

z/VM ÉÂÔ

CMS Pipelines
User’s Guide and Reference
Version 7 Release 1

 SC24-6252-01

 Note:

Before using this information and the product it supports, read the information in “Notices” on page 949.

This edition applies to CMS Pipelines Version 1 Release 1 Modification Level 12 sublevel 12 and to all subsequent releases and modifications of

this product until otherwise indicated in new editions.

! This edition replaces SC24-6252-00

Changes or additions to the text and illustrations are indicated as described in “Summary of Changes” on page xxviii.

 Copyright International Business Machines Corporation 1986, 2020.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

 Contents

About This Book . xviii

What Is CMS Pipelines? . xviii

Who Is CMS Pipelines for? . xix

Skills Expected . xix

How to Use this Book . xix

. When Viewing this Book with a PDF Viewer . xx

. Web Links . xx

Additional Information, Download Site . xx

Syntax Notation and Typography . xxi

Examples . xxi

Stage Separator . xxi

Supported Operating Environments . xxi

. VM Environment . xxii

z/OS Environment . xxii

! Compatibility with Older Releases . xxii

! Migrating from Older Releases . xxiv

! General Compatibility Concerns . xxiv

! z/VM 6.3 . xxv

! Runtime Library Distribution . xxv

: Significant Documentation Fixes . xxvi

! How to Send Your Comments to IBM . xxvii

! Summary of Changes . xxviii

| SC24-6252-01, CMS Pipelines 1.1.12/0012 . xxviii

Part 1. Introduction . 1

Chapter 1. Summary and Two Examples . 2

Summary . 2

Many Streams . 2

Writing Programs . 3

A Pipeline Example . 3

Another Example . 5

Chapter 2. A Walk Through a Pipeline . 7

Getting Data In and Out of the Pipeline . 7

Filtering Pipeline Data . 9

Subroutine Pipelines . 10

Writing EXECs with Pipeline Commands . 13

Writing a REXX Program to Process Data in the Pipeline 15

Issuing CMS Commands . 17

Multistream Pipelines . 18

A DB2 Query . 20

Part 2. Task Oriented Guide . 21

Chapter 3. Where Do I Start? . 22

IBM Manuals . 22

 Copyright IBM Corp. 1986, 2020 iii

 Contents

Tutorials and Papers . 22

Ensure CMS Pipelines Is Installed . 22

Find the Stage Separator on Your Terminal . 23

TSO Logon Procedure . 23

Pipe Help . 23

Editing Tools . 24

Using FMTP . 24

! Using SCM . 26

Issuing the PIPE Command from a FILELIST Panel 27

Sample Pipelines and REXX Filters . 27

Compatibility Between TSO Pipelines and CMS Pipelines 27

Chapter 4. Building a PIPE Command . 29

Using Device Drivers to Get Data in and out of a Pipeline 29

Reading and Writing CMS Files . 29

Reading and Writing MVS Files . 30

OpenExtensions Text Files . 31

Libraries . 32

Typing on the Terminal . 33

Injecting Data into the Pipeline . 34

Console Stack (External Data Queue) . 34

Using Virtual Unit Record Devices (VM/CMS) . 34

MVS SPOOL . 36

Accessing Variables . 36

Using Device Drivers to Read Data into the Pipeline Downstream 37

Another Way to Read a File . 38

Issuing Commands . 39

CP . 40

CMS . 41

TSO . 41

Subcommand Environments . 42

Obtaining CP Messages and other Console Output 43

Using Filters . 44

Translate Characters . 44

Counting . 46

Editing and Conversion . 47

Specifying Input Ranges . 50

Selecting Records . 51

Splitting, Chopping, and Stripping . 57

Joining . 60

Changing Record Formats . 61

Sorting . 62

Cascading Filters . 63

Netdata Format . 65

IEBCOPY Unloaded Data . 66

Building a Selection Key . 66

Selecting, Revisited . 67

Obtaining Information about Files . 70

CMS files . 70

TSO data sets . 72

Chapter 5. Using Multistream Pipelines . 74

Building Blocks for Multistream Pipelines . 76

Combining Data Streams . 78

iv CMS Pipelines User’s Guide and Reference

 Contents

Splitting a Data Stream . 79

Generating a CMS Macro Library . 80

Decoding Trees . 82

Remembering Past Data . 83

Destructive Testing . 84

Other Multistream Programs . 86

Update . 86

Merge . 87

Collate . 87

Lookup . 87

Some Fine Points . 88

Ensure the Pipeline Does not Stall . 88

Keep the Order of Records . 89

Allow End-of-file to Travel Backwards . 90

: Chapter 6. Processing Structured Data . 91

: Defining Structured Data . 91

: Activating a Structure Definition . 92

: Referencing Fields in a Structure . 93

: Using Typed Data . 93

: Using Arrays . 94

: Deactivating a Structure Definition . 94

: Structure Scopes . 95

: Caller Scope . 95

: Set Scope . 95

: Thread Scope . 96

: Built-in Scope . 96

Chapter 7. Writing a REXX Program to Run in a Pipeline 97

Reading and Writing the Pipeline . 97

Using Multiple Streams in REXX Filters . 101

Controlling Streams . 102

Using CALLPIPE to Run a Subroutine Pipeline 103

Sipping at Data—Processing the Input File Piecemeal 104

Short Circuits . 104

Accessing REXX Variables . 105

Obtaining the Source String . 105

Scanning the Argument String . 105

Getting a Range from an Input Record . 106

Building Production Strength REXX Filters . 107

Scanning Arguments . 107

Issuing Error Messages . 108

Using the COMMIT Pipeline Command to Ensure other Stages Are Committed to

Process Data . 109

Propagating End-of-file . 110

A Complete Robust REXX Filter . 111

Building a REXX Program Dynamically . 113

Implementing a REXX Macro Processor . 113

Miscellaneous Issues . 114

Issuing Commands from a REXX Filter on CMS 114

Issuing Commands from a REXX Filter on TSO 115

Issuing Pipeline Commands from an External Function 116

Return Codes -3 and -7 . 116

Pitfalls . 116

 Contents v

 Contents

Calling External Functions from a REXX Filter 117

The Dangers of Using Implied REXX Filters . 117

Performance . 118

Should You Compile Your REXX Filters? . 118

MVS Considerations . 119

Chapter 8. Using Pipeline Options . 120

Options for the Pipeline Specification Parser . 120

Options for the Pipeline Dispatcher . 122

Chapter 9. Debugging . 124

Error Messages . 124

Other Hints . 124

Who Did That? . 125

No Output . 126

Pipeline Stall . 126

Chapter 10. Pipeline Idioms—or—Frequently Asked Questions 127

How Can I Do xxx and Get the Result into REXX Variables? 127

Locating One of Several Targets . 128

Making Things Case Insensitive . 128

Numeric Sorting . 128

! Hexadecimal Sorting . 131

Obtaining the Length of Records . 131

Running a Filter on Part of the Record . 132

When the Sort Does Not . 133

Why Does QUERY CMSTYPE not Work? . 133

Why Does SPLIT 80 Not Work? . 133

Why Can’t I Update a Stemmed Array? . 134

Wondering If It Is a Bug? . 134

Part 3. Specialised Topics, Tutorials . 137

Chapter 11. Accessing and Maintaining Relational Databases (DB2 Tables) . . 138

sqlselect—Format a Query . 138

Creating, Loading, and Querying a Table . 139

Using spec to Convert Fields . 142

About the Unit of Work . 142

Using Multiple Streams with sql Stages . 143

Using Concurrent sql Stages . 143

CMS Considerations . 143

Obtaining Help . 143

Chapter 12. Using CMS Pipelines with Interactive System Productivity Facility 145

Issuing ISPF Commands from REXX Filters . 145

Accessing ISPF Tables . 145

Accessing ISPF Function Pool Variables . 147

Interaction (on TSO) Between ISPF and Stages that Access REXX Variables 148

Defining PIPE to ISPF . 148

Chapter 13. SPOOL Files and Virtual SPOOL Devices on VM 149

Introduction to Unit Record Equipment . 149

VM SPOOL Files Contain More than Just Cards . 151

vi CMS Pipelines User’s Guide and Reference

 Contents

Overview of Unit Record Device Drivers . 152

Creating a SPOOL File . 152

Errors on Unit Record Output Devices . 153

Controlling a Unit Record Output Device . 154

Reader SPOOL Files . 154

: Chapter 14. Using VMCF with CMS Pipelines . 156

: Supported Functions . 156

: Identify . 156

: Sendx . 156

: Send . 156

: Send/receive . 157

: Parameter lists . 157

: Example Server Application . 158

Chapter 15. Event-driven Pipelines in Clients and Servers 160

Waking Up Once a Minute . 160

Terminating an Event-driven Pipeline . 161

Reacting to Immediate Commands . 162

Processing Messages . 163

Validating a User ID . 165

Chapter 16. spec Tutorial . 166

Basic Mechanics . 166

Basic Field Handling . 167

Input Ranges . 167

Literals . 171

: Manifest Constants . 172

The Record Number . 173

Output Placement . 173

Padding . 174

Conversion . 175

Combining Input Records into One Output Record 176

Multiple Input Streams . 176

Generating Several Output Records from One Input Record 177

Multiple Output Streams . 178

Expressions . 178

Counter Expressions . 178

: String Processing . 181

: Dealing with Errors in Expressions . 182

Special Processing at End-of-file . 183

Pictures . 185

Boolean Operators . 190

Conditional Processing . 192

The Second Reading Station . 194

Control Breaks . 195

Suppressing Repetitions . 196

Generating Title Records . 196

Printing Subtotals . 197

Break Hierarchies . 200

When spec Establishes a Break . 201

: Suppressing Detail Printing . 203

Driving spec with Due Care and Attention . 204

Examples . 205

 Contents vii

 Contents

Page Formatter . 205

: And Finally . 207

. Chapter 17. Rita, the CMS Pipelines Runtime Profiler 208

. Example . 209

: Chapter 18. Using VM Data Spaces with CMS Pipelines 210

: Terminology . 210

: Querying an Address Space . 211

: Accessing the Contents of a Data Space . 212

: Creating a Data Space . 213

: Sharing Address Spaces . 214

: Using Mapped Minidisks . 215

: Destroying a Data Space . 219

: Chapter 19. CMS Pipelines Built-in Programs supporting Data Spaces 220

Part 4. Reference . 221

Chapter 20. Syntax Notation . 222

How to Read a Syntax Diagram . 222

Syntactic Variables . 223

Input Range . 228

CMS File Names . 231

Mixed case File Names . 231

File Mode * . 232

Shared File System Considerations . 232

MVS File Names . 233

OpenExtensions File Names . 236

Chapter 21. Syntax of a Pipeline Specification Used with PIPE, runpipe,

ADDPIPE, and CALLPIPE . 237

Options . 237

Pipeline . 239

Stage . 240

Connectors . 241

Labels . 242

Example . 242

Considerations when Issuing the PIPE Command . 243

REXX Limit of 500 Characters in Clause . 243

Pipelines in XEDIT Macros . 244

Chapter 22. Scanning a Pipeline Specification and Running Pipeline Programs 245

Pipeline Scanner . 245

Pipeline Dispatcher . 245

States of a Stage . 246

Commit Level . 247

Reading, Writing . 249

Delaying the Record . 250

Device Drivers that Wait for External Events . 251

Return Codes . 252

Chapter 23. Inventory of Built-in Programs . 253

viii CMS Pipelines User’s Guide and Reference

 Contents

Overview by Category . 254

<—Read a File . 263

<mdsk—Read a CMS File from a Mode . 264

<mvs—Read a Physical Sequential Data Set or a Member of a Partitioned Data Set 265

<oe—Read an OpenExtensions Text File . 266

<sfs—Read an SFS File . 267

<sfsslow—Read an SFS File . 268

>—Replace or Create a File . 270

>mdsk—Replace or Create a CMS File on a Mode 271

>mvs—Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data

Set . 273

>oe—Replace or Create an OpenExtensions Text File 275

>sfs—Replace or Create an SFS File . 276

>>—Append to or Create a File . 278

>>mdsk—Append to or Create a CMS File on a Mode 279

>>mvs—Append to a Physical Sequential Data Set 281

>>oe—Append to or Create an OpenExtensions Text File 282

>>sfs—Append to or Create an SFS File . 282

>>sfsslow—Append to or Create an SFS File . 285

abbrev—Select Records that Contain an Abbreviation of a Word in the First

Positions . 287

. acigroup—Write ACI Group for Users . 288

addrdw—Prefix Record Descriptor Word to Records 289

: adrspace—Manage Address Spaces . 290

aftfst—Write Information about Open Files . 293

aggrc—Compute Aggregate Return Code . 294

all—Select Lines Containing Strings (or Not) . 295

: alserv—Manage the Virtual Machine’s Access List 296

apldecode—Process Graphic Escape Sequences 298

aplencode—Generate Graphic Escape Sequences 299

append—Put Output from a Device Driver after Data on the Primary Input Stream 300

asatomc—Convert ASA Carriage Control to CCW Operation Codes 302

asmcont—Join Multiline Assembler Statements 303

asmfind—Select Statements from an Assembler File as XEDIT Find 304

asmnfind—Select Statements from an Assembler File as XEDIT NFind 306

asmxpnd—Expand Joined Assembler Statements 307

beat—Mark when Records Do not Arrive within Interval 308

between—Select Records Between Labels . 309

block—Block to an External Format . 310

browse—Display Data on a 3270 Terminal . 315

buffer—Buffer Records . 317

buildscr—Build a 3270 Data Stream . 319

casei—Run Selection Stage in Case Insensitive Manner 322

change—Substitute Contents of Records . 323

chop—Truncate the Record . 326

. cipher—Encrypt and Decrypt Using a Block Cipher 328

. ckddeblock—Deblock Track Data Record . 330

cms—Issue CMS Commands, Write Response to Pipeline 331

collate—Collate Streams . 332

combine—Combine Data from a Run of Records 335

command—Issue CMS Commands, Write Response to Pipeline 337

command—Issue TSO Commands . 339

configure—Set and Query CMS Pipelines Configuration Variables 340

console—Read or Write the Terminal in Line Mode 341

 Contents ix

 Contents

copy—Copy Records, Allowing for a One Record Delay 343

count—Count Lines, Blank-delimited Words, and Bytes 344

cp—Issue CP Commands, Write Response to Pipeline 345

: crc—Compute Cyclic Redundancy Code . 347

c14to38—Combine Overstruck Characters to Single Code Point 350

dam—Pass Records Once Primed . 351

dateconvert—Convert Date Formats . 352

deal—Pass Input Records to Output Streams Round Robin 360

deblock—Deblock External Data Formats . 365

delay—Suspend Stream . 369

. devinfo—Write Device Information . 371

dfsort—Interface to DFSORT/CMS . 372

. diage4—Submit Diagnose E4 Requests . 373

. digest—Compute a Message Digest . 374

diskback—Read a File Backwards . 376

diskfast—Read, Create, or Append to a File . 376

: diskid—Map CMS Reserved Minidisk . 378

diskrandom—Random Access a File . 378

diskslow—Read, Create, or Append to a File . 379

diskupdate—Replace Records in a File . 380

drop—Discard Records from the Beginning or the End of the File 381

duplicate—Copy Records . 382

elastic—Buffer Sufficient Records to Prevent Stall 384

emsg—Issue Messages . 385

eofback—Run an Output Device Driver and Propagate End-of-file Backwards . . 386

escape—Insert Escape Characters in the Record 387

fanin—Concatenate Streams . 387

faninany—Copy Records from Whichever Input Stream Has One 388

fanintwo—Pass Records to Primary Output Stream 389

fanout—Copy Records from the Primary Input Stream to All Output Streams . . 391

fanoutwo—Copy Records from the Primary Input Stream to Both Output Streams 392

: fbaread—Read Blocks from a Fixed Block Architecture Drive 393

: fbawrite—Write Blocks to a Fixed Block Architecture Drive 394

fblock—Block Data, Spanning Input Records . 395

filedescriptor—Read or Write an OpenExtensions File that Is Already Open . . . 396

filetoken—Read or Write an SFS File That is Already Open 397

. fillup—Pass Records To Output Streams . 399

. filterpack—Manage Filter Packages . 400

find—Select Lines by XEDIT Find Logic . 402

fitting—Source or Sink for Copipe Data . 404

fmtfst—Format a File Status Table (FST) Entry 404

frlabel—Select Records from the First One with Leading String 406

frtarget—Select Records from the First One Selected by Argument Stage 407

| ftp—Connect to an FTP Server and Exchange Data 408

fullscr—Full screen 3270 Write and Read to the Console or Dialled/Attached

Screen . 413

fullscrq—Write 3270 Device Characteristics . 418

fullscrs—Format 3270 Device Characteristics . 419

gate—Pass Records Until Stopped . 422

gather—Copy Records From Input Streams . 423

getfiles—Read Files . 425

. greg2sec—Convert a Gregorian Timestamp to Second Since Epoch 426

help—Display Help for CMS Pipelines or DB2 427

hfs—Read or Append File in the Hierarchical File System 430

x CMS Pipelines User’s Guide and Reference

 Contents

hfsdirectory—Read Contents of a Directory in a Hierarchical File System 431

hfsquery—Write Information Obtained from OpenExtensions into the Pipeline . . 432

hfsreplace—Replace the Contents of a File in the Hierarchical File System . . . 433

hfsstate—Obtain Information about Files in the Hierarchical File System 434

hfsxecute—Issue OpenExtensions Requests . 435

hlasm—Interface to High Level Assembler . 437

hlasmerr—Extract Assembler Error Messages from the SYSADATA File 439

hole—Destroy Data . 440

hostbyaddr—Resolve IP Address into Domain and Host Name 441

hostbyname—Resolve a Domain Name into an IP Address 442

hostid—Write TCP/IP Default IP Address . 443

hostname—Write TCP/IP Host Name . 444

. httpsplit—Split HTTP Data Stream . 445

iebcopy—Process IEBCOPY Data Format . 446

if—Process Records Conditionally . 447

immcmd—Write the Argument String from Immediate Commands 448

insert—Insert String in Records . 450

inside—Select Records between Labels . 450

instore—Load the File into a storage Buffer . 451

ip2socka—Build sockaddr_in Structure . 454

ispf—Access ISPF Tables . 455

jeremy—Write Pipeline Status to the Pipeline . 457

join—Join Records . 458

joincont—Join Continuation Lines . 460

juxtapose—Preface Record with Marker . 462

ldrtbls—Resolve a Name from the CMS Loader Tables 464

listcat—Obtain Data Set Names . 465

listdsi—Obtain Information about Data Sets . 466

listispf—Read Directory of a Partitioned Data Set into the Pipeline 468

listpds—Read Directory of a Partitioned Data Set into the Pipeline 469

literal—Write the Argument String . 471

locate—Select Lines that Contain a String . 472

lookup—Find Records in a Reference Using a Key Field 474

maclib—Generate a Macro Library from Stacked Members in a COPY File . . . 483

: mapmdisk—Map Minidisks Into Data spaces . 484

mctoasa—Convert CCW Operation Codes to ASA Carriage Control 486

mdiskblk—Read or Write Minidisk Blocks . 487

mdskfast—Read, Create, or Append to a CMS File on a Mode 488

mdskback—Read a CMS File from a Mode Backwards 490

mdskrandom—Random Access a CMS File on a Mode 491

mdskslow—Read, Append to, or Create a CMS File on a Mode 493

mdskupdate—Replace Records in a File on a Mode 495

members—Extract Members from a Partitioned Data Set 496

merge—Merge Streams . 498

. mqsc—Issue Commands to a WebSphere MQ Queue Manager 499

nfind—Select Lines by XEDIT NFind Logic . 500

nlocate—Select Lines that Do Not Contain a String 501

noeofback—Pass Records and Ignore End-of-file on Output 503

not—Run Stage with Output Streams Inverted . 503

notinside—Select Records Not between Labels 505

nucext—Call a Nucleus Extension . 506

optcdj—Generate Table Reference Character (TRC) 507

outside—Select Records Not between Labels . 508

outstore—Unload a File from a storage Buffer 509

 Contents xi

 Contents

overlay—Overlay Data from Input Streams . 510

overstr—Process Overstruck Lines . 511

pack—Pack Records as Done by XEDIT and COPYFILE 512

pad—Expand Short Records . 514

parcel—Parcel Input Stream Into Records . 515

pause—Signal a Pause Event . 516

pdsdirect—Write Directory Information from a CMS Simulated Partitioned Data

Set . 517

pick—Select Lines that Satisfy a Relation . 518

pipcmd—Issue Pipeline Commands . 523

pipestop—Terminate Stages Waiting for an External Event 525

: polish—Reverse Polish Expression Parser . 525

predselect—Control Destructive Test of Records 531

preface—Put Output from a Device Driver before Data on the Primary Input

Stream . 532

printmc—Print Lines . 534

punch—Punch Cards . 536

. qpdecode—Decode to Quoted-printable Format 537

. qpencode—Encode to Quoted-printable Format 538

qsam—Read or Write Physical Sequential Data Set through a DCB 539

query—Query CMS Pipelines . 540

random—Generate Pseudorandom Numbers . 541

reader—Read from a Virtual Card Reader . 542

readpds—Read Members from a Partitioned Data Set 544

retab—Replace Runs of Blanks with Tabulate Characters 545

reverse—Reverse Contents of Records . 546

rexx—Run a REXX Program to Process Data . 546

rexxvars—Retrieve Variables from a REXX or CLIST Variable Pool 549

runpipe—Issue Pipelines, Intercepting Messages 553

scm—Align REXX Comments . 555

. sec2greg—Convert Seconds Since Epoch to Gregorian Timestamp 556

sfsback—Read an SFS File Backwards . 557

: sfsdirectory—List Files in an SFS Directory . 559

sfsrandom—Random Access an SFS File . 560

sfsupdate—Replace Records in an SFS File . 562

snake—Build Multicolumn Page Layout . 565

socka2ip—Format sockaddr_in Structure . 566

sort—Order Records . 567

. space—Space Words Like REXX . 569

spec—Rearrange Contents of Records . 571

spill—Spill Long Lines at Word Boundaries . 577

split—Split Records Relative to a Target . 580

sql—Interface to SQL . 582

sqlcodes—Write the last 11 SQL Codes Received 587

sqlselect—Query a Database and Format Result 587

stack—Read or Write the Program Stack . 588

starmon—Write Records from the *MONITOR System Service 589

starmsg—Write Lines from a CP System Service 591

starsys—Write Lines from a Two-way CP System Service 594

state—Provide Information about CMS Files . 597

state—Verify that Data Set Exists . 599

statew—Provide Information about Writable CMS Files 600

stem—Retrieve or Set Variables in a REXX or CLIST Variable Pool 603

! stfle—Store Facilities List . 606

xii CMS Pipelines User’s Guide and Reference

 Contents

storage—Read or Write Virtual Machine Storage 607

strasmfind—Select Statements from an Assembler File as XEDIT Find 609

strasmnfind—Select Statements from an Assembler File as XEDIT NFind 610

strfind—Select Lines by XEDIT Find Logic . 611

strfrlabel—Select Records from the First One with Leading String 612

strip—Remove Leading or Trailing Characters 613

strliteral—Write the Argument String . 614

strnfind—Select Lines by XEDIT NFind Logic 616

strtolabel—Select Records to the First One with Leading String 617

: structure—Manage Structure Definitions . 618

strwhilelabel—Select Run of Records with Leading String 625

. stsi—Store System Information . 626

subcom—Issue Commands to a Subcommand Environment 626

. substring—Write substring of record . 628

synchronise—Synchronise Records on Multiple Streams 628

sysdsn—Test whether Data Set Exists . 630

sysout—Write System Output Data Set . 631

sysvar—Write System Variables to the Pipeline 632

take—Select Records from the Beginning or End of the File 633

tape—Read or Write Tapes . 634

: tcpcksum—Compute One’s complement Checksum of a Message 637

tcpclient—Connect to a TCP/IP Server and Exchange Data 638

tcpdata—Read from and Write to a TCP/IP Socket 643

tcplisten—Listen on a TCP Port . 648

. threeway—Split record three ways . 651

timestamp—Prefix the Date and Time to Records 652

tokenise—Tokenise Records . 654

tolabel—Select Records to the First One with Leading String 655

totarget—Select Records to the First One Selected by Argument Stage 656

. trackblock—Build Track Record . 657

. trackdeblock—Deblock Track . 658

. trackread—Read Full Tracks from ECKD Device 659

. tracksquish—Squish Tracks . 660

. trackverify—Verify Track Format . 660

. trackwrite—Write Full Tracks to ECKD Device 661

. trackxpand—Unsquish Tracks . 662

. trfread—Read a Trace File . 663

tso—Issue TSO Commands, Write Response to Pipeline 664

udp—Read and Write an UDP Port . 665

unique—Discard or Retain Duplicate Lines . 668

unpack—Unpack a Packed File . 670

untab—Replace Tabulate Characters with Blanks 671

update—Apply an Update File . 672

urldeblock—Process Universal Resource Locator 673

uro—Write Unit Record Output . 674

: utf—Convert between UTF-8, UTF-16, and UTF-32 676

var—Retrieve or Set a Variable in a REXX or CLIST Variable Pool 678

vardrop—Drop Variables in a REXX Variable Pool 681

varfetch—Fetch Variables in a REXX or CLIST Variable Pool 683

varload—Set Variables in a REXX or CLIST Variable Pool 685

varset—Set Variables in a REXX or CLIST Variable Pool 688

vchar—Recode Characters to Different Length 690

verify—Verify that Record Contains only Specified Characters 692

vmc—Write VMCF Reply . 693

 Contents xiii

 Contents

: vmcdata—Receive, Reply, or Reject a Send or Send/receive Request 694

: vmclient—Send VMCF Requests . 695

: vmclisten—Listen for VMCF Requests . 696

: waitdev—Wait for an Interrupt from a Device . 697

: warp—Pipeline Wormhole . 698

: warplist—List Wormholes . 699

whilelabel—Select Run of Records with Leading String 700

. wildcard—Select Records Matching a Pattern . 701

writepds—Store Members into a Partitioned Data Set 703

xab—Read or Write External Attribute Buffers 705

xedit—Read or Write a File in the XEDIT Ring 705

xlate—Transliterate Contents of Records . 708

xmsg—Issue XEDIT Messages . 712

xpndhi—Expand Highlighting to Space between Words 713

xrange—Write a Range of Characters . 713

zone—Run Selection Stage on Subset of Input Record 714

3277bfra—Convert a 3270 Buffer Address Between Representations 715

3277enc—Write the 3277 6-bit Encoding Vector 717

. 64decode—Decode MIME Base-64 Format . 717

. 64encode—Encode to MIME Base-64 Format . 718

Chapter 24. spec Reference . 719

Overview . 719

Concepts . 720

The Cycle . 720

Streams . 720

Field Identifiers, Control Breaks, Break Levels 720

: Structured Data . 721

Counters . 722

Number Representation . 722

Expressions . 723

Syntax Recursion . 723

Syntax Description . 723

Syntax Overview . 723

Main Options . 723

Item Group . 724

If Group . 725

: While Group . 725

Plain Item . 726

Stream Control . 727

Break Control . 727

Data Field . 728

Input Source . 729

Conversions . 731

Output Placement . 734

Expression . 736

Assignment Expression . 736

Conditional Expression . 737

Binary Expression . 738

Term . 739

Floating point Numbers . 741

Functions . 741

Pictures . 747

Sign Characters . 747

xiv CMS Pipelines User’s Guide and Reference

 Contents

Digit Selection . 748

Punctuation . 748

Implied Decimal Point . 748

Exponent . 748

General . 748

Continental European Conventions . 749

Chapter 25. Pipeline Commands . 750

ADDPIPE—Add a Pipeline Specification to the Running Set 751

ADDSTREAM—Create a Stream . 752

BEGOUTPUT—Enter Implied Output Mode . 752

CALLPIPE—Run a Subroutine Pipeline . 753

COMMIT—Commit Stage to a New Level . 754

EOFREPORT—Enable Reporting of Stream Events 755

GETRANGE—Extract Part of Record or String 756

ISSUEMSG—Issue a Message from the Repository 757

MAXSTREAM—Return the Highest Stream Number 758

MESSAGE—Issue a Message . 759

NOCOMMIT—Disable Automatic Commit on I/O 759

OUTPUT—Write a Line . 760

PEEKTO—Preview the next Input Line . 761

READTO—Read or Discard an Input Line . 762

RESOLVE—Return Entry Point of Built-in Program 763

REXXCMD—Call a REXX Pipeline Program from a Filter 763

SCANRANGE—Parse an input range . 764

SCANSTRING—Parse a delimited string . 766

SELECT—Select a Stream . 766

SETRC—Set Return Code in Stage Writing . 767

SEVER—Break a Connection . 768

SHORT—Connect Input and Output Stream . 769

STAGENUM—Return Stage’s Position in Pipeline 769

STREAMNUM—Return Stream Number . 770

STREAMSTATE—Return Stream Status . 770

SUSPEND—Allow other Stages to Run . 772

Chapter 26. Message Reference . 773

Chapter 27. PIPMOD Command (CMS Pipelines only) 863

The PIPE Bootstrap Module . 863

The PIPMOD Nucleus Extension . 863

Setting Permanent Pipeline Options . 864

The Message Level . 864

PIPMOD Immediate Commands . 865

: ACTIVE—Show the Active Stage . 866

STOP—Terminating Stages that Wait Forever . 866

: WHERE—Show Addresses of Pipeline Control Blocks 866

Chapter 28. Configuring CMS Pipelines . 867

Default Styles . 867

CMS Considerations . 867

Configuration Variables . 868

Diskreplace . 868

Disktempfiletype . 868

Group . 869

 Contents xv

 Contents

Repository . 869

SQLpgmname . 869

SQLpgmowner . 869

Stallaction . 870

Stallfiletype . 870

Style . 870

Installation-wide Customisation (CMS) . 871

: Chapter 29. Diagnosis . 872

: Determining and Terminating the Currently Running Stage 872

: VM . 872

: Traps . 873

Part 5. Appendices . 875

Appendix A. Summary of Built-in Programs . 876

Appendix B. Messages, Sorted by Text . 897

Appendix C. Implementing CMS Commands as Stages in a Pipeline 918

Appendix D. Running Multiple Versions of CMS Pipelines Concurrently 921

Basic Initialisation . 921

Initialisation of a Shared Segment . 921

Coexistence . 922

! Filter Packages . 922

. Appendix E. Generating and Using Filter Packages with CMS Pipelines 924

. Note for MVS Users . 924

Introduction . 924

. Specifying Files . 925

Contents of a Filter Package . 926

Glue Code . 926

Entry Point Table . 926

FPLEPTBL—Generate Entry Point Table Object Module 927

Message Text Table . 927

. FPLMSGTB—Generate Message Text Table Object Module 928

Keyword Table . 929

FPLKWDTB—Generate a Keyword Table Object Module 929

! PIPGFTXT—Generate Object Module from Program Directory 930

! PIPGFMOD—Generate Filter package Load Module 930

Programs . 930

. Generating a Sample Type-1 Filter Package . 931

Appendix F. Pipeline Compatibility and Portability between CMS and TSO . . 933

. TSO Commands Supplied with TSO Pipelines . 933

. FPLRESET . 933

. FPLDEBUG . 933

. FPLUNIX . 934

. Using the PIPE Command from Unix System Services 934

Pipeline Specifications—The PIPE Command . 934

Appendix G. Format of Output Records from runpipe EVENTS 939

xvi CMS Pipelines User’s Guide and Reference

 Contents

00—Message . 939

01—Begin Pipeline Set . 940

02—End Pipeline Set . 940

03—Enter Scanner . 940

04—Pipeline Vector Allocated . 940

05—Leave Scanner . 942

06—Scanner Item . 942

07—Calling Syntax Exit . 943

08—Start Stage . 944

09—End Stage . 944

0A—Resuming Stage . 944

0B—Calling Dispatcher Service . 945

0C—Pipeline is Stalled . 946

0D—State of Stage . 946

0E—Pipeline Committing . 946

0F—Console Input . 947

10—Console Output . 947

11—Pause . 947

12—Subroutine Pipeline Complete . 948

13—Caller is Waiting for Subroutine Pipeline to Complete 948

Notices . 949

Programming Interface Information . 950

Trademarks . 950

Terms and Conditions for Product Documentation 950

IBM Online Privacy Statement . 951

Glossary . 952

Bibliography . 957

| Where to Get z/VM Information . 957

| Additional References . 957

Index . 959

00—Message . 939

01—Begin Pipeline Set . 940

02—End Pipeline Set . 940

03—Enter Scanner . 940

04—Pipeline Vector Allocated . 940

05—Leave Scanner . 942

06—Scanner Item . 942

07—Calling Syntax Exit . 943

08—Start Stage . 944

09—End Stage . 944

0A—Resuming Stage . 944

0B—Calling Dispatcher Service . 945

0C—Pipeline is Stalled . 946

0D—State of Stage . 946

0E—Pipeline Committing . 946

0F—Console Input . 947

10—Console Output . 947

11—Pause . 947

12—Subroutine Pipeline Complete . 948

13—Caller is Waiting for Subroutine Pipeline to Complete 948

Notices . 949

Programming Interface Information . 950

Trademarks . 950

Terms and Conditions for Product Documentation 950

IBM Online Privacy Statement . 951

Glossary . 952

Bibliography . 957

| Where to Get z/VM Information . 957

| Additional References . 957

Index . 959

 Contents xvii

 About This Book

About This Book

This book has a dual purpose: to introduce new users to CMS Pipelines, and to provide

reference information for all CMS Pipelines users.

! Though this book is specific to z/VM, it also describes built-in programs that are specific

! to z/OS and contains other references to z/OS and TSO Pipelines. These references do not

! imply that an implementation of CMS Pipelines for z/OS is available.

What Is CMS Pipelines?

CMS Pipelines implements the pipeline concept under the VM/CMS and the z/OS operating

systems. Programs running in a pipeline operate on a sequential stream of records that are

read and written through a device independent interface. Any program can be combined

with any other one because all pipeline programs read and write records through this

device independent interface.

CMS Pipelines provides a CMS and TSO command, PIPE. The argument string to the PIPE

command is called a pipeline specification. PIPE selects programs and “bolt” them together

in a pipeline to pump data through them. The pipeline module has a built-in library of

programs that can be called in a pipeline specification; these programs interface to z/OS

and CP/CMS, and perform many utility functions. For example, read a file, select particular

records, reformat each record, and display the result on the terminal; CMS Pipelines takes

the chores out of this task because it has utility functions to read files and write to your

terminal. It might even have programs to perform the selection and editing you want, but

if it does not, all you do is write a program to complement the built-in programs rather

than start from scratch.

CMS Pipelines users issue pipeline commands from the terminal or in EXEC procedures;

they can write programs in REXX to augment the programs built into CMS Pipelines. The

PIPE module can also run as a job step in z/OS batch.

Programming a complex algorithm is a matter of selecting building blocks; CMS Pipelines

fits them together.

The concept of a simple (“straight”) pipeline is extended in these ways:

¹ A program can define a subroutine pipeline to perform a function on all or part of its

input data.

¹ A network of intersecting pipelines lets a program be in several pipelines concurrently

where it has access to multiple data streams.

¹ A program can dynamically redefine the pipeline topology to replace itself with

another pipeline; or to insert a pipeline segment before or after itself, or both.

: CMS Pipelines offers several features to improve the robustness of pipelines:

: ¹ A syntax error in the overall pipeline structure or in any one program causes the entire

: pipeline to be suppressed.

: ¹ The inability to allocate required resources causes all programs to release what they

: have allocated and terminate before any irreversible actions are taken.

: ¹ Errors while data flow in the pipeline can be detected by all participating programs.

: For example, a disk file might not be replaced in such circumstances.

xviii Copyright IBM Corp. 1986, 2020

 About This Book

Who Is CMS Pipelines for?

CMS Pipelines can be useful for all CMS and TSO users; how you may wish to use it may

depend on your role:

¹ End users can process data in a way that is not procedural, often called functional

programming. Data processing professionals often underestimate the mental abilities

of their users, thinking that anything different from “normal” programming is difficult.

Many end users find “simple programs” exasperating and prefer to manipulate data at

a more general level; CMS Pipelines provides this capability, with interfaces to ISPF

tables and SQL or DB2.

¹ Programmers often find that CMS Pipelines helps them write better programs faster

and cheaper. Access to files and devices is greatly simplified; programs are reused

without change. Of course, CMS Pipelines does not make a sloppy programmer better

overnight, but pipethink makes it easy to break a complex task into smaller ones and

thus reduce complexity.

¹ Toolsmiths write tools: programs to help programmers and users be more productive

when pursuing their business objectives. Toolsmiths have a field day with CMS

Pipelines; it takes the toil out of writing CMS and TSO tools. The toolsmith concen-

trates on the real problem instead of, for instance, how to access files most efficiently.

There is an avalanche effect when the toolsmith makes more and better tools for the

programmer who, in turn, writes more functions for end users!

 Skills Expected

You should be familiar with the timesharing system on which you are going to use CMS

Pipelines: CMS is described in the &dmsb3; TSO is described in TSO Extensions Version 2

User’s Guide, SC28-1880.

! Some experience with REXX (described in the z/VM: REXX/VM User’s Guide, SC24-6315

! the z/VM: REXX/VM Reference, SC24-6314 and the TSO Extensions Version 2 REXX

Reference, SC28-1883) is recommended, at least to the point of writing simple command

procedures.

Some CMS or TSO skill, but no (systems) programming expertise is required to understand

the concepts of CMS Pipelines and use most of the built-in programs. Some built-in

programs, however, expose operating system interfaces that require an understanding of

device architectures or the format of data sent to a device.

TSO users are sometimes expected to perform a mental transformation when an example is

explained in CMS terms. This transformation is often a matter of different file naming

conventions, or to substitute ISPF/PDF for XEDIT as the editor being used; CMS Pipelines is

designed to provide a common set of functions for the two timesharing systems.

How to Use this Book

Chapter 1, “Summary and Two Examples” on page 2 gives a quick explanation for the

experienced timesharing user.

New users of CMS and CMS Pipelines should read Chapter 2, “A Walk Through a

Pipeline” on page 7 and progress to the task-oriented guide.

 About This Book xix

 About This Book

Experienced CMS users may find the introduction too slow; go directly to Part 2, “Task

Oriented Guide” on page 21 instead.

Having mastered the topics explained in Part 2, you might like to peruse selected chapters

of Part 3, “Specialised Topics, Tutorials” on page 137; and you might want to familiarise

yourself with the tutorial on specs.

Though Part 4 is intended for reference use, you should read the first chapter if you find

that the syntax notation is not intuitive. The information in Part 4 is available in the help

library, which you can access from your terminal.

. When Viewing this Book with a PDF Viewer

. This book contains many hyperlinks; in fact, so many that highlighting them in coloured

. frames would become distracting. Thus, links to other documents and links to the world

. wide web are the only links that are highlighted.

. Intra-book links include references to CMS Pipelines terms and concepts. For example, all

. mention of a built-in program also includes a link. Try this: console.

. Thus, if you are wondering what something means, try hovering the mouse pointer over it

. and see whether it offers a link. Be sure to use the hand tool; other tools may not offer

. the links.

. Web Links

. The default for Acrobat is to include web links into the document you are viewing

. (editing, actually), but this is unlikely to be what you want to happen when viewing this

. document.

. Select Edit, Preferences, Web capture and ensure that the “Open Weblinks” drop-down is

. set to “In Web Browser”.

Additional Information, Download Site

Check out the VM home page:

http://www.vm.ibm.com

Also check out the CMS Pipelines home page:

. http://vm.marist.edu/%7Epipeline

%7E represents the tilde character (˜); you can use either notation.

! Obtain a copy of CMS Pipelines Tutorial, GG66-3158 from the CMS Pipelines homepage.

! Even though the book is dated, it provides a good introduction for the beginning CMS

! Pipelines user, with exercises and examples.

! From this site you can also download the CMS Pipelines “Runtime Library”, also known

! as the “Field Test Version” and the “Princeton Distribution”. Note that this version offers

! no advantages over the version of CMS Pipelines that is shipped with z/VM 6.4, so instal-

! lations using z/VM 6.4 should not install the test version.

. The CMS Pipelines discussion list is also hosted by Marist College. To join the list, send

. mail with a subject line that contains “SUBSCRIBE CMS-PIPELINES” to:

xx CMS Pipelines User’s Guide and Reference

http://www.vm.ibm.com
http://vm.marist.edu/%7epipeline

 About This Book

. listserv@vm.marist.edu

Syntax Notation and Typography

The syntax diagrams in the inventory of built-in programs are explained in Chapter 20,

“Syntax Notation” on page 222.

A reference to a built-in program is written in italics type, for instance spec. It is in lower

case, even at the beginning of a sentence. A keyword option is set in small capitals: for

instance, ANYOF.

A complete command is written in double quotes in Gothic type: for instance, “pipmod
msglevel 15”.

 Examples

This book contains many example terminal sessions and command procedures. Examples

are set in monospaced Gothic type.

The first position of a line of an example terminal session has a character to show whether

the line is typed by the user or is a system response; this character is not part of the line

you see or write on your terminal. Commands and input lines written on the terminal, by

the user, have a blank (space) in the first column; responses have an arrowhead (►). Most

CMS examples were done on CMS in line mode; they show the PIPE command in front of

the pipeline specification.

: Though not identified, 417 of the CMS examples were run while formatting this book.

: Figure 266 on page 166 shows the version of CMS Pipelines used. What you see is what

: it does, even if an error should slip by the author.

Other examples are written as fragments of REXX programs; you can tell by the comment

(/* comment */) on the first line. This indicates that the program is written in REXX.

 Stage Separator

The solid vertical bar (|) is an important character when writing CMS Pipelines commands;

it indicates the end of the specification of one program and the beginning of the next. This

character is also used as the logical OR operator in REXX and PL/I. Not all terminals

display the code point (X'4F') as a solid vertical bar; refer to “Find the Stage Separator

on Your Terminal” on page 23 for more information.

Supported Operating Environments

. CMS Pipelines Version 1 Release 1 Modification Level 12 supports z/VM (VM/CMS) and

. z/OS environments.

 About This Book xxi

 About This Book

. VM Environment
! CMS Pipelines is supported on z/VM Version 7 Release 1.

sql was developed with SQL/DS Version 1 Release 3.5, IBM Program Number 5748-XXJ; it

has been tested with Version 2 Releases 1 and 2, IBM Program Number 5688-004,

Version 3 Release 1, IBM Program Number 5688-103, and IBM Database 2 Server for VSE

& VM Version 5. ispf was developed for Version 2 Release 2 of Interactive System

Productivity Facility, IBM Program Number 5664-282.

CMS Multitasking Considerations
CMS Pipelines supports CMS multitasking. Any number of threads may issue PIPE

commands concurrently. CMS Pipelines itself creates neither processes nor threads, nor

does it switch between threads.

When CMS Pipelines waits for an external event, it uses thread suspend/resume when it

senses that some other application has entered multitasking mode, so as not to lock out

such an application.

: 64-bit CMS (z/CMS) Considerations
: CMS Pipelines has been tested with the 64-bit CMS nucleus. You cannot use ALETs in a

: 64-bit virtual machine because it does not support XC mode.

 z/OS Environment
. TSO Pipelines 1.1.12 supports z/OS Enterprise Systems Architecture and z/OS with JES2 or

JES3.

Level 1.1.9 of TSO Pipelines shipped under the name BatchPipeWorks* as part of

BatchPipes/MVS and subsequently SmartBatch/MVS, IBM Program Number 5655-A17,

but those products are no longer marketed by IBM.

! Compatibility with Older Releases

! The release of CMS Pipelines included in z/VM 6.4 is available to all CMS users and

! applications. It does not require any additional software to be downloaded or a specific

! version to be selected.

CMS Pipelines has been shipped as part of VM/ESA, starting with the latter’s Version 1

! Release 1 Modification level 1. Even so, CMS Pipelines maintained its own level, which

! is independent of the CMS level. Intermediate releases of CMS Pipelines have been made

! available through the Runtime Library Distribution or as Field Test.

In Figure 1, the first column shows the CMS Pipelines level and the sublevel when it was

considered complete. The second column shows the date when this happened. The third

! column shows the VM/ESA or z/VM release that picked up this level. The last column

shows the pipeline level reported by the DMSPIPE module.

xxii CMS Pipelines User’s Guide and Reference

 About This Book

Prior to CMS Pipelines level 1.1.10 and VM/ESA Version 2 Release 3.0, the versions

shown in Figure 1 on page xxii are considered equivalent, which means that pipelines

written according to the documentation of one of the environments will also work with the

other one. There may be undocumented aspects that do not work in equivalent environ-

ments; traditionally, CMS Pipelines would quietly accept undocumented behaviour that is

compatible with some past specification.

Built-in programs that are described in this book are also available in previous releases of

! VM/ESA and z/VM unless revision codes indicate new function added since 1.1.10. The

! built-in programs marked as z/OS are not available in CMS, the ones marked CMS are not

! available in z/OS.

As of CMS Pipelines level 1.1.10 and VM/ESA Version 2 Release 3.0 the two versions of

CMS Pipelines are consolidated. Backwards compatibility issues are handled by

configuration variables (see Chapter 28, “Configuring CMS Pipelines” on page 867).

. Notes:

. 1. CMS Pipelines 1.1.10 was carried forward unchanged into z/VM versions 3, 4, 5, and

: 6. However, each release of z/VM has increased it sublevel; thus, for example, 5.4

: reports level 110A002A.

! 2. With Version 7 Release 1, CMS has picked up all new function in CMS Pipelines and

! reports the corresponding level. This level of CMS Pipelines is very close to the

! 1.1.12/000C level of the Runtime Library.

Figure 1. Equivalent levels of CMS Pipelines

CMS

Pipelines

Level and

Sublevel

Date Version and Release Level

1.1.6/0057 5 Aug 1991 VM/ESA 1.1.1 and VM/ESA

1.2.0

21010000

1.1.7/0053 22 Apr 1993 VM/ESA 1.2.1 22010000

VM/ESA 1.1.5 (370 Feature) 15010000

1.1.8/001C 12 Jan 1994 VM/ESA 1.2.2 22020000

1.1.9/0033 14 Jul 1995 VM/ESA 2.1.0 3109001A1

VM/ESA 2.2.0 31090038

1.1.10/001F 19 Nov 1997 VM/ESA 2.3.0 110A0020

. 1.1.11/0013. 15 Jan 2007

: 1.1.12/0006: 14 Jul 2010

! 1.1.12/000C! 30 Jul 2015

! 1.1.12/000D! z/VM 6.4! 110C000D

1 Though in reality, this is close to the function in sublevel 33.

 About This Book xxiii

 About This Book

! 3. CMS Pipelines 1.1.11 and later functionality is not shipped in z/VM releases before

! z/VM 6.4. Function not present in earlier releases of z/VM is indicated by an excla-

: mation point or an inverted exclamation point as the revision code in this book.

4. You cannot report errors with the Runtime Library (Field Test Version) through

normal IBM program support procedures.

! Migrating from Older Releases

! In general releases of CMS Pipelines are “upwardly compatible”. Applications that use

! CMS Pipelines as specified will continue to run without any change to the application. Any

! incompatible changes are listed in the release specific sections below.

! General Compatibility Concerns
! It is possible that an application was developed such that it relies on behaviour of CMS

! Pipelines that was unspecified or on a programming error in CMS Pipelines. Such a defect

! in the application might not be noticed until CMS Pipelines is upgraded and the program-

! ming error is corrected. Even when CMS Pipelines releases are considered compatible,

! normal procedures should be followed to verify that the application works as expected.

! New built-in programs
! When new built-in programs are introduced in CMS Pipelines, applications may be

! impacted when they rely on an implicit reference to a REXX program with the same name

! (the built-in program will be used instead of the REXX program). Applications should

! avoid such conflicts using the rexx built-in program to make the reference to the REXX

! program explicit.

! In many cases, naming conflicts show immediately when the application runs using the

! new level of CMS Pipelines. To be alerted earlier or to detect more subtle problems, devel-

! opers are encouraged to at least review the revision codes in the Table of Contents to spot

! any potential naming conflicts.

! A pipeline can list the existing REXX programs (in this example on the S disk) and use the

! RESOLVE option of filterpack to check for a potential conflict with names of built-in

! programs. The output is used to guide further inspection of the application.

! pipe cms LIST * REXX S | substr w1 | filterpack resolve | ...
! ... pick w2 == ,builtin, | console
! ►ENBASE64 builtin
! ►Ready;

! Note that in this example, CMS Pipelines deliberately introduced the new built-in with the

! same name. The built-in performs the same function without the overhead of a REXX

! program. By using the same name, applications automatically take advantage of the faster

! implementation of the built-in program.

! Though less common, a similar conflict may exist with filter packages that provide

! programs with the same name as built-in programs. Developers can use the MODLIST

! option of filterpack to list the contents of a filter package. The list of names can be

! checked against the names of built-in programs in the same way as shown for REXX

! programs.

xxiv CMS Pipelines User’s Guide and Reference

 About This Book

! Dispatching Order and End-of-file Propagation
! When a multistream pipeline is constructed in such a way that the relative order in which

! the stages can run is unpredictable, the actual order in which stages run is unspecified. It

! may change with the next release (as well as with changes in the application or the data).

! The application should be corrected to avoid a dependency on unspecified behaviour.

! Many CMS Pipelines programs propagate end-of-file where applicable to make pipeline

! segments terminate when there is no value in processing more data, as specified with the

! description of the programs. When the behaviour is not specified, it may change from one

! release to another.

! Messages and Return Codes
! The response of CMS Pipelines to usage errors is subject to change. The text of the

! messages may be changed to provide more accurate information about the error. Internal

! changes in CMS Pipelines may cause the message to be issued by another module, which

! changes part of the message identifier. In some cases enhancements to CMS Pipelines may

! require a different message to be issued and the PIPE command will end with a different

! return code. Applications should not have a dependency on particular return codes from

! built-in programs unless specified as function of the program.

! z/VM 6.3
! In addition to the aspects in “General Compatibility Concerns” on page xxiv the following

! incompatible changes apply when migrating to z/VM 6.4.

! ¹ The granularity of timestamp has been increased such that the default 8-byte time

! stamp will show also the hundredths of a second. In z/VM 6.3 the last two digits

! were “00”.

! ¹ The scope of the STRIP keyword in spec has been corrected not to apply to other refer-

! ences to the same input field.

! The online documentation shown with HELP PIPE and ahelp has been upgraded to match

! this publication. The built-ins fullscr, spec and starmon are now referred to in the

! documentation by their popular abbreviation. The longer name remains an alias.

! Runtime Library Distribution
! CMS Pipelines included in z/VM 6.4 is functionally equivalent to the Runtime Library

! Distribution level 1.1.12/000C (2015-07-30). In addition to the aspects in “General

! Compatibility Concerns” on page xxiv the following incompatible changes apply when

! migrating to z/VM 6.4.

! ¹ The STRING option in state and statew (added in 1.1.11/0015) has been removed.

! Where necessary use NOFORMAT on state or statew followed by a separate fmtfst stage

! to format the date and time as desired.

! ¹ The md5 program has been superseded by digest with the MD5 option and will be

! removed in a future release.

! ¹ The default style for CMS Pipelines as shipped with z/VM is DMS while the Runtime

! Library uses FPL. Users are encouraged to review Chapter 28, “Configuring CMS

! Pipelines” on page 867 to understand the differences between the two styles and the

! options to change the behaviour where necessary.

! ¹ With the DMS style, the help stage invokes HELP PIPE. The online documentation

! shown with HELP PIPE and ahelp has been upgraded to match this publication. The

 About This Book xxv

 About This Book

! built-ins fullscr, spec and starmon are now referred to in the documentation by their

! popular abbreviation. The longer name remains valid as an alias.

! Users of older levels of the Runtime Library Distribution should also refer to PIPELINE

! NEWS on the CMS Pipelines home page.

: Significant Documentation Fixes
: The documentation has been corrected for Version 1 Release 1 Modification Level 12 as

: follows.

: spec The NUMBER data source was changed in Modification Level 6 sublevel X'85'
: to behave as now documented in this book, but manuals and help files

: remained unchanged.

xxvi CMS Pipelines User’s Guide and Reference

! How to Send Your Comments to IBM

! We appreciate your input on this publication. Feel free to comment on the clarity, accu-

! racy, and completeness of the information or give us any other feedback that you might

! have.

| To send us your comments, go to z/VM Reader's Comment Form and complete the form.

! If You Have a Technical Problem

! Do not use the feedback method.

| ¹ Contact your IBM service representative.

| ¹ Contact IBM technical support.

| ¹ See IBM: z/VM Service Resources

| ¹ Go to IBM Support Portal

 Copyright IBM Corp. 1986, 2020 xxvii

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

! Summary of Changes

! This book is based on CMS/TSO Pipelines: Author’s Edition SL26-0018, and replaces

! z/VM: CMS Pipelines Reference and z/VM: CMS Pipelines User’s Guide that apply to

! previous releases of z/VM.

! The revision codes (characters or symbols in the left margin) show changes from previous

! editions.

. A period marks changes for Level 1.1.11.

: A colon marks changes for Level 1.1.12.

! An exclamation mark marks changes for z/VM 6.4.

! The reference sections in this book marked with these revision codes represent new func-

! tion in CMS Pipelines that was not shipped with z/VM 6.3 or earlier z/VM releases.

| SC24-6252-01, CMS Pipelines 1.1.12/0012

| ¹ Support for ECKD devices with more than 65519 cylinders in the trackread and

| trackwrite built-in programs.

| ¹ A new SECURE option on tcpclient and tcpdata to write TCP/IP client and server that

| use z/VM System SSL for secure connections.

| ¹ A new built-in program ftp to read data from an FTP Server into the pipeline, or write

| data from the pipeline to an FTP Server.

xxviii Copyright IBM Corp. 1986, 2020

 Part 1. Introduction

This part of the book is for new users of CMS Pipelines. No knowledge of pipelines is

assumed and only limited CMS or TSO experience is required.

The pipeline concept fits programs together like pearls on a string; as if by magic, output

lines written by one program become the input to the next program in the pipeline. CMS

Pipelines has many built-in programs that may be helpful for the end user when manipu-

lating data.

Thus, the pipeline concept greatly simplifies the task of making commands, tools, and

programs in general.

! Chapter 1, “Summary and Two Examples” gives a quick overview and introduces the

! CMS Pipelines concept and terminology for users who know CMS or TSO.

Chapter 2, “A Walk Through a Pipeline” shows how to build a small application using

CMS Pipelines.

 Copyright IBM Corp. 1986, 2020 1

 Summary

Chapter 1. Summary and Two Examples

This chapter is for those who wish to:

¹ Understand quickly how CMS Pipelines fits into CMS and TSO.

¹ See samples of tasks performed with CMS Pipelines.

 Summary
In essence, CMS Pipelines is a command, PIPE. The PIPE command interprets its argument

string as a pipeline specification, which is a list of programs to run. A program has a

name and often an argument string. A solid vertical bar (|) marks the end of the

specification of one program and the beginning of the specification of the next. Programs

are either built into CMS Pipelines or written by the user (usually in REXX). There is a

connection from the output stream of the program to the left of the vertical bar to the input

stream of the program on the right of the vertical bar. The order of programs in a pipeline

specification defines how data are passed from one program to the next: data are pumped

from left to right in a pipeline.

The pipeline specification is scanned by CMS Pipelines, and the programs are started. A

particular program can be used several times in a pipeline; each instance of a program in a

pipeline is called an invocation. An invocation of a program is also called a stage. Each

stage runs independently of all other ones; there is a pipeline dispatcher to coordinate it all

and make sure that data flow through the pipeline. Programs obtain data from the pipeline

dispatcher or from a host interface (an interface to the underlying operating system); they

deliver data to the pipeline dispatcher or a host interface. Programs accessing a host inter-

face are called device drivers because the interface often reads or writes a device or file.

Programs that do not interact with the host are called filters; they process data in the pipe-

line in some particular way.

Some advantages of a pipeline implementation are:

¹ Small simple programs are combined to accomplish a task that is often not trivial.

¹ Programs use a standard interface so that any program can be combined with any

other one.

¹ A program is written without regard to the rest of the world; this means that a pipeline

program is simple to write and is more robust than a program written as a stand-alone

module.

¹ A REXX pipeline program can be written without regard to the operating system. A

program that does not issue CMS or TSO commands can be moved between the systems

without change.

 Many Streams
CMS Pipelines supports a network of interconnected pipelines, only limited by the memory

size of the virtual machine. Multiple pipelines are specified in a PIPE command. A

program using more than one stream is declared with a label on its primary pipeline;

subsequent references to the label specify where additional streams are connected to

surrounding stages.

Pipelines are added to the set of running ones in two ways. A program can call a subrou-

tine pipeline to process its input data or generate output data, or both; or a program can

2 Copyright IBM Corp. 1986, 2020

 Summary

transfer a stream to a new pipeline that is added to the set and runs in parallel with the

current pipeline set.

 Writing Programs
Though you can accomplish many tasks with built-in programs and combinations of

built-in programs (cascades of filters), there will no doubt be times when you need a func-

tion for which there is no program readily available. You (or someone else) must then

write a program to perform this function. Such programs are often written in the REXX

language. They can be compiled with the REXX/370 Compiler or run by the REXX Inter-

preter.

Pipeline programs in REXX read and write the pipeline using pipeline commands; other

pipeline commands add pipelines to the set of running pipelines, run a subroutine pipeline,

and perform many other functions.

A Pipeline Example
Assume you are giving a presentation and you wish to know the number of words in your

manuscript. The manuscript is stored in a text file. Figure 2 shows a way to do this.

The first line shows the PIPE command; the second line is the response from CMS

Pipelines; the third line is the CMS ready message indicating that the command has

completed without error. The arrowhead on the left side of the last two lines is a conven-

tion in this book to indicate that these lines are written by the system; the arrowheads are

not displayed on your terminal when you issue CMS or TSO commands. The blank in front

of the PIPE command indicates that this line is typed on the terminal by the user.

The command specifies that three programs are to be run: one to read a file (disk), one to

count words (count), and the last one (console) to display the result on your terminal. The

three programs are separated by two solid vertical bars. Because a program in a pipeline

is called a stage, and because the bars separate pipeline programs, the solid vertical bar is

also called the stage separator.

Figure 3 on page 4 shows a drawing of the pipeline in Figure 2.

Figure 2. Very First Example: Counting Words

 pipe disk seas88 script | count words | console
►3573
►Ready;

 Chapter 1. Summary and Two Examples 3

 Summary

When running the example in Figure 2 on page 3:

1. CMS or TSO looks for the command PIPE and somehow finds the pipeline module.

2. CMS Pipelines scans the argument string to see which programs should be selected. It

finds three; via an internal table, it resolves the names to built-in programs residing

within the pipeline module.

3. The pipeline specification has no errors; thus, the programs are run. Conceptually, the

three programs are run in parallel, but in reality, control must pass from one to the

other. The pipeline dispatcher takes care of this; you seldom need to concern yourself

with the way it is done.

4. Anyhow, it starts the leftmost program first: disk is called.

5. disk reads the file and calls the pipeline dispatcher to write one line at a time to its

primary output stream; the pipeline dispatcher looks for someone to read the line.

6. count is started. It calls the pipeline dispatcher to read a record. The two sides of the

stage separator are now in a state where a line can be passed from one to the other;

the program on the left is writing a record and the program on the right is reading.

7. The pipeline dispatcher passes the line from disk to count, makes a note that disk has

now written the line, and runs count again.

8. count counts the number of words in the line, discards the line, and calls the pipeline

dispatcher to read another one.

9. The pipeline dispatcher finds that there is no line being written by disk. It suspends

(stops running) count for a while and resumes disk which reads another line from the

file and writes it to the pipeline, and so on.

10. Eventually, CMS reflects end-of-file on a call to read from the file. disk then returns to

the pipeline dispatcher from the call in step 4.

11. count is waiting for an input record, but there are no more. The pipeline dispatcher

resumes count with a return code to indicate end-of-file. count now writes a line

containing the count of words.

12. The pipeline dispatcher finds console, starts it, and passes the line to console, which

writes the result to the terminal. console reads another line from the pipeline,

resuming count.

13. count returns.

14. The pipeline dispatcher reflects end-of-file to console, which also stops.

15. All programs are now complete. The pipeline dispatcher returns to CMS (or TSO) with

a return code, in this case 0.

Figure 3. Pipeline Topology

 output stream input stream
 │ stage │
 │ │ │
 6 6 6
┌──────────┐ ┌──────────┐ ┌──────────┐
│ disk ╞═══════╡ count ╞═══════╡ console │
└──────────┘ & └──────────┘ └──────────┘
 │
 │
 connection

4 CMS Pipelines User’s Guide and Reference

 Summary

Returning to the command in Figure 2 on page 3, note that the first two programs have

arguments to indicate what they should do. The first one (disk) needs to know the

DSNAME (z/OS) or the name and type of the CMS file to read; it looks for the file on all

accessed minidisks and directories. count has a keyword option (WORDS) to make it count

words; it counts bytes and lines when other options are used.

The response of a number with no accompanying text to explain it may seem a bit terse at

first. There are good reasons why count writes a number without, for instance, “words”

after it; it is simpler to add text than to remove it.

You can tell from the ready message that this particular example was run on CMS. Had it

been run on TSO, the command would have read the member SEAS88 from the data set

allocated to DDNAME SCRIPT. (There are other ways to read z/OS data sets.) And the

ready message would have been all capitals with no trailing semicolon.

The most important observation has been kept to the end. The first example shows the

independence of the programs in the pipeline. When first in a pipeline, disk reads a file, no

matter what is put after it in the pipeline to process the data. Likewise, console is not

choosy about what it writes to your terminal; there could be anything in between the two

programs to process a file and type the result. So what happens if you put nothing

between disk and console? Well, then you have the CMS TYPE command. Looking at it

backwards, the sample also shows how easy it is to adapt a pipeline to some other needs:

¹ Think of a CMS command that almost does what you want.

¹ Refer to Appendix C, “Implementing CMS Commands as Stages in a Pipeline” on

page 918 to see how it is done with a pipeline.

¹ Add filters to the pipeline to tweak it to perform your task.

 Another Example
You are writing a book and have the text stored in several files. To get an indication of its

size you wish to count the number of words in the book which you have almost written.

You cannot use the command shown in Figure 2 on page 3 directly because the book is

made from several files. CMS users store collections of files in a different way than TSO

users do; let us treat the two cases separately.

The CMS User
A CMS user might have stored the files on a minidisk (or a directory in the Shared File

System) that is currently accessed as mode H. The files have UG somewhere in their file

name; the file type is SCRIPT. Figure 4 shows a way to count the words in all of these

files.

The approach in Figure 4 is to ask CMS which Script files on disk H have a UG in the

name, read the contents of the files into the pipeline, and then count the number of words

in the aggregate of the files.

The command is a pipeline that uses the last two programs from Figure 2 on page 3 to

count the number of words; the first two stages get the contents of the required files.

Figure 4. Another Example (CMS)

 pipe cms listfile *ug* script h | getfiles | count words | console
►16111
►Ready;

 Chapter 1. Summary and Two Examples 5

 Summary

cms has an argument string that looks remarkably like a CMS command. It runs the CMS

command to list files and traps the response CMS would normally write to the terminal; in

this case it is the list of files in your book.

This list is passed to getfiles which reads the contents each of the files into the pipeline.

You can visualise this as replacing the name of the file with the contents of the file.

The TSO User
A TSO user might have stored the files in a separate PDS. Figure 5 shows how to count

the number of words in all members of a partitioned data set.

This pipeline uses listpds to read the list of members from the PDS directory of the data set

allocated to DDNAME UGSCR, which we assume contains the Script files for the book. The

output records contain all information present in the directory; the member name occupies

the first eight columns; chop truncates the record after the member name.

Thus, the input to readpds contains the names of all members of the PDS. readpds reads

members, one at a time, from the PDS into the pipeline; thus, the output from readpds

contains all the files in the book. count counts the words in the aggregate and console

displays it on the terminal.

Figure 5. Another Example (TSO)

 pipe listpds dd=ugscr|chop 8|readpds dd=ugscr|count words|console
►16111
►READY

6 CMS Pipelines User’s Guide and Reference

 Walkthrough

Chapter 2. A Walk Through a Pipeline

This chapter aims to explain pipethink: how to solve a problem by dividing it recursively

into smaller problems until each can be done with a program that is built into CMS

Pipelines or a simple program written by the user. Dividing a problem into two problems

of equal size often reduces the complexity by more than a factor of four.

We walk you through the development of a small application, explaining things and

pointing out important considerations on the way. The commands and programs shown

represent what is required to perform the tasks at hand; no attempt is made to give a

complete description of all features of each.

TSO users should not be put off by the clear VM/CMS bias of the examples in this chapter.

The aim is to show how to craft a pipeline to perform a task and how to adapt it by

stepwise refinement. The cp device driver used in the following example is simply a

convenient source of data which are stored in a file to be processed at our leisure. The

following examples could have used a report file as their input just as well. The point is

that after the cp device driver has written the command response into the pipeline, the

following stages do not “know” and certainly do not care if their input data come from CP,

from a file, or, indeed, from the moon.

The examples you are going to see show how the response to a CP command is processed

to provide information not directly available from standard CP and CMS commands.

Though few CMS Pipelines users are expected to be interested in the application for its

own sake, it is hoped that the examples shown illustrate the process of developing a pipe-

line application.

Getting Data In and Out of the Pipeline
Data must be entered into the pipeline before they can be processed; and once the data are

in a fit state, they must be written out of the pipeline. CMS Pipelines provides several

built-in device drivers, programs to interface the pipeline to the outside world: programs to

issue commands; programs to read or write files, or both; programs to read from or write

to the terminal; and many more. The first step in designing a CMS Pipelines application is

to select the device drivers to use.

The CP command “query names” displays information about users logged on to your

system. CP writes the response to your terminal screen when you issue the command

directly to CP, or via CMS which forwards it to CP; the response can also be captured and

processed in the pipeline. Figure 6 on page 8 shows how the command is issued with

CMS Pipelines; the response is written to the file LOGGED USERS A and displayed on your

terminal.

 Copyright IBM Corp. 1986, 2020 7

 Walkthrough

What happened? The CMS command PIPE is issued. It scans its arguments and finds two

solid vertical bars separating the specifications of three programs to run in a pipeline.

Such programs pass data to each other via a standard interface in what is called the pipe-

line dispatcher in PIPE. A program running in a pipeline is called a stage. Of the three

stages, the first one, cp, issues its argument string as a command to CP and writes the

response to what is called the primary output stream, one record for each line in the

response. > replaces the contents of a file with records read from its primary input stream;

on CMS, the arguments specify the file name, type, and mode; on TSO, and with this partic-

ular format of the parameter list, the member LOGGED is replaced in the PDS allocated to

the DDNAME USERS (possibly not the best choice of names, but it emphasises the portability

between CMS and TSO). > also copies the file to the primary output stream; console reads

it and displays it on the terminal.

Figure 7 shows the layout of the pipeline in Figure 6. Each block represents a stage; the

line between them represents the connection between output and input streams.

Recall that each stage communicates with the pipeline dispatcher; a stage does not call a

neighbour directly. This simplifies the programming of a pipeline program considerably;

for instance, the result of the CP query can be inserted into a DB2 database directly from

the pipeline without ever touching a file. Consider that cp was written before SQL/DS was

even announced; but once the sql driver was written for CMS Pipelines, all pipeline

programs acquired support for SQL/DS (now DB2 Server for VM) without change to a single

one of them. Such is the power of the pipeline concept.

Figure 6. CP Command with Response Logged to Disk and Written on the Terminal

 pipe cp Q N | > logged users a | console
►ICSTAT3 - DSC , FINNS - DSC , EPLDICT - DSC , EPLCS - DSC
►DKEMERG - DSC , CPO - DSC , CISLTLX - DSC , BUYDBM - DSC
►ARKIV - DSC , SQLDBA3 - DSC , YVETTE - DSC , VM3ACCT - DSC
►TRT - DSC , TORSTEN2 - DSC , VANILLA -L0001, IMPOSIT - DSC
►DRIFTNYT - DSC , VMBCKUP3 - DSC , VMAVAIL - DSC , VMASMON2 - DSC
►VMASMON - DSC , SQLMON - DSC , SNAOPER - DSC , RSCSPC - DSC
►RSCS - DSC , PVMB - DSC , PVM - DSC , NETOPER - DSC
►NET - DSC , ISPVM - DSC , VMOPER - 05A0, COLPRT2 - DSC
►AP2SVP - DSC , VMAUTO - DSC , VMCLASSI - DSC , SMART - DSC
►DATAMOVE - DSC , DIRMAINT - DSC , SHRMGR - DSC , AUTPWMON - DSC
►AUTOOPER - DSC , VMAUDIT - DSC , AUTOLOG1 - DSC , OPERATOR - DSC
►VMTODDY - DSC , VMBSYSAD - DSC , CARLCH -L0003, JOHLJUNG -L0002
►TOMMYJ - DSC , EPC -L0000, SCHEEL - DSC , KURTKR - DSC
►OPRATNSA - DSC , SEN - DSC , POE - DSC , TOMS - DSC
►SPCPRO - DSC , SPCENT - DSC , SCRSRV - DSC , QASTAT - DSC
►PESERV - DSC , NPSM - DSC , JOHN - 05A2
►Ready;

Figure 7. Topology of the CP Pipeline

┌────────┐ ┌────────┐ ┌────────┐
│cp ├────┤> ├────┤console │
└────────┘ └────────┘ └────────┘

8 CMS Pipelines User’s Guide and Reference

 Walkthrough

Filtering Pipeline Data
The response in Figure 6 on page 8 is typical of a Sunday morning when most virtual

machines logged on are service machines that do not represent “live” users. The following

examples show how to extract the “interesting” information from the response, but first a

general remark. It is a good idea when developing an application to store a reference input

file to be used for testing, instead of running test cases based on a command response at

the time the test is run. For instance, the number of logged on users is likely to be

different on Monday morning. This can expose an error in your pipeline that you have not

met before; use a reference for test data to ensure that your tests are repeatable when

debugging a pipeline specification.

The first thing one might ask is, who is connected? CMS Pipelines has many programs to

select lines with or without a string, label, or what not, but the response in Figure 6 on

page 8 needs a bit of massaging before it is in a form where the connected users can be

selected. Selection stages select complete lines; the response in Figure 6 on page 8 is

four abreast and must be split up with a line for each virtual machine.

Use split to display each virtual machine on a separate line. take selects the first 5 records

to limit the number of records shown. Figure 8 shows the command and the response.

< reads the test reference stored previously and writes it into the pipeline. The comma (,)

after split makes it split records at commas; the commas are discarded. Thus, lines split

off have a leading blank, which explains why the response is ragged. Use strip to remove

leading blanks as shown in Figure 9; as used here, strip also removes trailing blanks, but

they are a bit more difficult to see.

Now you have a line for each virtual machine logged on. The first eight bytes contain the

name of the virtual machine; the name is followed by a hyphen (-). The last word is the

address of the terminal from which the virtual machine is logged on; DSC is displayed if

the virtual machine is disconnected. A take stage was added to the pipeline to limit the

output for this figure.

Figure 8. Splitting the CP Response

 pipe < logged users | split , | take 5 | console
►ICSTAT3 - DSC
► FINNS - DSC
► EPLDICT - DSC
► EPLCS - DSC
►DKEMERG - DSC
►Ready;

Figure 9. Removing Leading and Trailing Blanks

 pipe < logged users | split , | strip | take 5 | console
►ICSTAT3 - DSC
►FINNS - DSC
►EPLDICT - DSC
►EPLCS - DSC
►DKEMERG - DSC
►Ready;

 Chapter 2. A Walk Through a Pipeline 9

 Walkthrough

Removing lines where the terminal is shown as DSC excludes disconnected virtual

machines from the list; presumably what is left is a list of connected virtual machines. So,

Figure 10 on page 10 shows how to see which virtual machines are connected:

So far, you have seen how to issue a CP command and process its response, storing it in a

file, and displaying it on your terminal. You have seen how to process the response and

you have fine-tuned a suite of filters to create a command to perform a function not readily

available with standard commands.

It is indeed the CMS Pipelines way to write long pipelines with many stages, but typing

such long commands on the keyboard is not the way to do it. Store pipeline specifications

in REXX programs instead. Two types of REXX programs are now presented: subroutine

pipelines and “normal” CMS command procedures (EXECs).

Figure 10. Finding Connected Virtual Machines

 pipe < logged users | split , | strip | nlocate /- DSC/ | console
►VANILLA -L0001
►VMOPER - 05A0
►CARLCH -L0003
►JOHLJUNG -L0002
►EPC -L0000
►JOHN - 05A2
►Ready;

 Subroutine Pipelines
Today you wish to see who is connected, but maybe some other day you would like to see

who is connected at a particular control unit; the sequence of split, strip, and nlocate

seems to be something you might do often when processing the response to CP commands.

Figure 12 on page 11 shows how this sequence of commands is stored as a subroutine

pipeline. On CMS, it is in the file CNCTD REXX; on z/OS, it is the member CNCTD of the

PDS that is allocated to the DDNAME FPLREXX. Once the file is created, simply write cnctd

in the pipeline specification as shown in Figure 11, instead of the three filters you used

before.

The program in Figure 12 on page 11 is a REXX program; it has a comment on the first

line to indicate that it is indeed a REXX program. However, it differs from normal

command procedures (EXECs) in two respects:

¹ CMS Pipelines resolves the program automatically when the file type is REXX rather

than EXEC; TSO Pipelines resolves the program from the data set allocated to FPLREXX

rather than SYSEXEC. The program is not stored as a normal EXEC because the

Figure 11. Using a Subroutine Pipeline

 pipe < logged users | cnctd | console
►VANILLA -L0001
►VMOPER - 05A0
►CARLCH -L0003
►JOHLJUNG -L0002
►EPC -L0000
►JOHN - 05A2
►Ready;

10 CMS Pipelines User’s Guide and Reference

 Walkthrough

commands in the program are pipeline commands, not CMS or TSO commands; having

a different file type makes it more difficult to use a program in the wrong context.

¹ The command itself is probably not like any CMS or TSO command you have seen.

A subroutine pipeline normally contains the single pipeline command CALLPIPE with argu-

ments, followed by the REXX instruction exit to specify the return code from the program

as the return code from the subroutine pipeline.

The command itself probably looks a bit unfamiliar, but you recognise the three programs

used to select the connected virtual machines. The asterisk followed by a colon (*:) is

called a connection. It is put as a stage at the beginning and the end of the subroutine to

indicate that the caller’s input is connected to the left side of the subroutine, and that the

output of the subroutine is to be written to the caller’s output. The command is said to be

in landscape format2 because it is a single line.

Figure 13 shows the layout of the pipeline when it is started and after the subroutine pipe-

line is active.

Use count LINES to see how many users are connected. count reads all input lines and

then writes a single number to its output. Figure 14 shows how.

Figure 12. CNCTD REXX: Subroutine Pipeline to Select Connected Virtual Machines

/* Select connected virtual machines */
'callpipe *:| split , | strip | nlocate /- DSC/ |*:'
exit RC

Figure 13. Subroutine Pipeline

┌───────┐ ┌───────┐ ┌───────┐
 │< ├───┤cnctd ├───┤console│
└───────┘ └───────┘ └───────┘

┌───────┐ ┌───────┐ ┌───────┐
 │< ├─┐ ┤cnctd ├ ┌─┤console│
└───────┘ │ └───────┘ │ └───────┘

 │ │
┌───────────┘ └───────────┐
│ ┌───────┐ ┌───────┐ ┌───────┐ │
└─┤split ├───┤strip ├───┤nlocate├─┘
└───────┘ └───────┘ └───────┘

Figure 14. Counting Connected Users

 pipe < logged users | cnctd | count lines | console
►6
►Ready;

2 This metaphor is from painting: landscapes are wider than they are tall, while portraits are taller than they are wide.

 Chapter 2. A Walk Through a Pipeline 11

 Walkthrough

Often the address of the terminal is not interesting. Use chop to truncate records.

Figure 15 on page 12 shows just the names of the users connected. Each line is 8 bytes

long with trailing blanks you cannot see.

The sequence of cnctd and chop seems to be so useful that you might wish to write a

subroutine to perform this function. You could extend CNCTD REXX to include the chop

filter and save it under another name, but this is not recommended because you would

have two copies of the subroutine to maintain. Subroutine pipelines can be nested to any

depth. Figure 17 shows CNCTDN REXX which writes just the names of connected users.

Figure 17 shows the subroutine pipeline written in portrait format with a line for each

stage; there is a comma (,) after each stage to indicate to REXX that the command is

continued on the following line. There are comments at the right of the line; REXX can

cope with comments after the comma for continuation.

! Two XEDIT macros were used to help write the program in Figure 17. See “Editing

! Tools” on page 24 for a discussion of FMTP and SCM.

Figure 15. Listing the IDs of the Users Connected

 pipe < logged users | cnctd | chop 8 | console
►VANILLA
►VMOPER
►CARLCH
►JOHLJUNG
►EPC
►JOHN
►Ready;

Figure 16. Just the User IDs

 pipe < logged users | cnctdn | console
►VANILLA
►VMOPER
►CARLCH
►JOHLJUNG
►EPC
►JOHN
►Ready;

Figure 17. CNCTDN REXX: Subroutine to Write Names Only

! /* Just the names of the connected virtual machines */
! 'callpipe', /* Pipeline command to call subroutine */
! ' *:', /* Connector for caller's input */
! '| cnctd', /* Call subroutine to find connected only */
! '| chop 8', /* Discard terminal address */
! '| *:' /* Write to caller's output */
! exit RC

12 CMS Pipelines User’s Guide and Reference

 Walkthrough

Writing EXECs with Pipeline Commands
Once you have a suite of filters to perform a useful function you may wish to make it a

command: simply put the PIPE command in a normal command procedure (EXEC).

You can also use command procedures when developing the pipeline; add stages to a PIPE

command in a command procedure as you fine-tune your pipeline specification.

As an example of a command procedure, CNTLOG EXEC counts the number of users logged

on and connected to a terminal. It displays the result with a few additional words. The

EXEC uses the “live” CP query and the subroutines developed earlier to process the result of

a query. Figure 19 shows the EXEC; Figure 18 is an invocation.

You recognise the comment on the first line to indicate that the program is written in

REXX.

The first line that is not a comment (signal on novalue) tells REXX to branch to the label

novalue when referencing a variable that has had no value assigned, but there is no such

label in the program. This is deliberate to force a syntax error at the point where the

variable without a value is referenced; REXX writes the procedures active at the point of

failure when a syntax error occurs. The second instruction (address command) requests

that REXX send commands directly to the CMS command environment; this is where the

PIPE command is, so some processing time is saved in the invocation.

If you do not issue the signal on novalue instruction, REXX treats a reference to a vari-

able that has not been set as the literal string consisting of the variable’s name in upper

case. This can be handy in small simple programs, but it can be the source of subtle

errors when a subroutine defines a variable, which causes a different command to be issued

somewhere else in the REXX program. Literal constants must be in quotes when signal
on novalue is active. In Figure 19 the PIPE command is such a literal. Another reason to

write a pipeline specification as a quoted string is the abundance of solid vertical bars.

They would be interpreted by REXX as inclusive OR operators if they were not put in

quoted strings.

Figure 18. Counting Connected Users

 cntlog
►There are 31 users connected.
►Ready;

Figure 19. CNTLOG EXEC: Counting Users Logged on

! /* Count number of logged-in users */
! signal on novalue
! address command /* Send commands ... */
! 'PIPE', /* ... directly to COMMAND */
! ' cp q n', /* Perform QUERY */
! '| cnctd', /* Find connected users */
! '| count lines', /* Count them */
! '| spec /There are/ 1', /* Literal field */
! '*-* nextword', /* The input number */
! '/users connected./ nextw', /* More literal */
! '| cons' /* Display */

! exit RC

 Chapter 2. A Walk Through a Pipeline 13

 Walkthrough

Most stages in the PIPE command in Figure 19 have been described already; cons is an

abbreviation of console. A few program names have an abbreviation, but most must be

spelt out.

The text around the number of logged on users is added by spec. This is a versatile

program that you are going to meet again many times. It tends to have a long argument

string; in this case the spec stage requires three lines when formatted for comfortable

reading. For each input line, spec goes through the list of items in its argument string and

performs each item once, in the order written. An item specifies a field; it can be data

from the input record, or a literal. A literal field is a delimited string: that is, between two

occurrences of a delimiter character, which cannot appear in the string itself. An input

field is a column range; *-* means the whole input record. The second part of an item

indicates where the field is placed in the output record. A number selects a specific

column; the keyword NEXTWORD (which can be abbreviated to NEXTW—it has a synonym

NWORD that can be abbreviated to NW) appends a blank and the field to the output record.

Thus, the spec stage used above puts a literal before and after the number of users logged

on.

Maybe you would like to see the IDs of the virtual machines. A single line of eight char-

acters for each is a bit unsophisticated; Figure 20 shows how to format the result of the

query with eight users per line. join joins lines; as used here, 7 lines are appended to a

line with a single blank added between each. The blank is written in a delimited string,

just like the constants in spec in the previous example.

But what’s that? Who is LOGL0005? Quickly store another test case:

The test case is stored; find selects the offending line to make sure it is in the new test

case. The count of lines shows that someone logged off before you could capture the new

test case, but it seems to have the data you need.

The line means that terminal L0005 is in the state where no one is logged on, but the VM

logo is not displayed. In this state, a user can send and receive messages without being

logged on, for instance to ask the operator to call on the phone. So, as far as CP is

concerned, this represents a user even though the true identity is not known. Most of the

Figure 20. Writing 8 Users Across

 pipe cp q n | cnctdn | join 7 / / | console
►VMOPER MET RONNING BRANDSEN WILKEN FINNPED BJS HOBERG
►CFH SOEGAARD BARNER1 SORENSV SVENSSON LAURSEN OTTOH CDJ
►LESLEY BRINK TOMHRAS HENJOR FFMAINT ABHOUG BENTEP RUDY
►LOGL0005 THUESEN SCHWANEN FRANZW MHVIID BARNER WOEBBE SPCTOOL
►JOHN
►Ready;

Figure 21. Saving a New Test Reference

 pipe cp q n | cnctd | > many users a | find LOG | console
►LOGL0005 -L0005
►Ready;

 pipe < many users | count lines | console
►32
►Ready;

14 CMS Pipelines User’s Guide and Reference

 Walkthrough

time, however, no one sits at the terminal; it has been left in this state after the previous

session. You do not wish to include such a terminal in the list of logged on users.

How can you exclude lines for virtual machines that have no user logged in? If your

system has no users whose IDs begin with “LOGL”, you can use nfind to exclude lines

beginning with this string as shown in Figure 22. (Because the argument to nfind has

three trailing blanks, only user IDs that are seven or eight characters are discarded.)

But if one of the users of your system is Logland, then this approach is too simplistic.

! The user IDs to exclude are of the form LOGLxxxx where xxxx is the same as the device

! address. So, which CMS Pipelines filter excludes lines where the right characters of the

! user ID are the same as the terminal address? Though pick can do this, let us assume there

! is no such filter; you must write one yourself.

Figure 22. Discarding &u$LOGLxxxx Machines.

 pipe < many users | nfind LOGL | count lines | console
►32
►Ready;

Writing a REXX Program to Process Data in the Pipeline
All is not lost when the programs provided with CMS Pipelines do not provide a function

you need: you can write filters for the pipeline in REXX. Figure 23 shows how to invoke

realuser to discard lines for terminals in the state between logo and logged on.

! Figure 24 shows realuser, a REXX program to exclude lines for users of the class described

above.

The REXX program REALUSER REXX has the same file type as a subroutine pipeline; the two

are the same as far as REXX and CMS Pipelines are concerned, though they may look

different to you.

Figure 23. Counting Real Users

 pipe < many users | realuser | count lines | console
►31
►Ready;

Figure 24. REALUSER REXX: Selecting Real Users

/* Select only real users. */
signal on novalue
do forever

'readto in' /* Read a record into variable "in" */
If RC ¬= 0 /* Are we at EOF? */

Then exit /* Yes, quit. All is done */

parse var in userleft +4 userright +4 '-' +2 addr .

if userleft¬=='LOGL' | userright¬==addr /* Want it? */
then 'output' in /* Yes, keep it */

end

 Chapter 2. A Walk Through a Pipeline 15

 Walkthrough

This program iterates reading an input line into a REXX variable, testing it, and writing the

input line to the output if it does not look like a user ID of the type you wish to exclude.

The instruction do forever opens the iteration; it is closed with the end instruction.

Inside the loop, the variable in receives the contents of the next record in the pipeline each

time the command READTO IN is issued. Note that the name of the variable to receive the

value is a literal. It is important to write the name in a way where its value is not substi-

tuted by REXX. READTO sets the variable as a side effect. REXX sets the variable RC to the

return code. End-of-file is indicated by a return code 12.

The Parse instruction separates the components of the user ID. The leftmost four charac-

ters of the user ID go into one variable, the rightmost four go into another variable. The

hyphen in quotes instructs REXX to skip to the position after the next hyphen (or the end of

! the variable). Finally, the rightmost part of the address is assigned to a variable. Parse

has done the hard work; it only remains to test if the leftmost four characters are not equal

to the constant “LOGL” or if the rightmost four characters are not equal to the device

address.

The input record is written to the output using the command OUTPUT unless the test fails.

Note the difference between the READTO and the OUTPUT command. OUTPUT writes its

argument string to the pipeline. You can compute an expression to write to the pipeline;

for instance, putting a timestamp in front of each record. You can also write a constant.

In this example, the input record is copied unchanged to the output if it is selected.

Having written the function to suppress these unwanted lines, add the filter to the subrou-

tine pipeline in CNCTD REXX. Figure 25 shows the subroutine converted to portrait form.

! Note that the new function is retrofitted to all uses of cnctd. Closer inspection of the

! output also shows entries with “VSM” in our list. This is not an actual user on the system,

! but rather a network service machine entry. We add a nfind stage to keep that out of our

! list as well.

Returning to the list of logged on users in Figure 20 on page 14, do you wish it sorted

ascending instead? Figure 26 on page 17 shows the new test case sorted ascending.

cnctdn trims the terminal address from the line; it does not matter that the lines are already

split with one per user.

Figure 25. Retrofitting REALUSER to CNCTD REXX

! /* Select connected virtual machines */
! 'callpipe',
! ' *:', /* Read from input stream */
! '| split ,', /* Split to one user per line */
! '| strip ', /* Remove leading and trailing blanks */
! '| nlocate /- DSC/', /* Not the ones disconnected */
! '| nfind VSM ', /* Not the network service */
! '| realuser', /* And not the ones with LOGO cleared */
! '| *:'
! exit RC

16 CMS Pipelines User’s Guide and Reference

 Walkthrough

It is undeniably sorted, but you want the presentation to be transposed so that user IDs are

ordered ascending in the columns as you see it in Figure 27.

pad ensures that each record is 9 characters. snake formats a “page” to put the input data

into six columns. The column depth is adjusted to ensure that all columns contain at least

one line of data.

Figure 26. List of Users, Sorted by ID

 pipe < many users | cnctdn | sort | join 5 / / | console
►ABHOUG BAP BOBAY BROCKS CARSTENG CSS
►DITHMAR FINNH GBJ HENRIKO HEY JMLO
►JOHN KJELD KUMMEL LAURSEN MIE MIH
►OBR PEETZ PERLOK PETERHJ POE PSIE
►RENEH RUDY SCHWANEN VMOPER VNETFIX WHC
►WILKEN
►Ready;

Figure 27. Transposing a Multicolumn Display

 pipe < many users | cnctdn | sort | pad 9 | snake 6 | console
►ABHOUG DITHMAR JOHN OBR RENEH WILKEN
►BAP FINNH KJELD PEETZ RUDY
►BOBAY GBJ KUMMEL PERLOK SCHWANEN
►BROCKS HENRIKO LAURSEN PETERHJ VMOPER
►CARSTENG HEY MIE POE VNETFIX
►CSS JMLO MIH PSIE WHC
►Ready;

Issuing CMS Commands
A list of user IDs is not what you want; you wish to see the names of the users logged on.

Assume that COTTAGE NAMES is a “names” file for your system. Figure 28 shows who are

logged on.

Figure 29 on page 18 shows a display of the names of users logged on, based on a names

file.

Figure 28. Who Is Working in the Cottage?

 pipe cp q n | > cottage logons a | console
►SMILEY - 0A4, WISTFUL - DSC, DUMMY - 0A1, GROUCHY - 0A7
►OPERATOR - DSC, BOSS - 0A3
►Ready;

 Chapter 2. A Walk Through a Pipeline 17

 Walkthrough

user2nam in Figure 30 shows how it was done. The program issues the CMS command to

look a user up in a names file, writing the first line of the response to the pipeline. It

writes a line of question marks if the NAMEFIND command should produce no output.

Thus, user2nam writes one output record for each input record.

The command NAMEFIND is issued for each input line. It instructs CMS to look in

COTTAGE NAMES for an entry describing the user ID, and to display the name of the user.

The response is trapped by CMS Pipelines and written to the output from cms. (The some-

what cryptic append literal ensures that a default is provided in case NAMEFIND produces

! no response; take ensures the response is precisely one line.) Names files are described

further in z/VM: CMS Primer.

Figure 29. Convert a User ID to a Name

 pipe < cottage logons | cnctd | user2nam | console
►H. A. Haas
►S. A. What
►E. B. Scrooge
►T.O.P. Banana
►Ready;

Figure 30. USER2NAM REXX: Substitute Name of User for Id

/* Convert userids to names */
signal on novalue
signal on error
do forever
 'readto in'

parse var in userid . +8
 'callpipe',

' cms namefind :userid' userid ':name (file cottage',
'|append literal ???',

 '|take 1',
 '|*:'
end
error: exit RC*(RC¬=12)

 Multistream Pipelines
But you really want a display with a line for each connected user. The line should have

the terminal address followed by the user name. There does not seem to be any way to

make NAMEFIND do this, so more craftiness is required; Figure 31 shows the result.

Figure 33 on page 19 shows the multistream subroutine pipeline to make this display.

The approach is to split the line in two parts, the user ID and the terminal address. Each

part is processed by itself: the name as you have already seen; the address of the terminal

Figure 31. Display Terminal Address with Name

 pipe < cottage logons | cnctd | userterm | console
►0A4 H. A. Haas
►0A1 S. A. What
►0A7 E. B. Scrooge
►0A3 T.O.P. Banana
►Ready;

18 CMS Pipelines User’s Guide and Reference

 Walkthrough

is shifted to the left. The lines are merged at the end of the subroutine pipeline.

Figure 32 on page 19 shows the topology of the pipelines. The primary pipeline is at the

top and the secondary is at the bottom. chop and spec are shown as tall stages because

they can transmit data on both pipelines. chop only reads from the primary input stream;

the secondary input stream is left unconnected. In the same way, spec reads from all input

streams but writes only to the primary output stream. The spec stage shifts the name right

to column 10 and inserts the terminal address in the first columns. strip removes leading

blanks and hyphens from the terminal address (or LU) to make it begin in column 1 when

it arrives at the secondary input stream to spec.

Pipeline commands are strings, and as such inherently linear; how is the multistream

topology transformed to an argument string?

There are two pipelines in Figure 32. The topmost is defined first; the bottom pipeline is

defined after the end character. The program USERTERM REXX is shown in Figure 33.

Parentheses at the beginning of the argument string to CALLPIPE contain a global option to

control how CMS Pipelines scans the argument string. This one defines the question mark

(?) to be a special character to delimit pipelines, called the end character.

chop was used in Figure 15 on page 12 to truncate records after eight characters. It

writes the truncated record (the part of it to the left) to the primary output stream; if the

Figure 32. Topology of the Multistream Subroutine Pipeline

┌c:──────┐ ┌────────┐ ┌s:──────┐
──────────┤ ├───────┤User2nam├───────┤ ├───────────

│Chop │ └────────┘ │Spec │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ ┌─────────┐ │ │
 ─┤ ├───────┤Strip ├──────┤ ├─
 └────────┘ └─────────┘ └────────┘

Figure 33. USERTERM REXX: Display User Name with Terminal Address

! /* Display user name with terminal address. */

! signal on novalue
! 'callpipe (end ?)',
! ' *:', /* Input records here */
! '| c:chop 8', /* Split after column 8 */
! '| user2nam', /* Get the name of the user */
! '| s:spec 1-* 10', /* Shift response right */
! 'select 1', /* Read other stream */
! '1-* 1.8', /* Put first */
! '| *:', /* To the output */
! '?c:', /* The rest of the input record */
! '| strip leading anyof /- /', /* Remove - and blanks */
! '| s:' /* Pass to spec */

! exit RC

 Chapter 2. A Walk Through a Pipeline 19

 Walkthrough

secondary output stream is defined and connected, the part of the record chopped off is

written there. In this example, the first position of the record on the secondary output

stream is a blank or a hyphen, depending on how the terminal is attached. strip removes

leading blanks, hyphens, or both. The delimited string after the keyword ANYOF specifies

a list of characters to be removed from the beginning of the record. strip repeatedly

removes a leading character that is present in the enumerated list of characters; it stops at

the first character that is not in the list.

spec takes the name from the primary input stream and combines it with the device

address on the secondary input stream. The resulting line is written to the primary output

stream.

A DB2 Query
CMS Pipelines interfaces to DB2 Server for VM if your virtual machine is registered with

DB2 and you have run the SQLINIT procedure. TSO Pipelines interfaces to DB2 for z/OS in

a similar way. Records are passed between DB2 and CMS Pipelines without changing the

format of fields (for instance, integers are not made printable in a query). This gives you

complete control over the format of data going to and from the database, but on the other

hand you must worry about data formats and null values in general. Conversely, sqlselect

formats a query with column headings and converts data from internal representation to

character strings. Figure 34 shows a query in one of the sample databases.

For further information, refer to Chapter 11, “Accessing and Maintaining Relational Data-

bases (DB2 Tables)” on page 138 and to sql.

Figure 34. SQL Query

 pipe sqlselect * from sqldba.inventory where description='BOLT' | cons
►PARTNO----- DESCRIPTION------------- QONHAND----
► 221 BOLT 650
► 222 BOLT 1250
►Ready;

20 CMS Pipelines User’s Guide and Reference

Part 2. Task Oriented Guide

This part of the book explains how to use CMS Pipelines, showing many examples using

built-in programs.

Chapter 3, “Where Do I Start?” on page 22 explains how you can verify that CMS

Pipelines is installed; it gives hints on how to obtain help; and it describes some tools that

may be useful when creating command procedures that use CMS Pipelines.

Chapter 4, “Building a PIPE Command” on page 29 explains how to connect the pipeline

to your terminal and to your files; it explains how to issue commands and process their

responses in the pipeline; and it shows many examples of built-in programs that filter data.

Chapter 5, “Using Multistream Pipelines” on page 74 explains how to specify a network

of interconnected pipelines with programs that support more than a single input and output

stream.

: Chapter 6, “Processing Structured Data” on page 91 describes how to refer to data in

: records symbolically rather than by column, word, or field number.

Chapter 7, “Writing a REXX Program to Run in a Pipeline” on page 97 explains how to

write a REXX program to process data (a REXX filter).

Chapter 8, “Using Pipeline Options” on page 120 explains how to specify options that

control the pipeline itself.

Chapter 9, “Debugging” on page 124 explains how to cope with trouble in the pipeline

(the data plumber’s guide to blocked drains).

Chapter 10, “Pipeline Idioms—or—Frequently Asked Questions” on page 127 explains

some pipeline idioms and annotated answers to some frequently asked questions.

 Copyright IBM Corp. 1986, 2020 21

Chapter 3. Where Do I Start?

In this chapter you see how to make sure that CMS Pipelines is installed and available to

you and how to use your terminal with CMS Pipelines. We also show some tools you

may find useful on CMS.

 IBM Manuals
The present book covers everything you need to know to use CMS Pipelines from your

terminal and when you write REXX programs to issue pipeline commands or process data.

“Bibliography” on page 957 lists other books you may find useful.

Tutorials and Papers
There are several excellent papers on the CMS Pipelines home page, in particular Plunging

into Pipes and Plunging On.

 http://vm.marist.edu/˜pipeline

: Refer to “Additional Information, Download Site” on page xx for additional pointers.

Ensure CMS Pipelines Is Installed
Trying things on your terminal is the best way to learn to use CMS Pipelines. Issue the

command “pipe query” to see if CMS Pipelines is available. Figure 35 shows the

: response when you are set to go. The first example shows the response of CMS Pipelines

: on z/VM 6.4. The second example shows the response of TSO Pipelines; you see this

: response (with a suitably modified ready message) when using the “runtime library” on

: CMS.

: This world is not perfect, however; you could see other responses (though that would be

: highly unlikely on CMS). Figure 36 shows what may go wrong. Contact your system

support staff to install CMS Pipelines.

: Figure 35. Determine If CMS Pipelines Is Installed

: pipe query
: ►FPLINX086I CMS Pipelines, 5741-A07 1.0112 (Version.Release/Mod) -
: ►Generated 20 Jan 2016 at 08:53:20
: ►Ready;

: pipe query
: ►CMS/TSO Pipelines, 5654-030/5655-A17 1.0112 (Version.Release/Mod) -
: ►Generated 12 Jan 2010 at 12:50:28.
: ►READY

Figure 36. Response When CMS Pipelines Is not Installed

 pipe query
►Unknown CP/CMS command

 pipe query
►COMMAND PIPE NOT FOUND
►READY

22 Copyright IBM Corp. 1986, 2020

http://vm.marist.edu/%7epipeline

 Help

Find the Stage Separator on Your Terminal
The default symbol used for the stage separator is the solid vertical bar (|). It appears as

such on 3270 terminals attached to a U.S. control unit or a control unit with a UK

language diskette.

There are too many variations to list what the solid vertical bar is on other terminals and

PC terminal emulators; in all cases, it is the character used as the OR operator in a REXX

expression. The solid vertical bar has the code point X'4F', which is displayed as an

exclamation mark (!) on many European and Latin American terminals. Some PC

keyboards do not have a solid vertical bar. Instead, the terminal emulator maps the split

vertical bar (¦) into the solid vertical bar. Create an EXEC like SAYBAR (see Figure 37) if

you are in doubt what the solid vertical bar is on your terminal.

Note: 3270 terminals in some countries have both a solid vertical bar (|) and a split

vertical bar (¦). The solid vertical bar is the stage separator on such terminals.

Figure 37. SAYBAR EXEC Displays the Stage Separator on Your Terminal

/* SAYBAR EXEC */
say 'The solid vertical bar is:' '4f'x'.'

 saybar
►The solid vertical bar is: |.
►Ready;

TSO Logon Procedure
TSO Pipelines requires several data sets to be allocated. You can allocate them in the

logon procedure or in some other procedure.

FPLREXX REXX filters are resolved from the DDNAME FPLREXX.

FPLHELP Help information is stored in the library allocated to DDNAME FPLHELP.

: SYSTSPRT REXX issues error messages from reentrant environments to this DDNAME. The

: importance of allocating this data set cannot be overstressed.

STEPLIB The library that contains the PIPE load module, if it is not in Link Pack Area

or in the link list.

You should also issue PROFILE WTPMSG. When you have, REXX is at least able to remind

you if you forget to allocate SYSTSPRT.

 Pipe Help

Help files are included with CMS Pipelines; “pipe help menu” displays the help menu for

built-in programs.

There is help for each of the programs listed in the inventory. As an example, “pipe
help <” displays help for the device driver to read a file.

. CMS Pipelines stores information between commands. This includes a list of the last

eleven messages issued and the last eleven SQL error codes received. Help for messages is

most conveniently obtained through the pipeline infrastructure: the command “pipe help”

invokes help for the last message issued. “pipe help 1” invokes help for the second to

last message issued, and so on. There are 11 messages in this memory. Help for message

 Chapter 3. Where Do I Start? 23

 Editing Pipelines

11 is displayed if you type “pipe help 11”; the number is taken to be a message number

. when it is larger than 10. TSO Pipelines is unable to display help for SQL as z/OS does

. not provide the table of messages.

Issue “pipe help msg <number>” to get help for the message with the number specified.

Often the return code is the same as the last message issued.

Type the commands shown in Figure 38 on your terminal to try out the help facilities.

! The CMS HELP command can also be used to display information about CMS Pipelines

! built-in programs and messages, just like for other CMS commands.

Figure 38. Try Some Help Commands

pipe help menu
pipe help disk
pipe zz
pipe help
pipe help 17

 Editing Tools

CMS Pipelines users soon find themselves entering pipeline specifications in EXECs or

CLISTs. The pipeline specifications become longer and more complex as a “plumber” gains

experience.

To help with this task, CMS Pipelines supplies two edit macros that you may find improve

. your productivity when editing pipeline specifications. These macros support the editors

. ISPF on TSO and XEDIT on CMS.

FMTP converts a pipeline from landscape format where the pipeline is specified on a

single line to portrait format where each stage is stored in a separate record.

Having one line per stage means that you can easily add, delete, or move stages in

a pipeline specification. It also means that there will be room to the right of the

line for a running commentary.

! SCM lines comments up nicely on the right. It also adds the ending */ when a

comment is not terminated.

On CMS, the macros are intended to be used from the prefix area.

 Using FMTP
FMTP XEDIT is a useful tool when you are entering a pipeline specification into an EXEC.

Simply insert the PIPE followed by an option string and some stages:

Now move the cursor to the prefix area of the line containing the command and type fmtp:

Figure 39. A Landscape Pipeline

 TEST1 EXEC A1 V 132 Trunc=132 Size=2 Line=0 Col=1 Alt=3
====>
===== /* My very first test program */
===== 'pipe (end ?) literal Hello, World! | xlate upper | console'

24 CMS Pipelines User’s Guide and Reference

 Editing Pipelines

Then press ENTER to run the FMTP XEDIT macro.

You can see that the macro has converted the pipeline specification. The commas at the

end of the lines indicate continuation to REXX; though the pipeline specification is now

spanned over four lines, it is still just a single REXX expression. FMTP also added the

! option NAME to identify the line of the program containing the pipeline specification; you

will find this very useful when debugging an oil refinery of pipes because error messages

will refer you to the file containing the pipeline specification issuing an error message.

! The number in the option NAME is the line number where the pipeline specification started

! when the FMTP was used to format the code. When you continue to add stages to the

! pipeline specifications in the program, the number stated in the option NAME will often not

! match the actual line number anymore. This also happens when you maintain your

! program with EXECUPDT and block comments are excluded from the executable form.

! There is no need to correct the numbers each time you make changes as long as you

! remember to search for the reference rather than expect it to be exactly at that line in the

! program.

! This particular style having the stage separators to the left is sometimes called a left-

! handed pipeline. It is the favourite style of most CMS Pipelines users because the aligned

! stage separators make it easy to see the structure. Earlier versions of FMTP put the bars to

! the right of the line. To REXX it makes little difference; it is still all just a character string.

Add lines to insert stages in the pipeline. You can insert a landscape pipeline segment and

then convert it to portrait form. Remember to begin with a quote and end with a comma

to indicate continuation:

Figure 40. Preparing to Convert to Portrait

 TEST1 EXEC A1 V 132 Trunc=132 Size=2 Line=0 Col=1 Alt=3
====>
===== /* My very first test program */
fmtp= 'pipe (end ?) literal Hello, World! | xlate upper | console'

Figure 41. Portrait Pipeline

! TEST1 EXEC A1 V 132 Trunc=132 Size=5 Line=6 Col=1 Alt=6
! ====>
! ===== /* My very first test program */
! ===== 'PIPE (end ? name TEST1.EXEC:2)',
! ===== '?literal Hello, World! ',
! ===== '| xlate upper ',
! ===== '| console'

Figure 42. Adding a Landscape Segment to a Portrait

! TEST1 EXEC A1 V 132 Trunc=132 Size=5 Line=6 Col=1 Alt=12
! ====>
! ===== /* My very first test program */
! ===== 'PIPE (end ? name TEST1.EXEC:2)',
! ===== '| literal Hello, World!',
! ===== '| xlate upper',
! fmtp= '| reverse | xlate lower | count words',
! ===== '| console'

 Chapter 3. Where Do I Start? 25

 Editing Pipelines

Press ENTER.

Isn’t all that blank space to the right inviting? Add comments!

Figure 43. Portrait Pipeline with Added Segment

! TEST1 EXEC A1 V 132 Trunc=132 Size=5 Line=6 Col=1 Alt=15
! ====>
! ===== /* My very first test program */
! ===== 'PIPE (end ? name TEST1.EXEC:2)',
! ===== '| literal Hello, World!',
! ===== '| xlate upper',
! ===== '| reverse',
! ===== '| xlate lower',
! ===== '| count words',
! ===== '| console'

! Using SCM
! The macro SCM XEDIT shifts REXX comments to align them on the right. Simply type the

beginning of the comments wherever convenient:

Then position the cursor on the prefix area of the line containing the PIPE command and

enter the prefix command to format the lines:

Press ENTER.

Figure 44. Portrait Pipeline

! TEST1 EXEC A1 V 132 Trunc=132 Size=5 Line=6 Col=1 Alt=22
! ====>
! ===== /* My very first test program */
! ===== 'PIPE (end ? name TEST1.EXEC:2)',/* The pipeline command
! ===== '| literal Hello, World! ',/* Get some data
! ===== '| xlate upper ',/* Make it uppercase
! ===== '| reverse ',/* Turn it round
! ===== '| xlate lower ',/* And force it low
! ===== '| count words ',/* Have we still two words?
! ===== '| console'/* Let's see

Figure 45. Portrait Pipeline

! TEST1 EXEC A1 V 132 Trunc=132 Size=5 Line=6 Col=1 Alt=22
! ====>
! ===== /* My very first test program */
! scm9= 'PIPE (end ? name TEST1.EXEC:2)',/* The pipeline command
! ===== '| literal Hello, World! ',/* Get some data
! ===== '| xlate upper ',/* Make it uppercase
! ===== '| reverse ',/* Turn it round
! ===== '| xlate lower ',/* And force it low
! ===== '| count words ',/* Have we still two words?
! ===== '| console'/* Let's see

26 CMS Pipelines User’s Guide and Reference

 Samples ¹ Compatibility

Voilà!

Figure 46. Portrait Pipeline

! TEST1 EXEC A1 V 132 Trunc=132 Size=5 Line=6 Col=1 Alt=22
! ====>
! ===== /* My very first test program */
! ===== 'PIPE (end ? name TEST1.EXEC:2)', /* The pipeline command */
! ===== '| literal Hello, World! ', /* Get some data */
! ===== '| xlate upper ', /* Make it uppercase */
! ===== '| reverse ', /* Turn it round */
! ===== '| xlate lower ', /* And force it low */
! ===== '| count words ', /* Have we still two words? */
! ===== '| console' /* Let's see */

Issuing the PIPE Command from a FILELIST Panel

The PD EXEC shown in Figure 47 saves some keystrokes when you wish to issue a PIPE

command against a file the name of which is displayed on a line of a FILELIST panel.

Specify the file name followed by the remainder of the pipeline specification:

Figure 47. PD EXEC

/* Pipe disk read of current file */
parse arg file '|'+0 pipe
address command
'PIPE (end \)',
'<' file '|unpack' pipe

exit RC

Figure 48. Issuing the PD Command

 JOHN FILELIST A0 V 108 Trunc=108 Size=196 Line=1 Col=1 Alt=1
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date
pd / | count words | console 103 3940 43 11/07/92 1

GETSCR REXX A1 V 71 14 1 11/07/92 1
FROM FULLSCR A1 V 2604 1 1 11/07/92 1
LOAD MAP A5 F 100 799 20 11/07/92 1

Sample Pipelines and REXX Filters

: Refer to the CMS Pipelines homepage for the current samples.

Many of the samples are also shipped with z/VM on MAINT’s 193 minidisk.

Compatibility Between TSO Pipelines and CMS Pipelines

There are some differences between the facilities available in the two implementations and

some facilities are not available in both implementations. Particular restrictions or lack of

support are noted where applicable in the reference part of this book.

These general considerations apply:

 Chapter 3. Where Do I Start? 27

 Compatibility

¹ A Virtual Machine on VM/CMS is equivalent to an Address Space on z/OS. For

example, SQL runs in a separate virtual machine; DB2 runs in a separate address space.

¹ Device drivers are available in both environments, where the function can be provided.

A CMS file is equivalent to a z/OS physical sequential data set or a member of a

partitioned data set.

¹ Filters, gateways, and all other built-in programs are independent of the operating

environment; they are thus generally available.

¹ REXX filters that issue only pipeline commands (that is, do not use the Address instruc-

tion) are directly movable between TSO and CMS without modification. For instance,

sqlselect, which is implemented as a REXX filter, runs in both environments without

code specific to either environment.

See Appendix F, “Pipeline Compatibility and Portability between CMS and TSO” on

page 933 for more information.

28 CMS Pipelines User’s Guide and Reference

 Using Device Drivers

Chapter 4. Building a PIPE Command

This chapter contains a task oriented selection guide to some of the programs built into

CMS Pipelines. Once you know which stage you need, look up the syntax definition in the

inventory or in the online help. This chapter describes some device drivers and filters you

may consider to perform a given task.

Although you can type a complete pipeline specification as a command at your terminal, it

is often easier to write an EXEC to do a given function. Such an EXEC includes a pipeline

specification usually issued by the PIPE command. On CMS, the PIPE command should be

issued to the COMMAND environment (Address command); use the ATTACH environment

(Address Attach) or the LINK environment (Address link) on TSO. The EXEC can issue

additional CP and CMS (or TSO) commands to complement the pipeline function performed.

The return code from PIPE is the “worst” of the return codes received from each of the

stages. If any stage’s return code is negative, then the PIPE return code is the minimum of

all stages’ return codes; otherwise it is the maximum one.

Using Device Drivers to Get Data in and out of a Pipeline

The device drivers you should look at first have the same name as the device: disk,

console, punch, reader, and tape. Printer output is done with printmc; this reminds you

that carriage control is needed. Other device drivers read or write more exotic devices,

and some destinations are not devices at all: the stack, XEDIT, and (sub)command environ-

ments.

Reading and Writing CMS Files
Use disk to read or append to a CMS file on a minidisk or in the Shared File System.

The file is read when disk is first in the pipeline specification; otherwise the file is

appended. For reading, file name and type is the minimal specification. This suffices

when you wish to append to an existing file. (Use > if you wish to replace an existing

file; disk does not erase a file.) You may write a record format after the file mode. For

fixed format files you can also specify the record length. For a new file, the default is

variable format; it is ensured that an existing file is compatible with the format and record

length you specify. The following example shows one way to copy a file to another mini-

disk (making the new file variable record format). The syntax is good for FILELIST : the

output disk mode is the first argument; it is followed by the name, type, and mode of the

input file.

You can inadvertently append to a file by putting a stage in front of the one intended to

read the file; the combination of literal and disk is particularly alluring. To guard against

this, < is an entry point to disk that issues an error message if it is not first in the pipeline,

Figure 49. Copying a Minidisk File

/* copy a CMS disk file */
arg fmo fn ft fm .
if left(fmo,1)=left(fm,1)

then exit 0 /* copy to self? */
'pipe <' fn ft fm '| >' fn ft fmo
exit RC

 Copyright IBM Corp. 1986, 2020 29

 Using Device Drivers

thus ensuring that the file is always read. Conversely, > and >> must not be first in a

pipeline because the two programs replace a file and append to a file, respectively. When

using >, you must specify the file mode of the disk to receive the file. Note that a blank

character must delimit the command verb from the file name.

To update a file on CMS, it is possible to use < and > for the same file in a pipeline

specification. When the file exists, > writes a utility file and does not erase the existing

file before processing is complete. Figure 50 shows an example.

This processing is safe as long as the input file is completely read before > receives end-

of-file on its input. Using the secondary output stream from, for instance, take or drop can

cause the output file to be created too early. In such a case you can use buffer to ensure

that the file is read completely before being processed. When the file is too large to buffer

in storage, you must write a REXX program that creates a utility file and renames it after

the pipeline has completed. You can use the pipeline command COMMIT 1 in a subroutine

pipeline to test if all data transport has completed without error before you erase the

original file.

When replacing a large file, consider erasing the existing file before starting the pipeline if

the existing file is not needed to create the new file. This reduces the disk space required

because two copies do not exist when the new file is created. On the other hand, this has

potentially undesirable consequences for SFS files that are accessed through a mode letter;

refer to the usage notes for >.

You can read and write a file that is stored in the Shared File System (SFS) in two ways.

You can use the ACCESS command to access the directory as a mode letter and then refer

to the file using the mode letter or you can use the directory path directly without

accessing the directory first.

When you use a mode letter, CMS Pipelines uses the original minidisk interface to the file

system, even when the file is in SFS.

When you specify a directory path, CMS Pipelines uses the callable interface to SFS.

Figure 50. Updating a Minidisk File

 pipe literal a line | > a file a
►Ready;

 pipe < a file a | literal another line | > a file a
►Ready;

 pipe < a file a | console
►another line
►a line
►Ready;

Reading and Writing MVS Files
On z/OS these device drivers are used to access physical sequential data sets and members

of partitioned data sets:

30 CMS Pipelines User’s Guide and Reference

 Using Device Drivers

disk is also available on TSO; it behaves as < when it is first in a pipeline and as >> when

it is in other positions.

A data set can be specified in several ways:

By data set name: When the data set name is not enclosed in single quotes, TSO

Pipelines applies the prefix, if any has been set by the TSO command SET PREFIX. A

member name can be specified in parentheses after the data set name. These are ways to

read from a data set:

To replace a physical sequential data set or a member of a partitioned data set:

The data set must be cataloged when it is referenced by name.

By DDNAME: An already allocated data set can be referenced by its DDNAME. The

DDNAME is prefixed by the keyword DDNAME= or any abbreviation down to DD=. A

member can be specified in parentheses after the DDNAME. This usage is parallel to the

way members are specified with DSNAMEs.

The last line shows the “CMS-compatible” way to specify a member of a PDS that is

already allocated to a DDNAME. It reads the member C from the data set allocated to

ADMSYMBL. This follows the GDDM standard for the symbol set library.

< Read a file or a member.

> Rewrite a file or a member.

>> Append to a file. z/OS does not support appending to an existing member of a

partitioned data set.

Figure 51. Reading a z/OS Data Set

pipe < names.text | ...
pipe < 'sys1.maclib(time)' | ...

Figure 52. Replacing a z/OS Data Set

pipe ... | > names.text
pipe ... | > tso.log(test1)

Figure 53. Referencing a Data Set by DDNAME

pipe < ddname=rexx(tester)
pipe ... | > ddname=sysut1
pipe < c admsymbl | ...

OpenExtensions Text Files
. If OpenExtensions (called USS on z/OS) is available on your system, CMS Pipelines will

support it in several ways, in particular to read, append, and replace text files. A text file

contains lines that are terminated with the X'15' newline character.

To access such files, use the <, >>, and > device drivers as if there were nothing special

about the file. CMS Pipelines inserts line end characters when you write a file and it

deblocks the file automatically when you read it.

 Chapter 4. Building a PIPE Command 31

 Using Device Drivers

When reading or writing a hierarchical file, the argument is a single word or a quoted

string, which specifies the path to the file using the normal OpenExtensions conventions.

A path that begins with a forward slash (/) specifies the fully qualified path from the root

of the file system; a path that omits the leading forward slash is relative to the present

working directory.

To read the file sample.c from your current working directory on CMS and using the full

path:

The character count plus the line count should be equal to the file size as reported by

OpenExtensions.

On z/OS, sample.c is a perfectly valid name for a sequential data set, whereas

john/sample.c is not a valid name for a z/OS sequential data set. Thus, if the word

contains a forward slash, it is taken to be an OpenExtensions path. Clearly, the full path

from the root contains a leading forward slash and will always be interpreted as a refer-

ence to an OpenExtensions file. You can always construct a path from the current working

directory that contains a forward slash by prefixing ./, which makes the path explicitly

relative to the current working directory:

OpenExtensions file names may contain blanks. To support this, CMS Pipelines supports

enclosing the path in quotes. On CMS, you can use single quotes or double quotes, as you

find most convenient, but on z/OS you must use double quotes, because single quotes

denote a fully qualified data set name:

CMS Pipelines also provides device drivers to read and write binary files in an

OpenExtensions file system; refer to hfs. See also hfsdirectory, hfsquery, hfsstate, and

hfsxecute.

Figure 54. Reading OpenExtensions Files on CMS

 pipe < sample.c | count characters lines | console
 pipe < /u/john/sample.c | count characters lines | console

Figure 55. Reading OpenExtensions Files on z/OS

 pipe < ./sample.c | count characters lines | console
 pipe < /u/john/sample.c | count characters lines | console

Figure 56. Writing File with Blank

 pipe literal a blank file|> "a blank file"

 Libraries
CMS Pipelines can write information about the contents of a partitioned data set into the

pipeline (that is, information from the directory); and it can write the contents of specified

members into the pipeline.

listpds writes an output record for each member of a partitioned data set. On CMS, the file

name and file type of the library are specified; on TSO, the data set name or DDNAME is

specified.

32 CMS Pipelines User’s Guide and Reference

 Using Device Drivers

The first eight bytes of each output record contain the member name; the remainder of the

record is undefined as far as CMS Pipelines is concerned. The double quotes represent

unprintable binary data.

members reads specified members from a partitioned data set. It can read the names of

members to process from its input as well as processing the members specified on its

parameter list. This example shows reading a member of a z/OS partitioned data set:

This example shows that members can read the member list from its input.

Figure 57. Reading a PDS Directory into the Pipeline on CMS

pipe listpds pipident maclib | console
►describe""""""""
►PGMID """"""""
►CALL """"""""
►Ready;

Figure 58. Reading Members of a PDS into the Pipeline

 pipe literal j | members dd=sysexec | console
►/* J EXEC */ parse arg file
►address link
►'PIPE <' file '|menuctl /'file'/ edit'
►exit rc
►READY

Typing on the Terminal
Another device driver you often need reads from and writes to the console of your virtual

machine (your terminal). Like disk, it reads when first in the pipeline, and writes in other

positions. Figure 59 shows how disk and console are combined to make the equivalent of

the CMS TYPE command.3

You can combine device drivers to copy a data stream to several devices or files. In this

example, the data are copied to the console as well as to the file “A B” on disk C:

Figure 59. TYPE

 pipe disk small exec | console
►/* This is a small Exec */
►signal on novalue
►say 'Bye...'
►Ready;

Figure 60. Simplistic TYPE Command

/* type command */
'pipe disk' arg(1) '|console'
exit RC

3 This file is also used as the input file in the xlate examples in “Translate Characters” on page 44.

 Chapter 4. Building a PIPE Command 33

 Using Device Drivers

console reads lines you type on the terminal when it is first in the pipeline specification.

console stops reading when you enter a null line (just hit enter); this line is discarded.

Note: z/OS users should note that console reads and writes to the log on terminal; CMS is

indeed a “master console operator” application in the sense that it is the program that is

IPLed in the virtual machine. On TSO, console cannot access a z/OS console; nor does it

issue WTO macros to the master console (it uses route code 11 to write to the programmer

when the PIPE command is invoked directly from JCL). Use the synonym terminal if you

find that a more appropriate name.

Figure 61. Strange TYPE Command

/* strange type command */
'pipe disk' arg(1) '|console|disk a b c'
exit RC

Injecting Data into the Pipeline
Generate a record inside the pipeline with literal. It writes its arguments as the first record

and then shorts itself out to copy any input to the output without modification. Thus, a

cascade of literal stages generates records in the reverse order of the stages:

Figure 62. literal Example

 pipe literal first|literal second | console
►second
►first
►Ready;

Console Stack (External Data Queue)
Use stack to put lines on the console stack; an option specifies whether the lines are put at

the front (LIFO) or at the end of the queue (FIFO).

There are two ways to read from the console stack when the device driver is first in the

pipeline. Use console to read lines until a null line is read; use stack to read as many lines

as there are on the stack.

Using Virtual Unit Record Devices (VM/CMS)
reader reads files in your virtual reader. By default, it reads the first file it can find in

your reader. Use the keyword FILE to read a specific file, or put the file up front with the

CP command ORDER. Figure 63 on page 35 shows how to read a SPOOL file and type it

on the console.

34 CMS Pipelines User’s Guide and Reference

 Using Device Drivers

The first word of the command (PIPE) is upper case because the default command environ-

ment has been set to COMMAND, which makes the case of CMS commands important. spec

removes the carriage control character from the beginning of each record. Further note

that records that have carriage control X'03' (no operation) are included in the data typed.

The first line is the tag of the SPOOL file.

Figure 64 shows how to print a file already containing machine control characters, for

instance SCRIPT output:

Lines read by reader can be written back to SPOOL with printmc without further processing

if the SPOOL file is a printer file:

Figure 63. Unfiltered TYPE

/* peek a file */
parse arg sfid .
address command
'CP CLOSE RDR'
'CP SP RDR HOLD NOCONT'
'PIPE reader file' sfid '|spec 2-* 1|console'
'CP SP RDR NOHOLD'
exit RC

Figure 64. Print a File with Machine Carriage Control

/* Prints upright on A4 on the 3800 on MVS */
signal on novalue
parse arg fn ft fm .
ft=word(ft '3800', 1)
address command
'IDENTIFY(LIFO'
parse pull . . node .
If left(node,5),='CPHVM'
 Then
 Do

say 'Modify 3800 EXEC with your own',
'SPOOL and TAG info.'

 exit 12
 end
'CP SP E RSCS NOCONT PURGE NOHOLD CLASS A',

'DIST XAIXB269 FCB S8',
'FORM STD. CHAR IT12 IB12'

'CP TAG DEV E CPHMVS1 SYSTEM 50 SYSOUT=4 OPTCD=J'
'PIPE',

' <' fn ft fm, /* Read file */
'| unpack', /* In case packed */
'| xlate 3-* c0 8b d0 9b', /* Curlies */

 '| printmc' /* Print */
r=RC
'CP CLOSE E NAME' fn ft
exit r

 Chapter 4. Building a PIPE Command 35

 Using Device Drivers

The pipeline specification in Figure 65 copies the reader file to a copy on the printer (if all

CCW operation codes are valid for the output device), except that the tag of the reader file

appears as an additional no operation record in the printer SPOOL file. (See Figure 166 on

page 79 for a command that retains the tag.)

Figure 66 shows how to punch a file:

Figure 65. Naive 1 8p7

/* Copy Reader File to Printer */
'pipe reader|printmc'

Figure 66. Simplistic Command to Send a File.

/* Simplistic sendfile */
arg node user file
call diag 8, 'SP D RSCS PURGE NOHOLD NOCONT CL A'
call diag 8, 'TAG DEV D' node user
'pipe disk' file '| chop 80 | punch'
call diag 8, 'CLOSE D NAME' subword(file, 1, 2)
exit RC

 MVS SPOOL
In a batch job, TSO Pipelines can read a SYSIN data set by specifying its DDNAME to <.

But TSO Pipelines is unable to read data sets that have been sent with XMIT to you directly

from SPOOL, because the underlying interface to read the SPOOL file requires the task to be

authorised.

You can create a SYSOUT data set in two ways. You can allocate the data set and use

DDNAME= with >; or you can use sysout to allocate the data set dynamically.

For those with a CMS bent, printmc and punch are synonyms for sysout. printmc expects

the input records to have machine carriage control (like RECFM=VM); whereas punch

assumes that no carriage control is present (like RECFM=V).

 Accessing Variables
CMS Pipelines can access the variable pools in REXX, EXEC2, and CLIST programs. We

recommend that you use REXX programs and on TSO issue the PIPE command by Address
Attach.

Use stem to read and write variables in the program that calls CMS Pipelines. As with

EXECIO, <stem>0 is set to the count of records and <stem>n (where n is a positive

number) contains the nth individual record. Figure 67 shows how to load a file into a

stemmed array beginning with file.1.

stem is handy to run subroutines as pipelines without going via the stack or a file.

Figure 68 on page 37 shows how to sort the contents of REXX variables. The count of

records in the array with stem unsorted. must be stored in the variable unsorted.0

Figure 67. Loading a File into a Stemmed Array

/* Load file into stem */
'pipe < some file | stem file.'

36 CMS Pipelines User’s Guide and Reference

 Using Device Drivers

before running the pipeline. The period after the stem name indicates the use of a

stemmed array. No period is added by stem; this means that stem can also be used with

EXEC2 or CLIST.

It is possible to read and write the same variables in a pipeline with two stem stages that

refer to the same stem. This is safe as long as there is a buffering stage (for instance,

sort) or no records are added to the file in the pipeline, but it is better to be safe and write

to a different stem unless the file is so large that two copies cannot fit in storage.

The device driver var reads the contents of a single variable into the pipeline when it is

first in a pipeline. When var is not a first stage, it loads the first record into the variable

and copies all input to any following stage; the variable is dropped if there is no input.

The filter spec will be described later; as used here, it converts the record from the internal

. IBM System/390* hexadecimal floating point representation (eight bytes) to a character

string that contains the number in scientific notation. After conversion the contents of the

variable can be processed by REXX.

Refer to varset for a way to set many variables that are not a stemmed array that has

consecutive numeric subscripts. varfetch reads variables from the REXX environment; the

names of the variables are specified in varfetch’s input. vardrop drops variables.

Figure 68. stem Example

/* Sorting the contents of stemmed array */
address command 'PIPE',

'stem unsorted. | sort | stem sorted.'

Figure 69. Using var

/* convert from 8-byte floating point */
'PIPE var cpu2busy | spec 1-* c2f | var cpu2busy'

Using Device Drivers to Read Data into the Pipeline Downstream
If your REXX program has two stemmed arrays that you wish to sort into one, you cannot

use a cascade of stem stages to read the variables because the second stem would not be a

first stage and thus it would replace the second array with the contents of the first one.

Though the general solution is to use multistream pipelines, two built-in control stages,

preface and append, let you run a device driver as a first stage somewhere downstream in

the pipeline.

The first stem in Figure 70 reads the stemmed array as described in “Accessing Variables”

on page 36. append copies the primary input stream to the primary output stream and

then runs the argument stage, connected to the primary output stream. The input to the

argument stage is not connected; it is a first stage and does read the stemmed array.

Figure 70. Using append

/* Sort two stemmed arrays into one */
'PIPE',

'| stem first.',
'| append stem second.',

 '| sort',
'| stem sorted.'

 Chapter 4. Building a PIPE Command 37

 Using Device Drivers

preface runs the argument stage before it copies the primary input stream to the primary

output stream.

preface and append run the arguments in the REXX environment in effect when they are

invoked irrespective of the number of REXX programs in the pipeline.

You can also use < with append to concatenate two files:

Figure 71. Using append with Files

/* Catenate two CMS files */
arg fn1 ft1 fm1 fn2 ft2 fm2 fn3 ft3 fm3 .
address command
'PIPE',

'| <' fn1 ft1 fm1,
'| append <' fn2 ft2 fm2,
'| >' fn3 ft3 fm3

exit RC

/* Catenate two MVS files */
arg fn1 fn2 fn3 .
address link
'PIPE',

'| <' fn1,
'| append <' fn2,
'| >' fn3

exit RC

Another Way to Read a File
If the names of the files are already in the pipeline, you can use getfiles to read the

contents of the files named in its input records. You can also use literal to put the names

of the files into the pipeline if they are not there already. Note the order of the two literal

stages in the next example; the record from the last one arrives first at the following stage.

The last example shows how to concatenate the contents of a variable number of files on

z/OS. The split stage makes one record for each blank-delimited word in the argument

string.

Figure 72 (Page 1 of 2). Reading Two or More Files into the Pipeline

/* Catenate two CMS files */
arg fn1 ft1 fm1 fn2 ft2 fm2 fn3 ft3 fm3 .
address command
'PIPE',

'| literal' fn2 ft2 fm2,
'| literal' fn1 ft1 fm1,

 '| getfiles',
'| >' fn3 ft3 fm3

exit RC

38 CMS Pipelines User’s Guide and Reference

 Issuing Commands

Figure 72 (Page 2 of 2). Reading Two or More Files into the Pipeline

/* Catenate two MVS files */
arg fn1 fn2 fn3 .
address command
'PIPE',

'| literal' fn2,
'| literal' fn1,

 '| getfiles',
'| >' fn3

exit RC

/* Catenate many MVS files */
arg output rest
address command
'PIPE',

'| literal' rest,
 '| split',
 '| getfiles',

'| >' output
exit RC

 Issuing Commands

Several device drivers issue commands and provide the response as their output, a line at a

time. These device drivers issue the argument string, if any, as the initial command; the

primary input stream is then read and a command is issued for each line.

Other device drivers issue commands without trapping the response; these are useful to

invoke programs that use full screen mode, for instance XEDIT.

If the primary output stream from cp, command, cms, or tso, is not connected, the output

from the command is discarded. Thus, this allows a way to issue commands and suppress

any error messages that might otherwise have been issued.

When the host command interfaces are used without a secondary output stream, they

aggregate the return codes from the individual commands and provide this aggregate as

their return code. CP return codes are zero or positive; a return code of 1 indicates an

unknown CP command; for other return codes, the aggregate is the maximum return code.

For CMS, if any return code is negative, the aggregate of the return codes is the minimum

return code; otherwise the aggregate return code is the maximum of the return codes.

The built-in programs to issue host commands support a secondary output stream. When

the secondary output stream is defined, the program writes the return code received on a

command to this stream after the output from the command (or the command itself) has

been written to the primary output stream. The return codes can be aggregated by passing

them to aggrc. When the secondary output stream is defined, the return code from the

host command interface is zero unless the program itself detects an error. You cannot

specify an initial command as the argument when the secondary output stream is defined.

 Chapter 4. Building a PIPE Command 39

 Issuing Commands

 CP
The device driver cp sends commands to the Control Program (CP) and writes the response

to the pipeline. If an argument string is present, it is issued first; then the primary input

stream is read and issued.

CP command names are in upper case; giving CP a command whose name is in lower case

results in return code 1 (unknown CP command). To help you, cp inspects the first word

of each command before it is issued; if the word is all upper case, cp issues the command

as you have written it, possibly with mixed case arguments. If the first word of the

command is completely or partly in lower case, cp translates the complete command to

upper case before issuing it to CP. This is why the first line in Figure 73 shows the

response to the QUERY command; the second example is interpreted by CP as a request to

look for the user logged in as “files” in lower case. The last example shows how to issue

multiple commands.

It is seldom useful to cascade cp device drivers because the output of the first cp device

driver would be interpreted as commands by the second instance of cp, and you would

most likely just see a return code of 1 indicating that the line is not a valid CP command.

However, the response to a CP command is often used to build another CP command;

Figure 74 shows how to close a punch and put the resulting SPOOL file first in the reader

queue.

For a QUERY command, the response buffer is extended automatically to accommodate the

length of the reply. For example, you need not worry about the number of reader files in

your reader when you process the response to QUERY RDR * ALL. The default length of the

response buffer is 8K for commands other than QUERY; put a number as the first argument

to cp to use a different size for the buffer. The number specifies the number of bytes to

allocate to the buffer to make it larger (or indeed smaller) than the default 8K buffer.

Figure 73. Example of the CP Device driver

 pipe cp q files | console
►FILES: NO RDR, NO PRT, NO PUN
►Ready;

 pipe cp Q files | console
►Invalid option - files
►Ready(00003);

 pipe literal Q 00C | cp Q FILES | console
►FILES: NO RDR, NO PRT, NO PUN
►RDR 000C CL * NOCONT NOHOLD EOF READY
► 000C 2540 CLOSED NOKEEP NORESCAN SUBCHANNEL = 0001
►Ready;

Figure 74. Building a Command from a Response

cp spool d to *
pipe < profile exec | punch
pipe cp close d | spec /order rdr / 1 10.4 next | cp

40 CMS Pipelines User’s Guide and Reference

 Issuing Commands

 CMS
cms and command issue CMS commands and intercept the response normally written to the

terminal. cms is recommended for casual work because it issues commands with the

search order you are used to when you type CMS commands on your terminal. This is

equivalent to Address CMS in REXX. Figure 75 shows an example.

CMS forwards unrecognised commands to CP. Thus, cms can be used to issue CP

commands, but the response is written to your terminal by CP; use cp to issue CP

commands when you wish to process the response. On the other hand, use subcom CMS to

issue CMS commands without trapping the CMS response.

command issues the command in the same way that Address COMMAND in REXX does; the

argument string and input lines to command should be upper case unless you wish to

manipulate objects with names in mixed case. Figure 76 shows how to create and erase a

file with a mixed case name.

Figure 75. CMS Example

 pipe cms query impcp | xlate lower | console
►impcp = on
►Ready;

Figure 76. command Examples

 pipe command RENAME LOAD MAP A load = =
►Ready;

 listfile * map
►load MAP A5
►Ready;

 erase load map
►DMSERS002E File LOAD MAP not found
►Ready(00028);

 pipe command ERASE load MAP A
►Ready;

 listfile * map
►DMSLST002E File not found
►Ready(00028);

 TSO
The command device driver issues TSO commands without trapping the command response.

It produces no output on the primary output stream. The tso device driver issues TSO

commands while trapping the response (to the extent that the REXX function OUTTRAP can

trap a response).

 Chapter 4. Building a PIPE Command 41

 Issuing Commands

The first command in the example shows that the response is written directly to the

terminal by TSO. The count stage does not receive any records from command and thus

writes 0 to its output. In the second example, the response is indeed intercepted; we do

not see it on the terminal. The number 1 indicates that one line was written into the

pipeline where it was counted by count.

Figure 77. Issuing a TSO Command

 pipe command time | count lines | console
►TIME-05:49:19 PM. CPU-00:00:00 SERVICE-6297 SESSION-00:49:33 OCTOBER 14,1992
►0
►READY

 pipe tso time | count lines | console
►1
►READY

 Subcommand Environments
subcom directs the commands to a specified subcommand environment and copies the

command to the output; in general, it is not possible to trap responses from subcommand

environments. It is unspecified which subcommand environments are available; some envi-

ronments on CMS may not support standard CMS parameter lists and may cause CMS fail-

ures if invoked with standard parameter lists.

Use subcom CMS to issue CMS commands without intercepting console output.

The pipeline specification in Figure 78 issues the STATE command for each file mentioned

in a file with file type FILELIST, issuing error messages for files that do not exist.

change prefixes the command to the file identifier.

On TSO, the TSO subcommand environment issues TSO commands:

The example above shows that the command specified as the argument string is not copied

to the output; the response is displayed on the terminal, and the count of lines written into

the pipeline is zero.

