indicates a recording format which the device (identified by the device parameter)

is not capable of writing. Note that the RDTAPE call will always fail if this is true, even though RDTAPE
never attempts to write on the tape. This fact, and the existence of the MODE parameter at all is for
compatibility purposes.

For the invalid parameter cases, the RDTAPE invocation needs to be corrected. For the recording format
incapable case, it is usually best to eliminate the MODE parameter.

Return Code 2: Tape mark detected. The volume was positioned to a tape mark, rather than a data
block. The volume is now positioned past the tape mark. No data has been read.

A tape mark often marks the end of a file or the end of recorded data on the volume.

Return Code 3: I/O error. The device was unable to read a block or tape mark for one of many reasons.
Following is a list of some of these reasons. You should not consider any data to have been read and
cannot assume any particular positioning of the device. The buffer indicated by the buffer parameter may
have been modified:

• The device or channel has detected an internal malfunction in the device or channel.
• There is a defect on the recording medium.
• The data on the tape was written in error.
• The tape reel or cartridge is damaged.
• The device was positioned past the end of recorded data. The end of recorded data is defined as the

point just after the block, tape mark, or gap that was most recently written on the tape. Note that you
will not necessarily get this return code when this is the case. On newer devices which place a definitive
End of Data mark on the volume, Return Code 3 is guaranteed. But on older devices there are several
other return codes you could get, including 0, so you must use other means to know where the end of
recorded data is.

• The tape or a block on it is recorded in a recording format which the device is incapable of reading, or
does not even recognize. Another device may be able to read it.

• The block which RDTAPE would have read is too large for the device to handle. Another device might be
able to read it.

• The device is in a Volume Fenced condition. This is a condition which arises for reasons in which the
device will not perform most operations on the volume. You can undo this condition by unloading the
device; other times by rewinding the device. You can do either of these with the TAPE command or
TAPECTL macro.

• The virtual device is a shareable one (see z/VM: CMS User's Guide). CMS does not support shareable
devices and the failure of RDTAPE in this way is just one of the possible effects.

Return Code 4: Invalid device value. The value of the device parameter is not a valid selection. CMS
cannot tell from what device to read. The RDTAPE invocation must be corrected.

Return Code 5: Device not attached. No virtual device exists with the virtual device number given by the
device parameter or, if device specifies a device name, with the device number CMS associates with that
name.

You must either specify a different device name or number or create one with the proper virtual device
number. The z/VM: CMS User's Guide explains this.

Return Code 7: Device is not a tape device. The device which has the device number given by the device
parameter or, if device specifies a device name, with the device number CMS associates with that name, is
not a tape device.

RDTAPE

360 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

You must either specify a different device name or number or detach the attached device and specify a
tape device instead with that virtual device number.

Return code 8: Block larger than buffer. CMS has successfully read a block and the volume is positioned
one block ahead of where it was. The block was larger than the buffer you provided, as indicated by the
length parameter, and CMS has truncated the block to fit.

Note that CMS has read the entire block, regardless of the size of your buffer. The next read will read from
the beginning of the next block on the volume.

When the macro completes, register 0 contains the number of bytes read.

Return Code 9: Manual rewind/unload. Someone has previously rewound or unloaded the volume on
the real device associated with the virtual device by operating manual controls on the physical device.
In order to warn you of this, CMS has returned this return code to RDTAPE without attempting to read
anything. Your buffer has not been modified and the position of the volume has not changed.

You get this warning once, so if you want to read the block, you can just repeat the RDTAPE call.

CMS gives you this warning because the volume you intended to read may not be mounted now.

With older devices, you do not get this warning.

RDTAPE

Chapter 2. Preferred CMS Macro Instructions 361

REGEQU

REGEQU
AREGS=NO

AREGS=YES

Purpose
Use the REGEQU macroinstruction to generate a list of EQU (equate) statements to assign symbolic
names for the general, floating-point, extended control, and access registers.

Parameters
Optional Parameters:
AREGS=

indicates whether equate statements should be generated for access registers. If it is omitted, equate
statements are not generated. Acceptable values are:
NO

prevents generation of equate statements for access registers. NO is the default.
YES

causes equate statements to be generated for access registers.

Usage Notes
1. REGEQU generates these equate statements. The access register statements are produced only when

AREGS=YES is specified.

Table 22. Equate statements generated by REGEQU

General Registers Extended-control Registers Floating-point Registers Access Registers*

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

C0 EQU 0
C1 EQU 1
C2 EQU 2
C3 EQU 3
C4 EQU 4
C5 EQU 5
C6 EQU 6
C7 EQU 7
C8 EQU 8
C9 EQU 9
C10 EQU 10
C11 EQU 11
C12 EQU 12
C13 EQU 13
C14 EQU 14
C15 EQU 15

F0 EQU 0
F2 EQU 2
F4 EQU 4
F6 EQU 6

AR0 EQU 0
AR1 EQU 1
AR2 EQU 2
AR3 EQU 3
AR4 EQU 4
AR5 EQU 5
AR6 EQU 6
AR7 EQU 7
AR8 EQU 8
AR9 EQU 9
AR10 EQU 10
AR11 EQU 11
AR12 EQU 12
AR13 EQU 13
AR14 EQU 14
AR15 EQU 15

 *Generated only when AREGS=YES is specified.

REGEQU

362 z/VM: 7.3 CMS Macros and Functions Reference

REXEXIT

label

REXEXIT
1

INVOKE ,TYPE= INIT

TERM

SET SET parameters

CLR

QUERY

,NAME= ' name '

addr

( reg)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

SET parameters

,ENTRY= addr

( reg)

,INIT=NO

,INIT= YES

( reg)

( addr , mask)

3

,TERM=NO

,TERM= YES

( reg)

( addr , mask)

3 ,UWORD= addr

( reg)

,SYSTEM=NO

,SYSTEM= YES

( reg)

( addr , mask)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

REXEXIT

Chapter 2. Preferred CMS Macro Instructions 363

3 INIT or TERM must be specified as YES.

Purpose
Use the REXEXIT macroinstruction in an application program to create and maintain a list of global exit
routines to be called by exec processors. Use it in an exec processor to call the exit routines before or
after processing an exec (see the INVOKE parameter).

Parameters
Required Parameters:
INVOKE

is used by an alternate format exec processor to call the global exit routines defined by user
programs. Use the TYPE parameter to select pre- or post-processing exit routines. See Usage Notes
“1” on page 366 to “4” on page 367 and “8” on page 367 to “11” on page 367.

TYPE=
is used with the INVOKE parameter to select preprocessing or postprocessing routines.
INIT

Call preprocessing routines.
TERM

Call postprocessing routines.
SET

declares a global exit with the name and entry point name that you specify with the NAME=
parameter.

CLR
deletes the named global exit from the list of exits.

QUERY
queries the named global exit.

NAME=
is the name of the exit routine to be declared, deleted, or queried.
'name'

specifies the exit routine as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage location containing the exit routine name. This is any
valid assembler language expression.

(reg)
specifies the register containing the address of the storage area holding the exit routine name.
Valid registers are 2-12 enclosed in parentheses.

ENTRY=
defines the entry point of the exit routine.
addr

specifies the entry point at the 8-byte storage location defined by addr. This is any valid
assembler language expression.

(reg)
specifies the entry point at the address contained in the register. Valid registers are 2-12 enclosed
in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.

REXEXIT

364 z/VM: 7.3 CMS Macros and Functions Reference

INIT=
indicates whether the exit routine receives control during initialization processing by an exec
processor. The acceptable values are:
NO

specifies that the exit routine does not receive control during initialization processing. This is the
default value.

YES
specifies that the exit routine does receive control during initialization processing.

(reg)
specifies the register that contains the value for INIT. The macro checks the value of the specified
register and, if it is 0, sets INIT to NO. If the register contains a nonzero value, the macro sets INIT
to YES.

(addr,mask)
defines a single bit in storage that sets the value of the INIT parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then INIT is set to NO. If the bit is 1, then INIT is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the INIT parameter as

INIT=(APPFLAG,X'80')

Note: If you do not set the value of INIT to YES, you must specify YES for the value of TERM. You can
give INIT a value of YES by specifying YES, (reg), or (addr,mask).

TERM=
indicates whether the exit routine receives control during termination processing by an exec
processor. The acceptable values are:
NO

specifies that the exit routine does not receive control during termination processing. This is the
default value.

YES
specifies that the exit routine does receive control during termination processing.

(reg)
specifies the register that contains the value for TERM. The macro checks the value of the
specified register and, if it is 0, sets TERM to NO. If the register contains a nonzero value, the
macro sets TERM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the TERM parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then TERM is set to NO. If the bit is 1, then TERM is set to YES. For example, to
test the first bit in the single byte of storage at location APPFLAG, specify the TERM parameter as

TERM=(APPFLAG,X'80')

Note: If you do not set the value of TERM to YES, you must specify YES for the value of INIT. You can
give TERM a value of YES by specifying YES, (reg), or (addr,mask).

UWORD=
specifies an optional fullword available to the exit routine. The userword will be passed to an invoked
exit in the fourth fullword of the plist. Omitting this parameter causes a value of 0 to be passed to the
exit routine.
addr

specifies the address of UWORD. This is any valid assembler language expression.

REXEXIT

Chapter 2. Preferred CMS Macro Instructions 365

(reg)
specifies a register that contains the address of the UWORD. Valid registers are 2-12 enclosed in
parentheses.

SYSTEM=
indicates whether the exit routine survives abend processing. Acceptable values are:
NO

specifies that the exit routine does not survive. This is the default value.
YES

specifies that the exit routine does survive. If you specify SYSTEM=YES, the exit must reside in
storage that is not reclaimed during abend processing.

(reg)
specifies the register that contains the value for SYSTEM. The macro checks the value of the
specified register and, if it is 0, sets SYSTEM to NO. If the register contains a nonzero value, the
macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM
parameter as

SYSTEM=(APPFLAG,X'80')

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. For more information on using the REXEXIT macroinstruction with the REXX/VM Interpreter, see

z/VM: REXX/VM Reference. For an alternate format exec processor, see the documentation for the
exec processor.

REXEXIT

366 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

2. The REXX/VM Interpreter calls global initialization exits before the RXINI exit, which it calls before
it interprets the first instruction of the exec. Likewise, an alternate format exec processor should call
the initialization exit routines before it processes the first instruction of the exec.

3. The REXX/VM Interpreter calls global termination exits after the RXTER exit, which it calls after it
interprets the last instruction of the exec. Likewise, an alternate format exec processor should call
the termination exit routines after it processes the last instruction of the exec.

4. The REXX/VM Interpreter makes its EXECCOMM interface available to global exit routines. Likewise,
an alternate format exec processor should make its EXECCOMM interface available to global exit
routines.

5. Global exit routines are invoked in the reverse order from the order in which they were SET.
6. If a global exit is SET using an existing exit name, its position in the invocation order will be the same

as the existing exit. The existing exit will remain on the list. However, the most recently added version
will be invoked during initialization and termination processing. Also, a subsequent CLR of this exit
name clears the most recently loaded version.

7. You must provide the proper entry and exit linkage for your exit routine. When your routine receives
control, the register contents are as follows:

Register Contents

1 Address of a parameter list described as follows:

Hex Disp. Description

0 Exit name

8 Exit code (See usage note “11” on page 367)

INIT = 9

TERM = 10

A Exit subfunction (See usage note “11” on page 367)

C User word

13 Address of an 18 fullword savearea

14 Return address

15 Entry point address of your exit routine

The exit routine must save registers 0-14 on entry, and restore them before returning control to the
address in Register 14.

8. Exit routines will be invoked in 31-bit addressing mode. Addresses passed to the exit routine may
reside above the 16 MB line, so the exit routine must be capable of addressing above the line.

9. During its execution, a global exit may use REXEXIT to SET, CLR or QUERY any global exit, including
itself.

10. If an exec is invoked during the execution of a global exit, no global exits are invoked for the called
exec.

11. The exit code and the exit subfunction passed in the plist correspond to the exit codes and exit
subfunctions defined for REXX exits (see z/VM: REXX/VM Reference).

Return Codes

The following return codes are from a REXEXIT operation:
Code

Meaning
0

No other exits with the same name exist.

REXEXIT

Chapter 2. Preferred CMS Macro Instructions 367

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

1
Other exits with the same name exist. (This is not an error.)

4
INIT must have a value of YES or TERM must have a value of YES.

8
Unrecoverable error occurred.

28
Named exit not found.

REXEXIT

368 z/VM: 7.3 CMS Macros and Functions Reference

RXITDEF

RXITDEF

Purpose
Use the RXITDEF macroinstruction to assign the correct values to the symbols used for the exit routine
function and subfunction codes. This macroinstruction may be used for CMS and GCS programs.

Usage Notes
1. For more information on using this macro, see z/VM: REXX/VM Reference.
2. The following symbols are assigned by this macro:

 Function Subfunction Description
RXFNC EQU X'0002' Process a function request.
 RXFNCCAL EQU X'0001' FNC Call a function/subroutine.
RXCMD EQU X'0003' Process a command request.
 RXCMDHST EQU X'0001' CMD Process a host command
 request.
RXMSQ EQU X'0004' Manipulate the session queue.
 RXMSQPLL EQU X'0001' MSQ Pull an entry from queue.
 RXMSQPSH EQU X'0002' MSQ Push an entry onto queue.
 RXMSQSIZ EQU X'0003' MSQ Determine the queue size.
RXSIO EQU X'0005' Perform Session Input/Output.
 RXSIOSAY EQU X'0001' SIO Output a SAY string.
 RXSIOTRC EQU X'0002' SIO Output a TRACE string.
 RXSIOTRD EQU X'0003' SIO Terminal Read.
 RXSIODTR EQU X'0004' SIO Debug Terminal Read.
 RXSIOTLL EQU X'0005' SIO Determine line length.
RXMEM EQU X'0006' Memory management services.
 RXMEMGET EQU X'0001' MEM Get memory.
 RXMEMRET EQU X'0002' MEM Return memory.
RXHLT EQU X'0007' Halt services.
 RXHLTCLR EQU X'0001' HLT Clear the halt status.
 RXHLTTST EQU X'0002' HLT Test the halt status.
RXTRC EQU X'0008' Test the TRACE status.
 RXTRCTST EQU X'0001' TRC Test the TRACE status.
RXINI EQU X'0009' Initialization service.
 RXINIEXT EQU X'0001' INI Initialization exit.
RXTER EQU X'000A' Termination service.
 RXTEREXT EQU X'0001' TER Termination exit.

RXITDEF

Chapter 2. Preferred CMS Macro Instructions 369

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

RXITPARM

RXITPARM

Purpose
Use the RXITPARM macroinstruction to map the parameter list used to pass information between the
language processor and an exit routine. This macroinstruction may be used for CMS and GCS programs.

Usage Notes
1. For more information on the macro, see z/VM: REXX/VM Reference.
2. The following symbols are defined by this macro:

RXITPARM DSECT ,

* The following parameters are common to all exit routines.

RXIEXIT DS H Exit code (input)
RXISUBFN DS H Exit subfunction (input)
RXIUSER DS F User word (input)
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIFEVAL EQU X'01' String returned via EVALBLOK (output)
RXIPLEN DS H Length of plist in bytes (input)
 DS F Reserved for IBM use
RXITMAPX DS CL24 Beginning of exit specific parameters
RXITMAPZ EQU * End of exit parameter list
RXITMAPL EQU RXITMAPZ-RXIEXIT Length of the parameter list

* The following parameters are unique to the RXFNC exit.

 ORG RXITMAPX
RXFFERR EQU X'80' Invalid call to routine (output)
RXFFNFND EQU X'40' Routine not found (output)
RXFFSUB EQU X'20' Subroutine call (input)
RXFFNC DS A Pointer to the routine name (input)
RXFFNCL DS F Length of the routine name (input)
RXFARGS DS A Pointer to argument list (input)
RXFRET DS A Pointer to EVALBLOK for
* function RETURN result (output)
RXFPLEN EQU *-RXITMAPX

* The following parameters are unique to the RXCMD exit.

 ORG RXITMAPX
RXCFFAIL EQU X'80' Command FAILURE occurred (output)
RXCFERR EQU X'40' Command ERROR occurred (output)
RXCADDR DS CL8 Current ADDRESS setting (input)
RXCCMD DS A Pointer to the command (input)
RXCCMDL DS F Length of the command (input)
RXCRETC DS A Pointer to return code buffer (in+out)
RXCRETCL DS F Length of return code (in+out)
RXCPLEN EQU *-RXITMAPX

* The following parameters are unique to the RXMSQ exit.

* The following parameters are used for the RXMSQPLL function.
 ORG RXITMAPX
RXMFEMPT EQU X'40' Queue was empty (output)
RXMRETC DS A Pointer to return value buffer (in+out)
RXMRETCL DS F Length of return value (in+out)
RXMPLLPL EQU *-RXITMAPX
* The following parameters are used for the RXMSQPSH function.
 ORG RXITMAPX
RXMFLIFO EQU X'80' Stack the line LIFO (input)
RXMVAL DS A Pointer to line to stack (input)
RXMVALL DS F Length of line to stack (input)
RXMPSHPL EQU *-RXITMAPX

RXITPARM

370 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

* The following parameters are used for the RXMSQSIZ function.
 ORG RXITMAPX
RXMQSIZE DS F Number of lines in stack (output)
RXMSIZPL EQU *-RXITMAPX

* The following parameters are unique to the RXSIO exit.

* The following parameters are used for the RXSIOTLL function.
 ORG RXITMAPX
RXSSIZE DS F Size of terminal in bytes (output)
RXSSIZPL EQU *-RXITMAPX

* The following parameters are used for RXSIOSAY and RXSIOTRC.
 ORG RXITMAPX
RXSVAL DS A Address of line to display (input)
RXSVALL DS F Length of line to display (input)
RXSOUTPL EQU *-RXITMAPX

* The following parameters are used for RXSIOTRD and RXSIODTR.
 ORG RXITMAPX
RXSRETC DS A Pointer to return value buffer (in+out)
RXSRETCL DS F Length of return value (in+out)
RXSINPPL EQU *-RXITMAPX

* The following parameters are unique to the RXMEM exit.

* The following parameters are used for RXMEMGET and RXMEMREL.
 ORG RXITMAPX
RXMFLO24 EQU X'80' Storage must be allocated below
* the 16Mb line. (input)
RXMSSIZE DS F Size of storage (in double words)
* to be allocated or released (input)
RXMADDR DS A Address of storage allocated (in-out)
* or being released
RXMPLEN EQU *-RXITMAPX

* The following parameters are unique to the RXHLT exit.

* The following parameters are used for RXHLTTST.
* (No unique parameters are required for RXHLTCLR.
 ORG RXITMAPX
RXHFHALT EQU X'80' HALT condition occurred (output)
RXHSTR DS A Pointer to EVALBLOK containing an
* optional HALT string (output)
RXHPLEN EQU *-RXITMAPX

* The following parameters are unique to the RXTRC exit.

 ORG RXITMAPX
RXTFTRAC EQU X'80' External TRACE setting (output)
RXTPLEN EQU *-RXITMAPX

* No unique parameters are used for the RXINI and RXTER exits.

RXITPARM

Chapter 2. Preferred CMS Macro Instructions 371

SCAN

label

SCAN TEXT = ' text '

( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

1

, BUFFER = ( addr

, length

, ( reg)

)

(( reg) , length

, ( reg)

)

, TRANS = NO

, TRANS = YES

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the SCAN macro to build tokenized and extended parameter lists and optionally translate an input
line.

Parameters
Required Parameters:
TEXT=

is the input data to be scanned. Acceptable values are:
'text'

scans the data enclosed in the quotation marks.

SCAN

372 z/VM: 7.3 CMS Macros and Functions Reference

(addr,length)
specifies the address of the data as an assembler expression and, optionally, specifies the length
as an absolute expression.

(addr,(reg))
specifies the address of the data as an assembler expression and, optionally, specifies the length
of the data as a value contained in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the address of the data and specifies the length of the data as an
absolute expression. If you use a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the address of the data and a register that contains the length of
the data. If you use a register to specify the address, you must specify a length. Valid registers are
2-12 enclosed in parentheses.

BUFFER=
is a user-provided buffer to contain the extended and tokenized parameter lists. You must specify a
buffer large enough to contain the extended parameter list, all of the tokenized arguments, and an
8-byte fence delimiting the end of the tokenized parameter list—a minimum of 48 bytes. Acceptable
values are:
(addr,length)

specifies the buffer address as an assembler expression and, optionally, specifies the buffer
length as an absolute expression.

(addr,(reg))
specifies the buffer address as an assembler expression and, optionally, the buffer length as a
value contained in a register. Valid registers are 2-12 enclosed in parentheses.

((reg),length)
specifies a register that contains the buffer address and specifies the buffer length as an absolute
expression. If you use a register to specify the address, you must specify a length.

((reg),(reg))
specifies a register that contains the buffer address and a register that contains the buffer length.
If you use a register to specify the address, you must specify a length. Valid registers are 2-12
enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
TRANS=

indicates whether CMS translates the input. Acceptable values are:
NO

indicates that CMS will not translate the input. No translation, including uppercase translation,
is done to the input when building both the tokenized and extended parameter list. This is the
default value.

YES
specifies that CMS use the user translate table (created with the CMS SET INPUT command) to
translate the input data. If you have not created a user translate table, CMS uses the system
uppercase translate table. If you have created a user translate table, CMS uses the system
uppercase translate table with the changes specified by the SET INPUT command applied when
building both the tokenized and extended parameter lists.

(reg)
specifies the register to be checked by the macro. If the value is 0, the macro sets TRANS to NO. If
the register contains a nonzero value, the macro sets TRANS to YES.

(addr,mask)
defines a single bit in storage that sets the value of the TRANS parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can

SCAN

Chapter 2. Preferred CMS Macro Instructions 373

specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,
then TRANS is set to NO. If the bit is 1, then TRANS is set to YES. For example, to test the first bit
in the single byte of storage at location APPFLAG, specify the TRANS parameter as

TRANS=(APPFLAG,X'80')

To set the value of the TRANS parameter at assembly time, specify TRANS=YES or TRANS=NO.
The default value is TRANS=NO. To set the value at execution time, specify TRANS=(reg) or
TRANS=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. When the SCAN macro completes successfully, it stores the address of the tokenized parameter list in

register 1 and the address of the extended parameter list in register 0.
2. The SCAN macro creates a tokenized parameter list and an extended form parameter list in the

following format:

 DC A(CMNDNAME) Command name
 DC A(BEGARG) Beginning of argument list
 DC A(ENDARG) End of argument list
 DC F'0' User word
 DC A(0) Address of function argument list
 DC A(0) Address for return of function data
 DC 2F'0' Padding
 DC CL8' ' Tokens (as required)
 DC CL8' ' Tokens (as required)
 DC X'FFFFFFFFFFFFFFFF' Fence

The SCAN macro uses EPLIST to map the extended parameter list.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning

SCAN

374 z/VM: 7.3 CMS Macros and Functions Reference

4
The user-supplied buffer area is too short to contain all of the tokens in the tokenized parameter list.
The list is truncated.

8
The user-supplied buffer area is less than 48-bytes.

104
CMS is unable to obtain enough storage to do the translation.

SCAN

Chapter 2. Preferred CMS Macro Instructions 375

SCBLOCK

label

SCBLOCK

Purpose
Use the SCBLOCK macro to generate a DSECT for the SCBLOCK control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the SCBLOCK macro expansion
is labeled SCBLOCK.

Usage Notes
1. The SCBPSW field cannot be used in a LOAD PSW (LPSW) instruction.
2. For more information on the SCBLOCK macro, see “NUCEXT” on page 317.
3. The SCBLOCK macroinstruction expands as follows:

SCBLOCK DSECT
SCBFWPTR DS F CHAIN POINTER TO NEXT SCBLOCK
SCBWKWRD DC A(0) AVAILABLE FOR USER INFORMATION
SCBNAME DS CL8 NAME OF SUBCOMMAND ENVIRONMENT
SCBPSW DS D STARTING PSW FOR SUBCOMMAND
SCBINT DS 1X PSW INTERRUPT BITS
*
* The following table shows the combination of bits
* in SCBPSW that determine what the various INTTYPEs are.
*
* INTTYPE |BIT 0|BIT 1| |BIT 7|HEX value

* --
* NONE 0 0 ... 0 00
* EXTERNAL 0 0 ... 1 01
* NONCONSOLE 0 1 ... 0 40
* NONCONSOLE & EXTERNAL 0 1 ... 1 41
* CONSOLE 1 0 ... 0 80
* CONSOLE & EXTERNAL 1 0 ... 1 81
* IO 1 1 ... 0 C0
* ALL 1 1 ... 1 C1
*
* *
* NUCX FIELDS. THESE ARE PRESENT, BUT NOT USED, *
* IN SCBLOCKS ON THE NUCSCBLK CHAIN. *
* *
SCBKEY DS 1X PSW KEY
SCBSFLAG DS 1X SYSTEM FLAG BYTE.
SCBSFSYS EQU X'80' DENOTES "SYSTEM" ROUTINE --
* WILL NOT BE AUTOMATICALLY DELETED DURING ABEND
* PROCESSING.
SCBSFSER EQU X'40' DENOTES "SERVICE" ROUTINE --
* WILL BE CALLED WITH "PURGE" ARGUMENT DURING ABEND
* PROCESSING.
SCBSFABN EQU X'20' USED DURING ABEND
* PROCESSING.
SCBSFEND EQU X'10' DENOTES 'END OF COMMAND'
* ROUTINE
SCBSFINT EQU SCBSFABN USED DURING END OF COMMAND
* PROCESSING.
SCBSPERM EQU X'08' DENOTES THAT THIS NUCLEUS
* EXTENSION WON'T BE DELETED
* DURING NUCXDROP ALL PROCESS

SCBLOCK

376 z/VM: 7.3 CMS Macros and Functions Reference

SCBSFIMM EQU X'04' DENOTES THAT THIS NUCLEUS
* EXTENSION CAN ALSO BE CALLED
* AS AN IMMEDIATE COMMAND
SCBSFX EQU X'02' DENOTES A LOOK-ASIDE
* ENTRY POINTING TO A REAL CMS NUCLEUS ROUTINE.
SCBSHIDE EQU X'01' USED TO HIDE A NUCLEUS
* EXTENSION TEMPORARILY.
SCBUFLAG DS 1X USER FLAG BYTE.
*
*
SCBENTR DS A ENTRY POINT ADDRESS IN PSW
*
SCBXORG DS A ADDRESS WHERE NUCLEUS
* EXTENSION WAS LOADED IN FREE STORAGE.
*
SCBXLEN DS F LENGTH IN BYTES OF NUCLEUS
* EXTENSION. MAY BE ZERO FOR SECONDARY ENTRY POINTS.
*
SCBSFLG2 DS X F*2 SECOND FLAG BYTE
SCBSFA31 EQU X'80' EXTENSION IS AMODE 31
SCBSFA24 EQU X'40' EXTENSION IS AMODE 24
* WHEN BOTH ON, EXTENSION IS AMODE ANY,
* WHEN BOTH OFF, EXTENSION IS AMODE SAME.
SCBSFSEG EQU X'20' SEGMENT RESIDENT
SCBSFUNC EQU X'10' Indicate function can not be
* invoked from the command line
SCBSMT EQU X'08' mt subcom
SCBSNEWT EQU X'04' subcom on own thread
 DS 3X RESERVED FOR FUTURE USE
SCBSEGID DS CL8 LOGICAL SEGMENT IDENTIFIER
SCBTESTK DS F thread execomm stack
 DS 0D KEEP DOUBLEWORD ALIGNED
SCBLOCKB EQU *-SCBLOCK LENGTH IN BYTES
SCBLOCKD EQU (SCBLOCKB+7)/8 LENGTH IN DWORD

SCBLOCK

Chapter 2. Preferred CMS Macro Instructions 377

SEGMENT

label

SEGMENT LOAD

LOAD parameters

FIND

FIND parameters

PURGE

,NAME= ' segname '

addr

( reg)

1
,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

LOAD parameters
,SHARE=YES

,SHARE= NO

( reg)

( addr , offset)

,SYSTEM=NO

,SYSTEM= YES

( reg)

( addr , offset)

FIND parameters
,SKELETON=NO

,SKELETON= YES

( reg)

( addr , offset)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the SEGMENT macro in an application program to load, purge or find saved segments. The SEGMENT
macro is a macro interface to the CP DIAGNOSE code X'64' instruction, which supports the loading,
finding and purging of saved segments. Note, you cannot use SEGMENT PURGE and the DIAGNOSE code
X'64' PURGESYS function interchangeably.

SEGMENT

378 z/VM: 7.3 CMS Macros and Functions Reference

Parameters
Required Parameters:
LOAD

indicates that the saved segment specified on the NAME parameter is to be added to the virtual
machine address space.

If the saved segment is loaded successfully, general register 1 contains the address of the loaded
saved segment. If the loaded saved segment is a logical saved segment, the programs contained
within it are established as nucleus extensions or subcommand processors, EXECs are established as
EXECs-in-storage, CSL libraries are made usable by the GLOBAL CSLLIB command, and application
language information is processed. Objects in other logical saved segments within the physical saved
segment are not processed.

Register 15 contains a return code indicating the results of the load operation. See “Return Codes” on
page 383 for specific return codes.

FIND
indicates that the starting address and highest address of the saved segment specified on the NAME
parameter are to be returned.

If the saved segment was successfully located, then general register 1 contains the address of
the saved segment and register 0 contains the highest address of the saved segment. Register 15
contains a return code indicating the status of the saved segment. See “Return Codes” on page 383
for specific return codes.

PURGE
indicates that the saved segment specified on the NAME parameter is to be removed from the virtual
machine address space. If the purged saved segment is a logical saved segment, the purge operation
removes the objects contained within the saved segment from use by CMS. Nucleus extensions and
EXECs are dropped, subcommand processors are cleared, language information is deleted, libraries
are removed from the list of callable services libraries, and any associated minidisks are released.
If no other logical saved segments within the physical saved segment are active, the physical saved
segment is detached from the virtual machine. If the physical saved segment is a member of a
CP segment space, and no other members of the segment space are active, the segment space is
detached. The reserved storage is released (returned to CMS) if it was obtained by the SEGMENT
LOAD operation.

Use SEGMENT PURGE to purge a saved segment that was loaded using SEGMENT LOAD. If the saved
segment was loaded using the DIAGNOSE code X'64' LOADSYS function, you must use the DIAGNOSE
code X'64' PURGESYS function to purge it. You cannot use SEGMENT PURGE and the DIAGNOSE code
X'64' function interchangeably.

Register 15 contains a return code indicating the results of the purge operation. See “Return Codes”
on page 383 for specific return codes.

NAME=
is the name of the saved segment to load, purge or find. Acceptable values are:
‘segname’

specifies the saved segment name as a 1- to 8-character literal string enclosed in single quotation
marks.

addr
specifies the address of the 8-byte storage area containing the saved segment name. This is
specified as any valid assembler expression.

(reg)
specifies the register containing the address of the storage area holding the name. Valid registers
are 2-12 enclosed in parentheses.

For a logical saved segment to be found, its definition must appear in the SYSTEM SEGID file, which is
generated and updated by the SEGGEN command.

SEGMENT

Chapter 2. Preferred CMS Macro Instructions 379

Optional Parameters:
label

is an optional assembler label for the statement.
SHARE=

indicates whether a shared or nonshared copy of the saved segment is to be loaded.

The SHARE attribute of the physical saved segment that contains logical saved segments is set by
the first logical saved segment loaded in the physical saved segment. Subsequent SEGMENT LOAD
operations for logical saved segments within that physical saved segment cannot change the SHARE
attribute of the physical saved segment. Thus, all logical saved segments within the same physical
saved segment must have the same SHARE attribute. If the SHARE operand value does not match the
SHARE attribute of the physical saved segment, the saved segment will not be loaded and a nonzero
return code will be issued. The SHARE parameter is valid only with the LOAD operation.

To set the value of the SHARE parameter at assembly time, specify SHARE=YES or SHARE=NO. To set
the value at execution time, specify SHARE=(reg) or SHARE=(addr,offset). Acceptable values are:

YES
indicates that a shared copy of the saved segment is loaded. This is the default value.

NO
indicates that a nonshared copy is loaded. See Usage Note “6” on page 382.

(reg)
the macro checks the value of the specified register and, if it is zero, sets SHARE to NO. If the
register contains a nonzero value, the macro sets SHARE to YES.

(addr,offset)
defines a single bit in storage that is to be used to set the value of the SHARE parameter. The addr
is the address of a byte in storage and the offset determines which bit within the byte is to be
tested. If the specified bit is zero, then SHARE=NO is assumed. If the bit is one, then SHARE is set
to YES.

SYSTEM=
indicates whether this is a ‘system’ type loaded saved segment which survives ABEND processing.

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO.
To set the value at execution time, specify SYSTEM=(reg) or SYSTEM=(addr,offset). The SYSTEM
parameter is only valid with the LOAD operation. Acceptable values are:

YES
indicates that the loaded saved segment survives ABEND processing.

NO
indicates that the loaded saved segment does not survive ABEND processing. This is the default.

(reg)
indicates the macro checks the value of the specified register and, if it is zero, sets SYSTEM to NO.
If the register contains a nonzero value, the macro sets SYSTEM to YES.

(addr,offset)
defines a single bit in storage that is to be used to set the value of the SYSTEM parameter. The
addr is the address of a byte in storage and the offset determines which bit within the byte is to be
tested. If the specified bit is zero, then SYSTEM=NO is assumed. If the bit is one, then SYSTEM is
set to YES.

SKELETON=
indicates whether CMS should search only for a skeleton segment (Class S NSS).

To set the value of the SKELETON parameter at assembly time, specify SKELETON=YES
or SKELETON=NO. To set the value at execution time, specify SKELETON=(reg) or
SKELETON=(addr,offset). The SKELETON parameter is only valid with the FIND operation. Acceptable
values are:

SEGMENT

380 z/VM: 7.3 CMS Macros and Functions Reference

YES
indicates that CMS should search only for a skeleton segment.

NO
indicates that CMS should first search for a logical segment and then for a segment defined in CP.
An active segment (Class A or R NSS) will be found before a skeleton segment (Class S NSS). This
is the default.

(reg)
indicates the macro checks the value of the specified register and, if it is zero, sets SKELETON to
NO. If the register contains a nonzero value, the macro sets SKELETON to YES.

(addr,offset)
defines a single bit in storage that is to be used to set the value of the SKELETON parameter. The
addr is the address of a byte in storage and the offset determines which bit within the byte is
to be tested. If the specified bit is zero, then SKELETON=NO is assumed. If the bit is one, then
SKELETON is set to YES.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If the specified saved segment is a physical saved segment or a CP segment space, and if a

storage space for this saved segment was previously reserved (through either the SEGMENT RESERVE
command or the SEGMENT LOAD command or macro) then the SYSTEM= option is ignored.

2. If a SEGMENT LOAD macro is issued for a saved segment that is already loaded, nothing is done except
to set the return code. If any objects in a saved segment have been explicitly dropped (for example,
using the EXECDROP or NUCXDROP commands), the saved segment must be purged, then loaded, to
get those objects back.

3. When a saved segment is loaded, all language information that matches the current system language
is added to the active set of applications.

4. Nucleus extensions, subcommand processors, and EXECs-in-storage that are established through
the load operation override previous definitions with the same name. Saved segment resident
nucleus extensions can be dropped using the NUCXDROP command, at which time the previous
definition comes into effect. Similarly, saved segment resident EXECs can be dropped using the

SEGMENT

Chapter 2. Preferred CMS Macro Instructions 381

EXECDROP command. When the saved segment is purged, previous definitions of nucleus extensions,
subcommand processors, and EXECs come back into effect.

5. CMS uses the following process to locate a saved segment to be loaded:

a. CMS searches the list of logical saved segments for one with the name specified on the SEGMENT
LOAD macro. If a logical saved segment is found, a storage space for the associated physical saved
segment is reserved (if not already reserved). If the physical saved segment is a DCSS, the storage
space is reserved for the DCSS. If the physical saved segment is a member of a CP segment space,
the storage space is reserved for the entire segment space. Then the storage space is loaded (if not
already loaded), and the contents of the logical saved segment are processed.

b. If a logical saved segment with the specified name is not found, CMS searches the list of storage
spaces previously reserved with the SEGMENT RESERVE command to determine if a space has
been reserved for a saved segment with the requested name. If one is found, the storage space is
loaded (if not already loaded).

c. If no reserved storage space exists, CMS issues a DIAGNOSE codeX'64' FINDSEG to determine
whether the requested saved segment has been defined in CP. If the saved segment has been
defined in CP, CMS issues a SEGMENT RESERVE command to create a reserved storage space, then
loads the saved segment. If the saved segment is a member of a CP segment space, CMS reserves
storage space for and loads the entire segment space.

d. If the requested saved segment is none of the above, the appropriate return code (RC=44) is
returned to the calling program.

This process allows an application to be loaded even if the saved segment resides within the virtual
machine.

The same search order is used for the SEGMENT PURGE operation and SEGMENT FIND operation
when SKELETON=NO.

For the SEGMENT FIND operation when SKELETON=YES, CMS uses only the DIAGNOSE code X'64'
FINDSKEL to determine the existence and location of the skeleton segment.

6. If a nonshared copy of a saved segment is to be loaded outside the maximum storage size of the
virtual machine (as defined on the USER or IDENTITY directory statement), the saved segment must
be identified on a NAMESAVE control statement in the user's directory entry. If the specified saved
segment is a physical saved segment that is a discontiguous saved segment (DCSS), or a logical saved
segment contained in a physical saved segment that is a DCSS, the name identified on the NAMESAVE
statement is the DCSS. If the specified saved segment is a physical saved segment that is a member
of a CP segment space, or a logical saved segment contained in a physical saved segment that is a
member of a segment space, the name identified on the NAMESAVE statement must be the segment
space.

7. Loading a physical saved segment does not give you access to the logical saved segments it contains.
Loading a CP segment space does not give you access to its members. Use the SEGMENT LOAD macro
to load the specific saved segments you need.

8. In rare cases, a SEGMENT LOAD or SEGMENT FIND could be delayed. This could happen if another
user is using the CP SPXTAPE DUMP command to dump the same saved segment name onto tape.
The delay will occur only if the system data file containing the saved segment was not loadable when
the dump began, or if all other system data files with the same name become not loadable during the
dump. The LOAD or FIND results will depend on whether the system data file is loadable when the
delay ends.

A system data file is not loadable if any of the following conditions are true:

• It is a skeleton.
• It is class P (pending purge).
• It is a member of a segment space whose system data file is a skeleton because at least one

member of the space is a skeleton.
• It is a member of a segment space that is missing one or more members, resulting from either of the

following:

SEGMENT

382 z/VM: 7.3 CMS Macros and Functions Reference

– The CP PURGE NSS command was used without the ASSOCIATES operand to purge the members.
– Only some of the system data files were loaded from tape by the CP SPXTAPE LOAD.

Return Codes
The following return codes are from a SEGMENT LOAD operation:
Code

Meaning
0

The saved segment was successfully loaded.
1

The saved segment is defined as a VMGROUP and cannot be loaded with SEGMENT LOAD.
12

The saved segment exists and has already been loaded. It has not been reloaded.
24

Parameter specified was not valid.
28

No segment storage spaces in virtual machine.
36

The requested saved segment is of a different level (segment space, physical saved segment, logical
saved segment, or skeleton segment) than what is already loaded into the same virtual storage area.
For example, if physical saved segment PSEG1 contains logical saved segment LSEG1, and LSEG1 is
already loaded, then a SEGMENT LOAD of PSEG1 will give this return code.

This return code also indicates that the SHARE parameter is not valid, as would be the case if the
physical saved segment containing the specified logical saved segment is already loaded with the
opposite SHARE attribute.

41
The storage required to load the saved segment is already in use. Either the required virtual machine
storage has already been allocated by CMS or storage outside the virtual machine has been reserved
for another saved segment.

44
The saved segment does not exist.

53
The user who issued SEGMENT is not in the CP directory.

60
The saved segment location does not match the reserved storage location. This can occur if a DEFSEG
command has been issued which moved the location of a saved segment between the time storage
was reserved for the saved segment and the time the SEGMENT LOAD was issued.

104
There is insufficient storage to allocate the SEGMENT function work area.

174
Paging I/O errors occurred while attempting to load the saved segment.

203
Not used

256
An error occurred while processing the contents of a logical saved segment.

449
The user is not authorized to load a nonshared copy of the saved segment.

475
A fatal I/O error occurred while reading the CP directory.

SEGMENT

Chapter 2. Preferred CMS Macro Instructions 383

1352
CP has detected an unacceptable condition; this is most likely to occur in the event of a CP soft abend.

1357
Not used.

1358
Load of a CP DCSS attempted.

1367
The user attempted to load a member saved segment in a mode different from the segment space
that contains it.

The following are the return codes from a SEGMENT PURGE operation:
Code

Meaning
0

The saved segment was successfully purged.
24

Parameter specified was not valid
40

The saved segment is not currently loaded by CMS.
44

The saved segment does not exist or was unloaded by a previous DIAGNOSE code X'64' operation.
104

There is insufficient storage to allocate the SEGMENT function work area.
256

An error occurred while processing the contents of a logical saved segment.
1352

CP has detected an unacceptable condition; this is most likely to occur in the event of a CP soft abend.

The following are the return codes from a SEGMENT FIND operation:
Code

Meaning
0

The saved segment exists and is not currently loaded.
1

The saved segment is defined as a VMGROUP and cannot be processed with DIAGNOSE code X'64'.
12

The saved segment exists and has already been loaded. This is not an error condition.
24

Parameter specified was not valid
41

The physical saved segment could not be loaded to determine the address of the logical saved
segment.

44
The saved segment does not exist.

104
There is insufficient storage to allocate the SEGMENT function work area.

174
Paging I/O errors occurred while attempting to find the saved segment.

203
Not used.

SEGMENT

384 z/VM: 7.3 CMS Macros and Functions Reference

449
This saved segment has restricted access and the user is not authorized to use it.

1352
CP has detected an unacceptable condition; this is most likely to occur in the event of a CP soft abend.

SEGMENT

Chapter 2. Preferred CMS Macro Instructions 385

SGMTEXIT

SGMTEXIT
DSECT

CSECT

Purpose
Use the SGMTEXIT macroinstruction to generate a DSECT or a CSECT for the SGMTEXIT control block.
This control block is used by the programs specified in the USER Record used by the SEGGEN command.
For more information on the SEGGEN command, see z/VM: CMS Commands and Utilities Reference.

Parameters
Optional Parameters:
CSECT

specifies that a CSECT is to be generated rather than a DSECT.
DSECT

is the default.

Usage Notes
1. For more information on the SGMTEXIT macro, see z/VM: Saved Segments Planning and

Administration.
2. The SGMTEXIT macro expands as follows:

 SGMTEXIT
SGMTEXIT DSECT Queue Manager plist
SGMRTN DS CL8' ' Name of user routine
SGMNAME DS CL8' ' Name of user object
SGMLSEG DS CL8' ' Name of lseg user info is in
SGMFUNC DS XL2'00' Function code
SGMLDS EQU 0 Load in shared mode
SGMLDNS EQU 4 Load in nonshared mode
SGMPURGE EQU 8 Purge
 DS XL2'00' Reserved field
SGMSTART DS F'0' Start of user info
SGMEND DS F'0' End of user info
SGMPSTRT DS F'0' Start address of parm list
SGMPLEN DS F'0' Length of parm list
 DS CL12' ' Reserved field
SGMBLKBY EQU *-SGMTEXIT SGMTEXIT length in bytes
SGMBLKDW EQU (SGMBLKBY+7)/8 SGMTEXIT length in dwords

SGMTEXIT

386 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpg4_v7r3.pdf#nameddest=hcpg4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpg4_v7r3.pdf#nameddest=hcpg4_v7r3

SHVBLOCK

label

SHVBLOCK

Purpose
Use the SHVBLOCK macroinstruction to generate a DSECT for the SHVBLOCK control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the SHVBLOCK
macroinstruction expansion is labeled SHVBLOCK.

Usage Notes
1. For more information on the SHVBLOCK macroinstruction, see z/VM: REXX/VM Reference.
2. The SHVBLOCK macroinstruction expands as follows:

 SHVBLOCK
*
* *** LAYOUT OF SHARED-VARIABLE ACCESS CONTROL BLOCK ***
*
* THE CONTROL BLOCKS FOR ACCESSING SHARED VARIABLES ARE CHAINED
* AS A LIST TERMINATED BY A NULL POINTER. THE LIST IS ADDRESSED
* VIA THE 'PRIVATE INTERFACE' PLIST IN A SUBCOMMAND CALL TO A
* PUBLIC VARIABLE-SHARING ENVIRONMENT (E.G. AS SET UP BY THE
* EXEC 2 OR REXX/VM).
*
SHVBLOCK DSECT ,
SHVNEXT DS A (+0) CHAIN POINTER (0 IF LAST)
SHVUSER DS A (+4) NOT USED, AVAILABLE FOR PRIVATE
* use EXCEPT DURING 'FETCH NEXT'
SHVCODE DS CL1 (+8) INDIVIDUAL FUNCTION CODE
SHVRET DS XL1 (+9) INDIVIDUAL RETURN CODE FLAG
 DS H'0' RESERVED, SHOULD BE ZERO
SHVBUFL DS F (+12) LENGTH OF 'FETCH' VALUE BUFFER
SHVNAMA DS A (+16) ADDR OF PUBLIC VARIABLE NAME
SHVNAML DS F (+20) LENGTH OF PUBLIC VARIABLE NAME
SHVVALA DS A (+24) ADDR OF VALUE BUFFER (0 IF NONE)
SHVVALL DS F (+28) LENGTH OF VALUE (SET BY 'FETCH')
SHVBLEN EQU *-SHVBLOCK (LENGTH OF THIS BLOCK = 32)
*
* FUNCTION CODES (SHVCODE):
*
SHVFETCH EQU C'F' COPY VALUE OF SHARED VAR TO BUFFER
SHVSTORE EQU C'S' STORE GIVEN VALUE IN SHARED VARIABLE
* The following function codes only apply to the System
* Product Interpreter.
*
* (Note that the symbolic name codes are lowercase)
SHVDROPV EQU C'D' DROP VARIABLE
SHVSYFET EQU X'86' =C'f' SYMBOLIC NAME FETCH VARIABLE
SHVSYSET EQU X'A2' =C's' SYMBOLIC NAME SET VARIABLE
SHVSYDRO EQU X'84' =C'd' SYMBOLIC NAME DROP VARIABLE
SHVNEXTV EQU C'N' FETCH 'NEXT' VARIABLE
SHVPRIV EQU C'P' FETCH PRIVATE INFORMATION
*
* RETURN CODE FLAGS (SHVRET):
*
SHVCLEAN EQU X'00' EXECUTION WAS OK
SHVNEWV EQU X'01' VARIABLE DID NOT EXIST
* (SP interpreter only)
SHVLVAR EQU X'02' LAST VARIABLE TRANSFERRED (FOR N)

SHVBLOCK

Chapter 2. Preferred CMS Macro Instructions 387

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3

SHVTRUNC EQU X'04' TRUNCATION OCCURRED FOR 'FETCH'
SHVBADN EQU X'08' INVALID VARIABLE NAME
SHVBADV EQU X'10' INVALID VARIABLE VALUE, e.g. too
* long (EXEC 2 ONLY).
SHVBADF EQU X'80' INVALID FUNCTION CODE (SHVCODE)

SHVBLOCK

388 z/VM: 7.3 CMS Macros and Functions Reference

SUBCOM

Purpose
Use the SUBCOM macroinstruction to access the SUBCOM function. The SUBCOM macroinstruction
provides all the functions available with the SUBCOM function; it also lets you specify the addressing
mode of the subcommand processor entry point.

The four basic functions of the SUBCOM macroinstruction are:
SUBCOM ANCHOR

Obtain the anchor pointer for the chain of SCBLOCKs that describe the current list of subcommand
processors.

SUBCOM CLR
Delete a subcommand processor from the chain of SCBLOCKs that describe the current list of
subcommand processors.

SUBCOM QUERY
Determine if a subcommand processor is defined.

SUBCOM SET
Declare a subcommand processor.

SUBCOM

Chapter 2. Preferred CMS Macro Instructions 389

SUBCOM ANCHOR

label

SUBCOM ANCHOR
1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use SUBCOM ANCHOR to obtain the anchor pointer for the chain of SCBLOCKs that describe the current
list of subcommand processors.

