
z/VM
7.3

CMS Application Multitasking

IBM

SC24-6258-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
333.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-09-07
© Copyright International Business Machines Corporation 1992, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About This Document..xiii
Intended Audience.. xiii
Where to Find More Information...xiii

Links to Other Documents and Websites.. xiii

How to Send Your Comments to IBM...xv

Summary of Changes for z/VM: CMS Application Multitasking............................. xvii
SC24-6258-73, z/VM 7.3 (September 2022)..xvii
SC24-6258-02, z/VM 7.2 (March 2021).. xvii
SC24-6258-01, z/VM 7.2 (September 2020)..xvii
SC24-6258-00, z/VM 7.1 (September 2018)..xvii

Chapter 1. Basic Multitasking Concepts..1
Multitasking Process Model...1

Basic Constructs...2
Interactions of Threads, Processes, and Sessions..2

Multitasking Functions...4
CMS Process Model Compared with OS/2... 8

Chapter 2. Process Management.. 11
Creating Threads..11
Thread Priority... 11
Dispatching Classes...11
Implicit Process Creation.. 12
Process Termination.. 12
Process Management Examples... 13

Chapter 3. Event Management... 17
Event Definition..17
Event Signaling...18
Event Monitors... 19
Event Monitor Processing.. 19
Event Signal Processing...20
Overview of Event Management Functions...20
Event Management Examples... 22

Chapter 4. Interprocess Communication.. 27
Queue Definition.. 27

Operation..27
Properties... 28
Queue Names... 28
Queue Name Scopes.. 28
Export Level Search Order... 29

 iii

Primary Queue..29
Keys.. 29
Network-Level Queues...31
Authorization.. 35
Replies.. 36
Service Queues...37
Timeouts...37
Interactions with Process Management..38
Interactions with Event Services... 38
General Queue API Notes.. 38

Interprocess Communication Examples...38
Setting Up Network-Level Queues...44

Chapter 5. Synchronization..47
Synchronization Examples.. 48

Accessing a Critical Section Protected by a Mutex..49

Chapter 6. Multiprocessor Configuration Control...57
Guidelines for Defining Virtual CPUs... 57

Chapter 7. Timer Services.. 59
Timer Services Examples.. 59

DateTimeSubtract Examples..60

Chapter 8. Accounting Services..65
Accounting Services Examples..66

Chapter 9. Abend Services... 67
Monitoring Error Events... 68

Error Recovery.. 68
Retry Routines.. 69
Recovery in the High-Level Language Environment.. 69
Advanced Error Recovery...70
Interactions with ABNEXIT and Simulated MVS Recovery... 70

Abend Services Examples... 72

Chapter 10. Trace Services...75
The CMS Trace Table..75
User Application Information.. 76

Chapter 11. CMS Monitor Data... 79

Chapter 12. Writing Multitasking Applications..81
VMMTLIB Callable Services Library...81
Programming Language Binding Files... 81
Writing Multitasking Applications in C...83

Using the C POSIX Entry Linkage... 83
Using the CMS Multitasking applmain() Linkage... 83
Calling Multitasking Functions from C... 85

Writing Multitasking Applications in Assembler... 85
Calling Multitasking Functions from Assembler..86
Outline of an Assembler Application... 87
Building an Assembler Multitasking Program... 88

Writing Multitasking Applications in REXX/VM... 89
Calling Multitasking Functions from REXX...89

General CMS API Considerations.. 92

iv

Chapter 13. CMS Multitasking Function Descriptions.. 95
Notation Used in Parameter Descriptions...95
Using the Online HELP Facility...95
AbnormalEnd - Terminate a Process Abnormally...97
AccountControl — Define and Query Accounting Attributes.. 99
AccountIdentify — Identify an Accounting Entity...102
CondVarCreate — Create a Condition Variable... 104
CondVarDelete — Delete a Condition Variable..106
CondVarGetHandle — Get the Handle of a Condition Variable...108
CondVarSignal — Signal a Condition Variable... 110
CondVarWait — Wait on a Condition Variable... 111
DateTimeGet — Query Time and Date...113
DateTimeSubtract -- Compute Time Differences... 115
EventCreate — Create an Event Definition.. 128
EventDelete — Delete an Event Definition.. 131
EventDiscard — Inhibit Further Propagation of Signals..133
EventEnable — Enable or Disable for Specific Events.. 135
EventModify — Modify an Event Definition... 137
EventMonitorCreate — Define an Event Handling Environment...139
EventMonitorDelete — Delete an Event Handling Environment...142
EventMonitorEnable — Enable or Disable Specific Monitors..144
EventMonitorQuery — Obtain Information About an Event Monitor.. 146
EventMonitorReset — Reset the State of an Event Monitor..150
EventMonitorSelect — Start or Stop Monitoring by Specific Monitors... 152
EventQuery — Obtain Information about an Event Definition.. 154
EventQueryAll — Obtain All Event Names and Monitor Tokens... 157
EventRetrieve — Retrieve Data From an Event... 159
EventSelect — Start or Stop Monitoring for Specific Events...161
EventSignal — Signal the Occurrence of an Event.. 163
EventTest — Test for the Occurrence of Events.. 165
EventTrap — Define an Asynchronous Event Handler.. 167
EventWait — Wait for the Occurrence of Events... 169
MonitorBufferGet — Obtain the Address of the CMS Monitor Data Area... 171
MutexAcquire — Acquire a Mutex..173
MutexCreate — Create a Mutex... 175
MutexDelete — Delete a Mutex... 177
MutexGetHandle — Get the Handle of a Mutex.. 179
MutexRelease — Release a Mutex...181
ProcessCheckPoint — Take a Snapshot of the Process State...182
ProcessGetID — Obtain the ID of a Process... 184
ProcessQueryBlocked — Find Blocked Threads... 185
ProcessQuerySuspended — Find Suspended Threads...188
QueueClose — Close a Queue... 190
QueueCreate — Create a Queue..191
QueueDelete — Delete a Queue.. 193
QueueIdentifyCarrier — Identify a Communication Carrier... 195
QueueIdentifyService — Identify a Service Queue...197
QueueOpen — Open a Queue.. 199
QueueQuery — Query Waiting Message Count... 201
QueueReceiveBlock — Receive a Message (Blocking)... 203
QueueReceiveImmed — Receive a Message (Nonblocking).. 206
QueueReply — Reply to a Message... 208
QueueSend — Send a Message... 210
QueueSendBlock — Send a Message and Block...212
QueueSendReply — Send a Message and Request Reply.. 214
QueueSignalEvents — Signal Queue Events... 216

 v

SemCreate — Create a Semaphore... 218
SemDelete — Delete a Semaphore... 220
SemGetHandle — Get the Handle of a Semaphore.. 221
SemQueryValue — Query the Value of a Semaphore..223
SemReInit — Reinitialize a Semaphore's Value.. 224
SemSignal — Signal a Semaphore...225
SemWait — Wait on a Semaphore... 226
ThreadCreate — Create a Thread.. 227
ThreadDelay — Delay This thread... 231
ThreadDelete — Delete Threads..232
ThreadGetID — Obtain the ID of the Calling Thread...234
ThreadQueryDispatchClass — Query a Thread's Dispatch Class... 235
ThreadQueryEntryPoint — Query a Thread's Entry Point... 237
ThreadQueryParameterList — Query a Thread's Parameter List..238
ThreadQueryPriority — Query a Thread's Priority...240
ThreadQuerySuspendCount — Query a Thread's Suspend Count... 241
ThreadQueryUserData — Query User Data Word..242
ThreadResume — Decrement a Thread's Suspend Count..243
ThreadSetDispatchClass — Set the Dispatching Class of Threads...244
ThreadSetPriority — Set the Dispatching Priority of Threads...246
ThreadSetUserData — Set User Data Word.. 248
ThreadSuspend — Increment a Thread's Suspend Count..249
ThreadYield — Yield Control to Another Thread... 251
TimerStartInt — Start an Interval Timer... 253
TimerStartMicros — Start an Interval Timer... 256
TimerStartTOD — Start a TOD Timer... 258
TimerStop — Cancel a Timer... 260
TimerStopAll — Cancel All Timers...262
TimerStopMicros — Cancel a Timer.. 263
TimerTest — Query a Timer... 265
TimerTestMicros — Query a Timer.. 267
TraceControl — Define and Queries Trace Attributes... 269
TraceSignal — Signal a Trace Event...272
VCPUCreate — Create a Virtual Processor (Virtual CPU).. 274
VCPUSelect — Request Special Virtual CPU Dispatching... 276

Chapter 14. System Exits... 277
System Exit Linkage Conventions... 277
General-Purpose Exits...277

Session Initialization Exit...277
Thread Initialization Exit..278
Thread Termination Exit...278
Root Process Exit... 278
Building a System Exits Module...279

Programming Language Environment Exits.. 279
Process Creation.. 280
Process Deletion.. 281
Thread Creation..281
Thread Deletion..282
Run a Routine in Context..282
Context Switching.. 283
Building a Language Environment Manager.. 284

Chapter 15. Suggestions for Server Writers.. 287
Interrupt Handling... 287
Communication..287
Data Management..288

vi

General Guidelines.. 288

Chapter 16. Using CMS Multitasking with OpenExtensions Services.................... 291
CMS Events For OpenExtensions Signals..291

Appendix A. Return and Reason Code Values..295
For Process Management.. 295
For Synchronization... 295
For Event Services... 296
For Trace Services..298
For Accounting Services.. 298
For Interprocess Communication... 298
For Timer Services... 299
For VCPU Services... 300
For CMS Monitor Data..301

Appendix B. CMS Trace Record Formats... 303
Communication Trace Record Formats (Type 1).. 303
Dispatch Trace Record Formats (Type 2)..304
Process Management Trace Record Formats (Type 3)...305
Language Adapter Trace Record Formats (Type 4).. 305
Synchronization Trace Record Formats (Type 5)..305
Miscellaneous Trace Record Formats (Type 6)...306

Appendix C. Remote IPC Support... 307
Functional Overview.. 307
Interface Definition..309

IPC0 QCRBs (Kernel Request to Carrier)...313
IPC1 QCRBs (Carrier Response to Kernel).. 313
IPC2 QCRBs (Carrier Request to Kernel)...314
IPC3 QCRBs (Kernel Response to Carrier).. 314
Usage Notes... 314

APPC/VM Carrier Line Flows... 315
Structure...316
Request Flows.. 316
Response Flows... 317

Appendix D. Example of a C Multitasking Program.. 319

Appendix E. Supplementary Information on System Defined Events....................331
System Event Characteristics..331
VMCONINPUT and VMCON1ECB.. 332
VMSOCKET Signal Data... 332

Notices..333
Programming Interface Information...334
Trademarks.. 334
Terms and Conditions for Product Documentation.. 334
IBM Online Privacy Statement.. 335

Bibliography.. 337
Where to Get z/VM Information.. 337
z/VM Base Library..337
z/VM Facilities and Features... 338
Prerequisite Products.. 340
Related Products... 340

 vii

Additional Publications..341

Index.. 343

viii

Figures

1. The CMS Multitasking, Multiprocessor Environment..1

2. Queue-Based Structure.. 14

3. Event-Based Structure.. 15

4. EventWait Example... 22

5. EventTrap Example... 23

6. EventTest Example..23

7. Broadcast Signals Example...24

8. Sequentially Propagated Signals Example... 24

9. Loose and Bound Signal Limits Example..25

10. Process Level Events Example... 26

11. $SERVER$ NAMES Entries for Network Queues.. 35

12. Creating and Opening Queues.. 39

13. Simple Message Transmission..40

14. A Rendezvous..40

15. Using QueueReply...41

16. Two Threads Sharing a Queue.. 42

17. Using Service Queues... 43

18. Closing and Deleting Queues..44

19. Accessing a Critical Section Protected by a Mutex.. 49

20. Wait/Post Processing Using a Semaphore... 50

21. Multiple Waiters Using a Semaphore... 52

22. Producer Threads Supply Messages to Consumer Threads.. 53

23. Monitor Initialization...53

 ix

24. Monitor Write Procedure...54

25. Monitor Read Procedure... 55

26. EventWait and Timer Services.. 60

27. Requesting and Collecting Accounting Data.. 66

28. AbnormalEnd with Error Recovery Specifying Retry Routine.. 72

29. Event Trap Deleting Failing Thread...73

30. Skeleton of an IPC Carrier (Kernel-Initiated Requests)...308

31. Skeleton of an IPC Carrier (Carrier-Initiated Requests).. 309

32. Flow of Requests and Responses for Distributed IPC... 310

x

Tables

1. Multitasking Functions.. 5

2. CMS and OS/2 Process Management and Related APIs.. 8

3. CMS System Events...17

4. Queue Authorization Rules... 35

5. DateTimeSubtract Example 1... 62

6. DateTimeSubtract Example 2... 62

7. DateTimeSubtract Example 3... 63

8. DateTimeSubtract Example 4... 63

9. DateTimeSubtract Example 5... 64

10. Accounting Record.. 65

11. VMERROR Data..67

12. Modifiable Data Area...67

13. Trace Entry.. 76

14. Header Files for C Programs... 81

15. Macros for Assembler Programs.. 82

16. COPY Files for REXX Programs... 82

17. Special case functions when called from REXX/VM.. 90

18. Formats and Format Identifiers... 117

19. Format Limits.. 121

20. Supported Combinations of Formats... 122

21. DateTimeSubtract's Reckoning Dates.. 125

22. Run-Time Support Entry Points and Functions..279

23. Event Data... 292

 xi

24. IPC0 QCRB Parameter Usage (Kernel Request to Carrier).. 313

25. IPC1 QCRB Parameter Usage (Carrier Response to Kernel)..313

26. IPC2 QCRB Parameter Usage (Carrier Request to Kernel).. 314

27. IPC3 QCRB Parameter Usage (Kernel Response to Carrier)..314

28. Request Header Record Formats... 317

29. Response Header Record Formats...318

30. System Event Characteristics...331

xii

About This Document

The purpose of this document is to describe how you can use the multitasking function of the IBM® z/VM®

Conversational Monitor System (CMS) to develop and execute multitasking application programs using
C/C++ for z/VM, C for VM/ESA®, Assembler H, High Level Assembler, or REXX/VM.

This document provides both introductory and tutorial information as well as detailed reference material.
Read the introductory chapters and the chapter on writing multitasking programs before delving into the
function descriptions chapter. Because many functions are provided for debugging and tailoring, as well
as for addressing advanced programming situations, you will find it easier to start using CMS multitasking
quickly if you begin with the overview material, proceed to the example programs, and consult the
detailed reference material for those functions referred to by the overview sections. You need only a few
functions to get started writing a multitasking application.

Intended Audience
This document is intended for C, REXX, and assembler language programmers who want to develop
multitasking programs for the CMS environment.

Readers should know the C language, REXX, or Basic Assembler Language and have experience with z/VM
programming concepts and techniques.

Where to Find More Information
For information about related publications, see the “Bibliography” on page 337.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

© Copyright IBM Corp. 1992, 2022 xiii

xiv z/VM: 7.3 CMS Application Multitasking

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1992, 2022 xv

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xvi z/VM: 7.3 CMS Application Multitasking

Summary of Changes for z/VM: CMS Application
Multitasking

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line (|) to the
left of the change.

SC24-6258-73, z/VM 7.3 (September 2022)
This edition supports the general availability of z/VM 7.3. Note that the publication number suffix (-73)
indicates the z/VM release to which this edition applies.

SC24-6258-02, z/VM 7.2 (March 2021)

[VM66201, VM66425] z/Architecture Extended Configuration (z/XC) support
With the PTFs for APARs VM66201 (CP) and VM66425 (CMS), z/Architecture® Extended Configuration
(z/XC) support is added. CMS applications that run in z/Architecture can use multiple address spaces.
A z/XC guest can use VM data spaces with z/Architecture in the same way that an ESA/XC guest can
use VM data spaces with Enterprise Systems Architecture. z/Architecture CMS (z/CMS) can use VM data
spaces to access Shared File System (SFS) Directory Control (DIRCONTROL) directories. Programs can
use z/Architecture instructions and registers (within the limits of z/CMS support) and can use VM data
spaces in the same CMS session. For more information, see z/VM: z/Architecture Extended Configuration
(z/XC) Principles of Operation.

Information in the following topic is updated:

• “General CMS API Considerations” on page 92

SC24-6258-01, z/VM 7.2 (September 2020)
This edition supports the general availability of z/VM 7.2.

SC24-6258-00, z/VM 7.1 (September 2018)
This edition supports the general availability of z/VM 7.1.

© Copyright IBM Corp. 1992, 2022 xvii

xviii z/VM: 7.3 CMS Application Multitasking

Chapter 1. Basic Multitasking Concepts

CMS provides a multitasking, multiprocessor environment for applications and servers. The multitasking
services allow a program to sub-divide itself into multiple independently executable parts, and coordinate
these execution streams so they together accomplish the objective of the program. These services also
allow multitasking programs running in different virtual machines to communicate with each other and to
coordinate their processing.

A multitasking application can also take advantage of multiple processors in the computer complex.
Multiprocessor exploitation is supported in XA- or XC-mode virtual machines only. The other aspects of
multitasking are equally supported in all virtual machine architectures.

Figure 1. The CMS Multitasking, Multiprocessor Environment

The primary goals of the multitasking facilities are to provide support for high performance CMS-based
servers and provide a means for CMS applications to harness the power of the multiprocessor capability
of the underlying computer complex. They support an environment in which one multitasking application
is in execution in a particular virtual machine at any one time. This allows a programmer to write a
multitasking application, but it is not intended to provide a means for a CMS end-user to run multiple
separate applications at the same time.

Multitasking Process Model
A process model defines the rules and relationships involved in writing multitasking applications and
performing concurrent activities. Primarily it defines the units of execution, how these execution units
interact, and how resources are managed relative to them.

The CMS process model defines concurrent programming concepts that promote distributed and parallel
computation. CMS provides for multiple concurrent processes within a single application scope, and
within each process multiple concurrent threads of execution may be established. In particular, its
structure supports programmable workstation affinity and exploits the multiprocessing capability of the
underlying VM system. In its fundamental concepts, the process model of CMS multitasking closely

Basic Concepts

© Copyright IBM Corp. 1992, 2022 1

resembles that of OS/2, and, where possible, the process management interfaces presented by CMS are
a superset of those of OS/2. The CMS process model also provides the foundation for z/VM support of the
IEEE POSIX standards 1003.1 (system services), 1003.1a (1003.1 extensions), and 1003.1c (threads).

Basic Constructs
The basic dispatchable entity in the system is the thread. The thread represents an instance of execution
of a unit of program code. Its environment is characterized by a PSW, a set of register values, and a
save area stack. At creation time, the system assigns an identifier to each thread. This identifier is unique
within the process containing it and is not reused during the life of that process.

The locus of ownership of concurrent programming resources in the system is the process. A process
consists of a collection of threads (at least, but not necessarily more than, one) performing related
work. The resources which may be created or allocated, and thus owned, by a process include queues,
synchronization objects, events, event monitors, and timers. The resources available to a process include
those which it owns and those which are created with session scope by other processes in the same
session. All threads in a process have equal access to the resources available to the process. When a
process terminates, the resources which it owns are automatically deleted or terminated, as appropriate.

Each process has a name of arbitrary length and character composition supplied by its creator; the name
must be unique at least within the session which contains the process but may be reused freely after the
process terminates. The system also assigns an identifier to each process at its creation; this identifier is
unique within the session containing it and is not reused during the life of the session.

A collection of processes sharing a common environment constitutes a session. All traditional CMS assets
and facilities, such as storage subpools, the file system search order, the program name space, exit
routines, library lists, set options, and global variables, belong to the session and are equally accessible
to all its processes. Additionally, the session environment includes the virtual configuration of processors
and I/O devices provided by CP and all resources owned by processes in the session which are created
with session scope. Each session has a primary address space that is shared by all its processes. The
session may also have access to one or more data spaces that may be shared with other sessions
occupying the same real memory.

Interactions of Threads, Processes, and Sessions
Explicit thread interactions are confined to the bounds of an individual process because the model
intentionally provides no means for a thread in one process to identify a particular thread in a different
process; implicit interactions of threads in different processes may, however, occur as a result of
dispatching decisions conditioned by dispatching class membership or the use of event management,
interprocess communication, or synchronization services. Interprocess communication is provided
between processes in either the same or different virtual machines, possibly even at different nodes
of a communications network; other interactions between processes are confined to a single session.

The initial session (only one session is currently supported) is created implicitly during the IPL of CMS in
the virtual machine. Creation of a session causes creation of an initial process known as the root process
with the architected name Root which is constant and well-known in all CMS sessions. The root process
performs session initialization and creates a number of threads dedicated to performing standard system
functions or managing shared facilities (for example, the virtual machine timers).

Processes are created in a hierarchical structure whose depth is limited only by the virtual memory
available to the session. A process may control the execution of any of its descendants by suspending or
resuming it, altering its relative priority, or even terminating it. Termination of a process by default causes
termination of all its descendants; termination of the root process causes termination of the session.

The creator of a process specifies the program which the process is to execute. One such program is the
CMS command interpreter, which reads and executes commands from the terminal; a process running
the command interpreter is referred to as a commands process. During initialization the root process
creates a commands process with the architected name Commands. Conventional CMS commands and
non-multitasking CMS applications are executed directly in the commands process on the command
interpreter thread. Starting a multitasking application in the commands process causes the implicit
creation of a child process in which the multitasking program is actually executed while the command

Basic Concepts

2 z/VM: 7.3 CMS Application Multitasking

interpreter thread waits for its completion. The name of such an implicitly created process is the name of
the program whose invocation caused it to be created, suffixed with a timestamp if necessary to produce
a unique name within the session. If a thread of a multitasking program subsequently invokes another
multitasking program through the CMSCALL interface, another child process is implicitly created for it.

Note: The native CMS Multitasking application programming interface does not permit the explicit
creation of additional processes.

Interprocess communication in CMS is based on queues. Creating a process establishes a primary
queue on which messages may be sent to the process. The primary queue bears the name of the
process and has session-level scope by default. The primary queue may not be deleted except during
process termination. Additional queues may be created and deleted as required. The threads in a
single process can communicate and coordinate work using queues. Additionally, queues can be used
to communicate with other processes in the same session or even in different virtual machines. See
Chapter 4, “Interprocess Communication,” on page 27 for more information on queue management.

Creating a process also creates an initial thread on which the specified program starts executing. Any
thread may create additional threads in its process and may freely suspend, resume, terminate, or alter
the priority of any other thread in the same process. All threads within a process are peers; normal
termination of one thread has no effect on other threads in the process. When the last thread in a process
terminates, the process itself terminates.

At creation each process is assigned a relative priority that defaults to the priority of its creator. The
priority of the process determines how its threads are treated by the dispatcher relative to all other
processes in the session. In addition, at creation each thread is assigned a priority relative to other
threads in the same process. The priority of a thread may be altered by any thread, including itself, in
the same process. The priority of a process may be altered by any ancestor of the process or by the
process itself. In particular, the root process may alter the priority of any process in the session. The
actual dispatching priority of a thread is determined by combining its own priority with the priority of its
process in such a way that if two processes have different process priorities, all threads in the higher
priority process will have higher dispatching priority than all threads in the lower priority process.

Note: An implicitly created process has the same priority as the process in which it was created, and its
initial thread has the same relative priority, and hence the same dispatching priority, as the thread on
which it was created.

CMS uses a few basic principles to regulate the passing of control of a processor from one thread to
another. First, a thread can lose control of a processor only when it calls one of a subset of the CSL
routines described in this book. Such calls are easily identified: they all share the trait of having the
potential to adjust the dispatchability of one or more threads in the system. QueueSend, EventSignal, and
SemSignal are examples of such routines, while QueueQuery and EventMonitorCreate are not. Second,
loss of control of a processor is classified as either involuntary or voluntary. Involuntary loss of control,
also known as preemption, occurs even though the thread itself does nothing that would cause it to
become unable to continue executing. Voluntary loss of control, which includes blocking and yielding,
occurs when the thread performs some function that makes it unable or unwilling to continue to execute.
An example of this is calling EventWait: the thread cannot continue executing until the wait is satisfied. A
list of the functions that can cause a thread to lose control voluntarily can be found in Chapter 2, “Process
Management,” on page 11.

CMS groups threads into dispatch classes to manage the thread switches that can occur at involuntary
and voluntary losses of control. A thread can be preempted by (that is, involuntarily lose control to) only
those threads residing in classes different from its own. A thread can never be preempted by a thread in
its own dispatch class. When a thread blocks or yields, though, it can lose control to a thread from any
dispatch class, including its own. Dispatch classes also govern parallelism. Threads in different classes
can execute in parallel in a multiprocessor virtual machine, but only one thread from a given class can
execute at a given time.

Note: The initial thread of an implicitly created process is assigned to the dispatching class of the thread
on which it was created.

CMS provides facilities that let processes recognize and respond to the occurrence of named events
either internal to the process or elsewhere in the session. It defines a set of system events, such as

Basic Concepts

Chapter 1. Basic Multitasking Concepts 3

exception occurred, trace data became available, and accounting data became available, that it signals at
the appropriate times. Applications may also define their own events and may signal the occurrence of
any defined event. A process may establish an event handler to be driven asynchronously when the event
occurs, or may create a thread to wait explicitly for the occurrence. See Chapter 3, “Event Management,”
on page 17 for a complete description of event management services.

Normal termination of a thread occurs implicitly when it returns control through the last save area on its
stack; other threads in the process continue unaffected. A thread may also explicitly request termination
of itself alone or of the entire process containing it; either one of these methods also constitutes a
normal termination. Normal termination of a process, whether by explicit request or as a result of normal
termination of the last existing thread, causes end of process event handlers to be signaled with a normal
termination code; when end of process event handling is complete, any remaining active threads in
the process are terminated, all resources belonging to the process are deleted, and the process name
becomes undefined and available for reuse.

Note: By the time control returns from a multitasking application to the command interpreter, any
implicitly created processes will have been terminated and their resources deleted as described above.
End of command cleanup in the commands process also deletes any resources which may have been
created by nonmultitasking programs running directly on the command interpreter thread. Should the
commands process itself terminate, the root process would automatically create a new one.

Abnormal termination of a thread may be requested either by the system, if a program check or other
error has been detected, or by the thread itself, by explicitly signaling an error event. The rules for
error handling depend upon the kinds of error handling environments which are extant at the time the
exception occurs. Consider first the relatively simple case in which no CMS ABNEXITs or simulated MVS
ESPIE or ESTAE exits exist in the session; in that case, error handling is localized to the process that
caused the exception since the error event has process scope. If the process has previously established
an error event handler, it is driven with all other threads in the process suspended; the event handler
may elect either to let termination continue or to recover. If the process has established multiple error
event handlers, they are driven in LIFO (last in, first out) order until one has elected to recover or all have
chosen to continue termination. A parent process is also given the opportunity to perform error recovery
for its child processes. If no applicable error event handler has been established in the process, or if all
applicable error event handlers choose not to recover, abnormal termination of a thread induces abnormal
termination of the entire process. The steps are the same as in the normal termination case except that
the end of process event handlers are signaled with the abnormal termination code.

The presence of ABNEXITs, ESTAEs, or ESPIEs anywhere in the session complicates matters considerably.
Because such exits have traditionally enjoyed session-wide scope, for compatibility they must be eligible
to be driven on an appropriate exception occurring anywhere in the session. Programs using these
facilities, however, are likely to be old nonmultitasking programs ill-equipped to recover from errors in
new multithreaded programs. In a multitasking environment, therefore, these exit facilities are supported
in such a manner as to maximize compatibility with the behavior of previous levels of CMS while
minimizing the interference with the error event handling protocol. Multitasking programs must use error
event handling for robust and predictable error recovery. See Chapter 9, “Abend Services,” on page 67
for a complete description of abend services.

Multitasking Functions
An application program using CMS has at its command facilities to:

• Manage multiple threads of execution
• Handle asynchronous conditions
• Coordinate the execution of concurrent computation.

These facilities can be grouped into several broad areas of services:

• Process Management

These services provide for the creation, deletion and control of threads. They are the fundamental
services for creating a multitasking application.

Basic Concepts

4 z/VM: 7.3 CMS Application Multitasking

• Event Management

The complex tasks of handling asynchronous events and signaling conditions are handled by these
services. These functions provide a means for defining events, signaling their occurrence, and taking
action in response to the events.

• Interprocess Communication

This set of functions provides for communication between the threads of a process and between
different processes by means of message queues. A powerful feature of these communication functions
is that the same functions are used for communication within one virtual machine and between virtual
machines anywhere in a network.

• Synchronization

Threads can serialize access to shared data and coordinate activity through these functions. They
provide support for structured synchronization techniques and for basic locking.

• Multiprocessor Configuration Control

CMS allows an application to harness the power of a multiprocessor complex by means of the CP virtual
multiprocessor capability. While the application need not be sensitive to virtual multiprocessing, it can
request from CMS that additional virtual CPU's be added to its virtual machine.

• Timer Services

These services provide threads the capability to set and manipulate timers. Threads can wait for a time
interval to expire, test to see if it has expired, or be asynchronously signaled on timer expiration.

• Accounting Services

These services allow the application to account for resource use. They include the capability to group
accounting information to correlate resource use with some other user on whose behalf service is being
performed.

• Abend Services

These services allow the application to request its own abnormal termination and provide for general
abend recovery.

• Trace Services

The tracing services provide for the collection of diagnostic trace information. Tracing for CMS and for
the application is provided, as well as the capability to capture trace events as they happen.

The following table lists all the multitasking functions and their use. For more information on specific
functions see Chapter 13, “CMS Multitasking Function Descriptions,” on page 95.

Table 1. Multitasking Functions

Function Use

AbnormalEnd Abnormally terminates a process

AccountControl Defines and queries accounting attributes

AccountIdentify Defines an accounting entity

CondVarCreate Creates a condition variable

CondVarDelete Deletes a condition variable

CondVarGetHandle Gets the handle of a condition variable

CondVarSignal Signals a condition variable

CondVarWait Waits on a condition variable

DateTimeGet Queries the time and date

Basic Concepts

Chapter 1. Basic Multitasking Concepts 5

Table 1. Multitasking Functions (continued)

Function Use

DateTimeSubtract Computes differences of times and performs time format and
zone conversions

EventCreate Creates an event definition

EventDelete Deletes an event definition

EventDiscard Inhibits further propagation of signals

EventEnable Enables or disables for specific events

EventModify Modifies an event definition

EventMonitorCreate Defines an event handling environment

EventMonitorDelete Deletes an event handling environment

EventMonitorEnable Enables or disables specific monitors

EventMonitorQuery Gets information about an event monitor

EventMonitorReset Resets the state of an event monitor

EventMonitorSelect Starts or stops monitoring by specific monitors

EventQuery Gets information about an event definition

EventQueryAll Gets all event names and monitor tokens

EventRetrieve Gets data accompanying the occurrence of an event

EventSelect Enables or disables for specific events

EventSignal Signals the occurrence of an event

EventTest Tests for the occurrence of events

EventTrap Defines or deletes an asynchronous handler for events

EventWait Waits for the occurrence of events

MonitorBufferCreate Gets the address of the CMS monitor data area

MutexAcquire Gets a mutex

MutexCreate Creates a mutex

MutexDelete Deletes a mutex

MutexGetHandle Gets the handle of a mutex

MutexRelease Releases a mutex

ProcessCheckPoint Takes a snapshot of the process state

ProcessGetID Gets the ID of a process

ProcessQueryBlocked Finds blocked threads

ProcessQuerySuspended Finds suspended threads

QueueClose Closes a queue

QueueCreate Creates a queue

QueueDelete Deletes a queue

QueueIdentifyCarrier Identifies an interprocess communication carrier

Basic Concepts

6 z/VM: 7.3 CMS Application Multitasking

Table 1. Multitasking Functions (continued)

Function Use

QueueIdentifyService Identifies a service queue

QueueOpen Opens a queue

QueueQuery Queries the count of messages waiting

QueueReceiveBlock Receives a message from a queue (blocking)

QueueReceiveImmed Receives a message from a queue (nonblocking)

QueueReply Replies to a message

QueueSend Sends a message

QueueSendBlock Sends a message and block

QueueSendReply Sends a message and request reply

QueueSignalEvents Signals queue events

SemCreate Creates a semaphore

SemDelete Deletes a semaphore

SemGetHandle Gets the handle of a semaphore

SemQueryValue Gets the value of a semaphore

SemReInit Reinitializes a semaphore's value

SemSignal Signals a semaphore

SemWait Waits on a semaphore

ThreadCreate Creates a thread

ThreadDelay Delays the current thread

ThreadDelete Deletes a thread

ThreadGetID Gets the ID of the current thread

ThreadQueryDispatchClass Queries a thread's dispatch class

ThreadQueryEntryPoint Queries a thread's entry point

ThreadQueryParameterList Queries a thread's parameter list

ThreadQueryPriority Queries a thread's priority

ThreadQuerySuspendCount Queries a thread's suspend count

ThreadQueryUserData Queries a thread's user data word

ThreadResume Resumes a thread

ThreadSetDispatchClass Sets the dispatching class affiliation of threads

ThreadSetPriority Sets the dispatching priority of threads

ThreadSetUserData Sets a thread's user data word

ThreadSuspend Suspends a thread

ThreadYield Yields control to another thread

TimerStartInt Starts an interval timer

Basic Concepts

Chapter 1. Basic Multitasking Concepts 7

Table 1. Multitasking Functions (continued)

Function Use

TimerStartMicros Starts an interval timer

TimerStartTOD Starts a TOD timer

TimerStop Cancels a timer

TimerStopAll Cancels all timers

TimerStopMicros Cancels a timer

TimerTest Queries a timer

TimerTestMicros Queries a timer

TraceControl Defines and queries trace attributes

TraceSignal Signals a trace event with header information

VCPUCreate Creates a virtual processor

VCPUSelect Requests special virtual CPU dispatching

CMS Process Model Compared with OS/2
The following list shows the differences between the CMS and OS/2 process models:

• CMS provides only implicit creation of new processes, whereas OS/2 supports multiple explicitly
created processes. The ability to explicitly create additional processes is not provided in CMS, but
this is a restriction of the implementation only, not of the process model.

• CMS process and thread priorities are on a simple scale; OS/2 priorities are arranged in various classes.
The OS/2 dispatcher time-slices; the CMS dispatcher may preempt but does not time-slice (but, of
course, CP does).

• In OS/2, the initial thread in a process has special attributes and characteristics; in CMS, all threads in a
single process are equivalent.

• In OS/2, synchronization is done through system and RAM semaphores; in CMS, all semaphores are
essentially system semaphores, and other more structured synchronization mechanisms are provided.

The following table compares the CMS and OS/2 process management and related application program
interfaces (APIs):

Table 2. CMS and OS/2 Process Management and Related APIs

OS/2 Function Call Corresponding CMS Services

DosCloseQueue QueueClose

DosCreateQueue QueueCreate

DosCreateSem SemCreate

DosCreateThread ThreadCreate

DosCWait EventWait

DosEnterCritSec ThreadSetDispatchClass

DosError EventTrap

DosExecPgm N/A (one process only)

DosExit ThreadDelete

DosExitCritSec ThreadSetDispatchClass

Basic Concepts

8 z/VM: 7.3 CMS Application Multitasking

Table 2. CMS and OS/2 Process Management and Related APIs (continued)

OS/2 Function Call Corresponding CMS Services

DosExitList EventMonitorCreate, EventTrap

DosFlagProcess EventSignal

DosGetEnv ProcessQuery functions, ThreadQuery functions

DosGetInfoSeg ProcessQuery functions, ThreadQuery functions

DosGetPid ProcessGetID

DosGetPrty ThreadQueryPriority

DosHoldSignal EventTrap

DosKillProcess N/A (only implicitly created processes)

DosMuxSetWait CondVarWait, EventWait

DosOpenQueue QueueOpen

DosPeekQueue N/A

DosPurgeQueue N/A

DosQueryQueue QueueQuery

DosReadQueue QueueReceiveBlock or QueueReceiveImmed

DosResumeThread ThreadResume

DosSelectSession N/A

DosSemClear MutexRelease

DosSemClose N/A

DosSemCreate MutexCreate

DosSemOpen N/A

DosSemRequest MutexAcquire

DosSemSet SemSignal

DosSemSetWait SemSignal, SemWait

DosSemWait SemWait

DosSendSignal EventSignal

DosSetPrty ThreadSetPriority

DosSetSession N/A

DosSetSigHandler EventTrap

DosSetVec EventTrap

DosSuspendThread ThreadSuspend

DosWriteQueue QueueSend, QueueSendBlock, QueueSendReply, or
QueueReply

Basic Concepts

Chapter 1. Basic Multitasking Concepts 9

Basic Concepts

10 z/VM: 7.3 CMS Application Multitasking

Chapter 2. Process Management

Process management is the set of services that lets an application create, interrogate, and manipulate
the threads within a process. The threads of an application share the resources of the process while the
processor time allocated to the virtual machine in which the application is running is distributed among
them.

The threads created through the process management services are termed lightweight because they own
only their execution state, or context. This implies that threads require minimal overhead for the system
to create, maintain and delete. The lightweight thread approach to multitasking lets the programmer
create threads dynamically to handle new work and use threads to wait for asynchronous conditions or
events. In general, the simplest programming approach is to allow the concurrency between threads to
handle asynchrony while the program code running under the thread proceeds in a purely synchronous
fashion. Later examples return to this point.

Creating Threads
A concurrent (or multitasking) application is a program with multiple threads of execution proceeding
through the program's code over the life of the program. When an application is started, a process is
created by the CMS services with an initial thread that begins execution at the main program entry point.
This thread can then use the ThreadCreate function to create additional threads. This function takes
as input the address (function name) where the thread should begin execution and returns a unique
identifier of the thread, called the thread ID. All later references to the thread are made through its thread
ID. The thread ID is an integer greater than zero.

When a thread is created, it is also assigned a priority and a thread class. These determine how the thread
acts relative to other threads in the process.

For more information on the ThreadCreate function, see “ThreadCreate — Create a Thread” on page 227.

Thread Priority
Threads are dispatched based on priority. The highest priority runable thread is always the next to be
dispatched. Priority values fall in a range of 0 through 32767 with higher values denoting higher priority. If
all threads are assigned equal priority, a round-robin dispatching effect is achieved.

Dispatching Classes
In addition to assigning priority, creating a thread also assigns the thread to a dispatching class. A
dispatching class is a set of threads with two properties:

• No thread in the class is ever given control in place of another in the same class unless the executing
thread voluntarily gives up control.

• No two threads in a class are ever dispatched in parallel. That is to say, they are never in execution at
the same time on different processors (CPUs). However, any thread can be preempted by or dispatched
in parallel with any thread in a different class.

A parameter on the ThreadCreate call controls the assignment of the new thread to a class. The new
thread is assigned either to the class of the creating thread or to a new class, putting the thread in a class
by itself. Other threads can join this new class through subsequent ThreadCreate calls or through the class
reassignment function, ThreadSetDispatchClass.

These dispatching classes provide a means to control parallelism. For example, if the application is a
server that needs to use all the power of a large multiprocessor complex, each thread could be assigned
to a different class, thereby allowing each thread to be dispatched in parallel. If, however, some part of
the server could not execute in multiprocessor mode, the threads that execute in that particular code

Process Management

© Copyright IBM Corp. 1992, 2022 11

could be assigned to the same class. This would let those particular server functions execute without
explicit thread synchronization.

When using multiple threads in a class, the programmer should note that the following functions can
result in another thread in the same class being dispatched. Each represents a voluntary yielding of
control.

• ThreadYield
• ThreadSuspend
• ThreadDelete
• QueueSendBlock
• QueueReceiveBlock
• EventWait
• EventSignal
• EventMonitorReset
• MutexAcquire
• CondVarWait
• SemWait

These functions are documented in detail in Chapter 13, “CMS Multitasking Function Descriptions,” on
page 95.

Implicit Process Creation
The process management services do not provide a way to explicitly create a process, but CMS will
create a new process whenever a CMS SVC invocation is made to a program which was built with the
multitasking initialization routine VMSTART or to an OpenExtensions™ application. If a thread issues a
CMSCALL to invoke another module and that module is a multitasking program, CMS will create a new
process and start its initial thread at the module entry point. The thread that issued the CMSCALL waits
until the new process has completed.

A CMSCALL to a program that was not built with the VMSTART entry point or that is not an
OpenExtensions application does not result in a process creation, but is simply another CMS SVC-level on
the calling thread. This new program can also create other threads. Care must be taken however, because
a process has only one language environment. So, if a module is built without the VMSTART entry point
but does create threads, it implicitly depends on the fact that it will be invoked by a program of the same
language that was built with the VMSTART multitasking initialization entry point.

Process Termination
The point at which the last thread in the application ends its execution is called process termination. At
this point, CMS cleans up storage and other resources. In addition, it signals an event, known as the
process end event, that can cause application post-processing to occur. This is similar in concept to the
service call for nucleus extensions done by CMS.

The event handler for this event can do any clean-up needed. The following is a formal definition of this
event. See Chapter 3, “Event Management,” on page 17 for an explanation of the concepts mentioned
in the definition. The process end event has an event name of VMPROCESSEND. It is a session level,
broadcast event that synchronizes the signalling thread. The data associated with the VMPROCESSEND
event is as follows:

4-byte integer return code
4-byte integer abend code
16-byte character process name.

The key is the name of the process ending. If the process completes normally, the abend code is zero.
Otherwise, it is the terminating abend code.

Process Management

12 z/VM: 7.3 CMS Application Multitasking

An additional consideration for process termination is the use of the CMSRET service from threads.
Normally a thread should terminate by simply exiting (returning). If a thread issues the CMSRET service
from its initial SVC-level, the same starting level it shares with the other threads in the process, CMS
deletes the process. If a thread invokes another application through CMSCALL, a CMSRET on that thread
causes control to return to the point of the CMSCALL as usual. It is only in the base SVC-level, the one that
represents this multitasking application, that CMSRET corresponds to a process deletion.

Process Management Examples
To show meaningful examples, some of the other multitasking services must be introduced. However, the
facilities introduced in this process management overview, together with the concepts described in the
process model description in “Multitasking Process Model” on page 1, are enough to describe several
concurrent program structures.

The simplest concurrent program structure is one having some number of threads, each having a unique
function to perform and none interacting with each other until the end of the computation. Some numeric
mathematics problems and some classes of transactions may be approached in this fashion. For example,
a transaction composed of updating a file, a database, and a tape log could have three threads, each
assigned to one of the three output objects, and each performing its update in parallel with the others.

For many servers, a more sophisticated structure may be more appropriate. In these servers, threads
can be dedicated to individual services, individual clients (users of the server), or individual managed
resources. Widely differing levels of coordination and synchronization may be required depending on the
choice of structure.

A basic, but widely applicable, server structure is the queue-based model. In such a server, requests
arrive from the client on a queue. The queue, being owned by the process, is equally accessible to all the
threads in the process. Each thread processes a request based on the contents of a message received on
the queue and then sends a reply back to a queue owned by the client. Each thread can handle a specific
request (thus resulting in a server with one thread for each type of request supported by the server) or
each thread can handle any of the possible requests.

Process Management

Chapter 2. Process Management 13

Figure 2. Queue-Based Structure

In either case, the basic structure of a thread in this model is:

 Do While (server running)
 QueueReceiveBlock the request
 .
 .
 .
 Process the request
 .
 .
 .
 QueueReply the result back to the client
 End

When the thread issues the QueueReceiveBlock function, it is left waiting until a message arrives on the
queue. When processing is complete, the thread sends a response back to the client. It then loops back to
receive the next request.

Another applicable structure for servers that use APPC/VM or IUCV to communicate with their clients
is an event-based model. The approach translates interrupts to signals that can be handled using the
event services. Instead of reading messages from a queue, the server threads wait on an event monitor.
An interrupt exit, such as one established by CMSIUCV, handles interrupts by collecting the interrupt
information and signaling an event. This signal then satisfies an event wait, letting a thread process the
request. The result is sent back by the thread using the appropriate communication mechanism, such as
APPC/VM.

Process Management

14 z/VM: 7.3 CMS Application Multitasking

Figure 3. Event-Based Structure

A thread in this model closely resembles its counterpart in the queue model:

 Do While (server running)
 EventWait for the request
 .
 .
 .
 Process the request
 .
 .
 .
 APPC/VM Send the result back to the client
 End

As in the queue model, the thread waits at the top of the loop for the next request. In both models, the
threads process their work sequentially, with the concurrency and asynchrony provided by using multiple
threads.

Process Management

Chapter 2. Process Management 15

Process Management

16 z/VM: 7.3 CMS Application Multitasking

Chapter 3. Event Management

Events define or represent activities that occur during program execution that may be of interest to
application programs or to CMS itself. These activities may include both hardware events, such as
interrupts, and software events, such as abnormal termination. The functions provided by CMS for
managing events fall into the following categories:

• Event definition
• Event signaling, or indicating the occurrence of an event
• Event monitoring, or defining what signals a process is interested in observing
• Event monitor processing
• Event signal processing

Event Definition
An event definition is provided to CMS by the issuer of the EventCreate function. The event definition
includes an event name, as well as the definition of the characteristics of this event. An event name is a
character string of arbitrary composition that provides the primary identification of an event. It identifies
the event for signaling and monitoring purposes. The event name may have either process or session
scope. In either case, the name must be unique among all event names known within that scope.

For a description of the characteristics available to be included in the event definition, see the description
of the EventCreate function in “EventCreate — Create an Event Definition” on page 128.

System events are defined by CMS either during session initialization or at first invocation of the service
that employs the event. Their occurrence is signaled by CMS as appropriate. Table Table 3 on page 17
lists the CMS system events.

Table 3. CMS System Events

Name Event For more information, see...

VMACCOUNT Production of an accounting record Chapter 8, “Accounting Services,” on
page 65 of this book

VMCONINPUT Unsolicited attention received at the
console

“VMCONINPUT and VMCON1ECB” on
page 332 of this book

VMCON1ECB Input available at the console “VMCONINPUT and VMCON1ECB” on
page 332 of this book

VMCPIC CPI Communications event Common Programming Interface
Communications Reference and z/VM:
CPI Communications User's Guide

VMERROR Beginning of abnormal termination of
a process

Chapter 9, “Abend Services,” on page
67 of this book

VMERRORCHILD Notification of a child process abend Chapter 9, “Abend Services,” on page
67 of this book

VMIPC Arrival of a message on a queue “QueueSignalEvents — Signal Queue
Events” on page 216 of this book

VMPOSGNL Generation or delivery of a POSIX
signal

Chapter 16, “Using CMS Multitasking
with OpenExtensions Services,” on
page 291 of this book

Event Management

© Copyright IBM Corp. 1992, 2022 17

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

Table 3. CMS System Events (continued)

Name Event For more information, see...

VMPROCESSEND End-of-process cleanup “Process Termination” on page 12 of
this book

VMSFSASYNC Completion of an SFS asynchronous
request

z/VM: CMS Application Development
Guide

VMSOCKET Completion of the REXX Sockets
Select function

“VMSOCKET Signal Data” on page 332
of this book; also see z/VM: REXX/VM
Reference

VMTIMECHANGE Dynamic time zone change Chapter 7, “Timer Services,” on page
59 of this book

VMTIMER Expiration or cancellation of a timer Chapter 7, “Timer Services,” on page
59 of this book

VMTRACE Production of a trace record Chapter 10, “Trace Services,” on page
75 of this book

For information about the characteristics of each system defined event, see “System Event
Characteristics” on page 331.

Application programs may define other events for their own use; CMS provides identical event
management services for system and user events. By convention, system event names have a maximum
length of 24 bytes, and consist of uppercase and lowercase alphabetic, numeric, and break characters.

Event Signaling
The EventSignal function defines and communicates the occurrence of events. The signal is always
associated with the process under which EventSignal is executed. An event may be defined so that its
signal is recognizable only within the process in which it occurred or throughout the session containing
that process. Any program may signal any event defined to the process in which it is executing. In
particular, application programs are free to signal events defined by other applications or by CMS itself.
The signaling program must determine when it is appropriate to signal any particular event.

The EventSignal function lets data be associated with a signal. The signal may be further characterized
by specifying any portion of the signal data as a key. For example, a timer event carries a key that is
the unique identifier of the particular timer that has resulted in this signal. The issuer of the EventSignal
function provides the key. A process monitoring for such signals may use the key to specify the particular
occurrences of an event that are of interest.

Interpreting the event signal data rests on a private protocol between the event signaler and the event
signal processors and must be established separately for each named event; event management simply
provides a channel for delivering this data.

Each process in the range of the signal is examined to determine if this process is monitoring for this
signal. If a process is performing such monitoring, the signal is delivered to it. If multiple processes are
monitoring for this signal, the signal is delivered to all of them concurrently. If no process in the range of
the signal is monitoring for this signal, the signal is said to be loose. The number of loose signals of an
event that are retained is established when the event definition is created. When that limit is exceeded,
the oldest signals are discarded as new ones occur. Loose signals can be processed later, as described
below.

For details of the EventSignal function, see “EventSignal — Signal the Occurrence of an Event” on page
163.

Event Management

18 z/VM: 7.3 CMS Application Multitasking

Event Monitors
The signals of an event or set of events may be monitored by establishing an event monitor with the
EventMonitorCreate function. A process may monitor any signals that occur within itself and those signals
whose occurrence has session-wide visibility that occur in other processes in the session.

If all signals of an event or set of events are not of interest, the issuer of the EventMonitorCreate
function may choose to monitor particular signals of an event by specifying a key, possibly including
special characters, which is matched against the key provided by the signaler. The special characters
supported, and the matching rules applied when they are used, are the same as those used for match
keys by interprocess communication. When a signal is observed that matches one of the event list entries
specified by the EventMonitorCreate function, that signal is said to be bound to the monitor.

The event monitor defines the condition under which bound signals may be processed. When the
condition specified by the monitor is satisfied, the monitor is said to be eligible for activation. A monitor
is actually activated only when one of the monitor processing functions (EventTrap, EventWait, and
EventTest) is issued against a monitor that is eligible for activation.

Each event list entry specified by the EventMonitorCreate function establishes the beginning of a list of
zero or more matching signals that are bound to the monitor in order of delivery. When the monitor is
activated, the first signal on each such nonempty list is collected to form the current signal set of the
monitor. Each time the monitor is activated, only the signals that make up the current signal set may
be processed. Signals that arrive while the monitor is active are not added to the current signal set and
are not visible at least until the current activation is complete. However, a signal that is delivered while
the monitor is inactive, even after sufficient signals have been bound to satisfy the monitored condition,
becomes part of the current signal set at activation if no equivalent signal is already bound.

The number of bound signals that are retained is specified when the monitor is created. When the limit is
exceeded, the oldest bound signal of a particular type (excluding a member of the current signal set if the
monitor is active at the time) is automatically removed to make room for a new arrival.

For details of the EventMonitorCreate function, see “EventMonitorCreate — Define an Event Handling
Environment” on page 139.

Event Monitor Processing
The monitor processing functions are EventTest, EventWait, and EventTrap. The processing performed by
each of these functions depends on the condition of the monitor against which the function is issued.

If the monitor is not yet eligible for activation:

• EventTest reports on the state of each event list entry.
• EventWait suspends the invoking thread until the monitor is eligible for activation. At this time, the

monitor is activated, the thread is resumed, and the state of each of the event list entries is reported.
• EventTrap informs CMS which routine, referred to as a trap routine, is to be run when the monitor is

eligible for activation. When this time comes, the monitor is activated and the trap routine is run on a
thread that CMS creates to run the trap routine. Because CMS does not know what environment the trap
routine will run in, no information is initially passed to the trap routine. The trap routine must, therefore,
issue EventTest to get a report on the state of each of the event list entries. If, at the time the monitor
is eligible for activation, both an EventTrap and an EventWait have been issued, the EventWait takes
precedence and the trap routine is not run.

If the monitor is eligible for activation, but is not yet activated:

• EventTest activates the monitor and reports on the state of each of the event list entries.
• EventWait activates the monitor and reports on the state of each of the event list entries.
• EventTrap activates the monitor and runs the specified trap routine on a thread created by CMS to run

the trap routine.

If the monitor is currently active:

Event Management

Chapter 3. Event Management 19

• EventTest reports on the state of each of the event list entries.
• EventWait inactivates the monitor and suspends the invoking thread until the monitor is again eligible

for activation.
• EventTrap informs CMS what routine is to be run at the time the monitor is again eligible for activation.

Only one activation of an event monitor at a time is permitted; however, multiple event monitors may be
active simultaneously. While an event monitor is active, signals for which it is monitoring are queued to
it (subject to the bound signal limits established at monitor creation) for consideration when the current
activation is complete.

A monitor is reset when it changes from being active to inactive. A monitor is reset implicitly in one of two
ways:

• When a thread currently associated with an active monitor returns control
• An EventWait is issued against an active monitor.

A monitor is reset explicitly when an EventMonitorReset is issued against an active monitor.

When a monitor is reset, the current signal set is released automatically and any bound signals are
examined to determine whether the monitored condition is again satisfied. If so, the monitor is eligible for
immediate reactivation.

Because an active event monitor is associated with the thread executing the signal processing program,
terminating this thread automatically resets all of its active event monitors.

If multiple monitors existing in a single process are monitoring for the same signal, the way the signal is
delivered depends on how the event is defined:

• The signal may be broadcast to all monitors in the process simultaneously.
• The signal may be presented to one monitor at a time in the order of their creation (either FIFO or LIFO

order).

In either case, the signal is delivered to a set of monitors that is established at the time the signal is
received. Once the signal begins to be delivered to a sequence of monitors, no newly created monitors are
added to the sequence.

Signals presented sequentially are said to be propagated from one monitor to the next. The propagation
does not occur until the signal is released from the current signal set of the first monitor as a result of the
monitor being reset. Each propagated signal is bound to the next monitor and ultimately becomes part of
its current signal set. When the last monitor has released the signal, it is finally discarded.

Event Signal Processing
While a monitor is active, the signals in the current signal set may be processed. The signal processing
program executes the EventRetrieve function to get the signal data from each signal in the current signal
set. If this event is defined as having sequentially-processed monitors, the signal processing program may
use the EventDiscard function to prevent some or all of the current signal set from being propagated to
event monitors of lower precedence.

When the signal processing program has finished processing the current signal set, it must reset the
monitor either implicitly or explicitly. This allows the current signal set to be released and the monitor to
become eligible for activation again, thus enabling additional signals to be processed.

Overview of Event Management Functions
The following functions are available in CMS for managing events:

• EventCreate

Registers the name of an event and specifies how that event is to be managed. For details of this
function, see “EventCreate — Create an Event Definition” on page 128.

• EventDelete

Event Management

20 z/VM: 7.3 CMS Application Multitasking

Deletes a previously created event. For details of this function, see “EventDelete — Delete an Event
Definition” on page 131.

• EventDiscard

Prevents signals in the current signal set of an event monitor from being propagated to successive event
monitors. It is effective only for events defined to have sequential signal propagation. For details of this
function, see “EventDiscard — Inhibit Further Propagation of Signals” on page 133.

• EventEnable

Enables or disables monitor activation by specific event signals. After disabling for a particular event,
signals of that event do not contribute to the activation of any monitor in the invoking process. Upon
reenabling for an event, signals of that event bound while the event was disabled may again contribute
to the activation of monitors in the invoking process. For details of this function, see “EventEnable —
Enable or Disable for Specific Events” on page 135.

• EventModify

Modifies the characteristics of an event definition previously created by the same process. For details of
this function, see “EventModify — Modify an Event Definition” on page 137.

• EventMonitorCreate

Specifies combinations of event names and keys identifying conditions whose occurrence the invoking
process wishes to monitor. For details of this function, see “EventMonitorCreate — Define an Event
Handling Environment” on page 139.

• EventMonitorDelete

Deletes a previously created event monitor. For details of this function, see “EventMonitorDelete —
Delete an Event Handling Environment” on page 142.

• EventMonitorEnable

Enables or disables specific monitors. After a monitor is disabled, the monitor cannot become
active. Upon reenabling, the monitor may again become active. For details of this function, see
“EventMonitorEnable — Enable or Disable Specific Monitors” on page 144.

• EventMonitorQuery

Gets information about the definition and status of a previously created event monitor. For details of this
function, see “EventMonitorQuery — Obtain Information About an Event Monitor” on page 146.

• EventMonitorReset

Indicates that processing of the current signal set of an event monitor is complete. For details of this
function, see “EventMonitorReset — Reset the State of an Event Monitor” on page 150.

• EventMonitorSelect

Starts or stops monitoring by specific monitors. After monitoring is stopped, no signals are bound to
the specified monitor. On restarting monitoring, loose signals are bound to the specified monitor in
accordance with the monitor definition. For details of this function, see “EventMonitorSelect — Start or
Stop Monitoring by Specific Monitors” on page 152.

• EventQuery

Gets information about an existing event definition, including a list of all event monitors defined in the
current process that are sensitive to occurrences of the event. The EventMonitorQuery function can
obtain further information about a particular event monitor. For details of this function, see “EventQuery
— Obtain Information about an Event Definition” on page 154.

• EventQueryAll

Gets the names of all events and the tokens for all event monitors visible to this process. EventQuery
and EventMonitorQuery can obtain further information about events and event monitors. For details of
this function, see “EventQueryAll — Obtain All Event Names and Monitor Tokens” on page 157.

• EventRetrieve

Event Management

Chapter 3. Event Management 21

Retrieves data from an event signal in the current signal set of an active event monitor. For details of this
function, see “EventRetrieve — Retrieve Data From an Event” on page 159.

• EventSelect

Starts or stops monitoring specific event signals. After monitoring of a particular event is stopped,
signals of that event are retained in accordance with the loose signal limit specified when the event
definition was created. On restarting monitoring for an event, any retained signal is delivered to
qualifying event monitors in accordance with the event and monitor definitions. For details of this
function, see “EventSelect — Start or Stop Monitoring for Specific Events” on page 161.

• EventSignal

Indicates the occurrence of the specified event and optionally passes data associated with the
occurrence to any event monitors that have registered an interest in the event. For details of this
function, see “EventSignal — Signal the Occurrence of an Event” on page 163.

• EventTest

Checks the condition of an existing event monitor. For details of this function, see “EventTest — Test for
the Occurrence of Events” on page 165.

• EventTrap

Nominates a routine to receive control asynchronously when the condition defined by an existing
event monitor is satisfied. For details of this function, see “EventTrap — Define an Asynchronous Event
Handler” on page 167.

• EventWait

Awaits the satisfaction of the condition defined by an existing event monitor. For details of this function,
see “EventWait — Wait for the Occurrence of Events” on page 169.

Event Management Examples
Here are some simple flows indicative of how event management services may be used:

CMS or an application Application
--------------------- -----------

EventCreate EventMonitorCreate
 (creates goofy event) (monitor all goofy events)

 Do forever

 EventWait (on goofy monitor)
 .
 . When goofy event is signaled,
 . control is returned to invoker
 . of EventWait

EventSignal EventRetrieve
 (signal goofy event) (get goofy data)

 by looping back to EventWait,
 monitor is reset and application
 is waiting for next goofy event

 End

Figure 4. EventWait Example

Event Management

22 z/VM: 7.3 CMS Application Multitasking

CMS or an
application Application Program X
----------- ----------- ---------

EventCreate EventMonitorCreate
(creates goofy event) (monitor all goofy events)
 EventTrap (on goofy monitor,
 specifying program X)

 continue processing
 .
 .
 .
 .

EventSignal
(signal goofy event) gets control when
 goofy event signaled

 EventTest (find out
 how much goofy data
 there is)
 .
 .
 .
 EventRetrieve
 (get goofy data)

 upon return from trap
 routine, monitor is
 reset and trap routine
 awaits next goofy event

 return

Figure 5. EventTrap Example

CMS or an application Application
--------------------- -----------

EventCreate EventMonitorCreate
 (creates goofy event) (monitor all goofy events where
 the goofy data starts with the
 letter "A")

EventSignal EventTest
 (signal goofy event (on goofy monitor)
 with data "ABCD")
 If monitor has been activated by EventTest

 EventRetrieve
 (get goofy data, in this case "ABCD")

 EventMonitorReset
 (to allow more goofy events to be
 processed)
 end

Figure 6. EventTest Example

Event Management

Chapter 3. Event Management 23

CMS or an application Application Thread 1 Application Thread 2
--------------------- -------------------- --------------------

EventCreate EventMonitorCreate 1 EventMonitorCreate 2
 (creates goofy event
 such that signals are (monitor all goofy events) (monitor all goofy events)
 broadcast simultaneously
 to all existing monitors) EventWait on monitor 1 EventWait on monitor 2

EventSignal Upon event signal, both thread 1 and thread 2
 (signal goofy event)
 are taken out of their respective waits and
 each has its own copy of the event signal.

Figure 7. Broadcast Signals Example

CMS or an application Application Thread 1 Application Thread 2
--------------------- -------------------- --------------------

EventCreate EventMonitorCreate 1 EventMonitorCreate 2
 (creates goofy event
 such that signals are (monitor all goofy events) (monitor all goofy events)
 propagated to monitors
 sequentially) EventWait on monitor 1 EventWait on monitor 2

EventSignal Upon event signal, thread 1
 (signal goofy event) is taken out of its wait

 EventRetrieve goofy data

 EventMonitorReset monitor 1
 to allow signal to be
 propagated to next monitor Upon reset of monitor 1,
 thread 2 is taken out of its
 wait and it may now process
 the event signal.

 EventWait on monitor 1 EventWait on Monitor 2

EventSignal Upon event signal, thread 1
 (signal goofy event) is taken out of its wait

 EventDiscard signal so that
 this signal is NOT propagated
 to next monitor

 EventMonitorReset

 Because the signal has been
 discarded, it is NOT
 propagated to the next
 monitor, so thread 2 continues
 to wait.

Figure 8. Sequentially Propagated Signals Example

Event Management

24 z/VM: 7.3 CMS Application Multitasking

CMS or an application Application
--------------------- -----------

EventCreate
 (creates goofy event with a loose
 signal limit of 2)

EventSignal 1
 (signal goofy event)

Because no monitors exist this is a
loose signal.

EventSignal 2
 (signal goofy event)

Because no monitors exist, this is loose
signal number 2.

EventSignal 3
 (signal goofy event)

Because no monitors exist, this is also a
loose signal, but because a loose signal
limit of 2 has been established, signal 1
(the oldest loose signal) is now discarded.
This leaves signals 2 and 3 as the only
loose signals.

EventModify the goofy event to have a loose
signal limit of 3.

EventSignal 4
 (signal goofy event)

Because no monitors exist, this is a loose signal
Because the loose signal limit has been changed
to 3, no signals are discarded. Signals 2,
3, and 4 are maintained as loose signals.

 EventMonitorCreate
 (monitor all goofy events,
 but sets a bound signal
 limit of 3)

 Signals 2, 3, and 4 (previously
 loose signals) are bound to the
 monitor at its creation.

EventSignal 5 Signal 5 is bound to the monitor,
 (signals goofy event) but because the bound signal limit
 is 3, signal 2 (the oldest bound
 signal) is now discarded. This
 leaves signals 3, 4, and 5 as the
 only bound signals.

Figure 9. Loose and Bound Signal Limits Example

Event Management

Chapter 3. Event Management 25

CMS Application
--- -----------

EventCreate EventCreate
 (creates goofy event as (creates goofy event as a
 a process level event) process level event)

 EventMonitorCreate
EventSignal (monitor goofy events)
 (signal goofy event)

Because this is a process level
event, the signal is delivered
only to the signaling process.
Because there is no monitor for
this event in this process, the
signal becomes loose.

Figure 10. Process Level Events Example

Event Management

26 z/VM: 7.3 CMS Application Multitasking

Chapter 4. Interprocess Communication

CMS provides queue-based interprocess communication (IPC). The queue operations form a general
mechanism for communication and coordination among processes and among threads within a single
process. They are intended to aid both distributed processing and object-based programming. To describe
how such programming approaches are supported by IPC, a few definitions must be covered.

Queue Definition
To define a queue, first define its elements. A message is a data element that is transferred by IPC. A
message contains these elements:

• The prefix, which contains control information describing the message. The prefix consists of the
following:
text length

The length of the message text associated with this message.
key descriptor

An ordered pair (offset, length) indicating the location within the message text of the message key.
The message key is used in selective message manipulation.

sender ID
The user ID and process ID of the process that sent the message.

• The message text, which is the actual data to be conveyed, including a key describing the content or
meaning of the data.

A queue is simply a list of such messages. Each queue is identified by a name assigned to it by its creator
at the time it is created.

When a message is delivered to a recipient, the prefix and the message text are both delivered. The queue
API breaks the prefix apart for the recipient — that is, the elements of the prefix are made available to the
recipient in separate parameter list entries.

The message text may be up to 16MB-1 bytes long.

Operation
CMS provides a rich API for invoking queue functions. The functions provided fall into several overall
categories:
Initialization

Creating a new queue, opening an existing queue, identifying a service queue
Transmission

Sending a message to a queue, sending a reply to a message received from a queue
Monitoring

Watching a queue or set of queues using an event monitor to detect message arrivals
Receipt

Receiving messages from a queue
Support

Identifying a carrier for remote IPC activity
Termination

Closing an open queue, deleting a queue.

The typical paradigm for using queues is roughly as follows:

• A thread creates a queue at a certain visibility scope. Typically the creating thread is the one wishing to
receive messages from the queue, but other scenarios are certainly possible.

Interprocess Communication

© Copyright IBM Corp. 1992, 2022 27

The QueueCreate function returns a numeric token, called a queue handle. All threads in the creating
thread's process use this handle to identify the queue on all subsequent function calls.

• Threads in other than the creating process must open the queue with the QueueOpen function to use it.
This is much like opening a file for I/O. The QueueOpen function also returns a queue handle.

• Threads may send messages to the queue, perhaps choosing to block until the message is received (the
QueueSendBlock function) or perhaps choosing to specify that CMS should provide reply assistance (the
QueueSendReply function). The former option enables distributed processes to rendezvous. The latter
allows client-server interaction.

• Some thread in the creating process issues a receive call to gather up the message waiting in the queue
(the QueueReceiveBlock or QueueReceiveImmed function).

• When a sender is finished, it closes the queue (with the QueueClose function). Closing the queue does
not disturb the queue's contents.

• When the receiver is finished, it closes the queue and deletes the queue with the QueueDelete function.
Only the process that created a queue may delete it.