Figure 78. Using subcom to Issue CMS Commands

/* Ensure all files in a filelist are present */
parse arg fn .
'PIPE <' fn 'filelist|spec ,STATE, 1 w1.3 nw|subcom cms'
exit RC

Figure 79. Yet another Way to Issue a TSO Command

 pipe subcom tso time | count lines | console
►TIME-06:51:35 PM. CPU-00:00:01 SERVICE-15494 SESSION-01:51:49 OCTOBER 14,1992
►0
►READY

42 CMS Pipelines User’s Guide and Reference

 Issuing Commands

Obtaining CP Messages and other Console Output
This is a specialist item; skip to the next section unless you are interested in programmable

operators.

starmsg connects to the message system service provided by CP to intercept console output.

Each output line from starmsg has a 16-byte prefix, which contains the message class and

the name of the originating virtual machine; this is followed by the message or response

from CP.

starmsg operates differently when it is first in a pipeline and when it is not first in a pipe-

line. When it is not first in a pipeline, it will terminate when it reaches end-of-file on its

input; use this form to implement clients. When it is first in a pipeline, it will continue

waiting for messages until it is terminated by a command or its output is severed; use this

form to implement servers.

When starmsg is not a first stage, it issues each input record as a CMS command and

terminates when it reaches end-of-file. To issue a single command and trap the response,

both from CP and CMS:

If it is present in the argument, a command is issued immediately after starmsg is

connected to the system service; this ensures that all output from a command can be

trapped. starmsg cannot determine when the command is complete; you must make

starmsg stop somehow if it is first in the pipeline.

When a command ends with a message, for instance “Command complete”, it may be

possible to use tolabel to stop at this point; the line is discarded. Note that no CMS ready

message is issued since the PIPE command is still running; use the Say REXX instruction at

the end of a command procedure to write a line that can be used to stop processing.

Figure 81 on page 44 shows an example that invokes a command procedure to issue both

CP and CMS commands; the response is stored in a file. The command “complex” issues a

complex set of CP and CMS commands; it writes “Done?” to the terminal when complete.

Figure 80. Issuing a Single Command, Trapped

set cpconio iucv
set vmconio iucv
pipe literal release z (det | starmsg | > release response a
set cpconio off
set vmconio off

 Chapter 4. Building a PIPE Command 43

 Using Filters

starmsg sets up an immediate command (HMSG by default); you can issue this command to

stop the stage. Another way to stop an asynchronous pipeline is to issue the command

PIPMOD STOP to CMS; you can do that with an immediate command or from a filter written

in REXX. This terminates all stages waiting for an external event.

Figure 81. Connecting to the Message Service

/* Run command in general storing response */
Address command
'CP SET MSG OFF'
'CP SET CPCONIO IUCV'
'CP SET VMCONIO IUCV'
'PIPE',

'starmsg complex |',
'tolabel' right(5, 8, 0) || left(userid(), 8)'Done?|',
'> gen data a'

r=RC
'CP SET MSG ON'
'CP SET CPCONIO OFF'
'CP SET VMCONIO OFF'
exit r

 Using Filters

Programs that process data in the pipeline without reference to a host interface are called

filters. These functions are typical examples of tasks performed by filters:

¹ Translate characters, mapping one character to another.

¹ Count characters, words, and lines.

¹ Edit the record to rearrange its contents.

¹ Change the record format and transform between CMS and formats used in other oper-

ating systems.

¹ Select records. You can select records that start with a given string in the same way

as the FIND XEDIT subcommand, or ALL XEDIT subcommand. Other filters emit the

records that do not match rather than the matching ones.

There are others; sort is a distinguished example of the remaining filters.

 Translate Characters
xlate replaces each character with another one based on the mapping in a translate table.

This is useful, for instance, to change the collating sequence or to blank out unwanted

delimiter characters. Translation can be restricted to specified input ranges. The translate

table is built by modification to an initial table, the neutral one by default; other initial

tables are selected by keyword.

Figure 82 shows how to translate the complete record to upper case.

The following xlate examples operate on the file shown in Figure 59 on page 33.

Figure 82. Hello, world! Pipeline

 pipe literal Hello, world|xlate upper|console
►HELLO, WORLD
►Ready;

44 CMS Pipelines User’s Guide and Reference

 Using Filters

To translate selected positions only:

Figure 83 shows how to specify two column ranges. Characters within the specified

ranges are translated to upper case. Note that ranges may be written in any order and that

an asterisk (*) identifies the beginning or the end of the record, as appropriate. A hyphen

(-) separates the begin and end column of a range; use a period to append a column count

to the begin column number. To reverse the case:

The opposite of xlate UPPER is shown in Figure 85.

Translation is performed in the order column ranges are written. All or part of a record

can be translated more than once; this is noticeable when the translation has no closure:

Here the first 10 columns are translated twice, and the letters go back to their original case.

The neutral translate table is used when no keyword is specified, as in this example

removing special characters:

Figure 83. Translating Selected Positions to Upper Case

 pipe disk small exec | xlate (10.5 *-5) upper | console
►/* THis iS A Small Exec */
►SIGNAl on NOVAlue
►SAY 'Bye...'
►Ready;

Figure 84. Reverse Translation

 pipe disk small exec | xlate upper A-Z a-z | console
►/* tHIS IS A SMALL eXEC */
►SIGNAL ON NOVALUE
►SAY 'bYE...'
►Ready;

Figure 85. xlate LOWER

 pipe disk small exec | xlate lower | console
►/* this is a small exec */
►signal on novalue
►say 'bye...'
►Ready;

Figure 86. Double Translation

 pipe disk small exec | xlate (1-* 1.10) upper A-Z a-z | console
►/* This is A SMALL eXEC */
►signal on NOVALUE
►say 'Bye...'
►Ready;

 Chapter 4. Building a PIPE Command 45

 Using Filters

It is a good idea to use an explicit input range when the default translate table is used.

This ensures that the first item of the translation specification is not taken to be a single

column range:

The first token is interpreted as a desire to translate the contents of columns 1 to 80 inclu-

sive, though the intent was to translate that range to blank characters.

Figure 89 shows a transliteration of the lower case letters. Upper case letters are not

affected. The simpler specification a-y b-z z a is not used because the “holes” in the

EBCDIC collating sequence would turn i and r into characters that are not letters.

Figure 87. Remove Special Characters

 pipe disk small exec | xlate 1-* 00-80 40 | console
► This is a small Exec
►signal on novalue
►say Bye
►Ready;

Figure 88. Example of xlate Error

 pipe disk small exec|xlate 01-80 40 | console
►Odd number of translate pairs
►... Issued from stage 2 of pipeline 1
►... Running "xlate 01-80 40"
►Ready(00053);

Figure 89. Caesar Cipher

 pipe < small exec|xlate a-y b-z i j r s z a | console
►/* Tijt jt b tnbmm Eyfd */
►tjhobm po opwbmvf
►tbz 'Bzf...'
►Ready;

 Counting
count counts the amount of data in the input stream. It counts characters, words, and lines.

The result is a single record, which is written to an output stream. The result is written to

the secondary output stream, if defined. Input lines are copied to the primary output

stream when the secondary output stream is defined.

The xlate stage turns all special characters into blanks. The counts are always in the order

characters, words, and lines irrespective of the order in which the options are specified.

Figure 90. count Example

 pipe < pipeug script | count characters words | console
►108400 17989
►Ready;

 pipe < pipeug script | xlate 1-* 40-7f blank | ...
... count characters words lines | console

►108400 19098 4282
►Ready;

46 CMS Pipelines User’s Guide and Reference

 Using Filters

Editing and Conversion
Two filters, change and spec change the contents of a record. change replaces occurrences

of one string with another one. spec reorders fields, converts data, and inserts literal data

and line numbers.

 change
change works like the CHANGE XEDIT subcommand; as in Figure 78 on page 42, it is

often used to put a literal in front of each line.

The default, however, is to change all occurrences; specify the maximum number of substi-

tutions after the change string specification.

Figure 91 shows how to change all occurrences of the letter “l” to five asterisks and how

to remove “ll”. You see that the default scope is the complete record.

In Figure 92, only the first l is changed; a range is specified in the second part. This is

similar to the ZONE XEDIT subcommand setting, but you can have more than one range in

parentheses (not shown).

change ANYCASE supports mixed case change strings. That is, the twenty-six letters are

compared irrespective of their case when change looks for a string to replace. If the first

string contains no letters or contains one or more upper case letters, the second string

replaces occurrences of the first string without further change. When the first string is in

lower case, change tries to preserve the case of the string being replaced:

Figure 91. change

 pipe disk small exec | change /l/*****/ | console
►/* This is a sma********** Exec */
►signa***** on nova*****ue
►say 'Bye...'
►Ready;

 pipe disk small exec | change /ll// | console
►/* This is a sma Exec */
►signal on novalue
►say 'Bye...'
►Ready;

Figure 92. More change

 pipe disk small exec | change /l// 1 | console
►/* This is a smal Exec */
►signa on novalue
►say 'Bye...'
►Ready;

 pipe disk small exec | change 10-* /l// | console
►/* This is a sma Exec */
►signal on novaue
►say 'Bye...'
►Ready;

 Chapter 4. Building a PIPE Command 47

 Using Filters

Figure 93. change ANYCASE

 pipe literal The flower and the bee | change anycase /the/any/ | console
►Any flower and any bee
►Ready;

 spec
spec has evolved into a program that is rich in function; so much that it has been given

two separate chapters in this book. (Chapter 16, “spec Tutorial” on page 166 and

Chapter 24, “spec Reference” on page 719.) Here we show the original simple form of

spec, which is still useful in its own right.

As used originally, spec builds an output record for each input record. The output record

contains one or more fields, which can contain literal data or data from a field of the input

record. The specification list (from which spec got its name) consists of pairs of input and

output specifications:

... | spec <input-1> <output-1> <input-2> <output-2> | ...

For each input record, spec goes through the specification list and performs the actions

specified. By the time it reaches the end of the list, it has built the output record.

There is no arbitrary upper limit on the number of items in a specification list.

To put the contents of the input record into the output record at column 11:

This specification list contains one pair of input and outputs. The input range (1-*) repres-

ents the entire input record beginning in column 1 and extending to infinity (the asterisk is

idiomatic for the largest integer that the computer can handle). spec does not pad the input

record; it takes the shorter of the actual record and the range specified. It puts the input

field into the output record starting at column 11 and fills the unspecified part of the output

record with blanks. Again, it does not pad the output record beyond the area filled by the

input field.

To prefix the contents of each input record with a literal that is repeated in all output

records:

In this example, the literal field, which is specified between the two slashes, is inserted into

the beginning of the output record followed by the contents of the input record (1-*). The

keyword NEXT specifies that the field should be appended to the rightmost character

inserted into the output record so far.

Figure 94. Shifting the Input Record

 pipe literal abcd | spec 1-* 11 | console
► abcd
►Ready;

Figure 95. Prefixing a Literal

 pipe literal abc | spec /Input: / 1 1-* next | console
►Input: abc
►Ready;

48 CMS Pipelines User’s Guide and Reference

 Using Filters

Literal fields are delimited by a special character, which is traditionally a forward slash (/).

The delimiter character is deleted when the field is inserted in the output record.

For example, spec can can be used to prefix a record with an identification of its origin as

in Figure 96. The file name, type, mode, and record number are prefixed to each input

record.

This is done by putting three literal fields containing the file name, file type, and file mode

into columns 1, 10, and 20, respectively; the record number into columns 25 through 34;

and finally appending the contents of the input record in column 41 onward:

The specification list in Figure 96 contains five items:

1. A literal to insert the file name into column 1 and onward.

2. A literal to insert the file type into column 10 and onward. If the file name is shorter

than nine characters (which one would expect), the slack is filled with blanks. Should

the variable fn contain more than ten characters, the eleventh character and onward

will be overlaid by the file type.

3. A literal to insert the file mode into column 20 and onward.

4. A reference to the current record number (NUMBER) to insert this into columns 25

through 34. The record number is an internal variable, which spec maintains. It is

incremented each time spec returns to the beginning of the specification list.

5. A reference to the entire input record, which is inserted into column 41.

A forward slash (/) is used to delimit the literal fields because it is not a valid character in

a file name and thus should not occur in the literal data itself (unless the files are

OpenExtensions files). A hyphen in an input range indicates that the field is specified as

the beginning and ending column. You can use a period instead of a hyphen to specify the

number of columns in a field rather than its ending column.

A field of the input record can be specified as beginning or ending relative to the end of

the record rather than the beginning. (Or both beginning and ending relative to the end of

the record.) Put a minus sign in front of the column number to make it relative to the end

of the record. You must specify a beginning and ending column number separated by a

semicolon when using this notation. There is no provision for a column count in this

format.

Figure 96. Using spec to Identify Records of a File

/* Prefix Identification */
'pipe',

'disk' fn ft fm '|',
'spec /'fn'/ 1 /'ft'/ 10 /'fm'/ 20 number 25 1-* 41|...

Figure 97. spec Relative to the End of a Record

 pipe literal abcdefg ab abc | split | spec 2;-2 1 | console
►bcdef
►
►b
►Ready;

 Chapter 4. Building a PIPE Command 49

 Using Filters

Figure 97 shows a target that is relative both to the beginning and end of a record; the

first and last character are removed from each record. A record with two characters or less

becomes a null record, because spec ignores fields that have zero or negative lengths.

When the field is ignored, the output record is not padded to the position where the field

would have gone if it were not null.

Finally, Figure 98 shows how to replace the null string with five asterisks. Note the

difference between spec and change in the last record. spec inserts the string in the last

record as well; change does not because the last record does not extend to the column

range.

Figure 98. change and spec Examples

 pipe < small exec | change 15-* //*****/ | console
►/* This is a s*****mall Exec */
►signal on nova*****lue
►say 'Bye...'
►Ready;

 pipe < small exec | spec 1.14 1 ,*****, next 15-* next | console
►/* This is a s*****mall Exec */
►signal on nova*****lue
►say 'Bye...'*****
►Ready;

 pipe < small exec | spec 1.14 1 ,*****, 15 15-* next | console
►/* This is a s*****mall Exec */
►signal on nova*****lue
►say 'Bye...' *****
►Ready;

Specifying Input Ranges
You have seen in the previous sections several ways to bring a filter to operate on part of

the input record. In the syntax diagrams in the reference part of this book, you will see

such expressions referred to as inputRange.

The specification of an input range grew from the simplistic range you can specify with

the COPYFILE command. With COPYFILE (SPEC, you could specify only the first and the

last column of a range. Thus, COPYFILE ranges are always specified relative to the begin-

ning of the record.

In contrast, CMS Pipelines allows you to specify an input range relative to either the

beginning or to the end of the record. A range that is relative to the end of the record is

specified with a leading hyphen (-). And you can specify more than just a column count:

 ¹ Blank-delimited words.

 ¹ Tab-delimited fields.

If you prefix the range with the keyword WORD, the number(s) specify words, which are

separated by one or more blanks.

50 CMS Pipelines User’s Guide and Reference

 Using Filters

You can even specify a different word separator character if you prefix the WORD keyword

with the keyword WORDSEPARATOR and then specify which character you want used to

delimit words. This can be useful when you want to treat a run of delimiter characters as

a single delimiter:

Tab-delimited fields are very similar to blank-delimited words; the difference is that two

consecutive field separators specify a null field. By default, the field separator is X'05',

the horizontal tab character. You will probably change the field separator more often than

you change the word separator:

This may be complex already, but you will soon find yourself wishing to extract the

second character of the third word:

You can even take the substring of a substring, and so on ad infinitum. (See Figure 145

on page 69)

Figure 99. Selecting Words

 pipe literal Such a fine day. | spec word 3 1 | console
►fine
►Ready;
 pipe literal Such a rainy day. | change word -2 /rai/sun/ | console
►Such a sunny day.
►Ready;

Figure 100. Specifying a Word Separator

 pipe literal a***b***c | spec wordsep * word 2 1 | console
►b
►Ready;

Figure 101. Specifying a Field and a Field Separator

 pipe literal a***b***c | spec fieldsep * field 4 1 | console
►b
►Ready;

Figure 102. Selecting a Substring of an Input Range

 pipe literal What a rum fellow. | spec substr 2 of word 3 1 | console
►u
►Ready;

 Selecting Records
Several built-in programs select records based on the contents of the records and the argu-

ments specified. To select records based on their contents, there are filters that work like:

¹ REXX built-in functions Abbrev and Verify.

¹ XEDIT subcommands Find, NFind, and Locate
¹ COPYFILE options FRlabel and TOlabel.

 Chapter 4. Building a PIPE Command 51

 Using Filters

 Overview
take, drop, frlabel, and tolabel partition the data stream by deleting or copying records to

or from a specified position in the data stream. between, inside, notinside, outside, and

whilelabel do this for ranges of records based on leading characters.

all, asmfind, asmnfind, find, nfind, locate, nlocate, and unique select individual records

based on contents.

Four built-in programs require a selection stage as their argument string. These programs

(or prefixes) modify the behaviour of the specified selection stage. This concept may be

slightly mind-boggling at first, but you will soon see examples of their use.

casei is specified as a prefix to a selection stage to make the selection stage disregard case

while it performs its operation, for example to select records that contain a character string

irrespective of the case. zone is specified as a prefix to a selection stage that does not

support a column range otherwise; a specified range of each record is tested rather than the

beginning of the record. casei and zone prefixes can be combined to perform the

composite operation; the order of the prefixes does not influence which records are

selected.

Be sure to use the selection stage’s own facilities for caseless operation and input ranges,

if it supports such; this will be more efficient and you are likely to find more facilities than

are offered by casei and zone.

frtarget and totarget are also specified as a prefix to a selection stage. frtarget selects

records starting with the first one that is selected by the selection stage; totarget selects

records up to (but not including) the first record selected by the argument stage. Thus,

frtarget and totarget partition the file even if the specified selection stage does not.

All selection filters operate like a railway junction; each record is sent to the primary

output stream or the secondary output stream, depending on whether the contents of the

record satisfy a condition specified as a parameter to the filter. Though definitely useful

(see “Decoding Trees” on page 82), the secondary pipeline is not defined most of the time;

records destined for it are then discarded. In this chapter, however, we are only concerned

with what happens on the primary pipeline.

Selecting Individual Records
Suppose you wish to find in an ASSEMBLE program all lines that have the operation code

PIPERM. “all/ PIPERM /” is an XEDIT subcommand to do this while editing a file. With

CMS Pipelines, you can select those lines in this way:

This locate stage selects all records that somewhere contain the string between the forward

slashes (/). You get at least all lines with the operation code PIPERM because an operation

code must have at least one blank character on each side.

locate supports only one string; use all to select lines that contain one of several strings, or

contain several strings.

Figure 103. locate Example

/* Find error messages */
'PIPE disk myprog assemble | locate / PIPERM / | console'

52 CMS Pipelines User’s Guide and Reference

 Using Filters

The exclamation sign specifies that a record is selected if one or both of the strings is

contained within it.

find selects records where the leading string is equal to the parameter. As with XEDIT,

blank characters in the argument correspond to positions to be ignored during the compar-

ison, and underscores are positions where there must be a blank character to match.

In the example in Figure 105, all records starting with “abc” are selected, as you would

expect. Suppose, however, that the parameter had been written with three trailing blank

characters. How should CMS Pipelines interpret this? Blank characters mean “don’t care”

positions; do trailing blank characters make any difference in find?

Experiment when wondering about things like this. In the example in Figure 106, no lines

were entered with trailing blank characters; the records were as long as what you see.

The line with abc only was not echoed; thus, trailing blank characters are significant in the

parameter list for find.

Use pick to select records which satisfy some relation between the contents of a field and a

literal, or between two fields in the record. To select records from July 1994 and later

(assuming dates in the ISO format):

To discard records where the first two words are equal:

Figure 104. Using all

 pipe literal abc def ghi | split | all /b/ ! /i/ | console
►abc
►ghi
►Ready;

Figure 105. find Example

 pipe console | find abc| console
 a line
 abcdefgh
►abcdefgh

►Ready;

Figure 106. find With Trailing Blanks

 pipe console | find abc | console
 abcdefgh
►abcdefgh
 abc
 abc...
►abc...

►Ready;

Figure 107. picking Records after a Date

... | pick word 1 >>= /19940701/ | ...

 Chapter 4. Building a PIPE Command 53

 Using Filters

This also discards null and blank lines, because a missing word is considered to contain no

characters; and two null words are considered equal.

pick can (unlike locate and find) reject records that are exactly equal to some string and

select records that contain further data:

You can use verify to select or reject records that contains characters from those specified

in a list; for example, to verify that the first word of the record is numeric:

Since the literal stage in produces a record that includes the trailing blank, the verify is

done only on the first word of the record.

Figure 108. picking Records with a Difference

... | pick word 1 ¬= word 2 | ...

Figure 109. Picky pick

... | pick 1-* ¬== /Reject these only./ | ...

Figure 110. Using verify

 pipe literal 0644 | literal abcd | verify w1 /0123456789/ | console
►0644
►Ready;

Partitioning the File
The partitioning selection stages divide the input file into two contiguous parts. Thus, they

select records up to some particular record or from some particular record.

take copies up to a specified number of records to the output, discarding any further

records. drop does the opposite: it discards records and copies the balance of the file to

the output. Both filters work on the last part of the data stream if instructed by the

keyword LAST. To see the last lines of a linkage editor output:

Use frlabel to copy records starting with the first one that has a given string in the first

positions. This is equivalent to the COPYFILE option FRLabel. tolabel is the converse

operation: it copies records up to but not including the matching one. Both stages match

the parameter string verbatim in the case entered; blank characters and underscores mean

just that. To see who Tim is (note that the label must be in the correct case and that not

finding it gives no diagnostic):

Figure 111. take Example

 pipe disk $$temp lkedit | take last 3 | console
► ****NXPIPE DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET
► AUTHORIZATION CODE IS 0.
►
►Ready;

54 CMS Pipelines User’s Guide and Reference

 Using Filters

If, on the other hand, you want to see what is immediately before Tim:

Figure 112. frlab Example

 pipe disk vmsg my | frlabel tim | take 2 | console
►Ready;

 pipe disk vmsg my | frlabel TIM | take 2 | console
►TIM TDCSYS3 C33-TCH HARTMANN
►*+ *F Tim *N Timothy C. Hartmann
►Ready;

Figure 113. tolab Example

 pipe disk vmsg my | tolab TIM | take last 2 | console
►---- sanjose address
►*+ *A IBM Corporation;5600 Cottle Rd;San Jose CA 95193;;USA
►Ready;

Selecting Groups of Records
The between family of selection stages works like a combination of frlabel and tolabel that

is run repetitively to obtain records within (or outside) ranges. The argument is a pair of

delimited strings, or a delimited string and a number. between sends records to the

primary stream from (and including) a record with the label specified in the first string up

to and including the first occurrence of the second string. It then looks for the next occur-

rence of the first string again. Records not selected are sent to the secondary output

stream, if present. When the second operand is numeric, the number specifies how many

records are selected starting from an occurrence of the label defined in the first argument.

Figure 115 on page 56 shows the use of inside with the second argument a number.

: Note that an occurrence of the first string within the records being selected is not treated as

: a recursion. That is, even though there were two records that begin with a, the first record

: that begins with c terminates the range of selected records.

Figure 114. between Example

 pipe console | between /a/ /c/ | console
 123
 aaa
►aaa
 anything
►anything
 centro
►centro
 officio

►Ready;

 Chapter 4. Building a PIPE Command 55

 Using Filters

Figure 115. inside Example

 pipe console | inside /a/ 2 | console
 123
 a record
 the second
►the second
 and a third
►and a third
 the fourth one
 the last one

►Ready;

Selecting Unique Records
Removing duplicates is another thing that is useful in general; unique removes multiple

adjacent occurrences of a record. Use unique to remove runs of duplicate records. sort

UNIQUE is described later; it sorts the file, retaining the first record that contains a partic-

ular sort field.

Selection stages can be cascaded to fine-tune the set of records selected as shown in

Figure 112. As a further example, a CMS file with file type COPY may contain several

members. Each member is prefixed by a record that contains “*COPY <name>”. To select

one such member:4

The trailing blank characters on frlabel and tolabel are deliberate. Note that this example

fails without drop: tolabel would match the first record it sees, which would cause no

records to be selected.

Figure 116. unique Example

 pipe literal a a a b b b a a a c c c | split | unique | console
►a
►b
►a
►c
►Ready;

Figure 117. Cascaded Selection Stages

 pipe disk pipeif copy | unpack | frlabel *COPY PIPSTRLB | ...
 ... drop 1 | tolab *COPY | chop 60 | console

► MACRO
►&L PIPSTRLB &EXIT=
►&L PIPCALL CVTSB,EXIT=&EXIT
► MEND
►Ready;

4 The command is printed on two lines because it is longer than the figure width. The two ellipses (...) are not part of the command issued.

56 CMS Pipelines User’s Guide and Reference

 Using Filters

 Caseless Operation
All built-in programs, for which it is appropriate, support the ANYCASE option to specify

that they should ignore the case of the letters a through z; that is, treat “a” and “A” as the

same character for purposes of comparison:

In the first pipeline in Figure 118, case is respected and both input records are rejected.

For a selection stage that does not support the ANYCASE option (it would have been written

by a user), you can instead use casei as a prefix to the selection stage to select records

independent of the case of the contents of the record and the case of the search argument:

Note that there is no stage separator immediately after casei.

Refer to “Destructive Testing” on page 84 when your alphabet contains more characters

than the twenty-six used by the English. It explains how to use a derivative of the actual

record to control the selection.

Figure 118. Using the ANYCASE Option

 pipe literal abc def | split | verify /ABCD/ | console
►Ready;

 pipe literal abc def | split | verify anycase /ABCD/ | console
►abc
►Ready;

Figure 119. Using casei

 pipe literal A sentence that has words | split | casei myloc /a/ | ...
... console

►A
►that
►has
►Ready;

Splitting, Chopping, and Stripping
The filters split, chop, and strip restrict the size of a record. strip can work from both

sides; the others work only left to right. They are described together here because they

have common syntax and function: they work by scanning the record for a pattern (single

character or string); the difference is the processing that follows. They are introduced by

showing their default mode of operation. (chop needs a little help because its default is to

truncate after column 80.)

 Chapter 4. Building a PIPE Command 57

 Using Filters

The split family of filters matches a string or a single character. For a string, write the

keyword STRING (which can be abbreviated to STR) followed by the data between two

occurrences of a delimiter character in the standard CMS way.

A 1-byte target can be specified in several ways:

¹ A single character written as such (for example: z) or a two-digit hexadecimal repre-

sentation (for example: a9).

¹ A range of characters, written as <from>-<to> or <from>.<count>, where <from> and

<to> are characters (1- or 2-byte representation) and <count> is a number. A char-

acter range wraps from X'FF' to X'00'.

¹ An enumerated set of characters identified by the keyword ANYOF followed by a

delimited string containing the characters.

Figure 120. strip, split, chop: Default Usage

 pipe literal something |strip|spec 1-* 1 /</ next | console
►something<
►Ready;

 pipe literal a few words |split | console
►a
►few
►words
►Ready;

 pipe literal |spec ,abcdefghij, 75|chop|spec 70-* 1 | console
► abcdef
►Ready;

Figure 121. split Family String Target

 pipe literal abcaabccabc|strip string ,abc, | console
►aabcc
►Ready;

 pipe literal abcaabccabcaa|split str ,ab, | console
►ca
►cc
►caa
►Ready;

 pipe literal abcaabccabcaa|chop str /ccab/ | console
►abcaab
►Ready;

58 CMS Pipelines User’s Guide and Reference

 Using Filters

The pattern is “reversed” with the keyword NOT (or TO in the case of strip). When used

with a single character pattern, NOT means the complement set with respect to the universe

of all 256 values that can be stored in a byte. NOT used with a string pattern means, skip

occurrences of the string; the pattern matched is considered to have length 1.

strip further lets you say which side (or both) you want stripped and optionally a

maximum count of characters stripped. A record is not discarded by strip if all of it has

been matched; a null record (having zero bytes) is written.

The default for split is to do it AT the target, which is then removed; use the keywords

BEFORE or AFTER to designate that the target should remain and be included in the second

or first record, respectively. chop truncates before the target by default; use the keyword

AFTER to truncate after the target. For both chop and split, the options BEFORE and AFTER

are further modified by a number. This is an adjustment to go past the target when the

number is positive (left for BEFORE, right for AFTER); a negative number moves “through”

the target in the opposite direction. Note that AFTER is provided as a convenience; n
AFTER <pattern> is just a way of expressing m BEFORE <pattern>, where m is

Figure 122. Character Targets for the split Family

 pipe literal abcaabccabcaa|chop any /c / | console
►ab
►Ready;

 pipe literal aaaabbbb|strip ,-a | console
►bbbb
►Ready;

 pipe literal abcaabccabcaa|split a | console
►bc
►bcc
►bc
►Ready;

Figure 123. NOT Option on split Family

 pipe literal a word |strip not a | console
►a
►Ready;

 pipe literal abcaabccabcaa|split not str ,ab, | console
►ab
►ab
►ab
►Ready;

Figure 124. strip: Further Options

 pipe literal aaaaaaaaaaaaaaaa|strip leading a 7 | console
►aaaaaaaaa
►Ready;

 pipe literal |strip trailing|spec 1-* 1 /</ next | console
►<
►Ready;

 Chapter 4. Building a PIPE Command 59

 Using Filters

-n-length(<pattern>). This definition sidesteps the question, how long is a string that

is not there?

Figure 125. split and chop: Additional Positioning

 pipe literal abcaabccabcaa|split 1 after a | console
►ab
►caa
►b
►ccab
►caa
►Ready;

 pipe literal abcaabccabcaa|chop -2 after c | console
►a
►Ready;

 Joining
join puts records together. Specify one less than the number of input records to be used

when building an output record. You can add a literal string between records joined.

The first example in Figure 126 shows the default of joining two records with no added

characters; the second one shows the effect of “join 2”; the third one shows adding a

string between the records joined. The fourth one shows how to limit the length of the

output record. This can be used to flow text if the input records contain words, but it does

not provide for flowing of text in general because join never splits input records.

join also supports a key field at the beginning of the record. Only records that have the

same key are joined.

In general, it is not possible to do the reverse of split because it generates a variable

number of output records for each input record.

Figure 126. join Examples

 pipe literal a few words in a sentence | split | join | console
►afew
►wordsin
►asentence
►Ready;

 pipe literal a few words in a sentence | split | join 2 | console
►afewwords
►inasentence
►Ready;

 pipe literal a few words in a sentence | split | join 2 /**/ | console
►a**few**words
►in**a**sentence
►Ready;

 pipe literal a few words in a sentence | split | join * / / 20 | console
►a few words in a
►sentence
►Ready;

60 CMS Pipelines User’s Guide and Reference

 Using Filters

Records from multiple streams are joined by spec with SELECT, and overlay (possibly after

offsetting one of the streams with spec).

Use joincont to join records when continuation is indicated by the presence (or absence) of

a string at the end of a record being continued or at the beginning of the continued line.

To join lines using the C convention of suppressing line end (“splicing lines”):

This is too simplistic for real C programs, however, because the line could end in an even

number of backward slashes. In this case, the line is not to be spliced. To prevent

joincont from being fooled by double backward slashes, we turn double backward slashes

into something else before joining; and we remember to turn the backward slashes back

again. For this to succeed, we need to know that some particular character does not occur

in any input record (or we are prepared to accept that such a character is turned into a

backward slash):

In the example above, double backward slashes are turned into two null characters.

Because change works from left to right, an odd number of contiguous backward slashs

will leave one backward slash at the right (it would not have been so good if it were at the

left).

Use deblock LINEEND or deblock STRING when a particular character or string separates

logical records. This deblocking operation is a combination of blocking and deblocking

because it joins lines together when the end of line sequence is not at the beginning or end

of a record. deblock removes the delimiter character or string; it must be reinserted (for

instance with spec or change) if it is to be retained.

Finally, asmcont processes an ASSEMBLE file to join all lines of a continued statement into

one record. Columns 72 to 80 are discarded, as are columns 1-15 of continued statements.

Figure 127. joincont Sample

 pipe literal one two\ three four | split | joincont /\/ | console
►one
►twothree
►four
►Ready;

Figure 128. Production Strength C Line Splicer

/* Read C program, splice lines */
'PIPE (name PIPEUG)',

'|<' fn 'c',
'|change /\\/ x0000',

 '|joincont /\/',
'|xlate 1-* 00 \',

 '|...

Changing Record Formats
Having read a file, you may wish to unpack it. The file PIPODENT COPY is packed; the first

example shows what it looks like when you forget to unpack it.

 Chapter 4. Building a PIPE Command 61

 Using Filters

pack does the reverse of unpack. To pack variable record format files with unknown

record length, the secondary output stream from pack is connected to the secondary input

stream to disk. This ensures that the header in the first record indicates the correct logical

record length for the file; in general, this is only known when the complete input stream

has been processed.

When you read from the reader or a tape, what you get is not always unblocked records;

often you see blocks in a format peculiar to the program that has made the file as with

DISK DUMP, TAPE DUMP, OS record descriptor words, or utilities. And these are often

nested. Here is a simple example:

Use the option Fixed on deblock if the tape is fixed blocked. Sometimes you need more

than one deblocking stage to get records completely unwrapped if they are in a Chinese

box (for instance a partitioned data set that has been sent in netdata format from z/OS).

Figure 129. unpack Example

 pipe disk pipodent copy | chop 60 | console
► F &«*COPY PGMID : 0Ø1: 0 cGBLC –&PGMID,&MODULE┐: 0Ø2: 0
►Ready;

 pipe disk pipodent copy | unpack | chop 60 | console
►*COPY PGMID
► GBLC &PGMID,&MODULE
►&PGMID SETC 'PIP'
►Ready;

Figure 130. Reading a z/OS Tape in Format V, VB, VS, or VBS

/* reads OS V, VB, VS, and VBS tape */
parse arg fileid
'pipe tape | deblock v | disk' fileid

 Sorting
sort processes files of moderate size that can be held in virtual storage for the duration.

You may be able to use dfsort to sort large files.

The sort filter reads the file to sort from its input and writes the sorted file to its output;

the only options specified on sort are the sort fields, which default to the complete record.

sort normally compares sort fields as binary data; though you can specify the ANYCASE

keyword to make it ignore the case in records, this is inefficient for large files. To sort

efficiently on a field irrespective of its case you must generate a sort key that has the data

folded to the case required. You must also do this if you are dealing with text in a

language where the rules for capitalisation are different from English. Remove the key

after sort:

The translate stage is extended like this to support the Danish collating sequence:

Figure 131. Generating an Upper case Sort Field

... | spec 1-10 1 1-* 11 | xlate 1-10 upper | sort 1-10 | spec 11-* 1 |

62 CMS Pipelines User’s Guide and Reference

 Using Many Filters

sort reflects the beauty of the pipeline because it only has to sort. Changing the collating

sequence is done elsewhere in the pipeline specification, so there is no need for the exits

one sees in sorts that also have to read and write files.

Note that a range is a single word, unlike the CMS command where you specify the begin-

ning and the ending column of a range as separate words. However, sort accepts up to 10

ranges and it is perfectly proper to have a “sort 1 10”, but then you are asking for a sort

on columns one and ten only.

sort UNIQUE can generate a list of words in a file:

This is of course naive in the extreme: numbers, examples, DCF control words, and GML

tags are also considered words5 .

collate merges detail records into a master file; lookup retrieves records from a master file,

based on keys; and merge merges records from multiple streams according to a sort key.

How to define such streams is described in Chapter 5, “Using Multistream Pipelines” on

page 74.

Figure 132. Generating a Danish Upper case Sort Field

... | xlate 1-10 upper # ea @ eb $ ec c0 ea 6a eb d0 ec | sort 1.10 |

Figure 133. sort UNIQUE Example

 < pipeug script|xlate up 00-80 40|split|sort uniq|count lines|console
►1721
►Ready;

 Cascading Filters

As you have seen by now, it is normal to combine several filters to do the job one wants

done. One advantage of using CMS Pipelines is that you can do this easily.

This section shows how CMS Pipelines is normally used by combining several filters. You

see examples with more stages than previously, but that is not necessarily the best way to

combine filters in real life.

One way is to combine the result of REXX functions that each return part of a pipeline

specification. Figure 66 on page 36 shows how to tag and SPOOL a device and punch a

file on it. A better approach for the pipeline could be:

'pipe disk' file pchprim(node user)

Figure 134 on page 64 shows a possible PCHPRIM EXEC.

5 See the “programming pearls” column in the May 1985 issue of The Communications of the ACM (28:5). Reprinted in Jon Bently, Program-

ming Pearls, Addison-Wesley 1986; ISBN 0-201-10331-1.

 Chapter 4. Building a PIPE Command 63

 Using Many Filters

Figure 135 shows a different, and in many ways better, approach. It is a REXX stage that

performs the required CP commands and then redefines itself to punch the data stream.

The same CP commands are issued in the two examples; the difference is in the way the

pipeline specification is issued.

In the first example, the function returns a character string that is made part of the pipeline

specification. Thus the stage separator must be a solid vertical bar (or made an argument).

Errors are reported (though not shown) by not returning data, which forces a syntax error

in the calling REXX program.

The second example runs as a stage; it uses CALLPIPE6 in the second last line to replace

itself with a new pipeline specification. The pipeline specification is independent of the

stage separator specified in the first pipeline and errors can be reported with a return code.

(The stages with “*:” are required to show that the new pipeline connects to the existing

one.)

Figure 134. Using a REXX Function Reference to Generate Part of a Pipeline Specification

/* PCHPRIM EXEC */
/* Prime the punch and set up the pipeline */
arg node user .
address command
'IDENTIFY(LIFO'
parse pull net .
'CP SPOOL D' net 'PURGE NOCONT CL A'
'CP TAG DEV D' node user
return '|chop 80|punch'

Figure 135. Using a REXX Filter to Replace Part of a Pipeline Specification

/* PCHPRIM REXX */
/* Prime the punch and set up the pipeline */
arg node user .
/* Address CP to issue commands */
address command
'IDENTIFY(LIFO'
parse pull net .
'CP SPOOL D' net 'PURGE NOCONT CL A'
'CP TAG DEV D' node user
/* revert to the pipeline */
address
'callpipe *:|chop 80|punch|*:'
exit RC

6 See “Using CALLPIPE to Run a Subroutine Pipeline” on page 103.

64 CMS Pipelines User’s Guide and Reference

 Using Many Filters

 Netdata Format
Assume that you have a netdata file in your reader. The reader device driver reads the

SPOOL file, but the output is not the data set in a format you normally want.

The CCW operation code is in the first position of the record. Records with data you are

interested in have X'41' in the first position. The remaining records have X'03' and

should be ignored.

A more subtle difference is that CP discards trailing blank characters from the records in

the SPOOL system. The physical transmission format does not take this into account and

the deblocking stage fails if it gets short records.

The block size is indeed in a transmission header, but it is not required that it be in the

first physical record. Thus, the strategy adapted by deblock NETDATA is to ignore the

problem and insist that the data set be padded to the appropriate block size before the

deblock stage. (If CP has saved the original length in the SPOOL file, reader finds it and

pads the record.)

Now you can recreate a sequential data set with variable record length containing control

records and data records. This data stream can be inspected by a stage that redefines itself

to either create the desired data set or send the data directly into XEDIT for peek.

This example shows how to peek a file in netdata format:

Here the pipeline specification is pushed so that it is issued when there is an active XEDIT

session. However, it is not recommended to stack the complete command; for one thing, it

might be longer than XEDIT’s truncation limit of 255. Instead, write an XEDIT macro that

issues the pipeline command to CMS. Then stack a call to this macro.

To be truly compatible with the default of PEEK, add “take 200|” to the pipeline after nfind.

This shows only the first 200 records of a large file so that XEDIT does not run out of

storage. Of course, what you see is indeed the first 200 records, not the first 200 card

images in the transmission data set.

Figure 136. Example TYPE

/* PEEK */
address command 'ERASE PEEKED FILE A'
address command 'CP SPOOL RDR HOLD'
push 'CMS PIPE',
'| reader', /* Read from spool */
'| strfind x41', /* retain only data records */
'| spec 2-* 1.80', /* Discard the CCW opcode; pad */
'| deblock net', /* Join spanned records */
'| strnfind xe0', /* Discard control records */
'| spec 2-* 1', /* Discard the flag byte */
'| xedit peeked file a' /* Data records to Xedit */

'xedit peeked file a'

 Chapter 4. Building a PIPE Command 65

 Using Many Filters

Use deblock TEXTUNIT to deblock the text units in the control record into separate records

(see Figure 137 on page 66 7). The first halfword defines the type of data, the second is

the number of fields; and each field is preceded by a halfword length.

Records starting with X'E0' (the backward slash, \) are control records, which are

selected. Text units can be processed in parallel with loading a file into XEDIT by using

the secondary output stream from find.

Creating a netdata file for transmission is in principle the reverse procedure. But now you

need to be concerned with generating the control records with the proper format and

contents. For a variable record format file, the record format declared in the transmission

header should be X'0002', meaning variable records without descriptor words. Refer to

INMR123 REXX S2 for an example of how to construct this header.

Figure 137. deblock TEXTUNIT Example

 pipe < textunit testcase|pad 80|deblock net|find \|deblock textunit| ...
... take 5|spec 1-* 1 /</ next 1-* c2x 25 | console

► â &< 0042000100020050
► CPHVM1< 101100010006C3D7C8E5D4F1
► �JOHN< 101200010004D1D6C8D5
► CPHVM1< 100100010006C3D7C8E5D4F1
► �JOHN< 100200010004D1D6C8D5
►Ready;

IEBCOPY Unloaded Data
There is a fair amount of work to do if you receive an IEBCOPY unloaded data set on tape

or via RSCS from a TSO user. Data are blocked several ways. Looking “inside out”:

¹ IEBCOPY unloads a data set by prefixing 12 bytes of information (including the count

field: FMBBCCHHRKDD) to the key and data fields of the physical record (the block) it

has read from the disk; these records are blocked within the logical record length of

the output data set.

¹ The output data set is normally written in variable spanned (VS or VBS) format, which

prefixes record and block descriptor words.

¹ If sent by the TRANSMIT TSO command, the netdata headers and trailers are added, and

the complete data set is blocked in the netdata format described earlier.

The sample OSPDS REXX shows how to process the IEBCOPY unloaded data set after the

physical blocking has been taken care of. The example creates a file for each member of

the partitioned data set, or a stacked file where members are separated by *COPY delimiter

records.

Building a Selection Key
When there is no built-in selection stage that performs the selection you require, you

should consider prefixing the record with a search key, selecting the record using the new

key, and finally discarding the key. For example, to select records in which the second

word contains one or more of the characters #@$ (assuming the word is ten characters or

shorter):

7 The pipeline specification is split to fit within the column width.

66 CMS Pipelines User’s Guide and Reference

 Using Many Filters

The first spec stage puts the second word of the record into the first ten columns of the

output record; the original input record is appended from column 11 and onward. The

xlate stage works on the first ten columns only. It translates everything to a blank, except

for the number sign, the at sign, and the dollar sign, which are translated to “x”. The

locate stage then selects the records that contain an “x” anywhere within the first ten

columns. The second spec stage extracts the original record, dropping the selection key.

: While the previous example of pipethink is ingenious and the best way at the time of

: writing, the selection can be performed directly as of CMS Pipelines 1.1.10:

: '|...
: '|locate word 2 anyof /#@$/',
: '|...

Figure 138. Building a Search Key

 '|...
'|spec word 2 1 1-* 11', /* Prefix second word */
'|xlate 1.10 00-ff blank # x @ x $ x', /* Rub out */
'|locate 1.10 /x/',
'|spec 11-* 1', /* Remove key */

 '|...

 Selecting, Revisited
Previously, you saw how to select records with the string “ PIPERM ”. This selects all

such macro instructions when applied to an assemble file, but it might also select lines

where the comment includes the word. To improve on this, first consolidate continuations

and remove comment lines beginning with “*” or “.*”:

Adding a column range to locate finds exactly the lines you want if the program has all

operation codes in column 10. The three commands in Figure 140 give identical results:

However, the operation codes do not have to begin in column 10. Figure 141 shows how

to locate lines with a particular operation code, independent of its position in the input

record.

Here the label is removed by stripping to the first blank character. The next strip removes

blank characters after the label (and at the end of the record); find selects lines with the

operation code followed by at least one blank.

Figure 139. Advanced Selection

... | asmcont | nfind *| nfind .*| locate / PIPERM / |...

Figure 140. Finding Records with a Particular Operation Code

... | locate 9.8 / PIPERM / | ...

... | find' left(' ',8)'_PIPERM_| ...

... | zone 9.8 find _PIPERM_| ...

Figure 141. More Advanced Selection

... | strip leading to blank | strip | find PIPERM_| ...

 Chapter 4. Building a PIPE Command 67

 Using Many Filters

But you really want the first positional operand, so continue as follows:

Here the operation code is deleted in the same way that the label was removed above. The

record is truncated before the first blank character or comma, which is the end of the first

positional operand. Each line is now just a single word.

This may not seem overly useful. But when the file name and type are added by spec,

fanin joins the lines from all programs, and the stream is sorted a few ways, then you have

a handy cross reference. The complete set of selection stages is shown in Figure 143:

You may find this approach contorted, but no doubt you agree that a message cross refer-

ence can be useful. The question is, would you have written a program to do the same or

would you have relied on a manual system?

Though many built-in programs have been added to CMS Pipelines since the section above

was written in 1985, the usefulness of a cascade of filters is not in dispute; learning

pipethink is just as important today as it was then. Still, using vintage 1994 technology,

this selection might be performed more naturally by this cascade:

Figure 142. Getting the Message Number

... | strip leading to blank | strip | chop anyof /, / | ...

Figure 143. Complete Message Number Extract Pipeline

/* Extract Message Numbers */
'pipe',

'disk' fn 'assemble|', /* read file */
'asmcont|', /* expand continuation */
'nfind *|', /* No comments */
'nfind .*|', /* No macro comments */
'locate / PIPERM /|, /* discard most */
'strip leading to blank|', /* Rid us of label */

 'strip|',
'find PIPERM_|', /* Retain only opcodes */
'strip leading to blank|', /* and discard... */

 'strip|',
'chop anyof /, /|', /* retain number */
'spec /'fn'/ 1 1-* 10|...

68 CMS Pipelines User’s Guide and Reference

 Using Many Filters

The first spec stage puts the operand field into column 1 of the record. The second spec

stage inserts the file name and extracts the message number in a rather subtle way. A

question mark is inserted into column 10 in case there is no first positional operand; the

field separator is set to a comma and the first field is extracted and inserted into the output

record, overlaying the question mark. If, however, the first positional operand is omitted,

the input record will contain a comma in column 1, the field will be null, and the question

mark will be left unchanged.

You can easily create complex record validation functions. For example, to ensure that

columns 1 to 10 contain only one word of numeric data without regard to the placement of

the number within the ten columns:

The verify stage selects records that contain blanks and digits in the first ten columns, but

this could still contain a string that is not a single number. Thus, the nlocate stage is

employed to discard records that contain more than one word in the first ten columns.

This is still not perfect, for Figure 145 accepts a record that contains all blanks in the first

ten columns. To be sure that there is a word you must add a locate stage:

To validate a number with a decimal point, simply tag on another stage to reject the third

field, using a period as the field separator:

Figure 144. Another Complete Message Number Extract Pipeline

'PIPE (name PIPEUG)',
'|<' fn 'assemble', /* Read file */
'|unpack', /* If the files are packed */
'|asmcont', /* Join continuations */
'|strnfind /*/', /* Delete open code comments */
'|strnfind /.*/', /* Delete macro comments */
'|change 1 / /. /', /* Ensure all lines have a label */
'|pick word 2 = /PIPERM/', /* Look for the operation code */
'|spec word 3 1', /* Get operand field */
'|spec /'fn'/ 1', /* Get file name */

'/?/ 10', /* Default of ? */
'fieldseparator ,', /* Prepare to address operands */
'field 1 10', /* Get first operand */

 '|...

Figure 145. Validating Numbers

... | verify 1-10 / 0123456789/ | nlocate substr word 2 of 1-10 | ...

Figure 146. Ensuring that a Number Is Present

| verify 1-10 / 0123456789/
| nlocate substr word 2 of 1-10
| locate substr word 1 of 1-10

 Chapter 4. Building a PIPE Command 69

 Getting File Information

Figure 147. Validating a Decimal Fractional Number

| verify 1-10 / .0123456789/
| nlocate substr word 2 of 1-10
| locate substr word 1 of 1-10
| nlocate substr fieldsep . field 3 of 1-10

Obtaining Information about Files

 CMS files
Use command LISTFILE to obtain file status information on files.

In Figure 148 the standard CMS command was run and the output intercepted. This works

fine when few files are listed, but because the command has to complete before the lines

can be processed by the pipeline, you may run out of storage if you wish to process all

files on all accessed mode letters. You may be able to list files on one mode at a time to

minimise buffer requirements.

Use state and statew to obtain information about specific files. Note in Figure 149 the

similarity to the command drivers: an initial item can be specified with the stage; further

input lines list more files you wish information about.

Figure 150 on page 71 shows how the function of VMFDATE is implemented using state.

Figure 148. command LISTFILE Example

 command LISTFILE * TEXT (NOH ALLOC | sort | console
►$$PIPE TEXT A1 F 80 4162 82
►EXTEPT TEXT A1 F 80 12 1
►PIPGDT TEXT A1 F 80 8 1
►PIPRUN TEXT A1 F 80 31 1
►TT TEXT A1 F 80 3 1
►Ready;

Figure 149. state Example

 literal * text a|state * script *|
►DSMUTTOC SCRIPT A1 V 102 48 1 11/24/86 19:35:
►TT TEXT A1 F 80 3 1 11/23/86 16:43:
►Ready;

70 CMS Pipelines User’s Guide and Reference

 Getting File Information

The command CALLPIPE is used in a REXX program to call a subroutine pipeline as

described in “Using CALLPIPE to Run a Subroutine Pipeline” on page 103.

Figure 150. Variation on VMFDATE

/* Generate the information on a file */
/* 5785-RAC (RPQ P81059 5799-DKF) - CMS PIPELINES */
/* (C) COPYRIGHT IBM CORP */
/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM */
/* REFER TO COPYRIGHT INSTRUCTIONS FORM NO. G999-0001 OR G120-2083 */

/***/
/* Change activity: */
/*12 Sep 1993 +++ Rename. Make sensitive to system. */
/***/

signal on novalue

Parse source where . myfname .
parse arg file
parse var file fn ft fm .

compid=left(myfname, 3)
If where¬='CMS'

Then signal notcms

'callpipe (end \ name PIPDATE.REXX:22)', /* Subroutine pipeline */
'|*:', /* Input files */
'|literal' file, /* Inject args */
'|s:state', /* Look for it */
'|spec 1-22 1 28.7 next 37-44 next 56-* next',

 , /* Re-arrange */
'|spec 1-* 1.80 right', /* Right-adjust */
'|*:', /* Write to output */
'\s:', /* Files not found go here */
'|change ,,File not found: ,', /* Garnish it */
'|console' /* Say so */

exit RC

notcms:
'callpipe (name FPLDATE)',

'|listispf dd='ft fn,
 '|stem f.'

If f.0=0
Then exit 28

If f.1=''
 Then exit

'callpipe (name FPLDATE)',
 '|literal' space(f.1),

'|spec 1-* 1.80 right',
 '|*:'
exit RC

 Chapter 4. Building a PIPE Command 71

 Getting File Information

TSO data sets
state determines whether a data set or an allocation exists. When the data set or allocation

exists, the fully qualified data set name is written to the primary output.

You can use REXX functions or issue TSO commands to obtain other information about a

data set:

Three device drivers provide information without issuing TSO commands. listcat provides

data set names that share a qualifier or part of one; listdsi provides detailed information

about individual data sets; and sysdsn tests for the presence of specified data sets.

To see which data sets you have catalogued that begin with the letter T:

The pipeline was run while the prefix was set to PIPER. Note that you do not append an

asterisk to the search criterion.

Figure 151. Using state on TSO

 pipe state names.text | console
►DPJOHN.NAMES.TEXT
►READY

 pipe state dd=rexx | console
►DPJOHN.TSO.TREXX
►READY

Figure 152. Using TSO Commands to Obtain Information about a Data Set

 pipe tso lista | take 3 | cons
►DPJOHN.TSO.LOAD
►SYS1.HELP
►DPJOHN.PIPE.HELPLIB
►READY

 pipe tso listds names.text | cons
►DPJOHN.NAMES.TEXT
►--RECFM-LRECL-BLKSIZE-DSORG
► VB 255 8192 PS
►--VOLUMES--
► TA922A
►READY

Figure 153. Using listcat to Obtain Data Set Names

 pipe listcat t | cons
►PIPER.TFTP.FILTERS
►READY

72 CMS Pipelines User’s Guide and Reference

 Getting File Information

Under the covers, listdsi uses the REXX function by the same name and then writes the

variables set by REXX into the pipeline.

sysdsn exposes the REXX function by the same name; the function result is written to the

pipeline.

Figure 154. Using listdsi To Obtain Data Set Information

 pipe listdsi tftp.filters | cons
►=SYSDSNAME=PIPER.TFTP.FILTERS
►=SYSVOLUME=RE9T01
►=SYSUNIT=3390
►=SYSDSORG=PO
►=SYSRECFM=VB
►=SYSLRECL=255
►=SYSBLKSIZE=8192
►=SYSKEYLEN=0
►=SYSALLOC=1
►=SYSUSED=1
►=SYSPRIMARY=1
►=SYSSECONDS=1
►=SYSUNITS=CYLINDER
►=SYSEXTENTS=1
►=SYSCREATE=1992/063
►=SYSREFDATE=1994/298
►=SYSEXDATE=0
►=SYSPASSWORD=NONE
►=SYSRACFA=GENERIC
►=SYSUPDATED=NO
►=SYSTRKSCYL=15
►=SYSBLKSTRK=6
►=SYSADIRBLK=
►=SYSUDIRBLK=
►=SYSMEMBERS=
►=SYSREASON=0000
►READY

Figure 155. Using sysdsn

 pipe sysdsn tftp.filters | console
►OK
►READY

 Chapter 4. Building a PIPE Command 73

 Multistream Pipelines

Chapter 5. Using Multistream Pipelines

In the previous chapters, we have seen pipelines of programs that read and write a single

stream. In contrast, consider a program to update a master file. It needs to read two files,

the master file and the transaction file. And it writes two files, an updated master file and

a log file. Figure 156 shows the topology of a pipeline with a program that uses two input

streams and two output streams.

CMS Pipelines is unique in supporting a multistream pipeline topology. In such a

topology, a stage can have any number of input and output streams. Because there was no

established paradigm for expressing such a topology, one was invented. The current

implementation evolved after several experiments.

An implementation of multistream pipelines consists of a programming interface to allow a

program access to the streams as well as rules for specifying the topology in the PIPE

command. We shall deal with the programming interface in Chapter 7, “Writing a REXX

Program to Run in a Pipeline” on page 97; this chapter is concerned with built-in

programs that support multiple streams.

Though it has not been mentioned explicitly yet, the pipeline specification “works” by

specifying a sequence of transformations and functions that are applied to the data as they

flow from left to right through pipelines such as those presented this far in the book. In

the simple pipelines, putting the definitions of two stages next to each other with a stage

separator between them has been sufficient to define the input/output relations. The output

stream of one stage is connected to the input stream of the following one. That is all that

is necessary to define the connection on the primary stream.

Streams are defined in pairs; a stage always has a primary input stream and a primary

output stream. When the stage is first in a pipeline, the primary input stream is not

connected, but it is there all the same. Likewise a stage that is last in a pipeline has an

output stream, even though it is not connected.

The generalisation to multiple streams in a stage is just that the stage can have multiple

streams; the difficult part is how to specify the topology. CMS Pipelines has taken the

model that a multistream pipeline consists of two or more individual pipelines, each of

which is specified just like a simple pipeline is. The trick is that a multistream stage is in

more than one pipeline.

To express multiple pipelines in a single command string, an end character is used to

separate pipelines, just as a stage separator separates stages. There is no default end char-

acter; it is specified in each multistream pipeline and it can be different in each. All will

be explained in “Options” on page 237; suffice it to say here that to use the question mark

as an end character, you can write the beginning of the pipeline like this:

Figure 156. Master File Update Topology

┌────────┐ ┌────────┐ ┌────────┐
│< master├───────┤Master ├───────┤> numast│
└────────┘ │File │ └────────┘
 │Update │
 │Program │
┌────────┐ │ │ ┌────────┐
│< xactn ├───────┤ ├───────┤> log │
└────────┘ └────────┘ └────────┘

74 Copyright IBM Corp. 1986, 2020

 Multistream Pipelines

ENDCHAR can be abbreviated as END; and it usually is. Refer back to Figure 156 on

page 74. It looks very much like two pipelines, one for the master file and one for the

transactions, does it not? If the update program reads and writes the master file on the

primary stream (update does that), clearly the device drivers to read and write these files

should be connected to the primary streams for update; this is very much like a simple

pipeline. Likewise, the second pipeline would read the transactions into the update

program’s secondary stream and write its output records to the log file.

This might be written as in Figure 159.

The pipeline in Figure 159 is written as a left-handed pipeline; that is, lining the stage

separators and the end characters on the left. As far as REXX is concerned, it is a character

string all the same. The pipeline has also adopted the convention of prefixing the first

pipeline with the end character. Note that the left-handed style makes for easy recognition

of the pipeline end character.

The pipeline specification above almost does the update, but there is one serious flaw in it:

the update program is invoked twice with one set of streams on each invocation, rather

than once with two sets of streams. We need to specify a connection between the two

stage positions where the update program connects to its neighbours. This is done with a

label, which is a string of one to eight characters followed by a colon. This example uses

a label that is one character:

Figure 157. A Pipeline Specification Having Two Pipelines

pipe (endchar ?) <pipeline-1> ? <pipeline-2>

Figure 158. Two Pipelines that Have a Common Stage

┌────────┬────────┬────────┐
│< old │update │> new │
└────────┴──┬──┬──┴────────┘
 │ │
 │ │
┌────────┬──┴──┴──┬────────┐
│< xact │update │> log │
└────────┴────────┴────────┘

Figure 159. Almost an Update Pipeline

'PIPE (end ? name PIPUMSP)',
'?< master file', /* Read master */
'|update', /* Perform update */
'|> new master a', /* Write new master */
'?< xaction file', /* Read transaction file */
'|update', /* Apply the transaction file ?? */
'|> log file a' /* Write log file */

 Chapter 5. Using Multistream Pipelines 75

 Multistream Pipelines

All occurrences of a label in a pipeline specification (the formal name for the argument to

the PIPE command) refer to a single stage. The stage has as many pairs of input and

output streams as there are occurrences of the label. The actual program to run and its

arguments are specified the first time the label is used. This is called the definition of the

label. The next time the label occurs is a reference back to the previous definition.

Because the stage has already been specified completely, the label is written by itself at the

point in the pipeline topology where the stream should be connected. The first reference to

the label creates the secondary input and output stream; the next one creates the tertiary

streams; and so on.

Note in Figure 160 that both the label definition and the label reference are in the middle

of a pipeline; each connects an input stream as well as an output stream. The most

common beginner’s error is to specify two label references where only one should have

been used.

In summary: A stage can be in two or more pipelines at the same time and have access to

two or more data streams, one in each pipeline. Two concepts are introduced to support

this:

¹ A stage can be referenced several places in a set of pipelines if its definition is

prefixed with a label (up to eight characters followed by a colon). The first time a

label is used is the primary stream (number 0) for that stage. The secondary stream is

defined the second time the label appears, and so on.

¹ To be able to use more than one device driver that must be first in a pipeline, the

character defined by the option ENDCHAR is used to delimit multiple pipelines in a

single command string. (ENDCHAR is usually abbreviated to END).

Figure 160. An Update Pipeline

'PIPE (end ? name PIPUMSP)',
 '? < master file', /* Read master */

'|u: update', /* Perform update */
 '| > new master a', /* Write new master */
 '? < xaction file', /* Read transaction file */

'|u:', /* Apply transaction file ! */
 '| > log file a' /* Write log file */

Building Blocks for Multistream Pipelines

Though the master file update problem was the motivation to support multistream pipeline

topologies and though update certainly supports two sets of streams, this is no longer

considered the mainstream. It soon became clear that multistream pipelines could be used

for much more.

locate was the first selection stage to be modified to write rejected records to its secondary

output stream; this opened the field of transformations that depend on record contents,

because records could be processed differently when they were selected than when they

were rejected.

76 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

In Figure 161 the individual characters represent records. The relative sequence is shown

by their order from left to right. locate passes the records that contain “a” to its primary

output stream and the records that do not contain “a” to its secondary output stream.

But how do we merge these records back into one file after they have been processed?

faninany does precisely this:

Figure 163 shows how to combine the two ideas, to prefix selected lines of a file with a

marker. The first part of the figure is the EXEC that was run (the command is too long to

type directly). It is followed by the response and a topology diagram.

Figure 161. Generic Selection

 ┌──────────┐
a b a c ─────┤locate /a/├───── a a
 │ │

│ ├───── b c
 └──────────┘

Figure 162. Combining Streams

 ┌─────────┐
a d ─────┤faninany ├───── a b c d
 │ │
 b c ─────┤ │
 └─────────┘

Figure 163. Sample Multistream locate

/* Sample multiline locate */
signal on novalue
'PIPE (end ? name SAMPLOC)', /* Declare ? as end-character */
 '| < small exec', /* Read input file */

'|a: locate /y/', /* Look for y */
 '| change //---> /', /* y's get adorned here */

'|b: faninany', /* Merge with non-y's */
 '| console', /* Write to terminal */

'?a:', /* non-y's come here */
 '| change // /', /* Shift them to col 5 */

'|b:' /* Merge with y's */

 samploc
► /* This is a small Exec */
► signal on novalue
►---> say 'Bye...'
►Ready;

┌────────┐ ┌a:──────┐ ┌────────┐ ┌b:──────┐ ┌────────┐
│ < ├─┤ locate ├─┤ change ├─┤faninany├─┤ console│
└────────┘ └───┬────┘ └────────┘ └──┬─────┘ └────────┘
 │ │
 │ ┌────────┐ │

└──────┤ change ├────┘
 └────────┘

 Chapter 5. Using Multistream Pipelines 77

 Multistream Pipelines

Combining Data Streams

If you want to combine several data streams, the easiest way is to run the pipelines one

after another and accumulate the output by appending to a file:

This is all proper, but with variable format files on CMS, performance of the second pipe-

line can be inferior to the first one. More importantly, there are cases where you wish to

block the composite data stream and put it to a medium where you cannot write records

piecemeal. Think of a tape file, for instance; you may not be able to obtain the result

desired simply by running more than one pipeline, because this might create a short block

in the middle of the output file.

The gateway fanin combines the input on all its input streams, writing the data in the order

specified. Output is a single data stream:

Figure 164. Simplistic COPYFILE Append

/* simplistic copyfile append for CMS */
arg fn1 ft1 fm1 fn2 ft2 fm2 fn3 ft3 fm3 .
'pipe <' fn1 ft1 fm1 '| >' fn3 ft3 fm3
r=RC
'pipe <' fn2 ft2 fm2 '| >>' fn3 ft3 fm3
exit max(r, RC)

/* simplistic copyfile append for TSO */
Address Attach
arg fn1 fn2 fn3 .
'pipe <' fn1 '| >' fn3
r=RC
'pipe <' fn2 '| >>' fn3
exit max(r, RC)

Figure 165. Not So Simplistic Append

/* Not so simplistic append for CMS */
arg fn1 ft1 fm1 fn2 ft2 fm2 fn3 ft3 fm3 .
address command
'ERASE' fn3 ft3 fm3
'PIPE (end ?)<' fn1 ft1 fm1 '|a: fanin|>' fn3 ft3 fm3,

'?<' fn2 ft2 fm2 '|a:'
exit RC

/* Not so simplistic append for TSO */
arg fn1 fn2 fn3 .
address Attach
'PIPE (end ?)<' fn1 '|a: fanin|>' fn3,

'?<' fn2 '|a:'
exit RC

┌──────┐ ┌───────┐ ┌──────┐
│ < ├───┤ fanin ├───┤ > │
└──────┘ └───┬───┘ └──────┘
 │
┌──────┐ │
│ < ├───────┘
└──────┘

78 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

Here you see two pipelines defined. The option ENDCHAR (abbreviated to END) specifies

that the question mark (?) separates pipelines. The end character can be any character

(that has no other special meaning to the scanner), but it cannot be used in the individual

pipelines unless it is escaped.

The intersection occurs in the fanin stage, which has the label a:. The label is defined on

the first line of the pipeline specification; it is referenced on the next line. The primary

pipeline is selected when fanin starts. It passes all input records to the primary output

stream; when fanin reaches end-of-file on the primary input stream, it switches to the

secondary input stream and then passes those records to the primary output stream.

The example in Figure 165 on page 78 shows how to use multiple streams in general.

This particular example can also be done with append as was shown in Figure 71 on

page 38.

Splitting a Data Stream

Figure 166 shows how to create a copy of a printer SPOOL file which resides in your

virtual reader:

The file is read from the reader and split into two streams by drop, which removes the tag

record from the primary input stream and sends it to the secondary output stream. The

primary stream carries the file itself; it is sent to the printer. The secondary stream

extracts the tag from the first record of the file (discarding the CCW operation code in the

first position) and sets the tag for device 00E using cp. This works because the tag in the

SPOOL file is set when the CP command “close” is issued after the pipeline has completed

processing.

Figure 166. REPRINT EXEC with Topology

/* Better REPRINT */
/* 5785-RAC - CMS PIPELINES - (C) COPYRIGHT IBM CORP 1986 */
/* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM */
/* REFER TO COPYRIGHT INSTRUCTIONS FORM NO. G999-0001 OR G120-2083 */
address command
'PIPE (listerr end /)',

'| reader', /* read from card reader */
'| a:drop 1', /* drop tag */
'| printmc 00e', /* print rest of file */
'/ a:', /* take dropped line (TAG) */
'| spec ,TAG DEV 00E , 1 2-* next',
'| cp' /* tag the printer */

r=RC
'CP CLOSE 00C'
'CP CLOSE 00E'
exit r

┌────────┐ ┌────────┐ ┌────────┐
│reader ├──┤drop 1 ├──┤printmc │
└────────┘ └────┬───┘ └────────┘
 │
 │ ┌────────┐ ┌────────┐
 └──────┤spec ├──┤cp │
 └────────┘ └────────┘

 Chapter 5. Using Multistream Pipelines 79

 Multistream Pipelines

Generating a CMS Macro Library

maclib generates a macro library from a file where members are separated by records

containing *COPY in column one and the member name after a blank. Being a filter, it is

concerned only with what is inside the library, not how it is written to disk8. One

difficulty is that the first record of a library must point to the directory, but the directory is

after the body of the file: its position cannot be computed until end-of-file. To buffer the

complete file inside maclib might cause storage overruns. Thus, a different approach was

adopted using three output streams:

0 On the primary output stream from maclib comes a dummy 80-byte record as a

placeholder. This is followed by the members of the library, each having an end of

member record. *COPY records are discarded.

1 The directory is written to the secondary stream as each record is complete. This is

buffered until the library is complete, appended to the contents of the library (stream

0), and written to disk.

2 The dummy first record of the library indicates that the library has no members. The

real first record of the library is the last record written; it has a data stream to itself.

This stream is connected to the secondary input stream of the > stage that writes the

library and the index. > replaces the dummy pointer record with the real one.

Figure 168 shows GENMLIB EXEC, which generates a macro library from a packed COPY

file. The first two lines of the pipeline specification read the file and unpack it (if it needs

to be unpacked). The last stage names the REXX program in Figure 169 on page 81.

Figure 167. Pipeline Topology while Generating a Macro Library

┌──────┐ ┌─────────────────┐ ┌m:──────┐ ┌f: ┌d:────┐
│ File ├─┤ Unpack & filter ├─┤ Maclib ├──────────┤F├─┤ File │
└──────┘ └─────────────────┘ └──┬──┬──┘ │a│ └──┬───┘
 │ │ │n│ │
 │ │ ┌────────┐ │i│ │

│ └─┤ Buffer ├──┤n│ │
 │ └────────┘ └─┘ │
 │ │
 └───────────────────────┘

Figure 168. GENMLIB EXEC

/* Generate a macro library */
signal on novalue
arg fn ft fm .
address command
'PIPE',
 ' <' fn word(ft 'copy', 1) fm, /* read the file */
'| unpackx', /* Unpack if packed */
'| macwrite' fn /* Write MACLIB */

exit RC

8 maclib also creates a TXTLIB, acceptable to members, from TEXT decks, as long as there is a *COPY record between members.

80 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

Figure 169 shows a subroutine pipeline to generate a macro library. Subroutine pipelines

are described in Chapter 7, “Writing a REXX Program to Run in a Pipeline” on page 97.

The construct “*:” at the beginning of the subroutine pipeline means that it should be

connected to the current input of the stage that issued the CALLPIPE pipeline command.

The maclib stage has one input stream (its primary) and three output streams. The primary

output stream is connected to the primary input stream of >. The secondary output stream

is connected to a buffer stage where it is accumulated. The tertiary output stream is

connected to the secondary input stream of >.

Figure 167 on page 80 shows a diagram of the topology of the part of the subroutine that

creates the library. The last pipeline (which begins '?o:',) is not shown; it processes a

copy of the directory (made with fanout) to determine whether the file has duplicate

member names. It writes a diagnostic to the terminal for each name that occurs more than

once.

GENMLIB also accepts variable record format SCRIPT files that have *COPY records to iden-

tify members.

Figure 169. MACWRITE REXX Subroutine Pipeline

/* MACWRITE REXX: Does the hard part of MACLIB GEN */
signal on novalue
arg fn ft fm recfm lrecl .
If fn=''

Then exit 999
If lrecl=''

Then parse value arg(1) subword('maclib a fixed 80', ,
words(arg(1))) with fn ft fm recfm lrecl

plrecl=lrecl
If abbrev('VARIABLE', translate(recfm))
 Then lrecl=''
'callpipe (end ?)', /* Subroutine */

'?*:', /* Get input */
'|pad' plrecl, /* Pad to length */
'|m:maclib', /* Generate MACLIB */
'|f:fanin', /* Add directory */
'|d:>' fn ft fm recfm lrecl, /* Write to disk */
'?m:', /* The directory */
'|o:fanout', /* Process directory twice */
'|buffer', /* Buffer it */
'|f:', /* To write */
'?m:', /* The first record */
'|d:', /* Replace first record */
'?o:', /* Directory records */
'|fblock 16', /* Get each entry */
'|chop 8', /* Just the name */
'|nfind' '00'x, /* Drop deleted/padding */

 '|sort count', /* Sort'm */
'|nlocate 1.10 , 1,', /* Discard singles */
'|spec /Duplicate member in' fn': / 1 11-* next 1.10 next',

 '|console'

exit RC

 Chapter 5. Using Multistream Pipelines 81

 Multistream Pipelines

If you wish to process the contents of the newly generated macro library without writing

the file to disk, you must use buffer to delay the main part of the file until the correct first

record is written to the secondary output stream. Figure 170 on page 82 shows how to

create a single stream with the contents of a macro library. It relies on the ability to

specify the order fanin is to process its inputs.

Figure 170. Sample MACLIB Stream

! /* Generate a MACLIB stream */
! 'pipe (end ?)',
! /*Read the file from somewhere */
! '| mac:maclib',
! '| drop 1', /* Remove place-holder */
! '| buffer', /* buffer main file */
! '| gthr: fanin 2 0 1', /*order streams */
! Here is the maclib as a stream
! '? mac:',
! '| buffer', /* buffer the directory */
! '| gthr:'
! '? mac:
! '| gthr:' /* Index pointer record */

 Decoding Trees

Selection stages emit data on one of two pipelines. They can be cascaded to any depth.

Create multiple identical streams with the gateway fanout. (And you can write your own

in REXX if these do not meet your needs.) You now have a way to process the file with

particular filters, depending on the contents of the record. Here is a decoding tree:

An input record appears on exactly one output line as long as the decoding tree consists

exclusively of selection stages; records can be processed differently on each stream out of

the decoding tree. Though you can write a file at the end of each stream, you can also

gather it all into a single stream again. Use the gateway faninany to gather the records as

they appear on the various lines. If you want a different ordering, you must buffer records

you wish to defer. buffer and sort do that; then use fanin as already shown.

Figure 171. Sample Decoding Tree

┌──────┐ ┌──────┐ ┌────────┐
│ < ├──┤ find ├────┤ locate ├────────────
└──────┘ └───┬──┘ └───┬────┘
 │ │
 │ └─────────────────
 │
 │ ┌───────┐

└───────┤ nfind ├─────────────
 └───┬───┘
 │
 └─────────────────

82 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

Remembering Past Data

Consider a file that describes users. For each user there is a group of records in this

format:

The first word of the user record contains the word “user”, which can be abbreviated to

one letter. Likewise the first word of the resource record contains “link”, also with a

potential abbreviation to one letter. To allow for pretty formatting, leading blanks are

allowed in this file; case is ignored.

The question is, how to construct a file that lists which users have access to what

resources. You could write a REXX filter to perform this function, but since writing filters

in the REXX programming language is described in a later chapter, you must resort to

pipethink to develop a solution consists entirely of built-in programs.

The solution seems to hinge on selecting records based on abbreviations and how to

remember the user ID that applies to a resource record.

A quick check in the help menu shows abbrev conveniently near the upper left corner; it

seems to do the job. As for remembering the user ID, the built-in program is juxtapose

(which means putting things next to each other). The topology of the solution (after the

initial strip and capitalisation) is:

The first (the larger) abbrev stage selects user records, which travel on the upper pipeline

where the second word is extracted and delivered to juxtapose’s primary input stream

padded out to ten characters. juxtapose stores the contents of the record in a buffer and

discards the record.

Resource records travel on the lower pipeline, where the second and third words are

extracted and passed to the secondary input stream of juxtapose.

When juxtapose senses a record on its secondary input stream, it appends this record to the

one stored in its buffer and writes the composite record to its primary output stream.

Thus, the user ID has been prefixed to the resource name.

Figure 172. Not so Hypothetical File Format

User <userid> <privileges>
Link <resource> <access mode>
...
Link <resource> <access mode>

Figure 173. Topology of One Record Storage

┌user:───┐ ┌────────────┐ ┌j:──────┐
─────┤abbrev ├────────┤spec ├────────┤juxtapos├──────

│ │ └────────────┘ │ │
 │ │ │ │

│ │ ┌───────┐ ┌───────┐ │ │
 │ ├────┤abbrev ├────┤spec ├────┤ │

└────────┘ └───────┘ └───────┘ └────────┘

 Chapter 5. Using Multistream Pipelines 83

 Multistream Pipelines

Note: In this example, the input records to juxtapose were derived from the same data

stream and the filters in the multistream path did not allow records to get out of order; that

is, they do not “delay the record”. (This concept is described later.)

juxtapose is likely to give unexpected results when the two input streams are derived from

sources, such as independent device drivers, that can produce records concurrently. When

records are available at both input streams at the same time, it is unspecified and unpre-

dictable in which order the streams will be read. Given a chance, juxtapose might drain

all records from its primary input stream before reading any records from the secondary

input stream.

You can use synchronise to make records on two streams march in lockstep, but it is prob-

ably easier to use spec or overlay to combine sets of input records into one output record.

Figure 174. Prefixing User ID to Resource Name

/* RESBYU EXEC -- Get resource ID by user name. */
Signal on novalue
Address COMMAND
'PIPE (end ? name RESBYU)',
 '? < resource file', /* Read input file */
 '| strip', /* Remove leading/trailing blanks */
 '| xlate', /* Make uppercase */

'|user: abbrev USER 1', /* Select user records */
 '| spec word 2 1.10', /* Extract user ID */

'|j: juxtapose', /* Prepend to resource */
 '| console', /* Display result */

'?user:', /* Non-user records come here */
 '| abbrev LINK 1', /* Select resource records */
 '| spec word 2 1.8', /* Extract user ID */

' word 3 nextword', /* Extract resource name */
'|j:' /* Pass it to be prefixed with the user ID. */

exit RC

* Resource File for system Z

User john paswd g
Link maint 190 190 rr
Li preben 191 391 rr

U preben xprt abcdegh
Link maint 190 190 rr
L john 191 391 rr

 resbyu
►JOHN MAINT 190
►JOHN PREBEN 191
►PREBEN MAINT 190
►PREBEN JOHN 191
►Ready;

 Destructive Testing

Examples in earlier chapters have shown how to prefix a key field to records, perform

some processing, and delete the key field afterwards. This, for example, allows for sorting

or selection based on a transformation of the record or parts of the record. To be able to

delete the key field, it must have a fixed length or be terminated by some particular char-

acter, or in other ways be identifiable.

When adding a key field cannot bend a selection stage to your needs, you may consider

the technique of testing by destruction. The crux of this technique is to keep a copy of the

original record in a safe place while the the record to be tested is transformed in an irre-

84 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

versible way and then passed to the selection stage. But the output from the selection

stage is not used as output data; rather, it is used to control which output stream is to

receive the original record.

This is a picture of the topology of such a setup:

In Figure 175, fanout and predselect represent the built-in programs, whereas xform and

select are selected by you to perform the particular transformations and selection required.

xform may represent a cascade of filters.

For each input record,

1. fanout writes the input record to its primary output stream, which is connected to the

primary input stream of predselect.

2. predselect stores the record in a buffer for later use. (This is the safe place.)

predselect then consumes the record without producing output.

3. fanout writes the same input record to its secondary output stream, which is connected

to your suite of transformation stages.

4. The transformation stages mangle the record in whatever way they see fit and pass

some concoction on to the primary input stream of the selection stage.

5. The selection stage selects or rejects. That is, it passes the input record to its primary

output stream or the secondary output stream, depending on whichever criterion you

have selected.

6. predselect detects an input record on its secondary input stream or its tertiary input

stream. This record acts like a trigger.

7. predselect writes the contents of its buffer to the primary output stream if the trigger

record was detected on the secondary input stream; it writes the contents of the buffer

to the secondary output stream if the tertiary input stream was triggered.

8. predselect discards the trigger record.

Thus, if the transformation and the selection do not delay the record, the pipeline segment

above as a whole will behave like a selection stage.

But there is one little extremely important detail that you must remember if you build your

own selection stages using this approach: Do specify the option STOP ANYEOF on fanout;

this makes sure that end-of-file can propagate backwards, both from the stages that follow

in the pipeline and from the selection stage. If you make this kind of pipeline, it might be

a good idea to test it with tolabel as the selection stage.

This technique is used under the covers of casei and zone.

Figure 175. Topology for Testing by Destruction

 ┌────────┐ ┌────────┐
─────┤fanout ├─────────────────────────────────────┤predsel ├──────
 │ │ ┌────────┐ ┌─────────┐ │ │

│ ├─────┤xform ├─────┤select ├──────┤ ├──────
 └────────┘ └────────┘ │ │ │ │
 │ ├──────┤ │
 └─────────┘ └────────┘

 Chapter 5. Using Multistream Pipelines 85

 Multistream Pipelines

Other Multistream Programs

CMS Pipelines provides many more multistream programs than the ones highlighted here.

Refer to the entries for “multistream” in Appendix A, “Summary of Built-in Programs” on

page 876 to see them all.

 Update
update applies a single update to a data stream. The master file is on the primary pipeline;

the update records are on the secondary one. Multilevel update is implemented as a

cascade of update stages.

In this two level update, the master file travels on the top pipeline. The individual update

files are read into the secondary input stream of the update stages that apply the updates.

Unlike the CMS UPDATE command, the update stages apply the updates in parallel as the

master file travels along the top pipeline.

This means that the log files are created in parallel too. But you probably do not wish to

see the composite log file in the order that individual lines are written; presumably you

would like (or more likely insist) that the first update stage’s log is first in the log file,

followed by the second one, and so on.

To generate a file that aggregates files that are generated in parallel, all except the first file

must be buffered in a buffer stage. The individual files are then fed to fanin, which will

copy each file from its input streams as a whole to its primary output stream. In the figure

we have taken the artistic licence to show the buffer stage backwards; records flow from

right to left through it. We have also taken the liberty to show the secondary input stream

to fanin at the top.

Note that all built-in programs are reentrant. It is perfectly proper to use a program

several times; each invocation has (in general, at least) no information about other invoca-

tions; and it has no inclination to find out.

Multilevel update pipelines are usually generated by a program that reads the control file

and the auxiliary control files to determine which updates are to be applied and then

generate the appropriate pipeline. (Yes, you can even write a pipeline to do that.) Still,

! you might be curious how the topology in Figure 176 is coded in an EXEC. This is how:

Figure 176. Multilevel Update

 ┌─────────┐ ┌────────┐
──────────────┤update ├────────────────┤update ├───────────────
 │ │ │ │
 ┌────────┐ │ │ ┌────────┐ │ │
│< updt1 ├──┤ ├─┐ │< updt2 ├──┤ ├──┐ ┌──────

 └────────┘ └─────────┘ │ └────────┘ └────────┘ │ │
 │ ┌────────┐ │ │
 │ ┌──┤ reffub├──┘ │
 │ │ └────────┘ │
 │ │ 1┌────────┐ │
 │ └──┤fanin ├────────┘
 │ │ │
 │ 0│ │
 └──────────────┤ │
 └────────┘

86 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

Figure 177. A Two Level Update

'PIPE (end ? name PIPUMSP.SCRIPT:1018)',
'?< program assemble', /* Read base file */
'|u1: update first', /* Apply first update */
'|u2: update last', /* Apply last update */
'|> $program assemble a fixed 80', /* Write temporary assemble */
'?< program updt1', /* Read first update */
'|u1:', /* Apply it */
'|log: fanin', /* Append second log file */
'|> program updtlog a', /* Write composite log */
'?< program updt2', /* Read second update */
'|u2:', /* Apply it */
'|buffer', /* Wait for first one to complete */
'|log:' /* Now append to log */

 Merge
merge reads records from all its input streams and writes the merged file to the primary

output stream. When each input file is already sorted, the output file will also be sorted.

When merge sees records with the same key on two or more input streams, it writes the

record in the order of increasing stream numbers. merge supports up to ten input streams.

You could cascade merge stages, but you might run out of storage if this means reading a

large number of disk files concurrently.

 Collate
collate merges detail records into a master file. By default, the detail records follow the

master record on the primary output stream. Master records for which there are no detail

records are written to the secondary output stream. Unmatched detail records are written

to the tertiary output stream. Additional plumbing is required to insert master records for

which there are no detail records in the primary output stream; refer to the description in

the reference part of this book.

In contrast to merge, collate supports only two input streams; it assumes that there is only

one master record that has a particular key; and it allows you to specify whether the detail

records should precede or follow the master record.

 Lookup
Use lookup to select records whose key field is one of several (or is not one of several).

The secondary input stream to lookup contains the reference records. These records are

read into lookup when it starts and are stored in a buffer internally while the file on the

primary input stream is processed. When a record from the primary input stream has the

same key as one of the reference records, the input record and the matching reference

record are written to the primary output stream. Unmatched records from the primary

input stream are written to the secondary output stream. When lookup gets end-of-file on

its primary input stream, the reference records that were never matched are written to the

tertiary output stream.

lookup is often used to remove “stop words” (words that are too common to be of interest)

from a set of words being indexed:

 Chapter 5. Using Multistream Pipelines 87

 Multistream Pipelines

lookup also supports dynamic change to the reference while it processes records from the

primary input stream. This is useful when it is used in a server to validate the clients’

authorities against a database that is updated dynamically. A record on the tertiary input

stream is added to the reference, in effect adding a user or a privilege to the table; a record

on input stream 3 causes the corresponding key to be deleted from the reference, in effect

removing privileges.

Figure 178. Using lookup

/* Now get usage counts after stop words are discarded */
'PIPE (end ?)',

'?<' input_file, /* Read input file */
'|split', /* Split into words */
'|locate 2', /* Ignore one-character words */
'|l: lookup', /* Look up, discard matching */
'?< stop words', /* Read file of stop words */
'|l:', /* To lookup */
'|sort count', /* Get frequency counts */
'|> word freq a', /* Write result */

 '?l:',
'|> unused stops a' /* Stop words not present */

┌────────┐ ┌────────┐ ┌l:──────┐
│ < ├──┤ split ├──┤ ├────
└────────┘ └────────┘ │ │
 │lookup │
┌────────┐ │ │ ┌────────┐ ┌────────┐
│ < ├──────────────┤ ├──┤ sort ├──┤ > │
└────────┘ │ │ └────────┘ └────────┘
 │ │
 │ │ ┌────────┐
 │ ├──────────────┤ > │
 └────────┘ └────────┘

Some Fine Points

You are justified in having a nagging suspicion that there is more to multistream pipelines

than you have seen so far. And the exposition has indeed been simplified. In general, you

should consider these issues when you write multistream pipelines:

¹ Make sure that data always can flow. If not, the pipeline will stall.

¹ Make sure that output records are in the order you expect. If not, you might get

incorrect results.

¹ Make sure that end-of-file can travel backwards in your pipelines. If not, you might

be spending system resources on something that produces no result.

The following sections contain a synopsis; the full story is in Chapter 22, “Scanning a

Pipeline Specification and Running Pipeline Programs” on page 245.

Ensure the Pipeline Does not Stall
A pipeline is stalled when records cannot flow between stages. A stalled pipeline is as

useful as a blocked drain.

Often a stall occurs because a stage that accesses multiple streams is trying to read from a

stream on which no record will become available or is trying to write to a stream that will

88 CMS Pipelines User’s Guide and Reference

 Multistream Pipelines

not be read. To stall, a pipeline must also have more than one path between some stages.

In general, you must consider the possibility of the pipeline stalling when there are one or

more meshes in the pipeline topology; that is, when the pipeline contains two stages

between which there is more than one path.

The buffer stage in Figure 167 on page 80 ensures that the inner loop in the pipeline does

not stall; the fact that maclib severs its primary output stream and its secondary output

stream before writing the final record to the tertiary output stream ensures that the outer

loop does not stall either.

If a selection stage puts a fork in the pipeline, it is normal to join the two branches with

faninany. Because faninany is able to read from any input stream that has a record avail-

able, it will be able to keep records flowing out of the multistream segment.

When records from a stage can travel over two or more paths to a fanin stage, you must

ensure that records arrive at the inputs of fanin in the correct order, which is all records on

the primary input stream, then all records on the secondary input stream, and so on.

Buffer stages (buffer or sort) or elastic stages connected to all input streams other than the

first will prevent stalls, at the expense of storage.

Keep the Order of Records
As you would expect (and no doubt also demand), the output records in Figure 163 on

page 77 are in the same order as the input records.

This section describes how you can ensure the order of the output records from a decoding

network that has been joined into one stream with faninany.

Two concepts are important to reason about the relative ordering of records:

¹ locate (and indeed every selection stage) passes the input record unmodified to an

output stream. When both output streams are connected, a selection stage writes an

input record once, and only to one of the output streams.

¹ locate (and indeed every selection stage), spec, and faninany are examples of built-in

programs that do not delay the record. This means that output records are in the same

sequence as the corresponding input record, and that an output record is produced

before the corresponding input record is consumed. If the stages in the mesh do not

delay the record, the output from faninany will be in the same order as the input to the

selection stage.

Thus, in Figure 163 on page 77, locate does not read another input record until console

has written the previous record to the terminal.

In general, to ensure that output records remain in the order they enter a pipeline segment

having parallel paths, any part of the pipeline specification that can pass a record on

parallel paths must consist entirely of stages that do not delay the record.

Some built-in programs (notably specs) synchronise their input streams; that is, they ensure

that there is a record available on all their inputs before beginning a processing cycle.

Connecting the outputs from fanout or chop to a synchronising stage without delaying the

record will result in a stall. To ensure that the resulting output record is not delayed, you

should insert a delay of one record into the topmost of the parallel paths between the chop

and the spec stage. For example, this pipeline fragment reverses the first word of each line

and puts it at the end of the line:

 Chapter 5. Using Multistream Pipelines 89

 Multistream Pipelines

Had the words in the output record been in the same order as in the input record, you

could have used a cascade of faninany and join to perform the operation that is done with

specs above.

Figure 179. Reverse First Word on Each Line

/* Reverse first word of each line */
Signal on novalue
'callpipe (end ? name REVWORD1.REXX:4)',
 '?*:',

'|c: chop blank', /* Get label or null */
 '| reverse', /* Turn it round */
 '| copy', /* One-record delay */

'|s: spec select 1 1-* next', /* Merge back */
' select 0 1-* nextword', /* At the end */
'|*:', /* Pass on */
'?c:', /* Rest of record */

 '|s:'
exit RC

 pipe literal abc def ghi | revword1 | console
► def ghi cba
►Ready;

Allow End-of-file to Travel Backwards
When you write REXX filters, be sure to test for the return code when writing output

records, as well as when you read. When the program has only one output stream, there is

no point in continuing after that stream is at end-of-file. You should terminate the

program without consuming the input record that you are processing at the time you

discover that you cannot write.

When you wish to trace data flowing in the pipeline to debug it, you should be careful not

to insert a device driver directly in the main pipeline path, for a device driver does not

propagate end-of-file backwards. After all, writing the output file is quite productive and

there is no need to terminate just because further processing has terminated.

You can use fanoutwo to obtain a copy of the records that flow in the pipeline and be sure

that end-of-file is propagated backwards and that the secondary output stream does not

interfere with the main stream.

If your CMS Pipelines does not have fanoutwo you can approximate its behaviour with

fanout STOP ANYEOF. This will not isolate the main pipeline from the device driver; if the

device driver terminates for some reason, the main pipeline will also shut down.

Figure 180. Safe Trace Capture

/* Capture a trace to a file */
parse arg file
'callpipe (end ?)',

'?*:', /* Input records */
'|x: fanoutwo', /* Pass on */
'|*:', /* To main output */
'?x:', /* Copy if consumed */
'|>' file /* Store it */

90 CMS Pipelines User’s Guide and Reference

 Structured Data

: Chapter 6. Processing Structured Data

: The data layout of a file is often defined as a record in some programming language or by

: some other symbolic means.

: Perform these steps to reference data in such a record symbolically:

: 1. Define the structure, for example as a file, but a conversion from some programming

: language definition is also possible.

: 2. Activate the structure definition by passing the structure definition to structure ADD.

: 3. Reference fields by using qualifiers and members in an inputRange or in a spec

: output specification.

: 4. Deactivate the structure definition when it is no longer needed by passing its name to

: struct DELETE.

: Defining Structured Data

: To start, consider the output from the CMS command QUERY ACCESSED:

: pipe cms q accessed | take 5 | console
: ►Mode Stat Files Vdev Label/Directory
: ►A R/W 156 191 SRV191
: ►C R/O 198 DIR SFS:RVDHEIJ.PUBLIC
: ►D R/W 120 DIR SFS:JOHN.REGTEST
: ►E R/W 973 DIR SFS:JOHN.PIPELINE.TESTS
: ►Ready;

: You can reference each field by its column number, for example, the virtual device number

: begins in column 23, but perhaps it would be clearer to refer to it simply as Vdev.

: Someone would have to make this definition manually, as the format is not present in a

: machine readable form. One possible definition is shown in Figure 181 below. Assume it

: is stored in the file QACC RECORD. We show one structure in this example, but such a file

: can contain multiple structure definitions.

: The file is in free format. You can span the definition across as many or as few lines as

: you like.

: Figure 181. Sample Structure Definition

: : qacc
: Mode Length 1
: - Length 1
: Extn Length 1
: - Length 4
: - Length 2
: Stat Length 1
: Files Length 10
: - Length 2
: Vdev Length 4
: - Length 2
: Label Length *
: Labelc(*) member Label Length 1

 Copyright IBM Corp. 1986, 2020 91

 Structured Data

: A structure is defined by a colon, which is followed by the name of the structure (blanks

: are optional after the colon). The fields are then defined on subsequent lines in this

: example.

: Structure names and field names are case sensitive unless the structure is defined as

: caseless, that is, STRUCT ADD ANYCASE was specified to define it. They must begin with a

: letter from the English alphabet or one of the characters “@#$!?_”. Subsequent characters

: may also include the digits 0 through 9. This is the same syntax as a valid REXX simple

: variable, but unlike REXX, it can be case sensitive. Note that the special characters are

: codepage sensitive; your terminal may show them differently.

: Refer to the reference article for structure for the complete syntax of a structure definition.

: Activating a Structure Definition

: Pass the structure definition to structure ADD to define it to CMS Pipelines.

: This defines the structure to be available until it is manually deactivated.

: Note that the structure definition is the input stream to structure; it need not come from a

: file; it could have been generated by a conversion utility upstream in the pipeline.

: You can even annotate the structure definition, as long as you remove your comments

: before passing the record to structure.

: You can see the definition of a structure by structure LIST:

: You can also obtain a summary of all defined structures:

: Figure 182. Activating a Structure

: pipe < qacc record | structure add thread
: ►Ready;

: Figure 183. Listing a Structure

: pipe structure list qacc | cons
: ►:qacc <length 28>
: ► Mode 1.01
: ► Extn 3.01
: ► Stat 10.01
: ► Files 11.10
: ► Vdev 23.04
: ► Label Length * <at 29>
: ► Labelc(*) 29.01
: ►Ready;

92 CMS Pipelines User’s Guide and Reference

 Structured Data

: Figure 184. Listing a Summary of Defined Structures

: pipe structure listall | cons
: ►Thread
: ►:qacc <length 28>
: ►Ready;

: Referencing Fields in a Structure

: Figure 185 shows how to select the lines that describe an accessed minidisk, excluding

: those that reference a directory.

: We referenced the field “fully qualified” in this example. Were you to reference several

: fields, you can specify the structure name with the keyword QUALIFY, as shown in the

: slightly contrived example in Figure 186.

: Both QUALIFY and MEMBER may be abbreviated down to one letter.

: You may also specify the option QUALIFY to define a default qualifier for all stages of the

: pipeline specification, but the option must be spelt in full; no abbreviation is available.

: Figure 185. Referencing a Symbolic Field

: pipe cms query accessed | drop 1 | ...
: ... pick member qacc.Vdev /== /DIR / | cons
: ►A R/W 156 191 SRV191
: ►R R/O 893 592 TCM592
: ►S R/O 701 190 MNT190
: ►X R/O 893 120 TCM592
: ►Y/S R/O 1121 19E MNT19E
: ►Ready;

: Figure 186. Using a Qualifier

: pipe cms query accessed | drop 1 | ...
: ... pick qualify qacc m Extn /== / / & m Stat == /O/ | cons
: ►Y/S R/O 1121 19E MNT19E
: ►Ready;

: Figure 187. Using the QUALIFY Option

: pipe (qualify qacc) cms query accessed | drop 1 | ...
: ... pick m Extn /== / /|pick m Stat == /O/ | cons
: ►Y/S R/O 1121 19E MNT19E
: ►Ready;

: Using Typed Data

: The definition of a member may associate a type with it. The type is a single letter in

: upper case, except for L. The type is ignored in general, but pick and spec support these

: types:

 Chapter 6. Processing Structured Data 93

 Structured Data

: A blank type, which means no type defined, as well as other letters are treated the same as

: character strings.

: C: A character string.

: D: Binary integer (big endian) in two’s complement notation. The input field may

: have any length.

: F: System/360 hexadecimal floating point. The input field may have any length,

: but only the first sixteen bytes are used (corresponding to extended precision).

: If it is present, the eighth byte is ignored; it is the characteristic of the lower

: half.

: P: System/360 packed decimal integer. A scale may optionally be associated

: with the member by specifying a signed number in parentheses. A positive

: scale specifies the number of decimal places; a negative one specifies the

: number of integer digits to drop on the right.

: R: Byte-reversed (little endian) binary integer in two’s complement notation. The

: input field may have any length.

: U: Unsigned binary integer. The input field may have any length.

: Using Arrays

: A member of a structure can be defined as an array of fixed or variable dimensions. Such

: a member is referenced using a subscript in parentheses after the member name. The

: subscript must be a positive number, except that spec is able to use computed subscripts in

: some contexts.

: Our example structure has a slightly contrived array on top of the directory name. To

: select the second member of this array:

: The entire array is selected when you specify a member that is an array without providing

: a subscript.

: Figure 188. Accessing a Member of an Array

: pipe cms query accessed | substr member qacc.Labelc(2) | take 3 | ...
: ... console
: ►a
: ►R
: ►F
: ►Ready;

: Deactivating a Structure Definition

: Once you are done with the structure, you should remove it from CMS Pipelines by

: passing the name to structure DELETE, as shown in Figure 189 on page 95.

94 CMS Pipelines User’s Guide and Reference

 Structured Data

: The example also shows that the structure is no longer known to CMS Pipelines.

: Figure 189. Deactivating a Structure Definition

: pipe literal qacc | structure delete thread
: ►Ready;

: pipe cms query accessed | pick qualify qacc member Vdev == /DIR / | cons
: ►Structure not defined: qacc
: ►... Issued from stage 2 of pipeline 1
: ►... Running "pick qualify qacc member Vdev == /DIR /"
: ►Ready(01392);

: Structure Scopes

: You can define structures in caller, set, or thread scope. A number of structures are

: predefined in CMS Pipelines; they are in the built-in scope. Structure names are resolved

: in the order caller, set, thread, built-in.

: Use caller or set scope for production strength applications, unless they are run by an EXEC

: that contains multiple PIPE commands (you may consider changing that to a single PIPE that

: runs a REXX program to issue the multiple pipelines with CALLPIPE). Thread scope is

: appropriate for interactive use. Refer to the usage notes for structure for further details.

: Caller Scope
: Structures defined in caller scope must be defined by a CALLPIPE specification, which

: logically makes the structures local to the stage issuing this subroutine pipeline and all its

! descendants. The scope is dismantled when the stage that issued the CALLPIPE terminates.

! Structures defined in caller scope obscure, for its callees only, all structures of the same

: name in all other scopes.

: There can be any number of caller scopes within a pipeline set. In general, the caller

: scopes form a forest that has the pipeline set at its root.

: Set Scope
: Set scope is the default. Structures defined in set scope last until the end of the current

: PIPE command or until the current record being processed by runpipe is consumed. At that

: point the pipeline set is dismantled and all its contents are discarded, including structure

: definitions in set scope.

: Structures being defined in set scope can embed any already defined structure, except for

: structures defined in a caller scope in the innermost pipeline set.

: A new set scope is established on a recursion into CMS Pipelines and by runpipe.

: A structure defined in set scope temporarily obscures a structure by the same name in all

: nesting pipelines, in thread scope, and built in.

 Chapter 6. Processing Structured Data 95

 Structured Data

: Thread Scope
: Thread scope is effectively permanent. Structures defined in thread scope remain defined

: until the end of the CMS process or the z/OS task.

: Structures in thread scope are removed only by explicit structure DELETE.

: Structures in thread scope can embed only structures in thread scope and built-in scope.

: Built-in Scope
: Built-in structures are searched last when a structure name is resolved; thus, they may be

: obscured by structures you define, but they cannot obscure a structure defined by you.

: You can reference built-in structures freely in structure definitions; you can list the

: contents of a built-in structure using structure LIST; you can list the names of the built-in

: in structures using structure LISTALL BUILTIN; but you can neither add nor delete a built-in

: structure.

: CMS Pipelines Structures: EVENTRECORD FPLASIT FPLSTORBUF

: CP Structures: VMCMHDR VMCPARM

: CMS Structures: DIRBUFF

: All built-in structures are caseless.

96 CMS Pipelines User’s Guide and Reference

 REXX Filters

Chapter 7. Writing a REXX Program to Run in a Pipeline

If you know REXX from writing EXECs or XEDIT macros, you can easily supplement CMS

Pipelines filters with programs of your own written in REXX. We call such a program a

REXX filter or a REXX stage. On CMS, a REXX filter is usually stored in a disk file that has

the file type REXX; on z/OS it is usually a member of the data set allocated to DDNAME

FPLREXX. It is run by mentioning the file name and arguments as a stage in a pipeline

specification. Commands issued from a REXX filter are processed by CMS Pipelines (just

as commands issued from an XEDIT macro are handled by XEDIT). Pipeline commands

read and write the pipeline and perform other functions.

On CMS, the maximum nesting of 200 CMSCALLs does not apply to REXX filters; you can

have as many REXX programs running in a pipeline as you have virtual storage for. On

z/OS, REXX filters run in separate reentrant environments. There is a predetermined

maximum number of possible concurrent REXX environments in an address space. The

installation can set this number.

Each REXX stage is a separate REXX program. It has its own set of variables which are

distinct from all other variables in all other invocations of REXX programs; other REXX

programs run without disturbing a program’s variable pool.

A REXX filter reads its input stream(s) and writes its output stream(s) as and when it

chooses; the program decides when its task is complete and when it should exit. The

pipeline dispatcher runs the pipeline stages so that data move through the pipeline. When

a filter reads a record, the dispatcher often turns around and runs some other stage so that

it in turn can produce the record to be read.

See Chapter 25, “Pipeline Commands” on page 750 for a reference of all pipeline

commands.

Concentrate on getting a simple program working first. Wait with complex programs until

you understand the environment REXX filters run in.

Reading and Writing the Pipeline
Figure 190 shows a sample filter that reads no input and produces a single line of output.

! The first line of the program is a comment (all REXX programs must begin with a

! comment). The second line issues a command to write a line to the pipeline.

Figure 191 on page 98 shows the basic copy filter. Add instructions to it to build a filter

processing a data stream.

Figure 190. HELLO REXX, a Simple REXX Filter with Usage

/* HELLO REXX: REXX filter */
'output' 'Hello, World!'

 pipe hello | console
►Hello, World!
►Ready;

 pipe hello | xlate upper | console
►HELLO, WORLD!
►Ready;

 Copyright IBM Corp. 1986, 2020 97

 REXX Filters

The pipeline command READTO reads from the pipeline. The argument (record) is the

name of the variable that receives the contents of the next record. The assignment is a

side effect of issuing the pipeline command, as is setting the variable RC to the return code.

This is why the name is a literal inside the quotes. A record is discarded if READTO is

issued without an argument.

OUTPUT writes the argument string as a record to the pipeline. An expression is evaluated

by REXX before the pipeline command is processed by CMS Pipelines. Note the difference

between READTO and OUTPUT: the latter has the record to write as its argument string; the

former has the name of a variable as its argument.

! Return code 12 on a READTO or OUTPUT pipeline command means end-of-file. When

! READTO receives end-of-file it indicates that no more records will be coming. The

! end-of-file on OUTPUT means that the remainder of the pipeline does not want to receive

! any more records from this stage. In both situations there is no need for the filter to

! continue, so it can simply terminate.

! Because of the signal on error, a pipeline command that sets a nonzero return code

! causes REXX to transfer control to the error: label where the exit statement terminates

! the program.

! The motivation for using signal on error is to avoid an explicit test on return code after

! each pipeline command (and not risk forgetting it).

! For many filters it is not an error when the pipeline decides to stop passing more records.

! It simply indicates that this filter is done with its task and can stop processing records as

! well. Terminating with a return code of 0 indicates that this filter ended without an error.

! The exit statement like in Figure 191 with the computed return code is often used in

! REXX filters as a compact notation for the following statement.

! if RC = 12 then exit 0
! else exit RC

A REXX filter using only the READTO and the OUTPUT pipeline commands is suitable for a

: pipeline specification that contains just one pipeline, but it has the potential to “delay the

record” (see “Keep the Order of Records” on page 89). Such a delay can lead to unex-

pected results in a multistream pipeline network; thus we recommend that you learn to

write robust REXX filters from the beginning. Figure 192 on page 99 shows a copy

program that does not delay the record.

Figure 191. COPY REXX Copies Input to Output

/* COPY REXX -- Copy unchanged */
signal on error
Do forever
 'readto record'
 'output' record
End
error: exit RC*(RC<>12)

98 CMS Pipelines User’s Guide and Reference

 REXX Filters

The PEEKTO pipeline command sneaks a peek at the next input record without consuming

it. When control returns after the PEEKTO pipeline command and the return code is zero,

the stage that produced the record is now waiting in an OUTPUT pipeline command. You

can peek as often as you like; the same record will be shown until you issue a READTO

pipeline command to consume the record. The producer can then resume after its OUTPUT

pipeline command.

! The expression on the exit statement deserves some explanation. It ensures that the

! program to terminate with return code 0 when the pipeline command set return code of 8

! or 12. It is a more compact way to code the following.

! if (RC=8) | (RC=12) then exit 0
! else exit rc

! Because EOFREPORT ALL is specified in the filter, the PEEKTO sets return code 8 when the

! output stream of the filter has become unconnected (which means that the remainder of the

! pipeline has terminated and will not consume any more records from this stage). Since the

! filter has been notified that no more records are needed, there is no value in processing the

! next input record or even waiting for one. This not only avoids wasting resources proc-

! essing records when there is no need for them, it also helps terminate a complicated pipe-

! line topology in an orderly way. The built-in programs follow this same style where

! applicable.

Figure 193 on page 100 shows a simple variation of the copy filter is a program to prefix

its argument string to each record being copied; a task that could also be done using insert.

Figure 192. COPY Program that Does not Delay the Record

/* COPYND REXX -- Copy without potential to delay */
Signal on novalue

'eofreport all' /* Propagate EOF backwards too */
signal on error

do forever
'peekto line' /* Look for next input line */
/* Process line here */
'output' line /* Pass it to the output */
'readto' /* Consume the record */

end

error: exit RC*(wordpos(RC, '8 12')=0)

 pipe literal a line | copynd | console
►a line
►Ready;

 Chapter 7. Writing a REXX Program to Run in a Pipeline 99

 REXX Filters

This can be generalised to perform an arbitrary operation on the record (see Figure 194)

where the argument string is an expression computing the record to write to the pipeline.

Figure 195 shows rxp used with REXX built-in functions to manipulate the data stream.

Note that the output expression is enclosed in parentheses. This ensures correct operation

even when the expression contains a relational or Boolean operator, which has lower

precedence than the blank operator used to concatenate the command (OUTPUT) to the

string to be written.

Performance of rxp improves if the complete loop is interpreted rather than each OUTPUT

pipeline command:

Figure 193. PFX REXX Prefixes a String to Records

/* Copy input to output */
signal on error
Do forever
 'peekto line'

'output' arg(1) line
 'readto'
End
error: exit RC*(RC<>12)

 pipe literal def | literal abc | pfx Data are: | console
►Data are: abc
►Data are: def
►Ready;

Figure 194. RXP REXX Is a Generalised Filter

/* Compute expression on each input line */
signal on error
Do forever
 'peekto in'

interpret "'output' (" arg(1) ")"
 'readto'
End
error: exit RC*(RC<>12)

Figure 195. Using RXP REXX

 pipe literal abc | rxp '***' centre(in, 10) '***' | console
►*** abc ***
►Ready;

 pipe literal this is a line | rxp words(in) | console
►4
►Ready;

100 CMS Pipelines User’s Guide and Reference

 REXX Filters

But as you can see, this performance improvement comes at the price of making the

program much harder to read. We recommend that you keep things simple until you really

have a performance problem resulting from interpreter overhead.

See also “Building a REXX Program Dynamically” on page 113.

Figure 196. Interpreting a Complete Loop

/* RXPI -- Compute expression on each input line */
signal on error
interpret,
"Do forever;",
 "'peekto in';",

"'output' (" arg(1)");",
 "'readto';",
"End"
error: exit RC*(RC<>12)

 pipe literal abc def ghi| rxpi space(in, 2, '*') | console
►abc**def**ghi
►Ready;

Using Multiple Streams in REXX Filters
A multistream filter uses more than a single input and a single output stream. For

example, a multistream filter could read two input streams and produce records for a single

output stream. To write and use a multistream REXX filter, you must know how to invoke

it; and you must also know how to access the streams. Chapter 5, “Using Multistream

Pipelines” on page 74 describes how to write a pipeline with multiple streams.

Figure 197 shows how to pass two files to the REXX filter scmp:

CMPF EXEC reads the first file into the primary input stream of scmp; it reads the second

file into the secondary input stream of scmp; and it displays the output on the terminal.

When you write a multistream REXX filter, you use PEEKTO, etc., to perform I/O operations

just as you would do with a pipeline specification that contains just one pipeline. Use

SELECT to specify which stream is used by subsequent I/O commands. SELECT INPUT 1

switches to the secondary input stream for subsequent PEEKTOs and READTOs. SELECT

INPUT 0 switches back to the primary input stream. Output streams are selected similarly;

for example, SELECT OUTPUT 1. SELECT ANYINPUT switches to any input stream that has a

record available; if there is no record available, it waits for one.

scmp, which is shown in Figure 198 on page 102, discards the first run of identical

records from the primary input stream and from the secondary input stream. A single

record containing the count of discarded records is written to the primary output stream.

Figure 197. Invoking a Multistream REXX Filter

/* CMPF EXEC */
address command
'PIPE (end ? name CMPF)',

'?< first file ', /* Read first file */
'| c: scmp ', /* Pass on primary input */
'| console ', /* Display result */
'? < second file ', /* Read second file */
'| c:' /* Pass on secondary input */

 Chapter 7. Writing a REXX Program to Run in a Pipeline 101

 REXX Filters

The return code is 0 when both streams are at end-of-file (and thus their contents are iden-

tical); it is 4 when one of the streams is at end-of-file; and it is 8 when neither stream is at

end-of-file.

The interesting part is in the subroutine peek. Its argument is the number of the stream to

read. The stream is selected with SELECT. The previous record is discarded except for the

first time, and the next record is loaded into the data variable with PEEKTO, which has a

peek at the record without consuming it. The return code sets a variable indicating

end-of-file. The data variable data.which is dropped at end-of-file, which is why the test

for end-of-file is performed inside the loop separate from the test for identity.

Figure 198. Comparing Streams for Identity

/* Compare two streams for being identical */
signal on novalue
do i=0 until data.0¬==data.1

call peek 0 /* Load from stream 0 */
call peek 1 /* ... and from stream 1 */
If eof.0 | eof.1

Then leave /* At least one at eof? */
end
'output' i /* Write result */
exit word('8 4 0', 1+eof.0+eof.1) /* Select return code */

peek:
parse arg which
'select input' which /* Select stream */
If RC ¬=0

Then exit -abs(RC)
If i>0

Then 'readto' /* Discard previous unless first time */
'peekto data.which' /* Sneak a peek */
If RC<0 | find('0 12', RC)=0

Then exit RC /* Serious trouble? */
eof.which=(RC=12) /* EOF? */
return

 Controlling Streams
When a REXX filter is specified with secondary streams (or more), these streams will be

available to it. The program can read from them and write to them as and when it pleases;

it can reference them in subroutine pipelines (to be described later); and it can even throw

them away.

In a multistream REXX filter, the SELECT pipeline command specifies which stream to read

and which one to write. Subsequent PEEKTO, READTO, and OUTPUT pipeline commands

will refer to the stream you selected until you select another one. You can select the input

stream independently of the output stream; or you can select both input and output with

one command. The primary input stream and the primary output stream are selected when

the REXX filter starts.

There are two ways to reference a stream:

¹ By number. The primary stream has number 0 (zero); the secondary stream has

number 1 (one); and so on. The numbering is in the order of the occurrences of the

label references to the stage in the pipeline specification.

102 CMS Pipelines User’s Guide and Reference

 REXX Filters

¹ By stream identifier. A stream identifier can be specified with the label definition and

with subsequent label references by suffixing a period and the identifier to the label

itself (before the colon that ends the label). The stream identifier uniquely identifies a

particular stream. It is useful as a symbolic reference. It can be used even for condi-

tional processing, which depends on the presence of a stream identifier. Stream

identifiers are optional.

SELECT with a number is slightly faster than using a stream identifier. You can use

the STREAMNUM pipeline command to discover which stream number (if any) is asso-

ciated with a particular stream identifier and then use the stream number from there

on.

Use SELECT ANYINPUT to select whichever stream has a record available. If more than one

stream has a record available when you issue the SELECT ANYINPUT pipeline command, it

is unspecified which input will be selected.

Use SELECT OUTPUT to select the stream to which OUTPUT writes its argument string.

SELECT BOTH selects a stream at both the input and the output side. SELECT ANYINPUT

selects whatever input stream has a record available; STREAMNUM INPUT sets the return

code to the number of the stream that SELECT ANYINPUT has selected.

Use the MAXSTREAM pipeline command to determine the highest stream number available.

Thus, MAXSTREAM returns 1 when you have secondary streams, but not tertiary streams.

Using CALLPIPE to Run a Subroutine Pipeline
CALLPIPE calls a subroutine pipeline. This is a handy way to create a synonym for a

cascade of filters.

Write a pipeline specification after the command verb (see Figure 199). This particular

subroutine pipeline issues CP commands and translates the response to lower case. Use

cplower whenever you wish a cascade of cp and xlate.

The REXX program waits for all stages of the new pipeline to complete before it continues.

The variable RC is set to the “worst” return code from any of the stages.

Specify where to connect the input and output streams of the running stage to the new

pipeline with connectors of the form “*:”. For simple subroutines, put one of these at each

end of the pipeline specification to indicate that the new pipeline should be connected to

the currently selected streams.

Using PEEKTO in Figure 198 on page 102 to see the record without consuming it means

that the program can be called as a simple front end to a more sophisticated compare

program. This is because the records that do not match stay in the producer’s output

stream and can be read again, for instance by a control stage.

Figure 199. Subroutine Pipeline

/* CPLOWER REXX, a Sample Subroutine Pipeline */
'callpipe', /* Command verb */

'| *:', /* Read input stream */
'| cp' arg(1), /* Issue CP commands */
'| xlate lower', /* Make lowercase */
'| *:' /* Write output stream */

exit RC

 Chapter 7. Writing a REXX Program to Run in a Pipeline 103

 REXX Filters

Figure 150 on page 71 shows another subroutine pipeline.

Sipping at Data—Processing the Input File Piecemeal
Often the input file consists of several subsections that are separated by some particular

record. A subroutine pipeline can quickly discard or copy data up to the first or next

occurrence of such a delimiter record. To pass the part of a Script file up to the body of

the document:

This subroutine pipeline copies records until tolabel reads a record that contains :body. in

the first six columns. tolabel then terminates without consuming the record. This causes

end-of-file to propagate from within the subroutine pipeline towards the outside. The input

and output streams are reconnected to the REXX program at this point, and the program can

now process the body of the file.

Figure 200. Sipping at Data

/* FIXSCR REXX -- Process a Script file */
'callpipe *: | tolabel :body.| *:'

 Short Circuits
A subroutine pipeline with two connectors and no stages short circuits the streams; that is,

it connects the two neighbour stages as if the stage that issued the CALLPIPE pipeline

command were not there. That is, records are passed from the neighbour to the left

directly to the one to the right. The calling stage waits while records fly overhead and

resumes when end-of-file is reflected, at which time the output stream is connected back to

the neighbour on the right.

One use of this is to write a variation of literal where the literal record is written after the

input stream is copied to the output. You could have written a loop to copy the stream but

the short circuit is simpler and faster. Figure 201 shows LITAFTER REXX, the REXX formu-

lation of append literal.

Use the pipeline command SHORT, rather than a short circuit pipeline, when you are not

going to write to the output stream after the input stream has been copied to it. (SHORT is

more efficient than the short circuit subroutine.) literal can be formulated in REXX using

SHORT (see Figure 202 on page 105).

Figure 201. LITAFTER REXX Writes Literal after File Is Copied

/* Write literal after the input is copied to the output */

signal on novalue
'callpipe (name litafter) *:|*:' /* Copy the file. */
if RC=0

then 'output' arg(1) /* Write literal text */
exit RC

104 CMS Pipelines User’s Guide and Reference

 REXX Filters

Figure 202. LITERAL Written in REXX

/* LITERAL in REXX */
'output' arg(1)
If RC=0
 Then 'short'
exit RC

Accessing REXX Variables
The built-in programs rexxvars, stem, var, vardrop, varfetch, varset, and varload can be

used in a subroutine pipeline (a pipeline specification that is issued with the CALLPIPE pipe-

line command) to access variables in the REXX program’s variable pool. See “Accessing

Variables” on page 36.

Obtaining the Source String
To display the current REXX environment (assuming the command is issued to XEDIT and

that the file PIPE XEDIT exists and issues the pipeline specification to CMS):

rexxvars writes the source string in its first output record. It then writes two records for

each variable in the environment. These lines are discarded in the example above, because

take only copies the first record. (rexxvars is smart enough to detect that its output is

being discarded and terminates quickly.)

Figure 203.

 pipe rexxvars | take 1 | console
►s CMS COMMAND PIPE XEDIT * PIPE XEDIT

Scanning the Argument String
While the REXX language features the powerful Parse instruction, which can be used to

parse most CMS Pipelines syntax variables directly, it does not parse the way CMS

Pipelines built-in programs scan for an inputRange or a delimitedString.

As an example, consider the syntax variable delimitedString. When a built-in program

scans an argument string for such syntax variable, it calls a subroutine, to which it supplies

a pointer and a count. The scanning routine then returns a pointer and a count, which

represent the delimited string. It also updates its input parameters to reflect what remains

to be scanned in the argument string.

Making such a scanning routine available to the REXX filter programmer ensures consist-

ency between built-in programs and REXX filters.

The scanning routines are called through pipeline commands from a REXX filter; all param-

eters are specified in the command string and all results are fed back through variables,

which are set as a side effect.

Thus, the argument string on the scanning pipeline commands consists of three parts, each

of which are separated by a single blank.

1. Keywords, where required.

2. Literal variable names for the result and the residual string. CMS Pipelines sets the

variables as a side effect of the pipeline command.

 Chapter 7. Writing a REXX Program to Run in a Pipeline 105

 REXX Filters

3. The input string or record to be scanned or processed.

Using this model, CMS Pipelines supports pipeline commands to scan the argument string

and to get the contents of an input range in a record.

As an example, consider a simplified version of the insert built-in program with this

syntax:

►►──INSERT──delimitedString─ ──┬ ┬──────────── ─►◄
 └ ┘─inputRange─

That is, insert requires a delimitedString (such as /abc/ or x010203); an inputRange

(such as word 3) is optional after the string.

Figure 204 shows the beginning of a REXX filter that scans its argument string according

to the syntax diagram above:

The first command scans the beginning of the argument string for a delimited string. The

result is two strings, the one scanned and the remaining argument string after the delimited

string. These are stored into the variables string and rest, respectively.

The second command scans what remains after the delimited string for an inputRange.

That is, it determines the position in the input record where the string should be inserted.

The keyword OPTIONAL specifies that an omitted range should be treated as the complete

record. Except for the keyword, SCANRANGE is similar to SCANSTRING. The range is

stored into the variable range and the remaining string is stored into rest. (Note that

REXX referred to the value of the variable when it built the command string; you can reas-

sign its value, just as you can in the REXX Parse instruction.)

Both the string and the range variables contain the result of the scanning routine, but

whereas you can use the string directly in REXX (and no doubt you will), the range is a

“token” in the original English meaning of the word. It is something that CMS Pipelines

has given you to hold for a while; when you wish to refer to the part of an input record

that is defined by this particular input range, you hand the token back to CMS Pipelines.

Figure 204. Scanning a Delimited String and an Input Range

parse arg args
'scanstring string rest' args /* Get the string */
If RC¬=0 /* Bad string? */

Then exit RC
'scanrange optional range rest' rest /* Get the range */

Getting a Range from an Input Record
If you have used the SCANRANGE pipeline command to obtain a token representing the

specification of an input range, you can obtain the data in the range with the GETRANGE

pipeline command, as shown in Figure 205 on page 107:

106 CMS Pipelines User’s Guide and Reference

 REXX Filters

The arguments to the GETRANGE pipeline command consist of three words and a string.

The first word specifies the name of the variable that contains the token that represents the

input range; this variable was set by SCANRANGE. The second word is a keyword; it

specifies that you wish the result in a stemmed array. The third word specifies the stem of

the compound variables into which the result is to be stored. The remainder of the

command (after exactly one blank) is the input line from which the input range is to be

extracted.

The variable stem.0 is set to one or three. It is set to one when the input range is not

present in the record; stem.1 is then set to the entire record. When stem.0 is set to three,

the part of the input record up to the beginning of the range is stored into stem.1; the

contents of the range are stored into stem.2; and the part of the input record after the

range is stored into stem.3.

Figure 205. Using GETRANGE

signal on error
do forever

'peekto line' /* Get some input */
'getrange range stem parts.' line /* Split it up */
If parts.0=1 /* Was range in record at all? */

Then 'output' string || line /* No, just insert first */
Else 'output' parts.1 || string || parts.2 || parts.3

'readto' /* Consume record */
end
error: exit RC*(wordpos(RC, '8 12')=0)

Building Production Strength REXX Filters

There are many considerations for writing a production strength filter. You should ensure

that:

¹ It scans its arguments in the CMS Pipelines tradition.

¹ It issues a message when it discovers an error.

¹ It uses the COMMIT pipeline command after it has scanned its arguments, before it

begins to process data.

¹ It does not delay the record unnecessarily.

¹ It propagates end-of-file in both directions.

¹ It enforces particular requirements, such as having only primary streams, always

having secondary streams.

 Scanning Arguments
There is one more twist to scanning arguments. Suppose you want to pass part of the

argument string to a built-in program, for example, an inputRange, you should use the

scanning commands already described in “Scanning the Argument String” on page 105,

but the resulting token is not of much use.

Instead, you can infer the input string that was scanned by the length of the residual string:

 Chapter 7. Writing a REXX Program to Run in a Pipeline 107

 REXX Filters

Be careful when you use part of the argument string in a pipeline specification; the string

may contain a stage separator or an end character, which will need to be doubled up to be

escaped. The probability of this happening in an inputRange is low, but not zero; still,

you may wish to accept this restriction. (For example, the word separator could be

specified as a vertical bar.)

When scanning for a delimitedString, however, the exposure is real, but the cure is

different. The idiomatic way to pass a delimited string to a stage is shown in Figure 207.

The trick is to convert the string to hexadecimal notation, which means that the string in

the pipeline specification will not contain any special character at all.

Figure 206. Finding String to Pass to a Built-in Program

parse arg argstring
'scanrange required token rest' argstring
range=delstr(argstring, length(argstring)-length(rest)+1)
'callpipe ... |spec' range ' 1 ...'

Figure 207. Passing a delimitedString to a Stage

parse arg argstring
'scanstring string rest' argstring
'callpipe ... | insert x'c2x(string) '|...'

Issuing Error Messages
To issue an error message, your immediate reaction might be to use the Say instruction,

but that has none of the advantages of the methods to be described; and it has all of their

disadvantages.

CMS Pipelines provides two pipeline commands to issue messages: MESSAGE and

ISSUEMSG; and CMS has the XMITMSG command.

The MESSAGE pipeline command simply writes its argument string to the current message

disposition. This is usually your terminal, but see also runpipe. You must supply the

entire message, including the message prefix, for example:

The advantage of the MESSAGE pipeline command is its simplicity. The disadvantage is

that you have the message text deep in your code, which makes it difficult to change and

almost impossible to support translation to national languages (NLS) and multiple message

repositories.

The ISSUEMSG pipeline command is an interface to the message infrastructure in CMS

Pipelines. The argument string contains the message number, the module identifier, and as

many delimited strings as there are substitutions in the message:

Figure 208. Using the MESSAGE Pipeline Command

'maxstream input' /* How many streams have we? */
if RC>1

then 'message INSERT264E Too many streams.'

108 CMS Pipelines User’s Guide and Reference

 REXX Filters

Setting things up for ISSUEMSG is best done in a subroutine, as shown in Figure 210. The

first argument string contains the message number; subsequent argument strings contain

strings to be substituted:

The advantage of ISSUEMSG is that it uses the CMS Pipelines infrastructure and thus allows

for NLS to the extent that CMS Pipelines does. The disadvantage is that it may be cumber-

some to add your own message to CMS Pipelines’s repository. Prior to level 1.1.10/0015

it would entail making a filter package to contain the repository. From 1.1.10/0015, you

can add your messages to the FPLUME REPOS repository and install this user repository.

(See Chapter 28, “Configuring CMS Pipelines” on page 867.)

Use the CMS command XMITMSG to issue a message using a CMS message repository. This

has the advantages of using standard message repositories, but the disadvantage that the

message will be written to the terminal irrespective of the CMS Pipelines message disposi-

tion.

Figure 209. Verifying Multistream Configuration

'maxstream input' /* How many streams have we? */
If RC>1 /* More than two? */

Then call err 264 /* Say so */
If RC=0 /* Or too few? */

Then call err 222 /* Say so too. */
'streamstate output 1' /* Is secondary output connected? */
If RC¬=12

Then call err 1197

Figure 210. Subroutine to Issue Messages

err:
parse arg msgno .
sub=''
Do i=2 to arg()

sub=sub '00'x || translate(arg(i),, '00'x) || '00'x
End
parse source . . myfn .
trace off /* Be quiet on MVS */
'issuemsg' msgno myfn sub
exit RC

Using the COMMIT Pipeline Command to Ensure other Stages Are
Committed to Process Data

Use the COMMIT 0 pipeline command when the arguments have been processed without

errors and the program is about to start processing data. If the return code on COMMIT is

nonzero, it means that some other stage has found an error and has terminated with a

nonzero return code. Thus, the pipeline will be abandoned; and the program might as well

terminate at this point.

 Chapter 7. Writing a REXX Program to Run in a Pipeline 109

 REXX Filters

If your program has allocated resources before committing, it must deallocate those

resources when it discovers that the pipeline is being abandoned, just as it must when it

terminates normally.

Figure 211. Using the COMMIT Pipeline Command

'commit 0' /* We're ready to process data */
If RC¬=0 /* But someone else isn't! */

Then exit 0

 Propagating End-of-file
You should make an effort to avoid unnecessary processing. For example, if an output

stream has been severed by its consumer, there is no point in producing output on it once

you know that it has been severed. And when you realise that all output streams are gone,

you should terminate unless you can do useful work (which would imply that your REXX

filter acts as a device driver rather than as a true filter).

So how do you realise that it is time to call it quits? You may wish to check the status of

your streams from time to time. You can do this in several ways:

¹ Issue the STREAMSTATE pipeline command to determine the state of a particular

stream. You can loop over all defined streams to get the whole picture. This is a bit

cumbersome.

¹ Issue the STREAMSTATE ALL command with the name of a variable to be set. CMS

Pipelines then stores the status of all defined streams into this variable. You still need

to write a loop to process the status of the individual streams.

¹ Issue the STREAMSTATE SUMMARY pipeline command to get a return code that can be

used directly for your decision. If the return code is 8, either all inputs are gone or all

outputs are gone.

But even with these very sharp tools, you are still not able to emulate what the built-in

programs can achieve. The remaining problem is to discover that an output stream has

been severed while the REXX program is waiting for an input record. Once you have

issued the SELECT ANYINPUT or the PEEKTO pipeline command, you will not get control

until a record is available (or there is end-of-file on the input).

The solution is the EOFREPORT pipeline command, which modifies the semantics of the

commands to read and write. Issue the EOFREPORT ALL to be alerted when all output

streams have been severed while you are waiting for an input record. The return code will

be 8 when all outputs are gone. You should issue this command in all your production

strength REXX filters.

If the EOFREPORT pipeline command is issued to a version of CMS Pipelines that does not

support the command, the return code will be -7. You can ignore this error. Since REXX

traces negative return codes by default, you should turn trace off to avoid a nuisance

message in this case.

Figure 212. Using EOFREPORT

trace off /* Don't show errors */
'eofreport all' /* Propagate EOF */

110 CMS Pipelines User’s Guide and Reference

 REXX Filters

But even this is not always enough. Sometimes you may wish to propagate end-of-file on

individual streams, as is done, for example, by gate. Issue EOFREPORT ANY to be alerted

to any change of pipeline connections while you are waiting for a record. Return code 4

means that some as yet unknown stream has been severed; you must issue STREAMSTATE

ALL and parse the variable it sets to discover which stream(s) need severing.

With EOFREPORT ANY we are speaking fine detail. Even an OUTPUT pipeline command

will terminate with return code 4 when a stream has been severed before the consuming

stage has seen the record. (That is, you can in some circumstances produce an output

record and then later retract it!) If the consuming stage has seen the output record, it is

too late. The producing stage must remain blocked (it cannot be resumed) until the record

is consumed or the consumer severs the stream.

Note that return codes 4 and 8 are set only when the stage is blocked at the time the

stream is severed. If a stage is ready to run, but not dispatched, there will be no indication

that a stream has been severed, because the pipeline dispatcher can reflect only one return

code at a time.

A Complete Robust REXX Filter
Figure 213 on page 112 shows the complete REXX filter from which the examples were

taken in the previous sections:

 Chapter 7. Writing a REXX Program to Run in a Pipeline 111

 REXX Filters

Figure 213. Robust REXX Filter

/* Insert a string in a record. */

'maxstream input' /* How many streams have we? */
If RC>1 /* More than two? */

Then call err 264 /* Say so */
If RC=0 /* Or too few? */

Then call err 222 /* Say so too. */
'streamstate output 1' /* Is secondary output connected? */
If RC¬=12

Then call err 1197

parse arg args

'scanstring string rest' args /* Get the string */
If RC¬=0 /* Bad string? */

Then exit RC
'scanrange optional range rest' rest /* Get the range */

If rest¬='' /* Too much? */
Then call err 112, rest /* Go complain */

'commit 0' /* We're ready to process data */
If RC¬=0 /* But someone else isn't! */

Then exit 0

trace off /* Don't show errors */
'eofreport all' /* Propagate EOF */

signal on error
do forever

'peekto line' /* Get some input */
'getrange range stem parts.' line /* Split it up */
If parts.0=1 /* Was range in record at all? */

Then 'output' string || line /* No, just insert first */
Else 'output' parts.1 || string || parts.2 || parts.3

'readto' /* Consume record */
end
error: exit RC*(wordpos(RC, '8 12')=0)

err:
parse arg msgno .
sub=''
Do i=2 to arg()

sub=sub '00'x || translate(arg(i),, '00'x) || '00'x
End
parse source . . myfn .
trace off /* Be quiet on MVS */
'issuemsg' msgno myfn sub
exit RC

112 CMS Pipelines User’s Guide and Reference

 REXX Filters

Building a REXX Program Dynamically

rexx can read the program to run from an input stream and then provide this program to

the interpreter rather than let the interpreter find the program to run. The program could

be compiled, but that does not seem to be of practical application; this section focuses on

interpreted programs.

The program can be read from any input stream; this stream will be at end-of-file when the

program starts. Instead of using the Interpret instruction, the program in Figure 194 on

page 100 can be generated in a subroutine pipeline like this:

The argument to the rexx stage specifies that it should read the program from the

secondary input stream (*.1:) and that the file name returned by the Parse Source instruc-

tion should be RXP.

Note that each input record becomes a line of the program; semicolons separate REXX

instructions on a line.

Figure 214. Generating a REXX Filter Dynamically

/* RXPD -- RXP dynamically */
pgm.1="/* RXP */ Signal on error"
pgm.2="Do forever; 'peekto in'"
pgm.3="'output' (" arg(1) ")"
pgm.4="'readto'; end"
pgm.5="Error: exit RC*(RC<>12)"
pgm.0=5
'callpipe (end ?)',

'|*:', /* Read input */
'|r: rexx (*.1: rxp)', /* Run program */
'|*:', /* Write output */
'?stem pgm.', /* Get program */
'|r:' /* Feed to secondary */

exit RC

 pipe literal oscar | rxpd "*"in"*" | console
►*oscar *
►Ready;

Implementing a REXX Macro Processor

Think of an XEDIT macro or an ISPF/PDF macro written in REXX. The macro issues

commands to the editor which in turn sets the return code and other variables in the

macro’s variable pool. The macro and the editor really are coroutines: each maintains a

separate state, and they take turns at performing the task at hand. Macro processors are

implemented by command recursion on CMS and TSO because these systems do not support

coroutines; a more natural way to implement a macro processor is as a pipeline stage

where input records are interpreted as commands. To do this, the macro processor must be

able to set variables in the macro’s variable pool. These CMS Pipelines features support

writing macro processors:

¹ The ability to read a REXX program from a stream means that the macro can be

prefixed by REXX statements that set up for specific processing; for instance, a

BEGOUTPUT pipeline command can be issued to bring the macro into continuous output

 Chapter 7. Writing a REXX Program to Run in a Pipeline 113

 REXX Filters

mode. The macro can also be transformed; for instance, to remove Address

instructions.

¹ The BEGOUTPUT pipeline command, when issued in the macro, has the effect that

subsequent commands are written directly to the output stream rather than being proc-

essed by CMS Pipelines as pipeline commands. Thus, what the user writing the macro

thinks of as commands is passed to the following stage as data records.

¹ The macro processor can use the PRODUCER option on the device drivers for REXX

variables (for instance stem) to access the REXX variable pool of the macro rather than

its own variable pool.

¹ The SETRC pipeline command allows the macro processor to set the return code in the

macro.

It is certainly possible to write an editor that supports XEDIT macros to process data in the

pipeline. Such a REXX filter will (if written correctly) be directly transportable between

CMS and TSO. It should also be possible to write an XEDIT macro processor to allow XEDIT

macros to be used with ISPF/PDF.

 Miscellaneous Issues

Issuing Commands from a REXX Filter on CMS
Before explaining how to issue host commands from a REXX filter, a word of warning.

If you issue a command directly from a REXX filter to the host system, CMS Pipelines has

no way to know that you have given control over to the host system. In many cases, this

makes no difference, but there are two pitfalls you should try to avoid:

1. The time spent in the host is charged to the stage by RITA. After all, CMS Pipelines

does not know that you have given control over to the host, how could it tell Rita?

2. On CMS, the delay stage cannot recover from a program that uses the clock

comparator.

Instead of addressing commands directly to CMS, use the command stage in a subroutine

pipeline to issue them when you are not sure whether the command will interfere with

CMS Pipelines or not. (Or use subcom CMS.) This lets CMS Pipelines in on what is going

on and it may keep you out of trouble.

Note that a REXX filter has no way in general to discover that a pipeline is being timed or

that the pipeline contains a delay filter. Therefore, if you are writing production strength

REXX filters, avoid the use of the address instruction if you can. One severely burnt

plumber wrote:

Me? I'm just going to NEVER AGAIN use Address COMMAND in a Rexx
filter - if it occasionally costs me a few extra microseconds, then
so be it.

Now that you have been duly warned, let us discuss how to address commands to partic-

ular environments in a REXX filter.

In a REXX filter, you can use the Address instruction to issue a command to other

command environments on CMS. As an example, on CMS, this clears the screen before

writing a line:

114 CMS Pipelines User’s Guide and Reference

 REXX Filters

When a subroutine returns, REXX restores the default command environment to the one in

effect when the subroutine (or function) was called. Thus, it is safe to change the default

command environment in a subroutine that does not issue pipeline commands and does not

call a subroutine that issues pipeline commands.