Parameters
Required Parameters:
ANCHOR

returns in register 1 the pointer to the first entry in the SUBCOM chain of SCBLOCKs.

Note: The ANCHOR option requires a read and write parameter list; therefore, use the execute form
(MF=(E,addr)) of the macro if you require reentrant code.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:

SUBCOM ANCHOR

390 z/VM: 7.3 CMS Macros and Functions Reference

L
specifies the list format.

(L,addr,mf_label)
specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

SUBCOM ANCHOR

Chapter 2. Preferred CMS Macro Instructions 391

SUBCOM CLR

label

SUBCOM CLR,NAME= ' name '

addr

( reg)

1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use SUBCOM CLR to delete a subcommand processor from the chain of SCBLOCKs that describe the
current list of subcommand processors.

Parameters
Required Parameters:
CLR

deletes the named subcommand processor from the list of subcommand processors.
NAME=

names the subcommand processor to be cleared. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the name. addr is any valid assembler
expression.

(reg)
specifies a register that contains the address of the storage area holding the name. Valid registers
are 2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.

SUBCOM CLR

392 z/VM: 7.3 CMS Macros and Functions Reference

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
1

No SCBLOCK exists for the specified program or routine. This is the return code for a delete or a query.

SUBCOM CLR

Chapter 2. Preferred CMS Macro Instructions 393

SUBCOM QUERY

label

SUBCOM QUERY,NAME= ' name '

addr

( reg)

1

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use SUBCOM QUERY to determine if a subcommand processor exists.

Parameters
Required Parameters:
QUERY

returns in register 1 the pointer to the SCBLOCK that describes the named subcommand processor.

Note: The QUERY option requires a read and write parameter list; therefore, use the execute form
(MF=(E,addr)) of SUBCOM if you require reentrant code.

NAME=
names the subcommand processor to be queried. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the name. This is any valid assembler
expression.

(reg)
specifies a register that contains the address of the storage area holding the name. Valid registers
are 2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.

SUBCOM QUERY

394 z/VM: 7.3 CMS Macros and Functions Reference

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
1

No SCBLOCK exists for the specified program or routine. This is the return code for a delete or a query.

SUBCOM QUERY

Chapter 2. Preferred CMS Macro Instructions 395

SUBCOM SET

label

SUBCOM SET , NAME = ' name '

addr

( reg)

1
, ENTRY = addr

( reg)

, UWORD = addr

( reg)

, UFLAGS = addr

( reg)

value

, AMODE = SAME

, AMODE = 24

31

ANY

, INTTYPE = NONE

, INTTYPE = ALL

IO

CONSOLE

NONCONIO

EXTERNAL

(EXTERNAL , CONSOLE)

(EXTERNAL , NONCONIO)

, KEY = USER

, KEY = NUCLEUS

( reg)

( addr , mask)

, SYSTEM = NO

, SYSTEM = YES

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:

SUBCOM SET

396 z/VM: 7.3 CMS Macros and Functions Reference

1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the SUBCOM SET macro to declare a subcommand processor.

Parameters
Required Parameters:
SET

declares the named entry point as a subcommand processor.
NAME=

names the subcommand processor to be defined. Acceptable values are:
‘name’

specifies the name as a 1- to 8-character literal string enclosed in single quotation marks.
addr

specifies the address of the 8-byte storage area containing the name. This is any valid assembler
expression.

(reg)
specifies a register that contains the address of the storage area holding the name. Valid registers
are 2-12 enclosed in parentheses.

ENTRY=
defines the entry point of the subcommand processor. Acceptable values are:
addr

specifies the entry point at the 8-byte storage location defined by addr. This is any valid
assembler expression.

(reg)
specifies the entry point at the address contained in the register. Valid registers are 2-12 enclosed
in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
UWORD=

specifies an optional fullword available in the SCBWKWRD field of the SCBLOCK, which register 2
points to when the subcommand processor is invoked. Acceptable values are:
addr

defines addr as the UWORD. This is any valid assembler expression.
(reg)

defines the contents of (reg) as the UWORD. Valid registers are 2-12 enclosed in parentheses.
UFLAGS=

specifies an optional 1-byte field available in the SCBUFLAG field of the SCBLOCK, which register 2
points to when the subcommand processor is invoked. Acceptable values are:
addr

defines UFLAGS as the contents of the 1-byte field pointed to by addr. addr is any valid assembler
expression.

(reg)
defines UFLAGS as the contents of low-order byte of (reg). Valid registers are 2-12 enclosed in
parentheses.

SUBCOM SET

Chapter 2. Preferred CMS Macro Instructions 397

value
defines UFLAGS as a self-defining 1-byte constant (such asX'01' or C'F').

AMODE=
specifies the addressing mode in which the subcommand processor is entered. Acceptable values are:
SAME

enters the subcommand processor in the same addressing mode as the program that issues the
SUBCOM macro. This is the default.

24
enters the subcommand processor in 24-bit addressing mode.

31
enters the subcommand processor in 31-bit addressing mode.

ANY
enters the program in the same addressing mode as the calling routine.

INTTYPE=
specifies the PSW interrupt mask the CMS SVC interrupt handler is to use when invoking the
subcommand processor. Acceptable values are:
NONE

disables all interrupts. This is the default value.
ALL

enables all interrupts.
IO

enables all I/O interrupts.
CONSOLE

enables only I/O interrupts from the virtual machine console. The interrupt subclass (ISC) for the
console is enabled.

NONCONIO
enables only nonconsole I/O interrupts. All ISCs except for the console ISC are enabled.

EXTERNAL
enables external interrupts.

(EXTERNAL,CONSOLE)
enables external interrupts and I/O interrupts from the virtual machine console. The interrupt
subclass (ISC) for the console is enabled.

(EXTERNAL,NONCONIO)
enable for external interrupts and nonconsole I/O interrupts. All ISCs except for the console ISC
are enabled.

See “ENABLE” on page 178 for more information on the INTTYPE parameter.

KEY=
specifies the storage key in which the routine executes (either NUCLEUS or USER key). Acceptable
values are:
USER

specifies the storage key as USER key. This is the default value.
NUCLEUS

specifies the storage key as NUCLEUS key.
(reg)

the macro checks the value of the specified register and, if it is 0, sets KEY to USER. If the register
contains a nonzero value, the macro sets KEY to NUCLEUS.

(addr,mask)
defines a single bit in storage that sets the value of the KEY parameter. The addr is the address
of a byte in storage and the mask determines which bit within the byte the macro tests. You can
specify addr and mask in any form allowed on a TM assembler instruction. If the specified bit is 0,

SUBCOM SET

398 z/VM: 7.3 CMS Macros and Functions Reference

then KEY is set to USER. If the bit is 1, then KEY is set to NUCLEUS. For example, to test the first
bit in the single byte of storage at location APPFLAG, specify the KEY parameter as

KEY=(APPFLAG,X'80')

To set the value of the KEY parameter at assembly time, specify KEY=NUCLEUS or KEY=USER. The
default is KEY=USER. To set the value at execution time, specify KEY=(reg) or KEY=(addr,mask).

SYSTEM=
indicates whether the subcommand processor survives abend processing. Acceptable values are:
NO

specifies the subcommand processor does not survive abend processing. This is the default value.
YES

specifies the subcommand processor does survive abend processing. If you specify SYSTEM=YES,
the subcommand processor must reside in storage that is not reclaimed during abend processing.

(reg)
the macro checks the value of the specified register and, if it is 0, sets SYSTEM to NO. If the
register contains a nonzero value, the macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The addr is the
address of a byte in storage and the mask determines which bit within the byte the macro tests.
You can specify addr and mask in any form allowed on a TM assembler instruction. If the specified
bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For example, to test
the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO.
The default value is SYSTEM=NO. To set the value at execution time, specify SYSTEM=(reg) or
SYSTEM=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

SUBCOM SET

Chapter 2. Preferred CMS Macro Instructions 399

Usage Notes
1. When a subcommand environment is created by a multitasking application, it becomes associated

with the process that created it, while also being known throughout the session. If a thread in another
process invokes the subcommand processor, a thread is created in the process that established it to
run the SUBCOM invocation. In this way, the subcommand processor runs in the language environment
of its process and if it abends, VMERROR event handlers established in that process can attempt
recovery. See z/VM: CMS Application Multitasking for more information.

2. An entry point that is to be a subcommand processor must not be the multitasking initialization routine
VMSTART. While a subcommand processor can perform multitasking operations, it cannot be the
starting point for a new process. See z/VM: CMS Application Multitasking for more information.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
20

The name specified on the SUBCOM macro contains an invalid character. The following characters are
not valid: =, *, (,) and X'FF'.

25
No more free storage available. SCBLOCK cannot be created for the specified program or routine.

SUBCOM SET

400 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

SUBPOOL

Purpose
Use the SUBPOOL macro to manage CMS free storage subpools. SUBPOOL has three functions:
SUBPOOL CREATE

Creates a storage subpool.
SUBPOOL DELETE

Deletes free storage subpools from the list of active subpools and returns any free storage associated
with the subpool

SUBPOOL RELEASE
Releases the storage associated with a subpool but does not delete the subpool from the list of active
subpools.

SUBPOOL

Chapter 2. Preferred CMS Macro Instructions 401

SUBPOOL CREATE

label

SUBPOOL CREATE
1

, NAME = ' name '

addr

( reg)

, TYPCALL = SVC

, TYPCALL = BRANCH

, MSG = YES

, MSG = NO

( reg)

( addr , mask)

, TYPE = PRIVATE

, TYPE = SHARED

GLOBAL

, KEY = USER

, KEY = NUCLEUS

, SYSTEM = NO

, SYSTEM = YES

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the SUBPOOL CREATE macro to create subpools.

Parameters
Required Parameters:
CREATE

creates a free storage subpool.
NAME=

indicates the 1- to 8-character name of the subpool to be created. Acceptable values are:

SUBPOOL CREATE

402 z/VM: 7.3 CMS Macros and Functions Reference

'name'
specifies a 1- to 8-character literal string in single quotation marks.

addr
specifies the address of an 8-byte storage area containing the name. This may be any assembler
expression.

(reg)
specifies a register that contains the address of the storage area holding the name. Valid registers
are 2-12 enclosed in parentheses.

There is no restriction on the characters you can use for subpool names. However, the subpool names
DMSxxxxx are reserved for OS/MVS storage subpools, and the names USER, USERG, and NUCLEUS are
for reserved system subpools.

Optional Parameters:
label

is an optional assembler label for the statement.
TYPCALL=

indicates how control is passed to the CMS subpool management routines. Nucleus resident routines
can use TYPCALL=BRANCH to branch directly to the subpool management routine. Routines that
aren't nucleus resident must use TYPCALL=SVC.
SVC

indicates that the calling routine is not nucleus resident. This is the default value.
BRANCH

branches directly to the subpool management routine.

Note: Routines that specify TYPCALL=BRANCH must use the proper storage key and disable
interrupts to call SUBPOOL.

MSG=
indicates whether CMS displays an error message if it cannot allocate sufficient storage to satisfy the
request. Acceptable values are:
YES

specifies that messages are to be displayed. This is the default value.
NO

specifies that messages are not to be displayed.
(reg)

the macro checks the value of the specified register and, if it is 0, sets MSG to NO. If the register
contains a nonzero value, the macro sets MSG to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MSG parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then MSG is set to NO. If the bit is 1, then MSG is set to YES. For example, to test
the first bit in the single byte of storage at location MSGFLAG, specify the MSG parameter as

MSG=(MSGFLAG,X'80')

To set the value of the MSG parameter at assembly time, specify MSG=YES or MSG=NO. To set the
value at execution time, specify MSG=(reg) or MSG=(addr,mask).

TYPE=
indicates the accessibility and scope of the subpool. Acceptable values are:
PRIVATE

the subpool is available only to the routine that creates it. This is the default value.
SHARED

the subpool is available to any routine of a lower nested SVC level than the routine that created it.

SUBPOOL CREATE

Chapter 2. Preferred CMS Macro Instructions 403

GLOBAL
the subpool is available to any routine that runs in the virtual machine. CMS does not delete a
global subpool when the program that creates it terminates. To retain global subpools across CMS
abend processing, specify the SYSTEM=YES parameter.

KEY=
indicates whether the subpool is allocated from X'E' USER key storage (KEY=USER) or X'F' NUCLEUS
key storage (KEY=NUCLEUS). Acceptable values are:
USER

specifies the storage key as USER key. This is the default value.
NUCLEUS

specifies the storage key as NUCLEUS key.
SYSTEM=

indicates whether a GLOBAL subpool survives abend processing.

The SYSTEM=YES parameter is valid only for global subpools (TYPE=GLOBAL). Acceptable values are:

NO
specifies that the subpool does not survive abend processing. This is the default value.

YES
specifies that the subpool survives abend processing.

(reg)
the macro checks the value of the specified register and, if it is 0, sets SYSTEM to NO. If the
register contains a nonzero value, the macro sets SYSTEM to YES.

(addr,mask)
defines a single bit in storage that sets the value of the SYSTEM parameter. The variable addr is
the address of a byte in storage and the variable mask determines which bit within the byte the
macro tests. You can specify addr and mask in any form allowed on a TM assembler instruction.
If the specified bit is 0, then SYSTEM is set to NO. If the bit is 1, then SYSTEM is set to YES. For
example, to test the first bit in the single byte of storage at location APPFLAG, specify the SYSTEM
parameter as

SYSTEM=(APPFLAG,X'80')

To set the value of the SYSTEM parameter at assembly time, specify SYSTEM=YES or SYSTEM=NO.
SYSTEM=NO is the default. To set the value at execution time, specify SYSTEM=(reg) or
SYSTEM=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.

SUBPOOL CREATE

404 z/VM: 7.3 CMS Macros and Functions Reference

(L,addr,mf_label)
specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. You can assign the same name to more than one PRIVATE or SHARED subpool, but not to GLOBAL

subpools. When you create a subpool, CMS "pushes" it onto a LIFO stack and uses it for any
subsequent storage requests that specify the name of the SUBPOOL. This continues until the subpool
is deleted and gets "popped" off the stack.

The exception to this rule occurs when a PRIVATE subpool exists on the current SVC level, and a
program running on that SVC level creates a SHARED or GLOBAL subpool with the same name. CMS
always obtains storage from a PRIVATE subpool before a SHARED or GLOBAL subpool with the same
name. The same thing happens when a SHARED subpool exists and you create a GLOBAL subpool with
the same name—CMS obtains storage from the SHARED subpool.

2. Specifying KEY=NUCLEUS does not affect the cleanup action taken upon a named subpool. CMS
cleans up named subpools in NUCLEUS key and USER key in the same way. Unless a subpool is
TYPE=GLOBAL, CMS deletes it when the program that creates the subpool terminates. To survive CMS
abend recovery, the named subpool must be TYPE=GLOBAL and the SYSTEM=YES parameter must be
specified.

Return Codes
Code

Meaning
0

Normal completion.
1

Not enough storage is available to create a subpool descriptor for the specified subpool.
2

An attempt was made to CREATE a subpool with the name of USER, USERG, or NUCLEUS, or a name
reserved for a CMS internal subpool.

3
An attempt was made to CREATE a GLOBAL subpool and a GLOBAL subpool with the specified name
already exists.

6
A SUBPOOL CREATE for either a PRIVATE or SHARED subpool was requested and there is no existing
SSAVE to anchor the subpool on. This could happen from an interrupt handler.

9
Unexpected and unexplained error in the storage management routine.

10
An invalid parameter list was detected. This happens when you use a combination of macro forms to
build a parameter list and you (a) omit parameters or (b) specify conflicting parameters. This often
occurs when you re-use a parameter list without first zeroing it out. The error is caused by one of the
following:

• The NAME= parameter was not specified.
• SYSTEM=YES was specified for a SHARED or PRIVATE subpool.
• TYPE=ANY was specified (this can happen with an MF=(E,addr) invocation where TYPE=ANY was
specified on a previous form of the macro, such as MF=(L,addr).

SUBPOOL CREATE

Chapter 2. Preferred CMS Macro Instructions 405

SUBPOOL DELETE and RELEASE

label

SUBPOOL DELETE

RELEASE

, NAME = ' name '

addr

( reg)

1

, TYPCALL = SVC

, TYPCALL = BRANCH

, TYPE = ANY

, TYPE = PRIVATE

SHARED

GLOBAL

, MSG = YES

, MSG = NO

( reg)

( addr , mask)

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the SUBPOOL DELETE and RELEASE macroinstructions to delete a free storage subpool or to release
storage allocated to a free storage subpool.

Parameters
Required Parameters:
DELETE

deletes a free storage subpool from the active subpool list and returns its storage to the pool of
unallocated storage.

RELEASE
releases all storage allocated to a free storage subpool and returns the storage to the pool of
unallocated storage. SUBPOOL RELEASE does not remove the subpool name from the list of available
subpools.

NAME=
indicates the 1- to 8-character name of the subpool being managed. Acceptable values are:

SUBPOOL DELETE and RELEASE

406 z/VM: 7.3 CMS Macros and Functions Reference

'name'
deletes the named (1- to 8-characters) subpool or releases its storage.

addr
deletes the subpool named at the specified 8-byte area or releases its storage. The variable addr
may be any assembler expression.

(reg)
deletes the subpool named at the address contained in the specified register or releases the
subpool's storage. Valid registers are 2-12 enclosed in parentheses.

Optional Parameters:
label

is an optional assembler label for the statement.
TYPCALL=

indicates how control is passed to the CMS subpool management routines. Nucleus resident routines
can use TYPCALL=BRANCH to branch directly to the subpool management routine. Routines that are
not nucleus resident must use TYPCALL=SVC. Acceptable values are:
SVC

indicates that the calling routine is not nucleus resident. This is the default.
BRANCH

branches directly to the subpool management routine.

Note: Routines that specify TYPCALL=BRANCH must use the proper storage key and disable
interrupts to call SUBPOOL.

TYPE=
indicates the scope of the subpool to be deleted or released. Acceptable values are:
ANY

searches the subpool chains (first PRIVATE, then SHARED, then GLOBAL) for the named subpool.
If the named subpool is found, it is deleted or its storage is released. This is the default value.

PRIVATE
deletes or releases the subpool only if it is on the private subpool chain.

SHARED
deletes or releases the subpool only if it is on the shared subpool chain.

GLOBAL
deletes or releases the subpool only if it is on the global subpool chain.

MSG=
indicates whether an error message is displayed if CMS cannot delete the subpool or release its
storage. Acceptable values are:
YES

specifies that messages are to be displayed. This is the default value.
NO

specifies that messages are not to be displayed.
(reg)

the macro checks the value of the specified register and, if it is 0, sets MSG to NO. If the register
contains a nonzero value, the macro sets MSG to YES.

(addr,mask)
defines a single bit in storage that sets the value of the MSG parameter. The variable addr is the
address of a byte in storage and the variable mask determines which bit within the byte the macro
tests. You can specify addr and mask in any form allowed on a TM assembler instruction. If the
specified bit is 0, then MSG is set to NO. If the bit is 1, then MSG is set to YES. For example, to test
the first bit in the single byte of storage at location MSGFLAG, specify the MSG parameter as

MSG=(MSGFLAG,X'80')

SUBPOOL DELETE and RELEASE

Chapter 2. Preferred CMS Macro Instructions 407

To set the value of the MSG parameter at assembly time, specify MSG=YES or MSG=NO. To set the
value at execution time, specify MSG=(reg) or MSG=(addr,mask).

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. When a subpool is deleted, it is "popped" off a LIFO stack. If another subpool with the same name

exists, CMS uses it to satisfy subsequent requests for free storage from a subpool with that name.
2. If the subpool to be deleted or released is not found within the scope of the TYPE parameter, an error

is returned.
3. See Table 13 on page 104 for information about when subpools are automatically deleted or released.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
2

An attempt was made to DELETE or RELEASE a subpool with the name of USER, USERG, or NUCLEUS,
or a name reserved for a CMS internal subpool.

4
The specified subpool was not found.

9
Unexpected and unexplained error in the storage management routine.

10
An invalid parameter list was detected. This happens when you use a combination of macro forms to
build a parameter list and you (a) omit parameters or (b) specify conflicting parameters. This often
occurs when you re-use a parameter list without first zeroing it out. The error is caused by one of the
following:

• The NAME= parameter was not specified.

SUBPOOL DELETE and RELEASE

408 z/VM: 7.3 CMS Macros and Functions Reference

• SYSTEM=YES was specified.

SUBPOOL DELETE and RELEASE

Chapter 2. Preferred CMS Macro Instructions 409

TAPECTL

label

1
TAPECTL function

, TAP1

, device

, MODE = 3490C

3490B

XF

18

3590C

3590B

(, 6250)

(, 1600)

(, 800)

COMP

NOCOMP

9

, BLKBUFF =  blkadr

, ERROR = *

, ERROR = addr

( reg)

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the TAPECTL macroinstruction to position the specified tape according to the specified function code.

Parameters
Required Parameters:
function

specifies the control function to be performed. The functions are as follows:

TAPECTL

410 z/VM: 7.3 CMS Macros and Functions Reference

REW
Rewind the tape

RUN
Rewind and unload the tape

ERG
Erase a defective section of the tape

BSR
Backspace one record

BSF
Backspace one file

FSR
Forward-space one record

FSF
Forward-space one file

WTM
Write a tape mark

LOCBLK
Locate block

RDBLKID
Read block ID

See Usage Note “1” on page 413 for descriptions of the LOCBLK and RDBLKID functions.

Optional Parameters:
label

is an optional assembler label for the statement.
device

specifies the device name (TAPn) or virtual device number (vdev) of the virtual tape device from which
the block is to be read. The following values are valid; see z/VM: CMS User's Guide for information on
tape device names and virtual device numbers for tape devices.

Device Virtual
Name Number

Device Virtual
Name Number

TAP0 0180
TAP1 0181
TAP2 0182
TAP3 0183
TAP4 0184
TAP5 0185
TAP6 0186
TAP7 0187

TAP8 0288
TAP9 0289
TAPA 028A
TAPB 028B
TAPC 028C
TAPD 028D
TAPE 028E
TAPF 028F

If you omit the device value, CMS uses device TAP1.

(reg)
a register containing a pointer to a storage location that contains the device name or virtual device
number.

The following example shows how you might use the register form to identify the device:

 LA 2, MY181 Addr of device assignment
 TAPECTL REW, (2)
 .
 .

TAPECTL

Chapter 2. Preferred CMS Macro Instructions 411

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

 .
MY181 DC CL4'0181' vdev definition

MODE=
indicates a recording format. This is meaningful only if function is WTM or ERG. Regardless of whether
CMS is attempting to write on the tape, the macro expansion will fail if the tape device is not capable
of writing the indicated recording format.

Note that this parameter has no effect if the tape device is not positioned to the beginning of the
volume and the recording format it specifies is not allowed to coexist on a volume with the recording
format that is recorded at the beginning of the volume. See z/VM: CMS User's Guide for details on
selecting recording formats.

Values are:
3490C

3490 Compacted recording format
3490B

3490 Basic recording format
XF

3480 Compacted recording format
18

3480 Basic recording format
3590C

3590 Compacted recording format
3590B

3590 Basic recording format
(,6250)

GCR recording format
(,1600)

PE recording format
(,800)

NRZI recording format
COMP

Any compacted recording format
NOCOMP

Any uncompacted recording format
9

Any 9 track recording format

For compatibility with previous levels of VM, the following values are also valid, but the above values
are preferred.
(,38K)

3480 Basic recording format
(18,38K)

3480 Basic recording format
(9,6250)

GCR recording format
(9,1600)

PE recording format
(9,800)

NRZI recording format

Note: The different syntax of this parameter is for compatibility purposes.

TAPECTL

412 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

If you omit the MODE parameter, CMS selects a recording format for you. CMS's choice may be the
result of a previous TAPE command, so you may use the TAPECTL macro in conjunction with the TAPE
command to select tape recording formats. See z/VM: CMS User's Guide and the description of the
TAPE command in z/VM: CMS Commands and Utilities Reference for details and examples.

BLKBUFF=
BLKBUFF is used with the LOCBLK or RDBLKID functions only.

• For LOCBLK, the BLKBUFF parameter gives the address of a 4-byte block ID.
• For RDBLKID, the BLKBUFF parameter gives the address of an 8-byte buffer in which CMS returns 2

block IDs.

See Usage Note “1” on page 413 for details on block IDs and using the LOCBLK and RDBLKID
functions.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. The LOCBLK and RDBLKID functions are useful only with a tape which is recorded in a recording format

that contains block IDs. These recording formats are:

• 3490 Compacted
• 3490 Basic
• 3480 Compacted
• 3480 Basic
• 3590 Compacted
• 3590 Basic.

If you use the LOCBLK or RDBLKID functions with another recording format, the TAPECTL macro call
fails with return code 3.

The recording formats associate a 4-byte block ID with every block and tape mark on the tape. The
RDBLKID function returns the block ID of a block or tape mark, while the LOCBLK positions the tape

TAPECTL

Chapter 2. Preferred CMS Macro Instructions 413

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

to a particular block based on its block ID. LOCBLK is typically much faster than other means of block
positioning.

RDBLKID returns two block IDs in the 8-byte buffer you provide:

a. The first block ID (bytes 0-3) is called the channel block ID. It identifies the block or tape mark that
you would read or write if you issued a read or write operation from the current tape position.

b. The second block ID (bytes 4-7) is called the device block ID. It identifies the block or tape mark
that will next be transferred to or from the physical tape (this would be different from the channel
block ID if there are blocks in the device's buffer). This block ID is of limited value.

i) If the device has been reading, then it may have read ahead on the physical tape and the device
block ID refers to the next block to be read from the tape into the buffer.

ii) If the device has been writing, there may be blocks still in the buffer that have not been
transferred to the tape and the device block ID refers to the next block to be transferred from
the buffer to the tape.

See the manuals for the recording format or device you are using for details on block IDs.

Note:

a. The first block or tape mark on a volume has block IDX'01000000'.
b. Some of the complexity in the block IDs that exists in other systems is eliminated in CMS because

CMS does not do read backward operations.

The LOCBLK function causes the device to position to the indicated block or tape mark. The block ID
contains physical location information, so the device is able to get to the vicinity of the block or tape
mark at high speed (faster than the FSF function, for example). It then locates the exact block or tape
mark at normal speed. It positions the volume so that the next block or tape mark you read or write
will have the block ID you specified.

The block with the block ID you specify doesn't actually have to exist, but the block right before it must
exist. The device figures out the block ID of the block before the one you indicated and positions just
after it. This is so you can position to a block that doesn't exist yet—one that you are about to create.

LOCBLK works regardless of where the tape is positioned when the operation starts. It may be
positioned before or after the block in question, or even in an unreadable section of the tape.

You use LOCBLK and RDBLKID together. You use a RDBLKID to get the channel block ID for a particular
position on the tape and save it. Later, when you want to get to that particular position on that tape,
you use LOCBLK with the block ID you saved.

2. The 9346 tape cartridge can only be written to at load point and at logical end of tape.
3. If the tape is under the control of a Tape Library Dataserver machine, and the DFSMS/VM Removable

Media Services (RMS) FSMPPSI CSLLIB is available to CMS, the RUN function calls the RMS
FSMRMDMT (Demount) CSL routine to have the Dataserver unmount the tape.

Return Codes
The return codes (found in register 15) from a TAPECTL call are listed below. Detailed explanations of
them follow.
Code

Meaning
0

The TAPECTL call executed normally.
1

Invalid function or parameter or the specified device is incapable of writing in the specified format.
2

Tape mark or End of Volume area detected.

TAPECTL

414 z/VM: 7.3 CMS Macros and Functions Reference

3
I/O error.

4
Invalid device value.

5
Virtual tape device not attached (device does not exist).

6
Volume is write protected.

7
Specified device is not a tape device.

9
Manual rewind/unload of tape.

Return Code 0: TAPECTL call executed normally. The requested operation has been performed. For
particular functions, the specific meaning is as follows.

Function Meaning of return code 0

BSF The volume is positioned just before the first tape mark before the place where the volume was
positioned.

BSR The device has backed over one data block and the volume is positioned just before it.

ERG A gap has been written (except on devices which do not have (or need) an erase gap function). The
volume is not positioned to the End of Volume area. If it were, you would get return code 2 instead.

FSF The volume is positioned just after the first tape mark after the place where the volume was
positioned.

FSR The device has spaced forward over one data block and the volume is positioned just after it.

LOCBLK The volume is positioned to read or write the requested block with the next read or write operation.
It is also possible to get this return code when the block does not logically exist on the volume.

RDBLKID The block ID corresponding to the present position of the volume is in your buffer.

REW The volume is positioned to Logical Beginning of Volume.

RUN The volume has been unloaded.

WTM A tape mark has been written. The volume is positioned just after it, and not in the End of Volume
area. If it were, you would get return code 2 instead.

Return Code 1: Invalid parameter or bad format. One of the following is true of the TAPECTL call:

• One of the parameter values is not valid.
• The parameter values are not compatible with each other.
• The MODE parameter indicates a recording format which the device (identified by the device parameter)

is not capable of writing. Note that the TAPECTL call will fail if this is true, even though some of the
TAPECTL functions do not involve writing on the tape. This is because of compatibility purposes.

For the invalid parameter cases, the TAPECTL invocation needs to be corrected. For the recording format
incapable case, it is usually best to eliminate the MODE parameter if the function is not WTM or ERG. If
the function is WTM or ERG, you can either specify a different recording format, specify a different device,
or attach a different device. It may be better to specify a nonspecific recording format (like MODE=COMP
or omit MODE completely), so that CMS chooses a recording format that the device can write. See z/VM:
CMS User's Guide for information on recording formats and device capabilities.

Return Code 2: Tape mark or End of Volume. This return code is possible only for the BSR, FSR, WTM, or
ERG functions.

For the BSR or FSR functions, this return code means a tape mark, rather than a data block, was spaced
over. In all other respects, it is the same as return code 0.

A tape mark often marks the end of a file or the end of recorded data on the volume.

TAPECTL

Chapter 2. Preferred CMS Macro Instructions 415

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

For the WTM or ERG functions, this return code is the same as return code 0, except that the volume is
positioned in the End of Volume area after having performed the operation.

Return Code 3: I/O error. The device was unable to perform the function for many reasons. Following is a
list of some of the general reasons, followed by a list specific to individual functions:

• The device or channel has detected an internal malfunction in the device or channel.
• There is a defect on the recording medium.
• The data on the tape was written in error.
• The tape reel or cartridge is damaged.
• The device is in a Volume Fenced condition. This is a condition which arises for reasons in which the

device will not perform most operations on the volume. You can undo this condition by unloading the
device; other times by rewinding the device. You can do either of these with the TAPE command or
TAPECTL macro.

• The virtual device is a shareable one (see z/VM: CMS User's Guide). CMS does not support shareable
devices and the failure of TAPECTL in this way is just one of the possible effects.

Function Meaning of Return Code 3

BSF • There is no tape mark between where the volume was positioned and Logical Beginning of Volume. The
volume is now positioned to Logical Beginning of Volume.

• The tape or a block on it is recorded in a recording format which the device is incapable of reading, or does
not recognize.

BSR • The volume was already positioned to Logical Beginning of Volume. It is still positioned there.
• The tape or a block on it is recorded in a recording format which the device is incapable of reading, or does

not recognize.

ERG • There is no room left on the volume for a gap.
• The tape cartridge contains a length of tape that the device cannot properly handle, so the device is

preventing you from writing on it. See remarks under WTM.

FSF • The volume was positioned past the end of recorded data or there is no tape mark between where it was
and the end of recorded data. See other remarks under FSR.

• The tape or a block on it is recorded in a recording format which the device is incapable of reading, or does
not recognize.

FSR • The volume was positioned past the end of recorded data. The end of recorded data is defined as the
point just after the block, tape mark, or gap that was most recently written on the tape. Note that you will
not necessarily get this return code when this is the case. On newer devices which place a definitive End
of Data mark on the volume, return code 3 is guaranteed. But on older devices there are several other
return codes you could get, including 0, so you must use other means to know where the end of recorded
data is.

• The tape or a block on it is recorded in a recording format which the device is incapable of reading, or does
not recognize.

LOCBLK • The block before the requested block does not exist on the tape. Note that blocks after the end of
recorded data are considered not to exist. You are not guaranteed to get this return code when the block
does not exist. You may get other return codes, including return code 0. The position of the volume is
undefined.

It is valid for the requested block not to exist, as long as the one before it exists because this lets you
position the volume to write that block.

• The mounted volume is recorded in a recording format that does not have block IDs.

RDBLKID • The mounted volume is recorded in a recording format that does not have block IDs.

REW No special meaning.

RUN No special meaning.

TAPECTL

416 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

Function Meaning of Return Code 3

WTM • There is no room left on the volume for the tape mark.
• The tape cartridge contains a length of tape that the device cannot properly handle, so the device is

preventing you from writing on it. The position of the volume has not changed. Another device may be able
to write the block. Otherwise, you can copy the data on the cartridge to a cartridge which the device can
handle. Note that the same device may allow you to read the tape even though it will not write it. You take
a risk of damaging the device or the medium by reading it, but the device allows it to give you a chance of
recovering your data.

Return Code 4: Invalid device value. The value of the device parameter is not one of the valid ones
listed for it. CMS cannot tell on what device to perform the operation. The TAPECTL invocation must be
corrected.

Return Code 5: Device not attached. No virtual device exists with the virtual device number given by the
device parameter or, if device specifies a device name, with the device number CMS associates with that
name.

You must either specify a different device name or number or create one with the proper virtual device
number. The z/VM: CMS User's Guide explains this.

Return Code 6: Volume is write protected. This return code is only possible with the ERG and WTM
functions.

The volume was mounted in read only. If it is a cartridge, its write protect switch is activated. If it is a reel,
it doesn't have a write enable ring present.

Nothing has been written on the volume and its position has not changed.

To write on the volume, the real volume must be unloaded and an operator must write enable the volume
before loading it again.

Return Code 7: Device not a tape device. The device which has the device number given by the device
parameter or, if device specifies a device name, with the device number CMS associates with that name, is
not a tape device.

You must either specify a different device name or number or detach the attached device and create a
tape device instead with that virtual device number.

Return Code 9: Manual rewind/unload. Someone has previously rewound or unloaded the volume on
the real device associated with the virtual device by operating manual controls on the physical device. In
order to warn you of this, CMS has returned this return code to TAPECTL without attempting to perform
the requested function. The position of the volume has not been changed.

You get this warning once, so if you want to perform the operation, you can just repeat the TAPECTL call.

CMS gives you this warning because the volume upon which you intended to operate may not be mounted
now.

With older devices, you do not get this warning.

TAPECTL

Chapter 2. Preferred CMS Macro Instructions 417

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

TAPESL

label

1
TAPESL function

,TAP1

, device

,LABID=  labeldefid

,SPACE=YES

,SPACE=NO ,MODE= 3490C

3490B

XF

18

3590C

3590B

(,6250)

(,1600)

(,800)

COMP

NOCOMP

9

,BLKCNT=0

,BLKCNT=  blkcnt

,TM=YES

,TM=NO

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
The TAPESL macroinstruction processes IBM standard HDR1 and EOF1 labels without using DOS or
OS/MVS OPEN and CLOSE macroinstructions. It is used with RDTAPE, WRTAPE, and TAPECTL. TAPESL
processes only HDR1 and EOF1 labels. It does not process other labels such as standard user labels or
HDR2 labels. It does not perform any functions of opening a tape file other than label checking or writing.
The same macroinstruction is used both to check and to write tape labels.

TAPESL

418 z/VM: 7.3 CMS Macros and Functions Reference

You must issue a LABELDEF command separately to use TAPESL. Position the tape correctly (at the label
to be checked or at the place where the label is to be written) before you issue the macro. TAPECTL may
be used to position the tape. TAPESL reads or writes only one tape block unless SPACE=YES is specified.

Parameters
Required Parameters:
function

is one of the following:
HIN

checks input HDR1 label.
HOUT

writes HDR1 label.
EIN

checks input EOF1 label.
EOUT

writes output EOF1 label.
EVOUT

writes output EOV1 label.
LABID=labeldefid

identifies the LABELDEF command that is to be used with this label operation. This is a 1-to 8-
character name that you specify in the applicable LABELDEF command. (You must issue a LABELDEF
command specifying this labeldefid before the TAPESL macro expansion executes).

Optional Parameters:
label

is an optional assembler label for the statement.
device

specifies the device name (TAPn) or virtual device number (vdev) of the virtual tape device from which
the label is to be read or to which the label is to be written. The following values are valid; the see
z/VM: CMS User's Guide for information on tape device names and virtual device numbers for tape
devices.

Device Virtual
Name Number

Device Virtual
Name Number

TAP0 0180
TAP1 0181
TAP2 0182
TAP3 0183
TAP4 0184
TAP5 0185
TAP6 0186
TAP7 0187

TAP8 0288
TAP9 0289
TAPA 028A
TAPB 028B
TAPC 028C
TAPD 028D
TAPE 028E
TAPF 028F

If you omit the device parameter, CMS uses device TAP1.

(reg)
a register containing a pointer to a storage location that contains the device name or virtual device
number.

The following example shows how you might use the register form to identify the device:

 LA 2, MY181 Addr of device assignment
 TAPESL HOUT,(2),LABID=MYLABEL,ERROR=MYEMSG
 .

TAPESL

Chapter 2. Preferred CMS Macro Instructions 419

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

 .
 .
MY181 DC CL4'0181' vdev definition

SPACE=
controls the spacing for the HIN and EIN functions. Acceptable values are:
YES

requests that, after processing, CMS leave the tape positioned just past the tape mark at the end
of the label file. This is the default value.

NO
requests that CMS leave the tape positioned just after the block containing the label it processed.

MODE=
indicates a recording format. This is meaningful only if function is HOUT, EOUT, or EVOUT. Regardless
of whether CMS is attempting to write on the tape, the macro call will fail if the tape device is not
capable of writing the indicated recording format.

Note that this parameter has no effect if:

• The tape device is not positioned to the beginning of the volume.
• The recording format it specifies is not allowed to coexist on a volume with the recording format

that is recorded at the beginning of the volume. See z/VM: CMS User's Guide for details on selecting
recording formats.

Because of the these restrictions and the usual requirements of tape label positioning and format,
there is rarely any reason to code the MODE parameter.

Values are:
3490C

3490 Compacted recording format
3490B

3490 Basic recording format
XF

3480 Compacted recording format
18

3480 Basic recording format
3590C

3590 Compacted recording format
3590B

3590 Basic recording format
(,6250)

GCR recording format
(,1600)

PE recording format
(,800)

NRZI recording format
COMP

Any compacted recording format
NOCOMP

Any uncompacted recording format
9

Any 9 track recording format

TAPESL

420 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

For compatibility with previous levels of VM, the following values are also valid, but the above values
are preferred.
(,38K)

3480 Basic recording format
(18,38K)

3480 Basic recording format
(9,6250)

GCR recording format
(9,1600)

PE recording format
(9,800)

NRZI recording format

Note: The different syntax of this parameter is because of compatibility purposes.

If you omit the MODE parameter, CMS selects a recording format for you. CMS's choice may be the
result of a previous TAPE command, so you may use the TAPESL macro in conjunction with the TAPE
command to select tape recording formats. See z/VM: CMS User's Guide and the description of the
TAPE command in the z/VM: CMS Commands and Utilities Reference for details and examples.

BLKCNT=blkcnt
specifies the block count to be inserted in an EOF1 or EOV1 label on output or used to check against
on input. This field is used for functions EOUT, EIN, or EVOUT only. If not specified, the output block
count is set to 0. This field may also be specified as a register number enclosed within parentheses
when a general register contains the block count.

TM=
controls placement of tape marks on the tape. This parameter is meaningful only for the HOUT, EOUT,
and EVOUT functions.

The values are:

YES
requests that CMS place a single tape mark after a HDR1 or EOV1 label and two tape marks after
an EOF1 label, and leave the tape positioned after the tape marks. This is the default value.

NO
requests that CMS place no tape marks after the label and leave the tape positioned immediately
after the label.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

If you request the EIN function and a block count error is detected, control transfers to your error routine.
If you do not specify an error routine or the ERROR= address is the same as the normal return, a block
count error causes message 425R to be issued.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

TAPESL

Chapter 2. Preferred CMS Macro Instructions 421

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. The input functions HIN and EIN read a tape label and check to see if it is the type specified. They

also check any fields in the tape label that have been specified explicitly (no default) in the LABELDEF
statement (indicated by LABID). Any discrepancies between the fields in the LABELDEF statement and
the fields on the tape label cause an error message to be issued and an error return to be made.

2. The output functions HOUT, EOUT, and EVOUT write a tape label of the requested type on the specified
tape. The values of fields within the labels are those specified or defaulted to in the LABELDEF
command. For more information on the LABELDEF command, see z/VM: CMS Commands and Utilities
Reference.

3. For a more complete discussion of tape label processing, see z/VM: CMS Application Development
Guide for Assembler.

4. The 9346 tape cartridge can only be written to at load point and at logical end of tape.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
4

The tape has been manually rewound and unloaded (the requested tape function may not have been
executed).

24
The device value is not one of the valid values or it is valid, but the virtual device attached is not a tape
device.

28
LABELDEF cannot be found.

32
Error in checking tape label or block count error.

36
The output tape is file-protected.

39
Tape mount error.

40
End-of-file or end-of-tape occurred.

100
A tape I/O error occurred or the virtual tape device is not attached (does not exist) or the device is not
capable of writing in the recording format specified by the MODE parameter.

104
Virtual storage capacity exceeded.

TAPESL

422 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

TRANTBL

label

TRANTBL

Purpose
Use the TRANTBL macroinstruction to generate a DSECT for the system character set translation tables.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the TRANTBL macro expansion
is labeled TRANTBL.

Usage Notes
1. The address of the system character set translation table is located in the LANGTRTS field of the

LANGBLK control block for the application ID DMS. Use the LANGFIND function to locate the proper
LANGBLK.

For more information on LANGBLK control block, see “LANGBLK” on page 287.

For more information on LANGFIND function, see “LANGFIND” on page 449.
2. The TRANTBL macroinstruction expands as follows:

TRANTBL DSECT
TRANSTD DS CL256 Standard uppercase table
TRAST77 DS CL256 EBCDIC → 3277 Character Set
TRAST78 DS CL256 EBCDIC → 3278 Character Set
TRAAPL77 DS CL256 EBCDIC → 3277 APL Character Set
TRAAPL78 DS CL256 EBCDIC → 3278 APL Character Set
TRATXT77 DS CL256 EBCDIC → 3277 Text Character Set
TRATXT78 DS CL256 EBCDIC → 3278 Text Character Set
TRAPL7EC DS CL256 EBCDIC → 3277/APL Compound Chars
TRAPL7CE DS CL256 3277/APL Compound Chars → EBCDIC
TRAPL8EC DS CL256 EBCDIC → 3278/APL Compound Chars
TRAPL8CE DS CL256 3278/APL Compound Chars → EBCDIC

TRATX7EC DS CL256 EBCDIC → 3277/Text Compound Char
TRATX7CE DS CL256 3277/Text Compound Char → EBCDIC
TRATX8EC DS CL256 EBCDIC → 3278/Text Compound Char
TRATX8CE DS CL256 3278/Text Compound Char → EBCDIC
TRATX7ES DS CL256 EBCDIC → 3277/Text Single Char
TRATX7SE DS CL256 3277/Text Single Char → EBCDIC
TRAPL2EC DS CL256 EBCDIC → 3278/Extended APL(APL2®)
 Compound Character Set
TRAST78C DS CL256 EBCDIC -> CECP Character Set

TRANTBL

Chapter 2. Preferred CMS Macro Instructions 423

TVISECT

TVISECT

Purpose
Use the TVISECT macro to generate a DSECT for information to be passed to a nucleus extension module
named DMSTVI. This interface routine, DMSTVI, can be used to give control to a different multivolume
switching routine than the one supplied with z/VM (DMSTVS) or a tape management system.

Usage Notes
1. For more information on the TVISECT macro usage or the DMSTVI routine, see z/VM: CMS Application

Development Guide for Assembler.
2. The TVISECT macroinstruction expands as follows:

 MACRO
 TVISECT
*
* DSECT FOR THE PLIST PASSED TO DMSTVI
*
TVISECT DSECT
TVIMOD DS CL8'DMSTVI' MODULE NAME FOR SVC 202
TVIFUNCT DS CL8 CALL FUNCTION KEYWORD
* SYSPARM - CALL FOR SYSPARM
* PROCESSING
* OPEN - CALL FROM OPEN MACRO
* VOLIDBAD - TAPE / USER SPECIFIED
* VOLIDS DO NOT MATCH
* EOV - CALL FOR END OF VOLUME
* CLOSE - CALL FROM CLOSE MACRO
*
* THE FOLLOWING FIELDS WILL BE FILLED IN FROM INFORMATION THAT
* IS STORED IN THE LABSECT. REFER TO THE LABELDEF COMMAND FOR
* MORE INFORMATION ABOUT THESE FIELDS.
*
TVIFILE DS CL8 DDNAME
TVIFID DS CL17 FILE ID (RIGHTMOST 17 CHARACTERS)
TVISEC DS CL1 SECURITY TYPE
TVIVOLID DS CL6 VOLUME ID TO BE MOUNTED
TVIVSEQ DS CL4 VOLUME SEQUENCE NUMBER
TVIFSEQ DS CL4 FILE SEQUENCE NUMBER
TVIGENN DS CL4 GENERATION NUMBER
TVIGENV DS CL2 GENERATION VERSION
TVICRD DS CL6 CREATION DATE
TVIEXD DS CL6 EXPIRATION DATE
TVISYSPL DS H LENGTH OF SYSPARM STRING
TVISYSPA DS A ADDRESS OF SYSPARM STRING
TVIFILID DS CL44 FILE IDENTIFIER
TVISCRAT DS CL8'SCRATCH' SCRATCH | NOSCRATC
* SCRATCH WAS (OR WAS NOT)
* SPECIFIED AS THE LABELDEF VOLID
*
* THE FOLLOWING FIELDS WILL BE FILLED IN FROM INFORMATION
* THAT IS STORED IN THE FCBSECT (SUPPLIED BY THE FILEDEF
* COMMAND).
*
TVICUU DS CL4 VIRTUAL DEVICE NUMBER
* (TAP0 THROUGH TAPF)
* X'180' - X'187', X'288' - X'28F'
TVILABEL DS CL8 Filled with tape label type code
TVIRFMT DS X RECORDING FORMAT
TVIMODE EQU TVIRFMT,1,C'X' Old label for TVIRFMT
TVIALT DS CL4 ALTERNATE TAPE DRIVE TAPE ID
TVIRING DS CL6'RING' RING | NORING - WRITE ENABLE RING
TVIFLAGS DS X FLAG FOR TVI EXPANSION FIELDS
* BIT INDICATORS (MAY BE USED IN COMBINATIONS)
* X'00' NO EXPANSION DATA AVAILABLE
* X'80' DATA BEING PASSED FROM TAPE SUB-SYS

TVISECT

424 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

* X'40' - RESERVED -
* X'20' - RESERVED -
* X'10' - RESERVED -
* X'08' - RESERVED -
* X'04' - RESERVED -
* X'02' - RESERVED -
* X'01' EXPANSION DATA FIELDS AVAILABLE
TVIBLKCT DS F BLOCK COUNT
* ---
* -- EXPANSION DATA FIELDS ----------------------------------
*---
*
* THE FOLLOWING FIELDS WILL BE FILLED IN FROM INFORMATION
* THAT IS STORED IN THE APPLICATION PROGRAM DCB BLOCK AT
* "CLOSE" TIME TO BE MADE AVAILABLE TO THE TAPE SUBSYSTEM.
*
* IF THE TAPE SUBSYSTEM HAS THESE VALUES AVAILABLE WHEN THE
* DMSTVI "OPEN" CALL IS DONE, CMS WILL ACCEPT THESE VALUES
* AS RETURNED OUTPUTS FOR SUBSTITUTION INTO THE FCB (FILEDEF),
* IF THE USER HAS NOT ALREADY SPECIFIED THEM. THE FCB
* INFORMATION WILL THEN BE USED TO REPLACE ANY NON-SPECIFIED
* DCB ATTRIBUTES DURING THE CMS OPEN PROCESSING, JUST AS IS
* DONE FOR STANDARD LABEL TAPE PROCESSING.
*
*---
TVIRECFM DS X FILE RECORD FORMAT
* Basic record format bit definitions:
* X'80' = Fixed length records RECFM= F
* X'40' = Variable length records RECFM= V
* X'C0' = Undefined length records RECFM= U
* X'20' = ASCII Variable length records RECFM= D
* Modifiers which further define records:
* X'10' = Blocking being done
* X'08' = For Fixed records: Standard size blocks used
* For Variable recs: Spanned records used
* X'04' = ASA Control characters in use
* X'02' = Machine Control characters in use
* X'01' = Record Key length specified
TVILRECL DS F FILE LOGICAL RECORD LENGTH
TVIBLKSI DS F FILE BLOCK SIZE
* ---
TVIEND DS 0D END OF TVISECT
TVISIZE EQU (*-TVISECT+7)/8 SIZE OF TVISECT IN DOUBLEWORDS

3. The TVIFUNCT field identifies the function being processed when the call to DMSTVI is made. Possible
call function keywords are:

Table 23. TVIFUNCT keyword meanings

Keyword Meaning

SYSPARM call made during FILEDEF command processing, lets DMSTVI check the
SYSPARM string for syntax errors.