Properties
CMS queues exhibit the following properties relative to delivery, sequence of arrival, and volatility:

• A successful return code on any of the send functions means that delivery of the message to the target
queue has completed without error. This is true regardless of the location of the target queue. This kind
of operation is usually called guaranteed delivery.

• Messages emanating from a single thread to a single target queue are guaranteed to arrive on the target
queue in the order they were sent.

• CMS queues are volatile. If a queue is destroyed, its contents cannot be recovered.

Queue Names
Queue names are composed from single-byte characters chosen from an unrestricted alphabet (all 256
eight-bit patterns are eligible). A queue name may be up to 16MB-1 bytes long.

Queue Name Scopes
CMS defines several name scopes for queues. The operation of placing a queue in one of these scopes is
called exporting the queue to that scope. This placement takes place at the time the queue is created and
is fixed for the life of the queue. The export operation guarantees that the queue name is unique among
all queue names exported to the target scope by processes sharing the target scope with the exporter.

The defined queue scopes are as follows:
Level

Definition
Process

The queue is visible only within a specific process, and the queue name is unique only within that
process' process-level queues.

Session
The queue is visible to any process executing in the same session as the exporting process, and the
queue name is unique among all names exported to the session level by processes executing in the
same session as the exporting process.

Network
Like a session-level queue, the queue is visible to any process executing in the same session as the
exporting process. The queue name is unique among all names exported to the network level by
processes executing in the same session as the exporting process. The queue is visible to processes
outside the owner's session, subject to the capabilities of the underlying communication carrier.

Interprocess Communication

28 z/VM: 7.3 CMS Application Multitasking

Local operation is not penalized by exporting beyond the session level — that is, the cost to access a
queue located in the same session as the message sender is the same regardless of whether the target
queue has been exported beyond the session level.

Each of these export levels promotes distributed processing. In particular, network-level queues promote
interprocess communication from one user ID to another.

Export Level Search Order
Because of the nature of exporting, a queue name may be defined in more than one of a process' name
scopes. For example, process A may be able to see different queues named ALPHA at both the process
and session levels. This possibility makes it necessary to order the name scopes for search purposes.

The QueueOpen function searches the name scopes in the order requested by the invoker. If the invoker
does not request a specific order, then the QueueOpen function searches the name scopes outward
from the locus of the function caller; in other words, the function first searches for process queues, then
session queues, and so on. The QueueOpen function returns an indication of the level at which the queue
to be opened was found.

Primary Queue
When CMS creates a process, it creates a primary queue for the process. The name of the primary queue
is the same as the name of the process owning it, and the handle of the primary queue is always 1. CMS
sends messages to a process on its primary queue.

A process' primary queue is exported to the session level.

Keys
When a message is sent, the sender associates a byte string, called a message key, with the message. The
key is embedded in the message text and may identify the content or intent of the message. The specific
use of the key is left for the sender and receiver to decide.

For certain receiving and queue control operations, the caller specifies a match key to be used in selective
manipulation of a queue or the messages in a queue. The requested operation applies only to queue
messages whose message key matches the specified match key.

Message Keys
A message key is composed according to these rules:

• The message key must be completely contained in the message text.
• The length of the message key is bounded by the length of the message.
• The characters composing the message key are not restricted.
• It is permissible for the message key length to be zero. This simply means that the message has no

message key associated with it.

CMS reserves some message keys for its own use for communicating with processes. All keys in
messages sent by CMS are of the form VMxxxxx, where xxxxx represents an alphanumeric string.

Match Keys
The match key may be an exact match key or a fuzzy match key, where the terms are defined as follows:
Exact Match Key

The match key contains no wildcard characters. Message keys against which the match key is
compared must match the match key exactly (same length, same data) for the requested operation to
have effect.

Interprocess Communication

Chapter 4. Interprocess Communication 29

Fuzzy Match Key
The match key contains wildcard characters. Message keys against which the match key is compared
must match the pattern specified by the match key, allowing for wildcards, for the requested
operation to have effect.

The rules for composition of a match key are as follows:

• A match key is less than 16MB long.
• A match key containing one or more of the characters * (asterisk), % (percent), or ' (apostrophe)

is considered to be a fuzzy match key. These characters, called wildcard characters, have special
significance when the matching algorithm is applied.

The interpretation of wildcard characters in a fuzzy match key is very similar to the interpretation of those
characters in CMS file names and file types. To be precise, the wildcard characters have the following
meanings:
% (X'6C')

Matches any single character in a message key. For example, match key a%c matches message keys
abc, acc, and axc.

* (X'5C')
Matches a variable-length (zero or more characters) substring within the message key. This usually
indicates that the match key is actually a series of fragments, all of which must be present in the
message key for a match to occur, but that the spacing between the fragments is irrelevant.

For example, message key abcde is matched by match keys a*, *de, a*e, and *a*b*c*d*e*.

' (X'7D')
Indicates that the next character in the match key should be interpreted literally (that is, without
regard to whether it is a wildcard character or not). A character performing this function is commonly
called an escape character.

Note that a match key may contain more than one kind of wildcard character. For example, message key
abcdefg is matched by match key *b%d*.

To match any message key, specify either a zero-length match key or a match key of * (these two match
keys are functionally equivalent). In the rest of this document, this match key shall be called the match-all
match key.

Tips on Constructing Keys
For most programming situations, constructing message keys and corresponding match keys is pretty
straightforward.

Note: Though this discussion is cast in the context of IPC keys, it also applies to keys used in event
data and event monitor creation. Event data keys correspond to message keys, and event monitor keys
correspond to match keys.

To build a message key, the programmer places some data in the key, said data being used to qualify the
message in some way. To build a corresponding match key, the programmer places that qualifying data
in the match key. CMS takes care of comparing the match key to the message key and taking action if a
match occurs.

Consider a simple example, using character data. Suppose each message in a queue contains a key whose
content is the name of a day of the week. To receive the next message whose key is Wednesday, the
programmer would build a match key Wednesday and call one of the queue receive functions. CMS would
deliver the next message having key Wednesday, avoiding messages keyed for other days of the week.

Subtle difficulties can arise, though, when the programmer desires to put binary data in a message key
and construct binary match keys with the intent of matching said message keys. The difficulty comes not
in placing binary data in the message key, but rather in constructing a match key that will have the desired
effect. Suppose, for example, that a 4-byte message key is to contain a sequence number identifying
the transmitted message. To receive a message having a desired sequence number, the programmer's
first impulse might be to build the match key simply by making a 4-byte string whose bytes are the

Interprocess Communication

30 z/VM: 7.3 CMS Application Multitasking

bytes of the desired sequence number. For example, to receive the message whose sequence number
is X'00000001', the programmer might build match key X'00000001', and so on for other sequence
numbers. This would work fine for a little while, but it does not work for every sequence number.

The problem with binary match keys is that the binary data might contain a byte corresponding to one of
the wildcard characters. Returning to the previous example, this programmer's code will work fine until it
desires to receive the message whose sequence number is X'0000005C'. When the programmer uses this
number as the match key, he will be asking to receive any message where the first three bytes of the key
are X'00' — the rest of the key is irrelevant. This is because X'5C', the last byte of the match key, is the
variable-length wildcard character, *.

There are ways of working around this pitfall with binary match keys. The first suggestion, of course, is to
refrain from using binary data in message and match keys if possible. 1 When the message key and match
key are both composed of character data, it is pretty unlikely that a match key could produce unexpected
results. If it is not possible to use keys composed only of character data, then there are a couple of
alternatives.

The first alternative is to ensure that binary data used in message and match keys can never contain
a byte value that would be interpreted by CMS as a wildcard character. Returning again to the opening
example, if the programmer's sequence number assignment scheme skips those numbers where one of
the bytes in the 4-byte number is a wildcard character code point, then the sequence number can safely
be placed in the message and match keys and all will work fine. In fact, it is pretty simple to generate
a translation table which, when used with the TR instruction, produces the next valid sequence number
from a known-to-be-valid one. CMS uses this technique in the generation of queue handles, timer tokens,
thread IDs, and process IDs. It does this so that these values can be used successfully in event data keys
or in message keys.

If it is not possible to avoid wildcard character code points in binary data, then the wildcard escape
character must be used in the match key if key matching is to work as expected. In the above example,
sequence number X'0000005C' can be matched by match key X'0000007D5C', for X'7D' is the code
point for the escape character ('). A general technique for exactly matching an arbitrary binary value in a
message key is to build the match key by inserting an escape character before each byte of the desired
binary value. This ensures that no unexpected matches will be incurred. If the programmer mentioned
above were to employ this technique, he would generate a match key of X'7D007D007D007D5C' for the
X'0000005C' sequence number.

Network-Level Queues
Network-level queues allow IPC to occur between processes located in different sessions. Such operation
represents IPC at the widest possible scope, that is, from one user ID to another. This facility can be
used to let multiple users run a single cooperative application based on queues. It can also be used to
implement servers based on IPC.

When a network-level queue is created, it resides in the same session as the process that created it. Other
processes in that session access the queue with the same speed as they would have for session-level
queues residing in that session. Processes in other sessions access the queue more slowly, because CMS
uses a communication carrier on their behalf to reach the remote queue. In either case, the primitives
(API calls) used to reach the queue are the same as those used to reach queues of other scopes.

Largely speaking, programs using the queue API need not be sensitive to whether the queues being
manipulated are located at the network level. One point to keep in mind, though, is that network-level
queues are one of the few constructs in CMS where interprocess aspects of the CMS process model,
that is, those process model traits relating to the interaction of one user process with another, come to
light. When two CMS application programs communicate with one another through network-level queues,
they are exposed to timing, synchronization, and scope-of-recovery effects not seen within a single CMS
application. For example, consider a client-server situation where the client and server components are
separate CMS applications, each one residing in its own virtual machine. Each must be written to expect
that the partner might not yet be started; CMS may not automatically start a queue-based server in

1 Patient: Doctor, it hurts when I do this. Doctor: Well then, don't do that.

Interprocess Communication

Chapter 4. Interprocess Communication 31

response to QueueOpen requests from clients. Programmers need to keep in mind that they must account
for such effects when writing distributed applications with CMS.

To facilitate the selection of retry strategies, the queue API provides reason codes indicating the kind of
retry an application might choose to attempt. One such reason code indicates that an operation might
succeed if the application simply retries it. The out of storage indicator is an example of this kind of reason
code. Another reason code, returned only when network-level queues are involved, indicates that the
connection to the remote CMS application has been lost. In this case, the application's only recourse is to
try to re-establish the connection to the remote application by reopening the remote queue. Depending
on the nature of the application, this more serious retry attempt might need to be coupled with some
application-dependent recovery procedure.

CMS provides code supporting network-level queue operations using APPC/VM as the carrier. This allows
applications to send messages to one another's queues within a VM collection (through TSAF) or across
collections (through AVS). CMS also contains interfaces that allow customers to write line drivers to
support queue operations over other carriers. For more information on writing IPC carriers, see Appendix
C, “Remote IPC Support,” on page 307.

For a concrete example that shows how to set up network-level queues based on the following analytical
discussion, see “Setting Up Network-Level Queues” on page 44.

Local Access Considerations
When an application attempts to use a network-level queue, CMS searches the local session for the
queue, and if it is found, the queue is accessed as if it were of session scope. The application experiences
the same access speed and access rights rules it would experience if the queue were truly of session
scope.

Remote Access Considerations
CMS uses a names file, $QUEUES$ NAMES, to describe network-level queues of interest to the local
session. This names file contains information meaningful to the CMS kernel, and it can also contain
information meaningful to communication carriers. The following example of $QUEUES$ NAMES provides
an explanation of the tags used in the file and the rules governing default tag values.

CMS requires a $QUEUES$ NAMES entry for each network-level queue residing remotely but being
accessed locally. Each such entry lets CMS notify the appropriate carrier that it must initiate activity with
some remote instance of CMS. CMS also requires a $QUEUES$ NAMES entry for each network-level queue
created in the local session. This entry lets CMS notify the appropriate carrier that it must prepare to
handle requests for the queue, that is, requests that might originate remotely.

$QUEUES$ NAMES is kept in storage; names are resolved from the in-storage image. Changes made to
the disk image of the file are not recognized until the in-storage image is refreshed. The in-storage image
can be refreshed with the SET COMDIR RELOAD command.

When CMS searches $QUEUES$ NAMES for an entry but does not find one, it proceeds with processing
as if it had found the entry with all defaults applied. Thus, for many cases, it is not necessary to create
$QUEUES$ NAMES at all.

*
* $QUEUES$ NAMES -- names file to map IPC queue names to
* carriers and carrier-specific parameters.
*
* CMS uses the information it extracts from this file to
* determine the carrier it should use for IPC operations.
*
* CMS also passes what it finds here, along with any
* defaults that may have needed to be filled in, to the
* carrier for its use.
*
*
* ENTRY FORMAT
*
* Format of each entry is:
*

Interprocess Communication

32 z/VM: 7.3 CMS Application Multitasking

* :nick.<queue_name>
* :scope.NETWORK
* :qn.<queue_name_at_remote_location>
* :carrier.<your_carrier_name>
*
* Note that the :scope tag is required, and its value must
* be NETWORK (mixed case is OK).
*
* The entry may also contain carrier-specific tags -- QueueOpen
* will pass them to the carrier for its use. For APPC/VM, the
* following carrier-specific tags are defined:
*
* Tag Meaning
* --- -------
* :sdn. symbolic destination name
*

* The APPC/VM carrier uses the value of the :sdn. tag as its
* index into the CMS Communications Directory. If a ComDir entry
* is not found (that is, RC=80 or RC=84 from CMSIUCV RESOLVE),
* then the APPC/VM carrier uses the following default values:
*
* ComDir Tag Default Value If No ComDir Entry Is Found
* ---------- ---
*
* :tpn. VMIPC
*
* :luname. *USERID qn, where 'qn' is the first 8
* characters of the value of the :qn. tag
* from the queue's entry in $QUEUES$ NAMES
*
* :security. SAME
*
* NOTE: Case is significant in all entries. (The case of
* the tag itself is not significant, but the case of the value
* is. QueueOpen does not perform any case shifting on the
* extracted values.)
*
* DEFAULTS
*
* If CMS does not find an entry in $QUEUES$ NAMES, or if it
* finds a partial entry (some tags missing), it fills in
* defaults as follows:
*
* Tag Default Value
* --- -------------
*
* :qn. Queue name as passed by caller,
* truncated to 249 characters
*
* :carrier. APPC/VM
*
* :sdn. Queue name as passed by caller,
* truncated to 8 characters
*
* Note that CMS does not supply a default :sdn. tag if
* a :carrier. tag having value other than APPC/VM is found.
*

*
* Samples
*

:nick.Nick_Only
 :scope.NETWORK

:nick.QName_Only
 :scope.NETWORK
 :qn.My_Qname

:nick.Carrier_Only_TCP/IP
 :scope.NETWORK
 :carrier.TCP/IP

:nick.Carrier_Only_APPC/VM
 :scope.NETWORK
 :carrier.APPC/VM

Interprocess Communication

Chapter 4. Interprocess Communication 33

:nick.SDN_Only
 :scope.NETWORK
 :sdn.My_SDN

:nick.QName_Missing
 :scope.NETWORK
 :carrier.APPC/VM
 :sdn.My_SDN
 :carrier.Wrap

:nick.Carrier_Missing
 :scope.NETWORK
 :qn.My_Qname
 :sdn.My_SDN

:nick.SDN_Missing_APPC/VM
 :scope.NETWORK
 :qn.My_Qname
 :carrier.APPC/VM
:nick.SDN_Missing_TCP/IP
 :scope.NETWORK
 :qn.My_Qname
 :carrier.TCP/IP

:nick.All_Data
 :scope.NETWORK
 :qn.Remote_Network_Queue
 :carrier.APPC/VM
 :sdn.RNQ
 :c1.Carrier_Specific_Parm_1
 :c2.Carrier_Specific_Parm_2

:nick.Local_Wrap_Queue
 :scope.NETWORK
 :qn.Remote_Wrap_Queue

APPC/VM Carrier Considerations
The APPC/VM carrier provides two basic functions. First, it provides processes in its own session with a
means to access queues located in other sessions. Second, it provides a way for processes located in
other sessions to access queues located in the local session.

The CMS carrier does not support the use of APPC/VM in wrap fashion. In other words, conversations
managed by the APPC/VM carrier cannot originate and terminate at the same virtual machine.

Accessing Remote Queues
The CMS Communications Directory serves as the repository for APPC/VM-related information associated
with network-level queues. CMS uses the value of the :sdn. tag from $QUEUES$ NAMES as a symbolic
destination name for use with the CMS Communications Directory. The CMS Communications Directory
gives the APPC/VM naming and addressing information needed to reach the remote queue.

The CMS Communications Directory entries describing remote instances of CMS must be set up as private
resource manager entries. The format of these entries varies according to the relative locations (same
collection, different collections, and so forth) of the two carriers. For more information on setting up
private resource manager entries in the CMS Communications Directory, see z/VM: Connectivity.

The APPC/VM carrier uses the value of the :qn. tag from $QUEUES$ NAMES as the name of the queue at
the remote location. It passes that name to the remote instance of CMS for its use in finding the queue.

Enabling Access to Local Queues
An entry for resource VMIPC in the CMS private resource registration file ($SERVER$ NAMES) enables
access to network-level queues located in the local session. The entry's :list. tag defines those user
IDs that may use network-level queues located in the local session. The :module. tag gives the name

Interprocess Communication

34 z/VM: 7.3 CMS Application Multitasking

of the exec or module CMS should start in response to the arriving IPC request. Figure 11 on page 35
shows the required format for the entry in $SERVER$ NAMES.

General form:

:nick.VMIPC
 :list.your_access_list
 :module.your_CMS_program

Example:

:nick.VMIPC
 :list.USER1 USER2 USER3
 :module.YOURPGM

Figure 11. $SERVER$ NAMES Entries for Network Queues

In addition to setting up $SERVER$ NAMES, the programmer must also ensure that the virtual machine
is enabled for incoming APPC/VM conversations. This is most easily done by placing an IUCV ALLOW
statement in the virtual machine's CP directory entry.

Considerations for Automatic Queue Program Startup
CMS performs automatic startup of the program named by VMIPC's :module. tag if and only if:

• SET SERVER is ON
• SET FULLSCREEN is OFF or SUSPEND
• The APPC/VM carrier has not yet initialized itself in the virtual machine.

The APPC/VM carrier initializes itself in the virtual machine as soon as one of these things happens:

• A CMS program creates a network-scope queue for which $QUEUES$ NAMES indicates that the
APPC/VM carrier should be used

• A CMS program opens a network-scope queue that does not exist locally and for which $QUEUES$
NAMES indicates that the APPC/VM carrier should be used.

As long as the APPC/VM carrier remains uninitialized, the usual private resource manager behavior
continues to apply to resource VMIPC. When a connection pending interrupt arrives for VMIPC, then
provided SET SERVER and SET FULLSCREEN are set appropriately, the module or exec named by
the :module. tag of VMIPC's entry in $SERVER$ NAMES is auto-started.

Once the APPC/VM IPC carrier has initialized itself, the auto-starting feature of CMS private resource
management is no longer available for connections to VMIPC (other resource names are still auto-
started). Subsequently-arriving connection pending interrupts for resource VMIPC do not cause the
module named by VMIPC's :module. tag to be auto-started. Further, once it has initialized itself, the
APPC/VM carrier is immune to the settings of SET SERVER and SET FULLSCREEN.

No matter whether the APPC/VM carrier is initialized yet or not, all connection pending interrupts for
VMIPC are always validated according to the :list. tag for the VMIPC entry in $SERVER$ NAMES.

The APPC/VM carrier remains initialized and active in the virtual machine until CMS is re-IPLed.

Authorization
The authorization rules for queues are explained in Table 4 on page 35. Each cell in the table indicates
the processes that may perform the given operation at the given level.

Table 4. Queue Authorization Rules

Create Delete Open, Write, Close All Other Operations

Process Any process The creator The creator The creator

Interprocess Communication

Chapter 4. Interprocess Communication 35

Table 4. Queue Authorization Rules (continued)

Create Delete Open, Write, Close All Other Operations

Session Any process The creator Any process in the
creator's session

The creator

Network Any process The creator Any process in the
creator's session, plus
access from outside
the session, subject
to the authorization
constraints imposed
by the communication
carrier

The creator

Operations included in the open, write, close category are those typically used by a client thread.
Specifically, they are:

• QueueOpen
• QueueSend
• QueueSendBlock
• QueueSendReply
• QueueReply
• QueueClose.

Authorization rights for a network-level queue are a function of the communication carrier used to
connect sessions together. For the APPC/VM carrier, if a user ID is named in the :list. tag of the
VMIPC entry in $SERVER$ NAMES, then it may access any network-level queues located in that session.
This access is limited to the open, write, close set of operations.

Replies
Typical IPC functions (send and receive), while suitable for communication among peer cooperating
processes, are not particularly suitable for client-server operations, especially when a number of clients
and a single server are involved. Consider this:

• To interact with the server, a client opens the server's incoming work queue (a network-level queue,
probably) and places messages on it to request service. This implies that a client has an incoming work
queue open for each server with which it interacts. This is acceptable.

• A server, to interact with a client, must open a queue owned by the client and send messages to it
to indicate completion of service requests. This implies that the server has a client queue open for
every client it serves. This is not acceptable. In addition, every client's response queue must be at the
network level, because the server would not be able to see it if it resided at a lesser scope. This is not
acceptable either.

To alleviate this condition, CMS makes available a send-receive queue function, QueueSendReply. This
function lets a process send a message and specify the queue in which it would like the receiver of the
message to place a reply. The sender identifies the reply queue by the handle on which it was opened.
In response to this, CMS tags the message with a token; this token is passed to the receiver and is used
by the receiver in place of a queue handle when it transmits the reply. CMS uses the token to place the
message in the queue specified by the sender of the original message.

The sender must have write and read access to the reply queue to specify that a reply be placed in it.
Because the access rights to the reply queue are determined at the time the reply queue is opened, the
overhead of the QueueSendReply function is reduced. The replying process need not have opened the
reply queue, nor need it have write access to the reply queue. In fact, the reply queue need not even be
visible to the replying process under normal circumstances.

Interprocess Communication

36 z/VM: 7.3 CMS Application Multitasking

The use of the QueueSendReply function is as follows:

• A thread sends a message for which it needs a reply by using QueueSendReply.
• CMS assigns a reply token to the message and internally associates the reply queue identity and location

with the reply token.
• When CMS delivers the message to the receiver, it also delivers the reply token.
• To reply to the message, the recipient uses the QueueReply function, passing CMS the message to be

sent and the reply token previously given it by CMS.
• CMS uses the reply token to place the response in the reply queue.

The reply token is valid for only one call to QueueReply.

Service Queues
In client-server relationships, it is sometimes necessary to let a server hide the identity of a service queue
from its clients. For example, a server may choose to create and delete work queues dynamically, hiding
the true identities of said queues. In addition, it might be desirable to let a diagnostic tool or trace facility
place itself between a server and its clients so that the requests and responses might be debugged or
otherwise monitored. Insulating clients from the true identity of a queue enables these kinds of functions,
among others.

To facilitate this, CMS provides the notions of service IDs and service queues and integrates these
concepts into the queue API. The queue API provides a function for associating a session-level queue
with a service ID, and it lets clients use service IDs in place of queue handles in the QueueSendReply
and QueueSend functions. With these two features, CMS provides a way for clients to send messages to a
server's queue, identifying the service queue by service ID. The client need not open the service queue to
send messages to it. In fact, the client does not even need to know the name of the service queue.

The use of service queues goes roughly like this:

• The writer of a service thread makes the thread's service ID known in advance to client writers.
• When it initializes, the service thread calls the QueueIdentifyService function to tell CMS the name of

the queue on which requests for this service should be placed.
• Clients wishing to contact the server use the QueueSendReply function, passing the service ID as the

queue handle.
• At any time the server may call the QueueIdentifyService function again to change the queue in which

requests for its service should be placed. CMS returns the name of the queue previously designated for
this purpose. This facilitates the debugging and monitoring example described earlier.

• Subsequent invocations of the QueueSendReply function deliver messages to the new service queue.

A given queue may be pointed to by only one service ID at a time.

Timeouts
To assist in resolving deadlocks, the blocking queue functions (QueueReceiveBlock and QueueSendBlock)
allow the caller to specify a timeout value. When the caller specifies a nonzero timeout period, CMS
terminates the function when the time period expires, even if the desired operation has not yet
completed.

Note: Specifying a timeout period of zero causes the call to block indefinitely (no timeout assistance is
provided). For example, a call to QueueReceiveBlock would terminate even though a matching message
had not yet arrived at the queue of interest. When a blocking function terminates because of timer
expiration, the caller receives a return and reason code indicating that a timeout was the reason for the
call's termination.

To keep both thread overhead and system overhead at a bare minimum, CMS uses a coarse-grained, low-
overhead timing scheme for managing the timeouts of these blocking functions. The timeout facility is
intended only to break deadlocks, not for precision timing of message exchanges or program throughput

Interprocess Communication

Chapter 4. Interprocess Communication 37

rates. Programs requiring such precision are free to exploit CMS's timer and event APIs directly to achieve
such results.

Interactions with Process Management
The following interactions between queues and process management should be noted:

• When a process terminates, any queues created by that process are deleted and messages waiting
in those queues are deleted. Threads waiting on the receipt of such messages are notified that the
messages were deleted.

Interactions with Event Services
To facilitate the coupling of message arrival waits with other kinds of waits, CMS optionally signals a
process-level event, VMIPC, when a message arrives on a queue. Whether this event will be signaled
or not is controlled by the QueueSignalEvents function. See the description of the QueueSignalEvents
function “QueueSignalEvents — Signal Queue Events” on page 216 for more information.

General Queue API Notes
These usage notes apply to the entire Queue API:

• When CMS fills a character string buffer with variable-length return information, the following notes
apply:

– CMS always returns the length of the returned string in a separate signed 4-byte binary variable. The
contents of this variable on entry to the function are not relevant.

– CMS does not pad the returned information on the right.
• When a function fails, output variables (other than return and reason codes) are not set, unless explicitly

noted otherwise.
• The interface between CMS and IPC carriers allows the carrier to specify the exact return and reason

codes to be returned to the CMS application. If your program is using network queues, and if you are
using a carrier other than the APPC/VM carrier provided by IBM, then the following operations may yield
return and reason codes other than those documented in this book:

– QueueOpen
– QueueSend
– QueueSendBlock
– QueueSendReply
– QueueReply
– QueueClose.

If one of these operations yields a return or reason code other than the ones described in this book,
then you should consult the author of the carrier to determine how to proceed.

Interprocess Communication Examples
Here are several examples of how CMS interprocess communication works. The examples show different
phases of IPC use: startup, message exchange, and shutdown. Creating and Opening Queues

Interprocess Communication

38 z/VM: 7.3 CMS Application Multitasking

 Thread A Thread B
 -------- --------

 1 QueueCreate
 name="QA"
 level=1

 handle=h₁
 rc=0

 2 QueueCreate
 name="QB"
 level=1

 handle=h₂
 rc=0

 3 QueueOpen
 name="QB"
 sequence=1

 foundlvl=1
 handle=h₃
 rc=0

 4 QueueOpen
 name="QA"
 sequence=1

 foundlvl=1
 handle=h₄
 rc=0

Figure 12. Creating and Opening Queues

Figure 12 on page 39 shows two processes creating and opening queues for peer-to-peer interaction. The
steps are:

1. Thread A creates queue QA at the session level. Handle h₁ is returned to it.
2. Thread B creates queue QB at the session level. Handle h₂ is returned to it.
3. Thread A opens queue QB, specifying that only the session level is to be searched. Handle h₃ and an

indication that the queue was found at the session level are returned to it.
4. Thread B opens queue QA, searching the session level. The function returns handle h₄ and an

indication that the queue was found at the session level.

Interprocess Communication

Chapter 4. Interprocess Communication 39

 Thread A Thread B
 -------- --------

 1 QueueReceiveBlock
 handle=h₂
 match_key="KEY"
 timeout=0

 2 QueueSend .
 handle=h₃ .
 message="KEY Message 1" (waits)
 key_offset=0 .
 key_length=3

 rc=0
 3 (completion)

 message="KEY Message 1"
 key_offset=0
 key_length=3
 uid="*"
 pid=pid
 reply_token=0
 rc=0

 4 Loop back to step 1

Figure 13. Simple Message Transmission

Figure 13 on page 40 shows simple message transmission. The steps are:

1. Thread B calls QueueReceiveBlock, waiting for a message to arrive on queue QB.
2. Thread A sends a message, specifying its length and key position, to queue QB.
3. Thread B's QueueReceiveBlock completes.
4. Thread B loops back to wait on another message to arrive.

 Thread A Thread B
 -------- --------

 1 QueueSendBlock
 handle=h₃
 message="RV Message 1"
 key_offset=0
 key_length=2
 timeout=0

 . 2 QueueReceiveBlock
 . handle=h₂
 (waits) match_key="RV"
 . timeout=0

 3 (completion) message="RV Message 1"
 -------- key_offset=0
 rc=0 key_length=2
 uid="*"
 pid=pid
 reply_token=0
 rc=0

Figure 14. A Rendezvous

Figure 14 on page 40 shows the use of blocking send and blocking receive to achieve a rendezvous. This
example shows only the first half of the rendezvous, because the second half is the same as the first
except in reverse. The steps are:

Interprocess Communication

40 z/VM: 7.3 CMS Application Multitasking

1. Thread A sends a message to queue QB with QueueSendBlock. It uses a key indicating that the
message is to be interpreted as a rendezvous request and a timeout value indicating that it wishes to
wait indefinitely for the message to be received.

2. Thread B issues QueueReceiveBlock to wait for a rendezvous message. The operation completes.
3. Thread A's QueueSendBlock completes, because thread B received the rendezvous message.

 Thread A Thread B
 -------- --------

 1 QueueReceiveBlock
 handle=h₂
 match_key="KEY"
 timeout=0

 2 QueueSendReply .
 handle=h₃ .
 message="KEY Message 1" (waits)
 key_offset=0 .
 key_length=3 .
 rq_handle=h₁
 -------- 3 (completion)
 rc=0 --------
 message="KEY Message 1"
 key_offset=0
 key_length=3
 uid="*"
 pid=pid
 reply_token=t
 rc=0

 4 QueueReceiveBlock
 handle=h₁
 match_key="REPLY"
 timeout=0

 .
 .
 (waits)
 .
 .
 Thread A Thread B
 -------- --------

 . 5 QueueReply
 . reply_token=t
 (waiting) message="REPLY Message 2"
 . key_offset=0
 . key_length=5

 rc=0

 6 (completion)

 message="REPLY Message 2"
 key_offset=0
 key_length=5
 uid="*"
 pid=pid
 reply_token=0
 rc=0

Figure 15. Using QueueReply

Figure 15 on page 41 shows how the reply function works. The steps are:

1. Thread B issues QueueReceiveBlock against its request queue, waiting for something to arrive.
2. Thread A sends a message needing a reply. It specifies that its own queue (QA) is the place where the

reply should be deposited.
3. Thread B's QueueReceiveBlock completes, the message sent by thread A being delivered.

Interprocess Communication

Chapter 4. Interprocess Communication 41

4. Thread A waits for the reply by issuing QueueReceiveBlock, specifying the key of the expected reply.
5. Thread B responds to the request, using QueueReply and the reply token passed to it when it issued

QueueReceiveBlock.
6. Thread A's QueueReceiveBlock completes, the reply having been delivered.

 Thread A Thread B
 -------- --------

 1 QueueReceiveBlock 2 QueueReceiveBlock
 handle=h₁ handle=h₁
 match_key="KEY1" match_key="KEY2"
 timeout=0 timeout=0
 -------- --------
 . .
 . .
 (waits) (waits)
 . .
 . .

 3 Message of key "KEY1" arrives
 on queue h₁

 4 (completion)

 message="KEY1 Message 1"
 key_offset=0
 key_length=4
 uid="*"
 pid=pid
 reply_token=0
 rc=0

 5 Message of key "KEY2" arrives
 on queue h₁

 6 (completion)
 7 Processing... --------
 message="KEY2 Message 2"
 key_offset=0
 key_length=4
 uid="*"
 pid=pid
 reply_token=0
 rc=0

 8 QueueReceiveBlock
 handle=h₁
 match_key="KEY1" 9 QueueReceiveBlock
 timeout=0 handle=h₁
 -------- match_key="KEY2"
 . timeout=0
 . --------
 (waits) .
 . .
 . (waits)
 .
 .

Figure 16. Two Threads Sharing a Queue

Figure 16 on page 42 shows two threads sharing a request queue. Each of the two threads is waiting
on messages of a particular key to arrive (a different key for each thread). The key can be imagined to
represent the request type. Each thread services a different kind of request.

The steps in the example are as follows:

1. Thread A issues QueueReceiveBlock to wait on messages having the key KEY1.
2. Thread B acts similarly, watching for the key KEY2.

Interprocess Communication

42 z/VM: 7.3 CMS Application Multitasking

3. A message satisfying thread A's wait arrives in the queue.
4. Thread A returns from QueueReceiveBlock, the matching message having been received.
5. A message satisfying thread B's wait arrives in the queue.
6. Thread B returns from QueueReceiveBlock, its message in tow.
7. Thread A is performing some processing, perhaps due to the message it received.
8. Thread A, having completed the servicing of its first message, issues another QueueReceiveBlock.
9. Thread B, also having completed the processing of its message, issues another QueueReceiveBlock.

 Thread A Thread B
 -------- --------

 1 Author chooses -17 as
 service ID

 2 QueueCreate
 name="Service Queue"
 level=1

 handle=85
 rc=0

 3 QueueIdentifyService
 sid=-17
 name="Service Queue"

 rc=0

 4 QueueSendReply .
 handle=-17 .
 message="KEY Message 1" (working)
 key_offset=0 .
 key_length=3 .
 rq_handle=h₁

 rc=0

 5 QueueReceiveBlock
 handle=85
 match_key="KEY"
 timeout=0

 message="KEY Message 1"
 key_offset=0
 key_length=3
 uid="*"
 pid=pid
 reply_token=t
 rc=0

Figure 17. Using Service Queues

Service queues are exploited through the QueueIdentifyService function. A service thread author chooses
a service ID in advance and associates a queue with the service ID by calling QueueIdentifyService.
Clients can then send messages to the server by using the service ID as the queue handle in a call to
QueueSendReply. Figure 17 on page 43 shows an example of this and is explained as follows:

1. The service thread author chooses -17 as his thread's service ID.
2. The service thread creates the service queue at session scope.
3. The service thread calls QueueIdentifyService to associate the service queue with the service ID.
4. The client uses QueueSendReply to send a message to the server. Note that the client did not have to

open the service queue (it does not even know the name of the service queue).
5. The server receives the message with QueueReceiveBlock.

Interprocess Communication

Chapter 4. Interprocess Communication 43

 Thread A Thread B
 -------- --------

 1 QueueSend .
 handle=h₃ .
 message="KEY Message 1" (working)
 key_offset=0 .
 key_length=3 .

 rc=0

 2 QueueClose
 handle=h₂

 rc=4
 re=NONEMPTY

 3 QueueDelete
 name=QB
 level=1

 rc=4
 re=NONEMPTY

 4 QueueSend
 handle=h₃
 message="KEY Message 1"
 key_offset=0
 key_length=4

 rc=8
 re=QUEUE_DELETED

Figure 18. Closing and Deleting Queues

To finish using a queue, a thread uses the QueueClose function. If its process created the queue and
wishes to destroy it, it may also use the QueueDelete function. Other threads using the queue learn of the
deletion the next time they attempt to use the queue. Figure 18 on page 44 shows an example of this and
is explained as follows:

1. Thread A sends a message to QB.
2. Thread B closes queue QB. The queue still exists, and thread B may even reopen it if it chooses.
3. Thread B deletes queue QB. It receives a return and reason code indicating that messages were in the

queue, and the deletion proceeds.
4. On its next attempt to use the queue, thread A learns that the queue was deleted.

Setting Up Network-Level Queues
The following example shows how to set up for network-level queues using the APPC/VM line driver.
Some of the setup has to do with queues themselves, and some of it has to do with CMS's use of
APPC/VM to implement distributed queues.

In this discussion:

• The word "server" refers to the virtual machine that creates and reads the queue, and the word "client"
refers to the virtual machine that opens and sends to the queue.

• Assume the server's user ID is SERVER and the client's user ID is CLIENT.
• Assume that SERVER and CLIENT are user IDs on the same node. (CMS can handle network queues

where CLIENT and SERVER are on different VM systems, but that complicates the discussion here. Once
you understand how to do this inside one system, you can learn to adjust the configuration so that it
works across two systems.)

• Assume that the program running in SERVER is called SPROG.

Interprocess Communication

44 z/VM: 7.3 CMS Application Multitasking

• Assume that the queue created by SPROG is called SQUEUE (that is, SPROG uses name SQUEUE in its
call to QueueCreate).

• Assume that the program running in CLIENT is called CPROG.
• Assume that CPROG will attempt to open SQUEUE by using name CQUEUE in its call to QueueOpen.

When you apply the following instructions to your own situation, substitute appropriate user IDs, program
names, queue names, and so on. Remember that queue names are case-sensitive.

CLIENT Setup
The basic idea in setting up the client is to inform CMS of the existence of SQUEUE. CMS has to know how
to take the token "CQUEUE" and use it to determine the route to SQUEUE. Here is what you have to do on
CLIENT:

1. Create a file called $QUEUES$ NAMES and put the following entry in it:

:nick.CQUEUE
 :scope.NETWORK
 :qn.SQUEUE
 :carrier.APPC/VM
 :sdn.SCDE

This entry indicates that CQUEUE is a network-level queue and that:

• On the server side, it is known as SQUEUE.
• The APPC/VM line driver should be used to reach SQUEUE.
• The symbolic destination name that indexes the CMS Communication Directory (ComDir) entry for

SERVER is SCDE.
2. Create a user-level ComDir file (for example, UCOMDIR NAMES) and put the following entry in it:

:nick.SCDE
 :tpn.VMIPC
 :luname.*USERID SERVER
 :security.SAME

This entry tells CMS's APPC/VM line driver that, to establish an APPC/VM conversation to SCDE, it must
connect to transaction program VMIPC at the LU named *USERID SERVER. "VMIPC" is the transaction
program name for the CMS APPC/VM network queue line driver. (The meanings of the rest of the tags
used in the ComDir entry are outside the scope of this discussion.)

3. Enter the following CMS commands:

set comdir file user ucomdir names *
set comdir reload

These commands cause CMS to reread $QUEUES$ NAMES and UCOMDIR NAMES, picking up the
entries you just put there.

SERVER Setup
The basic idea in setting up the server is to inform CP that other virtual machines are permitted to connect
to SERVER through APPC/VM, and to inform CMS of what to do when some other virtual machine attempts
to communicate with it over the APPC/VM network queue line driver. Here is what you have to do:

1. Make sure that the CP directory entry for SERVER includes an IUCV ALLOW record. This permits other
virtual machines to connect to SERVER through APPC/VM.

2. In the $SERVER$ NAMES file on SERVER's A-disk, add the following entry:

:nick.VMIPC :module.SPROG :list.CLIENT

Interprocess Communication

Chapter 4. Interprocess Communication 45

This entry indicates that only a user whose user ID is CLIENT is allowed to connect to transaction
program VMIPC. It also maps VMIPC to your program SPROG (the reason for this mapping is outside
the scope of this discussion).

Server API Calls
On SERVER, it is necessary to create SQUEUE at network scope. The following REXX fragment
accomplishes this:

/* load API definitions */
call apiload(vmrexmtr)
call apiload(vmrexipc)

/* set up constants for QueueCreate */
qn = 'SQUEUE'
qnl = length(qn)

/* create queue */
call csl 'QueueCreate mtrc mtre qn qnl vm_ipc_nlevel qh'
say 'RC='mtrc 'RE='mtre 'creating queue' qn

Note that the queue's handle comes back in variable qh; you would use qh in a subsequent call to
QueueReceiveBlock.

Client API Calls
On CLIENT, it is necessary to issue a QueueOpen call. The following REXX fragment should do this, if
SPROG is already running and has already issued its QueueCreate:

/* load API definitions */
call apiload(vmrexmtr)
call apiload(vmrexipc)

/* set up constants for QueueOpen */
qn = "CQUEUE"
qnl = length(qn)
sv.1 = vm_ipc_nlevel
sv.2 = 0
sv.3 = 0
svl = 1

/* try to open it */
call csl 'QueueOpen mtrc mtre qn qnl sv svl qh el'
say 'RC='mtrc 'RE='mtre 'from QueueOpen of' qn

Testing the Queues
You may want to begin by manually starting SPROG and seeing that its QueueCreate call works. From
there, we assume that SPROG enters QueueReceiveBlock, waiting for a message.

Then start CPROG. You should see that its call to QueueOpen works. Next, issue QueueSend. You should
see the message show up in SQUEUE, and SPROG's call to QueueReceiveBlock will complete.

From this simple example you can grow to a situation where, in response to CPROG's QueueOpen, CP
autologs SERVER and CMS automatically starts SPROG. SPROG would do its QueueCreate, and shortly
after that, CPROG's QueueOpen would complete.

Interprocess Communication

46 z/VM: 7.3 CMS Application Multitasking

Chapter 5. Synchronization

Threads within a single process share all resources owned by the process. This implies that threads must
coordinate access to these resources by implementing serialization and mutual exclusion policies.

The synchronization functions provided by CMS allow sets of threads to implement coordination
and mutual exclusion policies. They are primitives upon which more elaborate and special purpose
synchronization mechanisms can be built by programming languages and applications. These primitives
are designed to be highly efficient in a parallel execution environment.

The synchronization primitives are based on the following definitions:
Critical Section

A block of code that manipulates a shared resource, such as a data structure or device.
Mutex

A variable with an associated wait queue used to protect a critical section. The typical use of a mutex
is as follows:

 MutexAcquire(mutex_handle)

 /* access the critical section */

 MutexRelease(mutex_handle)

If more than one thread simultaneously tries to acquire the mutex, only one such thread acquires the
mutex. The other threads are queued, waiting to acquire the mutex, and are given the mutex one at
a time as the previous holder of the mutex releases it. The order in which these threads acquire the
mutex is defined by the order in which they execute the MutexAcquire function.

Condition Variable
A variable representing a state for a mutex-protected shared resource. This state, or condition, can be
waited on and signaled as being true.

CMS maintains the condition variable and its associated wait queue. However, it does not determine if
the condition is true or false. It is the responsibility of the application to wait on the condition variable
when necessary and signal it when the condition is true.

For example, if a stack of length 10 is a shared resource, a condition variable might represent whether
there are less than 10 elements in the stack. An element can be pushed onto the stack if it currently
contains less than 10 elements.

To use a condition variable, a thread evaluates the condition represented by the condition variable
while holding its associated mutex. If the condition is false, the CondVarWait function is issued. When
the thread returns from this function, it once again holds the mutex and the condition is true. The
other side of the condition variable interface is the CondVarSignal function. It is used by a thread that
has changed the state of the shared resource to make the condition true for one thread that may be
waiting.

Semaphore
A variable used to perform wait and post operations between threads. It is an integer variable S with
an associated wait queue upon which only the following two primary atomic (that is, noninterruptable)
operations may be performed:

 P(S): S := S - 1;
 If (S < 0) then
 Add the thread to the wait queue for S;
 Endif

 V(S): S := S + 1;
 If (S ≤ 0) then
 Unblock a thread on wait queue for S;
 Endif

Synchronization

© Copyright IBM Corp. 1992, 2022 47

Note here that S may be interpreted as follows: if S ≥ 0, the number of P(S) operations that are
allowed before blocking occurs; if S < 0, the number of blocked threads waiting on S.

The P(S) and V(S) operations are renamed to the more meaningful function names SemWait and
SemSignal, respectively. These functions implement general counting semaphores.

Along with the primary semaphore operations defined above, a SemReInit function is included. This
function reinitializes the semaphore's value and unblocks all the threads waiting on a semaphore.

There is no notion of establishing ownership of a semaphore as is the case with a mutex. A semaphore
should be used to wait for a condition to occur and resume execution when the condition occurs.

The central operational differences between a mutex and a semaphore are the preconditions placed on
the operations defined on them. A given thread can signal a semaphore without having previously waited
on it, but a given thread cannot release a mutex without having previously acquired it. See Chapter 13,
“CMS Multitasking Function Descriptions,” on page 95 for a more formal definition of these functions.

Because mutexes and condition variables provide more discipline, semaphores should be used only when
these more structured mechanisms cannot be applied. See “Synchronization Examples” on page 48 for
examples on the use of mutexes and semaphores.

Event services can alert other threads of important situations, such as the end of a computation phase
or an error condition. Signaling, testing, and waiting for events can also be used in place of semaphores;
however, semaphore operations are more efficient for such situations.

When a program creates a mutex or semaphore, it assigns it a scope. This scope determines the visibility
of the mutex or semaphore relative to other threads in the session. Process-level scope means that the
mutex or semaphore is accessible only to the threads in the creating process. Session-level scope means
that any thread in any process in the session can access the mutex or semaphore. A condition variable has
visibility equal to the visibility of the mutex with which it is associated.

Mutexes, semaphores, and condition variables are assigned handles when they are created. A handle is
simply a token used in subsequent function calls to identify the object. The scope of a handle is equal to
the scope of the object with which it is associated; in other words, the handle may be used to identify the
object wherever the object is known. The scope of the handle is a useful concept. For example, the handle
of a mutex can be stored in the data structure it is used to protect and thus be accessible to all threads
that use the data structure.

CMS supports up to 32,768 session-scope semaphores, mutexes, and condition variables, altogether.
Also, for each process, CMS supports up to 32,768 process-scope semaphores, mutexes, and condition
variables, altogether.

Synchronization Examples
This section shows several examples of the synchronization mechanisms available in the CMS
environment. The examples include the following:

• Accessing a critical section protected by a mutex
• Replacing OS Wait/Post macros with a semaphore
• Going beyond Wait/Post using semaphores
• Producer/Consumer example using mutexes and condition variables.

Synchronization

48 z/VM: 7.3 CMS Application Multitasking

Accessing a Critical Section Protected by a Mutex

 Thread A Thread B
 -------- --------

 1 MutexCreate
 mutex_name=M
 scope_of_mutex=PROCESS

 mutex_handle=HM
 rc=OK

 2 MutexAcquire
 mutex_handle=HM
 wait_on_mutex=WAIT

 rc=OK

 3 MutexAcquire
 mutex_handle=HM
 wait_on_mutex=WAIT

 rc=OK

 4 Access the critical section

 5 MutexRelease
 mutex_handle=HM

 rc=OK

 6 Access the critical section

 7 MutexRelease
 mutex_handle=HM

 rc=OK

Figure 19. Accessing a Critical Section Protected by a Mutex

Figure 19 on page 49 shows two threads in a process accessing a critical section protected by a mutex.

The steps are:

1. Thread A creates mutex M with process level scope and saves the handle of the mutex in order that
thread B can also use it.

2. Thread B attempts to acquire the mutex to get access to the critical section and is successful.
3. Thread A tries to acquire the mutex to get access to the critical section and has to wait because Thread

B already holds the mutex.
4. Thread B accesses the critical section.
5. Having completed accessing the critical section, Thread B releases the mutex.
6. With the mutex now available, Thread A acquires the mutex and accesses the critical section.
7. Having completed accessing the critical section, Thread A releases the mutex.

Basic Semaphore Processing
Semaphores may also be used to protect a critical section. The changes required in Figure 19 on
page 49 entail replacing MutexAcquire with SemWait and MutexRelease with SemSignal. However, the
responsibility of protecting the critical section is solely upon the application because of the preconditions
placed on the operations defined by a semaphore. CMS does not prevent a thread from signaling a
semaphore without first having waited on it. Mutexes do not allow such behavior.

Synchronization

Chapter 5. Synchronization 49

 Thread Main Thread Read
 ----------- -----------

1 SemCreate
 semaphore_name=S
 scope_of_semaphore=PROCESS
 initial_value_of_semaphore=0

 semaphore_handle=HS
 rc=OK

2 Create thread "Read"

3 SemWait
 semaphore_handle=HS

 rc=OK

 4 Read the console and save
 the input in a shared buffer

 5 SemSignal
 semaphore_handle=HS

 rc=OK

 6 Loop back to 4

7 Get the console input from
 the shared buffer and
 display it

8 Loop back to 3

Figure 20. Wait/Post Processing Using a Semaphore

Semaphores are more suited to waiting for a condition to occur and resuming execution after the
condition occurs. The next example describes the intended use of a semaphore.

Figure 20 on page 50 shows two threads in a process using a semaphore to do wait/post synchronization.

The steps are:

1. Thread Main creates semaphore S with process level scope, the initial value for use as a wait/post
mechanism, and saves the handle of the semaphore in order that thread Read can also use it.

2. Thread Main creates Thread Read to read the console.
3. Thread Main issues the SemWait function which decrements the value of semaphore S by 1. Because

the value of semaphore S is now -1, Thread Main is put on the queue for semaphore S.
4. Thread Read waits until something is entered from the console. The console input is saved in a shared

buffer.
5. After reading the console, Thread Read signals semaphore S, unblocking Thread Main.
6. Thread Read loops back and waits for something else to be entered from the console.
7. Thread Main gets the console input from the shared buffer and displays it.
8. Thread Main loops back and waits for another line to be read from the console.

Going Beyond WAIT/POST Using Semaphores

Multiple Waiters
This example shows one of the functions available with a semaphore beyond that available with MVS Wait
and Post. ECBs permit only one waiter at a time, whereas semaphores may have multiple threads waiting
concurrently.

Synchronization

50 z/VM: 7.3 CMS Application Multitasking

Figure 21 on page 52 shows three threads in a process doing Wait/Post processing using a Semaphore.

The steps are:

1. Thread Wait1 creates semaphore S with process level scope, the initial value for use as a wait/post
mechanism, and saves the handle of the semaphore in order that the other threads can use it.

2. Thread Wait1 creates Thread Wait2 that also waits for the console to be read.
3. Thread Wait1 creates Thread Post to read the console.
4. Thread Wait1 issues the SemWait function, which decrements the value of semaphore S by 1.

Because the value of semaphore S is now -1, Thread Wait1 is put on the queue for semaphore S.
5. Thread Wait2 issues the SemWait function, which decrements the value of semaphore S by 1.

Because the value of semaphore S is now -2, Thread Wait2 is put on the queue for semaphore S.
6. Thread Post waits until something is entered from the console. The console input is saved in a shared

buffer.
7. After reading the console, Thread Post signals semaphore S, unblocking Thread Wait1.
8. Thread Post loops back and waits for something else to be entered from the console.
9. Thread Wait1 gets the console input from the shared buffer and processes it.

10. Thread Wait1 loops back and waits for another line to be read from console.
11. Thread Post reads the console and signals semaphore S, unblocking Thread Wait2. Thread Wait2 now

gets the console input from the shared buffer and processes it.
12. Thread Wait2 loops back and waits for another line to be read from console.

Synchronization

Chapter 5. Synchronization 51

Thread 'Wait1' Thread 'Wait2' Thread 'Post'
-------------- -------------- -------------

1 SemCreate
 sem_name=S
 scope_of_sem=PROCESS
 init_val_sem=0

 sem_handle=HS
 rc=OK

2 Create thread "Wait2"

3 Create thread "Post"

4 SemWait
 semaphore_handle=HS

 rc=OK

 5 SemWait
 semaphore_handle=HS

 rc=OK

 6 Read console and
 save input in
 shared buffer

 7 SemSignal
 sem_handle=HS

 rc=OK

 8 Loop back to 6

9 Get the console input
 from the shared buffer
 and process it

10 Loop back to 4

 11 Get the console input
 from the shared buffer
 and process it

 12 Loop back to 5

Figure 21. Multiple Waiters Using a Semaphore

Producer and Consumer Processes
The following programming example demonstrates the use of some of the mutex and condition variable
functions in solving the bounded buffer problem. This is accomplished by implementing a monitor with
these functions.

In Figure 22 on page 53, a set of producer threads supply messages to a set of consumer threads.

Synchronization

52 z/VM: 7.3 CMS Application Multitasking

 Producer: Procedure
 .
 .
 Repeat
 Create a new message

 /* Add the new message to the buffer */
 Call Write(message)
 .
 Until DONE

 Consumer: Procedure
 .
 .
 Repeat
 /* Consume a message from the buffer */
 Call Read(message)
 .
 Until DONE

Figure 22. Producer Threads Supply Messages to Consumer Threads

Shared Monitor

The following synchronization mechanisms are required:

• A mutex, M, to control access to shared circular buffer.
• Two condition variables are needed. Condition variable C1 represents the buffer is not full condition

while condition variable C2 represents the buffer is not empty condition.

Also, the following variables are required:

N
Number of messages in the shared circular buffer

Read_buffer_index
Index into the shared circular buffer used to determine where to read a message from.

Write_buffer_index
Index into the shared circular buffer used to determine where to write a message.

 Monitor_Init: Procedure
 .
 MutexCreate
 mutex_name=M
 scope_of_mutex=PROCESS

 mutex_handle=HM
 rc=OK
 CondVarCreate
 condvariable_name=C1
 mutex_name=M

 condvariable_handle=HC1
 rc=OK
 CondVarCreate
 condvariable_name=C2
 mutex_name=M

 condvariable_handle=HC2
 rc=OK
 .
 End Monitor_Init

Figure 23. Monitor Initialization

Synchronization

Chapter 5. Synchronization 53

 Write: Entry(bufelement)
 /* Gain Access to buffer */
 MutexAcquire
 mutex_handle=HM
 wait_on_mutex=WAIT

 rc=OK

 /* Is there any space in the buffer to add a message */
 do while n=0

 /* Wait for a space to become available */
 CondVarWait
 condvariable_handle=HC1

 rc=OK
 /* The loop assures that the buffer has not been refilled */

 end
 /* Add the message to the buffer */
 Buffer(write_buffer_index)=message

 /* Update write_buffer_index and number of messages in buffer */
 write_buffer_index=(write_buffer_index + 1) MOD 10
 n=n+1

 /* Signal that a message has been placed in the buffer */
 CondVarSignal
 condvariable_handle=HC2

 rc=OK

 /* Give up access to buffer */
 MutexRelease
 mutex_handle=HM

 rc=OK
 End Write

Figure 24. Monitor Write Procedure

Synchronization

54 z/VM: 7.3 CMS Application Multitasking

 Read: Entry(bufelement)

 /* Gain Access to buffer */
 MutexAcquire
 mutex_handle=HM
 wait_on_mutex=WAIT

 rc=OK

 /* Are there any messages in the buffer */
 do while n=0

 /* Wait for a message to be placed in the buffer */
 CondVarWait
 condvariable_handle=HC2

 rc=OK
 /* The loop assures that the buffer has not been emptied */

 end
 /* Consume a message from the buffer */
 message=Buffer(read_buffer_index)

 /* Update read_buffer_index and number of message in buffer
 read_buffer_index=(read_buffer_index + 1) MOD 10
 n=n-1

 /* Signal that a message has been consumed from the buffer */
 CondVarSignal
 condvariable_handle=HC1

 rc=OK

 /* Give up access to buffer */
 MutexRelease
 mutex_handle=HM

 rc=OK

 End Read

Figure 25. Monitor Read Procedure

Synchronization

Chapter 5. Synchronization 55

Synchronization

56 z/VM: 7.3 CMS Application Multitasking

Chapter 6. Multiprocessor Configuration Control

Many service virtual machines and some computationally intensive applications require parallel
processing to cope with heavy processing loads. By parallel processing we mean the execution of more
than one thread of a particular application at the same time on different real CPUs of the real processor
complex. For example, a numeric application may process each column of a table in parallel, if the
computations performed on the rows are independent of each other. A different type of example involves
a multi-user server like a file server or a database manager. These servers may become saturated with
requests. By taking advantage of parallelism they can potentially handle multiple requests at the same
time. In general, the goals of parallel processing are to reduce the time a computation takes, increase the
capacity of a server, or improve the responsiveness of a server.

CMS provides parallel processing capabilities through the use of CP's virtual multiprocessor support. The
CMS virtual machine running the CMS-based application can have more than one virtual CPU, each of
which will be used to execute threads. These virtual CPUs, in turn, are dispatched independently by CP.
CP can have any one or all of the CPUs for a particular virtual machine in execution at a given time.

The use of virtual CPUs is controlled by CP information and command input. The user directory entry
determines how many virtual CPUs can be defined and how many are to be predefined for a particular
virtual machine. In the example directory entry, the number given on the MACHINE statement specifies
that 64 virtual CPUs can be used by this virtual machine. The CPU statements specify that six of these
CPUs should be automatically defined when the user logs on.

USER SERVER1 XXXXXXX 5M 048M G 64
MACHINE XC 64
CPU 0 BASE
CPU 1
CPU 2
CPU 3
CPU 4
CPU 5
ACCOUNT 0372 G37/272
IPL CMS PARM AUTOCR
CONSOLE 01F 3215
SPOOL 00C 2540 READER A
SPOOL 00D 2540 PUNCH A
SPOOL 00E 1403
LINK $MAINT 190 190 RR
LINK CMSGEN 19F 19F RR
 .
 .
 .
MDISK 0191 3390 300 10 CMS888 MR

If the application requires more CPUs than those automatically defined, it can use the VCPUCreate
function to dynamically define additional virtual CPUs (up to the limit specified in the directory) while the
application is running. As soon as the CPU is defined, CMS begins dispatching threads on it within the
constraints imposed by dispatching classes. See “Dispatching Classes” on page 11 for an explanation of
thread dispatching classes and their implications. Essentially, the number of CPUs that can be used is
equal to the number of thread dispatch classes the application has created. If all threads are assigned to
different classes, all the CPUs can be exploited to the fullest.

Guidelines for Defining Virtual CPUs
1. After the first multitasking program has started, any additional virtual CPUs required must be defined

by means of the VCPUCreate function, not by the CP DEFINE CPU command. CPUs defined using this
command after this point will be ignored.

2. For most parallel applications, the number of virtual CPUs should be equal to the number of real CPUs
in the real processor complex. However, an application whose threads make use of synchronous CP
facilities, such as DIAGNOSE instructions, can efficiently make use of more CPUs. This is because most

Multiprocessor Configuration Control

© Copyright IBM Corp. 1992, 2022 57

synchronous CP operations serialize only the issuing CPU. An application may have multiple CPUs in
CP-wait while other CPUs are still runable.

3. CP divides a user's SHARE setting evenly among its CPU's. For some high-use servers, the SHARE
setting may need to be increased to allow multiprocessor advantages to be felt.

4. Parallel FORTRAN programs must be run before any other multitasking programs are run. FORTRAN
run-time support will take over the virtual CPU's for it's own use. If CMS has already run a multitasking
program it will have already begun using all the virtual CPU's to dispatch threads.

Multiprocessor Configuration Control

58 z/VM: 7.3 CMS Application Multitasking

Chapter 7. Timer Services

CMS provides a comprehensive, callable timer facility. This facility allows timers to be started, stopped
and interrogated. Additionally, Timer Services defines the expiration of a timer as an occurrence of the
VMTIMER event. Thus, the full power of Event Management may be used in processing the VMTIMER
event, as well as combining its processing with other events defined by CMS or an application. The timer
functions are:

• DateTimeGet — Return the date, time, time zone, and epoch time.
• DateTimeSubtract — Convert the format or time zone of a time stamp or perform arithmetic on time

stamps.
• TimerStartTOD — Start a time of day (TOD) timer.
• TimerStartInt — Start an interval timer based on CPU time or real time. The timer can be single, meaning

that it expires after a specified time interval; or it can be cyclical, meaning that it continues to expire
at regular intervals until specifically stopped. The interval is 4 bytes in length and may be specified in
milliseconds or microseconds.

• TimerStartMicros — Start an interval timer based on CPU time or real time. The timer can be single or
cyclical, as above. The interval is 8 bytes in length and is specified in microseconds.

• TimerStop — Cancel a timer previously started by TimerStartInt or TimerStartTOD and return the time
remaining.

• TimerStopMicros — Cancel a timer previously started by TimerStartMicros and return the time
remaining.

• TimerStopAll — Cancel all previously started timers.
• TimerTest — Return information concerning a timer started by TimerStartInt or TimerStartTOD.
• TimerTestMicros — Return information concerning a timer started by TimerStartMicros.

The MVS simulated timer services, STIMER, STIMERM, TTIMER, and TIME can be used in conjunction with
these timer services. An application can start a timer and monitor the VMTIMER event while also using (or
invoking other programs that use) the MVS timer services.

Only one active STIMER exit is allowed per simulated MVS task. Simulated MVS task management
services do not exploit the native CMS multitasking facilities. The MVS ATTACH service is simulated as
a LINK plus the creation of a simulated Task Control Block. They are not related to CMS dispatchable
threads of control, but are kept as a single stack of MVS task levels.

The VMTIMECHANGE system event allows multitasking applications to monitor time zone changes. The
signal data associated with VMTIMECHANGE includes:

• offset in seconds from GMT in the time zone you left
• offset in seconds from GMT in the time zone you are presently in.

Timer Services Examples
The comprehensive timer facility of CMS is provided by the interaction of Timer Services and Event
Management. During CMS initialization, Timer Services creates the VMTIMER event. Each time a timer
expires or is stopped, Timer Services signals the VMTIMER event with a key consisting of the timer token
concatenated with either an E (for expiring timers) or an S (for stopped timers) concatenated with the
userword specified when the timer was started. For example, the signal key for a stopped timer assigned
token X'00000001' and started with userword NEWTIMER, which is X'D5C5E6E3C9D4C5D9', would be
X'00000001E2D5C5E6E3C9D4C5D9'. If a userword of all binary zeros is specified, the userword is not
included in the signal key when Timer Services signals this VMTIMER event. By using Event Management
to monitor and process signals of the VMTIMER event, the application may request notification of a timer
expiration. A simple example of this follows.

Timer Services

© Copyright IBM Corp. 1992, 2022 59

CMS Application
--- -----------
1. EventCreate (create VMTIMER event)

 2. TimerStartInt (start a single interval timer
 with userword NEWTIMER. Timer token
 returned is X'E3D6D2D5', or TOKN)

 3. EventMonitorCreate (monitor VMTIMER event
 signals that contain keys
 TOKNENEWTIMER and
 TOKNSNEWTIMER)
 .
 . 4. EventWait (on VMTIMER monitor)
 .
 .

5. Timer expires
6. EventSignal (signal VMTIMER event
 with key TOKNENEWTIMER)

 7. When VMTIMER event is signaled with
 the appropriate key, control is
 returned to invoker of EventWait

 8. Do processing appropriate to the
 expiration of this timer.

Figure 26. EventWait and Timer Services

DateTimeSubtract Examples
The DateTimeSubtract function provides a comprehensive facility for the conversion and manipulation of
time stamps. The operations that can be performed with DateTimeSubtract include:

• Convert a time stamp from one format to another. For example, the European stamp 21/06/95—which
represents June 21, 1995—can be converted to the USA equivalent 06/21/95. Formats supported
include two-digit-year and four-digit-year character string formats and binary integer formats such as
the output of the STORE CLOCK (STCK) instruction.

• Convert a time stamp from one time zone to another. For example, the Eastern Standard Time stamp
06/21/1995 15:30:00 can be converted to the Coordinated Universal Time stamp 06/21/1995
20:30:00. Precision of up to one second is available for time zone offsets.

• Subtract time stamps of different formats and zones from each other and request the difference in
another format and zone. For example, a time of day expressed as Eastern Standard Time in European
format can be subtracted from a time of day expressed as Pacific Standard Time in USA format, and the
result—an amount of time—can be requested in TOD clock units or a character string form.

DateTimeSubtract accepts a minuend stamp and a subtrahend stamp as inputs and produces a difference
stamp as a result. The minuend is the first value in the subtraction expression, and the subtrahend is the
value being subtracted. For example, in the expression 5-3=2, 5 is the minuend, 3 is the subtrahend, and
2 is the difference.

An input stamp is expressed in DateTimeSubtract as follows:
Stamp text

The character string or binary buffer that contains the stamp.
Stamp length

An integer that indicates the length of the stamp in bytes.
Stamp format

An integer that indicates the format of the stamp (character string, binary, or other format).
Stamp bias

If the stamp represents a time-of-day, an integer that indicates the difference in seconds between the
zone of the stamp and the UTC zone.

Timer Services

60 z/VM: 7.3 CMS Application Multitasking

Stamp window type
If the stamp contains a two-digit year, an integer that indicates the type of window being used to
provide information about the input year's century digits.

The window is a 100-year span to which the specified two-digit year belongs. For example, two-digit
year 93 refers to the year 1993 if the window is [1970,2069], but it refers to the year 2093 if the
window is [2000,2099]. DateTimeSubtract supports two kinds of windows:

• A fixed window always starts at the same year, no matter what the current year is at the moment of
the call. This type of window is useful for manipulating dates known to reside at specific points in
time.

• A sliding window slides forward in time as the current year moves forward. In other words, the
distance between the current year and the beginning of the window is constant. For example, if
the distance to the beginning of the window is fifty years and the current year is 1996, the sliding
window is [1946,2045]. However, if the same distance is used in the year 2000, the window is
[1950, 2049]. A sliding window is useful for manipulating dates known to be no more than a certain
number of years old.

Stamp window position
If the stamp contains a two-digit year, an integer that indicates where the window begins. If a fixed
window is being used, this is the first year of the window. If a sliding window is being used, this is the
distance from the current year to the beginning of the window.

The difference stamp is expressed in DateTimeSubtract as follows:
Stamp buffer

The buffer into which DateTimeSubtract should place the difference stamp.
Stamp buffer size

An integer that specifies the size of the stamp buffer in bytes.
Stamp length

An output produced by DateTimeSubtract that indicates how many bytes of the stamp buffer were
filled.

Stamp format
An integer that indicates the format in which DateTimeSubtract should express the difference stamp.

Stamp bias
An integer that indicates the zone in which DateTimeSubtract should express the difference stamp.
This input is in seconds and expresses the difference between the desired zone and UTC.

Stamp window type
If the difference is requested in a two-digit-year format, an integer that indicates whether the result
should be expressed using a fixed or sliding window. Knowing the type of window being used allows
the caller to unambiguously interpret the result.

Stamp window position
If the difference is requested in a two-digit-year format, an integer that indicates the location of the
window in which the caller expects the computed result to reside. If a fixed window is being used, this
is the first year of the window. If a sliding window is being used, this is the distance from the current
year to the beginning of the window.