Do not change the command environment permanently unless you know how to get back.

It is safer to issue all commands to other environments with the Address instruction so that

you are sure that you retain the pipeline command environment. It is not recommended to

use the Address instruction without operands to toggle between command environments.

Figure 215. CMS Command from Filter

/* TOPLIT REXX */
address command 'VMFCLEAR' /* Clear screen */
'output At top of screen?'

Figure 216. Clearing the Screen

/* Clear screen when there are data */
signal on novalue
'commit 0' /* See if we're running */
If RC/=0

Then exit /* not today */
'peekto' /* Get a record */
If RC/=0 /* No file? */
 Then exit
call clear /* clear the screen now */
'short' /* Copy data */
exit RC

clear:
address '' /* COMMAND environment */
'VMFCLEAR' /* Clear screen */
If RC=0 /* OK? */
 Then return
exit RC

Issuing Commands from a REXX Filter on TSO
On z/OS, REXX filters run in what is called reentrant environments to enable them to termi-

nate in any order. This means that the only command environments available are the pipe-

line command environment, LINK, z/OS, and similar. In particular, neither TSO nor the ISPF

environments are available through the Address instruction. But you can reach them

anyway; there are three ways:

¹ Use command to issue a TSO command and have the response displayed directly on

the terminal.

¹ Use tso to issue a TSO command and write the response into the pipeline.

¹ Use subcom to reach other command environments (for example ISPEXEC).

The initial command can be specified as the argument; additional commands are read from

the input.

 Chapter 7. Writing a REXX Program to Run in a Pipeline 115

 REXX Filters

Issuing Pipeline Commands from an External Function
In a REXX filter, use the pipeline command REXX to call an external REXX procedure that

issues pipeline commands. This is equivalent to calling an external function with one

argument string. The return code is stored in the variable RC, as for all commands. The

REXX pipeline command does not support multiple argument strings; a program called this

way can return only a number.

 Red Neon!

You cannot issue pipeline commands from a REXX program that has been called as an

external function or invoked with the Address instruction because this implies a

CMSCALL. Do not pass the result of Address() to an external function; results are

unpredictable if you issue pipeline commands from REXX programs that are neither

invoked as stages nor called by the REXX pipeline command from a stage. You are

likely to encounter a disabled CMS wait when the REXX program tries to return.

Return Codes -3 and -7
You receive these return codes when a command is not recognised by the command envi-

ronment to which it is addressed. This can be because you have addressed the command

to the wrong environment or because a continuation character is missing.

CMS and REXX on TSO give return code -3 when they do not recognise the command you

have issued to them. This is likely to happen when you issue a pipeline command to the

host. Be sure you keep the original command environment intact if you issue the Address

instruction to select a new environment permanently.

CMS Pipelines gives return code -7 when it does not recognise a pipeline command. The

two most likely reasons are:

¹ A CP or CMS command is addressed to the pipeline command environment. Use the

Address instruction with CMS or COMMAND to issue the command to CMS rather than

as a pipeline command.

¹ A continuation comma is missing in a pipeline specification written over several lines.

By default, REXX traces commands that give a negative return code. Since REXX’s

message is quite explicit, CMS Pipelines does not issue further messages in this case.

(Thus, if you wish to handle this condition quietly, you can do so.)

On TSO, trace from REXX filters is written to the DDNAME SYSTSPRT; be sure to allocate it!

Be sure to test the return code or use signal on error to trap errors.

 Pitfalls

Here are some pointers for when things break inexplicably. Be sure also to read the first

section of “Issuing Commands from a REXX Filter on CMS” on page 114.

116 CMS Pipelines User’s Guide and Reference

 REXX Filters

Calling External Functions from a REXX Filter
REXX supports external functions for REXX filters, just as it does for other kinds of REXX

programs, such as XEDIT macros, but be careful not to let REXX’s search order trip you

over.

When the file type of the REXX program is not EXEC and REXX resolves an external func-

. tion that is not in a loaded function package, REXX on CMS first searches for a file with a

file type like the calling program.

Thus, if you call the external function myfunction, REXX looks first for MYFUNCTI REXX

and then for MYFUNCTI EXEC. Thus, if you try to hide an existing EXEC with a REXX filter,

it simply will not work; you will get an unending recursion instead. If you are lucky you

run out of storage before CMS reaches the limit on nested SVCs and ABENDs you.

. On z/OS, REXX searches only the data set from where the calling function was loaded.

. Thus, you may need to maintain two copies if an external function is called both form a

. CLIST and from a REXX stage.

The Dangers of Using Implied REXX Filters
The pipeline specification parser looks for a file with file type REXX when it cannot resolve

the name of a filter. This allows you to add your own REXX filters seamlessly.

But note that the search for a REXX filter is after the search for a built-in program. If you

choose easily understandable names for your REXX filters, it may well happen that a new

release of CMS Pipelines has a built-in program with the same name as your REXX filter.

And then the built-in program “wins”; and your users get frustrated.

The obvious recommendation is to use an explicit rexx stage to run the REXX program; this

will even save you an infinitesimal amount of CPU time. But if you later decide to incor-

porate the REXX filter in a filter package, it will not be resolved; the contents of a filter

package are effectively built-in programs, even when they are written in REXX.

Thus, for production strength, choose the file names for REXX filters carefully. You might

consider prefixing the names with your company’s acronym or your own initials; this

should reduce the probability of a naming clash.

So what can you do after you have been bitten? Suppose you have a IF REXX which

begins to fail with the most strange error messages after you install a new level of CMS

Pipelines (or a new level of CMS). Chances are that if is now a built-in program. And you

have literally thousands of references to it scattered over hundreds of files. You can give

yourself time to think by putting your REXX filter into a filter package that has the magic

file name PIPPTFF. Filters in this package override the built-in programs.

Still, this may not be a good idea either: Many parts of CMS run pipelines under the

covers; if you replace a built-in program with a program of your own by putting it in

PIPPTFF filter package, this will also affect the pipelines that are written with the real

built-in program in mind.

 Chapter 7. Writing a REXX Program to Run in a Pipeline 117

 REXX Filters

 Performance

Remember these points when writing programs for CMS Pipelines:

¹ Make sure the function cannot be performed with a built-in filter or a cascade of such

filters. For instance, spec should be used instead of the program shown in Figure 193

on page 100.

¹ Make a program do one thing, and do it well. Decompose a complex task into a suite

of simpler generalised programs. Write one small program to perform what is unique

to the task.

¹ Measure, if performance is a concern. Only when convinced of a substantial savings

should you contemplate writing a filter to combine function already available in sepa-

rate programs.

Figure 217 shows the difference between a REXX filter and an equivalent built-in program.

Words four and five of the ready message show CPU used on a lightly loaded system.

The first command shows the overhead of reading the largest file on the system disk and

counting the records in it. The second test uses the program shown in Figure 193 on

! page 100, whereas the next two examples use spec and change to do the same thing. The

! final example shows that a special purpose program like insert can speed up things even

! more.

Figure 217. Filter Performance

! disk dmsgpi maclib | count lines | cons
! 94814
! Ok. 11:13:22 02/08/16 0.047 0.056

! disk dmsgpi maclib | pfx prefix | count lines | cons
! 94814
! Ok. 11:08:17 02/08/16 2.601 2.618

! disk dmsgpi maclib | spec ,prefix, 1 1-* next | count lines | cons
! 94814
! Ok. 11:09:00 02/08/16 0.292 0.301

! disk dmsgpi maclib | change ,,prefix, | count lines | cons
! 94814
! Ok. 11:09:24 02/08/16 0.168 0.178

! disk dmsgpi maclib | insert ,prefix, | count lines | cons
! 94814
! Ok. 11:09:48 02/08/16 0.136 0.146

Should You Compile Your REXX Filters?
The performance of filters that do little processing for each record will be dominated by

the EXECCOMM processing that moves records into and out of the REXX variable pool.

This processing takes roughly the same time for compiled and interpreted REXX; there will

be no performance gain from compiling the examples in this chapter. On the other hand,

the cmprrexx utility program showed a marked performance improvement when it was

compiled.

Issues other than performance may influence your decision in favour of compiling:

¹ The compiler may support a higher language level than the interpreter does.

¹ You may wish to hide the source for a REXX filter so that a user cannot tamper with it.

118 CMS Pipelines User’s Guide and Reference

 REXX Filters

¹ The compiler can detect syntax errors in the program that may go unnoticed in testing,

because some part of the program is not exercised by the test cases.

We recommend that you compile complex REXX filters even if you decide to use the inter-

preter when they are run. The compiler finds many errors that would otherwise have gone

unnoticed for a while. We have discovered many spelling errors that would not have

caused an interpreter diagnostic, by scanning the cross reference listing from the compiler

for unreferenced variables and strings that look very much alike (enabled with the XREF

option).

 MVS Considerations

When TSO Pipelines is running a REXX filter, it runs in a reentrant environment. Output to

the terminal (for example, from the Say instruction) in such an environment is written to

the DDNAME SYSTSPRT rather than directly to the terminal.

Error messages are issued to this data set as well.

Be sure to allocate this data set in your logon procedure or in the Job Control Language

for the job step that invokes TSO Pipelines. If the DDNAME is not allocated, REXX will

issue a message to the programmer to this effect. But you will only see this message in

TSO if you have PROFILE WTPMSG.

Thus, if the REXX filter fails and SYSTSPRT is not allocated, you will most likely just see a

broken pipe that has no data coming out. This can lead to much head-scratching and

finger-pointing.

Be smart: allocate SYSTSPRT!

 Chapter 7. Writing a REXX Program to Run in a Pipeline 119

 Pipeline Options

Chapter 8. Using Pipeline Options

Pipeline options control the pipeline specification parser and the pipeline dispatcher.

Options to control the pipeline specification parser are specified in parentheses at the

beginning of the pipeline specification. Options to control the pipeline dispatcher apply to

all stages when the option is at the beginning of the pipeline specification; options can

further be enabled or disabled for a particular stage. You can do this with pipeline

options:

¹ Define characters that have special meaning in a pipeline specification.

¹ Name the pipeline specification.

¹ Request additional informational messages.

¹ Set the message level to enable or disable additional messages that are issued automat-

ically to identify the stage issuing an error message.

Options for the Pipeline Specification Parser

Write pipeline options in parentheses immediately after the command that issues the pipe-

line specification (before the first stage). A stage separator character is optional after the

right parenthesis ending the option list; use one to show without ambiguity that the paren-

theses contain options that apply to the complete pipeline specification.

Control the Pipeline Specification Parser: The default stage separator is the solid vertical

bar that you have by now seen many times. Sometimes you may wish to use the vertical

bar as an argument to a filter; for instance to find records starting with a solid vertical bar.

There are three ways to do this, shown in Figure 218:

¹ Use an additional stage separator character for a self-escaping sequence. Two adjacent

stage separator characters are treated as a single normal character, which is passed to a

program as part of the argument string.

¹ Define an escape character to put in front of solid vertical bars and other characters

that are not to be taken as stage separators.

¹ Use the option SEPARATOR to redefine the stage separator to a different character.

The escape character is defined with the option ESCAPE; when defined, it can be put in

front of any character, not just the stage separator. The escape character itself is ignored

and any special meaning the following character might have to the pipeline specification

parser is suppressed, so the second character becomes just a “normal” one. Use two

escape characters to specify a single escape character in an argument string.

All three examples in Figure 218 select records with a solid vertical bar in column 1.

Figure 218. Finding Lines Beginning with |

/* Self-escaping */
'pipe < some file | find ||| > revised lines a'

/* Define Escape Character */
'pipe (escape ") < some file | find "|| > revised lines a'

/* Change Stage Separator Character */
'pipe (separator ?) < some file ? find |? > revised lines a'

120 Copyright IBM Corp. 1986, 2020

 Pipeline Options

The option ENDCHAR (which is often abbreviated to “end”) is the last of the special charac-

ters you can define. It is used to delimit pipelines when using multiple streams. The end

character is also self-escaping; use two abutted end characters to provide an end character

as the argument to a stage.

The word after the option SEPARATOR, option ENDCHAR, or option ESCAPE is an xorc,

which is a single character, as we have seen, or a two-character hex value. This is partic-

ularly useful in REXX programs where you can use a character that the user cannot type on

the terminal. However, remember that it is only the specification of the character in the

global option that can use the two-character hex value; it must be a single character in the

pipeline specification proper, but with REXX this can be coded as a hex constant.

Figure 219 is an example.

Parentheses, the asterisk (*), the colon (:), the period (.), and the blank (X'40') have

special meaning to the pipeline specification parser; these characters are rejected when

used for the scanner characters.

The escape character is not effective when scanning pipeline options; it is not possible to

use a right parenthesis for a value of a pipeline option.

Name the Pipeline Specification: The option NAME followed by a blank-delimited word

associates a name with a pipeline specification. This name is displayed in messages, but

has no other effect. The name need not be unique among the current set of pipelines.

Though of limited use when the pipeline specification is typed at the terminal, the name

option is useful in nested subroutine pipelines. If you write the name of the EXEC in the

option NAME, CMS Pipelines can tell you where there is trouble. FMTP XEDIT automatically

inserts the file name and line number as the pipeline name when it converts a pipeline

from landscape to portrait format.

Figure 219. Using Two-character Hex Values for the Stage Separator

/* Using 01 as the stage separator character */
'pipe (separator 01) < some file' '01'x,

'find |' || '01'x,
'> revised lines a'

Figure 220. Sample Name

 pipe unknown | console
►Entry point UNKNOWN not found
►... Issued from stage 1 of pipeline 1
►... Running "unknown"
►Ready(-0027);

 pipe (name test) unknown | console
►Entry point UNKNOWN not found
►... Issued from stage 1 of pipeline 1 name "test"
►... Running "unknown"
►Ready(-0027);

 Chapter 8. Using Pipeline Options 121

 Pipeline Options

Options for the Pipeline Dispatcher

You can specify the options to be described next both in front of the entire pipeline

specification (these are global options), and in front of individual stages (local options).

When writing local options, prefix NO to an option to negate the effect of an option that

applies to the entire pipeline specification.

Get More Informational Messages: You may wish further information when the PIPE

return code is not zero and you get no error message from any stage. Three levels of

additional information messages can be requested from the pipeline dispatcher:

LISTERR Issue a message when a stage returns with a nonzero return code. Use this

option to see which stages return “quietly” with a nonzero return code.

LISTRC A message is issued when a stage is started and when it returns, whether the

return code is zero or not.

TRACE This option causes a large amount of trace data to be written. All calls to the

pipeline dispatcher are traced as are its actions. Using this trace you might be

able to relate messages issued by other commands or REXX Say instructions to

a specific stage.

You can also reduce the number of messages issued:

MSGLEVEL Enables or disables additional messages that are issued to pinpoint the stage or

command that issued a message.

Though it is not exactly providing an informational message, the following option may be

useful when you are debugging an Assembler program running in CMS Pipelines.

STOP A message is issued when each stage is started and an address stop (or similar

trace) is activated to stop in CP console function mode as soon as the first

instruction in the stage is issued. You can set up traces within the program

under test. Be sure to have SET RUN OFF when using this option; the stage

runs away from you if RUN is ON!

Use runpipe as shown in Figure 221 to redirect CMS Pipelines messages to a file.

Specify a local option to activate trace for a single stage of a pipeline, or selected stages.

Turning off the rightmost three bits in the message level suppresses the normal messages

to identify the stage issuing the message.

Figure 221. Using runpipe to Capture Pipeline Trace

/* Trace a pipeline */
pipe='(trace) literal hello|console'
address command
'PIPE',

' var pipe',
 '|runpipe',

'|> pipeline trace a'

122 CMS Pipelines User’s Guide and Reference

 Pipeline Options

Figure 222. Disabling Additional Messages

 pipe literal abc | (trace nomsglevel 7) literal def | hole
►FPLDSQ028I Starting stage with save area at X'03B58470 03F290A8 00000000>
►FPLDSQ001I ... Running "literal def"
►FPLDSP035I Output 4 bytes
►FPLDSP039I ... Data: "def"
►FPLDSQ031I Resuming stage; return code is 0
►FPLDSP034I "SHORT" called
►FPLDSQ031I Resuming stage; return code is 0
►FPLDSP020I Stage returned with return code 0
►Ready;

 Chapter 8. Using Pipeline Options 123

 Debugging

 Chapter 9. Debugging

CMS Pipelines issues a message when it detects an error. But sometimes the mistake is

not a syntactical one. A few hints are given below about the things you can do to find out

what went wrong when you get no output or get an unexpected return code.

 Error Messages
A filter issues an error message when the parameter list is in error or when an error occurs

during processing. Figure 223 is a sample run.

Lines are read from the console and blocked with OS record descriptor words (or at least

that was the intent). block decides it cannot do what is asked and issues error message

115. CMS Pipelines adds two messages to help you find the error.

The error in block is discovered before any of the stages begin running; no stage is started.

After the error in this example, issue “pipe help” to display more information about

message 115.

Use runpipe to issue a pipeline specification and capture all messages issued from it. This

may be a more convenient way to document a problem than console SPOOL. Be sure to

use diskslow if the problem causes an ABEND. This ensures that the output file will be

readable and will contain all records.

Figure 223. Sample Session with Errors

 pipe console|block 1 vbs|> vb file a
►Block size too small; 9 is minimum for this type
►... Issued from stage 2 of pipeline 1
►... Running "block 1 vbs"
►Ready(00115);

 set emsg on
►Ready;

 pipe console|block 1 vbs|> vb file a
►FPLBLK115E Block size too small; 9 is minimum for this type
►FPLSCA003I ... Issued from stage 2 of pipeline 1
►FPLSCA001I ... Running "block 1 vbs"
►Ready(00115);

 Other Hints
Use the option LISTERR to list stages giving a nonzero return code. This lets you find

stages that do so “quietly” without issuing an error message.

124 Copyright IBM Corp. 1986, 2020

 Debugging

Here you see the effect of the option LISTERR. maclib gives return code 12 without issuing

a message when there is no stage to read its output.

The last sample in Figure 224 shows how to name a pipeline. This is particularly useful

when running a pipeline from an EXEC to indicate which EXEC invoked CMS Pipelines;

knowing which stage issues a message may not be too helpful if one does not know which

EXEC contains the pipeline specification being run.

Figure 224. Effect of LISTERR and NAME Global Option

 pipe hole|maclib
►Ready(00012);

 pipe (listerr) hole|maclib
►FPLDSP020I Stage returned with return code 12
►FPLMSG003I ... Issued from stage 2 of pipeline 1
►FPLMSG001I ... Running "maclib"
►Ready(00012);

 pipe (listerr name maclib_test) hole|maclib
►FPLDSP020I Stage returned with return code 12
►FPLMSG004I ... Issued from stage 2 of pipeline 1 name "maclib_test"
►FPLMSG001I ... Running "maclib"
►Ready(00012);

Who Did That?
Use the option TRACE to follow the pipeline dispatcher as it switches control between

stages. If you are desperate you may consider running the pipeline through runpipe

TRACE. This forces trace of everything: all subroutines and all pipeline specifications

added with ADDPIPE. (Performance is likely to deteriorate.)

The example in Figure 225 shows how to issue a trivial pipeline (it has only the stage,

hole) through runpipe. Normally, you would build the pipeline specification in a REXX

variable and then insert it into the pipeline with a var stage.

Figure 225. RUNPIPE TRACE

 pipe literal hole | runpipe trace | spill 80 offset 10 | console
►FPLDSQ1381I Pipeline committed to 0 worst return code 0
►FPLDSQ028I Starting stage with save area at X'03B586A8 03F2A020 00000000>
► commit level 0
►FPLMSG003I ... Issued from stage 1 of pipeline 1
►FPLMSG001I ... Running "hole"
►FPLDSP033I Input requested for 0 bytes
►FPLMSG003I ... Issued from stage 1 of pipeline 1
►FPLMSG001I ... Running "hole"
►FPLDSQ031I Resuming stage; return code is 12
►FPLMSG003I ... Issued from stage 1 of pipeline 1
►FPLMSG001I ... Running "hole"
►FPLDSP020I Stage returned with return code 0
►FPLMSG003I ... Issued from stage 1 of pipeline 1
►FPLMSG001I ... Running "hole"
►Ready;

 Chapter 9. Debugging 125

 Debugging

If this still leaves you without a clue, try runpipe EVENTS. Refer to Appendix G, “Format

of Output Records from runpipe EVENTS” on page 939 for the format of the output

records. Be prepared to sift through large amounts of data.

 No Output
Sooner or later, you run a pipeline and get no output. You can run the pipeline one stage

at a time using utility files to notice where it disappears. This may be a fine approach

when developing programs for a pipeline, because you can test each stage individually and

as cheaply as possible (and to completion) when the input to the stage under test is simply

the file generated when the previous stage tested OK. However, to see what went wrong

in an existing pipeline, add > stages around selected stages to take a snapshot of the data

! flying by. When capturing a copy of the data flowing in the pipeline it may be important

! that end-of-file is propagated backwards through this device driver stage. Use eofback to

! run the device driver, for example:

! ... | eofback > trace file1 a | ...

 Pipeline Stall
A multistream pipeline stalls when, for instance, a stage refuses to produce output.

What happens next depends on the setting of the two configuration variables STALLACTION

and STALLFILETYPE. Refer to Chapter 28, “Configuring CMS Pipelines” on page 867.

The following sections describe the default behaviour.

You get messages displaying the state of the stages when this occurs. A snapshot of the

pipeline control blocks can be written to disk. This snapshot is provided as a service aid;

the format is “undefined”. On CMS, the snapshot is appended to the file PIPDUMP LISTING

unless the global variable PIPDUMP is set to OFF. (Use GLOBALV to set global variables.)

Also see “Wondering If It Is a Bug?” on page 134.

126 CMS Pipelines User’s Guide and Reference

 Pipeline Idioms

Chapter 10. Pipeline Idioms—or—Frequently Asked Questions

This chapter contains the answers to question that are often asked on the online CMS

Pipelines fora. The intent of this chapter is first of all to point you to the built-in

programs you need to investigate for some particular function; once you have an idea

which function to use, refer to the authoritative description in Chapter 23, “Inventory of

Built-in Programs” on page 253. But we also hope you will take note of the examples of

pipethink that we show.

How Can I Do xxx and Get the Result into REXX Variables?
This question is probably the first one you will ask when you start to use CMS Pipelines.

For example, to store the file names, types, and modes of all files on all modes that are

accessed read/write into a list of REXX variables starting with FILE.1 and setting FILE.0 to

the number of items stored in the “stemmed array”:

The solution shows some amount of pipethink by running one CMS command and proc-

essing the response to generate a list of other CMS commands, which are then issued. Note

the filtering of the response from the first command: the heading line must be discarded.

The solution above is a good starting point for developing your business application. But

do not stop here; read on! The asking of the question per se also deserves comment.

¹ Always do as much in the pipeline as you can once you have your data in there; it is

much more efficient to bring CMS Pipelines built-in programs to bear on your data in

the pipeline than to write the same function as REXX procedural code. And it is also a

lot fewer keystrokes, because the CMS Pipelines notation is much more compact than

the corresponding procedural code.

¹ Moving function from procedural REXX to functional CMS Pipelines pipeline

specifications will make both you and your system more productive.

¹ If you are enhancing an existing program to use CMS Pipelines for I/O, look further in

the program and you will most likely see a loop over the stem just loaded with data.

Are you sure this loop could not be performed with CMS Pipelines built-in programs?

Knowing how to apply CMS Pipelines built-in programs is the hallmark of a skilled pipe-

line programmer. Once you can bring the full power of CMS Pipelines to bear on your

data while they are in the pipeline, you can call yourself a journeyman plumber.

Figure 226. Loading a Stemmed Array

/* Find all files */
'PIPE', /* The CMS command */

'|command QUERY ACCESSED R/W', /* Find accessed modes */
'|drop 1', /* Drop the title */
'|spec /LISTFILE * * / 1 1 next', /* Build listfile command */
'|command', /* Issue listfile commands */
'|stem file.' /* Store file names in array */

 Copyright IBM Corp. 1986, 2020 127

 Pipeline Idioms

Locating One of Several Targets
Use all to select a record that contains one of several strings. Use the zone control to limit

the search to a particular input range.

... | zone 10-16 all /BDLVMA/ ! /BDLVMP/ | ...

But all is more. It supports an expression of targets which are separated by OR operators

and AND operators, using the normal precedence that AND groups its operands closer than

OR. So an expression like

/a/ ! /b/ & /c/

is evaluated as if it were coded as

/a/ ! (/b/ & /c/)

Use parentheses to specify a different grouping. The NOT operator negates a target; the

line is selected if it does not contain the string. Finally, the target can be specified as a

hexadecimal or binary literal.

... | all (/a/ ! /b/) & ¬ x02 | ...

In this example, records that are selected do not contain X'02', but do contain either “a”

or “b”.

Making Things Case Insensitive
All built-in programs, for which it makes a difference, support options to make them work

without making distinctions between upper case and lower case letters (at least as long as

you are content with “letter” meaning one of the English alphabet’s twenty-six letters).

¹ change ANYCASE performs caseless substitutions; it even goes the extra mile to try to

maintain the case of the substituted text.

¹ Other built-in programs support the ANYCASE keyword to make their processing inde-

pendent of the character case. Beware, however, that specifying ANYCASE may

degrade performance of the program significantly. In particular, sort is optimised

when ANYCASE is omitted.

! ¹ User written selection stage that do not provide an option for caseless selection can

! run under casei to work without regard to the case of the data being processed.

If the default upper case translation is not appropriate or the function you wish to perform

is not listed above (or you wish to optimise performance for a large file), you must resort

to brute force: Prefix the record with a temporary field that contains the data in upper

case; perform the operation you wish to perform, using this temporary field; and delete the

field when you are done:

... | spec 1.3 1 1-* 4 | xlate 1.3 upper | sort 1.3 | spec 4-* | ...

See also “Destructive Testing” on page 84.

 Numeric Sorting
The sort built-in program sorts by the binary contents of the key field. You can use the

PAD option to extend shorter keys with a pad character on the right for purposes of

comparison, but for sorting numbers you need to pad on the left and sort does not support

this.

128 CMS Pipelines User’s Guide and Reference

 Pipeline Idioms

As always, when a built-in program does almost what you want, but not quite, put on your

pipethink cap and create a sort key that is aligned to the right. spec does that easily

enough.

If the numbers are unsigned integers and you know an upper limit to the field length, you

can use the approach in Figure 227:

The sort key is put in the first fifteen positions of the record, aligned to the right, before

the sort; it is removed after the sort.

Putting the sort key first in the record as a field that has fixed length has also the advan-

tage of improving sort’s performance.

A sort key is definitely required when the data can contain both positive and negative

numbers or even decimal fractions. One of the tricks to sort a mixture of negative and

positive numbers is to add (or subtract) some very large number to all the keys so that the

resulting number is positive for all key values. The example in Figure 228 on page 130

shows a revision of the previous example:

Figure 227. NS0 EXEC—Naive Numeric Sort of Unsigned Numbers

/* Numerical sort of unsigned number in word2 of record */
Signal on novalue
Address COMMAND
'PIPE (name NS0)',

'|literal Donna 150,000', /* some random numbers */
'|literal Poul 50,000',
'|literal Bob 100,000',
'|spec word 2 1.15 right', /* Align sort key */

'1-* next', /* and the entire record */
'|sort 1.15', /* Sort on the sort key */
'|spec 16-* 1', /* Discard key */

 '|console'

Exit RC

 ns0
►Poul 50,000
►Bob 100,000
►Donna 150,000
►Ready;

 Chapter 10. Pipeline Idioms—or—Frequently Asked Questions 129

 Pipeline Idioms

In the example above, the output record contains the sort key in the first column and the

original number in the remainder of the record. The number was converted to excess-

10000000000 notation by adding this huge number to all keys. You can see that for

values that are zero or positive the key starts with “1”, whereas the key for records with a

negative values starts with “0”.

There were several tricks to generating this sort key:

¹ The commas for thousands were removed by change. You have to be more careful

about the numbers when you use spec’s numerical capabilities. On the other hand, the

numbers could be in any format that spec supports.

¹ The remainder of the record after the first word is referenced as a field rather than as a

word. This retains leading and trailing blanks.

¹ The picture that specifies the format of the output number must be large enough to

accommodate the numerically largest key as well as the largest number of decimals

you consider significant. You can use up to thirty digit selectors; note that one must

be reserved for the initial digit that distinguishes between positive and negative

numbers.

¹ The decimal point is elided in the sort key; its implied position is indicated by the “v”.

Internally, spec uses a floating point decimal format that has thirty-one digits precision and

(for practical uses) an infinite range of exponents. You can use all of spec’s facilities to

round, truncate, and so on. The number you add can be any number as long as it is equal

to or larger than the negative of the smallest key.

Figure 228. NS1 EXEC—Sort Fractional Signed Decimal Numbers

/* Numerical sort of signed number */
Signal on novalue
Address COMMAND
'PIPE (name NS1)',

'|literal 2,735.8 7.99 -15 -3,586.99', /* Some random numbers */
'|literal 0.0001 0 -0.0001', /* Not random numbers */
'|split', /* Make them records */
'|spec word 1 1 1-* nextword', /* Make copy of number first */
'|change word 1 /,//', /* Remove commas in number */
'|spec a: w1 .', /* Convert first word to counter */

'print a+1000000000 pic 9999999999v9999 1', /* Make aligned */
'fieldseparator blank field 2-* nextword', /* Rest of record */

 '|sort 1.15',
 '|console'

Exit RC

 ns1
►09999964130100 -3,586.99
►09999999850000 -15
►09999999999999 -0.0001
►10000000000000 0
►10000000000001 0.0001
►10000000079900 7.99
►10000027358000 2,735.8
►Ready;

130 CMS Pipelines User’s Guide and Reference

 Pipeline Idioms

If the input numbers are in the Continental European notation (periods for the thousands;

comma for the decimal point), you can delete the periods with change and then use xlate

to turn the comma into a period.

! Hexadecimal Sorting
! When sorting values in hexadecimal notation, a simple sort stage does not work because

! the letters “A” to “F” should come after the digits “0” to “9”. Like with sorting numeric

! values it would be possible to use the X2D conversion of spec to create a temporary sort

! key and remove that again after sorting.

! Instead of converting the value to decimal notation, you can use xlate to translate the 6

! letters to code points X'FA' to X'FF' and use sort on the records.

! To avoid adding the temporary sort key to the records, experienced plumbers swap the two

! pairs of code points with xlate like this.

! xlate *-* A-F FA-FF FA-FF A-F

! After sorting the records, the original contents of the records is restored with xlate again to

! swap the code points back.

! The two xlate stages and the sort can be wrapped in a simple REXX filter.

! /* HEXSORT REXX Sort hex numbers */

! parse arg parms
! hex = 'A-F FA-FF FA-FF A-F'

! 'addpipe (name HEXSORT.REXX:5)',
! '| *.input: ',
! '| xlate *-*' hex,
! '| sort' parms,
! '| xlate *-*' hex,
! '| *.output:'

! return rc

! A subroutine like this can be used just like sort would be used, including for example with

! options like ANYCASE, COUNT and UNIQUE.

Obtaining the Length of Records
count can be used to find the length of the shortest and longest record in a file.

To prefix each record with a halfword length field in binary:

... | addrdw cms | ...

The records must be shorter than 64K. Use the keyword CMS4 to prefix four bytes binary

length.

addrdw was added in CMS Pipelines level 1.1.9. You might see an earlier idiom to

achieve this:

... | spec 1-* v2c 1 | pad 2 00 | ...

The pad stage compensates for spec considering a null record to contain no data, rather

than containing a null field. Use an additional spec stage to convert the binary halfword to

decimal:

 Chapter 10. Pipeline Idioms—or—Frequently Asked Questions 131

 Pipeline Idioms

... | spec 1.2 c2d 1 3-* nextword | ...

Running a Filter on Part of the Record
Several of the built-in programs allow a range specification, for example, locate 30.3
/abc/, which selects records that have “abc” in columns 30-32. Some of these filters,

such as locate, xlate, and pick, allow that range to be a column range, a word range, or a

field range. They also allow negative ranges, which are counted from the end of the

: records. Refer to inputRange for the complete description.

zone can also be used to run a selection stage against a range (column, word, or field).

The general solution is to split the record into three pieces; apply the operation; and join

the parts back together. This approach will work as long as the operation does not delay

the record:

If chop is not appropriate to select the part of the record you wish, you must turn to spec

(or a REXX filter of your own):

This solution is not as robust as the previous one, because multiple blanks surrounding the

: third word are lost. Splitting the record with threeway may prove to be more robust.

Figure 229. Applying a Filter to Part of the Record

'callpipe (end ?)',
'?*:', /* Input records come here */
'|c1: chop 17', /* Take first 17 columns */
'|i: faninany', /* Merge together again */
'| join 2', /* Make one record of the 3 pieces */
'|*:', /* Write to output */
'?c1:', /* Columns 18-* */
'|c2: chop 7', /* Take seven */
'| yourpgm', /* Do your thing */
'|i:', /* Pass on to merge */
'?c2:', /* Pass 25-* */

 '|i:'

Figure 230. Applying a Filter to Part of the Record, Differently

'callpipe (end ?)',
'?*:', /* Input records come here */
'|o: fanout', /* Make copies */
'| spec word 1.2', /* Take two words */
'|i: faninany ', /* Merge together again */
'| join 2 / /', /* Make one record of the 3 pieces */
'|*:', /* Write to output */
'?o:', /* The whole record here too */
'| spec word 3', /* Take the third word */
'| yourpgm', /* Do your thing */
'|i:', /* Pass on to merge */
'?o:', /* The whole record here too */
'| spec word 4-*', /* Take the remainder */

 '|i:'

132 CMS Pipelines User’s Guide and Reference

 Pipeline Idioms

When the Sort Does Not
When sort does not appear to sort properly, it may be that it properly sorts some other

columns than the ones you thought you were sorting. Be sure not to lapse into the syntax

of the CMS or XEDIT sort commands; they specify ranges differently than the CMS

Pipelines sort does. Note the difference between these:

... | sort 1 8 | ...

... | sort 1-8 | ...

The first one sorts on the first column and then on the eighth column, ignoring the contents

of columns two to seven. The second one sorts on the first eight columns. If you are

sorting records that contain user IDs, chances are that you want the second one.

Why Does QUERY CMSTYPE not Work?
In the program below, the variable cmstype will always have the value RT.

pipe cms query cmstype | spec w3 | var cmstype

The reason is that the cms and command host command interfaces each maintain a separate

CMSTYPE flag and set it to RT when they start. Use this subterfuge to obtain the CMSTYPE

setting that applies outside the pipeline:

pipe subcom cms query cmstype (lifo | hole | append stack | take 1 | ...

You can indeed change the flag while the host command interface is running, even by

sending it commands to that effect, but the flag is discarded when the stage terminates.

Thus, you cannot affect a permanent change to the CMSTYPE flag through the cms and

command host command interfaces.

Why Does SPLIT 80 Not Work?
split 80 does work; it splits the records at each X'80' character.

If you wish to chop long records into 80-byte chunks, you should investigate one of these

approaches:

¹ deblock 80. This produces as many records as needed to write all data in each input

record into output records that are at most eighty bytes long. An input record that is

shorter than eighty bytes is passed unchanged. deblock 80 respects input record

boundaries; if the length of the input record is not a multiple of eighty, the last record

of the batch produced from an input record will be a short record. deblock 80 is

probably what you need.

¹ fblock 80. This ignores input record boundaries; that is, it treats the input data as a

byte stream. This byte stream is then written eighty bytes at a time. Thus, an output

record can contain data from adjacent input records; the only possible short output

record is the last one.

¹ spec 1-80 1 WRITE 81-* NEXT. This writes two records for each input record. The first

output record contains the first eighty bytes of the input record (or the entire input

record if it is shorter than eighty bytes). The balance of the input record is passed in

the second output record (or it is null). You can use locate 1 to discard null records.

¹ chop 80. This produces the first eighty bytes on the primary output stream and the

remainder of the record (or a null one) on the secondary output stream. You can use

faninany to merge the two parts of the original record into sequence:

 Chapter 10. Pipeline Idioms—or—Frequently Asked Questions 133

 Pipeline Idioms

'PIPE (end ? name PIPFAQ.SCRIPT:244)',
 '?...',

'| c: chop 80',
'| i: faninany',

 '| ...',
 '? c:',
 '| i:'

Why Can’t I Update a Stemmed Array?
: You can.

If you use stem to read and write the same stemmed array in a pipeline, you must be sure

that writing back to the array does not overtake reading from the array. If it does, you

will not get the result you expect (or at least the one we expect you will expect), because

you might have a “destructive overlap”.

Be sure to buffer the array before writing it back to the stem when your process can

produce more records than it reads:

: However, no points can be awarded for the artistic impression. Surely you can move more

: of the processing of the stem into the pipeline to take advantage of the speed of built-in

: filters relative to interpreted REXX; it is likely that you can do away with the stem entirely.

Figure 231. Updating a Stemmed Array

'PIPE stem x. | split * | buffer | stem x.'

Wondering If It Is a Bug?
If something “does not work”, it could be an error in CMS Pipelines. Though they have

been observed occasionally, errors in CMS Pipelines are rare. It is more likely that your

expectations of how CMS Pipelines works are different from how it was designed to work.

But documentation is just as important a part of a product as is the code; if you read the

documentation and it led you to believe that the code should work differently than it does,

! the documentation must be improved. Submit a Reader Comment Form to let us know

where we failed.

If it just “does not work”, the reason might be one of these:

¹ If no data come out of the pipeline, it might be because no data came into it. Maybe

an intermediate stage has terminated for some reason. Use count with a secondary

output stream in front of a stage to count the amount of data that are consumed by the

stage. Normally, you would count the number of lines that are actually read by a

stage.

¹ If this is your first attempt at writing a multistream pipeline, you might easily be

tripped by the way the topology of a pipeline network is specified. Check your pipe-

line against one of the examples in Chapter 5, “Using Multistream Pipelines” on

page 74. If you are using a multistream program that should be in the middle of the

pipeline, ensure that there are no end characters adjacent to the label reference to it.

¹ If the trouble is with lookup, it could be that the secondary and tertiary streams are

connected incorrectly. It is very tempting to leave the secondary output stream uncon-

nected in one’s first pipeline that uses lookup.

134 CMS Pipelines User’s Guide and Reference

 Pipeline Idioms

If you are still convinced the problem is in CMS Pipelines, try to gather as much informa-

tion as possible before reporting the suspected bug:

¹ Query the level of CMS Pipelines are you using. (PIPE QUERY LEVEL will tell you

this.) Which operating system is it running under and what is the release of this oper-

ating system?

¹ Try to reduce the pipeline that produces the failure to a few simple stages using little

data. With a simple test case we are able to understand the problem faster and thus

provide you with a fix in a timely manner.

¹ Show the exact pipeline specification that causes the failure. If you cannot embed an

EXEC, use cut and paste to be sure you get the exact command you typed.

¹ Show your input data and the output result you obtained. Also show the output result

you expected or indicate where the actual is different from your expectations.

 Chapter 10. Pipeline Idioms—or—Frequently Asked Questions 135

 Pipeline Idioms

136 CMS Pipelines User’s Guide and Reference

Part 3. Specialised Topics, Tutorials

This part of the book contains tutorials and chapters on specialised topics, some of which

may not be of interest in your installation.

Chapter 11, “Accessing and Maintaining Relational Databases (DB2 Tables)” on page 138

explains how to access relational databases and process the result of a query.

Chapter 12, “Using CMS Pipelines with Interactive System Productivity Facility” on

page 145 explains how to access Interactive Systems Productivity Facility to get or set

function pool variables and lines in tables.

Chapter 13, “SPOOL Files and Virtual SPOOL Devices on VM” on page 149 explains

! about unit record equipment and SPOOL files on z/VM.

: Chapter 14, “Using VMCF with CMS Pipelines” on page 156 describes how to build a

: VMCF server.

Chapter 15, “Event-driven Pipelines in Clients and Servers” on page 160 explains about

! using CMS Pipelines in client/server applications.

! Chapter 16, “spec Tutorial” on page 166 explains the workings of spec in easy steps.

. Chapter 17, “Rita, the CMS Pipelines Runtime Profiler” on page 208 introduces the CMS

. Pipelines performance tool.

: Chapter 18, “Using VM Data Spaces with CMS Pipelines” on page 210 describes how to

: use data spaces with CMS Pipelines.

: Chapter 19, “CMS Pipelines Built-in Programs supporting Data Spaces” on page 220

: introduces built-in programs that support ALET operands.

 Copyright IBM Corp. 1986, 2020 137

 Using DB2

Chapter 11. Accessing and Maintaining Relational Databases (DB2
Tables)

The sql device driver interfaces CMS Pipelines and the relational database products:

¹ IBM DB2 Server for VSE and VM.

¹ IBM Database 2 for z/OS.

Collectively these products are referred to as DB2. sql processes statements in the Struc-

tured Query Language (SQL).

Potential users of sql include:

¹ Users of DB2 who are new to CMS Pipelines. sqlselect is a sample program to format

a query much as ISQL does it. Input lines read by sql are issued as SQL statements, or

are data for INSERT statements; the result of queries is written to the output. The

format of data is the internal DB2 format (see DB2 Server for VSE & VM Application

Programming); use spec to convert between external and internal formats.

¹ CMS Pipelines users who are new to DB2. Basic DB2 education is outside the scope of

this book; refer to DB2 Server for VSE & VM Application Programming.

Several tasks are performed before a CMS Pipelines user can issue SQL statements through

sql:

¹ DB2 must know about CMS Pipelines. On CMS, this process is called preparing the

access module. It is performed once by your system support staff. On z/OS, it is

called binding the plan. Help for sql as well as CMS Pipelines installation procedures

describe this process.

¹ If you are going to use Distributed Relational Database Access (DRDA), you must

ensure that all other systems know about CMS Pipelines. Unload the plan from the

system where you have installed CMS Pipelines and bind it at the other systems.

¹ You must be registered as a DB2 user. Contact your database administrator if you are

not already registered. Your installation may have granted everyone connect authority;

you can query tables once you have connect authority.

¹ To create tables, you must have a DBSPACE or write privileges to a space owned by

someone else. Your database administrator allocates a space to you.

¹ On CMS, you must issue the command SQLINIT before you can access SQL tables; this

establishes the connection to the database server. On z/OS, the option SUBSYSID

specifies which subsystem you wish to connect to, if it is different from the default for

your installation.

The following description is slanted towards CMS. z/OS users should substitute “DB2

subsystem” for “DB2 server”.

sqlselect—Format a Query
CMS Pipelines provides sqlselect, which formats a query for presentation on the terminal.

The filter takes a query as the argument, describes the query, and formats the result; see

Figure 232 on page 139. The first line of the response contains the names of the columns

padded with hyphens to their maximum length; the remaining lines represent the result of

the query.

138 Copyright IBM Corp. 1986, 2020

 Using DB2

Figure 232. SQLSELECT Examples

 pipe sqlselect project_name from sqldba.projects | console
►PROJECT_NAME---
►BLUE MACHINE
►GREEN MACHINE
►ORANGE MACHINE
►RED MACHINE
►WHITE MACHINE
►Ready;

 pipe sql describe select salary, name from q.staff | console
►485 DECIMAL 7,2 4 SALARY
►449 VARCHAR 9 11 NAME
►Ready;

 pipe sqlselect salary, name from q.staff where years is null | console
►SALARY--- NAME-----
►+16808.30 QUIGLEY
►+13504.60 JAMES
►+12954.75 NAUGHTON
►+11508.60 SCOUTTEN
►Ready;

Creating, Loading, and Querying a Table
Use sql to query and maintain DB2 tables.

Two ways to create a table are shown in Figure 233. The first example shows how to

issue a single SQL statement; the second example shows that sql EXECUTE reads statements

from its primary input stream. The point is that you can supply many SQL statements to a

single invocation of the sql device driver.

Figure 233. Creating a Sample Table

 pipe sql execute create table jtest (kwd char(8), text varchar(80))
►Ready;

 pipe literal create table jtest (kwd char(8), text varchar(80))|sql execute
►Ready;

Use sql INSERT to load data in the table (see Figure 234 on page 140). The first eight

characters of each record are stored in the column kwd; the remainder of the record is

loaded into the column text.

To insert the values, build complete insert statements using literal data:

 Chapter 11. Accessing and Maintaining Relational Databases (DB2 Tables) 139

 Using DB2

Note that you must enter the names of the columns, even when you are setting all of them.

On z/OS, you will get a strange SQLCODE if you omit the column names.

On CMS you can use a faster underlying interface (inserting on a cursor) by omitting the

value clause and supplying the values for all columns in the appropriate format. spec is

used with a conversion option to generate the halfword length required for the variable

character string:

All columns defined for the table are loaded with data from the input record when sql

INSERT is used without further operands. sql obtains the length of each column from DB2

Server for VM; data loaded must be in the format used by DB2 Server for VM, which in

general involves conversion. The spec stage copies the first eight characters of each record

without change; it then inserts a halfword field with the number of bytes remaining in the

input record and copies the rest of the input record after this halfword. This is the format

required by DB2 Server for VM for a row with a fixed and a varying length character vari-

able.

Figure 236 shows how to use sql DESCRIBE SELECT to see the format of the input record

or the result of a query.

Figure 234. Inserting Rows in a Table on z/OS

/* Insert lines in a table */
signal on novalue
address Attach
'PIPE',

'literal DMS Conversational Monitor System|',
 'literal HCP Control Program|',

'literal DMT Remote Spooling Communication System|',
'spec /insert into jtest (kwd, text) values("/ 1',

'1.8 next /", "/ next 9-* next /")/ next',
 'sql execute'
exit RC

Figure 235. Inserting Rows in a Table on CMS

/* Insert lines in a table */
signal on novalue
address command
'PIPE',

'literal DMS Conversational Monitor System|',
 'literal HCP Control Program|',

'literal DMT Remote Spooling Communication System|',
'spec 1.8 1 9-* v2c 9|',
'sql insert into jtest'

exit RC

Figure 236. Describing a Query

 pipe sql describe select * from jtest | console
►453 CHAR 8 8 KWD
►449 VARCHAR 80 82 TEXT
►Ready;

140 CMS Pipelines User’s Guide and Reference

 Using DB2

Each line describes a column in the table. The first column of the record is the numeric

SQL field code. It is decoded in the next column. A column with the length (or precision)

of the field as perceived by DB2 is next. The following number is the number of characters

required to represent the field when loading with sql INSERT and when queried with sql

SELECT. Note that the varying character field has two bytes reserved for the length prefix.

Finally, the name of the column is shown.

sql SELECT queries a table (see Figure 237).

The double quotes in Figure 237 represent unprintable binary data. The first two positions

of each column contain the indicator word that specifies whether the column is null or

contains data. This information may be required to process the result of a query of a table

that contains columns that can contain the null value (no data). Figure 238 shows how

indicator words are suppressed in the output record; the query seen by DB2 is the same in

both cases.

The remaining two unprintable bytes contain the length, in binary, of the varying field.

Use spec to discard these columns. As an alternative, Figure 239 shows how to use spec

to format binary data.

spec supports conversion between character and binary or floating point, as well as

constructing varying length character fields.

Figure 237. Querying a Table

 pipe sql select * from jtest | console
►""DMT """"Remote Spooling Communication System
►""DMK """"Control Program
►""DMS """"Conversational Monitor System
►Ready;

Figure 238. Querying a Table, Suppressing Indicator Words

 pipe sql noindicators select * from jtest | console
►DMT ""Remote Spooling Communication System
►DMK ""Control Program
►DMS ""Conversational Monitor System
►Ready;

Figure 239. Querying a Table, Formatting Field Length

/* Query the test table without formatting */
Signal on novalue
Address command 'PIPE',

'sql noindicators select * from jtest |',
'spec 1.3 1 9.2 c2d 5.2 right 11-* 8 |',

 'console'
Exit RC

 sqlq3
►DMT 36 Remote Spooling Communication System
►DMK 15 Control Program
►DMS 29 Conversational Monitor System
►Ready;

 Chapter 11. Accessing and Maintaining Relational Databases (DB2 Tables) 141

 Using DB2

In Figure 240 on page 142, sqlselect formats a query against the sample table.

Figure 240. Another SQLSELECT Sample

 pipe sqlselect * from jtest | console
►KWD----- TEXT--
►DMT Remote Spooling Communication System
►DMK Control Program
►DMS Conversational Monitor System
►Ready;

Using spec to Convert Fields
Input and output records from sql have data in the format that is defined for the table. For

instance, when a column is specified as SMALLINT, the corresponding field in a record is a

two-byte binary integer.

Use spec to convert from readable formats to the internal ones. The sample program

sqlselect shows how to format DB2 data on output. Figure 241 shows how to convert

some DB2 data types. The input record is assumed to contain a single field.

Figure 241. Formatting SQL Data

Data Type Conversion to Internal Format

Character string that

has a fixed length.

This example pads or truncates the field to eight bytes.

spec 1-* 1.8

Character string that

has a varying

length.

spec 1-* v2c 1

Large integer spec 1-* d2c 1

Small integer spec 1-* d2c 1.2 right

Floating point spec 1-* f2c 1

Decimal If the number should contain two decimals:

spec 1-* p2c(2) 1

About the Unit of Work
DB2 commits changes to the database at the end of the unit of work. The unit of work

ends with an explicit COMMIT or by CMS reaching end of command. Unless instructed by

an option, sql performs an explicit commit and relinquishes the connection to the database

virtual machine when processing is complete. Use the option COMMIT when you wish the

unit of work to be committed without releasing the connection to the database machine.

Use NOCOMMIT in concurrent sql stages, and to treat a subsequent sql stage as the same

unit of work.

The unit of work can also be rolled back. That is, the database is restored to the state

before the unit of work began. sql automatically rolls the unit of work back when it

receives an error code from DB2; use sql ROLLBACK WORK to perform an explicit rollback,

possibly in response to a CMS or pipeline error condition.

142 CMS Pipelines User’s Guide and Reference

 Using DB2

Using Multiple Streams with sql Stages
sql EXECUTE processes multiple input and output streams when the primary input stream

has multiple insert or query statements, or a mixture of these. Each insert statement causes

sql to read records from a separate input stream, starting with stream number 1; there must

be as many additional input streams defined as there are insert statements.

The result of the first query is written to the primary output stream. If the secondary

output stream is defined and connected, the result of the second query is written there, and

so on. More queries are allowed than there are streams defined. The output records from

the last queries are written to the highest numbered stream defined.

Using Concurrent sql Stages
You can process the results of a query to construct SQL statements and queries processed

in a subsequent sql stage. As seen from DB2, all concurrent sql stages are considered to be

the same program using multiple cursors.

The option NOCOMMIT must be specified when multiple sql stages are running concur-

rently. Each stage uses its own cursor; the module is prepared for up to ten cursors.

! If one of the stages fails with a DB2 error, the unit of work is rolled back and all other sql

stages fail if they access DB2 after the error occurred. Use a buffer stage to isolate the

programs when building SQL statements from the result of a query. This ensures that the

initial query is complete before a subsequent stage starts processing. You can also process

the query and store the result in a REXX stemmed array; test the return code and issue the

second sql pipeline only when the first one completes OK.

 CMS Considerations

 Obtaining Help
DB2 Server for VM stores help information in tables. If you have connect privileges and

have run SQLINIT, you can use help SQL to access these tables. Specify the topic about

which you wish help as the argument. This may be an SQL statement or a numeric return

code. Use help SQLCODE to obtain help for the last return code received from SQL; help

SQLCODE 1 displays help for the second last return code received, and so on.

Because CMS HELP has no interface to receive the information to display, it is displayed in

an XEDIT session.

Figure 243 on page 144 shows a session where a user accesses DB2 for the first time.

The first attempt to obtain help fails. Simply issuing the SQLINIT command does not help

because the EXEC is not available. Having linked and accessed (minidisks and mode letters

may be different in your installation), the user runs the initialisation procedure and obtains

help.

Figure 242. Sample Pipe Commands to Obtain Help for DB2

pipe help sql select
pipe help sql 105
pipe help sqlcodes

 Chapter 11. Accessing and Maintaining Relational Databases (DB2 Tables) 143

 Using DB2

help SQL uses sql; Figure 244 shows the response when the access module has not been

generated by your systems support staff.

Figure 243. Running SQLINIT

 pipe help sql select
►SQL RC -934: Unable to find module ARISRMBT; run SQLINIT.
►... Issued from stage 1 of pipeline 1.
►... Running "sql nocommit select item from sqldba.systext1 wher".
►Unable to obtain help from SQL (return code -934).
►... Issued from stage 1 of pipeline 1.
►... Running "help sql select".
►Ready(00364); T=0.09/0.12 13:19:43

 sqlinit
►Unknown CP/CMS command

 link sqldba 195 195 rr
►Ready; T=0.01/0.01 13:20:16

 acc 195 t
►T (195) R/O
►Ready; T=0.01/0.01 13:20:23

 sqlinit db(sqldba)
►Ready; T=0.09/0.14 13:20:39

 pipe help sql select
►Ready; T=0.22/0.37 13:21:26

Figure 244. When the SQL Access Module Is not Generated

 pipe help sql select
►SQL RC -805: Access module 5785RAC .PIPSQI not found; refer to help for SQL to generate acc
►... Issued from stage 1 of pipeline 1.
►... Running "sql nocommit select item from sqldba.systext1 wher".
►Unable to obtain help from SQL (return code -805).
►... Issued from stage 1 of pipeline 1.
►... Running "help sql select".
►Ready(00364); T=0.10/0.15 16:51:50

The example in Figure 244 was run in the PIP style. If the access modules are generated

for the DMS style, it may help to use this style instead.

144 CMS Pipelines User’s Guide and Reference

 ISPF

Chapter 12. Using CMS Pipelines with Interactive System
Productivity Facility

Interactive System Productivity Facility (ISPF) maintains (among many other things) tables

and pools of variables. ISPF services build lines in tables based on the contents of function

pool variables.

CMS Pipelines users can issue ISPF requests in two ways:

¹ Any ISPF request that can be processed by ISPEXEC can also be issued by passing a

record containing the request to subcom ISPEXEC. This is a consequence of the way

subcommand environments work.

¹ The built-in program ispf allows access to function pool variables and to tables. It can

copy function pool variables into a record, which is then written into the pipeline; or it

can replace the contents of function pool variables with data read from the pipeline.

This can be combined with some of the ISPF table service requests.

ISPF is also a dialog manager. If you normally work within an ISPF dialog, you can define

a PIPE command to ISPF, as described in “Defining PIPE to ISPF” on page 148.

Issuing ISPF Commands from REXX Filters

On CMS, the REXX Address instruction can reach any defined environment; this is often the

most convenient way to issue ISPF service requests. When issuing a sequence of ISPF

service requests several times, it may, however, be easier to store the commands in a

stemmed array and pass it to subcom ISPEXEC to be processed.

On z/OS, there is no choice: subcom ISPEXEC is the only way to issue ISPF service requests

from a REXX filter because a REXX filter executes in a reentrant environment, which is not

merged with TSO and therefore has no ISPEXEC environment defined. On the other hand,

subcom selects subcommand environments in the default REXX environment.

Accessing ISPF Tables

You must create, open, and close tables using standard ISPF commands (which you can

issue through subcom ISPEXEC).

Once a table is open you can read rows from it and you can add or replace rows in it. As

an example, Figure 246 on page 146 shows how to create a table that contains a row for

each allocated DDNAME. It is assumed that the table is defined to contain the variables

DDNAME and DSNAME.

Figure 245. Creating and Opening an ISPF Table

'PIPE (name PIPUISPF)',
'|literal tbcreate files names(ddname dsname) write replace',

 '|subcom ispexec'

 Copyright IBM Corp. 1986, 2020 145

 ISPF

In this example, the stages up to the last one transform the response to the TSO query into

a file that has one line for each DDNAME that is allocated to a real data set. ispf TBADD

then performs these steps for each input record:

¹ It peeks at the input record without consuming it.

¹ It issues a VREPLACE service request to set the variable DDNAME to the contents of

columns 3 through 10 and the variable DSNAME to the contents of the record from

column 12 onward.

¹ It issues a TBADD service request to copy the contents of the function pool variables

into a row of the table. Note that the table can have more columns than the two that

are specified as the argument. The additional columns would be set from the current

contents of the respective variables (which would be specified when the table was

defined).

¹ It copies the input record to the primary output stream. In this example, the output

stream is not connected; the output record is discarded.

¹ It consumes the input record.

Only one column of the table is read into the pipeline in the example below:

ispf TBSKIP performs these steps to build each output record:

¹ Call the TBSKIP service to move to the next row of the table and set the values in the

function pool.

¹ Call the VCOPY service to copy the contents of the variable DDNAME into the stage’s

output buffer.

¹ Write the output record into the pipeline.

This process continues until ISPF sets a return code to indicate that the end of the table has

been reached.

Note that ISPF sets a function pool variable for each column in the table even though the

example above copies only one variable into the pipeline. The remaining variables remain

in the function pool where they can be used by other requests, for instance to update a

table:

Figure 246. Building a Table

/* Load LISTA output into table */
address link,
'PIPE (name PIPUISPF)',

'|tso lista status', /* Issue TSO command */
'|drop 1', /* Drop heading */
'|nfind TERM', /* Discard TERMFILE */
'|nfind NULL', /* Discard dummy allocations */
'|spec 1-* 12 read 3.10 1', /* Splice lines */
'|nfind _', /* Discard catenations */
'|ispf tbadd files ddname 1.8 dsname 12.44' /* Build table */

Figure 247. Reading an ISPF Table into the Pipeline

/* Read table into pipeline */
address ispexec 'tbtop files' /* Move to top */
address link,
'PIPE (name PIPUISPF)',

'|ispf tbskip files ddname 1.8',
 '|...

146 CMS Pipelines User’s Guide and Reference

 ISPF

These steps are performed for each row of the table:

¹ The first stage calls the TBSKIP service to move to the next row of the table and set the

values in the function pool.

¹ It then calls the VCOPY service to copy the contents of the variable DDNAME into the

stage’s output buffer.

¹ It then writes the output record into the pipeline and waits for the write to complete.

¹ xlate peeks at the input record and builds a record containing the lower case DDNAME

in an output buffer.

¹ It then writes this record to the pipeline and waits for the write to complete.

¹ The third stage peeks at the input record and then issues a call to the VREPLACE

service to replace the contents of the variable DDNAME.

¹ It then issues a call to the TBPUT service to copy the contents of the function pool

variables into the current row of the table. Note that this replaces all columns of the

row; the other columns were copied into the function pool at the first stage and have

remained there unmodified.

¹ Finally the third stage consumes the input record.

¹ This causes the xlate stage to consume its input record.

¹ The first stage is now ready to perform another cycle.

xlate does not delay the record. It is important that no stage delays the record between the

one that reads a line from the table up to the one that replaces the line in the table. If the

data were to be delayed, the wrong line in the table might be updated.

Figure 248. Updating a Column of an ISPF Table

/* Modify table */
address ispexec 'tbtop files' /* Move to top */
address link
'PIPE (name PIPUISPF)',

'|ispf tbskip files ddname 1.8',
 '|xlate lower',

'|ispf tbput files ddname 1.8'

Accessing ISPF Function Pool Variables

When the “canned” functions to access ISPF tables (TBSKIP, TBADD, TBMOD, TBPUT) do not

perform the function you require, you can use the VCOPY and VREPLACE options on ispf to

access variables directly without reference to tables and you can issue table service

requests directly to ISPF.

On TSO, the function pool can never be the variable pool of a REXX filter; on CMS it might

be. To import values from the ISPF function pool into the variable pool of a REXX filter:

Note that ispf VCOPY needs an input record to trigger a cycle; without the input record it

would produce no output.

Figure 249. Importing and Exporting ISPF Variables

/* Import "myvar" from ISPF */
'callpipe literal | ispf vcopy myvar 1.20 | var myvar'
myvar=time() myvar
/* Export it back again */
'callpipe var myvar | ispf vreplace myvar 1-*'

 Chapter 12. Using CMS Pipelines with Interactive System Productivity Facility 147

 ISPF

Interaction (on TSO) Between ISPF and Stages that Access REXX Variables

The function pool that ISPF maintains for REXX variables is in the REXX environment that

ISPF creates when it initialises. On the other hand, REXX filters run in separate reentrant

environments which each contain their own variable pools. Thus, ispf may be accessing a

different variable pool than does, for example, var.

Defining PIPE to ISPF

If you would like to be able to issue the PIPE command directly from an ISPF command

line without using a TSO prefix, you must first define the PIPE command to ISPF.

You can do this by adding a line to the table ISPCMDS, which defines the ISPF commands.

You must define the PIPE command as a line mode command to ensure that ISPF refreshes

the screen when the pipeline is done. Figure 250 shows the ISPF variables you should set

before adding the row to the ISPCMDS table.

Figure 250. Defining the PIPE Command to ISPF.

Variable Name Variable Contents

ZCTVERB PIPE

ZCTTRUNC 0

ZCTACT SELECT PGM(PIPE) PARM(&ZPARM) MODE(LINE)

ZCTDESC TSO Pipelines Command

148 CMS Pipelines User’s Guide and Reference

 Unit Record Equipment

Chapter 13. SPOOL Files and Virtual SPOOL Devices on VM

This chapter describes z/VM SPOOL files. Though there are other types of SPOOL files in a

VM system, a normal SPOOL file is created by a virtual printer, by a virtual punch, or by a

virtual console. Once created, the file will reside in a queue waiting to be read by a

virtual machine or waiting to be transcribed to a real printer or punch. The owner of a

SPOOL file can transfer the file between the various queues.

You may wonder why VM supports these strange files; here is the story. You can skip the

introduction if you still remember how to program an IBM 1401.

Introduction to Unit Record Equipment

Before electronic computers, accounting tasks were done by hand or with

electromechanical accounting machines. (And a computer was a man using paper and

pencils.)

The storage medium used was a punched card, in which holes were punched in a twelve

by eighty array: The punched card had eighty columns of twelve rows.

Master files were stored as card files and transactions were punched into cards before

being processed. A typical operation would sort the transactions, collate them into the

master file (which is already sorted), print invoices and update the master file, and finally

remove the transactions from the master file and collate the updated master records into the

new master file.

Operators attending to accounting machines performed the tasks of taking decks of cards

from the stacker (where they come out) of one device and putting them into the hopper

(where they are read) of another device. An operator was expected to handle stacks of

2,000 cards with his bare hands, often turning a stack upside down in the process; there

would be trouble if the cards fell on the floor. CP implements the virtual card operator by

transferring SPOOL files from one queue to another one.

Originally, a card file was something real that you could carry around with you. An able-

bodied person can comfortably carry a box of 2,000 cards under each arm. Programs that

were larger than 4kloc required a trolley for transportation (or several programmers).

Punched cards were not made redundant overnight by the introduction of electronic

computers, however. Input was in cards well into the Nineteen-seventies. Though real

cards are no longer used to store files, they are still very much in evidence in VM/CMS to

support virtual reader/punch and printers.

A system running VM/370 would typically have an IBM 2540 card reader/punch and an

IBM 1403 line printer. To share these devices, virtual machines were given virtual unit

record devices. These are simulated by CP and have no real counterpart. A card file is

simulated by a file in CP SPOOL; it is read by a virtual reader. A SPOOL file is created by a

real reader (now extinct), a virtual punch, or a virtual printer.

In early VM days, most SPOOL files were quickly transcribed to the external medium; few

users, if any, used SPOOL files for messages. The SPOOL system was not used as a reposi-

tory in those days because all SPOOL files were lost if the system went down without

 Copyright IBM Corp. 1986, 2020 149

 Unit Record Equipment

saving warm start data; that is, without being shut down properly, as would happen on a

power drop.

A SPOOL file of punched cards contains records with up to 80 bytes. A column that has no

holes punched is read as a blank (X'40'); you can think of short cards as padded with

blanks: punching nothing leaves the column blank.

Print files contain control information in addition to character data; a printer has a carriage

that moves the paper past the stationary printing station. When not writing text on one or

more lines, the computer told the printer to skip a number of lines, or to the next page, or

to the end of the page; the printer carriage then moved the paper faster than when printing.

This dual speed carriage improved elapsed time for printing jobs, especially on sparsely

printed pages.

How can a printer tell the beginning of a page? No doubt, you look for the perforation,

but that was not so easy for a 1403: it had a carriage tape: a paper loop as long as the

page or multiples thereof and about two inches wide. This paper loop was installed in the

printer in a special device to read it and move it synchronised with paper movement. Each

form had its own carriage tape. While printing, the printer read the carriage tape for

punched holes with twelve brushes. The programmer punched holes in the carriage tape

with an IBM Carriage Tape Punch and glued the ends together with IBM glue to form a

band. The computer instructed the printer to skip to a channel, which meant until a hole

was detected in the corresponding column of the carriage tape. Convention soon became

that a hole in the first channel meant the top of the page. The end of the page was indi-

cated by a hole in channel 12; it would be punched where one would print subtotals.

It was good practice to have at least one hole punched in any channel, but programmers

are always too busy to remember small details like this; a printer took the skip instruction

literally: when there was no hole to stop the carriage, the printer would spew out paper at

high speed until the operator intervened. The original 1403 skipped heavy paper faster

than it could stack it, so the paper tended to hit the lid if one skipped a long way. To

avoid jams from this, the printer was normally run with the cover open: a runaway skip

was quite spectacular.

With the inception of IBM System/360, control units were put between the computer and

the printers as part of the standard I/O architecture which still applies. Control units are

attached to channels that are programmed in a limited instruction set called channel

commands. Each channel command word (abbreviated CCW) contains a command code

(one byte), a buffer address, a byte count, and flag bits to control the channel. The

command can be immediate with no data transfer, or it can write a line of text and then

start paper movement. The command codes select the particular type of carriage move-

ment.

On the IBM 3211 the forms control buffer, often abbreviated to FCB, replaced the paper

carriage tape of the 1403. This electronic buffer is loaded by a channel command; data

sent to the printer with the write FCB command is not the same for all printer device types.

CP SPOOL stores the CCW command code along with the data, so logically each record of a

SPOOL file has a leading character which is called the carriage control character. It is a

machine carriage control character, because it is the CCW command code.

We hope this long preamble explains why carriage control is important and why attention

to detail is required when dealing with CP SPOOL; if you lose the carriage control character,

you have lost the layout of the page, though not the words on it.

150 CMS Pipelines User’s Guide and Reference

 Unit Record Equipment

VM SPOOL Files Contain More than Just Cards

There are now four types of information associated with a SPOOL file:

¹ Variables such as the class of the file, the owner, and the distribution code. These are

reported by the CP Query command. Because the VM/370 control block that described

a SPOOL file was called an SFBLOK, this information is often referred to as the SFBLOK.

z/VM does not use this control block internally, but it is still part of the diagnose

interface to obtain information about a SPOOL file.

¹ The tag for the file, which can store up to 136 arbitrary characters. The tag is used by

RSCS to specify the destination and other parameters.

¹ The eXtended Attribute Buffer. As far as CP is concerned, the XAB can contain up to

32K of arbitrary characters. Print Services Facility uses the XAB to store additional

file attributes used for printing. The tag cannot be used, because the file might need to

be transmitted by RSCS to the actual print destination.

¹ The data stored in the file. That is, the records that were written to the file.

A SPOOL file is created by writing records to a unit record output device; that is, a virtual

punch or a virtual printer. The CLOSE command is issued when the file is complete. At

this time, information is copied from the virtual device and associated with the file. This

includes the SFBLOK information, the tag, and the extended attribute buffer. That is, you

can change the characteristics of the device while the file is being created and the updated

characteristics will be associated with the file when it is closed.

There are many attributes associated with a virtual SPOOL device. In general, a SPOOL file

is created each time the device is closed; the file gets the attributes associated with the

device at the time it is closed. Three attributes are particularly important when using CMS

Pipelines unit record device drivers:

¹ The class. A spool file’s class is a letter or a digit. A reader device can read files of

a particular class only or it can read all files (class *). You can define multiple

readers and use a different class with each.

¹ The hold status. A SPOOL file in hold cannot be read. You can create a held file or

you can change a file to be held.

The hold status for a reader is interpreted differently. When the reader is NOHOLD, a

file is purged after it has been read. Be sure to SPOOL the reader HOLD to retain the

file.

¹ The continuous setting. The CLOSE command has no effect when an output device is

set to be continuous. This is useful to suppress CLOSE commands in CMS commands

so that you can issue your own CLOSE command, which could include the NAME

operand to name the SPOOL file.

A reader that is spooled continuous reads all files of its class that are not in hold. By

default, a reader reports end-of-file after each file it reads. When a reader is both held

and continuous, the files are put in hold after they have been read; otherwise the

reader would read the first file forever. It is unlikely that you will want to SPOOL your

reader CONT.

 Chapter 13. SPOOL Files and Virtual SPOOL Devices on VM 151

 Unit Record Equipment

Overview of Unit Record Device Drivers

CMS Pipelines provides device drivers to read and write SPOOL files as well as device

drivers to control SPOOL devices. To allow you concurrent access to multiple unit record

devices, a device address (or device number) can be specified with all these device drivers.

The defaults are the standard devices 00C, 00D, and 00E for reader, punch, and printer,

respectively.

printmc Create a print file. The first column contains a machine carriage control

character.

punch Create a punch file. No carriage control is required, because only one

operation is allowed by CP on a punch device.

uro Create a print or a punch file. The first column contains a machine

carriage control character.

reader Read a SPOOL file. The file can be a printer or a punch file.

xab Manage the eXtended Attribute Buffer of a device or a SPOOL file.

Creating a SPOOL File

Three device drivers write lines on unit record devices. Use printmc for a virtual printer,

punch for a virtual punch. uro (unit record output) writes to either type of device.

The device address can be specified as the argument to these device drivers. The default

address is 00E for printmc and uro; it is 00D for punch.

To give you complete control, no CP commands are issued to the virtual device: you must

issue SPOOL, TAG, and CLOSE commands as required. You must also use xab if you wish

to change the extended attribute buffer associated with a device. The SPOOL file is created

by CP when you issue the CLOSE command.

Use punch to create a punch file. Each input line is written to the punch with X'41'
carriage control, which is the only one allowed by CP except for the X'03' no operation.

Note that CP truncates punch lines after column 80 without issuing a message or giving

other indication of error.

Use printmc or uro to create a SPOOL file where you specify the machine carriage control

as the first byte of each record. The carriage control character controls the carriage move-

ment or the stacker selection, depending on the device type. printmc supports only printer

devices, whereas uro supports both. You can find the command codes under the heading

I/O Command Codes in the IBM System/370 Reference Summary, GX20-1850, and in the

IBM Enterprise System Architecture/370 Reference Summary, GX20-0406.

Though there is only one kind of carriage control CCW codes, there are two kinds of

carriage control associated with listing files: machine carriage control, which is the CCW

operation code described earlier; and the more user friendly ASA carriage control. CMS

Pipelines filters mctoasa and asatomc convert between the two formats. If the first posi-

tion of a record with carriage control contains any of these characters it has ASA carriage

control:

1 (X'F1') Skip to new page. The line is printed at the top of the next page.

The numbers 2 through 9 and the letters A through C are defined for the other

channels, but are seldom used.

152 CMS Pipelines User’s Guide and Reference

 Unit Record Equipment

(blank) Print on the next line.

0 Skip one line and then print. That is, print one blank line and then the data

part.

– Skip two lines before printing.

+ Overprint the line on the previous one.

printmc and uro require machine carriage control. Use “...|asatomc|printmc” to write a

file with unknown carriage control to a printer; carriage control is converted to machine

carriage control if it is not so already.

Errors on Unit Record Output Devices

When IBM System/360 was designed, standard names were given to some of the error

conditions that could occur with I/O devices. One of these is “Intervention Required”. It

was originally meant to indicate that intervention was required by the operator; for

example to clear a jam or to add paper.

CMS Pipelines reports errors on the unit record output devices with a message that

includes sense data; in most cases you can ignore these hexadecimal values and concen-

trate on the informational message 293 that follows. (But please supply all data when you

report an error.)

For all three output drivers, you will see Intervention Required if the SPOOL is full or the

limit on SPOOL files is exceeded. This also occurs when you issue the CP command,

NOTREADY. Issue READY to make the device ready.

Another kind of error is to write a record with carriage control that CP does not like.

Because X'41' is the only valid carriage control on a virtual punch, this one fails with

X'F1':

Figure 251. Not Ready Punch.

 notready d
►Ready;

 pipe literal a line | punch
►Intervention required on 00D
►... Issued from stage 2 of pipeline 1
►... Running "punch"
►Ready(00289);

 ready d
►Ready;

 Chapter 13. SPOOL Files and Virtual SPOOL Devices on VM 153

 Unit Record Equipment

The condition is known as “Command Reject”. Ignore message 292 when message 293

shows a decoded value.

As we shall soon see, the output from reader has carriage control in the first position of

each output record; this can be fed directly to uro to copy a spool file, but the virtual

output device must match the type of spool file; you get the command reject error if the

device and the file are incompatible.

Figure 252. Incorrect Stacker Select

 pipe literal 1aline | uro d
►FPLIOS292E I/O error on d; CSW X'039D2008 02000006', CCW X'F1600006 039
►FPLMSG003I ... Issued from stage 2 of pipeline 1
►FPLMSG001I ... Running "uro d"
►FPLIOS293I Sense CmdRej
►Ready(00292);

Controlling a Unit Record Output Device

SPOOL files are used only for information interchange these days. In addition to the actual

data in a file, you must also supply a destination in the tag and you must SPOOL the device

to the RSCS machine.

It is practical to concentrate this in a single subroutine pipeline so that your main EXEC is

not required to handle such tasks.

See also “Page Formatter” on page 205.

Figure 253. Subroutine to SPOOL and Tag a Punch

/* Tag and SPOOL the punch; then punch the file */
signal on novalue
arg node user .

address command /* Issue a number of CP and CMS commands */
'IDENTIFY(LIFO' /* Where am I? */
parse pull me . mynode . rscs .
spoolto=word(rscs user, 1+(node=mynode)) /* Local or remote? */
'CP SPOOL D PURGE' spoolto 'NOHOLD CLASS A'

'CP TAG DEV D' node user

address /* Revert to pipeline */
'callpipe *:|punch' /* Write the lot */

exit RC

Reader SPOOL Files

SPOOL files in your virtual reader can come from several sources which have different

formats. These are the general types:

154 CMS Pipelines User’s Guide and Reference

 Unit Record Equipment

¹ A virtual card punch. This is the simplest format because carriage control is limited

to X'03' (no operation) and X'41', which marks data records. The longest card is

80 columns, but it can be shorter; one would normally pad them with blanks.

¹ A virtual printer. Such files contain data records possibly interspersed with control

information (forms control buffers, etc.) The longest data record is 204 characters for

a virtual 3800 file, unless the record has X'5A' carriage control (an oversize record

with APA printer data).

¹ CP-generated SPOOL files, for instance a VMDUMP.

¹ Cardboard read by a real card reader has a format similar to a virtual punch file; such

files are now almost extinct, but it is likely that the carriage control is X'42'.

How one wishes to process a file depends on the format of the file. Since SPOOL files are

mostly used for electronic mail, the most common format is the virtual punch format.

However, there are many protocols for the contents of a punch file with mail in it; some,

such as VMSG and MAIL, are not blocked further and have a record for each line in the

mail file, but other formats (notably NOTE) block the message before it is punched in cards.

 Chapter 13. SPOOL Files and Virtual SPOOL Devices on VM 155

 Using VMCF with CMS Pipelines

: Chapter 14. Using VMCF with CMS Pipelines

: This chapter describes the use of vmclient, vmclisten, and vmcdata.

: A VMCF transaction comprises sending the request from a vmclient (or even vmc) stage to

: a vmclisten stage, typically in a different virtual machine. The server uses vmcdata in

: some contexts to reject, receive, and reply.

: Two similar data areas, both 40 bytes in length, are central to the workings of the VMCF

: stages; one of the two is present at the beginning of all records passing in and out of VMCF

: stages. They are documented in appendix C of CP Programming Services and a structure

: definition of each is built into CMS Pipelines.

: VMCPARM: The VMCF parameter list is passed to CP with the VMCF diagnose, 68.

: VMCMHDR: The VMCF message header is stored as part of reflecting a VMCF interrupt

: to a virtual machine.

: For all practical purposes, the difference between the two is restricted to the first two

: bytes.

: In VMCF terminology, the source virtual machine originates the request and the target

: virtual machine processes the request. They are client and server, respectively, in normal

: parlance.

: vmclient is used in the source virtual machine. vmclisten and vmcdata are used in the

: target virtual machine. A particular virtual machine can at the same time be target and

: source, but there can be only one vmclisten stage active in a virtual machine at any time.

: Supported Functions

: Supported functions are send, sendx, send/receive, and identify.

: Identify
: The parameter list is transferred to the target. This completes the transaction. The server

! cannot reject the message. The identify function uses a payload of eight bytes.

: Sendx
: You can think of sendx as identify with appended data. The message header and the data

: are stored as part of reflecting the interrupt. The transaction is then complete. CMS

: Pipelines sets an arbitrary limit of 512 bytes of sendx data. As with identify, the server

: cannot reject the message.

: Send
: At the VMCF level, send transmits the parameter list to the message header. The server

: then inspects the message header and decides whether to receive it or reject it.

: When vmclisten RECEIVE is specified, a receive operation is performed automatically by

: CMS Pipelines; the output record contains the message header followed by the data

: received. Except for the length being unrestricted, this form of send works like sendx.

156 Copyright IBM Corp. 1986, 2020

 Using VMCF with CMS Pipelines

: When RECEIVE is omitted from VMCLISTEN, the output record contains the message header

: only. Its function code must be modified to VMCPRJCT or VMCPRECV and the record must

: be passed to vmcdata to complete the transaction. Note that the receive function is manda-

: tory with a send function.

: Send/receive
! The send/receive message, if any, is first received, as you would do for send. The trans-

! action is then completed by passing a VMCPREPL function including reply data to

: VMCDATA. The receive function is optional with a send/receive function, as it is the reply

: that completes the transaction.

: Parameter lists

: CMS Pipelines exposes underlying message headers and parameter lists in the records it

: produces; and it expects properly formatted parameter lists as input records. While this

: applies to all three stages, the user is usually concerned with building a parameter list only

: for vmclient, as the input to vmcdata is often derived from the output from vmclisten.

: vmclient: The following fields in the parameter list must be filled in by the producer:

: VMCPFLG1 Usually zero.

: VMCPFUNC Function code. Specify

: VMCPSEND (send, X'0002'),

: VMCPSENR (send/receive, X'0003'),

: VMCPSENX (sendx, X'0004'), or

: VMCPIDEN (identify, X'000A'), as appropriate.

: VMCPUSER Specify the user ID of the target virtual machine unless a user ID is

: specified as an operand of VMCLIENT.

: VMCPLENB For send/receive, specify the maximum reply size required for

: send/receive. If specified as zero, the current reply buffer is used; it is

: at least 4056 bytes.

: VMCPUSE Not inspected or modified by CMS Pipelines. May be used for trans-

: action codes and reasons, as desired by the protocol built on top of the

: VMCF messages.

: VMCPMID, VMCPVADA, VMCPLENA, and VMCPVADA are set by vmclient as appropriate; the

: contents of the input record are ignored.

: vmcdata: The function code must be set to:

: VMCPRECV (receive, X'0005'),

: VMCPREPL (reply, X'0007'), or

: VMCPRJCT (reject, X'000B'), as appropriate.

: The message ID, user ID, and length fields must remain unchanged from vmclisten.

 Chapter 14. Using VMCF with CMS Pipelines 157

 Using VMCF with CMS Pipelines

: Figure 254. A Sample VMCF Server Processing

: /* Process VMCF requests for sharing of the main address space */
: Signal on novalue
: numeric digits 12
: signal on error

: /* While data are in the parameter list, we must use send/receive to */
: /* be sure that the client is waiting while we perform the adrspace */
: /* permit. */

: 'callpipe (end \ name VMCSERV.REXX:10)',
: '\literal base',
: '|adrspace query',
: '|spec 1.8 c2x 1',
: '|var asit'

: say 'vmcserv starting'
: 'callpipe (end \ name VMCSERV.REXX:6 listerr qualify vmcparm)',
: '*:',
: '|id: pick m vmcpfunc = m vmcpsenr and m vmcpuse == /Permit /',
: '|o: fanout',
: '|spec x'asit '1 9.8 n',
: '|a:adrspace permit',
: '|hole',
: '\o:',
: '|r:faninany',
: '|vmcdata',
: '|*:',
: '\id:',
: , /* Reject */
: '|spec 1-* 1 m vmcprjct m vmcpfunc', /* Function code */
: ' /reject / m vmcpuse', /* Explanation */
: '|r:'

: error:
: say 'vmcserv ended. rc='rc
: exit RC

: Example Server Application

: This sample causes a server to authorise the client for access to its primary address space.

: In real life, such a server would likely be rather careful about who it will let peek over its

: shoulder, but this example shows the raw part only. Figure 254 shows the server code.

: The server is invoked in a pipeline of this generic form:

: 'PIPE (end \) immcmd stop | stop: faninany | g: gate',
: '\vmclisten receive | g: | vmcserv | count lines | stop:'

: The intent of this arrangement is that you can use an immediate command to terminate the

: server gracefully by shutting the gate. Any failure in VMCSERV REXX will pass a record to

: the gate too; it will terminate and thus cause immcmd to terminate as well. vmclisten can

: be used in a server that also processes TCP/IP requests. This would typically be done by

: adding a pipeline to listen on a port and invoke a server:

158 CMS Pipelines User’s Guide and Reference

 Using VMCF with CMS Pipelines

: 'PIPE (end \) immcmd stop | stop: faninany | g: gate',
: '\vmclisten receive | g: | vmcserv | count lines | stop:',
: '\tcplisten 1998 | g: | tcpserve ... | count lines | stop:'

: The workings of the server stage shown in Figure 254 on page 158 are rather simple. If

: the function code does not indicate send/receive or the user data does not contain “Permit”,

: the record is passed to the label id: where it is turned into a reject parameter list.

: Otherwise the record is first turned into the input required to perform the desired

: ADRSPACE PERMIT having the ASIT in columns 1 to 8 and the user ID in columns 9 to 16.

: When the permission has been granted, the record is passed to vmcdata to complete the

: transaction.

: This arrangement ensures that the client waits until the permission has been granted. Were

: an identify function used instead, there would be a race between the two virtual machines;

: the client may well have tried to create an ALET before the server has permitted it.

: The client is almost trivial:

: Figure 255. Sample Client

: pipe literal | spec pad 00 x03 4 /Permit / 33 | vmclient john3 | substr 33-* | cons
: Permit
: Ready; T=0.01/0.01 16:17:20

: pipe literal base | adrspace query john3 | alserv add
: Ready; T=0.01/0.01 16:18:35

: pipe storage alet 2 2a0 48 | cons
: EXEC SUTEST FPLA IMMCMD EXECDROP
: Ready; T=0.01/0.01 16:19:14

: pipe storage 2a0 48 | cons
: PIPE PIPE PIPINIT ISREXX IMMCMD NUCXDROP
: Ready; T=0.01/0.01 16:19:27

: First, we send the request to get permission. We then create an ALET (see Chapter 18,

: “Using VM Data Spaces with CMS Pipelines” on page 210) to be able to access the other

: virtual machine’s storage.

: Finally, we display the CMS command history information for JOHN3 and also the one of

: our own virtual machine, to show that we do access a different address space from our

: own.

 Chapter 14. Using VMCF with CMS Pipelines 159

 Client/server Pipelines

Chapter 15. Event-driven Pipelines in Clients and Servers

So far in this book, we have looked at pipelines performing traditional data processing

tasks: reading input from a disk file or a device, processing it, and writing output to a file

or a device. CMS Pipelines processes data as quickly as it can.

In contrast, this chapter is about event-driven pipelines: pipelines to process commands as

they arrive. When using the device drivers described in this chapter, CMS Pipelines waits

for external events when it has nothing else to do; a stage waiting for an event writes a

line to the pipeline when the event occurs. CMS Pipelines supplies starmsg to capture

messages and commands from other virtual machines. delay makes things happen at a

particular time or after some time.

Though typically running disconnected, a service machine should also be able to process

commands when it is connected to a terminal. The person at the console might be an

authorised user or the programmer debugging the service machine program. CMS supports

immediate commands that can interrupt the running program: you have no doubt issued HI

to halt a runaway REXX program. Use immcmd to set up an immediate command

processor; the argument specifies the name of the command processor to set up. immcmd

writes a line to the pipeline whenever the user issues the immediate command; the line is a

blank character or any string the user types after the immediate command verb.

This chapter may be useful to you even if you have no service machines, you may at times

wish to leave your own virtual machine unattended and, for instance, forward notification

when a particular file arrives in your reader.

Waking Up Once a Minute
delay copies its input to the output after some time has elapsed or at a particular day and

time. delay accepts no arguments: it gets the time from input records. The first blank-

delimited word on a line specifies the time to wait until delay must copy the line to the

output; delay ignores data after the first word. To issue a CP command once a minute:

The pipeline in Figure 256 generates an infinite number of records with '+60' (but only

one at a time).

¹ literal makes one record;

¹ duplicate * copies this record to the output until it gets return code 12 because its

output is no longer connected.

¹ delay reads a record, waits for 60 seconds, and writes the record.

¹ spec turns the delay interval into a CP command on each line it reads from delay.

Put a literal stage (with any argument string) between delay and spec to generate a

command immediately when the pipeline starts.

We have turned the first few stages into a subroutine pipeline:

Figure 256. Sample delay

pipe literal +60 | duplicate * | delay | spec /INDICATE/ 1 | cp | ...

160 Copyright IBM Corp. 1986, 2020

 Client/server Pipelines

The spec stage shows how to write any string without worry about the stage separator:

convert it to hexadecimal.

The time interval begins when the stage after delay has processed the output line.

Commands are issued less frequently than once a minute if it takes an appreciable time to

process the response. You might adjust the delay if the processing always takes the same

time. Write a REXX program to take the processing time into consideration; it waits in

OUTPUT while delay processes a request.

Remember the plus when using an interval. This is also a valid delay:

“literal 60|delay”. However, if you issue this command at any time on a Monday, it

! wakes up at noon on the following Wednesday (because the “60” here means 60 hours

! after midnight today). This is why EVERY REXX adds the plus.

The first blank-delimited parameter on an input line specifies the time in hours, minutes,

and seconds with colons to separate the parts. When there are one or two parts, delay

assumes zero hours (and minutes) for a relative delay; it assumes zero seconds (and

minutes) for time. Specify all three components of the time to be sure. delay is not fussy

about, for instance, the number of minutes in an hour; +1:67 is the same as +2:7 (or

+2:007).

Figure 257. EVERY REXX

/* Write a line after delay. */
signal on novalue
parse arg delay command
if ¬abbrev('IMMEDIATE', translate(delay), 3) /* One right now? */
 Then literal='' /* No... */
 Else
 Do

parse arg . delay command
literal='|literal go!' /* Inject a literal to fire it up */

 End

'callpipe (name EVERY)',
'|literal +'delay, /* Make a relative delay */
'|dup *', /* As many as needed */

 '|delay', /* Wait */
literal, /* Fire one immediately, maybe */

'|spec x'c2x(command) '1', /* Turn it into the command */
'|*:' /* Pass to output */

exit RC

Terminating an Event-driven Pipeline
It remains to sort out one minor detail. When will the pipeline in Figure 256 on page 160

stop? If whatever processes the output from every stops, then every gets return code 12

writing output. It stops, and so does the rest of the pipeline fragment.

But if nothing will make the output terminate, it will take a while to exhaust the supply of

records. duplicate * does terminate, at least in principle, after it has written 2147483647

output records. At the rate of one a minute, this will take well over four thousand years

and you may not be that patient.

 Chapter 15. Event-driven Pipelines in Clients and Servers 161

 Client/server Pipelines

Issue the immediate command PIPMOD STOP from your terminal to terminate delay while it

waits. You can also force the waiting stages to terminate by passing a record to pipestop;

it has the same effect. Note, however, that this only stops waiting stages; you cannot

terminate a running pipeline this way.

! In a more complicated pipeline with multiple asynchronous stages, you may need a more

! granular way to stop a single waiting stage (as pipestop will terminate all waiting stages).

! If you use a gate for example to disconnect the primary output stream of delay it will

! terminate even while waiting.

Reacting to Immediate Commands
But why not make just STOP the way to stop the pipeline? CMS Pipelines can process

immediate commands: it copies the argument string on the command into the pipeline as

you issue the immediate command. immcmd writes a line with one blank when it gets no

arguments (CMS strips leading blanks from immediate commands).

! The more subtle approach to only terminate the waiting delay stage would be to use gate

! to stop it. The record produced by immcmd triggers gate to cut the path from its secondary

! input stream to its secondary output stream (identified by the label “g”).

Let us also make an immediate command to issue CMS commands with full command

resolution while the pipeline waits for work. The two commands seem to be useful

together; put them in a subroutine pipeline (subroutine pipelines need not be connected to

the caller’s streams):

Figure 258. Delay with Stop

'PIPE (end ?)',
'?immcmd stop', /* Output here when user types STOP */
'|pipestop', /* Turn the tap. */

 '?literal +60',
 '|duplicate *',
 '|delay',
 '|...

! Figure 259. Delay with Stop using Gate

! 'PIPE (end ?)',
! '?immcmd stop', /* Output here when user types STOP */
! '|g: gate', /* Close the gate */
! '?literal +60',
! '|duplicate *',
! '|delay',
! '|g:', /* Cut the pipe here */
! '|...

162 CMS Pipelines User’s Guide and Reference

 Client/server Pipelines

Armed with asyncms, write this pipeline instead of the one in Figure 258 on page 162.

! For a pipeline that is not supposed to run “forever” it may be necessary to specify the

! INTERNAL option on immcmd to make it terminate when all other asynchronous stages have

! terminated.

Figure 260. ASYNCMS REXX

/* Asynchronous CMS commands, pipeline stop */
signal on novalue
'callpipe (end ? name ASYNCMS)',

'?immcmd stop', /* Stop commands: */
'|pipestop', /* Force shutdown */
'?immcmd cms', /* CMS commands: */
'|subcom cms' /* Issue to CMS */

exit RC

Figure 261. Using ASYNCMS with Delay

'PIPE (end ?)',
 '|asyncms',
 '?literal +60',
 '|duplicate *',
 '|delay',
 '|...

 Processing Messages
Use starmsg to get your hands on terminal responses that cp and cms cannot trap.

You might also consider starmsg when CMS’s programmable operator (PROP) does not

satisfy your requirements. Maybe you need to preserve state information across calls to

the action routine: with PROP you must store state information outside the REXX program,

for instance in GLOBALV. In contrast, your action routines run concurrently with CMS

Pipelines.

Select the type(s) of message to process with the CP command SET. The easiest service

machine to set up processes commands from users on the same system, sent with the CP

command SMSG. More sophisticated servers can service requests forwarded as RSCS

messages. Here is an example of the first kind:

Lines from starmsg have eight bytes with the type of message followed by eight bytes

with the origin user ID followed by the message data, if any. In this case the message

type prefix is the same on all lines: discard it. validate (which is shown in Figure 265 on

page 165) ensures that only those we trust get service. Use a decoding network to process

requests from users in particular ways. starmsg sets up the immediate command HMSG to

make it stop. Issue HMSG (or PIPMOD STOP) from the terminal to terminate starmsg.

Figure 262.

'CP SET SMSG IUCV'
'PIPE starmsg | spec 9-* 1 | validate | spec 9-* 1 | subcom cms'

 Chapter 15. Event-driven Pipelines in Clients and Servers 163

 Client/server Pipelines

Warning: Setting CPCONIO IUCV means that all console output generated by CP is

presented to you. This includes the echo of commands you type on the terminal; they are

indistinguishable from CP responses. You also receive messages and warnings when the

corresponding setting is ON.

The double quote characters represent line end characters (X'15'). We entered four

commands while starmsg was intercepting console output:

Figure 263. Message Classes

Class Enabled By SET Message Source

1 MSG IUCV Messages sent with the CP command MESSAGE (MSG)

or MSGNOH.

2 WNG IUCV Warnings sent with the privileged CP command

WARNING (WNG).

3 CPCONIO IUCV Synchronous command responses; echo of terminal

input; asynchronous responses not presented by other

means.

4 SMSG IUCV Messages sent with the CP command SMSG.

5 VMCONIO IUCV Virtual machine generated output, for instance from

the REXX Say instruction or the console device driver.

6 EMSG IUCV CP error messages.

7 IMSG IUCV CP informational messages.

8 Terminal output routed through Single Console Image

Facility from a machine for which this machine is the

secondary user. You cannot disable this message

class.

Figure 264. Sample STARMSG

 pipe literal set cpconio iucv | cp set msg on | console
►Ready;

 pipe starmsg | console
►00000003JOHN "CP MSG * HI, THERE!
►00000003JOHN 22:08:42"""MSG FROM JOHN : HI, THERE!""
►00000003JOHN "CP SET MSG IUCV
►00000003JOHN "CP MSG * HI, THERE!
►00000001JOHN HI, THERE!
►00000003JOHN hmsg
►Ready;

#cp msg * Hi, there!
#cp set msg iucv
#cp msg * Hi, there!
hmsg

164 CMS Pipelines User’s Guide and Reference

 Client/server Pipelines

CP translates the echo of CP commands to upper case, but not the echo of CMS commands.

Try to match the four commands to the responses in Figure 264. Note the change in the

message class prefix after MSG was set to IUCV; after this, the message is no longer treated

as CP-generated console output; also note that there is no time stamp.

Validating a User ID
If the file VALID USERS contain the user IDs of the users who are allowed to access a

server, you can use lookup to filter those that are not authorised:

Figure 265. Validating Clients

/* Validate user ID in cols 1.8 */
'callpipe (end ? name validate)',

'?*:', /* From STARMSG without class */
'|l: lookup 1.8 details', /* Validate them */
'|*:', /* These are OK */
'?< valid users', /* Friends */
'|split', /* One per line */
'|pad 8', /* Make full length */
'|l:', /* To lookup */
'|change //Access violation: /', /* A comment added. */
'|console' /* Display it. */

 Chapter 15. Event-driven Pipelines in Clients and Servers 165

 spec Tutorial

 Chapter 16. spec Tutorial

This chapter is a tutorial on spec, the Swiss Army Knife of CMS Pipelines. You will see

how to use spec for many diverse applications.

spec has evolved from a simple filter to a complex programming language, but the

language can be subset: You can choose a subset you wish to learn; you do not have to

learn about the other features just to avoid them.

As you progress through this tutorial, you will realise that some of the statements made in

the early sections might be in need of the odd qualifying footnote. However, if you

choose a subset that does not include the finer points, you do not need to know these finer

points and a sprinkling of footnotes becomes a nuisance rather than a help.

You will find a concise reference for spec in Chapter 24, “spec Reference” on page 719.

Refer to that right now if you prefer to read a complete authoritative reference rather than

a tutorial.

The examples in this chapter are formatted with the spec stage across the entire column

and the input records below to the left and output records below to the right. To make

reading easier, each specification item is on a separate line. For reasons of typography, it

is not possible to put meaningful headings into this layout; you will have to remember that

the left hand side contains the input records and that the result is shown on the right. The

good news is that the examples are run when the book is formatted for printing. What you

see is indeed what it does, even when the examples contain mistakes. This printing

applies to:

Figure 266. Pipeline Level Used for Examples

 pipe query level
►CMS Pipelines, 5741-A07 level 110C0011
►Ready;

 Basic Mechanics

spec reads an input record; it then interprets its argument string and produces an output

record when it reaches the end of the argument string. It then repeats this cycle with each

new input record until it reaches end-of-file.

The argument list to spec is called a specification list, because it is interpreted as a list of

specification items. Some specification items are keywords that control how spec operates;

others define the contents of fields in the output record.

spec processes the specification list from left to right, but the output record need not be

built from left to right; a specification item can modify a part of the output record that has

already been filled by a previous specification item.

166 Copyright IBM Corp. 1986, 2020

 spec Tutorial

Basic Field Handling

A field in the output record can contain data from a field of the current input record,

constant literal data, or data generated within spec. First we look at specification lists that

build records from input fields and literal data.

 Input Ranges
The basic specification item copies part of the input record to the output record. It is

specified as an inputRange followed by a number.

To copy a record unchanged from the input to the output:

The specification list in Figure 267 contains a single specification item. This item contains

an input range (1-*) and an output column number (1).

An asterisk in an input range is interpreted as the beginning of the record when it is first

and as the end of the record when it is after the hyphen; thus, both *-* and 1-* specify

the entire record.

To select a subset of the input record and indent it in the output record:

Figure 268 shows that an inputRange can select things other than just columns. WORDS

(which can be abbreviated to W) specifies that the range refers to blank-delimited words.

In this example the first word of each input record is inserted in the output record begin-

ning in column 5. The first four columns are filled with blanks.

When you specify a word range, spec interprets that as the range of columns from the

beginning of the first word to the end of the last one. It does not squish out multiple

blanks within such a range:

Figure 267. Copy Record Without Change

specs
 1-* 1

First record
Second record

1
1
ds1
First record
Second record

Figure 268. First Word Only

specs
 word 1 5

First record
Second record

 First
 Second

 Chapter 16. spec Tutorial 167

 spec Tutorial

In this example you can remove the excess blanks easily; just do the three words one at a

time:

NEXTWORD (which can be abbreviated to NEXTW and even to NW) specifies that the field is

appended to the contents of the output record after a blank is added as a separator. The

blank is omitted when the output record is empty.

Note that you must specify WORD for each specification item that refers to a word range;

this will allow you to refer to words in some specification items and to columns in others.

spec also supports tab-delimited fields. Just as words are separated by blanks, fields are

separated by horizontal tabulate characters (X'05'). But whereas words can be separated

by more than one consecutive blank, two adjacent tabulate characters have a null field

between them (that is, a field of length zero).

You can specify a different tabulate character with the FIELDSEPARATOR keyword (or its

synonym FS). To move the contents of fields that are delimited by equal signs to specific

columns:

Notice that the first two records contain only two fields; the third record contains four

fields; the second and third records contain null fields.

An inputRange can contain a negative number; this specifies that the count is from the

end of the record rather than from the beginning:

Figure 269. Some Words

specs
 word 2-4 5

Here is the first record
Here is the second record

 is the first
is the second

Figure 270. Some Squished Words

specs
word 2 1
word 3 nextword
word 4 nextword

Here is the first record
Here is the second record

is the first
is the second

Figure 271. Selecting Fields

specs
 fieldseparator =

field 1 1
field 2 6
field 3 11
field 4 16

a=b
=a
==a=b

a b
 a
 a b

168 CMS Pipelines User’s Guide and Reference

 spec Tutorial

The general form of a range consists of two numbers separated by a semicolon. Thus,

there is a third idiom to refer to the entire record: 1;-1. When both numbers are posi-

tive, there is no difference between using semicolon and using a hyphen to delimit the

numbers.

When the two numbers have the same sign, the first number must be less than or equal to

the second one; it is an error to specify an ending column that is before the beginning one.

(Recall that -2 is less than -1.) When the numbers have different signs, a null input field

is used when the beginning position is after the end position:

The second output record is a null record (it contains no data), because the field to be

written started at the beginning of the second word (the first “r” of “record”) and extended

to the end of the second last word (the first “d” of “Second”). Since the input field ends

before it begins, the output field is null. (Null records are not written to CMS files, because

CMS does not support null records in files that have variable record format. But spec

produces a null record all the same.)

When the first number in a range is positive, you can specify a count rather than the last

number. The count is specified after a period and it must be positive:

Substrings: You can refer to a substring of a range, to a substring of a substring of a

range, and so on:

Figure 272. Penultimate Word

specs
 word -2 1

First record is long
Second record

is
Second

Figure 273. Word Range

specs
 word 2;-2 1

First record is long
Second record
Third one even more words

record is

one even more

Figure 274. Some Words, Revisited

specs
 word 2.3 5

Here is the first record
Here is the second record

 is the first
is the second

 Chapter 16. spec Tutorial 169

 spec Tutorial

CMS Pipelines processes the input range from right to left. It starts with the complete

record. It then processes word 3; this string becomes the input record for the substring

expression. You can mix fields, words, and column ranges within a substring expression;

you can even have different field separators and word separators for different parts of the

expression.

To find the variable or stem being assigned in a REXX assignment instruction:

: Structured data: Rather than referring to the absolute column, word, or tab-delimited

: field, you can declare structures that contain members, as described in Chapter 6, “Proc-

: essing Structured Data” on page 91 and in the description of structure.

: Such structure definitions can be created manually or possibly by a utility from an already

: existing machine readable record layout, or even dynamically.

: In this chapter we shall use the structure in Figure 277 to show examples of the use of

: structured data.

Figure 275. Using Substring

specs
substring 2;-2 of word 3 1

This is the first record
and the second record

h
econ

Figure 276. Using Substring

specs
substring fieldsep . field 1 of substr word 1 of fs = f 1 1

a = 17
x.18= 23

a
x

: pipe < samp record | console
: ►:str mem 1.4
: ► char c len 4 bin d len 4
: ► float f len 8 pack p(2) len 4
: ►Ready;

: pipe < samp record | struct add thread
: ►Ready;

: pipe struct list str | console
: ►:str <length 24>
: ► mem 1.04
: ► char C 5.04
: ► bin D 9.04
: ► float F 13.08
: ► pack P(2) 21.04
: ►Ready;

: Figure 277. A Sample Structure

170 CMS Pipelines User’s Guide and Reference

 spec Tutorial

: Read the literal as: Structure str contains an member named mem, which is four bytes and

: has no type associated, beginning in the first column. The next four columns contain

: member char, which is of character type as indicated by the single character. The next

: four columns contain member bin, which is a binary number in two’s complement nota-

: tion as indicated by the type D. The next eight columns contain member float, which is

: a System/360 hexadecimal floating point number. The final member of the structure is

: pack, which is a packed decimal number. The length four accommodates seven digits and

: a sign. The scale is two (there are two decimals in the number); this is the data type

: known as computational-3 to COBOL programmers. Structure and member names are case

: sensitive.

: As binary data are cumbersome to construct and also not to obscure examples by creating

: such numbers, we have prepared a two record file, which is dumped in Figure 278.

: The important point is that, except for data typing and scaling of packed decimal data, a

: member of a structure is simply a symbolic way to specify a particular substring of the

: input record; thus most of our examples will show column numbers as that keeps the

: example compact, but you should use structures and members for production.

: The utility of structures comes, of course, when the record layout changes; you no longer

: need to track down the various EXECs that are affected by a change.

: pipe < struct data | fmtdmp | console
: ►0Record 1
: ► 00000000 998583F1 8699A2A3 00000011 413B3333 *rec1frst A *
: ► 00000010 33333333 * *
: ►0Record 2
: ► 00000000 998583F2 A2839584 00000015 42118000 *rec2scnd â Ø *
: ► 00000010 00000000 * *
: ►Ready;

: Figure 278. Sample File Containing Structured Data

: This reads the sample file, selects member char, and prints it.

: Figure 279. Example of Using Structured Data

: specs
: member str.char 1

: (Contents of STRUCT DATA.): frst
: scnd

 Literals
To add a literal string to each record:

 Chapter 16. spec Tutorial 171

 spec Tutorial

In Figure 280, the first word is inserted in column 1 and the literal string is appended after

a blank. WORD can be abbreviated down to W and you can elide the blank between the

keyword and the word number.

A literal can also be expressed as a string of hexadecimal digits or a string of binary

digits:

NEXT specifies that the field should be abutted to the contents of the output record so far.

(X'5C' is the hexadecimal representation of the asterisk.)

Figure 280. First Word and a Literal

specs
 w1 1
 /banana/ nextword

First record
Second record

First banana
Second banana

Figure 281. Hexadecimal Literal

specs
 w1 1
 x5c next
 w2 next

First record
Second record

First*record
Second*record

: Manifest Constants
: A manifest constant is also literal data, but it is four bytes binary. Typically, a manifest

: constant is used to insert a particular value in a control block or parameter list being built.

: pipe struct list vmcparm | ...
: ... pick from w1 == /vmcpfunc/ to after substr 1.8 of w1 == /vmcpsend/ |
: ... console
: ► vmcpfunc D 3.02
: ► vmcpauth=0
: ► vmcpuaut=1
: ► vmcpsend=2
: ►Ready;
: pipe spec qualify vmcparm eof m vmcpsend m vmcpfunc | ...
: ... spec 1-* c2x 1 | console
: ►40400002
: ►Ready;

: The manifest constant is a binary constant of four bytes. It is by default entered into the

: output field aligned to the right. (Using EOF is a handy way to force spec to generate a

: null input record internally.) In this case, the output field is two bytes starting in column

: 3; hence the two leading blanks.

172 CMS Pipelines User’s Guide and Reference

 spec Tutorial

The Record Number
To insert the record number in the first ten columns:

The keyword NUMBER refers to a field maintained by spec. The field is ten characters

wide; the number is aligned to the right with leading zeros suppressed.

: Originally NUMBER was just that, the record number; and there was just one counter for all

: NUMBER items. This changed, however, when increment and starting number were added

: around 1989.

: Nowadays, there is a counter for each NUMBER item. This counter is incremented each

: time the item is issued. In simple specification lists, this translates to the same as the

: original definition, but add conditionals and the number may no longer be the same as the

: record number.

Figure 282. Number, First Word, and Literal

specs
 number 1
 word -2 nw
 /banana/ nw

First record
Second record

1 First banana
2 Second banana

 Output Placement
So far, the output field has contained precisely the characters in the input field.

You can specify the size of the output field to make it shorter or longer than the input

field. The input field will be padded with blanks or truncated, as required to fill the width

you have specified:

: And you can even specify the output as a member of a structure:

With a placement option, you can control how the field is inserted into the output record.

You can align the field to the left or to the right; or you can centre it. When you use a

placement option, the input field is stripped of blanks before it is placed. To put the

sequence number into columns one through five aligned on the left:

Figure 283. First Word Chopped

specs
 w1 1-3
 /*/ next

First record
Second record

Fir*
Sec*

: Figure 284. Specifying Output Position as a Member

: specs
: w1 member str.char

: First record
: Second record
: Firs
: Seco

 Chapter 16. spec Tutorial 173

 spec Tutorial

Figure 285 also highlights the fact that you need not copy any input fields to the output

record; you still get as many output records as there are input records.

An input field that does not exist in a particular input record is considered to be null; that

is, it contains no characters. When a null input field is referenced in a specification item

that does not specify an explicit length, the specification item is ignored. In particular, the

output record is not padded to the position of the output field:

Figure 285. Number and Literal

specs
number 1.5 left

 /*/ next

First record
Second record

1 *
2 *

Figure 286. Null Input Field Ignored

specs
 word 1 1
 word 3 10
 /*/ next

First record
Second record longer

First*
Second longer*

 Padding
When an output field is placed beyond the current end of the output record, the gap is

filled with the pad character, which is also used when output fields are placed with a

particular length.

You can use PAD to change the pad character to use in subsequent specification items:

The first word is inserted after four blanks, because the blank is the default pad character

and it has not yet been overridden; the second word is inserted after five asterisks in the

first record and after four asterisks in the second record.

You can change the pad character as often as you like.

You can resort to a subterfuge to put the record number in the first five columns and insert

leading zeros:

Figure 287. Padding with Asterisks

specs
 word 1 5
 pad *

word 2 15

First record
Second record

 First*****record
 Second****record

174 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Rather than supply an operand to specify no leading zero suppress (there is no such

operand), you can use PAD to specify the pad character to be used when the stripped

number is inserted into the output record; thus, the net effect is the one desired. Note that

NEXTWORD inserts a blank irrespective of the setting for the pad character.

Figure 288. Number and First Word

specs
 pad 0
 number 1.5 right
 w1 nextword

First record
Second record

00001 First
00002 Second

 Conversion

: This section discusses explicit conversion. When you define structures with typed

: members, their contents are converted automatically to the desired form; you may not

: specify explicit conversion too.

Conversion can be used to make binary data visible as well as to turn printable data into

the internal representation, which is the form numbers have inside the computer.

Conversion to printable form is often used with sql SELECT. Here, however, is a spec

stage that formats the first eight characters of a line into a form often used by program-

mers:

The conversion used in the example in Figure 289 unpacks a byte of data into two bytes

in hexadecimal notation. The eight bytes of input data are split into two fields, which are

printed with a blank between them. You can see that a short input field is not padded

before conversion.

The input data are placed in the output record a second time, this time without conversion.

An asterisk is inserted in column 19 followed by eight bytes of input data and a closing

asterisk. It would be normal to translate any unprintable characters in the original record

to blanks in a subsequent xlate stage.

Figure 289. Make Data Printable

specs
 1.4 c2x 1
 5.4 c2x nextword
 /*/ 19
 1.8 next.8
 /*/ next

First record
Second record
Short

C68999A2 A3409985 *First re*
E2858396 95844099 *Second r*
E2889699 A3 *Short *

 Chapter 16. spec Tutorial 175

 spec Tutorial

Combining Input Records into One Output Record

You can easily process a pair of input records and produce a single output record for the

two input records. Use READ or READSTOP to read another input record in the middle of

the specification list. Of course, once you have read a new record, the previous one is

gone and you can no longer refer to it.

To merge the words of each pair of input records:

READ assumes a null record when it gets end-of-file. READSTOP, in contrast, terminates the

specification list:

Figure 290. Merging Words from Two Input Records

specs
 word 1 1.4
 word 2 11.4
 word 3 21.4
 read
 /*****/ 26
 word 1 6.4
 word 2 16.4
 word 3 26

First record here
Second line follows
Odd record

Firs Seco reco line here follows
Odd reco *****

Figure 291. Merging Words from Two Input Records

specs
 word 1 1.4
 word 2 11.4
 word 3 21.4
 readstop
 /*****/ 26
 word 1 6.4
 word 2 16.4
 word 3 26

First record here
Second line follows
Odd record

Firs Seco reco line here follows
Odd reco

Multiple Input Streams

You can combine data from several sources, because spec can process any number of input

streams concurrently. This can be used to generate a listing of two files side by side:

176 CMS Pipelines User’s Guide and Reference

 spec Tutorial

The multistream support in spec follows the same pattern as the multistream support in a

REXX pipeline filter. That is, you first select the stream you wish to read from. Then you

can use the normal read operation to read from the stream.

spec is different in one respect, however. It synchronises its input streams before it starts

processing a set of input records; and it consumes the set when it comes to the end of the

specification list.

The synchronisation operation ensures that all records are available; and the

synchronisation operation is easy to understand. But if two input streams originate in a

common stage, for example chop, the pipeline is likely to stall unless you take precautions.

Refer to “Ensure the Pipeline Does not Stall” on page 88.

Figure 292. Side by Side

'PIPE (end ? name PIPUSPET.SCRIPT:342)',
 '? < first file',
 '|s: spec',
 '1-* 1',
 'select 1',
 '1-* 40',
 '| > output file a',
 '? < second file',
 '|s:'

Generating Several Output Records from One Input Record

Just as you can combine a pair of input records (or more) with READ, you can generate

more than one output record while processing a single input record. Use WRITE to write a

record containing the data generated so far:

Figure 293. Writing Many Output Records

specs
 word 1 1
 number 15.5 right
 /#1/ 12
 write
 word 2 1
 /#2/ 12
 number 15.5 right

First record
Second line
Short

First #1 1
record #2 1
Second #1 2
line #2 2
Short #1 3
 #2 3

 Chapter 16. spec Tutorial 177

 spec Tutorial

Multiple Output Streams

spec can write to all connected output streams. This is accomplished by OUTSTREAM in

the same way an input stream was selected with SELECT. You would typically use WRITE

to write the record, when producing output on two streams:

The pipeline in Figure 294 produces two output files, both containing the same number of

records as in the file INPUT FILE. The file FIRST WORDS contains the first word of each

input line; SECOND WORDS contains the second word of each input line.

Unlike SELECT, OUTSTREAM takes effect when the record is written, not when data are

placed in the output record. You can build only one output record at a time.

Figure 294. Writing Two Output Streams

'PIPE (end ? name PIPUSPET.SCRIPT:448)',
 '? < input file',
 '|s: spec',
 'word 1 1',
 'write',
 'word 2 1',
 'outstream 1',
 '| > first words a',
 '?s:',
 '| > second words a'

 Expressions

spec performs decimal arithmetic with thirty-one digits precision. You can save the result

of a calculation in a counter, where it can be stored for use in a subsequent record.

You can format the contents of a counter for printing under control of a picture, which is a

pictorial representation of the formatting you require.

You can suppress the automatic writing of an output record so that a record is written only

at end-of-file.

 Counter Expressions
A counter is identified by a number that is zero or positive. The syntax to specify a

counter consists of a number sign (#) followed by the number of the counter; for example,

#17.

The code point for the number sign is X'7B', which displays the number sign on an

English terminal; however, not all terminals display this code point the same way. (The

character is also called a hash or a pound sign, but this must not be confused with the

currency symbol for pound sterling.) If there is a number sign on your keyboard, you can

go ahead and use it. If your keyboard does not have a number sign, some other character

must be used. On a French keyboard, the pound sterling symbol would probably work. It

is easy to find out with this pipeline:

178 CMS Pipelines User’s Guide and Reference

 spec Tutorial

The number of the counter is specified after the number sign. Counters are numbered from

zero and upwards. spec can store values in as many counters as you need; there is no

arbitrary limit to the number of counters.

: The values stored in counters may be numbers or strings, so the name counter is slightly

: misleading; maybe register would be more appropriate, but the old name sticks.

The Arithmetic/logic Unit (ALU) implemented by spec can reference data in input records

in three ways:

: ¹ Using MEMBER, as we have seen already.

¹ Indirectly through a field identifier that specifies the field that contains the number to

: use. Syntactically, a field identifier is a single letter followed by a colon; it is placed

: in front of the inputRange. Case is respected in field identifiers; thus, there are

fifty-two possible field identifiers.

: ¹ Through the record function, as we shall see when we get to expressions.

The following example of using the spec ALU sums the values of the first word of each

input record and prints a running total in each line:

In the example in Figure 296, the first specification item (1-* 1) simply copies the input

record to the output record. The second item (a: word 1 .) associates the field identifier

a with the first word in each record, but it does not place that word in the output record,

because the placement is specified as a period, which means “ignore”.

The third specification item (set #0:=#0+a) can be read as set counter zero to the sum of

its current contents and the contents of field a. Thus, this item accumulates the running

total in counter 0. := is the assignment operator. Note the colon, which distinguishes

this operator from the = relational operator, which tests for numeric equality.

The fourth specification item (print #0 10) “prints” the contents of counter 0. That is, it

places the contents of the counter into eleven characters starting in column 10 of the

output record. By default, PRINT formats the value with leading zeros “suppressed”

: (converted to blanks); you can control the formatting with a picture, as we shall see later.

: You can also refer directly to members of structures. Members that have a numeric type

: are converted automatically when assigned to a counter. This applies whether you refer-

Figure 295. Finding the Character Displayed for 7B

 pipe literal 7b | spec w1 x2c 1 | console
►#
►Ready;

Figure 296. Summing

specs
 1-* 1

a: word 1 .
 set #0:=#0+a
 print #0 10

1 one
2 two
3 three

1 one 1
2 two 3
3 three 6

 Chapter 16. spec Tutorial 179

 spec Tutorial

: ence the member directly or you use a field identifier to reference indirectly a range that is

: defined by a member.

: Rather than supplying the fully qualified member name each time you refer to a member

: of a particular structure, you can declare a qualifier for the current stream:

: You can also specify in which column the structure should start; here we have specified

: the default explicitly (this is a good habit to get into).

: You can specify a separate qualifier for each input and each output stream and you can

: also specify that a qualifier should apply to all input streams, all output streams, or all

: streams.

The example in Figure 296 on page 179 was cast for the reader who is familiar with

REXX. It can be written more compactly by using operators borrowed from C. For

example, the SET item is redundant; the counter can be updated as it is printed:

This example uses the increment operator (+=) to add the contents of the identified field to

the contents of the counter. This is the preferred way to increment a counter before it is

“printed”.

: Figure 297. Summing with Structured Data

: specs
: print str.bin 1
: set #0:=#0+str.bin
: print #0 n

: (Contents of STRUCT DATA.): 17 17
: 21 38

: Figure 298. Using a Qualifier

: specs
: qualify input str 1
: print bin 1
: set #0:=#0+bin
: print #0 n

: (Contents of STRUCT DATA.): 17 17
: 21 38

Figure 299. Summing while Printing

specs
 1-* 1

a: word 1 .
 print #0+=a 10

1 one
2 two
3 three

1 one 1
2 two 3
3 three 6

180 CMS Pipelines User’s Guide and Reference

 spec Tutorial

: String Processing
: The example in Figure 299 on page 180 can be made even more compact using some of

: the string functions:

: record() returns the entire input record; and word selects the first blank-delimited word;

: finally, the assignment with add forces conversion of the string "1" to a number, which is

: added to the contents of the counter.

: You can store input string data in a counter and you can concatenate strings and apply

: most of the REXX functions to strings.

: For example, to reverse the third word of the input record:

: The output position in this example is a computed output position. The wordindex func-

: tion very conveniently provides the position of the third word, at least when there is one.

: Finally, max guards against the case where there are two or fewer words in the record as

: the word index is zero in this case.

: You should also note that you can print a string, but you must not supply a picture; doing

: so would force conversion to a number.

: Here is an example of concatenating strings (the OR bars are doubled to escape them):

: Figure 300. Summing while Printing

: specs
: 1-* 1
: print #0+=word(record(), 1) 10

: 1 one
: 2 two
: 3 three

: 1 one 1
: 2 two 3
: 3 three 6

: Figure 301. Reversing the Third Word

: specs
: a: 1-* 1
: b: word 3 .
: print reverse(b) (max(1, wordindex(a, 3)))

: "The time has come,"
: the Walrus said,
: "To talk of many things:
: Of shoes--and ships--and
: sealing-wax--
: Of cabbages--and kings--
: And why the sea is boiling hot--
: And whether pigs
: have wings."

: "The time sah come,"
: the Walrus ,dias
: "To talk fo many things:
: Of shoes--and dna--spihs
: sealing-wax--
: Of cabbages--and --sgnik
: And why eht sea is boiling hot--
: And whether sgip
: have wings."

 Chapter 16. spec Tutorial 181

 spec Tutorial

: You can make an expression more readable by putting it in parentheses, because you can

: then sprinkle blanks into it. The previous print item could be written as:

: print (#0 |||| " and " |||| #1) 1

: But it could not have been written like this, because spec has not implemented the blank

: operator that REXX uses to concatenate with a blank:

: print (#0 "and" #1) 1

: Figure 302. Catenating Strings

: specs
: a: w1 .
: b: w2 .
: set #0||||=a
: set #1||||=b
: print #0||||" and "||||#1 1

: 1 one
: 2 two
: 3 three

: 1 and one
: 12 and onetwo
: 123 and onetwothree

: Dealing with Errors in Expressions
: The spec expression parser implements a rather rich language using what is known as

: bottom up parsing. The good thing about such a parser is that there are compiler genera-

: tors that can construct the parsing tables, which makes the whole thing manageable. The

: downside is that errors are reported from the parser’s point of view, which is not always

: easy to understand. As an example, let us try the erroneous expression above:

: pipe spec print (#0 "and" #1) 1
: ►Parse error in state 80, unexpected T_QSTRING at offset 4: ""and" #1) 1"
: ►... Issued from stage 1 of pipeline 1
: ►... Running "spec print (#0 "and" #1) 1"
: ►Expecting S_RP S_SEMI S_EOD
: ►... Scan at position 15; previous data "print (#0 "and""
: ►Ready(01434);

: Figure 303. Parser Errors

: The parser is trying to tell you that it does not like two abutted terms. The state number

: (80) has meaning only to the programmer who built the parser (because he can refer to a

: listing that defines the state, which is assigned by the compiler generator). The parser then

: informs you that it is expecting to see a right parenthesis, a semicolon, or the end of the

: expression (at least, so the programmer would tell you—you might not be quite that

: clairvoyant). You might also wonder why it does not tell you that you should use the

: concatenate operator when it just accepted such a construct in the previous example, but

: such are the ways of LALR(1) parsers (for that is what it is). The good news is that the

: programmer has added many rules for erroneous syntax to the grammar to issue mean-

: ingful error messages, but eventually you will arrive at “crunch point” where the LALR(1)

: parser rears its head.

182 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Special Processing at End-of-file

To print the total at end-of-file:

As each record is processed, counter 0 is incremented by the contents of field a, as before.

As long as spec has an input record, it stops processing the specification list when it

encounters the EOF specification item. When spec reaches end-of-file, it processes the

specification items that follow EOF. These two items format the contents of counter 0 to

print a summary record.

Note that there are more output records than input records, even though there is no WRITE

item. The reason is that spec performs an additional final cycle when it reaches

end-of-file. It takes this runout cycle to process the specification items after EOF.

You can suppress output for all detail records and print only the summary record at end-

of-file:

PRINTONLY EOF specifies that no output records are to be written until the runout cycle.

You can include the count of records:

Figure 304. Summing

specs
 1-* 1

a: word 1 .
 set #0+=a
 eof
 /Total:/ 1
 print #0 next

1 one
2 two
3 three

1 one
2 two
3 three
Total: 6

Figure 305. Summing Quietly

specs
 printonly eof

a: word 1 .
 set #0+=a
 eof
 /Total:/ 1
 print #0 next

1 one
2 two
3 three

Total: 6

 Chapter 16. spec Tutorial 183

 spec Tutorial

During each cycle, the contents of field a are added to counter 0 and the constant 1 is

added to counter 1. Thus, at end-of-file, counter 0 contains the total, as before, and

counter 1 contains the record count. The specification items following EOF display the

contents of these counters.

You can use STRIP to strip all types of input fields of leading and trailing blanks. In

Figure 306, it is used to strip the leading blanks from the counter being printed.

You can even combine the two SET specification items into one by using the discard oper-

ator:

The SET specification item contains two expressions that are separated by the semicolon

operator. In the example in Figure 307, it works like the REXX clause delimiter, because

the result of the expression is discarded.

The expression is enclosed in parentheses to make it more readable. This allows the use

of blanks to separate the terms of the expression; without the parentheses it must be

written as #0+=a;#1+=1.

Figure 306. Summing and Counting

specs
 printonly eof

a: word 1 .
 set #0+=a
 set #1+=1
 eof
 /Total:/ 1

print #0 strip nextword
 /in/ nextword

print #1 strip nextword
 /records./ nextword

1 one
2 two
3 three

Total: 6 in 3 records.

Figure 307. Summing and Counting

specs
 printonly eof

a: word 1 .
set (#0+=a; #1+=1)

 eof
 /Total:/ 1

print #0 strip nextword
 /in/ nextword

print #1 strip nextword
 /records./ nextword

1 one
2 two
3 three

Total: 6 in 3 records.

184 CMS Pipelines User’s Guide and Reference

 spec Tutorial

 Pictures

Try twiddling the input data to explore the numeric range supported by spec:

As you can see, spec does not complain about decimal fractions. A counter can hold

floating point numbers with up to thirty-one decimal digits of precision. The exponent

range is in the thousand millions, which should be quite sufficient for most needs.

If you study the numbers and the results in Figure 308 carefully, you will see that the

computation has been performed without loss of precision, but printing has truncated the

number to an integer. You can specify a picture to control the way the contents of a

counter are formatted. A picture is a string of characters that specifies the desired format;

this string contains one character for each column of the formatted field. The picture is

specified after the keyword PICTURE. Case is ignored in pictures.

999 is a simple picture, which specifies that the number is to be formatted as three digits,

with no sign and no decimal point and no suppression of leading zeros. If, for example,

counter 4 contains the value 16 and the specification item is print #4 picture 999 1,

the output field will be 016. To get suppression of leading zeros, use z, rather than 9, in

your picture. In this case, if the picture is changed to zz9, the output becomes 16. To

allow for negative numbers, use one or more minus signs in the picture. For example, if

the counter contains the value -16 and the picture is ---9, the output will be -16. The

minus sign is said to drift; it is replaced by blanks until just before the first nonzero digit

in the output.

If you omit the PICTURE keyword, spec uses a default picture that has a drifting minus sign

with ten digits and no decimal fraction. Hence the truncation in Figure 308.

Use a decimal point to print fractional digits:

Figure 308. Big Sums

specs
 1-* 1

a: word 1 .
 print #0+=a 16

1
-3
20.6
3e2
4.7e5
4.7

1 1
-3 -2
20.6 18
3e2 318
4.7e5 470318
4.7 470323

 Chapter 16. spec Tutorial 185

 spec Tutorial

This example is a variation on Figure 306 on page 184.

The second last specification item computes the average by dividing the total by the count

of observations. The result is increased by five thousandths to ensure correct rounding

when the number is truncated for formatting with the picture.

This particular picture specifies eight hyphens, which represent a drifting sign; a nine,

which represents a digits position; a period, which represents the units position as well as

the character to insert for the decimal point; and two more nines to represent the first two

digits of the decimal fraction. For negative results, a hyphen is inserted into the last posi-

tion that contains a blank.

Conceptually, the picture is processed by first converting the result of the expression to a

number that has eight digits before the decimal point and two digits after the decimal

point. That is, the number has two digits fewer than the number of characters in the

picture, because the drifting sign and the period each require a position. The digits in this

string are then inserted into the output record under control of the picture. For the

hyphens making up the drifting sign, leading zeros are suppressed and replaced by blanks.

The character 9 indicates that the digit is to be inserted unconditionally. Thus a number

numerically less than one will have a zero digit just in front of the decimal period.

Use STRIP to format counters into fields of variable sized:

Figure 309. Summing and Averaging

specs
 printonly eof

a: word 1 .
set (#0+=a; #1+=1)

 eof
 print #1 1
 /observations./ nextword
 write
 print #0 1
 /total./ nextword
 write

print #0/#1+.005 picture -------9.99 1
 /average./ nextword

1 one
2 two
3 three
4 four

 4 observations.
 10 total.
 2.50 average.

186 CMS Pipelines User’s Guide and Reference

 spec Tutorial

There is no picture character to suppress trailing zeros.

Using counters and pictures, the record numbering shown in Figure 288 on page 175 can

be accomplished in a much simpler way:

The picture in Figure 311 inserts five digits unconditionally.

Try running some numbers through a picture:

Figure 310. Summing and Averaging

specs
 printonly eof

a: word 1 .
set (#0+=a; #1+=1)

 eof
print #1 strip 1

 /obs;/ nextword
print #0 strip nextword

 /tot;/ nextword
print #0/#1+.005 picture zzzzzzz9.99 strip nextword

 /avg./ nextword

1 one
2 two
3 three
4 four

4 obs; 10 tot; 2.50 avg.

Figure 311. Number and First Word with Pictures

specs
print #0+=1 picture 99999 1

First record
Second record

00001
00002

 Chapter 16. spec Tutorial 187

 spec Tutorial

The first word of the output record contains the input field.

The second word shows the number printed with cheque protection where asterisks rather

than blanks are used to suppress leading zeros. The commas in the picture are displayed

as commas if the number has started. The decimal fraction is displayed with two decimal

places. The s character specifies that the sign should be inserted after the number. Zero is

considered positive.

The third word in the output shows the running total printed with a drifting plus sign.

This example is shown here to warn you that a drifting plus results in a negative value

being formatted with no sign. Use a drifting s to prefix a number with either a plus or a

minus.

The last number is too large to print using the picture specified; but the number is well

within the range you can store in a counter.

You can use scientific notation for expressions that have a very large range of potential

values:

Figure 312. Big Sums with Fractions

specs
a: word 1 1
print a picture *,***,**9.99s 8
print #0+=a picture +++++++9.99 nw

1
-3
20.6
3e2
4.7e5
4.7
47E10

1 ********1.00+ +1.00
-3 ********3.00- 2.00
20.6 *******20.60+ +18.60
3e2 ******300.00+ +318.60
4.7e5 **470,000.00+ +470318.60
4.7 ********4.70+ +470323.30
Counter contains more digits than
... Issued from stage 2 of pipelin
... Running "specs a: word 1 1 pri
Processing item number 2: print a

188 CMS Pipelines User’s Guide and Reference

 spec Tutorial

The e character specifies the beginning of the exponent field. Even though case is ignored

syntactically within a picture, it is respected in the character to be inserted to signify the

beginning of the exponent. The digits of the exponent follow simplified rules for format-

ting because the exponent is an integer.

In this picture, the number is printed with a leading sign, one digit before the decimal

: point, five digits decimal fraction, the exponent sign, and three digits exponent.

The last number contains an exponent that is too large to print using the picture specified;

but the number is well within the range you can store in a counter.

You can even format numbers according to Continental European conventions:

This picture contains both periods and commas. Thus, the v is used to specify the units

position explicitly, because the periods are not marking the units position; they mark

millions and thousands, respectively. You can also see the way the punctuation characters

are suppressed just like the drifting sign. Notice that zero is considered positive.

Figure 313. Scientific Picture

spec
a: word 1 .

print a picture s9.99999es999 1

0
1
10
-0000000000001
-0.000000000001
.0034
17e-4
10000000000000
15873e-166734

+0.00000e+000
+1.00000e+000
+1.00000e+001
-1.00000e+000
-1.00000e-012
+3.40000e-003
+1.70000e-003
+1.00000e+013
Exponent too large: -166730
... Issued from stage 2 of pipelin
... Running "spec a: word 1 . prin
Processing item number 2: print a

Figure 314. European Formatting

spec
a: word 1 .

print a picture sss.sss.ss9,v99 1

0
-0
.04
-123456
1234567

 +0,00
 +0,00
 +0,04
 -123.456,00
 +1.234.567,00

 Chapter 16. spec Tutorial 189

 spec Tutorial

 Boolean Operators

Every journeyman plumber knows how to write a multistream pipeline that puts an indi-

cation of the equality of words 1 and 2 into column 1. But with spec, this can be done

much more simply:

The result of a relational operator is a number, which is zero for failure and one for

success. This result is inserted into column one of the output record using a picture that

contains a single digit (picture 9). Thus, if the result of the comparison is true, a single

digit 1 is placed in column 1 of the output record; otherwise, a single digit 0 is placed in

column 1.

You can see that the two equal signs mean that the comparison is strict, as defined for

REXX.

To compare a field against a character constant:

To compare a field against a numeric constant:

Figure 315. Mark Differences

spec
a: word 1 .
b: word 2 .

print a==b picture 9 1
 1-* 3

1 1
1 1.0
1e1 10
abc def
2 3

1 1 1
0 1 1.0
0 1e1 10
0 abc def
0 2 3

Figure 316. Mark Lines that Contain a Literal

spec
a: word 1 .

print a=="1" picture 9 1
 1-* 3

1
1e1
abc
2

1 1
0 1e1
0 abc
0 2

190 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Note the processing of the second and third lines. They contain numbers that have “expo-

nents”; that is scaling by a power of ten. (This confuses REXX programmers too.)

To perform a numeric comparison between two fields:

Now you see that using a single equal sign makes the comparison numeric. But unlike in

REXX, a numeric field must contain a number; spec does not revert to strict comparison

when it cannot convert a field to the internal representation of a number. It issues an error

message and terminates instead.

: But there is a datatype function you can use to test the operands:

Figure 317. Mark Lines that Contain a Number

spec
a: word 1 .

print a=1 picture 9 1
 1-* 3

1
1e0
1e1
abc
2

1 1
1 1e0
0 1e1
Not a decimal number: X'abc'
... Issued from stage 2 of pipelin
... Running "spec a: word 1 . pri
... Evaluating "a=1"
Processing item number 2: print a=

Figure 318. Mark Differences

spec
 1-* 3

a: word 1 .
b: word 2 .

print a=b picture 9 1

1 1
1 1.0
1e1 10
abc def
2 3

1 1 1
1 1 1.0
1 1e1 10
Not a decimal number: X'abc'
... Issued from stage 2 of pipelin
... Running "spec 1-* 3 a: wor
... Evaluating "a=b"
Processing item number 4: print a=

 Chapter 16. spec Tutorial 191

 spec Tutorial

: datatype returns NUM precisely when the conversion to a numeric value will succeed.

There is even a conditional operator. To find the maximum of two fields as one would do

in the C programming language style:

The conditional operator first evaluates the expression before the question mark. When

the result of this expression is not zero, the expression between the question mark and the

colon is evaluated and the expression after the colon is ignored. Likewise, when the result

is zero, the expression between the question mark and the colon is ignored and the

expression after the colon is evaluated. Thus, in this example, field a is tested for being

greater than field b. If the result of that test is true, the result of the conditional expression

is the value of field a; otherwise, the result is the value of field b.

The expression above is enclosed in parentheses; this allows the use of blanks to make it

more readable.

: Figure 319. Mark Differences more Carefully

: spec
: 1-* 3
: a: word 1 .
: b: word 2 .
: if (datatype(a)=="NUM" & datatype(b)=="NUM")
: then print a=b picture 9 1
: else /***Err***/ 1
: endif

: 1 1
: 1 1.0
: 1e1 10
: abc def
: 2 3

: 1 1 1
: 1 1 1.0
: 1 1e1 10
: ***Err***
: 0 2 3

Figure 320. Display Maximum

spec
a: word 1 .
b: word 2 .

print (a>b ? a : b) 1

1 2
3 1

2
3

 Conditional Processing

You can test the value in a counter or an input field and issue or ignore specification items,

depending on the outcome. To mark with an equal sign in column 1 all records where the

first two words are equal:

192 CMS Pipelines User’s Guide and Reference

 spec Tutorial

You could not have done this with a conditional expression.

You can supply specification items to be issued as an alternative:

And you can test n ways:

The first word is copied to the beginning of the output record; the relation that holds is

then inserted; and finally, the second word is inserted into the output record. Rather than

specifying the input range once again, id is used to refer back to the item that defined

the field.

Figure 321. Mark Equality

spec
a: word 1 3
b: word 2 6

if a==b then
 /=/ 1
 endif

1 2
1 1.0
1 1

 1 2
 1 1.0
= 1 1

Figure 322. Mark Equality

spec
a: word 1 3
b: word 2 6

if a==b then
 /=/ 1
 else
 /¬/ 1
 endif

1 2
1 1.0
1 1

¬ 1 2
¬ 1 1.0
= 1 1

Figure 323. Show Relationship

spec
a: word 1 1
b: word 2 .

if a<b then
 /</ nextword

elseif a>b then
 />/ nextword
 else
 /=/ nextword
 endif
 id b nextword

1 2
1 1.0
2 1

1 < 2
1 = 1.0
2 > 1

 Chapter 16. spec Tutorial 193

 spec Tutorial

: You can even iterate. To reverse every second word of the input line:

: Apart from showing how to write a while group, the example shows an important concept.