OPEN call made during OPEN macro processing before any tape I/O is performed,
lets DMSTVI mount a tape.

EOV call made during end of volume processing before volume switching occurs,
lets DMSTVI substitute another volume switching routine for the VM supplied
volume switching routine.

VOLIDBAD call made during OPEN macro or end of volume processing if the volid
specified by the user is different from the volid on the tape, lets DMSTVI
mount the correct tape.

CLOSE call made during CLOSE macro processing after all tape I/O is done, lets
DMSTVI do any necessary clean-up from OPEN macro processing.

4. TVISECT declares TVIMODE as a synonym for TVIRFMT because the field was called TVIMODE in
earlier releases of VM.

The TVIRFMT field shows the recording format being used for writes to the tape. Even if no writing
has been done to the tape, this field contains a valid recording format code. This code is determined

TVISECT

Chapter 2. Preferred CMS Macro Instructions 425

by recording format options on the relevant FILEDEF command, with defaulting (when the FILEDEF
command has not specified a specific recording format).

Table 24. TVIRFMT byte meanings

Format Name Hex Code (1) Density (BPI) Tracks

NRZI X'CB' 800 9

PE X'C3' 1600 9

GCR X'D3' 6250 9

3480 Basic X'10' (2) (2)

3480 Compacted X'60' (2) (2)

3490 Basic X'20' (2) (2)

3490 Compacted X'30' (2) (2)

Note:

a. Prior releases may use different codes for the TVIRFMT values than these detailed. See z/VM: Migration Guide.
b. For more details on tape formats, see z/VM: CMS User's Guide under the 'Tape Recording Formats' section.

TVISECT

426 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpf2_v7r3.pdf#nameddest=hcpf2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

USERSAVE

label

USERSAVE

Purpose
Use the USERSAVE macroinstruction to generate a DSECT for the USERSAVE control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the USERSAVE macro
expansion is labeled USERSAVE.

Usage Notes
1. For more information on the USERSAVE macro, see z/VM: CMS Application Development Guide for

Assembler.
2. The USERSAVE macroinstruction expands as follows:

 USERSAVE
USERSAVE DSECT
 DS 12D Reserved for the user.
USERSIZE EQU *-USERSAVE Size of area reserved for user.
USERINFO DS D Information passed to user.
 ORG USERINFO
USECTYP DS X Contains CALLTYP value.
USEUFLG DS X Contains UFLAGS value.
 DS 2X Reserved for IBM use.
USEMFLG DS X Miscellaneous bits.
USECMS EQU X'80' Invoked by CMSCALL.
USEA31 EQU X'40' Caller's AMODE is 31.
USESCBLK EQU X'20' SCBLOCK is available in R2.
USEPLIST EQU X'10' Extended PLIST available in R0,
* only valid if invoked by CMSCALL.
USEAR EQU X'08' Caller was in AR mode when CMSCALL
* issued.
 DS 3X Reserved for IBM use.
USERSAVL EQU (*-USERSAVE+7)/8 BLOCK LENGTH (DOUBLEWORD)

3. When a program receives control via SVC 202 or CMSCALL, R13 contains the address of the area
mapped by the USERSAVE macro.

USERSAVE

Chapter 2. Preferred CMS Macro Instructions 427

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

USERSECT

label

USERSECT

Purpose
Use the USERSECT macro to generate a DSECT for the USERSECT control block.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement. The first statement in the USERSECT macro
expansion is labeled USERSECT.

Usage Notes
1. The address of USERSECT is found in the AUSER field of the NUCON macroinstruction. For more

information, refer to macroinstruction “NUCON” on page 333.
2. The USERSECT macroinstruction expands as follows:

 USERSECT
USERSECT DSECT
*
* GENERAL SCRATCH-STORAGE AREA PROVIDED FOR USER DEFINED PURPOSES
* NOTE -- MAY BE REDEFINED FOR INSTALLATION REQUIREMENTS
*
USCRTCH DC 18F'0'

USERSECT

428 z/VM: 7.3 CMS Macros and Functions Reference

VOLSECT

VOLSECT

Purpose
Use the VOLSECT macroinstruction to generate a DSECT for additional user tape label information.

Usage Notes
1. VOLSECT is supported for use with the tape label processing routines. For more information, see z/VM:

CMS Application Development Guide for Assembler.
2. The VOLSECT control block holds up to 24 user-supplied volume IDs.
3. The first VOLSECT is forward pointed to by the LABVSECT pointer of the LABSECT macroinstruction,

see “LABSECT” on page 285 for more information.
4. The VOLSECT macro expands as follows:

 MACRO
 VOLSECT

*** VOLSECT - HOLDS ADDITIONAL USER SUPPLIED
*** VOLIDS. IF THE USER SUPPLIED MORE THAN 16 VOLIDS
*** STORAGE IS GOTTEN FOR A VOLSECT WHICH CAN HOLD 24 ADDITIONAL
*** VOLIDS. THE FIELD 'LABVSECT' IN LABSECT, POINTS TO THE FIRST
*** VOLSECT. ADDITIONAL VOLSECTS ARE FORWARD POINTED TO BY THE
*** FIELD 'VOLNSECT' CONTAINED IN THE 1ST 4 BYTES OF A VOLSECT.
 SPACE 1
VOLSECT DSECT
VOLNSECT DS A FORWARD CHAIN POINTER
VOLAVOLS DS CL192 SPACE FOR 24 ADDITIONAL VOLIDS
VOLEND DS XL4'FF' FENCE FOR END OF VOLIDS
VOLSIZE EQU (*-VOLSECT+7)/8 SIZE OF VOLSECT IN DOUBLE WORDS

VOLSECT

Chapter 2. Preferred CMS Macro Instructions 429

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

WAITD

label

WAITD

,

 devicen
,ERROR=*

,ERROR= addr

( reg)

Purpose
Use the WAITD macroinstruction to stop your program until the next interrupt occurs on the specified
device.

Parameters
Required Parameters:
devicen

specifies the devices to be waited for. Specify device as:
symn

indicates the symbolic device name and number, where:
sym

is CON, DSK, PRT, PUN, RDR, or TAP.
n

indicates a device number.
user

is a 4-character symbolic name specified by a HNDINT or HNDIO macroinstruction issued for the
same device.

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Usage Notes
1. The WAITD macroinstruction suspends program execution until the I/O interrupt for the specified

device is processed. When the interrupt has been processed, WAITD stores the name of the
interrupting device in register 1 and returns control to the caller.

2. If, for a specific device, you specify HNDIO or HNDINT with the ASAP option, the handler routine
processes the interrupt when it receives it. If a subsequent WAITD is issued for the same device, the
wait state is satisfied.

WAITD

430 z/VM: 7.3 CMS Macros and Functions Reference

3. If you specify HNDIO or HNDINT with the WAIT option, and an interrupt is received, issue WAITD for
the handler routine to receive control. (If you issue WAITD before the interrupt is received, the handler
processes the interrupt immediately.)

4. The interrupt handler created by HNDINT or HNDIO determines whether an interrupt is considered
processed or if more interrupts are necessary to satisfy the wait state. For more information on
interrupt handling, see z/VM: CMS Application Development Guide for Assembler.

Return Codes
If an error occurs, register 15 contains the following return code:
Code

Meaning
1

An invalid device number was specified.

WAITD

Chapter 2. Preferred CMS Macro Instructions 431

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

WAITECB

label

WAITECB
1

ECB = addr

1

count

, ECBLIST =  addr

, FORMAT = OS

, FORMAT = VSE

2

, MF = L

(L , addr

, mf_label

)

(E , addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the WAITECB macroinstruction to wait on an event control block (ECB) or a list of event control
blocks. Event control blocks are standard mechanisms used to synchronize multiple events. The process
of turning on the event complete bit is referred to as posting the event control block. Asynchronous
routines such as a timer or an external interrupt handler post event control blocks to signal completion.
The WAITECB macro suspends processing until a specific event control block or the event control blocks
in a list have been posted.

Parameters
Required Parameters:
ECB=addr

specifies the address of an event control block. It must be on a fullword boundary. Acceptable values
for addr are:
label

specifies the event control block address as a program label.
(reg)

specifies a register that contains the event control block address.
ECBLIST=addr

specifies the address of a virtual storage area containing one or more consecutive fullwords on a
fullword boundary. Each fullword contains the address of an event control block. Acceptable values
for addr are:
label

specifies the ECBLIST address as a program label.
(reg)

specifies a register that contains the ECBLIST address.

The end-of-list indicator has two forms: For FORMAT=OS, the high-order bit (bit 0) in the last fullword
must be set to 1. For FORMAT=VSE, the byte following the last fullword of the list must be nonzero.

WAITECB

432 z/VM: 7.3 CMS Macros and Functions Reference

Optional Parameters:
label

is an optional assembler label for the statement.
count

specifies the number of event control blocks to be posted before returning to the caller. Specify it as a
decimal number or a register (2-12) between parentheses. 1 is the default.

The count operand is valid with the ECBLIST form of the macro only. If you specify it with the ECB
parameter, an MNOTE error message is issued. If the count is negative or 0, this function results in a
no-op and the program proceeds to the next instruction.

Attention: If you specify a count larger than the number of event control blocks in the
ECBLIST, execution of WAITECB results in a permanent wait.

FORMAT
specifies the format of the event control block(s) used. Acceptable values are:
OS

specifies the OS-format event control block. The bit tested for event completed is byte 0 bit 1. This
is the default value.

VSE
specifies VSE-format event control block. The bit tested for event complete is byte 2 bit 0.

Note: If you specify ECBLIST, do not mix event control block formats.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. If you use ECBLIST to specify several event control blocks, CMS searches the event control blocks

sequentially to determine if they have been posted.
2. For FORMAT=VSE, the ECBs must reside below 16 MB.
3. You can use the HNDEXT macro to post event control blocks. For more information on external

interrupt handling, see z/VM: CMS Application Development Guide for Assembler.
4. The console event control block only applies to the terminal input buffer. No event control block is

associated with the program stack.
5. Event control blocks are fullwords and have the following OS or VSE format:

• OS Format

 bit 0 WAIT bit
 bit 1 Event completed bit
 bit 2-31 Completion code

• VSE Format

byte 0-1 Reserved
byte 2

WAITECB

Chapter 2. Preferred CMS Macro Instructions 433

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

 bit 0 Traffic bit
 bit 1-7 Reserved
byte 3 Reserved

6. Console I/O Wait

The CMS nucleus contains an event control block that makes it easier to wait for a console I/O in a
series of multiple events. This event control block is called CON1ECB and is defined in CMS system
storage. CON1ECB has two event completed bits. The format of CON1ECB is:

byte 0
 bit 0 Wait bit
 bit 1 Event completed bit number 1
 bit 2-7 Completion code
byte 1 Reserved
byte 2
 bit 0 Event completed bit number 2
 bit 1-7 Reserved
byte 3 Reserved

When the terminal input buffer contains a line, both event completed bits in the CON1ECB ECB are
posted.

To obtain the CON1ECB field in the CMS nucleus, obtain the device information for the console
from location ADEVTAB using the NUCON macroinstruction. CON1ECB is located at offset X'C' into
this information. For more information, see “NUCON” on page 333 for a description of the NUCON
macroinstruction.

7. CMS signals the VMCONINPUT event whenever it receives unsolicited attention interrupts from the
virtual machine console. It is a broadcast event with session scope and does not synchronize the
handling process. It contains no event data. The monitoring application should perform a read
operation to the console to obtain the input data. It has a loose signal limit of zero, so when an
event monitor is created for this event, previously signaled console input notifications will not be seen
by the corresponding event handler. See z/VM: CMS Application Multitasking for more information.

8. WAITECB serializes the virtual machine and may not be desirable for multitasking applications.
See z/VM: CMS Application Multitasking for more information on event handling in a multitasking
environment.

WAITECB

434 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3

WAITT

label

WAITT

Purpose
Use the WAITT macroinstruction to cause the program to wait until all of the pending terminal I/O
completes.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.

Usage Notes
1. The WAITT macroinstruction synchronizes input and output to the terminal; it ensures that any

pending I/O is cleared before the program continues execution. You can also use WAITT to make
sure that a read or write operation finishes before you issue another I/O operation.

2. For programs that are disabled, the WAITT macroinstruction may enable for interrupts. Use the
ENABLE macro to reset the previous interrupt mask if you want to return to a disabled state.

WAITT

Chapter 2. Preferred CMS Macro Instructions 435

WRTAPE

label

1
WRTAPE buffer , length

,TAP1

, device

,MODE= 3490C

3490B

XF

18

3590C

3590B

(,6250)

(,1600)

(,800)

COMP

NOCOMP

9

,TRAN=BUFF

,TRAN=IMMED

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the WRTAPE macroinstruction to write a block on the specified tape device.

Parameters
Required Parameters:
buffer

specifies the address of the buffer containing the block to be written. Acceptable values are:

WRTAPE

436 z/VM: 7.3 CMS Macros and Functions Reference

lineaddr
the symbolic address of the line.

(reg)
a register containing the address of the buffer.

length
specifies the length of the block to be written, and thus the length of the buffer that contains the
block. Acceptable values are:
n

a self-defining term indicating the length.
(reg)

a register containing the length.

Note: For a 9346 tape device, the length should be 32 KB or less.

Optional Parameters:
label

is an optional assembler label for the statement.
device

specifies the device name (TAPn) or virtual device number (vdev) of the virtual tape device from which
the block is to be read. The following values are valid; see z/VM: CMS User's Guide for information on
tape device names and virtual device numbers for tape devices.

Device Virtual
Name Number

Device Virtual
Name Number

TAP0 0180
TAP1 0181
TAP2 0182
TAP3 0183
TAP4 0184
TAP5 0185
TAP6 0186
TAP7 0187

TAP8 0288
TAP9 0289
TAPA 028A
TAPB 028B
TAPC 028C
TAPD 028D
TAPE 028E
TAPF 028F

If you omit the device parameter, CMS uses device TAP1.

(reg)
a register containing a pointer to a storage location that contains the device name or virtual device
number.

The following example shows how you might use the register form to identify the device:

 LA 2, MY181 Addr of device assignment
 WRTAPE OUTBUF,4096,(2),ERROR=MYEMSG
* Write block(4096 bytes)
 .
 .
 .
MY181 DC CL4'0181' vdev definition

MODE=
specifies the recording format. Note that this parameter has no effect if the tape device is not
positioned to the beginning of the volume and the recording format it specifies is not allowed to
coexist on a volume with the recording format that is recorded at the beginning of the volume. For
more information on selecting recording formats, see z/VM: CMS User's Guide .

Values are:

WRTAPE

Chapter 2. Preferred CMS Macro Instructions 437

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

3490C
3490 Compacted recording format

3490B
3490 Basic recording format

XF
3480 Compacted recording format

18
3480 Basic recording format

3590C
3590 Compacted recording format

3590B
3590 Basic recording format

(,6250)
GCR recording format

(,1600)
PE recording format

(,800)
NRZI recording format

COMP
Any compacted recording format

NOCOMP
Any uncompacted recording format

9
Any 9 track recording format

For compatibility with previous levels of VM, the following values are also valid, but the above values
are preferred.
(,38K)

3480 Basic recording format
(18,38K)

3480 Basic recording format
(9,6250)

GCR recording format
(9,1600)

PE recording format
(9,800)

NRZI recording format

Note: The different syntax of this parameter is because of compatibility purposes.

If you omit the MODE parameter, CMS selects a recording format for you. CMS's choice may be the
result of a previous TAPE command, so you may use the WRTAPE macro in conjunction with the TAPE
command to select tape recording formats. See z/VM: CMS User's Guide and the description of the
TAPE command in z/VM: CMS Commands and Utilities Reference for details and examples.

TRAN=
specifies the tape write mode, either buffered write mode (TRAN=BUFF) or immediate write mode
(TRAN=IMMED). Buffered write mode is available only with a buffered tape device, like most newer
tape devices. With a nonbuffered tape device, CMS ignores the TRAN parameter and always operates
in immediate write mode. With a buffered tape device, the write mode defaults to buffered and
specifying immediate write mode causes a severe performance degradation.
BUFF

specifies that the WRTAPE macroinstruction completes execution as soon as the data has been
transferred to the tape subsystem's buffer. If the data was successfully transferred to the buffer,

WRTAPE

438 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

the WRTAPE macroinstruction return code is 0. If the tape subsystem is unable to correctly write
the data onto the tape because of subsystem or media failure, this will result in an error indication
on a subsequent I/O request for the device.

You can use the REW, RUN, BSR, BSF, or WTM functions of the TAPECTL macroinstruction to
force a buffer synchronization. That is, the TAPECTL macro execution will not complete until
the tape subsystem has attempted to write all previously buffered write data onto the tape. If
the tape subsystem was unable to correctly write all of the data onto the tape, the TAPECTL
macroinstruction execution will complete with a return code of 3. If TAPECTL completes with
return code 0, all data from previous write requests has been successfully written onto the tape.

IMMED
specifies that execution is not completed until the subsystem has written the data on the tape and
verified it. If the tape subsystem is unable to correctly write the data onto the tape, the WRTAPE
return code is 3. If the WRTAPE return code is 0, the data was correctly written on the tape.

ERROR=
specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

Usage Notes
1. The maximum supported tape block length is recorded in NUCON field MAXTAPBS. If the value in this

field is 0, the maximum block length is 65,535 bytes.
2. The 9346 tape cartridge can only be written to at load point and at logical end of tape.

Return Codes
The return codes (found in register 15) from a WRTAPE call are listed below. Detailed explanations of
them follow.
Code

Meaning
0

The WRTAPE call executed normally.

WRTAPE

Chapter 2. Preferred CMS Macro Instructions 439

1
Invalid parameter or the specified device is incapable of writing in the specified format.

2
In End of Volume area.

3
I/O error.

4
Invalid device value.

5
Virtual tape device not attached (device does not exist).

6
Volume is write protected.

7
Specified device is not a tape device.

8
Block too big.

9
Manual rewind/unload of tape.

Return Code 0: WRTAPE executed normally. A block has been successfully written. The volume is
positioned just after it. If the device is a buffered device and you are using TRAN=BUFF, the block may not
be physically on the medium yet (it may be in the device's internal buffer instead).

The volume is not positioned in the End of Volume area. If it were, you would get return code 2 instead.

Return Code 1: Invalid parameter or bad format. One of the following is true of the WRTAPE call:

• One of the parameter values is not valid.
• The parameter values are not compatible with each other.
• The MODE parameter indicates a recording format which the device (identified by the device parameter)

is not capable of writing.

For the invalid parameter cases, the WRTAPE invocation needs to be corrected. For the recording format
incapable case, you can either specify a different recording format, specify a different device, or attach
a different device. It may be better to specify a nonspecific recording format (like MODE=COMP or omit
MODE completely), so that CMS chooses a recording format that the device can write. See z/VM: CMS
User's Guide for information on recording formats and device capabilities.

Return Code 2: In End of Volume area. This is the same as return code 0 except that the volume is
positioned in the End of Volume area as a result of writing the block. This gives you early warning that you
are about to run out of tape. If you keep writing, the write will eventually fail when you are out of tape. See
return code 3.

Return Code 3: I/O error. The device was unable to write a block for many reasons. Following is a list
of some of these reasons. You should not consider any data to have been recorded on the medium or
that anything you are trying to write over is still on the medium. You should not assume any particular
positioning of the device.

• The device or channel has detected an internal malfunction in the device or channel.
• There is a defect on the recording medium.
• The tape reel or cartridge is damaged.
• There is no room left on the volume for the block. Note that CMS gives you warning through return code

2 when you are running out of space on the volume.
• The device is a buffered device and the device has been unable to write buffered data on the physical

medium. CMS does not provide a way through a General Programming Interface to determine which
block had the problem, because there could be many of them buffered. The block with the problem and

WRTAPE

440 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

every one after it that is now in the buffer will be thrown away and the device remains positioned just
after the last correctly written block.

• The tape cartridge contains a length of tape that the device cannot properly handle, so the device is
preventing you from writing on it. The position of the volume has not changed. Another device may
be able to write the block. Otherwise, you can copy the data on the cartridge to a cartridge which the
device can handle. Note that the same device may allow you to read the tape even though it will not
write it. You take a risk of damaging the device or the medium by reading it, but the device allows it to
give you a chance of recovering your data.

• The device is in a Volume Fenced condition. This is a condition which arises for reasons in which the
device will not perform most operations on the volume. You can undo this condition by unloading the
device; other times by rewinding the device. You can do either of these with the TAPE command or
TAPECTL macroinstruction.

• The virtual device is a shareable one (see z/VM: CMS User's Guide). CMS does not support shareable
devices and the failure of WRTAPE in this way is just one of the possible effects.

Return Code 4: Invalid device value. The value of the device parameter is not one of the valid ones listed
for it. CMS cannot tell to what device to write. The WRTAPE invocation must be corrected.

Return Code 5: Device not attached. No virtual device exists with the virtual device number given by the
device parameter or, if device specifies a device name, with the device number CMS associates with that
name.

You must either specify a different device name or number or create one with the proper virtual device
number. The z/VM: CMS User's Guide explains this.

Return Code 6: Volume is write protected. The volume was mounted in read only. If it is a cartridge, its
write protect switch is activated. If it is a reel, it doesn't have a write enable ring present.

Nothing has been written on the volume and its position has not changed.

To write on the volume, the real volume must be unloaded and an operator must write enable the volume
before loading it again.

Return Code 7: Device is not a tape device. The device which has the device number given by the device
parameter or, if device specifies a device name, with the device number CMS associates with that name, is
not a tape device.

You must either specify a different device name or number or detach the attached device and create a
tape device instead with that virtual device number.

Return Code 8: Block too big. The block you are attempting to write is too big for the device to handle. A
different device may be able to write it.

Return Code 9: Manual rewind/unload. Someone has previously rewound or unloaded the volume on
the real device associated with the virtual device by operating manual controls on the physical device.
In order to warn you of this, CMS has returned this return code to WRTAPE without attempting to write
anything.

You get this warning once, so if you want to write the block, you can just repeat the WRTAPE call.

CMS gives you this warning because the volume on which you intended to write may not be mounted now.

With older devices, you do not get this warning.

WRTAPE

Chapter 2. Preferred CMS Macro Instructions 441

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3

WUERROR

WUERROR

Purpose
Use the WUERROR macroinstruction to map the work unit extended error information returned in the
wuerror parameter of callable services library (CSL) routines.

Usage Notes
1. The information in the WUERROR and FPERROR buffers can also be accessed as individual variables by

using the CSL routine DMSWUERR (SFS WUERROR Deblocker). This routine is described in z/VM: CMS
Callable Services Reference.

2. The WUE... fields are filled in by CMS on a call to a shared file system (SFS) CSL routine when the
wuerror parameter is used.

3. To receive all of the extended error information on a request, provide an area where the length of the
wuerror buffer is:

12 + (N * length of FPERROR)

where N is the number of file pools connected to under the work unit used for the request. If namedefs
are used, add to N the number of namedefs defined for directories. The maximum for N is the number
of file pools connected to under the work unit, plus the number of namedefs defined for directories
(this may result in more space being allocated than is actually needed if more than one namedef is for
the same file pool).

4. The WUERROR macroinstruction expands as follows:

The following describes what the Work Unit Extended Error Information
area contains.

WUELEN DS F Length of WUERROR buffer
WUERTNED DS F Number of FP Error Info areas returned
WUETOTAL DS F Total number of FP Error Info areas from SFS
WUEAREA EQU * Area to put FPERROR data

WUERROR

442 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3

Chapter 3. CMS Preferred Functions

This chapter describes the formats of the preferred CMS assembler language functions. All of the
functions in this chapter are capable of supporting 31-bit addressing and run in ESA, XA, and XC virtual
machines.

To execute CMS functions from application programs, set up a parameter list and then issue the CMSCALL
macroinstruction.

The following CMS functions are described in this section:

• DISKID
• DMSSEQ
• LANGADD
• LANGFIND.

© Copyright IBM Corp. 1991, 2025 443

DISKID

Purpose
Use the DISKID function to obtain information on the physical organization of a reserved minidisk. The
DISKID function obtains the virtual device number, the block size, and the offset of the minidisk.

A disk does not have to be accessed when you use the DISKID function.

You need this information to use the CP DASD Block I/O System Service with a CMS formatted minidisk
that was reserved.

You can use CMSCALL with the following parameter list to execute DISKID from an assembler language
program:

PLIST DS 0D
 DC CL8'DISKID'
 DC CL8'ddname' ddname for the minidisk
 DS XL2 Virtual device number
 DS H Blocksize
 DS F Offset
 DS D Reserved

Usage Notes

1. The parameter list must begin on a doubleword boundary.
2. The program calling the DISKID function fills the first two doublewords of the parameter list.
3. The second doubleword contains the ddname specified in the FILEDEF command issued for the Block

I/O disk.
4. The third doubleword is filled upon completion of the DISKID function. It contains:

• The virtual device number of the minidisk for which a ddname exists
• The block size of the minidisk
• The offset of the minidisk. This offset associates a physical block number to the first data block of

the unique file on disk that was previously reserved. The block number represents the number of
sequential blocks used on the disk by the CMS file system to implement its structure. Data block
number one for the file is then physical block number one plus offset.

Return Codes
On return from DISKID, register 15 contains one of the following codes:
Code

Meaning
 0

Return information supplied in parameter list.
 4

The function was called from a terminal or EXEC.
 12

DASD not reserved with the RESERVE command.
 28

ddname not defined or ddname not given a file definition to DISK vdev.

DISKID

444 z/VM: 7.3 CMS Macros and Functions Reference

100
Disk not attached.

1xx
An I/O error occurred reading the volume label; xx = the return code from CP DIAGNOSE code X'A8'.

2xx
An I/O error occurred reading the volume label; xx = the return code from CP DIAGNOSE code X'20'.

DISKID

Chapter 3. CMS Preferred Functions 445

DMSSEQ

Purpose
Use the DMSSEQ function to count the number of logical lines in the terminal input buffer. The number is
returned as the return code of the call in register 15.

You can use the CMSCALL macro with the following parameter list to run DMSSEQ from a program:

 DS 0D
 DC CL8'DMSSEQ'
 DC FL8'-1'

Usage Notes

1. DMSSEQ does not issue any error messages.

Return Codes
On return from DMSSEQ, register 15 contains the number of logical lines in the terminal input buffer.

DMSSEQ

446 z/VM: 7.3 CMS Macros and Functions Reference

LANGADD

Purpose
Use the LANGADD function to add a LANGBLK to the language block chain.

LANGADD does this by:

1. Making a copy of the LANGBLK pointed to in the parameter list.
2. Adding the copy to the language block chain of LANGBLKs (if a LANGBLK for the application is not

already on the chain).

This allows an application to have one language as part of its nucleus just as CMS does.

You can use CMSCALL with the following parameter list to execute LANGADD from a program:

DS OF
DC CL8'LANGADD'
DC A(addr of LANGBLK)
DS A addr of active LANGBLK
DC 8X'FF'

Usage Notes
1. Upon return, the fourth fullword of the parameter list contains the address of the active LANGBLK.
2. The SET LANGUAGE command is unable to restore the information in the LANGBLK if another language

is set and the original language is restored. The application must request LANGADD to add the
LANGBLK again.

3. The SET LANGUAGE command is used for:

• user repository and tables
• system tables and referencing in an NLS segment.

4. For more information on using other national languages supported by VM and on installing a different
system national language, see z/VM: Installation Guide.

5. Prior to using the LANGADD function, the following LANGBLK field definition is required:

• LANGAPID-3 character application ID

The following LANGBLK field definitions are set as required if the application wants to use its own:

• LANGMSG-system message repository
• LANGSPA-system parser table
• LANGSSY-system synonym and abbreviation table
• LANGTRTS-NLS translation table
• LANGDISK-application HELP disk address.

Set all fields that are not being used to binary zero.

Return Codes
On return, register 15 contains one of the following return codes:
Code

Meaning
0

The function was successfully completed.
24

A LANGBLK for the application is already on the language block chain.

LANGADD

Chapter 3. CMS Preferred Functions 447

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa2_v7r3.pdf#nameddest=hcpa2_v7r3

104
Insufficient storage is available.

LANGADD

448 z/VM: 7.3 CMS Macros and Functions Reference

LANGFIND

Purpose
Use the LANGFIND function to get the address of an application's language control block.

Each application may have a language control block (LANGBLK) which contains pointers to all language-
related information. LANGFIND lets you locate the LANGBLK for a specific application by using the
3-character application ID. For the purpose of fullword alignment, the application ID is defined as 4
characters (the fourth character is ignored).

You can use CMSCALL with the following parameter list to execute LANGFIND from a program:

DS OF
DC CL8'LANGFIND'
DC CL4'xxx' 3 character application id
DS A addr of LANGBLK
DC 8X'FF'

Upon return, the 4 bytes following the application ID contain:

• The address of the LANGBLK, if the application ID requested was found
• Zero, if no LANGBLK contained the application ID that was requested.

LANGFIND

Chapter 3. CMS Preferred Functions 449

LANGFIND

450 z/VM: 7.3 CMS Macros and Functions Reference

Part 2. Compatibility Programming Interface

This section defines the macros and functions CMS supports for compatibility only. The following chapters
describe these macros and functions, which make up the CMS compatibility programming interface:

• Chapter 4, “CMS Compatibility Macros,” on page 453 describes the CMS macros in the CMS
compatibility interface group.

• Chapter 5, “CMS Compatibility Functions,” on page 493 describes the CMS functions that are
considered part of the compatibility interface group.

© Copyright IBM Corp. 1991, 2025 451

452 z/VM: 7.3 CMS Macros and Functions Reference

Chapter 4. CMS Compatibility Macros

This chapter describes the macros CMS supports for compatibility only.

The macros in the CMS compatibility group do not support 31-bit addressing. Existing programs can
continue to use the macros in programs that do not support 31-bit addressing. IBM does not recommend
the use of the compatibility group macros in new programs.

The CMS compatibility group macros described in this section are:

• CMSCB
• DISPW
• DMSEXS
• DMSFREE
• DMSFRES
• DMSFRET
• DMSKEY
• IO
• LINEDIT
• RDTERM
• STRINIT
• TEOVEXIT
• WRTERM.

© Copyright IBM Corp. 1991, 2025 453

CMSCB

CMSCB

Purpose
The CMSCB Macro maps the FCBSECT and IHADECB DSECTs.

FCBSECT consists of the CMS file control block (FCB) used for file management under CMS, the simulated
OS job file control block (JFCB), input/output block (IOB), and data extent block (DEB). FCBSECT is
dynamically allocated from CMS free storage each time the FILEDEF command is issued.

Usage Notes
1. This macro is contained in DMSOM MACLIB. The CMSCB and IO macros map internal CMS data

areas and are used with the TEOVEXIT macro and FILEDEF AUXPROC facility to monitor or modify
I/O operations in CMS. For more information on FILEDEF AUXPROC, see the z/VM: CMS Application
Development Guide for Assembler.

2. The CMSCB macroinstruction maps the FCBSECT DSECT as follows:

*
* SIMULATED OS CONTROL BLOCKS
*
FCBSECT DSECT
FCBINIT DS 0X - INTERESTING TIDBITS
FCBOPCB EQU X'08' - OPEN ACQUIRED THIS CMS BLOCK
FCBPERM EQU X'04' - PERMANENT CONTROL BLOCK
FCBBATCH EQU X'02' - SPECIAL BATCH DATA SET
FCBCATML EQU X'01' - CONCATENATED MACLIB DATA SET
FCBOS EQU X'10' FCB FOR OS FORMATTED DISK
FCBDOSL EQU X'20' CONCATENATED DOSLIB DATA SET
FCBCATLD EQU X'40' CONCATENATED OS LOADLIB
FCBDID EQU X'80' ASSOCIATE DDNAME WITH ENTIRE
* DISK FOR DISKID USAGE
FCBNEXT DS A - AL3(NEXT CMSCB)
FCBPROC DS A - A(SPECIAL PROCESSING ROUTINE)
FCBDD DS CL8 - DATA DEFINITION NAME
FCBOP DS CL8 - CMS OPERATION
IHAJFCB DS 0D - *** JOB FILE CONTROL BLOCK ***
JFCBDSNM DS 0X - 44 BYTES, DATA SET NAME
FCBDSNAM DS CL8 - DATA SET NAME
FCBDSTYP DS CL8 - DATA SET TYPE
FCBPRPU EQU FCBDSTYP+4 - PRINTER/PUNCH COMMAND LIST
FCBTBSP DS 0X 2 BYTES, TAPE BACKSPCE COUNT
FCBDSMD DS CL2 - DATA SET MODE
FCBDSMDC DS CL2 - Saved concat data set mode
FCBBUFF DS F - A(INPUT-OUTPUT BUFFER)
FCBBYTE DS F - DATA COUNT
FCBFORM DS CL1 - FILE FORMAT: FIXED/VARIABLE RECS
FCBFLG DS X - =FSCBFLG flag byte for extended plist bit
FCBFLG2 DS X - =FSCBFLG2 extended plist flag byte
FCBOTYP DS X - OPEN intent (R,W,X,N)
FCBREAD DS F - N'BYTES ACTUALLY READ
FCBITEM DS F - EXTENDED PLIST ITEM COUNT.
FCBCOUT DS F - EX. PLIST RECORDS / PHYSICAL BLK.
FCBWPTR DS F - EXTENDED PLIST WRITE PTR.
FCBRPTR DS F - EXTENDED PLIST READ PTR.
FCBDEV DS X - DEVICE TYPE CODE
FCBDUM EQU 0 - DUMMY DEVICE
FCBPTR EQU 4 - PRINTER
FCBRDR EQU 8 - READER
FCBCON EQU 12 - CONSOLE TERMINAL
FCBTAP EQU 16 - TAPE
FCBDSK EQU 20 - DISK
FCBPCH EQU 24 - PUNCH
FCBCRT EQU 28 - CRT
FCBVSAM EQU 32 - VSAM
FCBRFMT DS X - --> Working Recording Format

CMSCB

454 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

* FCBRFMT is defined for a tape file only. It is a TAPEIO
* recording format code denoting the recording format in
* effect with the file. While no file is open, it simply
* reflects the recording format request from the FILEDEF,
* which may be a nonspecific recording format code. While
* a file is open, though, it is always a specific recording
* format code -- the one indicated by the FILEDEF
* specification in conjunction with the capabilities of the
* device. See also FCBOFMT.
*
FCBOFMT DS X --> Original Recording Format
* FBCOFMT is defined only for a tape file. It is set by
* DMSFLO when the Filedef command is issued and should NEVER
* be changed anywhere else. This means that we can ALWAYS
* restore the original recording format after it has been
* changed. When the tape file is not open, FCBRFMT=FCBOFMT
* unless an Open error occurred, in which case the value of
* FCBRFMT is unpredictable.
*
 DS X - RESERVED
FCBRECL DS H - DCB LRECL AT OPEN TIME
IOBIOFLG DS X - I/O FLAGS
FCBDCBCT DS X - NO. OF DCB'S USING THIS FCB
FCBR13 DS F - SAVEAREA VECTOR R13
FCBKEYS DS A - A(DDS IN'CORE KEY TABLE)
FCBPDS DS A - A(PDS IN-CORE DIRECTORY)
JFCBMASK DS 8X - VARIOUS MASK BITS
JFCBCRDT DS 3C - DATA SET CREATION DATE (YDD)
JFCBXPDT DS 3C - DATA SET EXPIRATION DATE (YDD)
JFCBIND1 DS X - INDICATOR ONE
JFCBIND2 DS X - INDICATOR TWO
JFCMOD EQU X'80' - DISP MOD specified on FILEDEF
* command.
JFCOLD EQU X'40' - DISP OLD specified on FILEDEF
* command.
JFCLIBSV EQU X'04' - Lib Dataserver usage noted by
* OPEN.
JFCEXTND EQU X'02' - EXTEND specified on OPEN macro
* (This flag is used only for the
* duration of OPEN processing -
* CMS usage differs from OS/MVS)
JFCM4FLG EQU X'01' - This is a filemode number 4
* file (CMS usage differs from
* OS/MVS)
JFCBUFNO DS X - NUMBER OF BUFFERS
JFCBFTEK DS 0X - BUFFERING TECHNIQUE
JFCBFALN DS X - BUFFER ALIGNMENT
JFCBUFL DS H - BUFFER LENGTH
JFCEROPT DS X - ERROR OPTION
JFCKEYLE DS X - KEYLENGTH
 DS X - ---NOT USED---
JFCLIMCT DS 3X - BDAM SEARCH LIMIT
FCBDSORG DS 0X - DATA SET ORGANIZATION
JFCDSORG DS 2X -
FCBRECFM DS 0X - RECORD FORMAT
JFCRECFM DS X -
JFCOPTCD DS X - OPTION CODES
FCBBLKSZ DS 0H - BLOCK SIZE
JFCBLKSI DS H -
FCBLRECL DS 0H - LOGICAL RECORD LENGTH
JFCLRECL DS H -
FCBIOSW DS X - I/O OPERATION INDICATOR
FCBCLOSE EQU X'80' - DURING "CLOSE"
FCBMASTR EQU X'40' - Master FCB for Concatenation
FCBPROCC EQU X'20' - GOTO FCBPROC DURING CLOSE
FCBPROCO EQU X'10' - GOTO FCBPROC DURING OPEN
FCBCASE EQU X'08' - ON=LOWER CASE CONSOLE I/O
FCBPVMB EQU X'04' - PUT-MOVE-VAR-BLK
FCBIOWR EQU X'02' - WRITE/PUT
FCBIORD EQU X'01' - READ/GET
FCBIOSW2 DS 1X - I/O OPERATION INDICATORS
FCBMVPDS EQU X'01' - SW FOR MOVEFILE WITH PDS OPTION
FCBMMV EQU X'02' MOVE PDS SWITCH FOR FIND
FCBBYSVC EQU X'04' The function currently in control
* was invoked via SVC. Used by
* routines that are called during
* FEOV processing.
FCBMVFIL EQU X'08' Movefile is active
FCBCLEAV EQU X'10' - LEAVE positioning on Close
FCBCRERD EQU X'20' - REREAD positioning on Close
FCBTCLOS EQU X'40' A CLOSE TYPE T was done
FCBWRTSW EQU X'80' INDICATE DCB OPEN FOR WRITE

CMSCB

Chapter 4. CMS Compatibility Macros 455

DEBLNGTH DS 0X - L'DEB IN DBLW WORDS
 DS F - ---NOT USED---
IHADEB DS 0D - *** DATA EXTENT BLOCK ***
DEBTCBAD DS A - A(MOVE-MODE USER BUFFER)
SEBSAV DS F DYNAMIC SAVE FOR RET ADDR FOR
* SEB (OS I/O SIM)
DEBOFLGS DS 4X - DATA SET STAUS FLAGS
DEBOPATB DS 4X - OPEN/CLOSE OPTION BYTE
IOBFLG DS 0X - (START OF IOBPREFIX FOR NORMAL SCH)
IOBBFLG EQU 0 - DISPLACEMENT OF IOB FLAG IN IOB
IOBOUT EQU X'40' - "WRITE,PUT" IN PROGRESS
IOBIN EQU X'20' - "READ,GET" IN PROGRESS
IOBUPD EQU X'10' - "QSAM PUTX" IN PROCESS
IOBNXTAD DS A - A(NEXT BUFFER TO BE USED)
IOBECB DS F - ECB FOR QSAM NORMAL SCHEDULING
IHAIOB DS 0F - *** INPUT/OUTPUT BLOCK ***
DEBDEBID DS 0X - DEB IDENTIFICATION
DEBDCBAD DS A - A(DATA CONTROL BLOCK)
IOBECBCC DS 0X - ECB COMPLETION CODE
IOBBECBC EQU 12 - DISPLACEMENT OF ECB CODE IN IOB
IOBBECBP EQU 12 - DISPLACEMENT OF ECB PTR IN IOB
IOBECBPT DS A - A(EVENT CONTROL BLOCK)
IOBFLAG3 DS 0X - I/O ERROR FLAG
IOBBCSW EQU 16 - DISPLACEMENT OF CSW IN IOB
IOBCSW DS 8X - LAST CCW STORED(I.E., RESIDUAL COUNT)
IOBSTART DS A - X'ID-NEXT BUFFER',AL3(INITIAL BUFFER)
IOBDCBPT DS A - A(DATA CONTROL BLOCK)
IOBEND DS 0X - END-OF-INPUT/OUTPUT BLOCK
FCBMEMBR DS 2F OS PDS MEMBER NAME
FCBOSFST DS F POINTER TO OS FST
FCBOSDSN DS F POINTER TO OS DSNAME BLOCK
FCBXTENT DS F - NUMBER OF ITEMS IN EXTENT
FCBTEOV DS A - ADDRESS OF TEOVEXIT ROUTINE.
FCBTSAVE DS A - ADDRESS OF SYSTEM REGISTER
* SAVE AREA FOR TEOVEXIT.
FCBFLAG1 DS 1X - MISC. FLAG BITS.
FCBTEOVS EQU X'80' TAPE END-OF-VOLUME EXIT AVAILABLE
FCBTEOVA EQU X'40' TEOV EXIT IS ACTIVE.
FCBMVOL EQU X'20' PROCESSING MULTIVOLUME FILE
FCBVSECT EQU X'10' PROCESSING VOLIDS FROM A VOLSECT
FCBMTCAN EQU X'08' TAPE MOUNT CANCELED FROM DMSTVS
* Bits used for SFS directory-resident files:
FCBSPCHK EQU X'04' FSWRITE tracks file's SFS filespace usage
FCBDIR EQU X'02' this file is on an SFS directory
FCBERASE EQU X'01' erase file when it is closed: this flag is
* used ONLY for SFS directory files
FCBVCTR DS 1X - VOLID COUNTER
* The following field has two uses:
* It used as the volume sequence number for tape
* and as the original blocksize saved by DMSSOP for Console
FCBVSEQ DS H'0' TAPE VOLUME SEQUENCE NUMBER
FCBCNBLK EQU FCBVSEQ Console Original Blocksize
FCBALT DS F ALTERNATE TAPE DRIVE TAPID
* Or temp save of fcbosfst for dmssop
FCBTVIPL DS A DMSTVI PLIST ADDRESS
FCBSYSPA DS A SYSPARM STRING ADDRESS
FCBSYSPL DS H'0' SYSPARM STRING LENGTH (DWORDS)
FCBSYSPB DS H'0' SYSPARM STRING LENGTH (BYTES)
FCBDISP EQU IHADEB-FCBINIT Displacement of FCB address
FCBFLAG3 DS 1X -
FCBFMAST EQU X'80' FCB filemode was asterisk
FCBUSASI EQU X'40' Buffer Offset Flag bit for ANSI
* DMSSOP will define an FCB for any required global library
* if the user has not defined one. When the DCB is closed
* DMSOSC checks this flag to decide whether to clear the FCB
FCBSCLR EQU X'20' Do Filedef SCLEAR for this DDNAME
FCBLIBSV EQU X'10' Use RMS to call Tape Library Dataserver
FCBOSSIM EQU X'01' File needs true OS Sim limits
*
FCBBUFOF DS 1X - BUFFER OFFSET (0-99) FOR ANSI
FCBRSRV1 DS 1X RESERVED for future use
FCBLBOM DS 1X Saved first char of dataset name
FCBVCOUT DS F Number of variable length records
* read into a block by QSAM
FCBFLAG4 DS 1X -
FCBTXTL EQU X'80' CONCATENATED TXTLIB DATA SET
FCBLRI EQU X'40' Logical Record Interface used
FCBBADDN EQU X'20' Fileid matches, DDN doesn't
* EQU X'10' RESERVED for future use
FCBDRFMT EQU X'08' Default RECFM filled in by OPEN
FCBDLREC EQU X'04' Default LRECL filled in by OPEN
FCBDBLKZ EQU X'02' Default BLKSZ filled in by OPEN

CMSCB

456 z/VM: 7.3 CMS Macros and Functions Reference

FCBDBUFO EQU X'01' Default BUFOF filled in by OPEN
FCBRSRV2 DS 3X RESERVED for future use
*
FCBAIC DS F Number input recs in FST at OPEN
FCBPRIME DS CL4 PRIME TAPE ID ENTERED AT FILEDEF
FCBNEXTC DS A Address of the next FCB in the
* concatenation, or zero if none
FCBFSEQ DS H Tape File Sequence counter
 DS H Reserved for future use
FCBFWVAL DS F Fullword work field
FCBEND DS 0D - END-OF FCB,JFCB,DEB,IOB BLOCKS
FCBENSIZ EQU (*-FCBSECT)/8 - SIZE OF FCB ENTRY, DOUBLEWORDS
* SPECIAL FIELDS FOR TAPE FILES ONLY ...
 ORG FCBDSNAM
FCBTAPID DS CL4 TAPE IDENTIFICATION
FCBLABT DS 1X TAPE LABEL TYPE
FCBOFF EQU X'00' NO LABEL PROCESSING AT ALL
FCBBLP EQU X'01' BYPASS LABELS - JUST POSITION TAPE
FCBSL EQU X'02' IBM STANDARD LABELS
FCBUSER EQU X'04' USER STANDARD LABELS
FCBSUL EQU FCBSL+FCBUSER IBM AND USER STANDARD LABELS
FCBNSL EQU X'08' NONSTANDARD USER LABELS
FCBNSLMD EQU X'10' NSL ROUTINE IS A MODULE
FCBNL EQU X'20' NO LABELS
FCBAL EQU X'40' ANSI LABELS
FCBAUL EQU FCBAL+FCBUSER ANSI AND USER STANDARD LABELS
FCBTPSW DS 1X TAPE SWITCH
FCBLEAVE EQU X'80' DO NOT REPOSITION TAPE FOR OPEN
FCBNOEOV EQU X'40' DO NOT DO ANY EOV PROCESSING AT ALL
FCBFVLEV EQU X'20' LEAVE specified on FEOV macro
FCBFVREW EQU X'10' REWIND specified on FEOV macro
FCBFEOV EQU X'08' FEOV was issued on the current
* tape volume. This flag is set
* on during FEOV and turned off
* either at CLOSE time or when a
* new tape volume is mounted.
FCBKEEP EQU X'04' DISP KEEP specified in Filedef
* X'02' Reserved
FCBPOS DS 1H POSITION PARAMETER
FCBNSLNM DS CL8 NSL ROUTINE NAME
 ORG FCBMEMBR
FCBLABPT DS A POINTER TO LABSECT
FCBBLKCT DS 1F BLOCK COUNT FOR TAPE FILE
 ORG FCBDSTYP+4
FCBIOOUT DS CL8 - SPECIAL I/O COMMAND LIST
FCBIOBUF DS A - A(DATA BUFFER)
FCBCONCR DS C - CONSOLE COLOR CODE
FCBCONMS DS X - CONSOLE MISCELLANEOUS INFO
FCBIOCNT DS H - L'DATA BUFFER
*
* DATA EVENT CONTROL BLOCK
*
IHADECB DSECT
DECSDECB DS F - EVENT CONTROL BLOCK
DECTYPE DS H - TYPE OF I/O REQUEST
DECBRD EQU X'80' - READ SF
DECBWR EQU X'20' - WRITE SF
DECLNGTH DS H - LENGTH OF KEY & DATA
DECDCBAD DS A - V(DATA CONTROL BLOCK)
DECAREA DS A - V(KEY & DATA, BUFFER)
DECIOBPT DS A - V(IOB)
* BDAM EXTENSION
DECKYADR DS A - V(KEY)
DECRECPT DS A - V(BLOCK REFERENCE FIELD)
*
* SOME FREQUENTLY USED EQUATES
*
DDNAM EQU FCBDSTYP - FILETYPE = DATA SET NAME
BLK EQU X'10' - RECFM=BLOCKED RECORDS
BS EQU X'20' - MACRF=BSAM
DA EQU X'20' - DSORG=DIRECT ACCESS
FXD EQU X'80' - RECFM=FIXED LENGTH RECORDS
IS EQU X'80' - DSORG=INDEXED SEQUENTIAL
LOC EQU X'08' - MACRF=LOCATE MODE
MOV EQU X'10' - MACRF=MOVE MODE
PS EQU X'40' - DSORG=PHYSICAL SEQUENTIAL
POU EQU X'03' - DSORG=PARTITIONED UNMOVEABLE
PO EQU X'02' - DSORG=PARTIONED ORGANIZATION
PREVIOUS EQU X'80' - OFLGS=PREVIOUS I/O OPERATION
QS EQU X'40' - MACRF=QSAM
UND EQU X'C0' - RECFM=UNDEFIN FORMAT RECORDS
VAR EQU X'40' - RECFM=VARIABLE LENGTH RECORDS

CMSCB

Chapter 4. CMS Compatibility Macros 457

ANSID EQU X'20' - RECFM=VARIABLE LENGTH RECS (ANSI)
SPANNED EQU X'08' - RECFM=SPANNED

CMSCB

458 z/VM: 7.3 CMS Macros and Functions Reference

DISPW

label

DISPW bufad
1

, LINE = 0

, LINE =  n

, BYTES = 1760

, BYTES =  nnnn

, ERASE = YES , CANCEL = YES

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use the DISPW macro to write data to a display screen. The CONSOLE macro supersedes the DISPW
macro. DISPW is supported for compatibility only.