Because format and zone conversions are just a special case of subtraction, separate zone conversion and
format conversion functions are not provided. To accomplish a simple conversion, the caller specifies a
relative-format subtrahend of zero, and DateTimeSubtract returns the converted stamp as the difference.

The following examples illustrate how to use DateTimeSubtract to perform various calculations
and conversions. For information on DateTimeSubtract syntax and possible parameter values, see
“DateTimeSubtract -- Compute Time Differences” on page 115.

Example 1

Timer Services

Chapter 7. Timer Services 61

Problem
Convert 12/31/1995 09:00:00 in Eastern Standard Time (EST) to Pacific Standard Time (PST) and
express the result in the same format.

Solution
The inputs and outputs to DateTimeSubtract are shown in Table 5 on page 62.

Table 5. DateTimeSubtract Example 1. In this table, cell contents in this font are outputs; the rest are inputs.

 Minuend Subtrahend Difference

Stamp text 12/31/1995 09:00:00 0/00:00:00 12/31/1995
06:00:00.000000

Stamp buffer size n/a n/a 32

Stamp length 19 10 26

Stamp format vm_tmr_format_usa vm_tmr_format_met vm_tmr_format_usa

Stamp bias -18000 ignored -28800

Stamp window type ignored ignored ignored

Stamp window position ignored ignored ignored

Example 2

Problem
Convert 12/31/1995 09:00:00 in Eastern Standard Time to the format supported by CMS Pipelines in
Eastern Standard Time.

Solution
The inputs and outputs to DateTimeSubtract are shown in Table 6 on page 62.

Table 6. DateTimeSubtract Example 2. In this table, cells contents in this font are outputs; the rest are inputs.

 Minuend Subtrahend Difference

Stamp text 12/31/1995 09:00:00 X'0000000000000000' 1995123109000000000
0

Stamp buffer size n/a n/a 32

Stamp length 19 8 20

Stamp format vm_tmr_format_usa vm_tmr_format_tod_relative vm_tmr_format_pipe

Stamp bias -18000 ignored -18000

Stamp window type ignored ignored ignored

Stamp window position ignored ignored ignored

Example 3

Problem
Subtract three hours from the absolute TOD clock value X'0025613602932E00' and express the result in
Central Standard Time in the format supported by CMS Pipelines.

Timer Services

62 z/VM: 7.3 CMS Application Multitasking

Solution
Note that the TOD clock value mentioned corresponds to January 1, 1995, midnight UTC. The inputs and
outputs to DateTimeSubtract are shown in Table 7 on page 63.

Table 7. DateTimeSubtract Example 3. In this table, cell contents in this font are outputs; the rest are inputs.

 Minuend Subtrahend Difference

Stamp text X'0025613602932E00' 0/03:00:00 19941231150000000
000

Stamp buffer size n/a n/a 32

Stamp length 8 10 20

Stamp format vm_tmr_format_tod_absolute vm_tmr_format_met vm_tmr_format_pipe

Stamp bias ignored ignored -21600

Stamp window type ignored ignored ignored

Stamp window position ignored ignored ignored

Example 4

Problem
Convert 12/31/95 09:00:00 in Eastern Standard Time (EST) to Pacific Standard Time (PST) and
express the result in ISO format.

Solution
Because the input has a two-digit year, a window must be used to precisely specify the date (that is,
identify the century). In this example, a fixed window of [1900,1999] is used to assert that 12/31/95
means "12/31/1995". The inputs and outputs to DateTimeSubtract are shown in Table 8 on page 63.

Table 8. DateTimeSubtract Example 4. In this table, cell contents in this font are outputs; the rest are inputs.

 Minuend Subtrahend Difference

Stamp text 12/31/95 09:00:00 0/00:00:00 1995-12-31
06:00:00.000000

Stamp buffer size n/a n/a 32

Stamp length 17 10 26

Stamp format vm_tmr_format_usa_shor
t

vm_tmr_format_met vm_tmr_format_iso

Stamp bias -18000 ignored -28800

Stamp window type vm_tmr_window_fixed ignored ignored

Stamp window position 1900 ignored ignored

Example 5

Problem
Subtract three hours from 12/31/1995 09:00:00 Eastern Standard Time (EST) and express the result
in Pacific Standard Time (PST) in USA two-digit format.

Timer Services

Chapter 7. Timer Services 63

Solution
Because the output is requested in a format that uses a two-digit year, the caller must specify the
window in which the result of the calculation is expected to reside. If the calculated difference falls within
that window, DateTimeSubtract fills in the difference buffer and indicates success. If the difference falls
outside the window, DateTimeSubtract indicates failure.

In this example, a sliding window of [-50,+49] is used; assume the call takes place in 1996. The inputs
and outputs to DateTimeSubtract are shown in Table 9 on page 64.

Table 9. DateTimeSubtract Example 5. In this table, cell contents in this font are outputs; the rest are inputs.

 Minuend Subtrahend Difference

Stamp text 12/31/1995 09:00:00 0/03:00:00 12/31/95
03:00:00.000000

Stamp buffer size n/a n/a 32

Stamp length 19 10 24

Stamp format vm_tmr_format_usa vm_tmr_format_met vm_tmr_format_usa_shor
t

Stamp bias -18000 ignored -28800

Stamp window type ignored ignored vm_tmr_window_sliding

Stamp window position ignored ignored -50

Timer Services

64 z/VM: 7.3 CMS Application Multitasking

Chapter 8. Accounting Services

To facilitate the accounting for multithread servers that service multiple users, CMS adds native
accounting services. CMS lets an application access and control the processing of the following types
of accounting information:

• Communication requests
• CPU utilization.

Accounting for resource utilization is an optional facility which is enabled and controlled by the
application. Accounting information is gathered by CMS and presented by means of an accounting
event, VMACCOUNT. Accounting information is then gathered by the application by handling this event
by means of the CMS event services. These services are described in the section Chapter 3, “Event
Management,” on page 17. To start, stop, or alter the selectivity of accounting, the application calls the
service AccountControl. This function also allows the application to control how often the accounting
records are generated.

CMS also provides the means to associate a given thread or process with an application-defined account
ID. Among other things, this capability lets servers charge requestors with server processing performed
for the requestors. For example, the user ID of a virtual machine on whose behalf a set of threads is
working can be used as an account ID and assigned to each thread in the set. This account ID is part
of the accounting record and so can be used to relate work done by these threads to the requester
they were serving. When a thread begins work for another requester, the account ID can be reset. The
AccountIdentify function can be used to do this.

For details of the AccountControl and AccountIdentify functions, see “AccountControl — Define and Query
Accounting Attributes” on page 99 and “AccountIdentify — Identify an Accounting Entity” on page 102,
respectively.

The accounting records produced by CMS have the format given in the following structure. It is defined in
the language binding files VMCACT H, VMASMACT MACRO, and VMREXACT COPY.

Table 10. Accounting Record

Hex Dec Type Len Name Description

00 0 - 28 vm_acct_hdr_fixed fixed header section

00 0 Signed 4 vm_acct_hdrlen Length of header data

04 4 Character 16 vm_acct_acctid Account ID associated with this
thread or process as specified by
AccountIdentify

14 20 Signed 4 vm_acct_typeid Type of Accounting record

18 24 Signed 4 vm_acct_datalen Length of actual accounting data

1C 28 Character * vm_acct_vardata Variable length accounting data

1C 28 Signed 8 vm_acct_cputime CPU Time (for CPU records)

1C 28 Signed 4 vm_acct_qsends Number of queue sends (for
Communication records)

20 32 Signed 4 vm_acct_qrec Number of queue receives (for
Communication records)

When CMS creates the VMACCOUNT event, the attributes defined for the event are:

• Session scope (all processes in the session can both monitor and signal the event)

Accounting Services

© Copyright IBM Corp. 1992, 2022 65

• Broadcast signals, in that a signal is simultaneously delivered to all qualifying monitors
• Asynchronous signals, so that the signaling thread is allowed to continue executing.

CMS accumulates accounting information for accounting types supported and signals the accounting
event. The event signal data is the entire accounting record, with the accounting header record as the
key beginning at displacement X'00' and extending up to displacement X'1C' (see previous format). The
VMACCOUNT event is signaled either when a user issues AccountControl requesting a generate and set
function, or when a timer has expired (interval specified by user).

An accounting setting cannot be set off except by the process that set it on. If multiple processes set
on a setting, it is not actually set off until all the processes that had set it on set it off. When a process
terminates, its modifications to the accounting settings are reset.

If a time interval has been set by some process, another process can set the interval shorter but not
longer. A time interval of zero (no automatic signaling) is considered to be the longest interval. When a
process ends the time interval is not altered, unless no accounting settings remain on, in which case the
accounting timer is cancelled.

Since the interval can be shortened, a routine that handles the VMACCOUNT event should always assume
that there could be multiple events bound to its event monitor and be prepared to process them in a loop.

Applications may also set up their own trace records and account for any other information that is of
interest to that application. Using the Event Services API, the application may also signal the accounting
event, and set up accounting event monitors to retrieve and process the data. The accounting records can
then be processed in real time, rather than waiting for offline processing. In this way, the application can
react to accounting information that has been obtained.

Accounting Services Examples
A simple way of using the accounting services is to devote a thread to collecting accounting data. This
thread would use AccountControl to select the types of data to be collected and then use event services
to wait for and retrieve the accounting records, which are presented to the application through the
VMACCOUNT event. This approach is illustrated in Figure 27 on page 66.

CMS Application Thread
--- ------------------

 1. EventMonitorCreate
 Event = VMACCOUNT

 2. AccountControl
 Function = Sig
 AcctTypes = ALL

 3. EventWait for VMACCOUNT

4. EventSignal VMACCOUNT

 5. EventRetrieve accounting data

 6. Loop back to 3 to wait for
 the next accounting record

Figure 27. Requesting and Collecting Accounting Data

Accounting Services

66 z/VM: 7.3 CMS Application Multitasking

Chapter 9. Abend Services

During the execution of an application, a serious error may be detected by CMS, or the application itself.
These errors start abnormal termination (abend) processing. CMS provides facilities for the application to
request abends and to attempt to recover from any abends that do occur.

An abend occurs on a thread when it requests abnormal termination with the AbnormalEnd function,
when CMS detects an unrecoverable error performing one of its services, or the thread receives a
program check. In any of these cases, CMS lets the application try to recover from the error and
continue execution. If the abend is not handled successfully by the application, the application process
is abnormally ended and its child processes are deleted. All abend notification and recovery facilities are
provided by means of event signaling and monitoring. See Chapter 3, “Event Management,” on page 17
for more information on event handling.

To inform error handlers that an abend has occurred, CMS defines the VMERROR event, which it signals
to activate and control error recovery. An error handler is defined by the application by creating an event
monitor for the VMERROR event, and an event trap routine can handle the error. Multiple monitors can be
defined for the event and the error handlers associated with these monitors are run in LIFO order.

If a process does not handle the error, an additional error event named VMERRORCHILD is signaled in the
ancestor processes of the abending process to allow further recovery attempts or first failure data capture
by these processes for the abending process.

The data presented to an error handler by the VMERROR event is given in the following structure. It is
defined in VMCABN H, VMASMABN MACRO, and VMREXABN COPY.

Table 11. VMERROR Data

Hex Dec Type Len Name Description

00 0 Signed 4 vm_errorcode Error completion code

04 4 Signed 4 vm_errortype Error type - system/user

08 8 Signed 4 vm_errthread_id Abending program's thread ID

0C 12 Character 8 vm_errpgm_name Program name for SVC level

14 20 Address 4 vm_errmod_data_ptr Pointer to modifiable data area

18 24 Signed 4 vm_errmod_data_len Length of modifiable data

1C 28 Address 4 vm_error_cmssdwa Pointer to CMS System
Diagnostic Work Area

1C 28 Signed 4 vm_errorprocess_id Abending program's process
ID

The values of the error type field are represented by the constants vm_abn_type_user and
vm_abn_type_system for user abends and system abends, respectively. Vm_error_cmssdwa points to
the CMS System Diagnostic Work Area, which is mapped by CMSSDWA and contains additional abend
information.

The modifiable data area (pointed to from displacement X'14' of the error data) has the following format:

Table 12. Modifiable Data Area

Hex Dec Type Len Name Description

00 0 Signed 64 vm_errgprs[16] General registers 0-15 at time of
abend

Abend Services

© Copyright IBM Corp. 1992, 2022 67

Table 12. Modifiable Data Area (continued)

Hex Dec Type Len Name Description

40 64 Signed 32 vm_errfprs[4] Floating point registers 0,2,4,
and 6 at time of abend

60 96 Address 4 vm_err_rtepaw Runtime environment anchor for
process owning abending thread

64 100 Address 4 vm_err_rtetaw Runtime environment anchor for
abending thread

68 104 Character 24 - Unused

80 128 Signed 64 vm_erraccregs[16] Access registers 0-15 at time of
abend

C0 192 Address 4 vm_errpsw PSW address at time of abend

C4 196 Address 4 vm_erretry_ptr Amode ANY retry address or 0

C8 200 Signed 4 vm_errnext_inst Next Sequential Instruction
indicator

CC 204 Address 4 vm_erruserdata_ptr Pointer to optional user data
(from AbnormanEnd call)

D0 208 Signed 4 vm_erruserdata_len Length of optional user data
(from AbnormalEnd call)

Monitoring Error Events
The VMERROR event is defined with the following attributes:

• Process-level, synchronous event (synchronizes the process)
• LIFO propagation

This implies that each error handler is given a chance to recover, starting from the most recently defined
and proceeding back to the first. Once an error handler has determined that it can successfully recover
from the error, it can stop the propagation of the event.

• Event key is abend code followed by the type of abend (system or user) and thread ID.

If a system abend of code X'0C2' is suffered on a thread whose thread ID is X'00000005', the key of the
error event would be X'000000C20000000100000005'. When the application created an event monitor
for this event, it could have specified a match key of X'5C00000005' to get all abends for thread ID
5, X'000000C25C' for abend X'0C2' on any thread, or X'5C' for any abend on any thread. (X'5C' is the
asterisk character, *.)

For all user abends, any abend code, any thread, the match key may be specified as
X'6C6C6C6C000000005C'. (X'6C' is the percent character, %.)

Using event keys, error handlers can be error-specific, thread-specific or both. The handlers can be
defined by issuing EventTrap for the error event monitor.

Error Recovery
An event trap routine should be used as an error event handler instead of an event wait routine due to
timing considerations when running handlers for the error event. The error event handler can examine
the event data included in the VMERROR event and attempt a recovery procedure. While an error
event handler is running, all other threads in the process are suspended. Therefore, it can examine
and manipulate the data structures of the application safely. If it determines that processing can be
restarted, it can specify either that execution of the abending thread should proceed at its next sequential

Abend Services

68 z/VM: 7.3 CMS Application Multitasking

instruction, or that the abending thread should be restarted at a particular restart address, known as a
retry routine. In either of these cases, the registers in the error event data can be altered to correspond to
how and where processing is to resume.

If the error handler cannot find a way to recover, it simply resets the event monitor, either by normal
return of a trap routine or by issuing EventMonitorReset. Then, other error event handlers can try to
recover. If none of the error event handlers specify a retry address, indicate that processing is to resume
at the next sequential instruction, or deletes the failing thread, then abend processing proceeds and the
process is ended. If the error handler does recover, it can stop the LIFO running of other error handlers by
calling EventDiscard. So, the outline of an error event handler is:

1. Issue EventRetrieve to get the error data
2. Attempt recovery
3. Specify one of the following recovery actions:

• Fill in the retry address in the modifiable section of the error data
• Set the next sequential instruction indicator (by assigning the field vm_errnext_inst the constant

vm_abn_next_true)
• Issue ThreadDelete to delete the failing thread.

4. Issue EventDiscard to stop the running of error event handlers
5. Resets the monitor.

If this error routine could not find a way to recover, it could let other error event handlers get a chance
to try recovery by not issuing EventDiscard. CMS continues to run error event handlers until all which are
monitoring the particular abend have been run or one of them issues EventDiscard.

If the abend occurs in a program that was invoked from the tasking module by means of CMSCALL (the
program is at a later CMS SVC-level), the exit might not have sufficient knowledge of the program to take
recovery action. In this case, the error event handler can recover by deleting the failing thread. This will
eliminate the failing SVC-level.

Retry Routines
The retry routine is the entry point which gains control as a result of the error event handler filling in a
retry address in the error event data. For XA- or XC-mode virtual machines, the high-order bit of the retry
address determines the addressing mode of the retry routine. Either the error event handler or the retry
routine must assure that the call stack (or save area stack) of the recovered thread is in a valid state.
Often, the easiest and safest approach is to reset the call stack to its initial routine (by following the chain
of register 13 save areas back to the initial routine) and restart the thread's execution at a well-defined
state.

Recovery in the High-Level Language Environment
The recovery mechanism provided by CMS is oriented toward assembler programmers and compiler
and language run-time writers. However, these functions can still be used by C programmers directly to
perform more tasking-oriented error recovery than that provided by current language support. Essentially,
the C programmer has two choices for error recovery using the CMS facilities:

• Delete the failing thread, thus canceling the error condition and allowing the other threads to proceed,
or

• Specify that execution should resume on the next sequential instruction of the abending thread.

The first case, deleting the failing thread, is the most direct. First, the error handler would assure that
critical data structures are in an appropriate state. Then it would take the thread ID from the error event
data and use it as the thread_ID parameter on ThreadDelete. Finally, it would issue EventDiscard and
EventMonitorReset to end error processing.

The second approach is most applicable to the case in which a thread detects a problem and issues
AbnormalEnd. The error event handler could then adjust data structures or take other measures to

Abend Services

Chapter 9. Abend Services 69

assure that processing can proceed and then indicate that processing should continue at the next
sequential instruction of the abending thread. Finally, this handler should also issue an EventDiscard
and EventMonitorReset to end error processing.

In either case, the handler should discard the event signal before resetting the monitor if it wants
to stop propagation of the signal to other event handlers. If a trap routine resets the monitor using
EventMonitorReset instead of returning, its execution may be resumed even if none of the error event
handlers have recovered. The trap routine is then responsible for determining what, if any, action to take.

Advanced Error Recovery
By using the capabilities of event management, more advanced methods of error recovery are possible.

• Exception Promotion

If an error event handler determines that, given the state of the processing at the time of the abend,
the situation is worse than the abend code would indicate, it can promote the exception. This is done
by signaling the VMERROR event with a different (more serious) abend code in the error data. The event
data should be a pointer to the error data provided by CMS for the original abend. You should then signal
the event, which will result in a synchronous signal because of the event definition, so that the error
event handler that promoted the error can see the result of the attempt at recovery of the promoted
error. Then, if recovery was successful, the promoting error handler should issue EventDiscard on the
original error event.

• Cooperative Recovery

If an error event handler does not issue EventDiscard, other eligible event handlers will be driven. So,
the handler can set such values as the retry routine address and let later error event handlers have a
chance to overrule the recovery decision. The state of the error data after all error event handlers have
run determines what CMS does with the abend.

• Child Process Recovery

When a process' error handlers do not recover, the VMERRORCHILD event is signaled in each of
its ancestor processes, beginning with its creator and proceeding up the process tree until one
of them successfully recovers. This event is of session level with LIFO signal propagation, but
unlike the VMERROR event, it does not synchronize the process. The abending process, however,
remains suspended during this processing. An additional difference is that event handlers for the
VMERRORCHILD event are not restricted to being trap routines. The event data presented to the
VMERRORCHILD handlers is identical to that of the VMERROR event and can be manipulated in the
same way.

Because the EventMonitorCreate function allows multiple events to be specified on one monitor, the
application need only have one event monitor and one event handler to handle both events.

Interactions with ABNEXIT and Simulated MVS Recovery
The other abend recovery mechanisms in CMS, the ABNEXIT service and the simulated MVS recovery
services, do not allow for the multiple process, multiple thread environment. These services can still be
used by multitasking programs but they will act as though no multitasking is in effect. The only situation
where they cannot be used is in a multiprocessor virtual machine.

The order in which abend recovery routines are invoked is determined by the class of abend. The
following list defines the order for each class:

• Program Check

1. SPIE and ESPIE exits
2. STAE and ESTAE exits
3. VMERROR event handlers
4. VMERRORCHILD event handlers
5. ABNEXIT routines

Abend Services

70 z/VM: 7.3 CMS Application Multitasking

• MVS ABEND macro

1. STAE and ESTAE exits
2. VMERROR event handlers
3. VMERRORCHILD event handlers
4. ABNEXIT routines

• DMSABN macro

1. VMERROR event handlers
2. VMERRORCHILD event handlers
3. ABNEXIT routines
4. STAE and ESTAE exits

• AbnormalEnd call

1. VMERROR event handlers
2. VMERRORCHILD event handlers
3. ABNEXIT routines
4. STAE and ESTAE exits

Only those STAE, ESTAE, SPIE, and ESPIE exits defined in the abending process are driven. ABNEXITs
are driven regardless of the process that created them.

Abend Services

Chapter 9. Abend Services 71

Abend Services Examples

 CMS Application Thread Event Error Handler
 --- ------------------ -------------------

 1. EventMonitorCreate
 Event = VMERROR
 Key = '*'

 2. EventTrap

 3. Detects error and
 calls AbnormalEnd

 4. EventSignal
 Event = VMERROR

 5. Event Trap routine is
 invoked on a new thread

 6. EventRetrieve to get
 error data

 7. Correct the error
 condition

 8. Set a retry routine
 address in the error
 data and alter event
 data registers to
 match

 9. EventDiscard to stop
 error recovery (no other
 error event handlers will
 be run)

 10. Return (which resets
 the event and ends the
 error handler thread)

 11. Execution resumes
 at retry routine

Figure 28. AbnormalEnd with Error Recovery Specifying Retry Routine

Abend Services

72 z/VM: 7.3 CMS Application Multitasking

 CMS Application Thread Work Thread Event Error Handler
 --- ------------------ ----------- -------------------

 1. ThreadCreate
 (work thread)
 2. Work thread
 begins
 execution

 3. EventMonitorCreate
 Event = VMERROR
 Key = '*'

 4. EventTrap specifying
 monitor

 5.< addressing exception >

6. EventSignal 7. Work thread is
 Event = suspended
 VMERROR
 8. Event trap routine
 is invoked on a
 new thread

 9. EventRetrieve to
 get error data

 10. ThreadDelete failing
 thread

 11. EventDiscard to stop error
 recovery (no other error
 event handlers will be
 run)

 12. EventMonitorReset to end
 error handler
 13. Work thread
 execution
 resumes
 14. Return

Figure 29. Event Trap Deleting Failing Thread

Abend Services

Chapter 9. Abend Services 73

Abend Services

74 z/VM: 7.3 CMS Application Multitasking

Chapter 10. Trace Services

This section discusses the CMS trace table and provides user application information.

The CMS Trace Table
For good serviceability, CMS must accumulate and maintain trace information to permit trace entries to
be:

• Written without significantly affecting the load and timing characteristics of the system
• Processed in real time
• Processed selectively over a broad range of criteria
• Processed without loss of data.

To accomplish these goals, CMS defines its trace table and a trace API in terms of the CMS Event Services.
See Chapter 3, “Event Management,” on page 17 for a more detailed description.) The trace information
structure maintained by CMS corresponds (loosely) to conventional trace information structures in the
following manner:

• A trace event is defined by CMS (named VMTRACE) and corresponds to a trace table.
• Signals of the trace event correspond to trace entries.
• The loose signal limit of the trace event corresponds to the trace table size or wrapsize.
• Creation of event monitors sensitive to the trace event allows for selective collection of trace entries.
• EventWait, EventTrap, and EventTest allow for processing of trace entries in real time.

Specifically, CMS provides the following services over and above Event Services for the maintenance of
trace information:

• The TraceControl function provides a high-level language interface to the internal trace parameters.
• The TraceSignal function allows applications to build a trace header record and signal the VMTRACE

event with the caller's trace data, using the entire trace record (trace header and trace data) as the
event key.

• The TRACECTL and QUERY TRACECTL commands set and query trace parameters. See the z/VM: CMS
Commands and Utilities Reference.

The general flow of this support is as follows:

1. When CMS initializes, it defines the VMTRACE event as asynchronous, session scope, with broadcast
signals. The wrapsize is initially set to no limit, subject to the virtual storage size, and the tracing is set
off.

2. CMS, at appropriate points in its processing, signals trace events where the event data is the trace
entry and the entire trace record, including both the trace header and trace data, is the key. As long as
no EventMonitorCreate functions are issued for the trace event, the maximum number of trace entries
kept in storage is equal to the wrapsize. When the wrapsize is exceeded, the oldest trace entry is
thrown away. Thus, this sort of trace table wraps based on the number of trace entries instead of the
number of bytes allotted for a conventional trace table.

3. User program issues EventMonitorCreate to select the trace entries this program is interested in
processing. The full power of key specification provided by Event Services is available in selecting
trace entries for processing. Trace entries selected by this mechanism do not count against the
wrapsize defined by TraceControl. In fact, an additional wrapsize is specified for the selected trace
entries by the bound signal limit specified on EventMonitorCreate.

4. User program issues EventWait to wait for trace entries selected by the monitor.

Trace Services

© Copyright IBM Corp. 1992, 2022 75

5. The waiting routine is awakened by the arrival of a selected trace entry and issues EventRetrieve to
obtain the trace entry. Once a trace entry is obtained, it is no longer kept in the trace table, so it no
longer counts against the bound signal limit specified on EventMonitorCreate.

6. The trace entry is processed and EventWait is reissued to wait for the next selected trace entry.

Of course, this is just one possible flow. Many other flows are possible by exercising both the specific
trace functions and the Event Services functions in a variety of ways. Note that the processing of the trace
entries is not limited to writing to CPTRAP, or writing to DASD. For example, trace entries may be simply
placed on a queue to a service machine, where the overhead of processing them takes place independent
of the machine being traced, allowing maximum processing of trace information with minimum impact to
the load and timing characteristics of the machine being traced.

On the other end of the spectrum, it seems reasonable to assume that, if trace entries are indeed signaled
at significant processing points, the trace signals may be good places to stop machine processing and
look around.

Trace entries built by CMS are in the following format:

Table 13. Trace Entry

Hex Dec Type Len Name Description

00 0 Signed 4 vm_trc_hdrlen Length of header data

04 4 Signed 4 vm_trc_typeid Type of trace event

08 8 Signed 4 vm_trc_subtype Subtype of trace event

0C 12 Character 16 vm_trc_acctid Account ID associated with this
thread or process as specified by
AccountIdentify to categorize trace
entries

1C 28 Character 8 vm_trc_userid User ID of virtual machine issuing the
trace signal

20 32 Signed 4 vm_trc_processid Process ID of process on whose
behalf entry is signaled

24 36 Signed 4 vm_trc_threadid Thread ID of thread on whose behalf
entry is signaled

28 40 Fixed 2 vm_trc_cpuid Address of CPU that signaled the
event

2A 42 Fixed 2 vm_trc_res Reserved

2C 44 Character 8 vm_trc_timestamp Time stamp when entry is being
signaled (TOD clock form)

34 52 Character 8 vm_trc_formatrtn Formatting routine name

3C 60 Signed 4 vm_trc_datalen Length of actual trace data

40 64 Character * vm_trc_vardata Variable length trace data

See Appendix B, “CMS Trace Record Formats,” on page 303 for actual format of trace data for specific
subtypes of tracing information.

User Application Information
This support interacts heavily with the Event Services.

Trace Services

76 z/VM: 7.3 CMS Application Multitasking

1. Because the trace table is kept as signals through Event Services instead of as a contiguous area of
storage reserved for trace information, the Dump Viewing Facility should be used to look at the trace
entries.

2. The wrapsize specified on the TraceControl function is for signals with no eligible monitor (loose
signals). For monitored trace signals, the bound signal limit constitutes a wrapsize for the trace entries
being monitored by that monitor. The signals kept in loose signal wrapsize do not overlap with the
signals kept in any bound signal wrapsize.

As a result of this setup, there are potentially an unlimited number of conceptual trace tables, one for
each eligible monitor and one for unmonitored trace events. By specifying different wrapsizes for each
monitor and with TraceControl, the trace tables can be biased. For example, if one wishes to keep the
last two dispatch entries, the last 20 communication entries, and the last 10 of any other type of entry,
one would do the following:

• Issue TraceControl with a wrapsize of 10
• Monitor dispatch trace entries with a bound signal limit of 2
• Monitor communication entries with a bound signal limit of 20.

Note that this does not require that any of these entries be processed. It only determines the trace
entries that CMS keeps in storage.

3. Although the conceptual trace table created by TraceControl does not overlap with the conceptual
trace table created by a monitor, two or more monitors may have overlapping trace tables. That is,
more than one copy of a given trace signal may exist, depending on the number of monitors to which
a given signal is bound. Although no processing is required of bound signals, this capability lets a
trace entry be both processed and kept in storage. This is accomplished by having two monitors of a
selected trace entry, one monitor that has an EventWait, EventTrap, or EventTest associated with it,
and one monitor that does not.

4. Allowing trace entries to be processed in real time is potentially an extremely powerful capability.
Although trying to list all the new possibilities is impossible, here are a few examples just to give an
idea of this power.

• Writing selected trace data to a real file system
• Sending selected trace data from one virtual machine to another for processing
• Sending selected trace data from several virtual machines to another for processing
• Sending selected trace data from several virtual machines to another real machine (a workstation

perhaps) for processing
• Monitoring processes' use of resources for simple tracking
• Monitoring processes to adjust thread and process dispatching priority
• User exit processing
• Debugging exit processing.

Trace Services

Chapter 10. Trace Services 77

Trace Services

78 z/VM: 7.3 CMS Application Multitasking

Chapter 11. CMS Monitor Data

As part of its normal processing, the CMS dispatcher counts certain events that are relevant to
multithreading and the use of CMS POSIX support. The events counted are:
ThreadCreate count

The number of threads created
ThreadCreate time

The amount of time spent creating threads (TOD clock units)
ThreadDelete count

The number of threads deleted
ThreadDelete time

The amount of time spent deleting threads (TOD clock units)
Slow switch count

The number of times the "slow path" through the CMS dispatcher was taken
Fast switch count

The number of times the "fast path" through the CMS dispatcher was taken
Blocked threads

The current number of blocked threads
Process watermark

The greatest number of processes that have existed concurrently
Thread watermark

The greatest number of threads that have existed concurrently
Process limit failures

The number of times an attempt to create a POSIX process has failed because the process limit was
reached

Counting of these events begins when the first multithreaded or POSIX application executes, and the
counts accrue in a data structure called the CMS monitor data area.

CMS itself does nothing with the counts that accrue in the monitor data area, but applications desiring
to use the information collected can obtain the address of the monitor data area by calling CSL routine
MonitorBufferGet.

CMS provides C and assembler language bindings that map the monitor data area. A program written in
one of these languages can use the binding to simplify its references to the data area.

Monitor Data

© Copyright IBM Corp. 1992, 2022 79

Monitor Data

80 z/VM: 7.3 CMS Application Multitasking

Chapter 12. Writing Multitasking Applications

The previous chapters in this book introduced the basic multitasking concepts and discussed the various
types of multitasking services. This chapter describes how to write a multitasking application in C,
assembler, or REXX/VM. You code calls to CMS multitasking functions in your application source as if they
were ordinary C functions, assembler subroutines, or REXX calls.

This chapter contains the following sections:

• “VMMTLIB Callable Services Library” on page 81
• “Programming Language Binding Files” on page 81
• “Writing Multitasking Applications in C” on page 83
• “Writing Multitasking Applications in Assembler” on page 85
• “Writing Multitasking Applications in REXX/VM” on page 89
• “General CMS API Considerations” on page 92

VMMTLIB Callable Services Library
CMS multitasking functions are provided by callable services library (CSL) routines. These routines
reside in the VMMTLIB callable services library. VMMTLIB is contained within the CMS nucleus and is
automatically loaded during CMS initialization before the system profile (SYSPROF EXEC) is run. CMS
multitasking CSL routines cannot be dropped by using the RTNDROP command, although calls to them
can be intercepted by routines that are loaded by the RTNLOAD command.

Programming Language Binding Files
For each supported programming language (C, assembler, and REXX), CMS provides a set of programming
language binding files that declare external functions, constants, and return and reason codes. These are
included in the C program source through the #include statement, in the assembler language source by
a macro invocation, or in a REXX exec by a call to the APILOAD function. (For information about APILOAD,
see the z/VM: REXX/VM Reference.)

The following header files are provided for C programs:

Table 14. Header Files for C Programs

Header File Contents

VMCPRO Process Management

VMCIPC Interprocess Communication

VMCSYN Synchronization

VMCEVN Event Services

VMCCPU Processor Configuration

VMCTRC Trace Services

VMCACT Accounting Services

VMCTMR Timer Services

VMCABN Abend Services

VMCMON CMS Monitor Data

VMCMTR Return and Reason Codes

© Copyright IBM Corp. 1992, 2022 81

Table 14. Header Files for C Programs (continued)

Header File Contents

VMCMT Includes all of the above header files

The following macros are provided for assembler programs:

Table 15. Macros for Assembler Programs

Macro Contents

VMASMPRO Process Management

VMASMIPC Interprocess Communication

VMASMSYN Synchronization

VMASMEVN Event Services

VMASMCPU Processor Configuration

VMASMTRC Trace Services

VMASMACT Accounting Services

VMASMTMR Timer Services

VMASMABN Abend Services

VMASMMON CMS Monitor Data

VMASMMTR Return and Reason Codes

VMASMMT Includes all of the above macros

The following COPY files are provided for REXX programs:

Table 16. COPY Files for REXX Programs

COPY File Contents

VMREXPRO Process Management

VMREXIPC Interprocess Communication

VMREXSYN Synchronization

VMREXEVN Event Services

VMREXCPU Processor Configuration

VMREXTRC Trace Services

VMREXACT Accounting Services

VMREXTMR Timer Services

VMREXABN Abend Services

VMREXMON CMS Monitor Data

VMREXMTR Return and Reason Codes

VMREXMT Includes all of the above COPY files

The program source must include at least one of the language binding files for multitasking services to
be usable from the application. You must ensure that all the function definitions used are included in the
program. A safe approach is to include VMCMT, VMASMMT, or VMREXMT, which defines all the functions

82 z/VM: 7.3 CMS Application Multitasking

at once. If you include function definitions selectively, you must also explicitly include the return and
reason code definitions (VMCMTR, VMASMMTR, or VMREXMTR).

Writing Multitasking Applications in C
To write a multitasking application in C, either the IBM IBM C/C++ for z/VM compiler or the IBM IBM C for
VM/ESA compiler can be used. The C programmer can choose between two entry linkage conventions:

• The entry linkage provided through the run-time library support for POSIX threading
• The entry linkage provided by the CMS multitasking applmain() convention

Using the C POSIX Entry Linkage
Using the POSIX entry linkage means that the programs are treated by CMS as OpenExtensions
applications, even if they do not use POSIX services. Because they are OpenExtensions applications,
they are compiled and built using the c89 command.

The c89 command performs the compile, prelink, and build steps and uses the appropriate C TXTLIBs
without referencing the GLOBAL TXTLIB list. To compile and build a C multitasking program, issue the
following command:

c89 //pgmname.c -l//vmmtlib

This will produce the file pgmname MODULE. This is only a simple example of c89. It can use CMS
minidisks, SFS, or the OpenExtensions byte file system (BFS) for input or output. For a full description
of how to use c89 to create OpenExtensions applications, see the z/VM: OpenExtensions Commands
Reference and the XL C/C++ for z/VM: User's Guide.

A C multitasking program looks like a standard C application:

 /* specify POSIX(ON) so C can handle multiple threads */

 #pragma runopts(POSIX(ON))

 /* include multitasking library constants and functions */

 #include "vmcmt.h"

 /* use main() as in a standard C program */

 int main(int argc, char *argv)
 {
 .
 .
 .
 /* rest of the application */
 .
 .
 .
 }

One important difference between the POSIX(ON) mode of operation and the POSIX(OFF) mode is how
the file ID is interpreted by the C library routines that accept a file ID as a parameter. With POSIX(ON), the
file ID is assumed to indicate a BFS file unless the file ID is preceded by two slashes (//). For example, to
refer to file DATA FILE A, you would specify //data.file.a instead of data.file.a.

Another important difference between POSIX(ON) mode and POSIX(OFF) mode is in the behavior of
the system() function. For POSIX(ON) applications, system() passes the specified string to the
OpenExtensions shell for execution, unless the environment variable __POSIX_SYSTEM is set to no, No,
or NO. In the POSIX(OFF) mode, the specified command string is passed to the CMS command interpreter.

Using the CMS Multitasking applmain() Linkage
The entry point from the CMS multitasking application is the applmain() function. (C programmers
should not provide a main() function.) CMS calls applmain() after process initialization is complete and
the language environment is active. applmain() must be defined to use OS linkage.

Using C

Chapter 12. Writing Multitasking Applications 83

Four parameters are passed to applmain():

Parameter Usage

ext_plist A pointer to the extended parameter list CMS passed to the tasking module, or zero
if no extended parameter list was provided.

tok_plist A pointer to the tokenized parameter list CMS passed to the multitasking module.

scblok A copy of the R2 value CMS passed to the multitasking module. If the multitasking
module is loaded as a nucleus extension, then this pointer points to the nucleus
extension's SCBLOCK.

usersave A pointer to a copy of the USERSAVE area CMS provided for the module. This copy
is provided so that the programmer can interrogate the USERINFO doubleword in
USERSAVE.

C programmers can choose whether to take advantage of these parameters — they need not declare
applmain() as taking any parameters at all. Note that IBM does not provide C structure definitions for
the extended parameter list, tokenized parameter list, SCBLOCK, or USERSAVE area. For information on
how these blocks are organized, see the z/VM: CMS Macros and Functions Reference.

The program must contain one or more #include statements specifying the binding files to be used. See
Table 14 on page 81 for a list of the C header files and their contents.

A C multitasking program using applmain() might look like this:

 /* include multitasking library constants and functions */

 #include "vmcmt.h"
 #pragma linkage(applmain,OS)

 /* use applmain instead of main to get started... */

 int applmain (ext_plist, tok_plist, scblok, usersave)
 void * ext_plist;
 void * tok_plist;
 void * scblok;
 void * usersave;
 {
 .
 .
 .
 /* rest of the application */
 .
 .
 .
 }

Building an applmain() Enabled Program
To build an applmain() enabled multitasking program, the programmer must compile the source so that
the language binding files are included, then combine the resultant text files with a special multitasking
initialization routine and a language environment selector text file. The binding files reside on the CMS
system disk, so C will pick them up automatically.

When the multitasking application is bound into a module through the normal CMS LOAD, INCLUDE,
GENMOD, or LKED commands, the multitasking initialization entry routine (VMSTART) and the language
environment selector (DMSCES) are also included. You should specify the text libraries DMSCMT,
DMSCENV, and VMMTLIB on a GLOBAL TXTLIB command to access the VMSTART routine, the C
programming language environment exits, and the CSL stub routines, respectively:

GLOBAL TXTLIB DMSCMT DMSCENV SCEESPC SCEELKED VMMTLIB

Then, proceed with the usual module generation procedure:

LOAD file1
INCLUDE file2
INCLUDE file3

Using C

84 z/VM: 7.3 CMS Application Multitasking

 .
 .
 .
INCLUDE filen
INCLUDE VMSTART (LIBE RESET VMSTART
GENMOD pgmmod

You can specify any options on the LOAD and INCLUDE commands as long as you include the options
shown above.

Restrictions when Using applmain()
Overall, the C programmer using multitasking has the z/VM API, the C language constructs, and the C
run-time library available for use. However, for CMS to create and maintain a multitasking environment,
and to allow the application to obtain expected results from C library functions, a few restrictions apply.

The functions of the C run-time library can be used by a multitasking application. Each thread or event
trap routine executes in its own private instance of the C run-time environment. While this allows each
thread to use the run-time library without interference between threads, this separation has implications
on thread cooperation:

• Although the C heap storage is usually tied to an instance of the run-time environment, CMS C
multitasking language support intercepts requests for heap storage and allows sharing of the heap.
This means, for example, that one thread can allocate a block of storage and a second thread can
release it. CMS performs this interception for calls to malloc(), calloc(), realloc(), and free().

• Because applmain() employs the system programmer C facilities, the same restrictions apply as
are documented for the system programming environment in z/OS®: XL C/C++ Programming Guide.
Threads are executed as persistent C environments with access to the C Specific Library. The chief
restriction in this environment is that the application cannot use the C-PL/I Common Library. Consult
the C documentation for a full list of restrictions.

Calling Multitasking Functions from C
The format for calling multitasking routines from C is:

rtnname (

,

parm) ;

Note: You must use the direct call format. You cannot use DMSCSL to call CMS multitasking functions.

Although the C header files provided by CMS specify OS linkage on the #pragma linkage statement
for each function, the usual C call-by-value approach is maintained for the C programmer. All input
parameters are passed by value; for output parameters, addresses of variables to receive values are
passed by value. For example, the ThreadYield function takes one input parameter, the thread ID, and
returns two values, the return code and the reason code. So a call to ThreadYield from C would look like
this:

ThreadYield(&retcode,&reascode,tid);

Notice that the address of operator & is used with the two output parameters.

For an extended example of a C program, showing calls to a number of multitasking functions, see
Appendix D, “Example of a C Multitasking Program,” on page 319.

Writing Multitasking Applications in Assembler
The main entry point of the assembler program must have the external name APPLMAIN. CMS calls
APPLMAIN after process initialization is complete and the language environment is active. The linkage
used for APPLMAIN is exactly the linkage that would have been used by CMS had it called APPLMAIN
directly. The following register conventions apply:

Using Assembler

Chapter 12. Writing Multitasking Applications 85

Register Usage

R0 A pointer to the extended parameter list CMS passed to the tasking module, or zero
if no extended parameter list was provided.

R1 A pointer to the tokenized parameter list CMS passed to the tasking module.

R2 A copy of the R2 value CMS passed to the tasking module. If the tasking module is
loaded as a nucleus extension, then this pointer points to the nucleus extension's
SCBLOCK.

R12 The address of APPLMAIN

R13 A pointer to a copy of the USERSAVE area CMS provided for the module. This copy
is provided so that the programmer can interrogate the USERINFO doubleword in
USERSAVE.

R15 The address of APPLMAIN

The program must contain one or more macro invocations specifying the binding files to be used. See
“Programming Language Binding Files” on page 81 for a list of the assembler macros and their contents.

Calling Multitasking Functions from Assembler
The services provided by CMS can be treated as external subroutines to the tasking application. They are
invoked using BALR 14,15 linkage with R1 containing the address of a list of addresses of parameters, as
defined by standard Type-1 linkage conventions:

Register Usage

R1 Address of a list of addresses of the parameters

R14 Return address

R15 Address of the entry point for the function

The external symbols and parameter address list DSECTs are defined in the assembler binding files.
The application can call CMS functions without using the parameter list DSECTs provided. They are
provided only as a convenience, in case the programmer wishes to use symbolic names for the entries
in the address list. The names of the DSECT fields are documented only in the binding files themselves.
However, the important point is that the order of parameters is defined in the reference documentation
for each function. That is all you need to know to build the parameter list.

An assembler call to the ThreadYield function would look like:

 L R1,address of data area
 USING VMTHRYI_PLIST,R1
 MVC VMTHRYI_PLIST_RC,=A(RC) Address of return code
 MVC VMTHRYI_PLIST_RE,=A(RE) Address of reason code
 MVC VMTHRYI_PLIST_TID,=A(TID) Address of Thread ID
 L R15,=A(THREADYIELD)
 BALR R14,R15 Invoke ThreadYield

The assembler language technique presented above produces only serially-reusable code. This is
because parameters RC, RE, and TID all reside in storage locations whose addresses are constants
computed by the loader at load time (note the use of "=A" in referring to those parameters). If reentrant
code is required, then all parameters and the parameter list must reside in dynamically-obtained storage.
This means that the parameter list must be built at run time using LA and ST instructions. For example,
if we assume that R1 points to a fragment of dynamically-obtained storage for the parameter list, and
if we assume that a base register for dynamically-obtained storage for the parameters themselves (for
example, R13) has already been set up, then the following code fragment produces reentrant code:

 USING VMTHRYI_PLIST,R1
 LA R2,RC
 ST R2,VMTHRYI_PLIST_RC
 LA R2,RE

Using Assembler

86 z/VM: 7.3 CMS Application Multitasking

 ST R2,VMTHRYI_PLIST_RE
 LA R2,TID
 ST R2,VMTHRYI_PLIST_TID
 L R15,=A(THREADYIELD)
 BALR R14,R15

If a section of code is shared among threads in a single dispatch class, and if that code contains a point
at which control could be lost, then that code must be reentrant. If a section of code is shared among
threads in multiple dispatch classes, then that section of code must be multiprocessor-capable.

A simpler way to handle the construction of the parameter address list and the function invocation is to
use the CALL macro provided by CMS. It builds the parameter list automatically and generates the BALR
instruction. The CALL macro does not support long names, so instead of specifying the routine name, use
the register form.

The format of the CALL macro is:

CALL ( reg) , (

,

parm)

Note: You must use the direct call format of the CALL macro. You cannot use CALL DMSCSL or the CSLFPI
macro to call CMS multitasking functions.

So the call to ThreadYield would look like this:

 L R15,=A(THREADYIELD)
 CALL (15),(RC,RE,TID)

If you use the parameter list DSECTs provided, you can determine both the length of a particular
parameter list DSECT and the largest parameter list DSECT included in your program. The length of a
particular parameter list DSECT is in a variable named funcname_PLIST_LENGTH. The parameter list
DSECT for ThreadYield looks like:

VMTHRYI_PLIST DSECT
VMTHRYI_PLIST_RC DS F
VMTHRYI_PLIST_RE DS F
VMTHRYI_PLIST_THREAD_ID DS F
VMTHRYI_PLIST_LENGTH EQU *-VMTHRYI_PLIST

Determining the largest parameter list DSECT included in a program requires a few more assembler
instructions. The length of the largest parameter list DSECT is found in a global macro variable called
&DMAX. To use this length:

1. Include the assembler binding files at the end of the program.
2. Declare the global macro variable &DMAX before the assembler binding files.
3. Define the variable with the largest parameter list DSECT length after the assembler binding files. The

largest length is the address of &DMAX. A CSECT statement is required between the assembler binding
files and the largest length variable.

Finding the largest length in the parameter list DSECTs provided would look like this:

TESTASM CSECT
 .
 .
 .
 GBLA &DMAX
 VMASMMT
TESTASM CSECT
MAX_PLIST_LENGTH DC A(&DMAX)
 END

Outline of an Assembler Application
The outline and structure of an assembler tasking application is the same as that of a C application. This
example points out the assembler specifics.

Using Assembler

Chapter 12. Writing Multitasking Applications 87

--
* CMS will pass control to the entry point APPLMAIN *
--

APPLMAIN CSECT
 STM R14,R12,12(R13) Save input registers
 LR R12,R15 Register 15 has entry point address
 USING APPLMAIN,R12
 .
 .
 .
 process parameters passed in CMS tokenized and extended PLISTs,
 if any
 .
 .
 .
--
* Create a thread to start execution at label THREAD1. *
--

 L R15,=A(THREADCREATE)
 CALL (15),(RC,RE,TID,FLAGARRAY,FLAGSIZE,PRIORITY,THRADDR, X
 PLIST, PLISTLEN)
 .
 .
 .
 LM R14,R12,12(R13) Restore regs
 BR R14 End of initial thread

THREAD1 DS 0H
 .
 .
 .
 Perform concurrent work
 .
 .
 .
 LM R14,R12,12(R13) Restore regs
 BR R14 End of Thread1
 .
 .
THRADDR DC A(THREAD1)
 .
 .
 other data definitions
 .
 .
 VMASMMT Binding file macro invocation
 .
 .
 END APPLMAIN

Building an Assembler Multitasking Program
To build an assembler multitasking program, the programmer must compile the source so the language
binding files are included, then combine the resultant text files with a special tasking initialization routine
and a language environment selector text file. The binding files for assembler are in DMSGPI MACLIB, so
you should specify this library on a GLOBAL MACLIB command to make them available to the assembler:

GLOBAL MACLIB DMSGPI

When the multitasking application is bound into a module, through the normal CMS LOAD, INCLUDE,
GENMOD, or LKED commands, the tasking initialization entry routine (VMSTART) and the language
environment selector (DMSAES) are also included. You should specify the text libraries DMSAMT and
VMMTLIB on a GLOBAL TXTLIB command to access the VMSTART routine and CSL stub routines,
respectively:

GLOBAL TXTLIB DMSAMT VMMTLIB

Then, proceed with the usual module generation procedure:

Using Assembler

88 z/VM: 7.3 CMS Application Multitasking

LOAD file1
INCLUDE file2
INCLUDE file3
 .
 .
 .
INCLUDE filen
INCLUDE VMSTART (LIBE RESET VMSTART
GENMOD pgmmod

You can specify any options on the LOAD and INCLUDE commands as long as you include the options
shown above.

Writing Multitasking Applications in REXX/VM
Execs written in REXX/VM can be used as an integral part of a multitasking application. REXX procedures
can execute concurrently on multiple threads and call multitasking functions. A REXX exec itself cannot
be the main entry point for a process and cannot directly create threads. Instead, REXX execs can be
invoked by multitasking programs in different threads and can invoke programs bound with the VMSTART
initialization routine that result in new processes which can in turn create additional threads.

The REXX/VM interpreter does not itself take advantage of the multitasking environment. This implies that
although there can be execs active on multiple threads, only one of them can be dispatched at a time. If a
REXX exec issues a call that blocks the thread, such as QueueReceiveBlock or EventWait, another thread
that could itself be running a REXX exec can be dispatched. The only limitation arises from the fact that
it is not possible to generate an entry point address corresponding to a procedure or label in an exec.
Therefore, you cannot use the ThreadCreate function to create a new thread whose entry point is in an
exec. Similarly, you cannot use the trap_routine_address parameter of the EventTrap function to designate
an event trap routine in an exec.

The EXECCOMM environment for an exec is local to the thread on which it is running. This means that
two concurrent REXX execs cannot affect each other's variable pool, and that the EXECCOMM can only
be used to communicate with execs or programs running on the same thread. The CMS terminal input
buffer and program stack are shared by all threads so care must be taken when using them from multiple
concurrent execs. This could include using a mutex to serialize access to the stack.

To use the services provided in the VMMTLIB callable services library, the exec must invoke the APILOAD
function to initialize REXX variables with the values defined in the REXX language binding files. To make
the entire multitasking API available, the exec would issue:

Call APILOAD 'VMREXMT'

See “Programming Language Binding Files” on page 81 for a list of the REXX binding files and their
contents. The APILOAD function is described in the z/VM: REXX/VM Reference.

Calling Multitasking Functions from REXX
In REXX/VM, CSL routines can be called as REXX functions. However, the preferred method is to call them
as subroutines using the CALL instruction:
REXX function call

CSL (' rtnname parm ')

REXX CALL instruction

CALL CSL ' rtnname parm '

Using REXX/VM

Chapter 12. Writing Multitasking Applications 89

For multitasking functions requiring pointer values, the actual name must be specified. The following
example shows a call to the EventMonitorCreate function from a REXX exec:

 /* Call the EventMonitorCreate service */

 Call APILOAD 'VMREXMT'

 monitor_flag.1 = vm_evn_no_auto_delete
 monitor_flag.2 = vm_evn_async_monitor
 monitor_flag.3 = vm_evn_bind_loose_signals

 monitor_flag_size = 3

 number_of_events = 1

 event_name_address.1 = 'VMCONINPUT'
 event_name_length.1 = Length(event_name_address.1)

 event_key_address.1 = '*'
 event_key_length.1 = Length(event_key_address.1)

 bound_signal_limit.1 = -1

 event_count = 1

 Call CSL 'EventMonitorCreate retcode reascode monitor_token',
 'monitor_flag monitor_flag_size number_of_events',
 'event_name_address event_name_length event_key_address,
 'event_key_length bound_signal_limit event_count'

 say ' retcode =' retcode
 say ' reascode =' reascode

 Exit

A number of multitasking functions use parameter lists that contain arrays of integers. In REXX these are
expressed with stem variables. The following example shows a call to the TraceControl function from a
REXX exec. This function contains two arrays, one containing trace types and another giving the settings
for the corresponding values.

/* Call the TraceControl service */

Call APILOAD 'VMREXTRC'

wrap = 5
num_types = 2
tracetypes.1 = vm_trc_comm
tracetypes.2 = vm_trc_disp
tracetype_settings.1 = vm_trc_on
tracetype_settings.2 = vm_trc_on

Call CSL 'TRACECONTROL RETCODE REASCODE VM_TRC_ITRACE WRAP',
 'NUM_TYPES TRACETYPES TRACETYPE_SETTINGS'

Say 'Return Code =' RETCODE
Say 'Reason Code =' REASCODE

Because of a CSL REXX restriction, several arrays need to be handled in a special manner. Table 17 on
page 90 has the list of these special cases:

Table 17. Special case functions when called from REXX/VM

Function Name Parameter Number of Elements

EventCreate event_flag 3

EventMonitorCreate monitor_flag 3

EventModify event_flag 1

EventMonitorQuery monitor_flag 4

QueueOpen search_sequence 3

Using REXX/VM

90 z/VM: 7.3 CMS Application Multitasking

Table 17. Special case functions when called from REXX/VM (continued)

Function Name Parameter Number of Elements

To use these functions in a REXX/VM exec, you must define a stem variable and define all the
elements of the array. For example, when calling QueueOpen, you must define a stem variable for the
search_sequence parameter. You must also assign values to all 3 elements of the array even if you are
only going to use one of them. For example, if you call the stem variable search_sequence. and you want
to search the process export level only, then you must assign one of the legal search sequence values to
search_sequence.1 and assign zeros to search_sequence.2 and search_sequence.3. Using all of the above,
the REXX/VM snippet for this looks like:

 …
 search_sequence.1 = vm_ipc_plevel
 search_sequence.2 = 0
 search_sequence.3 = 0

 search_sequence_length = 1
 …

When using the TimerStartMicros, TimerStopMicros, or TimerTestMicros functions, you need to
manipulate numbers to make the calls work. These three functions all require as input an 8-byte, signed,
binary number in the interval variable. Now, REXX deals in character data and the REXX CSL cannot
handle an 8-byte, signed, binary number. So, you need to convert the data in the interval variable into
something REXX and CSL can handle. The following code snippet shows how to do this:

 interval = 100
 interval = D2X(interval,16)
 interval = X2C(interval)

These instructions can be combined into a single statement. They are shown here as separate statements
to clearly illustrate the conversion needed to feed an 8-byte, signed, binary variable into a REXX CSL
function.

Using Binding Files with REXX Procedures
If your REXX program contains any internal subroutines that are introduced by "procedure" statements, it
is important for you to remember that language bindings you load with APILOAD in the main routine will
not automatically be visible inside these subroutines. This is illustrated by the following example:

/* SLOWSAY EXEC */

Call APILOAD 'VMREXMTR'
Call APILOAD 'VMREXPRO'
x = saywithwait('This is a test')
return 0

saywithwait: procedure
 parse arg what
 say what
 /* VMREXPRO bindings are invisible here, so the */
 /* following WILL NOT WORK... 'ThreadDelay' will */
 /* be undefined */
 interval = 1000
 call csl 'ThreadDelay cslrc cslre interval'
 return 0

If your procedure needs to use bindings loaded with APILOAD, you have three choices:

• Load the bindings in your mainline program and use EXPOSE to expose the specific constants and
procedure names your procedure will need. For example:

/* SLOWSAY EXEC */

Call APILOAD 'VMREXMTR'
Call APILOAD 'VMREXPRO'

Using REXX/VM

Chapter 12. Writing Multitasking Applications 91

x = saywithwait('This is a test')
return 0

saywithwait: procedure expose,
 ThreadDelay

 parse arg what
 say what
 interval = 1000
 call csl 'ThreadDelay cslrc cslre interval'
 return 0

• Avoid using the REXX "procedure" statement altogether; just use a label. For example:

/* SLOWSAY EXEC */

Call APILOAD 'VMREXMTR'
Call APILOAD 'VMREXPRO'
x = saywithwait('This is a test')
return 0

saywithwait: /* no procedure statement */
 parse arg what
 say what
 interval = 1000
 call csl 'ThreadDelay cslrc cslre interval'
 return 0

• If performance considerations will permit it, load the bindings inside your procedure. For example:

/* SLOWSAY EXEC */

x = saywithwait('This is a test')
return 0

saywithwait: procedure
 call APILOAD 'VMREXMTR'
 call APILOAD 'VMREXPRO'
 parse arg what
 say what
 interval = 1000
 call csl 'ThreadDelay cslrc cslre interval'
 return 0

You will have to choose one of these approaches based on your program's particular needs.

General CMS API Considerations
The following restrictions and considerations apply to assembler applications, assembler subroutines of
C applications, or assembler subroutines called by REXX execs. CMS provides improved, tasking-oriented
alternatives to the services mentioned below. While all of the CMS API can be used by the tasking
application, in some cases a choice must be made between using certain CMS functions and taking full
advantage of the multitasking capabilities.

• The application cannot issue HNDEXT to trap SIGP interrupts.
• ABNEXIT, STAE, ESTAE, SPIE, ESPIE and SETRP should not be used if multiprocessor-mode is being

used. They generate unpredictable results. In a virtual machine with one virtual processor these
services can be used, although they do not adequately address the multi-threaded case.

• DMSKEY should not be used in multiprocessor-mode, because CMS does not maintain key stacks for
more than one virtual processor.

• Multitasking functions can be called by a program running in access register mode in an ESA/XC or z/XC
virtual machine, but all parameters must be in the primary address space. These functions do not use
access registers to reference storage in a data space.

• CMS does not manage vector registers or IEEE floating point registers as part of the thread context.
• When running in multiprocessor mode, use only the ENABLE macro to enable or disable interrupts. Do

not directly manipulate control register 6 to change the I/O interruption-subclass mask.
• CMS DOS mode does not support multitasking programs.

Using REXX/VM

92 z/VM: 7.3 CMS Application Multitasking

• Application interrupt handlers established by CMS services run as extensions to CMS interrupt handling.
As is the case with other CMS services, some multitasking services should not be used in such an
interrupt exit. The rules for what multitasking processing can be done in an interrupt exit are described
in Chapter 15, “Suggestions for Server Writers,” on page 287.

The supported multitasking operations can be called from second-level interrupt handlers established
through the HNDIO, HNDINT, HNDEXT, HNDIUCV, or CONSOLE services.

• Simulated MVS task management services do not exploit the native CMS multitasking facilities. The MVS
ATTACH service is simulated as a LINK plus the creation of a simulated Task Control Block. They are not
related to CMS dispatchable threads of control, but are kept as a single stack of MVS task levels.

Using REXX/VM

Chapter 12. Writing Multitasking Applications 93

Using REXX/VM

94 z/VM: 7.3 CMS Application Multitasking

Chapter 13. CMS Multitasking Function Descriptions

This chapter describes each of the CMS multitasking services. To request these services in your
application program, you use procedure calls. CMS procedure calls are designed in such a way that each
call performs a single, well-defined function. This results in a large number of calls compared to what
would be seen in an equivalent assembler macro API design. However, each of these calls tends to be
simple in itself, performing one function and requiring few parameters.

These services, also referred to as functions, can be grouped into three areas:

• General multitasking services
• Services to allow customization of the product
• Services to obtain diagnostic information.

The majority of the calls fall into the first category. Calls that fall primarily into one of the other two
categories are identified as such in the function descriptions. In C programs, you call the multitasking
functions just as any invocation of a function that returns void. In assembler programs, you use BALR
14,15 linkage to invoke the functions.

Notation Used in Parameter Descriptions
The description of each parameter for a function begins with the three-part notation:

(usage,type,length)

In this notation:
usage

is input, output, or input/output, indicating how the variable is used by the called function.
type

is INT or CHAR, indicating whether the variable contains binary integer or character type data. (All
INT parameters are signed unless otherwise indicated.)

length
is the length of the variable, specified as one of the following:

• A number (such as 8), a choice of two numbers (such as 0 or 9), or a range of numbers (such as
1–8), indicating the number of bytes or characters (depending on the data type) or the number of
equal-length elements in an array

Note: When a range is indicated for an output variable and you do not know the length of the value
to be returned, you should set the variable to the maximum length to ensure that it will hold the
complete returned value. Otherwise, if the returned value does not fit, you will receive an error
indication. In that case, you will have to increase the length of the variable and call the function
again.

• The name of another parameter variable (such as length1) that specifies the number of bytes,
characters, or elements.

Using the Online HELP Facility
You can receive online information about the CMS multitasking routines described in this book by using
the z/VM HELP Facility. For example, to display a menu of CMS multitasking routines, enter:

help multitsk menu

To display information on a specific multitasking routine, (ThreadCreate in the following example), enter:

help routine threadcr

© Copyright IBM Corp. 1992, 2022 95

Because of the length of some of the routine names, typing the first eight characters of a routine's name
may not provide help for the desired routine. For example, entering

help routine threadde

could mean you would like help for ThreadDelete or ThreadDelay. In this case, you can try an abbreviation
for the routine name (ThreadDelay in this example) by entering:

help routine threaddy

Or get a list of all the routines in a particular group (all Thread routines in the following example) by
entering:

help routine thread

For more information about using the HELP Facility, see the z/VM: CMS User's Guide. To display the main
HELP Task Menu, enter:

help

For more information about the HELP command, see the z/VM: CMS Commands and Utilities Reference or
enter:

help cms help

96 z/VM: 7.3 CMS Application Multitasking

AbnormalEnd - Terminate a Process Abnormally

AbnormalEnd
errorcode
type
error_userdata_pointer
error_userdata_length

Purpose
Use the AbnormalEnd function to initiate abnormal termination processing.

Parameters
errorcode

(input/output,INT,4) is a variable for specifying an error completion code associated with this
particular abend. A predefined set of codes used by the system are documented in the section on
CMS abend codes in z/VM: CMS and REXX/VM Messages and Codes.

type
(input,INT,4) is a variable for specifying the type of error code that is defined either by the system or
the user. Usually the caller specifies that the abend is of user type, unless the application needs to
simulate a system abend. Valid values are as follows:
vm_abn_type_user

Error code is defined by the user.
vm_abn_type_system

Error code is defined by the system.
error_userdata_pointer

(input,INT,4) is a variable for specifying the address of a buffer containing optional user data, which
gives information to any error event handlers about the abend. This may be used for specific
information about I/O at the time of abends, save areas, parameter lists, or anything else defined
by the user. The format of the information in this area is defined by the user and the data is provided
by the caller of AbnormalEnd. If no user data is provided, this parameter should be set to zero.

error_userdata_length
(input,INT,4) is a variable for specifying the length of the user data contained in the buffer pointed to
by error_userdata_pointer.

Usage Notes
1. AbnormalEnd uses Event Services to signal an error event, sending the error data mapped by the

vm_errevent structure in the language binding file. A modifiable data area is provided for purposes of
specifying recovery methods and modifying registers for recovery routines. The user may define an
area containing additional information which is pointed to by error_userdata_pointer.

2. Information in the area pointed to by error_userdata_pointer can be in any format as defined by the
user.

3. If the value specified for type is not valid, a type of vm_abn_type_user is assumed.
4. This function does not return to the caller unless an error event handler performed recovery and

specified that execution should resume at the next instruction after the point of the abend. See
Chapter 9, “Abend Services,” on page 67 for more information on error recovery.

AbnormalEnd

Chapter 13. CMS Multitasking Function Descriptions 97

5. If both a retry address and the next sequential instruction indicator are set by an error event handler,
the next instruction indicator takes precedence and the retry routine is not invoked. An invalid next
sequential instruction indicator value is ignored and recovery is determined by the retry address.

6. The other abend recovery mechanisms in CMS, the ABNEXIT service and the simulated MVS recovery
services, do not allow for the multiple process, multiple thread environment. These services can
still be used by multitasking programs but their behavior follows special rules intended to maintain
compatibility with non-tasking behavior.

The order in which abend recovery routines are invoked is determined by the class of abend. The
following list defines the order for each class:

• Program Check

a. SPIE and ESPIE exits
b. STAE and ESTAE exits
c. VMERROR event handlers
d. VMERRORCHILD event handlers
e. ABNEXIT routines

• MVS ABEND macro

a. STAE and ESTAE exits
b. VMERROR event handlers
c. VMERRORCHILD event handlers
d. ABNEXIT routines

• DMSABN macro

a. VMERROR event handlers
b. VMERRORCHILD event handlers
c. ABNEXIT routines
d. STAE and ESTAE exits

• AbnormalEnd call

a. VMERROR event handlers
b. VMERRORCHILD event handlers
c. ABNEXIT routines
d. STAE and ESTAE exits

Only those STAE, ESTAE, SPIE, and ESPIE exits defined in the abending process are driven. ABNEXITs
are driven regardless of the process that created them.

7. Portions of the event data key associated with the VMERROR event are binary data. See “Tips on
Constructing Keys” on page 30 in z/VM: CMS Application Multitasking for a discussion of the use of
binary data in event keys.

AbnormalEnd

98 z/VM: 7.3 CMS Application Multitasking

AccountControl — Define and Query Accounting Attributes

AccountControl
retcode
reascode
function
timer
num_types
accttypes
acct_settings

Purpose
Use the AccountControl function to initiate and query the collection of accounting information, alter
accounting selectivity, or request immediate generation of accounting records created by CMS.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
function

(input,INT,4) is a variable for specifying the operation to be performed in response to the subsequent
arrays. Valid values are as follows:
vm_act_query

The accttypes are queried and their setting is returned in the acct_settings array.
vm_act_set

The accttypes are set according to the values in the acct_settings array.
vm_act_sig

An account event is signaled for each accounting type currently set on, and then the values in the
accttypes array are set according to the values in the acct_settings array.

timer
(input/output,INT,4) is a variable that contains the time interval for CMS to generate accounting
records. The timer variable is either input or output, depending on the function:

• An input variable for the vm_act_set and vm_act_sig functions
• An output variable for the vm_act_query function.

The integer value is in milliseconds, in the range of 0 - 2,147,483,647 (maximum positive number
of milliseconds that can be represented in 4 bytes). If the maximum time is used, this is equivalent
to approximately 24.85 days. If 0 is specified for the vm_act_set or vm_act_sig functions, then
accounting records are not automatically generated based on a time interval, but a user may explicitly
request records by using the vm_act_sig function of AccountControl. For the vm_act_query function,
the last time interval in effect is returned.

num_types
(input,INT,4) is a variable for specifying the number of account types to be set, signaled, or queried,
(that is, the number of elements in the accttype and acct_settings arrays). The value must be greater
than 0.