: It makes sure the the counter controlling iteration is always incremented. It does so by

: starting with a value that is one tick less than the first index wanted and then increment it

: in the expression that determines when to stop.

: If you do it in other ways, you might forget to iterate and then spec will go on until the

: cows come home (this is a technical term meaning forever) and you will be forced to use

: HX to stop the show, which is a rather hamfisted way of doing so.

: You might be tempted to write:

: while (#1+=1 <= #0) do

: But then it would loop forever because += is so low in the precedence hierarchy of opera-

: tors that the increment is 1<=#0 which is always one when there is one or more words in

: the input line; not what you should want.

: It is recommended to use parentheses around the assignment expression to explicitly state

: that the result is used further in the expression. spec issues nuisance warnings in some

: cases when it detects an operator to the left of the counter being updated.

: As shown above, you can nest IF and WHILE constructs; and you can nest any combination.

: The depth is limited to 16.

: Figure 324. Iterating Over the Record

: spec
: a: 1-* .
: set #0:=words(a)
: set #1:=0
: while ((#1+=1) <= #0) do
: if #1//2
: then print reverse(word(a, #1)) nw
: else print word(a, #1) nw
: endif
: done

: The time has come
: the Walrus said
: ehT time sah come
: eht Walrus dias

The Second Reading Station

After each cycle, spec loads the record on the primary input stream into a buffer that is

called the second reading station, or “second reading” for short.

You can treat this buffer as an additional input stream, which is selected by SELECT

SECOND.

Using this, you can combine fields from two adjacent input records without using the READ

or READSTOP specification items. Thus, you can construct the output record by intermixing

fields from the two records:

194 CMS Pipelines User’s Guide and Reference

 spec Tutorial

SELECT FIRST is a convenience for SELECT 0; it selects the primary input stream as the

source for the following specification item.

The second reading contains a null record while the first record is being processed. This

cycle is called the runin cycle.

Likewise, spec runs an additional cycle when it reaches end-of-file. This cycle is called

the runout cycle. The input streams are assumed to contain null records during the runout

cycle, but the second reading station still contains the last record.

The ALU supports built-in functions that return true while spec is taking a runin or a

runout cycle. first() is true during the runin cycle; eof() is true during the runout

cycle.

The runin cycle is skipped if the second reading is the only input stream used. The first

record is then loaded directly into the second reading. The runout cycle is skipped when

the second reading is not used and no EOF specification item is issued.

Not all specification items in the list are issued during runin and runout cycles. The rules

are somewhat arcane; refer to the reference if you are mixing SELECT FIRST and SELECT

SECOND.

: The example in Figure 326 on page 196 processes data from the first reading only. This

: is appropriate for titles or similar that come before the run of records that has a particular

: key. Use the second reading station when you wish to compute subtotals.

Figure 325. Mixing Records

spec
 word 1 1
 select second
 word 1 nextword
 select first
 word 2 nextword
 select second
 word 2 nextword

first record
second line
last one

first record
second first line record
last second one line
last one

 Control Breaks

Field identifiers have other uses than to supply numeric data for computations.

spec can compare a field in two adjacent records and issue specification items only when

the fields do not contain the same data. A field identifier defines a field to be compared

between adjacent records.

The input file is usually sorted on a key field before being passed to the spec stage that

generates a report. A control break means that the key has changed between two adjacent

records.

 Chapter 16. spec Tutorial 195

 spec Tutorial

 Suppressing Repetitions
For example, you can suppress the contents of the first five columns in the output record

when they are the same as in the previous record:

The first specification item has a field identifier (a) associated with it. The field itself

covers the first five columns of the input record. The placement is a period, which means

that the item has no effect on the output record. Because the field identifier is used in a

subsequent BREAK item, the contents of the field are compared with the contents of the

same field in the previous input record, which has quietly been squirrelled away in a buffer

for this purpose (the second reading). A break on level a is established when the two

fields are not identical. Because there is no previous record when the first record is proc-

essed (the previous record is considered null), a break is established on the first cycle.

The second specification item copies the remainder of the input record to the output record,

inserting blanks in columns 1-6.

The third item tests if a break is established for field a. If no break is established, the

remainder of the specification list is ignored.

The fourth item inserts the key (the contents of field a) into the first five positions of the

record. Because this specification item is issued only when a break is established, subse-

quent output records for this key contain blanks in the first five columns.

Figure 326. Avoid Repetition

spec
 a: 1.5 .
 6-* 7
 break a
 id a 1

spoonR Spoons, red
spoonY Spoons, yellow
fork R Forks, red
fork Y Forks, yellow

spoon R Spoons, red
Y Spoons, yellow

fork R Forks, red
Y Forks, yellow

Generating Title Records
You can also use WRITE to generate a separate title record, but you must write the title

before you build the detail output record, because you can build only one record at a time:

196 CMS Pipelines User’s Guide and Reference

 spec Tutorial

The built-in function break() returns true if a break is established for the field specified.

This is used to generate the title line. Note the use of WRITE; without it, the title would be

prefixed to the output record that is written at the end of the cycle.

Figure 327. Add Title

spec
 a: 1.5 .

if break(a) then
/Part number/ 1

 id a nextword
 write
 endif
 6-* 7

spoonR Spoons, red
spoonY Spoons, yellow
fork R Forks, red
fork Y Forks, yellow

Part number spoon
R Spoons, red
Y Spoons, yellow

Part number fork
R Forks, red
Y Forks, yellow

 Printing Subtotals
Let columns one and two contain the part number and columns three through five contain

the number shipped:

SELECT SECOND is issued first to cause the second reading station to be used as the source

of the data. Thus, a control break is active while the last record having a particular key is

being processed.

The second specification item identifies the part number with a and copies it to the output

record. Likewise, the third item identifies the number shipped with b and prints that as

well.

The fourth specification item accumulates the number of items shipped.

Figure 328. Writing a Subtotal

spec
 select second
 a: 1.2 1
 b: 3.3 5
 set #0+=b
 break a
 write

print #0 picture zzz9 4
 set #0:=0

mv002
mv003
wv002
wv001
wv002

mv 002
mv 003
 5
wv 002
wv 001
wv 002
 5

 Chapter 16. spec Tutorial 197

 spec Tutorial

A control break is established when the part number of the following record is different

from the one in the current record (strictly, when the content of the field identified by a
changes).

The last three specification items are issued only when the break is established. The first

of them writes the detail record in the output buffer so that the subtotal can be written as a

separate record; the second one prints the subtotal (the contents of the counter); and the

last one resets the counter to 0.

A subtotal is also printed at end-of-file, because end-of-file forces a break to be established

on all levels; thus, there is a break on level a after the last input record has been proc-

essed.

Printing a counter and resetting it are often combined:

In Figure 329, the discard operator (the semicolon) is used to reset the counter after its

contents have been fetched for printing. The semicolon operator first evaluates its left

hand operand, which is simply the contents of the counter; this becomes the result of the

discard operator. It then evaluates the right hand operand and discards that result. Thus,

conceptually at least, the contents of counter 0 are moved to the output record before the

counter is reset to zero.

As you would expect, the semicolon operator has the lowest precedence of all operators.

Adding a grand total at end-of-file, involves accumulating it and printing it:

Figure 329. Writing a Subtotal

spec
 select second
 a: 1.2 1
 b: 3.3 5
 set #0+=b
 break a
 write

print (#0; #0:=0) picture zzz9 4

01002
01003
02002
02001
02002

01 002
01 003
 5
02 002
02 001
02 002
 5

198 CMS Pipelines User’s Guide and Reference

 spec Tutorial

After each subtotal is printed, it is added into counter 1 to accumulate the grand total.

Printing the grand total is just like printing the subtotal, except that it is done only once.

You can also print the subtotals before you load the data from the first reading station, but

now you must suppress printing during the very first break. You must also print the

subtotal for the last batch during the runout cycle:

Figure 330. Writing a Subtotal with Grand Total

spec
 select second
 a: 1.2 1
 b: 3.3 5
 set #0+=b
 break a
 write
 print #0 picture zzz9 4

set (#1+=#0; #0:=0)
 eof
 write
 print #1 picture zzz9 10

01002
01003
02002
02001
02002

01 002
01 003
 5
02 002
02 001
02 002
 5
 10

 Chapter 16. spec Tutorial 199

 spec Tutorial

The second specification item tests for a break on level a, except for the break during the

runin cycle. If such a break occurs, the subtotal is written in a separate record and the

counter reset.

The second IF test unconditionally for a break on level a, which ensures that the first

record contains the part number of the first part.

Then the count is printed, as before.

Because the second reading station has not been selected, the runout cycle starts at the EOF

specification item. Thus, to print the last subtotal, the specification item to print it is

repeated here.

You can see that it was much easier to control totals by processing data from the second

reading station, as was done in Figure 330 on page 199.

Figure 331. Writing a Subtotal without Second Reading

spec
 a: 1.2 .

if (break(a) & ¬first()) then
 print #0 picture zzz9 4

set (#1+=#0; #0:=0)
 write
 endif

if break(a) then
 id a 1
 endif
 b: 3.3 5
 set #0+=b
 eof
 print #0 picture zzz9 4
 print #1+#0 picture zzz9 10

01002
01003
02002
02001
02002

01 002
 003
 5
02 002
 001
 002
 5 10

 Break Hierarchies
Control breaks are often hierarchical. When you are generating an invoice, you might

wish to group detail records for individual part numbers together and compute subtotals for

each. Of course, you would also want to print an invoice total for each customer, and no

doubt some grand total at the end.

To do this, you will need to define several types of control breaks; in this case, at least one

for part numbers and one for customer numbers.

Note also that when the customer number changes, a control break should be generated for

the part number first, even if the part number is unchanged. To support this, control

breaks are ordered in a hierarchy, which has a at the lowest level and Z at the highest

level.

200 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Here is an example of an utterly simplistic invoicing application. It is an elaboration on

the subtotalling examples above. The part number is in columns one and two; the

customer number in columns three and four; and the number of items shipped is in

columns five through seven:

SELECT SECOND selects the data source as being the record at the second reading station.

Thus, when testing for break the previous record is compared to the current one. It is

easier if you readjust your focus to be the record from where data come; then a control

break means that the current record is the last one for that particular key.

Figure 332. Simple Invoicing

spec
 select second
 a: 1.2 1
 b: 3.2 4
 c: 5.3 8
 set #0+=c
 break a
 write

print (#0; #1+=#0; #0:=0) picture zzz9 7
/total this part/ nextword

 break b
 write

print (#1; #2+=#1; #1:=0) picture zzz9 7
/total this customer/ nextword

 eof
 write

print #2 picture zzz9 7
/grand total/ nextword

0101002
0101003
0201002
0202001
0202002

01 01 002
01 01 003

5 total this part
02 01 002

2 total this part
7 total this customer

02 02 001
02 02 002

3 total this part
3 total this customer
10 grand total

When spec Establishes a Break
Because the READ and READSTOP specification items introduce new data, and also to avoid

unnecessary computation, control breaks are established only as needed.

The break() functions return a numeric value that can be printed:

 Chapter 16. spec Tutorial 201

 spec Tutorial

Break level a is associated with the first column and break level “b” is associated with the

second one. The result of the break() functions for the two identified fields are printed

after the fields have been moved to the output record. The value of the eof() function is

also printed.

The function results are printed in the order of the break hierarchy; you can see that the

break on b when the first record is at the second reading station forces a break for a as

well, even though the first column is unchanged.

But a break is not established until the specification item that defines the associated

identifier is issued. Printing the function results after the specification item loading the a
field has been issued uncovers some possibly surprising behaviour:

It is an error to refer to a break level that has not been identified with an input field.

Therefore, when the first set of function results is printed, the column for break level b is

left blank.

Figure 333. Testing Breaks

spec
 select second
 a: 1 1
 b: 2 2

print break(a) picture 9 nextword
print break(b) picture 9 next
print eof() picture 9 next

xx
xy
yy
yx
yx

xx 110
xy 100
yy 110
yx 000
yx 111

Figure 334. Testing Breaks

spec
 select second
 1-* 1
 a: 1.1 .

/after a:/ 4
print break(a) picture 9 nextword
print eof() picture 9 nextword

 write
 b: 2.1 .

/after b:/ 4
 print (break(a)*100
 +break(b)*10

+eof()) picture 999 nextword

aa
ab

aa after a: 0 0
after b: 110

ab after a: 1 1
after b: 111

202 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Look at the output for the first record. No break level is established when the specification

item identified by a is issued, because the second record also contains a in the first

column.

But when the specification item identified by b is issued, a break is established at that level

and this forces the break at all lower levels to be established as well.

On the runout cycle, in contrast, the maximum break level is established at the beginning

of the cycle.

When you have two separate fields and you wish to issue specification items when either

of the fields break, you might be tempted to test only the break level of lower rank, having

the expectation that a break of higher rank will force the break on the lower level:

But this is a mistake, because unless you test the break level, it is not treated as a break

level. To issue some specification items when either a or b breaks:

Thus, even though the first BREAK items looks redundant, it is not. The order is important;

you must test the higher rank(s) first.

Figure 335. Testing Breaks

spec
 select second

a: 1 1
b: 2 2

 break a
 /break/ nextword

aa
aa
ab

aa
aa
ab break

Figure 336. Testing Breaks

spec
 select second

a: 1 1
b: 2 2

 break b
 break a
 /break/ nextword

aa
aa
ab

aa
aa break
ab break

: Suppressing Detail Printing
: PRINTONLY also supports a letter, which specifies the break level that must be established

: before an output record is written. The contents of the output buffer is normally discarded

: when the break level is insufficient, but it is kept if you specify KEEP with PRINTONLY.

: This example shows the use with EOF. The first word of each input record specifies the

: output column of the remaining words in the record.

 Chapter 16. spec Tutorial 203

 spec Tutorial

: Had KEEP been omitted, you would see the last record only:

: Figure 337. Keeping the Output Record

: spec printonly eof keep
: a: word 1 .
: word 2-* (a)

: 7 seven
: 1 one
: 13 thirteen

: Figure 338. Not Keeping the Output Record

: spec printonly eof
: a: word 1 .
: word 2-* (a)

: 7 seven
: 1 one
: 13 thirteen

Driving spec with Due Care and Attention

If you use the divide operator, you must consider the possibility of dividing by zero:

In this example, there are no input records; thus, both counters contain zero at end-of-file.

spec does not treat zero divided by zero in any special way; it reports the error rather than

risking the potential divide exception. You can prevent an error in such a case:

Figure 339. Dividing by Zero

spec
a: word 1 .

set (#0+=a; #1+=1)
 eof
 print #0/#1 1

Divisor is zero
... Issued from stage 2 of pipelin
... Running "spec a: word 1 . set
... Evaluating "#0/#1"
Processing item number 4: print #0

204 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Figure 340. Dividing by Zero

spec
a: word 1 .

set (#0+=a; #1+=1)
 eof

if #1>0 then
 print #0/#1 1
 else

/No input records./ 1
 endif

No input records.

 Examples

 Page Formatter
When printing a file, you might wish to add headings and page breaks in the same way

accounting machines used to do. You can write a REXX filter for this or use specs.

The example in Figure 341 on page 206 generates an output file that contains ASA

carriage control in the first column. The number 1 means that the record should be printed

at the top of the next page; a blank means that the record should be printed on the next

line.

The arguments specify the page size in lines and columns.

 Chapter 16. spec Tutorial 205

 spec Tutorial

Counter 0 is used to keep track of the current line number on the output page; counter 1 is

used for the current page number. When the line number is 0, a page header is written

and the page number is incremented. Then a blank line is written, and the line number is

set to 3. Note that counter 0 is initialised to zero, which means that a heading is included

in the first page.

After each input record has been written to the output, the line number is tested for being

greater than or equal to the page size. If it is, it is reset to zero so that a heading is

generated in the next cycle; otherwise it is incremented by 1.

Here it is run using a small page size:

Figure 341. Making Page Breaks

/* Print pages with 60 lines and a heading */
Signal on novalue

parse arg pl pw
If pl=''
 Then pl=60
If pw=''
 Then pw=80

'callpipe (name PRTPAGE)',
 '|*:',
 '|specs',

'if #0=0 then', /* Top of page? */
 ' ?1'date()'? 1', /* Title */

' ?Page?' pw-10, /* And literal */
' print #1+=1' pw-5'.5 right',/* Page number from #1 */
' write', /* Write title line */
' / / 1', /* Blank line */
' write', /* Write second line */
' set #0:=3', /* First copied line is line 3 */

 'endif',
'1-* 2', /* The line with one space */
'set (#0 := #0>='pl '? 0 : #0+1)', /* Test page overflow */

 '|*:'
exit RC

206 CMS Pipelines User’s Guide and Reference

 spec Tutorial

Figure 342. Using PRTPAGE REXX

prtpage 4 30

Line 1
Line 2
Line 3
Line 4
Line 5

129 Apr 2020 Page 1

 Line 1
 Line 2
129 Apr 2020 Page 2

 Line 3
 Line 4
129 Apr 2020 Page 3

 Line 5

: And Finally

: Before leaving this tutorial we remove the definition of the structures we defined in

: Figure 277 on page 170.

: pipe literal str|structure delete thread
: ►Ready;

: Figure 343. Deleting Structure Definitions

 Chapter 16. spec Tutorial 207

. Chapter 17. Rita, the CMS Pipelines Runtime Profiler

. Rita reports on the CPU usage of a pipeline set by stage and pipeline specification. Rita

. also reports the largest amount of virtual storage used by each stage for work areas and

. buffers.

. Rita comes with CMS on the examples disk, usually MAINT 193.

: To invoke Rita, change your PIPE command to RITA. RITA invokes the PIPE command to

: run the pipeline with options to capture timing information and a stage to reduce this infor-

: mation.

. Rita displays CPU usage in milliseconds for each stage and pipeline, both inclusive of and

. exclusive of the time used by subroutine pipelines invoked by the stage or pipeline.

. Rita writes a summary on the console and detailed information to a disk file. The file

. name of Rita’s output file is the first eight characters of the option NAME specified on the

. RITA command. The file type is of the form RITAnnn, where nnn is the first unused

. sequence number.

. For a more detailed discussion and many examples of using Rita to tune pipelines, see

! Melinda Varian’s Streamlining Your Pipelines on the CMS Pipelines home page. Refer to

! “Additional Information, Download Site” on page xx for additional pointers.

. If you are too busy to read this extremely informative paper, beware of this:

. ¹ If a stage (it would have been written by a user) goes into a wait state outside of the

. control of CMS Pipelines, the wait time is counted as CPU time.

. ¹ Pipelines added with ADDPIPE are not represented in the inclusive number for any

. stage.

. ¹ The numbers displayed by Rita do not include the CPU usage of other pipeline sets

. started with PIPE commands or runpipe stages from within the pipeline set Rita is

. measuring.

. ¹ Rita produces the best results when all CALLPIPEs and ADDPIPEs have the option NAME

. specified and when any specifications that have the same name are also identical in the

. stages invoked.

. ¹ NUCXLOAD RITA before running a pipeline that contains a ldrtbls stage. This avoids

. Rita interfering with the loader tables.

. ¹ Rita is likely to add less overhead when RITA REXX is compiled.

. While the results from Rita will be indicative of the relative performance of various stages

. and subroutine pipelines, Rita comes at price:

. ¹ Rita enables the message level to gather accounting data. This, in turn, causes the

. pipeline dispatcher to take a longer path than it would take otherwise.

. ¹ Rita issues the pipeline specification through runpipe and processes the output to

. extract pipeline accounting messages. This may add an overhead of 5% or more.

. If the application you are timing fails because of the additional execution time, you may

. try to:

208 Copyright IBM Corp. 1986, 2020

http://vm.marist.edu/~pipeline/streamli.pdf

. ¹ Run the pipeline through runpipe MSGLEVEL X2001 and save the output to disk. Then

. process the file through rita; that is, RITA REXX.

. ¹ Turn on console SPOOL, issue PIPMOD MSGLEVEL 8193 to enable pipeline accounting,

. and run the pipeline normally. Inspect the console SPOOL for message 177.

. Example

. Invocation and summary followed by detailed output truncated on the right:

. rita literal abc|append literal def|hole

. ► CPU Utilization by Pipeline Specification 28 Nov 2006 16:56:46

. ►

. ► 0.003 (0.003) ms total in "Append/Preface" (1 invocation)

. ► 0.013 (0.010) ms total in "NoName001" (1 invocation)

. ►

. ► 3.078 ms total.

. ►

. ►Detailed output from Rita in UNNAMED RITA001.

. ►Ready; T=0.21/0.25 16:56:46

. pipe < unnamed rita001|cons

. ►CPU Utilization by Pipeline Specification from: 28 Nov 2006 16:56:46

. ► to: 28 Nov 2006 16:56:46

. ►

. ►CPU utilization of pipeline specification "Append/Preface":

. ► 0.003 (0.003) ms (<1K) in stage 1 of pipeline 1: literal de

. ► 0.003 (0.003) ms total in "Append/Preface" (1 invocation) <=====

. ►

. ►CPU utilization of pipeline specification "NoName001":

. ► 0.003 (0.003) ms (<1K) in stage 1 of pipeline 1: literal ab

. ► 0.006 (0.003) ms (<1K) in stage 2 of pipeline 1: append lit

. ► 0.004 (0.004) ms (<1K) in stage 3 of pipeline 1: hole

. ► 0.013 (0.010) ms total in "NoName001" (1 invocation) <=====

. ►

. ► 0.013 ms attributed to stages; no virtual I/O.

. ► 2 pipeline specifications used (4 stages).

. ► 2 pipeline specifications issued.

. ►

. ► 0.005 ms in general overhead.

. ► 0.018 ms in scanner.

. ► 0.006 ms in commands.

. ► 1.024 ms in dispatcher.

. ► 0.000 ms in hunt.

. ► 2.012 ms in accounting overhead.

. ►

. ► 3.078 ms total.

. ►Ready; T=0.01/0.08 16:58:57

. In this contorted example, dispatcher and accounting overhead completely overshadows

. any other CPU use. Note also that while Rita discovers 3 milliseconds CPU consumption,

. the actual CPU time for the entire command is 210 milliseconds.

 Chapter 17. Rita, the CMS Pipelines Runtime Profiler 209

 VM Data spaces

: Chapter 18. Using VM Data Spaces with CMS Pipelines

: The next chapter describes some CMS Pipelines built-in programs that have been enabled

: for data space access. TSO Pipelines cannot create shared data spaces, as such operations

: require the task to be authorized.

: This chapter describes how to combine CMS Pipelines built-in programs to manage data

: spaces, address list element tokens, and memory mapped minidisks. It contains a complete

: terminal session as examples, including supporting commands that are not directly related

: to data spaces. If you choose try the session yourself, you should perform the steps in the

: same sequence as shown here and in one virtual machine and pay attention to the contents

: written to files where an ASIT is saved to disk for later reference.

: CMS Pipelines does not expose the entire repertoire of CP macros that are available and it

: also makes a few simplifying assumptions.

: Your virtual machine must be in XC mode to use the data space support and you must

: have been given privileges in the user directory entry for your virtual machine if you wish

: to create data spaces or share them, because by creating a data space you increase your

: virtual machine’s footprint. This line will allow you to create up to ten address spaces of

: a maximum aggregate size of one gigabytes; further, you are allowed to share the data

: spaces you create:

: xconfig addrspace maxnumber 10 totsize 1g share

! The CP support for VM data spaces is described in z/VM CP Programming Services,

! SC24-6272. You may also find the online help files useful when developing pipelines that

! use data spaces. Issue the CMS command HELP VMDS MENU to display a menu of the CP

: macros in support of data spaces.

: CMS Pipelines provides interfaces to most of the CP macros with adrspace, alserv, and

: mapmdisk. In addition, diskid supports reserved minidisks.

: Terminology

: Your virtual machine’s real storage is formally called the host-primary address space of

: your virtual machine. With appropriate privileges, you can also create data spaces, which

: are separate sets of pages that can contain data, but from where no instruction can execute.

: The virtual machine real storage and data spaces are collectively referred to as address

: spaces.

: An address space has a name; it is also represented by an address space identification

: token, an ASIT, which is eight bytes.

: The name of your real storage is the reserved word “BASE”. You give a data space a

: name when you create it; the name is up to twenty-four characters made up from the

: twenty-six English letters, digits, or any of the special characters # $ @ _ - (number sign,

: dollar sign, at sign, underscore, and hyphen). Note that the first three special characters

: are national use; your terminal and keyboard may display these differently. Data space

: names are upper case, but CMS Pipelines translates them automatically, so you can specify

: them in whatever case you like. The combination of user name and data space name must

: be unique; that is, a virtual machine can have only one data space by a particular name at

: any time.

210 Copyright IBM Corp. 1986, 2020

 VM Data spaces

: An ASIT that is for the real storage of a virtual machine is called a virtual configuration

: identification token (VCIT); it identifies the address space uniquely within the IPL of the VM

: system; that is, ASITs are not reused until the system has been shut down. The VCIT

: identifies the virtual machine uniquely in standard CMS.

: You can discover the ASIT by creating an address space or by querying it.

: To use a data space you must obtain an access list entry token (ALET) for the address

: space. This value is loaded into an access register by CMS Pipelines to identify the

: address space you wish to reference. If you are writing Assembler programs, you would

: then switch to access register mode to access the data space and switch back to primary

: space mode when you are done.

: The contents of a data space is either something you put there or it is mapped to a mini-

: disk. The contents lasts until the data space is destroyed or you IPL the virtual machine.

: As CMS does not know of data spaces, end of command has no effect on a data space.

: Querying an Address Space

: You already have an address space, namely the real storage of your virtual machine. This

: address space has the reserved name “BASE”; pass it to adrspace QUERY. Figure 344

: shows how to determine the ASIT of the virtual machine’s real storage and the number of

: pages in it.

: The contents of the ASIT is not specified; it is just a handle, but you are assured that the

: value is unique for the duration of the IPL of VM.

: However, if you watch the ASIT of your real storage you will soon note that the lower

: word is incremented as you IPL your virtual machine and as you create data spaces.

: This attracts a warning, but does not terminate adrspace. In fact, adrspace acts like a

: selection stage; it passes the name of the unknown data space to its secondary output

: stream, when it is defined.

: Figure 344. Determining the Base ASIT.

: pipe literal base | adrspace query | spec 1-8 c2x 1 9-* c2x nw | console
: ►00F2A9C000000004 00004000
: ►Ready;

: Figure 345. Querying an Extinct Data Space

: pipe literal nixen bixen | split | adrspace query | cons
: ►FPLASP1527E Address space NIXEN is not available for user
: ►FPLMSG003I ... Issued from stage 3 of pipeline 1
: ►FPLMSG001I ... Running "adrspace query"
: ►FPLASP1527E Address space BIXEN is not available for user
: ►FPLMSG003I ... Issued from stage 3 of pipeline 1
: ►FPLMSG001I ... Running "adrspace query"
: ►Ready;

 Chapter 18. Using VM Data Spaces with CMS Pipelines 211

 VM Data spaces

: Finding one’s VCIT is done so often that you might write MYASIT REXX as shown in

: Figure 347.

: Displaying data in hex is also done a lot; C2X REXX hides the complexity of formatting

: four bytes at a time (this is not a trivial demonstration of the capabilities of spec).

: Figure 346. Querying an Extinct Data Space

: pipe (end ?) literal nixen bixen | split | a: adrspace query | ...
: ... > good names a ? a: | insert /dunno: / | console
: ►dunno: NIXEN
: ►dunno: BIXEN
: ►Ready;

: Figure 347. MYASIT REXX

: /* Write primary ASIT */
: Signal on novalue
: numeric digits 12

: 'callpipe (end \ name MYASIT.REXX:6)',
: '\literal BASE',
: '|adrspace query',
: '|chop 8', /* Drop size */
: '|*:'
: exit RC

: Figure 348. C2X REXX

: /* Convert char to hex */
: Signal on novalue
: numeric digits 12

: parse arg as
: If as\=''
: Then 'issuemsg 112 FPLC2X x'c2x(as)
: else
: 'callpipe (end \ name X2C.REXX:6)',
: '*:',
: '|spec set #0:=length(record());#1:=-3',
: ' while (#1+=4)<=#0 do',
: ' if (#1>1 & #1//16=1)',
: ' then / / n endif',
: ' print c2x(record(#1, 4)) nw',
: ' done',
: '|*:'
: exit RC

: Accessing the Contents of a Data Space

: The storage built-in program can access the contents of a data space. Figure 349 on

: page 213 shows how to obtain an ALET, use it to display data in your virtual storage, and

: finally dispose of the ALET.

212 CMS Pipelines User’s Guide and Reference

 VM Data spaces

: This example is contrived because you could obtain the same information directly without

: specifying ALET, but it still shows the mechanics.

: You can also access someone else’s data spaces, if that virtual machine has granted you

: permission and you know the ASIT. Either the owner of the data space has left the ASIT in

: a prearranged place, for example in SFS or the address space name is well known, in which

: case you can use adrspace QUERY to discover it for yourself.

: Figure 349. Displaying Data in a Data space

: pipe myasit | alserv add | > base alet a | c2x | console
: ►01000002
: ►Ready;

: pipe storage alet 01000002 200 32 | console
: ►z/VM V6.4.0 2019-07-24 16:40
: ►Ready;

: pipe < base alet | alserv remove
: ►Ready;

: Creating a Data Space

: It is quite straightforward to create a data space. Give it a name, specify how large, and

: assign a storage key. Pass this information on the input to adrspace CREATE.

: The output is the ASIT of the data space. Note that the size has been rounded up to the

: nearest megabyte segment. It is a good idea to save the ASIT either in a disk file or a

: REXX variable. As there is no REXX environment active, we store it in a file here. (But

: you can always discover it by adrspace QUERY as long as you remember the name of the

: data space.)

: To access the contents of the data space we need an ALET:

: Figure 350. Creating a Data space

: pipe literal ds1 2 e0 | adrspace create | > ds1 asit a | ...
: ... spec 9-* c2d 1 | console
: ► 256
: ►Ready;

 Chapter 18. Using VM Data Spaces with CMS Pipelines 213

 VM Data spaces

: This creates a file that will be needed in Figure 358 on page 217.

: Note that we now have a megabyte of shiny new zero bits available by using ALET 2.

: Contrast it with the contents of real storage as shown in the last command. (ALET 0 is

: reserved and always refers to the primary space of the virtual machine; ALET 1 is not valid

: on CMS; it is used to reference the secondary address space on z/OS.)

: You can omit the leading X'01' of an ALET on CMS; CMS Pipelines supplies it for you as

: that is the only format that CP supports.

: The ALET is a number between 2 and the maximum number of ALETs allowed for your

: virtual machine, up to 1023, which is the limit in the hardware architecture. Their

: numbers are predictable, being the smallest unassigned number.

: Let us put something into the data space and even in the first two pages for good measure:

: And you are undoubtedly not surprised to see the data staying in the data space.

: Figure 351. Creating a Data space

: pipe < ds1 asit a | spec 1-8 c2x 1 9-* c2x nw | > ds1 asitx a | console
: ►00F2AAC000000001 00000100
: ►Ready;

: pipe < ds1 asit | alserv add write | > ds1 alet a | c2x | console
: ►01000002
: ►Ready;

: pipe storage alet 2 0 16 | spec 1-* c2x 1 | console
: ►00000000000000000000000000000000
: ►Ready;

: pipe storage alet 0 0 16 | spec 1-* c2x 1 | console
: ►03EC200083A480CA03A0BD2883AB23F6
: ►Ready;

: Figure 352. Loading Data into a Data Space

: pipe literal Killroy was here | pad 32 | storage alet 2 0 32 e0
: ►Ready;

: pipe literal Killroy was also here | pad 32 | storage alet 2 1000 32 e0
: ►Ready;

: pipe storage alet 2 0 16 | console
: ►Killroy was here
: ►Ready;

: Sharing Address Spaces

: Address spaces can be shared either read only or read/write, but you must yourself imple-

: ment any locking protocol to manage concurrent update by multiple virtual machines.

: Pass the ASIT of an address space that you own to adrspace PERMIT.

214 CMS Pipelines User’s Guide and Reference

 VM Data spaces

: Here the user OPERATOR is given read only access to the real storage of your virtual

: machine.

: Use adrspace ISOLATE to stop sharing an address space. This is all or nothing at all: all

: permissions on the data space are lost; you cannot remove permissions for one user but

: leave those for others.

: That said, sharing of address spaces is not as easily done as it might seem:

: ¹ The grantee must discover the ASIT, which can become rather complicated, and add an

: ALET to its access list.

: ¹ VM has no facility to grant public access to a data space; permissions must be granted

: individually.

: ¹ All permissions to a data space are dropped when it is isolated; there is no facility to

: drop a particular permission.

: ¹ The virtual machine that is granted permission must be logged on.

: ¹ IPL or reset of a virtual machine drops all permissions granted to it previously.

: ¹ IPL or reset of the permitting virtual machine deletes all data spaces and clearly all

: permissions granted on them.

: ¹ An ALET that you have obtained for a data space in another virtual machine may thus

: go stale at any time. This is reflected by an addressing capability exception, program

: interrupt code X'136', from which CMS Pipelines cannot recover. Stages that use an

: ALET are, however, able to determine its validity while validating operands.

: Thus, to set up a service virtual machine to maintain a database in a shared data space,

: you will also need to implement some kind of protocol to enable the server to authorize

: clients. Refer to “Example Server Application” on page 158 for an example.

: Figure 353. Sharing an Address Space

: pipe myasit | adrspace permit user operator | c2x | console
: ►00F2A9C0 00000004
: ►Ready;

: Figure 354. Removing Permissions to an Address Space

: pipe myasit | adrspace isolate | c2x | console
: ►00F2A9C0 00000004
: ►Ready;

: Using Mapped Minidisks

: You can map the contents of a minidisk into a data space you own and you can effectively

: save the contents of a data space to a minidisk; this depends on the way you define it.

: Mapped minidisks are used by DB/2 for VM to access the database directly as virtual

: storage. While you can map any disk that is formatted with 4K blocks, maintaining the

: file system structures or even just accessing the contents of files is not trivial, but a

: mapped minidisk would be appropriate for a disk repair kit.

 Chapter 18. Using VM Data Spaces with CMS Pipelines 215

 VM Data spaces

: Let us get a temporary disk to play with and format it. It must be formatted with 4K

: blocks, but that is the default for 3390s, so we need not specify that option.

: The output from FORMAT is truncated in formatting. The somewhat strange way of

: providing responses to the prompts from CMS command FORMAT allows the sample to be

: run automatically while this book is formatted.

: (RESERVE does not like a trailing blank in the response to the prompt.)

: Strictly speaking, we could omit reserving the minidisk and use all of it, but reserving the

: disk prevents trouble if it should ever be accessed. There is no need to access the mini-

: disk; you could read the contents of the disk with trackread rather than mdiskblk, which

: does require the minidisk to be accessed.

: We now have 172 blocks to play with at offset 8 from the beginning of disk 102. To store

: the data space into this file we must first define a minidisk pool; in this case the pool will

: contain one extent only, the temporary disk.

: This assigns the reserved portion of the minidisk to blocks 0 through 171 of the minidisk

: pool. The null record indicates that the pool has been defined without error. (Had you for

: Figure 355. Creating a Temporary Reserved Minidisk

: pipe cp DEFINE T3390 102 1 | console
: ►DASD 0102 not defined; temp space not available
: ►Ready(00091);

: pipe literal ds1 1| split | stack lifo | hole | ...
: ... append command FORMAT 102 W | console
: ►DMSFOR113S Device 102 not attached or invalid device address
: ►Ready(00100);

: Figure 356. Creating a Temporary Reserved Minidisk

: pipe strliteral /1/ | stack lifo | hole | ...
: ... append command RESERVE ds1 reserved W | console
: ►Filemode W not accessed
: ►Ready(00036);

: pipe state * * w | console
: ►Ready(00036);

: pipe diskid 102 | spec 1.2 c2x 1 3.2 c2d nw 5.4 c2d nw | console
: ►Device 102 is not attached
: ►... Issued from stage 1 of pipeline 1
: ►... Running "diskid 102"
: ►Ready(01538);

: Figure 357. Creating a Minidisk Pool

: pipe literal 102 8 172 | mapmdisk identify | console
: ►Return code 8 on ADRSPACE/ALSERV/MAPMDISK diagnose
: ►... Issued from stage 2 of pipeline 1
: ►... Running "mapmdisk identify"
: ►Ready(01520);

216 CMS Pipelines User’s Guide and Reference

 VM Data spaces

: some reason not passed any extent definitions to mapmdisk IDENTIFY, it would not have

: produced an output record.)

: A virtual machine can have only one minidisk pool defined at any time; any existing pool

: is quietly replaced by the new one.

: We are now ready to map the minidisk into the data space that was created in Figure 351

: on page 214. We map just the first page of the data space onto the first block of the

: reserved file. RETAIN instructs mapmdisk to leave the contents of the data space intact, the

: default being to use the data on the minidisk.

: It would appear that the minidisk pool is not referenced once pages have been mapped and

: that the pool could be redefined while pages are mapped, but this is not documented to be

: the case.

: Having mapped the data space, we save the contents to the minidisk. mapmdisk SAVE

: waits while CP performs whatever page out operations are required for changed pages. It

: writes parameters from the interrupt that marks the completion of the operation.

: The output from mapmdisk SAVE is almost all zeros when the data space has been hard-

: ened onto the minidisk. X'01' in byte 9 means that we have received a confirmation

: interrupt for the save operation; no other values are possible. The leftmost bit of byte 10

: indicates the validity of the first eight bytes; the contents are valid when this bit is zero

: (which is a bit unconventional); the rightmost seven bits of this byte contain the

: completion status, which should be X'00'. Error codes are described in z/VM CP

: Programming Services, SC24-6272.

: You can run multiple mapmdisk SAVE stages concurrently, for example one for each data

: space.

: Now check the reserved file:

: Figure 358. Mapping a Minidisk Pool into a Data space

: pipe literal ds1 | adrspace query | spec 1.8 c2x 1 /0 1 0/ nw | ...
: ... mapmdisk define retain | > ds1 mdmap a
: ►No minidisk pool has been defined
: ►... Issued from stage 4 of pipeline 1
: ►... Running "mapmdisk define retain"
: ►Ready(01543);

: Figure 359. Saving the Contents of a Data space to a Mapped Minidisk

: pipe literal ds1 | adrspace query | spec 1.8 c2x 1 /0/ nw | ...
: ... mapmdisk save | c2x | console
: ►00000000 00000000 0100
: ►Ready;

 Chapter 18. Using VM Data Spaces with CMS Pipelines 217

 VM Data spaces

: So the first page was hardened, but the second one was not, as we should expect.

: Then let us destroy the mapping of the data space, but keep the data space:

: Unmapping a mapped page also discards its contents; unlike when mapping, CP offers no

: choice this time. Of course, the page that was not mapped retains its contents.

: The first page went away, but we can have it back by redefining the mapping.

: Figure 360. Reading from the Reserved Space on a Minidisk

: pipe < ds1 reserved w | take 1 | chop 32 | console
: ►Mode W not available or read only
: ►... Issued from stage 1 of pipeline 1
: ►... Running "< ds1 reserved w"
: ►Ready(00119);

: pipe < ds1 reserved w | drop 1 | take 1 | chop 32 | c2x | console
: ►Mode W not available or read only
: ►... Issued from stage 1 of pipeline 1
: ►... Running "< ds1 reserved w"
: ►Ready(00119);

: Figure 361. Unmapping a Data space

: pipe < ds1 mdmap | mapmdisk remove
: ►File "DS1 MDMAP *" does not exist
: ►... Issued from stage 1 of pipeline 1
: ►... Running "< ds1 mdmap"
: ►Ready(00146);

: pipe storage alet 2 0 16 | c2x | console
: ►D2899393 9996A840 A681A240 88859985
: ►Ready;

: pipe storage alet 2 1000 32 | console
: ►Killroy was also here
: ►Ready;

218 CMS Pipelines User’s Guide and Reference

 VM Data spaces

: Figure 362. Restoring a Minidisk Mapping

: pipe < ds1 mdmap | mapmdisk define
: ►File "DS1 MDMAP *" does not exist
: ►... Issued from stage 1 of pipeline 1
: ►... Running "< ds1 mdmap"
: ►Ready(00146);

: pipe storage alet 2 0 32 | console
: ►Killroy was here
: ►Ready;

: pipe storage alet 2 1000 32 | console
: ►Killroy was also here
: ►Ready;

: Destroying a Data Space

: Finally we destroy the sample data space and its ALET.

: As data spaces consume CP resources, a good citizen destroys unneeded data spaces. If

: you do not, it all goes away in a small puff of white smoke next time you IPL your virtual

: machine, even permissions you have granted on your base machine storage.

: Figure 363. Destroying a Data space

: pipe < ds1 asit | adrspace destroy
: ►Ready;

: pipe < ds1 alet | alserv remove
: ►Ready;

: pipe command RELEASE W
: ►Ready(00036);

: pipe cp DETACH 102
: ►Ready(00040);

 Chapter 18. Using VM Data Spaces with CMS Pipelines 219

 Built-in Programs for Data Spaces

: Chapter 19. CMS Pipelines Built-in Programs supporting Data

: Spaces

: This chapter shows how to use ALETs with some CMS Pipelines built-in programs; it is

: entirely up to you how you obtain the ALETs involved. On CMS, this would typically be

: adrspace CREATE INITIALISE; some other means must be used on z/OS.

: For the examples, we use a single data space, which is created as shown in Figure 364.

: Several examples in Chapter 18, “Using VM Data Spaces with CMS Pipelines” on

: page 210 show how to display and store data using STORAGE.

: instore and outstore also support an ALET operand.

: While the format of the output of instore is unspecified, it contains the ALET into which

: the file is stored. The point to note is that outstore determines the ALET from the

: descriptor record it reads; you need not specify it (you cannot specify it unless outstore is

: first in the pipeline).

: When the file is in a data space, outstore copies each record into a buffer in the primary

: space before writing it to its output; thus, other parts of CMS Pipelines are not aware of

: address spaces.

: Figure 364. Creating a Data space

: pipe literal sample 2 e0 | adrspace create initialise | > ds1 asit a
: ►Ready;

: Figure 365. Using instore and outstore

: pipe literal Hello! | instore alet 2 | outstore | console
: ►Hello!
: ►Ready;

: Figure 366. Cleaning Up.

: pipe < ds1 asit | adrspace destroy | substr 13-* | alserv remove
: ►Ready;

220 Copyright IBM Corp. 1986, 2020

 Part 4. Reference

This part of the book contains reference information.

Chapter 20, “Syntax Notation” explains how to read syntax diagrams.

Chapter 21, “Syntax of a Pipeline Specification Used with PIPE, runpipe, ADDPIPE, and

CALLPIPE” defines the syntax of the PIPE command, the ADDPIPE pipeline command, the

CALLPIPE pipeline command, and the input to the runpipe built-in program.

Chapter 22, “Scanning a Pipeline Specification and Running Pipeline Programs” describes

how the pipeline specification parser and the pipeline dispatcher go about processing a

pipeline specification.

Chapter 23, “Inventory of Built-in Programs” describes the programs that are supplied

with CMS Pipelines; it describes the syntax of the argument string as well as the operation

of the program.

Chapter 24, “spec Reference” describes all features of specs.

Chapter 25, “Pipeline Commands” describes pipeline commands. Pipeline commands are

processed by the default command environment in pipeline filters that are written in REXX.

Chapter 26, “Message Reference” lists CMS Pipelines messages in numerical order and

explains what they mean.

Chapter 27, “PIPMOD Command (CMS Pipelines only)” describes the functions

performed by the PIPMOD command (the main pipeline module).

Chapter 28, “Configuring CMS Pipelines” describes CMS Pipelines configuration variables,

which control the actions taken where there has traditionally been a difference between

! z/VM and the “Pipelines Runtime Library”.

 Copyright IBM Corp. 1986, 2020 221

 Syntax

 Chapter 20. Syntax Notation

This chapter defines the syntax notation used to describe CMS Pipelines commands and

programs.

Syntax defines valid argument strings for a command. Semantics define what the command

does when it is issued. For instance, when a program accepts a list of items of some kind

as the argument, syntax does not prescribe a limit on the count of items; semantics might

require a maximum of 10 entries in such a list.

How to Read a Syntax Diagram

Follow the path of the line from left to right, from top to bottom.

A required item is on the main path along the horizontal line.

►►──COMMAND──required argument──►◄

A default item is above the main path.

 ┌ ┐─default argument─
►►──COMMAND─ ──┴ ┴────────────────── ─►◄

An optional item is below the main path.

►►──COMMAND─ ──┬ ┬─────────────────── ─►◄
 └ ┘─optional argument─

An item is a keyword, a syntax variable, or a reference to a fragment in a syntax

definition.

Keywords are shown in a Gothic font with the minimum abbreviation in upper case.

When writing the keyword, you must provide at least the minimum abbreviation. Write

the keyword in upper case or lower case; write it mIxEd if you like.

►►──COMMAND──KEYword──►◄

Syntactic variables are shown in lower case slanted type. Provide a number, address, or

the name of an object where there is a syntactic variable. Figure 367 on page 224 defines

the syntax variables used by CMS Pipelines.

►►───── The definition of a program or command begins with two arrowheads

pointing to the right.

 ────►◄ The definition of a program or command ends with two arrowheads

pointing to each other.

 ─────► An arrowhead pointing to the right at the end of a line means that the

definition is continued below.

►───── An arrowhead pointing to the right at the beginning of a line means that

the definition is continued from above.

222 Copyright IBM Corp. 1986, 2020

 Syntax

►►──COMMAND──number──►◄

A reference to a fragment of a syntax definition breaks the main path with vertical bars.

The fragment is defined later in the diagram.

►►──COMMAND──┤ snumber ├──►◄

snumber:

├─ ──┬ ┬─number── ─┤
└ ┘──-number

When you must choose between two or more items, they are stacked with the first one on

the main path.

►►──COMMAND─ ──┬ ┬─argument─ ─►◄
 └ ┘─KEYWORD──

When you can select an item or take none, the choices are stacked below the main path.

►►──COMMAND─ ──┬ ┬────────── ─►◄
 ├ ┤─argument─
 └ ┘─KEYWORD──

A default is shown above the main path.

 ┌ ┐─DEFault──
►►──COMMAND─ ──┼ ┼────────── ─►◄
 ├ ┤─argument─
 └ ┘─KEYWORD──

An item may be repeated when an arrow returns to the left in front of it. The item is on

the main path when you must write it at least once.

 ┌ ┐────────────
►►──COMMAND─ ───6 ┴─argument─ ─►◄

The item is below the main path when you may omit it altogether.

 ┌ ┐──────────────
►►──COMMAND─ ───6 ┴┬ ┬────────── ─►◄
 └ ┘ ─argument─

 Syntactic Variables

Words in slanted Gothic type beginning with a lower case letter are syntactic variables.

Substitute something for the syntactic variable; its name is intended as a mnemonic for the

type of information you must substitute.

 Chapter 20. Syntax Notation 223

 Syntax

Figure 367 (Page 1 of 5). Syntactic Variables

Name Examples Description

: bit: 0

: 1

: A binary digit, the characters 0 or 1.

blank Space; the blank character, X'40'.

char -
x

A single character that is not a blank. Any 8-bit value other than

X'40' is a char.

delimitedString /abc/
,,
xf1f2f3
b11000001
str xabx

A delimited character string is written between two occurrences of a

delimiter character, as a hexadecimal literal, or as a binary literal. The

delimiter cannot be blank and it must not occur within the string. Two

adjacent delimiter characters represent the null string. It is suggested

that a special character be used as the delimiter, but this is not

enforced. However, it is advisable not to use alphanumeric characters,

because a future release might add a keyword or a number as a valid

option to a built-in program where only a delimited string is valid

today.

A hexadecimal literal is specified by a leading H or X followed by an

even number of hexadecimal digits. A binary literal is specified by a

leading B followed by a string of 0 and 1; the number of binary digits

must an integral multiple of eight.

The keyword STRING can be used to specify that the delimited string

contains a string that is terminated by delimiter characters. This acts as

a placeholder so that any non-blank character can be used as the delim-

iter character. Note that this use of the keyword is in addition to a

keyword that is recognised by a built-in program. (Thus, split
string string xabcx)

delimiter /
,

A single character, which is used to delimit a string. When delimiter

is used in a syntax expression, all occurrences of the delimiter refer to

the same character.

devaddr c
00d

A string of hexadecimal digits is also used to express a device address

: (though its proper name is a device name nowadays). At most eight

significant digits are allowed.

digit 5
9

One of the digits 0 through 9.

endChar The end character; the character declared by the option ENDCHAR.

Refer to Chapter 8, “Using Pipeline Options” on page 120.

hex 7
b
D

A character selected from the decimal digits 0 through 9, the letters a

through f, and the letters A through F.

hexString 00d7 A hexadecimal string consists of one or more hexadecimal digits. No

blanks are allowed in such a string. Semantics often require that the

string has an even number of characters.

224 CMS Pipelines User’s Guide and Reference

 Syntax

Figure 367 (Page 2 of 5). Syntactic Variables

Name Examples Description

: identifier: Struct
: first_fish
: m7

: This applies to identifiers parsed by structure: Structure and member

: names (often referred to as identifiers) must begin with a letter in the

: English alphabet or one of the special characters “@#$!?_” (at sign,

: number sign, dollar sign, exclamation point, question mark, and under-

: score). The second and subsequent character may also be a digit.

: Identifiers are case sensitive unless the structure is defined as caseless.

: Identifiers parsed by polish follow the conventions of the High Level

: Assembler. That is, exclamation point and question mark are not valid

: characters in such an identifier. While the parser retains the case of

: identifiers, the evaluator (which the user must supply) should treat them

: as caseless.

inputRange 1-*
word 5
1;-1
-18;28
field 4

: Refer to “Input Range” on page 228.

inputRanges 7
1-*
(4-* w6)
(f3 w7)

A list of input ranges is a single inputRange or a list of input ranges

in parentheses. If the keyword WORDSEPARATOR or FIELDSEPARATOR is

specified, it remains in effect for subsequent words or fields.

inputRanges:

├─ ──┬ ┬─inputRange─────────── ─┤
 │ │┌ ┐──────────────
 └ ┘ ─(─ ───6 ┴─inputRange─ ─)─

IPaddress 9.55.5.13
jph
piper.com

An IP address can be expressed in dotted-decimal notation or as a host

name, optionally qualified by a domain.

Note: The IP address is a single word; you must write IP addresses

without embedded blanks.

IPaddress:

├─ ──┬ ┬─┤ dotted ├─── ─┤
└ ┘─┤ hostname ├─

In the dotted-decimal notation, you are expressing a thirty-two bit

integer. While you can specify this number in several ways; the

customary notation consists of four integers in the range from 0 to 255,

separated by periods. Be sure not to specify leading zeros, as this

implies octal notation in some contexts, but not in others.

dotted:

 ┌ ┐─────────
├──number─ ───6 ┴.number ─┤

The IP address may also be specified by a host name or a hostname

followed by a period and a domain name. This usage is experimental

on CMS; it requires RXSOCKET Version 2.

hostname:

! ┌ ┐─.────
! ├─ ───6 ┴─word─ ─┤

 Chapter 20. Syntax Notation 225

 Syntax

Figure 367 (Page 3 of 5). Syntactic Variables

Name Examples Description

letter q A character in the English alphabet, a through z and A through Z.

number 0012
00
3

A number is a sequence of decimal digits. CMS Pipelines stores

numbers as binary fullwords; the largest number supported is 2**31-1

(2147483647). A number is unsigned; that is, zero or positive; seman-

tics often require that a number be positive.

numorstar 17
*

Column numbers are positive integers; the first (leftmost) column is

number 1. An asterisk ('*') refers to the first or last column of a

record.

numorstar:

├─ ──┬ ┬─number─ ─┤
 └ ┘─*──────

octalDigit 5 One of the digits 0 through 7.

: qualifier: str
: str.substr
: str.sub(4)

: A qualifier is a left part of a fully qualified member name. Blanks are

: not allowed in a qualifier.:

: qualifier:

: ┌ ┐─.─────────────────────────
: ├─ ───6 ┴─identifier─ ──┬ ┬─────────── ─┤
: └ ┘─subscript─

quotedString "a b"
"x""y"
'abcd'

A quoted string is written in the REXX fashion. Two consecutive

quotes within the string are replaced with a single one.

range 8
1.5
10-12
9-*
*.8
9.3
-

A range is often used to specify a range of columns in a record or a

range of record numbers in a file. It is a single number, the beginning

and end of the range with a hyphen ('-') between them, or the begin-

ning number and the count with a period ('.') between them. 10-12
and 10.3 express the same range. No blanks are allowed between the

numbers and the delimiters because CMS Pipelines scans for a word

before scanning the word for the range.

The first number in a range must be positive. The last number in a

range specified with a hyphen must be larger than or equal to the first

one. An asterisk in the first position is equivalent to the number 1. An

asterisk after a hyphen specifies infinity, the end of the record, or all

records in a file.

Some syntax diagrams show range as an alternative to number.

Though redundant, this alerts you to a difference in semantics when a

number is processed differently than a range consisting of a single

column.

range:

├─ ──┬ ┬─number────────────── ─┤
├ ┤──number-number ──────
├ ┤──number.number ──────
├ ┤──numorstar-numorstar
└ ┘──numorstar.number ───

226 CMS Pipelines User’s Guide and Reference

 Syntax

Figure 367 (Page 4 of 5). Syntactic Variables

Name Examples Description

snumber -17
0
734298

A signed number can be positive, zero, or negative. Negative numbers

have a leading hyphen; zero and positive numbers have no sign. The

smallest number supported is -2**31 (-2147483648).

: Note that -0 is not a snumber.

snumber:

├─ ──┬ ┬─number── ─┤
└ ┘──-number

stageSep The stage separator character. By default, this is the solid vertical bar

(|). A different character is declared by the option SEPARATOR. Refer

to Chapter 8, “Using Pipeline Options” on page 120.

stream 17
mstr

A number or a stream identifier. You can always refer to a particular

stream by the number (the primary stream is number 0, the secondary

stream number 1, and so on). Refer to a symbolic identifier instead of

the stream number if a stream identifier is declared with the label (or

created with the ADDSTREAM pipeline command).

stream:

├─ ──┬ ┬─number─── ─┤
 └ ┘─streamID─

streamID Mstr
mstr

A stream identifier is a word having up to four characters. It cannot be

a number. Case is respected in stream identifiers. A stream identifier

made up from letters in lower case is different from one made up of

the same sequence of characters in upper case.

string a name A string is a sequence of characters with or without blanks. It can

have leading and trailing blanks; a string extends to the stage separator.

: subscript: (4): A subscript is a positive number in parentheses that is appended to an

: identifier that references a member of a structure. Blanks are not

: allowed in a subscript.

: While this definition covers the usage of inputRanges in spec, it does

: not cover subscripts in spec expressions; refer to “Term” on page 739.:

: subscript:

: ├──(──number──)──┤

word inPut
0+4

A word is a sequence of non-blank characters. Most arguments to

CMS Pipelines filters are blank-delimited words.

xorc 1
F1
40
BLANK
TABulate

A character specified as itself (a word that is one character) or its

hexadecimal representation (a word that is two characters). The blank

is represented by the keyword BLANK, which has the synonym SPACE,

or with its hex value, X'40'. The default horizontal tabulate character

(X'05') is represented by the keyword TABULATE, which can be abbre-

viated down to TAB.

 Chapter 20. Syntax Notation 227

 Syntax

Figure 367 (Page 5 of 5). Syntactic Variables

Name Examples Description

xrange Y
X-Z
00-7f
00.256
0-00
BLANK
40-7f
blank-7f
blank.3
00-blank

Character ranges designate the characters in the collating sequence

between two specified characters; such a range is often called a hex

range because the characters can be specified as xorc. A hex range

can be written with the first and last characters separated by a hyphen

('-'), or by the first character and a count separated by a period ('.').

No blanks are allowed between the characters and the delimiters

because CMS Pipelines scans for a word before scanning the word for

the hex range. Hex ranges wrap from X'FF' to X'00' when the

starting character is later in the collating sequence than the ending one,

or the count is larger than the number of characters from the beginning

character to the end of the collating sequence.

xrange:

├─ ──┬ ┬─xorc──────── ─┤
├ ┤──xorc-xorc ──
└ ┘──xorc.number

 Input Range

: An input range is specified as a column range, a word range, a field range, or a member of

: a structure.

A single column is specified by a signed number. Negative numbers are relative to the

end of the record; thus, -1 is the last column of the record. A column range is specified as

two signed numbers separated by a semicolon or as a range. When a semicolon is used,

the first number specifies the beginning column and the second number specifies the

ending column. When the beginning and end of a field are relative to the opposite ends of

the record, the input field is treated as a null field if the ending column is left of the

beginning column.

A word range is specified by the keyword WORDS, which can be abbreviated down to W.

Words are separated by one or more blanks. The default blank character is X'40'.

Specify the keyword WORDSEPARATOR to specify a different word separator character.

WORDSEPARATOR can be abbreviated down to WORDSEP; WS is a synonym.

A field range is specified by the keyword FIELDS, which can be abbreviated down to F.

Fields are separated by tabulate characters. Two adjacent tabulate characters enclose a null

field. (Note the difference from words.) The default horizontal tab character is X'05'.

Specify the keyword FIELDSEPARATOR to specify a different field separator character.

FIELDSEPARATOR can be abbreviated down to FIELDSEP; FS is a synonym.

: The default separator characters are in effect at the beginning of a stage’s operands; once a

: separator character is changed, the change remains in effect for subsequent input ranges.

228 CMS Pipelines User’s Guide and Reference

 Syntax

: Members of Structures
: A structure contains data items or embedded structures, or both. In general, a member is

: designated by the keyword MEMBER followed by the fully qualified member name, for

: example:

: member s1.s2.s3.field

: Any of the qualifiers, except the top qualifier, must be specified with a subscript if the

: corresponding member is an array, for example:

: member s1.s2(4).s3.field

: You may specify a subscript for the final member name as well, if it is an array, for

: example:

: member s1.s2.s3.field(1)

: The entire array is selected if you omit the subscript for a member that is an array.

: The member name may be fully qualified, as shown above, or part of the structure qualifier

: may be specified by prefixing the MEMBER keyword with the keyword QUALIFY followed

: by the possibly qualified identifier for the structure, for example:

: qualify s1.s2 member s3.field

: QUALIFY and the qualifier may optionally be followed by a positive number, which

: specifies the column where the specified structure begins; the default being the beginning

: of the record.

: Once specified, the qualifier remains in effect until a new one is specified. Use a period or

: a hyphen instead of the qualifier name to disable the qualifier.

: You may specify two leading periods to indicate a fully qualified member name; any

: active qualifier is then ignored, for example:

: member ..s1.s2.s3.field

: You may specify a single leading period to indicate that a qualifier must be applied, for

: example:

: qualify s1.s2 member .s3.field

: In general, the qualifier applies to all input streams, though spec supports associating

: different qualifiers with each input or output stream.

: The highest level structure name is resolved first in the current pipeline set; then in the

: containing pipeline set, and so on. Finally thread scope structures are inspected.

: Contained structures are resolved by structure ADD when the containing structure is

: defined.

: Both QUALIFY and MEMBER can be abbreviated down to one character.

 Substrings
You can select a substring of a an input range; and you can do so iteratively.

 Chapter 20. Syntax Notation 229

 Syntax

 Syntax

inputRange:

├─ ──┬ ┬────────────────────────────── ─►
 │ │┌ ┐────────────────────────────
 └ ┘ ───6 ┴──┬ ┬─FIELDSEParator─ ─xorc─
 └ ┘─WORDSEParator──

 ┌ ┐──────────────────────────────────
►─ ───6 ┴┬ ┬────────────────────────────── ──┬ ┬─┤ rangePart ├─────── ─┤

: └ ┘: ─SUBSTRing──┤ rangePart ├──OF─ └ ┘─┤ memberReference ├─

rangePart:

├─ ──(1)──┬ ┬──────────── ──┬ ┬─range─────────── ─┤
├ ┤─┤ wrdSep ├─ ├ ┤─snumber─────────
└ ┘─┤ fldSep ├─ └ ┘──snumber;snumber

memberReference:

: ├─ ──┬ ┬───────────────────────────────────── ─Member──┤ idList ├──┤
: └ ┘: ─Qualify─ ──┬ ┬: ─┤ idList ├─ ──┬ ┬────────
: │ │└ ┘─number─
: ├ ┤─-──────────────────────
: └ ┘─.──────────────────────

idList:

: ┌ ┐─.─────────────────────────
: ├─ ──(2)───6 ┴─identifier─ ──┬ ┬─────────── ─┤
: └ ┘─subscript─

wrdSep:

├─ ──┬ ┬───────────────────── ─Words──┤
 └ ┘ ─WORDSEParator──xorc─

fldSep:

├─ ──┬ ┬────────────────────── ─Fields──┤
 └ ┘ ─FIELDSEParator──xorc─

Notes:
1 Blanks are optional after the keywords WORDS and FIELDS.

: 2 Blanks are not allowed in a qualified identifier or its subscript.

 Examples
1-*
word 5
1;-1
-18;28
field 4

: substr fs . f3 of word 7
: member struct.member
: member struct.member(8)
: qualify struct 5 member member

230 CMS Pipelines User’s Guide and Reference

 Syntax

CMS File Names

Figure 368. CMS File Names

Name Examples Description

fn +30
some

A file name. A word with up to eight characters. CMS accepts letters,

the national use characters '#@$', numbers, plus ('+'), hyphen ('-'),

colon (':'), and underscore ('_') in a file name. See “Mixed case File

Names”.

ft +30
some

A file type. A word with up to eight characters. CMS accepts letters,

the national use characters '#@$', numbers, plus ('+'), hyphen ('-'),

colon (':'), and underscore ('_') in a file type. See “Mixed case File

Names”.

fmode a
S2

The file mode letter followed by an optional digit. CMS accepts only

the 26 characters in the English alphabet (a through z) as file mode

letters. The file mode letter is translated to upper case.

fmode:

├──letter───(1) ──┬ ┬─────── ─┤
 └ ┘─digit─

Note:
1 There is no blank between the mode letter and the mode number.

fm *
Q6

An asterisk, a file mode letter, or a file mode letter followed by a digit.

fm:

├─ ──┬ ┬─*─────────────────── ─┤
└ ┘──letter──(1) ──┬ ┬───────

 └ ┘─digit─

Note:
1 There is no blank between the mode letter and the mode number.

dirid .
! piper.src

The directory path or a name definition for such a path. See “Shared

File System Considerations” on page 232.

Mixed case File Names
The file name and file type operands for >, >>, <, disk, diskslow, diskback, diskrandom,

members, pdsdirect, state, and statew are passed to the CMS FSSTATE macro without

inspection. Likewise, the file name and file type specified for xedit are passed to XEDIT

without inspection. The file mode is translated to upper case. The operands must desig-

nate a specific file; “wildcard” characters are not supported in the name and type except

for a single asterisk ('*') in the file name or file type (or both) of state, statew, and xedit.

The file name and file type are translated to upper case if a file does not exist with the

name as written in mixed case.

As an example, assume that these three files are stored on the minidisks or directories

shown:

MIXED CASES A
mIxEd cAsEs B
mixed cases C

 Chapter 20. Syntax Notation 231

 Syntax

Figure 369 on page 232 shows how the mode letter is resolved for particular operands.

Figure 369. Mode Letters Resolved

Mode Operands Specified

C mixed cases

A Mixed Cases

A mIxEd cAses

B mIxEd cAsEs

File Mode *
An asterisk file mode (specified or defaulted) exposes the FSSTATE search order. It

searches the table of open files before accessed minidisks and directories. This can cause

unexpected results as shown in Figure 370.

In this experiment, the file SYSTEM LANGUAGE is created on mode A by the first PIPE

command. As expected, state resolves this file in the second command; this is the first

line of output. The EXECIO command reads (and discards) one line from the file by the

same name on the system disk. The third PIPE command now resolves this open file rather

than the file on mode A.

Figure 370. File Search Order Exposed by TSTATE EXEC

/* Test State search order */
address command
'PIPE literal my own language | split | > system language a'
'PIPE state system language | console'
'EXECIO 1 DISKR SYSTEM LANGUAGE S (SKIP'
'PIPE state system language | console'
'ERASE SYSTEM LANGUAGE A'

 tstate
►SYSTEM LANGUAGE A1 V 8 3 1 4/13/91 17:25:40
►SYSTEM LANGUAGE S2 V 5 1 1 4/01/87 14:49:39
►Ready; T=0.01/0.01 17:25:40

Shared File System Considerations
On CMS Pipelines can read and write files directly in an SFS directory, which need not be

accessed as a mode. CMS Pipelines supports the specification of a dirid where a mode

! letter is supported. The directory ID is resolved by CMS, as described in the z/VM: CMS

! Commands and Utilities Reference.

In summary, you can specify:

¹ A name definition. A word that contains neither period nor colon is interpreted as a

name definition (see CREATE NAMEDEF). Note that a single letter or a single letter

followed by a number is interpreted by CMS Pipelines as a mode letter and an

optional number. Use name definitions that cannot be mistaken for a mode letter.

¹ An absolute directory path. In general, this consists of a file pool name followed by a

colon, a user name followed by a period, and an optional list of directories separated

by periods. You must specify the file pool if you have no default file pool established.

232 CMS Pipelines User’s Guide and Reference

 Syntax

¹ A directory path relative to an accessed mode. Specify a plus (+) followed by a mode

letter to start from the directory accessed as the specified mode. Specify a hyphen (-)

followed by a mode letter to start from the parent directory of the directory that is

accessed as the specified mode.

When the SFS interface is used, the SFS rules for sharing and updating files apply.

Though the device drivers are described as being SFS device drivers, a more correct nota-

tion would have been CSL drivers, because they use callable services, such as DMSVALDT,

DMSOPEN, and DMSOPDBK; all of which support a mode letter as well as a directory path.

This is not advertised (other than here) because there are subtle differences in the way CMS

treats files that are open through DMSOPEN and similar, and the way CMS treats files that

are accessed through the FSxxxx macro interface (which is used by the minidisk device

drivers).

When a directory is accessed as a mode, it makes no difference to the SFS device drivers

(for example, <sfs), whether you use the mode or the directory as the third word, but it

does make a difference to the router device driver (which would be <).

MVS File Names

TSO Pipelines reads and writes sequential files, and processes partitioned data sets (PDS).

A physical sequential data set is read by < and written by > or >>. A sequential data set

can be either

¹ a physical sequential data set or

¹ a member of a partitioned data set (cannot be appended with >>).

Partitioned data sets are supported by:

¹ readpds, which reads specified members from a partitioned data set.

¹ listpds, which reads the directory of a partitioned data set into the pipeline, one record

per member.

¹ listispf, which reads the directory of a partitioned data set into the pipeline, one record

per member. If user data in the ISPF format are present in the directory record, this

information is expanded to humanly readable form.

¹ writepds, which replaces members of a partitioned data set. Each member is prefixed

by a delimiter record in the input stream.

TSO Pipelines supports both generation data groups and member names in DSNAME

specifications. The generation is specified by a signed number in parentheses or by a zero

in parentheses. When both are specified, the generation is specified before a member

name:

gdg.po(+1)(member)

 Chapter 20. Syntax Notation 233

 Syntax

Figure 371 (Page 1 of 2). MVS File Names

Name Examples Description

ddname sysexec
systsprt

The data definition name (DDNAME) contains a letter optionally

followed by one to seven characters or digits. It identifies an allo-

cated data set.

dsname 'sys1.maclib'
names.text
'dpjohn.tso.load'

The data set name consists of an unqualified name, which can be

prefixed with qualifiers. The qualifiers are joined with a period.

The maximum length of a data set name is 44 characters. A data

set name is translated to upper case; TSO Pipelines does not support

mixed case data set names.

generation 0
+1
-4

The particular generation of a generation data group is a signed

number or zero.

member FPLIRUN
dump
M05@45

A member name contains one to eight characters. The member

name is translated to upper case. The name should not contain

eight bytes of X'FF', because this indicates the end of the direc-

tory. z/OS data management does not enforce other restrictions on

member names, but it is good practice to make the first character

alphabetic or national use (a through z and “#@$”) and use alpha-

numerics and nationals for the following characters.

234 CMS Pipelines User’s Guide and Reference

 Syntax

Figure 371 (Page 2 of 2). MVS File Names

Name Examples Description

psds names.text
gdg(-1)
pogdg(-1)(m2)
dd=rexx(sample)
'sys1.maclib(time)'
c admsymbl

A sequential data set is specified either as a physical sequential data

set (DSORG=PS) or as a member of a partitioned data set

(DSORG=PO). The data set can be specified by DSNAME or by

DDNAME. Prefix the keyword DDNAME= to indicate that the

DDNAME is specified.

When specifying a DSNAME, the prefix is applied (if set) unless the

operand is enclosed in single quotes. The trailing quote is optional.

A relative member of a generation data group is specified by paren-

theses containing a signed number or zero.

When the data set is partitioned, a member must be specified. This

can be done by appending parentheses containing the member name

to the data set name (after the parentheses that specify the relative

generation) or by specifying two words. When two words are

specified, the first word is the member name; the second word is

the DDNAME. The keyword DDNAME= is an optional prefix for the

second word. (This latter format is compatible with a view of the

CMS file name space where a member name corresponds to a file

name and a DDNAME corresponds to a file type.)

The data set specification is translated to upper case.

psds:

├─ ──┬ ┬──dsname ────────────────────── ─┤
├ ┤──dsname(generation) ──────────
├ ┤ ─ ─dsname(member) ──────────────
├ ┤──dsname(generation)(member) ──
├ ┤──'dsname' ────────────────────
├ ┤──'dsname(generation)' ────────
├ ┤──'dsname(member)' ────────────
├ ┤──'dsname(generation)(member)'
├ ┤──DDname=ddname ───────────────
├ ┤──DDname=ddname(member) ───────

 └ ┘─member──ddname───────────────

pods dd=rexx
'sys1.maclib'
tso.load

A partitioned data set as a whole can be specified by DSNAME or by

DDNAME. Prefix the keyword DDNAME= to indicate that the

DDNAME is specified.

When specifying a DSNAME, the prefix is applied (if set) unless the

DSNAME is enclosed in single quotes. The trailing quote is optional.

A relative member of a generation data group is specified by paren-

theses containing a signed number or zero.

The data set specification is translated to upper case.

pods:

├─ ──┬ ┬──dsname ────────────── ─┤
├ ┤──dsname(generation) ──
├ ┤──'dsname' ────────────
├ ┤──'dsname(generation)'
└ ┘──DDname=word ─────────

 Chapter 20. Syntax Notation 235

 Syntax

OpenExtensions File Names

The OpenExtensions file system starts at the root directory, which is identified by a single

forward slash (/). File names can contain any character except for X'00' and the forward

slash. In particular, they can contain blanks and quotes.

Enclose a path that contains a blank in quotes. If the path also contains one of the quotes

in which you are enclosing the path, the inner quotes must be doubled. This example

shows two ways to read a particular file on CMS:

pipe < "/the green man's directory/file one" | ...
pipe < '/the green man''s directory/file one' | ...

On z/OS, the use of single quotes in the second line means that the operand is to be inter-

preted as a reference to a fully qualified data set name; albeit not to a valid one.

236 CMS Pipelines User’s Guide and Reference

 Pipeline Specification

Chapter 21. Syntax of a Pipeline Specification Used with PIPE,
runpipe, ADDPIPE, and CALLPIPE

A pipeline specification is the argument string to the PIPE command and the format of the

input records read by the runpipe built-in program. The pipeline commands ADDPIPE and

CALLPIPE are issued from programs in a pipeline; they require a pipeline specification as

the argument string.

►►─ ──┬ ┬─PIPE───── ─┤ pipeSpec ├──►◄
 ├ ┤─ADDPIPE──
 └ ┘─CALLPIPE─

The pipeline specification is one pipeline unless an end character is declared and used to

separate pipelines. You may declare an end character without using it.

pipeSpec:

 ┌ ┐─endChar──────
├─ ──┬ ┬─────────────────── ──┬ ┬────────── ───6 ┴─┤ pipeline ├─ ─┤

└ ┘─┤ globalOptions ├─ ├ ┤─stageSep─
 └ ┘─endChar──

In its simplest form, a pipeline specification has stages (invocations of programs) separated

by stage separator characters (solid vertical bars).

 Options

globalOptions:

 ┌ ┐─────────────────────────────
├──(─ ───6 ┴┬ ┬─LISTCMD───────────────── ─)──┤
 ├ ┤─LISTERR─────────────────
 ├ ┤─LISTRC──────────────────
 ├ ┤─MSGlevel──snumber───────
 ├ ┤─STOP────────────────────

. ├ ┤─STOPERROr───────────────
 ├ ┤─TRACE───────────────────
 ├ ┤ ─NO───(1) ─MSGlevel──snumber─
 ├ ┤─NAME──word──────────────
 ├ ┤─SEParator──xorc─────────
 ├ ┤─ENDchar──xorc───────────
 ├ ┤─ESCape──xorc────────────

. ├ ┤─PROPAGATeeof────────────
: └ ┘: ─QUALIFY──qualifier──────

Note:
1 Blanks are optional between NO and MSGLEVEL.

Pipeline options that apply to the complete pipeline specification are often referred to as

global options in contrast to local options, which apply to a single stage. Pipeline options

that are specified at the beginning of a pipeline specification modify the way the pipeline

specification is parsed; they specify options that apply to all stages of the pipeline

specification. Write global options in parentheses immediately after the command verb.

 Copyright IBM Corp. 1986, 2020 237

 Pipeline Specification

. The following options are valid only as global options. They may be specified with all

. three command verbs.

NAME word The word is stored as a name to be used in messages. Names need

not be unique. The file name of the EXEC or REXX program is recom-

mended so that you can see the name of the program with a broken

pipe when CMS Pipelines issues error messages.

SEPARATOR

xorc
The character or hex value is the stage separator character for the

pipeline specification. The default stage separator is the solid vertical

bar. STAGESEP is a synonym for SEPARATOR.

ENDCHAR xorc The character or hex value is the end character for the pipeline

specification. There is no default end character.

ESCAPE xorc The character or hex value is the escape character for the pipeline

specification. There is no default escape character. The escape char-

acter takes effect after the parenthesis closing the global options.

Local options are processed without processing for the escape char-

acter. When an escape character is used in a pipeline specification, it

is deleted; the following character is not inspected for any special

meaning to the scanner.

. The following global option is valid with CALLPIPE only.

. PROPAGATE. End-of-file propagates out through connectors, as they do for ADDPIPE.

. The streams are not restored after the subroutine ends; thus the

. subroutine should process the entire file.

When specified as global options, the following keywords apply to all stages of the pipe-

line specification. Once enabled with a global option, a keyword is disabled at a particular

stage with the NO prefix.

LISTCMD Trace pipeline commands except BEGOUTPUT, ISSUEMSG, NOCOMMIT,

OUTPUT, PEEKTO, READTO, and REXX.

LISTERR Trace when a stage returns with a nonzero return code.

LISTRC Trace when a stage begins and ends.

MSGLEVEL

snumber
Specify additional bits for the message level. Bits are removed from

the message level when NO is prefixed to the keyword. The message

level is a fullword of switches for the pipeline dispatcher to enable

checks and determine if additional messages should be issued. When

specified as a global option, the new message level takes effect after

the right parenthesis is scanned to close the list of global options;

errors in the global options are reported as determined by the message

level in effect when the command is issued.

: QUALIFY

: qualifier
: Specify the default qualifier for the pipeline specification. The default

: qualifier is inherited by encoded pipeline specifications for CALLPIPE,

: but not by pipeline specifications issued by other means, such as the

: pipeline command CALLPIPE.

STOP Trace when a stage is started. On CMS, the virtual machine is put in

CP console function mode when the pipeline dispatcher calls the

syntax exit and when it calls the main entry point. Be sure to have

RUN OFF.

238 CMS Pipelines User’s Guide and Reference

 Pipeline Specification

. STOPERROR. Terminate the pipeline specification when any stage for which the

. option applies returns with a nonzero return code. When a stage with

. STOPERROR on terminates with a nonzero return code, all running

. stages in the pipeline specification receive return code -4094.

. You can specify NOSTOPERROR for those stages you expect to termi-

. nate with a nonzero return code, such as aggrc. You can also specify

. STOPERROR on selected stages and not use the global option (which

. just sets the default for all stages in the pipeline specification).

. Note that the STOPERROR option specifies which stages cause the pipe-

. line specification to be terminated, not which stages are terminated as

. a result.

TRACE Trace calls to the pipeline dispatcher and trace how control passes

between stages. Because this option is likely to generate large

amounts of data, it is recommended that a pipeline being traced be

issued with the runpipe built-in program.

Some Bits in the Message Level
Though you can specify any number, bits other than X'000017FF' are masked off when

the message level is specified as an option. The default message level is 15, corresponding

to the rightmost four bits. You are likely to use only these bits:

See “The Message Level” on page 864 for a complete description of the bits that make up

the message level.

4 Issue message 3 or 4 in conjunction with other messages.

2 Issue message 2 in conjunction with other messages from pipeline

commands.

1 Issue message 1 in conjunction with other messages.

 Pipeline

pipeline:

 ┌ ┐─stageSep────
├─ ──┬ ┬───────────────────────── ───6 ┴┬ ┬─┤ stage ├─ ─►

 └ ┘─┤ connector ├──stageSep─ └ ┘─┤ label ├─

►─ ──┬ ┬───────────────────────── ─┤
 └ ┘─stageSep──┤ connector ├─

shortThrough:

├──┤ connector ├──stageSep──┤ connector ├──┤

A pipeline contains stages and label references separated by stage separator characters.

Connectors are optional at one or both sides of a pipeline issued with ADDPIPE or

CALLPIPE. Connectors are delimited with stage separators.

A short-through connection is a pipeline with two connectors and no stages. Other pipe-

line configurations must have at least one stage or a label reference.

 Chapter 21. Syntax of a Pipeline Specification Used with PIPE, runpipe, ADDPIPE, and CALLPIPE 239

 Pipeline Specification

A pipeline is scanned for stage separator characters. There are several interpretations for

the string between stage separators (and from the beginning or end to the nearest stage

separator):

¹ It is a connector if it is first or last in the pipeline, begins with an asterisk, and ends

with a colon.

¹ It is a label reference if it is one word that ends with a colon and does not start with

an asterisk.

¹ It is the specification of a stage when it is not one of the two above.

 Stage

stage:

├─ ──┬ ┬─────────── ──┬ ┬────────────────── ─word─ ──┬ ┬──────── ─┤
└ ┘─┤ label ├─ └ ┘─┤ localOptions ├─ └ ┘─string─

localOptions:

 ┌ ┐─────────────────────────────────────
: ├──(─ ───6 ┴┬ ┬: ─QUALIFY──qualifier────────────── ─)──┤
: ├ ┤──NOQUALIFY──(1) ────────────────────

 └ ┘ ──┬ ┬────── ──┬ ┬─LISTCMD───────────
 └ ┘─NO───(1) ├ ┤─LISTERR───────────
 ├ ┤─LISTRC────────────
 ├ ┤ ─MSGlevel──snumber─
 ├ ┤─STOP──────────────

. ├ ┤─STOPERROr─────────
 └ ┘─TRACE─────────────

Note:
1 Blanks are optional after NO.

A label is declared for a stage when the first word has a colon before the first blank or

parenthesis. A label declaration beginning with a period defines the stream identifier for

the primary streams; you cannot use a label reference to refer to such a label placeholder

later in the pipeline. You can request a program that has a colon in its name in two ways.

Define an escape character with the option ESCAPE and use this character in front of the

colon, or write a dummy label, for instance, |.:am:pm|. The first colon marks the end of

the label placeholder; the period separates a null word from a null stream identifier.

Write local options in parentheses after the label, if one is present. Refer to “Options” on

: page 237 for a description of the keywords you can specify that are also global options.

: In addition, option NOQUALIFY may be specified to disable the default qualifier for the

: stage. The options apply to the stage being defined.

The first word (after the label and local options, if any are present) is the name of the

program to call. The string beginning one blank after the program name is passed to the

program as the argument string. An argument string is optional; it extends to the next

stage separator; it can have leading or trailing blanks, or both.

To find the entry point for the program to run, the scanner searches several entry point

! tables (see Appendix E, “Generating and Using Filter Packages with CMS Pipelines” on

! page 924):

¹ The entry point table in the PIPPTFF filter package, if it is available (that is, the filter

package has been attached to the pipeline module).

¹ The entry point table in the main pipeline module.

240 CMS Pipelines User’s Guide and Reference

 Pipeline Specification

¹ Entry point tables in filter packages that have attached their entry point tables.

¹ The entry point table for programs that your installation has added to the main pipe-

line module.

The scanner looks for a REXX program with the file name specified if the program is not

! resolved from any of the entry point tables. On CMS, it looks for the file type REXX or a

! program loaded with EXECLOAD and assigned type REXX; the rexx program is called to run

the program if one exists. On z/OS, it searches the partitioned data set allocated to the

DDNAME FPLREXX, if any.

 Connectors

connector:

├─ ──* ──┬ ┬────────────────────────────────── :──(1) ─┤
 └ ┘──. ──┬ ┬──────── ──┬ ┬───────────────
 ├ ┤─INput── └ ┘──. ──┬ ┬────────
 └ ┘─OUTput─ ├ ┤─*──────
 └ ┘─stream─

Note:
1 There are no blanks in connectors.

You can put connectors at the beginning or the end of a pipeline (or both) when the

command is issued with ADDPIPE or CALLPIPE. Connectors refer to streams in the stage

that issues the pipeline command; they specify where the streams of the stage are

connected to stages in the new pipeline specification. PIPE and runpipe do not accept

connectors because they start a new set of pipelines; there is nothing to connect to.

Syntactically, the connector is a word that begins with an asterisk ('*') and ends with a

colon (':'). Two components with a leading period ('.') are optional to define the type of

connector. The first component is a keyword (INPUT or OUTPUT) to specify the side of the

stage; the default is INPUT at the beginning of a pipeline and OUTPUT at the end. The

second component specifies the stream. It can be a number, a stream identifier, or an

asterisk. An asterisk means the currently selected stream. The default is the stream

currently selected.

There must be a stage separator character between the connector and the rest of the pipe-

line.

There are two types of connectors, redefine and prefix. They can be applied to the input

and output side of a pipeline, giving four combinations.

The second component of the connector names the side it is on in a redefine connector.

Though valid in a ADDPIPE pipeline command, a redefine connector is usually used in

CALLPIPE pipeline commands.

*.input: or *: at the beginning of a pipeline specifies that the currently selected input

stream is to be connected to the stage at the right of the stage separator ending the

connector. Likewise, *.output: or *: at the end of a pipeline specifies that the currently

selected output stream is to be connected to the stage at the left of the stage separator

before the connector.

The new pipeline is connected to the stage issuing the ADDPIPE pipeline command in a

prefix connector. The current connection is saved on a stack from where it is restored with

 Chapter 21. Syntax of a Pipeline Specification Used with PIPE, runpipe, ADDPIPE, and CALLPIPE 241

 Pipeline Specification

the SEVER pipeline command. *.input: at the end of a pipeline specifies that the output

from the new pipeline is to be connected to the currently selected input stream. Likewise,

*.output: at the beginning of a pipeline specifies that the currently selected output stream

is to be connected to the new pipeline.

A short-through connection has no stages between the connectors. The first one must refer

to the input side; the second one must refer to the output side.

A pipeline is inserted in front of (or after) the currently selected input (output) stream

when it has input (output) connectors at both ends.

 Labels

label:

├─ ──┬ ┬──word: ───────── ─┤
├ ┤──word.: ────────
└ ┘──word.streamID:

label place-holder:

├─ ──┬ ┬──.streamID: ─┤
└ ┘──.: ────────

A label is a character string, at the beginning of a stage. Case is respected in a label. It

ends with a colon (':'). A label is declared the first time a particular label is used in a

pipeline specification. The scope of a label is the pipeline specification being scanned.

Write local options followed by the name of a program to run and its argument string after

the label where it is declared. This defines the primary streams for the stage. The

secondary and subsequent streams for a stage with a label are defined when you reference

the label later in the pipeline specification. In a label reference, write the label without

options, program name, or arguments; they have already been specified.

A label declaration or reference may specify a stream identifier. Write a period followed

by up to four characters between the label name and the ending colon. Case is respected

in stream identifiers. The scope of a stream identifier is the particular stage that the label

refers to. The period ending the label is optional when the stream identifier is not

specified.

 Example

242 CMS Pipelines User’s Guide and Reference

 Pipeline Specification

Figure 372 shows a pipeline specification with three pipelines. It has two stages with

labels, search and join. The primary output stream of drop is connected to the primary

input stream of lookup. The primary output stream of lookup is connected to the primary

input stream of faninany.

disk starts a new pipeline because it has an end character in front of it. Its primary output

stream is connected to the secondary input stream of lookup. The secondary output stream

of lookup goes through the primary stream of the second > into the secondary input stream

of faninany. The tertiary output stream from lookup goes to the primary input stream of

the third > stage. lookup has a tertiary input stream that is not connected.

Figure 372. Using Labels

Pipeline Specification Pipeline Topology

/* Sample multistream */
'PIPE (end ? name PIPPSPEC)',

'|cp query rdr * all',
 '|drop 1',

'|search:lookup 10.4 master',
 '|join:faninany',

'|> rdr cache a',
'?disk rdr cache a',

 '|search:',
/* Process new files */,

'|> add cache a',
 '|join:',
 '?search:',

'|> del cache a'

┌──┐ ┌────┐ ┌──────┐ ┌────────┐ ┌─┐
│cp├─┤drop├─┤lookup├─────┤faninany├─┤>│
└──┘ └────┘ │ │ │ │ └─┘
 │ │ │ │
┌────┐ │ │ ┌─┐ │ │
│disk├──────┤ ├─┤>├─┤ │
└────┘ │ │ └─┘ └────────┘
 │ │
 │ │ ┌─┐
 │ ├─┤>│
 └──────┘ └─┘

Considerations when Issuing the PIPE Command

REXX Limit of 500 Characters in Clause
The REXX/MVS interpreter in TSO/E supports no more than 500 characters in a clause. This

does not limit a pipeline specification to 500 characters; only virtual storage limits the

complexity of a pipeline specification.

To circumvent the REXX limitation, assign parts of the pipeline to variables when a pipe-

line specification is longer than 500 characters. Issue the PIPE command in an expression

that references these variables:

 Chapter 21. Syntax of a Pipeline Specification Used with PIPE, runpipe, ADDPIPE, and CALLPIPE 243

 Pipeline Specification

Figure 373. Breaking a large Pipeline Specification into smaller Pieces

/* Huge pipeline (mostly not shown) */
part1=,

'< input file',
 '|xlate upper'
part2=,
 '|find ABC',

'|> output file a'

'PIPE' part1 part2
exit RC

Pipelines in XEDIT Macros
Always issue the PIPE by Address Command in XEDIT macros. Doing so avoids these

potential pitfalls:

¹ XEDIT truncates commands in macros after 255 characters without diagnostic or other

indication that an error has occurred. This is likely to lead to strange diagnostics

when the pipeline specification is truncated.

¹ When PIPE is issued to XEDIT, XEDIT will look for the file PIPE XEDIT; if the file exists,

it will be invoked as an XEDIT macro.

Figure 374. Issuing a PIPE Command from an XEDIT Macro

/* A macro */
'extract /line'
'top'
Address COMMAND 'PIPE (name PIPPSPEC)',

'|Xedit', /* Read current file */
'|split', /* Split into words */
'|sort unique', /* Find unique "words" */

 '|count lines', /* Count'm */
'|spec 1-* 1 /unique words./ nw', /* Message */
'|xmsg' /* Issue it */

':'line.1

244 CMS Pipelines User’s Guide and Reference

 Scanner

Chapter 22. Scanning a Pipeline Specification and Running Pipeline
Programs

A pipeline is performed in two phases:

1. The pipeline specification parser, which is informally called the scanner, processes the

argument string to build a control block structure describing the programs to run and

their connections.

2. The pipeline dispatcher transfers control between programs to make data flow through

the pipelines. The dispatcher runs only programs that are ready to run at the current

commit level.

 Pipeline Scanner
The pipeline specification parser first scans global options, if any are present. It stops as

soon as it finds an error in the global options; the rest of the pipeline specification is not

processed. When the global options have been scanned without error, the scanner

performs three passes over the rest of the pipeline specification. It performs each pass to

the end, reporting all errors it finds. The scanner terminates at the end of a pass if it finds

errors.

1. Determine the overall structure of the pipeline specification. The scanner counts

connectors, stages, and pipelines. Errors detected include null stages and null pipe-

lines. If no errors were found on the first pass, the scanner then allocates storage for a

control block to represent the pipeline specification and all its stages, streams, and

connectors.

2. Resolve labels and entry points. At this pass, the control blocks are filled with infor-

mation from the argument string. Errors detected include unresolved entry points,

undefined labels, and labels that are defined more than once.

3. Check the placement and argument syntax for entry points that are resolved to a

! program descriptor (the expansion of the PIPDESC macro). This applies to all built-in

programs. If it is requested in the program descriptor, the scanner calls the stage’s

syntax exit to process the argument string. The entire pipeline specification is

suppressed if the scanner detects an error in the syntax of any one stage or if any

syntax exit returns a return code that is not zero.

When the scanner has completed the third pass without finding errors, it hands the pipeline

specification over to the pipeline dispatcher to perform the work to be done.

 Pipeline Dispatcher
The main function of the dispatcher is to run a stage and regain control when the stage

requests a pipeline service or terminates.

Each stage runs independently of other stages, because a stage calls the dispatcher to read

or write, rather than calling the neighbour stages to obtain or deliver records. This divi-

sion of labour has many advantages, the most obvious one being that all stages use a

standard interface to the dispatcher. A more subtle advantage is that each stage’s call

stack is usually quite shallow: the stage often calls a few internal subroutines and the

dispatcher, but it is not entered recursively.

 Copyright IBM Corp. 1986, 2020 245

 States

States of a Stage
A stage goes through these states during its lifetime (see Figure 375 on page 247 for a

diagram):

1. Committed to start. When the scanner hands the pipeline specification over to the

dispatcher, all stages are waiting to start. The dispatcher commits to the lowest level

where a stage is committed to start and makes the stages on this commit level ready to

run. (See “Commit Level” on page 247.)

2. Ready, not started. The first time the stage is run, it is started. The stage’s environ-

ment is set up and the main entry point is called.

3. Running. One stage is running at a time. Once the stage is given control, it runs until

it gives up control voluntarily. It can give up control in one of the following ways: It

can issue a service request to the dispatcher to transport data, change the pipeline

topology, or wait for an external event. If the stage cannot continue immediately (or

the dispatcher decides that it should not), the stage is made not dispatchable until the

condition that blocks its progress has been cleared.

4. Waiting for pipeline I/O. A stage waits for I/O, for example, when it performs a read

operation and there is no data available to read on the currently selected input stream.

5. Waiting for a subroutine pipeline to complete. A stage that has issued a CALLPIPE

pipeline command waits until all stages in the subroutine pipeline have ended and all

connections are restored.

6. Waiting to commit. A stage that issues the COMMIT pipeline command to commit to a

level that is higher than the current commit level must wait. The stage is made

dispatchable when the pipeline specification has committed to this level.

7. Waiting for an external event. The stage issues the PIPWECB macro. For example,

delay waits for a timer interrupt. This interface is not available to REXX filters; no

pipeline command can cause a stage to wait for an external event.

8. Ready. The stage can run, but it is not currently running. A ready stage is said to be

on the run list.

9. Terminated. That is, the stage has returned on the original call from the dispatcher.

This means that the stage has completed the task it was set to perform, that the stage

has determined that it can perform no more useful work, or that the stage has failed.

In the latter case, the stage sets a nonzero return code.

The dispatcher will at some future time resume a stage that is waiting (a stage that is in

one of the states 4 through 7). That is, the dispatcher will return to the stage to the next

instruction after the call to the dispatcher service. The stage sees a dispatcher service as

synchronous; no activity takes place in the stage during the call to the dispatcher service.

246 CMS Pipelines User’s Guide and Reference

 Commit Level

Figure 375. Pipeline Dispatcher State Transitions

 ┌─────┬─────┬─────┬───────┐
6 6 6 6 │

┌─┐ ┌─┐ ┌─┐ ┌─┐ ┌─┐ │
│1│ │4│ │5│ │6│ │7│ │
└┬┘ └┬┘ └┬┘ └┬┘ └┬┘ │
│ │ │ │ │ │
│ 6 6 6 6 │
 │ ─────────┬───────── │
 6 6 │
┌─┐ ┌─┐ │
│2│ │8│ │
└┬┘ └┬┘ │
 │ │ │
 │◄──────────────┘ │
 6 │
┌─┐ │
│3│ │
└┬┘ │
 ├────────────────────────────────┘
 6
┌─┐
│9│
└─┘

 Commit Level
The commit level provides a general mechanism to allow unrelated programs to coordinate

their progress. One use of the commit level mechanism is to allow all stages to validate

their argument strings before any stage takes an action that might potentially destroy data,

such as erasing a file or writing on a tape. Thus, the pipeline is abandoned if a built-in

program detects an error in its arguments or if a REXX program returns with a nonzero

return code before reading or writing.

The commit level is a number between -2147483647 and +2147483647 inclusive. Each

stage is at a particular commit level at any time. It increases its commit level with the

pipeline command COMMIT. It cannot decrease its commit level. The pipeline

specification parser performs an implicit commit when a stage is defined. The program

descriptor for a built-in program includes the commit level at which the program begins;

selection stages begin at commit level -2; REXX stages begin at commit level -1; by

default, other stages begin at commit level 0.

The pipeline dispatcher initiates the stage with the lowest commit level first. When more

than one stage begins at a particular commit level, it is unspecified which one runs first.

The stages at the lowest commit level run until they complete (exit or return) or issue a

COMMIT pipeline command.

An aggregate return code is associated with a pipeline specification. Initially, the aggre-

gate return code is zero. The aggregate return code for the pipeline specification is

updated with the return code as each stage returns. If either number is negative, the aggre-

gate return code is the minimum of the two numbers; otherwise, it is the maximum.

When all stages at the lowest commit level have ended or committed to a higher level, the

stages at the next commit level are examined. Stages that would begin at the new commit

level are abandoned if the aggregate return code is not zero. For stages that are waiting to

commit to the new commit level, the return code for the COMMIT pipeline command is set

to the aggregate return code; those stages are then made ready to run. The aggregate

 Chapter 22. Scanning a Pipeline Specification and Running Pipeline Programs 247

 Commit Level

return code is sampled at the time the pipeline specification is raised to the new commit

level. All stages committing to a particular level see the same return code, even if one of

them subsequently returns with a nonzero return code before another stage has begun to

run at the new level. A stage can inspect the COMMIT return code and perform whatever

action is required; built-in programs deallocate resources they have allocated and return

with return code zero when the COMMIT return code is not zero, thus quitting when they

determine that another stage has failed.

By convention, all built-in programs process data on commit level 0. Stages must be at

the same commit level for data to pass between them, except when data flow on a

connection that has been set up with ADDPIPE. The pipeline stalls if a stage at one commit

level reads or writes a record after the stage at the other side of the connection has issued

a COMMIT pipeline command to commit to a higher level.

The scope of the commit level is a pipeline specification. Pipelines added with ADDPIPE

commit without coordinating their commit level with the pipeline that added them. Pipe-

line specifications that are issued with CALLPIPE and contain no connectors (an uncon-

nected pipeline specification) also commit without coordination with the caller.

When a pipeline specification that is issued with CALLPIPE (and is connected to its caller)

increases its commit level, the pipeline dispatcher checks that the commit level for the

stage that issued the CALLPIPE is at or above the new level requested. When the subroutine

would go to a commit level that is higher than the caller’s current commit level, the pipe-

line dispatcher performs an implicit commit for the stage that issued the CALLPIPE. The

subroutine pipeline proceeds only after the caller’s commit has completed (that is, only

after the commit level of the calling pipeline has been raised to the new level). If the

caller is itself in a subroutine pipeline, the new commit level propagates upwards.

A REXX pipeline stage begins at commit level -1. The commit level for a REXX stage is

automatically raised to level 0 when it first issues an OUTPUT, PEEKTO, READTO, or SELECT

ANYINPUT pipeline command. Because the pipeline dispatcher raises the commit level

automatically, most REXX programs need not be concerned with commit levels. In the

usual case, a REXX program validates its arguments before it begins reading and writing

data. If it finds an error in its arguments and exits with an error return code before it has

used any of the four commands that cause an automatic commit, the pipeline specification

will in effect terminate at commit level -1, before data have begun flowing and before

other stages have taken any irreversible actions (assuming they adhere to the convention of

doing such on commit level 0). On the other hand, if a REXX program finds no error in its

arguments and begins to process data by using one of these four commands, the automatic

commit is done, suspending that stage until all other stages are ready for data to flow.

In some cases the automatic setting of the commit level for REXX programs may not be

suitable. If your REXX program erases files or performs some other irreversible function

before it reads or writes, it should first use the COMMIT pipeline command to do an explicit

commit to level 0 to wait until all other stages have validated their arguments. If the

return code on COMMIT is not zero, the program should undo any changes it may have

made and exit with return code 0.

If your REXX program needs to use any of the commands that cause an automatic commit

before it is ready to commit to level 0, it must issue the NOCOMMIT pipeline command to

disable the automatic commit and then later issue an explicit COMMIT. To perform read or

write operations on commit level -1 (to read a parameter file, for example), use ADDPIPE to

connect the input or output stream (or both) to your REXX stage. (You cannot use

CALLPIPE for this, because it would force a commit to level 0 before data could flow.)

248 CMS Pipelines User’s Guide and Reference

 Moving Data

Having defined the new streams with ADDPIPE, use READTO and OUTPUT to read and write.

When you are finished, issue SEVER to restore the original connection. Then issue COMMIT

to perform an explicit commit. Check the return code on the COMMIT before reading or

writing the original stream.

The pipeline dispatcher runs stages if all syntax checks complete without reporting any

errors. The order of dispatching at any commit level is unspecified. The pipeline

dispatcher does not preempt stages; once a stage is running, the pipeline dispatcher regains

control in one of two ways:

¹ The program calls a pipeline dispatcher entry point, for instance to read a record.

¹ The program completes and returns from the initial call.

 Reading, Writing
CMS Pipelines transports records without buffering from an output stream of one stage to

an input stream of another stage.

To write a record, a program (the producer stage) calls the pipeline dispatcher with the

address and length of a buffer that contains the record to be written; the equivalent pipe-

line command is OUTPUT. The stage is then blocked (cannot run) until the neighbour to

the right (the consumer stage) performs an action that releases the producer:

¹ It reads (consumes) the record by calling the pipeline dispatcher. This sets return code

0 on the producer’s write and makes the producer able to run.

¹ It severs the input stream that is connected to the producer’s output stream. The

dispatcher, in turn, sets return code 12 on the producer’s write to indicate end-of-file

and makes the producer able to run.

¹ It returns on the initial invocation from the dispatcher, because processing is complete

or abandoned. The dispatcher then severs all the terminating stage’s streams and sets

end-of-file on all reads and writes that are waiting for the terminating stage to produce

or consume a record.

A stage waits for a record to become available if there is none at the time it reads. There

are two ways to read records. The simplest is to call the pipeline dispatcher, passing the

address and length of a buffer where the next record is placed; this is done by READTO in a

REXX filter. If the neighbour on the left is blocked waiting for a record to be read, the

record is copied and both stages are made ready to run. This type of read is called a

consuming read, because the read has consumed the record. It is also called a move mode

read, because the record is moved into the reading stage’s buffer.

Move mode reads are not well suited to programs that must process records of any size.

: Instead, such a stage first performs a locate mode read to determine the length of the

: record; the address and length of the producer’s buffer are returned: the producer remains

blocked waiting for the record to be consumed. (Move mode and locate mode are terms

from OS data management).

: The pipeline command PEEKTO in a REXX filter performs a locate mode read. The program

: then issues the pipeline command READTO when it has processed the record; this releases

: the neighbour on the left. READTO is normally issued without specifying a variable name,

: which corresponds to a move mode read with buffer length zero. Unlike OS data manage-

ment, the same record is returned on multiple locate mode read calls with no intervening

consuming read to release the record.

 Chapter 22. Scanning a Pipeline Specification and Running Pipeline Programs 249

 Record Delay

By using a locate mode read, a stage can peek at the first record of a file and choose a

suitable subroutine pipeline to process the file, for example, to unpack the file if it is

packed. The subroutine pipeline also sees the record that determined the strategy, because

the first record is not consumed by the peeking stage and is thus available to the subrou-

tine.

Delaying the Record
When you are writing an application that uses multistream pipelines, it is often important

that you be able to reason about the way records move through the pipeline network rela-

tive to each other. You may wish to:

¹ Be sure that a record taking one path through the network cannot be overtaken by a

record that takes some other path. (Otherwise the output file might be out of

sequence.)

¹ Be sure that all records at the input streams of specs are available concurrently.

(Otherwise the pipeline network might stall.)

This section introduces the concept of record delay, which is not a temporal delay; it

explains how you can reason about record delays in cascades of stages and in other

topologies.

As you have seen several times, the order of dispatching (the sequence in which the

dispatcher runs stages) is unspecified. To make the order predictable, you must ensure that

the dispatcher has no choice: if it has only one stage it can run, the dispatcher must run

this stage however unpredictable it tries to be.

The term record delay specifies the degree of control that a program can exert over the

pipeline dispatcher.

A program that does not delay the record processes the file in this way:

1. It obtains an input record with a locate mode read. The PEEKTO pipeline command is

used in a REXX program for this purpose. This blocks the stage that produced the

record.

2. It processes the record. For example, a device driver copies the record to the host

interface or into a buffer; a filter, perhaps, selects a substring of the record or it copies

the record into a buffer to be modified; and a selection stage determines which output

stream to use.

3. It writes one output record. The record can be in a buffer that the stage has obtained,

or it can be in the buffer provided by the producer stage (if the contents of the record

have not been modified).

4. It consumes the input record. The READTO pipeline command is used in a REXX

program for this purpose. The producer stage can resume and run in parallel with the

consuming stage, but not for long; as soon as the consuming stage performs a locate

mode read, it will be blocked until the producer writes the next record.

Because the producer stage is blocked while the record is written in step 3, a program that

processes a record in this way does not allow the producer to produce one more record

until the consumer’s output record has been consumed. You can prove by induction that a

cascade of stages that do not delay the record behaves in the same way as a single stage

that does not delay the record. You can also prove that, for each input record, a decoding

network (see “Decoding Trees” on page 82) composed entirely of stages that do not delay

250 CMS Pipelines User’s Guide and Reference

 Waiting

the record produces a record on one stream, and on one stream only, when the secondary

output streams are connected in all selection stages.

When records take different paths from a common stage (for example fanout or a selection

stage) through a multistream network consisting entirely of stages that do not delay the

record, the records will arrive at the end of this network in the same order as they entered.

This is clearly a desirable property.

A program that consumes the input record before producing the output record (steps 3 on

page 250 and 4 on page 250 are performed in reverse order) has the potential to delay a

record, because it allows the dispatcher to resume the producer stage. Whether the record

is, in fact, delayed will depend on the dispatching strategy, which is unspecified. When a

producer stage produces records on several streams that eventually are connected to the

inputs of a stage that synchronises its input streams (that is, the program performs a locate

mode read on all its input streams before processing the records), a record delay is

required on all but the highest-numbered stream to avoid a stall. The dispatcher will even-

tually run the producer stage to produce one more record before the consumer’s record is

consumed (by its consumer, in turn).

A program that reads a record into a buffer, consumes it, and then performs a locate mode

read before it produces an output record unconditionally delays one record. But when such

a program is used on a subset of a file (because other records take a different path that

shunts the delaying stage), a delay of one record in the program will, in general, lead to an

indeterminable delay in the file as a whole.

The strict definition above of a stage that does not delay the record stipulates that a

program must produce exactly one output record for each input record.

Though the strict definition is required when one reasons about multistream networks

where the contents of a record are written to more than one output stream (chop or fanout)

and gathered with a program that synchronises its input streams, a slightly relaxed

behaviour may be sufficient to reason about topologies where records are gathered with

faninany. In step 3 on page 250, it may be acceptable that no record is produced (thus,

the stage will delete or discard an input record); or it may be acceptable that several output

records are produced as long as these records are produced before the corresponding input

record is consumed.

It is noted in the descriptions of the built-in programs which ones strictly do not delay the

record and which programs produce all output derived from an input record before the

record is consumed.

The description of a built-in program can also specify that the program has the potential to

delay one record.

Device Drivers that Wait for External Events
Most device drivers use synchronous CMS interfaces to read and write host interfaces.

When using such interfaces, all pipeline stages are suspended while CMS accesses the host

interface.

A few stages, however, wait for external events; CMS Pipelines is able to run other stages

while these programs wait for external events: console ASYNCHRONOUSLY (but not the

other two ways to read from the console), delay, fullscr (on CMS and under certain condi-

tions), immcmd, starmsg, tcpclient, tcpdata, tcplisten, and udp.

 Chapter 22. Scanning a Pipeline Specification and Running Pipeline Programs 251

 Return Codes

 Return Codes
When one or more error messages are issued by the pipeline specification parser, the return

code from PIPE is the “worst” of the ones found. If any return code is negative, the worst

return code is the most negative return code received; otherwise the return code is the

maximum of the return codes received.

When a stage terminates because of an error in arguments or data, the return code is, in

general, equal to the number of the error message issued.

Return code -7 from the environment processing a pipeline command means that the argu-

ment is not recognised as a pipeline command. Refer to “Return Codes -3 and -7” on

page 116.

Return code -9 on the PIPE command means that storage was not available for the work

area and save area. No explanatory message is issued because of the lack of storage.

Return code -4095 is reflected to the stages by the pipeline dispatcher when the pipelines

are stalled. Messages list the status of each stage.

252 CMS Pipelines User’s Guide and Reference

 Built-in Programs

Chapter 23. Inventory of Built-in Programs

This chapter specifies the syntax and semantics of the built-in programs in CMS Pipelines.

Definitions are in alphabetical order with special characters first. Each definition consists

of:

¹ A synopsis in bold type having the name of the program in the left margin.

¹ A short description of the main function performed by the program.

¹ A syntax diagram showing how to invoke the program. The notation is defined in

Chapter 20, “Syntax Notation” on page 222.

¹ The type of program:

– Controls perform a function depending on the data at hand; a control stage can

also redefine the pipeline topology while running a filter or device driver.

– Device drivers interface between the pipeline and the host system.

– Filters perform an operation on a single stream. They do not use host interfaces.

– Gateways interface to multiple streams.

– Look up routines find entry points that are not resolved as part of the standard

CMS Pipelines resolution for stages.

– Host command processors send input lines to host command environments; some

intercept command output and write it to the pipeline; others pass the command

on when control returns from the host interface.

– Sorters sort, merge, collate, or in other ways order records by comparing the

contents of key fields.

– Selection stages read the primary input stream and write records to the primary

output stream or the secondary output stream, depending on the contents of the

record, its position in the file, or some other condition. When both output streams

are connected for a selection stage, an input record is written once to exactly one

stream.

– Service programs do not read the pipeline; they perform some other service.

Service programs do not require an output stream; but if the output stream is

connected, the response is written to the output rather than to the terminal.

A specialised program is marked arcane. Such a program has a specialised purpose or

accesses an interface that may be obscure.

¹ The placement, when a program cannot be used in all positions of a pipeline. Some

programs must be first, others must not be first. The majority of built-in programs do

not inspect their position in the pipeline.

¹ A verbal description of the syntax, if the program accepts or requires arguments.

¹ A description of the operation of the program, if the initial description does not

completely specify the program’s operation.

¹ The format to which input records must adhere, if input data are structured in some

way.

¹ The format of output records produced, if they are structured.

¹ A summary of streams used, if the program references more than the primary input

and output streams.

 Copyright IBM Corp. 1986, 2020 253

 Built-in Programs

¹ The record delay, if applicable. It is specified under which conditions the program

does or does not delay the record. When no such clause is present, it is unspecified

whether the program delays the record; the program may delay some records but not

others.

¹ The commit level at which the program starts (if it starts before level 0). This part

also describes the actions performed before the program commits to level 0.

¹ The conditions under which the program will terminate prematurely; that is, without

processing all available input records or without producing all possible output records.

A program terminates normally when all its input streams are at end-of-file, or (in the

case of a device driver that is first in a pipeline) the host interface signals end-of-file

or a similar condition. When a program is described as not terminating normally, it

means that the program accesses a host interface that does not signal end-of-file; if not

terminated prematurely the program will run forever.

¹ A reference to the converse operation that reverses the effect of the program, where

one exists.

¹ References to programs that perform a related function, if any are provided.

¹ Examples of usage. Examples that show a PIPE command followed by output lines

marked with an arrowhead were run as this book was formatted; you may have some

confidence that they run with the CMS Pipelines level described by this book

(1.1.12/12).

! pipe query level
! ►CMS Pipelines, 5741-A07 level 110C0011
! ►Ready;

Examples with a leading comment line are fragments of REXX programs. Other

examples show a few stages of a pipeline; they are usually a single line which begins

and ends with an ellipsis (...) to indicate the remaining part(s) of the pipeline.

¹ Notes, where applicable.

¹ Return codes issued where they do not represent CMS Pipelines messages. Most of

these are return codes from CMS.

¹ Configuration variables that apply to the built-in program. The main description of the

built-in program will assume the PIPE style; any differences in other styles are noted in

this section. See also Chapter 28, “Configuring CMS Pipelines” on page 867.

The built-in programs are fussy about their arguments. Quietly ignoring excess parameters

can be disastrous. An unexpected parameter could be the beginning of what should have

been a following stage, where the stage separator is missing.

Overview by Category
The following tables list the built-in programs by task or function. New built-in programs

are not marked with a change bar in this section; refer to the index for an overview of new

programs.

254 CMS Pipelines User’s Guide and Reference

 Built-in Programs

Figure 376. Controls

append Put Output from a Device Driver after Data on the Primary Input

Stream.

casei Run Selection Stage in Case Insensitive Manner.

eofback Run an Output Device Driver and Propagate End-of-file Backwards.

frtarget Select Records from the First One Selected by Argument Stage.

not Run Stage with Output Streams Inverted.

pipcmd Issue Pipeline Commands.

pipestop Terminate Stages Waiting for an External Event.

preface Put Output from a Device Driver before Data on the Primary Input

Stream.

runpipe Issue Pipelines, Intercepting Messages.

totarget Select Records to the First One Selected by Argument Stage.

zone Run Selection Stage on Subset of Input Record.

filterpack Manage Filter Packages.

Figure 377 (Page 1 of 4). Device drivers

waitdev Wait for an Interrupt from a Device.

Access to vari-

ables

rexxvars Retrieve Variables from a REXX or CLIST Variable Pool

stem Retrieve or Set Variables in a REXX or CLIST Variable Pool.

sysvar Write System Variables to the Pipeline.

var Retrieve or Set a Variable in a REXX or CLIST Variable Pool.

vardrop Drop Variables in a REXX Variable Pool.

varfetch Fetch Variables in a REXX or CLIST Variable Pool

varload Set Variables in a REXX or CLIST Variable Pool

varset Set Variables in a REXX or CLIST Variable Pool

CMS files <mdsk Read a CMS File from a Mode.

>>mdsk Append to or Create a CMS File on a Mode.

>mdsk Replace or Create a CMS File on a Mode.

aftfst Write Information about Open Files.

mdskback Read a CMS File from a Mode Backwards.

mdskfast Read, Create, or Append to a CMS File on a Mode.

mdskrandom Random Access a CMS File on a Mode.

mdskslow Read, Append to, or Create a CMS File on a Mode.

mdskupdate Replace Records in a File on a Mode.

state Provide Information about CMS Files.

statew Provide Information about Writable CMS Files.

CMS libraries members Extract Members from a Partitioned Data Set.

pdsdirect Write Directory Information from a CMS Simulated Partitioned Data

Set.

CP acigroup Write ACI Group for Users.

trfread Read a Trace File.

CP devinfo Write Device Information.

CP diage4 Submit Diagnose E4 Requests.

FBA disk fbaread Read Blocks from a Fixed Block Architecture Drive.

fbawrite Write Blocks to a Fixed Block Architecture Drive.

 Chapter 23. Inventory of Built-in Programs 255

 Built-in Programs

Figure 377 (Page 2 of 4). Device drivers

Files < Read a File.

> Replace or Create a File.

>> Append to or Create a File.

diskback Read a File Backwards.

diskfast Read, Create, or Append to a File.

diskrandom Random Access a File.

diskslow Read, Create, or Append to a File.

diskupdate Replace Records in a File.

getfiles Read Files.

Hardware stfle Store Facilities List.

stsi Store System Information.

Minidisk trackread Read Full Tracks from ECKD Device.

trackwrite Write Full Tracks to ECKD Device.

MVS libraries listispf Read Directory of a Partitioned Data Set into the Pipeline.

MVS SPOOL sysout Write System Output Data Set.

Network ftp Connect to an FTP Server and Exchange Data.

tcpclient Connect to a TCP/IP Server and Exchange Data.

tcpdata Read from and Write to a TCP/IP Socket.

tcplisten Listen on a TCP Port.

udp Read and Write an UDP Port.

Network hostid Write TCP/IP Default IP Address.

hostname Write TCP/IP Host Name.

OpenExtensions <oe Read an OpenExtensions Text File.

>>oe Append to or Create an OpenExtensions Text File.

>oe Replace or Create an OpenExtensions Text File.

filedescriptor Read or Write an OpenExtensions File that Is Already Open.

hfs Read or Append File in the Hierarchical File System.

hfsdirectory Read Contents of a Directory in a Hierarchical File System.

hfsquery Write Information Obtained from OpenExtensions into the Pipeline.

hfsreplace Replace the Contents of a File in the Hierarchical File System.

hfsstate Obtain Information about Files in the Hierarchical File System.

hfsxecute Issue OpenExtensions Requests.

SFS files sfsdirectory List Files in an SFS Directory.

Shared files <sfs Read an SFS File.

<sfsslow Read an SFS File.

>>sfs Append to or Create an SFS File.

>>sfsslow Append to or Create an SFS File.

>sfs Replace or Create an SFS File.

filetoken Read or Write an SFS File That is Already Open.

sfsback Read an SFS File Backwards.

sfsrandom Random Access an SFS File.

sfsupdate Replace Records in an SFS File.

Tape tape Read or Write Tapes.

256 CMS Pipelines User’s Guide and Reference

 Built-in Programs

Figure 377 (Page 3 of 4). Device drivers

Terminal browse Display Data on a 3270 Terminal.

console Read or Write the Terminal in Line Mode.

fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached

Screen.

fullscrq Write 3270 Device Characteristics.

fullscrs Format 3270 Device Characteristics.

VM SPOOL printmc Print Lines.

punch Punch Cards.

reader Read from a Virtual Card Reader.

uro Write Unit Record Output.

xab Read or Write External Attribute Buffers.

VMCF vmcdata Receive, Reply, or Reject a Send or Send/receive Request.

vmclient Send VMCF Requests.

vmclisten Listen for VMCF Requests.

WebSphere MQ mqsc Issue Commands to a WebSphere MQ Queue Manager.

XEDIT xedit Read or Write a File in the XEDIT Ring.

xmsg Issue XEDIT Messages.

Z/OS data set <mvs Read a Physical Sequential Data Set or a Member of a Partitioned

Data Set

>>mvs Append to a Physical Sequential Data Set

>mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned

Data Set

listcat Obtain Data Set Names.

state Verify that Data Set Exists.

sysdsn Test whether Data Set Exists.

Z/OS libraries listdsi Obtain Information about Data Sets.

readpds Read Members from a Partitioned Data Set

writepds Store Members into a Partitioned Data Set

Z/OS libraries

CMS libraries

listpds Read Directory of a Partitioned Data Set into the Pipeline.

 Chapter 23. Inventory of Built-in Programs 257

 Built-in Programs

Figure 377 (Page 4 of 4). Device drivers

Other 3277enc Write the 3277 6-bit Encoding Vector.

beat Mark when Records Do not Arrive within Interval.

delay Suspend Stream.

emsg Issue Messages.

hole Destroy Data.

immcmd Write the Argument String from Immediate Commands.

ispf Access ISPF Tables.

literal Write the Argument String.

mdiskblk Read or Write Minidisk Blocks.

pause Signal a Pause Event.

qsam Read or Write Physical Sequential Data Set through a DCB

random Generate Pseudorandom Numbers.

sql Interface to SQL.

sqlcodes Write the last 11 SQL Codes Received.

sqlselect Query a Database and Format Result.

stack Read or Write the Program Stack.

storage Read or Write Virtual Machine Storage.

strliteral Write the Argument String.

vmc Write VMCF Reply.

xrange Write a Range of Characters.

Figure 378. Drivers

diskid Map CMS Reserved Minidisk.

Figure 379 (Page 1 of 3). Filters

3277bfra Convert a 3270 Buffer Address Between Representations.

aggrc Compute Aggregate Return Code.

combine Combine Data from a Run of Records.

count Count Lines, Blank-delimited Words, and Bytes.

dateconvert Convert Date Formats.

duplicate Copy Records.

escape Insert Escape Characters in the Record.

greg2sec Convert a Gregorian Timestamp to Second Since Epoch.

reverse Reverse Contents of Records.

scm Align REXX Comments.

sec2greg Convert Seconds Since Epoch to Gregorian Timestamp.

timestamp Prefix the Date and Time to Records.

crc Compute Cyclic Redundancy Code.

tcpcksum Compute One’s complement Checksum of a Message.

Assembler files asmcont Join Multiline Assembler Statements.

asmxpnd Expand Joined Assembler Statements.

Buffering buffer Buffer Records.

copy Copy Records, Allowing for a One Record Delay.

instore Load the File into a storage Buffer.

outstore Unload a File from a storage Buffer.

258 CMS Pipelines User’s Guide and Reference

 Built-in Programs

Figure 379 (Page 2 of 3). Filters

Buffering noeofback Pass Records and Ignore End-of-file on Output.

Compiler polish Reverse Polish Expression Parser.

Cut and paste chop Truncate the Record.

join Join Records.

joincont Join Continuation Lines.

pad Expand Short Records.

snake Build Multicolumn Page Layout.

spill Spill Long Lines at Word Boundaries.

split Split Records Relative to a Target.

strip Remove Leading or Trailing Characters.

Data conversion utf Convert between UTF-8, UTF-16, and UTF-32

Digest digest Compute a Message Digest.

Encryption cipher Encrypt and Decrypt Using a Block Cipher.

Format conversion 64encode Encode to MIME Base-64 Format.

addrdw Prefix Record Descriptor Word to Records.

apldecode Process Graphic Escape Sequences.

aplencode Generate Graphic Escape Sequences.

block Block to an External Format.

buildscr Build a 3270 Data Stream.

deblock Deblock External Data Formats.

fblock Block Data, Spanning Input Records.

fmtfst Format a File Status Table (FST) Entry.

iebcopy Process IEBCOPY Data Format.

ip2socka Build sockaddr_in Structure.

pack Pack Records as Done by XEDIT and COPYFILE

parcel Parcel Input Stream Into Records.

qpdecode Decode to Quoted-printable Format.

qpencode Encode to Quoted-printable Format.

socka2ip Format sockaddr_in Structure.

unpack Unpack a Packed File.

urldeblock Process Universal Resource Locator.

Format conversion 64decode Decode MIME Base-64 Format.

Other hlasm Interface to High Level Assembler.

Other hlasmerr Extract Assembler Error Messages from the SYSADATA File.

Printer files asatomc Convert ASA Carriage Control to CCW Operation Codes.

c14to38 Combine Overstruck Characters to Single Code Point.

mctoasa Convert CCW Operation Codes to ASA Carriage Control.

optcdj Generate Table Reference Character (TRC).

overstr Process Overstruck Lines.

xpndhi Expand Highlighting to Space between Words.

 Chapter 23. Inventory of Built-in Programs 259

 Built-in Programs

Figure 379 (Page 3 of 3). Filters

Rearrange record change Substitute Contents of Records.

insert Insert String in Records.

retab Replace Runs of Blanks with Tabulate Characters.

space Space Words Like REXX.

spec Rearrange Contents of Records.

tokenise Tokenise Records.

untab Replace Tabulate Characters with Blanks.

vchar Recode Characters to Different Length.

xlate Transliterate Contents of Records.

Subset substring Write substring of record.

Track ckddeblock Deblock Track Data Record.

trackblock Build Track Record.

trackdeblock Deblock Track.

tracksquish Squish Tracks.

trackxpand Unsquish Tracks.

Track trackverify Verify Track Format.

Figure 380. Gateways

dam Pass Records Once Primed.

deal Pass Input Records to Output Streams Round Robin.

elastic Buffer Sufficient Records to Prevent Stall.

fanin Concatenate Streams.

faninany Copy Records from Whichever Input Stream Has One.

fanintwo Pass Records to Primary Output Stream.

fanout Copy Records from the Primary Input Stream to All Output Streams.

fanoutwo Copy Records from the Primary Input Stream to Both Output Streams.

gate Pass Records Until Stopped.

gather Copy Records From Input Streams.

if Process Records Conditionally.

juxtapose Preface Record with Marker.

maclib Generate a Macro Library from Stacked Members in a COPY File.

overlay Overlay Data from Input Streams.

predselect Control Destructive Test of Records.

structure Manage Structure Definitions.

synchronise Synchronise Records on Multiple Streams.

update Apply an Update File.

fillup Pass Records To Output Streams.

fitting Source or Sink for Copipe Data.

httpsplit Split HTTP Data Stream.

threeway Split record three ways.

warp Pipeline Wormhole.

260 CMS Pipelines User’s Guide and Reference

 Built-in Programs

Figure 381. Host command interfaces

cms Issue CMS Commands, Write Response to Pipeline.

command Issue TSO Commands.

command Issue CMS Commands, Write Response to Pipeline.

cp Issue CP Commands, Write Response to Pipeline.

starmon Write Records from the *MONITOR System Service.

starmsg Write Lines from a CP System Service.

starsys Write Lines from a Two-way CP System Service.

subcom Issue Commands to a Subcommand Environment.

tso Issue TSO Commands, Write Response to Pipeline.

Figure 382. Host interfaces

adrspace Manage Address Spaces.

alserv Manage the Virtual Machine’s Access List.

mapmdisk Map Minidisks Into Data spaces.

Figure 383. Look up routines

ldrtbls Resolve a Name from the CMS Loader Tables.

nucext Call a Nucleus Extension.

rexx Run a REXX Program to Process Data.

Figure 384. Resolvers

hostbyaddr Resolve IP Address into Domain and Host Name.

hostbyname Resolve a Domain Name into an IP Address.

Figure 385 (Page 1 of 2). Selection stages

unique Discard or Retain Duplicate Lines.

Assembler files asmfind Select Statements from an Assembler File as XEDIT Find.

asmnfind Select Statements from an Assembler File as XEDIT NFind

strasmfind Select Statements from an Assembler File as XEDIT Find.

strasmnfind Select Statements from an Assembler File as XEDIT NFind

 Chapter 23. Inventory of Built-in Programs 261

 Built-in Programs

Figure 385 (Page 2 of 2). Selection stages

Contents of record abbrev Select Records that Contain an Abbreviation of a Word in the First

Positions.

all Select Lines Containing Strings (or Not).

find Select Lines by XEDIT Find Logic.

locate Select Lines that Contain a String.

nfind Select Lines by XEDIT NFind Logic.

nlocate Select Lines that Do Not Contain a String.

pick Select Lines that Satisfy a Relation.

strfind Select Lines by XEDIT Find Logic.

strnfind Select Lines by XEDIT NFind Logic.

verify Verify that Record Contains only Specified Characters.

wildcard Select Records Matching a Pattern.

Groups of records between Select Records Between Labels.

drop Discard Records from the Beginning or the End of the File.

frlabel Select Records from the First One with Leading String.

inside Select Records between Labels.

notinside Select Records Not between Labels.

outside Select Records Not between Labels.

strfrlabel Select Records from the First One with Leading String.

strtolabel Select Records to the First One with Leading String.

strwhilelabel Select Run of Records with Leading String.

take Select Records from the Beginning or End of the File.

tolabel Select Records to the First One with Leading String.

whilelabel Select Run of Records with Leading String.

Figure 386. Service programs

configure Set and Query CMS Pipelines Configuration Variables.

help Display Help for CMS Pipelines or DB2.

jeremy Write Pipeline Status to the Pipeline.

query Query CMS Pipelines.

warplist List Wormholes.

Figure 387. Sorters

collate Collate Streams.

dfsort Interface to DFSORT/CMS.

lookup Find Records in a Reference Using a Key Field.

merge Merge Streams.

sort Order Records.

262 CMS Pipelines User’s Guide and Reference

 <

<—Read a File
< is the generic name for a device driver that reads files into the pipeline.

Depending on the operating system and the actual syntax of the parameters, < selects the

appropriate device driver to perform the actual I/O to the file.

►►──<──string──►◄

Type: Device driver.

Placement: < must be a first stage.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

Commit Level: Refer to the appropriate device driver.

Premature Termination: Refer to the appropriate device driver.

See Also: <mdsk, <mvs, <oe, and <sfs.

Examples: Refer to the appropriate device driver.

Operating

System

Minimum

Release

Driver Used Further Tests

CMS 2.1.0 <oe A single word, a quoted string, or a

word beginning BFS= or HFS=. A

syntax error is reported if

OpenExtensions is not present in the

system. Either single or double quotes

may be used.

1.2.0 <sfs Three or more words where the third

word is not a mode letter or a mode

letter followed by a digit.

(any) <mdsk Two words or three words where the

third is a mode letter or a mode letter

followed by a digit. 7 through 9 are

also considered mode numbers, even

though they are rejected by CMS.

MVS 5.1.0 <oe A word that contains a forward slash (/)

or is enclosed in double quotes or the

word must have the prefix BFS= or

HFS=. OpenExtensions must be present

in the system.

(any) <mvs Other formats.

 Chapter 23. Inventory of Built-in Programs 263

 <mdsk

 Notes:

1. Use <sfs to access a file using a NAMEDEF that would be scanned by < as a mode letter

or a mode letter followed by a digit.

<mdsk—Read a CMS File from a Mode
<mdsk reads a CMS file from storage, from a minidisk, or from a Shared File System (SFS)

directory that has been accessed with a mode letter. The file must exist.

 CMS

►►──<MDSK──fn──ft──┬────┬──►◄
└─fm─┘

Type: Device driver.

Placement: <mdsk must be a first stage.

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be read. A file mode or an asterisk is optional; the default is to search all

modes. STATE is used to locate the file when three words are specified; EXECSTAT is used

when two words are specified. If the file does not exist with the file name and the file

type as entered, the file name and the file type are translated to upper case and the search

is retried.

Operation: If EXECSTAT is used to locate the file and the return code is 0 (indicating that

the file is storage resident), the use count and recursion count are incremented before the

file is accessed through the file block provided by EXECSTAT.

Reading begins at the first record in the file and continues to end-of-file.

When a file is read from disk, the file is closed before <mdsk terminates. When an storage

file is read, the recursion count is decremented before <mdsk terminates.

Premature Termination: <mdsk terminates when it discovers that its output stream is not

connected.

See Also: disk, diskback, diskrandom, diskslow, members, and pdsdirect.

 Examples:

/* Read a file and count the number of words */
'pipe < input file | count words | console'

 Notes:

1. Use diskslow if <mdsk fails to operate.

2. Use diskslow to begin to read from a particular record. Use diskrandom to read a

particular range of records or to read records that are not sequential. (To read many

records from near the beginning of a large file it may, however, be more efficient to

use drop and take with <mdsk to select the range of records desired.)

3. Use disk or diskslow to treat a file that does not exist as one with no records, rather

than issue a message about a missing file.

4. Use an asterisk as the third word of the argument string to bypass the search for

EXECLOADed files.

264 CMS Pipelines User’s Guide and Reference

 <mvs

5. <mdsk may obtain several records from CMS at a time. It is unspecified how many

records <mdsk buffers, as well as the conditions under which it does so.

6. EXECSTAT resolves a file as follows:

a. It searches the directory of files that are loaded with EXECLOAD or are in a logical

segment (and are identified by an EXEC record) that has been attached with

SEGMENT LOAD.

b. It searches minidisks and SFS directories, if any, ahead of the installation segment.

c. It searches the installation segment, if attached to the virtual machine.

d. It searches remaining accessed mode letters, if any.

7. The fast interface to the file system is bypassed if the bit X'10' is on in offset X'3D'
of the FST that is exposed by the FSSTATE macro. Products that compress files on the

fly or in other ways intercept the file system macros should turn on this bit to ensure

that CMS Pipelines uses documented interfaces only.

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, <mdsk is transparent to return codes from CMS. Refer to the return codes for the

FSREAD macro in z/VM CMS Macros and Functions Reference, SC24-6262, for a complete

list of return codes. You are most likely to encounter these:

20 The file name or file type contains an invalid character.

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

<mvs—Read a Physical Sequential Data Set or a Member of a Partitioned
Data Set

<mvs reads the contents of a physical sequential data set or a member of a partitioned data

set into the pipeline. The data set must be cataloged if its data set name (DSNAME) is

specified.

 z/OS

►►──<MVS──psds──►◄

psds:

├──┬─dsname───────────────────────┬──┤
├─dsname(generation)───────────┤
├─dsname(member)───────────────┤
├─dsname(generation)(member)───┤
├─'dsname'─────────────────────┤
├─'dsname(generation)'─────────┤
├─'dsname(member)'─────────────┤
├─'dsname(generation)(member)'─┤
├─DDname=ddname────────────────┤
├─DDname=ddname(member)────────┤

 └─member──ddname─ ──────────────┘

Type: Device driver.

Placement: <mvs must be a first stage.

Syntax Description: The data set may be specified by DSNAME, by DDNAME, or by two

words specifying member name and DDNAME, respectively.

Enclose a fully qualified data set name in single quotes; the trailing quote is optional.

Specify the DSNAME without quotes to have the prefix, if any, applied. Append paren-

 Chapter 23. Inventory of Built-in Programs 265

 <oe

theses containing a signed number to specify a relative generation of a data set that is a

member of a generation data group.

To read from an already allocated data set, specify the keyword DDNAME= followed by the

DDNAME already allocated. The minimum abbreviation is DD=.

A member is specified in parentheses after the DSNAME or DDNAME. The closing right

parenthesis is optional.

The third form (two blank-delimited words) can be used to read a member of an already

allocated data set. The first word specifies the member name. The second word specifies

the DDNAME; a leading DDNAME= keyword is optional for the second word.

The DSNAME, DDNAME, and member names are translated to upper case.

Operation: A temporary allocation is made to process a file specified by DSNAME. The

allocation specifies the disposition DISP=(SHR,KEEP). The temporary allocation is freed

when the data set or member has been processed.

Commit Level: <mvs starts on commit level -2000000000. It then opens the DCB and

commits to level 0. The DCB is closed without reading if the commit return code is

nonzero.

Premature Termination: <mvs terminates when it discovers that its output stream is not

connected.

See Also: listpds and members.

Examples: To display a member of a procedure library:

pipe < 'dpmvs.logon.proclib($tsjohn)' | console
pipe < tso.filters(copy) | console

The second command above could read from the data set DPJOHN.TSO.FILTERS.

To display the number of records in a member of an already allocated data set:

pipe < dd=pipehelp(count) | unpack | count lines | console
pipe < count pipehelp | unpack | count lines | console
pipe < count ddname=pipehelp | unpack | count lines | console

To read a sequential data set:

pipe < gotten.data | count lines | console

<oe—Read an OpenExtensions Text File
<oe reads a file that is stored in the OpenExtensions file system and deblocks it at line end

characters (X'15'). If the file contains no line end character, a single record is written

containing the entire file.

►►──<OE──┬─word─────────┬──►◄
└─quotedString─┘

Type: Device driver.

266 CMS Pipelines User’s Guide and Reference

 <sfs

Placement: <oe must be a first stage.

Syntax Description: A word or a quoted string is required.

Operation: <oe uses a subroutine pipeline that contains hfs to read the file and deblock

TEXTFILE to perform the deblocking.

Commit Level: <oe starts on commit level -2000000000. It issues the subroutine pipe-

line, which will commit to 0.

Premature Termination: <oe terminates when it discovers that its output stream is not

connected.

 See Also: hfs.

Examples: To read a file in the current working directory:

pipe < .profile | count lines | console

<sfs—Read an SFS File
<sfs reads a file that is stored in the Shared File System (SFS) directly, using a directory

path or a NAMEDEF. The directory need not be accessed as a mode.

 CMS

 ┌ ┐───────────────────────────
►►──<SFS──fn──ft──dirid──┬───────┬───6┬───────────────────────┬┴──►◄

└─digit─┘ ├─ASIS──────────────────┤
 ├─ESM──delimitedString─ ─┤
 ├ ┤─OLDDATERef────────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

Placement: <sfs must be a first stage.

 Syntax Description:

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

OLDDATEREF Pass the keyword to the open routine. CMS will not update the date of

last reference for the file.

 Chapter 23. Inventory of Built-in Programs 267

 <sfsslow

Operation: When the directory is omitted, <sfs looks for the file on all accessed modes.

Reading begins at the first record in the file and continues to end-of-file. The file is closed

before <sfs terminates.

Commit Level: <sfs starts on commit level -2000000000. It creates a private unit of work

if WORKUNIT PRIVATE is specified, opens the file, allocates a buffer if required, and then

commits to level 0.

Premature Termination: <sfs terminates when it discovers that its output stream is not

connected.

See Also: disk, diskback, diskrandom, diskslow, filetoken, members, and pdsdirect.

Examples: To read a file:

pipe < profile exec . | ...

This reads your profile from your root directory in the current file pool. < selects <sfs to

process the file, because the third word is present, but does not specify a mode.

 Notes:

1. <sfs uses the DMSVALDT callable service to resolve the actual file mode or directory

name.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is DEFAULT.

<sfsslow—Read an SFS File
<sfsslow reads a file that is stored in the Shared File System (SFS) directly, using a direc-

tory path or a NAMEDEF. The directory need not be accessed as a mode.

<sfsslow reads one record at a time from the host interface; it does not attempt to block

reads.