Required Parameters:
bufad

is the address of a buffer containing the data to be written to the display terminal.

Optional Parameters:
label

is an optional assembler label for the statement.
LINE=

is the number of the line, 0 to 23, on the display terminal that is to be written. Line number 0 is the
default.

BYTES=
is the number of bytes (0 to 1760) to be written on the display terminal; 1760 bytes is the default.

ERASE=YES
specifies that the display screen is to be erased before the current data is written. The screen is
erased regardless of the line or number of bytes to be displayed. Specifying ERASE=YES causes the
screen to go into MORE status.

CANCEL=YES
causes the CANCEL operation to be performed. The output area is erased.

DISPW

Chapter 4. CMS Compatibility Macros 459

DMSEXS

label

DMSEXS op_code , operands

Purpose
Attention: The use of this macro is not encouraged because it allows modification of internal
data areas.

Use the DMSEXS, execute in system mode, macro to allow a routine executed with a user PSW key to
execute a single instruction with a nucleus PSW key. The single instruction may be specified as the
argument to the DMSEXS macro, and that instruction is executed with a nucleus PSW key. This macro can
be used instead of two DMSKEY macros. Note that DMSEXS does not work from above the 16 MB line.

Parameters
Required Parameters:
op-code,operands

must be given as arguments to the DMSEXS macro.

For example, execution of the sequence,

USING NUCON,0
DMSEXS OI,USERVLV,MYSWITCH

causes the OI instruction to be executed with a 0 protect key in the PSW. The instruction to be executed
may be an EX instruction.

Optional Parameters:
label

is an optional assembler label for the statement.

Usage Notes
1. Programs that modify or manipulate bits in CMS control blocks may hinder the operation of CMS

causing it to function ineffectively.
2. Register 1 cannot be used in any way in the instruction being executed.
3. Whenever possible, CMS commands are executed with a user protect key. This protects the CMS

nucleus in cases where there is an error in the system command that would otherwise destroy the
nucleus. If the command must execute a single instruction or small group of instructions that modify
nucleus storage, then the DMSKEY or DMSEXS macros are used so that the system PSW key is used for
a short time.

DMSEXS

460 z/VM: 7.3 CMS Macros and Functions Reference

DMSFREE

label

DMSFREE
1

DWORDS= n

(0) ,MIN= n

(1)

,TYPE=USER

,TYPE=NUCLEUS

2

,ERR= laddr

*

,TYPCALL=SVC

,TYPCALL=BALR

Notes:
1 Keyword parameters can be entered in any order.
2 If the ERR parameter is omitted and an error occurs, the system abends.

Purpose
Use the DMSFREE macro to allocate CMS free storage. For new programs and programs that are to
support 31-bit addressing, use the CMSSTOR macro to manage and allocate free storage. DMSFREE
continues to work, but only in 24-bit addressing mode (below 16 MB).

Parameters
Required Parameters:
DWORDS=

is the number of doublewords of free storage requested.
n

specifies the number of doublewords directly.
(0)

indicates that register 0 contains the number of doublewords requested. Do not (a) specify a
register other than register 0 or (b) use an equated symbol to specify register 0.

Optional Parameters:
label

is an optional assembler label for the statement.
MIN=

indicates a variable request for free storage. If the exact number of doublewords indicated by
DWORDS operand is not available, then the largest block of storage greater than or equal to the
minimum is requested.
n

specifies the minimum number of doublewords of free storage directly.
(1)

indicates that the minimum is in register 1. Do not specify a register other than register 1.

Note that, when complete, DMSFREE stores in register 0 the actual amount of free storage allocated.

TYPE=
indicates the type of CMS storage requested, USER or NUCLEUS. USER is the default value.

DMSFREE

Chapter 4. CMS Compatibility Macros 461

ERR=
is the return address if an error occurs. laddr is any address that can be referred to in an LA (LOAD
ADDRESS) instruction. The error return is taken if there is a macro coding error or if there is not
enough free storage available to fill the request. If the asterisk (*) is specified for the return address,
the error return is the same as a normal return. There is no default for this operand. If it is omitted
and an error occurs, the system abends.

TYPCALL=
indicates how control is passed to DMSFREE.
SVC

uses SVC linkage to branch to DMSFREE. Routines that are not nucleus-resident must use SVC
linkage (TYPCALL=SVC). This is the default value.

BALR
branches directly to DMSFREE. Because DMSFREE is a nucleus-resident routine, other nucleus-
resident routines can branch directly to it.

Usage Notes
1. CMS does not support the AREA parameter. If specified, it is ignored.
2. When DMSFREE completes, CMS returns in register 0 the number of doublewords allocated and in

register 1 the address of the allocated storage.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
1

Insufficient storage space is available to satisfy the request for free storage. In the case of a variable
request, even the minimum request could not be satisfied.

2
User storage pointers destroyed.

3
Nucleus storage pointers destroyed.

4
An invalid size was requested. This error exit is taken if the requested size is not greater than zero.
In the case of variable requests, this error exit is taken if the minimum request is greater than
the maximum request. (However, the latter error is not detected if DMSFREE is able to satisfy the
maximum request.)

8 or greater
An unexpected and unexplained error has occurred in the free storage management routine.

DMSFREE

462 z/VM: 7.3 CMS Macros and Functions Reference

DMSFRES

Purpose
The DMSFRES macro is treated as a no-op in CMS because the function is performed internally.

DMSFRES

Chapter 4. CMS Compatibility Macros 463

DMSFRET

label

DMSFRET
1

DWORDS= n

(0)

,LOC= laddr

(1)

2

,ERR= laddr

*

,TYPCALL=SVC

,TYPCALL=BALR

Notes:
1 Keyword parameters can be entered in any order.
2 If the ERR parameter is omitted and an error occurs, the system abends.

Purpose
Use the DMSFRET macro to release free storage. For new programs, use the CMSSTOR macro to manage
free storage. DMSFREE and DMSFRET continue to work, but from below 16 MB only.

Parameters
Required Parameters:
DWORDS=

is the number of doublewords of storage to be released.
n

specifies the number of doublewords directly.
(0)

indicates that register 0 contains the number of doublewords being released. Do not specify any
register other than register 0. Also, do not express register 0 as an equated symbol.

LOC=
is the address of the block of storage being released.
laddr

specifies the address directly. laddr is any address that can be referred to in an LA (LOAD
ADDRESS) instruction.

(1)
indicates the address is in register 1. Do not specify any register other than register 1.

Optional Parameters:
label

is an optional statement label.
ERR=

is the return address if any error occurs. The error return is taken if there is a macro coding error or if
there is a problem returning the storage. There is no default for this operand. If it is omitted and an
error occurs, the system abends.
laddr

is any address that can be referred to by an LA (LOAD ADDRESS) instruction.
(*)

passes control to the next sequential instruction.

DMSFRET

464 z/VM: 7.3 CMS Macros and Functions Reference

TYPCALL=
indicates how control is passed to DMSFRET.
SVC

uses SVC linkage to branch to DMSFRET. Routines that are not nucleus-resident must use SVC
linkage (TYPCALL=SVC). This is the default.

BALR
branches directly to DMSFRET. Because DMSFRET is a nucleus-resident routine, other nucleus-
resident routines can branch directly to it.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
2

User storage pointers destroyed.
3

Nucleus storage pointers destroyed.
5

An invalid size was passed to the DMSFRET macro. This error exit is taken if the specified length is not
positive.

6
The block of storage that is being released was never allocated by DMSFREE. Such an error is
detected if one of the following errors is found:

• The block crosses a page boundary that separates a page allocated for USER storage from a page
allocated for NUCLEUS type storage.

• The block overlaps another block already on the free storage chain.

7
The address given for the block being released is not on a doubleword boundary.

8 or greater
An unexpected and unexplained error has occurred in the free storage management routine.

DMSFRET

Chapter 4. CMS Compatibility Macros 465

DMSKEY

label

DMSKEY NUCLEUS

USER

LASTUSER

,NOSTACK

RESET

Purpose
Attention: The use of this macro is not encouraged because it allows modification of internal data
areas.

Use the DMSKEY macro to set nucleus protection on or off. DMSKEY works from below the 16 MB line
only.

Parameters
Required Parameters:

NUCLEUS
places the nucleus storage protection key in the PSW and saves the old contents of the second byte
of the PSW in a stack. This option allows the program to store data into system storage, which is
ordinarily protected.

USER
places the user storage protection key in the PSW and saves the old contents of the second byte of the
PSW in a stack. This option prevents the program from inadvertently modifying nucleus storage, which
is protected.

LASTUSER
causes the SVC handler to trace back through its system save areas for the active user routine closest
to the top of the stack. The storage key in effect for that routine is placed in the PSW. The old contents
of the second byte of the PSW are saved in a stack.

This option should be used only by system routines that should enter a user exit routine. (OS/MVS
macro simulation routines use this option when they want to enter a user-supplied exit routine. The
exit routine is entered with the PSW key of the last user routine on the SVC system save area stack.)

RESET
changes the second byte of the PSW to the value at the top of the DMSKEY stack and removes it
from the stack. This reverses the effect of the last DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY
LASTUSER request.

Note:

1. CMS requires that the DMSKEY stack be empty when a routine terminates. Therefore, for each
DMSKEY NUCLEUS, DMSKEY USER, or DMSKEY LASTUSER macro that did not specify the NOSTACK
option, you must issue a DMSKEY RESET macro. Otherwise, your program abnormally terminates.

2. Do not use the RESET option if you have previously specified NOSTACK.

Optional Parameters:

label
is an optional assembler label for the statement.

DMSKEY

466 z/VM: 7.3 CMS Macros and Functions Reference

NOSTACK
this option can be used with NUCLEUS, USER, or LASTUSER to prevent the system from saving the
second byte of the current PSW in a stack. If you specify NOSTACK, you do not need to issue DMSKEY
RESET later.

Usage Notes
1. The DMSKEY key stack has a current maximum depth of seven for each routine. In this context, a

routine is anything invoked by an SVC call.

DMSKEY

Chapter 4. CMS Compatibility Macros 467

IO

IO

Purpose
This macro maps OPSECT DSECT, which describes the fields that several programs use as parameter lists
for I/O operations. The IO macro can only be used to map the area whose address is returned in general
purpose register 8 after issuing the FILEDEF command with the AUXPROC option. For more information,
see z/VM: CMS Application Development Guide for Assembler.

Usage Notes
1. This macro is contained in DMSOM MACLIB. The CMSCB and IO macros map internal CMS data

areas and are used with the TEOVEXIT macro and FILEDEF AUXPROC facility to monitor or modify
I/O operations in CMS. For more information on FILEDEF AUXPROC, see z/VM: CMS Application
Development Guide for Assembler.

2. The IO macroinstruction maps the OPSECT DSECT as follows:

OPSECT DS 0D
 ENTRY OPSECT
*
* COMMANDER-IN-CHIEF OF ALL I/O OPERATION LISTS
*
PLIST DS 0D
CMSOP DS CL8 I/O OPERATION COMMAND WORD
FILENAME DS CL8 FILE NAME
FILETYPE DS CL8 FILE TYPE
FILEMODE DS CL2 FILE MODE
 DS H NOT USED
FILEBUFF DS F INPUT-OUTPUT BUFFER
FILEBYTE DS F DATA COUNT
FILEFORM DS CL2 FILE FORMAT: FIXED/VARIABLE RECORDS
 DS H NOT USED
FILEREAD DS F READ DATA COUNT
FILEITEM DS F ITEM NUMBER
FILECOUT DS F NUMBER OF ITEMS
FILEWPTR DS F WRITE POINTER
FILERPTR DS F READ POINTER
POINTERS EQU FILEITEM
AFST EQU FILEBUFF
*
IOAREA EQU FILEBUFF BUFFER AREA LOCATION
IOLENGTH EQU FILEBYTE BUFFER LENGTH
*
* IMMEDIATE REGISTER SAVE ARE
*
SAVER14 DC F'0' TEMP R14 SAVE
SAVER15 DC F'0' TEMP R15 SAVE
SAVER0 DC F'0' TEMP R0 SAVE
SAVER1 DC F'0' TEMP R1 SAVE
*
CMSNAME DC CL8'FILE ' "DEFAULT FILE NAME"
*
* CONSOLE PARAMETER LISTS
*
 DS 0D
* READ CONSOLE
CONREAD DC CL8'WAITRD' TERMINAL READ
CONRDBUF DC &T.(CMNDLINE) ADDRESS OF INPUT BUFFER
CONRDCOD DC C'U' TRANSLATE CODE
 DC X'00'
CONRDCNT DC AL2(CBUFMAX) DATA BYTE COUNT
 DC F'0' RESERVED
*
* CONSOLE WAIT LIST
WAITLIST DS 0F

IO

468 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

 DC CL8'CONWAIT'
*
* WRITE CONSOLE
CONWRITE DS 0F
 DC CL8'TYPLIN'
CONWRBUF DC A(0) LOCATION OF MESSAGE TEXT
CONWRCOD DC C'B' COLOR CODE
 DC X'00'
CONWRCNT DC AL2(0) LENGTH OF MESSAGE TEXT
*
* WAIT PARAMETER LIST
*
WAITLST DS 0F
 DC CL8'WAIT'
WAITDEV DC CL4'CON1'
 DC F'0'
 DC F'0'
*
* INTERACTIVE CONSOLE COMMUNICATION CHANNEL PROGRAM
*
CONPCCW CCW 1,0,X'60',0 WRITE FOR APL ASCII PROMPT
CONCCWS CCW 0,0,X'60',0 NORMAL READ OR WRITE
 CCW 3,0,X'20',1 NOP TO GET CE AND DE TOGETHER
*
* READER PARAMETER LIST
*
 DS 0F
READLST DC CL8'CARDRD'
RDFLAG DC X'00' FLAG BYTE
 DC XL3'000000' OLD BUFFER FIELD
RDCCW DC H'0' CCW BYTE COUNT
RDCOUNT DC H'0' BYTES ACTUALLY READ
RDBUFF DC A(0) BUFFER ADDRESS
 DC XL4'00000000' RESERVED
RDFENCE DC 8X'FF' FENCE
*
* CARD PUNCH PARAMETER LIST
*
PUNCHLST DS 0F
 DC CL8'CARDPH'
PUNFLAG DC X'00' FLAG BYTE
 DC XL3'000000' OLD BUFFER FIELD
PUNCOUNT DC A(0) PUNCH CCW COUT
PUNBUFF DC A(0) PUNCH BUFFER ADDRESS
 DC XL4'00000000' RESERVED
PUNFENCE DC 8X'FF' FENCE
*
* PRINTER PARAMETER LIST
*
PRINTLST DS 0F
 DC CL8'PRINTR'
PRBUF DC A(0) PRINTER BUFFER ADDRESS
PRTRC DC C'0' TRC BYTE
PRFLGS1 DC X'0' PRINT FLAGS
PRXPLIST EQU X'80' EXTENDED PLIST IN USE
PR3800 EQU X'08' VIRTUAL PRINTER IS A 3800
PRTRCINP EQU X'04' PLIST TRC BYTE IS VALID
PRTRCIND EQU X'02' TRC IN DATA
PRNOASA EQU X'01' CC BYTE NOT ASA
PRLEN DC H'0' PRINT DATA LENGTH
* ------------------EXTENDED PLIST----------------------------
PRFLGS2 DC X'0' PRINT FLAGS
PRCCINP EQU X'04' CONTROL CHARACTER IN PLIST
PRCMSDEV EQU X'02' CMSDEV INFORMATION IN PLIST
PRFORM EQU X'01' 0: FORM=BUFFER, 1: FORM=LIST
PRCC DC X'0' CONTROL CHARACTER
PRDEVC DC X'0' PRINTER DEVICE CLASS
PRDEVT DC X'0' PRINTER DEVICE TYPE
PRCCW DC A(0) CCW BUFFER ADDRESS
PRCNT DC H'0' PRINT RECORD COUNT
 DS H RESERVED
PRINTEND EQU * END OF PRINTER PLIST
*
* TAPEIO PARAMETER LIST
*
TAPELIST DS 0F
 DC CL8'TAPEIO'
TAPEOPER DC CL8' ' TAPE OPERATION COMMAND
TAPEDEV DC CL4'TAP1' TAPE SYMBOLIC DEVICE
TAPERFMT DC X'00' RECORDING FORMAT
TAPEMASK EQU TAPERFMT,1,C'X' Old label for TAPERFMT
 DC XL3'000000' OLD BUFFER LOCATION

IO

Chapter 4. CMS Compatibility Macros 469

TAPESIZE DC F'0'
TAPECOUT DC F'0' TAPE COUNTER
TAPEBUFF DC AL4(0) BUFFER LOCATION
TAPEMRFT DC XL1'00' MODIFIED FMT (DRIVE DEFAULT)
TAPEPORT DC XL1'00' PORTABILITY MODIFIER
TAPERESV DC XL2'0000' RESERVED
TAPFENCE DC 8X'FF' FENCE
*
* CLOSE OUT DEVICE DEPENDENT DATA SET ON UNIT RECORD EQUIPMENT
*
CLOSIO DS 0F
 DC CL8'CLOSIO' OPERATION
CLOSIODV DC CL8' ' DEVICE TYPE
 DC 4X'FF'
 DC 6D'0' - UNUSED
*
*
* STORAGE FOR EXEC BOOTSTRAP:
EXLEVEL DC F'0' EXEC "LEVEL"
EXF1 DC F'1' (FOLLOWS EXLEVEL)
 DS F RESERVED
 DS F RESERVED
EXGLOBAL DC F'0' ADDRESS OF EXEC GLOBAL AREA
 DC F'0' - UNUSED
*
* STORAGE FOR OS MACRO SIMULATION ROUTINES
FCBIO DC A(0) - ADDRESS OF LAST FCB USED DURING I/O
OSIOTYPE DC X'DD' - OS ACCESS METHOD TYPE
*
*
* REGISTER SAVE AREA AND WORK AREA FOR DMSEXQ
EXQWORK DS 0D
EXQSAVE DS 4F SAVEAREA FOR R14-R1
EXQOLD2 DS 11F SAVEAREA FOR R2-R12
EXQOLD13 DS 1F SAVEAREA FOR R13
EXQCMD DC CL8'ESTATE ' USED AS PLIST FOR STATE CMD
EXQNAME DS CL8 EXECNAME PASSED IN PARMLIST
EXQTYPE DS CL8 EXECTYPE PASSED IN PARMLIST
EXQMODE DC CL2'* ' FILE MODE FOR STATE COMMAND
 DS CL2
EXQFST DS CL4 FST ADDRESS FROM STATE
EXQEND DC 8X'FF' FENCE FOR STATE
EXQFLAG DS X FLAG FOR OPTIONS
SAVEBYTE DS X SAVE MESSAGE FLAG SETTING
 DS 2X UNUSED
EXQPTR DS 1F Data address for STRUCTUR macro
EXQKEYFN DS CL8 Key used for STRUCTUR macro
EXQKEYFT DS CL8 Key used for STRUCTUR macro
EXQSTRCT STRUCTUR OFIND,MF=L Plist area for STRUCTUR macro
* End of DMSEXQ work area
CONQSAVE DS 0D
 DS 18F QUEUE MANAGER SAVEAREA
*
* QUEUE MANAGER PARAMETER LIST
*
 DMSQPLST DSECT
*
* Console Input Queue
*
CMSQBLK DS 0D
QNXTBLK DC A(0) Fwd ptr - next queue block
QNAME DC CL8'CMS ' Name of this queue
QFLAGS DC X'90' Queue flag byte
QCLFLAG EQU X'80' Queue class - input or output
QCNFLAG EQU X'40' Queue connection specified
QCNCFLAG EQU X'20' Class of the connected queue
QXAFLAG EQU X'10' Queue exit address specified
QMLFLAG EQU X'08' Queue message limit specified
*
 DC XL3'00' Reserved
QCNAME DC CL8' ' Connected queue name
QXADDR DC V(DMSCITIM) Exit routine address
QMLIMIT DC F'0' Maximum number of messages
QMCOUNT DC F'0' Number of messages queued
QMHEAD DC A(0) Head of message queue
QMTAIL DC A(0) Tail of message queue
 DC XL20'00' Reserved
*
* LINERD PARAMETER LIST
*
 DMSLRDP CSECT
*

IO

470 z/VM: 7.3 CMS Macros and Functions Reference

* Fields required by LINERD
*
LNENUM DC F'0' Line number of the data read
COLNUM DC F'0' Column number of the data read
*
* Console input buffer
*
CONINBLK DS 0D
 DC A(0) Reserved
CONINCDE DC XL1'0A' Flags and command code
CONRD EQU X'0A' Read command code
CONRDINV EQU X'0E' Special read command code, to
* inhibit display of data read
CONATTN EQU X'40' Attention read
CONWRCR EQU X'09' Write with carriage return
CONWRNCR EQU X'01' Write with no carriage return
CBUFMAX EQU X'FF' Maximum console read length
CONINLEN DC AL1(255) Length to be read from console
CONINBUF DS CL255 Input line

IO

Chapter 4. CMS Compatibility Macros 471

LINEDIT

label

LINEDIT

,TEXT= ' msgtext '

,TEXTA= label

( reg)

,DOT=YES

,DOT=NO

,COMP=YES

,COMP=NO ,SUB= ( sublist)

,DISP=TYPE

,DISP= NONE

SIO

PRINT

CPCOMM

ERRMSG

,BUFFA= addr

( reg)

,MAXSUBS=  number

,MF=I

,MF= L

(E , addr

,( reg)

)

,RENT=YES

,RENT=NO

Purpose
Use the LINEDIT macroinstruction to convert decimal values into EBCDIC or hexadecimal and display
the results at your terminal. New programs and programs that use 31-bit addressing should use the
APPLMSG macro in place of LINEDIT; LINEDIT is maintained for compatibility with previous releases and
does not work above 16 MB.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
TEXT=‘msgtext’

specifies the text of the message to be edited. The maximum length of the message text is 130
characters.

Use the TEXT operand to specify the exact text of the message on the macroinstruction. The message
text must appear within single quotation marks, as follows:

TEXT='message text'

If you want a single quotation mark to appear within the actual message text, you must code two of
them.

LINEDIT

472 z/VM: 7.3 CMS Macros and Functions Reference

Text specified on the LINEDIT macro is edited so that multiple blanks appear as a single blank, and a
period is placed at the end of the line; for example:

LINEDIT TEXT='IT ISN''T READY'

results in the display:

IT ISN'T READY.

TEXTA=
specifies the address of the message text. Use the TEXTA operand when you want to display a line
that is contained in a buffer. You may specify either a symbolic address or use register notation.
Acceptable values are:
label

the symbolic address of the message text.
(reg)

a register containing the address of the message text.

The first byte at the address specified must contain the length of the message text, for example:

LINEDIT TEXTA=MESSAGE
 .
 .
 .
MESSAGE DC X'16'
 DC CL22'THIS IS A LINE OF TEXT'

If you use register notation with either the standard or list forms of the macro, the code generated is
not reentrant. To suppress the MNOTE that informs you that code is not reentrant, use the RENT=NO
operand.

DOT=
specifies whether a period is to be placed at the end of the line. Acceptable values are:
YES

specifies that you do want a period to be placed at the end of the line. This is the default value.
NO

specifies that you do not want a period placed at the end of the message text. For example, if you
code:

LINEDIT TEXT='THE DINOSAUR FAMILY SAYS HI!',DOT=NO

the line is displayed as:

THE DINOSAUR FAMILY SAYS HI!

COMP=
specifies whether multiple blanks are to be removed from the line. Acceptable values are:
YES

specifies that you want multiple blanks to be removed from the line. This is the default value.

If COMP=YES, not only are all multiple blanks reduced to single blanks, but any leading blanks are
removed as well.

NO
specifies that you want to display multiple blanks within your message text.

For example, if you code:

LINEDIT TEXT='TOTAL 5',COMP=NO

LINEDIT

Chapter 4. CMS Compatibility Macros 473

the line is displayed as:

TOTAL 5.

SUB=sublist
specifies a substitution list describing the conversions to be performed on the line.

Use the SUB operand to specify the type of substitution to be performed on those portions of the
message that contain periods. For each set of periods, you must specify the type of substitution and
the value to be substituted or its address. Acceptable values are:

(type,(value,length))
specifies the type of data, its address, and the length of the substitution.

(type,value)
specifies a number used to retrieve the substitution information from the repository.

If you specify a length, you must enclose the value and length in parentheses. Otherwise, do not
enclose the value in parentheses.

You can specify both the value and length using register notation. When you specify the length, it is
interpreted to be the length of the input field, except when used with the HEX, HEXA, HEX4A, DEC
and DECA parameters. For these parameters, the length represents the length of the converted result.
Following are the possible values of type.

HEX,(reg)
converts the value in the specified register to graphic hexadecimal format and substitutes it in
the message text. If you code fewer than 8 consecutive periods in the message text, then leading
digits are truncated; leading zeros are not suppressed.

For example, if register 3 contains the value C0031FC8, then the macroinstruction:

LINEDIT TEXT='VALUE = ...',SUB=(HEX,(3))

results in the display:

VALUE = FC8.

HEX,expression
converts the given expression to graphic hexadecimal format and substitutes it in the message
text. The expression may be a symbolic address or symbol equate; it is evaluated by means of a
LOAD ADDRESS (LA) instruction. For example, if your program has a label BUFF1, the line:

LINEDIT TEXT='BUFFER IS LOCATED AT',SUB=(HEX,BUFF1)

might result in the display:

BUFFER IS LOCATED AT 0201AC.

If you code fewer than 8 periods in the message text, leading digits are truncated; leading zeros
are not suppressed.

DEC,(reg)
converts the value in the specified register into graphic decimal format and substitutes it in the
message text. Leading zeros are suppressed. If the number is negative, a leading minus sign is
inserted. For example, if register 3 contains the decimal value 10,345, then the macroinstruction:

LINEDIT TEXT='REG 3 =',SUB=(DEC,(3))

results in the line:

REG 3 = 10345.

LINEDIT

474 z/VM: 7.3 CMS Macros and Functions Reference

DEC,expression
converts the given expression to graphic decimal format and substitutes it in the message text.
The expression may be a symbolic label in your program or a symbol equate. For example, if your
program contains the statement:

VALUE EQU 2003

then the macroinstruction:

LINEDIT TEXT='VALUE IS',SUB=(DEC,VALUE+5)

results in the display:

VALUE IS 2008.

HEXA,address
converts the fullword at the specified address to graphic hexadecimal format and substitutes it
in the message text. If you code fewer than 8 periods in the message text, leading digits are
truncated; leading zeros are not removed. For example, if you code:

LINEDIT TEXT='HEX VALUE IS',SUB=(HEXA,CODE)

then the last 5 hexadecimal digits of the fullword at the label CODE are substituted into the
message text.

HEXA,(reg)
converts the fullword at the address indicated in the specified register into graphic hexadecimal
format and substitutes it in the message text. For example, if you code:

INEDIT TEXT='REGISTER 5 ->',SUB=(HEXA,(5))

then the last 6 hexadecimal digits of the fullword whose address is in register 5 are substituted in
the message text.

If you code fewer than 8 digits, leading digits are truncated; leading zeros are not suppressed.

DECA,address
converts the fullword at the specified address to graphic decimal format. Leading zeros are
suppressed; if the number is negative, a minus sign is inserted. For example, if you code:

LINEDIT TEXT='COUNT =',SUB=(DECA,COUNT)

then the fullword at the location COUNT is converted to graphic decimal format and substituted in
the message text.

DECA,(reg)
converts the fullword at the address specified in the indicated register into graphic decimal format
and substitutes it in the message text. For example:

LINEDIT TEXT='SUM =',SUB=(DECA,(3))

causes the value in the fullword whose address is in register 3 to be displayed in graphic decimal
format.

HEX4A,address
converts the data at the specified address into graphic hexadecimal format, and inserts a blank
character following every 4 bytes (8 characters of output). The data to be converted does not have
to be on a fullword boundary. When you code periods in the message text for substitution, you
must code sufficient periods to allow for the blanks. Thus, to display 8 bytes of information (16
hexadecimal digits), you must code 17 periods in the message text.

For example, to display 7 bytes of hexadecimal data beginning at the location STOR in your
program, you could code:

LINEDIT

Chapter 4. CMS Compatibility Macros 475

LINEDIT TEXT='STOR:',SUB=(HEX4A,STOR)

This might result in a display:

STOR: 0A23F115 78ACFE

Note that 15 periods were coded in the message text, to allow for the blank following the first 4
bytes displayed.

HEX4A,(reg)
converts the data at the address indicated in the specified register into graphic hexadecimal
format and inserts a blank character following every 4 bytes displayed (8 characters of output).

When you code the message text for substitution, you must code sufficient periods to allow for the
blank characters to be inserted.

For example, the line:

LINEDIT TEXT='BUFFER:',SUB=(HEX4A,(6))

results in the display of the first 9 bytes at the address in register 6, in the format:

hhhhhhhh hhhhhhhh hh

CHARA,address
substitutes the character data at the specified address into the message text. For example:

LINEDIT TEXT='NAME IS ''..........''',SUB=(CHARA,NAME)

causes the 10 characters at location NAME to be substituted into the message text. Multiple
blanks are removed.

CHARA,(reg)
substitutes the character data at the address indicated in the specified register into the message
text. For example:

LINEDIT TEXT='CODE IS',SUB=(CHARA,(7))

the first 4 characters at the address indicated in register 7 are substituted in the message line.
CHAR8A,address

substitutes the character data at the specified address into the message text, and inserts a blank
character following each 8 characters of output.

When you code the message text, you must code enough periods to allow for the blanks that are
substituted.

This substitution list is convenient for displaying CMS parameter lists. For example, to display a
file ID in an FSCB, you might code

LINEDIT TEXT='FILEID IS',
 SUB=(CHAR8A,OUTFILE+8)

where OUTFILE is the label on an FSCB macro. If the file ID for this file were TEST OUTPUT A1,
then the LINEDIT macroinstruction would result in the display:

FILEID IS TEST OUTPUT A1.

In the final edited line, multiple blanks are reduced to a single blank.

CHAR8A,(reg)
substitutes the character data at the address indicated in the specified register and inserts a blank
character following each 8 characters of output.

When you code the message text, you must include sufficient periods to allow for the blanks. For
example:

LINEDIT

476 z/VM: 7.3 CMS Macros and Functions Reference

LINEDIT TEXT='PLIST:',
 SUB=(CHAR8A,(7))

results in a display of 4 doublewords of character data, beginning at the address indicated in
register 7.

DISP=
specifies how the edited line is to be used. When DISP is not coded, the message text is displayed at
the terminal. Specify DISP as:
TYPE

specifies that the message is to be displayed on the terminal. This is the default disposition.
NONE

specifies that no output occurs. This option is useful with the BUFFA operand.
SIO

specifies that the message is to be displayed, at the terminal, using Start I/O instead of the usual
CMS I/O services. When this option is used, HT (Halt Type) has no effect and the text may be
displayed out of chronological order since lines are not stacked in the console buffer.

This option is not intended for routine use. It should be used only when severe errors occur (such
as destroyed free storage pointers) because the path through CMS is kept to a minimum and
additional storage is not required.

PRINT
specifies that the line is to be printed on the virtual printer. The first character of the line is
interpreted as a carriage control character and as such does not appear on the printed output.
(See the discussion of the PRINTL macro for a list of valid ASA control characters.) The maximum
line size is 130 characters including the ASA character.

When the macro completes, register 15 contains a 2 if a channel 12 punch was sensed, or a 3 if
a channel 9 punch was sensed. The location on the page being printed and the corresponding
channel punch is defined by the current forms control buffer image being used. For more
information on how to specify the forms control buffer image for a virtual spooled printer, see
the LOADVFCB and SPOOL commands in the z/VM: CP Commands and Utilities Reference. If you
use a virtual spooled 3800, refer to the CMS command SETPRT.

When the channel 9 or channel 12 punch is sensed, the write operation terminates after carriage
spacing, but before writing the line. If you want to write the line without additional space, you
must modify the carriage control character in the buffer to a code that writes without spacing (ASA
code + or machine code 01).

You must issue the CP CLOSE command or the CP SPOOL PRT CLOSE command to close the
virtual printer file. Issue the command either from your program (using an SVC 202 instruction or a
LINEDIT macroinstruction) or from the CMS environment after your program completes execution.
The printer is automatically closed when you log off or when you use the CMS PRINT command.

Note: If an error occurs and DISP=PRINT is specified, register 15 contains one of the return codes
specified in the Return Codes section of the PRINTL macro.

CPCOMM
specifies that the line is to be passed to CP to be executed as a CP command. For example:

LINEDIT TEXT='QUERY USERS',DISP=CPCOMM,DOT=NO

results in the CP command line being passed to CP and executed. On return, register 15 contains
the return code from the CP command that was executed.

Note: When using the DISP=CPCOMM operand, specify DOT=NO (the default is YES).

ERRMSG
specifies that the line is to be checked to see if it qualifies for error message editing. If it does, it is
displayed as an error message rather than as a regular line.

LINEDIT

Chapter 4. CMS Compatibility Macros 477

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

The standard header format of VM error messages is:

xxxmmmnnns

where:

• xxxmmm is the name of the module issuing the message
• nnn is the message number
• s is the severity code

You can code whatever you want for the first 9 characters of the code when you write error
messages for your programs, but the tenth character must specify one of the following VM
message types:
Code

Message Type
I

Information
W

Warning
E

Error

The line is displayed according to the CP EMSG setting. If EMSG is set to:

• ON - the entire message is displayed
• TEXT - only the message portion is displayed
• CODE - only the 10-character code is displayed.

BUFFA=
specifies the address of the buffer to which the line is to be copied. The message is copied into the
indicated buffer, and is used as specified in the DISP operand. Acceptable values are:
addr

specifies the address of the buffer to which the line is to be copied.
(reg)

specifies the register containing the address of the buffer to which the line is to be copied.

If you use register notation to indicate the buffer address, the code generated is not reentrant. To
suppress the MNOTE that informs you that code is not reentrant, use the RENT=NO operand.

When the text is copied into the buffer, the length of the message text is inserted into the first byte of
the buffer, and the remainder of the text is inserted in subsequent bytes.

MAXSUBS=number
specifies the maximum number of substitutions (MAXSUBS is used with the list form of the macro).

Use the MAXSUBS operand when you code the list format (MF=L) of the LINEDIT macroinstruction.
number specifies the maximum number of substitutions that is made when the execute form of the
macro is used.

MF=
specifies the macro format when you want to code list and execute forms when you write reentrant
programs. Acceptable values are:
I (Standard Format)

generates an inline operand list for the LINEDIT macroinstruction, and calls the routine that
displays the message. This is the default. It generates reentrant code, except under the following
circumstances:

• When you specify more than one substitution list

LINEDIT

478 z/VM: 7.3 CMS Macros and Functions Reference

• When you use register notation with the TEXTA or BUFFA operands.

L (List Format)
generates a parameter list to be filled in when the execute form of the macro is used.

The size of the area reserved depends upon the number of substitutions to be made, which you
can specify with the MAXSUBS operand. For example:

LINEDIT MF=L,MAXSUBS=5

reserves space for a parameter list that may hold up to five substitution lists. This list may be used
by several LINEDIT macroinstructions.

(E,addr) (Execute Format)
generates code to fill in the parameter list at the specified address, and calls the routine that
displays the message text.

The address specified (either a symbolic address or in register notation) indicates the location of
the list form of the macro. The following example shows how you might use the list and execute
formats of the LINEDIT macro to write reentrant code:

WRITETOT LINEDIT TEXT='SUBTOTAL TOTAL',
 SUB=(DEC,(4),DEC,(5)),MF=(E,LINELIST)
 .
 .
 .
LINELIST LINEDIT MF=L,MAXSUBS=6

When the execute format of the LINEDIT macroinstruction is used, the parameter list for the
message is built at label LINELIST, where the list form of the macro was coded.

RENT=
specifies whether reentrant code must be generated.

Use the RENT operand when you are going to use the standard format of the LINEDIT
macroinstruction and you do not care whether the code that is generated is reentrant. Acceptable
values are:

YES
specifies that reentrant code must be generated. This is the default value.

When RENT=YES is in effect, the LINEDIT macro expansion issues an MNOTE message indicating
that nonreentrant code is being generated. This occurs when you use the standard format of the
macroinstruction and you specify one of the following:

• TEXTA=(reg)
• BUFFA=(reg)
• More than one substitution pair.

NO
specifies that reentrant code is not generated.

If you do not care whether the code is reentrant, and you do not wish to have the MNOTE appear,
code RENT=NO. The RENT=NO coding merely suppresses the MNOTE statement; it has no effect
on the expansion of the LINEDIT macroinstruction.

Usage Notes
1. You should never use registers 0, 1, or 15 as address registers when you code the LINEDIT

macroinstruction; these registers are used by the macro.
2. When message text for the LINEDIT macroinstruction contains two or more consecutive periods, it

indicates that a substitution is to be performed on that portion of the message. The number of periods

LINEDIT

Chapter 4. CMS Compatibility Macros 479

you code indicates the number of characters that you want to appear as output. To indicate what
values are to replace the periods, code a substitution list using the SUB operand.

3. When you use the standard (default) form of the LINEDIT macroinstruction, reentrant code is
produced, except when you specify more than one substitution list, or when you use register notation
to indicate an address on the TEXTA or BUFFA operands. When any of these conditions occur, an
MNOTE message is produced, indicating that the code is not reentrant.

If you do not care whether the code is reentrant, you can specify the RENT=NO operand to suppress
the MNOTE message. Otherwise, you can use the list and execute forms of the macro to write
reentrant code (see MF parameter).

4. When the macro completes, register 15 may contain a return code of 2 or 3, indicating that a channel 9
or channel 12 punch was sensed. You can use these codes to determine whether the end of the page is
near (channel 9), or if the end of the page has been reached (channel 12). You might want to check for
these codes if you want particular information at the bottom of each page being printed.

5. The length of the argument being substituted is determined by the number of periods in the message
text. The number of periods indicates the size of the output field, and indirectly determines the size of
the input data area.

For hexadecimal and decimal substitutions, the input data is truncated on the left. To ensure that a
decimal number is never truncated, you can code 10 periods (11 for negative numbers) in the message
text where it is substituted. For hexadecimal data, code 8 periods to ensure that no characters are
truncated when a fullword is substituted.

When you are coding substitution lists with the CHARA, CHAR8A, and HEX4A options, however, you
can specify the length of the input data field. You must code the SUB operand as follows:

SUB=(type,(address,length))

Both address and length may be specified using register notation. For example:

SUB=(HEX4A,(LOC,(4)))

shows that the characters at location LOC are substituted into the message text; the number of
characters is determined by the value contained in register 4, but it cannot be larger than the number
of periods coded in the message text.

You can use this method in the special case where only one character is to be substituted. Because
you must always code at least two periods to indicate that substitution is to be performed, you can
code two periods and specify a length of one, as follows:

LINEDIT TEXT='INVALID MODE LETTER ..',SUB=(CHARA,(PLIST+24,1))

6. When you want to make several substitutions in the same line, you must enter a substitution list for
each set of periods in the message text. For example:

LINEDIT TEXT='VALUES ARE and',
 SUB=(DEC,(3),HEXA,LOC)

might generate a line as follows:

VALUES ARE -45 AND FFE3C2.

You should remember that if you are using the standard form of the macroinstruction, and you want
to perform more than one substitution in a single line, the LINEDIT macro does not generate reentrant
code. If you code RENT=NO on the macro line, then you do not receive the MNOTE message indicating
that the code is not reentrant. If you want reentrant code, you must use the list and execute forms of
the macroinstruction.

LINEDIT

480 z/VM: 7.3 CMS Macros and Functions Reference

Return Codes
If an error occurs and DISP=PRINT is specified, register 15 contains one of the return codes specified in
“Return Codes” on page 348 the PRINTL macro.

If an error occurs DISP=CPCOMM is specified, register 15 contains the return code from the CP command
executed.

LINEDIT

Chapter 4. CMS Compatibility Macros 481

RDTERM

label

RDTERM buffer
1

,EDIT=YES

,EDIT= NO

PAD

UPCASE

PHYS

,LENGTH=130

,LENGTH= n

( reg)

,PRBUFF= addr

( reg)

,TYPE=DIRECT ,PRLGTH= n

( reg)

,ATTREST= YES

NO

Notes:
1 Keyword parameters can be entered in any order.

Purpose
Use the RDTERM macroinstruction to read a line from the terminal into an I/O buffer. For new programs
and programs that support 31-bit addressing, use the LINERD macro. RDTERM continues to work, but
only below 16 MB.

Parameters
Required Parameters:
buffer

specifies the address of a buffer where the line is read. The buffer is assumed to be 130 bytes long,
unless EDIT=PHYS is specified. Specify the buffer address as:
bufaddr

the symbolic address of the buffer.
(reg)

a register (2-12) containing the address of the buffer.

Optional Parameters:
label

is an optional assembler label for the statement.
EDIT=

specifies the type of editing, if any, to be performed on the input line.
YES

indicates both padding and translation to uppercase. YES is the default.

RDTERM

482 z/VM: 7.3 CMS Macros and Functions Reference

NO
indicates that a logical line is to be read and no editing is to be done.

PAD
requests that the input line be padded with blanks to the length specified.

UPCASE
requests that the line be translated to uppercase.

PHYS
indicates that a physical line is to be read. When you specify EDIT=PHYS, you may also enter the
LENGTH and ATTREST=NO operands. This option causes the input line to be translated using the
user translation table.

LENGTH=
specifies the length of the buffer. If not specified, 130 is assumed. The maximum length is 2030
bytes. The length may be specified only if EDIT=PHYS (see Usage Note 2).
n

specifies a self-defining term indicating the length of the buffer.
(reg)

specifies a register (2-12) containing the length of the buffer.

PRBUFF=
specifies the address of a buffer containing the prompt data. The length of the prompt data to be
written is specified by the PRLGTH parameter. If the PRLGTH parameter is specified, but the PRBUFF
parameter is not, the prompt information is assumed to reside in the read buffer. Specify PRBUFF as
follows:
addr

the symbolic address of the buffer.
(reg)

a register (2-12) containing the length of the buffer.

TYPE=DIRECT
indicates that the input line is to be read directly from the virtual machine console. The terminal input
buffer and the program stack are bypassed.

PRLGTH=
specifies the length of the prompt information to be written before the read. The prompt information
is written with no carriage return. The prompt information is written from the user's read data buffer
or from the buffer specified by the PRBUFF parameter. Specify PRLGTH as:
n

specifies a self-defining term indicating the length of the buffer.
(reg)

specifies a register (2-12) containing the length of the buffer.

ATTREST=YES|NO
specifies whether an attention interrupt during a read should result in a restart of the read operation.
(See Usage Note 2.)

Usage Notes
1. When the macro completes, register 0 contains the number of characters read.

RDTERM

Chapter 4. CMS Compatibility Macros 483

2. Use the ATTREST=NO and LENGTH operands only when you are reading physical lines (EDIT=PHYS).
When ATTREST=NO, an attention interrupt during a read operation signals the end of the line and does
not result in a restart of the read. These operands are used primarily in writing VS APL programs.

Note: If you are using a typewriter terminal, and specify ATTREST=NO, CMS restarts a read when an
attention is generated on a null line. The only way to end the read is by pressing the carriage return.

3. The PRBUFF and PRLGTH operands are intended for use with TTY type devices. The maximum PRLGTH
is 1760 characters. If the PRBUFF option is used, an ‘XON’ control character will not be transmitted to
TTY devices.

4. If the prompt parameters are used with EDIT=PHYS, the read buffer may not be used for the prompt
data because the read buffer is cleared prior to the execution of the function.

5. In CMS fullscreen, when a part of a field from the CMS virtual screen is modified, the entire field is
returned as a modified field. For more information on CMS fullscreen, see the LINERD macro.

6. Any translation done on the input buffer that contains both SBCS and DBCS data will only occur on the
SBCS portions of the data provided that the display is capable of supporting mixed DBCS.

7. If truncation occurs because the data being read in is longer than the input buffer, and the truncation
occurs within a mixed DBCS string, then adjustments will be made to validate the truncated string.

Return Codes
If an error occurs, register 15 contains one of the following return codes:
Code

Meaning
2

Invalid parameter.
4

Read was terminated by an attention signal (possible only when ATTREST=NO).

RDTERM

484 z/VM: 7.3 CMS Macros and Functions Reference

STRINIT

label

STRINIT

,TYPCALL=SVC

,TYPCALL=BALR

Purpose
Use the STRINIT macro to release free storage obtained by the GETMAIN macro.

Parameters
Optional Parameters:
label

is an optional assembler label for the statement.
TYPCALL=

indicates how control is passed to the STRINIT macro.
SVC

uses SVC linkage to branch to the STRINIT routine. Routines that are not nucleus-resident must
use SVC linkage (TYPCALL=SVC). If no operands are specified, the default is TYPCALL=SVC.

BALR
branches directly to the STRINIT routine. Because the STRINIT routine is a nucleus-resident
routine, other nucleus-resident routines can branch directly to it (TYPCALL=BALR).

Usage Notes
1. CMS releases GETMAIN storage at SVC 202/CMSCALL termination. This means that the program being

returned to does not need to issue the STRINIT macro.

Unless you specify otherwise, CMS treats STRINIT as a no-op. If a program depends upon another
program's ability to obtain and return GETMAIN storage to it, you can use the SET STORECLR
command to instruct CMS to handle GETMAIN storage the way GETMAIN storage was handled in
previous releases. In this case you would specify SET STORECLR ENDCMD.

STRINIT

Chapter 4. CMS Compatibility Macros 485

TEOVEXIT

label

1
TEOVEXIT SET SET parameters

CLR

,DDNAME= ' ddname '

addr

( reg)

,ERROR=*

,ERROR= addr

( reg)

2

,MF= L

(L, addr

, mf_label

)

(E, addr)

SET parameters
,EXIT= addr

( reg)

,RETINFO= addr

( reg)

Notes:
1 Keyword parameters can be entered in any order.
2 Default is the standard macro format.

Purpose
Use the TEOVEXIT macroinstruction to set up and clear a CMS tape end-of-volume exit.

This macro is contained in DMSOM MACLIB. The CMSCB and IO macros map internal CMS data areas and
are used with the TEOVEXIT macro and FILEDEF AUXPROC facility to monitor or modify I/O operations
in CMS. For more information on FILEDEF AUXPROC, see z/VM: CMS Application Development Guide for
Assembler.

Parameters
Required Parameters:
SET

establishes an exit.
CLR

clears an exit.
DDNAME=

is the data definition name for which you set the tape end-of-volume exit. Acceptable values are:
‘ddname’

specifies the name as 1 to 8 alphanumeric characters enclosed in quotation marks.
addr

specifies the name as an assembler label.