AccountControl

Chapter 13. CMS Multitasking Function Descriptions 99

accttypes
(input/output,INT,num_types) is an array of 4-byte variables for specifying the account types to be
set, signaled, or queried. The size of the array is specified by the num_types parameter. Valid values
are as follows:
vm_act_all

All account types
vm_act_comm

Communication requests
vm_act_cpu

CPU utilization
acct_settings

(input/output,INT,num_types) is an array of 4-byte variables that specifies the settings corresponding
to the accttypes array. This array is either input or output, depending on the setting of the function
parameter:

• An input array for the vm_act_set and vm_act_sig operations
• An output array for the vm_act_query operation.

Valid values are as follows:
vm_act_off

Corresponding account type is set OFF
vm_act_on

Corresponding account type is set ON
vm_act_unchg

Corresponding account type is left UNCHANGED.

When accounting is set on for any of the account types, CMS will begin accumulating accounting data
for that particular type. When an accounting record is requested by the vm_act_sig function or when a
requested timer interval has expired, the accumulated data as well as any new data collected will be
included in the accounting record that is signaled for the VMACCOUNT event.

Usage Notes
1. At initialization time, all account types are set off.
2. The accttypes and acct_settings arrays are processed in array order. For example, if values

corresponding to vm_act_all and vm_act_off are the first elements in the respective arrays, all
account types are set off before processing subsequent elements in the arrays. As a result, in
general, an array element may be nullified by a subsequent array element.

3. The account type vm_act_all is invalid for the vm_act_query function, because individual elements
may have been set after the vm_act_all setting. The vm_act_all setting is returned in the acct_settings
array, but a warning return code indicates that individual account types should be queried.

4. If an invalid accttype is specified for the vm_act_query function, the corresponding acct_settings array
will return a value of vm_act_off for that accttype, and a warning return code will be given. The rest of
the array will be processed.

5. When the vm_act_sig function is specified, accounting data will be collected and signaled based
on the accounting types that were previously set on and are currently in effect. After records are
signaled, the accttypes and acct_settings arrays will be used to change any settings.

6. If the timer value is invalid, 0 will be assumed and a warning return code will be given. When all
accounting is off, any timer value specified is ignored.

7. The AccountControl function uses Event Services to collect trace data and process it to produce
accounting information.

8. Accounting information is accumulated and signaled based on account IDs.

AccountControl

100 z/VM: 7.3 CMS Application Multitasking

9. The information being accounted for by CMS when accounting is set on for communication requests
is the number of queue sends and number of queue receives that have occurred during an accounting
period. These accumulated amounts include the various queue functions related to sending and
receiving; for example, queue receives includes QueueReceiveBlock as well as QueueReceiveImmed.
The format is defined in the VMCACT H and VMASMACT MACRO language binding files.

10. The information being accounted for by CMS for CPU utilization is the amount of CPU time utilized.
The format is defined in the VMCACT H and VMASMACT MACRO language binding files.

11. Portions of the event data key associated with the VMACCOUNT event are binary data. See “Tips on
Constructing Keys” on page 30 for a discussion of the use of binary data in event data keys.

12. An accounting setting cannot be set off except by the process that set it on. If multiple processes set
on a setting, it is not actually set off until all the processes that had set it on set it off. When a process
terminates, its modifications to the accounting settings are reset.

If a time interval has been set by some process, another process can set the interval shorter but not
longer. A time interval of zero (no automatic signalling) is considered to be the longest interval. When
a process ends the time interval is not altered, unless no accounting settings remain on, in which case
the accounting timer is cancelled.

Since the interval can be shortened, a routine that handles the VMACCOUNT event should always
assume that there could be multiple events bound to its event monitor and be prepared to process
them in a loop.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_act_success vm_act_success AccountControl completed successfully

vm_act_error vm_act_bad_func Function is invalid

vm_act_error vm_act_bad_numtype Num_types is invalid

vm_act_warning vm_act_array_bad_value Accttype or acct_settings array value is invalid

vm_act_warning vm_act_bad_time Timer value invalid

vm_act_error vm_act_insufficient_storage No more storage available

Programming Language Bindings
Language Language Binding File

C VMCACT H

Assembler VMASMACT MACRO

REXX VMREXACT COPY

AccountControl

Chapter 13. CMS Multitasking Function Descriptions 101

AccountIdentify — Identify an Accounting Entity

AccountIdentify
retcode
reascode
acctid
acctflg

Purpose
Use the AccountIdentify function to define an identifier to be associated with either an individual thread
or all the threads in a process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
acctid

(input,CHAR,16) is a variable for specifying the account identifier of the accounting data collected for
this thread or process.

acctflg
(input,INT,4) is a variable for specifying whether the acctid applies only to this thread or to all the
threads in this process. Valid values are as follows:
vm_act_id_thrd

ID for this thread only
vm_act_id_prc

ID for all the threads in this process

Usage Notes
1. If an account identifier has not been assigned to a process or a given thread, the accounting data

collected for that thread has an account ID of 16 bytes of binary zeros.
2. If an account identifier is assigned to a process, any subsequently created threads will be assigned

that identifier when they are created.
3. The account identifier is included in the header of an accounting record. See Chapter 8, “Accounting

Services,” on page 65 for a description of the format of an accounting record.
4. It is suggested that the account ID not contain bytes whose values correspond to the code points for

key wildcard characters. This is so that the account ID can be used easily in an event monitor sensitive
to the VMACCOUNT or VMTRACE events. For more information, see “Tips on Constructing Keys” on
page 30.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_act_success vm_act_success AccountIdentify completed successfully

vm_act_error vm_act_bad_id_flag acctflg is invalid

AccountIdentify

102 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCACT H

Assembler VMASMACT MACRO

REXX VMREXACT COPY

AccountIdentify

Chapter 13. CMS Multitasking Function Descriptions 103

CondVarCreate — Create a Condition Variable

CondVarCreate
retcode
reascode
condvariable_handle
condvariable_name
condvariable_name_length
mutex_handle

Purpose
Use the CondVarCreate function to establish a condition variable and associate it with a mutex.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
condvariable_handle

(output,INT,4) is a variable where the function returns the handle of the condition variable.
condvariable_name

(input,CHAR,condvariable_name_length) is a variable for specifying the name of the condition
variable.

condvariable_name_length
(input,INT,4) is a variable for specifying the length of condvariable_name. It must be greater than 0
and less than 16MB in length.

mutex_handle
(input,INT,4) is a variable for specifying the handle of the mutex to be associated with the condition
variable. This value is returned by the MutexCreate or MutexGetHandle function.

Usage Notes
1. The scope of access for a condition variable is the same as that defined by the associated mutex,

which is defined when the mutex is created (by the MutexCreate function). This implies that a
condition variable has either process or session level scope that is fixed for the life of the condition
variable.

2. For uniqueness, the scope of a condition variable name is the mutex with which it is associated. This
guarantees that a condition variable name is unique among all the condition variables of a mutex. For
example, mutex M and mutex N in process P can each have a condition variable named C, even though
they are different condition variables.

3. All condition variables created by a process are deleted when a process terminates. Any threads in
other processes waiting on such condition variables are unblocked and given a return code indicating
that the condition variable and mutex associated with this condition variable have been deleted.

4. The thread creating the condition variable must be in the process that created the associated mutex.
5. CMS supports up to 32,768 session-scope semaphores, mutexes, and condition variables, altogether.

Also, for each process, CMS supports up to 32,768 process-scope semaphores, mutexes, and
condition variables, altogether.

CondVarCreate

104 z/VM: 7.3 CMS Application Multitasking

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success CondVarCreate completed successfully

vm_syn_error vm_syn_insufficient_storage Condition variable not created because
storage is not available

vm_syn_error vm_syn_handle_not_found Mutex handle does not exist

vm_syn_error vm_syn_bad_cnv_name_len Condvariable_name_length is out of range.

vm_syn_error vm_syn_not_mutex_creator Condition variable not created because thread
not in process that created mutex

vm_syn_error vm_syn_cnv_already_exists Condition variable not created because a
condition variable of the same name already
exists for this mutex

vm_syn_error vm_syn_limit_reached Selected scope's limit on total number of
synchronization objects has been reached.

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

CondVarCreate

Chapter 13. CMS Multitasking Function Descriptions 105

CondVarDelete — Delete a Condition Variable

CondVarDelete
retcode
reascode
condvariable_handle

Purpose
Use the CondVarDelete function to delete a condition variable from a mutex.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
condvariable_handle

(input,INT,4) is a variable for specifying the handle of the condition variable to be deleted. This value
is returned by the CondVarCreate or CondVarGetHandle function.

Usage Notes
1. Two conditions must exist for a thread to delete a condition variable. They are:

• Thread must be in the process in which the condition variable was created.
• Thread must hold the mutex associated with the condition variable.

If at least one of these conditions is not met, an error is returned.
2. If a condition variable is deleted and threads are waiting on this condition variable, the blocked

threads are released and a return code is given to each thread indicating that the condition variable
has been deleted.

3. All condition variables created by a process are deleted when a process terminates. Any threads in
other processes waiting on such condition variables are unblocked and given a return code indicating
that the condition variable has been deleted.

4. If a mutex is deleted, the condition variables associated with this mutex are deleted. The threads
waiting on such condition variables are unblocked and given a return code indicating that the condition
variable and the mutex have been deleted.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success CondVarDelete completed successfully

vm_syn_error vm_syn_handle_not_found Condvariable_handle does not exist

vm_syn_error vm_syn_not_condvar_creator Condition variable is not deleted because
process is not condition variable creator

vm_syn_error vm_syn_mutex_not_held Condition variable is not deleted because
thread does not hold mutex

CondVarDelete

106 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

CondVarDelete

Chapter 13. CMS Multitasking Function Descriptions 107

CondVarGetHandle — Get the Handle of a Condition Variable

CondVarGetHandle
retcode
reascode
condvariable_handle
condvariable_name
condvariable_name_length
mutex_handle

Purpose
Use the CondVarGetHandle function to get a handle for an existing condition variable.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
condvariable_handle

(output,INT,4) is a variable where the function returns the handle of the condition variable.
condvariable_name

(input,CHAR,condvariable_name_length) is a variable for specifying the name of the existing condition
variable.

condvariable_name_length
(input,INT,4) is a variable for specifying the length of condvariable_name. It must be greater than 0
and less than 16MB in length.

mutex_handle
(input,INT,4) is a variable for specifying the handle of the mutex associated with the condition
variable. This value is returned by the MutexCreate or MutexGetHandle function.

Usage Notes
1. A condition variable must be created by CondVarCreate before this function can get its handle. If the

condition variable is not created, an error is returned.
2. If the threads using a condition variable share memory, the handle of a condition variable may be

stored in the shared memory by the thread creating the condition variable. When the other threads in
an application require the handle to manipulate the condition variable, it may be retrieved from the
shared memory. However, if threads using a condition variable in an application do not share memory,
the CondVarGetHandle function should be used to get the handle of the condition variable.

3. Condition variable handles are kept either per-process or per-session, depending on the level at
which the mutex that is associated with the condition variable was created. The technique for sharing
handles by storing them in shared memory will work only if the threads execute in the same scope,
process or session, that the condition variable has as its level.

CondVarGetHandle

108 z/VM: 7.3 CMS Application Multitasking

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success CondVarGetHandle completed successfully

vm_syn_error vm_syn_name_not_found Condvariable_name does not exist

vm_syn_error vm_syn_bad_cnv_name_len Condvariable_name_length is out of range

vm_syn_error vm_syn_handle_not_found Mutex handle does not exist

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

CondVarGetHandle

Chapter 13. CMS Multitasking Function Descriptions 109

CondVarSignal — Signal a Condition Variable

CondVarSignal
retcode
reascode
condvariable_handle

Purpose
Use the CondVarSignal function to indicate that the condition represented by the condition variable is
true. This results in one thread waiting on this variable being unblocked as soon as the associated mutex
is also released.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
condvariable_handle

(input,INT,4) is a variable for specifying the handle of the condition variable to be signaled. This value
is returned by the CondVarCreate or CondVarGetHandle function.

Usage Notes
1. If no threads are waiting on a condition variable and it is signaled, the condition represented by the

condition variable stays at true. The next thread that checks the condition by issuing CondVarWait does
not have to wait and may proceed to perform its operation.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success CondVarSignal completed successfully

vm_syn_error vm_syn_handle_not_found Condition_variable_handle does not exist

vm_syn_error vm_syn_mutex_not_held Condition variable is not signaled because
thread does not hold the mutex associated
with this condition variable

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

CondVarSignal

110 z/VM: 7.3 CMS Application Multitasking

CondVarWait — Wait on a Condition Variable

CondVarWait
retcode
reascode
condvariable_handle

Purpose
Use the CondVarWait function to wait for a condition variable to be signaled. Upon entry to this function,
the mutex associated with the condition variable must be held. The mutex is released while waiting for
the condition variable to be signaled. When the condition variable is signaled, the mutex is reacquired.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
condvariable_handle

(input,INT,4) is a variable for specifying the handle of the condition variable to be waited on. This
value is returned by the CondVarCreate or CondVarGetHandle function.

Usage Notes
1. If a thread waiting on a condition variable is terminated, the thread is removed from the wait list.
2. If a condition variable is deleted, any thread waiting on that variable is given an error return code when

it resumes running. The mutex is not reacquired in this case.
3. When a thread resumes running after CondVarWait completes successfully, it is guaranteed that the

condition is still true and the thread may proceed to perform its operation.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success CondVarWait completed successfully

vm_syn_error vm_syn_handle_not_found Condvariable_handle does not exist

vm_syn_error vm_syn_cnv_deleted Condition variable was deleted

vm_syn_error vm_syn_cnv_mutex_deleted Condition variable and mutex were deleted

vm_syn_error vm_syn_mutex_not_reacquired The mutex associated with this condition
variable could not be reacquired.

vm_syn_error vm_syn_mutex_not_held Condition variable is not waited on because
thread does not hold the mutex associated
with this condition variable

vm_syn_warning vm_syn_indeterminate_state Resource protected by mutex may be in an
indeterminate state

CondVarWait

Chapter 13. CMS Multitasking Function Descriptions 111

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

CondVarWait

112 z/VM: 7.3 CMS Application Multitasking

DateTimeGet — Query Time and Date

DateTimeGet
retcode
reascode
format
date
zone
epoch

Purpose
Use the DateTimeGet function to return the date, time, time zone, and epoch time (the number of seconds
since the system's standard epoch). The date and time formats for the United States, Europe, and the
International Standards Organization (ISO) are supported.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
format

(input,INT,4) is a variable for specifying the format in which the date and time should be represented.
Values are as follows:

Variable Format Date Time

vm_tmr_format_usa United States MM/DD/YYYY HH:MM:SS

vm_tmr_format_eur European DD.MM.YYYY HH.MM.SS

vm_tmr_format_iso ISO YYYY-MM-DD HH.MM.SS

date
(output,CHAR,10) is a variable where the function returns the date in the format specified on the
format parameter.

time
(output,CHAR,8) is a variable where the function returns the time, in 24-hour clock notation, in the
format specified on the format parameter.

zone
(output,CHAR,3) is a variable where the function returns the time zone (as returned by CP QUERY
TIME, for example, EDT or PST).

epoch
(output,INT,4) is a unsigned variable where the function returns the number of seconds since the
standard epoch (as computed from the value returned by the STORE CLOCK (STCK) instruction).

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success DateTimeGet. completed successfully

DateTimeGet

Chapter 13. CMS Multitasking Function Descriptions 113

Return Code Reason Code Meaning

vm_tmr_error vm_tmr_cpqtime_failed CP QUERY TIME failed

vm_tmr_error vm_tmr_format_invalid Invalid format specification

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

DateTimeGet

114 z/VM: 7.3 CMS Application Multitasking

DateTimeSubtract -- Compute Time Differences

DateTimeSubtract
retcode
reascode
minuend_stamp
minuend_stamp_length
minuend_stamp_format
minuend_stamp_bias
minuend_stamp_window_type
minuend_stamp_window_position
subtrahend_stamp
subtrahend_stamp_length
subtrahend_stamp_format
subtrahend_stamp_bias
subtrahend_stamp_window_type
subtrahend_stamp_window_position
difference_stamp_buffer
difference_stamp_buffer_size
difference_stamp_length
difference_stamp_format
difference_stamp_bias
difference_stamp_window_type
difference_stamp_window_position

Purpose
Use the DateTimeSubtract function to compute differences of times. DateTimeSubtract performs time
format conversions and time zone conversions as part of the calculation process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
minuend_stamp

(input,CHAR,minuend_stamp_length) is a variable for specifying the minuend stamp. The minuend is
the first term in the time subtraction expression.

minuend_stamp_length
(input,INT,4) is a variable for specifying the length of minuend_stamp.

minuend_stamp_format
(input,INT,4) is a variable for specifying a value that indicates the format of minuend_stamp.

minuend_stamp_bias
(input,INT,4) is a variable for specifying a bias value to be applied to minuend_stamp as part of the
time calculation.

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 115

minuend_stamp_window_type
(input,INT,4) is a variable for specifying a value that indicates the type of window for the minuend
year. The values are:
vm_tmr_window_fixed

0
vm_tmr_window_sliding

1
minuend_stamp_window_position

(input,INT,4) is a variable for specifying a value that indicates the position of the window for the
minuend year.

subtrahend_stamp
(input,CHAR,subtrahend_stamp_length) is a variable for specifying the subtrahend stamp. The
subtrahend is the term to be subtracted from the minuend in the time subtraction expression.

subtrahend_stamp_length
(input,INT,4) is a variable for specifying the length of subtrahend_stamp.

subtrahend_stamp_format
(input,INT,4) is a variable for specifying a value that indicates the format of subtrahend_stamp.

subtrahend_stamp_bias
(input,INT,4) is a variable for specifying a bias value to be applied to subtrahend_stamp as part of the
time calculation.

subtrahend_stamp_window_type
(input,INT,4) is a variable for specifying a value that indicates the type of window for the subtrahend
year. The values are:
vm_tmr_window_fixed

0
vm_tmr_window_sliding

1
subtrahend_stamp_window_position

(input,INT,4) is a variable for specifying a value that indicates the position of the window for the
subtrahend year.

difference_stamp_buffer
(output,CHAR,difference_stamp_buffer_size) is a variable where the function stores the difference
stamp, which is the value that results from the time calculation.

difference_stamp_buffer_size
(input,INT,4) is a variable for specifying the size in bytes of difference_stamp_buffer.

difference_stamp_length
(output,INT,4) is a variable where the function stores the length of the difference stamp.

difference_stamp_format
(input,INT,4) is a variable for specifying a value that indicates the format which the difference stamp
should be expressed.

difference_stamp_bias
(input,INT,4) is a variable for specifying a bias value to be applied to the difference stamp after the
time calculation is complete.

difference_stamp_window_type
(input,INT,4) is a variable for specifying a value that indicates the type of window for the difference
year. The values are:
vm_tmr_window_fixed

0
vm_tmr_window_sliding

1

DateTimeSubtract

116 z/VM: 7.3 CMS Application Multitasking

vm_tmr_window_none
2

difference_stamp_window_position
(input,INT,4) is a variable for specifying a value that indicates the position of the window which the
difference year is expected to reside.

Usage Notes
General Information

1. In a subtraction expression, the minuend is the first term, the subtrahend is the second term, and the
difference is the result. For example, in the expression 5-3=2, 5 is the minuend, 3 is the subtrahend,
and 2 is the difference.

2. Leap seconds are not accounted for in any of DateTimeSubtract's calculations.
3. DateTimeSubtract supports all the REXX DATE() formats except for Century, Days, Month, and
Weekday. CP, CMS, CSL, CMS Pipelines, and certain other selected formats are also supported.

For more information on a related routine that performs operations, see the DATECONVERT stage in
z/VM: CMS Pipelines User's Guide and Reference.

4. For examples of using DateTimeSubtract, see “DateTimeSubtract Examples” on page 60.

Formats

1. The minuend, subtrahend, and difference can each be expressed or requested in a variety of formats.
Certain formats are absolute; that is, they accommodate a reference to a specific moment in time.
Certain other formats are relative; that is, they accommodate a reference to a certain amount of time.
Input parameters minuend_stamp_format, subtrahend_stamp_format, and difference_stamp_format
accept format identifiers as identified in Table 18 on page 117.

The abbreviations used in the table heading have these meanings:
ID

Format identifier. All format IDs begin with vm_tmr_format.
RT

Record type: fixed or variable.
SL

Stamp length.
FT

Format type: absolute or relative.

Input stamps must comply with the syntax rules given in Table 18 on page 117, in particular:

• Extraneous blanks (leading, trailing, or intermediate) are not accepted. For example, a stamp of
format vm_tmr_format_iso must have exactly one space between the date and the time; multiple
spaces will produce a conversion error.

• If a format does not accept leading zeroes in a field, supplying leading zeroes in that field will result
in a conversion error. For example, format vm_tmr_format_rexx_date_n requires January 1, 1997 to
be expressed as 1 Jan 1997, not 01 Jan 1997.

Table 18. Formats and Format Identifiers

ID Syntax RT SL FT

_csl yyyyyyy/mm/dd hh:mm:ss.uuuuuu V 29 A

_db2 yyyyyyy-mm-dd-hh.mm.ss.uuuuuu

This is the date format used by DB2® for VM and
VSE.

V 29 A

_eur dd.mm.yyyyyyy hh:mm:ss.uuuuuu V 29 A

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 117

Table 18. Formats and Format Identifiers (continued)

ID Syntax RT SL FT

_iso yyyyyyy-mm-dd hh:mm:ss.uuuuuu V 29 A

_julian yyyyyyy.ddd hh:mm:ss.uuuuuu V 27 A

_normal dd mmm yyyyyyy hh:mm:ss.uuuuuu

Where:
dd

specifies the day of the month.

Leading zeroes in the day field are accepted
on input and will be supplied on output.

mmm
specifies the three-letter text month.

The accepted values are:

Jan Feb Mar
Apr May Jun
Jul Aug Sep
Oct Nov Dec

Case is not significant.

yyyyyyy
specifies the one- to seven-digit year.

V 30 A

_rexx_date_e_long dd/mm/yyyyyyy hh:mm:ss.uuuuuu V 29 A

_usa mm/dd/yyyyyyy hh:mm:ss.uuuuuu V 29 A

_rexx_date_j_long yyyyddd hh:mm:ss.uuuuuu V 23 A

_pipe
_rexx_date_s

yyyymmddhhmmssuuuuuu V 20 A

_rexx_date_n dd mmm yyyy hh:mm:ss.uuuuuu

Where:
dd

specifies the day of the month.

The day does not accept leading zeroes on
input and does not produce leading zeroes
on output.

mmm
specifies the month.

The accepted values for the month are the
ones defined for format _normal, with the
additional restriction that case is significant.

yyyy
specifies the four-digit year.

V 27 A

_csl_short
_rexx_date_o

yy/mm/dd hh:mm:ss.uuuuuu V 24 A

_db2_short yy-mm-dd-hh.mm.ss.uuuuuu V 24 A

DateTimeSubtract

118 z/VM: 7.3 CMS Application Multitasking

Table 18. Formats and Format Identifiers (continued)

ID Syntax RT SL FT

_eur_short dd.mm.yy hh:mm:ss.uuuuuu V 24 A

_iso_short yy-mm-dd hh:mm:ss.uuuuuu V 24 A

_julian_short yy.ddd hh:mm:ss.uuuuuu V 22 A

_pipe_short yymmddhhmmssuuuuuu V 18 A

_rexx_date_e dd/mm/yy hh:mm:ss.uuuuuu V 24 A

_rexx_date_j yyddd hh:mm:ss.uuuuuu V 21 A

_rexx_date_n_short dd mmm yy hh:mm:ss.uuuuuu

Where:
dd

specifies the day of the month.
mmm

specifies the month.
yy

specifies the two-digit year.

The dd and mmm fields are as defined for format
_rexx_date_n.

V 25 A

_usa_short
_rexx_date_u

mm/dd/yy hh:mm:ss.uuuuuu V 24 A

_rexx_date_b dddddddddd hh:mm:ss.uuuuuu V 26 A

_scientific_absolute Eight-byte value containing two signed four-byte
binary integers.

The first integer is the number of whole days
(that is, 24-hour units) that have elapsed
between January 1, 4713 BC, noon, Coordinated
Universal Time (UTC) and the moment being
expressed. (This is called the Julian day
number.) The second integer is the number
of milliseconds to be added to the Julian day
number to reach the moment being expressed.

The first integer must be greater than or equal
to zero. The second integer must be greater than
or equal to zero and less than the number of
milliseconds in a day (86400000).

F 8 A

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 119

Table 18. Formats and Format Identifiers (continued)

ID Syntax RT SL FT

_tod_absolute Unsigned doubleword indicating the number of
TOD clock units that have elapsed between
the standard epoch and the moment being
expressed.

A TOD clock unit is a unit of time, just as minutes,
seconds, and hours are units of time; there are
4096 TOD clock units in a microsecond.

The standard epoch is the moment at which
the TOD clock would have read X'00000000
00000000'. On z/VM systems the standard
epoch is January 1, AD 1900, 00:00:00 UTC.

This format is exactly the format of the output of
the STORE CLOCK (STCK) instruction.

F 8 A

_posix Unsigned doubleword indicating the number of
seconds since the POSIX epoch (this is defined
according to the IEEE Standard 1003.1). The
POSIX epoch is January 1, AD 1970, 00:00:00
UTC.

F 8 A

_met [-]dddddddddd/hh:mm:ss.uuuuuu V 27 R

_hms hhhhhhhhhh:mm:ss.uuuuuu V 23 R

_rexx_time_l hh:mm:ss.uuuuuu V 15 R

_rexx_time_e ssssssssss.uuuuuu V 17 R

_scientific_relative Eight-byte value containing two signed four-byte
binary integers and specifying an amount of time
rather than a specific date.

The first integer is a number of whole days
(that is, 24-hour units). The second integer
represents a fractional day and is the number of
milliseconds to be added to the whole day count.

There are no constraints on the value of the first
integer. The second integer must be greater than
or equal to zero and less than the number of
milliseconds in a day (86400000).

F 8 R

_tod_relative Signed doubleword specifying an amount of time
rather than a specific date. Specified in TOD
clock units.

F 8 R

2. For fixed-length formats, the minuend and subtrahend stamps must be supplied with at least the
length shown in Table 18 on page 117. Also, the difference buffer must be at least as long as the
length shown, and the produced stamp will have exactly the length shown.

3. For varying-length formats, the minuend and subtrahend can be supplied with any positive length.
The caller can omit any part of the hh:mm:ss.uuuuuu portion of the stamp; however, if any field is
omitted, all fields to the right of it must also be omitted. Omitted fields are taken as zero.

4. When the difference is to be expressed in a varying-length format, as much of the computed
difference as can fit is returned in the difference buffer, subject to the constraint that the last integer
field supplied in the difference buffer is never truncated to fit. If the entire difference stamp cannot

DateTimeSubtract

120 z/VM: 7.3 CMS Application Multitasking

be placed in the difference buffer, a warning is returned. The length of a full-length difference is
shown in Table 18 on page 117.

5. For the string formats (such as vm_tmr_format_usa_short), a minuend or subtrahend can be specified
with leading zeroes omitted. For example, 4/2/1995 0:0:0 is accepted input for the format
vm_tmr_format_usa.

6. For the string formats, DateTimeSubtract usually produces a difference that contains the appropriate
number of leading zeroes in each field. The exceptions are these fields, which never contain leading
zeroes on output:

• A seven-digit year field
• The day fields of formats vm_tmr_format_rexx_date_n and vm_tmr_format_rexx_date_n_short
• The day fields of vm_tmr_format_met and vm_tmr_format_rexx_date_b
• The hours field of vm_tmr_format_hms
• The seconds field of vm_tmr_format_rexx_time_e

7. For all of the following fields, the caller may supply up to ten digits of information, provided the
number supplied fits without overflow in a signed fullword:

• Day fields of vm_tmr_format_rexx_date_b and vm_tmr_format_met
• Hours field of vm_tmr_format_hms
• Seconds field of vm_tmr_format_rexx_time_e

8. Table 19 on page 121 gives the lower and upper bounds for each supported format.

Table 19. Format Limits

Date Format All format IDs begin
with vm_tmr_format

Lower Bound Upper Bound

DateTimeSubtract's internal limits
(absolute formats)

1 Jan 4713 BC 00:00:00
UTC

4 Jun AD 5874898 00:00:00 UTC
minus one TOD unit

_scientific_absolute X'00000000 00000000' 1
Jan 4713 BC 12:00:00 UTC

X'7FFFFFFF 02932DFF' 3 Jun AD
5874898 23:59:59.999 UTC

_tod_absolute X'00000000 00000000' 1
Jan AD 1900 00:00:00 UTC

X'FFFFFFFF FFFFFFFF' 17 Sep AD
2042 23:53:47.370495 UTC plus 4095
TOD units

_posix X'00000000 00000000' 1
Jan AD 1970 00:00:00 UTC

X'0000A88E E75BEDFF' 3 Jun AD
5874898 23:59:59 UTC

Absolute string formats containing
seven-digit year fields

1 Jan AD 0001 00:00:00
UTC

31 Dec AD 5873999 23:59:59.999999
UTC

Absolute string formats containing
four-digit year fields

1 Jan AD 0001 00:00:00
UTC

31 Dec AD 9999 23:59:59.999999
UTC

Absolute string formats containing
two-digit year fields

Note: You must use a window to
achieve these limits.

1 Jan AD 0001 00:00:00
UTC

31 Dec AD 5873999 23:59:59.999999
UTC

_rexx_date_b 639796 00:00:00 UTC 14
Sep AD 1752

2145762221 23:59:59.999999 3 Jun
AD 5874898

DateTimeSubtract's internal limits
(relative formats)

-2147483648 days 2147483648 days minus one TOD unit

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 121

Table 19. Format Limits (continued)

Date Format All format IDs begin
with vm_tmr_format

Lower Bound Upper Bound

_tod_relative X'80000000 00000000'
-(2**51) microseconds
(approximately -26062.5
days)

X'7FFFFFFF FFFFFFFF' 2**51
microseconds minus one TOD unit
(approximately 26062.5 days)

_scientific_relative X'80000000 00000000'
-2147483648 days

X'7FFFFFFF 05265BFF' 2147483647
days plus 23:59:59.999

_met -2147483648
00:00:00.000000

2147483647 23:59:59.999999

_rexx_time_l 00:00:00.000000 99:59:59.999999

_rexx_time_e 0000000000.000000 2147483647.999999

_hms 0:00:00.000000 2147483647:59:59.999999

9. The accepted formats for the subtrahend stamp and difference stamp are a function of the format
in which the minuend stamp is expressed. In other words, some combinations of time formats are
meaningless in the context of time arithmetic. For example, the expression "23 days - (minus) April
15, 1936" means nothing. Table 20 on page 122 illustrates the combinations of relative and absolute
formats that are accepted.

Table 20. Supported Combinations of Formats

Minuend Subtrahend Difference

Absolute Absolute Relative

Absolute Relative Absolute

Relative Relative Relative

Attempts to use any other combinations of absolute and relative formats result in an error return and
reason code being produced and no arithmetic being performed.

10. The only format capable of expressing a BC year is vm_tmr_format_scientific_absolute. An attempt to
place a BC year in any other format results in a conversion error being returned.

Using Bias

1. Nearly all of the absolute formats express dates and times relative to a certain time zone. For example,
format vm_tmr_format_iso gives us a date and a time, but it still fails to express an exact moment
in time because it doesn't tell us the time zone with respect to which the date and time should be
interpreted. To see this ambiguity more clearly, note, for example, that the moment "1997-11-03
00:00:00" occurs one hour later in Chicago than it does in Washington.

To overcome this, DateTimeSubtract requires most absolute formats to be qualified with an integer,
called the bias value. The bias value is expressed in seconds and reflects the difference between
the time zone of the stamp and Coordinated Universal Time (UTC); negative values are west of
UTC, and positive values are east of UTC. For example, if minuend_stamp is meant to express an
Eastern Standard Time (EST) stamp, then you should set minuend_stamp_bias to -18000 (which is
-5*60*60), because EST is five hours west of UTC. Similarly, if you want DateTimeSubtract to produce
the difference stamp in Pacific Standard Time, then you should set difference_stamp_bias to -28800
(which is -8*60*60).

Whenever DateTimeSubtract requires you to supply a bias value, you may set the bias value to
constant vm_tmr_bias_local to cause DateTimeSubtract to use the bias value for the time zone of your
system. This feature gives you an easy way to work with stamps expressed in local time. When you use

DateTimeSubtract

122 z/VM: 7.3 CMS Application Multitasking

this feature, DateTimeSubtract uses the time zone offset returned by DIAG X'00' as the stamp's bias
value.

Of course, the notion of bias value does not apply to relative formats. Further, certain absolute formats
are defined in such a way that time zone phenomena do not come into play. To summarize, bias value
is meaningless for all of the following formats:

• Any relative format (such as vm_tmr_format_met)
• Format vm_tmr_format_tod_absolute
• Format vm_tmr_format_scientific_absolute
• Format vm_tmr_format_posix

Using a Window

1. To cope with two-digit years, DateTimeSubtract supports two different window schemes. These
techniques let the caller who provides a two-digit input year (such as 12/25/93) specify an additional
numeric value from which DateTimeSubtract can deduce the year's century digits. The two techniques
are fixed window and sliding window.

• Fixed Window Technique: In this technique, a given two-digit year is assumed to reside in the
100-year span [by,by+99], where integer by, called the base year, is specified separately by the
caller. For example, if the two-digit year 93 is interpreted according to by=1995, the window is
[1995,2094], and 93 is taken to mean 2093. However, if by=1970, then the window is [1970,2069],
and 93 is taken to mean 1993.

• Sliding Window Technique: In this technique, a given two-digit year is assumed to reside in the
100-year span [cy+n,cy+n+99], where integer cy is the current year—that is, the year at the moment
of the call—and n is a constant added to the current year to indicate the first year of the window.
For example, if the two-digit year 93 is interpreted according to cy=1995 and n=-10, the window
is [1985,2084], and 93 is taken to mean 1993. However, if cy=1995 and n=0, then the window is
[1995,2094], and 93 is taken to mean 2093.

To support a sliding window, DateTimeSubtract samples the current year by performing a STORE
CLOCK (STCK) instruction and then calculating the current year from the STCK result. There are some
considerations to be remembered for this calculation, namely:

– The "current year" computed is the current year of the zone of the stamp being manipulated, not
the current year of the zone which the calculation is occurring and not the current year of UTC.
For example, if on January 1, 1996, at 00:00:01 Eastern Standard Time (EST) a DateTimeSubtract
function in Washington, DC runs the sliding window algorithm for evaluating a two-digit-year
Pacific Standard Time (PST) stamp, the current year is taken to be 1995, not 1996, because the
stamp being manipulated is a PST stamp and at that moment the current year in PST is still 1995.

– The sliding window computation works correctly only if your system's hardware TOD clock epoch
is January 1, AD 1900, 00:00:00 UTC. If your system's hardware TOD clock is set for some other
epoch (for example, if your hardware TOD clock is set to local time instead of UTC), then the
two-digit-year window calculations DateTimeSubtract performs might produce incorrect results
under some conditions.

In calls to DateTimeSubtract, the window for each stamp (minuend, subtrahend, and difference)
is characterized separately, using the stamp's _window_type and _window_position parameters, as
follows:

• To cause DateTimeSubtract to use the fixed-window technique to interpret a stamp with a two-digit
year:

a. Set the stamp's _window_type parameter equal to constant vm_tmr_window_fixed.
b. Set the stamp's _window_position parameter equal to the base year.

• To cause DateTimeSubtract to use the sliding window technique to interpret a stamp with a two-digit
year:

a. Set the stamp's _window_type parameter equal to constant vm_tmr_window_sliding.

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 123

b. Set the stamp's _window_position parameter equal to the offset of the window's start from the
current year.

For example, to cause a two-digit-year subtrahend to be interpreted according to the sliding
window [cy-50,cy+49], set subtrahend_stamp_window to -50.

No matter whether you use the fixed-window or sliding-window technique, be careful to ensure that
the 100-year window you are characterizing resides entirely within AD years. In other words, the
beginning year of your 100-year interval must be greater than zero. Also, the beginning year must be
less than or equal to 5873900. DateTimeSubtract will return a conversion error if these conditions are
not met.

When the caller wishes the difference to be expressed in two-digit-year notation, several choices are
available:

• The caller can use difference_stamp_window_type and difference_stamp_window_position to specify
a 100-year fixed or sliding window, the same way as for a two-digit-year input. Here, after the
calculation is complete, DateTimeSubtract examines the difference year and decides whether the
difference year lies within the 100-year window expressed by the caller. If the year is within
the window, then DateTimeSubtract encodes the output string with a two-digit year. Otherwise,
DateTimeSubtract returns an error indicating that the difference year does not lie within the caller's
difference window.

• If the caller does not wish to specify a window for the difference, but wants instead just to have
DateTimeSubtract arbitrarily leave out the century digits on the year portion of the difference stamp,
then the caller can specify vm_tmr_window_none in parameter difference_stamp_window_type.
For this case, there is no "difference window" per se, any input supplied in parameter
difference_stamp_window_position is ignored, and DateTimeSubtract just leaves out the century
digits when it builds the difference stamp.

When the difference is to be expressed using a fixed or sliding window, the 100-year window you
characterize must reside entirely within AD years. In other words, the beginning year of the 100-year
interval must be greater than zero. Also, the beginning year must be less than or equal to 5873900.
DateTimeSubtract will return a conversion error if this condition is not met.

If a stamp is expressed in a non-two-digit-year format, then DateTimeSubtract ignores the stamp's
_window_type and _window_position parameters.

Converting Formats and Time Zones

To convert the format or time zone of a stamp without doing any time calculation, just specify the time to
be converted as the minuend and:

• specify a relative-format subtrahend of zero, or
• set subtrahend_stamp_length to zero.

DateTimeSubtract produces the converted stamp as the difference.

Computing a Time Sum

DateTimeSubtract can compute a time sum if you specify a negative relative-format subtrahend. This
works only for subtrahend formats vm_tmr_format_scientific_relative, vm_tmr_format_tod_relative, and
vm_tmr_format_met. To specify a negative amount in format:

• vm_tmr_format_scientific_relative, make the first word less than zero. DateTimeSubtract adds the two's-
complement of the first word to the minuend as whole days, then adds the two's-complement of the
second word as milliseconds to that interim sum.

• vm_tmr_format_tod_relative, just use the conventional two's-complement notation for signed
doublewords.

• vm_tmr_format_met, just prefix the amount with a minus sign.

Precision of Arithmetic

When performing arithmetic, DateTimeSubtract converts each input to an internal form capable of
representing time stamps to a resolution of one TOD clock unit. The arithmetic is performed on this

DateTimeSubtract

124 z/VM: 7.3 CMS Application Multitasking

internal form and the computed difference is then converted to the desired output. If the output format is
not capable of representing time information to TOD-clock-unit precision, then the difference is rounded
to the nearest increment expressible in the format which the difference was requested. For example, if
the output is requested in one of the scientific time formats, the difference is rounded to the nearest
millisecond.

Julian and Gregorian Calendars

DateTimeSubtract assumes the switch from the Julian calendar to the Gregorian calendar occurred on
September 14, 1752 (Gregorian). In other words,

• All dates labeled September 2, 1752 and earlier are reckoned using the Julian calendar.
• All dates labeled September 14, 1752 and later are reckoned using the Gregorian calendar.
• The day immediately after the day labeled September 2, 1752 is labeled September 14, 1752.

The Gregorian calendar was instituted by Pope Gregory in the year 1582 to bring the calendar back into
alignment with astronomical phenomena (the equinox and solstice). It achieved the realignment by taking
two actions:

• The definition of a leap year was changed. In the Julian calendar, every year divisible by 4 is a leap year;
this rule had been injecting too many leap days, causing the calendar to fall behind. In the Gregorian
calendar, the Julian leap year rule applies, except that a year divisible by 100 must also be divisible by
400 to be a leap year.

• To bring the calendar date back into alignment with the earth (in other words, to compensate for the
excess number of leap days inserted by the Julian rule), ten days were omitted. The first date of the
Gregorian calendar is October 15, 1582, and that day corresponds to October 5, 1582 on the Julian
calendar. In other words, the day after October 4, 1582 was October 15, 1582 according to Pope
Gregory.

The Gregorian calendar was adopted at different times in different parts of the world, some as late as
1923. Depending upon when a municipality adopted the Gregorian calendar, the number of days needing
to be dropped differed. Pope Gregory had to drop only 10 days when he switched his calendar in 1582,
but by 1752, due to an extra Julian leap day having been inserted in 1700, it was necessary to drop 11
days when changing from the Julian calendar to the Gregorian calendar.

On the calendar used by DateTimeSubtract, the days are labeled like this:

 ⋮
August 31, 1752
September 1, 1752
September 2, 1752
September 14, 1752
September 15, 1752
September 16, 1752
 ⋮

Notice that the day immediately after September 2, 1752 is September 14, 1752. The dates September
3, 1752 through September 13, 1752 simply do not exist, and DateTimeSubtract never produces them as
output.

However, it is possible that the caller might supply one of these dates on input. DateTimeSubtract does
not reject these dates as not valid input, but rather it interprets them according to Gregorian rules. For
example, if you specify September 13, 1752 as input, DateTimeSubtract reckons it as the day before
September 14, 1752, namely, September 2, 1752 on the DateTimeSubtract calendar.

Table 21 on page 125 summarizes DateTimeSubtract's reckoning of the dates in this period.

Table 21. DateTimeSubtract's Reckoning Dates

Input Date DateTimeSubtract's Reckoning

September 13, 1752 September 2, 1752

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 125

Table 21. DateTimeSubtract's Reckoning Dates (continued)

Input Date DateTimeSubtract's Reckoning

September 12, 1752 September 1, 1752

September 11, 1752 August 31, 1752

September 10, 1752 August 30, 1752

September 9, 1752 August 29, 1752

September 8, 1752 August 28, 1752

September 7, 1752 August 27, 1752

September 6, 1752 August 26, 1752

September 5, 1752 August 25, 1752

September 4, 1752 August 24, 1752

September 3, 1752 August 23, 1752

If you perform subtractions using September 3, 1752 through September 13, 1752 as one of the inputs,
the output you get might not be what you expect. For example, all of these statements are true:

September 8, 1752 - 1 day = August 27, 1752
September 6, 1752 - 3 days = August 23, 1752
September 5, 1752 - August 25, 1752 = 0 days

Be careful of this property when manipulating dates that do not exist on DateTimeSubtract's calendar.

In addition, callers using format vm_tmr_format_rexx_date_b need to remember that the REXX function
DATE('B') assigns all its day numbers, including those on or before September 2, 1752, using Gregorian
calendar rules. Because of this, DateTimeSubtract considers 639,796—the DATE('B') value corresponding
to Gregorian date September 14, 1752—to be the minimum accepted value in dates using format
vm_tmr_format_rexx_date_b. Attempts to use values less than this threshold result in a format or
conversion error being returned.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success DateTimeSubtract completed successfully.

vm_tmr_warning vm_tmr_dif_truncated The computed difference stamp was truncated
to fit into difference_stamp_buffer.

vm_tmr_error vm_tmr_bad_min_format Input parameter minuend_stamp_format
contains an unrecognized value.

vm_tmr_error vm_tmr_bad_sub_format Input parameter subtrahend_stamp_format
contains an unrecognized value.

vm_tmr_error vm_tmr_bad_dif_format Input parameter difference_stamp_format
contains an unrecognized value.

vm_tmr_error vm_tmr_bad_format_combination Arithmetic is not possible on operands whose
formats are the ones you specified.

vm_tmr_error vm_tmr_bad_min_window_type Parameter minuend_stamp_window_type
contains an unrecognized value.

vm_tmr_error vm_tmr_bad_sub_window_type Parameter subtrahend_stamp_window_type
contains an unrecognized value.

DateTimeSubtract

126 z/VM: 7.3 CMS Application Multitasking

Return Code Reason Code Meaning

vm_tmr_error vm_tmr_bad_dif_window_type Parameter difference_stamp_window_type
contains an unrecognized value.

vm_tmr_error vm_tmr_min_conversion_error The minuend contains syntax or specification
error and therefore could not be converted to
the form necessary for arithmetic.

vm_tmr_error vm_tmr_sub_conversion_error The subtrahend contains syntax or
specification error and therefore could not
be converted to the form necessary for
arithmetic.

vm_tmr_error vm_tmr_dif_conversion_error The difference was computed but could not be
expressed in the format requested.

vm_tmr_error vm_tmr_bad_min_length The value for minuend_stamp_length is
inappropriate for the given value of
minuend_stamp_format.

vm_tmr_error vm_tmr_bad_sub_length The value for subtrahend_stamp_length
is inappropriate for the given value of
subtrahend_stamp_format.

vm_tmr_error vm_tmr_bad_dif_length The value for difference_stamp_buf_size
is inappropriate for the given value of
difference_stamp_format.

vm_tmr_error vm_tmr_dif_wraparound The arithmetic was performed but resulted in
either an arithmetic overflow or an arithmetic
underflow. A meaningful difference could not
be formed.

Programming Language Bindings

Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

DateTimeSubtract

Chapter 13. CMS Multitasking Function Descriptions 127

EventCreate — Create an Event Definition

EventCreate
retcode
reascode
event_name
event_name_length
event_flag
event_flag_size
loose_signal_limit
signal_timeout_period

Purpose
Use the EventCreate function to register the name of an event and specify how that event is to be
managed.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
event_name

(input,CHAR,event_name_length) is a variable for specifying the name of the event being defined.
event_name_length

(input,INT,4) is a variable for specifying the length of event_name.
event_flag

(input,INT,event_flag_size) is an array of 4-byte variables, each element of which contains information
about how the event is to be managed. Only one option from each of the following sets may be
specified. If no option from a particular set is specified, the default is taken.

• Scope of the event name
vm_evn_process_scope

Process (the default) — only this process can monitor this event and only this process can signal
this event.

vm_evn_session_scope
Session — all processes in the session can both monitor and signal this event.

• Manner in which an event signal is delivered to multiple event monitors in a process
vm_evn_broadcast_signals

Broadcast (the default) — the signal is simultaneously delivered to all qualifying monitors.
vm_evn_fifo_signals

FIFO sequence — the signal is delivered to one qualifying monitor at a time, in the order the
monitors were created.

vm_evn_lifo_signals
LIFO sequence — the signal is delivered to one qualifying monitor at a time, in the inverse order
of their creation.

• The treatment of the signaler

EventCreate

128 z/VM: 7.3 CMS Application Multitasking

vm_evn_async_signals
The signaling thread is allowed to continue executing (the default).

vm_evn_sync_thread_signals
The signaling thread is suspended until signal processing is complete. Signal processing in a
process is considered complete when all qualifying monitors have completed processing of the
signal or, if there are no qualifying monitors, the signal has been discarded as a result of being
the oldest loose signal when the loose signal limit was exceeded.

A monitor is considered to have completed processing a signal when that signal has become
part of the current signal set of the monitor and that monitor has subsequently been reset.
For FIFO and LIFO events, a bound signal may be explicitly discarded through EventDiscard or
implicitly discarded if it is the oldest bound signal when the bound signal limit of the event list
entry to which it is bound is exceeded. In either case, the processing of the discarded signal by
that process is considered complete. If this is a session level event, all processes must complete
processing before signal processing is considered complete.

vm_evn_sync_process_signals
All threads currently existing in the signaling process, with the exception of those threads
running as the result of a monitor activated by this signal, are suspended to await the outcome
of event processing. Threads running as the result of monitor activation may create additional
threads that are not initially suspended. Upon monitor reset, however, the additional threads are
treated as any other thread.

event_flag_size
(input,INT,4) is a variable for specifying the number of elements in the event_flag array.

loose_signal_limit
(input,INT,4) is a variable for specifying the number of event signals that may be retained if no eligible
event monitor exists to which to bind the signal at the time the event is signaled. When the limit
is exceeded, the oldest loose signal is discarded to make room for the newest arrival. A value of 0
indicates that no loose signals are to be retained. A value of -1 means that the loose signal list is
allowed to grow without limit, subject to the availability of virtual storage. Any other negative value is
considered an error.

signal_timeout_period
(input,INT,4) is a variable for specifying the maximum length of time, in microseconds, that a signaling
thread should remain suspended awaiting the completion of processing of the signal. A value of 0
indicates that the signaling thread should wait indefinitely for the completion of signal processing. If
the event is created such that the signaling thread is to continue processing, then this parameter is
ignored.

Usage Notes
1. There is no restriction on the character composition of an event name. The length of an event name

may not exceed 16MB. By convention, system event names consist of uppercase and lowercase
alphabetic, numeric, and break characters, and have a maximum length of 24 bytes.

2. If the event name has session-level scope, the event may be signaled or monitored in any process in
the session, and each signal is delivered to each eligible monitor in any process in the session. Such an
event name must be unique among all event names known anywhere in the session.

3. If the event name has process-level scope, it may be signaled and monitored only in the process in
which it was created, and each signal is delivered only to each eligible monitor in that process. Such
an event name need only be unique within the creating process, however, and there may be multiple
instances of an event definition with process-level scope in a session.

4. Signal propagation rules are applied on a process basis. When qualifying event handlers exist in
several processes, the signal is always delivered to at least one event monitor in each process.

EventCreate

Chapter 13. CMS Multitasking Function Descriptions 129

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventCreate completed successfully

vm_evn_error vm_evn_dup_name Event_name is already defined

vm_evn_error vm_evn_bad_name_len Event_name_length is less than or equal to 0

vm_evn_error vm_evn_name_too_long Event_name_length is too large

vm_evn_error vm_evn_bad_flag Event_flag array contains an unrecognized
value

vm_evn_error vm_evn_bad_flag_size Event_flag_size is less than 0

vm_evn_error vm_evn_bad_limit Loose_signal_limit is invalid

vm_evn_error vm_evn_bad_time Signal_timeout_period is less than 0

vm_evn_error vm_evn_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventCreate

130 z/VM: 7.3 CMS Application Multitasking

EventDelete — Delete an Event Definition

EventDelete
retcode
reascode
event_name
event_name_length

Purpose
Use the EventDelete function to delete a previously created event.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
event_name

(input,CHAR,event_name_length) is a variable for specifying the name of the event whose definition is
being deleted.

event_name_length
(input,INT,4) is a variable for specifying the length of event_name.

Usage Notes
1. Upon event deletion, all signals of that event not in the current signal set of an active monitor are

discarded.
2. Upon event deletion, all inactive monitors of the event with outstanding waits or traps are activated,

regardless of their selection or enablement status.
3. Monitors active at the time of event deletion are unaffected. If such a monitor has a trap routine

defined for it, the trap routine is run immediately upon the resetting of the monitor. Subsequent
invocations of the EventWait and EventTest functions indicate that the event has been deleted.

4. If the condition defined by any monitors of the deleted event can no longer be satisfied, subsequent
invocations of the EventWait, EventTest, or EventTrap function against such monitors indicate that the
monitor can never be satisfied.

5. Only the process that created the event definition may delete it. An attempt to delete an event
definition created by another process is considered an error.

6. During process termination, all event definitions created by the terminating process are deleted.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventDelete completed successfully

vm_evn_error vm_evn_no_name Event_name is not defined

vm_evn_error vm_evn_bad_name_len Event_name_length is less than 0, equal to 0,
or greater than 16M.

vm_evn_error vm_evn_not_authorized Requestor is ineligible to delete event_name

EventDelete

Chapter 13. CMS Multitasking Function Descriptions 131

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventDelete

132 z/VM: 7.3 CMS Application Multitasking

EventDiscard — Inhibit Further Propagation of Signals

EventDiscard
retcode
reascode
monitor_token
index

Purpose
Use the EventDiscard function to prevent signals in the current signal set of an event monitor from being
propagated to successive event monitors. It is effective only for events defined to have sequential signal
propagation.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the monitor from whose current
signal set a signal is to be discarded. A value of 0 may be used to identify the active event monitor
most recently activated on the current thread.

index
(input,INT,4) is a variable for specifying, as an index into the event list specified in the creation of the
event monitor, the event list entry corresponding to the signal to be discarded. A value of 0 indicates
that all signals in the current signal set are to be discarded.

Usage Notes
1. Discarding a signal of an event defined for broadcast delivery has no effect other than removing that

signal from the current signal set because the signal has already been delivered to all qualifying event
monitors.

2. Signal propagation rules are applied on a process basis. When qualifying event handlers exist in
several processes, the signal is always delivered to at least one event monitor in each process.

3. If EventDiscard is issued against an event monitor which is not active, or if monitor_token is specified
as 0 and no monitor is active on the current thread, an error return code is generated and no other
action is taken.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventDiscard completed successfully

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_monitor_inactive Specified monitor is not active

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_bad_index Index is out of range

EventDiscard

Chapter 13. CMS Multitasking Function Descriptions 133

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventDiscard

134 z/VM: 7.3 CMS Application Multitasking

EventEnable — Enable or Disable for Specific Events

EventEnable
retcode
reascode
number_of_events
event_name_address
event_name_length
event_enablement_mask

Purpose
Use the EventEnable function to enable or disable monitor activation by specific event signals. After
disabling for a particular event, signals of that event do not contribute to the activation of any monitor
in the invoking process. Signals of that event, however, continue to be bound to monitors subject to
their respective bound signal limits. On re-enabling for an event, bound signals of that event may again
contribute to the activation of monitors in the invoking process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
number_of_events

(input,INT,4) is a variable for specifying the number of events of interest.
event_name_address

(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the address of the name of an event whose signals are to be enabled or disabled.

event_name_length
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of
which contains the length of the event name pointed to by the corresponding element of the
event_name_address array.

event_enablement_mask
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of
which contains the enablement mask of the event pointed to by the corresponding element of the
event_name_address array. The value of the enablement mask determines the action performed:
vm_evn_disable

Disable the event pointed to by the corresponding element of the event_name_address array.
vm_evn_enable

Enable the event pointed to by the corresponding element of the event_name_address array.

Usage Notes
1. The event enablement mask is maintained on a process basis; EventEnable affects the issuing process

only.
2. If any of the event names cannot be found, all other specified events are still processed.

EventEnable

Chapter 13. CMS Multitasking Function Descriptions 135

3. While the signals of a disabled event do not contribute to the activation of a monitor, information
concerning those signals is returned upon an EventTest and, should the monitor be activated, those
signals are processed in exactly the same way as other signals in the current signal set.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventEnable completed successfully

vm_evn_warning vm_evn_no_name At least one event name is not defined

vm_evn_error vm_evn_bad_num_of_events Number_of_events is less than or equal to 0

vm_evn_error vm_evn_bad_name_len At least one event_name_length is less than or
equal to 0

vm_evn_error vm_evn_bad_mask At least one event_enablement_mask is invalid

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventEnable

136 z/VM: 7.3 CMS Application Multitasking

EventModify — Modify an Event Definition

EventModify
retcode
reascode
event_name
event_name_length
event_flag
event_flag_size
loose_signal_limit
signal_timeout_period

Purpose
Use the EventModify function to modify the characteristics of an event definition previously created in the
same process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
event_name

(input,CHAR,event_name_length) is a variable for specifying the name of the event whose definition is
to be modified.

event_name_length
(input,INT,4) is a variable for specifying the length of event_name.

event_flag
(input,INT,event_flag_size) is an array of 4-byte variables, each element of which contains information
about how the event is managed. Only one option from the following set may be specified. If no option
from this set is specified, the existing value of the option remains unmodified.

• The treatment of the signaler
vm_evn_async_signals

The signaling thread is allowed to continue executing (the default).
vm_evn_sync_thread_signals

The signaling thread is suspended to await the outcome of event processing.
vm_evn_sync_process_signals

All threads in the signaling process, with the exception of those threads running as the result of
a monitor activated by this signal, are suspended to await the outcome of event processing.

event_flag_size
(input,INT,4) is a variable for specifying the number of elements in the event_flag array.

loose_signal_limit
(input,INT,4) is a variable for specifying the number of event signals that may be retained if no eligible
event monitor exists to which to bind the signal at the time the event is signaled. When the limit
is exceeded, the oldest loose signal is discarded to make room for the newest arrival. A value of 0
indicates that no loose signals are retained. A value of -1 means that the loose signal list will be

EventModify

Chapter 13. CMS Multitasking Function Descriptions 137

allowed to grow without limit, subject to the availability of virtual storage. A value of -2 means that the
existing loose_signal_limit is to remain unmodified. Any other negative value is considered an error.

signal_timeout_period
(input,INT,4) is a variable for specifying the maximum length of time, in microseconds, that a signaling
thread should remain suspended awaiting the completion of processing of the signal. A value of 0
indicates that the signaling thread should wait indefinitely for the completion of signal processing. A
value of -1 means that the existing signal_timeout_period is to remain unmodified. If the modified
event definition does not include the suspension of the signaler, then this parameter is ignored.

Usage Notes
1. Only the process that created the event definition may modify it. An attempt to modify an event

definition created by another process is considered an error.
2. Changes to the loose signal limit take effect immediately. Any other change does not take effect until a

subsequent signal is issued.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventModify completed successfully

vm_evn_error vm_evn_bad_flag_size Flag_size is less than 0

vm_evn_error vm_evn_no_name Event_name is not defined

vm_evn_error vm_evn_bad_name_len Event_name_length is less than or equal to 0

vm_evn_error vm_evn_not_authorized Requestor is ineligible to modify event_name

vm_evn_error vm_evn_bad_flag Event_flag array contains an unrecognized
value

vm_evn_error vm_evn_bad_limit Loose_signal_limit is invalid

vm_evn_error vm_evn_bad_time Signal_timeout_period is invalid

vm_evn_error vm_evn_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventModify

138 z/VM: 7.3 CMS Application Multitasking

EventMonitorCreate — Define an Event Handling Environment

EventMonitorCreate
retcode
reascode
monitor_token
monitor_flag
monitor_flag_size
number_of_events
event_name_address
event_name_length
event_key_address
event_key_length
bound_signal_limit
event_count

Purpose
Use the EventMonitorCreate function to specify combinations of event names and keys identifying
conditions whose occurrence you want to monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(output,INT,4) is a variable where the function returns a token to identify the event monitor on
subsequent invocations of other event management functions.

monitor_flag
(input,INT,monitor_flag_size) is an array of 4-byte variables, each element of which contains
information about how the event monitor is managed. Only one option from each of the following
sets may be specified. If no option from a particular set is given, the default is applied.

• The longevity of the monitor
vm_evn_no_auto_delete

Persists until explicit EventMonitorDelete (the default)
vm_evn_auto_delete

Automatically deleted at first deactivation or EventMonitorReset

• The effect of monitor activation on dispatchability
vm_evn_async_monitor

All threads in the process containing the monitor remain dispatchable (the default).
vm_evn_sync_process_monitor

All threads currently existing in the process containing the monitor, except the one on which the
monitor is being activated, are suspended until the monitor is deactivated.

• The binding of loose signals to this monitor

EventMonitorCreate

Chapter 13. CMS Multitasking Function Descriptions 139

vm_evn_bind_loose_signals (the default)
When the monitor is created, or monitoring is restarted by the EventSelect or
EventMonitorSelect function, any loose signals for which this monitor is qualified are bound
to this monitor.

vm_evn_ignore_loose_signals
No loose signals are bound to this monitor.

monitor_flag_size
(input,INT,4) is a variable for specifying the number of elements in the monitor_flag array.

number_of_events
(input,INT,4) is a variable for specifying the number of event list entries of interest.

event_name_address
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the address of the name of an event whose occurrence is monitored.

event_name_length
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of
which contains the length of the event name pointed to by the corresponding element of the
event_name_address array.

event_key_address
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of
which contains the address of a key that further characterizes the particular instance of the event
pointed to by the corresponding entry of the event_name_address array. The key may be chosen to
match exactly the key that is carried by the signals of interest, or a partial key, possibly including
wildcard characters, may be used to match a broader range of occurrences. The wildcard characters
supported, and the matching rules applied when they are used, are the same as for the IPC match
keys.

event_key_length
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of
which contains the length of the event key pointed to by the corresponding element of the
event_key_address array. The key may be null (that is, its length may be 0) if no secondary
characterization of the event is required to define the occurrence of interest; a null key in a monitor
matches any key on a signal.

bound_signal_limit
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the number of signals of the corresponding event list entry that may be retained bound to
the event monitor but unprocessed during an interval when the monitor is already active or testable
or while the monitored condition remains unsatisfied. When the limit is exceeded, the oldest bound
signal of a particular event list entry is discarded to make room for the newest arrival. The minimum
permissible value is 1, indicating that only the most recent instance of each signal is to be retained. A
value of -1 means that the bound signal list is allowed to grow without limit, subject to the availability
of virtual storage. Any other negative value, or 0, is considered an error.

event_count
(input,INT,4) is a variable for specifying the number of the specified event list entries for which signals
must be bound to the monitor for the monitored condition to be considered satisfied. The value must
fall between 1 and number_of_events.

Usage Notes
1. Use the EventTrap, EventTest, or EventWait function to establish the action to be taken when the

condition being monitored is satisfied.
2. The scope of an event monitor is implicitly the process in which it was created. An event monitor token

is not recognized outside the process in which the corresponding monitor was created.
3. The status of an event monitor can be affected by the EventDelete and EventMonitorDelete functions.

For details of these effects, see the descriptions of EventDelete and EventMonitorDelete.

EventMonitorCreate

140 z/VM: 7.3 CMS Application Multitasking

4. See “Tips on Constructing Keys” on page 30 for information about including binary data in event keys.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventMonitorCreate completed successfully

vm_evn_error vm_evn_bad_flag_size Monitor_flag_size is less than 0

vm_evn_error vm_evn_bad_flag Monitor_flag array contains an unrecognized
value

vm_evn_error vm_evn_bad_num_of_events Number_of_events is less than or equal to 0

vm_evn_error vm_evn_no_name An event name is not defined

vm_evn_error vm_evn_bad_name_len Event_name_length is less than or equal to 0

vm_evn_error vm_evn_bad_key_len Event_key_length is less than 0

vm_evn_error vm_evn_bad_limit Bound_signal_limit is invalid

vm_evn_error vm_evn_bad_event_count Event_count is out of range

vm_evn_error vm_evn_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventMonitorCreate

Chapter 13. CMS Multitasking Function Descriptions 141

EventMonitorDelete — Delete an Event Handling Environment

EventMonitorDelete
retcode
reascode
monitor_token

Purpose
Use the EventMonitorDelete function to delete a previously created event monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the event monitor to delete. A value
of 0 may be used to identify the active event monitor most recently activated on the current thread.

Usage Notes
1. When an event monitor is deleted, all bound signals of broadcast events are discarded, and any

other bound signal is either propagated to the next qualifying event monitor or discarded if no other
qualifying event monitor exists.

2. If EventMonitorDelete is issued against an active event monitor, the deletion does not occur until
processing of the current signal set has been completed and the event monitor has been returned to
the inactive state or explicitly reset.

3. If an event monitor is deleted while there is an outstanding EventWait associated with it, the EventWait
function is terminated with a reason code indicating that the event monitor has been deleted.

4. If an event monitor is deleted while there is an outstanding event trap associated with it, the trap
routine is driven on the thread that invokes the EventMonitorDelete function and must determine
from the information returned by EventTest that the event monitor has been deleted. When the
EventMonitorDelete function is issued against an active event monitor, the trap routine is invoked on
the thread that resets the monitor.

5. When a process is terminated, all its event monitors are deleted and all unprocessed signals are
discarded.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventMonitorDelete completed successfully

vm_evn_warning vm_evn_monitor_still_active The specified monitor is currently active. The
monitor is not deleted until it is reset.

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

EventMonitorDelete

142 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventMonitorDelete

Chapter 13. CMS Multitasking Function Descriptions 143

EventMonitorEnable — Enable or Disable Specific Monitors

EventMonitorEnable
retcode
reascode
number_of_monitors
monitor_tokens
monitor_enablement_masks

Purpose
Use the EventMonitorEnable function to enable or disable specific monitors. After a monitor is disabled,
no signal results in the activation of the monitor. On reenabling, the monitor may again become active.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
number_of_monitors

(input,INT,4) is a variable for specifying the number of monitors of interest.
monitor_tokens

(input,INT,number_of_monitors) is an array of number_of_monitors 4-byte variables, each element of
which contains the token of a monitor that is to be enabled or disabled. A value of 0 may be used to
identify the active event monitor most recently activated on the current thread.

monitor_enablement_masks
(input,INT,number_of_monitors) is an array of number_of_monitors 4-byte variables, each element of
which contains the enablement mask for the monitor identified by the corresponding element of the
monitor_tokens array. The value of the enablement mask determines the action performed:
vm_evn_disable

Disable the monitor identified by the corresponding element of the monitor_tokens array.
vm_evn_enable

Enable the monitor identified by the corresponding element of the monitor_tokens array.

Usage Notes
1. If any of the tokens are invalid, all other tokens are still processed.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventMonitorEnable completed successfully

vm_evn_warning vm_evn_no_monitor At least one monitor is not defined

vm_evn_warning vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_bad_mask At least one monitor_enablement_mask is
invalid

vm_evn_error vm_evn_bad_token_size Number of tokens is less than or equal to 0

EventMonitorEnable

144 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventMonitorEnable

Chapter 13. CMS Multitasking Function Descriptions 145

EventMonitorQuery — Obtain Information About an Event Monitor

EventMonitorQuery
retcode
reascode
monitor_token
monitor_flag
monitor_flag_size
monitor_flag_count
number_of_events
event_name_buffer_address
event_name_buffer_length
event_name_length
event_key_buffer_address
event_key_buffer_length
event_key_length
bound_signal_limit
bound_signal_count
monitor_selection_mask
monitor_enablement_mask
event_count
present_event_count
trap_routine_address
trap_routine_name

Purpose
Use the EventMonitorQuery function to obtain information about the definition and status of a previously
created event monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the event monitor about which information is returned. A
value of 0 may be used to identify the active event monitor most recently activated on the current
thread.

monitor_flag
(output,INT,monitor_flag_size) is an array of 4-byte variables, in each element of which the function
returns information about how the event monitor is managed. Exactly one option from each of the
following sets is included. The order in which these option values are filled in is not defined and may
not necessarily reflect the order in which they are listed.