 CMS

►►──<SFSSLOW──fn──ft──dirid──┬───────┬──►
└─digit─┘

 ┌ ┐───────────────────────────
►─ ───6 ┴┬ ┬─────────────────────── ─►◄
 ├ ┤─ASIS──────────────────
 ├─ESM──delimitedString─ ─┤
 ├─FROM──number─ ─────────┤
 ├ ┤─OLDDATERef────────────
 ├ ┤─OPENRECOVER───────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

268 CMS Pipelines User’s Guide and Reference

 <sfsslow

Placement: <sfsslow must be a first stage.

 Syntax Description:

Operation: Unless FROM is specified, reading begins at the first record in the file. The

file is closed before <sfsslow terminates.

Commit Level: <sfsslow starts on commit level -2000000000. It creates a private unit of

work if WORKUNIT PRIVATE is specified, opens the file, allocates a buffer if required, and

then commits to level 0.

Premature Termination: <sfsslow terminates when it discovers that its output stream is

not connected.

See Also: disk, diskback, diskrandom, filetoken, members, and pdsdirect.

Examples: To read a file:

pipe <sfsslow profile exec . | ...

This reads your profile from your top directory in the current file pool.

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

FROM Specify the number of the first record to read. The number must be

positive and must be smaller than or equal to the file size.

OLDDATEREF Pass the keyword to the open routine. CMS will not update the date of

last reference for the file.

OPENRECOVER Pass the keyword to the open routine. This particular operation is

performed as if the file’s attributes were RECOVER and NOTINPLACE.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is DEFAULT.

 Chapter 23. Inventory of Built-in Programs 269

 >

>—Replace or Create a File
> is the generic name for a device driver that replaces files with data in the pipeline.

Depending on the operating system and the actual syntax of the parameters, > selects the

appropriate device driver to perform the actual I/O to the file.

►►──>──string──►◄

Type: Device driver.

Placement: > must not be a first stage.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

Record Delay: > strictly does not delay the record.

Commit Level: Refer to the appropriate device driver.

Premature Termination: Refer to the appropriate device driver.

See Also: >mdsk, >mvs, >oe, and >sfs.

Examples: Refer to the appropriate device driver.

Operating

System

Minimum

Release

Driver Used Further Tests

CMS 2.1.0 >oe A single word, a quoted string, or a

word beginning BFS= or HFS=. A

syntax error is reported if

OpenExtensions is not present in the

system. Either single or double quotes

may be used.

1.2.0 >sfs Three or more words where the third

word is not a mode letter or a mode

letter followed by a digit.

(any) >mdsk Two words or three words where the

third is a mode letter or a mode letter

followed by a digit. 7 through 9 are

also considered mode numbers, even

though they are rejected by CMS.

MVS 5.1.0 >oe A word that contains a forward slash (/)

or is enclosed in double quotes or the

word must have the prefix BFS= or

HFS=. OpenExtensions must be present

in the system.

(any) >mvs Other formats.

270 CMS Pipelines User’s Guide and Reference

 >mdsk

 Notes:

1. Use >sfs to access a file using a NAMEDEF that would be scanned by > as a mode letter

or a mode letter followed by a digit.

2. >sfs maintains authorisations and other attributes for the file when it is replaced,

whereas >mdsk creates a work file and as a result loses such information.

>mdsk—Replace or Create a CMS File on a Mode
>mdsk replaces a file on a minidisk or in a Shared File System (SFS) directory that has

been accessed with a mode letter. A file is created if one does not exist.

 CMS

 ┌ ┐─Variable──────────
►►──>MDSK──fn──ft──fmode──┼───────────────────┼──►◄
 └ ┘ ─Fixed─ ──┬ ┬────────

└─number─┘

Type: Device driver.

Placement: >mdsk must not be a first stage.

Syntax Description: Specify as blank-delimited words the name, type, and mode of the

file to be created. If the file does not exist with the file name and the file type as entered,

the file name and the file type are translated to upper case and the search is retried.

Append a mode number to the mode letter to create a file with this particular mode

number. The mode number of an existing file is retained when you specify a mode letter

without a number; the default is 1 if the file does not exist. The optional arguments desig-

nate the file format of the file that is created. VARIABLE specifies a file that has record

format variable. FIXED creates a file that has record format fixed. An additional number

(the record length) may be specified for such a file. When the record length is specified, it

is ensured that all input records have that particular length. When the number is omitted,

the first record that is not null determines the record length of the file. The default record

format is VARIABLE.

Operation: If a file already exists with the name specified, a utility file is written. When

this file has been written successfully, the original file is erased and the utility file renamed

to the specified name. An existing file is erased if there are no records containing data on

any input stream. The file is closed before >mdsk terminates.

Streams Used: >mdsk first creates the file from records on the primary input stream that

are not null; all input records are also copied to the primary output stream. The primary

output stream is severed at end-of-file on the primary input stream. The first records of the

file are then overwritten with any records from the secondary input stream that are not

null. All records from the secondary input stream are copied to the secondary output

stream after they are written to the file.

Warning: When the secondary input stream is connected, records read from it must have

the same length as the records they replace in the file, but this is not enforced by CMS for

variable record format files; CMS truncates a variable record format file without indication

of error if a record is replaced with one of different length, be that shorter or longer.

Record Delay: >mdsk strictly does not delay the record.

 Chapter 23. Inventory of Built-in Programs 271

 >mdsk

See Also: >>, disk, diskslow, and diskupdate.

 Examples:

! /* Create a file with a single line in it */
! 'pipe literal This is a single line.| >mdsk one liner a'

 Notes:

1. Use diskslow if >mdsk fails to operate.

2. Null input records are copied to the output (if connected), but not to the file; CMS files

cannot contain null records.

3. An asterisk (*) cannot be specified as the file mode.

4. If the existing file is large and not needed to create the new one, it should be erased

prior to running the pipeline so that the disk space is available to create the new file.

5. The record format of an existing fixed format file is not retained by default. Use state

to determine the record format of a file and supply the fourth word of the result as the

file format option.

6. When it is processing records from the primary input stream, >mdsk may deliver

several records at a time to CMS to improve performance. The file may not be in its

eventual format while it is being created; it should not be accessed (by any means)

before >mdsk terminates. It is unspecified how many records >mdsk buffers, as well

as the conditions under which it does so.

7. When a file is replaced, the new contents will not be visible before >mdsk terminates.

8. On CMS9 and later releases, use >sfs to replace files in SFS. You can accomplish this

either by specifying >sfs explicitly or by specifying a directory with >.

9. Connect the secondary input stream when creating CMS libraries or packed files where

the first record has a pointer to the directory or contains the unpacked record length of

a packed file. The stage that generates the file (for instance, maclib) can write a

placeholder first record on the primary output stream initially; it then writes the real

first record to a stream connected to the secondary input stream of >mdsk when the

complete file has been processed and the location and size of the directory are known.

10. The fast interface to the file system is bypassed if the bit X'10' is on in offset X'3D'
of the FST that is exposed by the FSSTATE macro. Products that compress files on the

fly or in other ways intercept the file system macros should turn on this bit to ensure

that CMS Pipelines uses documented interfaces only.

11. An existing file is not rewritten in its place, even when mode number 6 is specified or

: the existing file has mode number 6. (Use diskupdate instead.)

12. Use >sfs with ASIS to create a minidisk file that has a mixed case file name or file

type, or both.

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, >mdsk is transparent to return codes from CMS. Refer to the return codes for the

FSWRITE macro in z/VM CMS Macros and Functions Reference, SC24-6262, for a complete

list of return codes. You are most likely to encounter these:

1 You do not have write authority to the file.

13 The disk is full.

16 Conflict when writing a buffer; this indicates that a file with the same name has

been created by another stage.

20 The file name or file type contains an invalid character.

272 CMS Pipelines User’s Guide and Reference

 >mvs

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

Configuration Variables: Two configuration variables govern how >mdsk replaces an

existing file in an SFS directory. In all cases, >mdsk creates a temporary file; the file name

and file type are controlled by the DISKTEMPFILETYPE configuration variable; the

DISKREPLACE configuration variable controls how the new file replaces the old one.

The configuration variable DISKTEMPFILETYPE governs how >mdsk creates the file name

and the file type for the temporary file when it replaces an existing file that resides in an

SFS directory.

The configuration variable DISKREPLACE governs how >mdsk replaces an existing file that

resides in an SFS directory.

TOD The file name and file type are the unpacked hexadecimal value of the

time-of-day clock at the time the temporary file is created. This creates

: a unique temporary file across a processor complex, so long as all partic-

: ipants observe the protocol.

CMSUT1 The file name is made unique within the virtual machine. The file type

is CMSUT1. CMSUT1 is the default in all styles.

USERID The file name is made unique within the virtual machine. The file type

is the user ID as reported by diagnose 0. This creates a unique tempo-

rary file across a system.

COPY >mdsk performs a copy operation in the SFS server to replace the

contents of the file with the contents of the temporary file it first created.

File authorisations and creation date will remain unchanged. COPY is the

default in the DMS style.

REPLACE >mdsk first creates a temporary file. It then erases the existing file and

renames the temporary file to the file name. This changes the creation

date for the file and drops all authorisations. REPLACE is the default in

the PIP and FPL styles.

>mvs—Rewrite a Physical Sequential Data Set or a Member of a Partitioned
Data Set

>mvs rewrites a physical sequential data set or replaces a member of a partitioned data set.

A new member is created if the specified member does not already exist in the data set.

The data set must be cataloged if a data set name (DSNAME) is specified.

 Chapter 23. Inventory of Built-in Programs 273

 >mvs

 z/OS

►►──>──┤ psds ├─ ──┬ ┬──────── ──┬ ┬─────────── ─►
├─COERCE─┤ └─PAD──xorc─┘

 └ ┘─CHOP───

►─ ──┬ ┬─────────────────────────── ──┬ ┬───── ─►◄
 ├ ┤─ISPFSTATS───────────────── └ ┘─SHR─
 └─USERDATA──delimitedString─┘

psds:

├──┬─dsname───────────────────────┬──┤
├─dsname(generation)───────────┤
├─dsname(member)───────────────┤
├─dsname(generation)(member)───┤
├─'dsname'─────────────────────┤
├─'dsname(generation)'─────────┤
├─'dsname(member)'─────────────┤
├─'dsname(generation)(member)'─┤
├─DDname=ddname────────────────┤
├─DDname=ddname(member)────────┤

 └─member──ddname─ ──────────────┘

Type: Device driver.

Placement: >mvs must not be a first stage.

Syntax Description: The data set may be specified by DSNAME or by DDNAME.

Enclose a fully qualified data set name in single quotes; the trailing quote is optional.

Specify the DSNAME without quotes to have the prefix, if any, applied. Append paren-

theses containing a signed number to specify a relative generation of a data set that is a

member of a generation data group.

To rewrite an already allocated data set, specify the keyword DDNAME= followed by the

DDNAME already allocated. The minimum abbreviation is DD=.

A member is specified in parentheses after the DSNAME or DDNAME. The closing right

parenthesis is optional.

The third form (two blank-delimited words) can be used to write a member of an already

allocated data set. The first word specifies the member name. The second word specifies

the DDNAME; a leading DDNAME= keyword is optional for the second word.

The DSNAME, DDNAME, and member names are translated to upper case.

The options COERCE, CHOP, and PAD are used with fixed record format data sets. COERCE

specifies that the input records should be padded with blanks or truncated to the record

length of the data set. CHOP specifies that long records are truncated; input records must

be at least as long as the record length for the data set. PAD specifies the pad character to

use when padding the record. Input records must not be longer than the record length of

the data set when PAD is specified alone.

ISPFSTAT or USERDATA may be specified for a partitioned data set. Specify USERDATA to

insert literal user data in the directory entry. Specify ISPFSTAT to make >mvs update or

create user data in the format maintained by ISPF.

Specify SHR to allocate the data set shared. The default is DISP=OLD.

274 CMS Pipelines User’s Guide and Reference

 >oe

Operation: A temporary allocation is made to process a file specified by DSNAME. The

allocation specifies the disposition DISP=(OLD,KEEP) unless SHR is specified. The temporary

allocation is freed when the data set has been processed.

Streams Used: >mvs passes the input to the output.

Record Delay: >mvs strictly does not delay the record.

Commit Level: >mvs starts on commit level -2000000000. It allocates the data set (if

required) and then commits to 0. The data set is not opened if the commit return code is

nonzero. The data set is opened on commit level 0.

 See Also: >>.

Examples: To replace (or create) a member of a procedure library:

pipe literal /**/ 'output Hello' | > tso.filters(hello)

 Notes:

1. Do not replace two members in a partitioned data set concurrently; z/OS does not

support this.

2. Use readpds to read members whose names are not upper case alphanumerics.

3. The installation can set ISPFSTAT as the default. It can also select one of the coercing

options as the default. Refer to the installation instructions.

4. Specifying SHR only affects the allocation; the user must ensure the integrity of the

data set. In particular, specifying SHR does not imply support for concurrent update of

members in a partitioned data set.

>oe—Replace or Create an OpenExtensions Text File
>oe replaces the contents of a text file that is stored in the OpenExtensions file system. It

creates the file if it does not exist.

>oe appends a line end character (X'15') to each input record before it writes the record

to the file.

►►──>OE──┬─word─────────┬──►◄
└─quotedString─┘

Type: Device driver.

Placement: >oe must not be a first stage.

Syntax Description: A word or a quoted string is required.

Operation: >oe uses a subroutine pipeline that contains block TEXTFILE to append the line

end and hfsreplace to replace the file. When the file exists, >oe buffers the new contents

of the file and thus replaces the specified file when it reaches end-of-file.

Record Delay: >oe strictly does not delay the record.

Commit Level: >oe starts on commit level -2000000000. It issues the subroutine pipe-

line, which will commit to 0.

 Chapter 23. Inventory of Built-in Programs 275

 >sfs

 See Also: hfsreplace.

Examples: To replace a file in the current working directory:

pipe literal line two | literal line one | >oe 'two line file'

>sfs—Replace or Create an SFS File
>sfs replaces a file in the Shared File System (SFS) directly, using a directory path or a

NAMEDEF. The directory need not be accessed as a mode. A file is created if one does not

exist.

 CMS

 ┌ ┐───────────────────────────
►►──>SFS──fn──ft──dirid──┬───────┬───6┬───────────────────────┬┴──►◄

└─digit─┘ ├─ALLOWEMPTY────────────┤
 ├ ┤─ASIS──────────────────
 ├─CDATE──number─ ────────┤
 ├ ┤─CHOP──────────────────
 ├ ┤─COERCE────────────────
 ├─ESM──delimitedString─ ─┤
 ├ ┤ ─Fixed─ ──┬ ┬──────── ────

│ └─number─┘ │
 ├ ┤─INPLACE───────────────
 ├ ┤─KEEP──────────────────
 ├─MDATE──number─ ────────┤
 ├ ┤─NOCHOP────────────────
 ├ ┤─NOPAD─────────────────
 ├ ┤─NORECOVER─────────────
 ├ ┤ ─PAD─ ──┬ ┬────── ────────

│ └─xorc─┘ │
 ├ ┤─SAFE──────────────────
 ├ ┤─Variable──────────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

Placement: >sfs must not be a first stage.

 Syntax Description:

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ALLOWEMPTY Pass the keyword to the open routine. When ALLOWEMPTY is specified,

CMS creates an empty file if no input is read. The default is not to

create a file when there is no input.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

276 CMS Pipelines User’s Guide and Reference

 >sfs

CDATE Specify the file creation date and time. The timestamp contains eight to

fourteen digits. The first eight digits specify the year (four digits), the

month (two digits), and the day (two digits). The remaining digits are

padded on the right with zeros to form six digits time consisting of the

hour, the minute, and the second. A twenty-four hour clock is used.

CHOP Truncate long input records to the logical record length of the file. The

logical record length of a variable record format file is 65535 bytes

unless a smaller value is specified after the VARIABLE keyword.

COERCE A convenience for PAD CHOP.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

FIXED The record length may be specified after FIXED. Create a new file with

fixed record format; verify that an existing file has fixed record format.

If the record length is specified and the file exists, it is verified that the

file is of the specified record length.

INPLACE Pass the keyword to the open routine. The file will be updated in place.

KEEP! KEEP is ignored unless WORKUNIT PRIVATE is specified or defaulted.

When KEEP is specified, changes are committed to the file even when an

error has occurred. The default is to roll back the unit of work. KEEP is

mutually exclusive with SAFE.

MDATE Specify the file modification date and time. The timestamp contains

eight to fourteen digits. The first eight digits specify the year (four

digits), the month (two digits), and the day (two digits). The remaining

digits are padded on the right with zeros to form six digits time

consisting of the hour, the minute, and the second. A twenty-four hour

clock is used.

NOCHOP Do not truncate long records. Issue a message instead.

NOPAD: Do not pad short records. For files that have fixed record format, issue a

: message and terminate when an input record is shorter than the record

: length; ignore null records when writing files that have variable record

: format (but pass the null record to the primary output stream).

NORECOVER Pass the keyword to the open routine. Changes to the file may persist

after the unit of work is rolled back.

PAD Pad short records with the character specified. The blank is used as the

pad character if the following word does not scan as an xorc. Pad short

records on the right to the file’s record length in a file that has fixed

record format. Write a single pad character for a null input record in a

: file that has variable record format. In both cases, pass the unmodified

: input record to the primary output stream.

SAFE! SAFE is rejected if WORKUNIT PRIVATE is neither specified nor defaulted.

When SAFE is specified, >sfs performs a pipeline commit to level 1

before it returns the unit of work. It rolls back the unit of work if the

commit does not complete with return code 0. SAFE is mutually exclu-

sive with KEEP.

VARIABLE The record length may be specified after VARIABLE. Create a new vari-

able record format file; verify that an existing file has variable record

format.

 Chapter 23. Inventory of Built-in Programs 277

 >>

Streams Used: >sfs first creates the file from records on the primary input stream that are

not null; all input records are also copied to the primary output stream. The primary

output stream is severed at end-of-file on the primary input stream. The first records of the

file are then overwritten with any records from the secondary input stream that are not

null. All records from the secondary input stream are copied to the secondary output

stream after they are written to the file. >sfs terminates with an error message if a record

is replaced with one of a different length.

Record Delay: >sfs strictly does not delay the record.

Commit Level: >sfs starts on commit level -2000000000. It creates a private unit of work

if WORKUNIT PRIVATE is specified or defaulted, opens the file, allocates a buffer if required,

and then commits to level 0.

See Also: >>, disk, diskslow, diskupdate, and filetoken.

Examples: To create a file that contains a single line in the root directory:

 pipe literal one line | >sfs one liner .

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is PRIVATE.

>>—Append to or Create a File
>> is the generic name for a device driver that appends data in the pipeline to files.

Depending on the operating system and the actual syntax of the parameters, >> selects the

appropriate device driver to perform the actual I/O to the file.

►►──>>──string──►◄

Type: Device driver.

Placement: >> must not be a first stage.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

Operating

System

Minimum

Release

Driver Used Further Tests

CMS 2.1.0 >>oe A single word, a quoted string, or a

word beginning BFS= or HFS=. A

syntax error is reported if

OpenExtensions is not present in the

system. Either single or double quotes

may be used.

278 CMS Pipelines User’s Guide and Reference

 >>mdsk

Record Delay: >> strictly does not delay the record.

Commit Level: Refer to the appropriate device driver.

Premature Termination: Refer to the appropriate device driver.

See Also: >>mdsk, >>mvs, >>oe, and >>sfs.

Examples: Refer to the appropriate device driver.

 Notes:

1. Use >>sfs to access a file using a NAMEDEF that would be scanned by >> as a mode

letter or a mode letter followed by a digit.

Operating

System

Minimum

Release

Driver Used Further Tests

1.2.0 >>sfs Three or more words where the third

word is not a mode letter or a mode

letter followed by a digit.

(any) >>mdsk Two words or three words where the

third is a mode letter or a mode letter

followed by a digit. 7 through 9 are

also considered mode numbers, even

though they are rejected by CMS.

MVS 5.1.0 >>oe A word that contains a forward slash (/)

or is enclosed in double quotes or the

word must have the prefix BFS= or

HFS=. OpenExtensions must be present

in the system.

(any) >>mvs Other formats.

>>mdsk—Append to or Create a CMS File on a Mode
>>mdsk appends records to a file on a minidisk or in a Shared File System (SFS) directory

that has been accessed with a mode letter. A file is created if one does not exist.

 CMS

►►──>>mdsk──fn──ft──┬───────────────────────────┬──►◄
 │ │┌ ┐─Variable──────────
 └─fm──┼───────────────────┼─┘
 └ ┘ ─Fixed─ ──┬ ┬────────

└─number─┘

Type: Device driver.

Placement: >>mdsk must not be a first stage.

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be appended to. A file mode or an asterisk is optional; the default is to search

all modes. If the file does not exist with the file name and the file type as entered, the file

name and the file type are translated to upper case and the search is retried. The file is

 Chapter 23. Inventory of Built-in Programs 279

 >>mdsk

created as A1 if no file mode (or an asterisk) is specified and no file is found with the

name and type given. The record format and (for fixed format files) the record length are

optional arguments. The default is the characteristics of an existing file when appending,

VARIABLE when a file is being created. When the file exists, the specified record format

must match the characteristics of the file.

Operation: Records are appended to an existing CMS file; a new file is created (with an

upper case file name and type) if no file is found to append to. The file is closed before

>>mdsk terminates.

Streams Used: >>mdsk first appends or creates the file from records on the primary input

stream that are not null; all input records are also copied to the primary output stream.

The primary output stream is severed at end-of-file on the primary input stream. The first

records of the file are then overwritten with any records from the secondary input stream

that are not null. All records from the secondary input stream are copied to the secondary

output stream after they are written to the file.

Warning: When the secondary input stream is connected, records read from it must have

the same length as the records they replace in the file, but this is not enforced by CMS for

variable record format files; CMS truncates a variable record format file without indication

of error if a record is replaced with one of different length, be that shorter or longer.

Record Delay: >>mdsk strictly does not delay the record.

See Also: >, disk, diskslow, and diskupdate.

 Examples:

/* Append a line to a file */
'pipe literal this is a single line|>>mdsk many liner'

 Notes:

1. Use diskslow if >>mdsk fails to operate.

2. Null input records are copied to the output (if connected), but not to the file; CMS files

cannot contain null records.

3. Use diskslow to begin to write at a particular record. Use diskupdate to replace

random records.

4. When it is processing records from the primary input stream, >>mdsk may deliver

several records at a time to CMS to improve performance. The file may not be in its

eventual format while it is being created; it should not be accessed (by any means)

before >>mdsk terminates. It is unspecified how many records >>mdsk buffers, as well

as the conditions under which it does so.

5. Connect the secondary input stream when creating CMS libraries or packed files where

the first record has a pointer to the directory or contains the unpacked record length of

a packed file. The stage that generates the file (for instance, maclib) can write a

placeholder first record on the primary output stream initially; it then writes the real

first record to a stream connected to the secondary input stream of >>mdsk when the

complete file has been processed and the location and size of the directory are known.

6. The fast interface to the file system is bypassed if the bit X'10' is on in offset X'3D'
of the FST that is exposed by the FSSTATE macro. Products that compress files on the

fly or in other ways intercept the file system macros should turn on this bit to ensure

that CMS Pipelines uses documented interfaces only.

280 CMS Pipelines User’s Guide and Reference

 >>mvs

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, >>mdsk is transparent to return codes from CMS. Refer to the return codes for

the FSWRITE macro in z/VM CMS Macros and Functions Reference, SC24-6262, for a

complete list of return codes. You are most likely to encounter these:

1 You do not have write authority to the file.

13 The disk is full.

16 Conflict when writing a buffer; this indicates that a file with the same name has

been created by another stage.

20 The file name or file type contains an invalid character.

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

>>mvs—Append to a Physical Sequential Data Set
>>mvs appends data from the pipeline to a physical sequential data set. The data set must

be cataloged if its data set name (DSNAME) is specified.

 z/OS

►►──>>──┬─word───────────────┬──┬────────┬──┬───────────┬──►◄
├─word(generation)───┤ ├─COERCE─┤ └─PAD──xorc─┘
├─'word'─────────────┤ └─CHOP───┘
├─'word(generation)'─┤
└─DDname=word────────┘

Type: Device driver.

Placement: >>mvs must not be a first stage.

Syntax Description: The data set may be specified by DSNAME or by DDNAME.

Enclose a fully qualified data set name in single quotes; the trailing quote is optional.

Specify the DSNAME without quotes to have the prefix, if any, applied. Append paren-

theses containing a signed number to specify a relative generation of a data set that is a

member of a generation data group.

To append to an already allocated data set, specify the keyword DDNAME= followed by the

DDNAME already allocated. The minimum abbreviation is DD=.

The options COERCE, CHOP, and PAD are used with fixed record format data sets. COERCE

specifies that the input records should be padded with blanks or truncated to the record

length of the data set. CHOP specifies that long records are truncated; input records must

be at least as long as the record length for the data set. PAD specifies the pad character to

use when padding the record. Input records must not be longer than the record length of

the data set when PAD is specified alone.

Operation: A temporary allocation is made to process a file specified by DSNAME. The

allocation specifies the disposition DISP=(MOD,KEEP). The temporary allocation is freed

when the data set has been processed.

Streams Used: >>mvs passes the input to the output.

Record Delay: >>mvs strictly does not delay the record.

 Chapter 23. Inventory of Built-in Programs 281

 >>oe ¹ >>sfs

Commit Level: >>mvs starts on commit level -2000000000. It allocates the data set (if

required), opens the DCB, and commits to level 0.

 See Also: >.

Examples: To append records to a log data set:

pipe literal I'm here... | >> tso.log

 Notes:

1. >>mvs cannot append to a member of a partitioned data set. Use < to read the

member and > to replace it.

>>oe—Append to or Create an OpenExtensions Text File
>>oe appends lines to a text file that is stored in the OpenExtensions file system. It creates

the file if it does not exist.

>>oe appends a line end character (X'15') to each input record before it writes the record

to the file.

►►──>>OE──┬─word─────────┬──►◄
└─quotedString─┘

Type: Device driver.

Placement: >>oe must not be a first stage.

Syntax Description: A word or a quoted string is required.

Operation: >>oe uses a subroutine pipeline that contains block TEXTFILE to append the

line end and hfs to append to the file.

Record Delay: >>oe strictly does not delay the record.

Commit Level: >>oe starts on commit level -2000000000. It issues the subroutine pipe-

line, which will commit to 0.

 See Also: hfsreplace.

Examples: To append to a file in the current working directory:

pipe literal line four | literal line three | >>oe 'two line file'

>>sfs—Append to or Create an SFS File
>>sfs appends records to a file in the Shared File System (SFS) directly, using a directory

path or a NAMEDEF. The directory need not be accessed as a mode. A file is created if

one does not exist.

282 CMS Pipelines User’s Guide and Reference

 >>sfs

 CMS

 ┌ ┐───────────────────────────
►►──>>SFS──fn──ft──dirid──┬───────┬───6┬───────────────────────┬┴──►◄

└─digit─┘ ├─ALLOWEMPTY────────────┤
 ├ ┤─ASIS──────────────────
 ├ ┤─CHOP──────────────────
 ├ ┤─COERCE────────────────
 ├─ESM──delimitedString─ ─┤
 ├ ┤ ─Fixed─ ──┬ ┬──────── ────

│ └─number─┘ │
 ├ ┤─KEEP──────────────────
 ├─MDATE──number─ ────────┤
 ├ ┤─NOCHOP────────────────
 ├ ┤─NOPAD─────────────────
 ├ ┤ ─PAD─ ──┬ ┬────── ────────

│ └─xorc─┘ │
 ├ ┤─SAFE──────────────────
 ├ ┤─Variable──────────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

Placement: >>sfs must not be a first stage.

 Syntax Description:

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ALLOWEMPTY Pass the keyword to the open routine. When ALLOWEMPTY is specified,

CMS creates an empty file if no input is read. The default is not to

create a file when there is no input.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

CHOP Truncate long input records to the logical record length of the file. The

logical record length of a variable record format file is 65535 bytes

unless a smaller value is specified after the VARIABLE keyword.

COERCE A convenience for PAD CHOP.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

FIXED The record length may be specified after FIXED. Create a new file with

fixed record format; verify that an existing file has fixed record format.

If the record length is specified and the file exists, it is verified that the

file is of the specified record length.

 Chapter 23. Inventory of Built-in Programs 283

 >>sfs

Streams Used: >>sfs first appends or creates the file from records on the primary input

stream that are not null; all input records are also copied to the primary output stream.

The primary output stream is severed at end-of-file on the primary input stream. The first

records of the file are then overwritten with any records from the secondary input stream

that are not null. All records from the secondary input stream are copied to the secondary

output stream after they are written to the file. An error message is issued if a record is

replaced with one of a different length.

Record Delay: >>sfs strictly does not delay the record.

Commit Level: >>sfs starts on commit level -2000000000. It creates a private unit of

work if WORKUNIT PRIVATE is specified or defaulted, opens the file, allocates a buffer if

required, and then commits to level 0.

See Also: disk, diskslow, diskupdate, and filetoken.

KEEP! KEEP is ignored unless WORKUNIT PRIVATE is specified or defaulted.

When KEEP is specified, changes are committed to the file even when an

error has occurred. The default is to roll back the unit of work. KEEP is

mutually exclusive with SAFE.

MDATE Specify the file modification date and time. The timestamp contains

eight to fourteen digits. The first eight digits specify the year (four

digits), the month (two digits), and the day (two digits). The remaining

digits are padded on the right with zeros to form six digits time

consisting of the hour, the minute, and the second. A twenty-four hour

clock is used.

NOCHOP Do not truncate long records. Issue a message instead.

NOPAD: Do not pad short records. For files that have fixed record format, issue a

: message and terminate when an input record is shorter than the record

: length; ignore null records when writing files that have variable record

: format (but pass the null record to the primary output stream).

PAD Pad short records with the character specified. The blank is used as the

pad character if the following word does not scan as an xorc. Pad short

records on the right to the file’s record length in a file that has fixed

record format. Write a single pad character for a null input record in a

: file that has variable record format. In both cases, pass the unmodified

: input record to the primary output stream.

SAFE! SAFE is rejected if WORKUNIT PRIVATE is neither specified nor defaulted.

When SAFE is specified, >>sfs performs a pipeline commit to level 1

before it returns the unit of work. It rolls back the unit of work if the

commit does not complete with return code 0. SAFE is mutually exclu-

sive with KEEP.

VARIABLE The record length may be specified after VARIABLE. Create a new vari-

able record format file; verify that an existing file has variable record

format.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is PRIVATE.

284 CMS Pipelines User’s Guide and Reference

 >>sfsslow

Examples: Append a line to a file in the root directory:

 pipe literal one more line | >>sfs one liner .

>>sfsslow—Append to or Create an SFS File
>>sfsslow appends records to a file in the Shared File System (SFS) directly, using a direc-

tory path or a NAMEDEF. The directory need not be accessed as a mode. A file is created

if one does not exist.

>>sfsslow writes one record at a time; it does not attempt to block writes.

 CMS

►►──>>SFSSLOW──fn──ft──dirid──┬───────┬──►
└─digit─┘

 ┌ ┐───────────────────────────
►─ ───6 ┴┬ ┬─────────────────────── ─►◄
 ├ ┤─ALLOWEMPTY────────────
 ├ ┤─ASIS──────────────────
 ├ ┤─CHOP──────────────────
 ├ ┤─COERCE────────────────
 ├─ESM──delimitedString─ ─┤
 ├ ┤ ─Fixed─ ──┬ ┬──────── ────

│ └─number─┘ │
 ├─FROM──number─ ─────────┤
 ├ ┤ ─HARDEN─ ──┬ ┬──────── ───

│ └─number─┘ │
 ├ ┤─KEEP──────────────────
 ├─MDATE──number─ ────────┤
 ├ ┤─NOCHOP────────────────
 ├ ┤─NOPAD─────────────────
 ├ ┤─OPENRECOVER───────────
 ├ ┤ ─PAD─ ──┬ ┬────── ────────

│ └─xorc─┘ │
 ├ ┤─SAFE──────────────────
 ├ ┤─Variable──────────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

Placement: >>sfsslow must not be a first stage.

 Syntax Description:

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ALLOWEMPTY Pass the keyword to the open routine. When ALLOWEMPTY is specified,

CMS creates an empty file if no input is read. The default is not to

create a file when there is no input.

 Chapter 23. Inventory of Built-in Programs 285

 >>sfsslow

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

CHOP Truncate long input records to the logical record length of the file. The

logical record length of a variable record format file is 65535 bytes

unless a smaller value is specified after the VARIABLE keyword.

COERCE A convenience for PAD CHOP.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

FIXED The record length may be specified after FIXED. Create a new file with

fixed record format; verify that an existing file has fixed record format.

If the record length is specified and the file exists, it is verified that the

file is of the specified record length.

FROM Specify the number of the first record to write. The number must be

positive; it must be smaller than or equal to one plus the file size for a

file that has variable record format.

HARDEN Perform SFS commit operations to make the file contents permanent

before end-of-file is read. Specify the number of records to write to the

! file between each SFS commit operation. HARDEN is mutually exclusive

with SAFE.

KEEP! KEEP is ignored unless WORKUNIT PRIVATE is specified or defaulted.

When KEEP is specified, changes are committed to the file even when an

error has occurred. The default is to roll back the unit of work. KEEP is

mutually exclusive with SAFE.

MDATE Specify the file modification date and time. The timestamp contains

eight to fourteen digits. The first eight digits specify the year (four

digits), the month (two digits), and the day (two digits). The remaining

digits are padded on the right with zeros to form six digits time

consisting of the hour, the minute, and the second. A twenty-four hour

clock is used.

NOCHOP Do not truncate long records. Issue a message instead.

NOPAD: Do not pad short records. For files that have fixed record format, issue a

: message and terminate when an input record is shorter than the record

: length; ignore null records when writing files that have variable record

: format (but pass the null record to the primary output stream).

OPENRECOVER Pass the keyword to the open routine. This particular operation is

performed as if the file’s attributes were RECOVER and NOTINPLACE.

PAD Pad short records with the character specified. The blank is used as the

pad character if the following word does not scan as an xorc. Pad short

records on the right to the file’s record length in a file that has fixed

record format. Write a single pad character for a null input record in a

: file that has variable record format. In both cases, pass the unmodified

: input record to the primary output stream.

286 CMS Pipelines User’s Guide and Reference

 abbrev

Streams Used: >>sfsslow first appends or creates the file from records on the primary

input stream that are not null; all input records are also copied to the primary output

stream. The primary output stream is severed at end-of-file on the primary input stream.

The first records of the file are then overwritten with any records from the secondary input

stream that are not null. All records from the secondary input stream are copied to the

secondary output stream after they are written to the file. An error message is issued if a

record is replaced with one of a different length.

Record Delay: >>sfsslow strictly does not delay the record.

Commit Level: >>sfsslow starts on commit level -2000000000. It creates a private unit of

work if WORKUNIT PRIVATE is specified or defaulted, opens the file, allocates a buffer if

required, and then commits to level 0.

See Also: >>, disk, diskupdate, and filetoken.

Examples: Append a line to a file in the root directory:

 pipe literal one more line | >>sfsslow one liner .

To append to a log file and make sure the lines are immediately added to the file:

 pipe ... | >>sfsslow log file production.logs harden 1 inplace

SAFE! SAFE is rejected if WORKUNIT PRIVATE is neither specified nor defaulted.

When SAFE is specified, >>sfsslow performs a pipeline commit to level 1

before it returns the unit of work. It rolls back the unit of work if the

commit does not complete with return code 0. SAFE is mutually exclu-

sive with HARDEN and KEEP.

VARIABLE The record length may be specified after VARIABLE. Create a new vari-

able record format file; verify that an existing file has variable record

format.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is PRIVATE.

abbrev—Select Records that Contain an Abbreviation of a Word in the First
Positions

abbrev selects records that contain an abbreviation of a specified word in the first posi-

tions. It discards records that do not begin with an abbreviation of the specified word or

do not contain a minimum count of characters in the first blank-delimited word.

►►──ABBREV─ ──┬ ┬─────────────────────────────── ─►◄
 └─word──┬─────────────────────┬─┘
 └─number──┬─────────┬─┘
 └ ┘─ANYCASE─

Type: Selection stage.

 Chapter 23. Inventory of Built-in Programs 287

 acigroup

Syntax Description: A word, a number and a keyword are optional.

The word specifies the characters to compare against the beginning of input records. The

default is a null word. The number specifies the minimum count of characters that must

be present to select the record. The default is zero, which means that any abbreviation

down to a null record or a leading blank will be selected. Specify ANYCASE to make the

comparison case insensitive.

Operation: abbrev compares the leading columns of each record against the specified

word until a blank or the end of the record is met. The record is passed to the primary

output stream if a minimum abbreviation of the specified word is present. Otherwise, the

record is discarded, or passed to the secondary output stream if the secondary output

stream is connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. abbrev strictly does not delay the record.

Commit Level: abbrev starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: abbrev terminates when it discovers that no output stream is

connected.

Examples: To select records for “string”, with three characters minimum:

 pipe literal st str string strings | split | abbrev string 3 | console
►str
►string
►Ready;

 Notes:

1. abbrev is similar to the REXX built-in function abbrev().

! 2. Using abbrev without arguments selects null records and records that contain a leading

blank.

: 3. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

. acigroup—Write ACI Group for Users

. acigroup obtains the ACI group from CP for user names specified in input records.

. CMS .

. ►►──ACIGROUP──►◄

. Type: Device driver.

. Operation: For each word in the input, acigroup makes it upper case and obtains the ACI

. group from CP. When the user ID exists, a 16-byte record is written to the primary output

. stream. The record contains the 8-character user ID followed by the group. When the

. user ID does not exist and the secondary output stream is defined, an 8-byte record

. containing the user ID is written to this stream.

288 CMS Pipelines User’s Guide and Reference

 addrdw

. Streams Used: Secondary streams may be defined. Records are read from the primary

. input stream; no other input stream may be connected. Null and blank input records are

. discarded.

. Record Delay: acigroup does not delay the record.

. Commit Level: acigroup starts on commit level -2. It verifies that the secondary input

. stream is not connected and then commits to level 0.

. Premature Termination: acigroup terminates when it discovers that no output stream is

. connected.

addrdw—Prefix Record Descriptor Word to Records
addrdw adds a record descriptor word to the beginning of each record. The type of record

descriptor is specified as the argument.

►►──ADDRDW─ ──┬ ┬─Variable─ ─►◄
 ├ ┤─CMS──────
 ├ ┤─SF───────
 ├ ┤─CMS4─────
 └ ┘─SF4──────

 Type: Filter.

 Syntax Description:

Operation: Null records are discarded when CMS or CMS4 is specified.

Record Delay: addrdw strictly does not delay the record.

Premature Termination: addrdw terminates when it discovers that its output stream is

not connected.

 Converse Operation: deblock.

 See Also: block.

VARIABLE Prefix a record descriptor word as used by z/OS (four bytes). The

record descriptor word contains the total length of the output record in

the first two bytes; the next two bytes contain binary zeros.

CMS Prefix a record descriptor word as used by CMS (two bytes). The first

two bytes contain the length of the input record (unsigned).

SF Prefix a structured field length specifier (two bytes). The first two bytes

contain the length of the output record; this is two more than the length

of the input record.

CMS4 Prefix a record descriptor word of four bytes. The first four bytes

contain the length of the input record.

SF4 Prefix a record descriptor word of four bytes. The first four bytes

contain the length of the output record; this is four more than the length

of the input record.

 Chapter 23. Inventory of Built-in Programs 289

 adrspace

! Examples:

! pipe strliteral /abc/ | addrdw cms | spec 1.2 c2x 1 3-* nw | console
! ►0003 abc
! ►Ready;

: adrspace—Manage Address Spaces
: adrspace interfaces to the CP macro ADRSPACE to manage address spaces available to your

: virtual machine.

: CMS :

: ►►──ADRSPACE─ ──┬ ┬: ─CREATE─ ──┬ ┬──────── ──┬ ┬──────────── ─►◄
: │ │└ ┘─ALET───(1) └ ┘─INITialise─
: ├ ┤─DESTROY────────────────────────────
: ├ ┤─ISOLATE────────────────────────────
: ├ ┤: ─PERMIT─ ──┬ ┬──────────── ──┬ ┬─────── ─
: │ ├: ─USER──word─┤: └─WRITE─┘ │
: │ └: ─VCIT──hex─: ─┘ │
: └ ┘: ─QUERY─ ──┬ ┬──────────────── ─────────
: └: ─┬──────┬──word─┘
: └ ┘─USER─

: Note:

: 1 ALET is implied when INITIALISE is specified.

: Type: Host interface.

: Syntax Description:

: CREATE: Create data spaces.

: ALET: Also add an ALET as if the output record had been

: passed to ALSERV ADD WRITE. The output record

: includes the ALET.

: INITIALISE: The first 64 bytes of the data space are initialised with

: information about the data space. ALET is implied when

: INITIALISE is specified.

: DESTROY: Return a data space to VM. No additional operands are

: allowed.

: ISOLATE: Drop all permissions to a data space. No additional

: operands are allowed.

: PERMIT: Allow other users access to a data space. The user ID is

: supplied in the input record when both USER and VCIT

: are omitted.

: USER: Specify the user name of the user to be permitted access

: to an address space.

: VCIT! Specify virtual configuration identification token of the

: host-primary address space of a user.

: WRITE: Permission is given to modify the address space, but still

: subject to storage key protection.

: QUERY: Obtain ASIT and size of a data space.

290 CMS Pipelines User’s Guide and Reference

 adrspace

: Operation: Operation depends on the first keyword in the operands.

: Input Record Format:

: USER! Optional keyword; required to query a data space of

! another user.

: word: Specify the user ID of the user for whom address spaces

: are queried. The default is your own virtual machine.

: CREATE: Data spaces are created based on the information supplied on the

: primary input stream. Optionally, an ALET is assigned. If INITIALISE is

: further specified, the first 80 bytes of the data space are set as follows

: (addresses in hexadecimal):

: 0-7 The eye-catcher 'fplasit1'.

: 8-F The ASIT.

: 10-13 The count of pages.

: 14-17 Zeros. May be used as a lock.

: 18-1F The user ID that created the data space.

: 20-38 The data space name.

: 38-3B The first available byte in the data space (=X'50').

: 3C-3F The last available byte in the data space (4096 times the

: number of pages minus 1).

: 40-4F Reserved. Zeros.

: The definition of this structure is built in as fplasit.

: DESTROY: The data spaces specified by the input are destroyed.

: ISOLATE: The data spaces specified by the input are isolated, that is, all permis-

: sions granted for them are revoked.

: PERMIT: The specified user is given permission to access the data spaces specified

: by the input. The user is identified either by the user ID or by the

: address space identification token (ASIT) of the virtual machine’s primary

: address space, also known as the virtual configuration identification

: token (VCIT).

: QUERY: Obtain the address space identification token of address spaces owned by

: the specified user or yourself.

: CREATE: The input must contain two or three blank-delimited words:

: 1. The name to be given to the address space.

: 2. The size of the address space in pages. As address spaces are

: complete segments, the number is rounded up by CP to the next

: higher multiple of 256.

: 3. Optionally the storage key to be assigned, the default being zero.

: This is specified as a two-digit hexadecimal number. The first digit

: specifies the storage key. The top bit of the second digit, when on,

: specifies that the address space is fetch protected; the three right-

: most bits are ignored.

 Chapter 23. Inventory of Built-in Programs 291

 adrspace

: Output Record Format: The table below shows the information written to the primary

: output stream. When the secondary output stream is defined, the input record is passed to

: that stream if the referenced object does not exist.

: Streams Used: Secondary streams may be defined. Records are read from the primary

: input stream; no other input stream may be connected. Null input records are discarded.

: Record Delay: adrspace does not delay the record.

: Commit Level: adrspace starts on commit level -2. It verifies that the secondary input

: stream is not connected and then commits to level 0.

: Premature Termination: adrspace terminates when it discovers that no output stream is

: connected.

: See Also: alserv and mapmdisk.

: Examples: See Chapter 18, “Using VM Data Spaces with CMS Pipelines” on page 210.

: Notes:

: 1. addrspace is a synonym for adrspace.

: 2. The virtual machine must be in XC mode (this excludes z/CMS).

: 3. All address spaces created are destroyed by an IPL of the virtual machine.

: 4. Permissions granted are revoked by IPL of either of the two virtual machines.

: 5. Use key X'E0' on adrspace CREATE to interoperate with CMS programs running in

: user key, such as CMS Pipelines.

: Publications: z/VM: CP Programming Services.

: DESTROY

: ISOLATE

: PERMIT

: If USER or VCIT is specified with PERMIT, the record may be eight,

: twelve, or sixteen bytes; the first eight bytes are the address space

: identification token (ASIT) of the data space for which the user is granted

: access. Otherwise, the input record must be sixteen bytes and contain

: eight bytes ASIT followed by eight bytes user ID.

: QUERY: The name of the address space to query.

: CREATE! An eight byte address space identification token (ASIT) followed by a

: four byte binary count of the number of pages available in the data

: space, rounded up to the next multiple of 256 to indicate the actual

: capacity available. When ALET is specified, a four bytes ALET is

: appended to the record making it sixteen bytes in all.

: DESTROY

: ISOLATE

: PERMIT

: The input record is passed unchanged.

: QUERY! An eight byte address space identification token (ASIT) followed by a

: four byte binary count of the number of pages available in the data

: space. This page count is a multiple of 256.

292 CMS Pipelines User’s Guide and Reference

 aftfst

aftfst—Write Information about Open Files
aftfst writes a line of file status information for each CMS file that is open on a minidisk or

in a Shared File System (SFS) directory that has been accessed with a mode letter.

 CMS

►►──AFTFST─ ──┬ ┬───────────────────────── ─►◄
 ├ ┤─NOFORMAT────────────────
 ├ ┤─SHOrtdate───────────────
 ├ ┤─ISOdate─────────────────
 ├ ┤─FULldate────────────────
 ├ ┤─STAndard────────────────

: └: ─STRing──delimitedString─┘

Type: Arcane device driver.

Placement: aftfst must be a first stage.

Syntax Description: An optional keyword indicates how the output is to be formatted.

The default is SHORTDATE.

NOFORMAT The file status information is not formatted. The output record is sixty-

four bytes.

FULLDATE The file’s timestamp is formatted in the American format, with the

century: 3/09/1946 23:59:59.

ISODATE The file’s timestamp is formatted with the century in one of the formats

approved by the International Standardisation Organisation:

1946-03-09 23:59:59.

SHORTDATE The file’s timestamp is formatted in the American format, without the

century: 3/09/46 23:59:59.

STANDARD The file’s timestamp is formatted as a single word in a form that can be

used for comparisons: 19460309235959.

: STRING: Specify custom timestamp formatting, similar to the POSIX strftime()
: function. The delimited string specifies formatting as literal text and

: substitutions are indicated by a percentage symbol (%) followed by a

: character that defines the substitution. These substitution strings are

: recognised by aftfst:

: %% A single %.

: %Y Four digits year including century (0000-9999).

: %y Two-digit year of century (00-99).

: %m Two-digit month (01-12).

: %n Two-digit month with initial zero changed to blank (1-12).

: %d Two-digit day of month (01-31).

: %e Two-digit day of month with initial zero changed to blank (1-31).

: %H Hour, 24-hour clock (00-23).

: %k Hour, 24-hour clock first leading zero blank (0-23).

: %M Minute (00-59).

: %S Second (00-60).

: %F Equivalent to %Y-%m-%d (the ISO 8601 date format).

: %T Short for %H:%M:%S.

: %t Tens and hundredth of a second (00-99).

 Chapter 23. Inventory of Built-in Programs 293

 aggrc

Operation: A line is written for each file in the Active File Table (AFT).

Output Record Format: When NOFORMAT is specified, the output record contains 64

bytes in the format defined by the FSTD data area.

Otherwise, selected fields of the file status are formatted and written as a record: the file

name, type, and mode; the record format and logical record length; the number of records

and the number of disk blocks in the file; the date and time of last change to the file.

Premature Termination: aftfst terminates when it discovers that its output stream is not

connected.

See Also: fmtfst, state, and statew.

Examples: To issue a message when there are open files:

/* Write a message about unclosed files */
'PIPE',

'aftfst noformat |',
'count lines |',
'nfind 0 |',
'spec 1-* 1 / open files./ next |',

 'console'

 Notes:

1. CMS adds an entry to the list of open files if the output from aftfst is written to disk

later in the pipeline. Buffer the output from aftfst (for instance with buffer or sort) to

ensure that you get a consistent snapshot of the file status.

2. Running this device driver may alert authors of shells that they have forgotten to close

open files.

3. A file is in the AFT when it has been opened by an explicit FSOPEN or by an implicit

open on the first I/O operation to the file. FSCLOSE (or the CMS command FINIS) closes

the file and removes information about the file from the AFT.

4. aftfst does not write information about files in the Shared File System (SFS) that are

opened by a call to the Callable Services Library (CSL) routine DMSOPEN (or similar).

5. Be sure to set numeric digits 14 when performing comparisons on STANDARD

timestamps; REXX will by default use just nine digits precision. This means that the

first digit of the hour will be the least significant one and the remainder of the preci-

sion will be lost.

6. SORTED is a synonym for STANDARD.

aggrc—Compute Aggregate Return Code
aggrc reads input records, which must contain a single number each, and interprets those

numbers as return codes to be aggregated in the CMS Pipelines style. When it has read all

its input, it produces a single record that contains the aggregate return code for the

numbers read. If any number is negative, the aggregate is the lowest number; otherwise it

is the largest number. If aggrc is the last stage of a pipeline, it sets its own return code

from the aggregate it has computed.

►►──AGGRC──►◄

294 CMS Pipelines User’s Guide and Reference

 all

 Type: Filter.

Input Record Format: One number in the interval -2147483648 to 2147483647. A

leading plus sign is ignored.

Output Record Format: A number. Zero and positive numbers have no sign.

Record Delay: aggrc delays all records until end-of-file.

 Examples:

 pipe literal 0 99 3 6 | split | aggrc | console
►99
►Ready;

 pipe literal 0 99 -3 6 | split | aggrc | console
►-3
►Ready;

 pipe (listerr) literal 6 | aggrc
►Stage returned with return code 6
►... Issued from stage 2 of pipeline 1
►... Running "aggrc"
►Ready(00006);

 Notes:

1. aggrc can aggregate the return codes written to the secondary output stream by host

command processors.

2. No output is produced if there is no input.

Return Codes: When the output record cannot be written (the stage is last in a pipeline),

the return code is set to the aggregate of the numbers read.

all—Select Lines Containing Strings (or Not)
all selects records that satisfy a specified search criterion. In addition to XEDIT-like string

expressions, all supports the use of parentheses to group expressions.

►►──ALL──┤ expression ├──►◄

expression:

 ┌ ┐─!───────────────
├─ ───6 ┴─┤ alternative ├─ ─┤

alternative:

 ┌ ┐─&──────────
├─ ───6 ┴─┤ factor ├─ ─┤

factor:

├─ ──┬ ┬─── ─┤ string ├──┤
 └ ┘─¬─

 string:

├──┬─delimitedString──────┬──┤
 └ ┘─(──┤ expression ├──)─

Type: Selection stage.

 Chapter 23. Inventory of Built-in Programs 295

 alserv

Syntax Description: The argument is a string expression. A string expression consists of

alternatives delimited by exclamation marks or vertical bars (! or |). An alternative

consists of terms delimited by ampersands (&). A term has an optional leading not symbol

(¬) followed by a delimited string or an expression in parentheses. That is, the precedence

of the operators is ¬ (highest), &, and ! (lowest).

Blanks are optional between operators and strings.

Operation: all constructs a suitable multistream subroutine pipeline containing locate and

! nlocate filters, and runs it. Records that match the criterion are written to the primary

! output stream; others are written to the secondary output stream when connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. all strictly does not delay the record.

Commit Level: all starts on commit level -2. It verifies that the secondary input stream is

not connected, parses the expression, and then issues a subroutine pipeline to work on data.

This subroutine commits to level 0 in due course.

Premature Termination: all terminates when it discovers that no output stream is

connected.

See Also: locate and nlocate.

Examples: To select records that contain a string or a vertical bar (4F in hexadecimal), or

both:

all /abc/ ! x4f

To select records that contain an exclamation mark and either (or both) of two strings:

...| all (/abc/ ! /def/) & /!/ |...

Note that XEDIT does not support parentheses for grouping.

 Notes:

1. Performance will improve if the equivalent multistream pipeline network is specified

instead of using all.

2. Specify a percent sign followed by a keyword (in lower case) at the beginning of the

argument string to inspect the subroutine pipeline that is constructed. Specify %debug
to write it to the file ALL DEBUG. Specify %dump to write the subroutine pipeline to the

primary output stream before invoking it.

: alserv—Manage the Virtual Machine’s Access List
: alserv interfaces to the CP macro ALSERV.

: CMS :

: ►►──ALSERV─ ──┬ ┬: ─ADD─ ──┬ ┬─────── ─►◄
: │ │└ ┘─WRITE─
: ├ ┤─REMOVE─────────
: └ ┘─TEST───────────

296 CMS Pipelines User’s Guide and Reference

 alserv

: Type: Host interface.

: Syntax Description:

: Operation: alserv reads the primary input stream.

: Input Record Format:

: Output Record Format:

: Streams Used: Secondary streams may be defined. Records are read from the primary

: input stream; no other input stream may be connected.

: Record Delay: alserv does not delay the record.

: Commit Level: alserv starts on commit level -2. It verifies that the secondary input

: stream is not connected and then commits to level 0.

: Premature Termination: alserv terminates when it discovers that no output stream is

: connected.

: See Also: adrspace.

: Examples: See Chapter 18, “Using VM Data Spaces with CMS Pipelines” on page 210.

: Notes:

: 1. The virtual machine must be in XC mode (this excludes z/CMS).

: Publications: z/VM: CP Programming Services.

: WRITE: Give ALET write access to the data space.

: ADD: Create an ALET in the access list. The ALET has write permission when

: WRITE is specified and the owner has granted your virtual machine write

: access.

: REMOVE: Remove an ALET from the access list.

: TEST: Verify the correctness of an ALET. Correct ALETs are passed to the

: primary output stream. Incorrect ones are passed to the secondary

: output stream, if it is connected; otherwise the stage terminates with an

: error message.

: ADD: Address space identification tokens (ASIT) in the first eight bytes. The

: record may be eight, twelve, or sixteen bytes long.

: REMOVE

: TEST
: Four bytes access list entry token (ALET).

: ADD: Access list entry tokens (ALET).

: REMOVE

: TEST
: The input record is passed.

 Chapter 23. Inventory of Built-in Programs 297

 apldecode

apldecode—Process Graphic Escape Sequences
apldecode processes input fields from a 3270 terminal with the APL/TEXT feature. This

decodes two-byte escape sequences into single bytes.

 ┌ ┐─3279─ ┌ ┐─TEXT─
►►──APLDECode─ ──┼ ┼────── ──┼ ┼────── ─►◄
 ├ ┤─3278─ └ ┘─APL──
 ├ ┤─3277─
 ├ ┤─1────
 └ ┘─2────

Type: Arcane filter.

Syntax Description: Two keyword operands are optional. The first operand specifies the

type of device for which data are decoded. The default is to decode with the X'08'
graphic escape sequence used by devices such as 3278 and 3279 (and subsequent termi-

nals). 3277 specifies the older style of decoding that uses pseudo start of field orders. The

first operand can also be specified as 1 (for 3278) or 2 (for 3277); these correspond to the

third word of the output from fullscrs. The second keyword specifies whether the TEXT

(default) or APL mapping should be used.

Operation: Two translate tables are set up containing the defaults that correspond to the

CP translation for TEXT ON (or APL ON if the keyword APL is specified) for the specified

type of terminal. If the secondary input stream is defined, these defaults are modified by

overlaying one record from it.

Input records on the primary input stream are scanned for escape characters, which are

deleted. The character after an escape character is translated using the first table; other

positions are translated using the second table. The escape character is X'08' when no

operands are specified and when the first operand is 3279 (or 3278 or 1); the escape char-

acter is X'1D' when the first operand is 3277 (or 2).

Input Record Format: Inbound 3270 data without orders. In particular, SBA (set buffer

address) orders should have been processed before the record is passed to apldecode.

If the secondary input stream is connected, a single record is read from it before the file on

the primary stream is processed. (End-of-file is treated as if a null record were read.)

This record can be any length, but only the first 512 bytes are used. The record is

assumed to contain two translate tables that are to be overlaid on the two default translate

tables, starting at the beginning of the first table. The ending part of the tables is left

unchanged if the record is shorter than 512 bytes.

Streams Used: If the secondary input stream is defined, one record is read and consumed

from it. The secondary input stream is severed before the primary input stream is proc-

essed. The secondary output stream must not be connected.

Record Delay: apldecode strictly does not delay the record.

Commit Level: apldecode starts on commit level -2. It verifies that the secondary output

stream is not connected and then commits to level 0.

 Converse Operation: aplencode.

298 CMS Pipelines User’s Guide and Reference

 aplencode

 See Also: buildscr.

 Examples:

To decode the inbound stream from an unformatted 3278/9:

pipe literal {CEnter data: | fullscr | spec 4-* | apldecode | var input

The first stage of this pipeline generates the data to be displayed by fullscr. The first byte

contains X'C0', which is a flag byte that specifies the erase/write alternate function. The

second byte contains a write control character that restores the keyboard to allow user

input (it also resets any modified data tags, which is not relevant in this example). The

third stage discards the attention ID and the cursor address from the input record; because

the screen is unformatted, the remaining data contain no 3270 device orders to worry

about. The fourth stage decodes the graphic escape sequences and delivers a record that

contains one byte per character to the final stage, which stores this into a variable.

aplencode—Generate Graphic Escape Sequences
aplencode encodes data to be displayed on a 3270 terminal with the APL/TEXT feature.

 ┌ ┐─3279─ ┌ ┐─TEXT─
►►──APLENCode─ ──┼ ┼────── ──┼ ┼────── ─►◄
 ├ ┤─3278─ └ ┘─APL──
 ├ ┤─3277─
 ├ ┤─1────
 └ ┘─2────

Type: Arcane filter.

Syntax Description: Two keyword operands are optional. The first operand specifies the

type of device for which data are encoded. The default is to encode with the X'08'
graphic escape sequence used by devices such as 3278 and 3279 (and subsequent termi-

nals). 3277 specifies the older style of encoding that uses pseudo start of field orders. The

first operand can also be specified as 1 (for 3278) or 2 (for 3277); these correspond to the

third word of the output from fullscrs. The second keyword specifies whether the TEXT

(default) or APL mapping should be used.

Operation: Two translate tables are set up containing the defaults that correspond to the

CP translation for TEXT ON (or APL ON if the keyword APL is specified) for the specified

type of terminal. If the secondary input stream is defined, these defaults are modified by

overlaying one record from it.

Characters in the input record for which the corresponding position in the first translate

table is nonzero are replaced with an escape character and the value from the first translate

table. Characters that are not to be escaped are translated according to the second translate

table. The escape character is X'08' when no operands are specified and when the first

operand is 3279 (or 3278 or 1); the escape character is X'1D' when the first operand is

3277 (or 2).

Input Record Format: Character data without 3270 orders.

If the secondary input stream is connected, a single record is read from it before the file on

the primary stream is processed. (End-of-file is treated as if a null record were read.)

This record can be any length, but only the first 512 bytes are used. The record is

 Chapter 23. Inventory of Built-in Programs 299

 append

assumed to contain two translate tables that are to be overlaid on the two default translate

tables, starting at the beginning of the first table. The ending part of the tables is left

unchanged if the record is shorter than 512 bytes.

Streams Used: If the secondary input stream is defined, one record is read and consumed

from it. The secondary input stream is severed before the primary input stream is proc-

essed. The secondary output stream must not be connected.

Record Delay: aplencode strictly does not delay the record.

Commit Level: aplencode starts on commit level -2. It verifies that the secondary output

stream is not connected and then commits to level 0.

 Converse Operation: apldecode.

 See Also: buildscr.

Examples: To build an unformatted screen containing a message to be displayed on a

3278:

pipe var message | aplencode | spec xc0c3 1 1-* next | fullscr noread

The message is encoded for a 3278 TEXT in the second stage. The third stage adds a flag

byte (erase/write alternate) and a write control character (keyboard restore, reset modified

data tags). The last stage displays the message on the terminal without waiting for oper-

ator action. Thus, the program that issued the pipeline continues immediately.

append—Put Output from a Device Driver after Data on the Primary Input
Stream

append passes all input records to the output and then runs a device driver to generate

additional output.

►►──APPEND──string──►◄

 Type: Control.

Syntax Description: The argument string is normally a single stage, but any pipeline

specification that can be suffixed by a connector (|*:) is acceptable (see usage note 2).

Operation: All records on the primary input stream are copied to the primary output

stream. Then the string is issued as a subroutine pipeline with CALLPIPE, using the default

stage separator (|), double quotes as the escape character ("), and the backward slash as

the end character (\). The beginning of the pipeline is unconnected. The end of the

pipeline is connected to append’s primary output stream. (Do not write an explicit

connector.)

In the subroutine pipeline, device drivers that reference REXX variables (rexxvars, stem,

var, and varload) reach the EXECCOMM environments in effect for append.

Streams Used: append shorts the primary input stream to the primary output stream

(callpipe *:|*:); this does not delay the record. The specified string can refer to all

defined streams except for the primary output stream (which is connected to the end of the

subroutine pipeline by append); the primary input stream will be at end-of-file.

300 CMS Pipelines User’s Guide and Reference

 append

Record Delay: append strictly does not delay the record. The records that are appended

are delayed until the end of the input file.

Premature Termination: append terminates if it is unable to copy all input to the output

before it issues the subroutine pipeline to run the specified string.

 See Also: preface.

Examples: To append the contents of a variable to the stream being built:

...| append var lastline |...

append is also used to append a line of literal data:

...| append literal *** End of data ***|...

 Notes:

1. append is useful to add literals after a file has been reformatted, for instance with

spec.

2. The argument string may contain stage separators and other special characters. Be

sure that these are processed in the right place. The argument string is passed through

the pipeline specification parser twice, first when the pipeline containing the append

stage is set up, and secondly when the argument string is issued as a subroutine pipe-

line. The two example pipelines below show ways to append a subroutine pipeline

consisting of more than one stage. In both cases, the split stage is part of the subrou-

tine pipeline and, thus, splits only the record produced by the second literal stage:

 pipe literal c d e| append literal a b || split | console
►c d e
►a
►b
►Ready;

 pipe (sep ?) literal c d e? append literal a b | split ? console
►c d e
►a
►b
►Ready;

In the first example, the stage separator that is to be passed to the subroutine pipeline

is self-escaped in the main pipeline. In the second example, the stage separator for the

main pipeline is a question mark; thus, no special treatment is required to pass the

stage separator (|) to append.

Now consider how to specify a vertical bar as part of an argument to the subroutine

pipeline (in both cases, the variable data has the value abc|def):

 pipe var data | append var data || split |||| | console
►abc|def
►abc
►def
►Ready;

 pipe (stagesep ?) var data ? append var data | split || ? console
►abc|def
►abc
►def
►Ready;

 Chapter 23. Inventory of Built-in Programs 301

 asatomc

In the first example, the stage separator that should be recognised in the subroutine

pipeline is self-escaped; to get the parameter (a single |) through the pipeline

specification parser twice, it must be doubly self-escaped; that is, the four vertical bars

become one when the argument is presented to split. In the second example, the main

pipeline uses the question mark as its stage separator and thus no escape is required to

pass the vertical bar to the subroutine pipeline; and a single self-escape suffices to get

the vertical bar to split.

3. Because a subroutine pipeline is used to pass the input to the output, it will terminate

prematurely if the output is not connected or if end-of-file propagates backwards in the

pipeline. Ensure that the output is connected when using a cascade of hole and

append to issue a command after the input stream reaches end-of-file:

... | hole | append command ... | hole

Without the second hole, the command stage might start before you intended it to.

4. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: The return code is the return code from the CALLPIPE pipeline command.

It may reflect errors in the argument string or trouble with the stage(s) in the pipeline.

asatomc—Convert ASA Carriage Control to CCW Operation Codes
asatomc converts ASA carriage control characters (in the first position of each record) to

the corresponding machine carriage control characters; these are stored in the first position

of the previous record to turn an immediate carriage movement into a delayed one.

asatomc passes a file that already has machine carriage control characters unchanged, veri-

fying that all records have correct machine carriage control characters.

►►──ASATOMC──►◄

 Type: Filter.

Operation: Records that have X'03' (no operation) in column one at the beginning of

the file are passed to the output unchanged. If the first input record has a valid machine

carriage control character, the input is passed unmodified to the output and each record is

verified to have a valid machine carriage control character.

Input Record Format: The first column of the record is an ASA carriage control char-

acter:

Output Record Format: The first column of the record is a machine carriage control

character:

+ Overprint the previous record.

(blank) Print on the next line.

0 Skip one line and print a line.

- (hyphen) Skip two lines and print a line.

1-9 Skip to the specified channel and print a line.

A-C Skip to channel 10 through 12 and print a line.

302 CMS Pipelines User’s Guide and Reference

 asmcont

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: When the carriage control character is converted (as opposed to being

passed through unmodified), the carriage control character is not delayed; the data part of a

record is delayed to the following record.

Premature Termination: asatomc terminates when it discovers that its output stream is

not connected.

 Converse Operation: mctoasa.

 Examples:

 pipe literal 1Head line | asatomc | spec 1 c2x 1 2-* next | console
►8B
►01Head line
►Ready;

 Notes:

1. The last output record has a write no space command code (X'01').

xxxx x001 Write the data part of the record and then perform the carriage operation

specified by the five leftmost bits.

xxxx x011 Perform the carriage operation defined by the five leftmost bits imme-

diately (the data part of the record is ignored).

000n n0x1 Space the number of lines (0 through 3) specified by bits 3 and 4.

1nnn n0x1 Skip to the channel specified by bits 1 through 4. The number must be

in the range 1 to 12 inclusive.

asmcont—Join Multiline Assembler Statements
asmcont writes a line for each Assembler statement it reads. Continuation lines are joined

to the first line of the statement.

►►──ASMCONT─ ──┬ ┬──────────────── ─►◄
. └. ─OFFSET──number─┘

 Type: Filter.

 Syntax Description:

. Operation: When OFFSET is specified, the column numbers in the following description

. should be increased by the number specified. The contents of the offset columns are

. deleted from continuation records, but kept on the first record of a statement.

A record shorter than 72 characters or with a blank character in column 72 is copied to the

output.

OFFSET The assembler statements are not at the beginning of the record. For

example, a listing file often has the Assembler statement at offset 41.

number Specify an offset that is zero or positive. The default offset is zero.

 Chapter 23. Inventory of Built-in Programs 303

 asmfind

When column 72 of a record is a non-blank character, columns 1-71 are loaded into a

buffer. Records are read up to one that is shorter than 72 characters or has a blank char-

acter in column 72. The contents of columns 16-71 (or the end of the record) are

appended to the buffer; the contents of columns 1 through 15 are discarded; they are not

inspected to verify that they are blank. The contents of the buffer are written when the

end of the statement is reached.

Input Record Format: An Assembler statement consists of one or more lines. Lines

before the last one have a non-blank character in column 72. The last line of a statement

is blank in column 72, or shorter than 72 characters.

Record Delay: When column 72 is blank, asmcont strictly does not delay the record.

Records that are not blank in column 72 are delayed until the next record that is blank in

column 72.

Premature Termination: asmcont terminates when it discovers that its output stream is

not connected.

 Converse Operation: asmxpnd.

Examples: To find statements with the string 'R13':

! /* Find R13s */
! 'PIPE',
! ' < sample assemble',
! '| asmcont',
! '| locate /R13/',
! '| asmxpnd',
! '| console'

 Notes:

1. asmcont does not support changes to the statement format by the ICTL Assembler

instruction.

asmfind—Select Statements from an Assembler File as XEDIT Find
asmfind selects Assembler statements that begin with the specified string. It discards state-

ments that do not begin with the specified string. An Assembler statement can span lines.

XEDIT rules for FIND apply.

►►──ASMFIND─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant. The maximum string length is 71 char-

acters.

Operation: Input records are matched the same way XEDIT matches text in a FIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

304 CMS Pipelines User’s Guide and Reference

 asmfind

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

When the first line of a statement is matched, asmfind copies all lines of the statement

without further inspection to the primary output stream, or discards them if the primary

output stream is not connected. When the first line of a statement is not matched, asmfind

discards all lines of the statement without further inspection, or copies them to the

secondary output stream if it is connected.

Input Record Format: An Assembler statement consists of one or more lines. Lines

before the last one have a non-blank character in column 72. The last line of a statement

is blank in column 72, or shorter than 72 characters.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. asmfind strictly does not delay the record.

Commit Level: asmfind starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: asmfind terminates when it discovers that no output stream is

connected.

 Converse Operation: asmnfind.

See Also: asmcont and asmxpnd.

Examples: To select all statements in an Assembler program that have a label beginning

with 'LAB':

... | asmfind LAB|...

To select all statements in an Assembler program that have the label 'LAB':

... | asmfind LAB_|...

The underscore indicates that column 4 must be blank; thus the label is three characters.

To select all comments in an Assembler program:

...| asmfind *|...

To select all statements of an Assembler program, except comments and those having a

label:

...| asmfind _|...

 Notes:

1. asmfind does not support changes to the statement format by the ICTL Assembler

instruction.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

 Chapter 23. Inventory of Built-in Programs 305

 asmnfind

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

asmnfind—Select Statements from an Assembler File as XEDIT NFind
asmnfind selects Assembler statements that do not begin with the specified string. It

discards statements that begin with the specified string. An Assembler statement can span

lines. XEDIT rules for NFIND apply.

►►──ASMNFIND─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant. The maximum string length is 71 char-

acters.

Operation: Input records are matched the same way XEDIT matches text in an NFIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

When the first line of a statement is not matched, asmnfind copies all lines of the statement

without further inspection to the primary output stream, or discards them if the primary

output stream is not connected. When the first line of a statement is matched, asmnfind

discards all lines of the statement without further inspection, or copies them to the

secondary output stream if it is connected.

Input Record Format: An Assembler statement consists of one or more lines. Lines

before the last one have a non-blank character in column 72. The last line of a statement

is blank in column 72, or shorter than 72 characters.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. asmnfind strictly does not delay the record.

Commit Level: asmnfind starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: asmnfind terminates when it discovers that no output stream is

connected.

 Converse Operation: asmfind.

See Also: asmcont and asmxpnd.

306 CMS Pipelines User’s Guide and Reference

 asmxpnd

Examples: To select labelled or comment statements from an Assembler program:

...| asmnfind _|...

 Notes:

1. asmnfind does not support changes to the statement format by the ICTL Assembler

instruction.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

asmxpnd—Expand Joined Assembler Statements
asmxpnd spans input records over 80-column “cards” using Assembler conventions for

continuation lines.

►►──ASMXPND──►◄

 Type: Filter.

Operation: For each input record, one or more 80-byte records are created with continua-

tion characters, as required, in column 72. Columns 1 through 71 of the input record are

written as the first line of a statement, padded with blanks if required. The statement is

not continued when the input record is 71 bytes or shorter: column 72 is made blank.

When the input record is longer than 71 characters, continuation is indicated with an

asterisk in column 72 of the first record for the statement. The remaining characters are

written to continuation records with blanks in columns 1 through 15, 56 characters for each

record. Continuation is indicated in each output record until the input record is exhausted.

Output Record Format: 80-byte records with blanks in column 73-80.

Record Delay: asmxpnd does not delay the last record written for an input record.

Premature Termination: asmxpnd terminates when it discovers that its output stream is

not connected.

 Converse Operation: asmcont.

Examples: To generate an Assembler DC instruction for each input line with the contents

of the line as a character constant:

/* MAKEDC REXX */
'callpipe (name MAKEDC)',
 '|*:',

"|change /'/''/", /* double quotes */
"|change /&/&&/", /* ... and ampersands */
"|spec /DC/ 10 /C'/ 16 1-* next /'/ next", /* Make big DC */

'/ / next', /* ensure S&D area available */
'|asmxpnd', /* Continuation if needed */

 '|*:'
exit RC

 Chapter 23. Inventory of Built-in Programs 307

 beat

 Notes:

1. asmxpnd does not support changes to the statement format by the ICTL Assembler

instruction.

beat—Mark when Records Do not Arrive within Interval
beat is used as a “heartbeat monitor”. It passes records from its primary input stream to

its primary output stream. If no input record arrives within the specified interval, a record

. is written to the secondary output stream. A record can be written to the secondary output

. stream once per input record or each time the interval expires.

►►──BEAT──┬──────┬──┬─number────────┬──┬─────────────────┬──►◄
. └─ONCE─┘ └─number.number─┘ └─delimitedString─┘

Type: Device driver.

. Syntax Description: An initial keyword is optional. One numeric operand is required.

A delimited string is optional.

The numeric operand specifies the interval in seconds. Up to six digits may be specified

after the period, allowing for a microsecond interval.

The default string is a null string.

Operation: The delimited string is written to the secondary output stream when the

. interval expires without an input record arriving. When ONCE is omitted, beat restarts

. another timeout immediately after the output record on the secondary output stream is

. consumed; when ONCE is specified, beat waits for the next input record without generating

. further output records.

Streams Used: Two streams must be defined. Records are read from the primary input

stream; no other input stream may be connected.

Record Delay: beat strictly does not delay the record it passes to the primary output

stream.

Commit Level: beat starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: beat terminates when it discovers that either of its output

streams is not connected.

See Also: delay, gate, and synchronise.

Examples: To pass records until no record has arrived in one second:

'pipe (end ?) ... | b: beat 1 | ... ? b:'

In this example, the secondary output stream is defined, but it is not connected. This

causes beat to terminate when it tries to write a null record to its secondary output stream.

308 CMS Pipelines User’s Guide and Reference

 between

 Notes:

1. For beat to work as described, it is assumed that the input records are read into the

pipeline by a device driver that obtains its input through an asynchronous host inter-

face, such as does tcpclient.

2. beat cannot detect timeouts during CMS commands.

between—Select Records Between Labels
between selects groups of records whose first record begins with a specified string. The

end of each group can be specified by a count of records to select, or as a string that must

be at the beginning of the last record.

►►──BETWEEN──┬─────────┬──delimitedString──┬─number──────────┬──►◄
└─ANYcase─┘ └─delimitedString─┘

Type: Selection stage.

Syntax Description: A keyword is optional. Two arguments are required. The first one

is a delimited string. The second argument is a number or a delimited string. The number

must be 2 or larger.

Operation: between copies the groups of records that are selected to the primary output

stream, or discards them if the primary output stream is not connected. Each group begins

with a record that matches the first specified string. When the second argument is a

number, the group has as many records as specified (or it extends to end-of-file). When

the second argument is a string, the group ends with the next record that matches the

second specified string (or at end-of-file).

When ANYCASE is specified, between compares fields without regard to case. By default,

case is respected.

between discards records before, between, and after the selected groups or copies them to

the secondary output stream if it is connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. between strictly does not delay the record.

Commit Level: between starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: between terminates when it discovers that no output stream is

connected.

 Converse Operation: outside.

See Also: inside, notinside, and pick.

Examples: To select examples in a Script file, assuming the tags are at the beginning of

the record:

...| between /:xmp./ /:exmp./ |...

 Chapter 23. Inventory of Built-in Programs 309

 block

 Notes:

1. between selects records from multiple groups, whereas frlabel followed by tolabel

selects only one group.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

! 3. pick can do what between does and much more.

block—Block to an External Format
block generates output blocks from input logical records. The output blocks are in a

format that is suitable for interchange with other systems. For instance, a tape in the VBS

format can be read on an z/OS system; a file blocked C and translated to ASCII can be

downloaded to a personal computer as a binary object.

Some blocking formats fill all output blocks (possibly except for the last) to capacity. As

a consequence data from an input record may be spanned over two or more output blocks.

 ┌ ┐─Fixed──────────────────────
►►──BLOCK────number──┼────────────────────────────┼── ──►◄
 ├─Fixed──number─ ─────────────┤
 ├ ┤─SF─────────────────────────
 ├ ┤─SF4────────────────────────
 ├ ┤─ADMSF──────────────────────
 ├ ┤─CMS────────────────────────
 ├ ┤─CMS4───────────────────────
 ├ ┤─Variable───────────────────
 ├ ┤─VB─────────────────────────
 ├ ┤─VS─────────────────────────
 ├ ┤─VBS────────────────────────
 ├ ┤─AWSTAPE────────────────────
 ├ ┤─NETdata────────────────────

├ ┤─┤ PC-style ├───────────────
 └ ┘ ─TEXTfile─ ──┬ ┬──────────────

└ ┘─┤ PC-style ├─

 PC-style:

├─ ──┬ ┬─C─────────────────────── ──┬ ┬─────────── ──┬ ┬─────────────── ─┤
 │ │┌ ┐─15─── └ ┘─TERMinate─ │ │┌ ┐─3F───
 ├ ┤ ─LINEND─ ──┼ ┼────── ─────── └ ┘ ─EOF─ ──┼ ┼──────

│ └─xorc─┘ │ └─xorc─┘
 ├ ┤─CRLF────────────────────
 └─STRING──delimitedString─┘

 Type: Filter.

Syntax Description: The first word of the argument string must be a number specifying

the maximum block size. The blocking format is an optional keyword; the default is

FIXED. The record length may be specified after the keyword FIXED. A line end character

is optional with LINEND; the default is 15 (representing the character X'15').

The minimum acceptable value for the block size is 1, except for ADMSF, where it is 2;

. except for AWSTAPE, where it is 7; and except for V, VB, VS, and VBS, where it is 9. There

. is no limit to the block size other than the availability of virtual storage. Even though no

maximum block size is enforced for AWSTAPE, a maximum of 4096 should be observed;

files created with a block size larger than 4096 may not function with the real AWSTAPE

device driver.

310 CMS Pipelines User’s Guide and Reference

 block

The formats C, LINEND, CRLF, and STRING support two additional keywords, TERMINATE

and EOF. Use TERMINATE to specify that the last line of the file should have a terminating

line end sequence; the default is to insert line end sequences between lines and leave the

last line without one. Use EOF to specify that an end-of-file character should be appended

to the contents of the file. X'3F' (substitute) is the default end-of-file character. block

inserts an end-of-file character only when the keyword is specified.

The format TEXTFILE supports two additional options: A line end character specified as C,

LINEND, CRLF, or STRING; and the EOF option. The TERMINATE option can be specified, but

it cannot be suppressed. The default is LINEND 15 TERMINATE.

Operation: Input records are blocked or spanned to blocks of the specified size or less.

Descriptor words are generated for formats other than FIXED, C, CRLF, STRING, and LINEND.

FIXED Juxtapose records with no control information in between. Only the last

output block can be short. Null input records are discarded. When a

record length is specified (as the second number), it is ensured that all

input records that are not null are of this length. When a record length

is not specified, the length of the first record that is not null is used as

the record length; it is ensured that all input records have the same

length and that the block size is a multiple of the record length. block

stops with an error message if this is not the case. The corresponding

z/OS record format is Fixed Block Standard (RECFM=FBS).

SF Block records to the structured field format. Each record is prefixed by

a halfword length field; the length includes the length of the halfword

(thus, the minimum length is 2). Except for possibly the last block, each

block is filled completely; a logical record (and the halfword length

field) can span blocks.

SF4 Block records to a format similar to the structured field format. Each

record is prefixed by a fullword length field; the length includes the

length of the fullword (thus, the minimum length is 4). Except for

possibly the last block, each block is filled completely; a logical record

(and the fullword length field) can span blocks.

ADMSF Block records to the structured field format used in GDDM objects. Each

record is prefixed by a halfword length field; the length includes the

length of the halfword (thus, the minimum length is 2). Except for

possibly the last block, each block is filled completely; a logical record

can span blocks. The length field does not span blocks. When the last

byte of a logical record is stored in the second last position of the output

record, the last position is padded with X'00'; the following record is

stored at the beginning of the next block.

CMS Build blocks in the format used internally by the CMS file system for

files with variable length records. This format is exposed in data

unloaded by, for instance, the CMS commands TAPE DUMP and DISK

DUMP. The record descriptor word prefixed to the record is a halfword

(two bytes). It contains the length of the record (not including the

halfword). Logical records (and record descriptors) can span output

blocks. The last block is not padded. (The TAPE DUMP command does

not pad blocks; use pad to pad the last block with zeros as it is in the

file system.) Null input records are discarded. block CMS terminates

with an error message if an input record is 64K or longer.

 Chapter 23. Inventory of Built-in Programs 311

 block

CMS4 Prefix each record with a fullword length field which contains the count

of characters that follow the length field. That is, the length of the

length field is not included in the count. Null input records are

discarded. Logical records (and record descriptors) can span output

blocks. The last block is not padded.

VARIABLE Block to the OS unblocked variable format (RECFM=V). Each record is

prefixed with a block descriptor word and a record descriptor word,

increasing its length by eight bytes. block V terminates with a message

. if a record is longer than 32759 bytes or is too long to fit in the output

buffer (that is, if the length of the input record is greater than the

specified block size minus eight).

VB Block to the OS variable blocked format (RECFM=VB). The output block

contains as many logical records as will fit within the specified block

size. The overhead for descriptor words is four bytes per block plus

four bytes per record. A logical record does not span output blocks.

. block VB terminates with a message if a record is longer than 32759

. bytes or is too long to fit in the output buffer (that is, if the length of the

input record is greater than the specified block size minus eight).

VS Generate blocks in the OS variable spanned format (RECFM=VS). Records

are segmented to fit within the output buffer. A block has one segment.

A logical record starts a new block.

VBS Block to the OS variable blocked spanned format (RECFM=VBS). Records

are segmented to fit within the output buffer. A logical record can span

blocks; there is a segment in each block that the record is spanned over.

Segment descriptors are prefixed to the segments; segment descriptors do

not span blocks. The output block length (except possibly for the last

block) is between n-5 and n, where n is the specified block size.

AWSTAPE Segment and span records according to the format used by the AWSTAPE

! device driver for p370, rs370, p390 (PC Server System/390) and zPDT
! (IBM System z Personal Development Tool). If the input record plus

the six bytes segment descriptor is not longer than the specified block

size, a single output record is produced. For longer input records, as

many segments as required are produced.

NETDATA Segment and span records according to the NETDATA format. Null input

records are discarded. The first byte of each input record that is not null

is a flag byte indicating whether the record is a control record (the bit

for X'20' is on) or a data record (the bit for X'20' is off). Bits 3 to 7

of the flag byte are copied to the corresponding bits of the flag bytes in

all output segments produced from an input record. The NETDATA

control records must have been built previously, most likely injected by

. one or more literal or preface stages. The output buffer is flushed after

. an \INMR6 record has been written. This ensures that any stacked file

. begins in a separate record.

C Block records with an end of line character (line feed, X'25') between

logical records. Line feed control characters in input records are copied

unchanged to the output. Except for possibly the last block, each block

is filled completely; a logical record can span blocks.

312 CMS Pipelines User’s Guide and Reference

 block

Output Record Format: When V, VB, VS, or VBS is specified, the output block is prefixed

by four bytes block descriptor. In a basic block descriptor, the length of the block

(including the block descriptor word) is stored in the first two bytes of the block descriptor

. word; the first bit and the last two bytes are zero. An extended block descriptor word is

. used when the output block is longer than 32K. Its leftmost bit is one to distinguish the

. extended block descriptor from the basic format block descriptor; the length of the block

. including the block descriptor is stored in the following 31 bits.

When SF, SF4, ADMSF, V, VB, CMS, or CMS4 is specified, a record descriptor word is

prefixed to each logical record. (That is, to each input record.) For V and VB, the record

descriptor word is four bytes. The length of the record (including the length of the record

descriptor word) is stored in the first two bytes; the next two bytes contain zeros. For SF

and ADMSF, the record descriptor word is two bytes; it contains the length of the record

(including the record descriptor). For SF4, the record descriptor word is four bytes; it

contains the length of the record (including the record descriptor). For CMS, the record

descriptor word is two bytes; it contains the length of the record (excluding the record

descriptor). For CMS4, the record descriptor word is four bytes; it contains the length of

the record (excluding the record descriptor).

When VS, VBS, AWSTAPE, or NETDATA is specified, a segment descriptor word is prefixed

to each segment of a record. For VS and VBS, the the segment descriptor word is four

bytes; the length of the segment (including the segment descriptor word) is stored in the

first two bytes of the segment descriptor word; the third byte has segmentation flags

(X'02' means not first segment, X'01' means not last segment); the last byte is zero. VS

and VBS segments do not span blocks. For AWSTAPE, the segment descriptor is six bytes,

consisting of two halfword length fields which have the least significant byte leftmost, a

flag byte, and a byte of zeros. The first length field contains the number of data bytes that

follow the segment descriptor; the second length field contains the number of data bytes in

the previous segment (thus allowing for read backwards). In the flag byte, X'80' means

the first segment of a physical block; X'40' means an end-of-file record; and X'20'
means the last segment of a physical block. For NETDATA, the segment descriptor is a

byte with the length of the segment (including the descriptor) followed by a flag byte

LINEND Block records with an end of line character (by default new line, X'15')

between logical records. End of line characters in input records are

copied unchanged to the output. Except for possibly the last block, each

block is filled completely; a logical record can span blocks.

CRLF Block records with carriage return and line feed (X'0D25') between

logical records. The values are EBCDIC; blocking should be done before

the records are translated to ASCII. Except for possibly the last block,

each block is filled completely; a logical record can span blocks, as can

a line end sequence.

STRING Block records with the specified string between logical records. Except

for possibly the last block, each block is filled completely; a logical

record can span blocks, as can a delimiter string.

TEXTFILE Append a line end sequence to each record and join as many records as

will fit in the buffer. Records are not spanned across block boundaries.

If the record and the line end sequence cannot fit in the buffer, the

record and the line end sequence are written as separate records. The

default line end character is X'15'. If EOF is specified, the end-of-file

character is appended to the last record (after the line end sequence).

TEXTFILE is designed for use with a byte stream file system.

 Chapter 23. Inventory of Built-in Programs 313

 block

(X'80' means first segment; X'40' means last segment; X'20' means the record is a

control record); segments can span blocks.

Streams Used: Records are read from the primary input stream and written to the primary

output stream.

Record Delay: block delays input records as required to build an output record. The

delay is unspecified.

Commit Level: block starts on commit level -2000000000. It allocates the buffer of the

specified size and then commits to level 0.

Premature Termination: block terminates when it discovers that its output stream is not

connected.

 Converse Operation: deblock.

See Also: fblock and join.

Examples: To write a CMS file to an unlabelled tape in variable blocked format suitable

for z/OS:

pipe < input file | block 16000 vb | tape

To write a fixed record format CMS file that has record length 80 in a format suitable for

z/OS:

pipe < input file | block 16000 | tape

These examples show the effect of the TERMINATE and EOF options:

 pipe literal abc|block 80 linend * | console
►abc
►Ready;

 pipe literal abc|block 80 linend * terminate | console
►abc*
►Ready;

 pipe literal abc|block 80 linend * terminate eof + | console
►abc*+
►Ready;

To turn a tape reel into an file that can be downloaded:

/* CMS2AWS REXX -- Build downloadable tape. */
'addpipe *.output:|block 4096 awstape |> maint 181 a'
Do until records=0 /* Two TMs are EOT */

'callpipe (end ? name CMS2AWS)',
'?tape', /* Read real tape */
'|c: count lines', /* count number of blocks */
'|*:', /* Pass a file on */

 '?c:',
'|var records' /* Number of blocks in physical file */

'output' /* Null record for tape mark */
end

314 CMS Pipelines User’s Guide and Reference

 browse

 Notes:

1. Refer to “Netdata Format” on page 65 for usage information about block NETDATA.

. The file INMR123 REXX is shipped on the CMS system disk (190).

The Netdata format is documented in z/VM: CMS Macros and Functions Reference,

SC24-6262.

2. block C is a convenience for block LINEND 25. block CRLF is a convenience for block

STRING X0D25.

3. LINEEND is a synonym for LINEND.

4. Though input records are called logical records and output records are called blocks,

these are still records (or lines) as perceived by the pipeline dispatcher.

browse—Display Data on a 3270 Terminal
browse displays its input data on a 3270 terminal. You can control the display with the

program function keys. The display can be your terminal or (on CMS only) a terminal that

is dialled to your virtual machine. The input is passed to the output as it is being

displayed.

►►─ ──┬ ┬─BROWSE─ ──┬ ┬───────────── ──┬ ┬────────────── ─►◄
└─BRW────┘ └─┤ options ├─┘ └─(──┤ attrs ├─┘

options:

├─ ──┬ ┬───────── ──┬ ┬──── ──┬ ┬────────────────────── ─►
└─devaddr─┘ └─CC─┘ └─DATACODEPAGE──number─┘

►─ ──┬ ┬────────────────────── ─┤
 └─TERMCODEPAGE──number─┘

Type: Experimental device driver.

Syntax Description: The arguments consist of options, a left parenthesis, and attribute

characters as defined for buildscr. The options specify the terminal to use (the log on

terminal is the default), a keyword to specify that the data to be displayed contain machine

carriage control characters, and keywords to specify the code pages of the data to display

and of the terminal.

A left parenthesis separates the options for browse from an option list passed as the argu-

ments to buildscr. In this option list, the first four words may each be specified as an

asterisk, three characters, or six hexadecimal characters. The characteristic of the terminal

is provided for any remaining unspecified options; an asterisk can be used as a placeholder

when an option is specified and an earlier option is to be defaulted.

Operation: The geometry and features of the device are determined. The input file is

shown in panels.

When CC is specified, the first column of the input record contains a carriage control char-

acter which may be an ASA or machine carriage control character. Each page begins with

a page eject carriage control; a page is displayed in as many panels (the size of the

display) as are required. When CC is omitted, input lines are displayed single spaced; a

page is the size of the display.

Program Function Keys:

 Chapter 23. Inventory of Built-in Programs 315

 browse

1 Pop up a panel showing a summary of the program function key actions.

2 Unused; ignored.

3 Exit.

4 Move to the beginning of the file.

5 Move to the end of the file.

6 Redo the previous search.

7 Move a panel back (towards the beginning of the file).

8 Move a panel forward (towards the end of the file).

9 Unused; ignored.

10 Move a page back (towards the beginning of the file).

11 Move a page forward (towards the end of the file).

12 Exit.

Program function keys 13 through 24 perform the same function as keys 1 through 12,

respectively.

The enter key moves a panel forward.

On CMS, program access key 2 drops into the INTM terminal monitor program.

Searching: The pop up panel displayed in response to program function key 1 contains an

input area. A search is performed when characters are entered in this input area (case and

blanks are respected in this string). The search is towards the end of the file for the partic-

ular string entered in the case entered. When the specified string is found in the 3270 data

streams that represent the panels, the corresponding panel is displayed; there is no indi-

cation of where on the panel the matching string was found. The string can consist

partially or entirely of 3270 control sequences. The last panel of the file is shown when

the search fails; there is no audible indication.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected.

Record Delay: browse strictly does not delay the record.

Premature Termination: browse terminates when it runs out of storage. This is likely to

be accompanied by several REXX error messages.

Examples: To display a file:

pipe < 5785rac memo | browse cc

 Notes:

1. The part of the input that has been read by browse is kept in virtual storage; the file is

read only as required to build panels for display or search. Thus, you can see the first

few panels of even an infinitely large file.

2. When the output stream is connected, any unprocessed input records are passed to the

output when you exit from browse.

3. browse does not support horizontal scrolling.

316 CMS Pipelines User’s Guide and Reference

 buffer

 buffer—Buffer Records
buffer reads input records and accumulates them in memory. buffer writes the buffered

records to its output when it reaches end-of-file and (if arguments are specified) each time

it reads a null record. Optionally, buffer writes multiple copies of the buffered files.

►►──BUFFER─ ──┬ ┬───────────────────────────── ─►◄
 └─number──┬─────────────────┬─┘

└─delimitedString─┘

 Type: Filter.

Syntax Description: Specify a number to write multiple copies of a buffered file; a delim-

ited string after the number specifies a record to be written between multiple copies of a

buffered file.

Operation: When no arguments are specified, records (including null ones) are stored in a

buffer until end-of-file. The buffered records are then written to the primary output stream

in the order they were read.

When a number is specified (it can be 1), the input stream is considered to consist of one

or more files separated by null records. Each file is stored in the buffer and written to the

output (in the order it was read) when a null record is read, or at end-of-file. The set of

records in a file is written as many times as specified by the first argument. If the number

is 2 or more, the copies of a file are delimited by records containing the string specified by

the second argument, or by null records if no second argument is specified. When the file

has been written to the output as many times as requested, the null input record is copied

to the output; the buffer is reset to be empty; and reading continues.

Streams Used: Records are read from the primary input stream and written to the primary

output stream.

Record Delay: When no argument is specified, buffer delays all records until end-of-file.

When an argument is specified, the null record (which terminates the part of the file being

buffered) is consumed before writing the first line of the partial file.

Premature Termination: buffer terminates when it discovers that its output stream is not

connected.

See Also: copy, dup, elastic, instore, outstore, and sort.

Examples: To read lines from the terminal and put them into the stack after the user

signals end-of-file with a null input line:

/* Read user's input into stack */
say 'Enter commands for' gizmo':'
'PIPE console | buffer | stack'

If there were no buffer stage, the pipeline would loop as soon as a line was put into the

stack, because the console stage would immediately read that line and write it to the stack

stage, which would read it and put it back into the stack, and then the console stage would

read it again.

With the buffer stage, the pipeline works as follows: console reads lines from CMS and

writes them into the pipeline. It reads all lines from the console stack and the terminal

 Chapter 23. Inventory of Built-in Programs 317

 buffer

input queue before it begins reading from the terminal. It terminates when it reads a null

line (which indicates end-of-file). buffer stores all its input lines in its buffer until it

receives end-of-file on its input; it then writes the contents of its buffer to the output; and

stack copies the records from its input to the CMS console stack. Thus, by the time buffer

begins to write records, the console stage has terminated and it is safe to put the records

onto the stack.

A direct read (see console) may be more appropriate for reading from the terminal to the

stack.

A buffer stage is required to buffer the output from rexxvars when data derived from its

output are stored back into the variable pool with a var, stem, varload, or varset stage:

pipe rexxvars | find v_ARRAY.| spec 3-* | buffer | stem vars.

As shown in this example, it may be more efficient to buffer the variables that are set

rather than the output from rexxvars.

 Notes:

1. A buffer stage may be needed to prevent stalls in intersecting multistream pipelines.

2. dup makes one or more copies of each input record; the copies are contiguous. buffer

with a number makes copies of complete files.

3. With the same input, these two invocations of buffer produce identical output:

...| buffer |...

...| buffer 1 |...

But the timing of the output records is different if there are null records. When used

without arguments, buffer reads all input records before it generates any output. When

an argument is specified, buffer produces its first output record as soon as it reads the

first null input record.

4. Use buffer without arguments to be sure that an arbitrary sequence of records is

buffered in its entirety.

5. To generate two copies of an entire file that contains null lines:

...| instore | dup | outstore |...

The dup stage duplicates the single file descriptor record created by instore; outstore

makes two copies of the file as a result.

318 CMS Pipelines User’s Guide and Reference

 buildscr

buildscr—Build a 3270 Data Stream
buildscr prepares lines of data to be displayed on a 3270 display in full screen mode. The

input to buildscr is a print file that has machine carriage control characters. Such a file is

often generated by a preceding overstr stage. The output from buildscr contains 3270

character attributes that cause the highlighted and underscored data to be differentiated

from normal text when the records are written to a 3270 (for instance by a fullscr stage).

►►──BUILDSCR─ ──┬ ┬─────────── ─►◄
 └ ┘─┤ attrs ├─

attrs:

├──┤ attr ├──►

►─ ──┬ ┬─── ─┤
 └ ┘─┤ attr ├─ ──┬ ┬───────────────────────────────────────

 └ ┘─┤ attr ├─ ──┬ ┬─────────────────────────
 └ ┘─┤ attr ├─ ──┬ ┬───────────

└ ┘─┤ sizes ├─

attr:

├─ ──┬ ┬─*──────────────── ─┤
├─char char char──(1)─┤
└─XhexString──(2) ─────┘

sizes:

├──number──┬──────────────────────────┬──┤
 └─number──┬──────────────┬─┘

└ ┘─┤ termtype ├─

termtype:

 ┌ ┐─0────
├─ ──┼ ┼─3278─ ──┬ ┬───────────────────── ─┤

 ├ ┤─3279─ │ │┌ ┐─1─
 ├ ┤─1──── └ ┘ ──┴ ┴─0─ ──┬ ┬──────────
 ├ ┤─3277─ │ │┌ ┐─TEXT─
 └ ┘─2──── └ ┘ ──┼ ┼──────

 └ ┘─APL──

Notes:
1 There are no blanks between the three characters.
2 The string must contain six hexadecimal digits.

Type: Arcane filter.

Syntax Description: The first four blank-delimited words specify extended attributes to be

used for the four possible combinations of underscoring and highlighting. The order of the

attribute items is: neither highlighted nor underscored, underscored, highlighted, and both

highlighted and underscored. An attribute item may be an asterisk (*) to take the default

or three characters that specify extended attributes. The three characters can be specified

as such or as an X followed by six hexadecimal digits. The three attribute characters are

in the order highlighting, colour, and program symbols. For instance, '27e' selects the

programmed symbol set that has ID 'e' (=X'85') and makes it white (7) reverse video

(2). Refer to 3274 Description and Programmer’s Guide, GA23-0061, for a description of

3270 extended attribute characters. Use X'00' to select the default attribute value

depending on the terminal.

 Chapter 23. Inventory of Built-in Programs 319

 buildscr

Words five and six contain numbers that specify the screen size in character cells (lines

followed by columns). The default is 32 lines of 80 columns. The minimum size is 1920

(24 by 80); the maximum size is 16K.

The seventh word is a switch to indicate whether the display supports the APL/TEXT

feature; it is assumed not to have the feature when the argument string contains six words

or fewer. Specify 0 when the device does not support APL/TEXT. Specify 3278 (or 3279)

for modern 3270 terminals; specify 3277 for the original 3277 terminals and some TELNET

servers. You can also specify this operand in the form used for the third word of the

output from fullscrs: The number 1 specifies 3278-style APL/TEXT; the number 2 specifies

3277-style APL/TEXT.

The eighth word specifies whether the terminal supports extended highlighting and char-

acter attributes; the default is 1. Specify 0 for a device that does not support extended

features (3277 and some TELNET servers).

The ninth word specifies the type of APL/TEXT you wish to enable. The default is TEXT;

specify APL to use such a mapping.

Operation: Two translate tables are set up containing the defaults that correspond to the

CP translation for TEXT ON (or APL ON if the keyword APL is specified) for the specified

type of terminal. If the secondary input stream is defined, these defaults are modified by

overlaying one record from it. Output records are 3270 data streams that can be used to

display the contents of the input file, formatted as on the page. Character attribute

sequences are inserted into the data to switch attributes as determined by the contents of

the corresponding positions of the descriptor record. An input page that has more lines

than the display is written as several output records. Input lines that are too long for the

screen width are truncated at the right hand side. Blank lines are generated for input lines

that have skip carriage control (carriage control characters X'11', X'19', X'1B', X'0B',

and X'13'). Skips to channels other than channel 1 are treated as requests to skip one

line.

Input Record Format: X'00' in the first column indicates a descriptor record in the

format produced by overstr. Each column of the descriptor record specifies the high-

lighting and underscoring of the corresponding column in the data record that follows the

descriptor record. These descriptor values are used:

X'00' The position is blank.

X'01' The position contains an underscore. (An underscored blank.)

X'02' The position contains a character that is neither blank nor underscore.

X'03' The position contains an underscored character.

X'04' The position contains a highlighted blank.

X'05' The position contains a highlighted underscore.

X'06' The position contains a highlighted (overprinted) character.

X'07' The position contains a highlighted and underscored character.

Records without X'00' in column 1 must begin with a machine carriage control character;

data are from column 2 onward. Records that are not preceded by a descriptor record are

neither underscored nor highlighted (though they can contain underscore characters). The

end of a page is indicated by a skip to channel 1 (X'89' or X'8B'). Data in a record that

has X'89' carriage control are on the last line of a page.

The data part of input lines is truncated at the screen width.

320 CMS Pipelines User’s Guide and Reference

 buildscr

If the secondary input stream is connected, a single record is read from it before the file on

the primary stream is processed. (End-of-file is treated as if a null record were read.)

This record can be any length, but only the first 512 bytes are used. The record is

assumed to contain two translate tables that are to be overlaid on the two default translate

tables, starting at the beginning of the first table. The ending part of the tables is left

unchanged if the record is shorter than 512 bytes.

Output Record Format: The first position is a flag byte to indicate whether the screen

image is the first from a page of the document (X'01') or a subsequent one (X'00').

Column 2 has the constant 'B' (X'C2'), which is the write control character for keyboard

restore; 3270 orders and data follow. The screen is formatted to a single protected field

with the attribute character in the lower right hand corner of the screen. The cursor is

inserted on this attribute byte.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded. If the secondary input stream is defined,

one record is read and consumed from it. The secondary input stream is severed before

the primary input stream is processed. The secondary output stream must not be

connected.

Record Delay: buildscr delays records until it has filled a panel. It is unspecified whether

it reads one more record before writing the output record.

Premature Termination: buildscr terminates when it discovers that its output stream is

not connected.

See Also: fullscr, fullscrq, fullscrs, overstr, and xpndhi.

Examples: To reformat Script output for a 1403 to be displayed on a 32-line 3270 that

supports APL/TEXT:

pipe < $doc script | overstr | buildscr * * * * 32 80 1 |...

! Refer to PIPDSCR EXEC (on MAINT 193) for a more sophisticated example.

 Notes:

1. buildscr is intended to process the output from overstr (possibly with an intervening

xpndhi stage).

2. Use spec to prefix X'09' (write no space) to each line of a file without carriage

control.

...| spec x09 1 1-* 2 | buildscr |...

3. Use asatomc to convert from ASA carriage control to machine carriage control.

4. Use fullscrs, fullscrq, or diagnose 8C to determine the size of the terminal screen.

5. When specifying an attribute item in the operands for buildscr, use X'00' to select

the default behaviour for a particular attribute. This is most conveniently done by

specifying a hexadecimal string. Remember that all three characters of the word must

be specified in hexadecimal; for example, the character “4” is specified as F4.

...| buildscr * xf40000 x00f700 xf4f700 |...

In this example, characters that are neither highlighted nor underscored are shown with

the default highlighting, colour, and programmed symbol set. Underscored characters

are shown using extended highlighting for underscore with the default colour and

symbol set. Highlighted characters are shown in white.

 Chapter 23. Inventory of Built-in Programs 321

 casei

6. The output from buildscr cannot in general be fed directly to fullscr to be displayed.

A control mechanism is required for an interactive display, for instance to browse the

! data (see SCRCTL REXX on MAINT 193). At the least, the flag byte must be replaced by

a control byte, as described for fullscr.

7. buildscr cannot ensure that the 3270 data stream is displayed on a device that has the

geometry specified or defaulted. Lines may wrap when the actual screen has a

different line length. The display may give unit check if the actual screen is smaller

than the size specified (the product of lines and columns).

casei—Run Selection Stage in Case Insensitive Manner
The argument to casei is a stage to run. casei invokes the specified stage having translated

the argument string to upper case. It then passes input records translated to upper case to

this stage. When the stage writes a record to its primary output stream, the corresponding

original input record is written to the primary output stream from casei; likewise, the

original input record is written to the secondary output stream, when the stage writes to its

secondary output stream.

The argument is assumed to be a selection stage; that is, it should specify a program that

reads only from its primary input stream and passes these records unmodified to its

primary output stream or its secondary output stream without delaying them.

►►──CASEI──┬──────────────────────┬──┬─────────┬──word──►
 └ ┘─ZONE──┤ inputRange ├─ └ ┘─REVERSE─

►─ ──┬ ┬──────── ─►◄
└─string─┘

 Type: Control.

Syntax Description: A word (the name of the program to run) is required; further argu-

ments are optional as far as casei is concerned, but the specified program may require

arguments.

Operation: casei constructs a subroutine pipeline to perform the required transformation

on input records. If ZONE is specified, only the specified part of the input record is passed

to the specified stage (see zone). If REVERSE is specified, the contents of the input record

are reversed (after the zone is selected).

Streams Used: Records are read from the primary input stream; no other input stream

may be connected.

Record Delay: casei does not add delay.

Commit Level: casei starts on commit level -2. It does not perform an explicit commit;

the specified program must do so.

See Also: reverse and zone.

! Examples: To select records that contain a particular GML tag at the beginning of the

record, ignoring case:

pipe ... | casei find :figref | ...

322 CMS Pipelines User’s Guide and Reference

 change

 Notes:

1. All built-in selection stages that operate on strings now support the ANYCASE option,

as of CMS Pipelines level 1.1.10/0015; thus casei is obsolete as far as built-in

programs are concerned. For example, a case insensitive strfind is:

pipe ... | strfind anycase /:figref / | ...

2. The argument string to casei is passed through the pipeline specification parser only

once (when the scanner processes the casei stage), unlike the argument strings for

append and preface.

. 3. End-of-file is propagated from the streams of casei to the corresponding stream of the

. specified selection stage.

Return Codes: If casei finds no errors, the return code is the one received from the

selection stage.

change—Substitute Contents of Records
change transforms the records passing through in a way similar to the operation of the

CHANGE XEDIT subcommand, replacing occurrences of one string with another string. As

! with XEDIT, the strings may be null. If the first string is null, the second one is inserted; if

the second string is null, all occurrences of the first one are deleted.

►►──CHANGE─ ──┬ ┬───────── ──┬ ┬───────────────── ─►
└─ANYcase─┘ ├─inputRange──────┤

 │ │┌ ┐─────────
 └─(───6─range─┴──)─┘

►─ ──┬ ┬─┤ changeString ├───────────────── ──┬ ┬─────────── ─►◄
 └─delimitedString──delimitedString─┘ └─numorstar─┘

changeString:

├──delimiter──string──delimiter──string──delimiter──┤

 Type: Filter.

Syntax Description: A keyword is optional. An input range or a list with up to ten

ranges in parentheses is optional after the keyword; the default is the complete input

record. (This is equivalent to the XEDIT zone setting.) When ranges are specified in

parentheses, they must be in ascending order and must not overlap; they refer to positions

in the input record. The change specification is mandatory; it specifies two strings. These

can be specified between three delimiter characters as in XEDIT or as two separate delim-

ited strings, or as binary/hexadecimal literals. A final number is optional to indicate the

maximum number of substitutions in a record. When the first string is not null, the default

is to change all occurrences. When the first string is null, the second string is inserted

only once; in that case, if the number is specified, it must be 1.

Operation: Within each column range (or the complete record if no range is specified),

occurrences of the first string are replaced with the second string; they are deleted if the

second string is null. Data between substitutions are copied to the output record

unchanged. The substituted string is not scanned for occurrences of the string to be

changed.

When the first string is null, the second string is inserted in front of the first range in

. records that extend to the beginning of that range. If specified, the numorstar must be

 Chapter 23. Inventory of Built-in Programs 323

 change

. one (1). That is, the string is inserted before the contents of the first column of the first

range if the record extends into that range; the string is appended to records that end in the

position before the first range; short input records are copied unmodified to the output.

Thus, null records are replaced with the string when the first range begins with column 1.

When the keyword ANYCASE is specified, the characters in the first string and the input

record are compared in upper case to determine whether the specified string is present.

When the first string contains one or more upper case characters or contains no letters, the

second string is inserted in the output record without change of case; otherwise, an attempt

is made to preserve the case of the string being replaced. When the first string contains no

upper case letters and begins with one or more (lower case) letters, the following rules

determine the case of the replacement string:

¹ When the first two characters of the replaced string in the input record are both lower

case, the replacement string is used without change.

¹ When the first character of the replaced string in the input record is upper case and the

second one is lower case (or not a letter or the string is one character), the first letter

of the replacement string is upper cased.

¹ When the first two characters of the replaced string in the input record are upper case,

the complete replacement string is upper cased.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Both changed and unchanged records are written to the primary output

stream when no secondary output stream is defined. When the secondary output stream is

defined, changed records are written to the primary output stream; unchanged records are

written to the secondary output stream.

Record Delay: change strictly does not delay the record.

Commit Level: change starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: change terminates when it discovers that no output stream is

connected.

 See Also: insert.

Examples: To change all occurrences of “this” to “that”:

...|change /this/that/|...

To prefix a constant to each record:

 pipe literal abc|change //msg /|console
►msg abc
►Ready;

The first string must be entirely within a column range; adjacent ranges are not merged:

 pipe literal xabab | literal abab | change /ab/cd/ | console
►cdcd
►xcdcd
►Ready;
 pipe literal xabab | literal abab | change (1.2 3-*) /ab/cd/ | console
►cdcd
►xabcd
►Ready;

324 CMS Pipelines User’s Guide and Reference

 change

Caseless replacement:

 pipe literal pipe | change anycase /pipe/line/ | console
►line
►Ready;
 pipe literal Pipe | change anycase /pipe/line/ | console
►Line
►Ready;
 pipe literal PiPe | change anycase /pipe/line/ | console
►Line
►Ready;
 pipe literal PIpe | change anycase /pipe/line/ | console
►LINE
►Ready;
 pipe literal PiPe | change anycase /Pipe/line/ | console
►line
►Ready;

One or both strings can be specified as a binary or hexadecimal literal:

 pipe literal 1234 | change /2/ b11000010 | console
►1B34
►Ready;
 pipe literal 1234 | change xf2 /second/ | console
►1second34
►Ready;
 pipe literal 1234 | change xf2 x82 | console
►1b34
►Ready;

To upper case all occurrences of the string “user”, irrespective of its case (for instance,

“User”):

... | change anycase /user/USER/ | ...

To change a string in the second word of the record:

 pipe literal abcdefghi ghi | literal hx ghi qh | change w2 /h/*/ | ...
... console

►hx g*i qh
►abcdefghi g*i
►Ready;

 Notes:

1. XEDIT assumes a null second string when the ending delimiters are omitted; CMS

! Pipelines requires that the change string is specified completely.

2. change is similar to the CHANGE XEDIT subcommand, with the extension of multiple

ranges (XEDIT supports one range only).

. 3. insert and spec can be used to insert a string in all records; change with a null first

string inserts the second string only in records that contain the column before the first

column of the first range.

4. The default is to change all occurrences in the record; the XEDIT default is to change

one occurrence only. XEDIT change is case sensitive (even when XEDIT command

“case mixed ignore” has been issued); thus XEDIT does not support the function

provided by ANYCASE.

 Chapter 23. Inventory of Built-in Programs 325

 chop

5. When the secondary output stream is defined, change works as a selection stage,

equivalent to locate for the first string. In this configuration, change discards output

records that are written to an unconnected output stream as long as the other output

stream is still connected; it terminates prematurely when both output streams are not

connected. Unlike a selection stage, change writes “unmatched” records to the

primary output stream when the secondary output stream is not defined.

: 6. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

7. Only one inputRange can be specified. When specifying a list of ranges in paren-

theses, the ranges must be old-fashioned column ranges, even when there is only one

range in the parentheses.

8. change cannot be cajoled into appending a string at the end of the record in general.

Use insert instead.

chop—Truncate the Record
chop truncates records after a specified column, or at a specified character or string.

 ┌ ┐─80───────────────
►►─ ──┬ ┬─CHOP───── ──┼ ┼────────────────── ─►◄

: └─TRUNCate─┘ ├─snumber──────────┤
: └ ┘─┤ stringtarget ├─

stringtarget:

├─ ──┬ ┬───────── ──┬ ┬───────────────────────── ──┬ ┬───── ─┤ target ├──┤
└ ┘─ANYCase─ │ │┌ ┐─BEFORE─ └ ┘─NOT─

 └ ┘ ──┬ ┬───────── ──┼ ┼────────
└─snumber─┘ └─AFTER──┘

target:

├──┬─xrange──────────────────────┬──┤
 └─┬─STRing─┬──delimitedString─┘

 └ ┘─ANYof──

 Type: Filter.

Syntax Description: With no arguments, input records are truncated after column 80.

: With a single operand that is zero or positive, chop truncates the record after this column;

: the result of truncating after column zero is a null record. With a single negative operand,

: chop truncates the record after the column that is the sum of the record length and the

: negative operand; the result of truncating before column zero is a null record (that is, the

: record is shorter than the negative of the operand).

Use a hex range or a delimited string to truncate the record depending on its contents. A

hex range matches any character within the range. The keyword STRING followed by a

delimited string matches the string. The keyword ANYOF followed by a delimited string

matches any one character in the string. (The keyword is optional before a one character

string, because the effect is the same in either case.) The default is to truncate the record

before the first character matching the target.

ANYCASE Ignore case. Conceptually, all processing is done in upper case.

NOT Truncate the record relative to a character or string that does not match

the specified target.

326 CMS Pipelines User’s Guide and Reference

 chop

The truncation column may be specified with an offset relative to the beginning or end of

the matching string or character. The offset may be negative.

Operation: A chop position is established in the input record. Data, if any, before the

chop position are written to the primary output stream; the remainder of the input record is

written to the secondary output stream (if it is defined and connected).

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Output is written to the primary output stream and the secondary

output stream.

Record Delay: chop strictly does not delay the record.

Commit Level: chop starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: chop terminates when it discovers that no output stream is

connected.

See Also: join, spill, split, and strip.

Examples: To truncate the record before the first blank:

! pipe literal sample line | chop blank | console
! ►sample
! ►Ready;

! There is no MODULO option on chop to truncate the records to the largest multiple of a

! specified modulo, but vchar can do that. For example to truncate to a multiple of 4 bytes

! (32 bits):

! pipe xrange 0 9 | vchar 32 32 | console
! ►01234567
! ►Ready;

! The record of 10 bytes is truncated to 8; the largest multiple of 4 that is not larger than 10.

 Notes:

1. “chop not z | locate 1” discards all records without leading z(s) because chop

truncates before the first character that is not a z. This yields a null record, which is

discarded by locate.

2. Records are not padded.

3. The minimum abbreviation of ANYCASE is four characters because ANYOF takes

precedence (ANYOF can be abbreviated to three characters).

: 4. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

: 5. -0 is not a signed number according the CMS Pipelines scanning rules.

! 6. The ambiguity of a single digit as the only operand is resolved as a signed number

! rather than matching a range of a single character.

 Chapter 23. Inventory of Built-in Programs 327

 cipher

. cipher—Encrypt and Decrypt Using a Block Cipher

. cipher encrypts or decrypts according to the following algorithms:

. ¹ Advanced Encryption Standard (AES).

. ¹ Blowfish, Bruce Schneier’s algorithm.

. ¹ Data Encryption Standard (DES).

. ¹ Triple DES (3DES).

. Electronic Code Book (ECB) and Cipher Block Chaining (CBC) modes are supported.

. The key is supplied as an input record.

. z/OS .

. ►►──CIPHER─ ──┬ ┬─AES────── ──┬ ┬─ENCRYPT─ ─►

. ├ ┤─BLOWFISH─ └ ┘─DECRYPT─

. ├ ┤─DES──────

. └ ┘─3DES─────

. ►─ ──┬ ┬──────────────────────────────────── ─►◄

. └ ┘. ─CBC─ ──┬ ┬───────────────────────────

. └. ─IV───(1) ─┬─delimitedString─┬─┘

. └ ┘─TOD───(2) ──────────

. Notes:

. 1 Not valid with Blowfish decrypt.

. 2 Blowfish encrypt only.

. Type: Filter.

. Syntax Description: The first word specifies the algorithm to be used. The second word

. specifies the “direction”.

. Operation:

. AES. Use the Advanced Encryption Standard algorithm.

. BLOWFISH. Use the Blowfish algorithm.

. DES. Use the Data Encryption Standard algorithm when an 8 byte key is

. supplied; use triple DES when a 16 or 24 byte key is supplied.

. 3DES. Use the triple Data Encryption Standard algorithm. Two or three 8 byte

. keys (16 or 24 bytes) are used. The keys must not all be equal.

. CBC. Select cipher block chaining mode. The default is electronic code book

. mode.

. IV. Specify the initialisation vector for cipher block chaining mode. The

. contents of the delimited string are repeated as necessary to fill a block.

. The keyword TOD (Blowfish encrypt only) selects the sixty-four bit

. contents of the time-of-day clock. No initialisation vector is specified

. with Blowfish decrypt, as it is received as the first cipher block.

328 CMS Pipelines User’s Guide and Reference

 cipher

. For Blowfish, the initial vector is encrypted and written to the output; the decrypting stage

. decrypts this initial record and writes the initialisation vector in plain text to the output.

. This first record would normally be discarded when decrypting.

. Key Handling: When no secondary streams are defined, the first record on the primary

. input stream is used as the key; there is then no provision for dynamic key change.

. When the secondary input stream is defined, the first record is read unconditionally from

. that stream and used as the initial key. The pipeline will stall if a record is presented on

. the primary input stream instead.

. The key is changed dynamically when a record that is not null is read from the secondary

. input.

. Input Record Format: Input records must have a length that is a multiple of the block

. size.

. Streams Used: Secondary streams may be defined. Records are written to the primary

. output stream; no other output stream may be connected. Null input records are discarded.

. Record Delay: cipher does not delay the record.

. Commit Level: cipher starts on commit level -2. It verifies that the primary output

. stream is the only connected output stream and then commits to level 0.

. Premature Termination: cipher terminates when it discovers that its primary output

. stream is not connected.

. Converse Operation: cipher.

. See Also: digest.

. Examples: A famous test case:

. Figure 388. Summary of Architectures.

. AES. Blow. DES. 3DES

. Uses hardware instructions. Yes. N/A. Yes. Yes

. Fall back to software when hardware instruc-

. tion is not available

. No. Yes. Yes. Yes

. Block size in bytes. 16. 8. 8. 8

. Key length in bytes. 16,

. 24 or

. 32

. Any. 8, 16,

. or 24

. 16 or

. 24

 Chapter 23. Inventory of Built-in Programs 329

 ckddeblock

. /* Cipher sample from FIPS 140-2 */

. Signal on novalue

. Address COMMAND

. 'PIPE (end \ name CPHRSAMP)',

. '\literal Now is the time for all',/* Trailing blank */

. '|xlate e2a',

. '|strliteral x0123456789abcdef', /* Key */

. '|cipher des encrypt',

. '|deblock 16',

. '|spec 1.4 c2x 1 5.4 c2x nw 9.4 c2x nw 13.4 c2x nw',

. '|cons'

. Exit RC

. cphrsamp

. ►3FA40E8A 984D4815 6A271787 AB8883F9

. ►893D51EC 4B563B53

. ►Ready;

. Notes:

. 1. “Hardware instructions” should be taken to mean “Message-security Assist” and

. “Message-security Assist Extension 1” and “Message-security Assist Extension 2”

. facilities. cipher specifically does not support Cryptographic coprocessors (“Integrated

. cryptographic facility”).

. 2. The CP assist feature must be installed and enabled for the underlying instructions to

. be available in a virtual machine.

. 3. The user should ensure that there is never a record present at the same time on both

. input streams, as this would lead to an indeterminate time of key change, which, in

. general, would make the enciphered text indecipherable.

. 4. When DES is specified and a 16-byte key is used, the first eight bytes should be

. different from the last eight bytes (if not, we have single DES); however, the triple DES

. standard specifies to use such a key to interoperate with single DES; thus, this is not

. enforced. The performance increase by downgrading to single DES is not exploited.

. 5. When BLOWFISH is specified, the initial S and P boxes cannot be changed from the

. default; see http://www.schneier.com/code/constants.txt

. 6. Use pad MODULO to pad records out to full cipher blocks.

. ckddeblock—Deblock Track Data Record

. ckddeblock splits a track data record into its three parts:

. ¹ Count area (CCHHRKDD).

. ¹ Key area. A null record is written when the key length (K) is zero in the count area.

. ¹ Data area. A null record is written when the data length (DD) is zero in the count

. area.

.

. ►►──CKDDEBLOCK──►◄

. Type: Arcane filter.

. Record Delay: ckddeblock does not delay the record.

330 CMS Pipelines User’s Guide and Reference

http://www.schneier.com/code/constants.txt

 cms

. Premature Termination: ckddeblock terminates when it discovers that its output stream is

. not connected.

. Notes:

. 1. The converse operation is join 2.

! 2. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

cms—Issue CMS Commands, Write Response to Pipeline
cms issues CMS commands with full command resolution, and captures the command

! response, which is then written to the output of the stage rather than being displayed on

the terminal.

 CMS

►►──CMS─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Host command interface.

Syntax Description: A string is optional. No argument is allowed when the secondary

output stream is defined.

Operation: The argument string (if present) and input lines are issued to CMS through the

CMS subcommand environment, as REXX does for the Address CMS instruction.

The response from the CMS commands is not written to the terminal. The response from

each command is buffered until the command ends and is then written to the primary

output stream. cms does not intercept CP-generated terminal output.

Each invocation of cms maintains a private CMSTYPE flag; this flag is initially set as it is

by SET CMSTYPE RT. If a command that is issued through a particular invocation of cms

issues SET CMSTYPE HT, subsequent command response lines that apply to the stage are

discarded until a SET CMSTYPE RT command is issued while the stage is running. The

HT/RT setting is preserved between commands.

When the secondary output stream is defined, the return code is written to this stream after

each command has been issued and the response has been written to the primary output

stream.

Streams Used: Records are read from the primary input stream; no other input stream

! may be connected. Null and blank input records are discarded. The response of the

! command is written to the primary output stream. The return code of each command is

! written to the secondary output stream when connected.

Record Delay: cms writes all output for an input record before consuming the input

record. When the secondary output stream is defined, the record containing the return

code is written to the secondary output stream with no delay.

Commit Level: cms starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

 Chapter 23. Inventory of Built-in Programs 331

 collate

Premature Termination: When the secondary output stream is not defined and cms

receives a negative return code on a command, it terminates. The corresponding input

record is not consumed. When the secondary output stream is defined, cms terminates as

soon as it discovers that this stream is not connected. If this is discovered while a record

is being written, the corresponding input record is not consumed.

See Also: aggrc, command, cp, starmsg, subcom, and tso.

Examples: To discard the service level information in the CMS version message:

 pipe cms query cmslevel | chop , | console
►CMS Level 28
►Ready;

 Notes:

1. Use subcom CMS to issue CMS commands without intercepting line mode output to the

terminal.

2. cms is not recommended to invoke applications that run in full screen mode, for

instance, XEDIT, because line mode console output is intercepted. Any line mode

output during the session (for instance, REXX error messages) is delayed until the

application completes.

3. Do not issue the immediate commands HT and RT while a cms stage is dispatched; this

action cannot be distinguished from the SET CMSTYPE command.

4. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: When a secondary output stream is not defined and a negative return

code is received on a command, the return code from cms is that negative return code.

When a secondary output stream is not defined and the return code is zero or positive, all

input records have been processed; the return code is the maximum of the return codes

received. When the secondary output stream is defined, the return code is zero unless an

error is detected by cms.

 collate—Collate Streams
collate compares two input streams containing master records and detail records.

Depending on the contents of a key field in the records, input records are passed to one of

three output streams (if connected) or discarded.

 ┌ ┐─NOPAD─────
►►──COLLATE─ ──┬ ┬────────────── ──┼ ┼─────────── ──┬ ┬───────── ─►
 └─STOP──ANYEOF─┘ └─PAD──xorc─┘ └─ANYcase─┘

 ┌ ┐─MASTER──DETAIL─────
►─ ──┬ ┬──────────────────────────── ──┼ ┼──────────────────── ─►◄

 └─inputRange──┬────────────┬─┘ ├─MASTER─────────────┤
└─inputRange─┘ └─DETAIL──┬────────┬─┘

 └ ┘─MASTER─

 Type: Sorter.

332 CMS Pipelines User’s Guide and Reference

 collate

Syntax Description: The keyword NOPAD specifies that key fields that are partially

present must have the same length to be considered equal; this is the default. The

keyword PAD specifies a pad character that is used to extend the shorter of two key fields.

The keyword ANYCASE specifies that case is to be ignored when comparing fields; the

default is to respect case.

Two input ranges are optional; the default is the complete record. The first input range

defines the key on the primary input stream; the second input range defines the key on the

secondary input stream. When both ranges are specified, any WORDSEPARATOR or

FIELDSEPARATOR specified for the first input range applies to the second input range as

well, unless specified again. A single input range applies to both input streams.

Two keywords are optional to define the sequence of records on the primary output stream.

Operation: The master file is read from the primary input stream; detail records are read

from the secondary input stream. Both files should be ordered ascending by their keys.

The master file should only have one record for each key.

Three output streams are written (if connected):

0 Master and detail records when both are present for a key. The order of records is

defined by the keywords. The default is to write the master record followed by all

detail records referring to the particular key. Specify one or two keywords to select

which type of record to write and the order to write them in. Records are discarded

if you specify only one keyword.

1 Master records for which there is no corresponding detail record.

2 Detail records for which there is no corresponding master record.

Streams Used: Two or three streams may be defined. If it is defined, the tertiary input

stream must not be connected. Records are read from the primary input stream and

secondary input stream. Records are written to all defined output streams.

. Unless STOP ANYEOF is specified, the primary input stream is shorted to the secondary

output stream when the secondary input stream reaches end-of-file and the secondary input

stream is shorted to the tertiary output stream when the primary input stream reaches end-

. of-file. When STOP ANYEOF is specified collate terminates as soon as it senses end-of-file

. on either input stream. The other stream is left unconsumed.

 ┌──────────┐
Master records ─────┤ ├───── Matched records
 │ │
Detail records ─────┤ ├───── Unmatched masters
 │ │

│ ├───── Unmatched details
 └──────────┘

Record Delay: collate strictly does not delay the record.

Commit Level: collate starts on commit level -2. It verifies that the tertiary input stream

is not connected and then commits to 0.

Premature Termination: collate terminates when it discovers that no output stream is

connected.

See Also: lookup, merge, and sort.

 Chapter 23. Inventory of Built-in Programs 333

 collate

Examples: Assuming that the file STOP WORDS contains an ordered list of words to

suppress, this subroutine pipeline suppresses such words from the caller’s input stream:

/* Do stop words */
'callpipe (end ?) :* | split | sort unique | c: collate',

'?< stop words | c: | *:'

To include master records that have no corresponding detail records in the primary output

stream:

/* Allow unreferenced master records */
'callpipe (end ?)',

'*.input.0: | c: collate' arg(1) '| i: faninany | *.output.0:',
'?*.input.1: | c: | i:',

 '? c: | *.output.1:'
Exit RC

 c: i:
 ┌────────┐ ┌────────┐
─────┤collate ├─────┤faninany├───────────
 │ │ │ │
 │ │ │ │
─────┤ ├─────┤ │ ┌─────
 │ │ └────────┘ │
 │ │ │
 │ ├────────────────────┘
 └────────┘

To prefix a field from the corresponding master record to each detail record and discard

unmatched master records. Unmatched detail records are written to the secondary output

stream:

/* Collate master in front of detail */
'callpipe (end ? name COLLATE)',

'|*.input.0:', /* Master file */
'|o:fanout', /* Make copy */
'|spec 20.10 1', /* Select field */
'|j:juxtapose', /* Store for later */
'|*.output.0:', /* Write details with prefix */
'?o:', /* Master records */
'|c: collate 1.10 detail', /* Collate with details */
'|j:', /* Go prefix field */
'?*.input.1:', /* Detail records */
'|c:', /* Collate them */
'?c:', /* Unmatched details here */
'|*.output.1:' /* Pass them on */

. To fill out holes in a sequence:

334 CMS Pipelines User’s Guide and Reference

 combine

. /* Fill out holes in a sequence */

. Signal on novalue

. Address COMMAND

. 'PIPE (end ? name FILLOUT)',

. '?literal 1 3 5', /* Some test data */

. '|split', /* Make three records */

. '|pad left 10', /* Shift right */

. '|c: collate stop anyeof 1.10 master',

. '|i: faninany', /* Add fillers */

. '|cons', /* Show them */

. '?literal', /* One record */

. '|dup *', /* Infinitely many */

. '|spec number 1', /* Generate all members of sequence */

. '|c:', /* Pass to collate */

. '?c:', /* Unmatched details */

. '|insert / Missing./ after', /* Mark them */

. '|i:' /* Add to main file */

. Exit RC

. fillout

. ► 1

. ► 2 Missing.

. ► 3

. ► 4 Missing.

. ► 5

. ►R;

 Notes:

1. Unless ANYCASE is specified, key fields are compared as character data using the IBM

System/360 collating sequence.

2. Use spec (or a REXX program) for example to put a sort key in front of the record if

you wish, for instance, to use a numeric field that is not aligned to the right within a

column range. Such a temporary sort key can be removed with substr for example

after the records are written by collate.

3. Use xlate to change the collating sequence of the file.

: 4. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

5. collate supports only one key field (unlike sort). Use spec to gather several key fields

into one. When this temporary key is placed in front of the original record, it can be

removed from the output of collate easily with substr even when the input records

vary in length or fields get added at some later time.

combine—Combine Data from a Run of Records
combine combines the contents of several input records into one output record. The

contents of an output column are a function of the contents of that particular column in a

range of input records. The function can be inclusive OR, AND, exclusive OR; or it can

select the first or last record that contains data for each column. Combining two records

with exclusive OR generates a map of characters that are identical in the two records.

When only one input stream is defined, combine combines runs of records on this stream.

When two input streams are defined, combine combines pairs of records, one from each

stream.

 Chapter 23. Inventory of Built-in Programs 335

 combine

►►──COMBINE─ ──┬ ┬─────────────────────── ──┬ ┬─Or────────── ─►◄
 │ │┌ ┐─1───────────────── ├ ┤─aNd─────────
 └ ┘──┼ ┼─────────────────── ├ ┤─eXclusiveor─

├─number────────────┤ ├─FIRST───────┤
 ├ ┤─*───────────────── └ ┘─LAST────────
 └─KEYLENgth──number─┘

 Type: Filter.

Syntax Description: When only one input stream is defined, a number is optional; it

specifies how many records to combine with the first one in a range. (That is, one less

than the number of records in a range.) The default is to combine two input records (as if

the number 1 were specified). Specify an asterisk to combine all input records into one

output record.

KEYLENGTH specifies that runs of records that contain the same key in the first n columns

are combined. (n is the number specified after the keyword.)

When two input streams are defined, a number or KEYLENGTH is rejected. The keyword

STOP specifies when combine should terminate. ALLEOF, the default, specifies that combine

should continue as long as at least one input stream is connected. ANYEOF specifies that

combine should stop as soon as it determines that an input stream is no longer connected.

A number specifies the number of unconnected streams that will cause combine to termi-

nate. The number 1 is equivalent to ANYEOF.

A keyword specifies the operation to perform when combining records:

O Bitwise inclusive OR. A bit in the output record is 1 if any record in the range

has that particular bit on; it is 0 when all input records in the range have that

particular bit off.

N Bitwise AND. A bit in the output record is 0 if any record in the range has

that particular bit off; it is 1 when all input records in the range have that

particular bit on.

X Bitwise exclusive OR. A bit in the output record is 0 if an even number of

records in the range have that particular bit on (or the bit is not on in any

input record in the range); the bit is 1 when an odd number of input records in

the range have that particular bit on.

FIRST The contents of an output column are taken from the first record in the range

that contains the particular column.

LAST The contents of an output column are taken from the last record in the range

that contains the particular column.

Operation: combine supports a single input stream and two input streams.

When a single input stream is defined, runs of records are combined. When two input

streams are defined, a record from the primary input stream is combined with a record

from the secondary input stream.

Records are combined as follows: A buffer to build the output record is made empty.

Each input record has two (possibly null) parts, the part that corresponds to buffer posi-

tions that have been filled by previous records in the range, and the part by which the

record exceeds the contents of the buffer so far. The latter part is appended to the contents

of the buffer; the first part, if any, is processed according to the particular function

336 CMS Pipelines User’s Guide and Reference

 command

requested. The contents of the buffer are written to the output when all records in the

range have been processed or when end-of-file is met.

When KEYLENGTH is specified, the key is left unchanged; only positions beyond the key

are combined. When there is only one record with a particular key, it is copied unchanged

to the output.

Record Delay: When combine combines records from two input streams, it strictly does

not delay the record.

When it combines records from the primary input stream, combine writes the output record

before it consumes the last record in a run of combined records. Thus, the last record of a

run is not delayed; records before the last one are discarded.

Premature Termination: combine terminates when it discovers that its primary output

stream is not connected.

Examples: Given two variables, before and after, determine how many columns contain

the same character in the two records (assuming they do not contain X'00'):

/* Now see how many */
'callpipe (name COMBINE)',
 '|var before',

'|append var after',
 '|combine x',

'|xlate *-* 01-ff 1 00 0', /* byte-map of inequality */
 '|deblock 1',
 '|sort count',
 '|...

Assuming that the two input records are the same length, each byte of the output record

from combine contains the exclusive OR of the bytes in the corresponding positions of the

input records. A byte that contains X'00' indicates that the two input bytes were equal; a

nonzero value shows the bit differences. The xlate stage maps a byte of zeros to the

character “0” and the 255 other possible values to the character “1”. Thus, at the output

from xlate, each position of the record contains a zero if the input records were equal and

a one if they were not. deblock writes a record for each character in its input record and

sort COUNT computes the distribution.

 Notes:

1. The option O can be written in full: OR. AND is a synonym for N. EXCLUSIVEOR is a

synonym for X; it can be abbreviated down to three characters.

2. Input records of different lengths are not padded; rather, the last part of the longer

record is copied to the output record without modification.

command—Issue CMS Commands, Write Response to Pipeline
command issues CMS commands that can be resolved to modules or CMS nucleus routines

! and captures the command response, which is then written to the output of the stage rather

than being displayed on the terminal.

 CMS

►►─ ──┬ ┬─COMMAND─ ──┬ ┬──────── ─►◄
└─CMD─────┘ └─string─┘

 Chapter 23. Inventory of Built-in Programs 337

 command

Type: Host command interface.

Syntax Description: A string is optional. No argument is allowed when the secondary

output stream is defined.

Operation: The argument string (if present) and input lines are issued as CMS commands

using program call with an extended parameter list, as REXX does for the address
command instruction.

! The command is passed to CMS using CMSCALL with a call flag byte of 1 indicating that an

extended parameter list is present (but not command call). The argument string and input

lines should be in upper case unless you wish to manipulate objects with mixed case

names.

The response from the CMS commands is not written to the terminal. The response from

each command is buffered until the command ends and is then written to the primary

output stream. command does not intercept CP-generated terminal output.