TEOVEXIT

486 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

(reg)
specifies a general register containing the address of the name.

EXIT=
specifies the address of the program's end-of-volume processing routine.
addr

is the symbolic address of the program's end-of-volume processing routine.
(reg)

specifies a general register that contains the address of the program's end-of-volume processing
routine.

The exit routine receives control after trailer labels have been processed and the tape has been
rewound and unloaded. It receives control with the same PSW key as the call to CMS QSAM. The
registers passed to the exit are the same as they were at the call to QSAM except that (a) register
0 points to the data control block (DCB), (b) register 1 points to the file control block (FCB), and (c)
register 14 contains the address the routine branches to when it completes. If the exit does not return
control to the address in register 14, future operations are unpredictable for that file. Register 15
contains the address of the user exit routine.

(This attribute is required for SET. If you specify the EXIT attribute on CLR, it is ignored. No MNOTE is
issued.)

Note: The exit routine should not alter the registers of the program that issues the QSAM call.

RETINFO=
specifies the address of a 20-byte halfword aligned area to contain return information.
addr

is the symbolic address of a 20-byte halfword aligned area.
(reg)

specifies a general register that contains the address of a 20-byte halfword aligned area.

The RETINFO parameter is required for TEOVEXIT SET; it is ignored on TEOVEXIT CLR (no MNOTE is
issued).

Optional Parameters:
label

is an optional assembler label for the statement.
ERROR=

specifies an action to be taken if an error occurs. If you do not specify the ERROR= parameter, control
passes to the next sequential instruction. Acceptable values are:
*

passes control to the next sequential instruction. This is the default value.
addr

passes control to the specified address.
(reg)

passes control to the address in the specified register.

Note: Do not specify the ERROR= parameter with the list (MF=L) or complex list (MF=(L,addr,mf_label))
macro forms.

MF=
specifies the macro form. Omitting the MF parameter specifies the standard format. For more
information about the MF parameter, see “CMS Macro Formats” on page 15. Acceptable values are:
L

specifies the list format.
(L,addr,mf_label)

specifies the complex list format. Specify addr as an assembler expression or as a register
enclosed in parentheses. The mf_label parameter is optional.

TEOVEXIT

Chapter 4. CMS Compatibility Macros 487

(E,addr)
specifies the execute format. Specify addr as an assembler expression or as a register enclosed in
parentheses.

CMS QSAM Tape End-of-Volume Exit. A program working with CMS simulation of OS QSAM can set up
an exit that could be entered on the end-of-volume condition on IBM standard label tapes. This exit
should not be confused with the OS/MVS DCB end-of-volume exit. The OS/MVS DCB end-of-volume exit
continues to be unsupported.

Restrictions:

1. Tape end-of-volume exits apply only to CMS OS QSAM simulation.
2. Only IBM standard label tapes are supported. If you use labels other than standard labels, you

receive a return code of 16 from TEOVEXIT.
3. The LEAVE option of the FILEDEF command is invalid. If it is used, you receive a return code of 20

from TEOVEXIT.
4. The NOEOV processing option of the FILEDEF command is invalid. If it is used, you receive a return

code of 28 from TEOVEXIT.
5. You cannot read backward. If it is attempted, the results are unpredictable.
6. The tape end-of-volume exit is not entered if either an OPEN or a CLOSE is in progress.
7. The exit must not issue I/O requests that might result in the tape end-of-volume exit being invoked. If

it is attempted, the results are unpredictable.
8. The exit must not issue additional QSAM requests to the file. If it is attempted, the results are

unpredictable.
9. The exit must not modify or clear the FCB of the file the end-of-volume condition was encountered

on.
10. TEOVEXITs are cleared whenever a CLOSE or a CLOSE type T is issued for the file.

Return Codes
If any errors occur during the processing of the TEOVEXIT macro, register 15 contains the error return
codes.

SET Function:

Code
Meaning

0
Normal completion, an end-of-volume exit is established for the specified DDNAME.

4
The DDNAME specified is not found. (No FILEDEF was found with the given DDNAME.)

8
The device specified in the FILEDEF is not a tape device.

12
The tape identification is invalid; it must be TAP0-TAPF.

16
The tape label type is other than SL.

20
LEAVE is specified in the FILEDEF (FCB).

24
An invalid parameter list was specified.

28
NOEOV is specified in the FILEDEF (FCB).

TEOVEXIT

488 z/VM: 7.3 CMS Macros and Functions Reference

32
The exit address or RETINFO address is zero.

CLR Function:

Code
Meaning

0
Normal completion--the end-of-volume exit is cleared for the specified DDNAME or the end-of-
volume exit was not in effect, but was still cleared.

4
The DDNAME specified is not found. (No FILEDEF was found with the given DDNAME.)

24
An invalid parameter list was specified.

Successful Completion:

On successful completion of TEOVEXIT SET (register 15=0), the RETINFO attribute contains:
Word

Meaning
0

The symbolic tape number associated with the given DDNAME (character TAP0-TAPF).
1

The address of the FCB of the given DDNAME.
2

RESERVED
3

RESERVED
4

RESERVED

TEOVEXIT

Chapter 4. CMS Compatibility Macros 489

WRTERM

label

WRTERM
1

line

, length

,EDIT=YES

,EDIT= NO

LONG

,COLOR=B

,COLOR=R

Notes:
1 Keyword Parameters can be entered in any order.

Purpose
Use the WRTERM macroinstruction to display a line of text at the terminal. New programs and programs
that support 31-bit addresses should use the LINEWRT or APPLMSG macros rather than WRTERM. (Use
APPLMSG if you want to specify the line of text on the macro call itself; otherwise, use LINEWRT.)
WRTERM is maintained for compatibility to previous releases and does not work above the 16 MB line.

Parameters
Required Parameters:
line

specifies the line to be displayed:
‘linetext’

the actual text line enclosed in single quotation marks.
lineaddr

the label on the statement containing the line.
(reg)

a register containing the address of the line.

Optional Parameters:
label

is an optional assembler label for the statement.
length

specifies the length of the line. If you specify the line within quotation marks, you can omit the length
operand. Otherwise, specify length as:
n

a self-defining term indicating the length.
(reg)

a register containing the length.
EDIT=

specifies whether CMS edits the line:
YES

removes trailing blanks and adds a carriage return to the end of the line. YES is the default value.
NO

trailing blanks are not removed and no carriage return is added.

WRTERM

490 z/VM: 7.3 CMS Macros and Functions Reference

LONG
indicates the line may exceed 130 bytes. No editing is performed.

COLOR=
indicates the color of the line typed, if the typewriter terminal has a 2-color ribbon:
B

types the line in black. This is the default.
R

types the line in red.

Usage Notes
1. The maximum line length is 130 characters for a black line and 126 characters for a red line.
2. If EDIT=LONG, you must specify COLOR as B. In this case, you may write as many as 1760 bytes with

a single WRTERM macroinstruction. You are responsible for embedding the proper terminal control
characters in the data. (This operand is for use primarily with VS APL programs.)

3. Use the WAITT macroinstruction if you need to make sure that terminal I/O is complete before
continuing program execution.

4. If you specify EDIT=NO or EDIT=LONG, differences in device characteristics may cause identical
output to appear inconsistent.

5. If truncation occurs because the data is longer than the maximum line length, and the truncation
occurs within a mixed DBCS string, then adjustments will be made to validate the truncated string.

6. Any translation done on the input buffer that contains both SBCS and DBCS data will only occur on the
SBCS portions of the data provided that the display is capable of supporting mixed DBCS.

WRTERM

Chapter 4. CMS Compatibility Macros 491

WRTERM

492 z/VM: 7.3 CMS Macros and Functions Reference

Chapter 5. CMS Compatibility Functions

This chapter describes the assembler language functions CMS supports for compatibility only.

All of these functions run in an ESA, XA, or XC virtual machine although they are not capable of supporting
31-bit addressing. To execute CMS functions from application programs, set up a parameter list and then
issue the CMSCALL macro.

IBM does not recommend compatibility group functions in new programs.

The following CMS functions are described in this section:

• ATTN
• NUCEXT
• SUBCOM
• TODACCNT
• WAITRD.

© Copyright IBM Corp. 1991, 2025 493

ATTN

Purpose

Note: The CMSSTACK macro supersedes the ATTN function. ATTN continues to work, but from below the
16 MB line only. It does not support 31-bit addressing.

The ATTN function inserts a line of input into the program stack. ATTN may be executed from an
assembler language program through SVC 202 with the following parameter list:

PLIST DS OD
 DC CL8'ATTN'
 DC CL4'order' where order may be LIFO or FIFO.
* FIFO is the default
 DC AL1(length) length of line to be stacked
 DC AL3(addr) address of line to be stacked

Usage Notes

1. The line that ATTN stacks is extracted from the program stack when WAITRD is executed to read a line
of input. (See the WAITRD function description for details of WAITRD function.)

2. ATTN stacks lines of up to 255 characters.

Return Codes
Code

Meaning
0

Normal completion.
25

No more storage.

ATTN

494 z/VM: 7.3 CMS Macros and Functions Reference

NUCEXT

Purpose

Note: The preferred interface to the NUCEXT function is the NUCEXT macro. The following information is
provided as a convenience for programmers whose current programs use the NUCEXT function.

The nucleus extension function (NUCEXT) lets you identify command entry points in programs established
in free storage, so that they can be called by an SVC 202 as if they were nucleus commands. Thus,
they become nucleus extensions. You can also create your own Immediate commands with the NUCEXT
function.

NUCEXT builds a chain of SCBLOCKs in storage for nucleus extensions. The chain of nucleus extensions
is reordered each time a command is found on the chain. The reordering puts the most frequently used
commands at the beginning of the chain.

NUCEXT is a name given to a group of commands that all use an internal function named NUCEXT. The
actual commands provided for manipulation of nucleus extensions are:
NUCXLOAD

Loads an ADCON-free or relocatable module into free storage and installs it as a nucleus extension.
NUCXDROP

Cancels a nucleus extension and releases the corresponding storage.
NUCXMAP

Prints on the console or stacks a list of the nucleus extensions.

Use NUCEXT to access user-written programs without having to do disk read operations (as would be
required for modules) or to avoid thrashing in the transient or user areas when several programs are used
repeatedly (the same programs are loaded many times).

Use NUCEXT for gathering statistics, filtering commands for various purposes, creating anchors for data
kept in free storage until the next CMS IPL, and special operations during CMS abnormal end processing.

Nucleus extensions with the IMMCMD option can receive control as user-defined Immediate commands
or as regular commands. Nucleus extensions with the ENDCMD option receive control at normal end-of-
command processing. The ENDCMD nucleus extensions only receive control after a command is entered
from the virtual console. They do not receive control if the command was issued from an EXEC, a user
program, or CMS SUBSET mode. Unlike transient routines or user programs, nucleus extensions are
retained until they are explicitly unloaded, or as a side effect of abnormal end cleanup for those using
free storage of type ‘user’ (that is reclaimed during an abnormal end) or are not designated as system
routines to survive abnormal end. Nucleus extensions can have the same name as existing CMS nucleus
commands or functions. If they do have the same name, the extensions override the existing nucleus
commands or functions. Only nucleus functions invoked through SVC 202 can be overridden. Two existing
nucleus functions, RDBUF and WRBUF, however, cannot be overridden. It is possible to create a nucleus
extension that can call another nucleus extension having the same name. This allows a nucleus extension
to frontend another nucleus extension. The techniques necessary to perform this call are complex and
require assembler language programming. This override process may not be possible in all cases.

The last nucleus extension to be established receives control first. This is the first nucleus extension on
the SCBLOCK chain with a name that matches the requested name.

The nucleus extension may perform whatever processing it requires. To pass control to another nucleus
extension having the same name, you must first use the NUCEXT RENAME macro to change the name
field of the original SCBLOCK to a unique name.

NUCEXT

Chapter 5. CMS Compatibility Functions 495

The original nucleus extension can now issue an SVC 202 for the nucleus extension control that is to
be passed. The original nucleus extension can restore the original contents of general registers 0 and 1
before this call.

Control is passed to the next nucleus extension with the same name on the SCBLOCK chain. The nucleus
extension receives the PLIST that was pointed to by registers 0 and 1 when the SVC 202 was issued on
the first nucleus extension.

On return from the second nucleus extension, the original nucleus extension must now issue an SVC 202
for itself. The name used for this SVC 202 must be the unique name that was placed in the SCBLOCK
earlier. This call reorders the SCBLOCK chain, placing the original nucleus extension at the head of
the SCBLOCK chain. The nucleus extension must be designed to recognize these special reorder calls.
Reorder calls can be determined by checking the parameter list that is pointed to by register 1 upon
entry. If the unique name is the first token in the PLIST, then this is a reorder call. Control should only be
returned to the caller; typically, no processing should be performed.

The original nucleus extension should now restore the name field of its SCBLOCK to its original name.
Control can now be returned to the original caller.

Nucleus Extensions and Abnormal Ends. There are two types of nucleus extensions.

Types of Nucleus Extensions. The types of nucleus extensions, system and user, differentiated by their
behavior during a CMS abnormal end. The system nucleus extension will survive an abnormal termination
of a user program (abnormal end), whereas the user nucleus extension will not.

Note: Because CMS reclaims all storage of type user during the abnormal end cleanup phase, any nucleus
extension in user storage is deleted during abnormal end, regardless of its system attribute. The storage
obtained for user type nucleus extensions code must be doubleword aligned to the next doubleword or
CMSSTOR errors will occur during ABEND processing.

Because of this storage reclamation during abnormal end, programs which build data structures in free
storage of type ‘user’ but keep pointers in storage of type ‘system’ need to know when abnormal end
cleanup occurs (for example, after HX).

Service Calls: PURGE and RESET. A program's need to know about abnormal end cleanup is supported
by the idea of a service call. When a nucleus extension is declared (through NUCEXT), it may request that
it receive a service call under appropriate circumstances. There are two standard service calls supported
by NUCEXT. The PURGE service call is issued during CMS abnormal end cleanup. The RESET service call is
issued by the NUCXDROP program when a nucleus extension is explicitly unloaded. It is the responsibility
of the unloaded program to cancel any secondary nucleus extension entry points by reacting to the RESET
service call issued by NUCXDROP before the main entry point is canceled and the program is unloaded.
The RESET call allows programs with several entry points to cancel these at the same time, or to free
static storage areas obtained from free storage.

A note on service calls during an abnormal end. Do not stack during a service call. This causes the
system to allocate storage that is not accounted for during abnormal end.

The SYSTEM and SERVICE Attributes. Nucleus extensions may or may not have the SYSTEM attribute
and the SERVICE attribute. These attributes determine the handling of a nucleus extension during
abnormal end processing.

If a nucleus extension has the SYSTEM attribute, it remains active after an abnormal end. It is your
responsibility to see that such a nucleus extension is loaded into nucleus storage, not user storage (which
is recovered after an abnormal end).

If a nucleus extension has the SERVICE attribute, it is called during abnormal end processing with the
parameter list:

DS 0F
DS CL8'nucleus extension name'
DC CL8'PURGE'
DC 8X'FF'

The high-order byte in register 1 is set to X'FF'. A nucleus extension may have the SYSTEM and SERVICE
attributes in any combination.

NUCEXT

496 z/VM: 7.3 CMS Macros and Functions Reference

Nucleus Storage. Remember that during abnormal end recovery,

• When a nucleus extension has the SYSTEM attribute, it should be in nucleus storage and the length
word is used by abnormal end recovery to account for the amount of storage used by that program.

• If a nucleus extension does not have the SYSTEM attribute but is in nucleus storage anyway, that
storage will be recovered during abnormal end.

When a nucleus extension obtains nucleus-type free storage other than what is accounted for by the
origin and length fields in the SCBLOCK, it should:

1. Use the SERVICE flag so that it is called with the PURGE parameter list during abnormal end, at which
time it returns any nucleus-type storage it obtained (but not that described in its SCBLOCK).

2. If it has the SYSTEM attribute, account for any extra nucleus storage which is to be kept through an
abnormal end by adding the length in doublewords of such storage into the NUCXFRES field in NUCON.
It is a good idea to update this field as soon as the storage is obtained. This is required if the nucleus
extension does not have the SERVICE attribute.

Nucleus extensions remain in effect until canceled, either explicitly or implicitly. Implicit cancelation
normally occurs only for nucleus extensions of the user type (during an abnormal end cleanup time when
all storage of user type is reclaimed). Explicit cancelation does not release the storage (if any) occupied
by the nucleus extension: that is the responsibility of the program that issues the cancelation (usually the
program NUCXDROP).

Using the NUCEXT function affects the command resolution strategy of CMS when a SVC 202 is
processed. Nucleus extensions are sought before functions in the real CMS nucleus. This gives the user
the ability to intercept, filter, augment, and so forth, the real nucleus functions.

ENDCMD ATTRIBUTE. A nucleus extension with the ENDCMD option receives control at normal end-
of-command processing. At end-of-command processing the CMS console handler invokes all nucleus
extensions having the ENDCMD option. The nucleus extensions are invoked by a SVC 202. Register 1
points to the PLIST, the high-order byte of register 1 is set to X'FE' to indicate an end-of-command call.
The PLIST used to invoke an ENDCMD extension is:

DS 0F
DS CL8'nucleus extension name'
DC CL8'ENDCMD'
DS F'return code'
DC 8X'FF'

where:

return code is the value returned to CMS in register 15 by the terminating command.

Linkage Conventions. When a nucleus extension is declared, the following information must be provided:

• The NAME of the command implemented by the nucleus extension.
• The PSW to be used when passing control to the nucleus extension.
• The address and length of the storage area occupied by the program. The length must be rounded up to

doubleword alignment.
• Flag bits to indicate either user or system type, and indicate whether service calls are desired.
• Flag bits should be used to indicate if the ENDCMD or IMMCMD options are desired.

Secondary entry points are declared by indicating a storage size of zero. The PSW specifies the system
mask, the PSW key to be used, the program mask (and initial condition code), and the starting address for
execution. The problem-state bit and machine-check bit may be set. The machine-check bit has no effect
in CMS under CP. The EC-mode bit and the wait-state bit cannot be set (they are always forced to zero).
The flag bits are encoded in the third byte of the PSW. Also, one byte of user defined flags and one 4-byte
user-defined word can be associated with the nucleus extension, and referred to when the entry point is
subsequently called.

NUCEXT

Chapter 5. CMS Compatibility Functions 497

Entry into a Nucleus Extension. On entry to a nucleus extension, the register contents are:

R0 Address of extended parameter list (if
 one was provided by the caller).
R1 Address of the command name (and the
 tokenized parameter list).
R2 Address of SCBLOCK with NUCEXT extension.
R12 Entry point address.
R13 24-word save area address.
R14 Return address (CMSRET).
R15 Entry point address.

This is the standard entry point convention except that R2 points to the SCBLOCK.

The NUCEXT function queries, declares, or cancels user nucleus extensions. NUCEXT can be issued as a
command only for its query function. With one argument, ‘name,’ it returns either:

 0 'name' is a user nucleus extension (found it).

or

 1 'name' not found.

PLISTs: As a function (called from a program), NUCEXT takes the following PLIST:

Declare PLIST:

NUCX DS 0F PLIST TO DECLARE NUCLEUS EXTENSION
 DC CL8'NUCEXT'
NUCXNAME DC CL8'name' COMMAND NAME
NUCXPSW DC XL2'0000',AL2(0) SYSTEM MASK, STORAGE KEY, ETC
NUCXADDR DC A(*-*) ENTRY ADDRESS, -1 for QUERY
 DC A(0) USER WORD
NUCXORG DC A(*-*) LOAD ADDRESS
NUCXLEN DC A(*-*) SIZE, IN BYTES ROUNDED TO THE NEXT
 DOUBLEWORD.

This declares ‘name’ as a nucleus extension and puts an SCBLOCK at the head of the NUCEXT chain. The
name may already be defined, in which case the previous declaration will be hidden until the present one
is canceled. Return code 25 means not enough storage was available to allocate the necessary SCBLOCK.

The third and fourth bytes of the start-up PSW (interrupt code) are used as flag bytes. The format of the
PSW is:

AL1(system mask) (EC-mode bit forced to 0)
BL4(storage key)
BL4'0MWP'
AL1(NUCEXT flags) System=X'80',
 Service=X'40'
 End of command=X'10'
 Immediate=X'04'
AL1(user flag) May be used for private purpose.
A(entry point)

Cancel PLIST:

CL8'NUCEXT'
CL8'name'
XL4'irrelevant'
A(0) identifies the cancel function

This cancels the nucleus extension or gives a return code of 1 if ‘name’ is not found. The storage occupied
by the program calling for this nucleus extension is not freed. This is the responsibility of the canceling
program.

Query PLIST:

CL8'NUCEXT'
CL8'name'

NUCEXT

498 z/VM: 7.3 CMS Macros and Functions Reference

XL4'irrelevant' Receives A(SCBLOCK).
XL4'FFFFFFFF' Identifies the query function

This form returns the address of the SCBLOCK if ‘name’ is found, otherwise it changes nothing and gives a
return code of 1.

Note that if ‘NUCEXT name’ is called from a command level or from an EXEC file, the Query PLIST is the
form of PLIST which will be issued.

Get Anchor PLIST:

CL8'NUCEXT'
CL8'irrelevant'
A(*-*) Receives value (not address)
 of NUCEXT list anchor or 0 if
 there are no nucleus extensions.
A(1) Indicates request for anchor.

Nucleus Extensions as Immediate Commands. When a nucleus extension is established with the
IMMCMD option, it can be invoked as a regular command or as an Immediate command. In addition
to having an SCBLOCK, a nucleus extension with IMMCMD attribute also has a similar control block, called
an IMMBLOK, associated with it.

Nucleus extensions with the IMMCMD attribute are entered as Immediate commands when they are
invoked by the CMS console interrupt handler. This occurs when a particular command that has been
established as an Immediate command is entered by the terminal user while CMS is busy.

Nucleus extensions with the IMMCMD attribute can be overridden by an identically named nucleus
extension (for example, NUCXLOAD with the PUSH option). If the new nucleus extension does not have
the IMMCMD attribute but does have the same name as an existing nucleus extension with the IMMCMD
attribute, the nucleus extension with the IMMCMD attribute is disabled as an Immediate command.

Entry conditions to a nucleus extension as an Immediate command are identical with entry conditions
that occur when a nucleus extension is invoked through SVC 202, except for the following conditions:

• The high-order byte of register 1 contains X'06'. This indicates that the nucleus extension was invoked
as an Immediate command. When invoked through SVC 202, the high-order byte of register 1 is
normally X'01' or X'0B'.

• Register 2 contains the address of an IMMBLOK.
• Register 14 contains the return address that is located in the CMS console interrupt handler.

With respect to common information (for example, command name and user word), displacements within
the IMMBLOK are identical with those in a SCBLOCK. These displacements are as follows:

Displacement Offset Information

0 Pointer to next IMMBLOK

4 User word

8 Command name

20 Entry point address

For more information on the Immediate commands in CMS, see z/VM: CMS Application Development
Guide.

NUCEXT

Chapter 5. CMS Compatibility Functions 499

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

SUBCOM

Purpose

Note: The preferred interface to the SUBCOM function is the SUBCOM macro. The following information is
provided as a convenience for programmers whose current programs use the SUBCOM function.

Dynamic Linkage/SUBCOMM: It is possible for a program that is already loaded from disk to become
dynamically known by name to CMS for the duration of the current command; such a program can be
called through SVC 202. In addition, this program can also make other programs dynamically known if the
first program can supply the entry points of the other programs.

To become known dynamically to CMS, a program or routine invokes the create function of SUBCOM. To
invoke SUBCOM, issue the following calling sequence from an assembler language program:

 LA R1,PLIST
 SVC 202
 DC AL4(ERROR)
 .
 .
 .
PLIST DS 0F
 DC CL8'SUBCOM'
SUBCNAME DC CL8'name' COMMAND NAME
SUBCPSW DC XL2'0000' SYSTEM MASK, STORAGE KEY, ETC.
 DC AL2(0) RESERVED
SUBCADDR DC A(0) ENTRY ADDRESS, -1 FOR QUERY PLIST
 DC A(0) USER WORD

SUBCOM creates an SCBLOCK control block containing the information specified in the SUBCOM
parameter list. SVC 202 uses this control block to locate the specified routine. All nonsystem SUBCOM
SCBLOCKS are released at the completion of a command (that is, when CMS displays the ready message).
A SUBCOM environment may be defined as a system SUBCOM by setting a X'80' in the first byte of the
interruption code field of the PLIST. See page “SCBLOCK” on page 376 for a description of the SCBLOCK
control block.

When a program issues an SVC 202 call to a program that has become known to CMS through SUBCOM,
it places X'02' in the high-order byte of register 1. Control passes to the called program at the address
specified by the called program when it invoked SUBCOM.

The PSW in the SCBLOCK specifies the system mask, the PSW key to be used, the program mask (and
initial condition code), and the starting address for execution. The problem-state bit and machine-check
bit may be set. The machine-check bit has no effect in CMS under CP. The EC-mode bit and wait-state bit
cannot be set. They are always forced to zero. Also, one 4-byte, user-defined word can be associated with
the SUBCOM entry point and referred to when the entry point is subsequently called.

When control passes to the specified entry point, the register contents are:
R0

Same as caller.
R1

Same as caller.
R2

Address of SCBLOCK for this entry point.
R12

Entry point address.
R13

24-word save area address.

SUBCOM

500 z/VM: 7.3 CMS Macros and Functions Reference

R14
Return address (CMSRET).

R15
Entry point address.

You can also use SUBCOM to delete the potential linkage to a program or routine's SCBLOCK, or you can
use SUBCOM to determine if an SCBLOCK exists for a program or routine.

To delete a program or routine's SCBLOCK, issue:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC 8X'00'

To determine if an SCBLOCK exists for a program or routine, issue:

DC CL8'SUBCOM'
DC CL8'program or routine name'
DC A(0) SCBLOCK addressed as a returned value
DC 4X'FF'

If ‘SUBCOM name’ is called from an EXEC file, the QUERY PLIST is the form of PLIST that is issued.

To query the chain anchor, issue:

DC CL8'SUBCOM'
DS CL8 (contents not relevant)
DS AL4 Will receive chain anchor
 contents from NUCSCBLK
DC AL4(1) Indicates request for anchor

Note that the anchor is equal to F‘0’ if there are no SCBLOCKs on the chain.

Note: If you create SCBLOCKs for several programs or routines with the same name, they are all
remembered, but SUBCOM uses the last one created. A SUBCOM delete request for that name eliminates
only the most recently created SCBLOCK making active the next most recently created SCBLOCK with the
same name.

When control returns to CMS after a console input command has terminated, the entire SUBCOM chain of
SCBLOCKs is released. None of the subcommands established during that command are carried forward
to be available during execution of the next console command.

Return Codes
Return codes from the SUBCOM function are:
0

Successful completion. A new SCBLOCK was created, the specified SCBLOCK was deleted, or the
specified program or routine has an SCBLOCK.

1
No SCBLOCK exists for the specified program or routine. This is the return code for a delete or a query.

20
The name specified on the SUBCOM macro contains an invalid character. The following characters are
invalid: =, *, (,) and X'FF'.

25
No more free storage available. SCBLOCK cannot be created for the specified program or routine.

CMS SUBCOMM Environment
A function is provided that lets you invoke a command (from a program) that is resolved according to the
CMS command search hierarchy. For example, the command is resolved just as though the command was
entered from the terminal. This SUBCOM function is named CMS. This command search function checks
the IMPEX and IMPCP settings of CMS SET.

SUBCOM

Chapter 5. CMS Compatibility Functions 501

The CMS SUBCOM function is defined during system initialization at IPL and remains defined during the
entire CMS session.

To pass a command to the CMS SUBCOM function, the user should define PLISTs as follows:

PLIST DS OF
 DC CL8'CMS'
EXPLIST DS 0F
 DC A(PLIST)
 DC A(BEGARGS)
 DC A(ENDARGS)
 DC A(0) (or address of CSFCB)
BEGARGS DS 0F
 DC C'command to be invoked'
ENDARGS EQU *

Register 1 must contain the address of PLIST and a high-order byte of X'02'. Register 0 must contain the
address of the extended PLIST. Having established the PLIST and register information the user issues an
SVC 202. The X'02' in the high-order byte of register 1 indicates that this is a call to a previously defined
SUBCOM.

The fourth word of the extended plist is used for recursion control as follows:

• To inhibit the recursion of execs, the word must be the address of a CSFCB containing a pointer to the
8-byte name of the current exec.

• To allow recursion of execs, the word must be zero (that is, there is no CSFCB).

This function can also be invoked using the CMSCALL macro specifying CALLTYP=CMS.

SUBCOM

502 z/VM: 7.3 CMS Macros and Functions Reference

TODACCNT

Purpose

Use the TODACCNT function to issue a DIAGNOSE code X'70' for activating the time-of-day clock
accounting interface. Using the TODACCNT function helps to avoid DIAGNOSE code X'70' calls (a
specification exception). For more information on the DIAGNOSE code X'70' call, refer to z/VM: CP
Programming Services.

The TODACCNT function has two subfunctions, ENABLE and QUERY.

• ENABLE tells CMS to issue a DIAGNOSE code X'70' instruction to indicate to CP that the virtual machine
wishes to receive timing information. Each time the virtual machine is dispatched, CP provides the
accumulated processor time the virtual machine has used and the time-of-day that the virtual machine
was dispatched. This information is stored in a 16-byte area in page zero. Refer to Table 25 on page
503.

• QUERY function returns the 16 bytes of timing information supplied by CP as a result of the enable
function.

TODACCNT ENABLE is executed from a program through an SVC 202 with the following parameter list:

PLISTE DS OD
 DC CL8'TODACCNT'
 DC CL8'ENABLE' ENABLE function
 DC F'0' Address of timing information in
* page zero is returned here
* (provided the return code is 0 or 4).

TODACCNT QUERY is executed from a program through an SVC 202 with the following parameter list:

PLISTQ DS OD
 DC CL8'TODACCNT'
 DC CL8'QUERY' QUERY function
 DC 2D'0' Timing information (16-bytes) will
* be transferred from page zero
* (provided the return code is 0).

TODACCNT 16 byte output area contains the following information:

Table 25. TODACCNT 16-byte timing information

8-bytes 8-bytes

TOTCPU TOD CLOCK

Total processor time (TOTCPU) is in TOD clock units. For more information on the TOD clock and its unit of
measurement, see Enterprise Systems Architecture/390 Principles of Operation (publibfp.dhe.ibm.com/
epubs/pdf/dz9ar008.pdf).

Usage Notes

1. The parameter list must be on a double-word boundary.
2. An error return address must be supplied in the 4 bytes immediately following the SVC 202 instruction.

If the return code (register 15) contains a nonzero value after returning from the SVC call, control
passes to the address specified unless the address is equal to 1. If the address is 1, return is made to
the next instruction after the DC AL4(1) instruction.

TODACCNT

Chapter 5. CMS Compatibility Functions 503

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9ar008.pdf

Return Codes
Register 15 contains one of the following codes.

Return codes for the ENABLE subfunction:
Code

Meaning
0

ENABLE function successfully completed. The address of the 16-byte area in page zero is returned in
the parameter list.

4
ENABLE function has already been issued. The address of the 16-byte area in page zero is returned in
the parameter list.

20
DIAGNOSE code X'70' has already been issued. CMS is not able to return the timer area address.

Return codes for the QUERY subfunction:
Code

Meaning
0

QUERY function successfully completed. The 16 bytes of timer information has been transferred from
page zero to the parameter list.

12
ENABLE function has not been issued.

Return codes for the ENABLE and QUERY functions:
Code

Meaning
16

Invalid function specified. Valid functions are ‘ENABLE ’ or ‘QUERY ’. This should be an 8-byte field.

TODACCNT

504 z/VM: 7.3 CMS Macros and Functions Reference

WAITRD

Purpose

Note: The LINERD macro supersedes the WAITRD function. WAITRD continues to work, but from below
the 16 MB line only. It does not support 31-bit addressing.

Use the WAITRD function to read a line of input from the virtual machine console, the program stack or
the terminal input buffer. Use CMSCALL with the following parameter list to execute WAITRD from an
assembler language program:

PLIST DS 0F
 DC CL8'WAITRD'
 DC AL1(1)
 DC AL3(input buffer address)
 DC CL1'code1'
 DC CL1'code2'
 DC AL2(length of buffer)
 DC AL4(prompt buffer address)
 DC AL4(prompt buffer length)

WAITRD first reads from the program stack. If the program stack is empty, WAITRD reads from the
terminal input buffer. If the terminal input buffer is empty, WAITRD reads from the virtual machine
console. However, if you desire, WAITRD can bypass the contents of the program stack and the terminal
input buffer and read directly from the virtual machine console.

After WAITRD reads a line of input, the line is stored in your input buffer. The input buffer address
specifies the address of this buffer.

The prompt buffer address and prompt buffer length are optional parameters. If they are used, the
prompt information is written from either the buffer specified by the prompt buffer address or your input
buffer (if the prompt buffer address is not specified). The prompt buffer length specifies the length of the
prompt information to be written prior to the read. Prompt information is written with no carriage return
and is used with TTY type devices.

Note: If the prompt parameters are used with code1 = W, Z, *, or $, the read buffer may not be used for
the prompt data because the read buffer is cleared prior to the execution of the function.

code1

The following codes specify what kind of processing WAITRD performs on lines read from the terminal
input buffer. For codes U, V, S, T, and X, you must specify a buffer length of 130 bytes in the ‘length of
buffer’ field in the WAITRD parameter list. For code Y, a buffer length of 255 must be specified.
Code

Meaning
U

Reads a logical line, pads it with blanks, and translates it to uppercase.
V

Reads a logical line and translates it to upper case; does not pad with blanks.
S

Reads a logical line and pads it with blanks.
T

Reads a logical line; does not pad with blanks.
X

Reads a physical line.

WAITRD

Chapter 5. CMS Compatibility Functions 505

Y
Reads a logical line, pads with blanks to 255, does no uppercase translation and does not do SET
INPUT translation.

The following codes specify what kind of processing WAITRD performs on lines read from the program
stack. The length of the input buffer may be up to 255 bytes.
Code

Meaning
W

Reads a physical line; performs no uppercase translation or padding with blanks.
Z

Reads a physical line and translates it to upper case; does not pad with blanks.

Use the following codes when you use APL under CMS. The length of the buffer may be up to 2030 bytes.
Code

Meaning
*

Reads a physical line into the caller's buffer. (See Usage Note 4.)
$

Reads a physical line into the caller's buffer. (See Usage Note 4.)

code2

Code
Meaning

B
Write the prompt information before the read, and read a line of input directly from the virtual
machine console.

D
Read a line of input directly from the virtual machine console.

P
Write prompt information before the read.

binary zeros
There is no prompt information, and do not read a line of input directly from the virtual machine
console.

The prompt buffer address and the prompt buffer length are specified only if code2 is B or P.

Usage Notes

1. Specify the input buffer length as the last parameter in the WAITRD parameter list. Upon completion of
the WAITRD function, the ‘number of bytes’ field contains the number of bytes read.

2. WAITRD does not perform logical line editing when reading a physical line.

WAITRD performs line editing on lines read from the terminal input buffer (lines typed at the terminal),
unless code X is specified; WAITRD does not perform logical line editing when you specify code X.
WAITRD does not perform line editing (except uppercase translation, if requested) on lines read from
the program stack.

3. Lines typed at the terminal (and stacked in the terminal input buffer) are scanned by CP for logical
line editing characters. Logical line editing characters are set by the CP TERMINAL command. The line
editing characters may be set for:

Chardel
Linedel
Linend
Escape

WAITRD

506 z/VM: 7.3 CMS Macros and Functions Reference

In addition, CMS scans the lines for the following two hexadecimal characters:
X‘00’ -

interpreted as the end of the physical line. Any character(s) to the right of this hexadecimal
character is ignored.

X‘15’ -
interpreted as the end of the logical line. Any character(s) to the right of this hexadecimal character
is interpreted as a new line.

4. For code $, an attention interrupt during a read operation signals the end of the line and does not
result in a restart of the read. For code *, an attention interrupt during a read results in a restart of the
read operation.

Return Codes
Code

Meaning
0

Function completed successfully.
2

Invalid code. Read not completed.
4

Code=$. An attention interruption ended the read operation.

WAITRD

Chapter 5. CMS Compatibility Functions 507

WAITRD

508 z/VM: 7.3 CMS Macros and Functions Reference

Appendix A. Simplified RACROUTE Macro Functions

CMS applications can access the following RACROUTE macro functions, which support REXX, assembler,
and C callers. The external interfaces (services) described in this section provide a subset of each
macro function. Not every RACROUTE macro parameter is available, and not every value of a particular
parameter is supported.

The following RACROUTE functions are available to the external interfaces:
REQUEST=STAT

Checks whether the FACILITY class is active.
REQUEST=AUTH

Checks whether a user has access to a given resource.
REQUEST=AUDIT

Creates GENERAL audit records.

For each function, the calling application is responsible for setting up the necessary ESM connection –
for example by calling RPIUCMS INIT – and for documenting the necessary ESM-specific configuration
actions. For example, if you are using RACF as the ESM, the caller must give REQUEST=STAT users READ
authority to the FACILITY class ICHCONN profile, which is required to successfully invoke the RACROUTE
function, and must give REQUEST=AUTH and REQUEST=AUDIT users UPDATE authority to ICHCONN.

For a complete description of these RACROUTE macro functions and the requirements for calling them,
see z/VM: Security Server RACROUTE Macro Reference.

External Interfaces Supported for REXX Callers
For REXX callers, IBM provides the following supported external interfaces:

• The DMSWRAUD EXEC constructs a string containing the service module parameters and metadata
used by the DMSWRRAC EXEC to add an entry to the ESM's security audit log. See “DMSWRAUD” on
page 510.

• The DMSWRAUT EXEC constructs a string containing the service module parameters and metadata
used by the DMSWRRAC EXEC to test a user's authorization to a resource at a given access level.
“DMSWRAUT” on page 511.

• The DMSWRESM EXEC constructs a string containing the service module parameters and metadata
used by the DMSWRRAC EXEC to verify an ESM resource class is active. See “DMSWRESM” on page
510.

• The DMSWRRAC EXEC is a service wrapper. You can either call it or write your own equivalent. Given
an argument string, it manages all the CMS event interactions, calls the service module, and makes the
service module's output available in a convenient format. “DMSWRRAC” on page 512.

• DMSWBRAC COPY, a binding file that allows application callers to use symbolic names. See
“DMSWBRAC COPY” on page 510.

IBM recommends that you use these external interfaces in order to reduce your implementation effort.
While you are allowed to call the service modules without these interfaces, doing so means that you will
have to write and debug more code than would otherwise be necessary. IBM installs these EXECs and
binding files on the MAINT 193 disk.

© Copyright IBM Corp. 1991, 2025 509

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

IBM-Provided Binding Files

DMSWBRAC COPY
IBM provides the DMSWBRAC COPY binding file to define REXX variables that your REXX EXECs can
re-use. All variables defined in this file are part of the stem variable "dmswbrac.". Before a REXX EXEC
can access these variables, it must call the CMS APILOAD service, passing DMSWBRAC as the argument.

Example

Call APILOAD "DMSWBRAC" /* Bind constants into dmswbrac. stem */

IBM-Provided REXX EXECs

DMSWRESM
The DMSWRESM EXEC constructs a string containing the service module parameters and metadata used
by the DMSWRRAC EXEC to verify an External Security Manager (ESM) resource class is active.

Input
DMSWRESM EXEC input consists of:

• Event type: "VMRACROUTESTAT” or dmswbrac.0EventNameReqStat
• Subsystem name
• Requestor name
• Class: only the FACILITY resource class is supported by the DMSWRESM EXEC. You specify this class

by passing a value of "FACILITY" or by using the variable defined in the DMSWBRAC COPY binding file
(dmswbrac.0ClassNameFacility).

DMSWRESM's input parameters exactly match the input parameters of the RACROUTE REQUEST=STAT
module, DMSWSESM.

Output
The resulting value is a blank-delimited data string suitable for the DMSWRRAC EXEC parameter
"VMRACROUTESTAT DMSWSESM plist_data".

Example
For an example of using the DMSWRESM EXEC in conjunction with the DMSWRRAC EXEC, see “Calling
Using the IBM-Provided REXX EXECs” on page 519.

DMSWRAUD
The DMSWRAUD EXEC constructs a string containing the service module parameters and metadata used
by the DMSWRRAC EXEC to add an entry to the ESM's security audit log.

Input
The DMSWRAUD input parameters are:

• Event name: "VMRACROUTEAUDIT" or dmswbrac.0EventNameReqAudit
• Subsystem name
• Requestor name

510 z/VM: 7.3 CMS Macros and Functions Reference

• Audit event type: only general events are currently supported by the DMSWRAUD EXEC. You specify
general events by passing a value of "GENERAL" or by using the variable you defined in the DMSWBRAC
COPY binding file (dmswbrac.0AuditEventName).

• Event qualifier code: RACROUTE treats this value as installation-defined, but only supports a limited set
of values. It is the caller's responsibility to ensure uniqueness across callers if your goal is to be able to
map an audit log entry back to an application based on the entry's event qualifier value.

If you are using SMAPI, when its authorization policy allows the use of both ESM and the SMAPI
authorization list for request authorization, SMAPI can call this service with the following event qualifier
codes:

00000001x or dmswbrac.0AuditEventQualifierAuthListSuccess
00000002x or dmswbrac.0AuditEventQualifierAuthListUnauthorized

• Class: only the FACILITY resource class is supported by the DMSWRAUD EXEC. You specify this class
by passing a value of "FACILITY" or by using the variable defined in the DMSWBRAC COPY binding file
(dmswbrac.0ClassNameFacility).

• Resource name: the resource name passed to the RACROUTE ENTITYX keyword. This can be any value
that the ENTITYX parameter accepts as an entity name.

• Log string (optional): any string up to 255 bytes.

Output
The DMSWRAUD output consists of a blank delimited data string suitable for the DMSWRRAC EXEC
parameter "VMRACROUTEAUDIT DMSWSAUD plist_data". (See “Parameter List (plist) Layout for Input
to DMSWRRAC” on page 512.)

Usage Information
See “Creating an Audit Log Entry for a Resource in the FACILITY Class” on page 515.

DMSWRAUT
The DMSWRAUT EXEC constructs a string containing the service module parameters and metadata used
by the DMSWRRAC EXEC to test a user's authorization to a resource at a given access level.

Input
The DMSWRAUT input parameters are:

• Event name: "VMRACROUTEAUTH" or dmswbrac.0EventNameReqAuth
• Subsystem name
• Requestor name
• Requesting user ID: user ID whose authorization is to be tested.
• Class: only the FACILITY resource class is supported by the DMSWRAUT EXEC. You specify this class

by passing a value of "FACILITY" or by using the variable defined in the DMSWBRAC COPY binding file
(dmswbrac.0ClassNameFacility).

• Resource name: the resource name passed to the RACROUTE ENTITYX keyword. This can be any value
that the ENTITYX parameter accepts as an entity name.

• Application name: the application name passed to the RACROUTE APPL keyword. This can be any value
that the APPL parameter accepts as an application name.

• The installation exit parameters passed to the RACROUTE INSTLN keyword. Must be valid according to
the rules for that keyword.

• Log string: any string (up to 255 bytes)
• Authority level (optional). Can be "READ" (the default), "UPDATE", "CONTROL", or "ALTER".

Appendix A. Simplified RACROUTE Macro Functions 511

Output
The DMSWRAUT output consists of a blank delimited data string suitable for the DMSWRRAC EXEC
parameter "VMRACROUTEAUTH DMSWSAUT plist_data". (See “Parameter List (plist) Layout for Input to
DMSWRRAC” on page 512.)

Usage Information
See “Testing a User's Authority to Access a Resource in the FACILITY Class” on page 517.

DMSWRRAC
The DMSWRRAC EXEC is a call interface to RACROUTE functions. DMSWRRAC calls a function (a module
or an EXEC) by using as its input the output string produced by the DMSWRESM EXEC argument string
constructor.

Input
DMSWRRAC EXEC input consists of:

• The name of a stem variable where its output will be stored. This variable is set in the caller's variable
pool.

• An environment flag (1 for SMAPI, 0 otherwise).
• An event monitor token (an integer value or, to have this EXEC create a new monitor, two double quotes

("").
• The argument string constructor's output.

Output
DMSWRRAC EXEC output includes:

• A return code, as a REXX function result that can be explicitly assigned to a variable as shown
in “DMSWRRAC EXEC Stable Results” on page 519, or that will be implicitly assigned to the
"result" variable. The binding file DMSWBRAC COPY provides symbolic names beginning with
"dmswbrac.0dmswrrac" for values that the DMSWRRAC EXEC return code can consist of, and (for the
case when its return code is zero) names to index into the stem variable outputs.

• Output data that is also stored in the stem variable provided on input.

Usage Information
For an example with output and return codes, see “Calling Using the IBM-Provided REXX EXECs” on page
519.

Parameter List (plist) Layout for Input to DMSWRRAC
The parameter list (plist) used by the DMSWRRAC EXEC is a "direct format" plist. (See “Direct Format
Argument String: Eye Catcher VALU” on page 522). The entire plist is contained in one section of storage.
The DMSWRRAC EXEC performs verification of the input plist_data.

Data Size in Bytes Description

"VALU" 4 Key for direct format argument string

01x 1 Version

00x 1 Reserved

parm_offset_start 2 Offset to parameter offset list

num 4 Count of parameters

512 z/VM: 7.3 CMS Macros and Functions Reference

Data Size in Bytes Description

parm_values offset start 2 Offset to parameter values

0000x 2 Reserved

offset 1 4 Offset to the start of the first value

offset 1b 4 Offset to the byte past the end of the first value

... ...

offset n 4 Offset to the start of the last value

offset nb 4 Offset to the byte past the end of the last value

parm value 1 ... Data for first parameter

parm value 2 ... Data for last parameter

… parm value n ... Data for last parameter

Return Codes
A return code is returned along with diagnostics in the "*.0diag." variables, where the asterisk is a
wildcard character. "*.0diag." represents any variable ending with ".0diag." Examples of errors are the
following:

• Parameter list eye catcher invalid
• Parameter list version invalid
• Parameter list reserved bits non-zero
• Parameter list too short
• Parameter value too short
• Parameter value ends past the end of the parameter list

For more information, see “Return Codes and Reason Codes” on page 524.

External Interfaces supported for REXX, Assembler, and C Callers

Testing Whether a Class is Active with DMSWSESM
The DMSWSESM module provides CMS application access to the RACROUTE REQUEST=STAT (Determine
RACF Status) macro function. For a complete description of this macro function, see z/VM: Security Server
RACROUTE Macro Reference.

Input
The input to this module can be in direct or in indirect format. For more information, see “Calling Without
Using the IBM-Provided REXX EXECs” on page 522.

Usage Information
Use the following information to determine whether a class is active. Note that only the FACILITY class is
currently supported. If you have a requirement to test other classes, please provide that feedback to IBM.

Input Parameter Description

Result event name Contains the RACROUTE macro call results. Its value must
be the EBCDIC string VMRACROUTESTAT.

Appendix A. Simplified RACROUTE Macro Functions 513

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

Input Parameter Description

Subsystem name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE SUBSYS= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the calling
application for diagnostic purposes.

Requestor name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE REQSTOR= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the point of
call for diagnostic purposes.

Resource class name Passed through to the ESM. Its value must be the EBCDIC
string FACILITY.

Argument String Constructors

DMSWRESM EXEC on MAINT 193 For REXX callers

Service Wrappers

DMSWRRAC EXEC on MAINT 193 For REXX callers

Binding Files

DMSWBRAC COPY on MAINT 193 For REXX callers

Samples

DMSWSSMI EXEC For REXX callers

Module

DMSWSESM

Example
The following is an example of the RACROUTE parameters used by this module:

CALLESM RACROUTE REQUEST=STAT,RELEASE=1.9.2,MF=(E,StatPL),
 DECOUPL=YES,
 CLASS=ClassInput,
 SUBSYS=SubsysInput,
 REQSTOR=ReqstorInput,
 WORKA=RACROUTE_WorkArea

Testing Whether the FACILITY Class is Active
Use the following information to determine whether a class is active. Note that only the FACILITY class is
currently supported. If you have a requirement to test other classes, please provide that feedback to IBM.