• Longevity of the monitor

EventMonitorQuery

146 z/VM: 7.3 CMS Application Multitasking

vm_evn_no_auto_delete
Persists until explicit EventMonitorDelete or termination of the defining process.

vm_evn_auto_delete
Automatically deleted at first deactivation or EventMonitorReset call.

• Effect of monitor activation on dispatchability
vm_evn_async_monitor

All threads in the process containing the monitor remain dispatchable (the default).
vm_evn_sync_process_monitor

All threads in the process containing the monitor, except the one on which the monitor is being
activated, are suspended until the monitor is deactivated.

• Binding of loose signals to this monitor
vm_evn_bind_loose_signals

Any qualifying loose signals that exist at the time the monitor is created or selected on are
bound to the monitor (the default).

vm_evn_ignore_loose_signals
No loose signals are bound to the monitor.

• Current activation state of the monitor
vm_evn_monitor_active

Active — monitored condition is satisfied and a signal processing program is executing.
vm_evn_monitor_waiting

Waiting — the monitor is not active, the monitored condition is not satisfied, and there is an
outstanding EventWait function associated with the monitor.

vm_evn_monitor_trapping
Trapping — the monitor is neither active nor waiting, the monitored condition is not satisfied, and
there is a trap routine associated with the monitor.

vm_evn_monitor_testable
Testable — the monitor is not active, waiting or trapping; the monitored condition may or
may not be satisfied, and there is neither an outstanding EventWait function or trap routine
associated with the monitor.

monitor_flag_size
(input,INT,4) is a variable for specifying the number of elements in the monitor_flag array.

monitor_flag_count
(output,INT,4) is a variable where the function returns the number of elements it has set in the
monitor_flag array.

number_of_events
(input,INT,4) is a variable for specifying the number of event list entries of interest.

event_name_buffer_address
(input,INT,number_of_event) is an array of number_of_events 4-byte variables, each element of which
contains the address of a character variable in which the name of an event whose occurrence is
monitored is returned.

event_name_buffer_length
(input,INT,number_of_event) is an array of number_of_events 4-byte variables, each element of which
contains the length of the event name buffer pointed to by the corresponding element of the
event_name_buffer_address array.

event_name_length
(output,INT,number_of_event) is an array of number_of_events 4-byte variables, in each element of
which the function returns the actual length of the event name returned in the buffer pointed to by the
corresponding element of the event_name_buffer_address array. If the name is longer than the buffer,
it is truncated; if shorter, the excess space at the end of the buffer is unchanged.

EventMonitorQuery

Chapter 13. CMS Multitasking Function Descriptions 147

event_key_buffer_address
(input,INT,number_of_event) is an array of number_of_events 4-byte variables, each element of
which contains the address of a buffer in which the function returns the key that further
characterizes the particular instance of the event name pointed to by the corresponding entry of
the event_name_buffer_address array.

event_key_buffer_length
(input,INT,number_of_event) is an array of number_of_events 4-byte variables, each element of
which contains the length of the buffer pointed to by the corresponding element of the
event_key_buffer_address array.

event_key_length
(output,INT,number_of_event) is an array of number_of_events 4-byte variables, in each element of
which the function returns the actual length of the event key returned in the buffer pointed to by the
corresponding element of the event_key_buffer_address array. If the key is longer than the buffer, it is
truncated; if shorter, the excess space at the end of the buffer is unchanged.

bound_signal_limit
(output,INT,number_of_event) is an array of number_of_events 4-byte variables, in each element of
which the function returns the number of signals of the corresponding event list entry that may be
retained bound to the event monitor but unprocessed during an interval when the monitor is already
active or testable or while the monitored condition remains unsatisfied. When the limit is exceeded,
the oldest bound signal of a particular event list entry is discarded to make room for the newest
arrival. The minimum permissible value is 1, indicating that only the most recent instance of each
signal is to be retained. A value of -1 means that the bound signal list is allowed to grow without limit,
subject to the availability of virtual storage.

bound_signal_count
(output,INT,number_of_event) is an array of number_of_events 4-byte variables, in each element of
which the function returns the number of signals of the corresponding event list entry that are
currently bound to the event monitor but unprocessed.

monitor_selection_mask
(output,INT,4) is a variable where the function returns the selection mask for this monitor.

monitor_enablement_mask
(output,INT,4) is a variable where the function returns the enablement mask for this monitor.

event_count
(output,INT,4) is a variable where the function returns the number of the specified event list entries
for which signals must be bound to the monitor for the monitored condition to be considered satisfied.

present_event_count
(output,INT,4) is a variable where the function returns the number of the specified event list entries
for which signals are currently bound to the event monitor.

trap_routine_address
(output,INT,4) is a variable where the function returns the address of a routine to be invoked when the
condition defined by the monitor is satisfied, as established by the EventTrap function. If no address
has been established by EventTrap, a value of 0 is returned.

trap_routine_name
(output,CHAR,8) is a variable where the function returns the name of a routine to be invoked when the
condition defined by the monitor is satisfied, as established by the EventTrap function, or blank if no
event trap is associated with the monitor.

Usage Notes
1. If monitor_token is specified as 0 and no monitor is active on the current thread, an error return code is

generated and no other action is taken.

EventMonitorQuery

148 z/VM: 7.3 CMS Application Multitasking

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventMonitorQuery completed successfully

vm_evn_warning vm_evn_flag_truncated Monitor_flag_size is less than the total number
of monitor_flag value sets; only a subset of the
monitor_flag values was obtained

vm_evn_warning vm_evn_event_truncated Number_of_events is less than the total
number of event list entries specified when
the monitor was created; only a subset of the
event list entries was obtained

vm_evn_warning vm_evn_name_truncated At least one event name was truncated
because the buffer provided was too short

vm_evn_warning vm_evn_key_truncated At least one event key was truncated because
the buffer provided was too short

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_bad_flag_size Monitor_flag_size is less than or equal to 0

vm_evn_error vm_evn_bad_num_of_events Number_of_events is less than or equal to 0

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventMonitorQuery

Chapter 13. CMS Multitasking Function Descriptions 149

EventMonitorReset — Reset the State of an Event Monitor

EventMonitorReset
retcode
reascode
monitor_token

Purpose
Use the EventMonitorReset function to indicate that processing of the current signal set of an event
monitor is complete.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the monitor whose state is reset. A
value of 0 may be used to identify the active event monitor most recently activated on the current
thread.

Usage Notes
1. Upon the invocation of the EventMonitorReset function, the current signal set is cleared. If it

included any signals of events defined for sequential propagation that have not already been explicitly
discarded, each of them is delivered to the next qualifying event monitor. The remaining bound signals
are then examined. If they are sufficient to satisfy the monitored condition, the monitor is eligible for
immediate reactivation; otherwise, the monitor becomes inactive.

2. EventMonitorReset is automatically performed whenever an active event monitor (that is, one for
which a trap routine is executing, an EventWait function has been satisfied, or a successful EventTest
function has been performed) makes a transition into an inactive state (that is, by returning control
from the trap routine or flowing to another EventWait function) without having been explicitly reset.
Thus, EventMonitorReset must be explicitly invoked only under relatively unusual circumstances, such
as to indicate the completion of event processing prematurely (for example, to allow a trap routine to
be reentered), or to allow a monitor to be polled successively with the EventTest function.

3. If EventMonitorReset is issued against an event monitor that is not active, or if monitor_token is
specified as 0 and no monitor is active on the current thread, an error return code is generated and no
other action is taken.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventMonitorReset completed successfully

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_monitor_inactive Specified monitor is not active

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

EventMonitorReset

150 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventMonitorReset

Chapter 13. CMS Multitasking Function Descriptions 151

EventMonitorSelect — Start or Stop Monitoring by Specific Monitors

EventMonitorSelect
retcode
reascode
number_of_monitors
monitor_tokens
monitor_selection_masks

Purpose
Use the EventMonitorSelect function to start or stop monitoring by specific monitors. After monitoring is
stopped, no signals are bound to the specified monitor. On restarting monitoring, loose signals are bound
to the specified monitor in accordance with the monitor definition.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
number_of_monitors

(input,INT,4) is a variable for specifying the number of monitors of interest.
monitor_tokens

(input,INT,number_of_monitors) is an array of number_of_monitors 4-byte variables, each element of
which contains the token of the monitor that is selected on or off. A value of 0 may be used to identify
the active event monitor most recently activated on the current thread.

monitor_selection_masks
(input,INT,number_of_monitors) is an array of number_of_monitors 4-byte variables, each element of
which contains the selection mask for the monitor identified by the corresponding element of the
monitor_tokens array. The value of the selection mask determines the action to be performed:
vm_evn_select_off

Stop monitoring of the monitor identified by the corresponding element of the monitor_tokens
array.

vm_evn_select_on
Start monitoring of the monitor identified by the corresponding element of the monitor_tokens
array.

Usage Notes
1. If any of the tokens are invalid, all other tokens are still processed.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventMonitorSelect completed successfully

vm_evn_warning vm_evn_no_monitor At least one monitor is not defined

vm_evn_warning vm_evn_no_active_monitor No monitor is active on the current thread

EventMonitorSelect

152 z/VM: 7.3 CMS Application Multitasking

Return Code Reason Code Meaning

vm_evn_error vm_evn_bad_token_size Number of tokens is less than or equal to 0

vm_evn_error vm_evn_bad_mask At least one monitor_selection_mask is invalid

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventMonitorSelect

Chapter 13. CMS Multitasking Function Descriptions 153

EventQuery — Obtain Information about an Event Definition

EventQuery
retcode
reascode
event_name
event_name_length
event_flag
event_flag_size
event_flag_count
loose_signal_limit
signal_timeout_period
loose_signal_count
event_selection_mask
event_enablement_mask
monitor_token
monitor_token_size
monitor_token_count

Purpose
Use the EventQuery function to obtain information about an existing event definition, including a list of
all event monitors defined in the current process which are sensitive to occurrences of the event. This
function is primarily for use in obtaining diagnostic information. Use the EventMonitorQuery function to
obtain further information about a particular event monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
event_name

(input,CHAR,event_name_length) is a variable for specifying the name of an event to be queried.
event_name_length

(input,INT,4) is a variable for specifying the length of event_name.
event_flag

(output,INT,event_flag_size) is an array of 4-byte variables, in each element of which the function
returns information about how the event is managed. Exactly one option from each of the following
sets is included. The order in which these options values are filled in is not defined and may not
necessarily reflect the order in which they are listed here.

• Scope of the event name
vm_evn_process_scope

Process
vm_evn_session_scope

Session
• Manner in which an event signal is propagated to multiple event monitors

EventQuery

154 z/VM: 7.3 CMS Application Multitasking

vm_evn_broadcast_signals
Broadcast

vm_evn_fifo_signals
FIFO sequence

vm_evn_lifo_signals
LIFO sequence

• Treatment of the signaler
vm_evn_async_signals

The signaling thread is allowed to continue executing (the default).
vm_evn_sync_thread_signals

The signaling thread is suspended to await the outcome of event processing.
vm_evn_sync_process_signals

All threads in the signaling process, with the exception of those threads running as the result of
a monitor activated by this signal, are suspended to await the outcome of event processing.

event_flag_size
(input,INT,4) is a variable for specifying the number of elements in the event_flag array.

event_flag_count
(output,INT,4) is a variable where the function returns the number of elements it has set in the
event_flag array.

loose_signal_limit
(output,INT,4) is a variable where the function returns the number of event signals that may be
retained if no eligible event monitor exists to which to bind the signal or if a process is not monitoring
for the event at the time the event is signaled. When the limit is exceeded, the oldest loose signal
is discarded to make room for the newest arrival. A value of 0 indicates that no loose signals are
retained. A value of -1 indicates that the loose signal list is allowed to grow without limit, subject to
the availability of virtual storage.

signal_timeout_period
(output,INT,4) is a variable where the function returns the maximum length of time, in microseconds,
that a signaling thread is allowed to remain suspended awaiting the completion of processing of the
signal. A value of 0 indicates that the signaling thread waits indefinitely for the completion of signal
processing. If the option specifying that the signalling thread is to continue processing is included in
the event_flag array, then this parameter is meaningless.

loose_signal_count
(output,INT,4) is a variable where the function returns the number of loose signals currently being
retained for the specified event.

event_selection_mask
(output,INT,4) is a variable where the function returns the state of the event selection mask, as
follows:
vm_evn_select_off

Not monitoring for event_name
vm_evn_select_on

Monitoring for event_name
event_enablement_mask

(output,INT,4) is a variable where the function returns the state of the event enablement mask, as
follows:
vm_evn_disable

Disabled for event_name
vm_evn_enable

Enabled for event_name

EventQuery

Chapter 13. CMS Multitasking Function Descriptions 155

monitor_token
(output,INT,4) is an array of 4-byte variables, in which the function returns the list of tokens
identifying the event monitors defined in the current process that are sensitive to the specified event.
For events defined as sequential, the tokens are returned in the order in which they are processed. For
events defined as broadcast, the tokens are returned in the order in which the monitors were created.

monitor_token_size
(input,INT,4) is a variable for specifying the number of elements in the monitor_token array that are
available to be filled in.

monitor_token_count
(output,INT,4) is a variable where the function returns the total number of event monitors defined
in the current process that are sensitive to the specified event. If monitor_token_count is not greater
than monitor_token_size, then the first monitor_token_count elements of the monitor_token array
contain the tokens that identify that entire set of monitors and the remainder, if any, are unchanged;
otherwise, only the first monitor_token_size monitor tokens are returned.

Usage Notes
1. The event selection and enablement masks are maintained on a process basis and are reported for the

issuing process only.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventQuery completed successfully

vm_evn_warning vm_evn_flag_truncated Event_flag_size is less than the total number
of event_flag value sets; only a subset of the
event_flag values was obtained

vm_evn_warning vm_evn_token_truncated Monitor_token_size is less than the total
number of monitors defined; only a subset of
the monitor tokens has been returned

vm_evn_error vm_evn_no_name Event_name is not defined

vm_evn_error vm_evn_bad_name_len Event_name_length is less than or equal to 0

vm_evn_error vm_evn_bad_flag_size Flag size is less than 0

vm_evn_error vm_evn_bad_token_size Monitor_token_size is less than 0

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventQuery

156 z/VM: 7.3 CMS Application Multitasking

EventQueryAll — Obtain All Event Names and Monitor Tokens

EventQueryAll
retcode
reascode
number_of_events
event_name_address
event_name_length
actual_name_length
event_name_count
monitor_token
monitor_token_size
monitor_token_count

Purpose
Use the EventQueryAll function to obtain the names of all events and the tokens for all event monitors
visible to this process. This function is primarily for use in obtaining diagnostic information. Use the
EventQuery and EventMonitorQuery functions to get further information about events and event monitors.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
number_of_events

(input,INT,4) is a variable for specifying the number of elements in the following three arrays.
event_name_address

(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the address of a character variable in which the function returns the name of an event visible
to this process.

event_name_length
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the length of the buffer of the corresponding element of the event_name_address array. If
the name is longer than the buffer, it is truncated; if shorter, the excess space at the end of the buffer
is unchanged.

actual_name_length
(output,INT,number_of_events) is an array of number_of_events 4-byte variables, in each element of
which the function returns the actual length of the event name pointed to by the corresponding
element of the event_name_address array.

event_name_count
(output,INT,4) is a variable where the function returns the total number of events visible to the current
process. If event_name_count is not greater than number_of_events, then the first event_name_count
elements of the arrays associated with the event names are output and the remaining array elements,
if any, are unchanged. Otherwise, only the first number_of_events event names are returned.

monitor_token
(output,INT,monitor_token_size) is an array of 4-byte variables in which the function returns the list of
tokens identifying all the event monitors defined in the current process.

EventQueryAll

Chapter 13. CMS Multitasking Function Descriptions 157

monitor_token_size
(input,INT,4) is a variable for specifying the number of elements in the monitor_token array that are
available to be filled in.

monitor_token_count
(output,INT,4) is a variable where the function returns the total number of event monitors defined
in the current process. If monitor_token_count is not greater than monitor_token_size, then the first
monitor_token_count elements of the monitor_token array contain the tokens that identify that entire
set of monitors and the remainder, if any, are unchanged. Otherwise, only the first monitor_token_size
monitor tokens are returned.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventQueryAll completed successfully

vm_evn_warning vm_evn_name_truncated At least one event name was truncated
because the buffer provided was too short

vm_evn_warning vm_evn_event_truncated Number_of_events is less than the total
number of events visible to this process; only a
subset of the event names has been returned

vm_evn_warning vm_evn_token_truncated Monitor_token_size is less than the total
number of monitors defined; only a subset of
the monitor tokens has been returned

vm_evn_error vm_evn_bad_num_of_events Number of events is less than 0

vm_evn_error vm_evn_bad_token_size Monitor_token_size is less than 0

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventQueryAll

158 z/VM: 7.3 CMS Application Multitasking

EventRetrieve — Retrieve Data From an Event

EventRetrieve
retcode
reascode
monitor_token
index
data_buffer
data_buffer_length
event_data_length

Purpose
Use the EventRetrieve function to retrieve data from an event signal in the current signal set of an active
event monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the monitor from whose current
signal set the retrieval is performed. A value of 0 may be used to identify the active event monitor
most recently activated on the current thread.

index
(input,INT,4) is a variable for specifying, as an index into the event list specified in the creation of the
event monitor, the event list entry corresponding to the signal from which the data is retrieved.

data_buffer
(output,CHAR,data_buffer_length) is a variable where the function returns the signaled data for the
event list entry identified by index.

data_buffer_length
(input,INT,4) is a variable for specifying the length of data_buffer.

event_data_length
(output,INT,4) is a variable where the function returns the length of the signaled data for the event list
entry identified by index. If event_data_length is greater than data_buffer_length, the signaled data is
truncated on the right and a warning return code is generated.

Usage Notes
1. If EventRetrieve is issued repeatedly for the same index during a single activation of an event monitor,

it will retrieve the same event-related data on each call.
2. If EventRetrieve is issued against an event monitor that is not active, or if monitor_token is specified as

0 and no monitor is active on the current thread, an error return code is generated and no other action
is taken.

EventRetrieve

Chapter 13. CMS Multitasking Function Descriptions 159

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventRetrieve completed successfully

vm_evn_warning vm_evn_data_truncated Event_data_length exceeds
data_buffer_length; the event data copied to
data_buffer has been truncated

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_monitor_inactive Specified monitor is not active

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_bad_index Index is out of range

vm_evn_error vm_evn_bad_data_len Data_buffer_length is less than 0

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventRetrieve

160 z/VM: 7.3 CMS Application Multitasking

EventSelect — Start or Stop Monitoring for Specific Events

EventSelect
retcode
reascode
number_of_events
event_name_address
event_name_length
event_selection_mask

Purpose
Use the EventSelect function to start or stop monitoring of specific event signals. This means that no
signals of this event will be bound to any monitor in the invoking process. After monitoring of a particular
event is stopped, signals of that event are retained in accordance with the loose_signal_limit specified
when the event definition was created. On restarting monitoring for an event, any retained signals are
delivered to qualifying event monitors in accordance with the event and monitor definitions.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
number_of_events

(input,INT,4) is a variable for specifying the number of events of interest.
event_name_address

(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the address of the name of an event whose signals are to be selected on or off.

event_name_length
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of
which contains the length of the event name pointed to by the corresponding element of the
event_name_address array.

event_selection_mask
(input,INT,number_of_events) is an array of number_of_events 4-byte variables, each element of which
contains the selection mask of the event name pointed to by the corresponding element of the
event_name_address array. The value of the selection mask determines the action to be performed:
vm_evn_select_off

Stop monitoring of the event whose name is pointed to by the corresponding element of the
event_name_address array.

vm_evn_select_on
Start monitoring of the event whose name is pointed to by the corresponding element of the
event_name_address array.

Usage Notes
1. The event selection mask is maintained on a process basis; EventSelect affects the issuing process

only.
2. If any of the event names cannot be found, all other specified events are still processed.

EventSelect

Chapter 13. CMS Multitasking Function Descriptions 161

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventSelect completed successfully

vm_evn_warning vm_evn_no_name At least one event name is not defined

vm_evn_error vm_evn_bad_name_len At least one element of the
event_name_length array is less than or equal
to 0

vm_evn_error vm_evn_bad_num_of_events number_of_events is less than or equal to 0

vm_evn_error vm_evn_bad_mask At least one element of the
event_selection_mask array is invalid

vm_evn_error vm_evn_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventSelect

162 z/VM: 7.3 CMS Application Multitasking

EventSignal — Signal the Occurrence of an Event

EventSignal
retcode
reascode
event_name
event_name_length
event_data
event_data_length
event_key_offset
event_key_length

Purpose
Use the EventSignal function to indicate the occurrence of the specified event, and, optionally, to pass
data associated with the occurrence to any event monitors that have registered an interest in the event.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
event_name

(input,CHAR,event_name_length) is a variable for specifying the name of the event whose occurrence
is to be signaled.

event_name_length
(input,INT,4) is a variable for specifying the length of event_name.

event_data
(input,CHAR,event_data_length) is a variable for specifying data to be associated with this signal.

event_data_length
(input,INT,4) is a variable for specifying the length of event_data.

event_key_offset
(input,INT,4) is a variable for specifying the offset in event_data of the first byte of a key that
characterizes the particular instance of the event to be signaled.

event_key_length
(input,INT,4) is a variable for specifying the length of the key from event_data. The key may be null
(that is, its length may be 0) if no secondary characterization of the event is necessary for this type of
event or for this occurrence of the event.

Usage Notes
1. See “Tips on Constructing Keys” on page 30 for information about including binary data in event keys.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventSignal completed successfully

EventSignal

Chapter 13. CMS Multitasking Function Descriptions 163

Return Code Reason Code Meaning

vm_evn_warning vm_evn_timeout Signal_timeout_period expired before signal
processing was completed

vm_evn_error vm_evn_no_name Event_name is not defined

vm_evn_error vm_evn_bad_name_len Event_name_length is less than or equal to 0

vm_evn_error vm_evn_bad_key Event_key is invalid

vm_evn_error vm_evn_bad_key_offset Event_key_offset is out of range

vm_evn_error vm_evn_bad_key_len Event_key_length is out of range

vm_evn_error vm_evn_bad_data_len Event_data_length is less than zero

vm_evn_error vm_evn_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventSignal

164 z/VM: 7.3 CMS Application Multitasking

EventTest — Test for the Occurrence of Events

EventTest
retcode
reascode
monitor_token
number_of_events
event_flag

Purpose
Use the EventTest function to check the condition of an existing event monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the monitor whose condition is to be
tested. A value of 0 may be used to identify the active event monitor most recently activated on the
current thread.

number_of_events
(input,INT,4) is a variable for specifying the number of events whose occurrence is to be tested. In
general, this should be the same as the number of event_name and event_key combinations specified
in the definition of the event monitor.

event_flag
(output,INT,number_of_events) is an array of number_of_events 4-byte variables, in each element of
which the function returns an indication of the occurrence or nonoccurrence of the event identified by
the corresponding event list entries specified in defining the event monitor:
0,1,2,...

The event has been signaled; the number is the length of data provided on the signal that may be
obtained with the EventRetrieve function.

-1
The event has not been signaled.

-2
The event definition has been deleted.

-3
No corresponding event list entry was defined in the event monitor.

Usage Notes
1. A successful EventTest issued against an inactive event monitor causes the monitor to be activated

and establishes its current signal set.
2. EventTest issued against an active event monitor simply reports on the current signal set.
3. If monitor_token is specified as 0 and no monitor is active on the current thread, an error return code is

generated and no other action is taken.

EventTest

Chapter 13. CMS Multitasking Function Descriptions 165

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventTest completed successfully

vm_evn_warning vm_evn_event_truncated Number_of_events is less than the number of
event list entries specified in the creation of
the event monitor; only a subset of event
occurrences has been indicated in event flags

vm_evn_warning vm_evn_cannot_satisfy Monitor cannot be satisfied

vm_evn_warning vm_evn_event_deleted One or more event names have been deleted

vm_evn_warning vm_evn_signal_lost One or more signals may have been lost due to
lack of storage

vm_evn_warning vm_evn_monitor_inactive Condition is not satisfied

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_bad_num_of_events Number_of_events is less than 0

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventTest

166 z/VM: 7.3 CMS Application Multitasking

EventTrap — Define an Asynchronous Event Handler

EventTrap
retcode
reascode
monitor_token
trap_routine_address
trap_routine_name

Purpose
Use the EventTrap function to nominate a routine to receive control asynchronously when the condition
defined by an existing event monitor is satisfied.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the monitor whose condition is to be
trapped. A value of 0 may be used to identify the active event monitor most recently activated on the
current thread.

trap_routine_address
(input,INT,4) is a variable for specifying the address of the routine to be invoked when the condition
defined by the monitor is satisfied. If an address was previously associated with the event monitor,
it is automatically replaced by the new trap_routine_address. If the address is a nonzero value, the
trap_routine_name parameter is meaningless.

trap_routine_name
(input,CHAR,8) is a variable for specifying the name of the routine to be invoked when the condition
defined by the monitor is satisfied. This parameter has meaning only if the trap_routine_address
parameter is 0. If a name was previously associated with the event monitor, it is automatically
replaced by the new trap_routine_name. If the trap_routine_address parameter is zero and the
trap_routine_name is blank, the trap associated with the specified event monitor is canceled.

Usage Notes
1. A trap routine specified by the trap routine address parameter must be part of the same load module

as the tasking application and may be a C or assembler program.
2. A trap routine is run on a thread in a class by itself. Trap routines invoked as a result of a session level

signal run at the priority of the root process. Trap routines invoked as a result of a process level signal
run at the priority of the signaler.

3. A trap routine specified by the trap routine name parameter must be a program that can be invoked
with CMSCALL. Its entry conditions are those of standard CMSCALL linkage.

4. The trap routine must use the EventTest function to determine which combination of events caused
the event monitor to be activated and the EventRetrieve function to obtain whatever data was provided
when those events were signaled.

5. For events in which signals are propagated in serial order, the trap routine may inhibit the propagation
of signal to handlers of lower precedence by calling the EventDiscard function.

EventTrap

Chapter 13. CMS Multitasking Function Descriptions 167

6. If monitor_token is specified as 0 and no monitor is active on the current thread, an error return code is
generated and no other action is taken.

7. REXX applications can specify the trap routine by name but not by address. They must always pass
zero in the trap_routine_address parameter.

8. The entry point where execution of the new thread is to begin cannot be VMSTART, the multitasking
initialization entry point.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventTrap completed successfully

vm_evn_warning vm_evn_cannot_satisfy Monitor can never be satisfied

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_not_mt The application is not part of a process
initiated by the multitasking initialization
routine VMSTART

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventTrap

168 z/VM: 7.3 CMS Application Multitasking

EventWait — Wait for the Occurrence of Events

EventWait
retcode
reascode
monitor_token
number_of_events
event_flag

Purpose
Use the EventWait function to await the satisfaction of the condition defined by an existing event monitor.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_token

(input,INT,4) is a variable for specifying the token that identifies the monitor whose condition is to be
awaited. The monitor must not already be in the waiting state, and there may be no more than one
wait outstanding for a monitor at a time. A value of 0 may be used to identify the active event monitor
most recently activated on the current thread.

number_of_events
(input,INT,4) is a variable for specifying the number of events whose occurrence is to be indicated
when the EventWait function completes. In general, this should be the same as the number of
event_name and event_key combinations specified in the definition of the event monitor.

event_flag
(output,INT,number_of_events) is an array of number_of_events 4-byte variables, in each element of
which the function returns an indication of the occurrence or nonoccurrence of the event identified by
the corresponding event list entries specified in defining the event monitor:
0,1,2,...

The event has been signaled; the number is the length of data provided on the signal that may be
obtained with the EventRetrieve function.

-1
The event has not been signaled.

-2
The event definition has been deleted.

-3
No corresponding event list entry was defined in the event monitor.

Usage Notes
1. If EventWait is issued for an event monitor that already has a trap routine associated with it, the wait

takes precedence over the trap; that is, the subsequent satisfaction of the condition defined for the
monitor will result in the wait being satisfied but will not cause the trap routine to be driven. The trap
will not become viable again until the monitor is reset.

2. If EventWait is issued against an active monitor, that monitor is reset.

EventWait

Chapter 13. CMS Multitasking Function Descriptions 169

3. If monitor_token is specified as 0 and no monitor is active on the current thread, an error return code is
generated and no other action is taken.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_evn_success vm_evn_success EventWait completed successfully

vm_evn_warning vm_evn_event_truncated Number_of_events is less than the number of
event list entries specified in the creation of
the event monitor; only a subset of event
occurrences has been indicated

vm_evn_warning vm_evn_event_deleted EventWait was terminated because one or
more events were deleted

vm_evn_warning vm_evn_monitor_deleted EventWait was terminated because the event
monitor was deleted

vm_evn_warning vm_evn_signal_lost One or more signals may have been lost due to
lack of storage

vm_evn_warning vm_evn_cannot_satisfy EventWait was terminated because the event
monitor cannot be satisfied

vm_evn_error vm_evn_already_waiting Event monitor is already waiting

vm_evn_error vm_evn_no_monitor Monitor_token is unrecognizable

vm_evn_error vm_evn_no_active_monitor No monitor is active on the current thread

vm_evn_error vm_evn_bad_num_of_events Number_of_events is less than 0

Programming Language Bindings
Language Language Binding File

C VMCEVN H

Assembler VMASMEVN MACRO

REXX VMREXEVN COPY

EventWait

170 z/VM: 7.3 CMS Application Multitasking

MonitorBufferGet — Obtain the Address of the CMS Monitor Data
Area

MonitorBufferGet
retcode
reascode
monitor_buffer_address

Purpose
Use the MonitorBufferGet function to obtain the address of the CMS monitor data area.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
monitor_buffer_address

(output,INT,4) is a variable where the function stores the address of the monitor data area.

Usage Notes
1. The monitor data area contains information about threading operations and POSIX processes. In

particular, the following information is contained in the monitor data area:
ThreadCreate count

The number of threads created
ThreadCreate time

The amount of time spent creating threads (TOD clock units)
ThreadDelete count

The number of threads deleted
ThreadDelete time

The amount of time spent deleting threads (TOD clock units)
Slow switch count

The number of times the "slow path" through the CMS dispatcher was taken
Fast switch count

The number of times the "fast path" through the CMS dispatcher was taken
Blocked threads

The current number of blocked threads
Process watermark

The greatest number of processes that have existed concurrently
Thread watermark

The greatest number of threads that have existed concurrently
Process limit failures

The number of times an attempt to create a POSIX process has failed because the process limit
was reached

2. Mapping macros for the monitor data area are available in the language binding files for
MonitorBufferGet. See those files for specific details.

MonitorBufferGet

Chapter 13. CMS Multitasking Function Descriptions 171

3. There is one monitor data area for the duration of the CMS session. Once the application has obtained
the address of this buffer, it can inspect the buffer at will.

4. Data collection begins when the first multitasking or ö application is executed.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_mon_success vm_mon_success MonitorBufferGet completed successfully

Programming Language Bindings
Language Language Binding File

C VMCMON H

Assembler VMASMMON MACRO

REXX VMREXMON COPY

MonitorBufferGet

172 z/VM: 7.3 CMS Application Multitasking

MutexAcquire — Acquire a Mutex

MutexAcquire
retcode
reascode
mutex_handle
wait_on_mutex

Purpose
Use the MutexAcquire function to gain possession of a mutex. If another thread holds the mutex, the
issuing thread may be blocked until the mutex is available.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
mutex_handle

(input,INT,4) is a variable for specifying the handle of the mutex to be acquired. This value is returned
by the MutexCreate or MutexGetHandle function.

wait_on_mutex
(input,INT,4) is a variable for specifying whether the invoking thread wishes to wait for the mutex to
become available if it is already held. The valid values are:
vm_syn_dont_wait_on_mutex

Do not wait if the mutex is held by another thread.
vm_syn_wait_on_mutex

Wait. When the wait is satisfied, the thread gains possession of the mutex.

Usage Notes
1. If a thread holding a mutex terminates, the mutex is released and the next thread to acquire the mutex

receives a warning return code indicating that the shared resource protected by the mutex may be in
an indeterminate state. This thread must determine if the resource is in a valid state and what to do if
it is not. This situation may be caused by such items as a programming error (forgetting to release the
mutex) or a program check occurring when a thread is in a critical section.

If a thread holding a mutex abnormally terminates, an abnormal event termination event handler may
try to clean up and release the mutex (only if it executes on the failing thread) and recover.

2. If a mutex is deleted, any thread waiting to acquire the mutex is unblocked and given an error return
code.

3. If a thread attempts to acquire a mutex that it already holds, an error is returned.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success MutexAcquire completed successfully

MutexAcquire

Chapter 13. CMS Multitasking Function Descriptions 173

Return Code Reason Code Meaning

vm_syn_warning vm_syn_indeterminate_state Resource protected by mutex may be in an
indeterminate state

vm_syn_error vm_syn_handle_not_found Mutex indicated by mutex_handle does not
exist

vm_syn_error vm_syn_mutex_already_held Mutex is already held by another thread

vm_syn_error vm_syn_mutex_held_by_caller Mutex is already held by the caller

vm_syn_error vm_syn_bad_wait_on_mutex Invalid wait_on_mutex parameter

vm_syn_error vm_syn_mutex_deleted Mutex has been deleted

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

MutexAcquire

174 z/VM: 7.3 CMS Application Multitasking

MutexCreate — Create a Mutex

MutexCreate
retcode
reascode
mutex_handle
mutex_name
mutex_name_length
scope_of_mutex

Purpose
Use the MutexCreate function to create a mutex.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
mutex_handle

(output,INT,4) is a variable where the function returns the handle of the mutex that is created.
mutex_name

(input,CHAR,mutex_name_length) is a variable for specifying the name of the mutex.
mutex_name_length

(input,INT,4) is a variable for specifying the length of mutex_name. It must be greater than 0 and less
than 16MB in length.

scope_of_mutex
(input,INT,4) is a variable for specifying the scope of the mutex. The valid values are:
vm_syn_process_scope

The current process
vm_syn_session_scope

The current session

Usage Notes
1. A mutex can have either process scope or session scope, as follows:

• A mutex that has process scope is known only in the process where it is created and can be
manipulated by only the threads in that process. Such a mutex must have a name unique among all
process-level mutexes created by the calling process.

• A mutex that has session scope is known in all the processes in the session and can be manipulated
by any of the threads in these processes. Such a mutex must have a name unique among all
session-level mutexes.

2. The mutex scope is fixed for the life of the mutex.
3. All mutexes created by a process are deleted when a process terminates. Any threads in other

processes waiting on such mutexes are unblocked and given a nonzero return code.

MutexCreate

Chapter 13. CMS Multitasking Function Descriptions 175

4. CMS supports up to 32,768 session-scope semaphores, mutexes, and condition variables, altogether.
Also, for each process, CMS supports up to 32,768 process-scope semaphores, mutexes, and
condition variables, altogether.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success MutexCreate completed successfully

vm_syn_error vm_syn_mutex_already_exists Mutex already exists

vm_syn_error vm_syn_bad_scope_of_mutex Invalid scope_of_mutex parameter

vm_syn_error vm_syn_insufficient_storage Mutex not created because storage is not
available

vm_syn_error vm_syn_bad_mutex_name_len mutex_name_length is out of range.

vm_syn_error vm_syn_limit_reached Selected scope's limit on total number of
synchronization objects has been reached.

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

MutexCreate

176 z/VM: 7.3 CMS Application Multitasking

MutexDelete — Delete a Mutex

MutexDelete
retcode
reascode
mutex_handle

Purpose
Use the MutexDelete function to delete a mutex.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
mutex_handle

(input,INT,4) is a variable for specifying the handle of the mutex to be deleted. This value is returned
by the MutexCreate or MutexGetHandle function.

Usage Notes
1. A mutex can be deleted only by the process that created it. An error is returned if the calling process is

not the creating process.
2. Two conditions must exist for a thread to delete a mutex. They are:

• The thread must be in the process in which the mutex was created.
• The thread must be holding the mutex.

If either of these conditions are not met, an error is returned.
3. If a mutex is deleted, any thread waiting to acquire the mutex is unblocked and given an error return

code.
4. If a mutex is deleted, all the condition variables associated with this mutex are deleted. Any thread

waiting on such condition variables is unblocked and given a return code indicating that the condition
variable and the mutex have been deleted.

5. All mutexes created by a process are deleted when a process terminates. Any threads in other
processes waiting on such mutexes are unblocked and given an error return code.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success MutexDelete completed successfully

vm_syn_error vm_syn_handle_not_found Mutex indicated by mutex_handle does not
exist

vm_syn_error vm_syn_not_mutex_creator Mutex is not deleted because process is not
the mutex creator

vm_syn_error vm_syn_mutex_not_held Mutex is not deleted because thread does not
hold the mutex

MutexDelete

Chapter 13. CMS Multitasking Function Descriptions 177

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

MutexDelete

178 z/VM: 7.3 CMS Application Multitasking

MutexGetHandle — Get the Handle of a Mutex

MutexGetHandle
retcode
reascode
mutex_handle
mutex_name
mutex_name_length
scope_of_mutex

Purpose
Use the MutexGetHandle function to retrieve the handle of an existing mutex.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
mutex_handle

(output,INT,4) is a variable where the function returns the mutex handle.
mutex_name

(input,CHAR,mutex_name_length) is a variable for specifying the name of the mutex.
mutex_name_length

(input,INT,4) is a variable for specifying the length of mutex_name. It must be greater than 0 and less
than 16MB in length.

scope_of_mutex
(output,INT,4) is a variable where the function returns the scope of the mutex. The valid values are:
vm_syn_process_scope

The current process
vm_syn_session_scope

The current session

Usage Notes
1. A mutex must be created by the MutexCreate function before this function can get its handle. If the

mutex is not created, an error is returned.
2. If the threads using a mutex in an application share memory, the handle of a mutex may be stored in

the shared memory by the thread creating the mutex. When the other threads in an application require
the handle to manipulate the mutex, it may be retrieved from the shared memory. However, if the
threads using a mutex in an application do not share memory, the MutexGetHandle function should be
invoked to get the handle of the mutex.

3. Mutex handles are kept either per process or session. This depends on the level at which the mutex
was created.

4. The search sequence used to find the specified mutex name begins with the process of the function
caller. All the mutexes in this process are first searched and then all the session level mutexes are
searched. If no match is found, an error is returned.

MutexGetHandle

Chapter 13. CMS Multitasking Function Descriptions 179

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success MutexGetHandle completed successfully

vm_syn_error vm_syn_name_not_found Mutex_name does not exist

vm_syn_error vm_syn_bad_mutex_name_len Mutex_name_length is out of range.

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

MutexGetHandle

180 z/VM: 7.3 CMS Application Multitasking

MutexRelease — Release a Mutex

MutexRelease
retcode
reascode
mutex_handle

Purpose
Use the MutexRelease function to release control of a mutex, unblocking one thread waiting to acquire the
mutex.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
mutex_handle

(input,INT,4) is a variable for specifying the handle of the mutex to be released. This value is returned
by the MutexCreate or MutexGetHandle function.

Usage Notes
1. If a thread holding a mutex terminates without releasing it, the mutex is released and the next thread

to acquire the mutex receives a warning return code.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success MutexRelease completed successfully

vm_syn_error vm_syn_handle_not_found Mutex indicated by mutex_handle does not
exist

vm_syn_error vm_syn_mutex_not_held Mutex is not released because thread does not
hold the mutex

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

MutexRelease

Chapter 13. CMS Multitasking Function Descriptions 181

ProcessCheckPoint — Take a Snapshot of the Process State

ProcessCheckPoint
retcode
reascode
suspended_thread_count
blocked_thread_count

Purpose
Use the ProcessCheckPoint function to take a snapshot of the process state in terms of suspended and
blocked threads. This function is primarily for use in obtaining diagnostic information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
suspended_thread_count

(output,INT,4) is a variable where the function returns the number of suspended threads in this
process.

blocked_thread_count
(output,INT,4) is a variable where the function returns the number of blocked threads in this process.

Usage Notes
1. Once ProcessCheckPoint is invoked, it cannot be invoked successfully again by this process until both

the ProcessQuerySuspended and ProcessQueryBlocked functions have been invoked successfully.
2. Neither ProcessQuerySuspended nor ProcessQueryBlocked may be invoked successfully until

ProcessCheckPoint is invoked successfully.
3. The suspended thread count returned by ProcessCheckPoint indicates how much data will be returned

by ProcessQuerySuspended.
4. The blocked thread count returned by ProcessCheckPoint indicates how much data will be returned by

ProcessQueryBlocked.
5. If there are no blocked and no suspended threads at the time ProcessCheckPoint is issued,

ProcessCheckPoint must be reissued before ProcessQueryBlocked or ProcessQuerySuspended can
be invoked successfully.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ProcessCheckPoint completed successfully

vm_pro_error vm_pro_ckpt_already_taken ProcessCheckpoint has already been issued,
but one or both of ProcessQuerySuspended
and ProcessQueryBlocked have not been
issued

vm_pro_error vm_pro_out_of_storage There is not enough storage to hold the
checkpoint data

ProcessCheckPoint

182 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ProcessCheckPoint

Chapter 13. CMS Multitasking Function Descriptions 183

ProcessGetID — Obtain the ID of a Process

ProcessGetID
retcode
reascode
process_ID
process_name
process_name_length

Purpose
Use the ProcessGetID function to obtain the process ID of an existing process identified by name.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
process_ID

(output,INT,4) is a variable where the function returns the system-supplied identifier of the specified
process.

process_name
(input,CHAR,process_name_length) is a variable for specifying the name of the process whose process
ID is to be obtained.

process_name_length
(input,INT,4) is a variable for specifying the length of process_name. The length must be greater than
0 and less than 16MB characters.

Usage Notes
1. To obtain the process ID of the process owning the calling thread, use the ThreadGetID function.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ProcessGetID completed successfully

vm_pro_error vm_pro_bad_name_len Process_name_length is out of range

vm_pro_error vm_pro_no_such_process No process has name process_name

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ProcessGetID

184 z/VM: 7.3 CMS Application Multitasking

ProcessQueryBlocked — Find Blocked Threads

ProcessQueryBlocked
retcode
reascode
blocked_threads
block_types
object_names
object_name_lengths
actual_name_lengths

Purpose
Use the ProcessQueryBlocked function to find out which threads in the process are blocked and what is
blocking them. This function is primarily for use in obtaining diagnostic information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
blocked_threads

(output,INT,blocked_thread_count) is an array of 4-byte variables, in each element of which the
function returns the thread ID of a blocked thread in this process. The number of elements in this
array is determined by invoking the ProcessCheckPoint function.

block_types
(output,INT,blocked_thread_count) is an array of 4-byte variables, in each element of which the
function returns the type of block for each blocked thread. The number of elements in this array
is determined by invoking the ProcessCheckPoint function. The possible values in this array are as
follows:
vm_pro_qreceive_block

Blocking queue receive
vm_pro_qsend_block

Blocking queue send
vm_pro_signal_block

Synchronous event signal
vm_pro_event_wait_block

Event wait
vm_pro_cnv_wait_block

Condition variable wait
vm_pro_mut_acquire_block

Mutex acquire
vm_pro_sem_wait_block

Semaphore wait
object_names

(input,INT,blocked_thread_count) is an array of 4-byte variables, each element of which contains the
address of a character variable in which the function returns the name of an object. The number of

ProcessQueryBlocked

Chapter 13. CMS Multitasking Function Descriptions 185

elements in this array is determined by invoking the ProcessCheckPoint function. The kind of object
name returned in each character variable depends on the block type, as follows:
vm_pro_qreceive_block

Queue name
vm_pro_qsend_block

Queue name
vm_pro_signal_block

Event name
vm_pro_event_wait_block

Monitor token
vm_pro_cnv_wait_block

Condition variable name
vm_pro_mut_acquire_block

Mutex name
vm_pro_sem_wait_block

Semaphore name
object_name_lengths

(input,INT,blocked_thread_count) is an array of 4-byte variables, each element of which contains the
length of the character variable pointed to by the corresponding element in the object_names array.
The number of elements in this array is determined by invoking the ProcessCheckPoint function.

actual_name_lengths
(output,INT,blocked_thread_count) is an array of 4-byte variables, in each element of which the
function returns the actual length of the object name returned in the character variable pointed to
by the corresponding element in the object_names array. The number of elements in this array is
determined by invoking the ProcessCheckPoint function.

Usage Notes
1. ProcessQueryBlocked may not be invoked successfully until the ProcessCheckPoint function is invoked

successfully.
2. The blocked_thread_count returned by ProcessCheckPoint determines the size of the arrays returned

by ProcessQueryBlocked. The application must make sure it allocates sufficiently large arrays.
3. If a thread is blocked on a synchronous process level event signal and the event associated with that

event signal has been deleted, the actual name length returned is 0.
4. If any of the object names must be truncated, ProcessQueryBlocked is not considered to have

completed successfully. Thus, after such a completion of ProcessQueryBlocked, ProcessCheckPoint
may not be reinvoked successfully.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ProcessQueryBlocked completed successfully

vm_pro_warning vm_pro_name_truncated At least one object name has been truncated

vm_pro_error vm_pro_data_not_available ProcessCheckPoint has not yet been issued for
this process

Programming Language Bindings
Language Language Binding File

C VMCPRO H

ProcessQueryBlocked

186 z/VM: 7.3 CMS Application Multitasking

Language Language Binding File

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ProcessQueryBlocked

Chapter 13. CMS Multitasking Function Descriptions 187

ProcessQuerySuspended — Find Suspended Threads

ProcessQuerySuspended
retcode
retcode
suspended_threads
suspend_counts

Purpose
Use the ProcessQuerySuspended function to find out which threads in the process are suspended and
what their suspend counts are. This function is primarily for use in obtaining diagnostic information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
suspended_threads

(output,INT,suspended_thread_count) is an array of 4-byte variables, in each element of which the
function returns the thread ID of a suspended thread in this process. The number of elements in this
array is determined by invoking the ProcessCheckPoint function.

suspend_counts
(output,INT,suspended_thread_count) is an array of 4-byte variables, in each element of which
the function returns the suspend count associated with the thread identified in the corresponding
element of the suspended_threads array. The number of elements in this array is determined by
invoking the ProcessCheckPoint function.

Usage Notes
1. ProcessQuerySuspended may not be invoked successfully until the ProcessCheckPoint function is

invoked.
2. The suspended_thread_count returned by ProcessCheckPoint determines the size of the arrays

returned by ProcessQuerySuspended.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ProcessQuerySuspended completed
successfully

vm_pro_error vm_pro_data_not_available ProcessCheckpoint has not yet been issued for
this process

ProcessQuerySuspended

188 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ProcessQuerySuspended

Chapter 13. CMS Multitasking Function Descriptions 189

QueueClose — Close a Queue

QueueClose
retcode
reascode
queue_handle

Purpose
Use the QueueClose function to close an open queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is variable for specifying the handle of the queue to be closed.

Usage Notes
1. QueueClose does not disturb the messages in a queue.
2. When closing the queue, the creator receives a warning if messages are left in the queue.
3. The proper way to respond to a queue was deleted condition signaled by some other queue function

is to close the queue. Thus, the queue was deleted condition, while an error if incurred by the other
functions, is only a warning if incurred by QueueClose.

4. The primary queue may not be closed.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueClose completed successfully

vm_ipc_warning vm_ipc_queue_not_empty Messages still in queue

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_warning vm_ipc_queue_deleted Queue was deleted

vm_ipc_error vm_ipc_primary_queue Cannot close primary queue

vm_ipc_error vm_ipc_comm_retry Communication error — recommend retry

vm_ipc_error vm_ipc_comm_lost Communication error — connection lost

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueClose

190 z/VM: 7.3 CMS Application Multitasking

QueueCreate — Create a Queue

QueueCreate
retcode
reascode
queue_name
queue_name_length
export_level
queue_handle

Purpose
Use the QueueCreate function to create a queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_name

(input,CHAR,queue_name_length) is a variable for specifying the name of the queue to be created.
queue_name_length

(input,INT,4) is a variable for specifying the length of queue_name.
export_level

(input,INT,4) is a variable for specifying the export level, as follows:
vm_ipc_plevel

Process level
vm_ipc_slevel

Session level
vm_ipc_nlevel

Network level
queue_handle

(output,INT,4) is a variable where the function returns the handle for the queue.

Usage Notes
1. QueueCreate opens the queue as well. It returns the handle for the queue in queue_handle.
2. Queue handles are per-process.
3. Queue handles are guaranteed never to contain bytes having values corresponding to the EBCDIC code

point values for fuzzy match key wildcard characters. This is so that queue handles may be used easily
as components of event keys.

4. If the queue already exists and is already open, then the handle on which the process has the queue
open is returned in queue_handle.

5. If the queue already exists but is not open, then queue_handle is set to zero and the queue is not
opened.

6. If you plan to send this queue from a second-level interrupt handler, reliable results are obtained only
if you:

QueueCreate

Chapter 13. CMS Multitasking Function Descriptions 191

a. Create the queue at session level.
b. Identify it as a service queue (use QueueIdentifyService).
c. Use the service ID in the queue_handle parameter in your interrupt handler's QueueSend call.

For more information, see “Interrupt Handling” on page 287.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueCreate completed successfully

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

vm_ipc_error vm_ipc_already_exists Queue already exists

vm_ipc_error vm_ipc_bad_export_level Unrecognized export_level

vm_ipc_error vm_ipc_bad_name_len Invalid queue_name_length

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueCreate

192 z/VM: 7.3 CMS Application Multitasking

QueueDelete — Delete a Queue

QueueDelete
retcode
reascode
queue_name
queue_name_length
export_level

Purpose
Use the QueueDelete function to delete a queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_name

(input,CHAR,queue_name_length) is a variable for specifying the name of the queue to be deleted.
queue_name_length

(input,INT,4) is a variable for specifying the length of queue_name.
export_level

(input,INT,4) is a variable for specifying the export level, as follows:
vm_ipc_plevel

Process level
vm_ipc_slevel

Session level
vm_ipc_nlevel

Network level

Usage Notes
1. Messages residing in a deleted queue are discarded. The invoker of QueueDelete is given a warning if

this occurs.
2. Any thread waiting on the receipt of a discarded message (that is, a thread that used the

QueueSendBlock function) is unblocked and given a return and reason code indicating that its
message was discarded.

3. Any thread waiting on a message to arrive on the deleted queue (that is, a thread that used the
QueueReceiveBlock function) is unblocked and given a return and reason code indicating that the
queue was deleted.

4. When a process terminates, queues created by the process are deleted.
5. A process cannot delete its primary queue.

QueueDelete

Chapter 13. CMS Multitasking Function Descriptions 193

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueDelete completed successfully

vm_ipc_error vm_ipc_bad_export_level Unrecognized export_level

vm_ipc_error vm_ipc_bad_name_len Invalid queue_name_length

vm_ipc_warning vm_ipc_msgs_discarded Messages were discarded

vm_ipc_error vm_ipc_no_such_queue Queue does not exist

vm_ipc_error vm_ipc_not_authorized Not authorized for operation

vm_ipc_error vm_ipc_primary_queue Cannot delete primary queue

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueDelete

194 z/VM: 7.3 CMS Application Multitasking

QueueIdentifyCarrier — Identify a Communication Carrier

QueueIdentifyCarrier
retcode
reascode
carrier_name
carrier_name_length
service_id
old_service_id

Purpose
Use the QueueIdentifyCarrier function to identify a communication carrier for CMS to use for remote IPC
operations.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reasons code.
carrier_name

(input,CHAR,carrier_name_length) is a variable for specifying the name of the communication carrier.
carrier_name_length

(input,INT,4) is a variable for specifying the length of carrier_name.
service_id

(input,INT,4) is a variable for specifying the new service ID.
old_service_id

(output,INT,4) is a variable where the function returns the previous service ID.

Usage Notes
1. Use this function to associate an IPC service queue ID with a communication carrier to be used for

remote IPC activity.
2. To map a carrier name to a service ID, the caller's process must own the queue associated with the

service ID. QueueIdentifyCarrier fails if a queue is not yet associated with the service ID or if the
caller's process does not own said queue.

3. To break the mapping between a communication carrier and a service ID, the caller may specify a
service ID of zero. If a queue is still associated with the carrier's service ID, then the caller's process
must own said queue to break the mapping. If a queue is no longer associated with the carrier's
service ID, then any process may break the mapping.

4. The function returns in old_service_id the service ID previously associated with the named
communication carrier. It returns zero if the carrier was not previously registered.

5. The service ID must be in the range of -32 to -1.
6. The carrier name may be up to 16MB-1 bytes long.
7. IBM reserves service IDs in the range of -16 to -1 for its own use. Applications attempting to register

service queues in that range of service IDs may encounter unpredictable results.
8. A given service ID may be used by only one carrier at a time.

QueueIdentifyCarrier

Chapter 13. CMS Multitasking Function Descriptions 195

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueIdentifyCarrier completed successfully

vm_ipc_error vm_ipc_bad_name_len Carrier_name_length is invalid

vm_ipc_error vm_ipc_bad_service_id Service ID is out of range

vm_ipc_error vm_ipc_service_undefined Service is currently not defined

vm_ipc_error vm_ipc_not_authorized Service queue is not owned by caller's process

vm_ipc_error vm_ipc_sid_in_use Service ID already in use by some other carrier

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueIdentifyCarrier

196 z/VM: 7.3 CMS Application Multitasking

QueueIdentifyService — Identify a Service Queue

QueueIdentifyService
retcode
reascode
service_id
service_queue_name
service_queue_name_length
old_queue_name_buffer
old_queue_name_buffer_size
old_queue_name_length

Purpose
Use the QueueIdentifyService function to identify a service queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
service_id

(input,INT,4) is a variable for specifying the service ID.
service_queue_name

(input,CHAR,service_queue_name_length) is a variable for specifying the name of the service queue.
service_queue_name_length

(input,INT,4) is a variable for specifying the length of service_queue_name.
old_queue_name_buffer

(output,CHAR,old_queue_name_buffer_size) is a variable where the function returns the name of the
previous service queue.

old_queue_name_buffer_size
(input,INT,4) is a variable for specifying the size of old_queue_name_buffer.

old_queue_name_length
(output,INT,4) is a variable where the function returns the actual length of the name of the previous
service queue.

Usage Notes
1. The service ID must be in the range of -256 to -1. Service IDs are negative to differentiate them from

queue handles.
2. IBM reserves service IDs in the range of -16 to -1 and -33 to -128 for its own use. Applications

attempting to register service queues in that range of service IDs may encounter unpredictable results.
3. If there previously was no service queue associated with the passed service ID, the function

completes successfully and returns 0 in old_queue_name_length.
4. If the old service queue name would not fit in the caller's buffer, then the function completes with a

warning, as much of the old name as will fit is placed in the caller's buffer, and the old name length is
set to the true length (before truncation) of the old name.

QueueIdentifyService

Chapter 13. CMS Multitasking Function Descriptions 197

5. To break the mapping between a service ID and a service queue name, the caller may specify a service
queue name length of 0.

6. A queue can be the service queue for only one service ID at a time.
7. Applications using QueueIdentifyService will cause CMS to use slightly extra storage if they use service

IDs outside the range [-32..-1]. If storage is at a premium, service IDs should be kept within the range
[-32..-1].

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueIdentifyService completed successfully

vm_ipc_error vm_ipc_bad_service_id Service ID is out of range

vm_ipc_error vm_ipc_bad_name_len Service_queue_name_length is invalid

vm_ipc_error vm_ipc_no_such_queue Service queue does not exist

vm_ipc_error vm_ipc_not_authorized Service queue is not owned by caller's process

vm_ipc_warning vm_ipc_old_name_truncated Old service queue name was truncated

vm_ipc_error vm_ipc_queue_in_use Queue is already a service queue

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueIdentifyService

198 z/VM: 7.3 CMS Application Multitasking

QueueOpen — Open a Queue

QueueOpen
retcode
reascode
queue_name
queue_name_length
search_sequence
search_sequence_length
queue_handle
export_level

Purpose
Use the QueueOpen function to open an existing queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_name

(input,CHAR,queue_name_length) is a variable for specifying the name of the queue to be opened.
queue_name_length

(input,INT,4) is a variable for specifying the length of queue_name.
search_sequence

(input,INT,search_sequence_length) is an array of 4-byte variables for specifying the export level
search sequence to be used. Each element of this array is one of the following values:
vm_ipc_plevel

Process level
vm_ipc_slevel

Session level
vm_ipc_nlevel

Network level
search_sequence_length

(input,INT,4) is a variable for specifying the number of elements in the search_sequence array.
queue_handle

(output,INT,4) is a variable where the function returns the handle of the opened queue.
export_level

(output,INT,4) is a variable where the function returns the export level of the queue. Values returned
are:
vm_ipc_plevel

Process level
vm_ipc_slevel

Session level

QueueOpen

Chapter 13. CMS Multitasking Function Descriptions 199

vm_ipc_nlevel
Network level

Usage Notes
1. Queue handles are per-process.
2. Queue handles are guaranteed never to contain bytes having values corresponding to the EBCDIC code

point values for fuzzy match key wildcard characters. This is so that queue handles may be used easily
as components of event keys.

3. If the process owning the invoking thread has already opened the queue, then the function completes
with a warning and the previously-assigned handle is again returned.

4. If the passed search sequence is null (that is, search_sequence_length is zero), then the export levels
are searched as described in “Export Level Search Order” on page 29.

5. If search_sequence_length is greater than the number of export levels available or is less than zero an
error is returned.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueOpen completed successfully

vm_ipc_error vm_ipc_bad_name_len Invalid queue_name_length

vm_ipc_error vm_ipc_bad_search_seq_len Invalid length for search_sequence array

vm_ipc_error vm_ipc_bad_search_seq Unrecognized export_level in search sequence

vm_ipc_warning vm_ipc_already_open Queue is already open

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

vm_ipc_error vm_ipc_no_such_queue Queue not found

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueOpen

200 z/VM: 7.3 CMS Application Multitasking

QueueQuery — Query Waiting Message Count

QueueQuery
retcode
reascode
queue_handle
match_key
match_key_length
message_count

Purpose
Use the QueueQuery function to count the messages waiting in a queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is a variable for specifying the handle of the queue to be queried.
match_key

(input,CHAR,match_key_length) is a variable for specifying the key to be matched against the keys of
messages in the queue.

match_key_length
(input,INT,4) is a variable for specifying the length of match_key.

message_count
(output,INT,4) is a variable where the function returns the number of messages that reside in the
specified queue and whose key matches the specified match key.

Usage Notes
1. Specify the match-all match key to determine the total number of messages in the queue.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueQuery completed successfully

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_bad_key_len Invalid match_key_length

vm_ipc_error vm_ipc_not_authorized Not authorized for operation

vm_ipc_error vm_ipc_queue_deleted Queue was deleted

QueueQuery

Chapter 13. CMS Multitasking Function Descriptions 201

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueQuery

202 z/VM: 7.3 CMS Application Multitasking

QueueReceiveBlock — Receive a Message (Blocking)

QueueReceiveBlock
retcode
reascode
queue_handle
match_key
match_key_length
timeout
message
maximum_length
returned_length
key_offset
key_length
sender_UID
sender_PID
reply_token

Purpose
Use the QueueReceiveBlock function to receive a message from a queue, blocking if necessary until a
message becomes available.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the return code.
queue_handle

(input,INT,4) is a variable for specifying the handle of the queue.
match_key

(input,CHAR,match_key_length) is a variable for specifying the key of interest to the caller.
match_key_length

(input,INT,4) is a variable for specifying the length of match_key.
timeout

(input,INT,4) is a variable for specifying the timeout value.
message

(output,CHAR,maximum_length) is a variable for a buffer where the function returns the received
message.

maximum_length
(input,INT,4) is a variable for specifying the length of the message buffer.

returned_length
(output,INT,4) is variable where the function returns the actual length of the received message.

key_offset
(output,INT,4) is a variable where the function returns the offset of the key within the message.

QueueReceiveBlock

Chapter 13. CMS Multitasking Function Descriptions 203

key_length
(output,INT,4) is a variable where the function returns the length of the key within the message.

sender_UID
(output,CHAR,8) is a variable for a buffer where the function returns the user ID of the sending
process.

sender_PID
(output,INT,4) is a variable where the function returns the process ID of the sending process.

reply_token
(output,INT,4) is a variable where the function returns the reply token.

Usage Notes
1. If the message being received does not fit in the message buffer, then an error is returned and

returned_length holds the waiting message's true length. As much of the message as will fit is placed
in the caller's buffer, and the rest of the returned parameters, except the reply token, are filled
in as usual. The message is still available for receipt. The caller should retry the operation with a
sufficiently large buffer. It is not guaranteed, though, that a retry will pick up the message that was
described; some other thread may have received the message in the interim.

2. The reply token may be used by any thread in the process that received the message.
3. The reply token is valid for only one call to QueueReply.
4. If the sending process is located in the same session as the process executing QueueReceiveBlock,

then an asterisk (*) is returned in the sender_UID buffer.
5. If the sender did not send the message with the QueueSendReply function, the returned reply token

is 0.
6. The timeout period is specified in seconds. The timeout period is always extended upward by CMS to

the next 10-second boundary.
7. Depending on the relative timing of the call to QueueReceiveBlock and the ticking of the IPC timer,

the call may time out one period later than might otherwise be expected.
8. To wait indefinitely, specify a timeout of 0.
9. To match any message key, specify the match-all match key.

10. See “Tips on Constructing Keys” on page 30 for information about composing match keys from binary
data.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueReceiveBlock completed successfully

vm_ipc_error vm_ipc_bad_key_len Invalid match_key_length

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_queue_deleted Queue was deleted

vm_ipc_error vm_ipc_not_authorized Not authorized for operation

vm_ipc_error vm_ipc_buf_too_small Message did not fit

vm_ipc_error vm_ipc_queue_closed Queue was closed

vm_ipc_error vm_ipc_bad_timeout Timeout parameter is negative

vm_ipc_warning vm_ipc_timeout Function timed out

QueueReceiveBlock

204 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueReceiveBlock

Chapter 13. CMS Multitasking Function Descriptions 205

QueueReceiveImmed — Receive a Message (Nonblocking)

QueueReceiveImmed
retcode
reascode
queue_handle
match_key
match_key_length
message
maximum_length
returned_length
key_offset
key_length
sender_UID
sender_PID
reply_token

Purpose
Use the QueueReceiveImmed function to receive a message from a queue, returning immediately if a
message is not available.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is a variable for specifying the handle of the queue.
match_key

(input,CHAR,match_key_length) is a variable for specifying the key of interest.
match_key_length

(input,INT,4) is a variable for specifying the length of match_key.
message

(output,CHAR,maximum_length) is a variable for a buffer where the function returns the received
message.

maximum_length
(input,INT,4) is a variable for specifying the length of the message buffer.

returned_length
(output,INT,4) is a variable where the function returns the actual length of the received message.

key_offset
(output,INT,4) is a variable where the function returns the offset of the key within the message.

key_length
(output,INT,4) is a variable where the function returns the length of the key within the message.

QueueReceiveImmed

206 z/VM: 7.3 CMS Application Multitasking

sender_UID
(output,CHAR,8) is a variable for a buffer where the function returns the user ID of the sending
process.

sender_PID
(output,INT,4) is a variable where the function returns the process ID of the sending process.

reply_token
(output,INT,4) is a variable where the function returns the reply token.

Usage Notes
1. If the message being received does not fit in the message buffer, an error is returned and

returned_length holds the waiting message's length. As much of the message as will fit is placed
in the caller's buffer, and the rest of the returned parameters, except the reply token, are filled in as
usual. The message is still available for receipt. The caller should retry the operation with a sufficiently
large buffer. It is not guaranteed, though, that a retry will pick up the message that was described —
some other thread may have received the message in the interim.

2. The reply token may be used by any thread in the process that received the message.
3. The reply token is valid for only one call to QueueReply.
4. If the sending process is located in the same session as the process executing QueueReceiveImmed,

then an asterisk (*) is returned in the sender_UID buffer.
5. If the sender did not send the message with the QueueSendReply function, the returned reply token is

0.
6. If no message is available, a warning is returned.
7. To match any message key, specify the match-all match key.
8. See “Tips on Constructing Keys” on page 30 for information about composing match keys from binary

data.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueReceiveImmed completed successfully

vm_ipc_error vm_ipc_bad_key_len Invalid match_key_length

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_queue_deleted Queue was deleted

vm_ipc_error vm_ipc_not_authorized Not authorized for operation

vm_ipc_warning vm_ipc_no_msg_available No message available

vm_ipc_error vm_ipc_buf_too_small Message did not fit

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueReceiveImmed

Chapter 13. CMS Multitasking Function Descriptions 207

QueueReply — Reply to a Message

QueueReply
retcode
reascode
reply_token
message
message_length
key_offset
key_length

Purpose
Use the QueueReply function to reply to a message sent with the QueueSendReply function.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
reply_token

(input,INT,4) is a variable for specifying the reply token provided by the QueueReceiveBlock or
QueueReceiveImmed function.

message
(input,CHAR,message_length) is a variable for specifying the message text.

message_length
(input,INT,4) is a variable for specifying the length of the message text.

key_offset
(input,INT,4) is a variable for specifying the offset into the message text of the first byte of the key.

key_length
(input,INT,4) is a variable for specifying the length of the key within the message text.

Usage Notes
1. CMS guarantees that when this function completes the caller may reuse the message buffer.
2. The sender should be aware that placing pointers, structures, or other address-oriented information in

the message may not have the desired effect, especially if the message is destined for a queue located
at the network level.

3. Any thread in the process that received the original message may use the reply token to reply to the
message.

4. The reply token is valid for only one call to QueueReply.
5. If the reply is sent to a remotely-located network level queue, the reply will fail if the owner of the

reply queue has closed the queue since the time it issued QueueSendReply.
6. See “Tips on Constructing Keys” on page 30 for information about including binary data in message

keys.