Each invocation of command maintains a private CMSTYPE flag; this flag is initially set as

it is by SET CMSTYPE RT. If a command that is issued through a particular invocation of

command issues SET CMSTYPE HT, subsequent command response lines that apply to the

stage are discarded until a SET CMSTYPE RT command is issued while the stage is running.

The HT/RT setting is preserved between commands.

When the secondary output stream is defined, the return code is written to this stream after

each command has been issued and the response has been written to the primary output

stream.

Streams Used: Records are read from the primary input stream; no other input stream

! may be connected. Null and blank input records are discarded. The response of the

! command is written to the primary output stream. The return code of each command is

! written to the secondary output stream when connected.

Record Delay: command writes all output for an input record before consuming the input

record. When the secondary output stream is defined, the record containing the return

code is written to the secondary output stream with no delay.

Commit Level: command starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: When the secondary output stream is not defined and command

receives a negative return code on a command, it terminates. The corresponding input

record is not consumed. When the secondary output stream is defined, command termi-

nates as soon as it discovers that this stream is not connected. If this is discovered while a

record is being written, the corresponding input record is not consumed.

See Also: aggrc, cms, cp, starmsg, subcom, and tso.

Examples: To discard the service level information in the CMS version message:

/* Show CMS version without service level */
 pipe command QUERY CMSLEVEL | chop , | console
►CMS Level 28
►Ready;

338 CMS Pipelines User’s Guide and Reference

 command

command is useful to manipulate file objects with names in mixed case. To erase the file

“mIxEd CaSe”:

pipe command ERASE mIxEd CaSe A | console

 Notes:

1. Use subcom CMS to issue CMS commands without intercepting line mode output to the

terminal. Use cms to issue CMS commands with full command resolution.

2. command is not recommended to invoke applications that run in full screen mode, for

instance, XEDIT, because line mode console output is intercepted. Any line mode

output during the session (for instance, REXX error messages) is delayed until the

application completes.

3. Do not issue the immediate commands HT and RT while a command stage is

dispatched; this action cannot be distinguished from the SET CMSTYPE command.

4. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: When a secondary output stream is not defined and a negative return

code is received on a command, the return code from command is that negative return

code. When a secondary output stream is not defined and the return code is zero or posi-

tive, all input records have been processed; the return code is the maximum of the return

codes received. When the secondary output stream is defined, the return code is zero

unless an error is detected by command.

command—Issue TSO Commands
command issues TSO commands. The command response is written to the terminal by TSO.

 z/OS

►►─ ──┬ ┬─COMMAND─ ──┬ ┬──────── ─►◄
└─CMD─────┘ └─string─┘

Type: Host command interface.

Syntax Description: A string is optional.

Operation: The argument string (if present) and input lines are passed to the TSO service

routine to be issued as commands. A return code from this service routine indicating that

the command does not exist is recoded as return code -3 from the command; other errors

from the service routine cause processing to terminate with an error message.

When the secondary output stream is defined, the return code is written to this stream after

each command has been issued.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null and blank input records are discarded. command does not write

to the primary output stream. If the secondary output stream is defined, the return code is

written to it.

 Chapter 23. Inventory of Built-in Programs 339

 configure

Record Delay: When the secondary output stream is defined, the record containing the

return code is written to the secondary output stream with no delay.

Commit Level: command starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: When the secondary output stream is not defined and command

receives a negative return code on a command, it terminates. The corresponding input

record is not consumed. When the secondary output stream is defined, command termi-

nates as soon as it discovers that this stream is not connected. If this is discovered while a

record is being written, the corresponding input record is not consumed.

See Also: subcom and tso.

Examples: To issue a command from a REXX filter (which is not merged with the TSO

environment and therefore has no ability to Address TSO):

/* Now do the command */
'callpipe var command | command'

 Notes:

1. Use tso to issue TSO commands and write the response to the pipeline for further proc-

essing.

2. command issues GCS commands on GCS.

3. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: When a secondary output stream is not defined and a negative return

code is received on a command, the return code from command is that negative return

code. When a secondary output stream is not defined and the return code is zero or posi-

tive, all input records have been processed; the return code is the maximum of the return

codes received. When the secondary output stream is defined, the return code is zero

unless an error is detected by command.

configure—Set and Query CMS Pipelines Configuration Variables
configure accesses and sets CMS Pipelines configuration variables.

When configure is first in a pipeline, it writes to the output stream the value of all

configuration variables that have been set.

When configure is not first in a pipeline, its input records contain the name and optionally

the new value for configuration variables. configure updates the variable (if a second word

is specified) and then writes the value of the specified variable to the output stream.

►►──CONFIGURE──►◄

Type: Service program.

340 CMS Pipelines User’s Guide and Reference

 console

Input Record Format: Each record may contain one or two words. The first word is the

name of the configuration variable. Case is ignored in variable names.

If the second word is present, it contains a new value for the specified configuration vari-

able. Case is ignored in keywords; values are made upper case.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: configure does not delay the record.

 Examples:

 pipe literal style | configure | console
►STYLE DMS
►Ready;

 Notes:

1. Refer to Chapter 28, “Configuring CMS Pipelines” on page 867 for a list of

configuration variables.

console—Read or Write the Terminal in Line Mode
When console is first in a pipeline it reads lines from the terminal and writes them into the

pipeline. When console is not first in a pipeline it copies lines from the pipeline to the

terminal.

►►─ ──┬ ┬─CONSole── ──┬ ┬────────────────────── ──┬ ┬──────────────── ─►◄
└─TERMinal─┘ ├─EOF──delimitedString─┤ ├─DIRECT─────────┤

 └ ┘─NOEOF──────────────── ├ ┤─ASYNchronously─
 └ ┘─DARK───────────

Type: Device driver.

Syntax Description: No argument is allowed when console is not first in a pipeline.

Keywords are optional when console is first in a pipeline.

EOF specifies a delimited string; end-of-file is signalled when this string is entered (with

leading or trailing blanks, or both). NOEOF specifies that input data are not inspected for

an end-of-file indication; console stops only when it finds that its output stream is not

connected. The null string signals end-of-file if neither of these keywords is specified.

A second type of keyword is supported only on CMS. It specifies the interface to be used

when reading from the terminal. If the keyword is omitted, a normal CMS terminal read is

performed; the program stack and the console queue are emptied before CMS reads from

the terminal, at which time a VM READ is put up on the virtual machine console.

When one of the second type of keywords is specified, console performs a direct read; that

is, console reads directly from the terminal. The program stack and the console queue are

bypassed.

 Chapter 23. Inventory of Built-in Programs 341

 console

Operation: When console is first in a pipeline, lines are read from the terminal until a

line is read that is equal to the delimited string specified with EOF (by default the null

string).

When console is not first in a pipeline, lines from the primary input stream are written to

the terminal of the virtual machine, and copied to the primary output stream, if connected.

When console is in a pipeline set that has been issued under control of runpipe EVENTS,

console signals console read or write events, as appropriate, instead of accessing host inter-

faces.

Streams Used: When console is first in a pipeline (it is reading from the terminal),

records are written to the primary output stream. When console is not first in a pipeline (it

is writing to the terminal), records are read from the primary input stream and copied to

the primary output stream, if connected.

Record Delay: console strictly does not delay the record.

Premature Termination: When it is first in a pipeline, console terminates when it

discovers that its output stream is not connected.

Examples: To read lines directly from the terminal into the stack without going into a

loop:

pipe console direct | stack

To read lines until a line consisting of just two blanks is entered:

pipe console eof x4040 | ...

 Notes:

! 1. Only one console stage should be used to read from the console at any time as it is

! unspecified which of the active console stages would read the record. This is not

! enforced by CMS Pipelines.

! 2. console ASYNCHRONOUSLY should be used with caution; it is not possible to enter CMS

! immediate commands while it is waiting for terminal input.

3. One console ASYNCHRONOUSLY stage can read from the terminal at a time; a subse-

quent one stacks the current reading stage, which resumes control of the terminal

when the new stage terminates.

4. On z/OS, GETLINE and PUTLINE macros are used to read and write the TSO terminal.

TGET and TPUT are used when the pipeline is started with the CALL command or refer-

enced with PGM= in an EXEC job control statement and a TSO environment is active.

Write to programmer is used as a last resort.

DIRECT Standard direct reads are performed as described above. A VM READ is

issued immediately.

ASYNCHRON Direct reads are issued in response to attention interrupts. This means

that the console is not locked in a VM READ while waiting for user input.

DARK “Invisible” direct reads are issued. A VM READ is issued immediately.

The input is not echoed to the upper part of the terminal.

342 CMS Pipelines User’s Guide and Reference

 copy

5. Lines written to the terminal are truncated to fit the particular interface on z/OS. No

truncation is required for CMS. (But CP may truncate the lines written to the console

SPOOL.)

6. Use the CMS command PIPMOD STOP or send a record into the pipestop stage to termi-

nate console ASYNCHRONOUSLY while it is waiting for an attention interrupt. Note that

you cannot enter immediate commands from the terminal while console ASYNCHRO-

NOUSLY is running; the command must be generated in the pipeline.

7. On input, CMS has performed the SET INPUT translation on the lines typed at the

console before console reads them and writes them to the pipeline. Likewise, CMS

does SET OUTPUT translation after console writes the line to the terminal.

8. terminal is a synonym for console. INVISIBLE is a synonym for DARK.

! 9. On CMS input is truncated after 1024 characters. Note that the stack still truncates at

255. Thus, longer lines must be typed at the terminal (and the terminal must have a

suitably long input area).

copy—Copy Records, Allowing for a One Record Delay
copy passes the input to the output in a way that can delay by one record. It may be

! useful to avoid a stall in a pipeline network where a delay of one record is sufficient to

prevent the stall.

►►──COPY──►◄

Type: Arcane filter.

Operation: Each input record is read into a buffer. The input record is consumed before

the contents of the buffer are written to the output.

Record Delay: copy has the potential to delay one record.

Premature Termination: copy terminates when it discovers that its output stream is not

connected.

 See Also: elastic.

Examples: To hold the output on the primary output stream from chop while the balance

of the input record is being written to the secondary output stream, and the two pieces are

to be reunited in a later stage:

/* Uppercase label: */
'PIPE (end ? name COPY)',
 ... ,

'|c: chop before blank',
 '| xlate upper',
 '| copy',

'|s: spec 1-* 1 select 1 1-* next',
 ... ,
 '?c:',
 '|s:'

Records that have a leading blank (that is, assembler statements that have no label field)

are passed in their entirety to the secondary output stream after a null record has been

written to the primary output stream.

 Chapter 23. Inventory of Built-in Programs 343

 count

count—Count Lines, Blank-delimited Words, and Bytes
count counts the number of input lines, words, characters, or any combination thereof. It

can also report the length of the shortest or longest record, or both. It writes a line with

the specified counts at end-of-file.

 ┌ ┐────────────────
►►──COUNT─ ───6 ┴┬ ┬─CHARACTErs─ ─►◄
 ├ ┤─WORDS──────
 ├ ┤─LINES──────
 ├ ┤─MINline────
 └ ┘─MAXline────

 Type: Filter.

Syntax Description: Specify what to count; you can specify up to five keywords in any

order.

Operation: Input records are read and counters are updated; the counters are 56 bits

ignoring overflow. Bytes and lines are counted without reference to the contents of the

input record; count WORDS references the storage area holding the input record.

When there are no input records, the shortest record is reported as infinity (2G-1, because

this is the longest possible record); the longest record is reported as null.

Output Record Format: A record is built with the result when the primary input stream

reaches end-of-file. Irrespective of the order of the options, this record has a number for

each specified counting option in the order characters, words, lines, minimum record

length, and maximum record length. There is one blank between numbers.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. When the secondary output stream is not defined, input records are

discarded; the record containing the counts is written to the primary output stream. When

the secondary output stream is defined, the input records are copied to the primary output

stream; the primary output stream is severed at end-of-file on the primary input stream;

and the record containing the counts is then written to the secondary output stream.

Record Delay: When the secondary output stream is defined, count does not delay the

records that are copied to the primary output stream.

Premature Termination: If the secondary output stream is defined, count terminates when

the primary output stream becomes not connected; the counts are written to the secondary

output stream; the record that receives end-of-file on the primary output stream is not

included in the counts. Thus, the counts on the secondary output stream reflect the amount

of data consumed by the stage connected to the primary output stream.

Examples: To count the number of blank-delimited words in the profile:

 pipe < profile exec | count words | console
►164
►Ready;

To count both the number of words and the number of unique words:

344 CMS Pipelines User’s Guide and Reference

 cp

! /* Special counting */
! 'PIPE (end ?)',
! '? < profile exec',
! '| c: count words',
! '| split',
! '| sort unique',
! '| count lines',
! '| spec 1-* 1 , unique words., next',
! '| console',
! '? c:',
! '| spec 1-* 1 , words total., next',
! '| console'

 Notes:

1. RECORDS is a synonym for LINES. CHARS and BYTES are synonyms for CHARACTERS.

cp—Issue CP Commands, Write Response to Pipeline
cp issues CP commands and captures the command response, which is then written to the

! output of the stage rather than being displayed on the terminal.

 CMS

 ┌ ┐─8192───
►►──CP─ ──┼ ┼──────── ──┬ ┬──────── ─►◄

└─number─┘ └─string─┘

Type: Host command interface.

Syntax Description: A number and a string are optional. If the first word of the argu-

ment string is a number, it specifies the required size of the response buffer; the default is

8192. Only a number is allowed when the secondary output stream is defined.

Operation: The argument string (after the number, if present) and input lines are issued

as CP commands through the extended diagnose 8 interface. cp terminates with an error

message if a command is longer than the 240 bytes supported by CP.

The first blank-delimited word of each command is inspected. If it is different from its

upper case translation, the entire command is translated to upper case before it is issued to

CP.

! The response from CP is transformed into lines that are written to the primary output

! stream; lines with length zero are discarded.

When the length of the response buffer is not specified and the command issued is QUERY

(or an abbreviation thereof, down to one character), the buffer is extended dynamically to

accept the complete command response. In other cases, there is no indication of an error

when CP truncates the response because the buffer is too small, unless there is a secondary

output stream defined.

When the secondary output stream is defined, the return code is written to this stream after

each command has been issued and the response has been written to the primary output

stream. The return code has a leading plus sign if the command response was truncated.

 Chapter 23. Inventory of Built-in Programs 345

 cp

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null and blank input records are discarded. Secondary streams may be

defined.

Record Delay: cp writes all output for an input record before consuming the input record.

When the secondary output stream is defined, the record containing the return code is

written before the corresponding input record is consumed.

Commit Level: cp starts on commit level -2. It verifies that the secondary input stream is

not connected and then commits to level 0.

Premature Termination: When a secondary output stream is not defined, cp terminates as

soon as it receives return code 1 (unknown command) from CP. The corresponding input

record is not consumed. When the secondary output stream is defined, cp terminates as

soon as it discovers that this stream is not connected. If this is discovered while a record

is being written, the corresponding input record is not consumed.

See Also: aggrc, cms, command, starmsg, and subcom.

Examples: To process all reader files in a query:

pipe cp query reader * all | ...

cp allocates a sufficiently large buffer to accommodate whatever reply you will receive to

the query.

To transfer all reader files to another user, making certain that all 9999 possible SPOOL

files can be transferred and the full response still be captured:

pipe cp 999900 transfer rdr all to someuser | ...

 Notes:

1. Write the CP command verb in upper case to avoid translation of the arguments to

upper case when using cp to issue commands with mixed case arguments. For

example:

pipe cp MSG OSCAR Hi, there...

2. Specify a buffer size operand to issue CP QUERY commands that have side effects (if

any exist). This ensures that the command is issued only once.

! 3. Be careful when using cp to store the value of a CP variable in a REXX variable, as in

! the REXX statement below.

! 'PIPE cp query variable runmode | var runmode'

! When the CP variable is not set, CP will output an empty line that is discarded by cp.

! When var does not get an input record, the specified REXX variable is dropped. Refer-

! ence to that REXX variable will raise a novalue condition, when enabled.

! To ensure the REXX variable is set by the command, consider providing a default

! value, for example with a strliteral stage with IFEMPTY. In the following pipeline the

! REXX variable runmode will be set to “NORMAL” when cp does not produce an

! output record.

! 'PIPE cp q var runmode | strliteral ifempty /NORMAL/ | var runmode'

4. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

346 CMS Pipelines User’s Guide and Reference

 crc

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: When no secondary output stream is defined and cp terminates because CP

does not recognise a command, the return code is 1 (irrespective of return codes from

other commands). When no secondary output stream is defined and the return code is not

1, all input records have been processed; the return code is the maximum of the return

codes received from CP. When the secondary output stream is defined, the return code is

zero unless cp detects an error.

: crc—Compute Cyclic Redundancy Code
: crc computes the Cyclic Redundancy Code (CRC) of a message.

:

: ┌ ┐──────────────────────── ┌ ┐─CRC-32─────
: ►►──CRC─ ───6 ┴┬ ┬──────────────────── ──┼ ┼──────────── ─►◄
: ├ ┤─APPEND───────────── ├ ┤─CRC-16─────
: ├ ┤: ─EACH─ ──┬ ┬────────── ├ ┤─CRC-16I────
: │ │└ ┘─CRCFIRST─ ├ ┤─CCITT-16───
: └ ┘─ADDLENgth────────── ├ ┤─CKSUM──────
: └ ┘─┤ Custom ├─

: Custom:

: ┌ ┐────────────────────────
: ├──┬─16-BIT─┬──hexString───6┬────────────────────┬┴──┤
: └ ┘─32-BIT─ ├ ┤─ADDLENgth──────────
: ├ ┤─COMPLEMENT─────────
: ├: ─PRELOAD──hexString─┤
: ├ ┤─REFLIN─────────────
: ├ ┤─REFLOUT────────────
: └: ─XOROUT──hexString─: ─┘

: Type: Filter.

: Syntax Description: The operands to crc are of two types, general flags, and operands to

: specify the algorithm.

: The general flags are:

: Algorithmic operands are specified with 16-BIT or 32-BIT, one of which is required,

: followed by a word in hexadecimal that specifies the polynomial, followed by the

: remaining operands, which are all optional.

: APPEND: Pass the input to the primary output. Write the CRC as a separate final

: record. Secondary streams are not allowed.

: EACH: Write the CRC for each record and reset to initial conditions.

: CRCFIRST: Reverse the order of writing the message and the CRC

: ADDLENGTH: Logically append the number of bytes in the record or file to the data

: being checksummed. Only the significant bytes of this count are

: included. The length is processed with the rightmost byte first.

 Chapter 23. Inventory of Built-in Programs 347

 crc

! A number of built-in CRC algorithms may be selected, but they cannot be modified by

: further options. Their parameters are listed in Figure 389 below.

: AUTODIN2 is a synonym for CRC-32 that hints at the heritage of the polynomial.

: Operation: When a single output stream is defined, the default is to read the entire file,

: compute the CRC, and write a single record at end-of-file. The record contains two, four,

: or twelve bytes of binary data, depending on the parameters specified. When the

: secondary output stream is defined, the input is passed to the primary output without being

: delayed; the CRC is written to the secondary at end-of-file unless EACH is specified, in

: which case a CRC is computed for each input record. When EACH is specified without

: CRCFIRST, the primary output stream is written before the secondary output stream; the

: order is reversed when CRCFIRST is specified.

! A CRC record of twelve bytes is produced by the CKSUM algorithm, but only when using

! the built-in version; specifying ADDLENGTH does not add this field. This record contains

: four bytes CRC followed by eight bytes binary count of the number of bytes included in the

: CRC.

: Streams Used: Secondary streams may be defined. Records are read from the primary

: input stream; no other input stream may be connected.

: 16-BIT: Use a 16-bit polynomial, which is specified in hexadecimal as the

: following word. Only the rightmost four digits are used.

: 32-BIT: Use a 32-bit polynomial, which is specified in hexadecimal as the

: following word.

: ADDLENGTH: As described above. This is an alternative way to protect against a burst

: of leading zeros, as all CRC algorithms produce zero for input bytes of

: zero CRC when the accumulator is zero. That is, consider using

: ADDLENGTH when PRELOAD is zero.

: COMPLEMENT: Equivalent to XOROUT FFFFFFFF.

: PRELOAD: Specify the initial accumulator contents. The default is 0.

: REFLIN: “Reflect input”. Transpose the order of the bits in the input bytes so

: that the least significant bit is leftmost.

: REFLOUT: “Reflect output”. Transpose the order of the bits in each byte of the

: resulting CRC before applying XOROUT, but after applying ADDLENGTH.

: XOROUT: Exclusive OR the CRC with the hexadecimal word that is specified after

: the keyword.

: Figure 389. Built-in CRC Algorithms

: Name: Width: Poly: Initial: Xorout: R/i: R/o: Al

: CRC-32: 32-BIT: 04C11DB7: FFFFFFFF: FFFFFFFF: YES: YES: NO

: CRC-16: 16-BIT: 00008005: 00000000: 00000000: YES: YES: NO

: CRC-16I: 16-BIT: 00008005: 00008000: 00000000: NO: NO: NO

: CCITT-16: 16-BIT: 00001021: FFFFFFFF: FFFFFFFF: NO: NO: NO

: CKSUM: 32-BIT: 04C11DB7: 00000000: FFFFFFFF: NO: NO: YES

348 CMS Pipelines User’s Guide and Reference

 crc

: Record Delay: crc does not delay the record.

: Commit Level: crc starts on commit level -2. It verifies that the primary input stream is

: the only connected input stream and then commits to level 0.

: Premature Termination: crc terminates when it discovers that any of its output streams is

: not connected.

: See Also: digest.

: Examples:

: pipe literal abc|crc cksum|spec 1-* c2x 1 | console
: ►97B7E3490000000000000003
: ►Ready;
: pipe literal abc|xlate e2a|crc cksum|spec 1-* c2x 1 | console
: ►48AA78A20000000000000003
: ►Ready;
: pipe literal abc|xlate e2a|crc cksum|spec 1.4 c2d 1 | console
: ► 1219131554
: ►Ready;

: On an ASCII Linux system:

: j /home/john: echo -e -n abc|cksum
: ►1219131554 3

: With OMVS:

: CCJOHN:/home/ccjohn: >echo -e -n abc|cksum
: 1073619496 10

: The length 10 indicates that the flags are not respected and that a line end is appended (as

: it should be when -n is omitted).

: Notes:

: 1. crc CKSUM interoperates with the POSIX cksum command, which produces the equiv-

: alent of

: crc 32-bit 04c11db7 complement addlength

: Note, however, that the UNIX command, when issued on an ASCII system, produces a

: different CRC than does CMS Pipelines, because the input data are not the same

: (X'414243' versus X'818283'). Also note that the POSIX cksum produces two

: unsigned decimal numbers (the second is the byte count) whereas crc in general

: produces a 2-byte or 4-byte binary number; crc CKSUM produces a 12-byte binary

: number.

: Publications:

: ¹ Ross Williams: A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS.

: ¹ CRC32: Ethernet specifications (Xerox, DEC, Intel), September 30 1980.

: ¹ CRC16: IBM form number GA22-6844-4 (IBM 2701 Data Adapter Unit OEM).

: ¹ CKSUM:

: http://www.opengroup.org/onlinepubs/009695399/utilities/cksum.html

 Chapter 23. Inventory of Built-in Programs 349

http://www.opengroup.org/onlinepubs/009695399/utilities/cksum.html

 c14to38

c14to38—Combine Overstruck Characters to Single Code Point
c14to38 combines overstruck lines of printer data replacing two overstruck characters with

a single one. For example, a top left corner (┌) overstruck on a top right corner (┐) can be

replaced with the “top T” (┬); an accent (`) overstruck on a letter (e) can be replaced with

an accented letter (è).

►►──C14TO38─ ──┬ ┬────────────────────── ─►◄
 │ │┌ ┐────────────────────

└──6─xorc──xorc──xorc─┴─┘

Type: Arcane filter.

Syntax Description: The argument string can have up to 255 conversion triplets. Each

triplet consists of three blank-delimited words, each of which can be a single character or a

two-character hexadecimal representation of a character. The default is to convert the

1403 box characters, generated by Document Composition Facility (SCRIPT/VS), to 3800

code points.

Operation: Input records are copied to the output until a record is met with a write no

space operation code (X'01').

c14to38 tries to merge a record having write no space carriage control with the following

record. Each position in the two records is inspected; if the characters are the first two of

a triplet (in either order), a blank is stored in the first record and the third character of the

triplet is stored in the second record. If the character in the first record is not blank and

the character in the second record is blank, the two characters are swapped. The first

record is discarded when it is blank from column 2 to the end; if not, it is written to the

output. If the second record has X'01' carriage control, it is then merged with the next

one, and so on.

Input Record Format: The first position of the record is a machine carriage control char-

acter.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: c14to38 delays or discards records that contain X'01' in column 1. It

does not delay other records.

Premature Termination: c14to38 terminates when it discovers that its output stream is

not connected.

See Also: optcdj and overstr.

Examples: To print a document formatted for an IBM 1403 on an IBM 3800 printer or

an all points addressable (APA) printer under control of Print Services Facility (PSF):

cp spool 00e fcb s8 char it12 ib12
cp tag dev 00e mvs system 0 OPTCD=J
pipe < $doc script | c14to38 | overstr | optcdj | printmc
cp close 00e

350 CMS Pipelines User’s Guide and Reference

 dam

 Notes:

1. The output is a 1403 type data stream as far as carriage control is concerned; no TRC

is added.

dam—Pass Records Once Primed
. dam waits for a record on its primary input stream. When it arrives, all streams are

shorted to allow data to flow.

►►──DAM──►◄

 Type: Gateway.

Operation: dam waits for the first record to arrive on its primary input stream.

. When the first record arrives on the primary input stream, dam shorts all input streams to

the corresponding output stream (the dam bursts). The streams are shorted in numerical

order. dam then terminates.

When end-of-file arrives on the primary input stream (that is, the primary input stream is

empty), dam terminates without copying any records and without consuming any.

. Streams Used: All streams are shorted if a record arrives on the primary input stream.

. No records are passed otherwise.

dam ignores end-of-file on its primary output stream; it propagates end-of-file between the

two sides of streams 1 and higher.

Record Delay: dam strictly does not delay the record.

Commit Level: dam starts on commit level -2. It allocates the resources it needs and and

then commits to level 0.

Premature Termination: dam terminates when it discovers that no output stream is

connected.

 Converse Operation: gate.

See Also: frtarget, predselect, and totarget.

 Examples:

To produce output only when the input contains a particular string:

 Chapter 23. Inventory of Built-in Programs 351

 dateconvert

/* Pass input to output only if target record found */

Parse Arg target /* String to be searched for. */

'CALLPIPE (endchar ?)',
'? *:', /* Input from caller. */
'| o: fanout', /* Divert copy for output. */
'| locate' target, /* Select target record(s). */
'| d: dam', /* First one opens floodgate. */
'? o:', /* The input records */
'| elastic', /* Hold until dam bursts. */
'| d:', /* Possibly go over the dam. */
'| *:' /* Output to caller. */

 Notes:

1. Though dam does not delay the record, it does not produce output until it has sensed a

record on its primary input stream. You are likely to need something upstream on the

secondary input stream to hold the records while the decision is being made about

processing the records.

dateconvert—Convert Date Formats
dateconvert changes the contents of a single date field from one format to another.

! This article is a synopsis; refer to the description of the DateTimeSubtract service in

! z/VM: CMS Callable Services Reference, SC24-6259, for further information.

 CMS

►►──DATECONVERT─ ──┬ ┬──────────── ─►
└─inputRange─┘

►─ ──┬ ┬──────────────────────────────────── ──┬ ┬────────────────── ─►
 └─┤ dateformat ├──┬────────────────┬─┘ ├─WINDOW──snumber─ ─┤

└─┤ dateformat ├─┘ └─BASEyear──number─┘

►─ ──┬ ┬───────── ─►◄
! └ ┘─TIMEOUT─

352 CMS Pipelines User’s Guide and Reference

 dateconvert

!

! dateformat:

! ├─ ──(1)──┬ ┬──┬ ┬─SHOrtdate─── ──────────── ─┤
! │ │├ ┤─USA_SHORT───
! │ │└ ┘─REXX_DATE_U─
! ├ ┤──┬ ┬─FULldate─ ───────────────
! │ │└ ┘─USA──────
! ├ ┤─ISO_SHORT───────────────────
! ├ ┤─ISOdate─────────────────────
! ├ ┤─DB2_SHORT───────────────────
! ├ ┤─DB2─────────────────────────
! ├ ┤─VMDATE──────────────────────
! ├ ┤─┤ REXX_DATE_Information ├───
! ├ ┤─NORMAL──────────────────────
! ├ ┤──┬ ┬─CSL_SHORT─── ────────────
! │ │└ ┘─REXX_DATE_O─
! ├ ┤─CSL─────────────────────────
! ├ ┤─PIPE_SHORT──────────────────
! ├ ┤──┬ ┬─PIPE──────── ────────────
! │ │└ ┘─REXX_DATE_S─
! ├ ┤─EUR_SHORT───────────────────
! ├ ┤─EUR─────────────────────────
! ├ ┤─JULIAN_SHORT────────────────
! ├ ┤─JULIAN──────────────────────
! ├ ┤──(3)──┬ ┬─TOD_ABSOLUTE─ ─────────
! │ │└ ┘─TODABS───────
! ├ ┤──(3)──┬ ┬─SCIENTIFIC_ABSOLUTE─ ──
! │ │└ ┘─SCIABS──────────────
! ├ ┤─POSIX───(3) ────────────────────
! ├ ┤──── (2, 3) ──┬ ┬─TOD_RELATIVE─ ───────
! │ │└ ┘─TODREL───────
! ├ ┤──── (2, 3) ──┬ ┬─SCIENTIFIC_RELATIVE─
! │ │└ ┘─SCIREL──────────────
! └ ┘─MET───(2) ──────────────────────

! Notes:

! 1 The formats grouped together are synonyms for each other; they have the same
! format definition. The REXX_DATE_x formats can also be specified as REXXx or

! Rx. The x can be specified as B, C, D, E, E_LONG, J, J_LONG, M, N,
! N_SHORT, O, S, U or W.

! 2 This is a relative format; the rest of the formats are absolute. You cannot
! convert between relative and absolute formats.

! 3 Time is an integral part of these formats; therefore, the TIMEOUT operand is
! ignored for these formats when they are used as an output format.

!

! REXX_DATE_Information:

! ├─ ──┬ ┬─REXX_DATE_B─────── ─┤
! ├ ┤─REXX_DATE_C───────
! ├ ┤─REXX_DATE_D───────
! ├ ┤─REXX_DATE_E───────
! ├ ┤─REXX_DATE_E_LONG──
! ├ ┤─REXX_DATE_J───────
! ├ ┤─REXX_DATE_J_LONG──
! ├ ┤─REXX_DATE_M───(1) ────
! ├ ┤─REXX_DATE_N_SHORT─
! ├ ┤─REXX_DATE_N───────
! └ ┘─REXX_DATE_W───(1) ────

! Note:

! 1 This format is valid only for the output format parameter.

 Chapter 23. Inventory of Built-in Programs 353

 dateconvert

 Type: Filter.

! Syntax Description: An optional input range specifies the date field to be converted; the

! default input range is the entire record. The input date format and output date format may

! be specified. The default input date format is SHORTDATE; the default output date format

! is ISODATE.

! Either a sliding WINDOW or fixed BASEYEAR may be specified to compute the century of

! the output date format. The default is to use a sliding window that begins fifty years in

! the past and extends forty-nine years into the future.

! When TIMEOUT is specified the time component of the output format is included in the

! output; the default is to suppress the time component. When the input field also contains a

! time value, the value is included in the transformation; the default is to use midnight of the

! specified date.

! The date formats supported by dateconvert are listed in Figure 390 on page 356 and

! Figure 391 on page 359.

Operation: If the specified input range is not present in the record, the record is passed

unchanged to the primary output stream and no further action is taken.

If the input range is present in the input record, the contents of the specified range are

converted as requested.

When the conversion succeeds, the conversion result replaces the specified range in the

record and the updated record is written to the primary output stream. Note that the output

record can have a different length than the input record.

When the conversion fails and the secondary output stream is defined, the input record is

passed to the secondary output stream.

dateconvert terminates with an error message when the conversion fails and the secondary

output stream is not defined.

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected.

Record Delay: dateconvert strictly does not delay the record.

Commit Level: dateconvert starts on commit level -2. It verifies its arguments and then

commits to level 0.

Premature Termination: dateconvert terminates when it discovers that any of its output

streams is not connected.

See Also: greg2sec and sec2greg.

 Examples:

! pipe cp query time | take 1 | cons | dateconvert w-1 vmdate rexxj | ...
! ... console
! ►TIME IS 14:50:30 EDT WEDNESDAY 04/29/20
! ►TIME IS 14:50:30 EDT WEDNESDAY 20120
! ►Ready;

354 CMS Pipelines User’s Guide and Reference

 dateconvert

 pipe literal 03/09/46 | dateconvert | console
►2046-03-09
►Ready;

 pipe literal 03/09/46 | dateconvert window -99 | console
►1946-03-09
►Ready;

 pipe literal 03/09/46 | dateconvert baseyear 1925 | console
►1946-03-09
►Ready;

 pipe literal 03/09/46 | dateconvert baseyear 1130 | console
►1146-03-09
►Ready;

 pipe literal 02/29/46 | dateconvert | cons
►FPLRIC1183E Date cannot be converted; input date 02/29/46 is not valid
►FPLMSG003I ... Issued from stage 2 of pipeline 1
►FPLMSG001I ... Running "dateconvert"
►Ready(01183);

 pipe literal 03/09/46 | dateconvert short rexxn window -60 | console
►9 Mar 2046
►Ready;

! Date Formats
! Figure 390 on page 356 and Figure 391 on page 359 describe the input format and

! output format parameters for absolute formats and relative formats respectively. The

! formats grouped together are synonyms.

! The symbols used in the definition column of these tables have the following meanings:

! Date Symbols

! mm specifies the 2-digit month.

! mmm specifies the three-character English name of the month:

! Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

! mmmmmmmmm specifies the English name of the month:

! January February March April May June July August September October

! November December

! dd specifies the 2-digit day of the month.

! ddd specifies the day number in the year.

! ddddd specifies the 1 to 5-digit REXX Century date.

! dddddddddd specifies the 6 to 10-digit REXX Base date.

! wwwwwwwww specifies the English name of the day of the week:

! Sunday Monday Tuesday Wednesday Thursday Friday Saturday

! yy specifies the 2-digit year.

! yyyy specifies the 4-digit year.

! yyyyyyy specifies the 1 to 7-digit year.

! Time Symbols

 Chapter 23. Inventory of Built-in Programs 355

 dateconvert

! hh specifies the 2-digit hours.

! mm specifies the 2-digit minutes.

! ss specifies the 2-digit seconds.

! uuuuuu specifies millionths of a second.

! Figure 390 (Page 1 of 4). Absolute input format and output format Parameters

! Format! Definition! Length! Output

! Left or

! Right

! Justified

! SHOrtdate
! USA_SHORT
! REXX_DATE_U
! REXXU
! RU

! mm/dd/yy hh:mm:ss.uuuuuu specifies the REXX USA

! date. This is the default for the input format param-

! eter.

! 8 or 24! Left

! FULLDATE
! USA
! mm/dd/yyyyyyy hh:mm:ss.uuuuuu specifies the

! FULLDATE date.

! 7-29! Left

! ISO_SHORT! yy-mm-dd hh:mm:ss.uuuuuu specifies the ISO_SHORT
! date.

! 8 or 24! Left

! ISOdate! yyyyyyy-mm-dd hh:mm:ss.uuuuuu specifies the

! ISODATE date. This is the default for the output

! format parameter.

! 7-29! Left

! DB2_SHORT! yy-mm-dd-hh.mm.ss.uuuuuu specifies the DB2_SHORT
! date.

! 8 or 24! Left

! DB2! yyyyyyy-mm-dd-hh.mm.ss.uuuuuu specifies the DB2
! date. This is the default for the output format param-

! eter.

! 7-29! Left

! VMDATE! User's virtual machine date format setting. Issue the

! CP QUERY DATEFORMAT command to query the date

! format setting, and then find the corresponding format

! in the table.

! It can be set on a system-wide basis and also for the

! individual user. The system-wide default date format

! is set with the SYSTEM_DATEFORMAT system

! configuration statement. The user's default date format

! is set with the DATEFORMAT user directory control state-

! ment. The system-wide default and the user's default

! can also be set with the CP SET DATEFORMAT

! command. The user's default date format is set to the

! system-wide default.

! The hierarchy of possible date format settings from

! highest priority to lowest, is:

! ¹ User default

! ¹ System-wide default

! !

356 CMS Pipelines User’s Guide and Reference

 dateconvert

! Figure 390 (Page 2 of 4). Absolute input format and output format Parameters

! Format! Definition! Length! Output

! Left or

! Right

! Justified

! REXX_DATE_B
! REXXB
! RB

! dddddddddd hh:mm:ss.uuuuuu specifies the REXX

! Base date.

! The number of complete days (that is, not including

! the current day) since and including the base date, 1

! January 0001.

! Note: The base date of 1 January 0001 is determined

! by extending the current Gregorian calendar backward

! (365 days each year, with an extra day every year that

! is divisible by 4 except century years that are not

! divisible by 400). The REXX_DATE_B does not

! consider any errors in the calendar system that created

! the Gregorian calendar originally.

! For input, you may supply up to 10 day digits,

! provided the number of days represented can be

! expressed without overflow in a signed fullword. The

! output date is not padded with leading zeroes.

! 10 or 26! Right

! REXX_DATE_C
! REXXC
! RC

! ddddd/hh:mm:ss.uuuuuu specifies the REXX Century

! date.

! For input, you may supply up to 5 day digits.

! The number of days, including the current day, since

! and including January 1 of the last year that is a

! multiple of 100. The REXX_DATE_C is never negative.

! When dateconvert returns the date in this format, it

! never pads the day field with leading zeroes.

! A sliding window has no effect on this date format. If

! specifying a fixed window with BASEYEAR, dateconvert

! ignores the last two digits of the year. For example, if

! you specify BASEYEAR 1947, dateconvert uses 1900 for

! the base year.

! 5 or 21! Right

! REXX_DATE_D
! REXXD
! RD

! ddd hh:mm:ss.uuuuuu specifies the REXX Days date.

! The ddd has no leading zeroes. On input, the ddd is

! interpreted as being that day of the base year. On

! output, the ddd is returned as the day number within

! the input year.

! A sliding window has no effect on this date format.

! 3 or 19! Right

! REXX_DATE_E
! REXXE
! RE

! dd/mm/yy hh:mm:ss.uuuuuu specifies the REXX

! European date.

! 8 or 24! Left

! REXX_DATE_E_LONG
! REXXE_LONG
! RE_LONG

! dd/mm/yyyyyyy hh:mm:ss.uuuuuu specifies the REXX

! European Date Long.

! 7-29! Left

! REXX_DATE_J
! REXXJ
! RJ

! yyddd hh:mm:ss.uuuuuu specifies the REXX Julian

! date.

! 5 or 21! Left

 Chapter 23. Inventory of Built-in Programs 357

 dateconvert

! Figure 390 (Page 3 of 4). Absolute input format and output format Parameters

! Format! Definition! Length! Output

! Left or

! Right

! Justified

! REXX_DATE_J_LONG
! REXXJ_LONG
! RJ_LONG

! yyyyddd hh:mm:ss.uuuuuu specifies the REXX Julian

! Date Long.

! 7 or 23! Left

! REXX_DATE_M
! REXXM
! RM

! mmmmmmmmm specifies the REXX Month date. This

! is valid only for the output format parameter.

! 9! Left

! REXX_DATE_N_SHORT
! REXXN_SHORT
! RN_SHORT

! dd mmm yy hh:mm:ss.uuuuuu specifies the REXX

! Normal Date Short. The month must be specified in

! English and case is significant.

! 9 or 25! Right

! REXX_DATE_N
! REXXN
! RN

! dd mmm yyyy hh:mm:ss.uuuuuu specifies the REXX

! Normal date.

! 11 or 27! Right

! NORMAL! dd mmm yyyyyyy hh:mm:ss.uuuuuu specifies the

! Normal date. On input, the month must be specified

! in English and the case is not significant.

! 8-30! Left

! REXX_DATE_O
! REXXO
! RO
! CSL_SHORT

! yy/mm/dd hh:mm:ss.uuuuuu specifies the REXX

! Ordered date.

! 8 or 24! Left

! CSL! yyyyyyy/mm/dd hh:mm:ss.uuuuuu specifies the CSL
! date.

! 7-29! Left

! PIPE_SHORT! yymmddhhmmssuuuuuu specifies the PIPE_SHORT date.! 6 or 18! Left

! REXX_DATE_S
! REXXS
! RS
! PIPE

! yyyymmddhhmmssuuuuuu specifies the REXX Standard

! date.

! 8 or 20! Left

! REXX_DATE_W
! REXXW
! RW

! wwwwwwwww specifies the REXX Weekday date.

! This is valid only for the output format parameter.

! 9! Left

! EUR_SHORT! dd.mm.yy hh:mm:ss.uuuuuu specifies the EUR_SHORT
! date.

! 8 or 24! Left

! EUR! dd.mm.yyyyyyy hh:mm:ss.uuuuuu specifies the EUR
! date.

! 7-29! Left

! JULIAN_SHORT! yy.ddd hh:mm:ss.uuuuuu specifies the JULIAN_SHORT
! date.

! 6 or 22! Left

! JULIAN! yyyyyyy.ddd hh:mm:ss.uuuuuu specifies the JULIAN
! date.

! 5-27! Left

358 CMS Pipelines User’s Guide and Reference

 dateconvert

! Figure 390 (Page 4 of 4). Absolute input format and output format Parameters

! Format! Definition! Length! Output

! Left or

! Right

! Justified

! TOD_ABSOLUTE
! TODABS
! Unsigned doubleword indicating the number of TOD

! clock units that have elapsed between the standard

! epoch and the moment being expressed.

! A TOD clock unit is a unit of time, just as minutes,

! seconds, and hours are units of time; there are 4096

! TOD clock units in a microsecond.

! The standard epoch is the moment at which the TOD

! clock would have read X'00000000 00000000'. On a

! virtual machine system the standard epoch is January

! 1, AD 1900, 00:00:00 UTC. This format is exactly

! the format of the output of the STORE CLOCK (STCK)

! instruction.

! 8! Left

! SCIENTIFIC_ABSOLUTE
! SCIABS
! Eight-byte value containing two signed four-byte

! binary integers.

! The first integer is the number of whole days (that is,

! 24-hour units) that have elapsed between January 1,

! 4713 BC, Noon, Universal Time, Coordinated (UTC)

! and the moment being expressed. This is called the

! Julian day number.

! The second integer is the number of milliseconds to be

! added to the Julian day number to reach the moment

! being expressed. If the input is date specific, the time

! will be zero. This results in the time output portion to

! always be Noon.

! The first integer must be greater than or equal to zero.

! The second integer must be greater than or equal to

! zero and less than the number of milliseconds in a day

! (86400000).

! 8! Left

! POSIX! Unsigned doubleword indicating the number of

! seconds since the POSIX epoch (this is defined

! according to IEEE standard 1003.1). The POSIX

! epoch is January 1, AD 1970, 00:00:00 UTC.

! 8! Left

! Figure 391 (Page 1 of 2). Relative input format and output format Parameters

! Format! Definition! Length! Output

! Left or

! Right

! Justified

! TOD_RELATIVE
! TODREL
! Signed doubleword specifying an amount of time

! rather than a specific date. Specified in TOD clock

! units.

! 8! Left

 Chapter 23. Inventory of Built-in Programs 359

 deal

! Figure 391 (Page 2 of 2). Relative input format and output format Parameters

! Format! Definition! Length! Output

! Left or

! Right

! Justified

! SCIENTIFIC_RELATIVE SCIREL! Eight-byte value containing two signed four-byte

! binary integers and specifying an amount of time

! rather than a specific date.

! The first integer is a number of whole days (that is,

! 24-hour units). The second integer represents a frac-

! tional day and is the number of milliseconds to be

! added to the whole day count.

! There are no constraints on the value of the first

! integer. The second integer must be greater than or

! equal to zero and less than the number of milliseconds

! in a day (86400000).

! 8! Left

! MET! [-]dddddddddd hh:mm:ss.uuuuuu specifies the MET
! format.

! For input, you may supply up to 10 day digits,

! provided the number of days represented can be

! expressed without overflow in a signed fullword.

! When dateconvert returns the date in MET format, it

! never pads the day field with leading zeroes. This

! format, Mission Elapsed Time, is used by NASA for

! measuring the duration of space flights.

! 11-27! Right

 Notes:

1. Leap seconds are ignored in the calculations.

2. dateconvert assumes that the first day of the Gregorian calendar is September 14,

1752. The day before that is September 2, 1752; it is in the Julian calendar.

! 3. Unlike the REXX date() function, the first date format in dateconvert specifies the

! input format and the second date format specifies the output format.

! 4. dateconvert does not provide a way specify the separator characters for input and

! output date format. A change or xlate stage before or after dateconvert can be used to

! transform the date into the required format.

! 5. Transformation between TOD and ISO date and time format can also be done in spec

! using the C2T and T2C conversion which also supports a time zone offset. Because this

! transformation does not use the DateTimeSubtract service, the use of spec may offer

! some performance advantages.

deal—Pass Input Records to Output Streams Round Robin
deal reads records from its primary input stream and passes each record to one of its

output streams. Thus, deal can be used to divide work between a number of “worker

stages”.

By default, records are written to the output streams round robin, that is, the first record to

the primary output stream, the second record to the secondary output stream, and so on.

360 CMS Pipelines User’s Guide and Reference

 deal

Alternatively, you can supply the stream identifier for the stream to receive a record or you

can specify that a run of records containing the same key are written to the same output

stream.

 ┌ ┐─STOP──ALLEOF────────────────────
►►──DEAL─ ──┼ ┼───────────────────────────────── ─►◄
 ├ ┤ ─STOP─ ──┬ ┬─ANYEOF─ ───────────────

│ └─number─┘ │
 ├ ┤ ─SECONDARY─ ──┬ ┬───────── ─────────
 │ │├ ┤─RELEASE─

: │ │└ ┘─LATCH───
 ├─KEY──inputRange──┬───────┬─ ─────┤
 │ │└ ┘─STRIP─
 └─STREAMid──inputRange──┬───────┬─┘
 └ ┘─STRIP─

 Type: Gateway.

Syntax Description: Arguments are optional; the default is STOP ALLEOF. The four

options are exclusive; specify at most one of them.

Operation: An input record is passed to one of the output streams.

When KEY, SECONDARY, and STREAMID are omitted, records are passed to the output

streams round robin. The first input record is passed to the primary output stream, the

second input record is passed to the secondary output stream, and so on until it wraps after

the highest-numbered output stream. The next record is then passed to the primary output

stream and the cycle is repeated. deal reacts to end-of-file on an output stream by trying

STOP Specify the condition under which deal should terminate prematurely.

ALLEOF, the default, specifies that deal should continue as long as at

least one output stream is connected. ANYEOF specifies that deal should

stop as soon as it determines that an output stream is no longer

connected. A number specifies the number of unconnected streams that

will cause deal to terminate. The number 1 is equivalent to ANYEOF.

SECONDARY The secondary input stream contains the stream identifiers of the streams

that are to receive the records on the primary input stream.

RELEASE Consume the record on the secondary input stream before reading the

record from the primary input stream.

: LATCH: deal waits for a record to arrive on its input streams. When a record

: arrives at the secondary input stream, the specified output stream is

: selected and the record is discarded; that is, LATCH implies RELEASE.

: When a record arrives at the primary input, it is copied to the currently

: selected output. The primary output stream is selected initially.

KEY Specify the input range that contains the key of each record. Runs of

records that contain the same key are written to the same output stream.

STREAMID Specify the input range within the record on the primary input stream

that contains the stream identifier to receive the record. Each record is

routed individually.

STRIP Delete the key or stream identifier from the output record. The

inputRange must be either at the beginning or at the end of the record.

 Chapter 23. Inventory of Built-in Programs 361

 deal

the next output stream until as many streams are at end-of-file as specified in the STOP

option.

When KEY is specified, the first record is passed to the primary output stream and the

contents of its key field are then stored in a buffer. A run of records that contain the

stored key is passed to the same output stream. When the key of the input record is not

equal to the stored key, the next output stream is selected and the run of records is passed

to this stream.

: When SECONDARY is specified and LATCH is omitted, a pair of records from each input

stream is processed together. deal first peeks at the record on the secondary input stream

to determine where to write the record on the primary input stream. The record from the

secondary input stream specifies the number or identifier of the stream to receive the corre-

sponding record from the primary input stream. The record from the primary input stream

is then passed to the specified stream. When RELEASE is specified, the record on the

secondary input stream is consumed before the primary input stream is read; otherwise, the

two records are consumed, the one on the primary input stream first, after the output

record has been written.

: When SECONDARY LATCH is specified, records on the secondary input stream specify the

: output stream to be selected; such records are discarded immediately. Subsequent records

: on the primary input stream are passed to the stream last selected by a record on the

: secondary input stream.

When STREAMID is specified, the record is routed based on its contents. The contents of

the specified range determine the output stream to receive the record.

Input Record Format: When SECONDARY is specified, the secondary input stream

contains one word per record. This word is the stream identifier for the output stream that

should receive the corresponding record from the primary input stream. The stream

identifier can be a number, in which case it is the number of the stream (from 0); or it can

be an alphanumeric stream identifier.

Streams Used: Records are read from the primary input stream. If SECONDARY is

specified, records are also read from the secondary input stream; the two input streams are

synchronised unless RELEASE is specified. Records are, in general, written to all connected

output streams.

Record Delay: deal strictly does not delay the record.

Commit Level: deal starts on commit level -2. It verifies that only the primary input

stream is connected unless SECONDARY is specified, in which case the secondary input

stream must be connected; and then commits to level 0.

Premature Termination: deal terminates as soon as it receives end-of-file on any of its

input streams.

When KEY, SECONDARY, or STREAMID is specified, deal terminates as soon as it discovers

that an output stream is at end-of-file; the corresponding input records are not consumed.

When STOP is specified or defaulted, it specifies how many output streams can go to end-

of-file before deal terminates. The corresponding input records are not consumed.

 Converse Operation: gather.

362 CMS Pipelines User’s Guide and Reference

 deal

 See Also: fanout.

Examples: To pass an input record to one of three virtual machines, as a special message;

that is, to spread the load among multiple servers:

'callpipe (end ? name DEAL.STAGE:120)',
 '?*:',
 '|d:deal',

'|change //SMSG BEE1 /',
 '|cp',
 '?d:',

'|change //SMSG BEE2 /',
 '|cp',
 '?d:',

'|change //SMSG BEE3 /',
 '|cp'

To discard every second record:

'callpipe (end ? name DEAL.STAGE:151)',
 '?*:',
 '|d:deal',
 '|*:',
 '?d:',
 '|hole'

Note that the records are discarded by hole. Leaving an output stream unconnected will

not cause records to be dropped; deal will try to write the record until its succeeds or until

it has received sufficient end-of-file indications to terminate.

To hand out work to one of several servers:

/* Passes an input record to whichever output is ready. */
Signal on novalue

/***/
/* This subroutine distributes work amongst server pipelines, which */
/* are connected from output 0 to input 1, from output 1 to input 2, */
/* and so on (this makes for easy coding of the main pipeline). */
/* */
/* A server writes a record (a "ready" token) when it is ready to */
/* process a request. An input record will then be made available. */
/* The server should consume this input record "quickly" (to avoid */
/* blockage of the DEAL stage that doles out work to the performing */
/* pipelines). */
/* */
/* Each server pipeline should contain a pipeline that produces */
/* ready tokens as appropriate. For example, you can use a sipping */
/* pipeline along these lines: */
/* */
/* output ready! */
/* callpipe *:|take 1|<server> */
/* */
/* Each "ready" token is then turned into the stream's number and */
/* fed into the buffer of available streams. */
/***/

'maxstream output'
maxstream=RC-1

 Chapter 23. Inventory of Built-in Programs 363

 deal

If RC=0
Then exit 999

pipe=''

first='tod:|'
do j=0 to maxstream
 pipe=pipe,
 '*..'j+1':',

'|spec /'j'/ 1',
 '|i:',
 '\'first'd:',
 '|*..'j+1':'
 first=''
end

'callpipe (end \ name THROTTLE.REXX:31)',
'\i:faninany', /* Ready records */
'|elastic', /* Form a queue */
'|tod: fanout', /* Couple forward */

 '*..0:',
 '|d:deal secondary', /* Distribute */

'|*..0:', /* to server thread */
 pipe

exit RC

 Notes:

: 1. It is unlikely to be efficient to distribute work round robin amongst identical proc-

: essing stages that do not in some way connect to a different task or another virtual

machine.

: 2. You should ensure that no two records arrive concurrently when SECONDARY LATCH is

: specified; the order of processing is unspecified and in general random if they do.

364 CMS Pipelines User’s Guide and Reference

 deblock

deblock—Deblock External Data Formats
deblock generates output records from input blocks. Input blocks are often received from

other systems, for example, a tape in VBS format from a z/OS system or a binary file

uploaded from a workstation.

 ┌ ┐─Fixed──80────────────────────────
►►──DEBLOCK─ ──┼ ┼────────────────────────────────── ─►◄
 │ │┌ ┐─Fixed─
 ├─┴───────┴──number──┬───────────┬─┤
 │ │└ ┘─FROMRIGHT─
 ├ ┤─Variable─────────────────────────
 ├ ┤─CMS──────────────────────────────
 ├ ┤─CMS4─────────────────────────────
 ├ ┤─SF───────────────────────────────
 ├ ┤─SF4──────────────────────────────
 ├─RDW──range──number──┬───────┬─ ───┤
 │ │└ ┘─STRIP─
 ├ ┤ ─RFC959─ ──┬ ┬─────────── ───────────

| │ │└ ┘─TERMinate─
 ├ ┤─ONEBYTE──────────────────────────
 ├ ┤─ADMSF────────────────────────────
 ├ ┤─GDForders────────────────────────
 ├ ┤─AWSTAPE──────────────────────────
 ├─DECIMAL──number──┬─INCLUSIVE─┬─ ──┤
 │ │└ ┘─EXCLUSIVE─
 ├ ┤─NETdata──────────────────────────
 ├ ┤ ─TEXTUNIT─────────────────────────
 ├ ┤─MONITOR──────────────────────────
 ├ ┤─TEXTfile─────────────────────────

└ ┘─┤ PC-style ├─────────────────────

 PC-style:

├─ ──┬ ┬─C─────────────────────── ──┬ ┬─────────── ──┬ ┬─────────────── ─┤
 │ │┌ ┐─15─── └ ┘─TERMinate─ │ │┌ ┐─3F───
 ├ ┤ ─LINEND─ ──┼ ┼────── ─────── └ ┘ ─EOF─ ──┼ ┼──────

│ └─xorc─┘ │ └─xorc─┘
 ├ ┤─CRLF────────────────────
 └─STRING──delimitedString─┘

 Type: Filter.

Syntax Description: The argument is optional. If present, it must be a keyword or a

number. FIXED is the default; you must write a number after FIXED when it is used explic-

itly. The default is to deblock to 80-byte records.

Operation: In general, deblock performs the inverse operation of block. Input record

boundaries are ignored in some input formats, because the file itself contains the informa-

tion required to reconstruct the logical record structure; such input files are called byte

streams.

 Chapter 23. Inventory of Built-in Programs 365

 deblock

FIXED Produce as many records of fixed length as required for each input

block. Output records do not span input blocks; a short record is written

for the last part of the block if a block is not an integral multiple of the

record length. Thus, deblock FIXED accepts input records that cannot be

created with block FIXED.

Normally, deblock FIXED processes the input block from left to right, but

the order is reversed when FROMRIGHT is specified. The first part of the

block is then written last; it may be a short record.

VARIABLE Deblock OS variable length records. deblock V supports all four OS vari-

able formats: V, VB, VS, and VBS. Null segments are discarded.

. Extended block descriptor words are supported.

CMS Reconstruct a file from the format used to store variable record format

files internally in the CMS file system. Internally, each logical record has

a halfword prefix containing the length of the record. Length zero

means end-of-file. The length field is not present in the output record.

The input is considered a byte stream.

CMS4 Reconstruct a file where each logical record is prefixed four bytes length

that specifies the number of data characters that follow. Length zero

means end-of-file. The length field is not present in the output record.

The input is considered a byte stream.

SF Deblock structured fields. A structured field consists of a halfword

(sixteen bits) length field and a variable length data field. The contents

of the length field includes those two bytes. Thus, a null structured field

consists of the data X'0002'. The halfword length field is not present

in the output record. The input is considered a byte stream; the struc-

tured fields can be spanned over input records.

SF4 Logical records are prefixed four bytes length. The length field contains

four plus the count of data characters that follow. That is, the length

field specifies the length of the logical record inclusive of the record

descriptor. Length zero means end-of-file. The length field is not

present in the output record. The input is considered a byte stream.

RDW Logical records contain a descriptor word in the positions defined by

: range. The contents are treated as a binary unsigned number. The

number specifies an overhead to be added to the contents of this record

descriptor word to determine the length of the logical record, inclusive

of the descriptor word. STRIP specifies that the record descriptor word is

: not written as part of the output record; the range must then begin in

: column 1.

RFC959 Deblock according to the format defined in Request For Comments 959

| (“File Transfer Protocol”). A convenience for rdw 2.2 3. Specify

| TERMINATE to have deblock terminate without issuing an error message

| when the last record is incomplete (which may happen when an ABOR

| command is issued to the FTP Server).

ONEBYTE Deblock logical records that consist of a one byte length field and a vari-

able length data field. The contents of the length field includes this one

byte. Thus, a null one byte record consists of the data X'01'. The

length field is not present in the output record. The input is considered a

byte stream; the logical record can be spanned over input records.

366 CMS Pipelines User’s Guide and Reference

 deblock

ADMSF Deblock GDDM structured fields. When a logical record ends one char-

acter before the end of a block and the remaining character is X'00',

this pad character is ignored. The halfword length field is not present in

the output record.

GDFORDERS Deblock orders in an already deblocked GDF structured field.

AWSTAPE Reconstruct tape blocks from an emulated tape. The input is considered

a byte stream.

DECIMAL Deblock records prefixed by their length in decimal. The number

specifies the width of the sequence field, which contains normal printable

digits. Specify INCLUSIVE if the length of the count field is included in

the count; EXCLUSIVE if not. The output record contains the count field

at the beginning. The input is considered a byte stream.

NETDATA Records in netdata format are deblocked and built from segments such

that the first character of each output record is the flag byte, which

always has the leftmost two bits (X'C0') on indicating a complete

record. It is verified that all input records except the last one have the

same length. This saves you from subtle errors when a truncated record

. is let in from SPOOL. The input is considered a byte stream, but the

! remainder of the input record is discarded after an \INMR6 record is proc-

! essed. This is done to support stacked reader files. Refer to “Netdata

Format” on page 65 for usage information.

TEXTUNIT Write a record for each text unit in netdata control records. Input

records must be control records with X'E0' in the first position;

columns 2-6 must contain the literal 'INMR0'; column 7 must be 1, 2,

3, 4, 6, or 7. The file count in record type INMR02 is discarded.

MONITOR Deblock VM Monitor blocks. Each record is prefixed a halfword length

field as for SF. Records are not spanned across blocks. Blocks are

padded with binary zeros, which are discarded.

TEXTFILE A convenience for LINEND 15 TERMINATE. The input file need not be in

the format produced by block TEXTFILE. The input is considered a byte

stream.

C

LINEND
Two keywords support deblocking logical records that are separated by a

line end character in the input block. The line end character is removed

from the logical records when they are written to the output stream. The

input is considered a byte stream; logical records can span input blocks

in these formats. In format C, logical records are separated by a newline

character, X'25' (line feed). deblock LINEND is similar; the default line

end character is X'15'. You can specify the line end character as a

single character or a two-character hex code after the keyword LINEND.

A null record is written for two consecutive end of line characters.

CRLF Deblock lines separated by carriage return line feed (X'0D25'). Logical

records can span blocks, as can the line end sequence. A null record is

written for two consecutive carriage return line feed sequences. The

input is considered a byte stream.

STRING Deblocks lines separated by the specified string. Logical records can

span blocks, as can the separator string. A null record is written for two

consecutive occurrences of the specified string. The input is considered

a byte stream.

 Chapter 23. Inventory of Built-in Programs 367

 deblock

The formats C, LINEND, CRLF, and STRING support two keywords, TERMINATE and EOF.

Specify TERMINATE to suppress a trailing null line when the file ends in a line end

sequence. Use EOF to specify an end-of-file character. deblock discards the end-of-file

character and all remaining input. That is, deblock consumes the first record that contains

an end-of-file character and then terminates. X'3F' (substitute) is the default end-of-file

character. deblock scans for an end-of-file character only when the keyword is specified.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: deblock delays input records as required to build an output record. The

delay is unspecified.

Premature Termination: deblock terminates when it discovers that its output stream is

not connected. deblock TEXTUNIT terminates when it has consumed the input record that

contains the INMR06 control record that terminates the file.

 Converse Operation: block.

See Also: fblock and spill.

Examples: FMTPCBIN REXX reformats a text file uploaded from a PC as a binary:

/* Format PC binary. */
signal on novalue
'callpipe (name FMTPCBIN)',
 '|*:',

'|xlate a2e', /* From ASCII to EBCDIC */
'|deblock c terminate eof', /* Deblock from newlines */
'|strip trailing 0d 1', /* Discard one trailing line feed */

 '|*:'
exit RC

The file AUTOEXEC BATBIN is uploaded in binary:

 pipe < autoexec batbin | fmtpcbin | take 3 | console
►ECHO OFF
►SET INDLANG=DK
►INDKB
►Ready;

To deblock a file with X'15' line end characters:

...| deblock linend |...

To extract the text units describing the data set from a reader file in the NETDATA format:

/* Get text units from reader file */
'PIPE',
 ' reader',
 '|find' '41'x,

'|spec 2-* 1.80',
 '|deblock net',
 '|find' 'e0'x,
 '|deblock textunit',
 '|...

To deblock an ADMGDF file:

368 CMS Pipelines User’s Guide and Reference

 delay

/* Deblock ADMGDF */
'PIPE (name DEBLOCK)',

'|< x admgdf', /* Read gdf file */
'|drop 1', /* Drop descriptor */
'|spec 21-*', /* Drop record identifier */
'|deblock admsf', /* Unravel GDDM structured fields */
'|deblock gdf', /* Now unblock the orders */

 '|...

To restore the record format of a LIST3820 (or similar) file that has lost its record bounda-

ries during file transfer:

... | deblock rdw 2.2 1 | ...

The records contain a carriage control character (one byte), which is followed by a struc-

tured field. The first two bytes of the structured field contain the length of the field, inclu-

sive of these two bytes, but it does not include the carriage control character; therefore, the

adjustment factor is one.

 Notes:

1. VB, VS, and VBS are synonyms for VARIABLE.

2. Though input records are called blocks and output records are called logical records,

these are still records (or lines) as perceived by the pipeline dispatcher.

3. Netdata and PC deblocking may produce output records that contain data from several

input records; in this respect, deblock can be considered to be blocking input records

rather than deblocking them.

 delay—Suspend Stream
delay copies an input record to the output at a particular time of day or after a specified

interval has elapsed. The first word of each input record specifies the time at which it is to

be passed to the output.

►►──DELAY──►◄

Type: Device driver.

Placement: delay must not be a first stage.

Operation: The input record is copied to the primary output stream when the delay

expires (the specified time is reached or the specified interval elapses). A record that

specifies a time of day (that is, without a leading plus) is copied to the output immediately

when it is read after the time specified.

Input Record Format: The first word of each input record specifies when the record is to

be copied to the output; the remainder of the record is not inspected.

The delay is a word that contains up to three numbers separated by colons. A leading plus

indicates that the time is relative to the time of day when the record is read; with no

leading plus, the time is local time relative to the previous midnight.

The numbers represent hours, minutes, and seconds. The seconds field may contain a

decimal point and up to six fractional digits, giving microsecond resolution. The numbers

 Chapter 23. Inventory of Built-in Programs 369

 delay

must be zero or positive, but are not restricted to the normal conventions for seconds per

minute, minutes per hour, and hours per day. You can wait until 1:17:64, which is

equivalent to 1:18:04. You can wait until any time in the future, as long as the

time-of-day clock has not changed sign. (If your system is using the standard epoch, the

sign will change in 2041.) A delay of 8760 waits until midnight on the 365th day

following the current day. (Assuming the system stays up that long and assuming no drift

of the time-of-day clock.)

When the first word has one or two numbers, the interpretation depends on the presence of

a leading plus. With the plus (indicating a relative interval), the rightmost number is taken

to be seconds; a further number to the left of it represents minutes. When there is no

leading plus (a time of day is specified), the leftmost number represents the hour; minutes

and seconds are assumed to be zero when not specified.

Streams Used: delay passes the input to the output.

Record Delay: delay strictly does not delay the record. That is, delay consumes the input

record after it has copied it to the primary output stream; records are delayed in time, but

the relative order of records that originate in a particular filter is unchanged.

Premature Termination: delay terminates when it discovers that its output stream is not

connected; delay also stops if the immediate command PIPMOD STOP is issued or if a record

is passed to pipestop.

Examples: To perform an action at 3 am every day. Note the code to determine whether

the subroutine pipeline was called before or after 3 am.

/* 3AM REXX */
If time('Hours') > 2 /* 3am or later? */
 Then addl=''

Else addl='literal 3|' /* No, wait till then */
'PIPE',

'literal 27|', /* 3am tomorrow */
 'dup *|', /* Forever */

addl, /* Maybe 3am today? */
 'delay|', /* Wait */
 '*:'

To issue a CP command once a minute:

pipe literal +60 | dup * | delay | spec ,QUERY RDR ALL, | cp |...

To issue the command “midnight” at midnight:

pipe literal 24 | delay | spec ,midnight, | subcom cms

 Notes:

1. On CMS, delay issues diagnose 0 to determine the time zone offset.

 2. literal 0 | delay never waits; use 24 to wait until the next midnight.

3. delay does not depend on the date of the epoch (the date corresponding to a zero value

of the time-of-day clock). The epoch must begin at midnight GMT when waiting to a

particular time of day.

4. No more than 16 delay stages can be active concurrently on z/OS.

370 CMS Pipelines User’s Guide and Reference

 devinfo

. devinfo—Write Device Information
! devinfo writes information about a range of virtual devices. The output includes at least

. the device number and its generic type. When further information is available, it is

. included in the output record.

. CMS .

. ►►──DEVINFO──devaddr──┬────────┬──►◄

. └─number─┘

. Type: Device driver.

. Placement: devinfo must be a first stage.

. Syntax Description:

. Output Record Format: For each device, the output line contains as a minimum the

. device number and its generic type.

. For devices that respond to E4 sense, the next two words contain device type and control

. unit type.

. For a CKD device, the rest of the line contains the number of primary tracks, number of

. tracks per cylinder, and usable space per track.

. For FBA, the rest of the line contains block size, blocks per track, blocks per cylinder,

. blocks under movable heads, and blocks under fixed heads.

. Premature Termination: devinfo terminates when it discovers that its output stream is not

. connected.

. Examples:

. pipe devinfo 9|cons

. ►0009 TERM

. ►R;

. pipe devinfo 180|cons

. ►0180 TAPE 3480 3480

. ►R;

. pipe devinfo 190|cons

. ►0190 DASD 3390 3990 107 15 58786

. ►R;

. pipe devinfo 100|cons

. ►0100 FBA 9336 6310 512 111 777 4000 0

. ►R;

. devaddr. The first or only device number to query.

. number. The count of devices to query. The default count is zero.

 Chapter 23. Inventory of Built-in Programs 371

 dfsort

dfsort—Interface to DFSORT/CMS
dfsort builds a parameter list to call DFSORT/CMS, inserts the input file on the E15 exit, and

extracts the sorted file from the E35 exit and writes it into the pipeline.

 CMS

►►──DFSORT──string──►◄

 Type: Sorter.

Placement: dfsort must not be a first stage.

Syntax Description: The arguments are optional. Specify sort control statements in the

. parameter string. The string passed to the sort is made upper case. dfsort adds this state-

ment to the end of the specified string:

 RECORD TYPE=V,LENGTH=32760

Input records are always variable record format as far as DFSORT/CMS is concerned; dfsort

adds and removes record descriptor words. Because the record descriptor word occupies

the first four positions of the record as seen by DFSORT/CMS, the sort fields must specify a

field position that is four larger than the position in the record that is passed to dfsort.

Input Record Format: Records can be up to 32756 bytes long.

Record Delay: dfsort delays all records until end-of-file.

Premature Termination: dfsort terminates when it discovers that its output stream is not

connected.

See Also: collate, merge, and sort.

Examples: To sort on columns 1 to 5 of the input record:

... | dfsort option nolist sort fields=(5,5,ch,a) | ...

Note that you must add four to the column number because the input records that

DFSORT/CMS sees are prefixed four bytes record descriptor.

 Notes:

1. Refer to DFSORT/CMS User’s Guide, SC26-4361.

2. dfsort saves the GLOBAL TXTLIB setting, if any, and sets up a GLOBAL TXTLIB DFSRTLIB

. (unless the TXTLIB is already in the list of global TXTLIBs) before invoking

DFSORT/CMS. The original TXTLIB setting is restored when DFSORT/CMS returns to

dfsort. User programs must not interfere with this library.

3. Use sort to sort records that are longer than 32K. Be sure to have enough virtual

storage to hold the entire file.

. 4. syncsort is a variant of dfsort that uses SYNCSORT TXTLIB instead of DFSRTLIB TXTLIB.

. It appears that SyncSort is not reentrant; running two syncsort stages concurrently is

. likely to have unpredictable results.

. 5. vmsort is a variant of dfsort that uses VMSLIB TXTLIB instead of DFSRTLIB TXTLIB.

372 CMS Pipelines User’s Guide and Reference

 diage4

. diage4—Submit Diagnose E4 Requests

. diage4 submits diagnose E4 requests to CP and writes the response to the primary output

. stream.

. CMS .

. ►►──DIAGE4──►◄

. Type: Device driver.

! Operation: Records from the primary input stream are used to build a parameter list for

! the diagnose E4 request. The CP response is written to the primary output stream. Refer to

! z/VM CP Programming Services, SC24-6272, for a complete description of input and

! output parameters.

. Input Record Format: Input records contain a command verb that identifies the desired

. variety of diagnose E4.

.

. ►►──┬─QLINK──┬──word──devaddr──►◄

. └ ┘─QMDISK─

. Issue a link query (subcode 0) or a minidisk query (subcode 1).

.

. ►►──FULLPACK──word──devaddr──devaddr──word──►◄

. Create a full pack minidisk overlay (subcode 2).

.

. ►►──FULLVOL──devaddr──┬────────┬──devaddr──word──►◄

. └─number─┘

. word. The user ID to query.

. devaddr. The device name of the virtual device to be queried.

. word. The user ID who owns the minidisk.

. devaddr! The virtual device number of the minidisk in the specified user ID’s

. directory entry.

. devaddr. The virtual device number of the created minidisk overlay.

. word. The link mode desired.

. devaddr. The device number of the real device on which to place an overlay.

. number. Cylinder/block number to be verified for conflicts.y The default is 0.

. devaddr. The virtual device number of the created minidisk overlay.

. word. The link mode desired.

 Chapter 23. Inventory of Built-in Programs 373

 digest

. Output Record Format: The first four bytes contain the return code in binary. The next

. four bytes contain binary zeros. The remainder of the record contains the contents of the

. parameter list after the diagnose has been issued.

. Streams Used: Records are read from the primary input stream and written to the primary

. output stream. Null and blank input records are discarded.

. Record Delay: diage4 does not delay the record.

. Premature Termination: diage4 terminates when it discovers that its output stream is not

. connected.

. Notes:

. 1. FULLPACK and FULLVOL require CP directory OPTION DEVMAINT or equivalent ESM

. privilege. An unprivileged user may use QLINK and QMDISK only to enquire the char-

. acteristics of her own virtual machine or its directory entry.

. Return Codes: diage4 sets a nonzero return code only when it discovers syntactic errors

. in the input records. In particular, the return code does not reflect success or failure of the

. diagnose instructions issued.

. digest—Compute a Message Digest

. digest computes a message digest and optionally verifies the digest in the input record.

.

. ►►──DIGEST─ ──┬ ┬─SHA1─── ──┬ ┬───────────────── ─►◄

. ├ ┤─SHA224─ ├ ┤─APPEND──────────

. ├ ┤─SHA256─ └ ┘. ─VERIFY─ ──┬ ┬─────
: ├ ┤─SHA384─ └ ┘─NOT─
. ├ ┤─SHA512─
. └ ┘─MD5────

. Type: Filter.

. Syntax Description: One keyword is required; one is optional.

. SHA1. Compute a 20-byte message digest according to RFC 3174.

. SHA224. Compute a 24-byte SHA-2 message digest according to FIPS 180-3.

. SHA256. Compute a 32-byte SHA-2 message digest according to FIPS 180-2.

. SHA384. Compute a 48-byte SHA-2 message digest according to FIPS 180-2.

. SHA512. Compute a 64-byte SHA-2 message digest according to FIPS 180-2.

. MD5. Compute a 16-byte message digest according to RFC 1321.

. APPEND. Secondary streams must not be defined. The digest is appended to the

. input record with appropriate padding.

374 CMS Pipelines User’s Guide and Reference

 digest

. Operation: The following applies when APPEND and VERIFY are omitted.

. With only the primary streams defined, digest reads all its input and then produces a single

. digest on the primary output stream.

. With secondary streams defined, the message on the primary input stream is passed to the

. primary output stream. At end-of-file on the primary input stream or whenever a record

: arrives on the secondary input stream, the current digest is written to the secondary output

: stream and the process is restarted. This mode is useful for batch signing of messages or

. files possibly for aggregation or transmission.

. Streams Used: Secondary streams are optional when APPEND is omitted.

. Record Delay: digest does not delay the record when APPEND is specified. When

. secondary streams are defined, it does not delay the record on the primary input stream

. being written to the secondary output stream or writing the record on the primary output

. stream relative to the record one the secondary input stream. Otherwise it delays the

. record until end-of-file.

. Commit Level: digest starts on commit level -2. When APPEND is specified digest verifies

. that no secondary streams are defined. When VERIFY is specified, digest verifies that the

. secondary input stream is not connected. digest then commits to 0.

. Premature Termination: digest terminates when it discovers that any of its output

. streams is not connected.

. See Also: cipher.

. Notes:

: 1. When the input data are in EBCDIC and you wish to send a signed ASCII message, you

: should translate appropriately and join all lines with carriage return and line feed

: before passing the record to digest APPEND.

. 2. digest discards records on the secondary input stream.

. 3. digest SHA1 and the four SHA-2 computations use hardware instructions when the

. message security assist feature is installed.

. 4. “Hardware instructions” should be taken to mean “Message-security Assist” and

. “Message-security Assist Extension 1” and “Message-security Assist Extension 2”

. facilities. digest specifically does not support Cryptographic coprocessors (“Integrated

. cryptographic facility”).

. 5. The SHA224 and SHA384 message digests are the truncated versions of SHA256 and

. SHA512 respectively.

. VERIFY. Compute the digest of the beginning of the record and compare that with

. the digest present in the record as produced when APPEND is specified.

. Records that contain an invalid digest or are too short to include the

. complete digest are written in their entirety to the secondary output

. stream; for correctly verified records, the original record is written to the

. primary output stream; that is, padding and the digest are removed from

. the record.

: NOT: The output streams are switched when NOT is specified; verified records

: are written to the secondary output stream.

 Chapter 23. Inventory of Built-in Programs 375

 diskback ¹ diskfast

. 6. The MD5 function is “derived from the RSA Data Security, Inc. MD5 Message-Digest

. Algorithm”.

diskback—Read a File Backwards
diskback is the generic name for a device driver that reads files into the pipeline, starting

with the last record of the file and working forwards through the file.

Depending on the CMS level and the actual syntax of the parameters, diskback selects the

appropriate device driver to perform the actual I/O to the file.

 CMS

►►──DISKBACK──string──►◄

Type: Device driver.

Placement: diskback must be a first stage.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

Commit Level: Refer to the appropriate device driver.

Premature Termination: Refer to the appropriate device driver.

See Also: diskslow and diskrandom.

Examples: Refer to the appropriate device driver.

 Notes:

1. fileback is a synonym for diskback.

Minimum

Release

Driver Used Further Tests

1.2.0 sfsback Three or more words where the third word is not a

mode letter or a mode letter followed by a digit.

(any) mdskback Two words or three words where the third is a mode

letter or a mode letter followed by a digit. 7 through

9 are also considered mode numbers, even though they

are rejected by CMS.

diskfast—Read, Create, or Append to a File
diskfast is the generic name for a device driver that connects the pipeline to a file. When

it is first in a pipeline, diskfast reads a file from disk; it treats a file that does not exist as

one with no records (a null file). When it is not first in a pipeline, diskfast appends

records to an existing file; a file is created if one does not exist.

Depending on the operating system and the actual syntax of the parameters, diskfast selects

the appropriate device driver to perform the actual I/O to the file.

376 CMS Pipelines User’s Guide and Reference

 diskfast

►►──DISKfast──string──►◄

Type: Device driver.

Warning: diskfast behaves differently when it is a first stage and when it is not a first

stage. Existing data can be overlaid when diskfast is unintentionally run other than as a

first stage. To use diskfast to read data into the pipeline at a position that is not a first

stage, specify diskfast as the argument of an append or preface control. For example,

|append diskfast ...| appends the data produced by diskfast to the data on the primary

input stream.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

Record Delay: diskfast strictly does not delay the record.

Commit Level: Refer to the appropriate device driver.

Premature Termination: When it is first in a pipeline, diskfast terminates when it

discovers that its output stream is not connected. Refer to the appropriate device driver.

See Also: >, >>, <, diskback, diskrandom, diskslow, diskupdate, members, and pdsdirect.

Examples: Refer to the appropriate device driver.

 Notes:

1. filefast is a synonym for diskfast.

2. Use <sfsfast or >>sfsfast to access a file using a NAMEDEF that would be scanned by

diskfast as a mode letter or a mode letter followed by a digit.

Operating

System

Minimum

Release

Driver Used Further Tests

CMS 1.2.0 <sfsfast The stage is first in the pipeline. Three

or more words where the third word is

not a mode letter or a mode letter

followed by a digit.

1.2.0 >>sfsfast The stage is not first in the pipeline.

Three or more words where the third

word is not a mode letter or a mode

letter followed by a digit.

(any) mdskfast Two words or three words where the

third is a mode letter or a mode letter

followed by a digit. 7 through 9 are

also considered mode numbers, even

though they are rejected by CMS.

MVS (any) <mvs When first in a pipeline.

(any) >>mvs When not first in a pipeline.

 Chapter 23. Inventory of Built-in Programs 377

 diskid ¹ diskrandom

: diskid—Map CMS Reserved Minidisk
: diskid issues the DISKID function for a minidisk to obtain the offset to the first block of the

: reserved file.

: CMS :

: ┌ ┐───────────────
: ►►──DISKID─ ───6 ┴┬ ┬─────────── ─►◄
: └: ─hexString─┘

: Type: driver.

: Syntax Description:

: Operation: diskid first processes the operand string, if present. It then reads its input and

! processes device numbers specified there.

: Output Record Format: A sixteen byte record:

! ¹ Two bytes binary device number.

: ¹ Two bytes binary block size.

: ¹ Four bytes binary offset.

: ¹ Eight reserved bytes containing all zero bits.

: Streams Used: Records are read from the primary input stream and written to the primary

: output stream. Null and blank input records are discarded.

: Record Delay: diskid does not delay the record.

: Premature Termination: diskid terminates when it discovers that its output stream is not

: connected.

: See Also: mapmdisk.

: hexString! Virtual device numbers for the minidisks to query.

diskrandom—Random Access a File
diskrandom is the generic name for a device driver that reads specified record ranges from

a file into the pipeline.

Depending on the CMS level and the actual syntax of the parameters, diskrandom selects

the appropriate device driver to perform the actual I/O to the file.

 CMS

►►──DISKRANDOM──string──►◄

Type: Device driver.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

378 CMS Pipelines User’s Guide and Reference

 diskslow

Commit Level: Refer to the appropriate device driver.

Premature Termination: Refer to the appropriate device driver.

See Also: diskback and diskslow.

Examples: Refer to the appropriate device driver.

 Notes:

1. filerandom is a synonym for diskrandom.

Minimum

Release

Driver Used Further Tests

1.2.0 sfsrandom Three or more words where the third word is not a

mode letter or a mode letter followed by a digit.

(any) mdskrandom Two words or three words where the third is a mode

letter or a mode letter followed by a digit. 7 through

9 are also considered mode numbers, even though they

are rejected by CMS.

diskslow—Read, Create, or Append to a File
diskslow is the generic name for a device driver that connects the pipeline to a file without

buffering records internally. When it is first in a pipeline, diskslow reads a file from disk;

it treats a file that does not exist as one with no records (a null file). When it is not first in

a pipeline, diskslow appends records to an existing file; a file is created if one does not

exist.

Depending on the operating system and the actual syntax of the parameters, diskslow

selects the appropriate device driver to perform the actual I/O to the file.

►►──DISKSLOW──string──►◄

Type: Device driver.

Warning: diskslow behaves differently when it is a first stage and when it is not a first

stage. Existing data can be overlaid when diskslow is unintentionally run other than as a

first stage. To use diskslow to read data into the pipeline at a position that is not a first

stage, specify diskslow as the argument of an append or preface control. For example,

|append diskslow ...| appends the data produced by diskslow to the data on the

primary input stream.

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

 Chapter 23. Inventory of Built-in Programs 379

 diskupdate

Record Delay: diskslow strictly does not delay the record.

Commit Level: Refer to the appropriate device driver.

Premature Termination: When it is first in a pipeline, diskslow terminates when it

discovers that its output stream is not connected. Refer to the appropriate device driver.

See Also: >, >>, <, disk, diskback, diskrandom, diskupdate, members, and pdsdirect.

Examples: Refer to the appropriate device driver.

 Notes:

1. fileslow is a synonym for diskslow.

2. Use <sfsslow or >>sfsslow to access a file using a NAMEDEF that would be scanned by

diskslow as a mode letter or a mode letter followed by a digit.

Operating

System

Minimum

Release

Driver Used Further Tests

CMS 1.2.0 <sfsslow The stage is first in the pipeline. Three

or more words where the third word is

not a mode letter or a mode letter

followed by a digit.

1.2.0 >>sfsslow The stage is not first in the pipeline.

Three or more words where the third

word is not a mode letter or a mode

letter followed by a digit.

(any) mdskslow Two words or three words where the

third is a mode letter or a mode letter

followed by a digit. 7 through 9 are

also considered mode numbers, even

though they are rejected by CMS.

MVS (any) <mvs When first in a pipeline.

(any) >>mvs When not first in a pipeline.

diskupdate—Replace Records in a File
diskupdate is the generic name for a device driver that replaces records in a CMS file with

data from the pipeline.

Depending on the CMS level and the actual syntax of the parameters, diskupdate selects the

appropriate device driver to perform the actual I/O to the file.

 CMS

►►──DISKUPDATE──string──►◄

Type: Device driver.

Placement: diskupdate must not be a first stage.

380 CMS Pipelines User’s Guide and Reference

 drop

Syntax Description: An argument string is required.

Operation: The actual device driver to be used is selected based on the argument string:

Record Delay: diskupdate strictly does not delay the record.

Commit Level: Refer to the appropriate device driver.

Premature Termination: Refer to the appropriate device driver.

See Also: mdskupdate and sfsupdate.

Examples: Refer to the appropriate device driver.

 Notes:

1. fileupdate is a synonym for diskupdate.

Minimum

Release

Driver Used Further Tests

1.2.0 sfsupdate Three or more words where the third word is not a

mode letter or a mode letter followed by a digit.

(any) mdskupdate Two words or three words where the third is a mode

letter or a mode letter followed by a digit. 7 through

9 are also considered mode numbers, even though they

are rejected by CMS.

drop—Discard Records from the Beginning or the End of the File
drop FIRST discards the first n records and selects the remainder. drop LAST selects records

up to the last n and discards the last n records.

 ┌ ┐─FIRST─ ┌ ┐─1──────
►►──DROP─ ──┼ ┼─────── ──┼ ┼──────── ──┬ ┬─────── ─►◄

└─LAST──┘ ├─number─┤ └─BYTES─┘
 └ ┘─*──────

Type: Selection stage.

Syntax Description: The arguments are optional. Specify a keyword, a number, a

keyword, or any combination.

FIRST Records are discarded from the beginning of the file. This is the default.

LAST Records are discarded from the end of the file.

number Specify the count of records or bytes to discard. The count may be

zero, in which case nothing is discarded.

* All records are discarded.

BYTES The count is bytes rather than records.

 Chapter 23. Inventory of Built-in Programs 381

 duplicate

Operation: When BYTES is omitted, drop FIRST copies the specified number of records to

the secondary output stream, or discards them if the secondary output stream is not

connected. It then passes the remaining input records to the primary output stream.

drop LAST stores the specified number of records in a buffer. For each subsequent input

record (if any), drop LAST writes the record that has been longest in the buffer to the

primary output stream and then stores the input record in the buffer. At end-of-file, drop

LAST flushes the records from the buffer into the secondary output stream (or discards

them if the secondary output stream is not connected).

When BYTES is specified, operation proceeds as described above, but rather than counting

records, bytes are counted. Record boundaries are considered to be zero bytes wide. In

general, the specified number of bytes will have been dropped in the middle of a record,

which is then split after the last byte. When FIRST is specified the first part of the split

record is discarded and the remainder is selected. When LAST is specified, the first part of

the split record is selected and the second part is discarded.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. drop FIRST severs the

secondary output stream before it shorts the primary input stream to the primary output

stream. drop LAST severs the primary output stream before it flushes the buffer into the

secondary output stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. drop FIRST does not delay the record. When BYTES is not

specified drop LAST delays the specified number of records. When BYTES is specified,

drop LAST delays the number of records to needed for the specified number of bytes.

Commit Level: drop starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: drop terminates when it discovers that no output stream is

connected.

 Converse Operation: take.

See Also: frlabel and tolabel.

Examples: To remove the heading line from a command response:

pipe cp query rdr all | drop 1 | ...

 duplicate—Copy Records
duplicate writes each input record into the pipeline one more time than the specified

number.

 ┌ ┐─1───────
►►──DUPlicate─ ──┼ ┼───────── ─►◄

├─snumber─┤
 └ ┘─*───────

 Type: Filter.

382 CMS Pipelines User’s Guide and Reference

 duplicate

Syntax Description: An operand is optional. Specify an asterisk or a number. The

number must be -1 or larger. The number specifies the count of additional copies to write;

the default is 1 (write each input record twice). An asterisk requests an infinite number of

copies of the first input record.

Record Delay: An input record is consumed after all corresponding output records have

been written.

Premature Termination: duplicate terminates when it discovers that its output stream is

not connected.

 See Also: buffer.

 Examples:

! pipe literal CMS Pipelines | split | dup | console
! ►CMS
! ►CMS
! ►Pipelines
! ►Pipelines
! ►Ready;
! pipe literal CMS Pipelines | split | dup 2 | console
! ►CMS
! ►CMS
! ►CMS
! ►Pipelines
! ►Pipelines
! ►Pipelines
! ►Ready;

To create an infinite number of copies of the first input record:

...| dup * |...

CMS Pipelines does not buffer the contents of the pipeline. Thus, though an infinite

supply of records is at hand, records are not produced faster than they are consumed. That

is, duplicate * provides an infinite supply of records, but it produces only one at a time.

! duplicate * is often used to feed delay a stream of records to produce a record at a

! constant pace.

! pipe literal +1 | dup * | delay | timestamp string /%T / | take 3 | ...
! ... console
! ►14:50:31 +1
! ►14:50:32 +1
! ►14:50:33 +1
! ►Ready;

 Notes:

1. duplicate -1 consumes all input and produces no output.

! 2. duplicate 0 copies records from the primary input stream to the primary output stream

! without any change.

! 3. To duplicate input records as groups, use buffer with a number to specify the number

! of copies.

 Chapter 23. Inventory of Built-in Programs 383

 elastic

elastic—Buffer Sufficient Records to Prevent Stall
elastic reads records from the input into a buffer and writes records from this buffer to the

output in a way that does not prevent it from reading another record while it is writing a

record. elastic may be used to avoid a stall in a multistream network.

When elastic has two input streams, the secondary input stream is assumed to be a feed-

back from the stages connected to the primary output stream.

►►──ELASTIC──►◄

 Type: Gateway.

Operation: When the secondary input stream is not defined, elastic reads records as they

arrive and writes them as they are consumed. It tries to minimise the number of records

buffered inside.

When the secondary input stream is defined, elastic first passes the primary input stream to

the primary output stream, buffering any records it receives on the secondary input stream.

When the primary input stream is at end-of-file, elastic enters a listening mode on the

secondary input stream. As long as it has records buffered, it writes to the primary output

stream and reads what arrives at the secondary input stream and stores it in the buffer.

elastic flushes its buffer and terminates when the secondary input stream reaches

end-of-file. elastic also terminates when the buffer is empty and there is no input record

available after it has suspended itself to let all other ready stages run. At this point there

should be no further records in the feedback loop; elastic terminates, because reading a

further record would be likely to cause a stall.

Put another way: When elastic has a secondary input stream, it maintains a “to do” list.

It adds items to do when records arrive on the secondary input stream and it deletes an

item from the list when the corresponding output record is consumed. It terminates when

the list is empty.

Streams Used: All records are passed from the primary input stream to the primary

output stream before any records are passed from the secondary input stream to the

primary output stream.

Record Delay: When the secondary input stream is defined, the records on the primary

input stream are not delayed. elastic delays the records that it buffers; it may consume a

record before writing it, even if the record can be written immediately.

Commit Level: elastic starts on commit level -2. It verifies that the secondary output

stream is not connected, sets up a buffering stage, and then commits to level 0.

Premature Termination: elastic terminates when it discovers that its primary output

stream is not connected.

See Also: buffer and copy.

Examples: To determine which files are embedded in a Script document:

384 CMS Pipelines User’s Guide and Reference

 emsg

/* See what files are imbedded (simplistic) */
'PIPE (name ELASTIC)',

'|< document script', /* Prime with main document */
'|find .im_', /* Look for these */
'|e: elastic', /* Maintain list of files to do */
'|spec word 2 1 /script/ nextword',/* Generate file name */
'|> document imbeds a', /* Write result */
'|getfiles', /* Read the contents of the files */
'|find .im_', /* Look for these */
'|e:' /* Put on to-do list */

 Notes:

1. Use copy when a delay of one record is sufficient. Use buffer when you know that

the complete file must be buffered; for example, when another branch of the pipeline

topology contains a sort stage.

2. It is expected that a case can be constructed that makes elastic with two input streams

terminate before all data are processed.

3. It is unspecified how many records elastic buffers at a particular time. It may buffer

more records than are required to avoid a stall.

4. elastic cannot cause a stall.

 emsg—Issue Messages
emsg issues input lines as CMS Pipelines error messages under control of the message

level setting and the standard VM message editing facility (the CP command SET EMSG).

The message level controls how the message is delivered (the terminal, the console stack,

or the output from runpipe) and what additional messages are issued to pinpoint the stage

that issued the message. CP message editing can remove the message prefix or the

message text, or it can suppress the message altogether.

►►──EMSG──►◄

Type: Device driver.

Operation: Each line is issued with the MESSAGE pipeline command, which in turn passes

the message on to CMS unless the pipeline set is under control of runpipe or the message

level includes the bit for 256 which causes the message to be stacked instead. The line

must have a 10- or 11-character prefix with module, message number (3 or 4 digits), and

severity code.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. The input record is released after the message is issued.

Record Delay: emsg strictly does not delay the record.

 Examples:

 Chapter 23. Inventory of Built-in Programs 385

 eofback

 set emsg text
►Ready;
 pipe literal dmsxxx123E Sample message| emsg
►Sample message.
►... Issued from stage 2 of pipeline 1
►... Running "emsg"
►Ready;
 pipe literal dmsxxx123E Sample message| (nomsg 15) emsg
►Sample message.
►Ready;

The second example shows how to disable the automatic messages; when one uses emsg it

is seldom interesting which stage issued the message.

Use the CP command SET EMSG ON to display the message prefix:

 set emsg on
►Ready;
 pipe literal dmsxxx1234E Sample message| (nomsg 15) emsg
►dmsxxx1234E Sample message.
►Ready;

 Notes:

1. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

eofback—Run an Output Device Driver and Propagate End-of-file Backwards
eofback passes the input records to the output. When the output record has been

consumed, it is passed to the specified device driver, whose output stream is not connected.

►►──EOFBACK──word──┬────────┬──►◄
└─string─┘

 Type: Control.

Syntax Description: Specify an output device driver and its arguments.

Record Delay: eofback strictly does not delay the record.

Premature Termination: eofback terminates when it discovers that its output stream is

not connected.

Examples: To write the file being processed to the terminal, without the console stage

consuming all input:

... | eofback console | tolabel ...

Had console been used by itself, it would have written the entire input to the terminal.

When used with eofback, it shows only those records that are consumed by the following

stages, which typically will contain a partitioning selection stage.

386 CMS Pipelines User’s Guide and Reference

 escape ¹ fanin

escape—Insert Escape Characters in the Record
escape processes records to insert escape characters in front of characters that are specified

as needing escape. This can be useful when building a pipeline where arbitrary argument

strings are passed to stages.

►►──ESCAPE─ ──┬ ┬───────────────── ─►◄
└─delimitedString─┘

 Type: Filter.

Syntax Description: A delimited string is optional. The first character in the string is the

escape character. Additional characters specify further characters to be escaped. A string

consisting of double quotes, backward slash, and a vertical bar (/"\|/) is used by default.

Operation: In the input record, occurrences of characters in the argument string are

prefixed with the first character of the argument string.

Record Delay: escape strictly does not delay the record.

Premature Termination: escape terminates when it discovers that its output stream is not

connected.

 See Also: change.

 Examples:

 pipe literal This: "a beautiful day" | escape | console
►This: ""a beautiful day""
►Ready;

 Notes:

1. escape is a convenient substitute for a cascade of change filters.

 fanin—Concatenate Streams
fanin passes all records on the primary input stream to the primary output stream, then all

records on the secondary input stream to the primary output stream, and so on.

►►──FANIN─ ──┬ ┬──────────── ─►◄
 │ │┌ ┐──────────

└──6─stream─┴─┘

 Type: Gateway.

Syntax Description: A blank-delimited list of stream identifiers and numbers is optional.

Specify a list of numbers or stream identifiers, or both, to process input streams in a partic-

ular order. Only records from the specified streams are passed; other input streams are left

intact. The default is to pass all records from the primary input stream to the primary

output stream, then all records from the secondary input stream to the primary output

stream, and so on.

 Chapter 23. Inventory of Built-in Programs 387

 faninany

Streams Used: Records are passed from all defined input streams or all specified ones;

records are written to the primary output stream only.

Record Delay: fanin strictly does not delay the record.

Commit Level: fanin starts on commit level -2. It verifies that the primary output stream

is the only connected output stream and then commits to level 0.

Premature Termination: fanin terminates when it discovers that its primary output stream

is not connected.

 Converse Operation: fanout.

See Also: faninany, fanintwo, and gather.

Examples: To write two files into the pipeline, one being upper cased and the other being

lower cased:

/* CATTWO REXX */
parse arg fn1 ft1 fn2 ft2 .
'callpipe (end ?)',

'|<' fn1 ft1, /* Read first file */
'|xlate upper', /* Uppercase it */
'|f:fanin', /* Join inputs */
'|*:', /* Pass on to next */
'?<' fn2 ft2 , /* Read second file */
'|xlate lower', /* Lowercase it */
'|f:' /* Append to first */

 Notes:

1. fanin can cause a pipeline network to stall if two or more input streams originate in

the same device driver; faninany cannot cause such a stall.

2. An elastic or a stage that buffers its file applied to all input streams except the primary

will prevent a stall at the expense of storage.

! 3. Stream identifiers longer than four characters are truncated with a warning message.

! 4. Each input stream can be processed only once. fanin does not verify this. When the

! same stream is specified multiple times, subsequent references are ignored.

! 5. When mixing stream numbers and stream identifiers in fanin, be aware that streams

! identified with a stream identifier also have a stream number assigned by the scanner.

faninany—Copy Records from Whichever Input Stream Has One
faninany copies records from its input streams to the primary output stream. It reads

records from whatever input stream has one ready. It is unspecified which stream is read

next when two or more input streams have a record ready.

►►──FANINANY─ ──┬ ┬──────── ─►◄
 └ ┘─STRICT─

 Type: Gateway.

388 CMS Pipelines User’s Guide and Reference

 fanintwo

Operation: When STRICT is specified, faninany ensures that it passes the record from the

lowest-numbered stream that has a record available.

Streams Used: Records are read from all input streams; they are written to the primary

output stream only.

Record Delay: faninany strictly does not delay the record.

Commit Level: faninany starts on commit level -2. It verifies that the primary output

stream is the only connected output stream and then commits to level 0.

Premature Termination: faninany terminates when it discovers that its primary output

stream is not connected.

See Also: if, fanin, fanintwo, and gather.

! Examples: Assuming the input stream has examples between :xmp. and :exmp. tags at

! the start of a record, the following can be used to translate all examples to upper case.

! Because the stages in this pipeline do not delay the record, the order of the records is not

! affected by this pipeline. It does not matter whether they passed through the xlate stage or

! not.

/* UPXMP REXX */
'callpipe (end ?)',

'|*:', /* Input stream */
'|i:inside /:xmp./ /:exmp./', /* Take contents of examples */
'|xlate upper', /* Do something on them */
'|f:faninany', /* Re-merge the streams */
'|*:', /* Pass them on */
'?i:', /* Short-circuit rest of file */

 '|f:'

 Notes:

1. faninany cannot cause a stall.

2. Records from any one input stream appear in the output stream in the order in which

they were read from that input stream, but they may be interspersed with records from

other input streams. When multiple streams are being read, the relative order of the

records from any two input streams is unspecified unless the input streams originate in

a common selection stage or fanout (or similar) and the meshes in the pipeline

topology consist entirely of stages that do not delay the record.

3. Depending on the number of input streams, STRICT may add significant overhead. Use

it only when you can prove from the topology that it really is needed.

fanintwo—Pass Records to Primary Output Stream
fanintwo supports two input streams. It passes records from whichever input stream has

one available to the primary output stream, giving priority to the secondary input stream.

►►──FANINTWO─ ──┬ ┬────────── ─►◄
! └ ┘─AUTOSTOP─

Type: Arcane gateway.

 Chapter 23. Inventory of Built-in Programs 389

 fanintwo

Operation: When a record is available on fanintwo’s primary input stream, it suspends

! itself and then tests if there is a record on its secondary input stream as well. If there is, it

passes the record from the secondary input stream and consumes it. fanintwo then goes

back to look for another record on the secondary input stream to be passed before the

record on the primary input stream, and so on.

fanintwo passes the record from the primary input stream to the output only when there is

no record available on the secondary input stream. When fanintwo has written a record

that originated on the primary input stream, it passes (and consumes) as many records from

the secondary input stream as it can before it consumes the record on the primary input

stream.

! When AUTOSTOP is specified, fanintwo will pass any remaining records from the secondary

! input stream after end-of-file is detected on the primary input stream. This avoids a stall

! after processing all records on the primary input stream without the need for another stage

! like gate to terminate the feedback pipeline.

Streams Used: Records are passed from the primary input stream and the secondary input

stream to the primary output stream. A record on the secondary input stream is passed in

preference to one from the primary input stream.

Record Delay: fanintwo strictly does not delay the record it passes from the secondary

input stream. It delays records it passes from the primary input stream by the number of

records arriving on the secondary input stream before the record is consumed on the

primary input stream.

Commit Level: fanintwo starts on commit level -2. It verifies that the primary output

stream is the only connected output stream and then commits to level 0.

Premature Termination: fanintwo terminates when it discovers that its primary output

stream is not connected.

See Also: fanin, faninany, and gather.

Examples: To generate an input to clear a TSO screen that is displaying the three aster-

isks:

'callpipe (end ? name FANINTWO.STAGE:56)',
 '?*.input.0:', /* Transactions */

'|clr: fanintwo', /* Merge with automatic enters */
'|dvmusi', /* Send to TSO */
'|ldsfcfy', /* Figure out the 3270 data */
'|f: strfind x1e', /* MORE... */
"|spec /DL0 ' /", /* Generate ENTER automatically */
'|elastic', /* No stall, please */
'|clr:', /* Pass to TSO */
'?f:', /* Data records */
'|*.output.0:' /* To output */

The point of using fanintwo here is that an inbound record containing the attention

identifier for the Enter key should be injected whenever TSO has written a line of three

asterisks to indicate that more output is waiting. Were an input command issued instead, it

would be ignored by TSO.

390 CMS Pipelines User’s Guide and Reference

 fanout

The workings of dvmusi and ldsfcfy are “unspecified”; and they are not supplied with CMS

Pipelines. dvmusi interfaces to the Logical Device Support Facility; ldfscfy classifies an

inbound data stream to determine the state of the simulated terminal.

 Notes:

1. fanintwo is useful to close an inner feedback loop where the feedback should have

priority over the input from outside the loop.

fanout—Copy Records from the Primary Input Stream to All Output Streams
For each input record, fanout writes a copy to the primary output stream, the secondary

output stream, and so on.

 ┌ ┐─STOP──ALLEOF────────
►►──FANOUT─ ──┼ ┼───────────────────── ─►◄
 └ ┘ ─STOP─ ──┬ ┬─ANYEOF────

! ├ ┤─IMMEDIATe─
└─number────┘

 Type: Gateway.

Syntax Description: A keyword with its attendant option is optional to specify the condi-

tions under which fanout should terminate. ALLEOF, the default, specifies that fanout

should continue as long as at least one output stream is connected. ANYEOF specifies that

fanout should stop as soon as it determines that an output stream is no longer connected.

A number specifies the number of unconnected streams that will cause fanout to terminate.

! The number 1 is equivalent to ANYEOF. IMMEDIATE specifies that fanout stops as soon as

! it detects that an output stream is not connected and does not write the input record to any

! higher numbered output streams.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Records are written to all connected output streams.

Record Delay: fanout does not delay the record.

Commit Level: fanout starts on commit level -2. It verifies that the primary input stream

is the only connected input stream and then commits to level 0.

Premature Termination: As determined by the argument. By default, fanout terminates

when it discovers that no output stream is connected. fanout writes the input record to all

! connected output streams before it tests for the number of input streams at end-of-file.

! When IMMEDIATE is specified, fanout stops as soon as one output stream is not connected

! and does not write the record to any higher numbered output streams. fanout does not

consume the record that causes it to terminate; this record has been written to all streams

that are still connected.

See Also: deal and fanoutwo.

Examples: To generate a copy of the input record when the record is tested destructively:

 Chapter 23. Inventory of Built-in Programs 391

 fanoutwo

'PIPE (end ? name FANOUT)',
 '|... ',
 '|two: fanout',
 '|p: predselect',
 '|...',
 '?two:',
 '| xlate upper',
 '|l: locate /ANYCASE/',
 '|p:',
 '|...',
 '?l:',
 '|p:'

 Notes:

1. faninany is normally used to gather records from a network of pipelines that is fed by

fanout. Strictly, it is not the converse operation, because a cascade of fanout and

faninany would generate as many copies of a particular record as there are streams

between the two stages.

fanoutwo—Copy Records from the Primary Input Stream to Both Output
Streams

fanoutwo is a specialised version of fanout designed to create a stream that can be passed

to a device driver. Unlike a device driver, it propagates end-of-file backwards from the

primary output stream to the primary input stream.

►►──FANOUTWO──►◄

 Type: Gateway.

Operation: fanoutwo passes the input record first to the primary output stream and then to

the secondary output stream. It terminates when it receives end-of-file on the primary

output stream; it shorts the primary input stream to the primary output stream when it

receives end-of-file on the secondary output stream.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Two streams must be defined.

. Record Delay: fanoutwo strictly does not delay the record.

. Commit Level: fanoutwo starts on commit level -2. It verifies that the secondary input

. stream is not connected and then commits to level 0.

Premature Termination: fanoutwo terminates when it receives end-of-file on the primary

output stream.

 Converse Operation: faninany.

See Also: deal and fanout.

 Examples:

! The following pipeline shows how fanoutwo is used to probe the records flowing through

! the main pipeline, in this case to see just the first 3 records that match a certain selection.

392 CMS Pipelines User’s Guide and Reference

 fbaread

! The main pipeline continues when the secondary output stream of fanoutwo becomes

! unconnected.

! 'callpipe (end ?)',
! '? *:',
! '| o:fanoutwo',
! '| rexx process',
! '| *:',
! '? o:',
! '| pick w1 == ,*COPY,',
! '| take 3',
! '| console'

! While fanout with STOP ALLEOF continues to copy records to the primary output stream

! when the secondary output stream is disconnected, the difference with fanoutwo is that

! fanout is symmetrical and prevents end-of-file on the primary output stream to propagate

! back.

: fbaread—Read Blocks from a Fixed Block Architecture Drive
: fbaread reads blocks from an FBA disk and writes them to the primary output stream

: prefixed with origin information. The extents to be written can be specified as operands or

: in input records, or both.

:

: ►►──FBAREAD──devaddr──┬─────────────┬──►◄
: └ ┘─┤ Extents ├─

: Extents:

: ┌ ┐──────────────────────
: ├───6─number──┬─number─┬─┴──┤
: └ ┘─*──────

: Type: Arcane device driver.

: Syntax Description:

: Output Record Format: Each record contains a sixteen bytes prefix followed by one or

: more blocks of 512 bytes.

: devaddr: Specify the virtual device number of the disk to read. It must refer to an

: FBA device.

: Extents: An extent is specified as the block number of the first block (decimal)

: followed by the number of blocks (decimal) or an asterisk which indi-

! cates to the end of the device. Multiple extents are specified by a

! multiple pairs of numbers. A single block is read when the count is

: omitted in the last extent. The first block on a device has number 0.

: Pos: Len: Description

: 1: 8: Check word: 'fplfba01'

: 9: 4: Number of first block, binary.

: 13: 4: Count of blocks, binary.

: 17: As many blocks of 512 bytes as specified by the block count.

 Chapter 23. Inventory of Built-in Programs 393

 fbawrite

: The blocks in an extent are written sequentially. Blocks from separate extents are never

: written to the same output record.

: Record Delay: fbaread does not delay the record.

: Commit Level: fbaread starts on commit level -10. It allocates an I/O buffer and then

: commits to level 0.

: Premature Termination: fbaread terminates when it discovers that its output stream is

: not connected.

: Converse Operation: fbawrite.

: See Also: trackread.

: Examples: To read the volume label of a disk:

: pipe fbaread 192 1 | substr 21.6 | console
: ►TMP192
: ►Ready;

: The label is at offset 4 in block number 1 on the device. The range above also includes

: the 16 byte header.

: fbawrite—Write Blocks to a Fixed Block Architecture Drive
: fbawrite writes blocks to an FBA disk.

:

: ►►──FBAWRITE──devaddr──┬─word────────────────────┬──number──►
: ├: ─STRing──delimitedString─┤
: └ ┘─*───────────────────────

: ►──number──►◄

: Type: Arcane device driver.

: Syntax Description: Specify the device number, the current label on the device, and the

: first and last block in the writable extent.

: The first and last blocks specify the extent into which blocks are written; the actual block

: address is obtained from the input record.

: devaddr: The virtual device number of the disk to write.

: word
: STRING

: *

: The current volume label on the device.

: ¹ A word, which is made upper case.

: ¹ The keyword STRING followed by a delimitedString for a label

: that contains characters in lower case or blanks.

: ¹ An asterisk to indicate that no label is present, for example, on a

: fresh temporary disk.

: number: The first writable block number.

: number: The last writable block number.

394 CMS Pipelines User’s Guide and Reference

 fblock

: Operation: fbawrite verifies the device number and label as part of the syntax check.

: Input Record Format: Each input record supplies a contiguous range of blocks to be

: written.

: Each record contains a sixteen bytes prefix followed by one or more blocks of 512 bytes.

: The block range specified must be within the writable extent.

: Streams Used: fbawrite passes the input to the output.

: Record Delay: fbawrite does not delay the record.

: Converse Operation: fbaread.

: See Also: trackwrite.

: Examples: To copy an FBA disk:

: pipe fbaread 190 0 * | fbawrite 1190 * 0 72000

: Pos: Len: Description

: 1: 8: Check word: 'fplfba01'

: 9: 4: Number of first block, binary.

: 13: 4: Count of blocks, binary.

: 17: As many blocks of 512 bytes as specified by the block count.

fblock—Block Data, Spanning Input Records
fblock writes records of fixed length that contain data from one or more input records.

Data from an input record can span output records.

►►──FBLOCK──number──┬──────┬──►◄
└─xorc─┘

 Type: Filter.

Syntax Description: A number is required; it specifies the length of output records. A

second word is optional to specify the pad character for the last record. No padding is the

default.

Operation: Conceptually, all records on the primary input stream are concatenated to a

single logical record, which is then written as a number of records that have fixed length.

An input record is, in general, spanned over output records (block FIXED does not allow

this). The last output record is short when the length of the concatenated input is not an

integral multiple of number and the pad character is omitted; the last record is padded to

the record length with the pad character, if present.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

 Chapter 23. Inventory of Built-in Programs 395

 filedescriptor

Record Delay: fblock delays input records as required to build an output record. The

delay is unspecified.

Premature Termination: fblock terminates when it discovers that its output stream is not

connected.

See Also: block and deblock.

Examples: To count occurrences of characters in a file, first turn it into records of one

character that sort COUNT can tally:

...| fblock 1 | sort count |...

To ensure that the length of the input records to vchar is a multiple of three:

...| fblock 3000 | vchar 12 16 |...

This ensures that characters are not spanned across record boundaries.

filedescriptor—Read or Write an OpenExtensions File that Is Already Open
filedescriptor connects the pipeline to a file that is managed by OpenExtensions.

When it is first in a pipeline, filedescriptor reads from the file until it receives zero bytes.

When it is not first in a pipeline, filedescriptor appends the contents of its input records to

the file.

The file must have been opened by the application before it issues the PIPE command; and

the file descriptor must be closed by the application after the pipeline has completed. A

program can use the callable services interface to open a file and to close a file descriptor.

►►──FILEDEScriptor──number──┬─────┬──►◄
└─hex─┘

Type: Device driver.

Syntax Description: A number is required; a hexadecimal storage address is optional.

The number specifies the file descriptor for the file to be read or written. File descriptors

are integers from zero and up. Standard input is usually associated with file descriptor 0;

: standard output with 1; and standard error with 2. When a file descriptor is assigned, it

: gets the lowest unused number.

If it is present, the second operand specifies the storage address of an area into which

filedescriptor stores additional information in the event of an error being reflected from

OpenExtensions. The application should reserve thirty-two bytes for this area. Sixteen

bytes are currently stored: The return code and reason code (each four bytes binary); and

the name of the routine that returned the error (eight bytes, character). This operand

should be specified only when the pipeline is issued from a program; results are unpredict-

able if this operand is specified from the command line or from a REXX program.

Streams Used: When filedescriptor is first in the pipeline, it writes records to the primary

output stream. When filedescriptor is not first in a pipeline, it passes the input record to

the output (if it is connected) after the record is written to the file.

Record Delay: filedescriptor strictly does not delay the record.

396 CMS Pipelines User’s Guide and Reference

 filetoken

Commit Level: filedescriptor starts on commit level -2000000000. It verifies that the

system does contain OpenExtensions and then commits to level 0.

Premature Termination: When it is first in a pipeline, filedescriptor terminates when it

discovers that its output stream is not connected.

See Also: hfs, hfsdirectory, hfsquery, hfsreplace, hfsstate, and hfsxecute.

 Notes:

1. When a return value of -1 is received from OpenExtensions and the second operand is

omitted, filedescriptor issues error messages to identify the error before it terminates.

. 2. stdin is a convenience for filedescriptor 0.

. 3. stdout is a convenience for filedescriptor 1.

. 4. stderr is a convenience for filedescriptor 2.

Return Codes: When the second operand is specified, the return code is the error number

associated with the error. Otherwise the return code is the number of the error message

issued.

filetoken—Read or Write an SFS File That is Already Open
filetoken connects the pipeline to a file that is managed by the Shared File System (SFS).

When it is first in a pipeline, filetoken reads from the file. When it is not first in a pipeline

and RANDOM is omitted, it writes records to the file.

The file must have been opened by the application before it issues the PIPE command; and

the file must be closed by the application after the pipeline has completed. You can use

the CMS callable services to open the file.

 CMS

►►──FILETOKEN──hex──►

 ┌ ┐───────────
►─ ──┬ ┬ ─RANDOM─ ──┬ ┬──────── ──┬ ┬───────── ───6 ┴┬ ┬─────── ─►◄

│ └─NUMBER─┘ └─BLOCKed─┘ └ ─range─┘ │
 ├ ┤─BACKwards────────────────────────────────────
 ├ ┤─UPDATE───────────────────────────────────────
 │ │┌ ┐───────────────────
 └ ┘───6 ┴┬ ┬─CHOP────────── ─────────────────────────

 ├ ┤─COERCE────────
 ├ ┤ ─PAD─ ──┬ ┬──────
 │ └─xorc─┘ │
 ├ ┤─NOCHOP────────
 └ ┘─NOPAD─────────

Type: Arcane device driver.

Warning: filetoken behaves differently when it is a first stage and when it is not a first

stage. Existing data can be overlaid when filetoken is unintentionally run other than as a

first stage. To use filetoken to read data into the pipeline at a position that is not a first

stage, specify filetoken as the argument of an append or preface control. For example,

|append filetoken ...| appends the data produced by filetoken to the data on the

primary input stream.

 Chapter 23. Inventory of Built-in Programs 397

 filetoken

 Syntax Description:

. Input Record Format: When RANDOM is specified, input records contain a blank-

. delimited list where each word is a range.

When UPDATE is specified, the first 10 columns of an input record contain the number of

the record to replace in the file (the first record has number 1). The number does not need

to be aligned in the field. It is an error if an input record is shorter than 11 bytes.

The valid values for the record number depends on the record format of the file:

Fixed For fixed record format files, any number can be specified for the record

number (CMS creates a sparse file if required). An input record can contain

any number of consecutive logical records as a block. The block has a single

10-byte prefix containing the record number of the first logical record in the

block.

Variable When the file has variable record format, the record number must be at most

one larger than the number of records in the file at the time the record is

written to it. The data part of input records must have the same length as the

records they replace in the file.

BACKWARDS! Read the file backwards. BACKWARDS is recognised only when filetoken

is first in a pipeline.

BLOCKED Write a range of records from the file as a single output record; the file

! must have fixed record format. BLOCKED is recognised only when

filetoken is first in a pipeline.

COERCE A convenience for PAD CHOP. COERCE is recognised only when filetoken

is not first in a pipeline.

CHOP Truncate long input records to the logical record length of the file. The

logical record length of a variable record format file is 65535 bytes.

! CHOP is recognised only when filetoken is not first in a pipeline.

NOCHOP! Do not truncate long records. Issue a message instead. NOCHOP is

recognised only when filetoken is not first in a pipeline.

NOPAD Do not pad short records. Issue a message on short records in fixed

! format files; ignore null records in variable record format files. NOPAD

is recognised only when filetoken is not first in a pipeline.

NUMBER Prefix the record number to the output record. The field is ten characters

! wide; it contains the number with leading zeros suppressed. NUMBER is

valid only after RANDOM is specified.

PAD Pad short records with the character specified. The blank is used as the

pad character if the following word does not scan as an xorc. In a fixed

format file, short records are padded on the right to the file’s record

length; in a variable record format file, a single pad character is written

! for a null record. PAD is recognised only when filetoken is not first in a

pipeline.

RANDOM Read records randomly.

UPDATE Replace records randomly.

398 CMS Pipelines User’s Guide and Reference

 fillup

Record Delay: filetoken strictly does not delay the record. When RANDOM is specified

and filetoken is not a first stage, an input record that contains a single number is not

delayed. Nor is an input record that contains a single range, when BLOCKED is specified.

Commit Level: filetoken starts on commit level -2000000000. It allocates a buffer and

then commits to level 0.

Premature Termination: When it is first in a pipeline, filetoken terminates when it

discovers that its output stream is not connected.

See Also: <, >, >>, diskrandom, and diskupdate.

Examples: To read records from a file for random update (error checking is omitted to

make the example shorter):

/* Get private work unit */
call csl 'dmsgetwu sfsrc sfsreason workunit'
/* Open the file */
file='MY MASTER .INVENTORY'
intent='WRITE NOCACHE'
call csl 'dmsopen sfsrc sfsreason file' length(file),

'intent' length(intent) 'filetoken workunit'
xtoken=c2x(filetoken) /* Make printable */
'PIPE',

'|filetoken' xtoken 'random number' ranges,
'| ... ',
'|filetoken' xtoken 'update'

pipeRC=RC
/* Return unit of work, which closes the file implicitly */
call csl 'dmsretwu sfsrc sfsreason workunit'

 Notes:

1. Note that the file token is specified as an unpacked hexadecimal number. If you

opened the file in a REXX program you must use the C2X built-in conversion function

to make the file token printable.

2. You can use one filetoken stage to read records from a file and another one to replace

or append to the same file, because the two stages use the same file token, as seen by

SFS.

. fillup—Pass Records To Output Streams

. fillup passes records from the primary input stream to output streams as they “fill up”.

.

. ►►──FILLUP──►◄

. Type: Gateway.

. Operation: Initially, records are passed to the primary output stream. When the primary

. output stream severed by its consumer (it propagates end-of-file backwards), fillup switches

. to the secondary output stream, and so on until all records are copied or there is only one

. stream left. In the latter case, fillup shorts the primary input to the last remaining output

. stream.

 Chapter 23. Inventory of Built-in Programs 399

 filterpack

. Streams Used: Records are read from the primary input stream; no other input stream

. may be connected.

. Record Delay: fillup strictly does not delay the record.

. Commit Level: fillup starts on commit level -2. It verifies that the primary input stream

. is the only connected input stream and then commits to level 0.

. Premature Termination: fillup terminates when it discovers that no output stream is

. connected.

. See Also: deal and fanout.

. Examples:

! The following pipeline shows where in the stream of records a filter stopped processing.

! When primary output stream of fillup is disconnected, the remaining input records are

! passed to the secondary output stream where the first record is shown that was not

! consumed by the process. is shown.

! 'callpipe (end \)',
! '\ *:',
! '| o: fillup',
! '| rexx process',
! '| *:'
! '\ o:',
! '| take',
! '| insert /Process stopped at /',
! '| cons'

. filterpack—Manage Filter Packages

. filterpack loads and deletes filter packages and writes information about loaded filter pack-

. ages.

.

. ►►──FILTERPACK─ ──┬ ┬. ─DROP─ ──┬ ┬─────────── ──┬ ┬───────────── ─►◄

. │ │└ ┘─┤ Scope ├─ ├ ┤─ALL─────────

. │ │└ ┘─┤ Modules ├─

. │ │┌ ┐─ALL────

. ├ ┤. ─LIST─ ──┼ ┼──────── ──┬ ┬───────── ───────

. │ │├ ┤─GLOBAL─ └ ┘─HEADING─

. │ │└ ┘─THREAD─

. ├ ┤. ─LOAD─ ──┬ ┬─────────── ──┬ ┬─────────────

. │ │└ ┘─┤ Scope ├─ └ ┘─┤ Modules ├─

. │ │┌ ┐─ALL────

. ├. ─MODLIST──┼────────┼──word─. ───────────┤

. │ │├ ┤─GLOBAL─

. │ │└ ┘─THREAD─

. │ │┌ ┐──────────

. └ ┘. ─RESOLVE─ ───6 ┴┬ ┬────── ─────────────────

. └. ─word─┘

. Scope:

. ├─ ──┬ ┬─GLOBAL─ ─┤

. └ ┘─THREAD─

. Modules:

. ┌ ┐────────

. ├───6─word─┴──┤

400 CMS Pipelines User’s Guide and Reference

 filterpack

. Type: Arcane control.

. Placement: filterpack LIST and filterpack MODLIST must be a first stage. For other vari-

. ants, you may supply a list of modules or entry points on the primary input stream in

. addition to those specified as arguments.

. Syntax Description:

. Output Record Format: For LIST, the record contains 7 words:

. 1. The name of the filter package.

. 2. The character G or L, which encodes the scope, possibly followed by a P for the PTF

. filter package.

. 3. The use count. The number of stages currently active in the filter package.

. 4. The address of the entry point table.

. 5. The address of the keyword look up table.

. 6. The address of the message text table.

. 7. The address of the user function table for spec.

. filterpack MODLIST writes detailed information about the filter package specified including

! its entry points. The format of the detailed information is unspecified.

! filterpack RESOLVE writes an output record for each word in the arguments. The output

! records consist of the name of the stage and, if the name is resolved, the name of the filter

! package that contains it. Both names are 8 byte fields, separated by a single blank.

. Built-in programs are considered to be in the filter package builtin (one leading blank),

. which is in lower case and has a leading blank.

. Premature Termination: filterpack terminates when it discovers that its output stream is

. not connected.

. Examples:

! To see the list of currently loaded filter packages:

. DROP. Terminate use of filter packages. You can drop only filter packages that

. have been loaded by filterpack LOAD.

. LIST. Write a line for each filter package currently loaded.

. LOAD. Use filter packages. Specify the names of the modules to be loaded.

. MODLIST. List contents of a filter package.

. RESOLVE. Resolve an entry point and write the name of the containing filter

. package.

. GLOBAL. Specify the global scope. This is the default for CMS and for the z/OS

. job step task. When used with filterpack LIST or filterpack MODLIST, the

. search for a filter package is restricted to the specified scope.

| THREAD. Specify the thread local scope. This is the default for z/OS tasks other

. than the job step task. When used with filterpack LIST or filterpack

. MODLIST, the search for a filter package is restricted to the specified

. scope.

 Chapter 23. Inventory of Built-in Programs 401

 find

! pipe filterpack list | console
! ►*PIPPTFF G 0 00EBF4F0 00000000 00000000 00000000
! ►*PIPLOCF G 0 03F144F0 00000000 00000000 00000000
! ►*PIPLOCF G 0 00000000 00000000 03F14610 00000000
! ►*PIPSYSF G 0 00E9D530 00000000 00E9D820 00000000
! ►*PIPIUOF G 0 03F0A548 00000000 03F0A6D8 00000000
! ►FPLCPHR G 0 03DD6C30 00000000 00000000 00000000
! ►SAMPFP G 0 03BD84F0 00000000 00000000 00000000
! ►FPLPDF12 G 0 03C155E0 00000000 00000000 00000000
! ►Ready;

! To find whether the main pipeline or a filter package resolves a name:

! pipe literal sort pattern foo | filterpack resolve | console
! ►SORT builtin
! ►PATTERN *PIPSYSF
! ►FOO
! ►Ready;

! To list the contents of a filter package:

! pipe filterpack modlist sampfp | console
! ►Module SAMPFP loaded dynamically
! ►It contains no message table
! ►It contains 1 entry points
! ►Stage SAMPFILT at 03BD8510 flags 00000000.
! ►It contains no function table
! ►Ready;

find—Select Lines by XEDIT Find Logic
find selects records that begin with the specified string. It discards records that do not

begin with the specified string. XEDIT rules for FIND apply.

!

! ►►──FIND─ ──┬ ┬──────── ─►◄
! └─string─┘

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant.

Operation: Input records are matched the same way XEDIT matches text in a FIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

find copies records that match to the primary output stream, or discards them if the primary

output stream is not connected. It discards records that do not match or copies them to the

secondary output stream if it is connected.

402 CMS Pipelines User’s Guide and Reference

 find

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. find strictly does not delay the record.

Commit Level: find starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: find terminates when it discovers that no output stream is

connected.

 Converse Operation: nfind.

See Also: locate and nlocate.

Examples: To select lines with 'a' in column 1 and 'c' in column 3:

 pipe literal axc | literal abc | find a c| console
►abc
►axc
►Ready;
 pipe literal axc | literal abc| find a c | console
►axc
►Ready;

The first pipeline has two literal records that are both selected (the blank in the argument

to find means “don’t care”). The argument string to find is four bytes in the second pipe-

line; thus, the record created by the second literal stage is not selected because it is only

three bytes long.

To discard null records:

...|find |...

There are two blank characters after find. This means a record must have at least one

! character to be selected (but it does not matter what the character is). Because the two

! blank characters are easily missed, a popular alternative is to use locate 1 (which selects

! the records that contain column 1).

! To select records with a blank character, use an underscore character at that position in the

! pattern:

! pipe literal a c | literal axc | literal a_c | find a c | console
! ►a_c
! ►axc
! ►a c
! ►Ready;
! pipe literal a c | literal axc | literal a_c | find a_c | console
! ►a c
! ►Ready;

 Notes:

1. All matching records are selected, not just the first one.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

 Chapter 23. Inventory of Built-in Programs 403

 fitting ¹ fmtfst

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

fitting—Source or Sink for Copipe Data
fitting is the space warp through which data are moved between a copipe program and the

: pipeline. In such an arrangement, the pipeline is set up by a separate program, which can

: be written in any language supported by CMS or z/OS. The program and the pipeline take

: turns in processing data.

►►──FITTING──word──►◄

 Type: Gateway.

 Syntax Description:

Operation: When fitting is first in a pipeline, it accepts data from the copipe’s fitting

request parameter list and injects these data into the pipeline.

When fitting is not first in a pipeline, it makes its input records available in the copipe’s

fitting request parameter list. When the copipe has consumed the record, it is passed to the

output stream (if it is connected).

Record Delay: fitting does not delay the record.

 Notes:

1. fitting can be used only when the pipeline is invoked with a FITG parameter token.

 Publications:

PIPE Command Programming Interface, see “Additional Information, Download Site” on

page xx.

word Specify the fitting identifier.

fmtfst—Format a File Status Table (FST) Entry
fmtfst formats the contents of a File Status Table entry.

 ┌ ┐─SHOrtdate───────────────
►►──FMTFST─ ──┼ ┼───────────────────────── ─►◄
 ├ ┤─ISOdate─────────────────
 ├ ┤─FULldate────────────────
 ├ ┤─STAndard────────────────

: └: ─STRing──delimitedString─┘

Type: Arcane filter.

! Syntax Description: One keyword is optional to specify how the file’s timestamp should

be formatted:

404 CMS Pipelines User’s Guide and Reference

 fmtfst

Input Record Format: The input record must be 64 bytes.

Output Record Format: Selected fields of the file status are formatted and written as a

record: the file name, type, and mode; the record format and logical record length; the

number of records and the number of disk blocks in the file; the date and time of last

change to the file.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: fmtfst strictly does not delay the record.

Premature Termination: fmtfst terminates when it discovers that its output stream is not

connected.

Examples: To format a FST that has been stored as a file:

FULLDATE The file’s timestamp is formatted in the American format, with the

century: 3/09/1946 23:59:59.

ISODATE The file’s timestamp is formatted with the century in one of the formats

approved by the International Standardisation Organisation:

1946-03-09 23:59:59.

SHORTDATE The file’s timestamp is formatted in the American format, without the

century: 3/09/46 23:59:59.

STANDARD The file’s timestamp is formatted as a single word in a form that can be

used for comparisons: 19460309235959.

: STRING: Specify custom timestamp formatting, similar to the POSIX strftime()
: function. The delimited string specifies formatting as literal text and

: substitutions are indicated by a percentage symbol (%) followed by a

: character that defines the substitution. These substitution strings are

: recognised by fmtfst:

: %% A single %.

: %Y Four digits year including century (0000-9999).

: %y Two-digit year of century (00-99).

: %m Two-digit month (01-12).

: %n Two-digit month with initial zero changed to blank (1-12).

: %d Two-digit day of month (01-31).

: %e Two-digit day of month with initial zero changed to blank (1-31).

: %H Hour, 24-hour clock (00-23).

: %k Hour, 24-hour clock first leading zero blank (0-23).

: %M Minute (00-59).

: %S Second (00-60).

: %F Equivalent to %Y-%m-%d (the ISO 8601 date format).

: %T Short for %H:%M:%S.

: %t Tens and hundredth of a second (00-99).

 Chapter 23. Inventory of Built-in Programs 405

 frlabel

 pipe cms listfile sample fst * (format | console
►FILENAME FILETYPE FM FORMAT LRECL
►SAMPLE FST K1 V 64
►Ready;
 pipe < sample fst | fmtfst | console
►FMTFST STAGE H1 V 70 80 1 12/05/92 16:36:5>
►Ready;
 pipe < sample fst | fmtfst iso | console
►FMTFST STAGE H1 V 70 80 1 1992-12-05 16:36>
►Ready;
 pipe < sample fst | fmtfst full | console
►FMTFST STAGE H1 V 70 80 1 12/05/1992 16:36>
►Ready;
 pipe < sample fst | fmtfst standard | console
►FMTFST STAGE H1 V 70 80 1 19921205163657
►Ready;

 Notes:

1. fmtfst is designed to process the output from aftfst NOFORMAT, state NOFORMAT, and

statew NOFORMAT.

2. SORTED is a synonym for STANDARD.

frlabel—Select Records from the First One with Leading String
frlabel discards input records up to the first one that begins with the specified string. That

record and the records that follow are selected.

►►──FRLABEL─ ──┬ ┬──────── ─►◄
└─string─┘

frlabel copies records up to (but not including) the matching one to the secondary output

stream, or discards them if the secondary output stream is not connected. It then passes

the remaining input records to the primary output stream.

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. frlabel severs the

secondary output stream before it shorts the primary input stream to the primary output

stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. frlabel strictly does not delay the record.

Commit Level: frlabel starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: frlabel terminates when it discovers that no output stream is

connected. Characters at the beginning of each input record are compared with the argu-

ment string. Any record matches a null argument string. A record that is shorter than the

argument string does not match.

406 CMS Pipelines User’s Guide and Reference

 frtarget

 Converse Operation: tolabel.

See Also: between, inside, notinside, outside, and whilelabel.

Examples: To discard records on the primary input stream up to the first one beginning

with the characters 'abc':

/* Skip to first record with label */
'callpipe *: | frlabel abc'

Because this invocation of frlabel has no secondary output stream, records before the first

one beginning with the string are discarded. The CALLPIPE pipeline command ends when

frlabel shorts the primary input stream to the unconnected primary output stream; the

matching record stays in the pipeline.

 Notes:

1. fromlabel is a synonym for frlabel.

! 2. Use strfrlabel with ANYCASE for caseless compare.

3. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

frtarget—Select Records from the First One Selected by Argument Stage
The argument to frtarget is a stage to run. frtarget passes records to this stage until the

stage produces an output record on its primary output stream. The trigger record and the

remaining input are then shorted to the primary output stream. Records that are rejected

by the argument stage are passed to the secondary output stream (if it is defined).

►►──FRTARGET──word──┬────────┬──►◄
└─string─┘

 Type: Control.

Syntax Description: The argument string is the specification of a selection stage. The

stage must support a connected secondary output stream. If the secondary input stream to

frtarget is connected, the argument stage must also support a connected secondary input

stream.

Streams Used: Two streams may be defined.

Record Delay: frtarget does not add delay.

Commit Level: frtarget starts on commit level -2. It issues a subroutine pipeline that

contains the argument stage. This subroutine must commit to level 0 in due course.

Premature Termination: frtarget terminates when it discovers that no output stream is

connected.

 Converse Operation: totarget.

 Chapter 23. Inventory of Built-in Programs 407

 ftp

See Also: gate and predselect.

Examples: To pass to the secondary output stream all records up to the first one that

contains a string and to pass the remaining records to the primary output stream:

/* Frtarget example */
'callpipe (end ? name FRTARGET)',

'|*:', /* Connect to input */
'|f: frtarget locate /abc/', /* Look for it */
'|*.output.0:', /* target and following */

 '?f:',
'|*.output.1:' /* Records before target */

exit RC

 Notes:

1. fromtarget is a synonym for frtarget.

2. It is assumed that the argument stage behaves like a selection stage: the stage should

produce without delay exactly one output record for each input record; it should termi-

nate without consuming the current record when it discovers that its output streams are

no longer connected. However, for each input record the stage can produce as many

records as it pleases on its secondary output stream; it can delete records. The stage

should not write a record first to its secondary output stream and then to its primary

output stream; this would cause the trigger record to be written to both output streams.

If the argument stage has delayed record(s) (presumably by storing them in an internal

buffer) at the time it writes a record to its primary output stream, it will not be able to

write these records to any output stream; the streams that are connected to the two

output streams are severed when the argument stage writes a record to its primary

output stream. End-of-file is reflected on this write. The records held internally in the

argument stage will of necessity be lost when the stage terminates.

3. The argument string to frtarget is passed through the pipeline specification parser only

once (when the scanner processes the frtarget stage), unlike the argument strings for

append and preface.

. 4. frtarget is implemented using fillup and fanoutwo. The stage under test has only

. primary streams defined. The primary output stream is connected to a stage that reads

. a record without consuming it and then terminates. This means that any usage that

. depends on the secondary stream in the stage under test, will fail.

Return Codes: If frtarget finds no errors, the return code is the one received from the

selection stage.

| ftp—Connect to an FTP Server and Exchange Data
| ftp connects the pipeline to an FTP Server using the File Transfer Protocol, optionally

| secured by z/VM System SSL. When it is first in the pipeline, ftp reads data from the FTP

| Server. When it is not first in the pipeline, ftp writes data to the FTP Server.