Input Parameter Description

Result event name Contains the RACROUTE macro call results. Its value must
be the EBCDIC string VMRACROUTESTAT.

Subsystem name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE SUBSYS= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the

514 z/VM: 7.3 CMS Macros and Functions Reference

Input Parameter Description

RACROUTE macro. Its value should identify the calling
application for diagnostic purposes.

Requestor name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE REQSTOR= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the point of
call for diagnostic purposes.

Resource class name Passed through to the ESM. Its value must be the EBCDIC
string FACILITY.

Argument String Constructors

DMSWRESM EXEC on MAINT 193 For REXX callers

Service Wrappers

DMSWRRAC EXEC on MAINT 193 For REXX callers

Binding Files

DMSWBRAC COPY on MAINT 193 For REXX callers

Samples

DMSWSSMI EXEC For REXX callers

Module

DMSWSESM

Example
The following is an example of the RACROUTE parameters used by this module:

CALLESM RACROUTE REQUEST=STAT,RELEASE=1.9.2,MF=(E,StatPL),
 DECOUPL=YES,
 CLASS=ClassInput,
 SUBSYS=SubsysInput,
 REQSTOR=ReqstorInput,
 WORKA=RACROUTE_WorkArea

Creating an Audit Log Entry with DMSWSAUD
The DMSWSAUD module provides CMS application access to the RACROUTE REQUEST=AUDIT (General-
Purpose Security-Audit) macro function. For a complete description of this macro function, see z/VM:
Security Server RACROUTE Macro Reference.

Input
The input to this module can be in direct or in indirect format. For more information, see “Calling Without
Using the IBM-Provided REXX EXECs” on page 522.

Creating an Audit Log Entry for a Resource in the FACILITY Class
Use the following information to create an audit log entry. Note that only the FACILITY class is currently
supported. If you have a requirement to test other classes, please provide that feedback to IBM.

Appendix A. Simplified RACROUTE Macro Functions 515

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

Input Parameter Description

Result event name Contains the RACROUTE macro call results. Its value must
be the EBCDIC string VMRACROUTEAUDIT.

Subsystem name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE SUBSYS= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the calling
application for diagnostic purposes.

Requestor name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE REQSTOR= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the point of
call for diagnostic purposes.

Audit log event name Passed through to the ESM. Its value must be the EBCDIC
string GENERAL.

Audit log event qualifier Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE EQVAL= keyword. In
addition, it must be a 4-byte binary value.

Note: When SMAPI logs authorization decisions mediated
by the SMAPI authorization process, it specifies an event
qualifier of 1. Other CMS applications should use a
different value if you want their audit records to be
differentiated from the ones generated by SMAPI calls.
For more information, see the section "Configuring an
ESM for SMAPI Authorization Decisions" in z/VM: Systems
Management Application Programming.

Resource class name Passed through to the ESM. Its value must be the EBCDIC
string FACILITY.

Resource name Passed through to the ESM. Its value must be an
EBCDIC string. The service module creates the length-
value structure that the RACROUTE macro requires for the
RACROUTE ENTITYX= keyword.

Log string Passed through to the ESM. Its value must be an
EBCDIC string. The service module creates the length-
value structure that the RACROUTE macro requires for the
RACROUTE LOGSTR= keyword. Its length can be zero, but
it must not be omitted.

Output return and reason codes

When using the service wrapper See “Calling Using the IBM-Provided REXX EXECs” on
page 519. If the service wrapper's result is 0, the
ESM's results are shown in “Calling Without Using the
IBM-Provided REXX EXECs” on page 522.

When calling the service module directly The service module's outputs are shown in “Calling
Without Using the IBM-Provided REXX EXECs” on page
522.

Argument String Constructors

DMSWRAUD EXEC on MAINT 193 For REXX callers

516 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3

Input Parameter Description

Service Wrappers

DMSWRRAC EXEC on MAINT 193 For REXX callers

Binding Files

DMSWBRAC COPY on MAINT 193 For REXX callers

Samples

DMSWSXIA EXEC For REXX callers

Module

DMSWSAUD

Example
The following is an example of the RACROUTE macro invocation parameters:

CALLESM RACROUTE REQUEST=AUDIT,RELEASE=1.9.2,MF=(E,AuditPL),
 DECOUPL=YES,
 EVENT=EventNameInput,
 EVQUAL=(2),
 CLASS=ClassInput,
 ENTITYX=ResourceNameInput,
 SUBSYS=SubsysInput,
 REQSTOR=ReqstorInput,
 LOGSTR=LogStringInput,
 WORKA=RACROUTE_WorkArea

For more information, see “Calling Using the IBM-Provided REXX EXECs” on page 519.

Testing a User's Authority to Access a Resource with DMSWSAUT
The DMSWSAUT module provides CMS application access to the RACROUTE REQUEST=AUTH (Check
RACF Authorization) macro function. For a complete description of this macro function, see z/VM: Security
Server RACROUTE Macro Reference.

Input
The input to this module can be in direct or in indirect format. For more information, see “Calling Without
Using the IBM-Provided REXX EXECs” on page 522.

Testing a User's Authority to Access a Resource in the FACILITY Class
Use the following information to test a user's authority to access a resource. Note that only the FACILITY
class is currently supported. If you have a requirement to test other classes, please provide that feedback
to IBM.

Input Parameter Description

Result event name Contains the RACROUTE macro call results. Its value must
be the EBCDIC string VMRACROUTEAUTH.

Subsystem name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE SUBSYS= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the calling
application for diagnostic purposes.

Appendix A. Simplified RACROUTE Macro Functions 517

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3

Input Parameter Description

Requestor name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE REQSTOR= keyword.
This value will not be used for ESM request routing; the
service module always specifies DECOUPL=YES on the
RACROUTE macro. Its value should identify the point of
call for diagnostic purposes.

User ID User ID whose access to the resource will be tested. The
service module passes this value through to the ESM.
Its value must comply with all rules documented for the
RACROUTE USERID= keyword.

Resource class name Passed through to the ESM. Its value must be the EBCDIC
string FACILITY.

Resource name Passed through to the ESM. Its value must be an
EBCDIC string. The service module creates the length-
value structure that the RACROUTE macro requires for the
RACROUTE ENTITYX= keyword.

Application name Passed through to the ESM. Its value must comply with all
rules documented for the RACROUTE APPL= keyword.

Installation exit parameters Passed through to the ESM. Its value must be an EBCDIC
byte sequence. The service module creates the length-
value structure that the RACROUTE macro requires for the
RACROUTE INSTLN= keyword. Its length can be zero, but
it must not be omitted.

Log string Passed through to the ESM. Its value must be an
EBCDIC string. The service module creates the length-
value structure that the RACROUTE macro requires for the
RACROUTE LOGSTR= keyword. Its length can be zero, but
it must not be omitted.

Authority level Passed through to the ESM. Its value must be an EBCDIC
string. The service module translates the value to the
corresponding value that the RACROUTE macro requires
for the RACROUTE ATTR= keyword. It can be omitted; if
it is omitted, the default is READ. If it is specified, then
its value must be one of the string values permitted on
ATTR= (READ, UPDATE, CONTROL, or ALTER). It cannot be
a register.

Argument String Constructors

DMSWRAUT EXEC on MAINT 193 For REXX callers

Service Wrappers

DMSWRRAC EXEC on MAINT 193 For REXX callers

Binding Files

DMSWBRAC COPY on MAINT 193 For REXX callers

Samples

DMSWSXIA EXEC For REXX callers

Module

518 z/VM: 7.3 CMS Macros and Functions Reference

Input Parameter Description

DMSWSAUT

Example
The following is an example of the RACROUTE macro invocation parameters:

CALLESM RACROUTE REQUEST=AUTH,RELEASE=1.9.2,MF=(E,AuthPL),DECOUPL=YES,
 USERID=UserIdInput,
 CLASS=ClassInput,
 ENTITYX=ResourceNameInput,
 ATTR=(3),
 LOG=ASIS,LOGSTR=LogStringInput,
 SUBSYS=SubsysInput,
 REQSTOR=ReqstorInput,
 APPL=ApplNameInput,
 INSTLN=InstallationExitParmsInput,
 WORKA=RACROUTE_WorkArea

For more information, see “Calling Using the IBM-Provided REXX EXECs” on page 519.

Calling Using the IBM-Provided REXX EXECs
Using the external interfaces described in “External Interfaces Supported for REXX Callers” on page 509
reduces the amount of application code necessary to invoke the services. To use these interfaces, the
process you need to follow is:

1. Be aware of the application specific parameters you want to use.
2. Call the appropriate argument string constructor to serialize the parameters.
3. Call the appropriate service wrapper to invoke the RACROUTE macro.
4. Check the output.

For example, the following REXX code tests whether the FACILITY class is active:

/* Sample REXX code to test whether the FACILITY class is active */
 /* Parameters can be hard-coded on the following line */
 statParms = DMSWRESM "VMRACROUTESTAT" , "MYSUBSYS" , "MYREQSTR" , "FACILITY"
 wrracResult = DMSWRRAC "stat." , "0" , "" , statParms

DMSWRESM constructs a string containing the service module parameters and metadata used by
DMSWRRAC EXEC to call the correct service module. DMSWRESM's input parameters exactly match
the RACROUTE REQ=STAT module DMSWSESM's input parameters. (See “Calling Without Using the IBM-
Provided REXX EXECs” on page 522.) All the argument string constructors follow this same pattern. They
have no return codes, and their only output is the result string that you pass into the service wrapper
DMSWRRAC.

DMSWRRAC EXEC takes several inputs: the name of a stem variable where its outputs should be stored,
an environment flag, and the argument string constructor's output. When calling DMSWRRAC EXEC,
always pass "0" for the environment flag. If you specify other values, DMSWRRAC will make incorrect
assumptions about the run-time environment.

Here are two distinct classes of output from DMSWRRAC EXEC: the stable results of the call, and detailed
diagnostics intended to help when things go wrong.

DMSWRRAC EXEC Stable Results
The contents of the stable results values stem variables are an intended programming interfaces,
meaning future changes will be compatible. The DMSWBRAC COPY file contains variables to help further
isolate application code from future changes. The contents of the stable results labels stem variables are
not considered a stable interface; they may change without warning. The following shows sample code to

Appendix A. Simplified RACROUTE Macro Functions 519

format the output of DMSWRRAC EXEC. The stat stem variable used in the Do loop must match the name
of the stem variable passed as the first argument to DMSWRRAC EXEC.

if wrracResult \= dmswbrac.0dmswrracResultSuccess then do
 say "Output"
 do i = 1 to stat.0label.0
 say " " stat.0label.i ":" stat.0value.i
 end
end

The stat parameter in the last line of the previous example ("Sample REXX code to test whether the
FACILITY class is active") causes the DMSWRRAC EXEC to write its output lines to that REXX stem
variable, which the above Do loop is printing out. These results are valid only if DMSWRRAC's result is 0.

The complete set of its results is listed below, and each one has a binding in DMSWBRAC COPY.
Diagnostic results are usually available regardless of the return code.

The code example above does not have to change if, for example, in the future DMSWRRAC EXEC adds
a new output. However, most programmatic uses need to know where in the stem variable particular
information is found, and the corresponding code should depend only on stable interfaces so that it
continues to work in the future. Consider the example of finding the SAF return code. The intended
method for doing that, since it depends only on stable interfaces, is to use the bindings in DMSWBRAC
EXEC, as shown in the following example:

/* REXX */
Call APILOAD "DMSWBRAC"
tailModRc = dmswbrac.0dmswrracOutputModRcIndex
tailSafRc = dmswbrac.0dmswrracOutputSafRcIndex

/* 'Gather parameters here means hardcoding them on the following line */
statParms = DMSWRESM "VMRACROUTESTAT" , "MYSUBSYS" , "MYREQSTR" , "FACILITY"
wrracResult = DMSWRRAC "stat." , "0" , "" , statParms
if wrracResult \= dmswbrac.0dmswrracResultSuccess then do
 ...trace and return to caller
end
if stat.0value.tailModRc \== dmswbrac.0dmswrracOutputModRcSuccess then do
 ...trace and return to caller
end
safrc = stat.0value.tailSafRc

Instead of using DMSWBRAC-defined variables, the code could have tested the value of the diagnostic
output labels. IBM does not recommend doing this, however, because those labels might change at any
time. The following example replaces DMSWBRAC-defined variables with other techniques that rely on
unstable parts of the results, and these techniques should be avoided.

/* REXX */
/* 'Gather parameters' here is just hard-coding them on the following line */
statParms = DMSWRESM "VMRACROUTESTAT" , "MYSUBSYS" , "MYREQSTR" , "FACILITY"
wrracResult = DMSWRRAC "stat." , "0" , "" , statParms
if wrracResult \= 0 then do /* should use constant */
 ...trace and return to caller
end
modrc = -1
safrc = -1
do i = 1 to stat.0label.0
 say " " stat.0label.i ":" stat.0value.i
 if stat.0label.i = "DMSWSESM rc (decimal)" then modrc = stat.0value.i /* label could change!
*/
 if stat.0label.i = "SAF rc (decimal)" then safrc = stat.0value.i /* label could change!
*/
end
if modrc \== 0 then do
 ...trace and return to caller
end

Return Code (Decimal) Description

0 Normal completion. Results are available in the _input-
stem_.0value. stem variable.

520 z/VM: 7.3 CMS Macros and Functions Reference

Return Code (Decimal) Description

16 Failed trying to call the service module.

50 An unrecognized event name prefix was provided in the input
parameters. Only limited validation is done; not all such cases
are detected.

60 An unrecognized service module name prefix was provided in the
input parameters. Only limited validation is done; not all cases
are detected.

100 Unable to create an event monitor. The associated return/reason
codes are available in the diagnostic results.

104 EventWait failure. The associated return/reason codes are
available in the diagnostic results.

108 EventRetrieve failure. The associated return/reason codes are
available in the diagnostic results.

112 Event monitor reset failure. The associated return/reason codes
are available in the diagnostic results.

116 Event monitor delete failure. The associated return/reason codes
are available in the diagnostic results.

200 Unable to copy results to the caller's variable pool.

204 Unable to copy result labels to the caller's variable pool.

208 Unable to copy diagnostic results to the caller's variable pool.

IBM recommends that you use the DMSWBRAC bindings. The previous example and the DMSWSSMI EXEC
on the MAINT193 disk show the use of these bindings.

DMSWRRAC EXEC makes the following service module results available in the stem variable you supply
in the first parameter when you call DMSWRRAC EXEC. DMSWBRAC COPY contains bindings for each
of them, isolating your client code from future changes to the bound values. Results are valid only if
DMSWRRAC's result is 0.

Table 26. Service Module Results

Item Description

Service module return code The return code from the service module. These are listed in
“Return Codes and Reason Codes” on page 524, primarily for
diagnostic purposes. Most code will only need to verify that this
value is zero before using the SAF/ESM outputs below. When the
service module return code is non-zero, the SAF/ESM outputs in
this table are undefined.

Service module reason code The reason code from the service module. These are listed in
“Return Codes and Reason Codes” on page 524, primarily for
diagnostic purposes. Most code will use this only for diagnostic
purposes, and only when the corresponding return code is non-
zero.

SAF return code Values are documented in the ESM publication's description
of the RACROUTE macro with a REQ= value corresponding
to the service module. That is, REQ=STAT for class-active
tests, REQ=AUTH for authorization tests, and REQ=AUDIT when
creating audit log records

Appendix A. Simplified RACROUTE Macro Functions 521

Table 26. Service Module Results (continued)

Item Description

ESM return code Values are documented in the same place as the SAF return
code.

ESM reason code Values are documented in the same place as the SAF return
code.

DMSWRRAC EXEC Diagnostic Results
The contents of the diagnostic strings are not considered a stable result. The following shows sample
code to format the output of DMSWRRAC EXEC:

if datatype(o.0diag.0) = "NUM" then do
 say "Diagnostics"
 do i = 1 to o.0diag.0
 say " " o.0diag.i
 end
end

Calling Without Using the IBM-Provided REXX EXECs
If the external interfaces do not meet your needs, or are not available for your calling language, you can
call the service modules directly using the information in this section. All of the modules follow the same
pattern for inputs and outputs.

Each module uses standard CMS linkage, and requires an EPLIST as input. The EPLIST argument string,
delimited by EPLARGBG and EPLARGND, consists of a header, offsets to each parameter's starting and
ending positions within the argument string, and the value of each parameter. An eye catcher within
the header determines the format used to interpret the rest of the argument string, due to different
supported-language string termination conventions.

Direct Format Argument String: Eye Catcher VALU
REXX callers must use this format. Assembler callers can use this format or the method described in
“Indirect Format Argument String: Eye Catcher ADRL” on page 523. C callers can build this format in a
private storage buffer, then build a separate indirect format argument string that points to the direct one.

Note: If you want confirmation that your parameter list is built properly, you can call the service's
argument string constructors with the same values and compare its result against your results.

Header
The header consists of the following:

• 4-byte parameter list eye catcher containing the EBCDIC string "VALU"
• 1-byte binary version number. Currently this value must be 01x.
• 1-byte binary field reserved for future use. Its value must be binary zeros.
• 2-byte zero-based offset from the first byte of the eye catcher to the first byte of the parameter offsets

structure below.
• 4-byte signed binary number containing the number of parameters supplied in the argument string.

There must be one parameter offset entry for each parameter, even if the corresponding parameter
value's length is zero.

• 2-byte zero-based offset from the first byte of the eye catcher to the first byte of the parameter values
structure. See “Parameter Values” on page 523.

• 2-byte binary field reserved for future use. Its value must be binary zeros.

522 z/VM: 7.3 CMS Macros and Functions Reference

Parameter Offsets
For each parameter supplied, one entry is produced in the following format. The entries are contiguous in
storage, and ordered. Entries are implicitly numbered starting with 1; that is, the first entry describes the
first parameter's value.

• 4-byte unsigned zero-based offset from the first byte of the parameter values structure to the first byte
of the corresponding parameter's value. See “Parameter Values” on page 523.

• 4-byte unsigned zero-based offset from the first byte of the parameter values structure to the first byte
past the corresponding parameter's value. See “Parameter Values” on page 523.

Note that a parameter offset entry whose two offsets are equal describes a parameter value of length
zero.

Parameter Values
There is no internal structure to parameter values. The values can occur in the same order as the
parameter offset entries, but this is not required. Multiple parameter offset entries can describe (have
identical offsets to) a single value, allowing reuse. Values can overlap.

A single parameter's value is described as follows:

• An effective starting address – the address of the argument string, plus the header's offset to the
parameter values structure, plus the first byte offset from the corresponding parameter offset entry.

• An effective length – its effective ending address (formed in the same way as the effective starting
address, but using the past-last-byte offset), minus its effective starting address.

Note that the value's effective length is zero when the corresponding parameter offset entry contains two
equal values.

Indirect Format Argument String: Eye Catcher ADRL
C callers must build a separate direct format argument string in a private storage buffer, then build this
indirect argument string pointing to the direct one, and pass the indirect format into syscall(). REXX
callers cannot use this format, because it requires the user code to know storage addresses. Assembler
callers should use the simpler direct format instead.

Descriptor
The descriptor consists of the following:

• 4-byte parameter list eye catcher containing the EBCDIC string "ADRL".
• 8-byte printable address of a buffer containing the direct format argument string.
• 8-byte printable length of the direct format argument string.

For example, if the 31-bit address of the direct format argument string is 0x00000001, then the
address field will contain the eight characters 00000001, or F0F0F0F0F0F0F0F1 in hexadecimal.
rAcaddr.C provides a mapping of both parameter list formats along with the necessary code to call
RACROUTE REQUEST=STAT for the FACILITY class. To download rAcaddr.C, go to z/VM Downloads
(https://www.vm.ibm.com/download/).

Example
In the following example, output from DMSWRESM is used as input to DMSWSESM. Suppose the
DMSWSESM result is the following:

VMRACROUTESTAT DMSWSESM VALU ; ; VMRACROUTESTATTSTSTAT
TSTSTAT
FACILITY

In hexadecimal, the information above is:

Appendix A. Simplified RACROUTE Macro Functions 523

https://www.vm.ibm.com/download/
https://www.vm.ibm.com/download/

E5D4D9C1C3D9D6E4E3C5E2E3C1E340C4D4E2E6E2C5E2D440E5C1D3E4010000100000000400300000000000000000000E0000000E000
00016000000160000000E0000001E00000026E5D4D9C1C3D9D6E4E3C5E2E3C1E3E3E2E3E2E3C1E340E3E2E3E2E3C1E340C6C1C3C9
D3C9E3E8

The section above that is input to DMSWSESM (printed normally, 1 character per byte) is:

VALU ; ; VMRACROUTESTATTSTSTAT TSTSTAT FACILITY

The same information (printed as hexadecimal, with two visible characters per byte) is:

E5C1D3E4010000100000000400300000000000000000000E0000000E00000016000000160000001E0000001E00000026E5D4D9C1C3D9D6
E4E3C5E2E3C1E3E3E2E3E2E3C1E340E3E2E3E2E3C1E340C6C1C3C9D3C9E3E8

Return Codes and Reason Codes
Each module has the following same set of documented return and reason codes. After the module
returns to its caller, general purpose register 15 contains these codes. The first halfword is the return
code, the second half is the reason code. Their decimal values are shown below.

Return Code Reason Code Description

0 0 The module invoked RACROUTE, and RACROUTE's
results must be retrieved using EventRetrieve. Their
format is documented later.

4 reason The module received return code vm_evn_warning
from the EventSignal service. reason is the
corresponding EventSignal reason code. The
VMREXMTR COPY file on the z/VM system CMS disk
documents the reason code values.

8 reason The module received return code vm_evn_error from
the EventSignal service. reason is the corresponding
EventSignal reason code. The VMREXMTR COPY file on
the z/VM system CMS disk documents the reason code
values.

90 0 No ESM is installed on the system.

100 reason The header portion of the argument string is not valid.
The reason values are shown below.

n000 reason Parameter number n is not valid. n =1000 for
parameter 1, 2000 for parameter 2, and so on. The
reason values are shown below.

The following are the return codes and reason codes when the header is not valid.

Header Not Valid

Return Code Reason Code Description

100 1 The argument string is too small to be valid as a
header.

100 2 The header's version number is smaller than the
minimum that the module can process.

100 3 The header's version number is larger than the
maximum that the module can process.

100 4 The header's reserved fields are non-zero.

524 z/VM: 7.3 CMS Macros and Functions Reference

Header Not Valid (continued)

Return Code Reason Code Description

100 5 The caller supplied too few parameters, based on the
parameter list's version number.

100 6 The header's "offset to first parameter offset" field is
too large, based on the size of the argument string and
the number of parameters expected.

100 7 The header's "offset to first value offset" field is too
large, based on the size of the argument string and the
number of parameters expected.

100 8 The header's eye catcher is not a valid value.

Return Codes and Reason Codes when a Parameter is Not Valid
Divide the return code by 1000 decimal to determine which parameter is not valid; n=1000 for parameter
1, 2000 for parameter 2, and so on.

Parameter Not Valid

Return Code Reason Code Description

n000 1 Parameter is missing, and it is required.

n000 2 Parameter value extends past the end of the argument
string.

n000 3 Parameter value length is negative.

n000 4 Parameter value is shorter than the minimum required.

n000 5 Parameter value is longer than the maximum
permitted.

n000 6 Parameter value must be one of a required list, but it is
not.

n000 7 Parameter value begins before the start of the
argument string

RACROUTE Macro Request Outputs
When the RACROUTE module's return code is zero, additional outputs from the RACROUTE request
are available, as shown in Table 26 on page 521. The caller retrieves them by invoking the CMS
multitasking API EventRetrieve using the event name that IBM documents for that module. For example,
use VMRACROUTESTAT when testing whether or not a class is active via RACROUTE REQ=STAT.

Offset (Decimal) Offset
(Hexadecimal)

Length (Decimal
Bytes)

Description

00 00 4 Size of the stable output area, in bytes

04 04 4 Module return code; see “Return Codes and
Reason Codes” on page 524

08 08 4 Module return code; see “Return Codes and
Reason Codes” on page 524

12 0C 40 Printable diagnostic message

Appendix A. Simplified RACROUTE Macro Functions 525

Offset (Decimal) Offset
(Hexadecimal)

Length (Decimal
Bytes)

Description

52 34 4 SAF return code

56 38 4 ESM return code

60 3C 4 ESM return code

64 40 4 Size in bytes of the ESM log entry, if any

68 44 varies Diagnostic data that might be requested by
IBM service. Its format is undocumented.

You can use the DMSWRRAC EXEC on MAINT 193 to see an example of parsing the EventRetrieve output.
The following sample shows an outline of the necessary code, in REXX. Observe DMSWRRAC EXEC on a
live system to be sure that you see changes due to service. You can also invoke DMSWRRAC EXEC yourself
and print its diagnostic output to compare against your code, if necessary.

data_buffer_length = 4096
eventNumber = 1
do i = 1 to event_flag.0 /* set by EventWait */
 if event_flag.i >= 0 then do
 data_buffer_length = event_flag.i
 eventNumber = i
 end
end

call CSL 'EventRetrieve retcode reascode g.0eventMonitor',
 'eventNumber data_buffer data_buffer_length event_data_length'
if retcode > 0 then do
 signal ReturnToCaller
end

g.0eventData = substr(data_buffer,1,event_data_length)
parse var g.0eventData mob +4 modrc +4 modrs +4 moddiag +40 ,
 safrc +4 esmrc +4 esmrs +4 loglen +4 extra

526 z/VM: 7.3 CMS Macros and Functions Reference

Appendix B. VSE Macros

CMS simulates programming interfaces defined by the VSE operating system. The material that follows
documents CMS simulation of these programming interfaces. For information about these interfaces, see
the appropriate VSE book.

This appendix lists the VSE macros that CMS supports, including:

• VSE assembler language macros
• VSE supervisor macros
• VSE declarative macros
• VSE imperative macros.

For more information on VSE macros, see the z/VM: CMS Application Development Guide for Assembler.

VSE Assembler Language Macros Supported
Table 27 on page 527 lists the VSE assembler language macros supported by CMS/DOS. You can
assemble source programs that contain these macros under CMS/DOS, provided that you have the
macros available in either your own or a shared CMS macro library. The macros whose functions are
described in the Function column with the term no-op are supported for assembly only; when you run
programs that contain these macros, the VSE functions are not performed. To accomplish the macro
function you must run the program on a real VSE system.

Table 27. VSE Macros Supported by CMS

Macro Name SVC Number Function

CALL Pass control to another program

CANCEL 06 End processing

CDLOAD 65 Load a VSAM phase

CHECK Verify completion of a read or write operation

CLOSE/ CLOSER Deactivate a data file

CNTRL Control a physical device

COMRG 33 Return address of background partition communication region

DEQ 41 no-op

DTFxx Establish file definitions

DUMP Dump storage and registers and end processing

ENQ 42 no-op

EOJ 14 End processing normally

ERET Provide an error routine

EXCP 00 Process a channel program

EXIT PC 17 Return from program check routine

EXIT AB 95 Return from abnormal termination routine

EXTRACT 98 Retrieve PUB, storage boundaries, or CPUID information

FCEPGOUT 86 no-op

FETCH 01 Load and pass control to a phase

FETCH 02 Load and pass control to a logical transient

© Copyright IBM Corp. 1991, 2025 527

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3

Table 27. VSE Macros Supported by CMS (continued)

Macro Name SVC Number Function

FREE 36 no-op

FREEVIS 62 Release user free storage

GENL Generate a phase directory list

GET Access a sequential file

GETFLD/ MODFLD 107 Provide macro interface support for system information retrieval.

GETVCE 99 Return requested device information to output area.

GETVIS 61 Obtain user free storage

GETIME 34 Get the time of day

JDUMP Dump storage and registers and end processing

LOAD 04 Load a phase into storage

LOCK/ UNLOCK 110 Resource control

MVCOM 05 Modify bytes in the partition communication region

NOTE Manage data set access

OPEN/ OPENR Activate a data file

PAGEIN 87 no-op

PDUMP Dump storage and registers and continue processing

PFIX 67 no-op

PFREE 68 no-op

POINTR Position a file for reading

POINTS Reposition a file to its beginning

POINTW Position a file for writing

POST 40 Post the event control block

PRTOV Control printer overflow

PUT Write to a sequential file

PUTR Communicate with the system operator

READ Access a sequential file

RELPAG 85 Simulates releasing pages by setting them to binary zeros.

RELSE Skip to begin reading next block

RETURN Return control to calling program

RUNMODE 66 Check if program is running real or virtual

SECTVAL 75 Obtain a sector number

SETIME 10/24 no-op

SETPFA 71 no-op

STXIT AB 37 Provide or end linkage to abnormal ending routine

STXIT PC 16 Provide or end linkage to program check routine

STXIT IT 18 no-op

STXIT OC 20 no-op

SUBSID 105 Retrieve information on supervisor subsystem

TRUNC Skip to begin writing next block

528 z/VM: 7.3 CMS Macros and Functions Reference

Table 27. VSE Macros Supported by CMS (continued)

Macro Name SVC Number Function

TTIMER 52 Return a 0 in Register 0 (effectively a no-op)

WAIT 07 Wait for the event completion

WRITE Write to a sequential file

xxMOD Create Logical IOCS routine inline

VSE Supervisor and I/O Macros Supported by CMS/DOS
CMS/DOS supports the VSE Supervisor macros and the SAM and VSAM I/O macros to the extent
necessary to run the DOS/VS COBOL Compiler, the DOS PL/I Optimizing Compiler, and DOS/VS RPG II
Compiler under CMS/DOS. CMS/DOS supports VSE Supervisor macros described in the publication VSE
Macro Reference.

Because CMS is a single-user system executing in a virtual machine with virtual storage, VSE operations,
such as multitasking, that cannot be simulated in CMS are ignored.

The following information deals with the type of support that CMS/DOS provides in the simulation of VSE
Supervisor and Sequential Access Method I/O macros.

Supervisor Macros
CMS/DOS supports physical IOCS macros and control program function macros for VSE. Table 28 on page
529 lists the physical IOCS macros and describes their support. Table 29 on page 529 lists the control
program function macros and their support.

Table 28. Physical IOCS Macros Supported by CMS/DOS

Macro Support

CCB (command control block) The CCB is generated. CCW=FORMAT1 is supported only for I/O to the
console or to OS or DOS formatted DASD.

IORB (input/output request block) The IORB is generated. IOFLAG=FORMAT1 is supported only for I/O to
the console or to OS or DOS formatted DASD.

EXCP (process channel program) The REAL operand is not supported. All other operands are supported.

WAIT Supported. Issued whenever your program requires an I/O operation
(started by an EXCP macro) to be completed before execution of program
continues.

SECTVAL (sector value) Supported for VSAM.

OPEN/OPENR Supported. Activates a data file.

LBRET (label processing return) Return to the $$B-transient after an SVC 8 was issued to give control to
the problem program.

FEOV (forced end of volume) Not supported.

SEOV (system end of volume) Not supported.

CLOSE/CLOSER Supported. Deactivates a data file.

Table 29. SVC Support Routines and Their Operation

Function/Macro SVC No. Dec Hex Support

EXCP 0 0 Used to start an I/O operation on a device
in the CMS/DOS environment.

Appendix B. VSE Macros 529

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

FETCH 1 1 Used to bring a problem program phase
into user storage and to start execution of
the phase if the phase was found. Operand
SYS=YES is not supported.

FETCH 2 2 Used to bring a $$B-transient phase into
the CMS transient area (or if the phase
is in the CMSDOS segment, not to load
it), and start execution of the phase if the
phase was found. Operand SYS=YES is not
supported.

FORCE DEQUEUE 3 3 Not supported. See note “2” on page 537.

LOAD 4 4 Used to bring a problem program phase
into user storage, and return the caller
the entry point address of the phase
just loaded. Operand SYS=YES is not
supported.

MVCOM 5 5 Provides the user with a means of altering
positions 12 through 23 of the partition
communications region (BGCOM).

CANCEL 6 6 Cancels a VSE session either by a VSE
program request or by a request from any
of the CMS routines handling CMS/DOS.

WAIT 7 7 Used to wait on a CCB, IORB, ECB,
or TECB. (Note that CMS/DOS does not
support ECBs or TECBs). CCBs are always
posted by the DMSXCP routine before
returning to the caller.

The WAIT support under CMS/DOS will
effectively be a branch to the CMS/DOS
POST routine.

CONTROL 8 8 Temporarily return control from a $$B-
transient to the problem program.

LBRET 9 9 Return to the $$B-transient after an SVC 8
was issued to give control to the problem
program.

SET TIMER 10 A No operation. Successful return code of 0
is given in R15. See “1” on page 537.

TRANS. RETURN 11 B Return from a $$B-transient to the calling
problem program.

JOB CONTROL ‘AND’ 12 C Resets flags to 0 in the linkage control byte
in BGCOM (communication region). If R1
= 0, bit 5 of JCSW4 (COMREG byte 59) is
turned off.

JC FLAGS 13 D Not supported. See note 2.

530 z/VM: 7.3 CMS Macros and Functions Reference

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

EOJ 14 E Normally terminates execution of a
problem program.

SYSIO 15 F Not supported. See note 2.

PC STXIT 16 10 Establish or end linkage to a user's
program check routine.

PC EXIT 17 11 Used to provide supervisory support for
the EXIT macro. SVC 17 provides a return
from the user's PC routine to the next
sequential instruction in the program that
was interrupted because of a program
check.

IT STXIT 18 12 No operation. Successful return code of 0
is given in R15. See note 1.

IT EXIT 19 13 Not supported. See note 2.

OC STXIT 20 14 No operation. Successful return code of 0
is given in R15. See note 1.

OC EXIT 21 15 Not supported. See note 2.

SEIZE 22 16 No operation. Successful return code of 0
is given in R15. See note 1.

LOAD HEADER 23 17 Not supported. See note 2.

SETIME 24 18 No operation. Successful return code of 0
is given in R15. See note 1.

HALT I/O 25 19 Not supported. See note 2.

Validate address limits. 26 1A The upper address must be specified in
general register 2 and the lower address
must be specified in general purpose
register 1.

TP HALT I/O 27 1B Not supported. See note 2.

MR EXIT 28 1C Not supported. See note 2.

WAITM 29 1D Not supported. See note 2.

QWAIT 30 1E Not supported. See note 2.

QPOST 31 1F Not supported. See note 2.

32 20 Reserved

COMRG 33 21 Used to provide the caller with the address
of the partition communications region.

DMSDOS provides the caller with the
address of the partition communications
region, in the user's register 1.

Appendix B. VSE Macros 531

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

GETIME 34 24 Provides support for the GETIME macro.
SVC 34 updates the date field in the
communications region. The GMT operand
is not supported.

HOLD 35 23 No operation. Successful return code of 0
is given in R15. See note 1.

FREE 36 24 No operation. Successful return code of 0
is given in R15. See note 1.

AB STXIT 37 25 Establish or end linkage to a user's
abnormal end routine. Supported for
OPTION=DUMP or NODUMP.

ATTACH 38 26 Not supported. See note 2.

DETACH 39 27 Not supported. See note 2.

POST 40 28 Used to post an ECB, IORB, TECB, or CCB.
Byte 2, bit 0 of the specified control block
is turned ‘on’ by DMSDOS.

DEQ 41 29 No operation. Successful return code of 0
is given in R15. See note 1.

ENQ 42 2A No operation. Successful return code of 0
is given in R15. See note 1.

43 2B Reserved

UNIT CHECKS 44 2C Not supported. See note 2.

EMULATOR INTERF. 45 2D Not supported. See note 2.

OLTEP 46 2E Not supported. See note 2.

WAITF 47 2F Not supported. See note 2.

CRT TRANS 48 30 Not supported. See note 2.

CHANNEL PROG. 49 31 Not supported. See note 2.

LIOCS DIAG. 50 32 Issued by a logical IOCS routine when the
LIOCS is called to perform an operation
that the LIOCS was not generated to
perform.

The error message unsupported function in
a LIOCS routine is issued, and the session
is then terminated.

RETURN HEADER 51 33 Not supported. See note 2.

TTIMER 52 34 No operation. Successful return code of 0
is given in R15. See note 1. R0 is also
cleared.

VTAM® EXIT 53 35 Not supported. See note 2.

FREEREAL 54 36 Not supported. See note 2.

GETREAL 55 37 Not supported. See note 2.

532 z/VM: 7.3 CMS Macros and Functions Reference

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

POWER 56 38 Not supported. See note 2.

POWER 57 39 Not supported. See note 2.

SUPVR. INTERF. 58 3A Not supported. See note 2.

EOJ INTERF. 59 3B Not supported. See note 2.

GETADR 60 3C Not supported. See note 2.

GETVIS 61 3D Used to obtain free storage for scratch
use or for obtaining an area where a
relocatable program may be loaded. The
POOL and SVA GETVIS options are ignored.
The PAGE option is ignored for requests
of less than or equal to 2K bytes of
storage. LOC=RES is treated the same as
LOC=BELOW.

FREEVIS 62 3E Used to return the free storage obtained
through an earlier GETVIS call.

USE 63 3F The USE/RELEASE function has been
replaced by SVC 110 (LOCK/UNLOCK) for
serially controlling system resources. All
SVC 63 and 64 requests are mapped
into SVC 110 requests respectively. Return
codes previously associated with USE/
RELEASE under CMS/DOS are maintained.

RELEASE 64 40 Reference SVC 63.

CDLOAD 65 41 Used to load a relocatable VSAM phase
into storage, unless the program has
already been loaded.

RUNMODE 66 42 Used by a problem program to find out if
the program is running in real or virtual
mode. The caller's register 0 is zeroed to
indicate that the program is running in
virtual mode.

PFIX 67 43 No operation. Successful return code of 0
is given in R15. See note 1.

PFREE 68 44 No operation. Successful return code of 0
is given in R15. See note 1.

REALAD 69 45 Not supported. See note 2.

VIRTAD 70 46 Not supported. See note 2.

SETPFA 71 47 No operation. Successful return code of 0
is given in R15. See note 1.

GETCBUF/ FREECBUF 72 48 Not supported. See note 2.

SETAPP 73 49 Not supported. See note 2.

PAGE FIX 74 4A Not supported. See note 2.

Appendix B. VSE Macros 533

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

SECTVAL 75 4B Used by I/O routines to obtain a sector
number for a CKD or ECKD™ device.

SYSREC 76 4C Not supported. See note 2.

TRANSCCW 77 4D Not supported. See note 2.

CHAP 78 4E Not supported. See note 2.

SYNCH 79 4F Not supported. See note 2.

SETT 80 50 Not supported. See note 2.

TESTT 81 51 Not supported. See note 2.

LINKAGE 82 52 Not supported. See note 2.

ALLOCATE 83 53 Not supported. See note 2.

SET LIMIT 84 54 Not supported. See note 2.

RELPAG 85 55 Provides support for the RELPAG macro.
At entry register 1 points to a list of 8-
byte storage description area. Each entry
contains the beginning address and the
length-1 of an area to be released. A
nonzero byte following an entry indicates
the end of the list. An area is released only
if it contains at least a full CP page (4K
bytes). CMS simulates the release of pages
by setting them to binary zeros when the
virtual machine calls CP with DIAGNOSE
code X'10'. On return, R15 holds return
code as follows:
R15 = 0

all areas have been released.
R15 = 2

one or more negative area lengths were
specified.

R15 = 4
one or more pages to be released were
outside the user storage area.

R15 =16
at least one entry contains a beginning
address outside the user storage area.

FCEPGOUT 86 56 No operation. Successful return code of 0
is given in R15. See note 1.

PAGEIN 87 57 No operation. Successful return code of 0
is given in R15. See note 1.

TPIN 88 58 Not supported. See note 2.

TPOUT 89 59 Not supported. See note 2.

PUTACCT 90 5A Not supported. See note 2.

POWER 91 5B Not supported. See note 2.

534 z/VM: 7.3 CMS Macros and Functions Reference

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

XECBTAB 92 5C Not supported. See note 2.

XPOST 93 5D Not supported. See note 2.

XWAIT 94 5E Not supported. See note 2.

AB EXIT 95 5F Exit from abnormal task termination
routine and continue the task.

TT EXIT 96 60 Not supported. See note 2.

TT STXIT 97 61 Not supported. See note 2.

EXTRACT 98 62 Support for EXTRACT macro of VSE. The
caller requests PUB information, CPUID, or
storage boundary information. Register 1
on entry points to a parameter list. Output
is placed in an area provided by caller.

GETVCE 99 63 Caller requests device information about
specific DASD. Information is returned
in an output area pointed to from the
parameter list. Register 1 contains a
pointer to the parameter list on entry.

100 64 Reserved

MODVCE 101 65 No operation. Successful return code of 0
is given in R15. See note 1.

102 66 Reserved.

SYSFIL 103 67 Not supported. See note 2.

EXTENT 104 68 No operation. Successful return code of 0
is given in R15. See note 1.

SUBSID 105 69 SUBSID.. the ‘INQUIRY’ function is
supported for the supervisor subsystem.
Information returned is described by
the SUPSSID control block. The SUBSID
‘NOTIFY’ and ‘REMOVE’ functions are not
supported.

LINKAGE 106 6A Not supported. See note 2.

Appendix B. VSE Macros 535

Table 29. SVC Support Routines and Their Operation (continued)

Function/Macro SVC No. Dec Hex Support

TASK INTERF. 107 6B Provides macro interface support
for system information retrieval. The
parameters supported are:

GETFLD:
field=ppsavar

returns problem program save area
address.

=savar
returns current save area address.

=maintask
returns maintask TID in R1.

=aclose
returns in R1: 1 if in process, 0 if not.

=pcexit
returns the pcexit routine address and
save area in R0 and R1 respectively. If
the exit routine is currently active, bit 0
in R0 is set ON. If no exit is defined, it
returns a 0 in both R0 and R1.

MODFLD:
field=vsamopen

set bit X'08' in tcbflags byte if R1¬=0
=aclose

set bit X'10' in tcbflags byte if R1¬=0
The MODFLD requests for fields CNCLALL
and OPENSVA are treated as a NOP with a
return code of 0.

All other SVC 107 macro calls
are unsupported. The error message
DMSGMF121S is issued and the request is
canceled. See note 2.

DATA SECURE 108 6C Not supported. See note 2.

PAGESTAT 109 6D Not supported. See note 2.

LOCK/UNLOCK 110 6E Used by VSAM to control access to
resources. Access is maintained in either a
‘shared’ or ‘exclusive’ control environment.
When DOS is SET ON, counters are
maintained as well as the type of control
for each resource in a table (LOCKTAB)
built in free storage. All entries not
unlocked by the program are cleared at
both normal and abnormal end-of-job. All
requests for resource control are passed to
SVC 110 through the DTL macro (define the
lock). SVC 63 and 64 requests are mapped
into a dummy DTL and processed by SVC
110.

536 z/VM: 7.3 CMS Macros and Functions Reference

Note:

1. No operation: In each case, register 15 is cleared to simulate successful operation, and all other
registers are returned unchanged, unless otherwise noted.

2. Not supported: For unsupported SVCs, an error message is given, and the SVC is treated as a cancel.

Declarative Macros (Sequential Access Method I/O Macros)
CMS/DOS supports the following declarative macros:

• DTFCD - Types X'02' and X'04'
• DTFCN - Types X'03'
• DTFDI - Types X'33'
• DTFMT - Types X'10', X'11', X'12', and X'14'
• DTFPR - Types X'08'
• DTFSD - Types X'20'.

The CDMOD, DIMOD, MTMOD, and PRMOD macros generate the logical IOCS routines that correspond to
the declarative macros. For files on disk, the logical IOCS routines used during program execution reside
in the CMSBAM DCSS and are not generated within the program. The operands that CMS/DOS supports for
the DTF are also supported for the xxMOD macro. In addition, CMS/DOS supports three internal macros
that the COBOL and PL/I compilers require: DTFCP (types X'31' and X'32'), CPMOD, and DTFSL.

DTFCD Macro - Defines the File for a Card Reader
CMS/DOS does not support the ASOCFLE, FUNC, TYPEFILE=CMBND, and OUBLKSZ operands of the
DTFCD macro. CMS/DOS ignores the SSELECT operand and any mode other than MODE=E. Table 30 on
page 537 describes the DTFCD macro operands and their support under CMS/DOS. An asterisk (*) in the
status column indicates that CMS/DOS support differs from VSE support.

Table 30. CMS/DOS Support of DTFCD Macro

Operand Status Description

DEVADDR=SYSxxx Symbolic unit for reader-punch used for this file.

IOAREA1=xxxxxxxx * Name of the first I/O area.

ASOCFLE=xxxxxxxx * Not supported.

BLKSIZE=nnn * Length of one I/O area, in bytes. If omitted, 80
is assumed. If CTLCHR=YES is specified, BLKSIZE
defaults to 81.

CONTROL=YES CNTRL macro used for this file. Omit CTLCHR for this
file. Does not apply to 2501.

CRDERR=RETRY * Retry if punching error is detected. Applies to
2520 and 2540 only. However, this situation is
never encountered under CMS/DOS because hardware
errors are not passed to the LIOCS module.

CTLCHR=xxx (YES or ASA). Data records have control character. YES
for S/370 character set; ASA for American National
Standards Institute character set. Omit CONTROL for
this file.

DEVICE=nnnn * (2501, 2520, 2540, 3505, or 3525). If omitted, 2540
is default.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

Appendix B. VSE Macros 537

Table 30. CMS/DOS Support of DTFCD Macro (continued)

Operand Status Description

ERROPT=xxxxxx * IGNORE, SKIP, or name. Applies to 3505 and 3525
only.

FUNC=xxx * Not supported.

IOAREA2=xxxxxxxx * If two output areas are used, name of second area.

IOREG=(nn) Register number if two I/O areas are used and GET or
PUT does not specify a work area. Omit WORKA.

MODE=xx * Only MODE=E is supported.

MODNAME=xxxxxxxx Name of the logic module that is used with the DTF
table to process the file.

OUBLKSZ=nn * Not supported.

RDONLY=YES * Causes a read-only module to be generated.

RECFORM=xxxxxx (FIXUNB, VARUNB, UNDEF). If omitted, FIXUNB is
default.

RECSIZE=(nn) * Register number if RECFORM=UNDEF.

SEPASMB=YES DTFCD is to be assembled separately.

SSELECT=n * Ignored.

TYPEFLE= * Input or output.

WORKA=YES I/O records are processed in work areas instead of the
I/O areas.

DTFCN Macro - Defines the File for a Console
CMS/DOS supports all of the operands of the DTFCN macro. Table 31 on page 538 describes the
operands of the DTFCN macro and their support under CMS/DOS. The status column is blank because the
CMS/DOS and VSE support of DTFCN are the same.

Table 31. CMS/DOS Support of DTFCN macro

Operand Status Description

DEVADDR=SYSxxx Symbolic unit for the console used for this file.

IOAREA1=xxxxxxxx Name of I/O area.

BLKSIZE=nnn Length in bytes of I/O area (for PUTR macro
usage, length of output part of I/O area). If
RECFORM=UNDEF, maximum is 256. If omitted, 80 is
default.

INPSIZE=nnn Length in bytes for input part of I/O area for PUTR
macro usage.

MODNAME=xxxxxxxx Logic module name for this DTF. If omitted, IOCS
generates a standard name.

The logic module is generated as part of the DTF.

RECFORM=xxxxxx (FIXUNB or UNDEF). If omitted, FIXUNB is default.

538 z/VM: 7.3 CMS Macros and Functions Reference

Table 31. CMS/DOS Support of DTFCN macro (continued)

Operand Status Description

RECSIZE=(nn) Register number if RECFORM=UNDEF. General
purpose registers 2 through 12, enclosed in
parentheses.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or CMBND). Input processes both
input and output. CMBND must be specified for PUTR
macro usage. If omitted, INPUT is default.

WORKA=YES GET or PUT specifies work area.

DTFDI MACRO - Defines the File for Device Independence for System Logical
Units

CMS/DOS supports most operands of the DTFDI macro. Table 32 on page 539 describes the operands
of the DTFDI macro and their support under CMS/DOS. An asterisk (*) in the status column indicates that
CMS/DOS support differs from VSE support.

Table 32. CMS/DOS Support of DTFDI Macro

Operand Status Description

DEVADDR=SYSxxx (SYSIPT, SYSLST, SYSPCH, or SYSRDR). System logical
unit. CMS/DOS issues an error message if the logical
unit specified on the DTF does not match the logical
unit specified on the corresponding DLBL command.