QueueReply

208 z/VM: 7.3 CMS Application Multitasking

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueReply completed successfully

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

vm_ipc_error vm_ipc_bad_msg_len Invalid message_length

vm_ipc_error vm_ipc_bad_reply_token Invalid reply_token

vm_ipc_error vm_ipc_bad_kokl Invalid key_offset/key_length combination
(with respect to message_length)

vm_ipc_error vm_ipc_reply_queue_deleted Reply queue has been deleted

vm_ipc_error vm_ipc_comm_retry Communication error — recommend retry

vm_ipc_error vm_ipc_comm_lost Communication error — connection lost

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueReply

Chapter 13. CMS Multitasking Function Descriptions 209

QueueSend — Send a Message

QueueSend
retcode
reascode
queue_handle
message
message_length
key_offset
key_length

Purpose
Use the QueueSend function to send a message to an opened queue.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is a variable for specifying handle of the queue.
message

(input,CHAR,message_length) is a variable for specifying the message text.
message_length

(input,INT,4) is a variable for specifying the length of the message text.
key_offset

(input,INT,4) is a variable for specifying the offset into the message text of the first byte of the key.
key_length

(input,INT,4) is a variable for specifying the length of the key within the message text.

Usage Notes
1. CMS guarantees that when this function completes the caller may reuse the message buffer.
2. The sender should be aware that placing pointers, structures, or other address-oriented information in

the message may not have the desired effect, especially if the message is destined for a queue located
at the network level.

3. To send a message to a service queue, use the service ID in place of the queue handle.
4. If you use QueueSend from a second-level interrupt handler (for example, an IUCV exit routine),

reliable results are obtained only if:

a. Your main line identifies the target queue as a service queue.
b. Your interrupt handler uses the queue's service ID (not its handle) in its QueueSend call.

Messages sent from interrupt handlers then appear to come from the interrupted process. For more
information, see “Interrupt Handling” on page 287.

5. See “Tips on Constructing Keys” on page 30 for information about including binary data in message
keys.

QueueSend

210 z/VM: 7.3 CMS Application Multitasking

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueSend completed successfully

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

vm_ipc_error vm_ipc_bad_msg_len Invalid message_length

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_bad_kokl Invalid key_offset/key_length combination
(with respect to message_length)

vm_ipc_error vm_ipc_queue_deleted Queue was deleted

vm_ipc_error vm_ipc_comm_retry Communication error — recommend retry

vm_ipc_error vm_ipc_comm_lost Communication error — connection lost

vm_ipc_error vm_ipc_bad_service_id Service ID is invalid

vm_ipc_error vm_ipc_service_undefined Service ID is undefined

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueSend

Chapter 13. CMS Multitasking Function Descriptions 211

QueueSendBlock — Send a Message and Block

QueueSendBlock
retcode
reascode
queue_handle
message
message_length
key_offset
key_length
timeout_period

Purpose
Use the QueueSendBlock function to send a message to an opened queue, blocking the caller until the
message is received.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is a variable for specifying the handle of the queue.
message

(input,CHAR,message_length) is a variable for specifying the message text.
message_length

(input,INT,4) is a variable for specifying the length of the message text.
key_offset

(input,INT,4) is a variable for specifying the offset into the message text of the first byte of the key.
key_length

(input,INT,4) is a variable for specifying the length of the key within the message text.
timeout_period

(input,INT,4) is a variable for specifying the length of time the thread should be blocked waiting for the
message to be received.

Usage Notes
1. CMS guarantees that when this function completes the caller may reuse the message buffer.
2. The sender should be aware that placing pointers, structures, or other address-oriented information in

the message may not have the desired effect, especially if the message is destined for a queue located
at the network level.

3. If the message is discarded (for example, because of queue deletion), the thread will be unblocked
and given a return code indicating that the message was discarded.

4. This function gives two threads a means to rendezvous. One thread should use QueueSendBlock, and
the other should use QueueReceiveBlock.

QueueSendBlock

212 z/VM: 7.3 CMS Application Multitasking

5. The timeout period is specified in seconds. Timeout periods are always extended upward by CMS to
the next ten-second boundary.

6. Depending on the relative timing of the call to QueueSendBlock and the ticking of the IPC timer, the
call may time out one period later than might otherwise be expected.

7. If the send is to a remote queue, the timeout period is evaluated at both the local kernel and the
remote kernel. Communication delays are counted as part of the timeout period.

8. A timeout period of 0 indicates that the thread should wait indefinitely.
9. See “Tips on Constructing Keys” on page 30 for information about including binary data in message

keys.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueSendBlock completed successfully

vm_ipc_error vm_ipc_bad_msg_len Invalid message_length

vm_ipc_error vm_ipc_msg_discarded Message was discarded

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_bad_kokl Invalid key_offset/key_length combination
(with respect to message_length)

vm_ipc_error vm_ipc_queue_deleted Queue was deleted

vm_ipc_error vm_ipc_comm_retry Communication error — recommend retry

vm_ipc_error vm_ipc_comm_lost Communication error — connection lost

vm_ipc_error vm_ipc_bad_timeout Timeout_period is negative

vm_ipc_warning vm_ipc_timeout Function timed out

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueSendBlock

Chapter 13. CMS Multitasking Function Descriptions 213

QueueSendReply — Send a Message and Request Reply

QueueSendReply
retcode
reascode
queue_handle
message
message_length
key_offset
key_length
reply_queue_handle

Purpose
Use the QueueSendReply function to send a message to an opened queue and specify where a reply
should be placed.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is a variable for specifying the handle of the queue to which the message should be sent.
message

(input,CHAR,message_length) is a variable for specifying the message text.
message_length

(input,INT,4) is a variable for specifying the length of the message text.
key_offset

(input,INT,4) is a variable for specifying the offset into the message text of the first byte of the key.
key_length

(input,INT,4) is a variable for specifying the length of the key within the message text.
reply_queue_handle

(input,INT,4) is a variable for specifying the handle of the queue into which the reply should be placed.

Usage Notes
1. CMS guarantees that when this function completes the caller may reuse the message buffer.
2. The sender should be aware that placing pointers, structures, or other address-oriented information in

the message may not have the desired effect, especially if the message is destined for a queue located
at the network level.

3. The receiver of the message need not be able to see or have opened the reply queue.
4. The invoker of this function must have authority to send messages to and receive messages from the

reply queue.
5. To send a message to a service queue, use the service ID in place of the queue handle.

QueueSendReply

214 z/VM: 7.3 CMS Application Multitasking

6. If the message is being sent to a remotely-located network level queue, the remote program will be
able to issue QueueReply successfully only if the owner of the reply queue keeps the queue open until
the reply arrives.

7. See “Tips on Constructing Keys” on page 30 for information about including binary data in message
keys.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueSendReply completed successfully

vm_ipc_error vm_ipc_bad_msg_len Invalid message_length

vm_ipc_error vm_ipc_bad_kokl Invalid key_offset/key_length combination
(with respect to message_length)

vm_ipc_error vm_ipc_out_of_storage Virtual storage unavailable

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_bad_reply_handle Invalid reply_queue_handle

vm_ipc_error vm_ipc_not_authorized Not authorized for operation

vm_ipc_error vm_ipc_queue_deleted Queue was deleted

vm_ipc_error vm_ipc_reply_queue_deleted Reply queue was deleted

vm_ipc_error vm_ipc_bad_service_id Service ID is out of range

vm_ipc_error vm_ipc_service_undefined Service ID is not currently defined

vm_ipc_error vm_ipc_comm_retry Communication error — recommend retry

vm_ipc_error vm_ipc_comm_lost Communication error — connection lost

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueSendReply

Chapter 13. CMS Multitasking Function Descriptions 215

QueueSignalEvents — Signal Queue Events

QueueSignalEvents
retcode
reascode
queue_handle
signal_flag

Purpose
Use the QueueSignalEvents function to specify whether queue events should be signaled.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
queue_handle

(input,INT,4) is a variable for specifying the handle of the queue.
signal_flag

(input,INT,4) is a variable for specifying whether queue events should be signaled. Valid values are:
vm_ipc_signal_off

Do not signal
vm_ipc_signal_on

Do signal

Usage Notes
1. The name of the IPC event is VMIPC. VMIPC is signaled only if the queue owner has requested it by

invoking QueueSignalEvents.
2. VMIPC is signaled only in the queue owner's process and only if the queue is open by the owner.
3. The VMIPC event is created with the following attributes:

• Process-level event
• Broadcast delivery (flag vm_evn_broadcast_signals)
• Asynchronous signalling (flag vm_evn_async_signals)
• Loose signal limit is zero
• Timeout period is zero.

4. When signaling is enabled, CMS signals VMIPC each time it delivers a message to an open queue, as
follows:

• Event data = queue handle || message key
• Event data length = message key length + 4
• Key offset = 0
• Key length = event data length.

5. So as to facilitate the use of queue handles in event keys, CMS guarantees that the four bytes of a
queue handle will never contain a byte that could be interpreted as a wildcard character in a fuzzy
match key.

QueueSignalEvents

216 z/VM: 7.3 CMS Application Multitasking

6. There is some overhead associated with signalling VMIPC. Performance-critical applications should
carefully consider whether its use is appropriate.

7. Because the VMIPC event data key contains the message key, the event data key might contain binary
data. See “Tips on Constructing Keys” on page 30 for information about the use of binary data in keys.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_ipc_success vm_ipc_success QueueSignalEvents completed successfully

vm_ipc_error vm_ipc_bad_signal_flag Invalid signal_flag value

vm_ipc_error vm_ipc_bad_handle Invalid queue_handle

vm_ipc_error vm_ipc_queue_deleted Queue has been deleted

vm_ipc_error vm_ipc_not_authorized Queue is not owned by caller's process

Programming Language Bindings
Language Language Binding File

C VMCIPC H

Assembler VMASMIPC MACRO

REXX VMREXIPC COPY

QueueSignalEvents

Chapter 13. CMS Multitasking Function Descriptions 217

SemCreate — Create a Semaphore

SemCreate
retcode
reascode
semaphore_handle
semaphore_name
semaphore_name_length
scope_of_semaphore
initial_value_of_semaphore

Purpose
Use the SemCreate function to create a semaphore. A semaphore is a less-structured synchronization
mechanism than a mutex and is primarily used to wait for a condition to occur and resume execution
when the condition occurs.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(output,INT,4) is a variable where the function returns the handle of the semaphore.
semaphore_name

(input,CHAR,semaphore_name_length) is a variable for specifying the name of the semaphore to be
created.

semaphore_name_length
(input,INT,4) is a variable for specifying the length of semaphore_name. It must be greater than 0 and
less than 16MB in length.

scope_of_semaphore
(input,INT,4) is a variable for specifying the scope of the semaphore. The valid values are:
vm_syn_process_scope

The current process
vm_syn_session_scope

The current session
initial_value_of_semaphore

(input,INT,4) is a variable for specifying the initial value of the semaphore.

Examples of the values that may be used and their behavior are as follows:
0

This should be used when a wait/post mechanism is required.
1

This should be used when a mechanism to protect a critical section is required.

This use of a semaphore places the responsibility of protecting a critical section solely upon the
application because of the preconditions placed on the operations defined by a semaphore. CMS
does not prevent a thread from signaling a semaphore without first having waited on it. Mutexes
do not allow such behavior.

SemCreate

218 z/VM: 7.3 CMS Application Multitasking

Note: See “Basic Semaphore Processing” on page 49 for examples of these two approaches.

Usage Notes
1. A semaphore can have either process scope or session scope, as follows:

• A semaphore that has process scope is known only in the process where it is created and can be
manipulated only by the threads in that process. The name of such a semaphore must be unique
among only the creating process' process-level semaphores.

• A semaphore that has session scope is known in all the processes in the session and can be
manipulated by any of the threads in these processes. The name of such a semaphore must be
unique among all session-scope semaphores.

2. A semaphore's scope is fixed for the life of the semaphore.
3. All semaphores created by a process are deleted when a process terminates. Any threads in other

processes waiting on such a semaphore are unblocked and given a nonzero return code.
4. CMS supports up to 32,768 session-scope semaphores, mutexes, and condition variables, altogether.

Also, for each process, CMS supports up to 32,768 process-scope semaphores, mutexes, and
condition variables, altogether.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemCreate completed successfully

vm_syn_error vm_syn_bad_scope_of_sem Invalid scope_of_semaphore parameter

vm_syn_error vm_syn_sem_already_exists Semaphore already exists

vm_syn_error vm_syn_insufficient_storage Semaphore not created because storage is not
available

vm_syn_error vm_syn_bad_sem_name_len Semaphore_name_length is out of range

vm_syn_error vm_syn_limit_reached Selected scope's limit on total number of
synchronization objects has been reached.

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemCreate

Chapter 13. CMS Multitasking Function Descriptions 219

SemDelete — Delete a Semaphore

SemDelete
retcode
reascode
semaphore_handle

Purpose
Use the SemDelete function to delete a semaphore.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(input,INT,4) is a variable for specifying the handle of the semaphore to be deleted. This value is
returned by the SemCreate or SemGetHandle function.

Usage Notes
1. A semaphore can be deleted only by the process that created it. An error is returned if any process in

the session other than the creator of the semaphore tries to delete it.
2. If a semaphore is deleted and threads are waiting on it, the blocked threads are unblocked and a

return code is given to each thread indicating that the semaphore has been deleted.
3. All semaphores created by a process are deleted when a process terminates. Any threads in other

processes waiting on such semaphores are unblocked and given a nonzero return code.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemDelete completed successfully

vm_syn_error vm_syn_handle_not_found Semaphore_handle does not exist

vm_syn_error vm_syn_not_sem_creator Semaphore is not deleted because process is
not semaphore creator

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemDelete

220 z/VM: 7.3 CMS Application Multitasking

SemGetHandle — Get the Handle of a Semaphore

SemGetHandle
retcode
reascode
semaphore_handle
semaphore_name
semaphore_name_length
scope_of_semaphore

Purpose
Use the SemGetHandle function to get the handle for an existing semaphore identified by name.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(output,INT,4) is a variable where the function returns the handle of the semaphore.
semaphore_name

(input,CHAR,semaphore_name_length) is a variable for specifying the name of the existing semaphore.
semaphore_name_length

(input,INT,4) is a variable for specifying the length of semaphore_name. It must be greater than 0 and
less than 16MB in length.

scope_of_semaphore
(output,INT,4) is a variable where the function returns the scope of the semaphore. Its values are as
follows:
vm_syn_process_scope

The current process
vm_syn_session_scope

The current session

Usage Notes
1. A semaphore must be created by the SemCreate function before this function can get its handle. If the

semaphore is not created, an error is returned.
2. This function only returns the handle of the semaphore; it does not test or change the value of the

semaphore.
3. If the threads using a semaphore in an application share memory, the handle of a semaphore may

be stored in the shared memory by the thread creating the semaphore. When the other threads
in an application require the handle to manipulate the semaphore, it may be retrieved from the
shared memory. However, if threads using a semaphore in an application do not share memory, the
SemGetHandle function should be used to get the handle of the semaphore.

4. Semaphore handles are kept either per-process or per-session. This is dependent upon the level at
which the semaphore was created.

SemGetHandle

Chapter 13. CMS Multitasking Function Descriptions 221

5. The search sequence used to find the specified semaphore name begins with the process of the
function caller. All the semaphores in this process are searched first and then all the session level
semaphores are searched. If no match is found, an error is returned.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemGetHandle completed successfully

vm_syn_error vm_syn_name_not_found Semaphore_name does not exist

vm_syn_error vm_syn_bad_sem_name_len Semaphore_name_length is out of range

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemGetHandle

222 z/VM: 7.3 CMS Application Multitasking

SemQueryValue — Query the Value of a Semaphore

SemQueryValue
retcode
reascode
semaphore_handle
semaphore_value

Purpose
Use the SemQueryValue function to get the value of a semaphore.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(input,INT,4) is a variable for specifying the handle of the semaphore. This value is returned by the
SemCreate or SemGetHandle function.

semaphore_value
(output,INT,4) is a variable where the function returns the value of the semaphore.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemQueryValue completed successfully

vm_syn_error vm_syn_handle_not_found Semaphore_handle does not exist

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemQueryValue

Chapter 13. CMS Multitasking Function Descriptions 223

SemReInit — Reinitialize a Semaphore's Value

SemReInit
retcode
reascode
semaphore_handle

Purpose
Use the SemReInit function to reinitialize the value of a semaphore. All the threads waiting on the
semaphore are unblocked.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(input,INT,4) is a variable for specifying the handle of the semaphore to be reinitialized. This value is
returned by the SemCreate or SemGetHandle function.

Usage Notes
1. This function may be used by an application in which multiple threads wait for a condition to occur

by issuing the SemWait function. When this condition occurs, this function is invoked, reinitializing the
semaphore's value and unblocking all the threads waiting on the semaphore.

2. If no threads are waiting on a semaphore and this function is issued, the value of the semaphore is
reinitialized. The next thread that issues the SemWait function on this semaphore does not have to
wait if the semaphore's new value is greater than 0.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemReInit completed successfully

vm_syn_error vm_syn_handle_not_found Semaphore_handle does not exist

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemReInit

224 z/VM: 7.3 CMS Application Multitasking

SemSignal — Signal a Semaphore

SemSignal
retcode
reascode
semaphore_handle

Purpose
Use the SemSignal function to signal a semaphore.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(input,INT,4) is a variable for specifying the handle of the semaphore to be signaled. This value is
returned by the SemCreate or SemGetHandle function.

Usage Notes
1. This function increments the semaphore's value by 1. If the result is greater than zero, the wait queue

is already empty, and the effect of the SemSignal function is that the next issuer of the SemWait
function finds the semaphore available.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemSignal completed successfully

vm_syn_error vm_syn_handle_not_found Semaphore_handle does not exist

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemSignal

Chapter 13. CMS Multitasking Function Descriptions 225

SemWait — Wait on a Semaphore

SemWait
retcode
reascode
semaphore_handle

Purpose
Use the SemWait function to wait on a semaphore.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
semaphore_handle

(input,INT,4) is a variable for specifying the handle of the semaphore to be waited on. This value is
returned by the SemCreate or SemGetHandle function.

Usage Notes
1. This function decrements the semaphore's value by 1. If the result is greater than or equal to 0, the

thread issuing this function remains running. If the value is less than 0, the thread is placed on the wait
queue associated with the semaphore in a FIFO manner.

2. If a thread waiting on a semaphore is terminated (this is accomplished through the use of
ThreadDelete), the semaphore's value is incremented and the thread is removed from the wait list.

3. If a semaphore is deleted, any thread waiting on the semaphore is unblocked and given an error return
code.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_syn_success vm_syn_success SemWait completed successfully

vm_syn_error vm_syn_handle_not_found Semaphore_handle does not exist

vm_syn_error vm_syn_sem_deleted Semaphore was deleted

Programming Language Bindings
Language Language Binding File

C VMCSYN H

Assembler VMASMSYN MACRO

REXX VMREXSYN COPY

SemWait

226 z/VM: 7.3 CMS Application Multitasking

ThreadCreate — Create a Thread

ThreadCreate
retcode
reascode
thread_ID
thread_flag
thread_flag_size
priority_offset
entry_point_address
parameter_list
parameter_list_size

Purpose
Use the ThreadCreate function to create a new thread in the caller's process and specify the address of
the entry point at which it is to begin execution.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(output,INT,4) is a variable where the function returns the system-supplied identifier of the new
thread.

thread_flag
(input,INT,thread_flag_size) is an array of 4-byte variables, each element of which contains
information about how the new thread is to be created and managed. Only one option from each
of the following sets may be specified. If no option from a particular set is specified, the default is
taken.

• The dispatching class of the new thread.
vm_pro_new_class

Distinct class by itself (the default)
vm_pro_my_class

Same class as caller
• Whether the parameter list should be copied.

vm_pro_copy_plist
Do copy the parameter list (the default)

vm_pro_no_copy_plist
Do not copy the parameter list

thread_flag_size
(input,INT,4) is a variable for specifying the number of elements in the thread_flag array.

priority_offset
(input,INT,4) is a variable for specifying the offset that should be added to the priority of the calling
thread to determine the priority of the new thread.

ThreadCreate

Chapter 13. CMS Multitasking Function Descriptions 227

entry_point_address
(input,INT,4) is a variable for specifying the address of the first instruction to be executed by the new
thread.

parameter_list
(input,INT,parameter_list_size) is an array of 4-byte variables that contains the parameter list passed
to entry_point_address.

parameter_list_size
(input,INT,4) is a variable for specifying the number of elements in the parameter_list array.

Usage Notes
1. Variable priority_offset sets the new thread's priority relative to the caller's priority. To create a

lower-priority thread, use a negative value; to create a higher-priority thread, use a positive value.
The passed value must result in a thread priority in the range of 0 to 32767.

2. For assembler programs, the following entry conditions are provided for each thread:

Entry Description

R1 Address of parameter_list array, or a copy of that array if option
vm_pro_copy_plist was specified

R13 Address of a 72-byte save area in which the thread may save the registers
(that is, STM 14,12,12(13))

R14 Return address

R15 Thread's entry point

Addressing mode Addressing mode of the creator

PSW key If this is the first thread in the process, it is X'E', otherwise, it is the PSW
key of the creator.

Interrupts Enabled

In addition, if the virtual machine is XC mode, then the address space mode is primary and the access
registers are those of the creating thread.

3. See “Writing Multitasking Applications in Assembler” on page 85 for a discussion of the entry
conditions provided to the APPLMAIN thread.

4. For assembler programs, each thread that deletes itself implicitly by returning to the kernel (including
APPLMAIN) is expected to provide register values as follows:
R15

Thread's return code
5. The ThreadCreate function allows a parameter list to be passed to the new thread. It is the caller's

responsibility to construct the parameter_list array in a format appropriate to entry_point_address.
The parameter list must be built according to the parameter passing conventions of the programming
language being used.

For assembler environment programs, the format of the parameter list is left to the application
programmer. The programmer must ensure that the parameter list is in the format expected by the
thread entry point.

For C programs, the programmer must build the parameter list as an array of addresses of parameter
values. An example illustrates this. Suppose there exists a C function f as follows:

void f (a, b, c)
 int a;
 int b;
 int * c;
{
 *c = a + b;
}

ThreadCreate

228 z/VM: 7.3 CMS Application Multitasking

In the usual case, a C caller would invoke function f as follows:

extern void f (int, int, int *);
int a, b, c;
a = 2;
b = 3
f (a, b, &c;);

But suppose that instead of invoking f by call, the programmer wants to invoke it using ThreadCreate.
In that case, parameter passing is a bit different, in that parameters are passed by a pointer to a
structure. Changes are needed in both the calling code and in the function code.

First, function f must be changed to:

void func(struct { int a; int b; int * c; } *p)
 {
 *(p->c) = p->a + p->b;
 }

Then, to invoke f using ThreadCreate, the code would be as follows:

extern void f (int, int, int *);
int rc, re, thread_id;
int parameter_list[3], parameter_list_length;
int a, b, c;
/* initialize parameters for f */
a = 2;
b = 3;
/* build the parameter list - R1 will point to a copy of */
/* this array when the kernel starts f */
parameter_list[0] = (int) &a;
parameter_list[1] = (int) &b;
parameter_list[2] = (int) &c;
parameter_list_length = 3;
/* call ThreadCreate */
ThreadCreate
(
 &rc, /* return code */
 &re, /* reason code */
 &tid, /* thread ID */
 &rc, /* placeholder for flags */
 0, /* number of flag words */
 0, /* same priority as me */
 f, /* thread's entry point */
 parameter_list, /* parameter list array */
 parameter_list_length /* plist array length */
);

6. When using a parameter list to pass data to a thread, the programmer must keep in mind that if
the vm_pro_no_copy_plist option is used, correct results will be obtained only if the elements of
the parameter_list array continue to be valid until the new thread is done using them. If the caller
reuses the parameter_list array before the new thread finishes with the parameters, then incorrect
results will be obtained. Further, if the storage in which parameter_list resides is deallocated too
early, incorrect results may also occur.

Note that if parameter_list contains addresses of other data items, correct results will be achieved
only if said other data items continue to be valid until the new thread is done using them, regardless
of whether CMS copied the parameter list. Because CMS cannot discern the meanings of individual
entries in the parameter_list array, it cannot assist in keeping those data items valid.

Finally, note that if parameter list copying is not used, then CMS passes the address of parameter_list
directly to the new thread. This reduces the parameter array to nothing more than storage shared
between the two threads. Though there are more direct means for establishing shared storage
between threads, this mechanism may prove helpful in some situations.

7. When parameter list copying is requested, the parameter_list array must contain no more than 128
entries.

8. If the creating thread is executing in access-register mode, the new thread's access registers will
contain the same values as those of its creator. The new thread will start execution in primary mode.
To use the access registers, the new thread must switch to access-register mode.

ThreadCreate

Chapter 13. CMS Multitasking Function Descriptions 229

9. The thread_ID is guaranteed not to contain bytes whose values correspond to the code points for key
wildcard characters.

10. ThreadCreate cannot be called from a REXX exec.
11. The entry point where execution of the new thread is to begin cannot be VMSTART, the multitasking

initialization entry point.
12. Attention: If using the LOAD macro to obtain the thread entry point address, you must not specify

COMPSWT ON. Also, you must not use the COMPSWT ON macro function before loading a thread's
object. Using COMPSWT ON alters the entry point address of a separately loadable thread object.
This will lead to failures running the thread.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadCreate completed successfully

vm_pro_error vm_pro_bad_flags Thread_flag array contains an unrecognized
value

vm_pro_error vm_pro_bad_priority Priority_offset results in an out-of-range
priority for the new thread

vm_pro_error vm_pro_bad_plist_len Parameter_list_size is less than 0

vm_pro_error vm_pro_bad_flags_len Thread_flag_size is less than 0

vm_pro_error vm_pro_out_of_storage Out of storage

vm_pro_error vm_pro_plist_too_big Parameter list is too large to be copied

vm_pro_error vm_pro_not_mt The application is not part of a process
initiated by the multitasking initialization
routine VMSTART

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadCreate

230 z/VM: 7.3 CMS Application Multitasking

ThreadDelay — Delay This thread

ThreadDelay
retcode
reascode
interval

Purpose
Use the ThreadDelay function to delay the invoking thread for the interval specified. The time interval is
specified in 4 bytes of milliseconds.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
interval

(input,INT,4) is a variable for specifying the length of the interval, in milliseconds, that the thread is to
be delayed. The interval must be greater than zero.

Usage Notes
1. All delayed threads in a process are awakened by the invocation of TimerStopAll.
2. A timer that is set for an extremely small interval (small enough to possibly expire before the start

processing is complete) could produce unpredictable results.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadDelay completed successfully

vm_pro_error vm_pro_interval_invalid Invalid interval specification

vm_pro_error vm_pro_out_of_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadDelay

Chapter 13. CMS Multitasking Function Descriptions 231

ThreadDelete — Delete Threads

ThreadDelete
retcode
reascode
thread_ID

Purpose
Use the ThreadDelete function to terminate the execution of either an individual thread or all threads
other than the calling thread in the calling thread's process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the thread to be deleted, as follows:
-1

All threads in the caller's process except the calling thread
0

The calling thread
n>0

Thread n in the caller's process

Usage Notes
1. If the calling thread deletes itself, it never regains control.
2. A thread may also delete itself by returning control to the system.
3. If the last thread in the application process terminates itself by calling ThreadDelete, CMS terminates

and passes a return code of 0 to CMS.
4. If the last thread in the application process terminates itself by returning to the system, the CMS

application terminates and the return code passed to CMS is the return code (that is, R15) of the last
thread.

5. Termination by ThreadDelete is considered to be normal termination; no error event is signaled for the
deleted threads, and no recovery from the termination request is possible.

6. Control does not return to the caller until the specified threads are deleted.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadDelete completed successfully

vm_pro_error vm_pro_no_such_thread No thread in the caller's process has ID
thread_ID

ThreadDelete

232 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadDelete

Chapter 13. CMS Multitasking Function Descriptions 233

ThreadGetID — Obtain the ID of the Calling Thread

ThreadGetID
retcode
reascode
thread_ID
process_ID

Purpose
Use the ThreadGetID function to obtain the thread ID of the calling thread and the process ID of the
process that owns the calling thread.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(output,INT,4) is a variable where the function returns the system-supplied identifier of the calling
thread.

process_ID
(output,INT,4) is a variable where the function returns the system-supplied identifier of the process
that owns the calling thread.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadGetID completed successfully

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadGetID

234 z/VM: 7.3 CMS Application Multitasking

ThreadQueryDispatchClass — Query a Thread's Dispatch Class

ThreadQueryDispatchClass
retcode
reascode
thread_ID
classmate_ID_list
classmate_ID_list_size
classmate_ID_list_count

Purpose
Use the ThreadQueryDispatchClass function to obtain a list of the threads in the caller's process residing
in the same dispatch class as the specified thread. This function is primarily for use in obtaining diagnostic
information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the system-supplied identifier of the thread for which the
dispatch class list is to be obtained. A value of 0 may be used to represent the calling thread.

classmate_ID_list
(output,INT,classmate_ID_list_size) is an array of 4-byte variables, in each element of which the
function returns the thread ID of a thread residing both in the caller's process and in the same
dispatch class as the specified thread.

classmate_ID_list_size
(input,INT,4) is a variable for specifying the number of elements in the classmate_ID_list array.

classmate_ID_list_count
(output,INT,4) is a variable where the function returns the number of threads in the specified thread's
dispatch class.

Usage Notes
1. If the value returned in classmate_ID_list_count is less than or equal to the value provided in

classmate_ID_list_size, then the first classmate_ID_list_count entries in the classmate_ID_list array
contain the complete set of classmate IDs and the remaining array elements are unchanged;
otherwise, only the first classmate_ID_list_size classmate IDs are returned.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadQueryDispatchClass completed
successfully

vm_pro_error vm_pro_no_such_thread No thread in the calling thread's process has
ID thread_ID

ThreadQueryDispatchClass

Chapter 13. CMS Multitasking Function Descriptions 235

Return Code Reason Code Meaning

vm_pro_error vm_pro_bad_dspclass_len Classmate_ID_list_size is less than zero

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadQueryDispatchClass

236 z/VM: 7.3 CMS Application Multitasking

ThreadQueryEntryPoint — Query a Thread's Entry Point

ThreadQueryEntryPoint
retcode
reascode
thread_ID
entry_point_address

Purpose
Use the ThreadQueryEntryPoint function to obtain the entry point of the specified thread in the caller's
process. This function is primarily for use in obtaining diagnostic information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the system-supplied identifier of the thread for which the
entry point address is to be obtained. A value of 0 may be used to represent the calling thread.

entry_point_address
(output,INT,4) is a variable where the function returns the address of the instruction at which the
specified thread began execution.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadQueryEntryPoint completed
successfully

vm_pro_error vm_pro_no_such_thread No thread in the calling thread's process has
ID thread_ID

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadQueryEntryPoint

Chapter 13. CMS Multitasking Function Descriptions 237

ThreadQueryParameterList — Query a Thread's Parameter List

ThreadQueryParameterList
retcode
reascode
thread_ID
parameter_list
parameter_list_size
parameter_list_count

Purpose
Use the ThreadQueryParameterList function to obtain the current contents of the parameter list of
the specified thread in the caller's process. This function is primarily for use in obtaining diagnostic
information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the system-supplied identifier of the thread for which the
parameter list is obtained. A value of 0 may be used to represent the calling thread.

parameter_list
(output,INT,4) is an array of 4-byte variables, in each element of which the function returns the
current value of a parameter from the parameter list of the specified thread.

parameter_list_size
(input,INT,4) is a variable for specifying the number of elements in the parameter_list array.

parameter_list_count
(output,INT,4) is a variable where the function returns the number of parameters in the specified
thread's parameter list.

Usage Notes
1. If the value returned in parameter_list_count is less than or equal to the value provided in

parameter_list_size, then the first parameter_list_count entries in the parameter_list array contain the
complete current contents of the specified thread's parameter list and the remaining array elements
are unchanged; otherwise only the first parameter_list_size entries are returned.

2. Callers of ThreadQueryParameterList always see the current contents of the specified thread's
parameter list. If a thread's parameter list is changed after the thread is created, subsequent calls
to ThreadQueryParameterList reflect the change.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadQueryParameterList completed
successfully

ThreadQueryParameterList

238 z/VM: 7.3 CMS Application Multitasking

Return Code Reason Code Meaning

vm_pro_error vm_pro_no_such_thread No thread in the calling thread's process has
ID thread_ID

vm_pro_error vm_pro_bad_plist_len Parameter_list_size is less than 0

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadQueryParameterList

Chapter 13. CMS Multitasking Function Descriptions 239

ThreadQueryPriority — Query a Thread's Priority

ThreadQueryPriority
retcode
reascode
thread_ID
thread_priority

Purpose
Use the ThreadQueryPriority function to obtain the priority of the specified thread relative to other threads
in the calling thread's process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the system-supplied identifier of the thread for which the
priority is obtained. A value of 0 may be used to represent the calling thread.

thread_priority
(output,INT,4) is a variable where the function returns the priority of the specified thread.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadQueryPriority completed successfully

vm_pro_error vm_pro_no_such_thread No thread in the calling thread's process has
ID thread_ID

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadQueryPriority

240 z/VM: 7.3 CMS Application Multitasking

ThreadQuerySuspendCount — Query a Thread's Suspend Count

ThreadQuerySuspendCount
retcode
reascode
thread_ID
suspend_count

Purpose
Use the ThreadQuerySuspendCount function to obtain the suspend count of the specified thread in the
caller's process. This function is primarily for use in obtaining diagnostic information.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the system-supplied identifier of the thread for which the
suspend count is to be obtained. A value of 0 may be used to represent the calling thread.

suspend_count
(output,INT,4) is a variable where the function returns the suspend count of the specified thread.

Usage Notes
1. A thread's suspend count is never negative.
2. A thread is not considered dispatchable if its suspend count is positive.
3. To increment a thread's suspend count, use the ThreadSuspend function.
4. To decrement a thread's suspend count, use the ThreadResume function.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadQuerySuspendCount completed
successfully

vm_pro_error vm_pro_no_such_thread No thread in the calling thread's process has
ID thread_ID

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadQuerySuspendCount

Chapter 13. CMS Multitasking Function Descriptions 241

ThreadQueryUserData — Query User Data Word

ThreadQueryUserData
retcode
reascode
user_data_word

Purpose
Use the ThreadQueryUserData function to query a thread's user data word.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
user_data_word

(output,INT,4) is a variable where the function returns the value of the user data word.

Usage Notes
1. This function can query the user word of only the calling thread.
2. One example of the use of a user word is the anchoring of control blocks maintained on a thread basis.

By placing the address of the control block in the thread user word, any code running on the thread can
easily retrieve the control block's address.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadQueryUserData completed successfully

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadQueryUserData

242 z/VM: 7.3 CMS Application Multitasking

ThreadResume — Decrement a Thread's Suspend Count

ThreadResume
retcode
reascode
thread_ID

Purpose
Use the ThreadResume function to decrement the suspend count of one or more threads in the caller's
process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the thread whose suspend count should be decremented, as
follows:
-1

All threads in the caller's process except the calling thread
n>0

Thread n in the caller's process

Usage Notes
1. Though it results in a null operation, a thread_ID of 0 may be used to represent the calling thread.
2. If the suspend count of an affected thread was 0, it remains 0 and no error is returned.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadResume completed successfully

vm_pro_error vm_pro_no_such_thread No thread in the caller's process has ID
thread_ID

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadResume

Chapter 13. CMS Multitasking Function Descriptions 243

ThreadSetDispatchClass — Set the Dispatching Class of Threads

ThreadSetDispatchClass
retcode
reascode
thread_ID

Purpose
Use the ThreadSetDispatchClass function to set the dispatching class affiliation of a specified thread or all
threads other than the calling thread in the caller's process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the threads whose dispatch class should be set, as follows:
-1

All threads in the caller's process should be placed into the dispatch class of the calling thread.
0

The calling thread should be placed into a dispatch class of its own.
n>0

Thread n in the caller's process should be placed into the dispatch class of the calling thread.

Usage Notes
1. A dispatch class is a set of threads for which it is guaranteed that only one thread executes at a time.

In other words, threads in the same dispatch class are never dispatched in parallel on multiple virtual
processors.

2. It is not guaranteed that each thread of a given dispatch class is dispatched on the same virtual
processor.

3. Specifying your own nonzero thread_ID is semantically equivalent to specifying a thread_ID of 0.
4. The circumstances under which a running thread loses control to another in the same dispatch class

are the running thread:

• Enters a voluntary wait state (for example, for a message on a queue or for an event to be signaled)
• Uses ThreadYield to give control to some other thread in its dispatch class
• Is deleted
• Is suspended.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadSetDispatchClass completed
successfully

ThreadSetDispatchClass

244 z/VM: 7.3 CMS Application Multitasking

Return Code Reason Code Meaning

vm_pro_error vm_pro_no_such_thread No thread in the calling thread's process has
ID thread_ID

vm_pro_error vm_pro_out_of_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadSetDispatchClass

Chapter 13. CMS Multitasking Function Descriptions 245

ThreadSetPriority — Set the Dispatching Priority of Threads

ThreadSetPriority
retcode
reascode
thread_ID
priority
flags

Purpose
Use the ThreadSetPriority function to set the dispatching priority of a specified thread or all threads other
than the calling thread in the current process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the thread whose priority should be adjusted, as follows:
-1

All threads in the caller's process except the calling thread
0

The calling thread
n>0

Thread n in the caller's process
priority

(input,INT,4) is a variable for specifying the absolute priority or relative priority of the specified thread.
The relative priority is the offset that should be added to the current priority to determine the new
priority.

flags
(input,INT,4) is a variable for specifying whether priority is to be treated as an absolute or relative
value, as follows:
vm_pro_absolute_priority

priority is absolute
vm_pro_relative_priority

priority is relative

Usage Notes
1. To decrease a thread's priority, use a negative priority. To increase it, use a positive value.
2. The value passed in priority must result in a thread priority in the range of 0 to 32767. If thread_ID is

-1 and this condition is encountered, the priorities of some threads may not be adjusted.

ThreadSetPriority

246 z/VM: 7.3 CMS Application Multitasking

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadSetPriority completed successfully

vm_pro_error vm_pro_no_such_thread No thread in the caller's process has ID
thread_ID

vm_pro_error vm_pro_bad_priority Priority resulted in an out-of-range thread
priority

vm_pro_error vm_pro_bad_flags Flags contains an invalid value

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadSetPriority

Chapter 13. CMS Multitasking Function Descriptions 247

ThreadSetUserData — Set User Data Word

ThreadSetUserData
retcode
reascode
user_data_word

Purpose
Use the ThreadSetUserData function to set a thread's user data word.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
user_data_word

(input,INT,4) is a variable for specifying the new value for the user word.

Usage Notes
1. This function can set the user word of only the calling thread.
2. One example of the use of a user word is the anchoring of control blocks maintained on a thread basis.

By placing the address of the control block in the thread user word, any code running on the thread can
easily retrieve the control block's address.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadSetUserData completed successfully

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadSetUserData

248 z/VM: 7.3 CMS Application Multitasking

ThreadSuspend — Increment a Thread's Suspend Count

ThreadSuspend
retcode
reascode
thread_ID

Purpose
Use the ThreadSuspend function to increment the suspend count of one or more threads in the caller's
process.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
thread_ID

(input,INT,4) is a variable for specifying the thread whose suspend count should be incremented, as
follows:
-1

All threads in the caller's process except the calling thread
0

The calling thread
n>0

Thread n in the caller's process

Usage Notes
1. A thread is considered undispatchable if its suspend count is positive.
2. A suspend count is never negative.
3. ThreadSuspend does not cause a suspend count to overflow (wrap from largest positive to smallest

negative number).
4. ThreadSuspend does not return to its caller until all affected threads are suspended.
5. If the calling thread suspends itself, it does not regain control until it is resumed by some other thread

in its process.
6. Suspending the current thread in a dispatch class causes that thread to lose control to some other

thread in its dispatch class. See the usage notes in “ThreadSetDispatchClass — Set the Dispatching
Class of Threads” on page 244 for more information.

7. When a thread is suspended, the suspension is not applied to the thread until the thread attempts to
leave the CMS multitasking kernel.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadSuspend completed successfully

ThreadSuspend

Chapter 13. CMS Multitasking Function Descriptions 249

Return Code Reason Code Meaning

vm_pro_error vm_pro_no_such_thread No thread in the caller's process has ID
thread_ID

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

REXX VMREXPRO COPY

ThreadSuspend

250 z/VM: 7.3 CMS Application Multitasking

ThreadYield — Yield Control to Another Thread

ThreadYield
retcode
reascode
classmate_ID

Purpose
Use the ThreadYield function to yield control to another thread without becoming undispatchable.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
classmate_ID

(input,INT,4) is a variable for specifying the thread ID of the thread in the caller's dispatch class to
which this thread is yielding.

Usage Notes
1. A classmate_ID value of 0 may be used to indicate that the highest priority dispatchable thread in the

caller's dispatch class should be the next thread dispatched from the caller's dispatch class.
2. A classmate_ID value of -1 may be used to indicate that the caller wishes to retain control of its own

dispatch class while letting threads from other dispatch classes run.
3. See the usage notes in ThreadSetDispatchClass for more information about the conditions under

which the running thread in a dispatch class may lose control to some other thread in its class.
4. Regardless of the value of classmate_ID, if ThreadYield has completed successfully, threads from

other dispatch classes might have run as a result of the call.
5. If ThreadYield fails, no thread switch happens.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_pro_success vm_pro_success ThreadYield completed successfully

vm_pro_error vm_pro_no_such_thread No thread residing in both the caller's
process and the caller's dispatch class has ID
thread_ID

vm_pro_error vm_pro_not_dispatchable The thread having ID thread_ID is not
currently dispatchable

Programming Language Bindings
Language Language Binding File

C VMCPRO H

Assembler VMASMPRO MACRO

ThreadYield

Chapter 13. CMS Multitasking Function Descriptions 251

Language Language Binding File

REXX VMREXPRO COPY

ThreadYield

252 z/VM: 7.3 CMS Application Multitasking

TimerStartInt — Start an Interval Timer

TimerStartInt
retcode
reascode
token
timertype
cycle
intervalunits
interval
userword

Purpose
Use the TimerStartInt function to start a timer. The timer can be a real timer or a CPU timer. The time
interval is specified in 4 bytes of milliseconds or microseconds.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(output,INT,4) is a variable where the function returns a timer identifier token. This token is uniquely
associated with the timer set by this TimerStartInt call and is used by many of the other timer
functions.

timertype
(input,INT,4) is a variable for specifying whether the timer is a real timer or a CPU timer. Valid values
are:
vm_tmr_timertype_real

real
vm_tmr_timertype_cpu

CPU
cycle

(input,INT,4) is a variable for specifying whether the timer is a single timer, meaning that it expires
after the specified time interval, or a cyclical timer, meaning that it continues to expire at regular
intervals until specifically stopped. Valid values are:
vm_tmr_cycle_single

single
vm_tmr_cycle_cyclical

cyclical
intervalunits

(input,INT,4) is a variable for specifying the units in which the time interval is specified. Valid values
are:
vm_tmr_intunit_micro

microseconds

TimerStartInt

Chapter 13. CMS Multitasking Function Descriptions 253

vm_tmr_intunit_milli
milliseconds

interval
(input,INT,4) is a variable for specifying the time interval. The maximum interval allowed is 231-1.

userword
(input,CHAR,8) is a variable for specifying the user data to be associated with this timer.

Usage Notes
1. The application must use Event Management facilities to be notified of timer expiration. For further

information, see Chapter 7, “Timer Services,” on page 59, and Chapter 3, “Event Management,” on
page 17.

2. The maximum 4-byte interval of 231-1 = X'7FFFFFFF' allows for a specification of up to 2,147,483,647
milliseconds or microseconds. If milliseconds are used, the maximum time interval is approximately
24.85 days. If microseconds are used, the maximum time interval is approximately 35.8 minutes.

3. Timers set for extremely small intervals (that is, small enough that they could expire before the start
processing is complete) could produce unpredictable results.

4. TimerTest and TimerStop should be used to test or stop a particular timer started with TimerStartInt.
TimerTestMicros and TimerStopMicros cannot be used on timers started with TimerStartInt.

5. If the requested interval would cause the clock comparator to wrap past (or to) zero, (if programming
support uses the standard epoch of January 1, 1900, 0:00 A.M. GMT/UTC, this will occur sometime
soon after the year 2041), the timer is set for the maximum clock comparator interval and, therefore,
would expire earlier than originally requested. A warning return code and interval exceeds limit reason
code is issued when this occurs.

6. The timer token is guaranteed not to contain bytes corresponding to the code points for key wildcard
characters.

7. Userword is part of the event data key for the VMTIMER event. Applications using userword as part of
the key passed to EventMonitorCreate may incur unexpected results if userword is binary data. See
“Tips on Constructing Keys” on page 30 for more information.

8. If a userword of all binary zeros is specified, no userword will be included in the signal key when Timer
Services signals this VMTIMER event.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerStartInt completed successfully

vm_tmr_warning vm_tmr_interval_exceeds_limit Interval requested would cause the clock
comparator to exceed its maximum value. The
timer was instead set to the maximum clock
comparator value.

vm_tmr_error vm_tmr_type_invalid Invalid timertype specification

vm_tmr_error vm_tmr_cycle_invalid Invalid cycle specification

vm_tmr_error vm_tmr_intervalunit_invalid Invalid intervalunits specification

vm_tmr_error vm_tmr_interval_invalid Invalid interval specification; interval must be
greater than 0 and less than 231.

vm_tmr_error vm_tmr_insufficient_storage Out of storage

TimerStartInt

254 z/VM: 7.3 CMS Application Multitasking

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerStartInt

Chapter 13. CMS Multitasking Function Descriptions 255

TimerStartMicros — Start an Interval Timer

TimerStartMicros
retcode
reascode
token
timertype
cycle
interval
userword

Purpose
Use the TimerStartMicros function to start a timer. The timer can be a real timer or a CPU timer. The time
interval is specified in 8 bytes of microseconds.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(output,INT,4) is a variable where the function returns a timer identifier token. This token is uniquely
associated with the timer set by this TimerStartMicros call and is used by many of the other timer
functions.

timertype
(input,INT,4) is a variable for specifying whether the timer is a real timer or a CPU timer. Valid values
are:
vm_tmr_timertype_real

real
vm_tmr_timertype_cpu

CPU
cycle

(input,INT,4) is a variable for specifying whether the timer is a single timer, meaning that it expires
after the specified time interval, or a cyclical timer, meaning that it continues to expire at regular
intervals until specifically stopped. Valid values are:
vm_tmr_cycle_single

single
vm_tmr_cycle_cyclical

cyclical
interval

(input,INT,8) is a variable for specifying the time interval. The maximum interval allowed is 251-1.
userword

(input,CHAR,8) is a variable for specifying the user data to be associated with this timer.

TimerStartMicros

256 z/VM: 7.3 CMS Application Multitasking

Usage Notes
1. The application must use Event Management facilities to be notified of timer expiration. For further

information, see Chapter 7, “Timer Services,” on page 59, and Chapter 3, “Event Management,” on
page 17.

2. Because the interval for TimerStartMicros is 8 bytes, this function should only be called from
assembler or other languages that can manipulate 8-byte binary numbers. For example, in some
languages the interval can be represented as an 8-byte character string.

3. Timers set for extremely small intervals (that is, small enough that they could expire before the start
processing is complete) could produce unpredictable results.

4. TimerTestMicros and TimerStopMicros should be used to test or stop a particular timer started with
TimerStartMicros. TimerTest and TimerStop cannot be used on timers started with TimerStartMicros.

5. If the requested interval would cause the clock comparator to wrap past (or to) zero, (if programming
support uses the standard epoch of January 1, 1900, 0:00 A.M. GMT/UTC, this will occur sometime
soon after the year 2041), the timer is set for the maximum clock comparator interval and therefore
would expire earlier than originally requested. A warning return code and "interval exceeds limit"
reason code is issued when this occurs.

6. The maximum 8-byte interval of 251-1 = X'0007FFFFFFFFFFFF' allows for specification of up to
2,251,799,813,685,247 microseconds. This is approximately 26,062.5 days or 71 years (the exact
amount in years depends on the number of leap years included).

7. The timer token is guaranteed not to contain bytes corresponding to the code points for key wildcard
characters.

8. Userword is part of the event data key for the VMTIMER event. Applications using userword as part of
the key passed to EventMonitorCreate may incur unexpected results if userword is binary data. See
“Tips on Constructing Keys” on page 30 for more information.

9. If a userword of all binary zeros is specified, no userword will be included in the signal key when Timer
Services signals this VMTIMER event.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerStartMicros completed successfully

vm_tmr_warning vm_tmr_interval_exceeds_limit Interval requested would cause the clock
comparator to exceed its maximum value. The
timer was instead set to the maximum clock
comparator value.

vm_tmr_error vm_tmr_type_invalid Invalid timertype specification

vm_tmr_error vm_tmr_cycle_invalid Invalid cycle specification

vm_tmr_error vm_tmr_interval_invalid Invalid interval specification; interval must be
greater than zero and less than 251.

vm_tmr_error vm_tmr_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerStartMicros

Chapter 13. CMS Multitasking Function Descriptions 257

TimerStartTOD — Start a TOD Timer

TimerStartTOD
retcode
reascode
token
tod
zone
userword

Purpose
Use the TimerStartTOD function to start a real timer. The timer expires at the specified time of day.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(output,INT,4) is a variable where the function returns a timer identifier token. This token is uniquely
associated with the timer set by this TimerStartTOD call and is used by many of the other timer
functions.

tod
(input,CHAR,6) is a variable for specifying the time, in the form HHMMSS, 24-hour clock notation,
when the timer is to expire. Valid times are 000000 to 235959 (000000 being midnight).

zone
(input,INT,4) is a variable for specifying the time zone to use. Valid values are:
vm_tmr_zone_local

local time
vm_tmr_zone_gmt

Greenwich Mean Time
userword

(input,CHAR,8) is a variable for specifying data that the user wishes to associate with this timer.

Usage Notes
1. The application must use Event Management facilities to be notified of timer expiration. For further

information, see Chapter 7, “Timer Services,” on page 59, and Chapter 3, “Event Management,” on
page 17.

2. If the requested time of day is earlier than the current time of day, the timer will be set for the
requested time on the following day.

3. When the system operator enters the CP SET TIMEZONE command, running timers set by using
TimerStartTOD are adjusted so that the caller-requested expiration time is preserved even though the
time zone has changed. If the time zone change results in the caller-specified time being skipped,
the affected timers expire immediately. This can happen only on time zone changes that advance the
system clock, for example, EST to EDT.

TimerStartTOD

258 z/VM: 7.3 CMS Application Multitasking

4. Timers started with TimerStartTOD are treated as real single timers, whose intervals are in
milliseconds, by other Timer Services functions.

5. TimerTest and TimerStop should be used to test or stop a particular timer started with TimerStartTOD.
TimerTestMicros and TimerStopMicros cannot be used on timers started with TimerStartTOD.

6. The timer token is guaranteed not to contain bytes whose values correspond to the code points for key
wildcard characters.

7. The userword is part of the event data key for the VMTIMER event. Applications using userword as part
of the key passed to EventMonitorCreate may incur unexpected results if userword is binary data. See
“Tips on Constructing Keys” on page 30 for more information

8. If a userword of all binary zeros is specified, no userword will be included in the signal key when Timer
Services signals this VMTIMER event.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerStartTOD completed successfully

vm_tmr_warning vm_tmr_interval_exceeds_limit Interval requested would cause the clock
comparator to exceed its maximum value. The
timer was instead set to the maximum clock
comparator value.

vm_tmr_error vm_tmr_tod_invalid Invalid tod specification

vm_tmr_error vm_tmr_zone_invalid Invalid zone specification

vm_tmr_error vm_tmr_insufficient_storage Out of storage

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerStartTOD

Chapter 13. CMS Multitasking Function Descriptions 259

TimerStop — Cancel a Timer

TimerStop
retcode
reascode
token
intervalunits
interval
userword

Purpose
Use the TimerStop function to cancel a timer previously started by TimerStartInt or TimerStartTOD and
return the time remaining for that timer.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(input,INT,4) is a variable for specifying the token that identifies the timer that is to be stopped. This
token was returned to the application when it issued the TimerStartTOD or TimerStartInt function to
start the timer.

intervalunits
(output,INT,4) is a variable where the function returns a value indicating the units in which the timer
interval was specified. The possible values are:
vm_tmr_intunit_micro

microseconds
vm_tmr_intunit_milli

milliseconds
interval

(output,INT,4) is a variable where the function returns the number of units remaining in the timer
interval.

userword
(output,CHAR,8) is a variable where the function returns the user data that was established for this
timer when it was started.

Usage Notes
1. TimerStop issues an EventSignal for the stopped timer. This lets the application receive notification of

the cancelation of this timer through the Event Management facilities. TimerStop signals the VMTIMER
event with a key consisting of the timer token concatenated with an S (indicating it was stopped)
concatenated with the userword. If a userword of all binary zeros was specified when the timer was
started, no userword is included in the signal key. See “Timer Services Examples” on page 59 for an
example.

2. Timers started with TimerStartTOD are treated as real single timers whose intervals are in
milliseconds.

TimerStop

260 z/VM: 7.3 CMS Application Multitasking

3. If a TimerStop is issued on a timer that has already been stopped or a single timer that has expired, an
error return code and unrecognized token reason code are returned.

4. TimerStop can be used to stop only timers started with TimerStartInt or TimerStartTOD.
5. At process termination, CMS issues TimerStopAll to stop all outstanding timers.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerStop completed successfully

vm_tmr_error vm_tmr_invalid_call Timer has been started by TimerStartMicros
and must be stopped by TimerStopMicros

vm_tmr_error vm_tmr_unrecognized_token Unrecognized token; timer does not exist or
has already expired or been stopped

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerStop

Chapter 13. CMS Multitasking Function Descriptions 261

TimerStopAll — Cancel All Timers

TimerStopAll
retcode
reascode

Purpose
Use the TimerStopAll function to cancel all previously started timers.

Parameters
retcode

(output,INT,4) is a variable where the function
reascode

(output,INT,4) is a variable where the function stores the reason code.

Usage Notes
1. TimerStopAll issues an EventSignal for each stopped timer. This lets the application receive

notification of the cancelation of each of these timers through the Event Management facilities.
TimerStopAll signals the VMTIMER event with a key consisting of the timer token concatenated with
an S (indicating it was stopped) concatenated with the userword. If a userword of all binary zeros
was specified when the timer was started, no userword will be included in the signal key. See “Timer
Services Examples” on page 59 for an example.

2. At process termination, CMS issues TimerStopAll to stop all of the process's outstanding timers.
3. In addition to cancelling all outstanding timers set by the CMS application multitasking TimerStartxxx

calls, TimerStopAll cancels all outstanding timers set by the POSIX services sleep() and alarm().
The cancellation of a timer set using the POSIX sleep() or alarm() service causes both a VMTIMER
event to be signalled and a POSIX SIGALRM signal to be generated. See XL C/C++ for z/VM: Runtime
Library Reference, SC09-7624, for details on sleep(), alarm(), and SIGALRM.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerStopAll completed successfully

Programming Language Bindings

Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerStopAll

262 z/VM: 7.3 CMS Application Multitasking

TimerStopMicros — Cancel a Timer

TimerStopMicros
retcode
reascode
token
interval
userword

Purpose
Use the TimerStopMicros function to cancel a timer previously started with the TimerStartMicros function
and return the time remaining for that timer.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(input,INT,4) is a variable for specifying the token that identifies the timer that is to be stopped. This
token was returned to the application when it issued the TimerStartMicros function to start the timer.

interval
(output,INT,8) is a variable where the function returns the number of microseconds remaining in the
timer interval.

userword
(output,CHAR,8) is a variable where the function returns the user data that was established for this
timer when it was started.

Usage Notes
1. TimerStopMicros issues an EventSignal for the stopped timer. This lets the application receive

notification of the cancelation of this timer through the Event Management facilities. TimerStopMicros
signals the VMTIMER event with a key consisting of the timer token concatenated with an S (indicating
it was stopped) concatenated with the userword. If a userword of all binary zeros was specified when
the timer was started, no userword will be included in the signal key. See “Timer Services Examples”
on page 59 for an example.

2. If a TimerStopMicros is issued on a timer that has already been stopped or a single timer that has
expired, an error return code and vm_tmr_unrecognized_token reason code are returned.

3. Because the interval for TimerStopMicros is 8 bytes, this function should only be called from
assembler or other languages that can manipulate 8-byte binary numbers. For example, in some
languages the interval can be represented as an 8-byte character string.

4. TimerStopMicros can be used to stop only timers started with TimerStartMicros.
5. At process termination, CMS issues TimerStopAll to stop all outstanding timers.

TimerStopMicros

Chapter 13. CMS Multitasking Function Descriptions 263

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerStopMicros completed successfully

vm_tmr_error vm_tmr_invalid_call Timer has been started by TimerStartInt
or TimerStartTOD and must be stopped by
TimerStop

vm_tmr_error vm_tmr_unrecognized_token Unrecognized token; timer does not exist or
has already expired or been stopped

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerStopMicros

264 z/VM: 7.3 CMS Application Multitasking

TimerTest — Query a Timer

TimerTest
retcode
reascode
token
timertype
cycle
intervalunits
interval
userword

Purpose
Use the TimerTest function to get information about a timer: its type (real or CPU), its cycle (single or
cyclical), and the amount of time remaining in the interval (in 4 bytes of milliseconds or microseconds).
The timer must have been previously started with the TimerStartInt or TimerStartTOD function.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(input,INT,4) is a variable for specifying the token that identifies the timer that is to be tested. This
token was returned to the application when it issued the TimerStartTOD or TimerStartInt function to
start the timer.

timertype
(output,INT,4) is a variable where the function returns a value indicating whether the token represents
a real timer or a CPU timer. The possible values are:
vm_tmr_timertype_real

real time
vm_tmr_timertype_cpu

CPU time
cycle

(output,INT,4) is a variable where the function returns a value indicating whether the timer is a single
timer or a cyclical timer. Their possible values are:
vm_tmr_cycle_single

single
vm_tmr_cycle_cyclical

cyclical
intervalunits

(output,INT,4) is a variable where the function returns a value indicating the units in which the timer
interval was specified. The possible values are:
vm_tmr_intunit_micro

microseconds

TimerTest

Chapter 13. CMS Multitasking Function Descriptions 265

vm_tmr_intunit_milli
milliseconds

interval
(output,INT,4) is a variable where the function returns the number of units remaining in the timer
interval.

userword
(output,CHAR,8) is a variable where the function returns the user data that was established when the
timer was started.

Usage Notes
1. Timers started with TimerStartTOD are treated as real single timers whose intervals are in

milliseconds.
2. If a TimerTest is issued on a timer that has already been stopped or a single timer that has expired, an

error return code and vm_tmr_unrecognized_token reason code are returned.
3. TimerTest can be used to test only timers started with TimerStartInt or TimerStartTOD.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerTest completed successfully

vm_tmr_error vm_tmr_invalid_call Timer was started by TimerStartMicros and
must be tested by TimerTestMicros

vm_tmr_error vm_tmr_unrecognized_token Unrecognized token; timer does not exist or
has already expired or been stopped

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerTest

266 z/VM: 7.3 CMS Application Multitasking

TimerTestMicros — Query a Timer

TimerTestMicros
retcode
reascode
token
timertype
cycle
interval
userword

Purpose
Use the TimerTestMicros function to return information about a timer: its type (real or CPU), its cycle
(single or cyclical), and the time remaining in the interval (in 8 bytes of microseconds). The timer must
have been previously started with the TimerStartMicros function.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
token

(input,INT,4) is a variable for specifying the token that identifies the timer that is to be tested. This
token was returned to the application when it issued the TimerStartMicros function to start the timer.

timertype
(output,INT,4) is a variable where the function returns a value indicating whether the token represents
a real time timer or a CPU timer. The possible values are:
vm_tmr_timertype_real

real time
vm_tmr_timertype_cpu

CPU time
cycle

(output,INT,4) is a variable where the function returns a value indicating whether the timer is a single
timer or a cyclical timer. The possible values are:
vm_tmr_cycle_single

single
vm_tmr_cycle_cyclical

cyclical
interval

(output,INT,8) is a variable where the function returns the number of microseconds remaining in the
timer interval.

userword
(output,CHAR,8) is a variable where the function returns the user data that was established when the
timer was started.

TimerTestMicros

Chapter 13. CMS Multitasking Function Descriptions 267

Usage Notes
1. If a TimerTestMicros is issued on a timer that has already been stopped or a single timer that has

expired, an error return code and vm_tmr_unrecognized_token reason code are returned.
2. Because the interval for TimerTestMicros is 8 bytes, this function should only be called from assembler

or other languages that can manipulate 8-byte binary numbers. For example, in some languages the
interval can be represented as an 8-byte character string.

3. TimerTestMicros can be used to test only timers started with TimerStartMicros.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_tmr_success vm_tmr_success TimerTestMicros completed successfully

vm_tmr_error vm_tmr_invalid_call Timer was started by either TimerStartInt
or TimerStartTOD and must be tested by
TimerTest

vm_tmr_error vm_tmr_unrecognized_token Unrecognized token; timer does not exist or
has already expired or been stopped

Programming Language Bindings
Language Language Binding File

C VMCTMR H

Assembler VMASMTMR MACRO

REXX VMREXTMR COPY

TimerTestMicros

268 z/VM: 7.3 CMS Application Multitasking

TraceControl — Define and Queries Trace Attributes

TraceControl
retcode
reascode
function
wrapsize
num_types
tracetypes
tracetype_settings

Purpose
Use the TraceControl function to initiate tracing, select specific trace types, or determine the current trace
selectivity. This function controls tracing for the entire session.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
function

(input,INT,4) is a variable for specifying the use of the tracetypes array and the tracetype_settings
array. Valid values are:
vm_trc_qitrace

The internal trace types are queried and their setting is returned in the tracetype_settings array.
vm_trc_itrace

The tracetypes and tracetype_settings set the internal traces on and off.
wrapsize

(input/output,INT,4) is a variable that indicates how many trace events are retained if no eligible
trace event monitor exists at the time the event is signaled. For a wrapsize > 0, when the wrapsize
is exceeded, the oldest trace event is discarded to make room for the newest arrival. The wrapsize
variable is either input or output, depending on the function:

• An input variable for the vm_trc_itrace function
• An output variable for the vm_trc_qitrace function.

In addition to being able to set an integer value greater than 0, other valid values for wrapsize are as
follows:
vm_trc_wrapnone

No trace events are to be retained
vm_trc_wrapnostor

Trace events continue to be retained until virtual storage is exhausted
vm_trc_wrapnochg

wrapsize is to remain unchanged

For the vm_trc_qitrace query function, the current wrapsize value is returned.

TraceControl

Chapter 13. CMS Multitasking Function Descriptions 269

num_types
(input,INT,4) is a variable for specifying the number of trace types to be set or queried. This value
is the number of elements used in the tracetypes and tracetype_settings arrays. The value must be
greater than or equal to 0. If 0 is specified, the tracetypes and tracetype_settings arrays are ignored,
and only wrapsize is set or queried.

tracetypes
(input,INT,num_types) is an array of 4-byte variables that specifies the trace types to be set or
queried. The size of the array is specified by the num_types parameter. Valid values for the elements
of the array are:
vm_trc_all

All trace types
vm_trc_comm

Communication events
vm_trc_disp

Dispatch events
vm_trc_proc

Process management events
vm_trc_lang

Language Adapter events
vm_trc_sync

Synchronization events
vm_trc_misc

Miscellaneous events

When tracing is set on, this starts the internal CMS tracing for the trace type(s) set.

tracetype_settings
(input/output,INT,num_types) is an array of 4-byte variables that indicate the settings of the trace
types in the corresponding elements of the tracetypes array. The array is either input or output,
depending on the function:

• An input array for the vm_trc_itrace function
• An output array for the vm_trc_qitrace function.

Valid values for each element are:
vm_trc_off

Corresponding trace type is set OFF
vm_trc_on

Corresponding trace type is set ON
vm_trc_unchg

Corresponding trace type is UNCHANGED

Usage Notes
1. TraceControl always results in an event definition of session scope and broadcast signals.
2. The tracetypes and tracetype_settings arrays are processed in array order. For example, if values

corresponding to vm_trc_all and vm_trc_off are the first elements in the respective arrays, all trace
categories are set off before processing subsequent elements in the arrays. As a result, in general, an
array element may be nullified by a subsequent array element.

3. The trace type vm_trc_all is invalid for the vm_trc_qitrace function, because individual elements may
have been set after the vm_trc_all setting. The vm_trc_all setting is returned in the tracetype_settings
array, but a warning return code indicates that individual trace types should be queried.

TraceControl

270 z/VM: 7.3 CMS Application Multitasking

4. If an invalid trace type is specified for the vm_trc_qitrace function, the corresponding
tracetype_settings array will return a value of vm_trc_off for that trace type, and a warning return
code will be given. The rest of the array will be processed.

5. The AccountControl function uses Event Services to collect trace data and process it to produce
accounting information.

6. During initialization, the following trace attributes are in effect:

wrapsize = vm_trc_wrapnostor
num_types = 1
tracetypes = vm_trc_all
tracetype_settings = vm_trc_off

These values may be overridden when an application invokes TraceControl with its own settings.
7. End-user commands, TRACECTL and QUERY TRACECTL, are provided to set and query trace

parameters. See z/VM: CMS Commands and Utilities Reference.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_trc_success vm_trc_success TraceControl completed successfully

vm_trc_error vm_trc_bad_func Function is invalid

vm_trc_error vm_trc_bad_wrap_size Wrapsize value is invalid

vm_trc_error vm_trc_bad_numtype Num_types is invalid

vm_trc_warning vm_trc_array_bad_value Tracetypes or tracetype_settings array value is
invalid

Programming Language Bindings
Language Language Binding File

C VMCTRC H

Assembler VMASMTRC MACRO

REXX VMREXTRC COPY

TraceControl

Chapter 13. CMS Multitasking Function Descriptions 271

TraceSignal — Signal a Trace Event

TraceSignal
retcode
reascode
trace_type_id
subtype_id
data_buffer
data_len
fmtrtn_name

Purpose
Use the TraceSignal function to build a trace header record and signal a VMTRACE event.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
trace_type_id

(input,INT,4) is a variable for specifying the trace type that is to be signaled. This value is stored in
the trace header as part of the event key when the VMTRACE event is signaled. System-defined trace
types supported by TraceControl may be used, as well as any user-defined trace type. Trace types in
the range of 0–31 are reserved for CMS. Only trace types defined by CMS may be set or queried using
TraceControl services.

subtype_id
(input,INT,4) is a variable for specifying the trace subtype that is to be signaled. This value is stored in
the trace header as part of the event key when the VMTRACE event is signaled.

data_buffer
(input,CHAR,data_len) is a variable for a buffer that holds the trace data to be signaled. This data is
appended to the trace header.

data_len
(input,INT,4) is a variable for specifying the length of the trace data contained in data_buffer. This
value must be greater than or equal to 0. If 0 is specified, the event data being signaled contains only
a trace header.

fmtrtn_name
(input,CHAR,8) is a variable for specifying the name of the format routine you wish to use when
processing trace records. If the format routine name is left blank, the default system routine, DVF, is
filled in.