408 CMS Pipelines User’s Guide and Reference

 ftp

|

| ►►──FTP──┤ ftp-url ├─ ──┬ ┬────────── ──┬ ┬────────── ─►
| ├ ┤─APPEND───(1) ├ ┤─SAFE───(2) ──
| └ ┘─UNIQUE───(1) └ ┘─UNSAFE───(2)

| ┌ ┐───────────────────────────
| ►─ ───6 ┴┬ ┬─────────────────────── ─►◄
| ├| ─ASCII──word─| ──────────┤
| ├ ┤─DETAILs───(3) ────────────
| ├| ─EBCDIC──word─| ─────────┤
| ├| ─SITE──delimitedString─┤
| ├ ┤─TRACE─────────────────
| └| ─TCPIP──word─| ──────────┘

| ftp-url:

| ├──┬─ftp://──┬──(4)──┬──────────────────┬──IPaddress──┬───────────┬──►
| └─ftps://─┘ └| ─word──:──word──@─┘| └| ─:──number─┘

| ►─ ──┬ ┬────────────────────── ─/─ ──┬ ┬────── ──┬ ┬─────────────────── ─┤
| │ ┌─────────────┐ │ └─word─┘ └| ─;──type──=──┬─a─┬─┘
| └ ┘| ──┬ ┬─── ───6 ┴┬ ┬───────── ├ ┤─i─
| └─/─┘ └| ─/──word─┘| └─d─┘

| Notes:

| 1 Applicable only when writing to the FTP Server

| 2 Available only for secure connections.

| 3 Applicable only for directory listing.

| 4 The URL is written without blanks as a single word.

| Type: Device driver.

| Syntax Description: One operand is required to specify the address of the FTP Server

| and the protocol to use. The operand optionally specifies login credentials, the path and

| file name of the resource on the server, and the transfer type.

| APPEND| Data written will be appended to an existing file on the FTP Server.

| The option is only available when the stage is not first in the pipeline.

| APPEND is mutually exclusive with UNIQUE.

| ASCII| Specifies the codepage used by the host running the FTP Server. The

| default ASCII codepage is 850.

| DETAILS| Request the system specific directory listing instead of the generic

| listing. The option is only valid when ftp is first in the pipeline and the

| qualifier type=d is specified.

| EBCDIC| Specifies the codepage to use for the local system. The default EBCDIC

| codepage is 1047.

| SAFE| Enables host name validation for the connection in tcpclient. SAFE is the

| default when the address of the FTP Server is specified as host name or

| host name with domain name. The option is only available for secure

| connections and is mutually exclusive with UNSAFE.

| SITE| Specifies an optional SITE command to be issued. The SITE command is

| issued before data transfer, after navigating to the specified directory.

| TRACE| Displays FTP commands and responses for diagnostic purposes.

 Chapter 23. Inventory of Built-in Programs 409

 ftp

| Operation: ftp uses a tcpclient stage to connect to the FTP Server. When ftps:// is

| specified, a secure connection is established through z/VM System SSL according to the

| options defined in the z/VM System SSL configuration. The secure connection protects

| integrity and privacy of both the control connection and the data connection. When ftp://

| is specified, the connection is not secured with z/VM System SSL.

| When the secondary input stream is connected, records are read from the secondary input

| stream to complement the login credentials in the URL. The records contain pairs of

| keyword and value.

|

| ┌ ┐────────────────
| ►►─ ───6 ┴┬ ┬──────────── ─►◄
| ├| ─USER──word─┤
| ├| ─PASS──word─┤
| └| ─ACCT──word─┘

| USER Specifies the user to authenticate the transaction.

| PASS The password used to authenticate the transaction.

| ACCT The account code specified is provided when requested by the FTP Server. The

| role of the account code depends on the FTP Server implementation and may be

| requested during logon or when accessing a file. On z/VM the account code is

| used as mini disk link password when no External Security Manager is used.

| Depending on whether ftp is reading or writing data, the READ or MULTI link

| password must be specified with ACCT.

| Login is performed using the credentials provided in the URL or through the secondary

| input stream; ftp reports an error and terminates when the authentication fails or when the

| FTP Server configuration does not support the requested type of connection.

| After login, ftp selects the specified directory on the FTP Server. When the specified

| directory does not exist, and ftp is writing a file, MKD commands are issued to create the

| TYPE=| Specifies the type of transfer as follows.

| A Transfer as text, translated from EBCDIC to ASCII with CRLF

| after each line.

| I Binary (image) transfer without translation.

| D Requests a directory listing rather than the contents of a file (only

| when ftp is first in the pipeline).

| TCPIP| Specifies the name of the TCP/IP stack (default TCPIP).

| UNIQUE| Data sent to the FTP Server will be written to a new file created on the

| server. The option is only available when writing to the FTP Server and

| is mutually exclusive with APPEND. Connect the secondary output

| stream of ftp to read a record that contains the unique name selected by

| the FTP Server.

| UNSAFE| Disables host name validation for the connection in tcpclient. UNSAFE is

| the default when the address of the FTP Server is specified as dotted-

| decimal IP address. The option is only available for secure connections

| and is mutually exclusive with SAFE.

410 CMS Pipelines User’s Guide and Reference

 ftp

| missing subdirectories, assuming subdirectories can be created, and enough levels of the

| specified path already exist to support this.

| When SITE is specified, a SITE command is issued on the FTP Server. The SITE command

| is used by the FTP Server to provide services specific to the host system. For z/VM, a

| SITE command is often used to set the record format when creating a file. On z/OS, the

| SITE command can be used to pass allocation parameters when accessing the data set.

| The position of ftp in the pipeline, and the optional TYPE qualifier in the URL determine

| the action performed by the FTP Server.

| ¹ When the URL specifies type=d a directory listing is requested from the FTP Server

| and written to the primary output stream.

| ¹ When type=d is not specified and ftp is first in the pipeline, the contents of the

| specified file is read from the FTP Server and written to the primary output stream.

| ¹ When ftp is not first in the pipeline, records are read from the primary input stream

| and written to the specified file on the FTP Server.

| Streams Used: When the secondary input stream is connected, records are read to

| complement the login credentials. When the secondary output stream is connected, a

| record is written to it when ftp terminates after TCP/IP has reported an “ERRNO”.

| Commit Level: ftp starts on commit level -10. It creates the pipeline with tcpclient to

| connect to the server, verifies that the TCP/IP connection is complete, and then commits to

| level 0.

| Premature Termination: When it is first in a pipeline, ftp terminates when it discovers

| that its output stream is not connected.

| ftp terminates when an error is reflected by the FTP Server or by TCP/IP. How it termi-

| nates depends on whether secondary output stream is connected or not.

| When the secondary output stream is not connected, error messages are issued to describe

| the error and ftp terminates with a nonzero return code. When the secondary output stream

| is connected, a single record is written to the secondary output stream; ftp then returns

| with return code zero. For errors reflected by the FTP Server, the record contains the error

| messages reported by the FTP Server. When the error message from the FTP Server

| consists of multiple lines, these lines are concatenated with an ASCII linefeed that is typi-

| cally translated to an EBCDIC X'25' character.

| For errors detected by tcpclient, the record written contains the error number; the second

| word contains the symbolic name of the error number if the error number is recognised by

| CMS Pipelines. The assumption is that a REXX program will inspect the error number and

| decide whether it should retry the operation, discard the current transaction and retry, or

| give up entirely.

| When the data transfer completes successfully and the secondary output stream is

| connected, a single record is written to the secondary output stream with the intermediate

| message reported by the FTP Server.

| ftp also stops if the immediate command PIPMOD STOP is issued or if a record is passed to

| pipestop.

| See Also: tcpclient.

 Chapter 23. Inventory of Built-in Programs 411

 ftp

| Examples:

| To read the file SYSTEM LANGUAGE from the CMS S disk and display the contents as a

| single file.

| pipe ftp ftp://127.0.0.1/maint.190/system.language | console
| ►AMENG
| ►UCENG
| ►KANJI
| ►Ready;

| List the RPIVAL * files on the CMS Y disk.

| pipe ftp ftp://127.0.0.1/maint.19e/rpival.*;type=d detail | console
| ►RPIVAL MAP F 100 1 1 2016-08-24 10:23:48>
| ►RPIVAL MODULE V 888 3 1 2016-08-24 10:23:48>
| ►Ready;

| To create a RECFM F file on a z/VM system, use the SITE option.

| .. | ftp ftps://user:pass@127.0.0.1/prog.text site /fix 80/

| Notes:

| 1. When the FTP transaction fails, the error message sent by the FTP Server is reported

| by ftp. To diagnose the problem, it may be helpful to repeat the transaction with the

| TRACE option to see all messages from the FTP Server. Note that the commands

| implemented by the FTP Server are not identical to the FTP commands used in the

| FTP client. When the TCP/IP connection fails with an ERRNO message, refer to

| tcpclient for additional information.

| 2. ftp supports explicit SSL/TLS in which the client initiates the SSL/TLS handshake

| with the AUTH TLS command (also referred to as STARTTLS protocol). ftp does not

| support an FTP Server using implicit SSL.

| 3. To avoid CMS Pipelines exposing login credentials, use the secondary input stream of

| ftp to pass that information to ftp. ftp does not use NETRC DATA to provide login

| credentials. When no login credentials are provided, ftp attempts an anonymous login.

| 4. When no TYPE qualifier is specified, and ftp is connecting to a FTP Server on z/VM or

| z/OS, data transfer is done in MODE B and TYPE E. This preserves the record bounda-

| ries in the data, and does not translate the data from EBCDIC to ASCII and back.

| Since MODE B transfer does not support records longer than 65535 byte, use TYPE=I

| and SITE to create a file with RECFM F and the required record length.

| 5. Since FTP is an ASCII service, login credentials, directories, and file name are trans-

| lated from EBCDIC to ASCII (and back to EBCDIC when connecting to an FTP

| Server on z/VM or z/OS). Special characters should be percent encoded (% followed

| by the ASCII character value) to ensure correct operation. For example a space in the

| pass phrase should be encoded as %20 to represent the phrase as a single word.

| 6. When creating a file with UNIQUE, and the secondary output stream is connected, ftp

| writes a single record to the secondary output stream that contains the unique name

| assigned by the FTP Server. The contents of the record varies by FTP Server imple-

| mentation. On z/VM, the unique name is based on the name specified in the URL.

| For example, this ftp stage was run twice to create a new file.

| PIPE (end \) < some data
| | f: ftpstage ftps://user:pass@host/abcdefgh.txt unique
| \ f: | cons

412 CMS Pipelines User’s Guide and Reference

 fullscr

| On z/VM, the FTP Server first creates the file as requested (because it does not yet

| exist), and next with a file name that is based on the requested name.

| 125 Storing file 'ABCDEFGH.TXT' (unique name)
| 125 Storing file 'ABCDEFG1.TXT' (unique name)

| A similar test on Linux shows the use of a file name suffix to create a new version of

| the file.

| 150 FILE: abcdefgh.txt
| 150 FILE: abcdefgh.txt.1

| On a z/OS system, a similar pattern can be seen.

| 125 Storing data set RVDHEIJ.ABCDEFGH.TXT (unique name)
| 125 Storing data set RVDHEIJ.ABCDEFGH.TXT1 (unique name)

| When writing an application that creates a unique file on some FTP Server, you may

| have to check the documentation or experiment to retrieve the name from the FTP

| Server response.

| 7. Most FTP Server configurations provide a default “home” directory for the user after

| login. The path specified in the URL is relative to this initial directory. When the

| specified path starts with a “/” character, it is considered an absolute path; this shows

| in the URL as a double slash character after the IP address.

| 8. When ftp is not first in the pipeline, and no input records are provided, ftp issues a

| DELE or RMD command to delete the specified file or directory. The example below

| deletes a file and a directory, respectively.

| PIPE hole | ftp ftps://user:pass@host/testdata.txt
| PIPE hole | ftp ftps://user:pass@host/vmsysu:./data/test/

| To create an empty file on systems that support that, provide a null record as input to

| ftp and use the TYPE=I transfer mode.

| Publications:

| RFC 959 - File Transfer Protocol (FTP)

| RFC 1579 - Firewall-Friendly FTP

| RFC 2417 - Securing FTP with TLS

| RFC 2428 - FTP Extensions for IPv6 and NATs

fullscr—Full screen 3270 Write and Read to the Console or Dialled/Attached
Screen

fullscr writes its input records to a 3270 terminal and reads data from the terminal into the

pipeline.

►►──FULLSCReen─ ──┬ ┬─────────── ──┬ ┬────────────────── ──┬ ┬────────── ─►
└─devaddr───(1) ┘ └─ASYNchronously───(1) ┘ ├─NOREAD───┤

 └ ┘─CONDREAD─

►─ ──┬ ┬──────────── ──┬ ┬──────── ──(1)──┬ ┬──────────── ──┬ ┬─────────── ─►◄
└─READFULL───(1) ┘ └─WAIT───(1) ┘ └─PATH──word─┘ └─NOCLOSE───(1) ┘

Note:
1 Available on CMS only.

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 413

https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc1579
https://tools.ietf.org/html/rfc2417
https://tools.ietf.org/html/rfc2428

 fullscr

Placement: fullscr must not be a first stage.

Syntax Description: Options can be in any order. On z/OS, only the options NOREAD,

CONDREAD, and READFULL are accepted.

A hexadecimal word specifies the virtual device address of a 3270 terminal attached or

dialled to the virtual machine. The virtual machine console is used if no device address is

specified. Do not specify the virtual device address of the console for the virtual machine.

The option NOREAD suppresses reads from the terminal for all input lines. CONDREAD

suppress reads from the terminal when the control byte in column one of the input record

includes the bit for X'01'.

READFULL specifies that the terminal is to be read with a read buffer operation; the default

is to use a read modified operation.

! A path may be specified for use by the CONSOLE macro with PATH; the default path is a

unique name generated by fullscr. The path is closed at end-of-file unless NOCLOSE is

specified.

The keyword ASYNCHRONOUSLY specifies that input records are written to the display as

they arrive and that data are read from the terminal in response to an attention interrupt.

This allows additional input records to be written to the display without waiting for the

user to cause an attention interrupt. ASYNCHRONOUSLY is incompatible with NOCLOSE.

Operation: A write operation is performed after fullscr has read an input record unless

you use CONDREAD and the input record is the single character X'02' or X'06'.

There are several ways to control the conditions under which fullscr waits for a response

or reads the device:

¹ Use the option NOREAD to specify that you do not wish to wait for the terminal oper-

ator to enter a transaction. This is useful for an application that requires no operator

intervention, for instance to update a status display or to write to a printer.

¹ Use CONDREAD to defer the decision to each individual data record. With this option,

the device is read only if the rightmost bit (X'01') of the control byte is zero. With

the CONDREAD option, the rightmost bit of the control byte set in the X'29' CCW is

always zero.

¹ Specify ASYNCHRONOUS to read only in response to an attention interrupt from the

terminal.

¹ Specify neither option to wait for an attention interrupt after each write, and then read

the terminal.

A record containing the single byte X'00' is written to the output when CP signals that the

terminal is in line mode at the time a full screen write is attempted (the write receives

X'8E' status). Assuming that the screen is written without error, that ASYNCHRONOUSLY

is omitted, and that fullscr does not wait for an attention interrupt, an output record

containing the single byte X'02' is written as soon as the write completes.

A solicited read operation is performed without writing to the terminal if you specify

CONDREAD and the input record contains a single X'02' or X'06'. The former causes a

read buffer operation; the latter causes a read modified. The option READFULL is ignored

for a solicited read.

414 CMS Pipelines User’s Guide and Reference

 fullscr

When a solicited read is not performed and input is not suppressed, fullscr waits for an

attention interrupt from the terminal, reads the inbound 3270 data stream, and writes it to

the pipeline. Read modified is the default way of reading; read buffer is requested by the

option READFULL. Write for positioning is not supported. The first byte of the output

record is the attention ID (AID) character. The rest of the data depends on 3270 idiosyn-

crasies. Refer to the 3274 Description and Programmer’s Guide, GA23-0061, for details.

Input Record Format: The first position is a control byte that specifies how the record is

to be processed. When the control byte includes the bit for X'20', the remainder of the

input record consists of structured fields. When the control byte does not include the bit

for X'20', additional data are an outbound 3270 data stream; the second byte of the record

is the write control character (WCC); the remainder of the record is 3270 orders and data.

Some of the bits in this control byte are defined by CP (the control field for CCWs with

operation code X'29'); others are defined by CMS Pipelines:

100x xxxx Erase. The screen is cleared and set to the default size (24 by 80). When

no device address is specified (the virtual machine console is being used),

CP sets full screen mode.

110x xxxx Erase and write alternate. The screen is cleared and set to the alternate

size. (The alternate size depends on the terminal; it is usually larger than

24 by 80.) Real 3277s do not support the alternate mode; the command

will be rejected by CP. When no device address is specified (the virtual

machine console is being used), CP sets full screen mode.

1x10 0000 Erase and write structured field. The screen is cleared. A write struc-

tured field operation is performed. When no device address is specified

(the virtual machine console is being used), CP sets full screen mode.

0010 0000 Write structured field without erasing. A write structured field operation

is performed. When no device address is specified (the virtual machine

console is being used), the screen must be in full screen mode.

1x01 xxxx Reflect the terminal break key to CMS Pipelines. This is available only

when using the diagnose interface (DIAG58). The terminal break key func-

tion (normally Program Access key 1) is disabled. When the bit for

X'10' is zero, the terminal break key can cause a CP break-in (that is CP

takes over the terminal in line mode), unless break-in is set to guest

control (CP TERMINAL BREAKIN GUESTCTL).

xxxx xxx1 Perform no read. When used with CONDREAD, this bit specifies that the

write operation should be performed without waiting for an attention and

without reading from the terminal.

0000 0010 Perform a read buffer. When no device address is specified (the virtual

machine console is being used), the screen must be in full screen mode.

CONDREAD must be specified to enable this; the input record must be one

byte.

0000 0110 Perform a read modified. When no device address is specified (the virtual

machine console is being used), the screen must be in full screen mode.

CONDREAD must be specified to enable this; the input record must be one

byte.

0000 000x Perform a write without erase. When no device address is specified (the

virtual machine console is being used), the screen must be in full screen

mode.

 Chapter 23. Inventory of Built-in Programs 415

 fullscr

A null input record is processed as X'0040', which indicates a write with a Write Control

Character specifying no operation and no data.

Output Record Format: The output record consists of an inbound data stream from the

terminal. The first character is an attention identifier (AID) or a pseudo-AID generated by

CMS Pipelines. fullscr writes a one byte output record (a pseudo-AID) when it cannot or

should not read from the terminal. If CP has put the terminal into line mode, fullscr does

not attempt to recover. More than the present 3270 data stream may be needed to reformat

the screen or set alternate screen size, or both.

The following values (in hexadecimal) are defined for the first byte of the output record:

00 CP has put the screen into line mode, as indicated by X'8E' unit status. The write

was rejected; nothing was written to the screen.

01 CP has put the screen into line mode, as indicated by X'8E' unit status. Data were

written to the screen, but the subsequent read failed because of a CP break-in.

02 Data have been written to the terminal; the read was suppressed as requested by

NOREAD, or by CONDREAD with a control byte indicating that the read should be

suppressed.

60 The screen has been read in response to a solicited read or a CP-generated attention

due to a pending CP warning. Positions 2 and 3 contain the cursor position. For a

solicited read, the data are in the format requested (read buffer or read modified).

For a CP-generated attention, a read buffer has been performed if READFULL is

specified; otherwise a read modified has been performed.

88 A structured reply has been read from the terminal. The first structured field begins

in column 2.

xx Data have been received from the terminal in response to an operator action. The

AID identifies the key that generated the inbound transmission. Positions 2 and 3

contain the cursor position. When READFULL is in effect, the remaining data contain

the complete screen buffer; when READFULL is not specified, the remaining data are

modified fields.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. The input record is consumed after the screen is written and before the

output record is written. This prevents a stall when both the input stream and the output

stream from fullscr are connected to a REXX program that controls the panels shown on the

display.

Record Delay: fullscr has the potential to delay one record.

Commit Level: fullscr starts on commit level -2000000000. It ensures that the device is

not already in use by another stage, allocates a buffer, and then commits to level 0.

Premature Termination: fullscr terminates when it discovers that its output stream is not

connected. Use hole to consume output from fullscr that is not to be processed further.

See Also: buildscr, fullscrq, and fullscrs.

Examples: PIPDSCR EXEC shipped in PIPDSCR PACKAGE uses fullscr; see also RPQRY EXEC

and 3270LOAD EXEC. SCRCTL REXX shipped in PIPGDSCR PACKAGE shows how to manage a

full screen display; the subroutine POPUP generates a panel.

To display a message on an unformatted screen (the left brace represents X'C0'):

416 CMS Pipelines User’s Guide and Reference

 fullscr

pipe literal {BHit enter now! | fullscr

To poll the display to allow user input from a status display: send a record containing

X'02' (read buffer) or X'06' (read modified) to fullscr to perform a solicited read.

fullscr will then write an output record containing data read from the screen. The resulting

attention ID is X'60' (a hyphen) if the user has not caused an attention interrupt. Note

that such a read may show user input that is being entered, for which the user has not yet

pressed an attention key.

/* Poll the user */
'PIPE strliteral x02 | fullscr condread path demo noclose | var response'
If left(response,1)¬='-' /* Action key pressed? */

Then call user_input /* Input or CP break in */

 Notes:

1. On a 3274 control unit supporting structured fields, you can issue any command as a

3270 data stream (3270DS) structured field. This lets you issue, for instance, an erase

all unprotected command.

2. Improper data stream programming (lack of keyboard restore (X'02') in the Write

Control Character) can get a 3270 terminal into a state where the keyboard is locked

while fullscr is waiting for input from the terminal. Use the reset key on a locally

attached terminal to enable keyboard entry. Use the ATTN key to gain access to CP

from a terminal that is attached to an SNA control unit.

3. CP does not reflect errors in a 3270 data stream on terminals attached via PVM logical

devices, VM/VCNA, or VM/VTAM. Thus, message 160 cannot be issued for such a

terminal. VM/VCNA disconnects the terminal in this case; CMS Pipelines hangs until

the terminal is reconnected. It may be necessary to enter CMS DEBUG and issue HX or

to IPL CMS to recover.

4. fullscr supports an attached IBM 4224 printer using the Intelligent Printer Data Stream

(IPDS). Request acknowledgement in the last structured field of a transmission so that

an attention interrupt is always generated, be that for a NACK or as a solicited

acknowledgement. This ensures that there is an inbound transmission after each write.

5. When CONSOLE is used, the macro interface requires that the first write to a path must

erase the screen unless it is a write structured field. When the control byte of the first

input record to fullscr indicates neither erase nor write structured field, and the control

unit supports structured fields, fullscr generates a dummy write structured field order

with a null 3270DS structured field to allow read or write without an initial erase.

6. When CONSOLE is used, the bit for X'10' in the control byte cannot be used to

suppress the break-in function. Instead, issue the command TERMINAL BRKKEY NONE

(or TERMINAL BRKKEY PF24 if the terminal has 12 program function keys) to suppress

the break function.

7. CMS Pipelines performs I/O operations directly to the terminal when using the diag-

nose interface. Specify the WAIT option to make fullscr enter an enabled wait state

when a unit check occurs. The screen is not reset after the error condition; you can

enter test mode on the terminal and display the hardware control blocks with informa-

tion about where your 3270 data stream is in error. Go back to the normal mode and

log on to VM again. Press reset and clear the screen if you do not go into test mode.

Enter the immediate command HW to get out of the enabled wait.

8. On z/OS, the only supported options are NOREAD and CONDREAD.

9. Though IBM 3270 terminals observe the protocols and orders specified in IBM 3270

Information Display System, Data Stream Programmer’s Reference, GA23-0059, terminal

 Chapter 23. Inventory of Built-in Programs 417

 fullscrq

emulators and protocol converters in general have been observed to divert from this

specification, in particular amongst the ones found in university environments.

Though this may be regrettable, it is a fact of life, with which a pipeline programmer

must cope.

fullscrq—Write 3270 Device Characteristics
fullscrq writes a line containing information about the terminal. This includes the device

geometry and the reply to a structured query device, if the terminal supports write struc-

tured field queries.

►►──FULLSCRQ─ ──┬ ┬───────── ─►◄
└─devaddr─┘

Type: Device driver.

Placement: fullscrq must be a first stage.

Syntax Description: A device address is optional on CMS. The log on terminal is queried

when no address is specified. No arguments are allowed on z/OS.

Operation: One record containing the terminal characteristics is written to the primary

output stream.

Output Record Format: On CMS, the output record consists of sixteen bytes of informa-

tion from diagnose 24 followed by the information returned by diagnose 8C. On z/OS,

this information is synthesised from information provided by TSO, possibly augmented with

the response to a device query.

Pos Len Description

1 2 Virtual device type. The log on terminal is stored as X'8000'; a

dialled terminal shows the type of real device.

3 2 Virtual device status and flags. This field is X'0000' on z/OS.

5 1 Virtual device class. Always X'40' (graphics).

6 1 Virtual device type. X'04' for a 3277 display. X'01' for a 3278,

3279, or similar display. X'02' for a 3270-family printer. This field

is always stored as X'01' on z/OS.

7 1 Device model number.

8 1 Line length.

9 1 “Real device terminal code for a local virtual console.” (This is the

definition of the field; it is not clear what this really means.) This byte

is stored as X'00' on z/OS.

11 2 Virtual device address on CMS; set to X'0000' on z/OS.

13 1 Condition code: X'F0' indicates condition code zero.

14 2 Reserved.

418 CMS Pipelines User’s Guide and Reference

 fullscrs

Commit Level: fullscrq starts on commit level -2000000000. It obtains the information

required, in some cases by doing I/O to the terminal, and then commits to 0.

See Also: fullscr and fullscrs.

Examples: To determine the geometry of the console of the virtual machine:

! pipe fullscrq | spec 19.2 c2d 1 21.2 c2d next | cons
! ► 80 24

 Notes:

1. CP caches the query reply; the contents of the output record reflect the status at the

time the user logged on or last reconnected. Applications that need to know which

symbol sets are currently loaded should perform their own query.

Pos Len Description

16 1 On z/OS, the rightmost byte of the attribute flags. Refer to the

description of the GTTERM macro.

16 1 Terminal features flag byte:

1xxx xxxx Extended colour present.

x1xx xxxx Extended highlighting present.

xx1x xxxx Programmable symbol sets present.

xxxx xx1x “3270 emulation.” For example, a terminal attached by an

IBM 7171 protocol converter. This bit is not set on z/OS.

xxxx xxx1 14-bit addressing allowed.

17 1 Number of partitions.

18 2 Number of columns.

20 2 Number of rows (lines).

22 v The structured fields received in response to a Read Partition Query.

fullscrs—Format 3270 Device Characteristics
fullscrs processes the output record from fullscrq to extract screen geometry and other

information useful to a REXX program that generates 3270 data streams for display on the

specified terminal.

When fullscrs is not first in a pipeline it is assumed that the input record is in the format

produced by fullscrq; when fullscrs is first in a pipeline it prefixes fullscrq to produce a

record describing the terminal or the specified display (which must have been dialled in).

►►──FULLSCRS─ ──┬ ┬───────── ─►◄
└─devaddr─┘

Type: Device driver.

Syntax Description: A device address is optional on CMS. The device (or the log on

terminal) may be queried by fullscrs when there is insufficient information in the input

record. The device address is verified only if fullscrs is first in a pipeline or if it needs to

perform an I/O operation to the device.

 Chapter 23. Inventory of Built-in Programs 419

 fullscrs

Operation: If fullscrs is first in a pipeline, it prefixes a fullscrq to obtain the character-

istics of the log in terminal.

Input Record Format: As defined for the output from fullscrq:

Output Record Format: A record of blank-delimited words:

1. Number of lines.

2. Number of columns.

 3. APL/TEXT flag:

0 APL/TEXT not present.

1 3278 APL/TEXT is present; use X'08' graphics escape orders.

2 3277 APL/TEXT is present; use X'1D' escape sequences.

Pos Len Description

1 2 Virtual device type. The log on terminal is stored as X'8000'; a

dialled terminal shows the type of real device.

3 2 Virtual device status and flags. This field is X'0000' on z/OS.

5 1 Virtual device class. Always X'40' (graphics).

6 1 Virtual device type. X'04' for a 3277 display. X'01' for a 3278,

3279, or similar display. X'02' for a 3270-family printer. This field

is always stored as X'01' on z/OS.

7 1 Device model number.

8 1 Line length.

9 1 “Real device terminal code for a local virtual console.” (This is the

definition of the field; it is not clear what this really means.) This byte

is stored as X'00' on z/OS.

11 2 Virtual device address on CMS; set to X'0000' on z/OS.

13 1 Condition code: X'F0' indicates condition code zero.

14 2 Reserved.

16 1 On z/OS, the rightmost byte of the attribute flags. Refer to the

description of the GTTERM macro.

16 1 Terminal features flag byte:

1xxx xxxx Extended colour present.

x1xx xxxx Extended highlighting present.

xx1x xxxx Programmable symbol sets present.

xxxx xx1x “3270 emulation.” For example, a terminal attached by an

IBM 7171 protocol converter. This bit is not set on z/OS.

xxxx xxx1 14-bit addressing allowed.

17 1 Number of partitions.

18 2 Number of columns.

20 2 Number of rows (lines).

22 v The structured fields received in response to a Read Partition Query.

420 CMS Pipelines User’s Guide and Reference

 fullscrs

4. 1 if the terminal supports Erase/Write Alternate; 0 otherwise (typically a 3277).

5. 1 if Write Structured Field is supported.

6. 1 if Extended Highlighting is supported.

7. A two-character unpacked alias character for ROS (read only storage) font 1, or “no”.

If present, this font contains the APL/TEXT character set.

8. The first halfword of the Coded Graphic Character Set Identifier for the ROS (read only

storage) font 0 or a question mark if this information is not available.

9. The second halfword of the CGCSID, the code page, or a question mark if this informa-

tion is not available.

10. The Coded Character Set ID for ROS (read only storage) font 0 or a question mark if

this information is not available.

11. Encoded character information about the programmable symbol sets, if any. Semico-

lons separate the information about individual symbol sets. The fields for each symbol

set are separated by hyphens:

a. The character set number.

b. The alias character associated with the character set, unpacked to two hex charac-

ters.

c. “r” for a ROS (read only storage) symbol set; “w” for a writable symbol set. The

number of bit planes follows the r/w character.

d. If present, eight hexadecimal characters containing the unpacked CGCSID,

consisting of a two-byte character set number and a two-byte code page number.

12. The contents of the colour reply, if one was received. Otherwise “no”.

13. The contents of the highlighting reply, if one was received. Otherwise “no”.

14. The contents of the reply mode reply, if one was received. Otherwise “no”.

15. The default and alternate cell size in the format xx:yy/xx:yy.

Record Delay: fullscrs strictly does not delay the record.

Commit Level: fullscrs starts on commit level -1. It verifies its arguments and then

commits to 0.

See Also: fullscr and fullscrq.

Examples: To format the device information so that the character set information is on a

line by itself:

! pipe fullscrs | spec word 1.10 1 write word 11 1 write word 12-* 1 | cons
! ►24 80 1 1 1 1 F1 697 1047 ?
! ►0-00-r1-02B90417;1-F1-r1-03C30136
! ►41234567 0124 111

 Chapter 23. Inventory of Built-in Programs 421

 gate

gate—Pass Records Until Stopped
gate passes records from input streams other than the first to the corresponding output

stream until a record arrives on the primary input stream, at which point it terminates.

gate is used to terminate portions of a pipeline. For example, gate can be used to imple-

ment generalisations of the frlabel and tolabel built-in programs, and to terminate device

driver stages that do not terminate normally.

►►──GATE─ ──┬ ┬──────── ─►◄
 └ ┘─STRICT─

 Type: Gateway.

Syntax Description: A keyword is optional.

Operation: gate issues the SELECT ANYINPUT pipeline command to wait for a record to

. arrive on any of its input streams. When a record arrives on the primary input stream, the

. primary input stream is shorted to the primary output stream gate then terminates.

When a record arrives on a stream other than the primary input stream and the option

STRICT is specified, gate checks the primary input stream to see if a record is available

before passing the record on other input streams to the corresponding output stream; gate

. then terminates without consuming the record.

When a record arrives on a stream other than the primary input stream and STRICT is

omitted, gate may continue passing records while the primary input stream has a record

ready; how many records depends on the pipeline dispatcher’s strategy, which is

unspecified. However, when gate is used to gate output from a selection stage, it may be

known that there can be only one record available on all inputs at any one time; in this

case you can avoid the overhead of the STRICT option.

If no record arrives on the primary input stream, gate terminates normally when all input

streams are at end-of-file.

. Streams Used: The primary input stream is shorted to the primary output stream.

Records are passed from other input streams to the corresponding output stream.

gate ignores end-of-file on its primary output stream; it propagates end-of-file between the

two sides of streams 1 and higher.

Record Delay: gate strictly does not delay the record.

Commit Level: gate starts on commit level -2. It allocates the resources it needs and and

then commits to level 0.

Premature Termination: gate terminates when it discovers that no output stream is

connected.

See Also: frtarget, predselect, and totarget.

Examples: To terminate a starmsg and an udp stage when the immediate command STOP

is issued:

422 CMS Pipelines User’s Guide and Reference

 gather

'PIPE (end ? name GATE)',
'|immcmd stop', /* Wait for the command to stop */
'|take 1', /* Be sure to terminate IMMCMD */
'|g: gate strict', /* Terminate them */

 '?udp 69',
'|g:', /* through the gate */
'|...', /* Process UDP output */

 '?starmsg',
'|g:', /* through the gate */
'|...' /* Process STARMSG output */

A subroutine pipeline that terminates when it meets a record containing the string abc (in

essence the function performed by totarget):

/* To target */
'callpipe (end ? name GATE)',

'|*:', /* Read input */
'|l: locate /abc/', /* Select the trigger */
'|g: gate', /* Force it to terminate */
'?l:', /* Records that don't contain string */
'|g:', /* Until one that does */
'|*:' /* Pass output */

exit RC

This subroutine pipeline passes records until a record is met that causes locate to write to

its primary output. When this happens, gate terminates. This, in turn, severs both output

streams from locate, and locate terminates without consuming the trigger record.

 Notes:

. 1. Use a cascade of gate stages instead of a single stage having more than two streams

. defined to avoid stalls when gate is blocked in writing a record. This also avoids the

. overhead of specifying STRICT.

gather—Copy Records From Input Streams
gather passes records from its input streams to the primary output stream. It can work in

two ways: round robin or by stream identifier.

In the round robin mode, gather passes a record from the primary input stream to the

primary output stream, then a record from the secondary input stream to the primary output

stream, and so on. It returns to the primary input stream when it has passed a record from

all defined streams.

In the stream identifier mode, gather reads a record from the primary input stream and

extracts a stream identifier from a specified input range. If the stream identifier is null,

blank, decimal zero, or an identifier that resolves to stream zero, the record is passed to the

primary output stream. Otherwise a record is passed from the designated stream to the

primary output stream.

 ┌ ┐─STOP──ALLEOF─────────
►►──GATHER─ ──┼ ┼────────────────────── ─►◄
 ├ ┤ ─STOP─ ──┬ ┬─ANYEOF─ ────

│ └─number─┘ │
 └─STREAMid──inputRange─┘

 Chapter 23. Inventory of Built-in Programs 423

 gather

 Type: Gateway.

Syntax Description: The keyword STOP or STREAMID is optional. The default is to

continue until all input streams are at end-of-file.

Operation: When STREAMID is omitted, streams at end-of-file are bypassed.

When STREAMID is specified and the record is passed from a stream that is not the primary

input stream, the record on the primary input stream is consumed after the record that is

passed.

Record Delay: gather strictly does not delay the record.

Commit Level: gather starts on commit level -2. It verifies that the primary output

stream is the only connected output stream and then commits to level 0.

Premature Termination: gather terminates when it discovers that its primary output

stream is not connected. gather STREAMID terminates as soon as it reaches end-of-file on

any of its input streams.

 Converse Operation: deal.

See Also: fanin, faninany, fanintwo, and specs.

Examples: gather is often used to gather the records that deal spread out to a set of

parallel streams. Such a pipeline specification is usually built in a loop:

pipe='(end ?)'
beg='*:|D:deal'
end='gather|*:'
do i=1 to streams

pipe=pipe '|parallel process|G:' end
beg='?D:' /* Just the stream next time */
end='' /* Only first time */

end
'callpipe (end ?)' pipe

gather STREAMID is designed for the application that needs to process some records

through a particular pipeline segment and others in some other way, where the processing

involves elastics. Assume that records containing 1 in the first column must be sent to a

server for processing; other records contain 0 in column one. To allow for some overlap,

the server should run in parallel; there might even be several server threads (using deal):

STOP ALLEOF, the default, specifies that gather should continue as long as at

least one input stream is connected. ANYEOF specifies that gather should

stop as soon as it determines that an input stream is no longer connected.

A number specifies the number of unconnected streams that will cause

gather to terminate. The number 1 is equivalent to ANYEOF.

STREAMID Specify the input range that contains the stream identifier to be used to

select the input stream to read from.

424 CMS Pipelines User’s Guide and Reference

 getfiles

'PIPE (end ? name GATHER.STAGE:94)',
 '?...',

'|o: fanout', /* Make a copy so we retain record on primary */
 '|normal processing',

'|elastic', /* buffer enough to wait for server */
'|g: gather streamid 1', /* Merge stuff */

 '|...',
 '?o:',

'|strfind /1/', /* Take only those to server */
'|tcpclient 2555 9.55.5.13 sf oneresponse', /* Send to server */
'|g:' /* Merge into stream */

When doing this type of pipeline networks, you should be careful not to flood the server.

In this example this is ensured by the keyword ONERESPONSE, which makes tcpclient not

delay the record; thus, fanout will be blocked if a second request arrives before the earlier

one is processed.

 Notes:

1. Input records must arrive in the order that gather reads them. Use faninany when the

order cannot be predicted.

 getfiles—Read Files
getfiles reads the contents of files into the pipeline. The files to read (as defined for <) are

specified in input records. On CMS, this consists of the file name, the file type, and

optionally the file mode. On z/OS, a single word or two words are acceptable.

►►──GETfiles──►◄

Type: Device driver.

Operation: getfiles transforms each input record into a subroutine pipeline that is issued

with pipcmd to read the file. A file is unpacked if it is packed.

Input Record Format: Input lines list files to be read into the pipeline. If present in the

first seven columns, the string ' &1 &2 ' is ignored. (It is generated by the CMS

command LISTFILE with the EXEC option.) After this string is removed, the first three

words of the input line are passed as the arguments to a < stage, which reads the contents

of the file into the pipeline.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: getfiles writes all output for an input record before consuming the input

record.

 See Also: pipcmd.

Examples: To read files whose names match a pattern and count the number of lines in

them all:

pipe cms listfile ug* script h | getfiles | count lines | console

To count the aggregate number of words in the files specified in a FILELIST:

 Chapter 23. Inventory of Built-in Programs 425

 greg2sec

pipe < john filelist | getfiles | count words | console

 Notes:

1. getfiles terminates prematurely only if the pipeline stalls.

Return Codes: The return code from getfiles is the one from pipcmd, which in turn is the

aggregate of the return codes from the CALLPIPE pipeline commands that issue the subrou-

tine pipelines. A negative return code causes pipcmd to terminate; a positive return code

indicates that all input records have been processed, though one or more are processed in

error.

. greg2sec—Convert a Gregorian Timestamp to Second Since Epoch

. Convert a Gregorian timestamp to seconds since January first, 1970. A negative output

. number represents a time earlier than the epoch.

.

. ►►──GREG2SEC─ ──┬ ┬──────────────────── ─►◄

. └. ─OFFSET──┬─number─┬─┘

. └ ┘─*──────

. Type: Filter.

. Syntax Description:

. Input Record Format: 14 characters without punctuation: yyyymmddhhmmss.

. Streams Used: Records are read from the primary input stream and written to the primary

. output stream. Null and blank input records are discarded.

. Record Delay: greg2sec does not delay the record.

. Premature Termination: greg2sec terminates when it discovers that its output stream is

. not connected.

. Converse Operation: sec2greg.

. See Also: dateconvert, spec, and timestamp.

! Examples: The input record can be produced by timestamp with the proper format

! option:

! pipe literal | timestamp string /%Y%m%d%H%M%S/ | greg2sec offset * | ...
! ... console
! ►1588186233
! ►Ready;

. OFFSET. A time zone offset is specified.

. number. Specify a number of seconds. The numerically largest acceptable value

. is 86399, as a time zone offset of 24 hours makes no sense. Positive

. values are east of Greenwich.

. *. Use the time zone offset set for the host system.

426 CMS Pipelines User’s Guide and Reference

 help

. Notes:

. 1. The epoch started at 00:00:00 UTC on January first, 1970. This is the epoch used in

. UNIX systems.

. 2. LOCAL may also be specified to apply the local time zone offset.

. 3. A time zone offset of 86399 is not the same as one of -1.

. 4. For dates before year 1970, greg2sec ignores all issues as to whether the day actually

. occurred or the year existed at all.

. 5. The largest valid input timestamp is 99991231235959.

. 6. Leap seconds are not accounted for, as most UNIX systems also ignore this issue.

help—Display Help for CMS Pipelines or DB2
help processes requests for help. You can ask for help about:

¹ CMS Pipelines built-in programs, pipeline commands, syntax elements, and miscella-

neous topics.

¹ CMS Pipelines messages. You can get help for a message issued by CMS Pipelines

even if you do not know the message number; CMS Pipelines keeps track of the

messages it issues.

¹ DB2 Server for VM “topics” and messages. CMS Pipelines also remembers the

previous SQLCODEs; you can get help for one without specifying its number.

Help about CMS Pipelines is stored either in the file PIPELINE HELPLIB or as standard CMS

help files. Help about TSO Pipelines is stored in a partitioned data set which should be

allocated to FPLHELP.

On CMS, help requests for CMS Pipelines topics are forwarded to standard CMS HELP in

either of these cases:

¹ help is issued and the STYLE configuration variable is set to DMS.

¹ help or ahelp cannot find the file PIPELINE HELPLIB or the requested information is not

in the library.

The remainder of this article applies to the case where PIPELINE HELPLIB is used or where a

DB2 Server for VM topic is displayed.

When help finds the information to display, help is displayed on your terminal (using a

normal XEDIT session on CMS) unless the primary output stream is connected; when the

output stream is connected, the information is written to the pipeline rather than to the

terminal.

 Chapter 23. Inventory of Built-in Programs 427

 help

►►─ ──┬ ┬─HELP── ──┬ ┬───────────────────── ─►◄
 └ ┘─AHELP─ │ │┌ ┐─BUILTINS─
 ├ ┤ ─MENU─ ──┼ ┼────────── ─
 │ │├ ┤─COMMANDS─
 │ │├ ┤─HOST─────
 │ │├ ┤─MESSAGES─
 │ │├ ┤─OTHER────
 │ │└ ┘─SYNTAX───
 ├─MSG──number─ ────────┤

├─number──────────────┤
 ├─SQL──string─ ────────┤
 ├ ┤ ─SQLCODE─ ──┬ ┬────────

│ └─number─┘ │
└─word────────────────┘

Type: Service program.

Placement: help must be a first stage.

Syntax Description: The arguments are optional. When no arguments are specified, 0 is

assumed; help is displayed for the last message issued.

MENU Display a menu of CMS Pipelines topics.

BUILTINS Show a menu of built-in programs.

COMMANDS Show a menu of pipeline commands.

HOST Show a menu of host commands related to CMS Pipelines.

MESSAGES Show a menu of CMS Pipelines messages.

OTHER Show a menu of miscellaneous topics, tutorials, etc.

SYNTAX Show a menu of syntax variables.

MSG Show help for the specified message. One or more blanks are optional

between the keyword and the number.

number (No keyword.) When the number is 10 or less, help is displayed for the

last message issued (the number is 0), the second last message (the

number is 1), and so on back through the memory of the last 11

messages issued. When the number is 11 or more, help is displayed for

the message with that number. You must specify the MSG keyword to

obtain help for messages 0 through 10.

SQL Display DB2 Server for VM’s help information about a particular topic.

The topic may be a number (an SQLCODE) or the name of a SQL state-

ment. This requires that you have connect privileges to DB2 Server for

VM, that the help topics are loaded into the system tables, and that an

access module has been generated by your installation; refer to help for

sql.

SQLCODE Display the help information for the last encountered nonzero SQLCODE

(no number or 0) code without needing to remember what it was. “pipe
help sqlcode 1” displays the help text for the second last return code

received, and so on. sql remembers the last 11 nonzero return codes

received from SQL.

428 CMS Pipelines User’s Guide and Reference

 help

Operation: When MENU is specified, you can select other menus or members to be

displayed with the cursor and press the Enter key or Program function key 1 (or 13).

When CMS HELP is used, help calls standard CMS HELP for PIPE MENU; you are offered one

menu for all built-in programs and all pipeline commands.

Tailoring help: The help library has character graphics and syntax diagrams using code

points that display correctly on a 3270 with TEXT ON.

When help information is displayed in an XEDIT session (as opposed to using the system

HELP), you can control how the XEDIT session is set up and you can change the help file as

it is loaded into the XEDIT session.

When help information is displayed in an XEDIT session, the contents of the global variable

PIPELINE_HELP_XEDIT_OPTIONS are automatically presented as options on the XEDIT

command after a left parenthesis (which you should not add to the variable). This allows

you to specify which profile to run or to suppress running a profile. A left parenthesis on

the invocation of help sets the global variable permanently to the text following the paren-

thesis.

After the options are scanned for a left parenthesis, help looks for a REXX filter by the

name xithlp03. If the file exists, it is called as a subroutine with the arguments help

received and with its primary output stream connected to help’s primary output stream.

The exit can inspect and set the default, if it so desires. A “good” default could be

NOPROFILE NOMSG.

Two REXX filters are called, if they are present, to process lines before they are sent to

XEDIT; the filters normally call a subroutine pipeline with an xlate filter. You can use

other filters to change the help text to suit the character set in your terminal.

XITHLP02 REXX is used for lines in a menu; XITHLP01 REXX is called when sending help text

to XEDIT. This example shows how to use only plus and hyphen for character graphics.

/* XITHLP01 REXX -- exit to translate lines for no TEXT feature */
'callpipe (name XITHLP01)',
 '|*:',

'|xlate *-* ea-eb + ee-ef + ab-ac + bb-bc + bf - 8f + fa 4f',
 '|*:'
exit RC

Streams Used: If the primary output stream is connected, help is written to the primary

output stream rather than being displayed. This applies even when CMS HELP is used.

Premature Termination: When the primary output stream is connected initially (and help

writes the information to the output rather than displaying it), help terminates when the

primary output stream becomes not connected.

Examples: Use help connected to xedit to display help information from SQL or from

PIPELINE HELPLIB in the current XEDIT ring:

word (The word is not a number.) Display help for the first member of the

library (excluding messages) that the argument is an abbreviation of.

This can be a built-in program, a pipeline command, a syntax variable, a

host command, or a member that contains miscellaneous information.

Note that you have to enter more than eight characters for some syntax

variables (notably, inputRanges must be spelt out).

 Chapter 23. Inventory of Built-in Programs 429

 hfs

xedit new help s
pipe help help | pad 80 | xedit
set prefix off

To use the PIPEHELP XEDIT macro as the profile:

globalv setpl pipeline_help_xedit_options profile pipehelp

Note that you need to issue this command only once.

 Notes:

1. When operation reverts to standard CMS HELP, severity codes must be specified with

message numbers; built-in program names and pipeline commands must be spelt out to

the minimum abbreviation.

2. Use help with a connected output stream to obtain help information when you wish to

display it without additional XEDIT commands being issued.

3. As of CMS Pipelines level 1.1.10, the help library carries an index member, which

relates the various names to the actual member names. As a result, more than eight

characters can be used when requesting help for a topic.

Configuration Variables: For help, the configuration variable STYLE determines whether

the PIPELINE HELPLIB is used or not. help goes directly to CMS HELP when the style is

DMS. In the PIP and FPL styles help and ahelp are synonymous.

When ahelp is used in the DMS style and the file PIPELINE HELPLIB is not on an accessed

mode, ahelp issues a dummy CMS HELP to make CMS access its help disk (where PIPELINE

HELPLIB is stored) and then looks for the library one more time.

hfs—Read or Append File in the Hierarchical File System
hfs connects the pipeline to a byte stream file in the hierarchical file system. When it is

first in the pipeline, it reads from the file; the file must exist. When hfs is not first in the

pipeline, it appends to the file; the file is created if it does not exist.

►►─ ──┬ ┬─HFS─ ─┤ path ├──►◄
 └ ┘─BFS─

path:

├──┬─word─────┬──┤
├─'string'─┤
└─"string"─┘

Type: Device driver.

Syntax Description: The argument specifies the path to a file. When the first non-blank

character is neither a single quote (') nor a double quote ("), the path is a blank-delimited

word. Otherwise the path is enclosed in quotes in the REXX fashion; two adjacent quotes

of the type that encloses the path represent a single occurrence of that quote. Only path

names that contain blanks must be enclosed in quotes. A word that is not enclosed in

quotes can contain quotes in the second and subsequent position; such quotes should not

be “doubled up”.

430 CMS Pipelines User’s Guide and Reference

 hfsdirectory

Operation: When hfs is first in the pipeline, it reads bytes from the file into the pipeline.

The number of bytes read at a time is unspecified.

When hfs is not first in the pipeline, it appends the contents of its input records to the file.

Streams Used: When hfs is first in the pipeline, it writes records to the primary output

stream. When hfs is not first in a pipeline, it passes the input record to the output (if it is

connected) after the record is written to the file.

Record Delay: hfs strictly does not delay the record.

Commit Level: hfs starts on commit level -2000000000. It verifies that the system does

contain OpenExtensions, opens the file, and then commits to level 0.

Premature Termination: When it is first in a pipeline, hfs terminates when it discovers

that its output stream is not connected.

See Also: filedescriptor, hfsdirectory, hfsquery, hfsreplace, hfsstate, and hfsxecute.

Examples: To read a file:

 pipe hfs /u/john/.profile | deblock textfile | ...

To append to a file:

 pipe literal startx | block 100 textfile | hfs /u/john/.profile

 Notes:

1. Shell variables are not expanded; hfs does not run in the OpenExtensions environment.

2. When the first character of the path is not a forward slash (/), OpenExtensions prefixes

the current working directory to the path.

3. OpenExtensions files are byte stream files. That is, they contain a number of bytes,

but are not structured into records. Use block TEXTFILE to append newline characters

to logical records that contain textual data.

hfsdirectory—Read Contents of a Directory in a Hierarchical File System
hfsdirectory reads the contents of a directory file and writes an output record for each entry

in the directory. The directory must exist.

►►─ ──┬ ┬─HFSDIRectory─ ─┤ path ├──►◄
 └ ┘─BFSDIRectory─

path:

├──┬─word─────┬──┤
├─'string'─┤
└─"string"─┘

Type: Device driver.

Placement: hfsdirectory must be a first stage.

Syntax Description: The argument specifies the path to a directory, which must exist.

When the first non-blank character is neither a single quote (') nor a double quote ("), the

path is a blank-delimited word. Otherwise the path is enclosed in quotes in the REXX

 Chapter 23. Inventory of Built-in Programs 431

 hfsquery

fashion; two adjacent quotes of the type that encloses the path represent a single occur-

rence of that quote. Only path names that contain blanks must be enclosed in quotes. A

word that is not enclosed in quotes can contain quotes in the second and subsequent posi-

tion; such quotes should not be “doubled up”.

Commit Level: hfsdirectory starts on commit level 0. It verifies that the system does

contain OpenExtensions, allocates a buffer, opens the file, and then commits to level 0.

See Also: hfs, hfsquery, and hfsstate.

Examples: To display the contents of the current working directory:

 hfsdirectory . | console
►.
►..
►data.file
►READY

 Notes:

1. Shell variables are not expanded; hfsdirectory does not run in the OpenExtensions

environment.

2. When the first character of the path is not a forward slash (/), OpenExtensions prefixes

the current working directory to the path.

3. OpenExtensions files are byte stream files. That is, they contain a number of bytes,

but are not structured into records. Use block TEXTFILE to append newline characters

to logical records that contain textual data.

4. Pass the output from hfsdirectory to hfsstate to obtain information about the file.

hfsquery—Write Information Obtained from OpenExtensions into the Pipeline
hfsquery obtains information from OpenExtensions. The information includes the current

working directory, the contents of symbolic links, and information about the operating

system.

►►─ ──┬ ┬─HFSQuery─ ─►◄
 └ ┘─BFSQuery─

Type: Device driver.

Input Record Format: A request code which may be followed by additional parameters.

The request codes are:

pwd
cd

Query the path to the present working directory. This can be set by

hfsxecute.

symlink Query the contents of the symbolic link. The path to the symbolic link

is specified as the second word of the line. It can be enclosed in quotes.

path:

├──┬─word─────┬──┤
├─'string'─┤
└─"string"─┘

432 CMS Pipelines User’s Guide and Reference

 hfsreplace

Output Record Format: The output record for the pwd request contains the path to the

current working directory.

The output record for the symlink request contains the contents of the symbolic link. That

is, the name of the file being pointed to.

The output record for the uname request contains five tab-delimited fields (there are four

tab characters in the record):

1. Name of implementation of operating system.

2. Name of this node within a communications network.

 3. Release level.

 4. Version level.

5. Name of the hardware type.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: hfsquery strictly does not delay the record.

Commit Level: hfsquery starts on commit level -2000000000. It verifies that the system

does contain OpenExtensions, allocates a buffer, and then commits to level 0.

Premature Termination: hfsquery terminates when it discovers that its output stream is

not connected.

See Also: hfsdirectory, hfsstate, and hfsxecute.

Examples: To display the current working directory:

 pipe literal pwd | hfsquery | console

uname Query the name of the Current Operating System. The output record

contains information from the BPXYUSTN data structure.

hfsreplace—Replace the Contents of a File in the Hierarchical File System
hfsreplace replaces the contents of a file in a hierarchical file system with its input data.

The file is created if it does not exist.

►►─ ──┬ ┬─HFSREPlace─ ─┤ path ├──►◄
 └ ┘─BFSREPlace─

path:

├──┬─word─────┬──┤
├─'string'─┤
└─"string"─┘

Type: Device driver.

Placement: hfsreplace must not be a first stage.

Syntax Description: The argument specifies the path to a file. When the first non-blank

character is neither a single quote (') nor a double quote ("), the path is a blank-delimited

word. Otherwise the path is enclosed in quotes in the REXX fashion; two adjacent quotes

 Chapter 23. Inventory of Built-in Programs 433

 hfsstate

of the type that encloses the path represent a single occurrence of that quote. Only path

names that contain blanks must be enclosed in quotes. A word that is not enclosed in

quotes can contain quotes in the second and subsequent position; such quotes should not

be “doubled up”.

Operation: hfsreplace opens the file with the O_TRUNC flag, which causes the file to be

truncated to a null file.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: hfsreplace strictly does not delay the record.

Commit Level: hfsreplace starts on commit level -2000000000. It verifies that the system

does contain OpenExtensions, opens the file, and then commits to level 0.

See Also: > and hfs.

Examples: To write a file:

 pipe literal Just one line | block 100 textfile | hfsreplace data.file

 Notes:

1. Shell variables are not expanded; hfsreplace does not run in the OpenExtensions envi-

ronment.

2. When the first character of the path is not a forward slash (/), OpenExtensions prefixes

the current working directory to the path.

3. OpenExtensions files are byte stream files. That is, they contain a number of bytes,

but are not structured into records. Use block TEXTFILE to append newline characters

to logical records that contain textual data.

4. Warning: The file is opened on commit level -2000000000. Opening the file causes

it to be truncated to a null file. This will destroy any existing data in the file, even if

the pipeline is abandoned before reaching commit level 0.

hfsstate—Obtain Information about Files in the Hierarchical File System
hfsstate writes status information for files in a hierarchical file system. The output record

contains information similar to that reported by the OpenExtensions shell’s ls command.

►►─ ──┬ ┬─HFSSTATe─ ──┬ ┬────────── ──┬ ┬─────── ─►◄
 └ ┘─BFSSTATe─ └ ┘─NOFORMAT─ └ ┘─QUIET─

Type: Device driver.

Syntax Description: Two keywords are optional.

NOFORMAT Write the unformatted BPXYSTAT data area to the output stream.

QUIET Set return code zero, even when one or more files do not exist.

434 CMS Pipelines User’s Guide and Reference

 hfsxecute

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null input records are discarded. When a file is found, information

about it is written to the primary output stream (if it is connected). When a file is not

found, the input record is passed to the secondary output stream (if it is connected).

Record Delay: hfsstate strictly does not delay the record.

Commit Level: hfsstate starts on commit level -2000000000. It verifies that the system

does contain OpenExtensions and that the secondary input stream is not connected and

then commits to level 0.

Examples: To list the files in the present working directory:

 pipe hfsdirect . | hfsstate | console
►drwxrwxrwx 3 root system 0 19940602143705 .<
►drwxrwx--x 2 root system 0 19940602143705 ..<
►drwxrwxrwx 2 root system 0 19940608234303 davidsen<
►-rw-rw-rw- 1 root system 12 19940609173256 tester<
►READY

 Notes:

1. Shell variables are not expanded; hfsstate does not run in the OpenExtensions environ-

ment.

2. When the first character of the path is not a forward slash (/), OpenExtensions prefixes

the current working directory to the path.

3. OpenExtensions files are byte stream files. That is, they contain a number of bytes,

but are not structured into records. Use block TEXTFILE to append newline characters

to logical records that contain textual data.

4. The time of last modification is reported in a format that is suitable for sorting. The

time is UTC; no time zone offset is applied.

5. On CMS, OpenExtensions directories do not contain the “dot” (.) and “dot-dot” (..)

files; the example above was run on z/OS.

hfsxecute—Issue OpenExtensions Requests
hfsxecute reads requests from its input and passes them to OpenExtensions services. It

passes the input record to the output, if it is connected.

►►─ ──┬ ┬─HFSXecute─ ─►◄
 └ ┘─BFSXecute─

Type: Device driver.

Placement: hfsxecute must not be a first stage.

Operation: The requests are decoded as follows:

chdir Change the current working directory to the one specified.

chmod Change the mode of the file or directory.

link Link the first path to the object specified by the second path. This is a

“hard” link.

 Chapter 23. Inventory of Built-in Programs 435

 hfsxecute

Input Record Format: Each input record contains a request. Case is ignored in the first

word; it is respected in path names.

►►──chdir──┤ path ├──►◄

►►──chmod──┤ path ├──┤ mode ├──►◄

►►──link──┤ path ├──┤ path ├──►◄

►►──mkdir──┤ path ├─ ──┬ ┬────────── ─►◄
└ ┘─┤ mode ├─

►►──mkfifo──┤ path ├─ ──┬ ┬────────── ─►◄
└ ┘─┤ mode ├─

►►──rename──┤ path ├──┤ path ├──►◄

►►──rmdir──┤ path ├──►◄

►►──symlink──┤ path ├──┤ path ├──►◄

►►──umask──┤ mode ├──►◄

►►──unlink──┤ path ├──►◄
.

. ►►──utime──┤ path ├──number──number──►◄

mkdir Create a directory.

mkfifo Create a named pipe.

rename Replace the file or directory specified by the second path with the file or

directory specified by the first path. If the target object does not exist,

the existing file is renamed. Note the different meaning of “rename” in

OpenExtensions.

rmdir Erase a directory. The directory must be empty.

symlink Create a symbolic link from the first path to the object named in the

second path.

umask Set the user file creation mask.

unlink Delete a link to a file. When all links to a file have been deleted, the

contents of the file are no longer accessible.

. utime. Set the access and modification times for a file. The numbers are

. seconds since the epoch (midnight before January first, 1970); include

. leap seconds only when the operating system supports them.

436 CMS Pipelines User’s Guide and Reference

 hlasm

path:

├──┬─word─────┬──┤
├─'string'─┤
└─"string"─┘

mode:

├──octalDigit───(1) ─┬──┬──┤
 └─octalDigit──┬────────────────────────────┬─┘
 └─octalDigit──┬────────────┬─┘

└─octalDigit─┘

Note:
1 There are no blanks between the digits of a mode.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. hfsxecute passes the input record to the output if it is connected after it has

passed the request to OpenExtensions.

Record Delay: hfsxecute strictly does not delay the record.

Commit Level: hfsxecute starts on commit level -2000000000. It verifies that the system

does contain OpenExtensions and then commits to level 0.

Premature Termination: hfsxecute terminates as soon as a call to OpenExtensions sets

the return value -1 (minus one), which indicates an error.

 See Also: hfsquery.

Examples: To change the current working directory:

 pipe literal chdir /u/john/oscar | hfsxecute

 Notes:

1. Shell variables are not expanded; hfsxecute does not run in the OpenExtensions envi-

ronment.

2. When the first character of the path is not a forward slash (/), OpenExtensions prefixes

the current working directory to the path.

3. OpenExtensions files are byte stream files. That is, they contain a number of bytes,

but are not structured into records. Use block TEXTFILE to append newline characters

to logical records that contain textual data.

hlasm—Interface to High Level Assembler
hlasm invokes the High Level Assembler and then passes the primary input stream as the

source program. The object module is passed to the primary output stream; the listing is

passed to the secondary output stream; and the SYSADATA file is passed to the tertiary

output stream.

►►──HLASM─ ──┬ ┬────────────────── ─►◄
 └─word──┬────────┬─┘

└─string─┘

 Type: Filter.

 Chapter 23. Inventory of Built-in Programs 437

 hlasm

 Syntax Description:

Operation: hlasm builds a parameter string consisting of these items:

1. The first word of the arguments to hlasm, word, the file name.

2. A left parenthesis.

. 3. The words NODECK OBJECT. The word ADATA is added when the tertiary output

. stream is defined.

4. The exit specifications for the exits that are used. The exit for the object module is

always declared; the exit for the listing and the SYSADATA file are declared only when

the corresponding streams are defined.

5. The string. Thus, the argument string to hlasm can override the options specified

previously.

hlasm then invokes the High Level Assembler as appropriate for the host system.

Whenever an exit is driven, hlasm supplies a record to the High Level Assembler or

disposes of an output record. The High Level Assembler does not read from the input data

set and it does not write to the output data sets for which an exit is declared.

Input Record Format: 80-byte card images.

Output Record Format: The primary output stream contains 80-byte card images. The

secondary output stream contains the listing with whatever carriage control is specified and

at whatever length the High Level Assembler supplies. The tertiary output stream contains

the SYSADATA records; refer to the Programmer’s Guide or the data area (DSECT) for the

format.

Streams Used: One to three streams may be defined. Records are read from the primary

input stream; no other input stream may be connected.

Record Delay: The record delay is unspecified. In general, it is not possible to relate an

output record to any particular input record.

Commit Level: hlasm starts on commit level -1. It builds the parameter list and loads the

High Level Assembler into storage and then commits to level 0.

Premature Termination: Once the High Level Assembler has been called, it is not in

general possible to make it terminate prematurely. hlasm must wait until the Assembler

returns before it can terminate.

 See Also: hlasmerr.

Examples: To assemble the current file in the XEDIT ring and bring the listing into the

ring:

word Specify the file name of the input file. The default is “$temp$”.

string Specify the parameter string for the High Level Assembler. This string

must not contain exit specifications for any of the exits that are being

used by hlasm.

438 CMS Pipelines User’s Guide and Reference

 hlasmerr

/* Assemble file */
'extract /fname'
':1'
'xedit' fname.1 'listing'
':1'
'delete *'
address command,
'PIPE (end ? name HLASM.STAGE:94)',

'?xedit' fname.1 'assemble',
 '|pad 80',
 '|h: hlasm',
 '|hole',
 '?h:',

'|xedit' fname.1 'listing'
':1'

This example ignores issues such as setting up macro libraries, setting the option to

generate a listing file, and suppression of spurious XEDIT messages when deleting all lines

of a file.

 Notes:

! 1. High Level Assembler is a separate Licensed Product and is not part of z/VM. When

! High Level Assembler is not installed, hlasm will fail with an error message.

2. In addition to connecting the output streams, you must also enable the production of

the corresponding file. The OBJECT option is specified by default; you can specify

NOOBJECT to override it, but this will attract an assembler diagnostic message. LIST

must be specified (or defaulted) to obtain any output on the secondary output stream.

! 3. At most one hlasm stage can be active at a time.

! 4. Be aware that when the secondary output stream is not defined, High Level Assembler

! will write the assembly listing to SYSPRINT. When no FILEDEF has been done, it will

! replace an existing LISTING file. To avoid that, define the secondary output stream.

5. The exits all use the same module name, FPLHLASX.

Publications: High Level Assembler for MVS & VM & VSE: Programmer’s Guide MVS

& VM Edition, SC26-4941. High Level Assembler for MVS & VM & VSE: Language

Reference MVS and VM, SC26-4940. High Level Assembler for MVS & VM & VSE:

Installation and Customization Guide MVS & VM Edition, SC26-3494.

Return Codes: Unless messages are issued, the return code is the one received from the

High Level Assembler.

hlasmerr—Extract Assembler Error Messages from the SYSADATA File
hlasmerr processes the tertiary output stream from hlasm to relate error messages to input

statements and macros.

►►──HLASMERR──►◄

 Type: Filter.

Input Record Format: The SYSADATA file.

 Chapter 23. Inventory of Built-in Programs 439

 hole

Record Delay: hlasmerr does not delay the record.

Premature Termination: hlasmerr terminates when it discovers that its output stream is

not connected.

 See Also: hlasm.

Examples: To write error messages to a file:

/* Do the assembly */
'PIPE (end ?)',

'?... ', /* Construct input file */
'|h: hlasm', /* Assemble it */
'|... ', /* Process object module */
'?h:', /* Listing file here */
'|... ', /* Process listing */
'?h:', /* SYSADATA here */
'|hlasmerr', /* Make old-fashioned messages */
'|>' fn 'errors a' /* Write to disk */

 hole—Destroy Data
hole reads and discards records without writing any. It can be used to consume output

from stages that would terminate prematurely if their output stream were not connected.

►►──HOLE──►◄

Type: Device driver.

Streams Used: hole reads from all defined input streams; it does not write output. The

output streams remain connected until hole reaches end-of-file on all its input streams.

Record Delay: hole delays all records until end-of-file.

Examples: To write two 3270 data streams that generate no response to the terminal:

/* HONK2 EXEC: Sound 3270 alarm twice */
address command
'PIPE (name HONK2)',

'|literal' '00'x || 'D' ||,
 '|dup',
 '|fullscr noread',
 '|hole'
exit RC

fullscr writes a record containing X'02' to its output stream after it has written the input

record to the terminal. Were fullscr to be at the end of the pipeline, it would terminate

prematurely after the first write, because the output stream is not connected; hole ensures

that the output from fullscr is consumed.

To issue the CMS command “zonq”, discarding terminal output and processing the lines

stacked by the command after the command has ended:

pipe cms zonq | hole | append stack | ...

This works because the primary output stream from hole remains connected until

end-of-file on its input; thus, append starts stack only after the ZONQ command has ended.

440 CMS Pipelines User’s Guide and Reference

 hostbyaddr

To discard records up to the next record that contains USER in the first four columns and a

blank in column five:

/* Skip rest of the cards for the user */
'callpipe *: | tolabel USER | hole'

The hole stage consumes all output from tolabel. If it were omitted, the subroutine pipe-

line would terminate immediately without consuming any records.

 Notes:

1. Connect append stages to multiple output streams from hole to start more than one

device driver stage after a stream reaches end-of-file.

hostbyaddr—Resolve IP Address into Domain and Host Name
The input to hostbyaddr is a list of IP addresses to be resolved. For each word it deter-

mines the corresponding domain and host name; this information is written to the primary

output stream. When the IP address cannot be resolved, the input word and additional

information are written to the secondary output stream.

►►──HOSTBYADDR──►◄

Type: Experimental resolver.

Operation: Processing in the event of an error during address resolution depends on

whether the secondary output stream is defined or not. When there is only one stream,

processing stops with an error message and a nonzero return code for severe errors, such

as TCP/IP not being active; the inability to resolve the address is “reported” by not

producing output. When the secondary output stream is defined, all errors are reported by

writing a record on that stream.

Output Record Format: Records on the secondary output stream contain three or more

words:

1. The input IP address.

2. The numeric ERRNO associated with the failure to resolve the address. (For example,

“2053”.)

3. The symbolic ERRNO associated with the failure to resolve the address. (For example,

“EUNKNOWNHOST”.)

4. The explanation of the ERRNO. (For example, “Unknown host”.)

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected. Null and blank input records are

discarded.

Record Delay: hostbyaddr does not delay the record.

Commit Level: hostbyaddr starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: hostbyaddr terminates when it discovers that no output stream is

connected.

 Chapter 23. Inventory of Built-in Programs 441

 hostbyname

 Converse Operation: hostbyname.

See Also: tcpclient, tcplisten, and udp.

 Examples:

! pipe (end ?) literal 129.33.199.226 129.33.199.255 | split | ...
! ... h: hostbyaddr | cons ? h: | insert ,Bad: , | console
! ►www.vm.ibm.com
! ►Bad: 129.33.199.255 2056 EIPADDRNOTFOUND IP address not found in ETC HOS>
! ►Ready;

 Notes:

: 1. On CMS, hostbyaddr uses RXSOCKET Version 2 or later for name resolution. As a

consequence, the name is resolved using RXSOCKET rules. This implies that the file

TCPIP DATA must be available and must point to the name server. RXSOCKET (unlike

CMS Pipelines) uses the server virtual machine specified in TCPIP DATA.

2. RXSOCKET uses the file TCPIP DATA to determine the name of the TCP/IP service

machine, the IP address of the name server, and so on.

3. RXSOCKET does not support hexadecimal components of a dotted-decimal number. It

discards leading zeros in the components, and thus it treats an octal specification as a

decimal one.

hostbyname—Resolve a Domain Name into an IP Address
The input to hostbyname is a list of hostnames (possibly qualified by their domain name).

For each word it determines the corresponding IP address; this information is written to the

primary output stream. When the domain or host name cannot be resolved, the input word

and additional information are written to the secondary output stream.

►►──HOSTBYNAME──►◄

Type: Experimental resolver.

Operation: Processing in the event of an error during name resolution depends on

whether the secondary output stream is defined or not. When there is only one stream,

processing stops with an error message and a nonzero return code for severe errors, such

as TCP/IP not being active; the inability to resolve the name is “reported” by not producing

output. When the secondary output stream is defined, all errors are reported by writing a

record on that stream.

Output Record Format: Records on the secondary output stream contain three or more

words:

1. The input domain name.

2. The numeric ERRNO associated with the failure to resolve the name. (For example,

“2053”.)

3. The symbolic ERRNO associated with the failure to resolve the name. (For example,

“EUNKNOWNHOST”.)

4. The explanation of the ERRNO. (For example, “Unknown host”.)

442 CMS Pipelines User’s Guide and Reference

 hostid

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected. Null and blank input records are

discarded.

Commit Level: hostbyname starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: hostbyname terminates when it discovers that no output stream

is connected.

 Converse Operation: hostbyaddr.

See Also: tcpclient, tcplisten, and udp.

 Examples:

! To resolve host names and display the IP address:

! pipe literal gdlvm7 | hostbyname | console
! ►9.56.214.105
! pipe literal www.vm.ibm.com | hostbyname | console
! ►129.33.199.226
! ►Ready;
! pipe literal www.mvs.ibm.com | hostbyname | cons
! ►FPLTCR1142E Unable to resolve www.mvs.ibm.com (RXSOCKET error 2057 EHOST>
! ►FPLMSG003I ... Issued from stage 2 of pipeline 1
! ►FPLMSG001I ... Running "hostbyname"
! ►Ready(01142);

! Use the secondary output stream to handle hostnames that could not be resolved:

! pipe (end ?) literal www.mvs.ibm.com | h: hostbyname | cons ? h: | ...
! ... insert ,Bad: , | console
! ►Bad: www.mvs.ibm.com 2057 EHOSTNOTFOUND Host not found in ETC HOSTS >
! ►Ready;

 Notes:

: 1. On CMS, hostbyname uses RXSOCKET Version 2 or later for name resolution. As a

consequence, the name is resolved using RXSOCKET rules. This implies that the file

TCPIP DATA must be available and must point to the name server. RXSOCKET (unlike

CMS Pipelines) uses the server virtual machine specified in TCPIP DATA.

2. RXSOCKET uses the file TCPIP DATA to determine the name of the TCP/IP service

machine, the IP address of the name server, and so on.

3. There may be more than one IP address associated with a domain name. In this case,

the output line contains blank-delimited IP addresses.

hostid—Write TCP/IP Default IP Address
hostid writes a single output record, which contains the default IP address of the TCP/IP

system in dotted-decimal notation.

►►──HOSTID─ ──┬ ┬────────────── ─►◄
 └─USERid──word─┘

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 443

 hostname

Placement: hostid must be a first stage.

 Syntax Description:

Commit Level: hostid starts on commit level -10. It connects to the TCP/IP address space

and then commits to level 0.

Premature Termination: hostid terminates when it discovers that its output stream is not

connected; hostid also stops if the immediate command PIPMOD STOP is issued or if a

record is passed to pipestop.

 See Also: hostname.

Examples: To show the IP address of the default network interface:

 pipe hostid | console
►9.12.14.1

USERID Specify the user ID of the virtual machine or started task where TCP/IP

runs. The default is TCPIP.

hostname—Write TCP/IP Host Name
hostname writes a single output record, which contains the host name of the TCP/IP system.

The host name does not include the domain.

►►──HOSTNAME─ ──┬ ┬────────────── ─►◄
 └─USERid──word─┘

Type: Device driver.

Placement: hostname must be a first stage.

 Syntax Description:

Commit Level: hostname starts on commit level -10. It connects to the TCP/IP address

space and then commits to level 0.

Premature Termination: hostname terminates when it discovers that its output stream is

not connected.

 See Also: hostid.

Examples: To show the host name:

 pipe hostname | console
►WTSCPOK

USERID Specify the user ID of the virtual machine or started task where TCP/IP

runs. The default is TCPIP.

444 CMS Pipelines User’s Guide and Reference

 httpsplit

. httpsplit—Split HTTP Data Stream

. httpsplit splits a hypertext transport protocol (HTTP) data stream into headers and contents.

. Headers are written to the primary output as individual records followed by a null line.

. The contents are written unchanged to the secondary output stream.

.

. ►►──HTTPSPLIT─ ──┬ ┬──────── ─►◄

. └ ┘─EBCDIC─

. Type: Gateway.

. Syntax Description: A keyword is optional.

. Operation: httpsplit processes its primary input stream in one of two modes, header or

. data. It starts in header mode.

. In header mode, the input is considered a byte stream. A leading CRLF is discarded

. because an empty set of headers makes no sense. (This sequence is often sent erroneously

. by the client as a trailing CRLF on the previous data part.) Input is deblocked for carriage

. return and line feed until a null line is met. The deblocked records are written to the

. primary output stream.

. The data part is processed in one of two ways. When the headers do not contain a line

. specifying content-length=, the primary output stream is severed and all further input

. data are passed to the secondary output stream. Otherwise as many bytes as specified are

. passed to the secondary output. Processing then reverts to header mode.

. Streams Used: Secondary streams may be defined. Records are read from the primary

. input stream and written to the primary output stream.

. Record Delay: httpsplit has the potential to delay one record on the primary output

. stream, because it can span input records. It strictly does not delay the record on the

. secondary output stream.

. Commit Level: httpsplit starts on commit level -2. It verifies that the secondary input

. stream is not connected and then commits to level 0.

. Premature Termination: httpsplit terminates when it discovers that no output stream is

. connected.

. See Also: urldeblock.

. Notes:

. 1. The data part is not joined or deblocked; raw input records are produced, possibly

. parts thereof for the first and last.

. 2. httpsplit does its processing for the primary output stream in the ASCII domain unless

. EBCDIC is specified.

. 3. In the ASCII domain CRLF is X'0d0a', whereas it is X'0d25' or X'0d15' in the

. EBCDIC domain.

. EBCDIC. Parse the header records in the EBCDIC domain. By default, header

. records are considered to be encoded in ASCII.

 Chapter 23. Inventory of Built-in Programs 445

 iebcopy

iebcopy—Process IEBCOPY Data Format
iebcopy unravels data sets unloaded with the z/OS utility IEBCOPY. It is used by the

sample OSPDS REXX to process a partitioned data set (PDS).

►►──IEBCOPY─ ──┬ ┬────────── ─►◄
 ├ ┤─STRIPKEY─
 └ ┘─OSPDSDIR─

Type: Arcane filter.

Syntax Description: A keyword is optional. STRIPKEY specifies that the key portion of

each block should be discarded. OSPDSDIR specifies that the key portion should be

discarded and each block should be processed as a directory block of a partitioned data set.

Operation: iebcopy processes input records until it meets a disk block with key length

zero and data length zero (an end-of-file block). An unloaded PDS contains several logical

files: the first one is the directory of the PDS; the members follow in the order they are on

disk (rather than the order of the directory, which is alphabetical).

Input Record Format: Input records contain one or more disk blocks. Each disk block

consists of a 12-byte prefix followed by the key field (if any) and the data field. The

prefix has the form FMBBCCHHRKDD:

F A flag byte. The three leftmost bits must be zero.

M Ignored; should be zero (X'00').

BB Ignored; should be zero (X'0000').

CC Cylinder number.

HH Head number.

R Record number.

K Length of key part or zero.

DD Length of data part or zero for an end-of-file record.

Output Record Format: With no keyword specified, each output record contains the key

and data parts of a disk block. With STRIPKEY, each output record contains the data part

of a disk block. With OSPDSDIR, each output record contains a directory entry. The end-

of-file record is not written to the output.

Record Delay: iebcopy does not delay the last record written for an input record.

Premature Termination: iebcopy terminates when it discovers that its output stream is

not connected.

! Examples: Refer to OSPDS REXX on the MAINT 193 disk.

 Notes:

1. iebcopy returns when an end-of-file record is read. A control stage is needed to load

all members of a PDS; refer to the sample file.

2. The first two logical records of the input data set must be discarded prior to iebcopy.

The data set is usually written variable blocked spanned (RECFM=VBS); use deblock to

obtain records in a format suitable for iebcopy:

pipe tape | deblock v | drop 2 | iebcopy ospdsdir | > pds drctry a

446 CMS Pipelines User’s Guide and Reference

 if

if—Process Records Conditionally
if runs a selection stage in an if/then or an if/then/else topology in conjunction with the

stages up to its last label reference. if is a convenience for a multistream network.

Records that are selected by the selection stage are processed by the stages between the if

stage and the first label reference to the stage.

When there is only one label reference to the if stage, rejected records are merged with the

secondary input stream and passed to the secondary output stream.

When there is a second label reference to the if stage, records that are rejected by the

selection stage are processed by the stages between the two label references. Records on

the secondary input stream are merged with the records on the tertiary input stream and

passed to the tertiary output stream.

►►──IF──word──┬────────┬──►◄
└─string─┘

 Type: Gateway.

 Syntax Description:

Operation: if adds a pipeline specification that contains the selection stage and a faninany

stage to the running pipeline set.

For the full if/then/else configuration, the topology is this:

 ┌───────────┐
.input.0:──┤ Selection ├──.output.0:
 │ stage │
 │ ├──*.output.1:
 └───────────┘

 ┌───────────┐
.input.1:──┤ Faninany ├──.output.2:
 │ │
*.input.2:──┤ │
 └───────────┘

In the if/then configuration, the secondary output stream from the selection stage is

connected directly to the faninany stage.

Streams Used: Two streams must be defined; up to three streams may be defined. if

reads from and writes to all defined streams.

Record Delay: if strictly does not delay the record. If the stages between the label refer-

ences also do not delay the record, the output records will be in the same order as the

input records.

Commit Level: if starts on commit level -2. if does not commit; the selection stage will

cause it to commit.

word The name of a selection stage.

string The argument string for the selection stage.

 Chapter 23. Inventory of Built-in Programs 447

 immcmd

Examples: To upper case records that contain “up” in the first two columns and delete

those columns from the upper cased records:

 '...',
'|if1: if strfind /up/',
'|not chop 2',

 '|xlate',
 '|if1:',
 '|...

To mark records that contain the string “abc” and shift the balance of the file three

columns to the right:

 '...',
'|if1: if locate /abc/',
'|insert /-> /',

 '|if1:',
 '|insert / /',
 '|if1:',
 '|...

 Notes:

1. if does not enforce any particular topology and any particular type of selection stage.

2. Do not use end characters with if. In particular, records must be able to flow both

into and out of its secondary streams and its tertiary streams.

Return Codes: Unless a message is issued by if, the return code is the one from the

selection stage.

immcmd—Write the Argument String from Immediate Commands
immcmd sets up a CMS immediate command and waits for it to be issued. When the

specified immediate command is issued from the terminal, the argument string (on the

command issued) is written to the pipeline.

On z/OS, CMS Pipelines implements a scheme like CMS immediate commands. When an

attention request is received, the user is prompted for the immediate command to be

issued.

►►──IMMCMD──word──┬──────────┬──►◄
: └ ┘─INTERNAL─

Type: Device driver.

Placement: immcmd must be a first stage.

Syntax Description: A word is required; it is translated to upper case. A second keyword

: is optional. When INTERNAL is specified, the immediate command will not of itself cause

: a wait state, but it will wait while other stages wait for external events (even other

: immcmd stages). Essentially, this boils down to “do not wait for me”.

Commit Level: immcmd starts on commit level -1. It sets up an immediate command

handler for the specified name and then commits to level 0.

448 CMS Pipelines User’s Guide and Reference

 immcmd

Premature Termination: immcmd terminates when it discovers that its output stream is

not connected. immcmd does not complete normally. immcmd also stops if the immediate

command PIPMOD STOP is issued or if a record is passed to pipestop.

 See Also: console.

Examples: To process (in a service virtual machine) commands issued from the terminal

as well as commands sent via SMSG from other users:

/* GETCMD REXX */
address command 'CP SET SMSG IUCV'
'callpipe (end ?)',

'|immcmd cmd', /* Immediate commands */
'|spec ,00000004*, 1.16 1-* next', /* As if SMSG from self */
'|f:faninany', /* Join all */
'|*:', /* Pass to output */
'?starmsg', /* Listen for SMSGs */
'|f:', /* Merge with commands */
'?immcmd stop', /* Stop command */
'|pipestop' /* Force stop */

Two immediate commands are set up in this pipeline specification. One is for CMD; the

output from this immcmd stage is transformed into the format for special messages from

“*” and merged with special messages received from other users. The output from the

second invocation of immcmd is passed to pipestop, which signals the immcmd and

starmsg stages to terminate.

This example also shows a pipeline (the last one) that is not connected to the other pipe-

lines in a set.

 Notes:

1. Multiple immcmd stages can be used, but the command name should be unique.

When more than one stage uses a particular immediate command, it is unspecified

which one is started last and receives the commands from CMS.

2. Use pad 1 to turn null lines into lines with a single blank.

3. immcmd may be useful in pipeline specifications containing delay or starmsg stages, or

both.

4. TSO keeps the keyboard locked while a command runs. Hence the need for the atten-

tion and the prompt.

: 5. immcmd ... INTERNAL cannot obscure a stall.

: 6. Use INTERNAL only when you do not wish to wait for the user to issue the immediate

: command, but wish to allow the user to issue the command while the pipeline runs.

: You need to take precautions to terminate immcmd, for example with gate, or avoid a

: stall when specifying INTERNAL.

: 7. You can find an example server infrastructure at

: http://vm.marist.edu/˜pipeline/servus.rexx

 Chapter 23. Inventory of Built-in Programs 449

http://vm.marist.edu/%7epipeline/FPLDSK.vmdt

 insert ¹ inside

insert—Insert String in Records
insert inserts a string in all input records.

 ┌ ┐─BEFORE─
►►──INSERT──delimitedString──┼────────┼──┬────────────┬──►◄

└─AFTER──┘ └─inputRange─┘

 Type: Filter.

 Syntax Description:

Operation: When the input range is not present in the record, the range used is the first

or the last column of the record, depending on whether the first part of the inputRange is

relative to the beginning or the end of the record.

Record Delay: insert strictly does not delay the record.

Premature Termination: insert terminates when it discovers that no output stream is

connected.

See Also: change and specs.

Examples: To append a string to the end of the record:

 pipe literal abc def | split | insert /*/ after | console
►abc*
►def*
►Ready;

 Notes:

1. insert is a convenience; specs can perform all the functions that insert can perform.

delimitedStringSpecify the string to insert.

BEFORE The string is inserted before the inputRange (or at the beginning of the

record).

AFTER The string is inserted after the inputRange (or at the end of the record).

inputRange Specify the position where the string is to be inserted. The default is the

entire record.

inside—Select Records between Labels
inside selects groups of records whose first record follows a record that begins with a

specified string. The end of each group can be specified by a count of records to select, or

as a string that must be at the beginning of the first record after the group.

►►──INSIDE──┬─────────┬──delimitedString──┬─number──────────┬──►◄
└─ANYcase─┘ └─delimitedString─┘

Type: Selection stage.

450 CMS Pipelines User’s Guide and Reference

 instore

Syntax Description: A keyword is optional. Two arguments are required. The first one

is a delimited string. The second argument is a number or a delimited string. The number

must be zero or positive.

Operation: inside copies the groups of records that are selected to the primary output

stream, or discards them if the primary output stream is not connected. Each group begins

with the record after the one that matches the first specified string. When the second

argument is a number, the group has as many records as specified (or it extends to

end-of-file). When the second argument is a string, the group ends with the record before

the next record that matches the second specified string (or at end-of-file).

When ANYCASE is specified, inside compares fields without regard to case. By default,

case is respected.

inside discards records before, between, and after the selected groups or copies them to the

secondary output stream if it is connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. inside strictly does not delay the record.

Commit Level: inside starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: inside terminates when it discovers that no output stream is

connected.

 Converse Operation: notinside.

See Also: between and outside.

Examples: To process the examples in a Script file, discarding the example begin and end

tags (assuming these tags are in separate records):

...| inside /:xmp./ /:exmp./ |...

 Notes:

1. With identical string arguments, inside differs from between in that inside does not

select the records that match the strings.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

! 3. pick can do what inside does and much more.

instore—Load the File into a storage Buffer
instore stores all input records in a data structure and then writes a single descriptor record

into the pipeline. A cascade of instore REVERSE and outstore reverses the order of the

records.

►►──INSTORE─ ──┬ ┬───────── ──┬ ┬─────────── ─►◄
! └ ┘! ─REVERSE─ ├ ┤─PGMLIST───
: └: ─ALET──hex─┘

 Chapter 23. Inventory of Built-in Programs 451

 instore

Type: Arcane filter.

 Syntax Description:

: PGMLIST and ALET are mutually exclusive.

: Operation: The input is read into a buffer in virtual storage or the specified data space.

: At end-of-file, an output record is produced describing the file.

When the keyword PGMLIST is specified, the descriptor list is built as specified for REXX

programs in storage; the descriptor list is written to the output.

When the keyword PGMLIST is omitted, the file is stored in a chained list of records. Each

record has an eight byte prefix consisting of a pointer to the next record and a fullword

length.

: The output record is valid only until it is consumed; the buffers are released after that.

: When ALET is specified, the data space must have been created by ADRSPACE CREATE

: INITIALISE or equivalent. It must have the storage key under which CMS Pipelines

: executes, which is X'E0' on CMS and X'80' on z/OS. instore locks the data space with a

: key identifying itself to ensure exclusive access; the lock is released when instore termi-

: nates, thus making the data space available for other use.

Output Record Format: When the keyword PGMLIST is omitted, the format of the record

: written is defined in the STORBUF member of FPLGPI MACLIB and in the built-in structure

: fplstorbuf.

Record Delay: instore delays all records until end-of-file.

Commit Level: instore starts on commit level -2. When ALET is specified, it verifies the

integrity of the data space and then commits to level 0.

 Converse Operation: outstore.

 See Also: buffer.

Examples: To reverse the order of the lines in a file:

....| instore reverse | outstore |...

To send a file to two destinations:

: REVERSE: Store records in the reverse order they are read.

: PGMLIST: The output record is a descriptor list, as needed for a REXX program in

: storage.

: ALET: The file is buffered in the specified data space.

452 CMS Pipelines User’s Guide and Reference

 instore

/* Process an in-store file */
'addpipe *: | instore | *.input:'
'peekto file_descriptor'
address command 'CP TAG DEV 00D GDLVM7 PIPER'
'callpipe var file_descriptor | outstore | punch'
address command 'CP CLOSE 00D NAME for piper'
address command 'CP TAG DEV 00D CPHVM1 JOHN'
'callpipe var file_descriptor | outstore | punch'
address command 'CP CLOSE 00D NAME for john'
'readto'

When processing the output from instore in a REXX program, use the PEEKTO pipeline

command to read the line describing the file. Issue the READTO pipeline command without

operands to consume the descriptor record after the file has been processed.

! As long as the descriptor record has not been consumed, instore holds the entire input

! data. When multiple copies of the descriptor record are passed to outstore (for instance

! with dup) then outstore will produce multiple copies of the input data. Compare the two

! examples with and without the instore and outstore pair.

! pipe literal I must not talk in class | spill 13 | instore | dup | ...
! ... outstore | console
! ►I must not
! ►talk in class
! ►I must not
! ►talk in class
! ►Ready;

! pipe literal I must not talk in class | spill 13 | dup | console
! ►I must not
! ►I must not
! ►talk in class
! ►talk in class
! ►Ready;

 Notes:

1. No built-in program can process the output from instore PGMLIST. For all practical

purposes outstore is the only way to process the output from instore without the

PGMLIST option. In either case, do not attempt to process the file token with filter

stages.

2. The output record describes the file. The output record must be obtained with a locate

mode call and completely processed before it is consumed; the buffer is returned to

the operating system by instore immediately after the record is consumed.

! 3. The file may be extracted by passing the record to outstore or, when ALET is specified,

: it may be extracted in a different virtual machine that has obtained access to the data

: space, as long as the output record is not consumed in the creating virtual machine.

: The extracting virtual machine will typically use a different ALET from the creating

: virtual machine.

: 4. Using the ALET operand may offer virtual storage constraint release, as well as data

: transfer between virtual machines.

 Chapter 23. Inventory of Built-in Programs 453

 ip2socka

ip2socka—Build sockaddr_in Structure
ip2socka converts a readable port number and IP address to sixteen bytes socket address

structure, which can be used with udp.

►►──IP2SOCKA──►◄

 Type: Filter.

Input Record Format: Three blank-delimited words:

1. The literal constant “AF_INET”.

2. The port number, which is in the range 0 to 65535, inclusive.

3. The IP address in dotted-decimal notation or the host name and domain name.

Output Record Format: A structure of sixteen bytes. Binary numbers are stored in the

network byte order, that is, with the most significant bit leftmost.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: ip2socka does not delay the record.

Premature Termination: ip2socka terminates when it discovers that its output stream is

not connected.

 Converse Operation: socka2ip.

Examples: To convert an address to internal format and convert this structure to printable

form:

 pipe literal af_inet 17 1.2.3.4 | ip2socka | spec 1-* c2x 1 | console
►00020011010203040000000000000000
►Ready;
 pipe literal af_inet 17 0300.2.3.4 | ip2socka | spec 1-* c2x 1 | console
►00020011C00203040000000000000000
►Ready;
 pipe literal af_inet 17 0xc0.2.3.4 | ip2socka | spec 1-* c2x 1 | console
►00020011C00203040000000000000000
►Ready;

 Notes:

1. On CMS, you can specify a host name or a host name followed by a domain. CMS

Pipelines calls RXSOCKET to do the actual name resolution. As a consequence, the

Pos Len Description

1 2 The short unsigned number 2, which specifies that the addressing

family is AF_INET.

3 2 The short unsigned port number.

5 4 The unsigned IP address.

9 8 Reserved. Binary zeros

454 CMS Pipelines User’s Guide and Reference

 ispf

name is resolved using RXSOCKET rules. This implies that the file TCPIP DATA must be

available and must point to the name server. RXSOCKET (unlike CMS Pipelines) uses

the server virtual machine specified in TCPIP DATA.

ispf—Access ISPF Tables
ispf TBSKIP reads rows from an ISPF table into the pipeline. ispf TBADD adds rows

containing data from the pipeline; ispf TBMOD and ispf TBPUT modify rows to insert data

from the pipeline. The table must have been created and opened by some other means (for

instance subcom ISPEXEC TBCREATE) before ispf can access it.

ispf VCOPY reads the contents of ISPF variables into the pipeline. ispf VREPLACE stores the

contents of input records into ISPF variables.

See Chapter 12, “Using CMS Pipelines with Interactive System Productivity Facility” on

page 145 for task-oriented information.

 ┌ ┐─────────────────
►►──ISPF──┬─┬─┬─TBADD─┬──word──┬───────┬─┬───6┬─────────────┬┴─┬ ──►◄
 │ ││ │├ ┤─TBMOD─ └ ┘─ORDER─ └ ┘─┤ inField ├─
 │ ││ │└ ┘─TBPUT─
 │ │└ ┘─VREPLACE───────────────────
 │ │┌ ┐──────────────────
 └─┬─TBSKIP──word─┬───6┬──────────────┬┴─ ─────────────┘
 └ ┘─VCOPY──────── └ ┘─┤ outField ├─

inField:

├──word──inputRange──┬─────────┬──┤
 └ ┘─NOBSCAN─

outField:

├──word──range──┤

Type: Device driver.

Placement: ispf TBSKIP must be a first stage. With other operands, ispf must not be a

first stage.

Syntax Description: The name of an ISPF service for table operation (TBADD, TBMOD,

TBPUT, or TBSKIP) is followed by an optional list of field definitions. These specify the

location of variables in the input or output record. The table name and the variable names

are translated to upper case. The keyword ORDER with ispf TBADD and TBMOD indicates

that rows are inserted in some predefined order. Refer to TBADD ORDER in Dialog

Management Services and Examples, SC34-4010.

The operands VCOPY and VREPLACE support access to ISPF function pool variables without

issuing a table request. At least one field must be specified with these operands.

The field definitions specify the positions of fields in the input and output records. For

input records, specify the field name and an input range; use the optional keyword

NOBSCAN to retain trailing blanks. For output records, specify the name and a column

range. For compatibility with the past, the keyword CHAR is ignored if it is specified after

the name of the field.

 Chapter 23. Inventory of Built-in Programs 455

 ispf

Operation: For TBADD, TBMOD, and TBPUT, variables in the function pool are set (using

the VREPLACE service) to the contents of the fields in the input record, stripped of trailing

blanks unless NOBSCAN is specified. The requested ISPF table service is then invoked to

copy the values from the function pool into the table. The input record is then copied to

the output (if connected).

For TBSKIP, the ISPF service TBSKIP is called and an output record is written containing the

contents of the specified variables (obtained by the VCOPY service); a null record is written

when no variables are specified. This process is repeated until ISPF sets return code 8 (end

of table).

ispf VCOPY discards input records. For each input record, it copies the specified variables

from the function pool and stores them in an output record. The output record is written

before the input record is consumed.

ispf VREPLACE stores the contents of the specified fields into function pool variables. It

copies the input record to the output (if connected) before consuming it.

Input Record Format: As defined by the field definitions.

Output Record Format: When ispf is first in a pipeline (ispf TBSKIP), the output record

contains data from variables, as defined by field definitions in the argument list. Positions

between fields are blank.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. When ispf is not first in the pipeline and VCOPY is not specified, the input

record is copied to the output after the ISPF service has been performed.

Record Delay: ispf strictly does not delay the record.

Commit Level: ispf starts on commit level -2000000000. It processes the argument

string, allocates a buffer to hold the data in the fields, and then commits to 0.

Premature Termination: ispf terminates on most nonzero ISPF return codes. ispf with the

option TBSKIP or VCOPY terminates when it discovers that its output stream is not

connected.

Examples: To store the names of the files on the CMS system disk in a table:

/* ISPF test cases. */
signal on novalue
signal on error
trace error

address ispexec,
'TBCREATE LISTFILE NAMES(FN FT FM REST) WRITE REPLACE'

address command
'PIPE (end \ name INSPIPE)',

'cms listfile * * s',
'|ispf tbadd LISTFILE',

'FN 1.8 FT 10.8 FM 19.2 REST 21-80',
 '|count lines',
 '|var lines'

say lines 'stored.'

456 CMS Pipelines User’s Guide and Reference

 jeremy

'FILEDEF $$ DISK $$DUMMY $$TABLE A'

address ispexec,
'TBCLOSE LISTFILE LIBRARY($$)'

error: exit RC

 Notes:

1. To read all rows of a table, position the cursor for the table before the first row prior

to using ispf TBSKIP (for example with subcom ISPEXEC TBTOP).

2. Never address a command to ISPLINK; results are unpredictable.

3. Return code 20 is reflected by ISPEXEC in a REXX program when ISPF does not

recognise the service requested. This can happen, for example, when a PIPE command

is addressed to ISPEXEC rather than to CMS. (This is not a return code from the ispf

stage itself.)

4. When more than one field for ispf TBSKIP refers to the same range, it is unspecified

which field is stored in the output record.

5. Extension variables are not supported directly. Use ispf VREPLACE to set variables to

the contents of a record and then issue TBADD to the ISPEXEC subcommand environ-

ment, specifying the extension variables.

jeremy—Write Pipeline Status to the Pipeline
jeremy writes the status of all stages in the current pipeline set to its output stream when-

ever an input record becomes available.

jeremy is useful when debugging a complex multistream pipeline in which data have

ceased to flow in some pipeline segments.

►►──JEREMY──►◄

Type: Service program.

Placement: jeremy must not be a first stage.

Operation: If the secondary output stream is defined, jeremy passes the input line to the

primary output stream after it has written the pipeline status to the secondary output

stream; if there is no secondary output stream defined, jeremy discards the input record

after it has written the pipeline status to the primary output stream.

Output Record Format: The output format is unspecified.

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected.

Record Delay: jeremy does not delay the last record written for an input record.

Commit Level: jeremy starts on commit level -2. It verifies that the primary input stream

is the only connected input stream and then commits to level 0.

 Chapter 23. Inventory of Built-in Programs 457

 join

Premature Termination: jeremy terminates when it discovers that any of its output

streams is not connected.

 Examples:

 pipe literal | jeremy | console
►5785-RAC CMS Pipelines level 1.1.12 sublevel 17 ("0011"x)
► From z/VM 7.1.0
►
►Pipeline specification 1 commit 0
► Pipeline 1
► literal wait.out.
► record on output 0: ""
► jeremy ready.
► console wait.locate.
►Ready;

 Notes:

1. When the configuration variable STALLACTION is set to JEREMY, CMS Pipelines

invokes jeremy when the pipeline is stalled, to note the state of the pipeline set.

! 2. The output of jeremy is not buffered. The stages that process the output of jeremy

! must not change the pipeline topology.

 join—Join Records
join puts input records together into one output record, optionally inserting a specified

string between joined records. All input lines are joined into one output record when an

asterisk is specified. The maximum length of an output record can also be specified.

 ┌ ┐─1─────────────────
►►──JOIN─ ──┬ ┬─────── ──┼ ┼─────────────────── ─►

. └─COUNT─┘ ├─number────────────┤
 ├ ┤─*─────────────────
 └─KEYLENgth──number─┘

►─ ──┬ ┬──────────────────────────────── ──┬ ┬──────── ─►◄
 └─delimitedString──┬───────────┬─┘ └─number─┘

. └ ┘─TERMinate─

 Type: Filter.

Syntax Description: A keyword, a number or an asterisk, a delimited string, and a

number are the optional arguments.

. COUNT! Prefix each record written to the primary output stream with the count of

! the contributing input records. The number is 10 characters, aligned to

! the right.

number Unless KEYLENGTH is specified, the first number specifies how many

lines are appended to the first one in a set; it can be zero or more. The

. default is to join pairs of lines unless the secondary input stream is

. defined, in which case the default is infinity.

KEYLENGTH Join lines that contain the same leading string. The number specifies the

length of key string.

458 CMS Pipelines User’s Guide and Reference

 join

Operation: When a maximum record length is specified, records are joined as defined by

the other arguments until an input record would cause more data than specified to be

loaded into the output buffer. The contents of the output buffer (if any) are flushed to the

output and a new set of records is processed. An input record with a length that is equal

to or greater than the maximum output record length is written unchanged (that is, it is not

truncated).

When KEYLENGTH is specified, records are joined as long as the keys are equal (and the

maximum length has not been exceeded). The key is discarded from records 2 to n in a

set of joined lines.

. When the secondary input stream is defined, the buffer is flushed whenever a record

. arrives on it. The record on the secondary input stream is then discarded. Thus, join does

. not delay the output from a record on the secondary input stream.

Streams Used: Secondary streams may be defined. Records are written to the primary

output stream; no other output stream may be connected. The primary input stream is

shorted to the primary output stream if the number is zero.

Record Delay: When both KEYLENGTH and a maximum record length are omitted, join

does not delay the last record written for an input record.

When KEYLENGTH or a maximum record length (or both) is specified, the output record is

delayed to the record following the last one joined.

. Commit Level: join starts on commit level -2.

Premature Termination: join terminates when it discovers that its primary output stream

. is not connected. End-of-file on the primary input stream is ignored when the secondary

. input stream is defined. join terminates when it discovers that its output stream is not

. connected.

See Also: spill and split.

Examples: To join two records with an asterisk between them:

 pipe literal a b c d e | split | join /*/ | console
►a*b
►c*d
►e
►Ready;

To flow text into 10-character columns:

delimitedStringInsert the contents of the specified string between joined records.

. TERMINATE. Append the string also after the last record in a set.

number. The second number specifies the maximum output record length exclu-

. sive of the count prefix, if any. To be recognised as the maximum

record length, the number cannot be the first word of the arguments

(because it would then specify the number of lines to append rather than

the maximum record length).

 Chapter 23. Inventory of Built-in Programs 459

 joincont

 pipe literal This is a short sentence. | split | join * / / 10 | console
►This is a
►short
►sentence.
►Ready;

. To capitalise the first letter of all words while retaining the original record structure:

. '(end ?) ... ',

. '| o: fanout ',

. '| split after blank ', /* Retain multiple blanks */

. '| xlate 1 ',

. '| j: join ', /* Rebuild record */

. '| ... ',

. '? o: ',

. '| j:'

 Notes:

. 1. The secondary input stream is intended for solutions where an input record is chopped

. up into bits that need to be processed separately and then joined. You would fanout a

. copy of the original record and cause that to flush join’s buffer. Used in this way,

. join does not delay the record relative to the stage that produces the record on the

. secondary input stream to join.

joincont—Join Continuation Lines
joincont joins records that are marked with a continuation string.

 ┌ ┐─TRAILING──────────
►►──JOINCONT─ ──┬ ┬───────── ──┬ ┬───── ──┼ ┼─────────────────── ─►

└─ANYCase─┘ └─NOT─┘ ├─RANGE──inputRange─┤
 └ ┘─LEADING───────────

►──┬───────┬──┬───────┬──delimitedString──┬──────┬──►
. └ ┘─DELAY─ └ ┘─ANYof─ └ ┘─KEEP─

►─ ──┬ ┬───────────────── ─►◄
└─delimitedString─┘

 Type: Filter.

 Syntax Description:

ANYCASE Case is ignored when comparing strings.

NOT The absence of the specified string will cause records to be joined.

TRAILING The continuation string is at the end of the record being continued.

When the continuation string is present, the following record will be

appended to the record that contains the string. This is the default.

RANGE Specify an input range to examine. When the continuation string is

present, the following record will be appended to the record that

contains the string. RANGE implies KEEP.

LEADING The continuation string is at the beginning of the record following the

one being continued. That is, when the continuation string is present,

the record will be appended to the previous record.

460 CMS Pipelines User’s Guide and Reference

 joincont

Operation: When ANYOF is specified, the continuation criterion is whether the last char-

acter of a record (or the first character of the following one; or the contents of the

specified input range) is present in the string representing an enumerated set of characters.

That is, the character must compare equal to at least one of the set. When ANYOF is

omitted, the string is compared character for character with the end or beginning of a

record; all character positions must compare equal. When NOT is specified, the criterion is

inverted; the absence of the string or character defines continuation.

When the keyword RANGE is specified, the input range is inspected for continuation; when

the keyword TRAILING is specified or defaulted, the trailing part of each input record is

inspected for continuation. When continuation is not indicated, the record is passed

unmodified to the output. When continuation is indicated, the record is loaded into a

buffer; the string or character is deleted if all of RANGE, NOT, and KEEP are omitted. The

second delimited string is appended to the contents of the buffer; the next input record is

read and appended to the buffer. The new record is then inspected for continuation. This

process continues as long as the record appended to the buffer triggers continuation. The

contents of the buffer are written to the output at the end of a run of continued records.

When LEADING is specified, an input record is read into a buffer and the leading string or

character of the next input record is inspected for continuation. When no continuation is

indicated, the contents of the buffer are written to the output and the process repeats by

loading the second record into the buffer. If continuation is indicated, the second string is

appended to the contents of the buffer followed by the remainder of the input record. This

process continues until a record is read that does not contain the specified leading string.

When this happens, the contents of the buffer are written to the output, the input record is

loaded into the buffer and the process is repeated.

Record Delay: joincont TRAILING and joincont RANGE do not delay records that are not

. continued. When DELAY is omitted they do not delay the last record of a set of continua-

tion records. joincont LEADING delays records that are not continued by one record; it

delays the last record of a run of continued records by one record.

. DELAY. DELAY is used with TRAILING or RANGE. DELAY is ignored if it is

. specified with LEADING. When DELAY is specified, the last input

. record for a particular output record is consumed before the record is

. written. This may save a copy stage.

ANYOF The following delimited string enumerates characters to be tested as

continuation. To determine if continuation exists, a single character in

the input record is compared against the characters in the string. A

continuation exists when any character of the string matches the char-

acter. The default compares the string against a leading or trailing

string of the same length.

delimitedString The first delimited string specifies the continuation string. When

ANYOF is specified, the string enumerates a set of characters; when

ANYOF is omitted, the delimited string represents a normal string.

This string is deleted from the output record unless NOT or KEEP is

specified.

KEEP The continuation string is retained. The default is to delete the contin-

uation string unless RANGE is specified. RANGE implies KEEP.

delimitedString The second delimited string specifies the string to be inserted between

the two records in the output record.

 Chapter 23. Inventory of Built-in Programs 461

 juxtapose

Premature Termination: joincont terminates when it discovers that its output stream is

not connected.

See Also: asmcont, join, and deblock.

Examples: To join records that have been split in an RFC 822 header:

/* Join headers: */
'PIPE (end ? name JOINCONT)',
 '|... ',

'| xlate *-* 05 blank', /* Tabs to blanks */
'| joincont leading / / keep',

 '| ...

This example would be simplistic for splicing paragraphs of text because it keeps multiple

leading blanks, which will appear in the spliced record. Also, it does not show how to

terminate processing at the blank line that ends the header part of the message.

 Notes:

1. Note that ANYOF has precedence as far as abbreviations are concerned. Specify at

least four characters of ANYCASE.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

. 3. joincont not range 1 /x/ joins records until and including the next one where

. column 1 contains “x”.

juxtapose—Preface Record with Marker
: juxtapose reads input records from the primary input stream or the secondary or higher-

: numbered input streams as they become available. juxtapose writes a record to the

: primary output stream only when it reads a record from its secondary or higher-numbered

: input streams. This record contains the last record read from the primary input stream

: with the record from the secondary or higher-numbered input streams appended to it.

►►──JUXTAPOSE─ ──┬ ┬─────── ─►◄
 └ ┘─COUNT─

 Type: Gateway.

 Syntax Description:

Operation: Each record from the primary input stream is stored in a buffer, replacing the

previous contents of this buffer. The input record is then consumed.

: When a record is read from the secondary or higher-numbered input streams, it is

appended to the record currently in the buffer; the combined record is then written to the

primary output stream. If COUNT is specified, the combined output record is prefixed with

the count of records that have been appended to the current contents of the buffer. This

count starts as one.

COUNT! Prefix each record written to the primary output stream with a count that

: tracks the number of records from the secondary or higher-numbered

: input streams that are matched with a particular record from the primary

! input stream. The count is a 10 digit number, aligned to the right.

462 CMS Pipelines User’s Guide and Reference

 juxtapose

When a record is available on the primary input stream and no record was read from the

: secondary or higher-numbered input streams while the record resided in the buffer, the

contents of the buffer are written to the secondary output stream before the next record

from the primary input stream is read into the buffer. The keyword COUNT has no effect

on this operation; only the contents of the original record are written.

: Streams Used: juxtapose reads all input streams; it writes only to the primary output

: stream and the secondary output stream.

Record Delay: juxtapose does not delay output records on the primary output stream.

: These records are derived from the records read on the secondary or higher-numbered

: input streams. Records on the secondary output stream are delayed by one record relative

to the primary input stream.

: Commit Level: juxtapose starts on commit level -2. It verifies that the tertiary output

: stream and higher-numbered output streams are unconnected and then commits to level 0.

Premature Termination: juxtapose terminates when it discovers that no output stream is

connected.

 See Also: predselect.

! Examples: To construct a very simple file scanning routine, the following scans a set of

! files and shows the matching lines prefixed by the name, type, and mode of files:

'PIPE (end ? name JUXTAPOS.STAGE:51)',
'?cms listfile * EXEC', /* Get list of files */
'|o:fanout', /* Make two copies */
'|pad 25', /* Some space to align */
'|j:juxtapose', /* Prefix to contents of file */

! '|i:faninany', /* Combine both streams */
'|...', /* Do whatever */
'?o:', /* The file ids */
'|getfiles', /* Read contents */
'|locate anycase ,pipe,', /* Find lines with this string */
'|j:', /* Go merge with name */

! '|insert , *no match*, after', /* Mark file as no match */
! '|i:' /* Feed into the same stream */

This example deserves scrutiny. Several conditions must be satisfied for it to work

correctly; that is, reliably prefix the name of the file to each record of the file:

¹ The two input streams to juxtapose are derived from a common source; in this case,

fanout.

¹ pad does not delay the record.

¹ getfiles writes the contents of the file to its output before it consumes the corre-

sponding input record.

! ¹ juxtapose writes an unmatched name to the secondary output stream before it

! consumes the input record, so faninany gets the records in sequence.

Thus, even though the order of dispatching is undefined, the dispatcher is not given any

leeway; sooner or later it must produce the records to juxtapose. And at any one time, the

dispatcher can produce a record on only one of the input streams.

In contrast, this pipeline specification is indeterminate:

 Chapter 23. Inventory of Built-in Programs 463

 ldrtbls

 pipe (end ?) literal abc|j:juxtapose|cons?literal def ghi|split|j:
►abcdef
►abcghi
►Ready;

It might produce two records containing abcdef and abcghi or it might produce only def
and ghi; it depends on which of the two literal stages produces a record first.

The following examples show that in the current implementation cp seems to produce a

record after literal does; but this could change in the future.

 pipe (end ?) literal abc |j:juxtapose|cons?cp query time|j:
►abc TIME IS 14:50:34 EDT WEDNESDAY 04/29/20
►abc CONNECT= 99:59:59 VIRTCPU= 069:09.28 TOTCPU= 069:44.69
►Ready;

The following shows that a small change to the pipeline specification can change the

dispatching order (the source for the two streams was swapped).

 pipe (end ?) cp query time|j:juxtapose|cons?literal abc def|split|j:
►abc
►def
►Ready;

To prefix the first byte (the operation code) of the input of a fullscr stage to the corre-

sponding fullscr output records:

/* Retain opcode */
'PIPE (end ?)',
 '| ...

'|o: fanout ', /* copy input to fullscr */
'| chop 1 ', /* keep only the opcode */
'|j:juxtapose ', /* preface output with opcode */
'| ... /* process response here */

 '?o:',
'| fullscr', /* write input to screen */
'|j: /* fullscr output to juxtapose */

To ensure that the correct prefix is available at the time it is needed, we connect the

primary output stream from fanout to the primary input stream of juxtapose. Thus, the

record will be available to juxtapose before it is available to fullscr, and therefore before

fullscr generates an output record.

ldrtbls—Resolve a Name from the CMS Loader Tables
ldrtbls resolves an entry point in the loader tables. The entry point can be:

¹ An executable machine instruction (not X'00'), which is then invoked as a stage.

¹ A program descriptor, which describes the stage to run.

¹ A pipeline command, which is run as a subroutine pipeline.

¹ An entry point table, from which the first word of the argument string is resolved.

¹ A look up routine, which resolves the first word of the argument string.

ldrtbls is often used to test a compiled REXX program or an Assembler program before it is

generated into a filter package.

464 CMS Pipelines User’s Guide and Reference

 listcat

 CMS

►►──LDRTBLS──word──┬────────┬──►◄
└─string─┘

Type: Arcane look up routine.

Syntax Description: Leading blanks are ignored; trailing blanks are significant. A word

is required; additional arguments are allowed. The entry point specified by the first word

is looked up in the CMS loader tables. If no entry point is found with the name as

specified, it is translated to upper case and the loader tables are searched again.

Operation: The optional string is passed to the program as the argument string.

Record Delay: ldrtbls does not read or write records. The delay depends on the program

being run.

Examples: To test a compiled REXX filter before it is put in a filter package:

rexxcomp myfilter rexx (object
load myfilter
pipe ldrtbls myfilter|...

 Notes:

1. ldrtbls is useful to test a new version of a filter loaded in the user area while still

retaining the production version for normal use.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

listcat—Obtain Data Set Names
listcat writes a list of data set names into the pipeline. The list is qualified by a specified

string or the current prefix, or both.

 z/OS

►►──LISTCAT─ ──┬ ┬────── ──┬ ┬───── ──┬ ┬────────────────────── ─►◄
 └ ┘─ASIS─ └ ┘─ALL─ │ │┌ ┐────────
 └─┬────────┬───6─word─┴─┘
 └ ┘─DSname─

Type: Device driver.

 Syntax Description:

ASIS Use data set names as written; do not translate to upper case. The

default is to translate data set names to upper case.

ALL Write all entries supplied to the pipeline, prefixed by a one character

code. By default, only data set names and VSAM cluster names are

written.

 Chapter 23. Inventory of Built-in Programs 465

 listdsi

Operation: Names are listed for each word in the DSNAME list and each word in the input

records. When the word does not begin with a quote and a prefix is set, the prefix and a

period are added to the front of the word specified. When the word begins with a quote it

is used as it is.

Output Record Format: When ALL is specified, each output record contains a character

code in the first column:

A Non-VSAM data set.

B Generation data group.

C Cluster.

G Alternate index.

H Generation data set.

L Tape volume catalog library entry.

R VSAM path.

U User catalog connector entry.

W Tape volume catalog volume entry.

X Alias.

The name follows from column 2.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: listcat does not delay the last record written for an input record.

See Also: listdsi and sysdsn.

Examples: To list all data sets that begin with the letter T (the prefix is DPJOHN):

 pipe listcat tso.f | term
►DPJOHN.TSO.F
►DPJOHN.TSO.FB
►DPJOHN.TSO.FF
►DPJOHN.TSO.FILTERS
►READY

DSNAME A list of data set qualifiers follows. DSNAME is assumed in front of an

option that is not recognised.

listdsi—Obtain Information about Data Sets
listdsi calls the REXX function listdsi() and writes the contents of the the variables that

describe the data set to the primary output stream. It then writes the function result (the

return code) to the secondary output stream (if it is defined).

 z/OS

►►──LISTDSI─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Device driver.

Syntax Description: If an argument string is specified, it is processed before listdsi reads

input records, as if it were an input record.

466 CMS Pipelines User’s Guide and Reference

 listdsi

Operation: The argument string (if it is not blank) and each non-blank input record are

passed to the listdsi() function without inspection or modification. When the return

code is less than 16, the variables shown below are obtained from the REXX environment

and written to the output stream if they are defined. Directory information (ADIRBLK,

UDIRBLK, and MEMBERS) is written only if the return code is 0. The variables are written in

the order shown, column by column. When the return code is 16, only the last three

variables are obtained.

DSNAME RECFM ALLOC UNITS EXDATE TRKSCYL MEMBERS
VOLUME LRECL USED EXTENTS PASSWORD BLKSTRK REASON
UNIT BLKSIZE PRIMARY CREATE RACFA ADIRBLK MSGLV1
DSORG KEYLEN SECONDS REFDATE UPDATED UDIRBLK MSGLV2

Output Record Format: The lines that are written to the primary output stream contain a

variable name and its value in a format that is compatible with varset.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null and blank input records are discarded.

Record Delay: listdsi writes all output for an input record before consuming the input

record.

Commit Level: listdsi starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: When the secondary output stream is not defined, listdsi termi-

nates when it discovers that its output stream is not connected. When the secondary output

stream is defined, listdsi terminates when it discovers that its secondary output stream is

not connected; it ignores end-of-file on the primary output stream.

See Also: sysdsn and state.

 Examples:

 pipe listdsi sys1.proclib | take 3 | terminal
►=SYSREASON=0005
►READY
 pipe listdsi 'sys1.proclib' | take 3 | terminal
►=SYSDSNAME=SYS1.PROCLIB
►=SYSVOLUME=CCAR02
►=SYSUNIT=3380
►READY
 pipe (end ?) l: listdsi tso.exec | take 3 | terminal ? l: | terminal
►=SYSDSNAME=DPJOHN.TSO.EXEC
►=SYSVOLUME=FS8E70
►=SYSUNIT=3380
►0
►READY

 Notes:

1. Data set names follow the TSO conventions. Enclose a name that is fully qualified in

single quotes. The prefix is applied to data set names that are not enclosed in quotes.

Return Codes: The return code is 0, irrespective of the return codes from LISTDSI.

 Chapter 23. Inventory of Built-in Programs 467

 listispf

listispf—Read Directory of a Partitioned Data Set into the Pipeline
listispf reads the directory of a partitioned data set and writes a line for each member,

formatting the information that ISPF adds to the directory. Only the member name is

written for members that have not been stored by ISPF.

 z/OS

 ┌ ┐──────────
►►──LISTISPF──pods───6┬──────┬┴──►◄
 └ ─word─┘

pods:

├──┬─dsname───────────────┬──┤
├─dsname(generation)───┤
├─'dsname'─────────────┤
├─'dsname(generation)'─┤
└─DDname=word──────────┘

Type: Device driver.

Placement: listispf must be a first stage.

Syntax Description: Enclose a fully qualified data set name in single quotes; the trailing

quote is optional. Specify the DSNAME without quotes to have the prefix, if any, applied.

Append parentheses containing a signed number to specify a relative generation of a data

set that is a member of a generation data group. To read the directory of an already

allocated data set, specify the keyword DDNAME= followed by the DDNAME already allo-

cated. The minimum abbreviation is DD=.

Specify a list of one or more member names to restrict the information written to these

members; the default is to write a line for each member of the data set. It opens the DCB

and then commits to level 0.

Operation: If no member names are specified, listispf writes a record (in alphabetical

order) for each member for the data set. If one or more members are specified, listispf

writes a record for each of those members in the order they are specified.

Output Record Format:

Pos Len Description

1 8 Member name.

11 5 Version and modification.

. 17. 8. Member creation date in ISO format (yyyymmdd).

. 26. 8. Member last update date in ISO format (yyyymmdd).

. 35. 8. Time on a 24-hour clock (hh:mm:ss).

. 44. 5. Size of member.

. 50. 5. Original size of member.

. 56. 5. Number of modified lines.

. 62. 8. User who stored the member last.

468 CMS Pipelines User’s Guide and Reference

 listpds

Commit Level: listispf starts on commit level -1.

Premature Termination: listispf terminates when it discovers that its output stream is not

connected.

 See Also: listpds.

Examples: To list the directory of the first data set allocated to SYSEXEC.

 pipe listispf dd=sysexec | console
►ALLOCFPL
►EPOP
►RT
►SC 01.00 19921218 22:08 136 136 0 DPJOHN
►TFT
►TISP 01.03 19921215 14:57 14 10 0 PIPER
►TISPF

 Notes:

1. pdslisti is a synonym for listispf.

2. Refer to the usage notes for listpds for information on how to list the members of all

data sets that are allocated to a particular DDNAME.

3. The flag for the member being stowed by the Software Configuration and Library

Manager is not processed.

4. Members written by TSO Pipelines 1.1.9 sublevel 40 (X'0028') and previous versions

are stored with the seconds as 01.

listpds—Read Directory of a Partitioned Data Set into the Pipeline
listpds reads the directory of a partitioned data set and writes a line for each member. The

first eight bytes contain the member name; the remainder of the output record depends on

the particular operating environment and the type of data set.

►►──LISTPDS─ ──┬ ┬─┤ CMS-file ├───────── ─►◄
 │ │┌ ┐──────────
 └ ┘─┤ pods ├─ ───6 ┴┬ ┬──────
 └ ─word─┘

CMS-file:

├──fn──ft──┬────┬──┤
└─fm─┘

pods:

├──┬─dsname───────────────┬──┤
├─dsname(generation)───┤
├─'dsname'─────────────┤
├─'dsname(generation)'─┤
└─DDname=word──────────┘

Type: Device driver.

Placement: listpds must be a first stage.

 Chapter 23. Inventory of Built-in Programs 469

 listpds

Syntax Description: CMS: Specify as blank-delimited words the file name and the file

type of the file to be read. A file mode or an asterisk is optional; the default is to search

all modes. If the file does not exist with the file name and the file type as entered, the file

name and the file type are translated to upper case and the search is retried.

z/OS: Enclose a fully qualified data set name in single quotes; the trailing quote is

optional. Specify the DSNAME without quotes to have the prefix, if any, applied. Append

parentheses containing a signed number to specify a relative generation of a data set that is

a member of a generation data group.

To read the directory of an already allocated data set, specify the keyword DDNAME=

followed by the DDNAME already allocated. The minimum abbreviation is DD=.

Specify a list of one or more member names to restrict the information written to these

members; the default is to write a line for each member of the data set.

Operation: On CMS, a record is written for each member of the library. Note that

libraries can have more than one member of a particular name.

On z/OS, listpds can write information about selected members. If no member names are

specified, listpds writes a record (in alphabetical order) for each member for the data set.

If one or more members are specified, listpds writes a record for each of those members in

the order they are specified.

Output Record Format:

Commit Level: listpds starts on commit level -2. On z/OS, listpds starts on commit level

-2000000000. It opens the DCB and then commits to level 0.

Premature Termination: listpds terminates when it discovers that its output stream is not

connected.

See Also: listispf, members, and <.

Examples: To list the members of a z/OS load library:

 pipe listpds tso.load | chop 8 | console
►PIPE
►READY

To list the members of a CMS macro library:

Pos Len Description

1 8 Member name.

9 v Additional information.

470 CMS Pipelines User’s Guide and Reference

 literal

 pipe listpds hcpgpi maclib | chop 8 | pad 10 | snake 7 | console
►HCPCALL DF8PARM HCPMWTBK IPARML VRDCBLOK HCPATTRB STHYI
►ADSR HCPARSPL HCPPPLBK IPARMLX ADRSPACE HCPATTRQ VMUDQ
►CCED HCPBELBK HCPSBIOP IRAQVS ALSERV HCPREGCK HCPCSIBK
►CPED HCPBIOPL HCPSGIOP SDMDEVTP APPCVM IUCV HCPINFBK
►DD4PARM0 HCPBPLBK HCPSPGBK SFBLOK DEFWORKA MAPMDISK HCPMDLAT
►DD8PARM0 HCPDE4PL HCPSPRBK SPLINK DIAG PFAULT MLB
►D88PARM0 HCPD290P HCPSXIBK VMCMHDR HCPATTGB REFPAGE
►DEVTYPES HCPMRQBK HCPSXOBK VMCPARM HCPATTOP SETNXTID
►Ready;

 Notes:

1. On z/OS, pdsdirect and pdslist are synonyms for listpds.

2. On CMS, listpds supports only simulated libraries that have fixed 80-byte records. It

does not support a partitioned data set on an OS volume.

3. On z/OS, listpds reads the directory of the first data set in a concatenation when the

operand specifies a DDNAME. To read the directories of all data sets in a concat-

enation:

/* Read all directories from a concatenation. */
Signal on novalue
parse upper arg ddname .

'callpipe (end ? name ALLDIRS)',
'|tso lista status', /* List allocations */
'|drop 1', /* Remove title */
'|nfind TERM', /* Discard TERMFILES */
'|spec w1 15 read 3.8 1', /* Prefix DDNAME to DSNAME */
'|frlabel' ddname, /* Select the DDNAME */
'|t:take 1', /* Take the first one */
'|i:fanin', /* And the concatenations */
"|spec /callpipe listpds '/ 1 15-* next /'||*:/ next",
'|pipcmd', /* Issue subroutine to read one */
'|*:', /* Write result */
'?t:', /* Rest of datasets */
'|whilelabel ', /* Get all concatenations */
'|i:' /* And process... */

exit RC

literal—Write the Argument String
literal writes its argument string into the pipeline and then passes records on the input to

the output stream.

►►─ ─── ─ ─LITERAL─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Device driver.

Syntax Description: The string starts after exactly one blank character. Leading and

trailing blanks are significant.

Operation: literal writes a null record when the parameter string is omitted.

 Chapter 23. Inventory of Built-in Programs 471

 locate

Streams Used: Records are read from the primary input stream and written to the primary

output stream. literal shorts the input to the output after it has written the argument string

to the pipeline.

Record Delay: The first output record is produced before any input is read. Thus, literal

has the potential to delay one record.

Premature Termination: literal terminates when it discovers that its output stream is not

connected.

See Also: strliteral, append, and var.

Examples: A literal 3270 data stream is written twice to the console in full screen mode.

Hit enter twice to continue. (The left brace represents X'C0'):

PIPE literal {BHit Enter or any PF key | dup | fullscr | hole

 Notes:

1. Records from a cascade of literal stages appear in the reverse order of their appear-

ance in the pipeline specification; see Figure 62 on page 34.

2. Use var to write data that contain stage separators, end characters, and other characters

that have a special meaning to the pipeline specification parser.

3. literal may be used to inject a record in front of the file somewhere downstream in a

pipeline, but it can also be a first stage. Note that if you wish to insert a record in

front of a file that comes from disk, you must retain the disk stage as the first in the

pipeline. If not, disk appends the single record to the file instead of reading from the

file.

4. Be careful when literal is used where the contents of a stemmed array are being

updated or in similar situations where the output overwrites the original data source.

Because literal writes the first record before it reads input, this record may be

produced before the input has been read; thus, the first record of the updated object

may be written before it is read, leading to a “destructive overlap”.

5. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

locate—Select Lines that Contain a String
locate selects records that contain a specified string or that are at least as long as a

specified length. It discards records that do not contain the specified string or that are

shorter than the specified length.

►►──LOCATE─ ──┬ ┬───────── ──┬ ┬─────── ──┬ ┬───────────── ──┬ ┬─────── ─►
. └─ANYcase─┘ ├─MIXED─┤ └─inputRanges─┘ └─ANYof─┘
. ├ ┤─ONEs──
. └ ┘─ZEROs─

►─ ──┬ ┬───────────────── ─►◄
└─delimitedString─┘

Type: Selection stage.

472 CMS Pipelines User’s Guide and Reference

 locate

 Syntax Description:

No input range, a single input range, or one to ten input ranges in parentheses can be

specified. The default is to search the complete input record.

The characters to search for are specified as a delimited string. A null string is assumed

when the delimited string is omitted.

Operation: locate copies records in which the specified string occurs within any of the

specified input ranges to the primary output stream, or discards them if the primary output

stream is not connected. It discards records that do not contain the string within any of the

input ranges or that do not include any positions in any of the specified column ranges or

copies them to the secondary output stream if it is connected. Thus, it discards null

records.

A null string matches any record. In this case, records selected are long enough to include

the first position of the input range closest to the beginning of the record. This is used to

select records of a given length or longer. Records of a particular length can be selected

by a cascade of locate and nlocate.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. locate strictly does not delay the record.

Commit Level: locate starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: locate terminates when it discovers that no output stream is

connected.

 Converse Operation: nlocate.

See Also: all and find.

Examples: To discard null records:

 pipe literal abc | literal | locate | console
►abc
►Ready;

To select records with 'ab' anywhere in columns 1-4:

ANYCASE Ignore case when comparing.

. MIXED

. ONES

. ZEROS

. The delimited string is to be used as a mask to test for all ones, mixed,

. or all zero bits. Only bit positions that correspond to one bits in the

! mask are tested; bit positions corresponding to zero bits in the mask are

. ignored. The string must not be null. Records are selected if the delim-

. ited string satisfies the condition somewhere within the specified ranges.

. ANYOF cannot be specified with one of these keywords.

ANYOF The delimited string specifies an enumerated set of characters rather than

a string of characters. locate selects records that contain at least one of

the enumerated characters within the specified input ranges.

 Chapter 23. Inventory of Built-in Programs 473

 lookup

 pipe literal xaby | literal xxyab | locate 1.4 /ab/ | console
►xaby
►Ready;

To select records with 'ab' in columns 1-2 or 3-4:

 pipe literal xaby abcd cdab | split | locate (1-2 3-4) /ab/ | console
►abcd
►cdab
►Ready;

To select records that contain X'02' in column 1:

 pipe < pipparm txtlib | locate 1 x02 | count lines | console
►2414
►Ready;
 pipe < pipparm txtlib | count lines | console
►2449
►Ready;

 Notes:

! 1. Use a cascade of locate filters or all when looking for records containing two or more

strings that may occur in any order.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

. 3. Specifying MIXED and a mask that contains less than two one bits in any one byte will

. cause all records to be rejected.

lookup—Find Records in a Reference Using a Key Field
lookup processes an input stream of detail records against a reference that contains master

records, comparing a key field:

¹ When a detail record has the same key as a master record, the detail record or the

master record (or both) are passed to the primary output stream.

¹ When a detail record has a key that is not present in any master record, it is passed to

the secondary output stream.

! ¹ When all detail records have been processed, master records are passed to the tertiary

output stream. If COUNT is specified, all master records are written; each one is

prefixed by the count of matching detail records. If COUNT is omitted, only those

master records for which there was no corresponding detail record are written.

The reference initially contains records from the secondary input stream; this stream is

read to end-of-file before processing detail records. When ALLMASTERS is specified, the

reference contains all records from the secondary input stream, including those that have

duplicate keys; when ALLMASTERS is omitted, lookup stores the first record that has a

particular key in the reference.

The reference can be updated dynamically in several ways while lookup is processing

detail records from the primary input stream:

¹ When AUTOADD is specified, detail records that are not matched are added to the refer-

ence automatically.

¹ Records on the tertiary input stream are added to the reference as they are read.

¹ Records on the quarternary input stream cause the corresponding reference record(s) to

be deleted from the reference.

474 CMS Pipelines User’s Guide and Reference

 lookup

: ¹ Records on the senary input stream replace the corresponding reference record(s).

: A count is maintained in each master record irrespective of the COUNT option. By default,

: one is added for each detail record that matches a particular master record.

►►──LOOKUP─ ──┬ ┬─────── ──┬ ┬────────────────── ──┬ ┬─────────── ─►
: └─COUNT─┘ └: ─MAXcount──number─┘: └─INCREMENt─┘

 ┌ ┐─NOPAD─────
►─ ──┬ ┬────────── ──┬ ┬──────────── ──┼ ┼─────────── ──┬ ┬───────── ─►

└─SETCOUNT─┘ └─TRACKCOUnt─┘ └─PAD──xorc─┘ └─ANYcase─┘

►─ ──┬ ┬───────────────────── ──┬ ┬───────── ──┬ ┬──────── ─►
 ├ ┤ ─AUTOADD─ ──┬ ┬──────── └ ┘─KEYONLY─ └ ┘─STRICT─
 │ │└ ┘─BEFORE─

. ├ ┤─CEILING─────────────

. └ ┘─FLOOR───────────────

►─ ──┬ ┬──────────────────────────── ─►
 └─inputRange──┬────────────┬─┘

└─inputRange─┘

 ┌ ┐─DETAIL──MASTER──────────────────────
►─ ──┼ ┼───────────────────────────────────── ─►◄

 ├ ┤─DETAIL──────────────────────────────
 ├ ┤ ─DETAIL──ALLMASTER─ ──┬ ┬────────── ────
 │ │└ ┘─PAIRWISE─
 ├ ┤ ─MASTER─ ──┬ ┬──────── ─────────────────
 │ │└ ┘─DETAIL─
 └ ┘ ─ALLMASTER─ ──┬ ┬──────────────────────

 └ ┘ ─DETAIL─ ──┬ ┬──────────
 └ ┘─PAIRWISE─

 Type: Sorter.

Syntax Description: Arguments are optional. The arguments are in three groups:

¹ Keywords that specify variations on processing.

COUNT A count of matching details is kept with the master record. The count is

prefixed to the master record before it is written to the tertiary output

stream and the quarternary output stream. When COUNT is omitted, only

master records that have a count of zero are written to these two output

streams.

: MAXCOUNT: A master record is deleted after it has been matched by a detail record

: when its match count is equal to or exceeds the specified number. The

: number must be positive.

INCREMENT Records on the primary input stream contain the increment in the first

ten columns. The number may be negative; it may have leading or

trailing blanks. A blank field represents the default increment, one.

This number is added to the master’s count when the record is matched.

The prefix is deleted before the record is matched and written to an

output stream; it should be ignored when specifying the range for the

key field in the detail record.

 Chapter 23. Inventory of Built-in Programs 475

 lookup

¹ Input ranges, which specify the location of the key fields in the detail and master

records.

The first input range specifies the location of the key in records from the primary input

stream (the detail records); the complete input record is the default. The second input

range specifies the location of the key in records that are read from other input streams

(the master records). If the second range is omitted, the first range is used for the

master records as well. When AUTOADD is specified, the second range must be

omitted or must represent the same range as the first one.

¹ Keywords that specify how records are written to the primary output stream when a

detail record contains a key that is also in the reference.

SETCOUNT Records on the secondary input stream and the tertiary input stream

contain the initial count in the first ten columns. The number must be

zero or positive; it may have leading or trailing blanks. A blank field

represents the default starting count, zero. The prefix is deleted before

the record is matched and entered into the reference; it should be

ignored when specifying the range for the key field in the master record.

TRACKCOUNT The current count after it has been incremented is prefixed to the master

record before it is written to the primary output stream, the tertiary

output stream, and the quarternary output stream.

NOPAD Key fields that are partially present in a record must have the same

length to be considered equal; this is the default.

PAD Specify a pad character that is used to extend the shorter of two key

fields.

ANYCASE Ignore case when comparing fields; the default is to respect case.

AUTOADD Unmatched details are added to the reference after they have been

written to the secondary output stream. If two input ranges are

specified, they must be identical.

BEFORE When AUTOADD BEFORE is specified, the detail record is added to the

reference before it is tested, so that it will always be found. Thus, the

count will be one when the record is added to the reference; it will be

zero when BEFORE is omitted.

. CEILING. A detail matches a master record or the master record that has the next

. higher key. The input record is unmatched only when the its key is

. larger than the highest master key.

. FLOOR. A detail matches a master record or the master record that has the next

. lower key. The input record is unmatched only when the its key is

. lower than the lowest master key.

KEYONLY Only the key field is stored in the reference file. Thus, only the key is

available to be written to the primary output stream, the tertiary output

stream, and the quarternary output stream.

STRICT When records are available simultaneously on more than one input

stream, process records from the tertiary input stream before records

from the quarternary input stream before records from the primary input

stream.