IOAREA1=xxxxxxxx Name of the first I/O area.

CISIZE=n * This operand specifies the control interval size for
a DOS formatted FB-512 device assigned to a
nonsystem file logical unit. This operand is ignored for
count-key-data devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FBA=YES This operand is not required and is ignored if specified.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of your error routine).
Prevents termination on errors.

IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

IOREG2=(nn) Register number. If omitted and two I/O areas are
used, register 2 is default. General purpose registers 2
through 12, enclosed in parentheses.

MODNAME=xxxxxxxx DIMOD name for this DTF. If omitted, IOCS generates
a standard name. This operand is ignored with DASD.
The SAM OPEN routines within the CMSBAM DCSS
always load an IBM supplied logic module and link it
to the DTF.

RDONLY=YES Generates a read-only module. Requires a module
save area for each routine using the module.

RECSIZE=nnn Number of characters in record. Default values: 121
(SYSLST), 81 (SYSPCH), 80 (other).

SEPASMB=YES DTFDI to be assembled separately.

Appendix B. VSE Macros 539

Table 32. CMS/DOS Support of DTFDI Macro (continued)

Operand Status Description

TRC=YES * Not supported.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

DTFMT Macro - Defines the File for a Magnetic Tape
CMS/DOS does not support the ASCII, BUFOFF, HDRINFO, LENCHK, and READ=BACK operands of the
DTFMT macro. Tape I/O operations are limited to reading in the forward direction.

You may use the FILABL operand in the DTFMT macro to specify that you have a standard tape label file, a
nonstandard tape label file, or an unlabeled tape. The type of tape label processing depends on the option
selected.

Table 33 on page 540 describes the DTFMT macro operands and their support under CMS/DOS. An
asterisk (*) in the status column indicates that CMS/DOS support differs from VSE support.

Table 33. CMS/DOS Support of DTFMT Macro

Operand Status Description

BLKSIZE=nnnnn Length of one I/O area in bytes (maximum = 32,767.

DEVADDR=SYSxxx Symbolic unit for tape drive used for this file.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

FILABL=xxxx (NO, STD, or NSTD). If NSTD specified, include
LABADDR.

IOAREA1=xxxxxxxx Name of first I/O area.

ASCII=YES * Not supported.

BUFOFF=nn * Not supported.

CKPTREC=YES Checkpoint records are interspersed with input data
records. IOCS bypasses checkpoint records.

ERREXT=YES Additional errors and ERET are desired.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

HDRINFO=YES * Not supported.

IOAREA2=xxxxxxxx If two I/O areas are used, the name of the second
area.

IOREG=(nn) Register number. Use only if GET or PUT does not
specify a work area or if two I/O areas are used.
Omit WORKA. General purpose registers 2 through 12,
enclosed in parentheses.

LABADDR=xxxxxxxx Name of your label routine if FILABL=NSTD or if
FILABL=STD and user-standard labels are processed.

LENCHK=YES * Not supported.

MODNAME=xxxxxxxx Name of MTMOD logic module for this DTF. If omitted,
IOCS generates standard name.

540 z/VM: 7.3 CMS Macros and Functions Reference

Table 33. CMS/DOS Support of DTFMT Macro (continued)

Operand Status Description

NOTEPNT=xxxxxx (YES or POINTS). YES if NOTE, POINTW, POINTR, or
POINTS macro is used. POINTS if only POINTS macro
is used.

RDONLY=YES Generate read-only module. Requires a module save
area for each routine using the module.

READ=xxxxxxx * CMS/DOS only supports READ=FORWARD.

RECFORM=xxxxxx (FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB,
SPNBLK, or UNDEF). For work files use FIXUNB or
UNDEF. If omitted, FIXUNB is assumed.

RECSIZE=nnnn If RECFORM=FIXBLK, number of characters in the
record. If RECFORM=UNDEF, register number. Not
required for other records. General purpose registers 2
through 12, enclosed in parentheses.

REWIND=xxxxxx (UNLOAD or NORWD). Unload on CLOSE or end-of-
volume, or prevent rewinding. If omitted, rewind only.

SEPASMB=YES DTFMT is to be assembled separately.

TPMARK=NO Prevent writing a tapemark ahead of data records if
FILABL=NSTD or NO.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is
default.

VARBLD=(nn) Register number, if RECFORM=VARBLK and records
are built in the output area. General purpose registers
2 through 12 are enclosed in parentheses.

WLRERR=xxxxxxxx Name of wrong-length record routine.

WORKA=YES GET or PUT specifies a work area. Omit IOREG.

DTFPR Macro - Defines the File for a Printer
CMS/DOS does not support the ASOCFLE, ERROPT=IGNORE, and FUNC operands of the DTFPR macro.
Table 34 on page 541 describes the operands of the DTFPR macro and their support under CMS/DOS. An
asterisk (*) in the status column indicates that CMS/DOS support differs from VSE support.

Table 34. CMS/DOS Support of DTFPR Macro

Operand Status Description

DEVADDR=SYSxxx Symbolic unit for the printer used for this file.

IOAREA1=xxxxxxxx Name for the first output area.

ASOCFLE=xxxxxxxx * Not supported.

BLKSIZE=nnn * Length of one output area, in bytes. If omitted, 121 is
default.

CONTROL=YES CNTRL macro used for this file. Omit CTLCHR for this
file.

Appendix B. VSE Macros 541

Table 34. CMS/DOS Support of DTFPR Macro (continued)

Operand Status Description

CTLCHR=xxx (YES or ASA). Data records have control character. YES
for S/370 character set; ASA for American National
Standards Institute character set. Omit CONTROL for
this file.

DEVICE=nnnn * (1403, 1443, 3203, or 3211). If omitted, 1403 is
default.

ERROPT=xxxxxxxx * RETRY or the name of your error routine for 3211. Not
allowed for other devices. IGNORE is not supported.

FUNC=xxxx * Not supported.

IOAREA2=xxxxxxxx If two output areas are used, name of second area.

IOREG=(nn) Register number; if two output areas used and GET or
PUT does not specify a work area. Omit WORKA.

MODNAME=xxxxxxxx Name of PRMOD logic module for this DTF. If omitted,
IOCS generates standard name.

PRINTOV=YES PRTOV macro used for this file.

RDONLY=YES Generate a read-only module. Requires a module save
area for each routine using the module.

RECFORM=xxxxxx (FIXUNB, VARUNB, or UNDEF). If omitted, FIXUNB is
default.

RECSIZE=(nn) Register number if RECFORM=UNDEF.

SEPASMB=YES DTFPR is to be assembled separately.

STLIST=YES Use 1403 selective tape listing feature.

TRC=YES * Not supported.

UCS=xxx (ON) process data checks. (OFF) ignores data checks.
Only for printers with the UCS feature or 3203 or
3211. If omitted, OFF is default.

WORKA=YES PUT specifies work area. Omit IOREG.

DTFSD Macro - Defines the File for a Sequential DASD
CMS/DOS does not support the FEOVD, HOLD, and LABADDR operands of the DTFSD macro. Table 35 on
page 542 describes the operands of the DTFSD macro and their support under CMS/DOS. An asterisk (*)
in the status column indicates that CMS/DOS support differs from VSE support.

Table 35. CMS/DOS Support of DTFSD Macro

Operand Status Description

BLKSIZE=nnnn Length of one I/O area, in bytes.

CISIZE=n * This operand specifies the control interval size for
a DOS formatted FB-512 device assigned to a
nonsystem file logical unit. This operand is ignored for
count-key-data devices and CMS formatted disks.

EOFADDR=xxxxxxxx Name of your end-of-file routine.

542 z/VM: 7.3 CMS Macros and Functions Reference

Table 35. CMS/DOS Support of DTFSD Macro (continued)

Operand Status Description

IOAREA1=xxxxxxxx Name of first I/O area.

CONTROL=YES This operand is ignored. CONTROL=YES is always
included.

DELETFL=NO * If DELETFL=NO is specified, the work file is not
erased. Otherwise, when the work file is closed,
CMS/DOS erases it.

DEVADDR=SYSnnn * Symbolic unit. This operand is optional. If DEVADDR
is not specified, all I/O requests are directed to the
logical unit identified on the corresponding CMS/DOS
DLBL command.

If a valid logical unit is specified with the DEVADDR
operand of the DTF and a different, but also valid,
logical unit is specified on the DLBL command, the
unit specified on the DLBL command overrides the
unit specified in the DTF. However, CMS/DOS issues
an error message if a valid logical unit is specified
in the DTF and no logical unit is specified on the
corresponding DLBL command.

DEVICE=nnnn * This operand is ignored. The actual device type is
determined by OPEN.

ERREXT=YES Additional error facilities and ERET are desired. This
operand is ignored. ERREXT=YES is always included.

ERROPT=xxxxxxxx (IGNORE, SKIP, or name of error routine.) Prevents
job termination on error records. Do not use SKIP for
output files.

FEOVD=YES * Not supported.

HOLD=YES * Not supported. HOLD=YES is specified for DTFSD
update or work files to provide a track hold capability.
However, the CMS/DOS open routine sets the track
hold bit off and bypasses track hold processing.

IOAREA2=xxxxxxxx If two I/O areas are used, name of second area.

IOREG=(nn) Register number. Use only if GET or PUT does not
specify work area or if two I/O areas are used. Omit
WORKA.

LABADDR=xxxxxxxx * Not supported.

MODNAME=xxxxxxxx This operand is not required. If specified, it is ignored.
The SAM OPEN routines within the CMSBAM DCSS
always load an IBM supplied logic module and link it
to the DTF.

NOTEPNT=xxxxxxxx Indicates that NOTE, POINTR, POINTW, and POINTS
are used. This operand is ignored. NOTEPNT=YES is
always included.

RDONLY=YES This operand is not required and is ignored if specified.
RDONLY=YES is always included.

Appendix B. VSE Macros 543

Table 35. CMS/DOS Support of DTFSD Macro (continued)

Operand Status Description

PWRITE=YES * For a DOS formatted FB-512 disk, this operand
specifies that for output operations a physical write
occurs for every logical block. This operand is ignored
for count-key-data devices and CMS formatted disks.
DOS formatted FB-512 disks are not supported for
output.

RECFORM=xxxxxx (FIXUNB, FIXBLK, VARUNB, SPNUNB, SPNBLK,
VARBLK, or UNDEF). If omitted, FIXUNB is assumed.

For work files, use FIXUNB or UNDEF. Although work
files contain fixed-length unblocked records, the CMS
file system handles work UNDEF files as variable-
length record files. If you specify FIXBLK, VARBLK, or
UNDEF when creating a CMS file on a CMS disk, CMS
writes the file in variable-length format. The LISTFILE
command would show the file as V format. If you
specify FIXUNB when creating a CMS file on a CMS
disk, CMS writes the file in fixed-length format.

RECSIZE=nnnnn If RECFORM=FIXBLK, number of characters in record.
If RECFORM=SPNUNB, SPNBLK, or UNDEF, register
number. Not required for other records.

SEPASMB=YES DTFSD is to be assembled separately.

TRUNCS=YES RECFORM=FIXBLK or TRUNC macro used for this file.

TYPEFLE=xxxxxx (INPUT, OUTPUT, or WORK). If omitted, INPUT is
assumed.

UPDATE=YES Input file or work file is to be updated.

VARBLD=(nn) Register number if RECFORM=VARBLK and records are
built in the output area. Omit if WORKA=YES.

VERIFY=YES Check disk records after they are written.

WLRERR=xxxxxxxx Name of your wrong-length record routine.

WORKA=YES GET or PUT specifies work area. Omit IOREG.
Required for RECFORM=SPNUNB or SPNBLK.

Imperative Macros (Sequential Access Method I/O Macros)
CMS/DOS supports the following imperative macros:

• Initialization macros: OPEN and OPENR
• Processing macros: GET, PUT, PUTR, RELSE, TRUNC, CNTRL, ERET, and PRTOV.

Note: No code is generated for the CHNG macro.
• Work file macros for tape and disk: READ, WRITE, CHECK, NOTE, POINTR, POINTW, and POINTS.
• Completion macros: CLOSE and CLOSER.

CMS/DOS supports workfiles containing fixed-length unblocked records and undefined records. Disk
work files are supported as single volume, single pack files. Normal extents and split extents are both
supported.

544 z/VM: 7.3 CMS Macros and Functions Reference

Appendix C. CRR Participation Macros

The macros contained in this appendix are intended for the programmer with product development
responsibility who is writing code to enable an IBM or non-IBM resource manager to participate in
Coordinated Resource Recovery (CRR).

© Copyright IBM Corp. 1991, 2025 545

ADAPTRC

label

ADAPTRC

Purpose
Use the ADAPTRC macro in a resource adapter to define all the constants needed for functions, actions,
response codes, and return codes in the exit interface with the synchronization point manager (SPM). The
constants are defined as a series of equates. The names of the constants begin with the letters ADA. For
information about writing the exit routines, see z/VM: CMS Application Development Guide.

Actions and Responses
Name Value Description Response Action

ADANULL 0 Null. No response code, used to
initialize.

Reserved for use by CMS Reserved for use by CMS

ADABOUT 4 Backout. Resource manager has backed
out its changes.

Resource manager is to back out
its changes.

ADARF 8 Resource manager failure. Resource manager failed, and did
not give any information about
the state of its changes.

Reserved for use by CMS

ADAALLOC 12 Allocate. Conversation allocation Reserved for use by CMS Reserved for use by CMS

ADADSYNC 16 Deallocate synclevel.
Conversation deallocation,
synclevel

Reserved for use by CMS Reserved for use by CMS

ADADA 20 Deallocate abend. Resource manager backed out its
changes and is unavailable for
any more work.

Resource manager should back
out all changes. Protected
conversations should be ended.

ADAPREP 24 Prepare. Reserved for use by CMS Prepare all changes to be
committed.

ADARQCMT 28 Request Commit. Resource manager has prepared
the changes.

Commit all changes (Simple
commit action).

ADAPDS 32 Prepare deallocate synclevel. Reserved for use by CMS Reserved for use by CMS

ADARQCDS 36 Request Commit deallocate
synclevel.

Reserved for use by CMS Reserved for use by CMS

ADANNEWL 40 No new LUWID. Cannot accept
a new LUWID for the next sync
point.

Reserved for use by CMS Reserved for use by CMS

ADACMTDL 44 Committed with new LUWID. Commit all changes, use the new
LUWID for the next sync point.

ADAPVPRT 48 Partner detected and reported
our protocol violation

Partner detected protocol
violation and severed its link.

ADADAE 52 Deallocate allocation error Reserved for use by CMS Reserved for use by CMS

ADACMTD 56 Committed. Resource manager has
successfully committed its
changes.

Commit all changes.

ADAFGET 60 Forget. Resource manager has completed
work for this commit.

ADAPTRC

546 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3

Name Value Description Response Action

ADAFRIP 64 Forget, resynchronization in
progress.

Resynchronization is in progress
for some resource, trying to
commit changes.

ADABORIP 68 Backout, resynchronization in
progress.

Resynchronization is in progress,
trying to back out the changes.

ADAOKBO 72 OK backout. Resource manager has backed
out its changes, in response to a
backout request.

Confirm to the resource manager
that its prior action of backout
was successfully received and
processed.

ADACSCHK 76 Commit state check. Resource manager cannot start
a commit because of the
application state.

ADABSCHK 80 Backout state check. Resource manager cannot start
a backout because of the
application state.

ADACPERR 84 Commit product error. Resource manager cannot start
a commit because of some
condition other than the
application state.

ADAHMIX 88 Heuristic mixed. A heuristic decision was made
which was inconsistent with other
resources.

ADAPV 92 Protocol violation. Resource adapter detected a
protocol violation and severed its
link.

ADANEWL 96 New LUWID. Store this LUWID for use during
next sync point.

ADAOK 100 Successful. Action completed successfully.

ADABOUT2 104 Backout, second phase. Backout the changes during the
second phase of the sync point.

ADAPTRS 108 Prepare to resynchronize. Sever the connection to resource
manager causing the resource
manager to backout. Prepare the
resource for resynchronization
processing.

ADAIRCMT 112 Initiator request commit. Inform the initiator that all
changes were successfully
prepared during phase one.

ADAIRCNL 116 Initiator request commit new
LUWID.

Inform the initiator that all
changes were successfully
prepared during phase one, and
that all downstream resources
can accept a new LUWID, if
necessary.

ADAIFGET 120 Initiator forget. Inform the initiator that the sync
point has successfully completed.

ADAIFRIP 124 Initiator forget resynchronization
in progress.

Inform the initiator that the
sync point is successful so
far, and will be completed by
resynchronization.

ADAIOKBO 128 Initiator OK backout. Inform the initiator that the sync
point has been backed out as
requested.

ADAICMT 132 Initiator committed. Inform the initiator that the sync
point has completed successfully.

ADAPTRC

Appendix C. CRR Participation Macros 547

Name Value Description Response Action

ADAICRIP 136 Initiator committed
resynchronization in progress.

Inform the initiator that the
sync point is successful so
far, and will be completed by
resynchronization.

ADAIBOUT 140 Initiator backout. Inform the initiator that the sync
point has been backed out.

ADAIBRIP 144 Initiator backout
resynchronization in progress.

Inform the initiator that the
sync point has been backed
out, and will be completed by
resynchronization.

ADAIHMIX 148 Initiator heuristic mixed. Inform the initiator that the sync
point has ended with heuristic
damage.

ADAPRCOM 152 Precoordination commit. Perform precoordination
processing for a commit.

ADAPRBCK 156 Precoordination backout. Perform precoordination
processing for a backout.

ADAPSABN 160 Postcoordination abnormal
termination.

Perform postcoordination
processing for an abnormal
termination of the sync point.

ADAPSSC 164 Postcoordination state check. Perform postcoordination
processing for a state check.

ADAPSCOM 168 Postcoordination commit. Perform postcoordination
processing for a sync point which
ended in a commit.

ADAPSBCK 172 Postcoordination backout. Perform postcoordination
processing for a sync point which
ended in a backout.

ADAEWPUR 176 End of work unit purge. Perform end of work
unit processing because the
workunitid is being purged.

ADAEWRET 180 End of work unit return. Perform end of work
unit processing because the
workunitid is being returned.

ADAEWEOC 184 End of work unit end of
command.

Perform end of work unit
processing because of end of
command.

ADAEWABN 188 End of work unit ABEND. Perform end of work unit
processing because an ABEND is
ending the workunitid.

ADAEWESS 192 End of work unit end of subset. Perform end of work unit
processing because of end of
subset mode.

ADABRQBO 196 Backout required, backout. Perform the processing to put
this resource in backout required
state, because some other
resource has to back out.

ADABRQRF 200 Backout required, resource failed. Perform the processing to put
this resource in backout required
state, because some other
resource has a severe error.

ADABRQDA 204 Backout required, deallocate
abend.

Perform the processing to put
this resource in backout required
state, because a protected APPC
conversation has terminated.

ADAPTRC

548 z/VM: 7.3 CMS Macros and Functions Reference

Name Value Description Response Action

ADAPERR 208 Program error. Application error, changes have
neither been prepared nor backed
out.

ADAAERR 212 Resource adapter error. Adapter failed, and did not give
any information about the state of
its changes.

ADAAWARN 216 Resource adapter warning. Adapter performed the requested
function, but processing
environment has changed.

Functions

Functions Value Description

ADAPRCF 300 Precoordination function.

ADACORF 304 Coordination function.

ADAPSCF 308 Postcoordination function.

ADAEWUF 312 End of work unit function.

ADABORQF 316 Backout required function.

Return Codes
Return Codes Value Description

ADACOMP 0 Completed. The adapter has completed the specified action.

ADAREDRV 4 Redrive. The adapter has started processing for the action, but
has more processing to do.

ADACOMPD 8 Completed, Default response. The adapter processing has
completed, and the adapter could not recognize the specified
action.

ADARCAF 12 Adapter failure. The adapter could not complete processing for
the specified action.

ADAPTRC

Appendix C. CRR Participation Macros 549

ADAPTRC

550 z/VM: 7.3 CMS Macros and Functions Reference

Appendix D. NETDATA Format

The format of the data transmitted and received by the NETDATA command is described in this appendix.
For information on the NETDATA command, see the z/VM: CMS Commands and Utilities Reference.

Figure 1 on page 551 shows the format of a file sent using the NETDATA command with the SEND
option. Several control records begin the file, followed by the data records, followed by a trailer record. An
acknowledgement file is composed of only control records.

The data is actually transmitted as 80-byte card images. However, the record descriptions that follow are
those of logical records of varying length and card boundaries are ignored.

Figure 1. NETDATA File Format

Control records and data records have the same format, which is shown in Figure 2 on page 551. Each
control record begins in the byte immediately following the end of the previous record. The first data
record begins in the byte immediately following the end of the last control record in the header.

The records of the file to be transmitted are broken up into segments, whose format is shown in Figure 2
on page 551. A segment has a maximum length of 255 bytes, including the 2-byte header (length and
flags bytes). If the length of a record in the file is greater than 253 bytes, the record is sent as multiple
segments.

Figure 2. Data and Control Record Formats

Byte Length Contents

0 1 Length of segment including two-byte header (length is in the
range of 2 to 255)

1 1 Segment descriptor flags:

X'80' - First segment of original record.
X'40' - Last segment of original record.
X'20' - This is (part of) a control record.
X'10' - This is record number of next record.
X'0F' - Reserved.

2 n-2 Data (n is in the range of 0 to 253). Control records have
a control record identifier (for example, INMR01) in bytes
2-7. Text units generally begin in byte 8. Data records begin
directly in byte 2.

NETDATA Format

© Copyright IBM Corp. 1991, 2025 551

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3

Exception
In the INMR02 control record, the data portion begins with a 4-byte file number field, which indicates
to which file of the transmission this INMR02 refers. This field is then followed by the text units. If this
field has a value greater than one, that is, if the transmission contains multiple files, the format is like that
shown in Figure 3 on page 552.

A trailer control record begins in the byte immediately following the last data byte. The format of this
control record is the same as for the other control records.

Figure 3. INMR02 Control Record Format

Control Record Formats
A control record contains a length field in byte 0, a flag field in byte 1, and the control record name in
bytes 2-7. The control record data begins in byte 8. Following the eight bytes of control record header
information, each control record is composed of a varying number of text units, except for the INMR02
control record, which begins with a four-byte file number field.

The NETDATA command recognizes and acts on a subset of the text unit keys that may be contained in the
control records. For those text unit keys that are not recognized, NETDATA verifies that the field contains
valid values, but it does not act on them. For example, a length field cannot be negative.

Text Units
Text units are the primary way of storing control information in transmission control records. The format
of a single text unit is:

Figure 4. Text Units

Offset Length Description

0 2 Text unit key. The key identifies the type of information
contained in the text unit. Possible key values are given in
“Text Unit Keys” on page 553.

NETDATA Format

552 z/VM: 7.3 CMS Macros and Functions Reference

Offset Length Description

2 2 Number. The number field contains the number of length-
data pairs that follow. Most of the text units have only one
length and one data field.

4 2 Length. The first of perhaps many length fields. The length
value includes only the length of the data field immediately
following it, and not its own two-byte length.

6 n Data. The first of perhaps many data fields. The data
field contains the parameter information being passed, for
example, the target node name. The descriptions of the
individual text units, which follow, describe the content of
each.

6+n Second length-data if the number field indicates more than
one entry is present.

When text units occur in control records, they are placed together, one after another.

Dates and Times
All dates and times are expressed in Coordinated Universal Time. For all text units where a date or time is
specified, the value field will have a standard format, using EBCDIC characters for the

year (4)
month (2)
day (2)
hour (2)
minute (2)
second (2)
fraction of seconds (n).

Only as much as is known of this time value need be specified. For example, if only the year were known,
the value is yyyy. If microseconds are known, the value is yyyymmddhhmmssuuuuuu.

Numeric Values
All numeric values may be specified with a length of 1 to 8 bytes. If the field is longer than 4 bytes, only
the low-order 4 bytes are used.

Text Unit Keys
The following text units are recognized and acted on by the NETDATA command:

Text Unit Key (hex) Mnemonic Function

0002 INMDSNAM Name of the file

0028 INMTERM Note file (VM only)

0030 INMBLKSZ Block Size

003C INMDSORG File organization

0042 INMLRECL Logical record length

0049 INMRECFM Record format

1001 INMTNODE Node to which the transmission is
being sent.

NETDATA Format

Appendix D. NETDATA Format 553

Text Unit Key (hex) Mnemonic Function

1002 INMTUID Target user ID

1011 INMFNODE Origin node name

1012 INMFUID Origin user ID

1021 INMLCHG Last change date

1024 INMFTIME Origin time stamp

1026 INMFACK Originator requested
acknowledgement

1027 INMERRCD RECEIVE command error code

1028 INMUTILN Name of utility function

102C INMSIZE File size in bytes

102D INMFFM File Mode number

102F INMNUMF Number of files

The NETDATA command with the RECEIVE option recognizes and acts on the following text unit keys:

INMBLKSZ INMFUID

INMDSNAM INMLCHG

INMDSORG INMLRECL

INMERRCD INMNUMF

INMFACK INMRECFM

INMFFM INMTERM

INMFNODE INMUTILN

INMFTIME

The NETDATA command with the SEND option generates the following text unit keys:

INMDSNAM INMLRECL

INMDSORG INMNUMF

INMERRCD INMRECFM

INMFACK INMSIZE

INMFFM INMTERM

INMFNODE INMTUID

INMFTIME INMUTILN

INMFUID INMTNODE

INMLCHG

For more information on the other text units, see the System Programming Library: TSO Extensions
Customization book.

File Block Size
INMBLKSZ specifies the block size of the file. When this key is specified, NUMBER is 1, LENGTH is 1 to 8,
and VALUE contains the block size of the file.

NETDATA Format

554 z/VM: 7.3 CMS Macros and Functions Reference

Example
For a block size of 32768, INMBLKSZ contains:

KEY NUMBER LENGTH VALUE
0030 0001 0004 00008000

File Name
INMDSNAM specifies the file name of the file. File names are divided into fields.

In CMS, a file name is called a file identifier. It always has three fields that are separated by blanks (file
name, file type, and file mode, having a maximum length of 8, 8, and 2 characters, respectively).

When transmitting a CMS file, the file mode number is not specified as part of the file identifier. Instead,
it is specified on the INMFFM text unit. The file mode letter (alphabetic character) is considered to be the
highest qualifier of the file identifier, so it is always transmitted as the first field.

In MVS, a file is called a data set. In its name there are a maximum of 22 fields, and each field has a
maximum of 8 characters. The fields are separated by periods; for example,

AA.BB.CC.DD

has 4 fields. The total length, including periods, must not exceed 44 characters.

When this key is specified, NUMBER is the number of fields in the file name, and the LENGTH and VALUE
fields contain the length and name of each field of the file name.

Example
For a CMS file identifier of ABC EXEC A2, INMDSNAM contains:

KEY NUMBER LENGTH1 VALUE1 LENGTH2 VALUE2 LENGTH3 VALUE3
0002 0003 0001 C1 0003 C1C2C3 0004 C5E7C5C3

Example
For a TSO data set name of A.B, INMDSNAM contains:

KEY NUMBER LENGTH1 VALUE1 LENGTH2 VALUE2
0002 0002 0001 C1 0001 C2

File Organization
INMDSORG specifies the file organization. When this key is specified, NUMBER is 1, LENGTH is 2, and
VALUE contains:
X'0008'

For VSAM
X'0200'

For partitioned organization
X'4000'

For physical sequential

Note: X'0008' and X'0200' are not handled by NETDATA.

Example
For a physical sequential file, INMDSORG contains:

NETDATA Format

Appendix D. NETDATA Format 555

KEY NUMBER LENGTH VALUE
003C 0001 0002 4000

Receive Results
INMERRCD indicates the result of the RECEIVE operation. When this key is specified, NUMBER is 1,
LENGTH is 1 or more, and VALUE contains a string indicating the result of the RECEIVE operation.

Example
For a sent file that was received (RECEIVED), INMERRCD contains:

KEY NUMBER LENGTH VALUE
1027 0001 0008 D9C5C3C5C9E5C5C4

Example
For a sent file that was deleted (DELETED), INMERRCD contains:

KEY NUMBER LENGTH VALUE
1027 0001 0007 C4C5D3C5E3C5C4

Receipt Request
INMFACK indicates that the origin has requested an acknowledgement of receipt of the transmitted file.
When this key is specified, NUMBER is 0 or 1. If NUMBER is 1, LENGTH is 1 to 64 and VALUE contains a
transmission identifier to be returned with the notification. The return code is also returned using this text
unit.

Example
For an acknowledgement request without id, INMFACK contains:

KEY NUMBER LENGTH VALUE
1026 0000

Example
For an acknowledgement request with id of FRED, INMFACK contains:

KEY NUMBER LENGTH VALUE
1026 0001 0004 C6D9C5C4

File Mode
INMFFM specifies the file mode number of the file. When this key is specified, NUMBER is 1, LENGTH is 1,
and VALUE contains the file mode number of the file.

Example
For a file mode number of 0, INMFFM contains:

KEY NUMBER LENGTH VALUE
102D 0001 0001 F0

NETDATA Format

556 z/VM: 7.3 CMS Macros and Functions Reference

Node of Originator
INMFNODE specifies the node name of the origin of this transmission. When this key is specified,
NUMBER is 1, LENGTH is the length of the node name, and VALUE contains the name of the origin node.

Example
For an origin node of VENICE, INMFNODE contains:

KEY NUMBER LENGTH VALUE
1011 0001 0006 E5C5D5C9C3C5

Time of Transmission
INMFTIME specifies the time at which the transmission was sent (origin time stamp). When this key is
specified, NUMBER is 1, LENGTH is 4 or more, and VALUE contains the time the transmission was created.
The time is specified in standard format.

Example
For a transmission time of July 19, 1951 at 3:20 PM, INMFTIME contains:

KEY NUMBER LENGTH VALUE
1024 0001 000C F1F9F5F1F0F7F1F9F1F5F2F0

User ID of Originator
INMFUID specifies the user ID of the originator of this transmission. When this key is specified, NUMBER
is 1, LENGTH is the length of the user ID, and VALUE is the user ID of the originator of the transmission.

Example
For a user ID of IBMUSER, INMFUID contains:

KEY NUMBER LENGTH VALUE
1012 0001 0007 C9C2D4E4E2C5D9

Date of Last Change
INMLCHG specifies the last change date of the file. When this key is specified, NUMBER is 1, LENGTH is 4
or more, and VALUE contains the last change date in standard format.

Example
For a last change date (and time) of 04/01/81 8:12 PM, INMLCHG contains:

KEY NUMBER LENGTH VALUE
1021 0001 000E F1F9F8F1F0F4F0F1F2F0F1F2

Logical Record Length
INMLRECL specifies the actual or maximum length, in bytes, of a logical record in the file. When this key is
specified, NUMBER is 1, LENGTH is 1 to 8, and VALUE contains the actual or maximum record length.

Example
For 80-byte records, INMLRECL contains:

NETDATA Format

Appendix D. NETDATA Format 557

KEY NUMBER LENGTH VALUE
0042 0001 0001 50

Number of Files
INMNUMF specifies the number of files that make up this transmission. It is required on the INMR01
control record if there are any files in the transmission. (If this text unit is missing, the number of files is
assumed to be zero, which is only true on an acknowledgement.) When this key is specified, NUMBER is 1,
LENGTH is 1 to 8, and VALUE contains the number of files that make up this transmission.

Note: For the NETDATA command, VALUE cannot be more than 2 because NETDATA does not support
more than one file and one note in the same transmission.

Example
For a transmission with two files, INMNUMF contains:

KEY NUMBER LENGTH VALUE
102F 0001 0004 00000002

Record Format
INMRECFM specifies the record format of the file. When this key is specified, NUMBER is 1, LENGTH is 2,
and VALUE is one or more of the following added together:
X'0001'

Shortened VBS format used for transmission records
X'xx02'

Varying length records without the 4-byte header
X'0200'

Data includes machine code printer control characters
X'0400'

Data contains ASA printer control characters
X'0800'

Standard fixed records or spanned variable records
X'1000'

Blocked records
X'2000'

Track overflow or variable ASCII records
X'4000'

Variable length records
X'8000'

Fixed length records
X'C000'

Undefined records.

Example
For fixed block records, INMRECFM contains:

KEY NUMBER LENGTH VALUE
0049 0001 0002 9000

NETDATA Format

558 z/VM: 7.3 CMS Macros and Functions Reference

File Size
INMSIZE specifies the size of the file in bytes. When this key is specified, NUMBER is 1, LENGTH is 1 to 8,
and VALUE contains the size of the file in bytes.

Note: The INMSIZE text unit for a partitioned data set (PDS) is the size of the PDS, not the size of a
member.

Example
For a 1 megabyte file, INMSIZE contains:

KEY NUMBER LENGTH VALUE
102C 0001 0004 000F4240

Note File
INMTERM specifies the file is a note. When this key is specified, NUMBER is 0, and LENGTH and and
VALUE are omitted.

Example
For a note, INMTERM contains:

KEY NUMBER LENGTH VALUE
0028 0000

Target Node
INMTNODE specifies the node name or node number provided by the NETDATA SEND command of the
target of this transmission. When this key is specified, NUMBER is 1, LENGTH is the length of the node
name or number, and VALUE is the name or number of the target node.

Example
For a node of ROME, INMTNODE contains:

KEY NUMBER LENGTH VALUE
1001 0001 0004 D9D6D4C5

Target User ID
INMTUID specifies the user ID of the target of this transmission. When this key is specified, NUMBER is 1,
LENGTH is the length of the user ID, and VALUE is the target user ID of the transmission.

Example
For a target user ID of IBMUSER, INMTUID contains:

KEY NUMBER LENGTH VALUE
1002 0001 0007 C9C2D4E4E2C5C9

Program Name
INMUTILN specifies the name of the utility program which is used as part of restoring the transmitted
data to its original format. When this key is specified, NUMBER is 1, LENGTH is the length of the utility
name, and VALUE contains the name of the utility. NETDATA supports

NETDATA Format

Appendix D. NETDATA Format 559

INMCOPY
Invoke internal utility to convert from the transmission format to a sequential file.

TSO/E also supports
IEBCOPY

Invoke the IEBCOPY utility to reload a partitioned file.
AMSCIPHR

Invoke the Access Method Services REPRO command to decrypt a file.

Example
For the utility program INMCOPY, INMUTILN contains:

KEY NUMBER LENGTH VALUE
1028 0001 0007 C9D5D4C3D6D7E8

Header Record (INMR01)
The INMR01 record is always the first record of a transmission. The identifier of the record is INMR01
in bytes 2-7. The remainder of the record (beginning with byte 8 of the first record) is composed of text
units. The text unit keys which are always present are:

INMFNODE Origin node name

INMFTIME Origin time stamp

INMFUID Origin user ID

INMLRECL Length of physical control record segments

INMTNODE Target node name

INMTUID Target user ID

Text unit keys which may be present are:

INMFACK Receipt notification requested

INMFVERS Origin version number

INMNUMF Number of files in this transmission

INMUSERP User parameter string

For the INMR01 record, NETDATA with the RECEIVE option recognizes and acts on:

INMFNODE

INMFTIME

INMFUID

INMFACK

INMNUMF

For the INMR01 record, NETDATA with the SEND option generates:

INMFACK

INMFNODE

INMFTIME

INMFUID

NETDATA Format

560 z/VM: 7.3 CMS Macros and Functions Reference

INMLRECL

INMNUMF

INMTNODE

INMTUID

File Utility Control Record (INMR02)
Each INMR02 record controls a data restoration step. In a given transmission, one or more processes
represented by a corresponding number of INMR02 records are required. The only utility operation
supported is INMCOPY, which converts sequential files to and from the NETDATA format. (TSO/E also
supports IEBCOPY, which converts partitioned files to and from sequential files, and AMSCIPHR, which
invokes the Access Method Services REPRO command to encrypt and decrypt files.)

The text units which are on the INMR02 record describe the output of the utility operation. The input with
which it must work is described by the INMR03 data description record.

If the transmission contains more than one file, one or more INMR02 records are required for each file
in the transmission. The INMR02 records are in the same order as the files in the transmission. The file
number field (which precedes the text units in the control record) identifies which of the multiple files in
the transmission the control record applies.

Note: NETDATA does not support more than one file and one note in the same transmission.

The identifier for this record is INMR02 in bytes 2-7 of the first record. Bytes 8-11 contain the number of
the file in this transmission to which the control record applies. Multiple files in a single transmission are
numbered sequentially starting at one.

The text unit keys begin in byte 12. Text unit keys always present are:

INMDSORG File organization

INMLRECL Logical record length

INMRECFM Record format

INMSIZE Approximate size of file in bytes

INMUTILN Utility program name

Text units which may be present are:

INMBLKSZ File block size

INMCREAT Creation date

INMDIR Number of directory blocks

INMDSNAM File name

INMEXPDT Expiration date

INMFFM File mode number

INMLCHG Last change date

INMLREF Last reference date

INMMEMBR Member name list

INMTERM Note file

INMUSERP User parameter string.

For the INMR02 record, NETDATA with the RECEIVE option recognizes and acts on:

NETDATA Format

Appendix D. NETDATA Format 561

INMDSORG

INMRECFM

INMUTILN

INMBLKSZ

INMDSNAM

INMFFM

INMLCHG

INMLRECL

INMTERM

For the INMR02 record, NETDATA with the SEND option generates:

INMDSNAM

INMDSORG

INMFFM

INMLCHG

INMLRECL

INMRECFM

INMSIZE

INMTERM

INMUTILN

Data Control Record (INMR03)
The INMR03 record immediately precedes the transmitted data and identifies its format.

The identifier for this record is INMR03 in bytes 2-7 of the first record; text units begin in byte 8. Text unit
keys always present are:

INMDSORG File organization

INMLRECL Length of physical control record segments

INMRECFM Record format

INMSIZE Size of file in bytes

NETDATA does not recognize, validate, or act on any of the text unit keys in INMR03. Because NETDATA
does not support multiple files, the information in this record is not used and the corresponding fields
from the File Utility Control Record are used. Those fields are required and generated by TSO/E to allow
the support of multiple files. NETDATA with the SEND option generates:

INMDSORG

INMLRECL

INMRECFM

INMSIZE

NETDATA Format

562 z/VM: 7.3 CMS Macros and Functions Reference

User Control Record (INMR04)
The INMR04 record can appear almost anywhere among the control records. It must not appear before
the INMR01 record. When it is found, it is ignored.

The identifier for this record is INMR04 in bytes 2-7 of the first record; text units begin in byte 8. Text unit
keys always present are:

INMUSERP User parameter string

NETDATA does not recognize nor act on any of the text units in INMR04. NETDATA with the SEND option
does not create an INMR04 record.

Trailer Control Record (INMR06)
The INMR06 record is always the last record in a transmission. This record verifies that the transmission
is complete.

The identifier for this record is INMR06 in bytes 2-7 of the first record; text units begin in byte 8. No text
units are defined for this record.

Acknowledgement Control Record (INMR07)
The INMR07 record indicates acknowledgement of a previous transmission. When it appears, the
transmission will consist of only the INMR01, INMR07, and INMR06 records.

The identifier for this record is INMR07 in bytes 2-7 of the first record; text units begin in byte 8. Text units
always present are:

INMDSNAM File name

INMFTIME Origin time stamp

INMTERM Note file

Either INMDSNAM or INMTERM is present, but not both. Other text units which may be present are:

INMERRCD Error indication for the RECEIVE operation

INMFACK Acknowledgement ID

INMFFM File mode number

INMUSERP User parameter string

For the INMR07 record, NETDATA with the RECEIVE option recognizes and acts on:

INMDSNAM

INMERRCD

INMFFM

INMFTIME

INMTERM

For the INMR07 record, NETDATA with the SEND option generates:

INMDSNAM

INMERRCD

INMFTIME

NETDATA Format

Appendix D. NETDATA Format 563

INMTERM

NETDATA Format

564 z/VM: 7.3 CMS Macros and Functions Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2025 565

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This reference document contains intended Programming Interfaces that allow the customer to write
programs to obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

566 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 567

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

568 z/VM: 7.3 CMS Macros and Functions Reference

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2025 569

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/i1343772.pdf#nameddest=i1343772
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa0_v7r3.pdf#nameddest=hcpa0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa2_v7r3.pdf#nameddest=hcpa2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpf2_v7r3.pdf#nameddest=hcpf2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa4_v7r3.pdf#nameddest=hcpa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa3_v7r3.pdf#nameddest=hcpa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsc6_v7r3.pdf#nameddest=dmsc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd1_v7r3.pdf#nameddest=dmsd1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa6_v7r3.pdf#nameddest=hcpa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa5_v7r3.pdf#nameddest=hcpa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl0_v7r3.pdf#nameddest=hcpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/gcta0_v7r3.pdf#nameddest=gcta0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe2_v7r3.pdf#nameddest=hcpe2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpa7_v7r3.pdf#nameddest=hcpa7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpg4_v7r3.pdf#nameddest=hcpg4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcps0_v7r3.pdf#nameddest=hcps0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe9_v7r3.pdf#nameddest=hcpe9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb4_v7r3.pdf#nameddest=dmsb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb2_v7r3.pdf#nameddest=dmsb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb3_v7r3.pdf#nameddest=dmsb3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb7_v7r3.pdf#nameddest=hcpb7_v7r3

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

570 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb1_v7r3.pdf#nameddest=hcpb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb2_v7r3.pdf#nameddest=hcpb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb6_v7r3.pdf#nameddest=dmsb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb5_v7r3.pdf#nameddest=dmsb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa3_v7r3.pdf#nameddest=dmsa3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa5_v7r3.pdf#nameddest=dmsa5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsd0_v7r3.pdf#nameddest=dmsd0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa4_v7r3.pdf#nameddest=dmsa4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsa6_v7r3.pdf#nameddest=dmsa6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/c2462521.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb4_v7r3.pdf#nameddest=hcpb4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb5_v7r3.pdf#nameddest=hcpb5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb6_v7r3.pdf#nameddest=hcpb6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ceeb7_v7r3.pdf#nameddest=ceeb7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp4_v7r3.pdf#nameddest=dmsp4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp1_v7r3.pdf#nameddest=dmsp1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp3_v7r3.pdf#nameddest=dmsp3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp0_v7r3.pdf#nameddest=dmsp0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsp2_v7r3.pdf#nameddest=dmsp2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsl0_v7r3.pdf#nameddest=dmsl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsk7_v7r3.pdf#nameddest=dmsk7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb1_v7r3.pdf#nameddest=dmsb1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsb0_v7r3.pdf#nameddest=dmsb0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmse6_v7r3.pdf#nameddest=dmse6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb9_v7r3.pdf#nameddest=hcpb9_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmsw0_v7r3.pdf#nameddest=dmsw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw0_v7r3.pdf#nameddest=hcpw0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc1_v7r3.pdf#nameddest=hcpc1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpc3_v7r3.pdf#nameddest=hcpc3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpe5_v7r3.pdf#nameddest=hcpe5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt1_v7r3.pdf#nameddest=hcpt1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt5_v7r3.pdf#nameddest=hcpt5_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt2_v7r3.pdf#nameddest=hcpt2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt0_v7r3.pdf#nameddest=hcpt0_v7r3

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf), SC14-7580
• Open Systems Adapter-Express ICC 3215 Support (https://www.ibm.com/docs/en/zos/2.3.0?

topic=osa-icc-3215-support), SA23-2247
• Open Systems Adapter Integrated Console Controller User's Guide (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/SC27-9003-02.pdf), SC27-9003
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.3.0/pdf/ioa2z1f0.pdf), SA22-7935

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

The following publications contain sections that provide information about z/VM Performance Data Pump,
which is licensed with Performance Toolkit for z/VM.

• z/VM: Performance, SC24-6301. See z/VM Performance Data Pump.
• z/VM: Other Components Messages and Codes, GC24-6300. See Data Pump Messages.

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

Bibliography 571

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt3_v7r3.pdf#nameddest=hcpt3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpt4_v7r3.pdf#nameddest=hcpt4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk4_v7r3.pdf#nameddest=hcpk4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk2_v7r3.pdf#nameddest=hcpk2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpk3_v7r3.pdf#nameddest=hcpk3_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC14-7580-02.pdf
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/zos/2.3.0?topic=osa-icc-3215-support
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/SC27-9003-02.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSLTBW_2.3.0/pdf/ioa2z1f0.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl8_v7r3.pdf#nameddest=hcpl8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpl7_v7r3.pdf#nameddest=hcpl7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=hcpb8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpb8_v7r3.pdf#nameddest=dp_intro
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=hcpw1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/hcpw1_v7r3.pdf#nameddest=datapump_msgs
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha8_v7r3.pdf#nameddest=icha8_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha4_v7r3.pdf#nameddest=icha4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichb2_v7r3.pdf#nameddest=ichb2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha1_v7r3.pdf#nameddest=icha1_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha3_v7r3.pdf#nameddest=icha3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha6_v7r3.pdf#nameddest=icha6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha7_v7r3.pdf#nameddest=icha7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/icha2_v7r3.pdf#nameddest=icha2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/ichc6_v7r3.pdf#nameddest=ichc6_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta7_v7r3.pdf#nameddest=dmta7_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta4_v7r3.pdf#nameddest=dmta4_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta3_v7r3.pdf#nameddest=dmta3_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta2_v7r3.pdf#nameddest=dmta2_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/dmta1_v7r3.pdf#nameddest=dmta1_v7r3

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/docs/en/

SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf), GC35-0152
• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/

docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf), GC35-0151

Related Products

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

z/OS
IBM Documentation - z/OS (https://www.ibm.com/docs/en/zos)

572 z/VM: 7.3 CMS Macros and Functions Reference

https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kdpl0_v7r3.pdf#nameddest=kdpl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kldl0_v7r3.pdf#nameddest=kldl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kinl0_v7r3.pdf#nameddest=kinl0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kill0_v7r3.pdf#nameddest=kill0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kiml0_v7r3.pdf#nameddest=kiml0_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/kijl0_v7r3.pdf#nameddest=kijl0_v7r3
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ickug00_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc2000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSLTBW_2.5.0/pdf/ifc1000_v2r5.pdf
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/edclv_v7r3.pdf#nameddest=edclv_v7r3
https://www.ibm.com/docs/en/SSB27U_7.3.0/pdf/vmcug_v7r3.pdf#nameddest=vmcug_v7r3
https://www.ibm.com/docs/en/zos

ANCHOR Identifier Registration Form

 z/VM
ANCHOR Macro Support

Order No. SC24-6168-01

 Date ____________________

 IBM Branch Office Serving You

 Please print your name, company name, and address:

 Name of software product that will use your ANCHOR identifier.

 Note: Do not preselect your ANCHOR identifier. This form will be returned to you with
the ANCHOR identifier assigned by IBM. If an ANCHOR identifier is required for another
product, please fill out a separate form and register with IBM.

 Please Do Not Write Below This Line

IBM USE ONLY

Date _____________________

Your unique three-character identifier is ___________________ This ANCHOR
identifier has been registered with IBM and should not be altered. This ANCHOR
identifier is intended for use with the above product only.