Usage Notes
1. The TraceSignal interface builds a header record in a format that matches the format used by CMS. The

mapping of the header is defined in the vm_trc_recfmt structure in the language binding files.
2. When a VMTRACE event is signaled using the TraceSignal interface, the entire trace record is defined

as the event key. Event monitors may be created specifying the header and data as the key, or any
portion of it using wildcarding.

TraceSignal

272 z/VM: 7.3 CMS Application Multitasking

3. If tracing is on for a CMS trace type and that trace type is signalled by the application, qualifying event
monitors may have CMS trace data as well as the data from this TraceSignal for retrieval. In general,
the application should avoid using trace types reserved for CMS.

4. Trace subtypes associated with CMS trace types are reserved for definition by CMS and are defined in
Appendix B, “CMS Trace Record Formats,” on page 303. Users should not add their own subtypes for
any of the CMS-defined types. If a user wants to trace events not listed as a CMS type or subtype, then
a new user type category can be defined, (with a type ID not in the range of 0 - 31), and monitored
using event services. TraceSignal may then be used to issue an event signal for that event.

5. A TraceSignal results in an event signal being issued for the specified trace_type_id regardless of
whether tracing was enabled for a CMS trace type by TraceControl.

6. If data_len plus the length of the trace header is greater than X'7FFFFFFF', then an overflow condition
occurs and an error return code is given with a reason code of vm_trc_bad_datalen.

7. If a TraceSignal is issued for a CMS trace type for vm_trc_comm or vm_trc_disp events, accounting
records will be affected if accounting is on for vm_act_comm or vm_act_cpu.

8. See “Tips on Constructing Keys” on page 30 for a discussion of the use of binary data in event data
keys.

Return Codes and Reason Codes

Return Code Reason Code Meaning

vm_trc_success vm_trc_success TraceSignal completed successfully

vm_trc_error vm_trc_bad_datalen Data length specified is invalid

vm_trc_error vm_trc_insufficient_storage No more storage available

Programming Language Bindings
Language Language Binding File

C VMCTRC H

Assembler VMASMTRC MACRO

REXX VMREXTRC COPY

TraceSignal

Chapter 13. CMS Multitasking Function Descriptions 273

VCPUCreate — Create a Virtual Processor (Virtual CPU)

VCPUCreate
retcode
reascode
number_to_create
number_available

Purpose
Use the VCPUCreate function to add a virtual processor to the virtual machine and make it available to
CMS for executing threads.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
number_to_create

(input,INT,4) is a variable for specifying the number of processors to create. The number must be
between 0 and 63, inclusive. If zero is specified, no processors are created, but the number_available
parameter is updated.

number_available
(output,INT,4) is a variable where the function returns the number of processors, at completion of this
operation, that exist in the virtual machine and are usable. This number includes the base CPU but
excludes any processors that were in stopped-state when the tasking application started.

Usage Notes
1. CMS dispatches threads on the new virtual processor. It cannot be manipulated by the application by

means other than the process and thread functions.
2. The use of multiple virtual processors is supported only in XA- or XC-mode virtual machines.

Return Codes and Reason Codes

VCPUCreate

274 z/VM: 7.3 CMS Application Multitasking

Return Code Reason Code Meaning

vm_cpu_succes
s

vm_cpu_success VCPUCreate completed successfully

vm_cpu_error vm_cpu_not_xa Virtual machine was not XA or XC; CPUs were not
created

vm_cpu_error vm_cpu_no_more_vcpus Virtual CPU limit exceeded; CPUs were not created

vm_cpu_error vm_cpu_bad_number_to_create The number_to_create parameter was less than
zero or greater than 63

Programming Language Bindings
Language Language Binding File

C VMCCPU H

Assembler VMASMCPU MACRO

REXX VMREXCPU COPY

VCPUCreate

Chapter 13. CMS Multitasking Function Descriptions 275

VCPUSelect — Request Special Virtual CPU Dispatching

VCPUSelect
retcode
reascode
selection

Purpose
Use the VCPUSelect function to request special virtual CPU dispatching consideration for the calling
thread.

Parameters
retcode

(output,INT,4) is a variable where the function stores the return code.
reascode

(output,INT,4) is a variable where the function stores the reason code.
selection

(input,INT,4) is a variable for specifying the virtual CPU dispatching requested for the calling thread.
Valid values are:
vm_cpu_base_only

Specifies that this thread must be dispatched only on the base virtual CPU. Upon return from this
function the thread will be executing on the base virtual CPU.

vm_cpu_any
Specifies that this thread can be dispatched on any virtual CPU.

Return Codes and Reason Codes
Return Code Reason Code Meaning

vm_cpu_success vm_cpu_success VCPUSelect completed successfully

vm_cpu_error vm_cpu_bad_selection Invalid selection

Programming Language Bindings
Language Language Binding File

C VMCCPU H

Assembler VMASMCPU MACRO

REXX VMREXCPU COPY

VCPUSelect

276 z/VM: 7.3 CMS Application Multitasking

Chapter 14. System Exits

To let installations tailor or extend the multitasking environment a set of system exits (or installation-wide
exits) is provided that lets installation-provided routines execute at key points in CMS processing. Exits
are implemented through installation-replaceable modules.

The set of exits is divided into two classes. The first class, general-purpose exits, allows customer-written
code to get control during key points, such as session start-up and thread creation. The second class,
programming language environment exits, is specifically designed to allow the installation to support
compiled language run-time environments other than C/C++ for z/VM, C for VM/ESA, and Basic Assembler
Language. These language exits are called to transfer control from CMS kernel code to the tasking
application. Both classes of exit use OS Type 1 linkage and must be written not to rely on the existence
of any extended context, such as a language run-time environment. Certain additional linkage constraints
may apply in some cases.

System Exit Linkage Conventions
The linkage from CMS to system exits is roughly the same for all exit entry points, the difference being in
the parameter lists passed to the various entry points. Fundamentally, the linkage is this:
R1

Address of routine-specific parameter list
R13

Address of a 72-byte save area
R14

Return address
R15

Entry point address.
In addition, interrupts are disabled, the PSW key is set to SYSTEM key, and if the virtual machine is XC
mode, then the address space mode is set to primary. The exit should be AMODE 31 capable.

The exit is expected to preserve the general purpose registers and the additional conditions cited.

The following sections describe each entry point's parameter list and also describe deviations from this
standard, if any.

General-Purpose Exits
These exits are a set of entry points contained in an installation provided module called DMSSXM
MODULE that resides on the S-disk. The individual system exits are entry points within this module.
Typically, these entry points are in separate text files. They are combined with a CMS-provided interface
routine, through a procedure described below, to form the system exits module.

Session Initialization Exit
Entry point USRSINIT is called early in session initialization. The multitasking API is not yet available for
use, and tasking has not yet been turned on. This exit lets the installation perform session-wide tailoring.
This exit should not be used for application-specific processing.

Parameters for session initialization exits are as follows:
Word 0

is the address of a signed 4-byte return code that USRSINIT must set to indicate whether the
exit processing was successful. A value of 0 indicates success. Any other value indicates failure,
which causes CMS to stop initialization with an abnormal termination code equal to the return code
generated by USRSINIT.

System Exits

© Copyright IBM Corp. 1992, 2022 277

Thread Initialization Exit
Entry point USRTINIT is called during thread creation after the thread has been completely built. The exit
runs on the new thread. Interrupts are disabled and the address space mode is primary.

Parameters for thread initialization exits are as follows:
Word 0

is the address of a signed 4-byte return code that USRTINIT must set to indicate whether the
exit processing was successful. A value of 0 indicates success. Any other value indicates failure,
which causes CMS to end with an abnormal termination code equal to the return code generated by
USRTINIT.

Word 1
is a signed 4-byte process ID of the process owning the new thread.

Word 2
is a signed 4-byte thread ID of the new thread.

The exit can determine whether this is the first thread in the process by examining the thread ID of the
new thread (the ID will be 1 if the thread is the first one).

Thread Termination Exit
Entry point USRTTERM is called at least once during thread termination processing. The first call is made
just before CMS begins to do cleanup for the terminating thread. If the terminating thread is the last
thread in the process, CMS will call USRTTERM again just before the beginning of process cleanup. When
this second call is made, the exit may assume that thread cleanup has already been done for all threads
in the process, including the thread on which the process cleanup call is executing. In both cases, the exit
runs on the terminating thread. Interrupts are disabled and the address space mode is primary.

Parameters for thread termination exits are as follows:
Word 0

is address of a signed 4-byte return code that USRTTERM must set to indicate whether the exit
processing was successful. A value of 0 indicates success. Any other value indicates failure, which
causes CMS to end with an abnormal termination code of F07. by USRTTERM.

Word 1
is the signed 4-byte process ID of the process owning the terminating thread.

Word 2
is the signed 4-byte thread ID of the terminating thread.

Word 3
is a signed 4-byte flag, which is 1 if this is the process cleanup call, or 0 otherwise.

Root Process Exit
Some CMS services are provided by threads running in a system process known as the root process. If
the installation needs to add function to CMS, it can use this exit to run one or more threads in the root
process.

Entry point USRRTHD is the entry point given control on the new thread of the root process. It has the
following attributes:

• Is created in a dispatching class of its own
• Is passed no parameters at thread creation
• Has priority equal to other threads of the root process.

This thread is created after all other CMS initialization is complete but before the commands process is
created. Threads running in the root process are not provided with a high-level language context — this
includes the USRRTHD thread.

System Exits

278 z/VM: 7.3 CMS Application Multitasking

Building a System Exits Module
Customer-supplied system exits are packaged separately from the CMS nucleus in a module file named
DMSSXM.

IBM does not ship a DMSSXM MODULE containing null exits. CMS simply does not attempt to drive
any exits if DMSSXM is not present. This corresponds to the approach used for SFS exits (for example,
DMSJNE). The installation-supplied DMSSXM must be placed on the CMS system disk.

The build procedure for the system exits module is:

1. Produce, through compilation or assembly steps, the text decks for the USRxxx entry points.
2. Use LOAD and INCLUDE commands with the RLDSAVE option to load or include the USRxxx text files

into storage.
3. Issue INCLUDE DMSSXM (RESET DMSSXMIN RLDSAVE to bring the IBM-supplied system exits

initialization code into storage.
4. Issue GENMOD DMSSXM (MAP to write the system exits module to disk.

The system programmer may choose to put the system exits module in the installation saved segment,
CMSINST. This segment is the only one loaded early enough to contain the system exits module. This
allows the system programmer's site to share a single copy of his module. If the module is placed into
a segment, the system programmer should specify that the module should be processed as a nucleus
extension at segment load time.

Programming Language Environment Exits
CMS provides language run-time environment support for C and assembler. In addition, CMS allows
customers to replace the supplied language environment support routines with their own. This is useful
for supporting tasking applications written in a language other than the ones supported by IBM. To
support some other language run-time environment, the customer should provide replacements for all
of the language support exits. Those replacements should then be bound into a language environment
manager module, the procedure for which will be described after first presenting descriptions of the exits.

If you plan to write your own run-time support, you will need to provide object code for several
entry points. Together these routines manage the creation, deletion, and context switching operations
associated with your run-time environment. In this section, this collection of routines is called the
environment manager.

CMS does not invoke the environment manager for threads that run in the root process. All root process
threads are written to run without a high-level language context. This includes any event traps that might
be sprung in the root or any abnormal termination retry routines that might be executed in the root. This
point becomes relevant for the customer only if the USRRTHD exit is exploited.

Table 22 on page 279 tells the names and functions of the run-time support routines. The following
sections describe the functions and linkage for each routine. Each of these routines must be capable of
executing in AMODE 31.

Table 22. Run-Time Support Entry Points and Functions

Entry Point Name Function

RTEPCR Process creation initialization

RTEPDE Process deletion cleanup

RTETCR Thread creation initialization

RTETDE Thread deletion cleanup

RTERR Run application code in proper context

does not apply Context switches

System Exits

Chapter 14. System Exits 279

Process Creation
When CMS creates a new process, it calls entry point RTEPCR to give the environment manager an
opportunity to respond to the new process. RTEPCR does not run in the context of the new process. CMS
calls RTEPCR before any threads are created in the new process. CMS calls RTEPCR with this parameter
list:
Word 0

Address of a 4-word array containing the R0, R1, R2, and R13 values that will be passed to APPLMAIN
(see “Writing Multitasking Applications in Assembler” on page 85).

Word 1
Address of a process-specific anchor word reserved for use by the environment manager in managing
this process's environment

Word 2
Context switch handler address (to be filled in by the environment manager)

Word 3
Address of a list of additional entry points for functions provided to help environment managers
implement higher-level thread functions. The list has the following contents:
Word 0

The number of entries following in the list (not counting this word)
Word 1

Entry point address of the Thread Block function
Word 2

Entry point address of the Thread Unblock function.

These functions use register-only linkage (BALR R14,R15) and parameter passing and do not require
an in-storage parameter list. These language environment manager functions have the following
specifications:
Thread Block

Increment the block count of the calling thread. This value is equal to the number of times Thread
Block was called for this thread minus the number of times Thread Unblock was called for this thread.
If the count is greater than zero, the thread is blocked (made non-dispatchable). Control returns after
the thread is unblocked by the Thread Unblock function.

Register Usage
R14

Return address
R15

Input is the address of Thread Block. Output is the return code.

Return Code
0

Successful completion
Thread Unblock

Decrement the block count of the specified thread. If the count is less than or equal to zero, the
thread is unblocked (made dispatchable).

Register Usage
R1

Thread ID of the thread that is to be unblocked
R2

Process ID of the process that owns the thread to be unblocked
R3

Call Flag - value of 1 indicates the call is from an interrupt handler routine; value of 0 indicates the call
is from noninterrupt handler code.

System Exits

280 z/VM: 7.3 CMS Application Multitasking

R14
Return address

R15
Input is the address of Thread Unblock. Output is the return code.

Return Codes
0

Successful completion
8

The specified thread does not exist

The language environment manager is trusted not to unblock threads in processes it does not manage.
The process ID parameter is provided because the function may need to be called from an interrupt
handler. The flag value allows CMS to be sure if the caller is in an interrupt handler, since some servers
interfere with interrupt processing. RTEPCR is expected to perform any process-level environment setup
operations deemed appropriate and return to CMS, filling in the address of the context switch handler for
this process. If there is no context switch handler for this process, RTEPCR should put a zero into this
field. RTEPCR must be MP-capable.

Process Deletion
When CMS deletes a process, it calls entry point RTEPDE to give the environment manager an opportunity
to respond to the process deletion. By the time RTEPDE is called, all threads in the process have
been deleted. RTEPDE does not run in the context of the deleted process. CMS calls RTEPDE with this
parameter list:
Word 0

Reserved for IBM
Word 1

Address of the environment manager anchor word for this process.
RTEPDE is expected to perform process-level cleanup operations and return to CMS. RTEPDE must be
MP-capable.

Thread Creation
When CMS creates a thread, it calls entry point RTETCR to give the environment manager an opportunity
to respond to the new thread. RTETCR runs on the new thread. CMS calls RTETCR with this parameter list:
Word 0

Reserved for IBM
Word 1

Address of the environment manager anchor word for the owning process
Word 2

Address of a thread-specific anchor word reserved for use by the environment manager in managing
this thread's environment.

RTETCR is expected to perform thread-related setup operations and return to CMS. RTETCR should not
attempt to call the multitasking API, as the complete API is not yet available for the new thread.

Because RTETCR runs on the new thread, and because the thread must be dispatched before it can run to
call RTETCR, programmers will observe that for a given thread, the owning process' context switch exit is
driven before RTETCR. The first time the context switch exit is driven for a given thread, the environment
manager's thread-specific anchor word will be zero. This gives the context switch exit a way to know
whether RTETCR has been driven yet for the thread. RTETCR must be MP-capable.

System Exits

Chapter 14. System Exits 281

Thread Deletion
When it deletes a thread, CMS calls RTETDE to give the environment manager an opportunity to respond
to the deletion. CMS calls RTETDE with this parameter list:
Word 0

Reserved for IBM
Word 1

Address of the environment manager anchor word for the owning process
Word 2

Address of the environment manager anchor word for the deleted thread.

RTETDE is expected to tear down the run-time environments for any uncompleted calls to RTERR. It is
also expected to perform any other thread-related cleanup operations.

Depending on the priorities and behaviors of the threads involved, RTETDE may be invoked for a given
thread even though RTETCR was never invoked. This happens when a thread is created but is deleted
before ever being dispatched. RTETDE should be written to handle such occurrences.

RTETDE should not attempt to call the multitasking API, as portions of the process environment have
already been dismantled for the terminating thread. RTETDE must be MP-capable.

Run a Routine in Context
To run a user routine, such as a new thread or an event trap, CMS calls RTERR, passing information
describing both the routine to be executed and the process and thread in which the routine will run.
RTERR runs on the thread on which the routine will run.

RTERR might be called more than once on a given thread. If this happens, the invocations will be nested
in LIFO fashion; that is, a given routine whose execution is in progress through a call to RTERR will not
have completed if CMS calls RTERR to run a subsequent routine on the same thread. When this happens,
the environment manager may assume that these routines complete in the reverse order from which they
were started.

CMS calls RTERR with this parameter list:
Word 0

Reserved for IBM
Word 1

Address of the environment manager anchor word for the owning process
Word 2

Address of the environment manager anchor word for the thread on which the routine will run
Word 3

Routine's entry point address
Word 4

Address of parameter list to be passed to the routine
Word 5

Length of parameter list (in words) to be passed to the routine.
In addition, the AS mode is primary.

When RTERR is driven to run the first thread of the application (APPLMAIN), word 4 of the RTERR
parameter list points to a parameter list for APPLMAIN organized as follows:
Word 0

A pointer to a copy of the extended parameter list CMS passed to the tasking module, or zero if no
extended parameter list was provided.

Word 1
A pointer to a copy of the tokenized parameter list CMS passed to the tasking module.

System Exits

282 z/VM: 7.3 CMS Application Multitasking

Word 2
A copy of the R2 value CMS passed to the tasking module. If the tasking module is loaded as a nucleus
extension, then this pointer points to the nucleus extension's SCBLOCK.

Word 3
A pointer to a copy of the USERSAVE area CMS provided for the module. This copy is provided so that
the program can interrogate the USERINFO doubleword in USERSAVE.

RTERR is expected to establish the run-time environment for the routine and then give control to the
routine in the manner it expects. Because RTERR is entered disabled for interrupts, it should enable
before passing control to the thread so the thread can begin execution enabled for interrupts.

RTERR needs to maintain a data structure that allows the context switch exit to determine which
environment is active on a given thread. CMS guarantees that the environment active on a thread is
the environment associated with the last uncompleted call to RTERR. This suggests that RTERR should
maintain a stack of environment descriptions.

Depending on the routine's behavior, it may terminate by returning to RTERR. If it does so, then RTERR
is expected to tear down the run-time environment it created and return to CMS with the routine's return
code in R15. If the routine ends in some other fashion (for example, call to ThreadDelete), then control
never returns to RTERR and RTETDE is responsible for cleanup.

Note that RTERR must be reentrant. Note also that RTERR should make provisions for RTETDE to
deallocate any storage RTERR may have allocated, including save areas, in the event that RTERR never
regains control.

CMS does not use RTERR to drive named trap routines. Named trap routines must be written in assembler
and must not rely on the existence of any high-level-language context. RTERR must be MP-capable.

Context Switching
Depending on the semantics and execution model being implemented by the environment manager, it
may be necessary for the manager to get control as CMS switches among threads. CMS provides for
this by allowing RTEPCR to specify the address of an exit that should be driven when context switching
operations occur. To provide for additional flexibility, CMS allows the context switch exit to be different for
each process.

Context switching is a four-part operation as follows:

1. The execution state of the currently-executing thread is saved. The currently-executing thread is also
called the old thread.

2. A thread is selected for execution. The chosen thread is called the new thread.
3. The execution state of the new thread is restored.
4. Control is passed to the new thread.

These steps are always the same, regardless of the processes and dispatch classes to which the old and
new threads belong.

After CMS saves the execution state of the old thread, it calls the environment manager's context switch
exit associated with the process owning the old thread. In response to this call, the environment manager
must save any environment information (extended context, if you will) associated with the old thread. The
context switch exit may assume that the environment active on the old thread is the one associated with
the last uncompleted call to RTERR. The parameter list passed to the exit is as follows:
Word 0

X'0000' (indicates save operation)
Word 1

Address of environment manager anchor word for the process owning the old thread
Word 2

Address of environment manager anchor word for the old thread.

System Exits

Chapter 14. System Exits 283

Before CMS restores the execution state of the new thread, it calls the environment manager's context
switch exit associated with the process owning the new thread. In response to this call, the environment
manager must restore any environment information (again, extended context) associated with the new
thread. Again, the context switch exit may assume that the environment active on the thread is the one
associated with the last uncompleted call to RTERR. The parameter list passed to the exit is as follows:
Word 0

X'0001' (indicates restore operation)
Word 1

Address of environment manager anchor word for the process owning the new thread
Word 2

Address of environment manager anchor word for the new thread.

For a given thread, the context switch exit (RESTORE function) is the first exit to be driven. In particular,
it is driven before RTETCR. The first time the context switch exit is driven for a given thread, the
environment manager's thread-specific anchor word will be zero. This gives the context switch exit a
way to know whether RTETCR has been driven yet for the thread.

Together these two exits allow the environment manager to perform environment-switching operations in
concert with CMS's execution switching operations.

The context switch exit must not call the multitasking API and it must be MP-capable.

Building a Language Environment Manager
CMS packages its language managers as part of the system. A customer may choose to build his own
language environment manager; in this case, he will have to build a module containing his language
environment manager and some support code supplied by IBM.

The build procedure for the language environment manager is:

1. Produce, through compilation or assembly steps, the text decks for the RTExxx entry points.
2. Use the LOAD and INCLUDE commands with the RLDSAVE option to load or include the RTExxx text

files into storage.
3. Issue INCLUDE DMSEMT (RESET DMSEMTIN RLDSAVE to bring the IBM-supplied language

environment manager mainline into storage.
4. Issue GENMOD to write the language environment manager to disk. The name of this module must

correspond to the language environment manager name specified in the corresponding language
environment selector text file, described below.

The system programmer may choose to put his language environment manager in a logical segment. This
will allow the system programmer's site to share a single copy of his module. If he chooses to put the
module into a segment, he should specify that the module should be processed as a nucleus extension
at segment load time. The system programmer may put the module into IBM's VMMTLIB segment if he
wants.

CMS loads the module automatically when it is needed and establishes it as a nucleus extension with
the SYSTEM and SERVICE options. If the user NUCXLOADs the module himself, he must also use these
options.

In addition to the language environment exits the environment manager must also provide the language
environment selector text deck. The format of this text deck is an external because a customer writing his
own language environment manager will need to supply one for interrogation by CMS process initiation.

The selector text deck declares a single data area, called the language environment selector block, that
defines the language environment manager to be used and the address of the application entry point
within the application module. The rest of the data area is reserved for use by IBM. The data area is
located at externally-visible label DMSLESB. The following code fragment shows how the data area is set
up:

 EXTRN entrypnt It is elsewhere
DMSLESB CSECT Selector data area

System Exits

284 z/VM: 7.3 CMS Application Multitasking

 DC CL8'langmod' Lang env module name (8 bytes)
 DC A(entrypnt) Address of appl entry pt (4 bytes)
 DC CL20' ' Reserved (20 bytes)
 END

So as to ease the placement of this module into a segment, IBM code will not write in this data area.

It is not strictly necessary for the application entry point to bear label APPLMAIN. A customer-supplied
language environment selector may indicate any address as the entry point of the application. The IBM-
supplied language environment selectors all assume APPLMAIN is the application entry point, though.

System Exits

Chapter 14. System Exits 285

System Exits

286 z/VM: 7.3 CMS Application Multitasking

Chapter 15. Suggestions for Server Writers

Problems common to most servers include how to communicate with clients, how to handle interrupts,
and how to interact with CMS in an efficient manner. The following suggestions are given in light of the
CMS execution environment to provide help in finding the best solutions to these problems and others
that might occur.

Interrupt Handling
Most CMS-based servers are interrupt driven. They handle interrupts for communications, for I/O and for
timer handling. This is accomplished through exit routines established with the CMS HNDEXT, HNDINT,
HNDIO, HNDIUCV, and CMSIUCV macros.

CMS provides mechanisms to allow threads to perform their functions in a synchronous manner, with
the concurrency among threads providing the asynchrony. So, to combine CMS interrupt handling with
CMS multitasking, the exit routine should convert the interrupt into either a message or a signal. The exit
routine, which continues to execute in the restricted environment of CMS second-level interrupt handlers,
should gather the data from the interrupt, build either a queue message or event data for a signal and
issue the QueueSend or EventSignal function. A thread can then process the interrupt in an environment
without the CMS interrupt handler restrictions. The server should spend as little time as possible in the
interrupt handler exit routine.

Application interrupt handlers run as extensions to CMS interrupt handling. As is the case with other
CMS services, some multitasking services should not be used in such an interrupt exit. Operations on
events and synchronization objects must be limited to those of session scope. Messages can be sent
to session-level queues. The interrupt exit should not cause the thread that it interrupted to become
blocked. It must not issue any of the following calls:

• MutexAcquire
• CondVarWait
• EventTrap
• EventWait
• QueueReceiveBlock
• SemWait
• ThreadCreate
• ThreadSuspend (self)
• ThreadDelay
• ThreadYield
• AbnormalEnd
• VCPUCreate
• VCPUSelect.

An interrupt exit can use QueueSend to transmit a message to a session-level queue. The queue must be
identified as a service queue and the interrupt exit must use the queue's service ID as the handle in the
call to QueueSend. The message will appear to have come from the interrupted process.

Because the interrupt handler may run under any process, it should not depend upon process-level
resources.

Communication
Most service virtual machines communicate with clients by using the Inter-User Communications Vehicle
(IUCV), or Advanced Program-to-Program Communication/VM (APPC/VM). The server uses each of these

Suggestions for Server Writers

© Copyright IBM Corp. 1992, 2022 287

by means of HNDEXT or HNDIUCV exits. In other words, the server handles interrupts to receive
messages and learn of the completion of communication functions.

If the server needs to use one of these communication methods, the technique to apply is to turn the
interrupt into a signal or a queue message, as described above. In this way, the client can continue to
communicate with the server using the communication mechanisms it currently uses.

If the client is another CMS virtual machine in a VM collection or connected through an SNA network, both
the client and the server can communicate with queues. This method best integrates communication into
the natural concurrent programming structure of the server. But, the client must be on a VM system.

A variation of the queue approach is to use the QueueIdentifyCarrier function to provide your own carrier
for queue communication. The server can use the queue API, with the installed queue carrier sending and
receiving data according to whatever communication protocol the client uses. This allows the server to
exploit the concurrent programming power of queues and still allow the client to use the communication
mechanisms available on its system. However, to accomplish this, the server writer must provide the
queue carrier, and some component on the client system must understand the line flows.

Another alternative is to use the SAA Common Programming Interface Communications. This high-level
language API for APPC communications is made up of thread synchronous calls. It also provides a set of
communications events that can be handled with Event Management Services.

For more information, see the Common Programming Interface Communications Reference (https://
publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf).

Data Management
The main consideration when managing data in the server is how various types of file operations affect
the synchrony of the virtual machine. The read and write operations on CMS minidisks are synchronous
and as such do not allow for overlapping file I/O with other processing. Many other services are
synchronous as well. For servers with intense file I/O requirements, asynchronous interfaces should be
used.

The CMS Shared File System (SFS) provides asynchronous interfaces for file I/O. By using the
asynchronous interfaces and distributing work between several CMS work units, both overlap and
parallelism can be achieved. For information on using asynchronous requests for CMS multitasking
applications, see the z/VM: CMS Application Development Guide.

For more information on the CMS Shared File System, see the z/VM: CMS File Pool Planning,
Administration, and Operation.

Another alternative is to use the CP DASD Block I/O System Service. This service provides block-oriented
I/O directly to a minidisk in an asynchronous manner. This approach provides the best performance but
requires the most work by the server writer.

Minidisk data can also be mapped into a data space through the mapping services of the CP MAPMDISK
macro. The data can then be manipulated directly with CP committing changes to DASD.

For more information on the DASD Block I/O System Service and the MAPMDISK macro, see z/VM: CP
Programming Services.

General Guidelines
Here are some general guidelines to follow:

• Do not obtain a mutex within a CMS interrupt exit. Because no threads can be dispatched on the CPU
until the exit routine returns to CMS, this is a great opportunity for deadlock.

• Servers designed to execute in multiprocessor virtual machines should not rely on the validity of fields
in page zero. An attempt to reference a NUCON field from a CPU other than the base CPU results in a
reference to the prefixed page zero of that CPU. The field at the referenced address may not be valid.

Suggestions for Server Writers

288 z/VM: 7.3 CMS Application Multitasking

https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf

• Only the CMS branch entries accessed through the CMS macro API can be reliably used on multiple
CPU's. Branching directly to a CMS service from a non-base CPU opens non-kernel CMS functions to
multiprocessor effects, which they cannot handle.

Suggestions for Server Writers

Chapter 15. Suggestions for Server Writers 289

Suggestions for Server Writers

290 z/VM: 7.3 CMS Application Multitasking

Chapter 16. Using CMS Multitasking with
OpenExtensions Services

Many OpenExtensions POSIX services are only alternate interfaces to CMS Multitasking and related
services. The POSIX concepts are defined in terms of CMS process model concepts. These definitions are:
POSIX Process

A CMS process with POSIX-defined resources maintained local to the process.
POSIX Thread

A CMS thread with additional run-time library support.
POSIX Alarm

A CMS timer which causes the generation of a POSIX signal.
POSIX Signal

An interrupt-like message carried between processes by CMS IPC. The generation and delivery of
POSIX signals also result in the signalling of CMS events, as described below.

In general, CMS services and POSIX services can be used without restriction within an application.
Further, OpenExtensions and non-OpenExtensions applications can invoke each other and can coexist in
processes within a CMS session. Additional specific rules and definitions follow:

• All CMS services are signal safe.
• In an OpenExtensions application, event trap routines are not run when the corresponding monitor is

deleted due to process termination. For explicit monitor deletion, the traps are run as usual.
• OpenExtensions services must not be issued from interrupt handlers.
• Thread entry points in OpenExtensions C applications are regular C functions; that is, they do not

require #pragma linkage(entryname,OS). Threads can be created at these entry points by using
ThreadCreate, EventTrap, or pthread_create.

• OpenExtensions C applications' initial threads start at routine main() (they do not use the
applmain() convention) with the usual argv and argc entry conditions.

• The spawn() and spawnp() functions behave differently when executed by a REXX EXEC from the
Commands process. In this case, these two functions are synchronous, as if a waitpid() had been
issued after the spawn() or spawnp().

CMS Events For OpenExtensions Signals
To promote integration of the POSIX programming environment into CMS application multitasking, CMS
defines a system event representing the generation and delivery of a POSIX signal. This allows ordinary
CMS programs to be cognizant of POSIX signal activity and, more generally, permits any CMS program
to use CMS event management to wait for combinations of events including POSIX signals, other CMS
system events, and user events.

The POSIX signal event has the name VMPOSGNL and is defined with the following attributes:

• Process scope - VMPOSGNL may be monitored only in the process for which the POSIX signal has been
generated.

• Broadcast signals - all eligible VMPOSGNL event monitors are notified essentially simultaneously.
• Asynchronous signals - execution of the thread that causes a VMPOSGNL event to be signaled is not

affected by the handling of that signal.
• Loose signal limit 0 - VMPOSGNL event signals are not retained by CMS if no eligible event monitors are
defined.

The event data is 20 bytes in length and is mapped by the following structure:

Using CMS Multitasking with OpenExtensions Services

© Copyright IBM Corp. 1992, 2022 291

Table 23. Event Data

Hex Dec Type Len Name Description

00 0 Signed 4 vm_posgnl_signum POSIX signal number

04 4 Signed 4 vm_posgnl_cmstid Target CMS thread ID

08 8 Signed 4 vm_posgnl_sigact POSIX signal action code

0C 12 Opaque 8 vm_posgnl_thid Target POSIX thread ID

The vm_posgnl_signum field may assume any of the following values:

Value Code Meaning

vm_posgnl_sigabnd Abend

vm_posgnl_sigabrt Abnormal termination signal

vm_posgnl_sigalrm Timeout signal

vm_posgnl_sigchld Child process terminated or stopped

vm_posgnl_sigcncl Internal cancel signal generated by the pthread_cancel() function
(cancellation cleanup handlers are run)

vm_posgnl_sigcont Continue if stopped

vm_posgnl_sigdce Reserved for exclusive use of DCE**

vm_posgnl_sigfpe Erroneous arithmetic operation

vm_posgnl_sighup Hangup detected on controlling terminal or death of controlling process

vm_posgnl_sigill Detection of an incorrect hardware instruction

vm_posgnl_sigint Interactive attention signal

vm_posgnl_sigio Completion of input or output

vm_posgnl_sigioer Input or output error

vm_posgnl_sigkill Termination signal (cannot be caught or ignored)

vm_posgnl_sigpipe Write on pipe with no readers

vm_posgnl_sigqsce Internal cancel signal generated by a quiesce_threads operation (cancellation
cleanup handlers are not run)

vm_posgnl_sigquit Interactive termination signal

vm_posgnl_sigsegv Detection of an invalid memory reference

vm_posgnl_sigstop Stop signal (cannot be caught or ignored)

vm_posgnl_sigterm Termination signal

vm_posgnl_sigtstp Interactive stop signal

vm_posgnl_sigttin Read from controlling terminal attempted by a member of a background
process group

vm_posgnl_sigttou Write to controlling terminal attempted by a member of a background process
group

vm_posgnl_sigusr1 Reserved as application-defined signal 1

vm_posgnl_sigusr2 Reserved as application-defined signal 2

Using CMS Multitasking with OpenExtensions Services

292 z/VM: 7.3 CMS Application Multitasking

The possible values of the vm_posgnl_sigact field are as follows:

Value Code Meaning

vm_posgnl_generate Specified POSIX signal is being generated

vm_posgnl_ignore The action for the specified POSIX signal is ignore, and the signal is not being
delivered

vm_posgnl_continue The default action of continue is being taken for the specified POSIX signal

vm_posgnl_stop The default action of stop is being taken for the specified POSIX signal

vm_posgnl_catch The action for the specified POSIX signal is catch, and the signal is being
delivered to the signal catcher

vm_posgnl_intercept A default action applies to the signal but the run-time library signal interface
routine (SIR) has requested an intercept; the signal is delivered to the SIR
which determines what action to take

vm_posgnl_terminate The default action of terminate is being taken for the specified POSIX signal

vm_posgnl_sigwaiter The specified POSIX signal is being delivered by satisfying an outstanding
sigwait()

The event key consists of the first three fields in the above structure: the POSIX signal number, the CMS
thread ID, and the action code. None of these fields will ever receive a value containing a match key
wildcard character. Thus, match keys for the VMPOSGNL event can be constructed in a straightforward
manner, without concern for the possible presence of wildcard characters in the data.

At generation time the kernel attempts to select a target thread based on its signal interest model. When
a default action of stop or continue is being applied, all threads are targeted; otherwise, a single target
thread is chosen. (A default action of terminate applies to all threads too, but the signal is generated
for one thread only. At delivery time, if the run-time library has not requested interception, the kernel
simply terminates the process.) If no thread can be selected as the target because none has issued
a sigwait() for the signal or has it unblocked, the signal is generated for the process (and does
not become pending for any thread until some thread indicates interest in it with sigprocmask(),
sigpending(), sigsuspend(), or sigwait()). In this case, both the CMS thread ID and the POSIX
thread ID in the VMPOSGNL event data will be set to binary zero (which is not valid as a thread ID of either
flavor).

VMPOSGNL events are always signaled in the target process. VMPOSGNL events with the action code
vm_posgnl_generate are signaled immediately after the POSIX signal has been generated; those with the
various delivery action codes occur just before the delivery action is effected or attempted. If the run-time
library "puts back" a signal that has been delivered to it (using the queue_interrupt (BPX1SPB) callable
service), the subsequent redelivery does not cause another VMPOSGNL event.

In general, therefore, there are exactly two VMPOSGNL events for each POSIX signal for which delivery is
attempted. In some cases, however, signal interaction rules cause the kernel to discard pending signals
before delivery when other signals are generated (that is, generation of SIGKILL or SIGCONT causes
pending stop signals to be discarded, and generation of SIGSTOP or SIGTSTP causes pending continue
signals to be discarded). No VMPOSGNL delivery event occurs for signals discarded in this manner.

Using CMS Multitasking with OpenExtensions Services

Chapter 16. Using CMS Multitasking with OpenExtensions Services 293

Using CMS Multitasking with OpenExtensions Services

294 z/VM: 7.3 CMS Application Multitasking

Appendix A. Return and Reason Code Values

This section discusses return and reason codes for process management, synchronization, event services,
trace services, accounting services, interprocess communication, timer services, VCPU services and CMS
monitor data.

For Process Management
Symbolic name Value

vm_pro_success 0

vm_pro_warning 4

vm_pro_error 8

vm_pro_bad_name_len 2

vm_pro_out_of_storage 4

vm_pro_no_ids 7

vm_pro_bad_priority 8

vm_pro_bad_flags 9

vm_pro_no_such_thread 10

vm_pro_dup_name 14

vm_pro_no_such_process 16

vm_pro_internal_failure 21

vm_pro_bad_lineage 34

vm_pro_bad_plist_len 60

vm_pro_bad_dspclass_len 61

vm_pro_bad_flags_len 62

vm_pro_plist_too_big 195

vm_pro_not_dispatchable 220

vm_pro_ckpt_already_taken 226

vm_pro_data_not_available 227

vm_pro_name_truncated 228

vm_pro_interval_invalid 230

vm_pro_not_mt 243

For Synchronization
Symbolic name Value

vm_syn_success 0

vm_syn_warning 4

Return and Reason Code Values

© Copyright IBM Corp. 1992, 2022 295

Symbolic name Value

vm_syn_error 8

vm_syn_mutex_already_exists 35

vm_syn_bad_scope_of_mutex 36

vm_syn_bad_mutex_name_len 37

vm_syn_insufficient_storage 38

vm_syn_handle_not_found 39

vm_syn_mutex_not_held 40

vm_syn_indeterminate_state 41

vm_syn_mutex_deleted 42

vm_syn_bad_wait_on_mutex 43

vm_syn_mutex_already_held 44

vm_syn_mutex_held_by_caller 45

vm_syn_name_not_found 46

vm_syn_not_mutex_creator 48

vm_syn_not_condvar_creator 49

vm_syn_bad_cnv_name_len 50

vm_syn_cnv_deleted 51

vm_syn_cnv_mutex_deleted 52

vm_syn_sem_already_exists 53

vm_syn_bad_scope_of_sem 54

vm_syn_bad_sem_name_len 55

vm_syn_not_sem_creator 56

vm_syn_cnv_already_exists 57

vm_syn_sem_deleted 58

vm_syn_limit_reached 59

vm_syn_mutex_not_reacquired 191

For Event Services
Symbolic name Value

vm_evn_success 0

vm_evn_warning 4

vm_evn_error 8

vm_evn_bad_flag_size 63

vm_evn_bad_num_of_events 64

vm_evn_no_monitor 65

Return and Reason Code Values

296 z/VM: 7.3 CMS Application Multitasking

Symbolic name Value

vm_evn_no_active_monitor 66

vm_evn_flag_truncated 67

vm_evn_key_truncated 68

vm_evn_name_truncated 69

vm_evn_event_truncated 70

vm_evn_bad_index 71

vm_evn_monitor_still_active 73

vm_evn_monitor_inactive 74

vm_evn_bad_data_len 76

vm_evn_data_truncated 80

vm_evn_already_waiting 91

vm_evn_cannot_satisfy 92

vm_evn_monitor_deleted 93

vm_evn_event_deleted 94

vm_evn_signal_lost 96

vm_evn_bad_key_len 104

vm_evn_bad_key_offset 105

vm_evn_bad_key 106

vm_evn_no_name 108

vm_evn_timeout 109

vm_evn_bad_time 111

vm_evn_bad_limit 112

vm_evn_bad_flag 114

vm_evn_dup_name 115

vm_evn_bad_event_count 118

vm_evn_bad_name_len 121

vm_evn_bad_token_size 127

vm_evn_token_truncated 130

vm_evn_bad_mask 139

vm_evn_not_authorized 144

vm_evn_name_too_long 171

vm_evn_insufficient_storage 208

vm_evn_not_mt 244

Return and Reason Code Values

Appendix A. Return and Reason Code Values 297

For Trace Services
Symbolic name Value

vm_trc_success 0

vm_trc_warning 4

vm_trc_error 8

vm_trc_bad_func 164

vm_trc_bad_wrap_size 165

vm_trc_insufficient_storage 166

vm_trc_bad_numtype 167

vm_trc_array_bad_value 168

vm_trc_bad_datalen 170

For Accounting Services
Symbolic name Value

vm_act_success 0

vm_act_warning 4

vm_act_error 8

vm_act_bad_func 172

vm_act_bad_numtype 173

vm_act_array_bad_value 174

vm_act_bad_id_flag 175

vm_act_insufficient_storage 176

vm_act_bad_time 190

For Interprocess Communication
Symbolic name Value

vm_ipc_success 0

vm_ipc_warning 4

vm_ipc_error 8

vm_ipc_bad_search_seq 182

vm_ipc_bad_search_seq_len 183

vm_ipc_no_such_queue 184

vm_ipc_already_open 185

vm_ipc_bad_key_len 186

vm_ipc_bad_msg_len 187

vm_ipc_bad_handle 188

Return and Reason Code Values

298 z/VM: 7.3 CMS Application Multitasking

Symbolic name Value

vm_ipc_queue_deleted 189

vm_ipc_not_authorized 192

vm_ipc_no_msg_available 193

vm_ipc_buf_too_small 194

vm_ipc_queue_not_empty 196

vm_ipc_not_implemented 197

vm_ipc_bad_name_len 198

vm_ipc_bad_export_level 199

vm_ipc_already_exists 200

vm_ipc_out_of_storage 201

vm_ipc_msgs_discarded 202

vm_ipc_bad_kokl 203

vm_ipc_bad_reply_handle 204

vm_ipc_reply_queue_deleted 205

vm_ipc_msg_discarded 206

vm_ipc_bad_reply_token 207

vm_ipc_primary_queue 208

vm_ipc_queue_closed 221

vm_ipc_bad_service_id 222

vm_ipc_service_undefined 223

vm_ipc_old_name_truncated 224

vm_ipc_bad_signal_flag 225

vm_ipc_timeout 232

vm_ipc_bad_timeout 233

vm_ipc_queue_in_use 234

vm_ipc_sid_in_use 237

vm_ipc_comm_retry 240

vm_ipc_comm_lost 241

For Timer Services
Symbolic name Value

vm_tmr_success 0

vm_tmr_warning 4

vm_tmr_error 8

vm_tmr_format_invalid 209

Return and Reason Code Values

Appendix A. Return and Reason Code Values 299

Symbolic name Value

vm_tmr_type_invalid 210

vm_tmr_cycle_invalid 211

vm_tmr_intervalunit_invalid 212

vm_tmr_interval_invalid 213

vm_tmr_invalid_call 214

vm_tmr_insufficient_storage 215

vm_tmr_tod_invalid 216

vm_tmr_zone_invalid 217

vm_tmr_cpqtime_failed 218

vm_tmr_unrecognized_token 219

vm_tmr_interval_exceeds_limit 229

vm_tmr_bad_min_format 300

vm_tmr_bad_sub_format 301

vm_tmr_bad_dif_format 302

vm_tmr_bad_format_combination 303

vm_tmr_bad_min_window_type 304

vm_tmr_bad_sub_window_type 305

vm_tmr_bad_dif_window_type 306

vm_tmr_min_conversion_error 307

vm_tmr_sub_conversion_error 308

vm_tmr_dif_conversion_error 309

vm_tmr_bad_min_length 313

vm_tmr_bad_sub_length 314

vm_tmr_bad_dif_length 315

vm_tmr_dif_truncated 316

For VCPU Services
Symbolic name Value

vm_cpu_success 0

vm_cpu_warning 4

vm_cpu_error 8

vm_cpu_not_xa 235

vm_cpu_no_more_vcpus 236

vm_cpu_bad_number_to_create 238

vm_cpu_insufficient_storage 239

Return and Reason Code Values

300 z/VM: 7.3 CMS Application Multitasking

Symbolic name Value

vm_cpu_bad_selection 242

For CMS Monitor Data
Symbolic name Value

vm_mon_success 0

Return and Reason Code Values

Appendix A. Return and Reason Code Values 301

Return and Reason Code Values

302 z/VM: 7.3 CMS Application Multitasking

Appendix B. CMS Trace Record Formats

This information is provided for diagnosis purposes only.

The trace data is preceded by header information. The format of this header can be found in Table 13 on
page 76.

Note: Each of the items listed in the Data column of these tables is a 4-byte field, unless otherwise
indicated by a value in parentheses, such as thid (8).

Communication Trace Record Formats (Type 1)
Event Subtype Data

QueueCreate 0 caller tsd, qcb, oqb, level, caller

QueueOpen 1 caller tsd, local flag, qcb or qnqb, oqb, caller

QueueSend 2 caller tsd, qcb, oqb, qmcb, msg len, caller

QueueClose 3 caller tsd, qcb, oqb, caller

QueueQuery 4 caller tsd, qcb, oqb, caller

QueueReceiveImmed 5 caller tsd, qcb, oqb, qmcb, rcb, caller

QueueSendBlock 6 caller tsd, qcb, oqb, qmcb, msg len, caller

QueueReceiveBlock 7 caller tsd, qcb, oqb, qmcb, rcb, caller

QueueSendReply 8 caller tsd, qcb, oqb or -sid, qmcb, msg len, rqcb, roqb, rcb, caller

QueueReply 9 caller tsd, qcb, rcb, qmcb, msg len, caller

QueueDelete 10 caller tsd, qcb, caller

IPC TT Exit 11 caller tsd, whyblk, whyunbl, qcbptr, caller

QueueIdentifyService 12 caller tsd, -sid, old qcb, new qcb, caller

QueueSignalEvents 13 caller tsd, qcb, flag, caller

QueueIdentifyCarrier 14 caller tsd, first four bytes of carrier name, -sid, caller

IPC remote open 15 caller tsd, carrier RC, carrier RE, carrier token, caller

IPC surrogate open 16 caller tsd, local flag, qcb, oqb, oqb use count, caller

IPC remote close 17 caller tsd, carrier RC, carrier RE, carrier token, caller

IPC surrogate close 18 caller tsd, qcb, oqb, oqb count, caller

IPC remote send 19 caller tsd, carrier RC, carrier RE, carrier token, caller

IPC surrogate send 20 caller tsd, qcb, oqb, qmcb, msg len, caller

IPC remote send-block 21 caller tsd, carrier RC, carrier RE, carrier token, caller

IPC surrogate send-block 22 caller tsd, qcb, oqb, qmcb, msg len, caller

IPC remote send-reply 23 caller tsd, carrier RC, carrier RE, carrier token, caller

IPC surrogate send-reply 24 caller tsd, qcb, oqb, qmcb, msg len, caller

IPC remote reply 25 caller tsd, carrier RC, carrier RE, caller

Trace Record Formats

© Copyright IBM Corp. 1992, 2022 303

Event Subtype Data

IPC surrogate reply 26 caller tsd, qcb, oqb, qmcb, msg len, caller

cmssigsetup 256 SIR addr, userdata, ovrdmask(8), termmask(8), retval, retcode,
rsncode

cmsunsigsetup 257 SIR addr, userdata, ovrdmask(8), termmask(8), retval, retcode,
rsncode

kill 258 pid, signal, options, retval, retcode, rsncode, footprints

pause 259 retval, retcode, rsncode

pthread_kill 260 thid(8), signal, options, retval, retcode, rsncode, footprints

queue_interrupt 261 retval, retcode, rsncode, footprints, signal, sigmask(8),
penmask(8)

sigaction 262 signal, newsahdlr, newsamask(8), newsaflags, oldsahdlr,
oldsamask(8), oldsaflags, userdata, retval, retcode, rsncode

sigpending 263 penmask(8), retval, retcode, rsncode

sigprocmask 264 how, newsigmask(8), oldsigmask(8),retval, retcode, rsncode

sigsuspend 265 sigmask(8), retval, retcode, rsncode

sigwait 266 sigmask(8), retval, retcode, rsncode

signal delivery 272 ppsd, footprints, signal, action, pprt, sigmask(8), penmask(8)

signal inheritance 273 newtpose, inputpprt, newpprt or inhe, footprints, sigmask(8),
penmask(8)

extra exec inheritance 274 execpprt, sigmask(8), penmask(8)

signal generation 275 pprt, ppst, signal, options, sigda, action, senderpid, footprints,
thid(8), sigmask(8), penmask(8)

kill target appendage 277 senderpid, signal, options, sigda, footprints

signal check utility 278 retcode, footprints, signal, action, pprt, sigmask(8), penmask(8)

kernel post 288 eventlist, retcode, kser, kserflags, tsd

entering kernel wait 289 entrycode, retcode, kser, kserflags, tsd

exiting kernel wait 290 entrycode, retcode, kser, kserflags, tsd

Dispatch Trace Record Formats (Type 2)
Event Subtype Data

block 0 caller tsd, caller

unblock 1 caller tsd, object tsd, caller

promote 2 caller tsd, chosen tsd, object dcd, caller

switch 3 incoming tsd, outgoing tsd, CPU time (two words), caller

schedule 4 caller tsd, object tsd, caller

unschedule 5 caller tsd, object tsd, caller

Trace Record Formats

304 z/VM: 7.3 CMS Application Multitasking

Process Management Trace Record Formats (Type 3)
Event Subtype Data

ThreadCreate 0 caller tsd, new tsd, new entry point, new thread's DCD, caller

ThreadDelete 1 caller tsd, object tsd, caller

ThreadSuspend 2 caller tsd, object tsd, new susp count, caller

ThreadResume 3 caller tsd, object tsd, new susp count, caller

ThreadSetPriority 4 caller tsd, object tsd, new prio, caller

ThreadSetDispatchClass 5 caller tsd, object tsd, new dcd, caller

ThreadYield 6 caller tsd, caller

ThreadDelete (other) 7 caller tsd, object tsd, my_cpuid, tsd stap field, caller (Note: In the
next to last two fields, only the lower halfword is significant.)

ThreadDelete (me) 8 caller tsd, object tsd, caller

forced delete 9 caller tsd, caller

thrdel exit driver 10 caller tsd, last thread flag, caller

thrdel rm exit ret 11 caller tsd, rm exit rc, caller

process cleanup 12 caller tsd, caller psd, object psd, caller

Language Adapter Trace Record Formats (Type 4)
Event Subtype Data

HOTL from RTERR 0 A(TA), A(EP), EnvHandle, caller

HOTU from RTERR 1 A(TA), A(EP), EnvHandle, caller

HOTT from RTERR 2 A(TA), A(EP), EnvHandle, caller

HOTT from RTETDE 3 A(TA), 0, EnvHandle, caller

RTETDE complete 4 A(TA), TA, caller

RTETCR complete 5 A(TA), A(CRTEAB), caller

Synchronization Trace Record Formats (Type 5)
Event Subtype Data

CondVarCreate 0 caller tsd, handle, cvcb, mcb, caller

CondVarDelete 1 caller tsd, handle, caller

CondVarSignal 2 caller tsd, handle, caller

CondVarWait 3 caller tsd, handle, caller

MutexAcquire 4 caller tsd, handle, caller

MutexCreate 5 caller tsd, handle, mcb, caller

MutexDelete 6 caller tsd, handle, caller

MutexRelease 7 caller tsd, handle, caller

Trace Record Formats

Appendix B. CMS Trace Record Formats 305

Event Subtype Data

SemCreate 8 caller tsd, handle, scb, caller

SemDelete 9 caller tsd, handle, caller

SemReInit 10 caller tsd, handle, caller

SemSignal 11 caller tsd, handle, caller

SemWait 12 caller tsd, handle, caller

Miscellaneous Trace Record Formats (Type 6)
Event Subtype Data

MemAllocate 0 caller tsd, size, block address, caller

MemRelease 1 caller tsd, size, block address, caller

Abend 2 error code, type, tid, abend address, general registers

Trace Record Formats

306 z/VM: 7.3 CMS Application Multitasking

Appendix C. Remote IPC Support

This appendix describes CMS's implementation of remote interprocess communication (IPC). It provides
information describing the interface between the CMS kernel and carriers, and it also gives information
about the operation of the CMS APPC/VM carrier. It should be read by systems programmers interested in
providing extensions or modifications to support remote IPC operations.

Functional Overview
To implement remote IPC operations, the CMS kernel relies upon service threads, known as IPC carrier
threads, to provide the communication services connecting one instance of CMS with another. The basic
idea is that CMS associates a communication carrier with each network queue of local interest, the
mapping being defined in $QUEUES$ NAMES. When an application program performs an IPC operation,
CMS examines the request and determines whether remote activity is required. If remote operations are
needed, CMS passes the request to the carrier associated with the queue. The carrier conveys the request
to the remote kernel and responds to the local kernel when the operation is complete. In addition to
responding to requests generated locally, the carrier responds to requests arriving on its communication
medium. When these occur, the carrier calls the local kernel, gathers the kernel's response, and ships the
response out over its medium.

CMS is not limited to supporting one carrier per session. Multiple carriers can exist simultaneously and
operate without knowledge of one another. CMS routes remote IPC requests to the respective carriers as
needed. CMS is also not limited to supporting one thread per carrier. A single carrier may be composed of
multiple threads if desired.

The interface between CMS and carriers is based upon service queues. The CMS kernel routes remote IPC
operations to a carrier by placing messages representing those operations into a service queue defined
by the carrier. The carrier processes the operations by reading those messages from the service queue,
taking appropriate action, and replying to the messages as the operations complete. Similarly, when
remote activity arrives at the carrier, the carrier sends a request to a kernel service queue and waits
for a response. When the response appears, the carrier ships the response out over the communication
medium.

To identify itself to the kernel, a carrier performs two operations:

1. Using QueueIdentifyService, it identifies a service queue. This queue is the one into which CMS places
messages representing remote IPC requests requiring the attention of this carrier. The carrier will learn
of new remote IPC work by reading requests from its service queue.

The carrier may choose to isolate service requests by having the CMS kernel place them in a queue of
their own. If so, the carrier first needs to use QueueCreate to create the service queue. This isolation
is not required, though. For example, the carrier may choose to use its process' primary queue as its
service queue.

2. Using QueueIdentifyCarrier, it identifies itself as a remote IPC carrier. This binds the carrier's name,
such as Internet, to the service queue identified on the call to QueueIdentifyService. The carrier name
can be up to 16MB-1 bytes long.

After the carrier performs these two operations, the CMS kernel begins routing remote IPC operations
to the carrier. These remote operations arrive at the carrier as messages in the carrier's service
queue. To collect request messages from the service queue, the carrier may use QueueReceiveBlock
or QueueReceiveImmed. To respond to those requests, the carrier should use QueueReply. Figure 30 on
page 308 shows how this portion of the carrier might be organized.

Remote IPC Support

© Copyright IBM Corp. 1992, 2022 307

 START

 Initialize communication medium;

 QueueCreate (service_queue);

 QueueIdentifyService (service_queue, service_id);

 QueueIdentifyCarrier (carrier_name, service_id);

 Do forever;

 QueueReceiveBlock (some request);

 Transmit request to remote carrier;

 Receive response from remote carrier;

 QueueReply (response);

 End;

 Return;

 END

Figure 30. Skeleton of an IPC Carrier (Kernel-Initiated Requests)

Just as it must respond to requests generated by the local kernel, the carrier must also respond to
requests arriving on its communication medium. For these requests, the carrier works with the local
kernel to satisfy the request. For this kind of interaction, CMS provides a service queue to which carriers
should send requests representing remote activity. This service queue is called the network IPC service
queue.

The network IPC service queue has service ID -5. To send messages to the queue, the carrier uses
the -5 service ID as the queue handle in its QueueSendReply calls. The kernel responds to such
service requests by using QueueReply. These responses are placed in the queue specified by the
carrier on its QueueSendReply call. The carrier may wish to use its own service queue as the reply
queue. This is perfectly acceptable. A carrier should use one of the receive calls (QueueReceiveBlock or
QueueReceiveImmed) to pick up responses from the kernel.

Figure 31 on page 309 shows how this portion of the carrier might be organized.

Remote IPC Support

308 z/VM: 7.3 CMS Application Multitasking

 START

 Initialize communication medium;

 Do forever;

 Receive a remote request from communication medium;

 Build description of request to send to local kernel;

 QueueSendReply (rc, re, -5, ...);

 QueueReceiveBlock (rc, re, ...);

 Build response for remote requester;

 Transmit response on communication medium;

 End;

 END

Figure 31. Skeleton of an IPC Carrier (Carrier-Initiated Requests)

When a CMS application ends, it may be necessary for the carrier to perform cleanup operations
(deallocate conversations, release storage, and so forth). CMS does not specifically notify carriers that
an application has terminated. Rather, a carrier may use Event Services to monitor the VMPROCESSEND
event. When the event is signaled, the carrier's monitor will be activated and the carrier can perform
cleanup operations.

CMS notifies carriers as network-level queues come and go in the local session. This lets carriers
manage the cleanup of remotely-originating operations on a per-queue basis if they desire and deactivate
themselves when no network-level queues exist locally.

Interface Definition
Of the entire CMS IPC API, only six functions require the assistance of IPC carriers for remote activity.
These functions are:

• QueueOpen
• QueueSend
• QueueSendBlock
• QueueSendReply
• QueueReply
• QueueClose.

In addition, CMS notifies IPC carriers when the following functions create network-level queues locally:

• QueueCreate
• QueueDelete.

CMS performs the rest of the queue operations without the help of carriers. Thus, the messages
exchanged between CMS and IPC carriers are concerned with only these operations.

All requests and responses exchanged between CMS and a carrier are passed in a data structure known
as the Queue Carrier Request Block (QCRB). When either component (kernel or carrier) wishes service
from the other, it builds a QCRB describing the request and sends the QCRB to the other component
through QueueSendReply. The receiving component performs the operation, builds a QCRB containing
the response, and sends the QCRB using QueueReply. Neither component is allowed to respond to the
other until the request is completed; that is, remote IPC operations are fully synchronous. This allows

Remote IPC Support

Appendix C. Remote IPC Support 309

applications to be written such that they are insensitive to whether they are working in a distributed
fashion.

Figure 32 on page 310 illustrates the exchange of QCRBs in a sample client-server environment. For a
request to go from the client to the server, the following procedure takes place:

1. The client program sends a message to a server's queue, using QueueSendReply.
2. On the client side, a request QCRB flows from the kernel to the IPC carrier. This QCRB contains the

string "IPC0" in its message key.
3. The client-side carrier uses the communication medium to send the request to the server-side carrier.
4. On the server side, the carrier gives the request to the kernel in a request QCRB. This QCRB contains

the string "IPC2" in its message key.
5. The server-side kernel places the message in the server's queue.
6. The server-side kernel responds to the carrier indicating that the message has been placed in the

queue. To do so, it uses a QCRB containing the string "IPC3" in its message key.
7. The server-side carrier uses the communication medium to tell the client-side carrier that the

operation completed.
8. On the client side, the carrier tells the kernel that the operation completed. To do so, it uses a QCRB

containing the string "IPC1" in its message key.
9. The client thread's QueueSendReply operation completes.

At this point the client thread is released, learning of the operation's completion. Note that though the
client thread is blocked while this operation occurs, the client program is free to use additional threads to
accomplish work while the message is being delivered.

Figure 32. Flow of Requests and Responses for Distributed IPC

Remote IPC Support

310 z/VM: 7.3 CMS Application Multitasking

Of course, for the server program to send a response to the client program, the procedure occurs again,
this time in reverse. Thus an IPC carrier must be prepared to handle both activity originating at the local
kernel and activity originating remotely.

No matter whether it contains a request or response, a QCRB is made up of a header followed by an array
of fullwords. The header describes the kind of request and contains sequence numbers and other control
information. The array of fullwords contains request-specific parameters or data.

The header portion of a QCRB is organized as follows:

Offset Field Description

0 QCRB type identifier A 4-byte EBCDIC string identifying the kind of QCRB, as
follows:
IPC0

Request from kernel to carrier
IPC1

Response from carrier to kernel
IPC2

Request from carrier to kernel
IPC3

Response from kernel to carrier

4 Sequence number For request QCRBs (IPC0 and IPC2), this number is
generated by the requester and uniquely identifies the
request. The number must be usable in a match key.

For response QCRBs (IPC1 and IPC3), this number is the
number of the provoking request.

8 Request type Tells what kind of request or response the QCRB
represents. The field contains one of these values:
Value

Meaning
0

QueueOpen
1

QueueSend
2

QueueSendBlock
3

QueueSendReply
4

QueueReply
5

QueueClose
6

QueueCreate
7

QueueDelete

Remote IPC Support

Appendix C. Remote IPC Support 311

Offset Field Description

12 Parameter count Given in fullwords. Tells how many fullwords are in use in
the parameter array.

16 Parameter array An 16-word array of fullwords, the use of which is request-
dependent. Though some of the fullwords may not be used
for some kinds of QCRBs, the transmitter must always
send all 16 fullwords.

When a request QCRB is sent, it must be sent with a key offset of 0 and a key length of 4. When
a response QCRB is sent, it must be sent with a key offset of 0 and a key length of 8. Again, the
sequence numbers generated by the request originators must be usable in match keys. This means that
the numbers' bytes must not contain any byte values that might be interpreted as key wildcards.

The following tables describe the use of the parameter arrays in the four kinds of QCRBs. In the tables,
the following abbreviations are used:
Abbr

Meaning
tagp

Pointer to tag structure
cqt

Carrier queue token
mp

Pointer to message text
ml

Length of message text
ko

Key offset
kl

Key length
uidp

Pointer to 8-byte user ID of sender
pid

Process ID of sender
to

Timeout value
rqh

Reply queue handle
rpid

Process ID of owner of reply queue
csn

Carrier sequence number
rc

Return code
re

Reason code
kqt

Kernel queue token
qnp

Queue name pointer

Remote IPC Support

312 z/VM: 7.3 CMS Application Multitasking

qnl
Queue name length

csid
Carrier service ID

cuword
Carrier user word

In addition, some cells in the tables refer to the numbered usage notes appearing after the tables
themselves.

IPC0 QCRBs (Kernel Request to Carrier)
Table 24. IPC0 QCRB Parameter Usage (Kernel Request to Carrier)

Index QOpen QSend QSendB QSendR QReply QClose QCreate QDelete

1 tagp (note
“1” on
page 314)

cqt cqt cqt - cqt tagp (note
“1” on
page 314)
(note “13”
on page
315)

tagp (note
“1” on
page 314)
(note “13”
on page
315)

2 - mp mp mp mp - - -

3 - ml ml ml ml - - -

4 - ko ko ko ko - - -

5 - kl kl kl kl - - -

6 - uidp uidp uidp uidp - - -

7 - pid pid pid pid - - -

8 - - to rqh (note
“3” on
page 315)

rpid (note
“4” on
page 315)

- - -

9 - - - - rqh (note
“5” on
page 315)

- - -

10 - - - - csn (note
“6” on
page 315)

- - -

11 - - - - cuword
(note “7”
on page
315)

- - -

12..16 - - - - - - - -

IPC1 QCRBs (Carrier Response to Kernel)
Table 25. IPC1 QCRB Parameter Usage (Carrier Response to Kernel)

Index QOpen QSend QSendB QSendR QReply QClose

1 rc (note “11”
on page 315)

rc rc rc rc rc

Remote IPC Support

Appendix C. Remote IPC Support 313

Table 25. IPC1 QCRB Parameter Usage (Carrier Response to Kernel) (continued)

Index QOpen QSend QSendB QSendR QReply QClose

2 re re re re re re

3 cqt (note “2”
on page 315)

- - - - -

4..16 - - - - - -

IPC2 QCRBs (Carrier Request to Kernel)
Table 26. IPC2 QCRB Parameter Usage (Carrier Request to Kernel)

Index QOpen QSend QSendB QSendR QReply QClose

1 qnp kqt kqt kqt - kqt

2 qnl mp mp mp mp -

3 - ml ml ml ml -

4 - ko ko ko ko -

5 - kl kl kl kl -

6 - uidp uidp uidp uidp -

7 - pid pid pid pid -

8 - - to rqh rpid -

9 - - - csid (note
“9” on page
315)

rqh (note “5”
on page 315)

-

10 - - - cuword (note
“10” on page
315)

- -

11..16 - - - - - -

IPC3 QCRBs (Kernel Response to Carrier)
Table 27. IPC3 QCRB Parameter Usage (Kernel Response to Carrier)

Index QOpen QSend QSendB QSendR QReply QClose

1 rc (note “12”
on page 315)

rc rc rc rc rc

2 re re re re re re

3 kqt (note “8”
on page 315)

- - - - -

4..16 - - - - - -

Usage Notes
1. The tags structure is organized as follows:

Offset
Use

Remote IPC Support

314 z/VM: 7.3 CMS Application Multitasking

0
Reserved for kernel

4
Reserved for kernel

8
Reserved for kernel

12
Number of tags found

16
Reserved for kernel

20
Address of length array

24
Address of pointer array

Each entry in the pointer array points to a character string buffer containing a single tag and its
corresponding value. The tag appears first in the buffer, and the value follows it. The tag and value are
separated from one another by a space character.

Each entry in the length array gives the length in bytes of the string pointed to by the corresponding
entry in the pointer array.

The number of tags found field gives the length in fullwords of the pointer and length arrays.

If the carrier requires a persistent copy of the tags structure, it must make one. The carrier should not
assume that the tags structure will persist.

2. The token is generated by the carrier and is used by the kernel to identify the opened queue on
subsequent IPC0 requests.