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us

© Copyright IBM Corp. 1991, 2025 573

574 z/VM: 7.3 CMS Macros and Functions Reference

Index

Numerics
24-bit addressing 3, 4, 23
31-bit addressing

direct branches 23
370 Accommodation Facility 3
9346 tape cartridge 414

A
ABEND exit routines, clearing or setting 18
abend processing

keeping SVC handlers across 244, 252, 253, 274
saving nucleus extensions across 329
saving saved segments across 380
saving subcommands across 399
saving subpools across 404

abending a program 169
ABNEXIT macro

CLR option 19
ERROR= operand 20
EXIT= operand 19
RESET option 19
SET option 18
SYSTEM operand 19
UWORD= operand 19

abnormal end
causing 169

ACCEPT function (CMSIUCV macro)
format 62
parameter descriptions 62
return codes 65

ACMSCVT, mapping using NUCON macro 333
ADAPTRC macro 546
ADDR= operand

CMSSTOR OBTAIN 93
CMSSTOR RELEASE 101

ADDRESS= operand
AMODESW CALL 25

addressing mode
determining current setting 26
switching 24
switching inline 29

ADEVTAB, mapping using NUCON macro 333
AEXEC, mapping using NUCON macro 333
alias

erasing 200
allocating free storage 91
AMODE= operand

AMODESW CALL 24
AMODESW RETURN 27
AMODESW SET 29
NUCEXT SET 328
SUBCOM SET 398

AMODESW macro
AMODESW CALL

ADDRESS= operand 25

AMODESW macro (continued)
AMODESW CALL (continued)

AMODE= operand 24
MODE=NO370 operand 25
REGS= operand 25

AMODESW QRY
MODE=NO370 operand 26

AMODESW RETURN
AMODE= operand 27
MODE=NO370 operand 28
REG= operand 27

AMODESW SET
AMODE= operand 29
MODE=NO370 operand 29
SAVE= operand 29

general formats 23
ANCHOR macro

condition code setting 33
error handling 32
general format 31

APPLMSG macro
APPLID= operand 35
BUFFA= operand 36
building parameter list 42
COMP= operand 36
creating a header for messages 38
CSECT= operand 36
CSECTA= operand 36
DISP= operand 37
display format of message 37
execute format 36, 43
FMT= operand 39
FMTA= operand 39
generating code to fill parameter list 36
generating storage area for parameter list 35
HEADER= operand 38
invoking message facility 36
LET= operand 38
LETA= operand 38
LINE= operand 39
LINEA= operand 40
list format 35, 43
MAXSUBS= operand 35, 42
message format 39
message line number 39
message number 39
message repository 34
message severity 38
MF= operand 35
NUM= operand 39
NUMA= operand 39
processing 43
reserving program storage 42
retrieving messages from message repository 34
specifying buffer address 36
specifying call type 43
specifying macro format 35

Index 575

APPLMSG macro (continued)
specifying message text 42
standard format 35, 43
SUB= operand 40
substitutions 40, 42
TEXT= operand 42
TEXTA= operand 42
TYPCALL= operand 43

ASA carriage control characters
listed 347
specified using PRINTL macro 345

assembler language macros
supported by VSE 527

ATTN function
stacking an input line 494
usage 494

B
batch machine 46
BATLIMIT macro 46
BATLSECT DSECT

mapping 46
block ID, tape 413
BNDRY= operand

CMSSTOR OBTAIN 95
branching to another program 23
BSIZE= operand

FSCB macro 192
FSOPEN macro 204
FSREAD macro 218
FSWRITE macro 233

buffer synchronization (tape) 438
BUFFER= operand

CONSOLE OPEN macro 118
CONSOLE QUERY macro 122
CONSOLE READ macro 126
CONSOLE WRITE macro 133
FSCB macro 192
FSOPEN macro 204
FSREAD macro 218
SCAN macro 373

buffered write mode (tape) 438
BYTES= operand

CMSSTOR OBTAIN 92
CMSSTOR RELEASE 101

C
CACHE= operand

FSCB macro 192
FSOPEN macro 206

calling programs 47
calling subroutines 24
CALLTYP= operand

CMSCALL macro 48
CCW(Channel Command Word)

building using CONSOLE EXCP macro 112
building using CONSOLE macro 107

channel block ID, tape 414
Channel Command Word (CCW)

building using CONSOLE EXCP macro 112
building using CONSOLE macro 107

checking for existence of file
using FSSTATE macro 224

checking tape labels using TAPESL 418
closing

files 196
closing files in EXEC procedures 196
CLR function (HNDIUCV macro)

parameter descriptions 258
return codes 259

CLR operand
ABNEXIT macro 19
HNDEXT macro 243
HNDINT macro 247
HNDIO macro 251
HNDSVC macro 274
IMMCMD macro 279
REXEXIT macro 364

CLRLIST= operand
HNDIO macro 251

CMS functions described
invoking 493

CMS interface to APPC/VM
CMSIUCV ACCEPT function 62
CMSIUCV CONNECT function 67
CMSIUCV QCMSWID function 74
CMSIUCV RESOLVE function 77
CMSIUCV SEVER function 80
HNDIUCV CLR (clear) function 258
HNDIUCV HLD (hold) function 261
HNDIUCV REP (replace) function 263
HNDIUCV RES (resume) function 267
HNDIUCV SET function 269

CMS level query 172
CMS macroinstructions described 15
CMS preferred functions described

invoking 443
CMS programming interface

compatibility group
contents of 10
definition of 5

DOS/VSE group
definition of 5

nonsimulated OS/MVS group
definition of 5

nonsimulated OS/MVS macros 14
preferred interface group

advantages of 4
components of 5

simulated OS/MVS group
definition of 5
macros contained in 11

CMS/DOS
DTFCD macro 537
DTFCN macro 538
DTFDI macro 539
DTFMT macro 540
DTFPR macro 541
DTFSD macro 542
physical IOCS macros 529
SVC support routines 529–536
VSE I/O macros 529
VSE supervisor macros 529

CMSCALL macro
CALLTYP= operand 48

576 z/VM: 7.3 CMS Macros and Functions Reference

CMSCALL macro (continued)
comparison with SVC 202 51
COPY= operand 49
EPLIST= operand 48
FENCE= operand 50
MODIFY= operand 50
PLIST= operand 48
PSW settings when called routine starts 52
register contents when called routine starts 52
UFLAGS= operand 49

CMSCB macro
mapping of FCBSECT DSECT 454

CMSCVT macro 54
CMSDEV macro

DIAGNOSE code X'210' 57
obtaining virtual device characteristics 56
using with PRINTL macro 57

CMSECVT macro 60
CMSIUCV macro

ACCEPT function 62
CONNECT function 67
QCMSWID function 74
RESOLVE function 77
SEVER function 80

CMSLEVEL macro
general format 84

CMSRET macro
FPR= operand 86
GR= operand 86
RC= operand 86

CMSSTACK macro
ORDER= operand 88
TEXT= operand 87

CMSSTOR macro
CMSSTOR OBTAIN

ADDR= operand 93
BNDRY= operand 95
BYTES= operand 92
DWORDS= operand 92
ERROR= operand 95
generating reentrant code 96
LOC= operand 94
MSG= operand 94
SUBPOOL= operand 93
TYPCALL= operand 94

CMSSTOR RELEASE
ADDR= operand 101
BYTES= operand 101
DWORDS= operand 101
ERROR= operand 103
MSG= operand 102
SUBPOOL= operand 101
TYPCALL= operand 102

CODE= operand
HNDEXT macro 243

codes, return
ACCEPT (CMSIUCV) function 65
CLR (clear) function 259
CONNECT (CMSIUCV) function 71
HLD (hold) function 262
QCMSWID (CMSIUCV) function 75
REP (replace) function 265
RES (resume) function 268
RESOLVE function 78

codes, return (continued)
SET function 272
SEVER (CMSIUCV) function 82

coding conventions, macro 15
commands

search function 500
communications vector table, mapping 54
compatibility group

contents of 10
definition of 5

compiler switch flag 106
COMPSWT macro

OFF operand 106
ON operand 106
turning compiler switch flag on or off 106

CON1ECB format 434
conditional macro expansion 176
CONNECT function (CMSIUCV macro)

ERROR parameter 70
EXIT= operand 68
parameter descriptions 67

CONSOLE macro
accessing CMS full-screen console services 107
building the CCW (Channel Command Word) 107
checking device error status 107
EXCP function 110
issuing DIAGNOSE code X'58' 107
issuing SIO instructions 107
mapping information returned by 138
MODIFY function

EXIT= operand 114
RESET= operand 114
UWORD= operand 114

OPEN function
BUFFER= operand 118
ERROR= operand 118
RESET= operand 118

performing 3270 I/O operations 107
QUERY function

BUFFER= operand 122
ERROR= operand 123
format 121

READ function
BUFFER= operand 126
format 125
OPTIONS= operand 126

WAIT function 129
WRITE function

BRKKEY= operand 134
BUFFER= operand 133
OPTIONS= operand 133

console services
accessing, using CONSOLE macro 107
CMS full-screen 107
OPEN function

format 116
control block mappings

CMSCB macro 454
CQYSECT macro 138
DMSJNEPL macro 171
DMSSDWA macro 173
EPLIST macro 180
EXITBUFF macro 182
EXTUAREA macro 188

Index 577

control block mappings (continued)
FSCBD macro 194
FSTD macro 230
IO macro 468
LABSECT macro 285
SCBLOCK macro 376
SGMTEXIT macro 386
SHVBLOCK macro 387
VOLSECT macro 429

conventions, macro coding 15
Conversational Monitor System (CMS)

CMS SUBCOM environment 501
command search function 500
storage

STRINIT macro 485
SUBCOM function 500
VSE macros 529

COPY= operand
CMSCALL macro 49

CQYSECT macro 138
CRR Participation Macros 545
CSFCB macro

expansion 140
CSLENTRY macro

general format 141
CSLEXIT macro

general format 144
CSLFPI macro

general format 146
CSLGETP macro

general format 150
CSRCMPSC macro

description 152
format of 152
parameter descriptions 152

CSRYCMPD macro
description 155
format 155

CSRYCMPS macro
description 160
format 160

D
DCSS, managing 378
DDNAME= operand

TEOVEXIT macro 486
declarative macros

DTFCD 537
DTFCN 538
DTFDI 539
DTFMT 540
DTFPR 541
DTFSD 542

default external interrupt handlers 242
Definition Language for Command Syntax (DLCS) 337
deleting CMS files from minidisk or SFS directory 199
determining CMS level 172
device information, mapping 283
DEVICE= operand

GETSID macro 239
HNDIO macro 251

DEVNAME= operand
GETSID macro 239

DEVNAME= operand (continued)
HNDIO macro 251

DIAGNOSE code X'210'
used by CMSDEV macro 57

DIAGNOSE code X'70' issued by TODACCNT function
using ENABLE subfunction 503
using QUERY subfunction 503

DIRBUFF macro
directory buffer mappings 163
general format 163

direct branch linkage 23
directory buffer mapping macro 163
discarding files, aliases

FSERASE macro 199
disk file

reading records from 217
writing records to 232

Disk Operating System (DOS)
declarative macros

DTFCD 537
DTFCN 538
DTFDI 539
DTFMT 540
DTFPR 541
DTFSD 542

imperative macros 544
macros supported in CMS 527
support of physical IOCS macros 529
VSE macros under CMS 529

DISKID function
obtaining minidisk information 444
PLIST 444
usage 444, 446
using CP DASD Block I/O System Service
444

DISPW macro 459
DLCS 337
DMSABEXP macro 168
DMSABN macro

abending a program 169
TYPCALL= operand 169

DMSBRAC COPY 510
DMSEXS macro 460
DMSFREE macro 461
DMSFRES macro 463
DMSFRET macro 464
DMSFST macro

FORM=E operand 170
setting up a file status table 170

DMSJNEPL macro
general format 171

DMSKEY macro
general format 466

DMSQEFL macro
general format 172

DMSSDWA macro
general format 173

DMSSEQ
obtaining the number of terminal input lines 446

DMSSTATE macro
ASCENV= operand 176
SET 176
TEST 176

DMSTVI PLIST mapping 424

578 z/VM: 7.3 CMS Macros and Functions Reference

DMSWRAUD EXEC 510
DMSWRAUT EXEC 511
DMSWRESM EXEC 510
DMSWRRAC EXEC 512
DMSWSAUD module 515
DMSWSAUT module 517
DMSWSESM module 513, 514
DOS (Disk Operating System)

declarative macros
DTFCD 537
DTFCN 538
DTFDI 539
DTFMT 540
DTFPR 541
DTFSD 542

imperative macros 544
macros supported in CMS 527
support of physical IOCS macros 529
VSE macros under CMS 529

DSECT for file system control block (FSCB) 194
DSECT generated for PARSECMD control block

CSRYCMPS macro 160
using PARSERCB macro 340

DSECT generated for Parser Validation Code Table entry
using PVCENTRY macro 352

DTFCD macro 537
DTFCN macro 538
DTFDI macro 539
DTFMT macro 540
DTFPR macro 541
DTFSD macro 542
DUMMY operand

HNDEXT macro 243
DWORDS= operand

CMSSTOR OBTAIN 92
CMSSTOR RELEASE 101

E
ECB (event control block) format 433
ECB= operand

HNDEXT macro 243
ENABLE macro 178
end-of-command

keeping SVC handlers across 243, 252, 274
ENDCMD= operand

NUCEXT SET 330
entry point, module 141
ENTRY= operand

NUCEXT SET 327
REXEXIT macro 364
SUBCOM SET 397

EPLIST macro 180
EPLIST= operand

CMSCALL macro 48
PARSECMD macro 336

EQU (equate) statements
generating for registers using REGEQU macro 362

erasing files, aliases
FSERASE macro 199

error codes
ACCEPT (CMSIUCV) function 65
CLR (clear) function 259
CONNECT (CMSIUCV) function 71

error codes (continued)
HLD (hold) function 262
QCMSWID (CMSIUCV) function 75
REP (replace) function 265
RES (resume) function 268
RESOLVE function 78
SET function 272
SEVER (CMSIUCV) function 82

error information
FPERROR mapping macro 190
WUERROR mapping macro 442

ERROR parameter
ACCEPT (CMSIUCV) function 64
CLR (clear) function 258

ERROR= operand
ANCHOR macro 32
CMSSTOR OBTAIN 95
CMSSTOR RELEASE 103
CONSOLE macro 118, 123
FSPOINT macro 214
FSREAD macro 219
FSSTATE macro 226
FSWRITE macro 234
GETSID macro 240
HNDEXT macro 244
HNDINT macro 247
HNDSVC macro 275
LINERD macro 293, 297
NUCEXT ANCHOR 318
NUCEXT CLR 321
NUCEXT QUERY 323
NUCEXT SET 331
REXEXIT macro 366
SCAN macro 374
SEGMENT macro 380
SUBCOM ANCHOR 390
SUBCOM CLR 392
SUBCOM QUERY 394
SUBCOM SET 399
SUBPOOL CREATE 404
SUBPOOL DELETE 408
SUBPOOL RELEASE 408
TEOVEXIT macro 487

ESA virtual machine 3
ESA/390 architecture 3
ESA/XC architecture 3
event control block (ECB) format 433
exist buffer mapping macro 185
existence of file, determining

using FSSTATE macro 224
exit code, module 144
exit routines

clearing for external interrupts 243
clearing for I/O interrupts 251
clearing for SVC interrupts 274
defining for external interrupts 242
defining for I/O interrupts 250
defining for SVC interrupts 273

EXIT= operand
ACCEPT (CMSIUCV) function 63
CONNECT (CMSIUCV) 68
HNDIO macro 251
IMMCMD macro 280
REP (HNDIUCV) function 264

Index 579

EXIT= operand (continued)
SET (HNDIUCV) function 270
TEOVEXIT macro 487

EXITBUFF macro
general format 182

exits for REXX programs
clearing user exits 364
defining user exits 364
invoking list of user exits 363
maintaining list of user exits 363

EXSBUFF macro
general format 185

extended communications vector table, mapping 60
extended format FSCB 192
extended parameter list, mapping 180
extended parameter lists

building 372
external interrupt, X'2603' 189
external interrupts

default external interrupt handlers 242
handling 242
resuming suspended task using EXTXCTL macro 189
X'2603' 189

EXTUAREA macro 188
EXTXCTL macro

resuming execution 189

F
fast path for CSL routines 146
FCBSECT DSECT mapping 454
FENCE= operand

CMSCALL macro 50
file pool error information mapping 190
file status table (FST)

creating a copy of, using FSOPEN macro 208
creating a copy of, using FSSTATE macro 226
setting up 170

FORM=E operand
DMSFST macro 170
FSCB macro 192
FSOPEN macro 206
FSPOINT macro 214
FSREAD macro 218
FSSTATE macro 225
FSWRITE macro 233

format
macroinstructions 15

FPERROR macro
general format 190

FPR= operand
CMSRET macro 86

free storage
allocating 91
free storage subpools

creating 402
deleting 406
releasing 406

releasing 100
FSCB macro

BSIZE= operand 192
BUFFER= operand 192
CACHE= operand 192
file system control block 191

FSCB macro (continued)
FORM=E operand 192
general format 191
multiple FSCBs 193
NOREC operand 192
OPENTYP= operand 192
RECFM= operand 191
RECNO= operand 192

FSCB= operand
FSCLOSE macro 196
FSERASE macro 199
FSOPEN macro 204
FSPOINT macro 213
FSREAD macro 217
FSSTATE macro 224
FSWRITE macro 232

FSCBD macro
DSECT for file system control block (FSCB) 194
macro expansion 194

FSCLOSE macro
closing open files 196
closing SFS files 197
ERROR= operand 196
FSCB= operand 196
generating reentrant code 197
threshold, SFS file space 198

FSERASE macro
deleting CMS files from minidisk or SFS directory 199
ERROR= operand 199
FSCB= operand 199
SFS base files, aliases 200

FSOPEN macro
BISIZE= operand 204
BUFFER= operand 204
CACHE= operand 206
FORM=E operand 206
FSCB= operand 204
generating reentrant code 208
MSG= operand 205
NOMSG= operand 205
NOREC= operand 204
OPENTYP= operand 207
readying files for input or output 202
RECFM= operand 204
RECNO= operand 204
SFS files, use with 208

FSPOINT macro
ERROR= operand 214
FORM=E operand 214
FSCB= operand 213
generating reentrant code 214
RDPNT= operand 214
resetting write and read pointers 213
SFS files, accessing 214
WRPNT= operand 214

FSREAD macro
BSIZE= operand 218
BUFFER= operand 218
ERROR= operand 219
FORM=E operand 218
FSCB= operand 217
generating reentrant code 219
NOREC= operand 219

580 z/VM: 7.3 CMS Macros and Functions Reference

FSREAD macro (continued)
reading records from CMS disk file to I/O buffer
217
RECFM= operand 218
RECNO= operand 218
SFS files, accessing 220
support for variable-length records 220
threshold, SFS file space 220

FSSTATE macro
creating a copy of FST (file status table) 226
creating a copy of, using FSSTATE macro 226
determining existence of files 224
ERROR= operand 226
FORM=E operand 225
FSCB= operand 224
mapping information returned by 230
MSG= operand 225
STATEW= operand 225

FST (file status table)
creating a copy of, using FSOPEN macro 208
creating a copy of, using FSSTATE macro 226
setting up 170

FSTD macro 230
FSWRITE macro

BSIZE= operand 233
ERROR= operand 234
FORM=E operand 233
FSCB= operand 232
generating reentrant code 234
NOREC= operand 234
RECFM= operand 233
RECNO= operand 233
SFS files, work unit ID 235
update-in-place facility 235
updating files of variable-length records 235
writing records from I/O buffer to CMS disk file
232
writing records sequentially 234

G
get information about passed parameters 150
GETSID macro

DEVICE= operand 239
DEVNAME= operand 239
ERROR= operand 240

GR= operand
CMSRET macro 86

H
handlers

clearing for external interrupts 243
clearing for I/O interrupts 251
clearing for SVC interrupts 274
defining for external interrupts 242
defining for I/O interrupts 250
defining for SVC interrupts 273

HELP, online 16
HLD function (HNDIUCV macro)

ERROR parameter 262
parameter descriptions 261
return codes 262

HNDEXT macro
CLR option 243
CODE= operand 243
DUMMY operand 243
ECB= operand 243
ERROR= operand 244
KEEP= operand 243
SET option 243
SYSTEM= operand 244
UWORD= operand 244

HNDINT macro
ASAP option 247
CLR option 247
ERROR= operand 247
handling I/O interrupts
247
SET option 247
WAIT option 247

HNDIO macro
CLR option 251
CLRLIST= operand 251
DEVICE= operand 251
DEVNAME= operand 251
EXIT= operand 251
INTBLOK= operand 252
KEEP= operand 252
NOTIFY= operand 251
PERSIST= operand 253
SET option 251
SYSTEM= operand 252
UWORD= operand 252

HNDIUCV macro
CLR (clear) function 258
HLD (hold) function 261
REP (replace) function 263
RES (resume) function 267
SET function 269

HNDSVC macro
CLR option 274
ERROR= operand 275
KEEP= operand 274
SET option 273
SYSTEM= operand 274
UWORD= operand 274

HSCVSAVE macro 277

I
I/O (input/output)

macros 529
I/O buffer

reading lines to 482
reading records to 217
writing records from 232

I/O devices, handling interrupts for 247
I/O interrupts

handling 250
IMMBLOK macro 278
IMMCMD macro

CLR option 279
EXIT= operand 280
NAME= operand 279
QRY option 279
SET option 279

Index 581

IMMCMD macro (continued)
UWORD= operand 280

IMMCMD= operand
NUCEXT SET 330

immediate commands
clearing 279
declaring 279
querying 279

immediate write mode (tape) 438
imperative macros 544
implicit recursion of execs, inhibiting 140
inhibiting implicit recursion of execs 140
instruction

executing without nucleus protection 460
INTBLOK macro 283
INTBLOK= operand

HNDIO macro 252
interrupt mask, manipulating 178
interrupts

external
default external interrupt handlers 242
handling 242

I/O
handling 250

SVC
handling 273

INTTYPE= operand
NUCEXT SET 328
SUBCOM SET 398

IO macro
mapping of OPSECT DSECT 468

K
KEEP= operand

HNDEXT macro 243
HNDIO macro 252
HNDSVC macro 274

KEY= operand
NUCEXT SET 329
SUBCOM SET 398
SUBPOOL CREATE 404

L
labeldefid on TAPESL macro 419
LABSECT macro

general format 285
LANGADD function

adding LANGBLKs to language block chain 447
language control block 447

LANGBLK macro 287
LANGFIND function

language control block 449
locating LANGBLKs on language block chain 449

language control block
LANGADD function 447
LANGFIND function 449

languages, national 44, 447
LINEDIT macro

BUFFA= operand 478
COMP= operand 473
converting decimal values to EBCDIC 472

LINEDIT macro (continued)
converting decimal values to hexadecimal 472
DISP= operand 477
displaying conversion results at terminal 472
displaying lines contained in buffer 473
displaying multiple blanks 473
displaying parameter lists 476
DOT= operand 473
execute format 479
indicating message substitution 480
list format 479
MAXSUBS= operand 478
MF= operand 478
multiple substitution lists 480
passing lines to CP 477
period placement 473
RENT= operand 479
specifying message text 472
specifying substitution length 480
specifying substitutions 474
standard format 478
SUB= operand 474
TEXT= operand 472
TEXTA= operand 473

LINERD macro
ATTREST= operand 293, 297
CASE= operand 292, 296
COL= operand 291, 295
DATA= operand 290, 294
ERROR= operand 293, 297
LINE= operand 291, 295
LOGICAL= operand 292, 296
PAD= operand 292, 296
PROMPT= operand 290, 294
reading lines of input from terminal 289
specifying buffer address 290, 294
TRANS= operand 292, 296
TYPE= operand 292, 296
VNAME= operand 291, 294
WAIT= operand 293, 297
writing prompt information 290, 294

LINEWRT macro
ALARM= operand 305
COL= operand 303
COLOR= operand 304
DATA= operand 302
displaying lines of output at terminal 301
EXTHI= operand 304
HILITE= operand 304
LINE= operand 303
NOCR= operand 305
PRIOR= operand 305
PROTECT= operand 304
VNAME= operand 302

LOC= operand
CMSSTOR OBTAIN 94

Locate Block function, tape 413
LRDD macro

general format 308
LWRD macro

general format 310

582 z/VM: 7.3 CMS Macros and Functions Reference

M
macro coding conventions 15
macro formats 15
macro libraries

DMSGPI MACLIB 15
MVSXA MACLIB 11
OSMACRO MACLIB 11
OSMACRO1 MACLIB 14

macro return code placement 15
mapping

file pool error information 190
macros

for CMSLEVEL 84
for CQYSECT 138
for CSFCB 140
for directory buffer 163
for DMSABEXP 168
for DMSJNEPL 171
for DMSSDWA 173
for EPLIST 180
for exist buffer 185
for EXITBUFF 182
for file pool error 190
for file status table 170
for file system control block DSECT 194
for FSTD 230
for HSVCSAVE 277
for IMMBLOK 278
for INTBLOK 283
for LABSECT 285
for LINERD descriptor 308
for LINEWRT descriptor 310
for NUCON 333
for PARSERCB 340
for PARSERUF 342
for PVCENTRY 352
for REXX language processor 370
for SCBLOCK 376
for SGMTEXIT 386
for SHVBLOCK 387
for TRANTBL 423
for TVISECT 424
for USERSAVE 427
for VOLSECT 429
for work unit error 442

work unit error information 442
message examples, notation used in xv
message facility, invoking

using APPLMSG macro 36
message repository

retrieving a message from 35
MF= operand

general description 15
MF=L parameter

ACCEPT (CMSIUCV) 65
CLR (clear) 259
CONNECT (CMSIUCV) 71
HLD (hold) 262
REP (replace) 266
RES (resume) 268
RESOLVE 79
SET 271

minidisk information, obtaining 444

MNOTE 15
MODE=NO370 operand

AMODESW QRY 26
AMODESW RETURN 28
AMODESW SET 29

MODIFY= operand
CMSCALL macro 50

module entry point 141
module exit code 144
MSG= operand

CMSSTOR OBTAIN 94
CMSSTOR RELEASE 102
FSOPEN macro 205
FSSTATE macro 225
SUBPOOL CREATE 403
SUBPOOL DELETE 407
SUBPOOL RELEASE 407

MVSXA MACLIB
simulated macros 11

N
NAME parameter

ACCEPT (CMSIUCV) function 62
CLR (clear) function 258

NAME= operand
IMMCMD macro 279
NUCEXT CLR 320
NUCEXT QUERY 322
NUCEXT SET 327
REXEXIT macro 364
SEGMENT macro 379
SUBCOM CLR 392
SUBCOM QUERY 394
SUBCOM SET 397
SUBPOOL CREATE 402
SUBPOOL DELETE 406
SUBPOOL RELEASE 406

national languages 44, 447
NETDATA Format 551
NOMSG= operand

FSOPEN macro 205
nonreentrant code

generating, using LINEDIT macro 479
NOREC= operand

FSCB macro 192
FSOPEN macro 204
FSREAD macro 219
FSWRITE macro 234

notation used in message and response examples xv
NOTIFY= operand

HNDIO macro 251
NUCEXT function

ENDCMD attribute 497
linkage conventions 497
nucleus extensions 495
nucleus storage 497
NUCXDROP command 495
NUCXLOAD command 495
NUCXMAP command 495
PLISTs 498
PURGE and RESET service calls 496
register contents upon entry 331, 498
SYSTEM and SERVICE attributes 496

Index 583

NUCEXT macro
ANCHOR option

ERROR= operand 318
CLR option

ERROR= operand 321
NAME= operand 320

general formats 317
QUERY option

ERROR= operand 323
NAME= operand 322

SET option
AMODE= operand 328
ENDCMD= operand 330
ENTRY= operand 327
ERROR= operand 331
IMMCMD= operand 330
INTTYPE= operand 328
KEY= operand 329
NAME= operand 327
ORIGIN= operand 328
PERM= operand 331
SERVICE= operand 329
SYSTEM= operand 329
UFLAGS= operand 327
UWORD= operand 327

nucleus constant area, NUCON macro mapping 333
nucleus extensions

clearing 320
defining 327
determining existence of 322
ENDCMD option 495
IMMCMD option 495, 499
managing 317
obtaining the SCBLOCK anchor 318
system 496
user 496

NUCON macro
generating a mapping of GPI fields 333

NUCXDROP command 495
NUCXFRES, mapping using NUCON macro 333
NUCXLOAD command 495
NUCXMAP command 495
number of terminal input lines, obtaining 446

O
obtaining free storage 91
online HELP Facility, using 16
open

file for subsequent read or write
FSOPEN macro 202

when you can view uncommitted changes, 209
OPENTYP= operand

FSCB macro 192
FSOPEN macro 207
use when opening a file 203

OPSECT DSECT mapping 468
ORDER= operand

CMSSTACK macro 88
ORIGIN= operand

NUCEXT SET 328
OS/MVS simulation

OS/MVS macros CMS simulates 11
OS/MVS macros for assembly only 14

OS/MVS simulation (continued)
programming notes 11

OSMACRO MACLIB
contents of 11

OSMACRO1 MACLIB
nonsimulated contents of 14

P
page fault completion external interrupt 189
page fault initiation external interrupt 189
parameter lists

extended, building 372
mapping for REXX language processor 370
tokenized, building 372

PARSECMD macro
APPLID= operand 335
EPLIST= operand 336
MSGBUFF= operand 336
MSGDISP= operand 336
parsing command arguments 334
PLIST= operand 335
TRANSL= operand 337
translating command arguments 334
TYPCALL= operand 337
UNIQID= operand 335
UPPER= operand 336

Parser Validation Code Table 340, 352
PARSERCB macro

expansion 340
generating a DSECT for PARSECMD control block 340

PARSERUF macro
expansion 342
generating a mapping to parser interface 342
mapping for CMS subcommand interface 140

parsing command arguments 334
PERM= operand

NUCEXT SET 331
physical block ID, tape 414
PLIST=operand

CMSCALL macro 48
PARSECMD macro 335

preferred interface group
advantages of 4
components of 5
routines 9

preparing files for input or output
FSOPEN macro 202

PRINTL macro
CC= operand 345
CMSDEV= operand 346
ERROR= operand 346
FORM= operand 345
printing multiple records 345
specifying device characteristics 346
TRC= operand 345
writing lines to virtual printer 343

PRMLIST parameter
ACCEPT (CMSIUCV) function 63

processors, subcommand 389
program calls

AMODESW macro 23
returning to caller 86
supervisor assisted linkage 47

584 z/VM: 7.3 CMS Macros and Functions Reference

program stack, placing data on 87
protected conversation

CMSIUCV CONNECT 70
CMSIUCV SEVER 81
HNDIUCV CLR 259

PSW interrupt mask, manipulating 178
PUNCHC macro

ERROR= operand 350
writing a line to a virtual punch 350

PVCENTRY macro
expansion 352
generating DSECT for Parser Validation Code Table entry
352

Q
QRY operand

IMMCMD macro 279
QSAM tape end-of-volume 488
query CMS level 172

R
RACROUTE services 509
RC= operand

CMSRET macro 86
RDCARD macro

ERROR= operand 355
RDAHEAD= operand 355
reading a line from virtual reader 354

RDPNT= operand
FSPOINT macro 214

RDTAPE macro
reading blocks from tape device 357

RDTERM macro
ATTREST= operand 483
EDIT= operand 482
LENGTH= operand 483
PRBUFF= operand 483
PRLGTH= operand 483
reading a line from terminal into I/O buffer
482
TYPE=DIRECT operand 483

Read Block ID function, tape 413
read pointers, resetting 213
reading records sequentially 219
readying files for input or output

FSOPEN macro 202
RECFM= operand

FSCB macro 191
FSOPEN macro 204
FSREAD macro 218
FSWRITE macro 233

RECNO= operand
FSCB macro 192
FSOPEN macro 204
FSREAD macro 218
FSWRITE macro 233

recursion of execs, inhibiting 140
reentrant code

generating using CMSSTOR OBTAIN 96
generating using FSCLOSE macro 197
generating using FSOPEN macro 208

reentrant code (continued)
generating using FSPOINT macro 214
generating using FSREAD macro 219
generating using FSWRITE macro 234
generating using LINEDIT macro 479, 480

REG= operand
AMODESW RETURN 27

REGEQU macro
generating a list of EQU statements 362

REGS= operand
AMODESW CALL 25

releasing free storage 100
releasing storage

CMSSTOR RELEASE 101
REP function (HNDIUCV macro)

ERROR parameter 265
EXIT= operand 264
parameter descriptions 263
return codes 265

repository files
message repository 34

RES function (HNDIUCV macro)
ERROR parameter 268
parameter descriptions 267
return codes 268

resetting write and read pointers 213
RESOLVE function (CMSIUCV macro)

ERROR parameter 78
parameter descriptions 77

response examples, notation used in xv
resuming suspended task using EXTXCTL macro 189
RETINFO= operand

TEOVEXIT macro 487
return code placement 15
return codes

ACCEPT (CMSIUCV) function 65
CLR (clear) function 259
CONNECT (CMSIUCV) function 71
HLD (hold) function 262
QCMSWID (CMSIUCV) function 75
REP (replace) function 265
RES (resume) function 268
RESOLVE function 78
SET function 272
SEVER (CMSIUCV) function 82

REXEXIT macro
CLR option 364
ENTRY operand 364
ERROR operand 366
NAME operand 364
QUERY option 364
SET option 364
SYSTEM operand 366
UWORD operand 365

REXX language processor
mapping parameter list for an exit routine 370

RXITDEF macro 369
RXITPARM macro 370

S
SAM (sequential access method)

declarative macros 537, 544
I/O macros 537, 544

Index 585

save area, HSVCSAVE 277
SAVE= operand

AMODESW SET 29
saved segments

managing 378
sharing 380

SCAN macro
BUFFER= operand 373
building parameter lists 372
ERROR= operand 374
mapping the SCBLOCK 376
TEXT= operand 372
TRANS= operand 373

SCBLOCK
created by SUBCOM 500
mapping 376
obtaining the anchor for nucleus extensions 318

SEGMENT macro
ERROR= operand 380
FIND option 379
LOAD option 379
managing saved segments 378
NAME= operand 379
PURGE option 379
SHARE= operand 380
SKELETON= operand 380
SYSTEM= operand 380

segments, saved
managing 378
sharing 380

sequential access method (SAM)
declarative macros 537, 544
I/O macros 537, 544

SERVICE= operand
NUCEXT SET 329

SET 370ACCOM command 3
SET CMS370AC 3
SET function (HNDIUCV macro)

ERROR parameter 271
EXIT parameter 270
parameter descriptions 269
return codes 272

SET GEN370 3
SET operand

ABNEXIT macro 18
HNDEXT macro 243
HNDINT macro 247
HNDIO macro 251
HNDSVC macro 273
IMMCMD macro 279
REXEXIT macro 364

SEVER function (CMSIUCV macro)
ERROR parameter 81
parameter descriptions 80

SGMTEXIT macro
general format 386

SHARE= operand
SEGMENT macro 380

SHVBLOCK macro 387
SID, storing in register 1 239
simulation, OS/MVS

OS/MVS macros CMS simulates 11
OS/MVS macros for assembly only 14
programming notes 11

SMAPI
calling RACROUTE services 509

sparse record 219, 234
stack, program 87
standard format for macros

ACCEPT (CMSIUCV) function 65
CLR (clear) 259
CONNECT (CMSIUCV) 71
HLD (hold) 262
REP (replace) 266
RES (resume) 268
RESOLVE 79
SET 271

STATEW operand
FSSTATE macro 225

status table, file 170
storage subpools, managing

creating 402
deleting 406
releasing 406

STRINIT macro
format of 485

SUBCOM function
calling routines dynamically 500
command search function 500
environment, CMS SUBCOM 501
return codes 501

SUBCOM macro
ANCHOR function

ERROR= operand 390
CLR function

ERROR= operand 392
NAME= operand 392

general formats 389
managing subcommand processors 389
QUERY function

ERROR= operand 394
NAME= operand 394

SET function
AMODE= operand 398
ENTRY= operand 397
ERROR= operand 399
INTTYPE= operand 398
KEY= operand 398
NAME= operand 397
SYSTEM= operand 399
UFLAGS= operand 397
UWORD= operand 397

SUBCOM option of CALLTYP= operand in CMSCALL 48
subcommand, using CMSCALL 48
subcommands

clearing 392
defining 397
managing 389

SUBPOOL macro
CREATE

ERROR= operand 404
KEY= operand 404
MSG= operand 403
NAME= operand 402
SYSTEM= operand 404
TYPCALL= operand 403
TYPE= operand 403

DELETE

586 z/VM: 7.3 CMS Macros and Functions Reference

SUBPOOL macro (continued)
DELETE (continued)

ERROR= operand 408
MSG= operand 407
NAME= operand 406
TYPCALL= operand 407
TYPE= operand 407

general formats 401
managing storage subpools 401
RELEASE

ERROR= operand 408
MSG= operand 407
NAME= operand 406
TYPCALL= operand 407
TYPE= operand 407

SUBPOOL= operand
CMSSTOR OBTAIN 93
CMSSTOR RELEASE 101

subpools, managing free storage
creating 402
deleting 406
releasing 406

subroutine calls 24
subroutine, returning from 27
subsystem-identification word, storing in register 1 239
SVC

CMS/DOS support routines 529–536
SVC 202

comparison with CMSCALL macro 51
SVC interrupts

handling 273
SYNCLVL= SYNCPT conversation

CMSIUCV CONNECT 70
CMSIUCV SEVER 81
HNDIUCV CLR 259

syntax diagrams, how to read xiii
system character set translation tables

generating a DSECT for using TRANTBL 423
system MACLIBs

DMSGPI MACLIB 15
MVSXA MACLIB 11
OSMACRO MACLIB 11, 14
OSMACRO1 MACLIB 14

system save area
DMSKEY macro 466

System/370 architecture 3
SYSTEM= operand

ABNEXIT macro 19
HNDEXT macro 244
HNDIO macro 252, 253
HNDSVC macro 274
NUCEXT SET 329
REXEXIT macro 366
SEGMENT macro 380
SUBCOM SET 399
SUBPOOL CREATE 404

T
table reference character (TRC)

specified using PRINTL macro 345
tape end-of-volume exit 488
Tape end-of-volume exits

restrictions 488

tape marks, generated by TAPESL 421
tape marks, processing by TAPESL 420
tape volume interface PLIST mapping 424
TAPECTL macro

BLKBUFF= operand 413
ERROR= operand 413
ERROR= parameter 358
MODE= operand 412
MODE= parameter 358
positioning tape 410

tapes
checking and writing tape labels 418
processing IBM standard HDR1 and EOF1 labels 418

tapes, end-of-volume exits 486
TAPESL macro

BLKCNT= operand 421
ERROR= operand 421
LABID= operand 419
MODE= operand 420
SPACE= operand 420
TM= operand 421
used with RDTAPE, WRTAPE, and TAPECTL 418

TEOVEXIT macro
CLR operand 486
DDNAME= operand 486
ERROR= operand 487
EXIT= operand 487
handling a CMS tape end-of-volume exit 486
RETINFO= operand 487
SET operand 486

terminal I/O, waiting to complete 435
terminal input lines, number 446
TEXT= operand

CMSSTACK macro 87
SCAN macro 372

threshold, SFS filespace
FSCLOSE macro 198
FSREAD macro 220
FSWRITE macro 235

TODACCNT function
clock accounting interface 503
ENABLE subfunction 503, 504
issues DIAGNOSE code X'70' 503
QUERY subfunction 503, 504
usage 503

tokenized parameter lists
building 372

trailing blanks
removing using WRTERM macro 490

TRANS= operand
SCAN macro 373

translating command arguments 334
translation tables, system character set

generating a DSECT for using TRANTBL 423
TRANTBL macro

expansion 423
generating a DSECT for system character set translation
tables 423

TRC (table reference character)
specified using PRINTL macro 345

TVISECT macro 424
TYPCALL= operand

CMSSTOR OBTAIN 94
CMSSTOR RELEASE 102

Index 587

TYPCALL= operand (continued)
DMSABN macro 169
PARSECMD macro 337
SUBPOOL CREATE 403
SUBPOOL DELETE 407
SUBPOOL RELEASE 407

TYPE= operand
SUBPOOL CREATE 403
SUBPOOL DELETE 407
SUBPOOL RELEASE 407

U
UFLAGS= operand

CMSCALL macro 49
NUCEXT SET 327
SUBCOM SET 397

user exits for REXX programs
clearing 364
defining 364
invoking list of 363
maintaining list of 363

USERLVL, mapping using NUCON macro 333
USERSAVE macro 427
USERSECT macro 428
UWORD parameter

ACCEPT (CMSIUCV) function 64
CONNECT (CMSIUCV) function 68
REP (Replace) function 265
SET function 271

UWORD= operand
HNDEXT macro 244
HNDIO macro 252
HNDSVC macro 274
IMMCMD macro 280
NUCEXT SET 327
REXEXIT macro 365
SUBCOM SET 397

V
variable-length records

support provided by FSREAD macro 220
support provided by FSWRITE macro 235

vector table, mapping 54, 60
virtual device characteristics

obtaining using CMSDEV macro 56
virtual machine environments

CMS 3
virtual printer

writing lines to using PRINTL macro 343
virtual printer files

closing using CP CLOSE command 348
virtual punch

closing after PUNCHC macro 351
writing a line to 350

virtual reader
reading a line from 354

VM/ESA HELP Facility, using 16
VOLSECT macro

general format 429
VSE

assembler language macros supported in CMS 527

VSE (continued)
I/O macros 529
macros supported under CMS 529
macros, supervisor 529
supervisor macros 529

VSE macros
declarative 537
imperative 544
SAM 537, 544
supervisor 529
VSE assembler language macros supported in CMS 527
VSE macros supported by CMS/DOS 529

W
WAITD macro

ERROR= operand 430
waiting for next interrupt 430

WAITECB macro
Console I/O wait 434
ECB format 433
FORMAT operand 433
OS format, of event control block 433
VSE format, of event control block 433
waiting on event control blocks (ECBs) 432

WAITRD function
logical line editing 506
reading a line of input through WAITRD 505
usage 506

WAITT macro
waiting for terminal I/O to complete
435

write pointers, resetting 213
writing data to a file

using FSWRITE macro 232
writing tape labels using TAPESL 418
writing your own CSL routines

CSLENTRY macro 141
CSLEXIT macro 144
CSLFPI macro 146
CSLGETP macro 150

WRPNT= operand
FSPOINT macro 214

WRTAPE macro
ERROR= parameter 439
MODE= parameter 437
TRAN= parameter 438
writing blocks on tape 436

WRTERM macro
COLOR= operand 491
displaying lines at terminal 490
EDIT= operand 490

WUERROR macro
general format 442

X
X'2603' external interrupt 189
XA virtual machine

running 370-only applications 3
XC virtual machine

ESA/XC 3
running 370-only applications 3

588 z/VM: 7.3 CMS Macros and Functions Reference

XC virtual machine (continued)
z/XC 3

Z
z/Architecture CMS 3
z/CMS 3
z/VM 3
z/XC architecture 3

Index 589

590 z/VM: 7.3 CMS Macros and Functions Reference

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6262-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Syntax, Message, and Response Conventions
	Where to Find More Information
	Links to Other Documents and Websites

	How to provide feedback to IBM
	Summary of Changes for z/VM: CMS Macros and Functions Reference
	SC24-6262-73, z/VM 7.3 (June 2025)
	SC24-6262-73, z/VM 7.3 (December 2023)
	SC24-6262-73, z/VM 7.3 (September 2022)

	Part 1. CMS Preferred Programming Interface
	Chapter 1. CMS Programming Interface
	CMS Interface Groups
	CMS Preferred Interface
	CMS Preferred Macros
	CMS Preferred Routines
	CMS Preferred Functions

	CMS Compatibility Interface
	CMS Compatibility Macros and Suggested Replacements
	CMS Functions and Suggested Replacements

	Simulated OS/MVS Macros
	OS/MVS Macros for Assembly Only

	Chapter 2. Preferred CMS Macro Instructions
	CMS Macro Coding Conventions
	CMS Macro Formats
	Using the Online HELP Facility
	ABNEXIT
	AMODESW
	AMODESW CALL
	AMODESW QRY
	AMODESW RETURN
	AMODESW SET
	ANCHOR
	APPLMSG
	BATLIMIT
	CMSCALL
	CMSCVT
	CMSDEV
	CMSECVT
	CMSIUCV
	CMSIUCV ACCEPT
	CMSIUCV CONNECT
	CMSIUCV QCMSWID
	CMSIUCV RESOLVE
	CMSIUCV SEVER
	CMSLEVEL
	CMSRET
	CMSSTACK
	CMSSTOR
	CMSSTOR OBTAIN
	CMSSTOR RELEASE
	COMPSWT
	CONSOLE
	CONSOLE CLOSE
	CONSOLE EXCP
	CONSOLE MODIFY
	CONSOLE OPEN
	CONSOLE QUERY
	CONSOLE READ
	CONSOLE WAIT
	CONSOLE WRITE
	CQYSECT
	CSFCB
	CSLENTRY
	CSLEXIT
	CSLFPI
	CSLGETP
	CSRCMPSC
	CSRYCMPD
	CSRYCMPS
	DIRBUFF
	DMSABEXP
	DMSABN
	DMSFST
	DMSJNEPL
	DMSQEFL
	DMSSDWA
	DMSSTATE
	ENABLE
	EPLIST
	EXITBUFF
	EXSBUFF
	EXTUAREA
	EXTXCTL
	FPERROR
	FSCB
	FSCBD
	FSCLOSE
	FSERASE
	FSOPEN
	FSPOINT
	FSREAD
	FSSTATE
	FSTD
	FSWRITE
	GETSID
	HNDEXT
	HNDINT
	HNDIO
	HNDIUCV
	HNDIUCV CLR (Clear)
	HNDIUCV HLD (Hold)
	HNDIUCV REP (Replace)
	HNDIUCV RES (Resume)
	HNDIUCV SET
	HNDSVC
	HSVCSAVE
	IMMBLOK
	IMMCMD
	INTBLOK
	LABSECT
	LANGBLK
	LINERD
	LINEWRT
	LRDD
	LWRD
	NUCEXT
	NUCEXT ANCHOR
	NUCEXT CLR
	NUCEXT QUERY
	NUCEXT RENAME
	NUCEXT SET
	NUCON
	PARSECMD
	PARSERCB
	PARSERUF
	PRINTL
	PUNCHC
	PVCENTRY
	RDCARD
	RDTAPE
	REGEQU
	REXEXIT
	RXITDEF
	RXITPARM
	SCAN
	SCBLOCK
	SEGMENT
	SGMTEXIT
	SHVBLOCK
	SUBCOM
	SUBCOM ANCHOR
	SUBCOM CLR
	SUBCOM QUERY
	SUBCOM SET
	SUBPOOL
	SUBPOOL CREATE
	SUBPOOL DELETE and RELEASE
	TAPECTL
	TAPESL
	TRANTBL
	TVISECT
	USERSAVE
	USERSECT
	VOLSECT
	WAITD
	WAITECB
	WAITT
	WRTAPE
	WUERROR

	Chapter 3. CMS Preferred Functions
	DISKID
	DMSSEQ
	LANGADD
	LANGFIND

	Part 2. Compatibility Programming Interface
	Chapter 4. CMS Compatibility Macros
	CMSCB
	DISPW
	DMSEXS
	DMSFREE
	DMSFRES
	DMSFRET
	DMSKEY
	IO
	LINEDIT
	RDTERM
	STRINIT
	TEOVEXIT
	WRTERM

	Chapter 5. CMS Compatibility Functions
	ATTN
	NUCEXT
	SUBCOM
	TODACCNT
	WAITRD

	Appendix A. Simplified RACROUTE Macro Functions
	External Interfaces Supported for REXX Callers
	IBM-Provided Binding Files
	DMSWBRAC COPY

	IBM-Provided REXX EXECs
	DMSWRESM
	DMSWRAUD
	DMSWRAUT
	DMSWRRAC
	Parameter List (plist) Layout for Input to DMSWRRAC

	External Interfaces supported for REXX, Assembler, and C Callers
	Testing Whether a Class is Active with DMSWSESM
	Testing Whether the FACILITY Class is Active

	Creating an Audit Log Entry with DMSWSAUD
	Creating an Audit Log Entry for a Resource in the FACILITY Class

	Testing a User's Authority to Access a Resource with DMSWSAUT
	Testing a User's Authority to Access a Resource in the FACILITY Class

	Calling Using the IBM-Provided REXX EXECs
	Calling Without Using the IBM-Provided REXX EXECs

	Appendix B. VSE Macros
	VSE Assembler Language Macros Supported
	VSE Supervisor and I/O Macros Supported by CMS/DOS

	Appendix C. CRR Participation Macros
	ADAPTRC

	Appendix D. NETDATA Format
	Exception
	Control Record Formats
	Text Units
	Dates and Times
	Numeric Values
	Text Unit Keys
	File Block Size
	File Name
	File Organization
	Receive Results
	Receipt Request
	File Mode
	Node of Originator
	Time of Transmission
	User ID of Originator
	Date of Last Change
	Logical Record Length
	Number of Files
	Record Format
	File Size
	Note File
	Target Node
	Target User ID
	Program Name
	Header Record (INMR01)
	File Utility Control Record (INMR02)
	Data Control Record (INMR03)
	User Control Record (INMR04)
	Trailer Control Record (INMR06)
	Acknowledgement Control Record (INMR07)

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products

	ANCHOR Identifier Registration Form
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