3. This is the handle under which the sender has the reply queue open.
4. This is the process ID of the process owning the reply queue.
5. This is the handle under which the process owning the reply queue has the reply queue open.
6. This is the sequence number the carrier used when it submitted the IPC2 request QCRB for the

provoking QueueSendReply.
7. This is the carrier user word the carrier passed when it submitted the IPC2 request QCRB for the

provoking QueueSendReply.
8. The token is generated by the kernel and should be used by the carrier to identify the queue on

subsequent IPC2 requests.
9. This is the service ID of the carrier's service queue.

10. The kernel will send this value back to the carrier when the corresponding QueueReply occurs. This
assists the carrier in keeping track of where the reply should be sent.

11. These return and reason codes are delivered directly to the CMS application. The carrier author
should carefully consider whether returning values other than those shown in the function
descriptions is warranted.

12. These return and reason codes generated by the kernel match those mentioned earlier in the function
descriptions.

13. The QueueCreate and QueueDelete notifications are sent to the carrier through QueueSend, not
QueueSendReply. The carrier should not reply to these notifications but simply take whatever action
makes sense for its environment.

APPC/VM Carrier Line Flows
This section describes the protocols and line flows used between two instances of the CMS APPC/VM IPC
carrier. The flows are documented for two reasons:

Remote IPC Support

Appendix C. Remote IPC Support 315

1. To help other carrier authors see how they might organize their own line flows.
2. To help programmers on other APPC-supporting platforms see how to write code that imitates both

the CMS APPC/VM carrier and CMS's IPC subsystem. This might be useful for putting a functional
equivalent of the CMS IPC API on another platform.

Structure
The following structure notes describe the overall design of the APPC/VM carrier.

• Two CMS APPC/VM IPC carriers maintain one APPC/VM conversation connecting them. All IPC activity
between the two kernels flows on this one conversation.

• APPC/VM conversations are allocated only in response to QueueOpen requests and are never
deallocated.

• If a conversation should become deallocated (for example, the other side re-IPLs), all queues open over
the conversation must be re-opened.

• The conversation is an APPC basic conversation and uses SYNCLVL=NONE.
• On each side of the link, the transaction program name on the other side is assumed to be VMIPC.

Request Flows
When the APPC/VM carrier sends a request, it sends a request header record followed by zero or more
request data records. The header record describes the request and gives parameter information to
describe the request. The data records pass request-specific data.

A request header record is always 64 bytes long. Table 28 on page 317 describes the formats of the
request header records for the various request types. The following abbreviations are used in the table
cells:
Abbr

Meaning
cseq

Sequence number assigned by requesting carrier
pid

Process ID of originating process
-

Reserved for future use
rtok

Queue token assigned by remote carrier
qnl

Queue name length
ml

Message length
ko

Key offset
kl

Key length
uid1

First 4 bytes of user ID
uid2

Second 4 bytes of user ID
to

Timeout value
rqh

Reply queue handle

Remote IPC Support

316 z/VM: 7.3 CMS Application Multitasking

rpid
ID of process to which reply should be delivered

Table 28. Request Header Record Formats

Offset QOpen QSend QSendB QSendR QReply QClose

0 0 0 0 0 0 0

4 cseq cseq cseq cseq cseq cseq

8 0 1 2 3 4 5

12 - rtok rtok rtok - rtok

16 qnl ml ml ml ml -

20 - ko ko ko ko -

24 - kl kl kl kl -

28 - uid1 uid1 uid1 uid1 -

32 - uid2 uid2 uid2 uid2 -

36 - pid pid pid pid -

40 - - to - - -

44 - - - rqh rqh -

48 - - - - rpid -

52..63 - - - - - -

Request data is sent in request data records, 32,765 bytes in each record, until all request data has been
sent. Only the last request data record may contain less than 32,765 bytes of request data. Request data
records are used as follows:

Function Usage

QueueOpen Queue name

QueueSend Message text

QueueSendBlock Message text

QueueSendReply Message text

QueueReply Message text

QueueClose not used (no transmission)

Response Flows
When the APPC/VM carrier responds to a request, it transmits a response header record.

Note: Because no responses require additional data, there is no notion of a "response data record". The
"header" terminology is used, though, for symmetry.

A response header record is always 64 bytes long. Table 29 on page 318 describes the formats of the
response header records for the various response types. The following abbreviations are used in the table
cells:
Abbr

Meaning
cseqp

Sequence number of provoking request

Remote IPC Support

Appendix C. Remote IPC Support 317

rc
Return code

re
Reason code

-
Reserved for future use

rtok
Queue token assigned by responding carrier

Table 29. Response Header Record Formats

Offset QOpen QSend QSendB QSendR QReply QClose

0 1 1 1 1 1 1

4 cseqp cseqp cseqp cseqp cseqp cseqp

8 rc rc rc rc rc rc

12 re re re re re re

16 rtok - - - - -

20..63 - - - - - -

Remote IPC Support

318 z/VM: 7.3 CMS Application Multitasking

Appendix D. Example of a C Multitasking Program

To help you get started writing multitasking applications, this section presents a simple multi-threaded
C program. This program illustrates the key parts of any multitasking-based application and a simple but
powerful method of handling concurrent work.

The example uses an approach in which a primary thread determines what work needs to be done and
distributes this work to worker threads for processing. It also shows how to structure an application
according to a message-object model. In this model each thread represents an operation to be performed
on some object. Receiving a message on a queue causes a thread to perform its operation using the data
in the message.

The problem being solved is fairly trivial and could easily be solved without multitasking. This allows the
example to focus on the multitasking principle rather than the difficulties of the problem itself. The main
program simply reads commands from the CMS console and sends them to the thread that handles this
particular command. The valid commands are:
DUPLICATE string

Display the string on the user's terminal
REPEAT n string

Display the string on the user's terminal n times
REVERSE string

Transpose the string and display it on the user's terminal.
The simple structure of this small program is applicable to large servers whose threads perform complex
functions.

/*
 Read a command from the command line and forward it via a queue
 to the thread that processes this command.

 The valid commands are:

 DUPLICATE - Display the data on the user's terminal
 REPEAT n - Display the data on the user's terminal n times,
 when n is from 0 to 9
 REVERSE - Transpose the data and display it on the user's terminal

 All other commands result in an error message.
*/

#include <stdio.h>
#include <ctype.h>
#include "vmcmt.h"

#define LINESIZE 131
#define FLAGSIZE 5
#define CMDNUM 3
#define DUPLICATE 0
#define REPEAT 1
#define REVERSE 2
#define NO 0
#define YES 1

char cmd_queue[16] = { "CommandQueue\0" };
char *cmd_list[CMDNUM] = { "DUPLICATE\0", "REPEAT\0", "REVERSE\0" };
int cmd_q_han; /* Handle of command queue */

#pragma linkage(applmain,OS)

int applmain (ext_plist, tok_plist)
 char * ext_plist;
 char * tok_plist;

{
 extern int rev_thd (void); /* Thread for REVERSE */
 extern int rep_thd (void); /* Thread for DUPLICATE and REPEAT */

 int rc, /* Return code */

Example Program

© Copyright IBM Corp. 1992, 2022 319

 re, /* Reason code */
 index, /* Multipurpose index for looping */
 valid_cmd, /* Flag to indicate valid command */
 repeat_tid, /* Thread ID for REPEAT thread */
 duplicate_tid, /* Thread ID for DUPLICATE thread */
 reverse_tid, /* Thread ID for REVERSE thread */
 number_of_threads, /* Number of threads created */
 tc_flags[2], /* Flags for ThreadCreate */
 tc_plist[1], /* Parameter list for threads */
 command_len, /* Length of command name entered */
 data_len; /* Length of user input */

 char prompt[] = {"Enter a command or press [enter] to quit.\0"},
 error_msg1[] = {"The command you entered is invalid.\n\0"},
 error_msg2[] = {"Please enter a valid command or press \0"},
 error_msg3[] = {"[enter] to quit.\n\0"};

 char command_line[LINESIZE], /* Buffer for user input */
 msg_line[FLAGSIZE + LINESIZE], /* Buffer to send message */
 rcv_line[FLAGSIZE]; /* Buffer to receive message*/

 char cont[FLAGSIZE+1] = { "CONT \0" }; /* Continuation indicator */
 char *curr_ptr, /* Index into user input */
 start_ptr, / Start of actual command */
 end_ptr; / End of user input + 1 */

 char done[FLAGSIZE] = { "DONE\0" }; /* Work completed indicator */
 char sender_UID[8]; /* User ID of message sender*/
 int sender_PID, /* Process ID of sender */
 message_length, /* Length of message rcvd */
 key_offset, /* Offset of key in message */
 key_length, /* Length of message key */
 reply_token; /* Queue reply token */

 /*
 Create a process-level queue on which to send the commands.
 */

 QueueCreate
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_queue, /* name of command queue */
 strlen(cmd_queue), /* length of command queue name */
 vm_ipc_plevel, /* scope of queue */
 &cmd_q_han /* handle of queue */
);

 if (rc != vm_rc_success)
 {
 printf ("QueueCreate failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 printf ("Trying to create %s.\n", cmd_queue);
 return (8);
 }

 /*
 Create the threads to process the commands. Create each thread
 in its own class so that it will have the opportunity to run
 concurrently. Make each thread a slightly higher priority than
 the main program so that it is given the opportunity to process
 the current command before the main program gets another one.
 For threads that require a parameter list, have each make a
 copy of the parameter list because the main program will be
 reusing it.
 */
 number_of_threads = 0;

 tc_flags[0] = vm_pro_new_class;
 tc_flags[1] = vm_pro_copy_plist;

 /*
 Create a thread to handle DUPLICATE. The code for this thread
 handles both DUPLICATE and REPEAT, so we must pass the command
 name as a parameter to the thread.
 */

 tc_plist[0] = (int) cmd_list[DUPLICATE];
 ThreadCreate
 (
 &rc, /* rc */
 &re, /* re */

Example Program

320 z/VM: 7.3 CMS Application Multitasking

 &duplicate_tid, /* thread ID */
 tc_flags, /* flags */
 2, /* flags length */
 1, /* relative priority */
 (int) rep_thd, /* entry point */
 tc_plist, /* plist address */
 1 /* plist length */
);

 if (rc != vm_rc_success)
 {
 printf ("ThreadCreate failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 printf ("Trying to create thread for %s.\n",
 cmd_list[DUPLICATE]);
 cleanup (msg_line, number_of_threads);
 return (8);
 }

 /*
 Create a thread to handle REPEAT. The code for this thread
 handles both DUPLICATE and REPEAT, so we must pass the command
 name as a parameter to the thread.
 */

 number_of_threads += 1;
 tc_plist[0] = (int) cmd_list[REPEAT];
 ThreadCreate
 (
 &rc, /* rc */
 &re, /* re */
 &repeat_tid, /* thread ID */
 tc_flags, /* flags */
 2, /* flags length */
 1, /* relative priority */
 (int) rep_thd, /* entry point */
 tc_plist, /* plist address */
 1 /* plist length */
);

 if (rc != vm_rc_success)
 {
 printf ("ThreadCreate failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 printf ("Trying to create thread for %s.\n",
 cmd_list[REPEAT]);
 cleanup (msg_line, number_of_threads);
 return (8);
 }

 /*
 Create a thread to handle REVERSE. It handles only this command
 so there is no need to pass it a parameter; the command name
 has been declared globally.
 */

 number_of_threads += 1;
 ThreadCreate
 (
 &rc, /* rc */
 &re, /* re */
 &reverse_tid, /* thread ID */
 tc_flags, /* flags */
 2, /* flags length */
 1, /* relative priority */
 (int) rev_thd, /* entry point */
 tc_plist, /* plist address */
 0 /* plist length */
);

 if (rc != vm_rc_success)
 {
 printf ("ThreadCreate failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 printf ("Trying to create thread for %s.\n",
 cmd_list[REVERSE]);
 cleanup (msg_line, number_of_threads);
 return (8);
 }
 number_of_threads += 1;

 /*

Example Program

Appendix D. Example of a C Multitasking Program 321

 Each thread is waiting to receive a message on the CommandQueue
 in the following format: key user_data

 where key consists of the following: flag command

 where flag tells the thread whether or not this is the notice to
 quit, and command is the name of the command being processed.
 Now we must initialize the flag so the threads will process
 the commands.
 */

 strcpy(msg_line, cont);

 /*
 Prompt the user for input
 */

 printf ("%s\n", prompt);

 /*
 Read commands until the user presses only the [Enter] key.
 */

 curr_ptr = gets(command_line);
 data_len = strlen(command_line);
 while (curr_ptr != NULL && data_len != 0)
 {
 end_ptr = curr_ptr + data_len; /* find the end of the input */

 /*
 Scan past leading blanks to find the command name.
 */

 while (isspace((int) *curr_ptr) != 0 &&
 curr_ptr < end_ptr)
 {
 curr_ptr += 1; /* point to next character */
 data_len -= 1; /* decrement length of input */
 }

 /*
 Scan until we find a space (blank, tab or newline character)
 or reach the end of the line, translating each character
 to uppercase if it is currently in lowercase. Track the
 size of the command name.
 */

 start_ptr = curr_ptr;
 command_len = 0;
 while (isspace((int) *curr_ptr) == 0 &&
 curr_ptr < end_ptr)
 {
 if (islower((int) *curr_ptr) != 0)
 *curr_ptr = toupper((int) *curr_ptr);
 command_len += 1;
 curr_ptr += 1;
 }

 /*
 Search our list of commands to see if the command is valid.
 */

 index = 0;
 valid_cmd = NO;
 while (index < CMDNUM && valid_cmd == NO)
 if (command_len == strlen(cmd_list[index]) &&
 memcmp(start_ptr, cmd_list[index], command_len) == 0)
 valid_cmd = YES;
 else
 index += 1;

 if (valid_cmd == YES)
 {

 /*
 This is a valid command; concatenate it to the flag and
 send it to be processed.
 */

 curr_ptr = msg_line + FLAGSIZE; /* point past the flag */
 memcpy(curr_ptr, start_ptr, data_len + 1);

Example Program

322 z/VM: 7.3 CMS Application Multitasking

 QueueSendReply
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_q_han, /* queue handle */
 msg_line, /* message */
 strlen(msg_line), /* message length */
 0, /* key offset */
 FLAGSIZE + command_len, /* key length */
 cmd_q_han /* queue to reply on */
);

 if (rc != vm_rc_success)
 {
 printf ("QueueSendReply failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 printf ("Message sent was %s.\n", msg_line);
 printf ("Key offset = 0, key length = %d.\n",
 FLAGSIZE + command_len);
 curr_ptr = NULL;
 }
 else
 {

 /*
 Wait until processing is complete.
 */

 QueueReceiveBlock
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_q_han, /* queue handle of command queue */
 done, /* key to match on */
 strlen(done), /* length of key */
 20, /* timeout period */
 rcv_line, /* receive message buffer */
 sizeof(rcv_line), /* size of message buffer */
 &message_length, /* length of message received */
 &key_offset, /* offset of key in message */
 &key_length, /* length of key */
 sender_UID, /* sender user ID */
 &sender_PID, /* sender process ID */
 &reply_token /* reply token */
);

 if (rc != vm_rc_success)
 {
 printf ("QueueReceiveBlock failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 curr_ptr = NULL;
 }
 else

 /*
 Prompt for more input.
 */

 printf ("%s\n", prompt);
 }
 }
 else
 {

 /*
 This is an invalid command; inform the user.
 */

 printf ("%s", error_msg1);
 printf ("%s", error_msg2);
 printf ("%s", error_msg3);
 }

 /*
 Continue to read, if we have not encountered a critical error.
 */

 if (curr_ptr != NULL)
 {
 curr_ptr = gets(command_line);
 data_len = strlen(command_line);
 }

Example Program

Appendix D. Example of a C Multitasking Program 323

 }

 cleanup (msg_line, number_of_threads);
 return (0);
}

/*
 Inform all of the threads that processing should stop, and wait
 until all the threads have completed their commands. Then delete
 the queue. The threads will return by themselves.
*/

cleanup (msg_line, number_of_threads)
 char msg_line[FLAGSIZE + LINESIZE]; /* Message buffer to use */
 int number_of_threads; /* Number of threads to inform */

{
 int rc, re, index;
 char quit[FLAGSIZE+1] = { "QUIT \0" };

 /*
 Tell all the threads that processing should stop. Wait until
 they receive this message. This means that they have
 completed processing all of their commands.
 */

 strcpy(msg_line, quit);
 for (index = 0; index < number_of_threads; index++)
 {
 msg_line[FLAGSIZE] = '\0';
 strcat(msg_line, cmd_list[index]);
 msg_line[FLAGSIZE + strlen(cmd_list[index])] = '\0';

 QueueSendBlock
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_q_han, /* queue handle */
 msg_line, /* message */
 strlen(msg_line), /* message length */
 0, /* key offset */
 strlen(msg_line), /* key length */
 0 /* timeout period */
);

 if (rc != vm_rc_success)
 {
 printf ("QueueSendBlock failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);

 /*
 Delete all the other threads in the process because
 we cannot send them the message to quit.
 */

 ThreadDelete
 (
 &rc,
 &re,
 -1
);

 /*
 No point in looping any longer.
 */

 index = number_of_threads;
 }
 }

 /*
 Now it is safe to delete the queue.
 */

 QueueDelete
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_queue, /* name of queue to delete */
 strlen(cmd_queue), /* length of queue name */
 vm_ipc_plevel /* scope of queue */
);

Example Program

324 z/VM: 7.3 CMS Application Multitasking

 if (rc != vm_rc_success)
 {
 printf ("QueueDelete failed with ");
 printf ("Return code = %d. Reason code = %d.\n", rc, re);
 printf ("Trying to delete %s.\n", cmd_queue);
 return (8);
 }

 return;
}

/*

 Process the REVERSE command.

 Receive from a queue, the data entered by the user. Transpose
 this data, then display it on the terminal.

 The format of the incoming message is as follows:

 key user_data

 where key is in the following format: flag command_name
 and flag is either CONT (continue) or QUIT
 and user_data is the data to be displayed

*/

#include <stdio.h>
#include "vmcmt.h"

#define LINESIZE 131 /* Maximum length of user input + 1 for NULL */
#define FLAGSIZE 5 /* Size of continue/quit flag + 1 for NULL */
#define CMDNUM 3 /* Total number of commands defined */
#define REVERSE 2 /* Position of REVERSE command */

#pragma linkage (rev_thd,OS)
int rev_thd ()

{

 extern int cmd_q_han; /* Handle of command queue */
 extern char *cmd_list[CMDNUM]; /* List of defined commands */

 int rc, re, index, out_index;

 char match_key[20], in_message[LINESIZE + FLAGSIZE], sender_UID[8],
 out_message[LINESIZE], compkey[FLAGSIZE+1];
 int message_length, key_offset, key_length, sender_PID, reply_token;

 char cont[FLAGSIZE+1] = { "CONT \0" };
 char done[FLAGSIZE] = { "DONE \0" };

 /*
 Set up the key for our command.
 */

 strcpy (match_key, "*");
 strcat (match_key, cmd_list[REVERSE]);

 /*
 Receive commands until the main program says to quit.
 */

 strcpy (compkey, cont);
 while (strcmp(compkey, cont) == 0)
 {

 /*
 Read a single command, waiting if one is not currently on
 the queue.
 */

 QueueReceiveBlock
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_q_han, /* queue handle of command queue */
 match_key, /* key to match on */
 strlen(match_key), /* length of key */
 0, /* timeout period */

Example Program

Appendix D. Example of a C Multitasking Program 325

 in_message, /* receive message buffer */
 sizeof(in_message), /* size of message buffer */
 &message_length, /* length of message received */
 &key_offset, /* offset of key in message */
 &key_length, /* length of key */
 sender_UID, /* sender user ID */
 &sender_PID, /* sender process ID */
 &reply_token /* reply token */
);

 /*
 Check the flag to see if this is a real command, or quit.
 */

 memcpy(compkey, in_message, FLAGSIZE);
 if (strcmp(compkey, cont) == 0)
 {

 /*
 Pick off the command, and transpose the rest of the string,
 working backward on the input string.
 */

 out_index = 0;
 for (index = message_length - 1; index >= key_length; index--)
 {
 out_message[out_index] = in_message[index];
 out_index += 1;
 }
 out_message[out_index] = '\0';
 printf ("%s\n", out_message);

 /*
 Tell the primary that we have completed our work.
 */

 QueueReply
 (
 &rc, /* return code */
 &re, /* reason code */
 reply_token, /* reply token */
 done, /* message */
 strlen(done), /* length of message */
 0, /* key offset */
 strlen(done) /* entire message is the key */
);
 }
 }

 /*
 The main program has indicated that it is time to quit.
 */

 return;

}

/*

 Process the DUPLICATE and REPEAT n commands.

 Receive from a queue, the data entered by the user. If it is
 DUPLICATE, simply display the data on the user's terminal.
 If it is REPEAT, verify that the user has requested between 0 and
 9 copies of the data. If so, display the data the specified
 number of times on the user's terminal.

 The format of the incoming message is as follows:

 key user_data

 where key is in the following format: flag command_name
 and flag is either CONT (continue) or QUIT
 and user_data is the data to be displayed
*/

#include <stdio.h>
#include "vmcmt.h"

#define LINESIZE 131 /* Maximum length of user input + 1 for NULL */
#define FLAGSIZE 5 /* Size of continue/quit flag + 1 for NULL */
#define CMDNUM 3 /* Total number of commands defined */

Example Program

326 z/VM: 7.3 CMS Application Multitasking

#define DUPLICATE 0 /* Position of DUPLICATE command */
#define REPEAT 1 /* Position of REPEAT command */

#pragma linkage (rep_thd,OS)
 rep_thd (cmd_name)
 char *cmd_name; /* Name of command being processed */

{

 extern int cmd_q_han; /* Handle of command queue */
 extern char *cmd_list[CMDNUM]; /* List of defined commands */

 int rc, re, rep_count, index;

 char match_key[20], in_message[LINESIZE + FLAGSIZE], sender_UID[8],
 compkey[FLAGSIZE + 1];
 int message_length, key_offset, key_length,
 sender_PID, reply_token;

 char cont[FLAGSIZE + 1] = { "CONT \0" };
 char done[FLAGSIZE] = { "DONE \0" };
 char *data_ptr, *end_ptr;

 /*
 Initialize the key for our command.
 */

 strcpy (match_key, "*");
 strcat (match_key, cmd_name);

 /*
 Receive commands until the main program says to quit.
 */

 strcpy (compkey, cont);
 while (strcmp(compkey, cont) == 0)
 {

 /*
 Read a single command, waiting if one is not currently on
 the queue.
 */

 QueueReceiveBlock
 (
 &rc, /* return code */
 &re, /* reason code */
 cmd_q_han, /* queue handle of command queue */
 match_key, /* key to match on */
 strlen(match_key), /* length of key */
 0, /* timeout period */
 in_message, /* receive message buffer */
 sizeof(in_message), /* size of message buffer */
 &message_length, /* length of message received */
 &key_offset, /* offset of key in message */
 &key_length, /* length of key */
 sender_UID, /* sender user id */
 &sender_PID, /* sender process id */
 &reply_token /* reply token */
);

 /*
 Check the flag to see if this is a real command, or quit.
 */

 memcpy(compkey, in_message, FLAGSIZE);
 if (strcmp(compkey, cont) == 0)
 {

 /*
 This is a real command. Initialize pointers to the user
 data (this will point to the space after the command name)
 and the end of the data (make sure this is NULL).
 */

 data_ptr = in_message + key_length;
 end_ptr = in_message + message_length;
 *end_ptr = '\0';

 /*
 If the command is REPEAT (only need to check if the first
 letter is R), find out how many times to display the

Example Program

Appendix D. Example of a C Multitasking Program 327

 data, and only display the data that follows this number.
 */

 if (in_message[FLAGSIZE] == cmd_list[REPEAT][0])
 {

 /*
 Scan the data after the command name until we find
 a non-space character, or reach the end of the data.
 */

 while (isspace((int) *data_ptr) != 0 &&
 data_ptr < end_ptr)
 data_ptr += 1;

 /*
 See if this is a decimal digit.
 */

 if (isdigit((int) *data_ptr) != 0)

 /*
 Yes, this is a valid decimal digit.
 If you are not at the end of the data, the next
 character must be some type of space.
 */

 if (data_ptr < (end_ptr - 1) &&
 isspace((int) *(data_ptr + 1)) == 0)
 {
 rep_count = 0;
 printf ("Must specify a number between 0 and 9.\n");
 }
 else
 {

 /*
 Convert from char to integer, then move past it.
 */

 rep_count = *data_ptr - '0';
 data_ptr += 1;
 }
 else
 {
 rep_count = 0;
 printf ("Must specify a number between 0 and 9.\n");
 }
 }
 else
 rep_count = 1; /* Command is DUPLICATE */

 /*
 Display the data the appropriate number of times.
 If rep_count is 0, do not display anything.
 */

 for (index = 1; index <= rep_count; index++)
 printf ("%s\n", data_ptr);

 /*
 Tell the primary that we have completed our work.
 */

 QueueReply
 (
 &rc, /* return code */
 &re, /* reason code */
 reply_token, /* reply token */
 done, /* message */
 strlen(done), /* length of message */
 0, /* key offset */
 strlen(done) /* entire message is the key */
);
 }
 }
/*
 The main program has indicated that it is time to quit.
*/

Example Program

328 z/VM: 7.3 CMS Application Multitasking

return;
}

Example Program

Appendix D. Example of a C Multitasking Program 329

Example Program

330 z/VM: 7.3 CMS Application Multitasking

Appendix E. Supplementary Information on System
Defined Events

This appendix provides additional information about system events.

System Event Characteristics
The following table identifies the characteristics used when system events are defined. When an event is
signaled, the signaler may also include data as part of the signal. Additionally that data may also contain a
key to help with selectively handling signals.

Table 30. System Event Characteristics

Name Scope Signal
delivery

Signaler
treat-
ment

Loose
signal
limit

Signal
timeout
period

Signal
Data?

Key
with
Signal?

Notes

VMACCOUNT Session Broadcast Async -1 0 Yes Yes Must enable
with
AccountControl

VMCONINPUT Session Broadcast Async 0 0 No No

VMCON1ECB Session Broadcast Async 0 0 No No

VMCPIC Session Broadcast Async 0 0 Yes Yes

VMERROR Process LIFO Sync
Process

0 0 Yes Yes

VMERRORCHILD Process LIFO Sync
Process

0 0 Yes Yes

VMIPC Process Broadcast Async 0 0 Yes Yes Must enable
with
QueueSignal-
Events

VMPOSGNL Process Broadcast Async 0 0 Yes Yes Created only for
POSIX
processes

VMPROCESSEND Session Broadcast Sync
Thread

0 0 Yes Yes

VMSFSASYNC Session Broadcast Sync
Thread

0 0 Yes Yes

VMSOCKET Session Broadcast Async 1 0 Yes No Defined only
while
RXSOCKET is
active

VMTIMECHANGE Session Broadcast Async 0 0 Yes Yes

VMTIMER Session Broadcast Async -1 0 Yes Yes

VMTRACE Session Broadcast Async 50 0 Yes Yes Also see the
CMS TRACECTL
command

© Copyright IBM Corp. 1992, 2022 331

VMCONINPUT and VMCON1ECB
Two of the system events pertain to console activity:

• VMCONINPUT is signaled when an unsolicited attention is received at the console.
• VMCON1ECB is signaled when input is available at the console.

For many applications VMCONINPUT and VMCON1ECB may be used interchangeably. Every time an
unsolicited attention interrupt is received on the console, VMCONINPUT is signaled. However, the data
represented by the signal may be consumed by CMS before the application has a chance to read it (for
example, an immediate command was entered).

VMCON1ECB is signaled less frequently than VMCONINPUT. VMCON1ECB is signaled only when data is
available for the application to read (it is not signaled for immediate commands, for example). When
VMCON1ECB is signaled, the application is guaranteed that if it issues a read the virtual machine will not
end up in VM READ.

VMSOCKET Signal Data
VMSOCKET is signaled by REXX Sockets when a Select request completes. What normally would have
been returned from a Select subfunction, namely a count of completed events followed by a list of the
events, is provided as the signal data.

Most system events provide signal data. VMSOCKET is unique among system defined events in that it
provides signal data but no key. Broadly speaking, with the system events, the key is used to provide a
degree of uniqueness between events. Rather than a key, REXX Sockets allows a unique event name to be
provided for each outstanding Select request.

When the socket Terminate function is called, if outstanding Select requests remain, they are signaled
with a completed event count of zero.

For more information, see the z/VM: REXX/VM Reference.

332 z/VM: 7.3 CMS Application Multitasking

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1992, 2022 333

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This manual documents intended Programming Interfaces that allow the customer to write programs to
obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

334 z/VM: 7.3 CMS Application Multitasking

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 335

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

336 z/VM: 7.3 CMS Application Multitasking

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1992, 2022 337

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

338 z/VM: 7.3 CMS Application Multitasking

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 339

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

340 z/VM: 7.3 CMS Application Multitasking

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Additional Publications
XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
XL C/C++ for z/VM: User's Guide, SC09-7625
, SC09-4765
, SC09-4767

Bibliography 341

342 z/VM: 7.3 CMS Application Multitasking

Index

Special Characters
#include statement 81
$QUEUES$ NAMES

entry format and defaults 32
sample 32

$SERVER$ NAMES 34
$SERVER$ NAMES (CMS private resource registration file)

entries for network queues 35
required format 35

A
abend services

examples 72
monitoring error events 68

abnormal termination (abend)
a process 97
of process 4
of thread 4

AbnormalEnd routine 97
access a critical section protected by a mutex 49
access remote queues 34
access to local queues 34
AccountControl routine

reference 99
usage 65

AccountIdentify routine
reference 102
usage 65

accounting
record format 65
records, define 99
services

examples 66
format of accounting record 65
return and reason code values 298

address of CMS monitor data area, obtaining 171
advanced error recovery 70
API (application program interface)

assembler
binding files 82
building a multitasking program 88
calling multitasking functions 86
general information 85
outline of an application 87

C
binding files 81
building an applmain() enabled program 84
calling multitasking functions 85
general information 83
using the applmain() linkage 83
using the POSIX entry linkage 83

CMS and OS/2 process management 8
function descriptions 95
general considerations 92
programming language binding files 81

API (application program interface) (continued)
REXX/VM

binding files 82
calling multitasking functions 89
general information 89
using binding files with REXX procedures 91

VMMTLIB callable services library 81
APPC/VM (Advanced Program-to-Program

Communications/VM)
as the carrier for network-level queues

considerations 34
carrier considerations 34
IPC carrier line flows 315
IPC carrier request flows 316
IPC carrier response flows 317
IPC carrier structure 316

application entry point, assembler 85
application entry point, C 83
application information, user 76
application program interface (API)

assembler
binding files 82
building a multitasking program 88
calling multitasking functions 86
general information 85
outline of an application 87

C
binding files 81
building an applmain() enabled program 84
calling multitasking functions 85
general information 83
using the applmain() linkage 83
using the POSIX entry linkage 83

CMS and OS/2 process management 8
function descriptions 95
general considerations 92
programming language binding files 81
REXX/VM

binding files 82
calling multitasking functions 89
general information 89
using binding files with REXX procedures 91

VMMTLIB callable services library 81
APPLMAIN 85
applmain() 83
assembler application outline 87
assembler call to ThreadYield example 86
assembler example 87
assembler macros provided 82
asynchronous event handler, defining 167
authorization rules of queues 35
automatic queue program startup, considerations for 35

B
basic semaphore processing 49
binding files, programming language

Index 343

binding files, programming language (continued)
assembler programming 86
list 81
special considerations for REXX programs 91

building a message key and match key 30
building a parameter list 86

C
C call to ThreadYield, example of 85
C language

header files provided 81
programming restrictions 85

c89 command 83
CALL macro 87
callable services library, VMMTLIB 81
callable timer facility 59
calling CMS functions 86
cancel

a timer 260, 263
all timers 262

carrier request block (QCRB)
definition 309
header description 311
IPC0 (kernel request to carrier) 313
IPC1 (carrier response to kernel) 313
IPC2 (carrier request to kernel) 314
IPC3 (kernel response to carrier) 314

carrier request to kernel (IPC2 QCRBs) 314
carrier response to kernel (IPC1 QCRBs) 313
carrier skeleton, IPC (carrier-initiated requests) 308
carrier skeleton, IPC (kernel-initiated requests) 307
carriers

interface between CMS and 307
line flows, APPC/VM 315
multiple 307
request flows 316
response flows 317
single 307
structure 316
threads 307

categories of queue functions 27
CHAR notation in parameter descriptions 95
characters, wildcard 30, 31
close an open queue 190
close and delete queues example 44
CMS (Conversational Monitor System)

API restrictions and considerations 92
CALL macro 87
communications directory 34
comparison with OS/2 8
monitor data area address, obtaining 171
Shared File System (SFS) 288
trace entry format 76
trace information structure 75
trace table 75

CMS multitasking
abend services 67
accounting services 65
and OS/2 process management and related APIs 8
as a run-time extension 1
calling functions 86
comparison with OS/2 8
creating application

CMS multitasking (continued)
creating application (continued)

using assembler 85
using C 83
using REXX 89

event services 17
example program, C 319
initialization entry routine, VMSTART

creating a process 12
included in assembler multitasking application
module 88
included in C multitasking application module 84
invoked by REXX execs 89

interface between carriers and 307
interprocess communication 27
introduction 1
kernel 307
list of functions 5
monitor data 79
multiprocessor configuration control 57
overview 1
process management 11
restrictions 85
synchronization 47
system exits 277
trace entry format 76
trace services 75
trace table 75
using HELP for 95
using OpenExtensions services 291

CMS private resource registration file ($SERVER$ NAMES) 34
CMSIUCV 14
Common Programming Interface (CPI) Communications

VMCPIC 17
communication suggestions for server writers 287
communication trace record formats 303
communications directory, CMS 34
comparison between CMS and OS/2 8
condition variable

definition 47
CondVarCreate routine 104
CondVarDelete routine 106
CondVarGetHandle routine 108
CondVarSignal routine 110
CondVarWait routine 111
considerations for APPC/VM carrier 34
considerations for automatic queue program startup 35
considerations for local access of a queue 32
considerations for remote access of a queue 32
constructing message and match keys 30
context switching 283
conventions, system exit linkage 277
COPY files provided, REXX 82
CP DASD Block I/O system service 288
CPI Communications

VMCPIC 17
CPU

guidelines 289
virtual 57

create
a condition variable 104
a queue 191
a semaphore 218
a thread 227

344 z/VM: 7.3 CMS Application Multitasking

create (continued)
a virtual processor 274
an event definition 128
threads 11, 281

create and open queues example 38
critical section

accessing a critical section protected by a mutex 49
definition 47

CSL routines
AccountControl 99
AccountIdentify 102
CondVarGetHandle 108
CondVarSignal 110
CondVarWait 111

D
DASD Block I/O system service, CP 288
data management suggestions for server writers 288
DateTimeGet routine 113
DateTimeSubtract routine

reference 115
usage 60

decrement thread suspend count 243
define

asynchronous event handler 167
event handling environment 139

define virtual CPUs 57
defining an event with EventCreate 17
definition of an event with EventCreate 128
definition of queue 27
delaying a thread 231
delete

a condition variable 106
a process 281
a queue 193
a semaphore 220
an event definition 131
an event monitor 142
threads 232, 282

delete and close queues example 44
description of services 4
differences between CMS and OS/2 process models 8
difficulties in constructing keys 30
directory

CMS communications 34
disable

monitor activation 135
specific monitors 144

dispatch trace record formats 304
dispatching classes of threads 11

E
enable

monitor activation 135
specific monitors 144

enable access to local queues 34
entry point

USRRTHD 278
USRSINIT 277
USRTINIT 278
USRTTERM 278

environment exits, programming language 279
environment manager 279
error

data format 67
events, monitoring 68
format of abend error data 67
in high-level language environment 69
recovery 68
retry routines 69

error event data 67
error event handlers in a process 4
escape character 30, 31
event

based model 14
definition 17
definition with EventCreate 128
examples 22
key 18
management

examples 22
monitoring error 68
monitors

processing 19
name 17
signaling 18, 20
system 17

event management services
CMS trace table 75
event definition 17
event monitor processing 19
event monitors 19
event signal processing 20
event signaling 18
examples 22
interaction with trace services 75, 76
interactions with queues 38
overview of functions 20
return and reason code values 296

event-based structure 14
EventCreate routine 128
EventDelete routine 131
EventDiscard routine 133
EventEnable routine 135
EventModify routine 137
EventMonitorCreate routine

maintaining trace services 75
reference 139
usage 19

EventMonitorDelete routine 142
EventMonitorEnable routine 144
EventMonitorQuery routine 146
EventMonitorReset routine 150
EventMonitorSelect routine 152
EventQuery routine 154
EventQueryAll routine 157
EventRetrieve routine

maintaining trace services 76
reference 159

events, system
VMACCOUNT

characteristics 331
using 65

VMCON1ECB
characteristics 331

Index 345

events, system (continued)
VMCON1ECB (continued)

contrasted with VMCONINPUT 332
VMCONINPUT

characteristics 331
contrasted with VMCON1ECB 332

VMCPIC
characteristics 331

VMERROR
characteristics 331
using 67

VMERRORCHILD
characteristics 331
using 67

VMIPC
characteristics 331
using 216

VMPOSGNL
characteristics 331
using 291

VMPROCESSEND
characteristics 331
using 12

VMSOCKET
characteristics 331
signal data 332

VMTIMECHANGE
characteristics 331
using 59

VMTIMER
characteristics 331
using 59

VMTRACE
characteristics 331
using 75

EventSelect routine 161
EventSignal routine

reference 163
usage 18

EventTest routine
reference 165
usage 19

EventTrap routine
reference 167
usage 19

EventWait routine
maintaining trace services 75
reference 169
usage 19

exact match keys 29
example

abend services 72
accounting services 66
assembler call to ThreadYield 86
C call to ThreadYield 85
event management

broadcast signals 23
EventTest 23
EventTrap 22
EventWait 22
loose and bound signal limits 24
process level events 25
sequentially propagated signals 24

interprocess communication

example (continued)
interprocess communication (continued)

closing and deleting queues 44
creating and opening queues 38
rendezvous 40
sharing a request queue 42
simple message transmission 39
using replies 41
using service queues 43

network-level queues 44
process management event-based structure 14
process management queue-based structure 13
program, C 319
REXX exec call to TraceControl 90
synchronization

accessing a critical section protected by a mutex 49
basic semaphore processing 49
going beyond WAIT/POST using semaphores 50
multiple waiters using a semaphore 50
producer and consumer processes 52
shared monitor 53

timer services 59
exit

system
programming language environment 279
root process 278
session initialization 277
thread initialization 278
thread termination 278

exit linkage conventions, system 277
export

queues 28
export level search order 29

F
find blocked threads 185
find suspended threads 188
format of accounting records 65
format of CMS trace entries 76
format of trace records 303
FORTRAN programs 58
fuzzy match keys 29

G
general guidelines for server writers 288
getting the value of a semaphore 223
going beyond WAIT/POST using semaphores 50
guidelines for defining virtual CPUs 57
guidelines for server writers 287, 288

H
handle, queue 28
HELP, online 95
HNDEXT exit 288
HNDIUCV exit 288

I
identify

communication carrier 195

346 z/VM: 7.3 CMS Application Multitasking

implicit process creation 12
information, user application 76
initialization entry routine, VMSTART

creating a process 12
included in assembler multitasking application module
88
included in C multitasking application module 84
invoked by REXX execs 89

initialization exit, session 277
initialization exit, thread 278
INT notation in parameter descriptions 95
interaction of sessions, processes, and threads 2
interactions between queues and event services 38
interactions between queues and process management 38
interface between CMS and carriers 307
interface definition of remote IPC support 309
interprocess communication

authorization 35
concepts 3
examples 38
export level search order 29
interactions with event services 38
interactions with process management 38
keys, message and match 29
network-level queues 31
primary queue 29
properties of queues 28
queue definition 27
queue names 28
queue operation 27
replies 36
return and reason code values 298
service queues 37
timeouts 37

interrupt handling suggestions for server writers 287
introduction 1
invocation with APPLMAIN 85
invocation with applmain() 83
invoking queue functions 27
IPC carrier skeleton (carrier-initiated requests) 308
IPC carrier skeleton (kernel-initiated requests) 307
IPC carrier threads 307
IPC service queue, network 308
IPC support, remote

APPC/VM carrier line flows 315
interface definition 309
overview 307
skeleton

carrier-initiated requests 308
kernel-initiated requests 307

IPC0 QCRBs (kernel request to carrier) 313
IPC1 QCRBs (carrier response to kernel) 313
IPC2 QCRBs (carrier request to kernel) 314
IPC3 QCRBs (kernel response to carrier) 314
IUCV (Inter-User Communications Vehicle) 14, 287

K
kernel 307
kernel request to carrier (IPC0 QCRBs) 313
kernel response to carrier (IPC3 QCRBs) 314
key

definition 18
match 29

key (continued)
message 29
tips on constructing 30
types 29

key descriptor of message prefix 27

L
language adapter trace record formats 305
language environment exits, programming 279
LIFO propagation 68
linkage conventions, system exit 277
list of CMS functions for multitasking 5
local access considerations for queues 32
local queues

enabling access to 34
local access considerations 32

loose signals 18

M
macros provided, assembler 82
management, process

APIs, CMS and OS/2 8
creating threads 11
dispatching classes 11
examples 13
process termination 12
return and reason code values 295

manager, environment 279
managing events 17
match keys

fuzzy and exact 29
tips on constructing 30

match-all match key (*) 30
message

definition 27
key

tips on constructing 30
prefix 27
text 27

message transmission example 39
miscellaneous trace record formats 306
model, event-based 14
model, process

concepts 1
differences between CMS and OS/2 8
resemblance to OS/2 2

model, queue-based 13
modify

characteristics of event definition 137
monitor

error events 68
functions provided by CMS 17

monitor data area address, CMS, obtaining 171
MonitorBufferGet routine 171
monitoring of events 19
MP-capable 87
multiple carriers 307
multiple waiters 50
multiprocessor configuration control

guidelines for defining virtual CPUs 57
multiprocessor-capable 87

Index 347

multitasking routines
AccountControl 99
AccountIdentify 102
CondVarGetHandle 108
CondVarSignal 110
CondVarWait 111

multitasking, CMS
abend services 67
accounting services 65
and OS/2 process management and related APIs 8
as a run-time extension 1
calling functions 86
comparison with OS/2 8
creating application

using assembler 85
using C 83
using REXX 89

event services 17
example program, C 319
initialization entry routine, VMSTART

creating a process 12
included in assembler multitasking application
module 88
included in C multitasking application module 84
invoked by REXX execs 89

interface between carriers and 307
interprocess communication 27
introduction 1
kernel 307
list of functions 5
monitor data 79
multiprocessor configuration control 57
overview 1
process management 11
restrictions 85
synchronization 47
system exits 277
trace entry format 76
trace services 75
trace table 75
using HELP for 95
using OpenExtensions services 291

mutex
accessing a critical section protected by a mutex 49
definition 47

MutexAcquire routine 173
MutexCreate routine 175
MutexDelete routine 177
MutexGetHandle routine 179
MutexRelease routine 181

N
name of events 17
name scopes, queue 28
names of queues 28
network IPC service queue 308
network-level queues

definition 28
example of how to set up 44
local access considerations 32
overview 31
remote access considerations 32

normal termination

normal termination (continued)
of process 4
of thread 4

notation used in parameter descriptions 95

O
obtain the thread ID and process ID 234
occurrence of an event 17
online HELP Facility, using 95
open a queue 199
open and create queues example 38
operation of queues 27
OS/2

comparison with CMS 8
relationship to CMS multitasking process model 2
table of process management APIs 8

outline of an assembler application 87
overview of CMS multitasking 1

P
parallel processing 57
parameter list

building 86
POSIX(OFF) mode 83
POSIX(ON) mode 83
preemption, definition 3
prefix, message

key descriptor 27
sender ID 27
text length 27

primary queue 3, 29
priority

thread 11
process

and threads 2
creating 3
creation 3
definition 2
deletion 281
end event name (VMPROCESSEND) 12
exit, root 278
interaction with threads and sessions 2
management

APIs, CMS and OS/2 8
creating threads 11
dispatching classes 11
event-based structure example 14
examples 13
interactions with queues 38
overview 11
process termination 12
queue-based structure example 13
return and reason code values 295
trace record formats 305

model
concepts 1
differences between CMS and OS/2 8
resemblance to OS/2 2

priority 3
state snapshot 182
termination

348 z/VM: 7.3 CMS Application Multitasking

process (continued)
termination (continued)

abnormal 4
description 12
normal 4

process creation, implicit 12
process-level queues 28
ProcessCheckPoint routine 182
ProcessGetID routine 184
processing event signal 20
ProcessQueryBlocked routine 185
ProcessQuerySuspended routine 188
producer and consumer processes 52
program, C, example 319
programming language binding files

assembler programming 86
list 81
special considerations for REXX programs 91

programming language environment exits 279
programming restrictions, C 85
properties of queues 28

Q
QCRB (carrier request block)

definition 309
header description 311
IPC0 (kernel request to carrier) 313
IPC1 (carrier response to kernel) 313
IPC2 (carrier request to kernel) 314
IPC3 (kernel response to carrier) 314

query
a timer 265, 267
all event names and monitor tokens 157
an event definition 154
blocked threads 185
dispatch class of a thread 235
entry point of a thread 237
event monitor information 146
parameter list of a thread 238
priority of a thread 240
suspend count of a thread 241
suspended threads 188
time and date 113
waiting message count 201

querying thread user data 242
queue

accessing remote queues 34
authorization rules 35
based model 13
communication carrier, identifying 195
definition 27
enabling access to local queues 34
events, signalling 216
example of a rendezvous 40
example of closing and deleting 44
example of creating and opening 38
example of replying 41
example of service queues 43
example of sharing a request queue 42
example of simple message transmission 39
function categories 27
handle 28
interactions with event services 38

queue (continued)
interactions with process management 38
interprocess communication 3, 27
message 27
name scopes 28
names 28
network IPC service 308
network-level

APPC/VM carrier considerations 34
local access considerations 32
remote access considerations 32

operation 27
primary 3, 29
properties 28
replies 36
reply 36
service 37
service, identifying 197
timeouts 37

queue program startup, automatic 35
queue-based structure 13
QueueClose routine 190
QueueCreate routine 191
QueueDelete routine 193
QueueIdentifyCarrier routine

reference 195
use in remote IPC support 307

QueueIdentifyService routine
reference 197
use in remote IPC support 307

QueueOpen routine 199
QueueQuery routine 201
QueueReceiveBlock routine

reference 203
timeout value 37
use in remote IPC support 307

QueueReceiveImmed routine
reference 206
use in remote IPC support 307

QueueReply routine
example 41
reference 208
usage 37
use in remote IPC support 307

QueueSend routine 210
QueueSendBlock routine

reference 212
timeout value 37

QueueSendReply routine
reference 214
usage 36
usage information 37

QueueSignalEvents routine
reference 216
usage 38

R
reason code values

accounting services 298
CMS monitor data 301
event services 296
interprocess communication 298
process management 295

Index 349

reason code values (continued)
timer services 299
trace services 298
VCPU services 300

receive a message from a queue 203, 206
record formats, trace 303
recovery, error 68
reentrant code 86
reinitialize a semaphore's value 224
remote access considerations for queues 32
remote IPC support

APPC/VM carrier line flows 315
interface definition 309
overview 307
skeleton

carrier-initiated requests 308
kernel-initiated requests 307

remote queues
accessing 34

rendezvous queue example 40
reply

to a message 208
reply queue 36
request data record 317
request flows of APPC/VM carrier 316
request header record 316
request special virtual CPU dispatching 276
reset

a monitor 20
an event monitor 150

resource ownership 2
response flows of APPC/VM carrier 317
response header record 317
restrictions

C programming 85
CMS API 92

resume
threads 243

retrieve
data from an event signal 159

retry routines 69
return code values

accounting services 298
CMS monitor data 301
event services 296
interprocess communication 298
process management 295
timer services 299
trace services 298
VCPU services 300

REXX/VM interpreter
COPY files provided 82
example of call to TraceControl 90
supplementary information for programmers 89

root process
exit 278

routines
AbnormalEnd 97
AccountControl 99
AccountIdentify 102
CondVarCreate 104
CondVarDelete 106
CondVarGetHandle 108
CondVarSignal 110

routines (continued)
CondVarWait 111
DateTimeGet 113
DateTimeSubtract 115
EventCreate 128
EventDelete 131
EventDiscard 133
EventEnable 135
EventModify 137
EventMonitorCreate 139
EventMonitorDelete 142
EventMonitorEnable 144
EventMonitorQuery 146
EventMonitorReset 150
EventMonitorSelect 152
EventQuery 154
EventQueryAll 157
EventRetrieve 159
EventSelect 161
EventSignal 163
EventTest 165
EventTrap 167, 169
MonitorBufferGet 171
MutexAcquire 173
MutexCreate 175
MutexDelete 177
MutexGetHandle 179
MutexRelease 181
ProcessCheckPoint 182
ProcessGetID 184
ProcessQueryBlocked 185
ProcessQuerySuspended 188
QueueClose 190
QueueCreate 191
QueueDelete 193
QueueIdentifyCarrier 195
QueueIdentifyService 197
QueueOpen 199
QueueQuery 201
QueueReceiveBlock 203
QueueReceiveImmed 206
QueueReply 208
QueueSend 210
QueueSendBlock 212
QueueSendReply 214
QueueSignalEvents 216
SemCreate 218
SemDelete 220
SemGetHandle 221
SemQueryValue 223
SemReInit 224
SemSignal 225
SemWait 226
ThreadCreate 227
ThreadDelay 231
ThreadDelete 232
ThreadGetID 234
ThreadQueryDispatchClass 235
ThreadQueryEntryPoint 237
ThreadQueryParameterList 238
ThreadQueryPriority 240
ThreadQuerySuspendCount 241
ThreadQueryUserData 242
ThreadResume 243

350 z/VM: 7.3 CMS Application Multitasking

routines (continued)
ThreadSetDispatchClass 244
ThreadSetPriority 246
ThreadSetUserData 248
ThreadSuspend 249
ThreadYield 251
TimerStartInt 253
TimerStartMicros 256
TimerStartTOD 258
TimerStop 260
TimerStopAll 262
TimerStopMicros 263
TimerTest 265
TimerTestMicros 267
TraceControl 269
TraceSignal 272
VCPUCreate 274
VCPUSelect 276

rules for authorization of queues 35
run a routine in context 282
run-time extension, CMS multitasking as a 1

S
SAA CPI Communications

VMCPIC 17
sample program, C 319
scopes, queue name 28
search order, export level 29
section, critical 47
semaphore

basic processing 49
definition 47
going beyond WAIT/POST using semaphores 50
multiple waiters 50

SemCreate routine 218
SemDelete routine 220
SemGetHandle routine 221
SemQueryValue routine 223
SemReInit routine 224
SemSignal routine 225
SemWait routine 226
send

message and request reply 214
message to queue 210, 212

sender ID of message prefix 27
serially-reusable code 86
server writers' suggestions 287
service IDs 37
service queue, network IPC 308
service queues 37, 307
services

abend 67
accounting 65
description 4
monitor data 79
trace 75

session
definition 2
interaction with threads and processes 2

session initialization exit 277
session-level queues 28
setting thread user data 248
Shared File System (SFS), CMS 288

shared monitor 53
sharing a request queue example 42
signal events 18
signaling of events 20
signalling a semaphore 225
signalling the occurrence of an event 163
signals, event 18
simple message transmission example 39
skeleton

carrier-initiated requests 308
kernel-initiated requests 307

start
interval timer 253, 256
TOD timer 258

stop
a timer 260, 263
all timers 262

structure of APPC/VM carrier 316
suggestions for server writers 287
supplementary information for REXX/VM programmers 89
suspend

threads 249
switching context 283
synchronization

examples
accessing a critical section protected by a mutex 49
basic semaphore processing 49
going beyond WAIT/POST using semaphores 50
multiple waiters using a semaphore 50
producer and consumer processes 52
shared monitor 53

mutex definition 47
synchronization trace record formats 305
system event characteristics 331
system events

VMACCOUNT
characteristics 331
using 65

VMCON1ECB
characteristics 331
contrasted with VMCONINPUT 332

VMCONINPUT
characteristics 331
contrasted with VMCON1ECB 332

VMCPIC
characteristics 331

VMERROR
characteristics 331
using 67

VMERRORCHILD
characteristics 331
using 67

VMIPC
characteristics 331
using 216

VMPOSGNL
characteristics 331
using 291

VMPROCESSEND
characteristics 331
using 12

VMSOCKET
characteristics 331
signal data 332

Index 351

system events (continued)
VMTIMECHANGE

characteristics 331
using 59

VMTIMER
characteristics 331
using 59

VMTRACE
characteristics 331
using 75

system exit linkage conventions 277
system exits

programming language environment 279
root process 278
session initialization 277
thread initialization 278
thread termination 278

system service , CP DASD Block I/O 288

T
table of CMS and OS/2 process management APIs 8
table of CMS functions for multitasking 5
table, trace 75
termination

abnormal
of process 4

normal
of process 4
of thread 4

termination exit, thread 278
termination, process 12
testing for occurrence of events 165
text length of message prefix 27
thread

and processes 2
at creation 3
carrier 307
creating 11, 281
definition 2
delay 231
deleting 282
dispatching classes of 11
initialization exit 278
interaction with sessions and processes 2
priority 3, 11
suspend count 243
synchronization 47
termination exit 278
termination of 4

ThreadCreate routine
reference 227
usage 11

ThreadDelay routine 231
ThreadDelete routine 232
ThreadGetID routine 234
ThreadQueryDispatchClass routine 235
ThreadQueryEntryPoint routine 237
ThreadQueryParameterList routine 238
ThreadQueryPriority routine 240
ThreadQuerySuspendCount routine 241
ThreadQueryUserData routine 242
ThreadResume routine 243
threads sharing a request queue example 42

ThreadSetDispatchClass routine 244
ThreadSetPriority routine 246
ThreadSetUserData routine 248
ThreadSuspend routine 249
ThreadYield routine

example of assembler call 86
example of call from C 85
reference 251

time stamps, converting and manipulating
DateTimeSubtract routine description 115
examples 60

timeouts 37
timer services

examples 59
overview 59
return and reason code values 299

TimerStartInt routine 253
TimerStartMicros routine 256
TimerStartTOD routine 258
TimerStop routine 260
TimerStopAll routine 262
TimerStopMicros routine 263
TimerTest routine 265
TimerTestMicros routine 267
tips on constructing keys 30
trace entry format in CMS 76
trace header 76
trace information structure, CMS 75
trace record formats

communication 303
dispatch 304
language adapter 305
miscellaneous 306
process management 305
synchronization 305

trace services
return and reason code values 298
trace table 75
user application information 76

trace table, CMS 75
TraceControl routine

maintaining trace services 75
reference 269

TraceSignal routine 272
transmission of messages example 39
two threads sharing a request queue example 42

U
user application information 76
using CMS multitasking 81
using service queues example 43
USRRTHD entry point 278
USRSINIT entry point 277
USRTINIT entry point 278
USRTTERM entry point 278

V
variable, condition 47
VCPU services

return and reason code values 300
VCPUCreate routine 274

352 z/VM: 7.3 CMS Application Multitasking

VCPUSelect routine 276
virtual CPUs 57
VMACCOUNT system event

characteristics 331
using 65

VMCON1ECB system event
characteristics 331
contrasted with VMCONINPUT 332

VMCONINPUT system event
characteristics 331
contrasted with VMCON1ECB 332

VMCPIC system event
characteristics 331

VMERROR system event
characteristics 331
using 67

VMERRORCHILD system event
characteristics 331
using 67

VMIPC system event
characteristics 331
using 216

VMIPC, APPC/VM private resource name 34
VMMTLIB callable services library 81
VMPOSGNL system event

characteristics 331
using 291

VMPROCESSEND system event
characteristics 331
using 12

VMSFSASYNC system event
characteristics 331

VMSOCKET system event
characteristics 331
signal data 332

VMSTART multitasking initialization entry routine
creating a process 12

VMTIMECHANGE system event
characteristics 331
using 59

VMTIMER system event
characteristics 331
using 59

VMTRACE system event
characteristics 331
using 75

W
wildcard characters 30, 31
writers of servers, suggestion for 287
writing multitasking applications 81

Y
yielding control to other threads 251

Z
z/VM HELP Facility, using 95

Index 353

354 z/VM: 7.3 CMS Application Multitasking

IBM®

Product Number: 5741-A09

Printed in USA

SC24-6258-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Summary of Changes for z/VM: CMS Application Multitasking
	SC24-6258-73, z/VM 7.3 (September 2022)
	SC24-6258-02, z/VM 7.2 (March 2021)
	SC24-6258-01, z/VM 7.2 (September 2020)
	SC24-6258-00, z/VM 7.1 (September 2018)

	Chapter 1. Basic Multitasking Concepts
	Multitasking Process Model
	Basic Constructs
	Interactions of Threads, Processes, and Sessions

	Multitasking Functions
	CMS Process Model Compared with OS/2

	Chapter 2. Process Management
	Creating Threads
	Thread Priority
	Dispatching Classes
	Implicit Process Creation
	Process Termination
	Process Management Examples

	Chapter 3. Event Management
	Event Definition
	Event Signaling
	Event Monitors
	Event Monitor Processing
	Event Signal Processing
	Overview of Event Management Functions
	Event Management Examples

	Chapter 4. Interprocess Communication
	Queue Definition
	Operation
	Properties
	Queue Names
	Queue Name Scopes
	Export Level Search Order
	Primary Queue
	Keys
	Message Keys
	Match Keys
	Tips on Constructing Keys

	Network-Level Queues
	Local Access Considerations
	Remote Access Considerations
	APPC/VM Carrier Considerations
	Accessing Remote Queues
	Enabling Access to Local Queues
	Considerations for Automatic Queue Program Startup

	Authorization
	Replies
	Service Queues
	Timeouts
	Interactions with Process Management
	Interactions with Event Services
	General Queue API Notes

	Interprocess Communication Examples
	Setting Up Network-Level Queues
	CLIENT Setup
	SERVER Setup
	Server API Calls
	Client API Calls
	Testing the Queues

	Chapter 5. Synchronization
	Synchronization Examples
	Accessing a Critical Section Protected by a Mutex
	Basic Semaphore Processing
	Going Beyond WAIT/POST Using Semaphores
	Multiple Waiters
	Producer and Consumer Processes
	Shared Monitor

	Chapter 6. Multiprocessor Configuration Control
	Guidelines for Defining Virtual CPUs

	Chapter 7. Timer Services
	Timer Services Examples
	DateTimeSubtract Examples
	Example 1
	Problem
	Solution

	Example 2
	Problem
	Solution

	Example 3
	Problem
	Solution

	Example 4
	Problem
	Solution

	Example 5
	Problem
	Solution

	Chapter 8. Accounting Services
	Accounting Services Examples

	Chapter 9. Abend Services
	Monitoring Error Events
	Error Recovery
	Retry Routines
	Recovery in the High-Level Language Environment
	Advanced Error Recovery
	Interactions with ABNEXIT and Simulated MVS Recovery

	Abend Services Examples

	Chapter 10. Trace Services
	The CMS Trace Table
	User Application Information

	Chapter 11. CMS Monitor Data
	Chapter 12. Writing Multitasking Applications
	VMMTLIB Callable Services Library
	Programming Language Binding Files
	Writing Multitasking Applications in C
	Using the C POSIX Entry Linkage
	Using the CMS Multitasking applmain() Linkage
	Building an applmain() Enabled Program
	Restrictions when Using applmain()

	Calling Multitasking Functions from C

	Writing Multitasking Applications in Assembler
	Calling Multitasking Functions from Assembler
	Outline of an Assembler Application
	Building an Assembler Multitasking Program

	Writing Multitasking Applications in REXX/VM
	Calling Multitasking Functions from REXX
	Using Binding Files with REXX Procedures

	General CMS API Considerations

	Chapter 13. CMS Multitasking Function Descriptions
	Notation Used in Parameter Descriptions
	Using the Online HELP Facility
	AbnormalEnd - Terminate a Process Abnormally
	AccountControl — Define and Query Accounting Attributes
	AccountIdentify — Identify an Accounting Entity
	CondVarCreate — Create a Condition Variable
	CondVarDelete — Delete a Condition Variable
	CondVarGetHandle — Get the Handle of a Condition Variable
	CondVarSignal — Signal a Condition Variable
	CondVarWait — Wait on a Condition Variable
	DateTimeGet — Query Time and Date
	DateTimeSubtract -- Compute Time Differences
	EventCreate — Create an Event Definition
	EventDelete — Delete an Event Definition
	EventDiscard — Inhibit Further Propagation of Signals
	EventEnable — Enable or Disable for Specific Events
	EventModify — Modify an Event Definition
	EventMonitorCreate — Define an Event Handling Environment
	EventMonitorDelete — Delete an Event Handling Environment
	EventMonitorEnable — Enable or Disable Specific Monitors
	EventMonitorQuery — Obtain Information About an Event Monitor
	EventMonitorReset — Reset the State of an Event Monitor
	EventMonitorSelect — Start or Stop Monitoring by Specific Monitors
	EventQuery — Obtain Information about an Event Definition
	EventQueryAll — Obtain All Event Names and Monitor Tokens
	EventRetrieve — Retrieve Data From an Event
	EventSelect — Start or Stop Monitoring for Specific Events
	EventSignal — Signal the Occurrence of an Event
	EventTest — Test for the Occurrence of Events
	EventTrap — Define an Asynchronous Event Handler
	EventWait — Wait for the Occurrence of Events
	MonitorBufferGet — Obtain the Address of the CMS Monitor Data Area
	MutexAcquire — Acquire a Mutex
	MutexCreate — Create a Mutex
	MutexDelete — Delete a Mutex
	MutexGetHandle — Get the Handle of a Mutex
	MutexRelease — Release a Mutex
	ProcessCheckPoint — Take a Snapshot of the Process State
	ProcessGetID — Obtain the ID of a Process
	ProcessQueryBlocked — Find Blocked Threads
	ProcessQuerySuspended — Find Suspended Threads
	QueueClose — Close a Queue
	QueueCreate — Create a Queue
	QueueDelete — Delete a Queue
	QueueIdentifyCarrier — Identify a Communication Carrier
	QueueIdentifyService — Identify a Service Queue
	QueueOpen — Open a Queue
	QueueQuery — Query Waiting Message Count
	QueueReceiveBlock — Receive a Message (Blocking)
	QueueReceiveImmed — Receive a Message (Nonblocking)
	QueueReply — Reply to a Message
	QueueSend — Send a Message
	QueueSendBlock — Send a Message and Block
	QueueSendReply — Send a Message and Request Reply
	QueueSignalEvents — Signal Queue Events
	SemCreate — Create a Semaphore
	SemDelete — Delete a Semaphore
	SemGetHandle — Get the Handle of a Semaphore
	SemQueryValue — Query the Value of a Semaphore
	SemReInit — Reinitialize a Semaphore's Value
	SemSignal — Signal a Semaphore
	SemWait — Wait on a Semaphore
	ThreadCreate — Create a Thread
	ThreadDelay — Delay This thread
	ThreadDelete — Delete Threads
	ThreadGetID — Obtain the ID of the Calling Thread
	ThreadQueryDispatchClass — Query a Thread's Dispatch Class
	ThreadQueryEntryPoint — Query a Thread's Entry Point
	ThreadQueryParameterList — Query a Thread's Parameter List
	ThreadQueryPriority — Query a Thread's Priority
	ThreadQuerySuspendCount — Query a Thread's Suspend Count
	ThreadQueryUserData — Query User Data Word
	ThreadResume — Decrement a Thread's Suspend Count
	ThreadSetDispatchClass — Set the Dispatching Class of Threads
	ThreadSetPriority — Set the Dispatching Priority of Threads
	ThreadSetUserData — Set User Data Word
	ThreadSuspend — Increment a Thread's Suspend Count
	ThreadYield — Yield Control to Another Thread
	TimerStartInt — Start an Interval Timer
	TimerStartMicros — Start an Interval Timer
	TimerStartTOD — Start a TOD Timer
	TimerStop — Cancel a Timer
	TimerStopAll — Cancel All Timers
	TimerStopMicros — Cancel a Timer
	TimerTest — Query a Timer
	TimerTestMicros — Query a Timer
	TraceControl — Define and Queries Trace Attributes
	TraceSignal — Signal a Trace Event
	VCPUCreate — Create a Virtual Processor (Virtual CPU)
	VCPUSelect — Request Special Virtual CPU Dispatching

	Chapter 14. System Exits
	System Exit Linkage Conventions
	General-Purpose Exits
	Session Initialization Exit
	Thread Initialization Exit
	Thread Termination Exit
	Root Process Exit
	Building a System Exits Module

	Programming Language Environment Exits
	Process Creation
	Process Deletion
	Thread Creation
	Thread Deletion
	Run a Routine in Context
	Context Switching
	Building a Language Environment Manager

	Chapter 15. Suggestions for Server Writers
	Interrupt Handling
	Communication
	Data Management
	General Guidelines

	Chapter 16. Using CMS Multitasking with OpenExtensions Services
	CMS Events For OpenExtensions Signals

	Appendix A. Return and Reason Code Values
	For Process Management
	For Synchronization
	For Event Services
	For Trace Services
	For Accounting Services
	For Interprocess Communication
	For Timer Services
	For VCPU Services
	For CMS Monitor Data

	Appendix B. CMS Trace Record Formats
	Communication Trace Record Formats (Type 1)
	Dispatch Trace Record Formats (Type 2)
	Process Management Trace Record Formats (Type 3)
	Language Adapter Trace Record Formats (Type 4)
	Synchronization Trace Record Formats (Type 5)
	Miscellaneous Trace Record Formats (Type 6)

	Appendix C. Remote IPC Support
	Functional Overview
	Interface Definition
	IPC0 QCRBs (Kernel Request to Carrier)
	IPC1 QCRBs (Carrier Response to Kernel)
	IPC2 QCRBs (Carrier Request to Kernel)
	IPC3 QCRBs (Kernel Response to Carrier)
	Usage Notes

	APPC/VM Carrier Line Flows
	Structure
	Request Flows
	Response Flows

	Appendix D. Example of a C Multitasking Program
	Appendix E. Supplementary Information on System Defined Events
	System Event Characteristics
	VMCONINPUT and VMCON1ECB
	VMSOCKET Signal Data

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Additional Publications

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