476 CMS Pipelines User’s Guide and Reference

 lookup

Operation: The secondary input stream is read and stored as the initial reference before

the other streams are read. When ALLMASTER is specified, all master records are stored.

When ALLMASTER is omitted, records on the secondary input stream that have duplicate

keys are passed to the quinary output stream (if it is defined and connected) or discarded;

the first record that has a particular key is retained.

The other input streams are then read as records arrive and processed in this way:

Primary Input Stream: When a record is read on the primary input stream, the contents of

the first input range are used as the key. The key field of this detail record is looked up in

the reference. When there is no matching master record, the detail record is passed to the

secondary output stream (if it is connected). When there is a matching master record, one

or more records are written to the primary output stream in the order specified by the

keywords DETAIL, MASTER, ALLMASTER, or PAIRWISE. The default is to write the detail

: record followed by the master record. When MAXCOUNT is specified, an automatic delete

: is triggered when the count of matches reaches or exceeds the specified number.

Tertiary Input Stream: When a record is read on the tertiary input stream, the contents of

the second input range are used as the key. The record is added to the reference if there is

not already a record in the reference for the key. The record is also added if ALLMASTERS

is specified. Otherwise the record is a duplicate and it is passed to the quinary output

stream (if it is defined and connected).

Quarternary Input Stream: When a record is read on the quarternary input stream, the

contents of the second input range are used as the key. The corresponding records are

deleted from the reference. If there is no matching master record, the input record is

passed to the senary output stream (if it is defined and connected). If the quarternary

output stream is connected, the corresponding reference record(s) are written to this stream

according to the rules stipulated for COUNT; the input record is then discarded. Once the

DETAIL Write only detail records to the primary output stream.

DETAIL

MASTER

Duplicate master records are discarded. Write the detail record followed

by the matching reference to the primary output stream.

DETAIL

ALLMASTER

Duplicate master records are kept. Write the detail record followed by

all matching masters to the primary output stream.

DETAIL

ALLMASTER

PAIRWISE

Duplicate master records are kept. For each master record having the

selected key, write a copy of the detail record followed by the master

record to the primary output stream.

MASTER Duplicate master records are discarded. Write the matching reference to

the primary output stream. The matching detail record is discarded.

MASTER

DETAIL

Duplicate master records are discarded. Write the matching reference

followed by the detail record to the primary output stream.

ALLMASTER Duplicate master records are kept. Write all matching master records to

the primary output stream. The matching detail record is discarded.

ALLMASTER

DETAIL

Duplicate master records are kept. Write all matching master records

followed by the detail record to the primary output stream.

ALLMASTER

DETAIL

PAIRWISE

Duplicate master records are kept. For each master record having the

selected key, write the master record followed by a copy of the detail

record to the primary output stream.

 Chapter 23. Inventory of Built-in Programs 477

 lookup

records are deleted from the reference, the count is lost; a subsequent record on the tertiary

input stream will start with a reference count of zero.

: Quinary Input Stream: When a record is read on the quinary input stream, the master is

: reset. Before resetting the master, lookup writes records to the quarternary output

: describing the contents of the master file, as it does on the tertiary output prior to termi-

: nation. All streams remain connected. The record is then discarded.

: Senary Input Stream: When a record is read on the senary input stream, it is treated as if

: the record were passed to the quarternary input stream and then on the tertiary input

: stream.

At end-of-file on all input streams, all streams other than the tertiary output stream are

severed. The contents of the reference (originally from the secondary input stream and

tertiary input stream) are then written to the tertiary output stream (if it is connected) in

ascending order by their keys. Without the COUNT option, only unreferenced master

records are written (those not matched by at least one detail record). When COUNT is

specified, all master records are written to the tertiary output stream; they have a 10-byte

prefix containing the count of primary input records that matched the key of the master

record. Unreferenced records have a count of zero.

Streams Used: Two to six streams can be defined; with AUTOADD, the secondary streams

: need not be defined. If it is defined, the senary input streams must not be connected.

In Figure 392, the inside of the box shows how records on output streams are derived

from input streams, except for the master record being written to the primary output

stream; it also shows how end-of-file propagates forward.

All records are read from the secondary input stream before lookup reads from other input

streams.

When the tertiary output stream is connected, lookup severs all other streams at end-of-file

on all input streams. It then writes the unreferenced master records to the tertiary output

stream (or all master records if COUNT is specified). When both ALLMASTER and COUNT

are specified, the count of matching detail records is prefixed to all master records; thus,

the sum of the counts will in general be larger than the count of detail records.

lookup propagates end-of-file from the primary input stream to the primary output stream

and the secondary output stream; it propagates end-of-file on all first three output streams

to the primary input stream; it propagates end-of-file from the tertiary input stream to the

: Figure 392. lookup Stream Overview

: ┌─────────────────┐
: ───────────────details───┤ ───────────┬─── ├───Matched records───────
: │ │ │
: ───────────master file───┤ ───┐ └─── ├───Unmatched details─────
: │ 6 │
: ──────add to reference───┤ ─────────────┬─ ├───Unreferenced masters──
: │ │ │
: ─delete from reference───┤ ───────────┬─── ├───Deleted masters───────
: │ & & │ │ │
: ───────reset reference───┤ ───┘ │ │ └─ ├───Duplicate masters─────
: │ │ │ │
: ─────replace reference───┤ ─────┴────►└─── ├───Unmatched deletes─────
: └─────────────────┘

478 CMS Pipelines User’s Guide and Reference

 lookup

quinary output stream; it propagates end-of-file from the quarternary input stream to the

: quarternary and senary output streams; it ignores end-of-file on the quinary input stream.

Record Delay: lookup features a chaotic delay structure. It does not delay records from

the primary input stream (that is, detail records written to the primary output stream or the

secondary output stream); nor does it delay records written to the quinary and the senary

output stream. Records are written to the tertiary output stream after end-of-file on all

input streams; thus, these records are delayed to end-of-file. Records are written to the

quarternary output stream before the corresponding input record is consumed from the

quarternary input stream.

Commit Level: lookup starts on commit level -2. It verifies that the quinary and senary

input streams are not connected and then commits to 0.

Premature Termination: lookup terminates when it discovers that no output stream is

connected.

See Also: collate, merge, and sort.

Examples: The generic EXEC that uses lookup with two input streams and three output

streams:

/* Dictionary lookup */
'PIPE (end ?)',

'?< detail records', /* Read details */
'|l: lookup 1.10', /* Look up first ten columns */
'|> matching records a', /* Details followed by masters */
'?< master records', /* Read master file */
'|l:', /* Secondary streams */
'|> unmatched details a', /* Details that didn't match */
'?l:', /* Tertiary streams */
'|> unreferenced masters a' /* Masters that were not referenced */

To find all words in the primary input stream that are not in the file WORD LIST:

/* CKWB REXX */
'callpipe (end ?)',

'|*:', /* Input stream */
'|split', /* Make words */
'|l:lookup', /* Look them up */
'?< word list', /* Word list */
'|split', /* One word per line */
'|l:', /* Into master */
'|*:' /* Words not in list to output */

Note that the primary output stream from lookup is not connected, but that both secondary

streams are connected. Also note that there is only one end character in this pipeline

specification. The master file is passed into the label reference; the unmatched details

come out of the label reference.

To select the first occurrence of each key within the file and not delay the record:

/* Now find uniques */
'callpipe (end ?) *: | l:lookup 1.5 autoadd keyonly ? l: | *:'

The only connected streams are the primary input stream and the secondary output stream.

Thus, the first time a particular key occurs, the detail record will not be matched; it is

 Chapter 23. Inventory of Built-in Programs 479

 lookup

written to the secondary output stream. It is also added to the reference so that subsequent

occurrences of that particular key will match and thus, these records will be discarded.

This use of lookup has several advantages over sort UNIQUE:

¹ lookup does not reorder the records. That is, the output is in the same order as the

input (except, of course, that some records are discarded).

¹ lookup does not delay the record.

¹ lookup propagates end-of-file backwards, whereas sort cannot produce output until it

has read the entire file.

¹ lookup stores only the key field, whereas sort must store the entire record. For long

records with short keys, this may mean that lookup can process larger files than sort

can.

However, when the entire file is processed (and the key field is not significantly shorter

than the record), lookup requires as much storage as sort UNIQUE and performance will be

similar.

To build records for loading several stemmed arrays concurrently in varset:

callpipe (end ?)
?*:
|l: lookup count trackcount autoadd before keyonly w1 master detail
| spec /=/ 1 11-* n /./ n 1.10 strip n /=/ next read w2-* n
|i: fanin
|*:
?l:
?l:
| spec /=/ 1 11-* n /.0=/ n 1.10 strip n
|i:

This subroutine pipeline is provided as a convenience under the name stembuild.

In a service machine that maintains privileges for its clients, the immediate commands ADD

and DELETE add and delete authorisations dynamically:

480 CMS Pipelines User’s Guide and Reference

 lookup

/* Simplistic server */
'CP SET SMSG IUCV' /* Enable commands */
'PIPE (end ? name LOOKUP.STAGE:489)',

'?starmsg:', /* Requests here */
'|not chop 8', /* Drop message class */
'|l:lookup count 1.8 master detail', /* See if allowed */
'|...', /* Do it! */
'?< auth file', /* Current authorisations */

 '|l:',
'|timestamp 16', /* Let's remember when */
'|>> unauth attempts', /* Log hacking attempts */
'?immcmd add', /* Immediate commands */
'|spec w1 1 w2-* 9 /* Build key */
'|xlate 1.8 upper', /* Uppercase user ID */
'|l:', /* Add to reference */
'|not chop 10', /* Delete count */
'|> auth file a', /* Save updated master */
'?immcmd delete', /* Immediate command */
'|spec w1 1.8', /* Just the user id */
'|xlate', /* Uppercase it */
'|l:', /* And remove from ref */
'|insert /Deleted: /', /* Add some text */

 '|console'

In this example, the first four input streams to lookup are connected. Requests from the

users arrive on the primary input stream; the existing authorisations are read into the

secondary input stream; new users are authorised by records on the tertiary input stream;

and authorisations are dropped by records on the quarternary input stream.

COUNT is specified to have all master records written when the server terminates; but the

count is discarded by the chop stage that is connected to the secondary output stream.

Thus, the current master file can be saved when the lookup stage terminates.

The example should not be taken as an example in writing a robust server since it ignores

issues such as terminating the server and recovery in the event of a system crash (any

added or deleted authorisations would be lost if the virtual machine were reset).

 Notes:

1. For compatibility with the past, BOTH specifies the default of writing the detail record

followed by the master record to the primary output stream. MATCHING has the same

effect as DETAIL; only records from the primary input stream are written to the

primary output stream.

2. When the keyword NOPAD is used, key fields must be of the same length to match.

Use PAD to specify a character to extend the shorter of two fields when comparing

them.

3. Unless ANYCASE is specified, key fields are compared as character data using the IBM

System/360 collating sequence.

4. Use spec (or a REXX program) for example to put a sort key in front of the record if

you wish, for instance, to use a numeric field that is not aligned to the right within a

column range. Such a temporary sort key can be removed with substr for example

after the records are written by lookup.

5. Use xlate to change the collating sequence of the file.

: 6. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

 Chapter 23. Inventory of Built-in Programs 481

 lookup

7. lookup supports only one key field (unlike sort). Use spec to gather several key fields

into one. When this temporary key is placed in front of the original record, it can be

removed from the output of lookup easily with substr even when the input records

vary in length or fields get added at some later time.

8. Counters are “sticky” at zero and the maximum value for a fullword integer. That is,

when a counter is decremented below zero, its value is forced to zero; a counter is not

incremented beyond 2147483647 (2**31-1).

: 9. The five counting options are independent to allow you complete control. In partic-

: ular, COUNT is not implied by any of the other four.

Thus INCREMENT without COUNT or TRACKCOUNT causes a counter field to be vali-

dated as a number and then be deleted from the input detail record. SETCOUNT works

similarly for the input master record.

10. When COUNT is omitted, a master record is written to the tertiary output stream or to

the quarternary output stream only when its count is zero. When INCREMENT is

specified and the increment is zero, the reference count will remain zero and thus the

master record will be considered to be unreferenced. Similarly, if SETCOUNT is

specified and a master record is added with a nonzero reference count, that record is

not written to the tertiary output stream or to the quarternary output stream, even when

there are no matching details.

11. When the primary input stream and the secondary input stream are derived from the

same source, for example, a selection stage or even another lookup, you must buffer

the primary input stream to avoid a stall:

/* strange lookup */
'PIPE (end ?)'
 '?... ',

'| x: locate /oscar/ ',
'| buffer ',
'| l: lookup ',
'| ... ',
'? x: ',

 '| l:

Be sure that AUTOADD cannot perform the task.

: 12. You can replace a record in the reference by passing the replacement on the senary

: input stream or you can pass the new master record first to the quarternary input

stream and then to the tertiary input stream. This destroys the count; to keep the

count, you must use the COUNT and SETCOUNT options and preface the first ten charac-

ters of the output record to the new master before it is passed to the quarternary input

stream (or somehow guess what the count should be and pass that value to the senary

input stream).

. 13. AUTOADD, CEILING, and FLOOR are mutually exclusive.

. 14. FLOOR and CEILING are useful, for example, to find the control section that contains a

. particular address to relate trace data to a load map. It might be easiest to convert the

. keys to binary, but other transforms are possible.

: 15. Storage for master records that are deleted by passing a record on the quarternary

: input stream is not reclaimed until lookup terminates.

: When the master record is replaced by passing a record to the senary input stream, the

: existing storage is reused if the two records are the same length, rounded to the next

: multiple of four. Any additional master record for the particular key are not

: reclaimed.

482 CMS Pipelines User’s Guide and Reference

 maclib

maclib—Generate a Macro Library from Stacked Members in a COPY File
maclib generates the contents of a CMS macro library from stacked members with delimiter

records between them, as the CMS command MACLIB does for an input file that has file

type COPY.

►►──MACLIB─ ──┬ ┬────── ─►◄
└─word─┘

Type: Arcane gateway.

Placement: maclib must not be a first stage.

Syntax Description: A word is optional. It specifies the delimiter word that separates

members in the input stream. '*COPY' is the default.

Operation: maclib first writes an 80-byte placeholder record indicating a null library to

the primary output stream. It then writes the members of the MACLIB with a delimiter

record (X'61FFFF61') after each member. 80-byte directory records (having 16-byte

entries) are written to the secondary output stream (if it is connected) for each five

members.

At end-of-file on input, the final directory record is written to the secondary output stream

and the correct record 1 for the library is written to the tertiary output stream (if it is

connected).

Input Record Format: The format is similar to the format of a file with file type COPY,

as used by the CMS command MACLIB. The input stream has one or more members, each

preceded by a delimiter record with the delimiter word in column 1. The member name is

the second word of a line beginning with the delimiter word; the remainder of the line is

ignored.

Streams Used: One to three streams may be defined. Records are read from the primary

input stream; no other input stream may be connected. maclib writes output to all

connected output streams. It severs the primary output stream at end-of-file on input

before it writes to the secondary output stream. It severs the secondary output stream

before it writes to the tertiary output stream.

Record Delay: The first output record is produced before any input is read. Thus, maclib

has the potential to delay one record. Records are written to the primary output stream

before they are consumed from the primary input stream.

Commit Level: maclib starts on commit level -2. maclib verifies that the primary input

stream is the only connected input stream and then commits to 0.

Examples: Refer to “Generating a CMS Macro Library” on page 80.

 Notes:

1. To create a CMS macro library, the secondary output stream (which contains the direc-

tory) should be buffered and appended to the contents of the primary output stream;

this aggregate stream should be connected to the primary input stream of the > stage

writing the library; maclib’s tertiary output stream should be connected to the

secondary input stream of >.

 Chapter 23. Inventory of Built-in Programs 483

 mapmdisk

2. maclib generates the data records to be put into a library. It accesses no host inter-

face; in particular, it does not write the library to disk.

: mapmdisk—Map Minidisks Into Data spaces
: mapmdisk interfaces to the CP macro MAPMDISK to manage minidisks mapped into address

: spaces available to your virtual machine.

: CMS :

: ┌ ┐─FETCH──
: ►►──MAPMDISK─ ──┬ ┬: ─DEFINE─ ──┼ ┼──────── ─►◄
: │ │├ ┤─RETAIN─
: │ │└ ┘─ZERO───
: ├ ┤─IDENTIFY───────────
: ├ ┤─REMOVE─────────────
: └ ┘─SAVE───────────────

: Type: Host interface.

: Syntax Description:

: Input Record Format:

: DEFINE: Map blocks from the minidisk pool into an address

: space. The pool must have been established previously

: by mapmdisk IDENTIFY.

: FETCH: The initial contents of the mapped pages are read from

: the minidisks.

: RETAIN: The initial contents of the mapped pages are left intact

: from the data space.

: ZERO: The initial contents of the mapped pages are set to zero.

: IDENTIFY: Define the virtual machine’s minidisk pool. mapmdisk

: IDENTIFY reads its entire input to define the pool.

: REMOVE: Unmap minidisk blocks from an address space.

: SAVE: Write modified pages in the data space to backing store.

: This is the only way to ensure a consistent minidisk

: image.

: CREATE

:

: ►►──hexString──number──number──number──►◄

: Each record specifies the mapping of a single data space that must have

: been created by your virtual machine.

: 1. The ASIT for the data space that blocks are mapped into.

: 2. The number of the first page to map in decimal (zero or positive).

: The number is multiplied by 4096 before it is stored in the param-

: eter list.

: 3. The count of pages to map in decimal (positive).

: 4. The number of the first pool block to map in decimal (zero or posi-

: tive).

484 CMS Pipelines User’s Guide and Reference

 mapmdisk

: Output Record Format:

: Streams Used: Records are read from the primary input stream and written to the primary

: output stream. Null and blank input records are discarded.

: Record Delay: mapmdisk does not delay the record.

: IDENTIFY

:

: ►►──devaddr──number──number──►◄

: Each record defines one minidisk extent in the pool. The pool block

: numbers are assigned sequentially from zero as the input is read.

: 1. The device number.

: 2. The block offset (decimal, zero or positive), which can be obtained

: by diskid.

: 3. The count of blocks (positive decimal), which can be obtained by

: state at the time the minidisk is reserved.

: REMOVE

:

: ►►──hexString──number──number──►◄

: Each record specifies a range of pages to be unmapped.

: 1. The ASIT for the data space from which blocks are unmapped.

: 2. The number of the first page to unmap in decimal (zero or positive).

: The number is multiplied by 4096 before it is stored in the param-

: eter list.

: 3. The count of pages to unmap in decimal (positive).

: SAVE

:

: ┌ ┐─────────
: ►►──hexString───6─range─┴──►◄

: Each record specifies a range of blocks to be saved, if they have been

: changed. The first word is the ASIT of the address space to save. Then

: follows up to 509 ranges of pages to be saved. The first number in

: each range is multiplied by 4096 before it is stored in the parameter list.

: CREATE: The input record is passed.

: IDENTIFY: A null record to indicate that a pool has been defined.

: REMOVE: The input record is passed.

: SAVE: Ten bytes:

: ¹ The eight byte error buffer, which is valid when the leftmost bit of

: the completion status (the last byte of the record) is zero.

: ¹ Binary interrupt subcode from storage location 132 (decimal, one

: byte), X'01'.

: ¹ Binary completion status from storage location 133 (decimal, one

: byte). The contents of the first eight bytes of the record are valid

: when the leftmost bit is zero.

 Chapter 23. Inventory of Built-in Programs 485

 mctoasa

: Commit Level: mapmdisk starts on commit level 0 or -2. In general, it starts on commit

: level 0, but mapmdisk SAVE starts on commit level -2, establishes an external interrupt

: handler, and then commits to level 0.

: Premature Termination: mapmdisk terminates when it discovers that its output stream is

: not connected. mapmdisk SAVE also stops if the immediate command PIPMOD STOP is

: issued or a record is passed to pipestop.

: See Also: adrspace, alserv, and diskid.

: Examples: See Chapter 18, “Using VM Data Spaces with CMS Pipelines” on page 210.

: Notes:

: 1. The virtual machine must be in XC mode (this excludes z/CMS).

: 2. All minidisk mappings are destroyed by an IPL of the virtual machine.

: Publications: z/VM: CP Programming Services.

mctoasa—Convert CCW Operation Codes to ASA Carriage Control
mctoasa converts the first byte of each record from a machine carriage control character to

an ASA control character. If possible, the ASA control character is moved to the following

record to turn a delayed carriage movement into an immediate one. If the first input

record has a valid ASA carriage control character, the input is passed unmodified to the

output and each record is verified to have a valid ASA carriage control character.

►►──MCTOASA──►◄

 Type: Filter.

Input Record Format: The first column of the record is a machine carriage control char-

acter:

Other bit combinations are not valid. In particular, bit 5 (X'04') must be zero.

Output Record Format: The first column of the record is an ASA carriage control char-

acter:

xxxx x001 Write the data part of the record and then perform the carriage operation

specified by the five leftmost bits.

xxxx x011 Perform the carriage operation defined by the five leftmost bits imme-

diately (the data part of the record is ignored).

000n n0x1 Space the number of lines (0 through 3) specified by bits 3 and 4.

1nnn n0x1 Skip to the channel specified by bits 1 through 4. The number must be

in the range 1 to 12 inclusive.

+ Overprint the previous record.

(blank) Print on the next line.

0 Skip one line and print a line.

- (hyphen) Skip two lines and print a line.

1-9 Skip to the specified channel and print a line.

A-C Skip to channel 10 through 12 and print a line.

486 CMS Pipelines User’s Guide and Reference

 mdiskblk

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: When the file has machine carriage control characters, the carriage control

is delayed to the following record; the data part of the record is not delayed.

Premature Termination: mctoasa terminates when it discovers that its output stream is

not connected.

 Converse Operation: asatomc.

Examples: To discard the two heading lines from an assembler listing file:

...| mctoasa | outside /1/ 2 |...

The System Assembler generates the listing file with ASA carriage control; assembler H

uses machine carriage control. mctoasa ensures that the listing file has ASA carriage

control characters in either case.

mdiskblk—Read or Write Minidisk Blocks
mdiskblk reads and writes physical data blocks directly from a minidisk, bypassing the CMS

file system. Be sure you know what you are doing when you use mdiskblk!

Warning: Improper use of mdiskblk WRITE may result in an unreadable minidisk.

 CMS

 ┌ ┐─READ─ ┌ ┐───────────
►►──MDISKBLK──┬─┬────────┬──┴──────┴──letter───6┬───────┬┴─┬ ──►◄

│ └─NUMBER─┘ └ ─range─┘ │
 └─WRITE──letter─ ────────────────────────────┘

Type: Arcane device driver.

Syntax Description: When READ is specified or defaulted, a letter is required to specify

the mode of the minidisk to read blocks from; further arguments are ranges of blocks to be

read.

When WRITE is specified, only a mode letter is allowed.

Operation: When mdiskblk is reading blocks from a minidisk, the blocks specified in the

argument string (if any) are read into the pipeline. The blocks specified in input records

are then read. If NUMBER is specified, each output record is prefixed with a 10-byte field

containing the block number of the record.

Input Record Format: When mdiskblk is reading blocks from a minidisk, input records

must contain blank-delimited ranges that specify the blocks to read from the minidisk. A

range that ends with an asterisk (for example, 1-*) extends to the end of the minidisk (or

to wherever it has been recomputed with FORMAT RECOMP); a range that specifies a block

number beyond the end of the minidisk attracts an error message and causes mdiskblk to

terminate.

When mdiskblk is writing blocks to the minidisk, input records must contain the blocks to

write prefixed by a 10-byte record number (in printable decimal). The input record length

must be ten more than the disk block size.

 Chapter 23. Inventory of Built-in Programs 487

 mdskfast

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: mdiskblk writes all output for an input record before consuming the input

record.

Premature Termination: mdiskblk terminates when it discovers that its output stream is

not connected.

Examples: To read the label record of the “S” minidisk on a count key data device:

 pipe mdiskblk s 3 | spec 5.6 1 | console
►MNT190
►Ready;

To read the top pointer block from a file (or the only data block, when the file contains

only one block):

/* Read top pointer */
'PIPE',

' literal PROFILE EXEC A ',
'|state noformat ',
'|spec 41.4 c2d 1',

 '|mdiskblk a',
'|> prof pointer a'

This example fails if the file consists entirely of binary zeros; CMS may elect not to write

any disk blocks for such a file.

 Notes:

1. The minidisk must be accessed even though the CMS file system is bypassed.

2. Specify the actual ending block number to read a complete minidisk, including the

part of the disk that is reserved for a nucleus.

mdskfast—Read, Create, or Append to a CMS File on a Mode
mdskfast connects the pipeline to a CMS file on a minidisk or in a Shared File System (SFS)

directory that has been accessed with a mode letter. When it is first in a pipeline, mdskfast

reads a file from disk; it treats a file that does not exist as one with no records (a null file).

When it is not first in a pipeline, mdskfast appends records to an existing file; a file is

created if one does not exist.

 CMS

: ►►──MDSKFAST──fn──ft──┬───────────────────────────┬──►◄
 │ │┌ ┐─Variable──────────
 └─fm──┼───────────────────┼─┘
 └ ┘ ─Fixed─ ──┬ ┬────────

└─number─┘

Type: Device driver.

488 CMS Pipelines User’s Guide and Reference

 mdskfast

Warning: mdskfast behaves differently when it is a first stage and when it is not a first

stage. Existing data can be overlaid when mdskfast is unintentionally run other than as a

first stage. To use mdskfast to read data into the pipeline at a position that is not a first

stage, specify mdskfast as the argument of an append or preface control. For example,

|append mdskfast ...| appends the data produced by mdskfast to the data on the

primary input stream.

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be read or appended to. A file mode or an asterisk is optional; the default is to

search all modes. If the file does not exist with the file name and the file type as entered,

the file name and the file type are translated to upper case and the search is retried. No

further arguments may be specified when mdskfast is first in a pipeline.

When mdskfast is not first in a pipeline, the file is created as A1 if no file mode (or an

asterisk) is specified and no file is found with the name and type given. The record format

and (for fixed format files) the record length are optional arguments. The default is the

characteristics of an existing file when appending, VARIABLE when a file is being created.

When the file exists, the specified record format must match the characteristics of the file.

Operation: When mdskfast is first in a pipeline, reading starts at the beginning of the file.

When mdskfast is not first in a pipeline, mdskfast appends records from the primary input

stream to an existing file. The file is closed before mdskfast terminates.

Streams Used: When mdskfast is first in a pipeline, it writes records to the primary output

stream.

When mdskfast is not first in a pipeline, it first appends to or creates the file from records

on the primary input stream that are not null; all input records are also copied to the

primary output stream. The primary output stream is severed at end-of-file on the primary

input stream. The first records of the file are then overwritten with any records from the

secondary input stream that are not null. All records from the secondary input stream are

copied to the secondary output stream after they are written to the file.

Warning: When the secondary input stream is connected, records read from it must have

the same length as the records they replace in the file, but this is not enforced by CMS for

variable record format files; CMS truncates a variable record format file without indication

of error if a record is replaced with one of different length, be that shorter or longer.

Record Delay: mdskfast strictly does not delay the record.

Premature Termination: When it is first in a pipeline, mdskfast terminates when it

discovers that its output stream is not connected.

See Also: >, >>, <, diskslow, diskback, diskrandom, diskupdate, members, and pdsdirect.

Examples: To count the number of words in a file which may or may not exist:

pipe mdskfast input file | count words | console

 Notes:

1. Use diskslow if mdskfast fails to operate.

2. Use diskslow to begin to read or write from a particular record; use diskrandom to

read records that are not sequential; use diskupdate to replace records in random order.

 Chapter 23. Inventory of Built-in Programs 489

 mdskback

3. Null input records are copied to the output (if connected), but not to the file; CMS files

cannot contain null records.

4. mdskfast can read or append to a file with a name in mixed case (if you enter the

exact file name and file type), but it creates only files with file names and file types in

upper case. Use command RENAME to change a file’s name or type to mixed case.

5. When it is first in a pipeline, mdskfast may obtain several records from CMS at a time.

When it is not first in a pipeline and it is it is processing records from the primary

input stream, mdskfast may deliver several records at a time to CMS to improve

performance. The file may not be in its eventual format while it is being created; it

should not be accessed (by any means) before mdskfast terminates. It is unspecified

how many records mdskfast buffers, as well as the conditions under which it does so.

6. Connect the secondary input stream when creating CMS libraries or packed files where

the first record has a pointer to the directory or contains the unpacked record length of

a packed file. The stage that generates the file (for instance, maclib) can write a

placeholder first record on the primary output stream initially; it then writes the real

first record to a stream connected to the secondary input stream of mdskfast when the

complete file has been processed and the location and size of the directory are known.

7. The fast interface to the file system is bypassed if the bit X'10' is on in offset X'3D'
of the FST that is exposed by the FSSTATE macro. Products that compress files on the

fly or in other ways intercept the file system macros should turn on this bit to ensure

that CMS Pipelines uses documented interfaces only.

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, mdskfast is transparent to return codes from CMS. Refer to the return codes for

the FSREAD macro and the FSWRITE macro in z/VM CMS Macros and Functions Reference,

SC24-6262, for a complete list of return codes. You are most likely to encounter these:

1 You do not have write authority to the file.

13 The disk is full.

16 Conflict when writing a buffer; this indicates that a file with the same name has

been created by another stage.

20 The file name or file type contains an invalid character.

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

mdskback—Read a CMS File from a Mode Backwards
mdskback reads the last record, then the second last record, and so on from a CMS file on a

minidisk or in a Shared File System (SFS) directory that has been accessed with a mode

letter.

 CMS

►►──MDSKBACK──fn──ft──┬────┬──►◄
└─fm─┘

Type: Device driver.

Placement: mdskback must be a first stage.

490 CMS Pipelines User’s Guide and Reference

 mdskrandom

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be read. A file mode or an asterisk is optional; the default is to search all

modes. If the file does not exist with the file name and the file type as entered, the file

name and the file type are translated to upper case and the search is retried.

Operation: The file is closed before mdskback terminates.

Premature Termination: mdskback terminates when it discovers that its output stream is

not connected.

See Also: <, disk, diskslow, members, and pdsdirect.

Examples: To read the last message from a notebook file and append it to the file being

edited:

! /* GETLAST XEDIT */
! arg fn .
! 'bottom'
! 'pipe mdskback' word(fn 'all', 1) 'notebook a',
! '| strtolabel /==========/',
! '| instore reverse',
! '| outstore',
! '| xedit'

 Notes:

1. For short files it can be more efficient to read the file with < and use instore REVERSE

followed by outstore to reverse the order of the records in a file.

2. mdskback may obtain several records from CMS at a time. It is unspecified how many

records mdskback buffers, as well as the conditions under which it does so.

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, mdskback is transparent to return codes from CMS. Refer to the return codes for

the FSREAD macro in z/VM CMS Macros and Functions Reference, SC24-6262, for a

complete list of return codes. You are most likely to encounter these:

20 The file name or file type contains an invalid character.

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

mdskrandom—Random Access a CMS File on a Mode
mdskrandom reads records in a specified order from a CMS file on a minidisk or in a

Shared File System (SFS) directory that has been accessed with a mode letter.

 CMS

►►──MDSKRANDom──fn──ft──►

►─ ──┬ ┬── ─►◄
 │ │┌ ┐───────────
 └─fm──┬─────────┬──┬────────┬───6┬───────┬┴─┘

└─BLOCKed─┘ └─NUMBER─┘ └ ─range─┘

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 491

 mdskrandom

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be read. A file mode or an asterisk is optional; the default is to search all

modes. Use an asterisk as a placeholder for the file mode when you wish to specify

further arguments and search all accessed modes. If the file does not exist with the file

name and the file type as entered, the file name and the file type are translated to upper

case and the search is retried.

Operation: The records whose numbers are specified in the argument are read into the

pipeline. Lines are then read from the input stream (if it is connected). Input records

contain blank-delimited words that specify ranges of records to read from the file. Output

records are written in the order specified in the argument string and input records. The file

is closed before mdskrandom terminates.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: mdskrandom does not delay the last record written for an input record.

An input record that contains a single number is not delayed. Nor is an input record that

contains a single range, when BLOCKED is specified.

Premature Termination: mdskrandom terminates when it discovers that its output stream

is not connected.

See Also: >, >>, <, disk, diskback, diskslow, members, and pdsdirect.

Examples: Both of these commands read records 7, 8, 3, and 1 from a file and write

them to the pipeline in that order:

pipe mdskrand profile exec * 7.2 3 1 |...
pipe literal 3 1 | mdskrand profile exec * 7.2 |...

 Notes:

1. RECNO is a synonym for NUMBER.

2. mdskrandom performs at least one read operation for the records in the arguments, if

specified, and one read operation for each input record. When BLOCKED is specified,

all records in a range are read in a single operation. It is unspecified how many

additional read operations it performs for records specified in the arguments or a

particular input record. This may be significant when the file is updated with

diskupdate. Ensure that no stage delays the record between stages reading and writing

a file being updated.

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, mdskrandom is transparent to return codes from CMS. Refer to the return codes

for the FSREAD macro in z/VM CMS Macros and Functions Reference, SC24-6262, for a

complete list of return codes. You are most likely to encounter these:

20 The file name or file type contains an invalid character.

BLOCKED Write a range of records from the file as a single output record; the file

must have fixed record format.

NUMBER Prefix the record number to the output record. The field is ten characters

wide; it contains the number with leading zeros suppressed.

range Further arguments are ranges of records to be read. Use an asterisk as

the end of a range to read to the end of the file.

492 CMS Pipelines User’s Guide and Reference

 mdskslow

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

mdskslow—Read, Append to, or Create a CMS File on a Mode
mdskslow connects the pipeline to a CMS file on a minidisk or in a Shared File System

(SFS) directory that has been accessed with a mode letter. Unlike mdskfast, mdskslow does

not try to read or write several records at a time.

When it is first in a pipeline, mdskslow reads a file from disk; it treats a file that does not

exist as one with no records (a null file). When it is not first in a pipeline, mdskslow

appends records to an existing file; a file is created if one does not exist.

Use mdskslow rather than mdskfast, <, >, or >>:

¹ If disk (or one of its other entry points) fails to operate.

¹ If a file is to be written unblocked. This may help to identify which record causes an

error (for example, a program check) in a previous or subsequent stage.

¹ When writing a file from several stages concurrently. (It may be a better idea,

however, to use faninany to gather the streams and write with a single stage.)

¹ To begin reading or writing from a particular record number.

 CMS

►►──MDSKSLOW──fn──ft──►

►─ ──┬ ┬─── ─►◄
 │ │┌ ┐─Variable──────────
 └─fm──┬──────────────┬──┼───────────────────┼─┘

 └─FROM──number─┘ └─Fixed──┬────────┬─┘
└─number─┘

Type: Device driver.

Warning: mdskslow behaves differently when it is a first stage and when it is not a first

stage. Existing data can be overlaid when mdskslow is unintentionally run other than as a

first stage. To use mdskslow to read data into the pipeline at a position that is not a first

stage, specify mdskslow as the argument of an append or preface control. For example,

|append mdskslow ...| appends the data produced by mdskslow to the data on the

primary input stream.

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be read or appended to. A file mode or an asterisk is optional; the default is to

search all modes. If the file does not exist with the file name and the file type as entered,

the file name and the file type are translated to upper case and the search is retried. The

keyword FROM is optional after the file mode; the following word specifies the number of

the first record to read or write; the defaults are to read from the beginning of the file and

to append after the last record of the file. No further arguments may be specified when

mdskslow is first in a pipeline.

When mdskslow is not first in a pipeline, the file is created as A1 if no file mode (or an

asterisk) is specified and no file is found with the name and type given. The record format

and (for fixed format files) the record length are optional arguments. The default is the

characteristics of an existing file when appending, VARIABLE when a file is being created.

When the file exists, the specified record format must match the characteristics of the file.

 Chapter 23. Inventory of Built-in Programs 493

 mdskslow

Operation: mdskslow is similar to disk, but it uses the FSREAD and FSWRITE interface to

the file system to read and write records, issuing a call for each record. The file is closed

before mdskslow terminates.

Streams Used: When mdskslow is first in a pipeline, it writes records to the primary

output stream.

When mdskslow is not first in a pipeline, it first appends to or creates the file from records

on the primary input stream that are not null; all input records are also copied to the

primary output stream. The primary output stream is severed at end-of-file on the primary

input stream. The first records of the file are then overwritten with any records from the

secondary input stream that are not null. All records from the secondary input stream are

copied to the secondary output stream after they are written to the file.

Warning: When the secondary input stream is connected, records read from it must have

the same length as the records they replace in the file, but this is not enforced by CMS for

variable record format files; CMS truncates a variable record format file without indication

of error if a record is replaced with one of different length, be that shorter or longer.

Record Delay: mdskslow strictly does not delay the record.

Premature Termination: When it is first in a pipeline, mdskslow terminates when it

discovers that its output stream is not connected.

See Also: >, >>, <, disk, diskback, diskrandom, diskupdate, members, and pdsdirect.

Examples: To replace parts of a file starting with record 713:

pipe < replace part | diskslow old file * from 713

 Notes:

1. Null input records are copied to the output (if connected), but not to the file; CMS files

cannot contain null records.

2. mdskslow does not buffer or block reads or writes to CMS files.

3. Connect the secondary input stream when creating CMS libraries or packed files where

the first record has a pointer to the directory or contains the unpacked record length of

a packed file. The stage that generates the file (for instance, maclib) can write a

placeholder first record on the primary output stream initially; it then writes the real

first record to a stream connected to the secondary input stream of mdskslow when the

complete file has been processed and the location and size of the directory are known.

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, mdskslow is transparent to return codes from CMS. Refer to the return codes for

the FSREAD macro and the FSWRITE macro in z/VM CMS Macros and Functions Reference,

SC24-6262, for a complete list of return codes. You are most likely to encounter these:

1 You do not have write authority to the file.

13 The disk is full.

16 Conflict when writing a buffer; this indicates that a file with the same name has

been created by another stage.

20 The file name or file type contains an invalid character.

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

494 CMS Pipelines User’s Guide and Reference

 mdskupdate

mdskupdate—Replace Records in a File on a Mode
mdskupdate replaces records in or appends records to a CMS file on a minidisk or in a

Shared File System (SFS) directory that has been accessed with a mode letter.

 CMS

►►──MDSKUPDAte──fn──ft──┬───────────────────────────┬──►◄
 │ │┌ ┐─Variable──────────
 └─fm──┼───────────────────┼─┘
 └ ┘ ─Fixed─ ──┬ ┬────────

└─number─┘

Type: Device driver.

Placement: mdskupdate must not be a first stage.

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be updated. A file mode or an asterisk is optional; the default is to search all

modes. If the file does not exist with the file name and the file type as entered, the file

name and the file type are translated to upper case and the search is retried. The record

format is optional after the file mode; a record length is optional for fixed record format

files.

Operation: Columns 11 through the end of the input record replace the contents of the

record in the file. The file is closed before mdskupdate terminates.

Input Record Format: The first 10 columns of an input record contain the number of the

record to replace in the file (the first record has number 1). The number does not need to

be aligned in the field. It is an error if an input record is shorter than 11 bytes.

The valid values for the record number depends on the record format of the file:

Fixed For fixed record format files, any number can be specified for the record

number (CMS creates a sparse file if required). An input record can contain

any number of consecutive logical records as a block. The block has a single

10-byte prefix containing the record number of the first logical record in the

block.

Variable When the file has variable record format, the record number must be at most

one larger than the number of records in the file at the time the record is

written to it. The data part of input records must have the same length as the

records they replace in the file, but this is not enforced by CMS for variable

record format files; CMS truncates a variable record format file without indi-

cation of error if a record is replaced with one of different length, be that

shorter or longer.

Streams Used: mdskupdate copies the input record (including the record number) to the

output after the file is updated with the record. must have the same length as the records

they replace in the file, but this is not enforced by CMS for variable record format files;

CMS truncates a variable record format file without indication of error if a record is

replaced with one of different length, be that shorter or longer.

Record Delay: mdskupdate strictly does not delay the record.

See Also: >, >>, disk, and diskslow.

 Chapter 23. Inventory of Built-in Programs 495

 members

Examples: To replace records in a file with a particular key:

/* Update file */
'PIPE',

' diskslow input file',
'| spec number 1 1-* next',
'| locate 11.3 /abc/',
'| spec 1-* 1 /def/ 11',
'| mdskupdate input file'

Return Codes: In addition to the return codes associated with CMS Pipelines error

messages, mdskupdate is transparent to return codes from CMS. Refer to the return codes

for the FSWRITE macro in z/VM CMS Macros and Functions Reference, SC24-6262, for a

complete list of return codes. You are most likely to encounter these:

1 You do not have write authority to the file.

13 The disk is full.

16 Conflict when writing a buffer; this indicates that a file with the same name has

been created by another stage.

20 The file name or file type contains an invalid character.

24 The file mode is not valid.

25 Insufficient storage for CMS to allocate buffers.

members—Extract Members from a Partitioned Data Set
members reads members from a library into the pipeline. The member names may be

specified as arguments, or they may be provided in input records, or both.

On CMS, members supports only a MACLIB, TXTLIB, or a similar file that has fixed record

format and record length 80. The library must be on a minidisk or in a Shared File

System (SFS) directory that has been accessed with a mode letter. The file must exist.

 ┌ ┐──────────
►►──MEMBERs─ ──┬ ┬─┤ CMS-file ├──── ───6 ┴┬ ┬────── ─►◄

└─┤ MVS-dataset ├─┘ └ ─word─┘

CMS-file:

├──fn──ft──┬──────┬──┤
└─fm───(1) ┘

MVS-dataset:

├──┬─word───────────────┬──┤
├─word(generation)───┤
├─'word'─────────────┤
├─'word(generation)'─┤
└─DDname=word────────┘

Note:
1 The file mode is not optional when additional arguments are specified.

Type: Device driver.

 Syntax Description:

CMS Specify as blank-delimited words the file name and the file type of the file to be

read. A file mode or an asterisk is optional; the default is to search all modes. If

the file does not exist with the file name and the file type as entered, the file name

496 CMS Pipelines User’s Guide and Reference

 members

and the file type are translated to upper case and the search is retried. The file must

be fixed record format and record length 80.

MVS Enclose a fully qualified data set name in single quotes; the trailing quote is optional.

Specify the DSNAME without quotes to have the prefix, if any, applied. Append

parentheses containing a signed number to specify a relative generation of a data set

that is a member of a generation data group.

To read members of an already allocated data set, specify the keyword DDNAME=

followed by the DDNAME already allocated. The minimum abbreviation is DD=.

! A blank-delimited list of member names is optional after the data set identifier.

! Operation: members writes the contents of the specified members to the primary output

! stream in the order specified. The members are specified by the names in the argument

! string, if any, followed by the input records.

Each member is looked up in the library directory. If the member does not exist as

written, the search is retried with the member name translated to upper case.

A null record is written after each member; on CMS, trailing LDT and end of member

records are discarded.

In a CMS TXTLIB, members finds only the “main” name of a member (the first CSECT);

additional entry points are not found.

Diagnostic messages are issued for members that are not present in the library; the argu-

ment and all input records are processed before returning with return code 150 when one

or more members are not found.

The file is closed before members terminates.

Input Record Format: Blank-delimited lists of members to read from the library.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: members writes all output for an input record before consuming the input

record.

Commit Level: members starts on commit level -2. members starts on commit level -1 on

CMS. It reads the directory of the library and then commits to level 0. members starts on

commit level -2000000000 on z/OS. It opens the DCB and then commits to level 0.

Premature Termination: members terminates when it discovers that its output stream is

not connected.

See Also: listispf and listpds.

Examples: To extract a member of the system macro library and remove comment lines:

 Chapter 23. Inventory of Built-in Programs 497

 merge

! pipe members dmsom maclib * diag | nfind .*| chop 72 | console
! ► MACRO
! ►&LBL DIAG &R1,&R2,&CODE
! ►&LBL DC 0H'0',X'83',AL.4(&R1,&R2),Y(&CODE)
! ► MEND
! ►
! ►Ready;

 Notes:

1. On CMS, xtract (with synonym extract) performs the same operation as members on a

TXTLIB; it is retained for compatibility with the past.

2. On CMS a library can contain members that have the same name. When the library

has more than one member by a particular name, it is unspecified which one members

reads.

3. On z/OS, members is a synonym for readpds.

 merge—Merge Streams
merge merges multiple input streams into a single output stream, interleaving the records

! according to the contents of their key fields. The input streams should already be sorted in

the specified order to produce a sorted output stream; this is not verified.

 ┌ ┐─NOPAD─────
►►──MERGE─ ──┼ ┼─────────── ──┬ ┬───────── ─►
 └─PAD──xorc─┘ └─ANYcase─┘

 ┌ ┐─Ascending─────────────────────────────────────
►─ ──┼ ┼─── ─►◄

 ├ ┤─Descending────────────────────────────────────
 │ │┌ ┐───
 │ ││ │┌ ┐─Ascending──

└──6─inputRange──┼────────────┼──┬───────────┬─┴─┘
 └ ┘─Descending─ ├ ┤─NOPAD─────
 └─PAD──xorc─┘

 Type: Sorter.

Syntax Description: Write the keywords PAD or NOPAD in front of the sort fields to

specify the default for all fields; the default is NOPAD. The keyword NOPAD specifies that

key fields that are partially present must have the same length to be considered equal; this

is the default. The keyword PAD specifies a pad character that is used to extend the shorter

of two key fields.

The keyword ANYCASE specifies that case is to be ignored when comparing fields; the

default is to respect case. Up to 10 sort ranges can be specified. The default is to merge

ascending on the complete record. The ordering can be specified for each field; it is

ascending by default. Specify padding after the ordering to treat a field differently than

other fields.

Operation: Records with identical keys on two or more streams are written with the

record from the lowest numbered stream first. This ensures that a sort/merge can be made

stable so that multiple sorts of a file give the same result.

498 CMS Pipelines User’s Guide and Reference

 mqsc

Streams Used: Up to 10 input streams (numbered 0 through 9) are supported. Output is

written only to the primary output stream.

Record Delay: merge consumes an input record after it has been copied to the output. In

this sense it does not delay the record, but it clearly allows a record from one input stream

to overtake the record on another one.

Commit Level: merge starts on commit level -2. It verifies that the only connected output

stream is the primary one and then commits to 0.

Premature Termination: merge terminates when it discovers that its primary output

stream is not connected.

 See Also: sort.

Examples: To merge two files that are already sorted:

pipe (end ?) < first file | m: merge | > big file a ? < second file | m:

 Notes:

1. Large files can be sorted in parts to disk work files and subsequently merged with

merge.

2. In early versions of CMS Pipelines merge was used to insert a marker in a sorted

stream of records so tolabel and frlabel could be used to emulate “less than” or

“greater than” comparison to select records. In most cases pick can simplify such a

pipeline without the need to sort the records.

3. Unless ANYCASE is specified, key fields are compared as character data using the IBM

System/360 collating sequence.

4. Use spec (or a REXX program) for example to put a sort key in front of the record if

you wish, for instance, to use a numeric field that is not aligned to the right within a

column range. Such a temporary sort key can be removed with substr for example

after the records are written by merge.

5. Use xlate to change the collating sequence of the file.

: 6. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

. mqsc—Issue Commands to a WebSphere MQ Queue Manager

. mqsc sends requests to a queue manager’s command queue and writes the response to the

. primary output stream.

. z/OS .

. ►►──MQSC──word──┬────────┬──►◄

. └ ┘─SQUISH─

. Type: Device driver.

. Syntax Description:

 Chapter 23. Inventory of Built-in Programs 499

 nfind

. Input Record Format: The input should contain MQ Command Script commands, as

. defined in the MQ Commands Reference manual.

. Output Record Format: The output contains the response from the command processor.

. In general, there will be one line for each object processed.

. Streams Used: Records are read from the primary input stream and written to the primary

. output stream. Null and blank input records are discarded.

. Record Delay: mqsc does not delay the record.

. Commit Level: mqsc starts on commit level -20. It connects to the queue manager if

. TSO Pipelines is not already connected to a queue manager. It then opens the queues it

. needs and and then commits to level 0.

. Premature Termination: mqsc terminates when it discovers that its output stream is not

. connected.

. Examples:

. pipe literal display qmgr|mqsc MQA1|cons

. ►CSQM409I +MQA1 QMNAME(MQA1)

. ►CSQ9022I +MQA1 CSQMDRTS ' DISPLAY QMGR' NORMAL COMPLETION

. ►READY

. Notes:

. 1. Multiple instances of mqsc may run concurrently as long as they all refer to the same

. queue manager.

. 2. Some commands, such as PING CHANNEL are asynchronous; their response indicates

. that the operation has been started, but the result of the operation is unknown.

. word. Specify the subsystem ID of the queue manager to access (four charac-

. ters). Case is respected in the first operand; most z/OS subsystems have

. upper case IDs.

. SQUISH. Replace multiple blanks in the response with a single one.

nfind—Select Lines by XEDIT NFind Logic
nfind selects records that do not begin with the specified string. It discards records that

begin with the specified string. XEDIT rules for NFIND apply.

►►──NFIND─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant.

Operation: Input records are matched the same way XEDIT matches text in an NFIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

500 CMS Pipelines User’s Guide and Reference

 nlocate

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

nfind copies records that do not match to the primary output stream, or discards them if the

primary output stream is not connected. It discards records that match or copies them to

the secondary output stream if it is connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. nfind strictly does not delay the record.

Commit Level: nfind starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: nfind terminates when it discovers that no output stream is

connected.

 Converse Operation: find.

See Also: nlocate and strnfind.

Examples: To discard lines with 'a' in column 1 and 'c' in column 3:

 pipe literal abc axc axy xyc | split | nfind a c| console
►axy
►xyc
►Ready;

 Notes:

1. notfind is a synonym for nfind.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

nlocate—Select Lines that Do Not Contain a String
nlocate discards records that contain a specified string or are at least as long as a specified

length. It selects records that do not contain the specified string or that are shorter than the

specified length.

►►──NLOCATE─ ──┬ ┬───────── ──┬ ┬─────── ──┬ ┬───────────── ──┬ ┬─────── ─►
. └─ANYcase─┘ ├─MIXED─┤ └─inputRanges─┘ └─ANYof─┘
. ├ ┤─ONEs──
. └ ┘─ZEROs─

►─ ──┬ ┬───────────────── ─►◄
└─delimitedString─┘

 Chapter 23. Inventory of Built-in Programs 501

 nlocate

Type: Selection stage.

 Syntax Description:

No input range, a single input range, or one to ten input ranges in parentheses can be

specified. The default is to search the complete input record.

The characters to search for are specified as a delimited string. A null string is assumed

when the delimited string is omitted.

Operation: nlocate copies records that have no occurrence of the specified string within

any specified input range (or that are shorter than the beginning of the input range that is

first in the record) to the primary output stream, or discards them if the primary output

stream is not connected. Thus, nlocate always selects null records. nlocate discards

records in which the specified string occurs in a specified input range or copies them to the

secondary output stream if it is connected.

A null string matches any record. In this case, records that are selected are shorter than

the first position of the input range closest to the beginning of the record. This is used to

select records shorter than a given length; “nlocate 4|” selects records of length 3 or

less. Records of a particular length can be selected with a cascade of nlocate and locate.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. nlocate strictly does not delay the record.

Commit Level: nlocate starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: nlocate terminates when it discovers that no output stream is

connected.

 Converse Operation: locate.

 See Also: nfind.

Examples: To select null records:

...| nlocate |...

ANYCASE Ignore case when comparing.

. MIXED

. ONES

. ZEROS

. The delimited string is to be used as a mask to test for all ones, mixed,

. or all zero bits. Only bit positions that correspond to one bits in the

! mask are tested; bit positions corresponding to zero bits in the mask are

. ignored. The string must not be null. Records are discarded if the

. delimited string satisfies the condition somewhere within the specified

. ranges.

. ANYOF cannot be specified with one of these keywords.

ANYOF The delimited string specifies an enumerated set of characters rather than

a string of characters. nlocate discards records that contain at least one

of the enumerated characters within the specified input ranges.

502 CMS Pipelines User’s Guide and Reference

 noeofback ¹ not

 Notes:

1. Use a cascade of nlocate filters when looking for records not containing several

strings.

2. notlocate is a synonym for nlocate.

: 3. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

. 4. Specifying MIXED and a mask that contains less than two one bits in any one byte will

. cause all records to be selected.

noeofback—Pass Records and Ignore End-of-file on Output
noeofback passes records as long as its output stream is connected. When its output is at

end-of-file, it consumes the remaining input. Thus, noeofback propagates end-of-file

forwards, but not backwards.

►►──NOEOFBACK──►◄

 Type: Filter.

Record Delay: noeofback strictly does not delay the record.

Examples: To ensure that all records up to a target are consumed:

'callpipe (end ?)',
'?*:', /* Input records */
'|t: locate' target, /* Look for target */
'|g: gate', /* Shut the door when it is there */
'?t:', /* Records not the target */
'|g:', /* Until the door gets shut */
'|noeofback', /* Don't propagate EOF back */
'|*:' /* Pass along */

If noeofback were omitted, end-of-file would propagate backwards through the gate stage

and the subroutine would terminate before the first record containing the target. This, in

turn, could cause the caller to malfunction.

 Notes:

1. noteofback is a synonym for noeofback.

not—Run Stage with Output Streams Inverted
not runs the stage specified (most often a selection stage) with its output streams inverted.

The primary output stream from the stage is connected to the secondary output stream

from not (if it is defined). The secondary output stream from the stage is connected to the

primary output stream from not. The stage must support two output streams.

►►──NOT──word──┬────────┬──►◄
└─string─┘

 Type: Control.

 Chapter 23. Inventory of Built-in Programs 503

 not

Syntax Description: Specify the name of the selection stage to run and its argument

string.

Operation: The specified stage is run in a subroutine pipeline.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. The primary input stream is connected to the primary input stream of

the stage. The primary output stream from the stage is connected to not’s secondary

output stream if one is defined. The secondary output stream from the stage is connected

to not’s primary output stream.

Record Delay: not does not add delay.

Commit Level: not starts on commit level -2. It verifies that the secondary input stream

is not connected. not does not commit to 0; the stage called must do so.

Premature Termination: not terminates when the called stage terminates.

 Examples:

To select the part of a record after the first period:

 pipe literal abc.def | not chop . | console
►.def
►Ready;

Using not can simplify the pipeline topology when the primary output stream of a stage is

not needed. The following outputs the unique records without the need to sort:

 pipe literal x a b z b x y|split|not lookup autoadd | console
►x
►a
►b
►z
►y
►Ready;

 Notes:

1. When both output streams are connected and the stage that is subject to not produces a

record on both streams for each input record, the output records are produced in the

reverse order of how they would be produced without the not qualifier.

For example, not synchronise and not chop both write a record to the secondary output

stream before they write one to the primary output stream.

In general, dropping not into an existing pipeline in front of synchronise or similar can

lead to a stall. It can lead to unexpected output when using stages that are sensitive to

timing, such as juxtapose.

2. Many selection stages there is already a built-in that performs the inverse selection.

For example, use nfind instead of not find.

3. The argument string to not is passed through the pipeline specification parser only

once (when the scanner processes the not stage), unlike the argument strings for

append and preface.

. 4. End-of-file is propagated from the streams of not to the corresponding stream of the

. specified selection stage.

504 CMS Pipelines User’s Guide and Reference

 notinside

Return Codes: If not finds no errors, the return code is the one received from the

selection stage.

notinside—Select Records Not between Labels
notinside discards groups of records whose first record follows a record that begins with a

specified string. The end of each group can be specified by a count of records to discard,

or as a string that must be at the beginning of the first record after the group.

►►──NOTINSIDe──┬─────────┬──delimitedString──┬─number──────────┬──►◄
└─ANYcase─┘ └─delimitedString─┘

Type: Selection stage.

Syntax Description: A keyword is optional. Two arguments are required. The first one

is a delimited string. The second argument is a number or a delimited string. The number

must be zero or positive.

Operation: notinside discards groups of records or copies them to the secondary output

stream if it is connected. Each group begins with the record after one that matches the

first specified string. When the second argument is a number, the group has as many

records as specified (or it extends to end-of-file). When the second argument is a string,

the group ends with the record before the next record that matches the second specified

string (or at end-of-file).

When ANYCASE is specified, notinside compares fields without regard to case. By default,

case is respected. notinside copies records before, between, and after the selected groups

to the primary output stream, or discards them if the primary output stream is not

connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. notinside strictly does not delay the record.

Commit Level: notinside starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: notinside terminates when it discovers that no output stream is

connected.

 Converse Operation: inside.

See Also: between and outside.

Examples: To remove lines inside example tags, while retaining the tags:

... | notinside /:xmp./ /:exmp./ | ...

 Notes:

1. ninside is a synonym for notinside.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

 Chapter 23. Inventory of Built-in Programs 505

 nucext

! 3. pick can do what notinside does and much more.

nucext—Call a Nucleus Extension
nucext resolves an entry point from a nucleus extension. The entry point can be:

¹ An executable machine instruction (not X'00'), which is then invoked as a stage.

¹ A program descriptor, which describes the stage to run.

¹ A pipeline command, which is run as a subroutine pipeline.

¹ An entry point table, from which the first word of the argument string is resolved.

¹ A look up routine, which resolves the first word of the argument string.

nucext is often used to test a compiled REXX program or an Assembler program before it is

generated into a filter package.

 CMS

►►──NUCEXT──word──┬────────┬──►◄
└─string─┘

Type: Arcane look up routine.

Syntax Description: Leading blanks are ignored; trailing blanks are significant. A word

is required; additional arguments are allowed. The first word is the name of a nucleus

extension to invoke. The name is translated to upper case if no extension is found with

the name specified.

Operation: The optional string is passed to the program as the argument string.

Record Delay: nucext does not read or write records. The delay depends on the program

being run.

 Notes:

1. The nucleus extension is invoked as a filter with BAL. When the entry point is an

executable instruction (not X'00'), general register 2 points to the SCBLOCK describing

the nucleus extension. The nucleus extension is invoked enabled and in user key irre-

spective of the flags in the SCBLOCK; this is likely to cause a protection exception for

a SYSTEM nucleus extension.

: 2. The program must be capable of being invoked in 31-bit addressing mode.

3. The nucleus extension must not use the CMSRET macro to return.

4. The nucleus extension must be able to distinguish between invocations from CMS

Pipelines and invocations as a CMS command.

5. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

506 CMS Pipelines User’s Guide and Reference

 optcdj

optcdj—Generate Table Reference Character (TRC)
optcdj makes records that have been prepared for a line printer suitable for printing on an

IBM 3800, an IBM 3820, or a similar device. It inserts Table Reference Characters

(which specify the font to use) after the carriage control character in the first position of

each record. The input stream is assumed to contain descriptor records produced by

overstr.

►►──OPTCDJ─ ──┬ ┬────── ─►◄
└─word─┘

 Type: Filter.

Syntax Description: A word is optional. If specified, it must be eight characters listing

the TRCs for the eight categories of output listed below. The valid TRCs are 0, 1, 2, and 3;

this is not enforced by optcdj. The default is '00001111'.

Operation: Input records with the two rightmost bits on in the carriage control character

(B'xxxx xx11') represent immediate carriage movement; the carriage control character is

passed to the output; additional data in the record are discarded. Records with data (that

is, carriage control of the form B'xxxx xx01') that are not preceded by a descriptor record

are assumed to contain plain characters; the third byte of the argument string (or the

default '0') is inserted after the carriage control character, and the record is copied to the

output (that is, a descriptor of X'02' is assumed for each non-blank column of an input

record that is not preceded by a descriptor record).

Descriptor records and their accompanying data records are processed to assign a Table

Reference Character to each position, using the descriptor value as an index into the argu-

ment string. Records are written for each Table Reference Character required. Line(s)

with underscores are written for positions with underscored characters. The last record

written for an input record has the carriage control character from the input record; other

record(s) have X'01' carriage control (write no space).

Input Record Format: X'00' in the first column indicates a descriptor record in the

format produced by overstr. Each column of the descriptor record specifies the high-

lighting and underscoring of the corresponding column in the data record that follows the

descriptor record. These descriptor values are used:

X'00' The position is blank.

X'01' The position contains an underscore. (An underscored blank.)

X'02' The position contains a character that is neither blank nor underscore.

X'03' The position contains an underscored character.

X'04' The position contains a highlighted blank.

X'05' The position contains a highlighted underscore.

X'06' The position contains a highlighted (overprinted) character.

X'07' The position contains a highlighted and underscored character.

Records without X'00' in column 1 must begin with a machine carriage control character;

data are from column 2 onward. Records that are not preceded by a descriptor record are

neither underscored nor highlighted (though they can contain underscore characters).

Output Record Format: Descriptor records are not written to the output. Multiple output

records are written for an input record that is preceded by a descriptor record. The first

position is a machine carriage control character (it is never zero). The second position is a

 Chapter 23. Inventory of Built-in Programs 507

 outside

Table Reference Character. Data to print begin in column 3; the record extends to the last

position requiring that particular TRC. Blanks (X'40') indicate columns that are not

subject to the TRC for the record.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: optcdj delays records that contain X'00' in column 1. It is unspecified if

it delays other records. Application must not rely on optcdj to delay the other records.

Premature Termination: optcdj terminates when it discovers that its output stream is not

connected.

See Also: c14to38 and overstr.

Examples: To print a document formatted for an IBM 1403 on an IBM 3800 printer or

an all points addressable (APA) printer under control of Print Services Facility (PSF):

cp spool 00e fcb s8 char it12 ib12
cp tag dev 00e mvs system 0 OPTCD=J
pipe < $doc script | c14to38 | overstr | optcdj | printmc
cp close 00e

 Notes:

1. Input records are truncated after 256 bytes without indication of error.

2. optcdj owes its name to the z/OS JCL option to indicate that a file contains Table

Reference Characters: OPTCD=J.

outside—Select Records Not between Labels
outside discards groups of records whose first record begins with a specified string. The

end of each group can be specified by a count of records to discard, or as a string that

must be at the beginning of the last record.

►►──OUTSIDE──┬─────────┬──delimitedString──┬─number──────────┬──►◄
└─ANYcase─┘ └─delimitedString─┘

Type: Selection stage.

Syntax Description: A keyword is optional. Two arguments are required. The first one

is a delimited string. The second argument is a number or a delimited string. The number

must be 2 or larger.

Operation: outside discards groups of records or copies them to the secondary output

stream if it is connected. Each group begins with a record that matches the first specified

string. When the second argument is a number, the group has as many records as

specified (or it extends to end-of-file). When the second argument is a string, the group

ends with the next record that matches the second specified string (or at end-of-file).

When ANYCASE is specified, outside compares fields without regard to case. By default,

case is respected. outside copies records before, between, and after the selected groups to

the primary output stream, or discards them if the primary output stream is not connected.

508 CMS Pipelines User’s Guide and Reference

 outstore

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. outside strictly does not delay the record.

Commit Level: outside starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: outside terminates when it discovers that no output stream is

connected.

 Converse Operation: between.

See Also: inside and notinside.

Examples: To remove two lines of heading on each page from a report file with ASA

carriage control in the first column.

...| mctoasa | outside /1/ 2 |...

 Notes:

: 1. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

! 2. pick can do what outside does and much more.

outstore—Unload a File from a storage Buffer
outstore writes the contents of buffered files created by instore into the pipeline.

►►──OUTSTORE─ ──┬ ┬─────────── ─►◄
: └: ─ALET──hex─┘

Type: Arcane filter.

 Syntax Description:

: ALET must be specified when outstore is first in the pipeline; no operands are allowed

: when outstore is not first in a pipeline.

: Operation: When ALET is specified, the file is extracted from the specified data space.

: Otherwise input records are read and the file is extracted from those descriptors. Such

: descriptors may or may not indicate that the file is in a data space.

Input Record Format: Records describe a file which is written to the output a record at a

time. The input must be in the format produced by instore.

Streams Used: Records are read from the primary input stream and written to the primary

output stream.

: Record Delay: outstore does not delay the last record written for an input record.

: ALET: The file is extracted from the specified data space.

 Chapter 23. Inventory of Built-in Programs 509

 overlay

: Commit Level: outstore starts on commit level -2. It verifies the contents of the specified

: data space and then commits to level 0.

Premature Termination: outstore terminates when it discovers that its output stream is

not connected.

 Converse Operation: instore.

Examples: To reverse the order of the lines of a file:

...| instore reverse | outstore |...

overlay—Overlay Data from Input Streams
overlay combines a record from each connected input stream into a single output record.

Each position in the output record contains the character from the highest numbered input

stream where the corresponding position is present and not equal to the specified pad char-

acter.

 ┌ ┐─BLANK─
►►──OVERlay─ ──┼ ┼─────── ─►◄
 └ ─xorc─ ─┘

 Type: Gateway.

Syntax Description: A single character or two hex digits is optional to specify the pad

character; the default is the blank character.

Streams Used: Records are read from all defined and connected input streams beginning

with stream 0; output is written to the primary output stream only.

Record Delay: An input record is consumed as soon as it has been loaded into the output

buffer; no input record is held while the output record is being written. Thus, overlay has

the potential to delay one record on all input streams.

Commit Level: overlay starts on commit level -2. It verifies that the primary output

stream is the only connected output stream and then commits to level 0.

Premature Termination: overlay terminates when it discovers that its primary output

stream is not connected.

See Also: spec and synchronise.

Examples: To flush the contents of lines left and right, with a forward slash marking the

point to insert blanks:

 pipe (end ?) literal the left/the right | c: chop before / | ...
... o: overlay | console ? c: | spec 2-* 1.50 right | o:

►the left the right
►Ready;

Note that the pipeline does not stall, because overlay can delay the record on the primary

input stream.

510 CMS Pipelines User’s Guide and Reference

 overstr

The following shows how characters from the record on the primary input stream are

replaced by non-blank characters from the secondary input stream, but are retained at posi-

tions where the record on the secondary input stream has a blank character.

 pipe (end ?) strliteral /abc fgh/ | o:overlay | ...
... console ? strliteral /1 34 789/ | o:

►1b34 f789
►Ready;

overstr—Process Overstruck Lines
overstr combines overstruck lines and creates descriptor records that specify the under-

scoring and highlighting of the data. The output is suitable for processing by buildscr and

optcdj, in preparation for being displayed on a 3270 terminal or printed on an IBM 3820

printer, or similar.

►►──OVERSTR──►◄

Type: Arcane filter.

Operation: A set of overstruck lines is merged into a single data record preceded by a

descriptor record. In the merged data record, each position contains the character from the

last line in the set of overprinted lines where the corresponding position is neither blank

nor an underscore. A character position is considered overprinted when the position is

neither blank nor underscore in two or more records of the set.

Lines not part of a set of overstruck lines are copied to the output without inspection. It is

verified that all records have valid machine carriage control characters.

Input Record Format: The input records have machine carriage control characters in the

first column. The input can contain sets of records that would be overstruck (printed on

the same line) when sent to a line printer. A set of overstruck lines consists of one or

more lines with X'01' carriage control (write no space) followed by a line with some

other carriage control character.

Output Record Format: X'00' in the first column indicates a descriptor record. Each

column of the descriptor record specifies the highlighting and underscoring of the corre-

sponding column in the data record that follows the descriptor record. These descriptor

values are used:

X'00' The position is blank.

X'01' The position contains an underscore. (An underscored blank.)

X'02' The position contains a character that is neither blank nor underscore.

X'03' The position contains an underscored character.

X'04' Cannot occur.

X'05' The position contains a highlighted underscore.

X'06' The position contains a highlighted (overprinted) character.

X'07' The position contains a highlighted and underscored character.

Each descriptor record is followed by a data record. The first character in a data record is

the machine carriage control character from the last record of the corresponding set of

overstruck input records. Data are from column 2 onward.

 Chapter 23. Inventory of Built-in Programs 511

 pack

Data records that are not preceded by a descriptor record contain no underscored or high-

lighted data (though they can contain underscore characters).

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: overstr delays records that contain X'01' in column 1. It is unspecified if

it delays other records. Application must not rely on overstr to delay the other records.

Premature Termination: overstr terminates when it discovers that its output stream is not

connected.

See Also: c14to38, optcdj, buildscr, and xpndhi.

Examples: To print a document formatted for an IBM 1403 on an IBM 3800 printer or

an all points addressable (APA) printer under control of Print Services Facility (PSF):

cp spool 00e fcb s8 char it12 ib12
cp tag dev 00e mvs system 0 OPTCD=J
pipe < $doc script | c14to38 | overstr | optcdj | printmc
cp close 00e

 Notes:

1. Use asatomc to convert from ASA to machine carriage control.

2. Use c14to38 prior to overstr to change overstrikes of different characters to a single

character.

3. overstr is designed to process the output from c14to38 and deliver its output (possibly

via xpndhi) to buildscr and optcdj.

4. For compatibility with the past, delover invokes this subroutine pipeline:

'callpipe *: | overstr | nfind' '00'x || '| *:'

The resulting records have more data than the (rather naive) original delover.

5. No output record has X'01' carriage control.

pack—Pack Records as Done by XEDIT and COPYFILE
pack writes 1024-byte records containing an encoded version of the input data. The output

has fewer bytes than the input when there are many runs of repeated characters.

►►──PACK─ ──┬ ┬────────────────────────── ─►◄
 │ │┌ ┐─Variable─
 └ ┘ ──┴ ┴─Fixed──── ──┬ ┬────────

└─number─┘

 Type: Filter.

Syntax Description: Two arguments are optional, a keyword and a number. They specify

the file format and the maximum record length for the input. The default is variable

record format with infinite record length. When FIXED is specified, the default record

length is the length of the first input record.

512 CMS Pipelines User’s Guide and Reference

 pack

Operation: The file is packed in 1024-byte records in the format used by COPYFILE and

XEDIT. The last record is padded with binary zeros. When packing fixed record format,

all input records must have the same length, which must be equal to the second argument,

if it is specified.

The first record of a packed file contains an indication of the record length of the file; this

can be set based on the first input record when packing a fixed file. When a record length

is specified for a variable length file, no input record may be longer than this length.

When VARIABLE is specified without a maximum record length (or no arguments are

specified) and the packed file contains more than one record, pack is not able to build a

correct first record at the time it must be written to the output stream. Instead, pack writes

a record that indicates an infinite record length (2G-1). The correct first record for the file

is written to the secondary output stream after the entire file has been processed. The

secondary output stream should be connected to the secondary input stream of disk to write

the packed file to disk properly.

Warning: When the output of pack with variable record format is written to a file and

! the first record is not written correctly, the file can not be unpacked with XEDIT or

! COPYFILE (which give a message to the effect that the file is too big). pack can still

unpack such a file.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null input records are discarded. Output is written to the primary

output stream. One record is written to the secondary output stream when a variable

format file is packed, if an explicit record length is not specified and more than one record

is written to the primary output stream. The primary output stream is severed before pack

writes to the secondary output stream.

Record Delay: pack delays input records as required to build an output record. The delay

is unspecified.

Commit Level: pack starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: pack terminates when it discovers that its primary output stream

is not connected.

 Converse Operation: unpack.

 Examples:

To pack a file that does not have records longer than 256:

pipe < some file|pack v 256|> packed file a fixed

If you do not know an upper limit on the record length, more care is required if the

resultant file is larger than one disk block and you wish to read it with the CMS COPYFILE

command or load it into XEDIT:

pipe (end ?)< some file|p: pack|d: > packed file a fixed?p:|d:

You must connect the secondary output stream from pack to the secondary input stream of

> to write the correct first record at end-of-file, when the length of the longest record is

known.

 Chapter 23. Inventory of Built-in Programs 513

 pad

 Notes:

1. When writing a packed file to disk, always specify fixed record format to the disk

driver writing the file, even when the unpacked file is variable record format. XEDIT

does not recognise a packed file when the record format is V.

2. pack can produce more bytes of output than it reads input. This is likely to happen

when the data has random characters, for example in an encrypted file or a module

file.

pad—Expand Short Records
pad expands records that are shorter than a specified length; a specified pad character is

added to the beginning or the end of the record, as specified by a keyword. Records that

are longer than the specified minimum length are passed on unmodified.

 ┌ ┐─Right─ ┌ ┐─BLANK─
►►──PAD──┼───────┼──┬────────────────────┬──number──┼───────┼──►◄

. └─Left──┘ └. ─┬────────┬──MODULO─┘. └─xorc──┘

. └─number─┘

 Type: Filter.

. Syntax Description: Two keywords are optional. At least one number is required.

By default, padding is on the right with blank characters.

Record Delay: pad strictly does not delay the record.

Premature Termination: pad terminates when it discovers that its output stream is not

connected.

 Converse Operation: strip.

LEFT Pad the record on the left. Thus, the text in the output record is aligned

to the right.

RIGHT Pad the record on the right. That is, add padding to the end of the

record.

. number. If it is specified, the first number must be smaller than the second. This

. number is called the offset. It must be followed by the keyword

. MODULO. The default offset is zero.

. MODULO. The following number specifies not the absolute record length, but the

. modulo. The output record length is padded to the smallest multiple of

. the modulo plus the offset that is equal to or larger than the length of

. the input record.

number Specify the minimum record length when MODULO is omitted. The

number must be zero or positive. When MODULO is specified, the

number must be positive.

xorc The pad character is optional after the number; it may be specified as a

single character or a two-character hex code. The default pad character

is the blank.

514 CMS Pipelines User’s Guide and Reference

 parcel

Examples: To create a fixed record format file from console input:

pipe console | pad 80 | chop 80 | > input file a fixed

parcel—Parcel Input Stream Into Records
parcel treats its primary input stream as a stream of bytes, which is parcelled into records

of the length specified by numbers read from the secondary input stream.

►►──PARCEL──►◄

 Type: Filter.

: Operation: The byte stream on the primary input stream is reformatted into records of

: lengths as specified by the contents of the secondary input stream. If the secondary output

: stream becomes disconnected, parcel acts like take n BYTES, where the n is the sum of the

: numbers read from the secondary input stream. That is, at end-of-file of the secondary

: input stream, any remaining record from the primary input stream is passed to the

: secondary output stream and the primary input stream is then shorted to the secondary

: output stream.

: Input Record Format: Blank-delimited numbers.

: Streams Used: The secondary input stream must be defined and connected. The

: secondary output stream is optional.

Record Delay: parcel has the potential to delay one record. Output records that contain

data from a single input record are not delayed, but are written as a burst. If an output

record contains precisely the data in an input record, it is strictly not delayed. When both

the records on the two input streams are emptied at the same time (that is, the last number

in a record from the secondary input stream results in an output record that ends with the

last byte of the record on the primary input stream), the record on the primary input stream

is consumed before the one on the secondary input stream.

Commit Level: parcel starts on commit level -2. It verifies that the secondary output

stream is not connected and then commits to level 0.

Premature Termination: parcel terminates when it discovers that its primary output

: stream is not connected. It also stops when the primary input stream reaches end-of-file or

: the secondary input stream reaches end-of-file and the secondary output stream is not

: connected. Message 72 is issued when the primary input stream reaches end-of-file before

: the secondary input stream if there is an unfinished record for the primary output stream;

the last record read from the secondary input stream is not consumed. When the

: secondary input stream reaches end-of-file and the secondary output stream is not

: connected, parcel terminates immediately; the last record read from the primary input

stream is not consumed when any data from it remain to be passed to the output.

 See Also: fblock.

Examples: To generate a Christmas tree:

 Chapter 23. Inventory of Built-in Programs 515

 pause

 xmastree
► *
► ***
► *****
► *******
► *********
► *
► *
► *****
►Ready;

/* Produce a Christmas tree. */
Signal on novalue
Address COMMAND
'PIPE (end ? name XMASTREE)',

'?strliteral /*/', /* Get a star */
'|dup *', /* Infinite supply */
'|p: parcel', /* Parcel them out */
'|spec 1-* 1.20 centre', /* Centre */

 '|console',
'?literal 1 3 5 7 9 1 1 5', /* "magic" numbers */

 '|p:'
Exit RC

 Notes:

: 1. Use fblock to format a byte stream into records of equal length.

pause—Signal a Pause Event
If the pipeline specification has been issued by runpipe EVENTS, pause signals a pause

event for each input record. This event may be recognised by the stage that processes the

output from the runpipe stage. The input record is then passed to the output.

►►──PAUSE──►◄

Type: Arcane device driver.

Placement: pause must not be a first stage.

Operation: A pause event is signalled for each input record when the pipeline was issued

by runpipe EVENTS. The record is then passed unmodified to the output.

pause shorts the input to the output when it is running in a pipeline set that was not issued

by runpipe EVENTS.

Record Delay: pause strictly does not delay the record.

Premature Termination: pause terminates when it discovers that its output stream is not

connected.

516 CMS Pipelines User’s Guide and Reference

 pdsdirect

pdsdirect—Write Directory Information from a CMS Simulated Partitioned
Data Set

pdsdirect writes the first record and directory records from a CMS library on a minidisk or

in a Shared File System (SFS) directory that has been accessed with a mode letter. The file

must exist.

 CMS

►►──PDSdirect──fn──ft──┬────┬──►◄
└─fm─┘

Type: Arcane device driver.

Placement: pdsdirect must be a first stage.

Syntax Description: Specify as blank-delimited words the file name and the file type of

the file to be read. A file mode or an asterisk is optional; the default is to search all

modes. If the file does not exist with the file name and the file type as entered, the file

name and the file type are translated to upper case and the search is retried.

Operation: The file is closed before pdsdirect terminates.

Output Record Format: The first record written is record 1 of the file; it contains infor-

mation about the type, position, and size of the PDS directory. The following records are

the directory of the simulated PDS. The format of the directory records depends on the

particular type of library.

Premature Termination: pdsdirect terminates when it discovers that its output stream is

not connected.

See Also: listpds and members.

Examples: To write a list of members in a library:

/* MAPPDS REXX: Map a new-format MACLIB/TXTLIB */
signal on novalue
parse arg fn ft fm .
'callpipe (name MAPPDS)',

'|pdsdirect' fn ft fm , /* Read directory */
'|drop 1', /* Drop pointer record */

 '|fblock 16', /* Deblock */
'|nfind' '00'x , /* Deleted entries */
'|spec 1.8 1 13.4 c2d next', /* Format entry */

 '|*:' /* Output */
exit RC

 Notes:

1. Use listpds rather than pdsdirect to obtain list of members in a PDS, one member to a

record.

2. Use members to obtain members of simulated partitioned data sets that are fixed

record format and record length 80, for instance TXTLIB and MACLIB.

3. pdsdirect reads CMS files; it does not read the directory of a PDS on an OS volume.

 Chapter 23. Inventory of Built-in Programs 517

 pick

pick—Select Lines that Satisfy a Relation
: pick compares fields in the record with constants or other fields. The comparison can be

. of character data or numbers. It selects the record if the comparisons satisfy specified

: relations. It discards the record if the relation does not hold.

! pick can also partition the file, selecting records from one that satisfies particular relations

: to one that satisfies other particular relations, or for a number of records.

 ┌ ┐─NOPAD─────
►►──PICK─ ──┼ ┼─────────── ──┬ ┬───────── ─►
 └─PAD──xorc─┘ └─ANYcase─┘

: ►─ ──┬ ┬: ──┬ ┬───────────────────── ─┤ List ├─ ─►◄
: │ │├ ┤: ──┬ ┬─FROM─ ──┬ ┬───────
: │ ││ │└ ┘─TO─── └ ┘─AFTER─
: │ │└ ┘─WHILE───────────────
: └ ┘─┤ Fromto ├────────────────────────

Fromto:

: ├──FROM─ ──┬ ┬─────── ─┤ List ├─ ──┬ ┬: ─TO─ ──┬ ┬─────── ─┤ List ├─ ─┤
: └ ┘─AFTER─ │ │└ ┘─AFTER─
: └: ─COUNT──number─: ──────────┘

List:

: ├─ ──┬ ┬─────────────────── ─┤ Test ├──┤
: └ ┘: ─┤ List ├─ ──┬ ┬─AND─
: └ ┘─OR──

Test:

: ├──┤ RangeString ├─ ──┬ ┬: ─┤ NonEqualOp ├───(1) ─┤ RangeString ├─ ─┤
: └ ┘: ─┤ EqualOp ├───(1) ─┤ CommaList ├──────

Commalist:

: ┌ ┐─,───────────────
: ├─ ───6 ┴─┤ RangeString ├─ ─┤

RangeString:

├──┬─inputRange──────┬──┤
├─delimitedString─┤

: └─number+─────────┘

Note:
1 The operators are defined in the text below

Type: Selection stage.

 Syntax Description:

: AFTER: Optional immediately after FROM or TO. When specified, the selection

: action is performed after the matching record; when omitted it is

: performed before the matching record.

: AND: Match only when both comparisons match. AND has higher precedence

: than OR. Specify parentheses to group OR comparisons. You may use

: an ampersand (&) or even two (&&) instead of the keyword.

ANYCASE Case is to be ignored when comparing strings; the default is to respect

case.

518 CMS Pipelines User’s Guide and Reference

 pick

A comparison is specified by two operands with an operator in between. The left side can

contain one operand only. The right hand side may contain a list of operands separated by

commas for the two equal operators; other operators accept one operand only. Each

operand may be:

: ¹ An inputRange. This can designate a manifest constant, in which case the compar-

: ison must be numeric.

¹ A delimitedString, which specifies a constant, being it a number for numeric

comparison or a true string.

: ¹ A number followed immediately by a plus (+) without blanks. (Automatic field

: length.) The number specifies the beginning column. The length used will be the

: smaller of the length of the other operand and the length of the rest of the record from

: the specified column. You can specify only one of the operands as an auto field

: length. The left operand cannot have auto field length when the right hand side is a

: list of operands separated by commas.

. The relational operators for strings are adopted from the REXX “strict” relational operators.

: pick ignores the member type in character comparison.

: COUNT: Specified in conjunction with FROM. When a record is matched by the

: FROM clause, the specified number of records are passed to the primary

: output stream.

: FROM: Select from the matching record. Records before the matching record

: are rejected. When specified without TO or COUNT, the balance of the

: file is selected. Otherwise records are selected for the specified count or

: up to one that is selected by the TO clause.

NOPAD Do not pad the shorter operand when comparing strings. When PAD is

omitted, the unpaired positions in the longer string are considered to

compare high. (Thus, the shorter string is logically extended with a

value that compares low against X'00'.)

: OR: Match when either comparison matches. You may use a vertical bar (|)

: if you use a different stage separator, escape it with an escape character,

: or use two (||) instead of the keyword.

PAD Specify the padding character to use when comparing strings. The

shorter of the two strings is extended on the right with the specified pad

character for purposes of comparison.

: WHILE: Select the first part of the file until, but not including, a record does not

: match. Reject the balance of the file.

== Strictly equal. The two strings must be equal byte for byte except for case

: folding and padding. The right hand side may be specified as a list of oper-

: ands separated by commas; the relation holds when at least one of the oper-

: ands compare equal with the first operand. The inverse of ¬==.

¬== Not strictly equal. The inverse of ==.

<< Strictly less than. After a (possibly null) run of bytes that are the same in the

two strings, the left string must contain a character that is lower in the

collating sequence than the corresponding character in the right hand string.

The inverse of >>=.

<<= Strictly less than or equal. The inverse of >>.

 Chapter 23. Inventory of Built-in Programs 519

 pick

: When using relational operators for numeric comparisons of data that have no type associ-

: ated, the fields or constants must conform to the syntax described in “Floating point

: Numbers” on page 741. For typed members of structures the input members are converted

: automatically for types D, F, P, R, and U. Note that literal numbers must also be specified

. as a delimitedString to distinguish them from columns. The numeric relational opera-

. tors are:

Operation: pick copies records that satisfy the specified relation to the primary output

stream, or discards them if the primary output stream is not connected. It discards records

that do not satisfy the relation or copies them to the secondary output stream if it is

connected.

: ¹ When neither FROM, TO, nor WHILE is specified, pick selects lines that match the list of

: comparisons and discards those that do not.

: ¹ When FROM, TO, or WHILE is specified pick partitions the file at the first line that

: matches (or not):

: – FROM rejects the part of the file up to the first matching record. When AFTER is

: specified, the matching record is rejected; otherwise it is selected. The remainder

: of the file is selected.

: – TO selects the part of the file up to the first matching record. When AFTER is

: specified, the matching record is selected; otherwise it is rejected. The remainder

: of the file is rejected.

: – WHILE selects records until, but not including, the first one that does not match; it

: then rejects the remainder of the file.

: ¹ When COUNT or TO is specified with FROM, pick discards records up to the first record

: that is matched by the FROM list. It then selects either the number of records specified

: by COUNT or up to the next record that matches the TO list.

>> Strictly greater than. After a (possibly null) run of bytes that are the same in

the two strings, the left string must contain a character that is higher in the

collating sequence than the corresponding character in the right hand string.

The inverse of <<=.

>>= Strictly greater than or equal. The inverse of <<.

: IN: Match when all characters of the first operand are present in the second one or

: the first operand is null.

: NOTIN: Inverse of IN.

. =: Equal. The two numbers must have the same sign and be exactly equal. The

: right hand side may be specified as a list of operands separated by commas;

: the relation holds when at least one of the operands compare equal with the

: first operand. The inverse of ¬=.

. ¬=. Not equal. The inverse of =.

. <! Less than. The inverse of >=.

. <=. Less than or equal. The inverse of >.

. >. Greater than. The inverse of <=.

. >=. Greater than or equal. The inverse of <.

520 CMS Pipelines User’s Guide and Reference

 pick

: When TO is specified without AFTER, the matching record is not written immediately;

: instead the FROM clause is retested against the record to see whether it starts a new

: range to be selected. This has effect when the TO clause is a subset of the FROM

: clause.

: Having selected the specified records, pick then goes back to rejecting records until

: another one is matched by the FROM list.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. pick strictly does not delay the record.

: Commit Level: pick starts on commit level -2. It parses the argument list, then verifies

that the secondary input stream is not connected, and then commits to level 0.

Premature Termination: pick terminates when it discovers that no output stream is

connected.

 See Also: all.

Examples: Assuming that input records contain a timestamp in the first four columns,

select the records processed earlier than 8 a.m:

... | pick 1.4 << "0800" | ...

: To select records within an interval; for example, to select the records timestamped from 8

am. to but not including 4 p.m., (15:59 on a 24-hour clock):

: ... | pick 1.4 >>= "0800" and 1.4 <<= "1559" | ...

: This could also have been achieved with a cascade of two pick stages.

: To select records outside an interval:

: ... | pick 1.4 << "0800" or 1.4 >>= "1600" | ...

: This cannot be accomplished with a cascade of pick stages; a multistream topology would

: be required.

pick can compare two fields in a record; for example, to select records that represent files

that need updating. Assuming that input records contain one ISO-format timestamp

(YYYYMMDDHHMMSS) in columns 23 to 36 and another one in columns 57 to 70, select

those records where the first timestamp is later than the second:

... | pick 23.14 >> 57.14 | ...

To select records where the second word is equal to the fourth word. This also selects

records that contain one word only because both operands would then be null.

... | pick word 2 == word 4 | ...

Two ways to select records that contain at least two words:

... | pick word 2 ¬== // | ...
: ... | locate word 2| ...

. To select records where the second word contains a number that is greater than the number

. in columns 37 to 41:

 Chapter 23. Inventory of Built-in Programs 521

 pick

. ... | pick word 2 > 37.5 | ...

. To select records where the second word is greater than the constant 37.5:

. ... | pick word 2 > /37.5/ | ...

: Consider a stacked COPY file where members are separated by a *COPY record. To select

: all members beginning with A:

: ...|pick from 1+ == /*COPY / and substr 1 of w2 == /A/
: to 1+ == /*COPY /|...

 Notes:

. 1. \== and /== are synonyms for ¬==. \= and /= are synonyms for ¬=. The not sign

. is often mapped by terminal emulators to the caret (‸).

2. You can specify a literal as both the first and the second string. All records are then

either selected or rejected, depending on the static relation between the two constants.

: 3. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

. 4. Input ranges for numeric compare are converted in the same way done by spec for a

. field that has a field identifier specified.

: 5. The typical use of IN would be to test whether a column contains one of a set of

: characters.

: 6. The only sensible use of parentheses is to enclose OR items in conjunction with AND,

: but redundant parentheses are accepted.

: 7. The following two invocations of pick select the same set of records:

: ...|pick w6 == /take/ & (1 == /a/ or 1 == /b/ or 1 == /c/)|...
: ...|pick w6 == /take/ and 1 == /a/, /b/, /c/|...

: The motivation for this construct is laziness, but with a complex left hand input range

: there may be some measurable performance increase with large files.

: 8. As an example, these are equivalent:

: ...|between /abc/ /def/|...
: ...|pick from 1+ == /abc/ to after 1+ == /def/|...

: As are these:

: ...|inside /abc/ /def/|...
: ...|pick from after 1+ == /abc/ to 1+ == /def/|...

: Other variations of AFTER are available that cannot be implemented with any of the

: between family of selection stages.

: 9. The between family of stages is made redundant by the enhancements introduced in

: CMS Pipelines 1.1.11/1D, but they are scanned faster because their syntax is simpler.

: Runtime performance should be equivalent.

: 10. An inputRange must be terminated with a blank (unlike a delimitedString).

: ...|pick 1 == 2, 3|...

: Will give a rather misleading diagnostic. The following is syntactically valid, but

: unlikely to do what you want, because it will not select anything as the second

: operand is six bytes literal delimited by the two “2” digits and no padding is specified:

: ...|pick 1 == 2, 3, 12|...

522 CMS Pipelines User’s Guide and Reference

 pipcmd

pipcmd—Issue Pipeline Commands
pipcmd issues input records as pipeline commands. Typically, the input consists of

CALLPIPE pipeline commands that are built from data by a spec stage earlier in the pipe-

line.

►►──PIPCMD─ ──┬ ┬────────────────── ─►◄
 └ ┘ ─STOP─ ──┬ ┬─ALLEOF─
 ├ ┤─ANYEOF─

└─number─┘

 Type: Control.

 Syntax Description:

Operation: With no keywords specified, the equivalent REXX program is:

/* PIPCMD */
retcode=0
trace off
do until RC¬=0

'peekto command' /* Read a line */
if RC<0 then leave /* Stall? */
if RC>0 then exit retcode /* EOF? */
'' command /* Issue the pipeline command */
if RC<0 then leave /* Real trouble */
retcode=max(retcode, RC) /* Make worst return code */
'readto' /* Discard the input line */

end
exit RC

Note that an input line is not consumed before the corresponding command is complete. A

record is discarded by the READTO if the command consumes records from the primary

input stream.

Input Record Format: Input lines may contain any pipeline command described in

Chapter 25, “Pipeline Commands” on page 750 except for BEGOUTPUT, GETRANGE,

NOCOMMIT, PEEKTO, READTO, SCANRANGE, SCANSTRING, and STREAMSTATE ALL. The

most useful one is no doubt CALLPIPE.

Streams Used: pipcmd reads commands from the primary input stream; it does not write

output, but the commands may connect to any defined stream. The input record is

consumed after the command completes.

A pipeline command should not refer to the primary input stream. If it does, the first line

it sees is the one issued as the command; a line is discarded from the primary input stream

STOP Inspect the status of the output streams after each input line has been

processed.

ANYEOF Terminate as soon as any stream is at end-of-file.

ALLEOF Terminate as soon as all streams are at end-of-file.

number Terminate when the specified number of streams are at end-of-file.

 Chapter 23. Inventory of Built-in Programs 523

 pipcmd

when the command completes (this line is the line containing the command when the

primary input stream has not been read by the command).

Premature Termination: pipcmd terminates as soon as a negative return code is received.

It also terminates when STOP is specified and the specified number of output streams are at

end-of-file. The corresponding input record is consumed.

See Also: getfiles and runpipe.

Examples: To process the contents of the files whose names match the pattern specified

by the argument string, in this case looking for the string “Dana”:

/*---------------------------*/
/* Get the contents of files */
/*---------------------------*/
parse arg fn ft fm .
'PIPE (name PIPCMD)',

' command LISTFILE' fn ft fm,
'|spec', /* Generate subroutine */

'/callpipe (stagesep ?) / 1', /* Command */
'/?< / next 1-* next', /* Prefix read of file */
'/?spec ,/ next w1 next /, 1.8 1-* 10/ next', /* Add fn */
'/?*:/ next', /* Connect to caller's stream */

 '|pipcmd',
'|locate 10-* /Dana/',

 '|cons'

For each file found by LISTFILE, the first spec stage builds a subroutine pipeline with a

question mark as the stage separator. The subroutine pipeline reads the file (<) and puts

the file name in columns one through eight (the second spec). Thus, the first spec stage

generates another one of the form spec ,fn, 1.8 1-* 10. The CALLPIPE pipeline

commands are issued by pipcmd to read the files and prefix the file name to each record of

a file. The locate stage selects records containing the string. The result is displayed on

the terminal.

A variation on this approach is showing with juxtapose.

To test whether a particular program is built in:

pipe literal resolve insert | pipcmd

The program is not built in when the return code is zero. (A nonzero return code repres-

ents the entry point address in storage.)

The RESOLVE option in filterpack provides a more flexible way to test for built-in

programs.

Return Codes: When a negative return code is received on a pipeline command, the

return code from pipcmd is that negative return code. When the return code is zero or

positive, all input records have been processed; the return code is the maximum of the

return codes received.

524 CMS Pipelines User’s Guide and Reference

 pipestop ¹ polish

pipestop—Terminate Stages Waiting for an External Event
pipestop posts with code X'3F' all ECBs in the pipeline set that are being waited on by

other stages. This forces the stages to terminate.

pipestop also sets an indication in the pipeline set that will prevent further waiting for

external events. This action is irreversible.

►►──PIPESTOP──►◄

: Type: Arcane control.

: Placement: pipestop must not be a first stage.

Operation: When an input record arrives, pipestop posts all ECBs that are being waited

upon by other stages. The completion code indicates that the stages should terminate.

pipestop then passes the input record to the output if it is connected.

Streams Used: pipestop passes the input to the output.

Record Delay: pipestop strictly does not delay the record.

Examples: To terminate processing after one minute:

pipe (end ?) ... ? literal +60 | delay | pipestop

Note that the first pipeline (not shown) should also have a pipestop stage to terminate the

delay set up here.

Alternatively, you can use gate to shut down the timer:

pipe (end ?) ... | g: gate ? literal +60 | delay | g: | pipestop

Either pass a record to gate when you wish to turn off the delay, or use hole to make gate

wait for end-of-file:

| pipe (end ?) ... | take last | g: gate ? literal +60 | delay | g: | pipestop

 Notes:

! 1. To terminate one particular waiting stage rather than all waiting stages, design the

! topology such that a gate cuts off the input or output of the waiting stage. The asyn-

! chronous stage terminates when it finds the input or output disconnected.

: polish—Reverse Polish Expression Parser
: Parse expressions and generate the reverse polish list of operations that must be performed

: to evaluate each expression.

:

: ►►──POLISH─ ──┬ ┬─HEXadecimal─ ─►◄
: └ ┘─ASSEMBLEr───

: Type: Filter.

: Syntax Description: A keyword is required.

 Chapter 23. Inventory of Built-in Programs 525

 polish

: Operation: polish parses each input line according to the specified grammar. It then

: writes to the primary output stream a list of actions to perform. The list is ended by a null

: line. Output lines contain a word specifying the action type and other data that an evalu-

: ator would need to evaluate the expression.

: The expression result will be the single item on the evaluation stack when the evaluator

: reaches a null input record (assuming, of course, that a correct evaluator is supplied).

: Input Record Format: For the hexadecimal parser:

: Blanks are ignored between terms, but you cannot have blanks in constants, identifiers, or

: the composite operators (//). In particular, blanks are allowed between an identifier and the

: left parenthesis that opens the argument list, and even in conjunction with periods that

: qualify an identifier.

: Input lines should conform to this syntax::

: Expression:

: ├─ ──┬ ┬─┤ SignedTerm ├───────────────────────────────────── ─┤
: └ ┘: ─┤ Expression ├──┤ DyadicOperator ├──┤ Expression ├─

: SignedTerm:

: ├─ ──┬ ┬─┤ SuffixedTerm ├─────────────────── ─┤
: └ ┘: ─┤ PrefixOperator ├──┤ SignedTerm ├─

: SuffixedTerm:

: ├─ ──┬ ┬─┤ Term ├───────────────────────────── ─┤
: └ ┘: ─┤ SuffixedTerm ├──┤ SuffixOperator ├─

: Term:

: ├─ ──┬ ┬─┤ Constant ├──────────── ─┤
: ├ ┤─┤ QuotedString ├────────
: ├ ┤─┤ QualifiedIdentifier ├─
: ├ ┤─┤ Function ├────────────
: └ ┘: ─(──┤ Expression ├──)────

: Function:

: ┌ ┐─,────────────────
: ├──identifier──(───6┬────────────────┬┴──)──┤
: └ ┘: ─┤ Expression ├─

: QualifiedIdentifier:

: ├──┬──────────────────────────────────┬──identifier──┤
: └: ─┬───────────────┬──identifier──.─┘
: └: ─identifier──.─┘

: Dyadic Operators: The following table lists the dyadic operators in order of increasing

: precedence; that is, the last one (binary AND) binds closer than any of the others. All

: operators in a row have the same precedence. All dyadic operators are left associative,

: that is, a+b+c is equivalent to (a+b)+c

: HEXADECIMAL: Parse according to the hexadecimal grammar, which can implement a

: hexadecimal pocket calculator.

: ASSEMBLER

: ASM
: Parse according to a grammar that is compatible with Assembler

: expressions, such as, the first operand of the EQU instruction.

526 CMS Pipelines User’s Guide and Reference

 polish

: Prefix Operators: The prefix operators are plus (+) and minus (-). They bind tighter than

: dyadic operators, but not as close as suffix operators.

: Suffix Operators: The suffix operator is the question mark (?). Nothing binds closer than

: the question mark (unless you consider the period in a qualified identifier to be an oper-

: ator; it binds even closer).

: For the Assembler parser:

: The input record can contain blanks only in character self-defining terms. The parser is

: caseless, that is, upper case and lower case are equivalent as far as the parser is concerned,

: but the output respects the case of the input.

: Input lines should conform to this syntax::

: Expression:

: ├─ ──┬ ┬─┤ SignedTerm ├───────────────────────────────────── ─┤
: └ ┘: ─┤ Expression ├──┤ DyadicOperator ├──┤ Expression ├─

: SignedTerm:

: ├─ ──┬ ┬─┤ Term ├─────────────────────────── ─┤
: └ ┘: ─┤ PrefixOperator ├──┤ SignedTerm ├─

: Term:

: ├─ ──┬ ┬─┤ Constant ├──────────── ─┤
: ├ ┤─┤ SelfDefiningTerm ├────
: ├ ┤─┤ QualifiedIdentifier ├─
: ├ ┤─┤ Attribute ├───────────
: ├ ┤─*───────────────────────
: └ ┘: ─(──┤ Expression ├──)────

: QualifiedIdentifier:

: Figure 393. Dyadic Operators

: Operator: Type: Suggested interpretation

: + -: Additive: Addition and subtraction

: * / % //: Multiplicative: Multiplication, division, integer division,

: remainder.

: |: OR: Bitwise OR

: &: AND: Bitwise AND

: Figure 394. Prefix Operators

: Operator: Type: Suggested interpretation

: + -: Prefix: Prefix plus might cause truncation to a 31-bit

: number.

: Figure 395. Suffix Operators

: Operator: Type: Suggested interpretation

: ?: Suffix: Indirection, for example to fetch the contents

: of a specified location in virtual storage.

 Chapter 23. Inventory of Built-in Programs 527

 polish

: ├──┬───────────────┬──identifier──┤
: └: ─identifier──.─┘

: Attribute:

: ├──┬─d─┬──'──identifier──┤
: ├ ┤─i─
: ├ ┤─k─
: ├ ┤─l─
: ├ ┤─n─
: ├ ┤─o─
: ├ ┤─s─
: └ ┘─t─

: SelfDefiningTerm:

: ┌ ┐───────
: ├──┬─b'──6─bit─┴─'──┬──┤
: │ │┌ ┐────────
: ├─c'──6─char─┴─'─┤
: │ │┌ ┐───────
: └─x'──6─hex─┴─'──┘

: Dyadic Operators: The following table lists the dyadic operators in order of increasing

: precedence; that is, the last ones (multiply and divide) binds closer than any of the others.

: All operators in a row have the same precedence. All dyadic operators are left associative,

: that is, a+b+c is equivalent to (a+b)+c

: Prefix Operators: The prefix operators are plus (+) and minus (-). They bind tighter than

: dyadic operators.

: Output Record Format: The output records contain actions to perform. The first word

: contains a keyword that specifies the action; additional data is present depending on the

: particular keyword.

: Figure 396. Dyadic Operators

: Operator: Type: Suggested interpretation

: + -: Additive: Addition and subtraction

: * /: Multiplicative: Multiplication, integer division.

: Figure 397. Prefix Operators

: Operator: Type: Suggested interpretation

: + -: Prefix: Prefix minus should return the negative of the

: term.

: Figure 398 (Page 1 of 2). Hexadecimal Parser

: Keyword: Word 2+: Suggested Evaluator Action

: constant: The second word contains the

: numeric constant ("abc" is a numeric

: constant with the HEX parser).

: Push the literal value on the evalu-

: ation stack.

528 CMS Pipelines User’s Guide and Reference

 polish

: Figure 398 (Page 2 of 2). Hexadecimal Parser

: Keyword: Word 2+: Suggested Evaluator Action

: string: The second word to the end of the

: line contains a quoted string,

: including the quotes. Both single

: and double quotes are supported for

: the string begin character.

: Push the literal value on the evalu-

: ation stack.

: identifier: An identifier (that does not also

: parse as a hexadecimal constant for

: the HEX parser). For HEX parsers,

: the character set is the same as for

: the High Level Assembler. Case is

: preserved in identifiers, but your

: evaluator may, of course, decide to

: fold the names.

: Push the value of the identifier on

: the evaluation stack.

: qualifier: A qualified identifier. Word two

: through the end of the line contains

: qualifiers and the identifier without

: periods in the reverse order they

: appeared in the expression.

: Resolve the qualified identifier and

: push its value on the evaluation

: stack. The two levels of qualifier

: may be interpreted as module and

: control section.

: function: Call a function. The second word

: contains the function name. The

: third word contains the number of

: arguments to pop off the stack.

: Pop the specified number of values

: from the evaluation stack, perform

: the function, and push the result.

: monadic: A monadic operator. The second

: word contains the operator. This

: includes prefix and suffix operators;

: the parser has determined the correct

: order to apply them; thus the evalu-

: ator need not distinguish between the

: two types.

: Apply the operator to the top of the

: evaluation stack and replace it with

: the result.

: binary: A dyadic operator. The second word

: contains the operator.

: Pop two values from the evaluation

: stack, apply the operator to the

: values, and push the result.

Figure 399 (Page 1 of 2). Assembler Parser

Keyword Word 2-3 Suggested Evaluator Action

: constant: The second word contains the

: numeric constant. Self-defining

: terms are converted by the parser to

: their signed decimal equivalent.

: Push the literal value on the evalu-

: ation stack.

: identifier: An identifier. Case preserved in

: identifiers, but your evaluator should

: be caseless.

: The line for a qualified identifier

: contains the qualifier as the third

: word.

: Push the value of the identifier on

: the evaluation stack.

: attribute: The attribute character, a blank, and

: the identifier.

: Push the value of the attribute of the

: identifier on the evaluation stack.

: loctr: *: Push the current location counter on

: the evaluation stack.

 Chapter 23. Inventory of Built-in Programs 529

 polish

: Record Delay: polish does not delay the record.

: Premature Termination: polish terminates when it discovers that its output stream is not

: connected.

: Examples:

: A fairly simple example:

: pipe literal max (g1+10, deadbeaf&30)|polish hex | console
: ►identifier g1
: ►constant 10
: ►binary +
: ►constant deadbeaf
: ►constant 30
: ►binary &
: ►function max 2
: ►
: ►Ready;

: Using qualifiers:

: pipe literal . v - z+x.y?|polish hex | console
: ►qualifier v
: ►identifier z
: ►binary -
: ►qualifier y x
: ►monadic ?
: ►binary +
: ►
: ►Ready;

: The expression below might compute the address of the field pointed to by the fullword

: twelve bytes after the address pointed to by fullword addressed by the contents of register

: four (depending on the evaluator, of course):

: (r4?+c)?

: If register 4 contains X'10' and storage location X'10' contains X'20', the result could

: be the contents of location X'2C'.

: The Assembler parser is simpler in comparison:

: Figure 399 (Page 2 of 2). Assembler Parser

: Keyword: Word 2-3: Suggested Evaluator Action

: monadic: A monadic operator. The second

: word contains the operator.

: Apply the operator to the top of the

: evaluation stack.

: binary: A dyadic operator. The second word

: contains the operator.

: Pop two values from the evaluation

: stack, apply the operator to the

: values, and push the result. The

: result of division by 0 is 0 irrespec-

: tive of the dividend.

530 CMS Pipelines User’s Guide and Reference

 predselect

: pipe strliteral /*-dsect/ | polish assemble | console
: ►loctr *
: ►identifier dsect
: ►binary -
: ►
: ►Ready;

: Notes:

: 1. A sample evaluator for the hexadecimal parser can be found at

: http://vm.marist.edu/%7epipeline/evalx.exec

: 2. You cannot modify the underlying grammar. In particular, the precedence of the oper-

: ators cannot be changed. You may implement a subset of the grammar by, for

: example, rejecting particular operators at evaluation time.

: 3. ASM is a synonym for ASSEMBLER.

predselect—Control Destructive Test of Records
predselect is designed to assist in building complex selection stages where input records

may be tested destructively. That is, input records may be changed or rejected. Testing

must not delay the record. The primary input stream should contain the original file;

derivative records are fed to the secondary input stream or the tertiary input stream.

►►──PREDSELect──►◄

 Type: Gateway.

Operation: predselect reads records from whichever input stream has one available. It

stores the last record read from the primary input stream in a buffer (replacing any

previous content) and then consumes the record to release the producer (which is typically

fanout). Records read from the secondary input stream and the tertiary input stream are

discarded; they merely control which stream should receive the stored record read from the

primary input stream. A record on the secondary input stream causes the buffered record

to be written to the primary output stream; a record on the tertiary input stream causes the

buffered record to be written to the secondary output stream. Once the buffered record is

written, subsequent input records on the secondary input stream or the tertiary input stream

are discarded until a record is read from the primary input stream.

When a record arrives on the primary input stream without intervening records on the two

other input streams, the previous record is in effect discarded.

Streams Used: Two streams must be defined; up to three streams may be defined.

predselect propagates end-of-file between the secondary input stream and the primary

output stream; and it propagates end-of-file between the tertiary input stream and the

secondary output stream.

Record Delay: predselect has the potential to delay one record. predselect delays the

record by any delay the record may have incurred before it reaches the secondary input

stream or the tertiary input stream; predselect does not add delay as long as all input

streams are connected and a record on the primary input stream is followed by a record on

the secondary input stream or the tertiary input stream.

 Chapter 23. Inventory of Built-in Programs 531

http://vm.marist.edu/%7epipeline/evalx.exec

 preface

Commit Level: predselect starts on commit level -2. It verifies that the tertiary output

stream is not connected and then commits to level 0.

Premature Termination: predselect terminates when it discovers that no output stream is

connected. It terminates as soon as its primary input stream is severed.

 See Also: juxtapose.

Examples: FINDANY REXX performs caseless selection using a find stage:

/* FINDANY REXX -- FIND ignoring case */
Signal on novalue
parse upper arg args
'maxstream output'
If RC=0

Then out1='' /* No secondary output */
Else out1='|*.output.1:' /* Route rejected records here */

'callpipe (end ? name ANYCASE)',
'|*:', /* Input here */
'|o: fanout', /* Keep a pristine copy */
'|p: predselect', /* Control selection */
'|*.output.0:', /* Those selected */
'?o:', /* Copy of the input record */
'|xlate upper', /* Make it uppercase */
'|s: find' args ||, /* Perform the selection */
'|p:', /* Pass to control */
out1, /* maybe write output */

'?s:', /* Rejected records */
'|p:' /* To rejection input */

exit RC

 pipe literal another one | literal A record | findany a | console
►A record
►another one
►Ready;

The argument string to the find stage is made upper case, because it operates on a copy of

the file that is upper case.

Note that the output from the example would be the same if the last pipeline (feeding the

secondary output stream from the selection stage to the tertiary input stream to predselect)

were omitted. Including this pipeline ensures that the subroutine as a whole never delays

the record; without this connection, discarded records would be delayed until the next

record became available on the primary input stream.

: This example is contrived because strfind ANYCASE performs the same function cheaper.

preface—Put Output from a Device Driver before Data on the Primary Input
Stream

preface runs a device driver to generate output which is passed to preface’s output; preface

then passes all its input records to the output.

►►──PREFACE──string──►◄

 Type: Control.

532 CMS Pipelines User’s Guide and Reference

 preface

Syntax Description: The argument string is normally a single stage, but any pipeline

specification that can be suffixed by a connector (|*:) is acceptable (see usage note 1).

Operation: The string is issued as a subroutine pipeline with CALLPIPE, using the default

stage separator (|), double quotes as the escape character ("), and the backward slash as

the end character (\). The beginning of the pipeline is unconnected. The end of the

pipeline is connected to preface’s primary output stream. (Do not write an explicit

connector.) The input records are passed to the output after the CALLPIPE pipeline

command has completed.

In the subroutine pipeline, device drivers that reference REXX variables (rexxvars, stem,

var, and varload) reach the EXECCOMM environments in effect for preface.

Streams Used: The string that specifies the subroutine pipeline can refer to all defined

streams except for the primary output stream (which will be connected to the end of the

subroutine pipeline by preface). The primary input stream is shorted to the primary output

stream when the subroutine pipeline ends.

Record Delay: preface delays the input file by the number of records that are prefaced.

These records are written before the input file is read.

Commit Level: preface starts on commit level -1. The subroutine pipeline must commit

to 0 if it generates output.

Premature Termination: preface terminates if the CALLPIPE pipeline command gives a

nonzero return code. The subroutine pipeline may or may not have committed to 0 before

the error is discovered.

See Also: append and literal.

Examples: To put the contents of a variable before the stream being built:

...| preface var firstline |...

 Notes:

1. The argument string may contain stage separators and other special characters. Be

sure that these are processed in the right place. The argument string is passed through

the pipeline specification parser twice, first when the pipeline containing the preface

stage is set up, and secondly when the argument string is issued as a subroutine pipe-

line. The two example pipelines below show ways to preface a subroutine pipeline

consisting of more than one stage. In both cases, the split stage is part of the subrou-

tine pipeline and, thus, splits only the record produced by the second literal stage:

 pipe literal c d e| preface literal a b || split | console
►a
►b
►c d e
►Ready;

 pipe (sep ?) literal c d e? preface literal a b | split ? console
►a
►b
►c d e
►Ready;

In the first example, the stage separator that is to be passed to the subroutine pipeline

is self-escaped in the main pipeline. In the second example, the stage separator for the

 Chapter 23. Inventory of Built-in Programs 533

 printmc

main pipeline is a question mark; thus, no special treatment is required to pass the

stage separator (|) to preface.

Now consider how to specify a vertical bar as part of an argument to the subroutine

pipeline (in both cases, the variable data has the value abc|def):

 pipe var data | preface var data || split |||| | console
►abc
►def
►abc|def
►Ready;

 pipe (stagesep ?) var data ? preface var data | split || ? console
►abc
►def
►abc|def
►Ready;

In the first example, the stage separator that should be recognised in the subroutine

pipeline is self-escaped; to get the parameter (a single |) through the pipeline

specification parser twice, it must be doubly self-escaped; that is, the four vertical bars

become one when the argument is presented to split. In the second example, the main

pipeline uses the question mark as its stage separator and thus no escape is required to

pass the vertical bar to the subroutine pipeline; and a single self-escape suffices to get

the vertical bar to split.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: The return code is the return code from the CALLPIPE pipeline command.

It may reflect errors in the argument string or trouble with the stage(s) in the pipeline.

 printmc—Print Lines
printmc copies lines from the pipeline to a virtual printer. The lines must have machine

carriage control characters.

 CMS

 ┌ ┐─00E─────
►►──printmc─ ──┼ ┼───────── ──┬ ┬────── ─►◄

└─devaddr─┘ └─STOP─┘

Type: Device driver.

Placement: printmc must not be a first stage.

Syntax Description: Arguments are optional. Specify the device address of the virtual

printer to write to if it is not the default 00E. The virtual device must be a unit record

output printer device. The keyword STOP allows you to inspect the channel programs built

by printmc.

Operation: The first byte of each record designates the CCW command code (machine

carriage control character); it is inserted as the CCW command code. The remaining char-

acters are identified for transport to SPOOL by the address and length fields of the CCW. A

534 CMS Pipelines User’s Guide and Reference

 printmc

single blank character is written if the input record has only the command code. Control

and no operation CCWs can specify data; the data are written to the SPOOL file. X'5A'
operation codes are supported, but other read commands are rejected with an error

message; command codes are not otherwise inspected.

Records may be buffered by printmc to improve performance by writing more than one

record with a single call to the host interface. A null input record causes printmc to flush

the contents of the buffer into SPOOL, but the null record itself is not written to SPOOL.

After the producing stage has written a null record, it is assured that printmc can close the

unit record device without loss of data. Input lines are copied to the primary output

stream, if it is connected.

printmc issues no CP commands; specifically, the virtual device is not closed.

The virtual Forms Control Buffer (FCB) for a virtual printer (the virtual carriage control

tape) can be loaded by a CCW or the CP command LOADVFCB. The channel program is

restarted after a channel 9 or 12 hole causes it to terminate; even so, such holes in the

carriage tape should be avoided, because they serve no useful purpose; and they generate

additional overhead.

Record Delay: printmc strictly does not delay the record.

Commit Level: printmc starts on commit level -2000000000. It ensures that the device is

not already in use by another stage, allocates a buffer, and then commits to level 0.

See Also: reader, punch, and uro.

Examples: To print a file with carriage control:

pipe < pgm listing | asatomc | printmc
cp close 00e name pgm listing

To close the printer every 50 records:

'PIPE (end ? name PRINTMC.STAGE:36)',
 '?... ',

'|o: fanout', /* Get two copies */
'|i:faninany', /* Merge with nulls */
'|printmc', /* Print; nulls flush */
'?o:', /* The records */
'|chop 0', /* Make them null */
'|join 49', /* Join 50 null records */
'|c: fanout', /* Still a null record */
'|i:', /* Send to printer */
'?c:', /* Trigger record */
'|spec /CLOSE 00E/', /* Build command */
'|cp' /* Issue it */

The trick is to pass a null record to printmc to force it to flush the contents of its buffer

into CP SPOOL before the device is closed.

 Notes:

1. printmc has been tested with a virtual printer; its error recovery is unlikely to be

adequate for a dedicated printer.

 Chapter 23. Inventory of Built-in Programs 535

 punch

2. Any output data can be written, including 3800 CCWs, but be aware that CP support

depends on the virtual device type. For example, the maximum record length

(including CCW operation code prefix) is 133 bytes on a virtual 1403.

3. STOP causes CP console function mode to be entered after each channel program has

been given to CP. General register 2 points to the HCPSGIOP data area, from which

information about the channel program can be extracted.

Make sure you SET RUN OFF when using this option. This function was written to help

debug printmc, but it may also be useful to discover errors in input data.

 punch—Punch Cards
punch copies lines from the pipeline to punched cards.

 CMS

 ┌ ┐─00D─────
►►──punch─ ──┼ ┼───────── ──┬ ┬────── ─►◄

└─devaddr─┘ └─STOP─┘

Type: Device driver.

Placement: punch must not be a first stage.

Syntax Description: Arguments are optional. Specify the device address of the virtual

punch to write to if it is not the default 00D. The virtual device must be a unit record

output punch device. The keyword STOP allows you to inspect the channel programs built

by punch.

Operation: Each input record that is not null is written to the punch with the command

write, feed, select stacker 2 (X'41').

Records may be buffered by punch to improve performance by writing more than one

record with a single call to the host interface. A null input record causes punch to flush

the contents of the buffer into SPOOL, but the null record itself is not written to SPOOL.

After the producing stage has written a null record, it is assured that punch can close the

unit record device without loss of data. Input lines are copied to the primary output

stream, if it is connected. Any output data can be written, but CP truncates cards after 80

bytes without error indication.

punch issues no CP commands; specifically, the virtual device is not closed.

Record Delay: punch strictly does not delay the record.

Commit Level: punch starts on commit level -2000000000. It ensures that the device is

not already in use by another stage, allocates a buffer, and then commits to level 0.

See Also: reader, printmc, and uro.

Examples: To punch a file without carriage control and no header record:

pipe < some file | punch
cp close d name some file

To close the punch every 50 records:

536 CMS Pipelines User’s Guide and Reference

 qpdecode

'PIPE (end ?)',
 '?... ',

'|o: fanout', /* Get two copies */
'|i:faninany', /* Merge with nulls */
'|punch', /* Punch; nulls flush */
'?o:', /* The records */
'|chop 0', /* Make them null */
'|join 49', /* Join 50 null records */
'|c: fanout', /* Still a null record */
'|i:', /* Send to punch */
'?c:', /* Trigger record */
'|spec /CLOSE 00D/', /* Build command */
'|cp' /* Issue it */

The trick is to pass a null record to punch to force it to flush the contents of its buffer into

CP SPOOL before the device is closed.

 Notes:

1. Use uro to create punch files that contain records having command code X'03' (no

operation).

2. punch has been tested with a virtual card punch; its error recovery is unlikely to be

adequate for a dedicated card punch.

3. STOP causes CP console function mode to be entered after each channel program has

been given to CP. General register 2 points to the HCPSGIOP data area, from which

information about the channel program can be extracted.

Make sure you SET RUN OFF when using this option. This function was written to help

debug punch, but it may also be useful to discover errors in input data.

. qpdecode—Decode to Quoted-printable Format

. qpdecode decodes records according to the Multipurpose Internet Mail Extensions (MIME).

. qpdecode operates in the ASCII domain.

.

. ►►──QPDECODE──►◄

. Type: Filter.

. Syntax Description:

. Operation: Escape sequences of the form X'3dxxxx' are converted to the single char-

. acter represented by the two encoded characters. Other characters are passed unchanged to

. the output record.

. X'3d' at the end of the line means to splice with the following line.

. The escape sequences are validated for being complete and correct ASCII (case is ignored,

. however). When this validation fails and no secondary output stream is defined, a message

. is issued and qpdecode exits. When the secondary output stream is defined, any partial

. record stored as a result of line splicing with a trailing equal sign is written to the primary

. output, the entire erroneous input record is passed to the secondary output and processing

. continues.

 Chapter 23. Inventory of Built-in Programs 537

 qpencode

. Streams Used: Secondary streams may be defined. Records are read from the primary

. input stream; no other input stream may be connected.

. Record Delay: qpdecode does not delay the record. qpdecode does not delay the last

. record written for an input record.

. Commit Level: qpdecode starts on commit level -2. It verifies that the secondary input

. stream is not connected and then commits to level 0.

. Premature Termination: qpdecode terminates when it discovers that any of its output

. streams is not connected.

. Converse Operation: qpencode.

. Notes:

. 1. qpdecode is concerned solely with decoding. More work is required to build a

. complete receiver for MIME encoded files.

. 2. If you are decoding mail, it is probable that the receiving mailer has “converted” the

. file to EBCDIC. You must convert it back to ASCII before it is passed to qpdecode.

. (And then back to EBCDIC.)

. 3. qpdecode validates only escape sequences. Thus, it passes characters that are not valid

. in an encoded file.

! 4. On z/VM releases before z/VM 6.4, qpdecode was not a built-in program. Some

! developers may have used a REXX stage that operates on data in EBCDIC rather than

! in ASCII. The application will be affected when rexx was not used to specify use of

! the REXX stage. To exploit the new built-in qpdecode the REXX stage can be replaced

! by

! .. | xlate from 1047 to 819 | qpdecode | xlate from 819 to 1047 | ..

. Publications: (MIME) quoted-printable encoding format is defined in a range of RFCs

. starting with 2045.

. qpencode—Encode to Quoted-printable Format

. qpencode encodes records according to the Multipurpose Internet Mail Extensions (MIME).

. qpencode operates in the ASCII domain.

.

. ►►──QPENCODE──►◄

. Type: Filter.

. Operation: Encode records according to the MIME quoted-printable encoding. For each

. input record, as many 76-byte output records are produced as required; the last record from

. a particular input record is in general shorter than 76 bytes.

. In addition to the encoding mandated by the standard, qpencode escapes those special char-

. acters that are not codepage invariant in the EBCDIC domain. These are X'21222324'

. X'40', X'5b5c5d5e', X'60', and X'7b7c7d7e'.

. Record Delay: qpencode does not delay the last record written for an input record.

538 CMS Pipelines User’s Guide and Reference

 qsam

. Premature Termination: qpencode terminates when it discovers that no output stream is

. connected.

. Converse Operation: qpdecode.

. Notes:

. 1. qpencode is concerned solely with encoding. More work is required to build a

. complete MIME encoded file.

! 2. On z/VM releases before z/VM 6.4, qpencode was not a built-in program. Some

! developers may have used a REXX stage that operates on data in EBCDIC rather than

! in ASCII. The application will be affected when rexx was not used to specify use of

! the REXX stage. To exploit the new built-in qpencode the REXX stage can be replaced

! by

! .. | xlate from 1047 to 819 | qpencode | xlate from 819 to 1047 | ..

. Publications: (MIME) quoted-printable encoding format is defined in a range of RFCs

. starting with 2045.

qsam—Read or Write Physical Sequential Data Set through a DCB
qsam uses queued sequential processing to read or write a physical sequential data set.

 CMS

►►──QSAM──word──►◄

Type: Device driver.

Warning: qsam behaves differently when it is a first stage and when it is not a first stage.

Existing data can be overlaid when qsam is unintentionally run other than as a first stage.

To use qsam to read data into the pipeline at a position that is not a first stage, specify

qsam as the argument of an append or preface control. For example, |append qsam ...|
appends the data produced by qsam to the data on the primary input stream.

Syntax Description: A word is required; it represents the DDNAME to use.

Operation: The data set is read when qsam is first in a pipeline; it is written when qsam

is not first in a pipeline.

qsam generates record descriptor words and block descriptor words when it writes a data

set in variable format (V, VB, VS, or VBS). Such record descriptor words are removed when

qsam reads a data set. On CMS qsam does not support spanned records; it can write

undefined record format data sets, but it cannot read them.

Record Delay: qsam strictly does not delay the record.

Commit Level: qsam starts on commit level -2000000000. It opens the data set and then

commits to 0.

Premature Termination: When it is first in a pipeline, qsam terminates when it discovers

that its output stream is not connected.

See Also: disk, <, >, >>, members, pdsdirect, readpds, and writepds.

 Chapter 23. Inventory of Built-in Programs 539

 query

 Notes:

1. qsam can read sequential data sets from OS disks, but CMS does not support writing on

OS disks. Use disk or one of its “almost synonyms” (<, >, or >>) to read and write

CMS files.

2. qsam reads and writes a DCB, not necessarily a disk file; it does not investigate where

the data set is allocated.

3. On CMS, a data definition must have been established with a FILEDEF for the specified

DDNAME before the pipeline specification is issued.

4. Use the LABELDEF command in conjunction with FILEDEF to process standard labelled

tapes.

5. To be compatible with the past, qsam is also shipped for TSO. It may work, but it is

not supported.

 query—Query CMS Pipelines
query obtains information from CMS Pipelines. The information is written to the output

(if connected) or issued as a message.

 ┌ ┐─VERSION──
►►──Query─ ──┼ ┼────────── ─►◄
 ├ ┤─MSGLEVEL─
 ├ ┤─MSGLIST──
 └ ┘─LEVEL────

Type: Service program.

Placement: query must be a first stage.

Syntax Description: A keyword is optional. The default is to display the version

message.

Operation: A message is issued with the information requested when the primary output

stream is not connected. Message 86 is issued to display the pipeline version; message

186 displays the message level; message 189 displays the list of messages issued; message

560 displays the pipeline level.

A line is written (no message is issued) when the primary output stream is connected.

Output Record Format: When the primary output stream is connected, a record is written

in this format:

VERSION The text for message 86, including ten characters prefix.

MSGLEVEL Four bytes of binary data.

MSGLIST 44 bytes containing 11 items of four bytes each. The message number is

in the first three bytes; the severity code is in the last one. When the

message number is 999 or less, it is stored as three characters; when

larger than 999 it is stored as a packed decimal number without sign.

The last item corresponds to the last message issued; the first item corre-

sponds to the message issued the least recently. Leftmost items are

binary zeros when fewer than 11 messages have been issued.

540 CMS Pipelines User’s Guide and Reference

 random

LEVEL Four bytes of binary data. The version (B'0001') is stored in the first

four bits. The release (B'0001') is stored in the next four bits. The

modification level (B'00001100') is stored in the next eight bits. The

last sixteen bits are a serial number for the particular build of the PIPELINE

MODULE.

Commit Level: query starts on commit level -4. It commits to level 0 when the argument

keyword is validated.

Examples: To display only the modification level of CMS Pipelines:

 pipe query level | spec 2 c2d 1 | strip | console
►12
►Ready;

 Notes:

1. The message number is added to the message list when CMS Pipelines issues a

message, except for messages 1, 3, 4, 189, 192, 260, 278, and 836. These messages

are informational to describe the conditions under which the previous message was

issued. There is one list for all stages, pipelines, pipeline specifications, and pipeline

sets.

random—Generate Pseudorandom Numbers
random writes output records four bytes long that contain binary pseudorandom values.

►►──RANDOM─ ──┬ ┬───────────────────────── ─►◄
 │ │┌ ┐─*────── ┌ ┐─*───────
 └─┴─number─┴──┼─────────┼─┘

└─snumber─┘

Type: Device driver.

Placement: random must be a first stage.

 Syntax Description:

Premature Termination: random terminates when it discovers that its output stream is

not connected. random does not terminate normally.

 Examples:

number Specify the modulus if you wish to restrict the values of the output

numbers. The modulus must be positive; the output number is the

remainder of the pseudorandom number after division by the modulus;

the output numbers are positive. Specify an asterisk as a placeholder.

snumber Specify a number to be used as a seed for the sequence of numbers. If

the seed is omitted or an asterisk is specified, a seed is obtained from the

time-of-day clock.

 Chapter 23. Inventory of Built-in Programs 541

 reader

 pipe random | take 3 | spec 1-* c2x 1 | console
►56A3DBDD
►DBDD1B77
►1B77EA03
►Ready;
 pipe random 7| take 3 | spec 1-* c2x 1 | console
►00000000
►00000000
►00000006
►Ready;

reader—Read from a Virtual Card Reader
. reader reads a file from a virtual reader. The file can be a print file, a punch file, or a

. VMDUMP file. reader deblocks the file to individual records unless instructed to write the

complete 4K SPOOL buffers.

Warning: By default reader does not change the SPOOL settings of the virtual reader it

uses. Be sure to issue the CP command “spool reader hold” or specify the appropriate

options on reader if you wish to retain a reader file after it has been read.

 CMS

. ┌ ┐─00C───── ┌ ┐─────────────
►►──READER─ ──┼ ┼───────── ───6 ┴┬ ┬───────── ──┬ ┬────────────── ─►◄

└─devaddr─┘ ├─4KBLOCK─┤ └─FILE──number─┘
. ├ ┤─PURGE───
. ├ ┤─KEEP────
. ├ ┤─NOKEEP──
. ├ ┤─HOLD────
. └ ┘─NOHOLD──

Type: Device driver.

Placement: reader must be a first stage.

Syntax Description: Arguments are optional.

Specify the device address of the virtual reader to read from, if it is not the default 00C.

The virtual device must be a unit record reader device.

4KBLOCK specifies that each complete 4K buffer should be written to the pipeline without

deblocking.

. If any of the options PURGE KEEP NOKEEP HOLD NOHOLD are specified, they are added to

. the CLOSE command that closes the reader after the file has been read.

The number after the keyword FILE designates a particular reader file to be processed.

Operation: When FILE is specified, the file is selected for the reader before the first block

is read. The file must not be in hold status; it must have a class that can be read by the

reader in question. When FILE is omitted, CP selects the next available SPOOL file that is

not held and is compatible with the reader.

Unless the 4KBLOCK option is specified or implied, the reader file is deblocked into records

that contain the command code in the first position followed by the data. Trailing blanks

are added if the SPOOL file contains the original length of the record. All CCWs are written

542 CMS Pipelines User’s Guide and Reference

 reader

including control and no operation. Data chained sequences (which often span input

blocks) are joined into one logical record.

: The reader is closed with the CP command “close” when processing completes without

: error; the reader is left open when reader terminates due to an error.

Commit Level: reader starts on commit level -2000000000. It determines that the device

is not already in use by another stage, selects the file (if FILE is specified), and then

commits to level 0.

Premature Termination: reader terminates when it discovers that its output stream is not

connected.

See Also: printmc, punch, and uro.

Examples: A subroutine pipeline that deblocks a reader file that has been sent as a note

or with the SENDFILE command:

/* Now get the file */
'callpipe (name READER)',

'| reader ', /* Read cards */
'| strfind x41 ', /* Take only cards */
'| spec 2-* 1.80 ', /* Remove CCW code */
'| deblock netdata ', /* Get logical records */
'| strfind xc0 ', /* Take only data */
'| spec 2-* 1 ', /* Remove control byte */
'| *: ' /* Pass on */

 Notes:

1. reader does not support an attached card reader.

2. 4KBLOCK must be specified to read a VMDUMP file; results are unpredictable if the

option is omitted when reading a VMDUMP file.

. 3. reader cannot read CP dump files The references to VMDUMP above include CP dumps.

4. There are at least two no operation CCWs at the beginning of a file that has arrived

through RSCS/Networking: the current tag and the original tag.

5. To retain the trailing blanks in the records of a SPOOL file that has been transmitted

through a network, all nodes traversed in the network must store the original length of

the record in the SPOOL file; once this information is lost, it cannot be regenerated.

6. Use the CP command “spool reader keep” or “change rdr nnnn keep” to put a

reader file in user hold status.

. 7. Specifying KEEP puts the file in user hold status, whereas HOLD leaves the file so that

. it can be read again immediately. Using NOKEEP with a virtual reader that is spooled

. KEEP appears to leave the file in the reader.

: 8. reader terminates and leaves the SPOOL file open when it receives an error from CP.

: It closes the file when it receives end-of-file writing a record.

 Chapter 23. Inventory of Built-in Programs 543

 readpds

readpds—Read Members from a Partitioned Data Set
readpds reads members from a library into the pipeline. The member names may be

specified as arguments, or they may be provided in input records, or both.

 z/OS

►►──READPDS──pods──┬──────┬──┬────────────────────────────┬──►
└─ASIS─┘ └─DELIMiter──delimitedString─┘

 ┌ ┐────────────
►─ ──┬ ┬────────── ──┬ ┬───────── ───6 ┴┬ ┬──────── ─►◄

└─USERDATA─┘ └─MEMBERs─┘ └ ─member─┘

pods:

├──┬─dsname───────────────┬──┤
├─dsname(generation)───┤
├─'dsname'─────────────┤
├─'dsname(generation)'─┤
└─DDname=word──────────┘

Type: Device driver.

 Syntax Description:

A blank-delimited list of member names is optional.

Operation: readpds first reads the contents of members (if any) specified in the argument

string; it then continues with the members specified in input records.

Each member is looked up in the library directory. If the member does not exist as written

and ASIS is omitted, the search is retried with the member name translated to upper case.

A delimiter record is written before each member, if DELIMITER is specified.

A null record is written after each member.

pods Enclose a fully qualified data set name in single quotes; the trailing

quote is optional. Specify the DSNAME without quotes to have the

prefix, if any, applied. Append parentheses containing a signed number

to specify a relative generation of a data set that is a member of a gener-

ation data group. To read members of an already allocated data set,

specify the keyword DDNAME= followed by the DDNAME already allo-

cated. The minimum abbreviation is DD=.

ASIS Use member names strictly as written. By default, a member name is

translated to upper case if it is not found in the mixed case spelling.

DELIMITER Specify the beginning of the delimiter record, which is written between

members. The member name is appended to this string.

USERDATA Append the user data field from the directory record to the delimiter

record. The user data is unpacked to printable hexadecimal.

MEMBERS The remaining words are names of members to be read. MEMBERS is

assumed when a word is scanned that is not a recognised keyword.

544 CMS Pipelines User’s Guide and Reference

 retab

Diagnostic messages are issued for members that are not present in the library; the argu-

ment and all input records are processed before returning with return code 150 when one

or more members is not found.

Input Record Format: Blank-delimited lists of members to read from the library.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: readpds writes all output for an input record before consuming the input

record.

Commit Level: readpds starts on commit level -2000000000. It opens the DCB and and

then commits to level 0.

Premature Termination: readpds terminates when it discovers that its output stream is

not connected.

See Also: listispf and listpds.

Examples: To read the member J from the PDS allocated to SYSEXEC:

 pipe literal j | readpds dd=sysexec | cons
►/* REXX */ parse arg file
►address link
►'PIPE <' file '|menuctl /'file'/ edit'
►exit rc
►READY

 Notes:

1. members and pdsread are synonyms for readpds.

retab—Replace Runs of Blanks with Tabulate Characters
retab replaces runs of blanks in the record with tabulate characters.

 ┌ ┐─ -3────────
►►──RETAB─ ──┼ ┼──────────── ─►◄

├─ -number───┤
 │ │┌ ┐──────────

└──6─number─┴─┘

 Type: Filter.

Syntax Description: No arguments are required. A single negative number or a list of

positive numbers may be specified.

A list of positive numbers enumerates the tab stops; the numbers may be in any order.

The smallest number specifies where the left margin is; use 1 to put the left margin at the

beginning of the record.

A negative number specifies a tab stop in column 1, and for each n columns.

The default is -3, which is equivalent to 1 4 7 ...

 Chapter 23. Inventory of Built-in Programs 545

 reverse ¹ rexx

Operation: When a list of tab stops is used and the smallest number is not 1, the first

columns of the record are discarded up to the column specified as the left margin.

Record Delay: retab strictly does not delay the record.

Premature Termination: retab terminates when it discovers that its output stream is not

connected.

 Converse Operation: untab.

Examples: To generate a file that will contain tabs:

pipe < ebcdic file|retab -8|block 4000 c term|xlate e2a|> unix file a

reverse—Reverse Contents of Records
reverse reverses the contents of each record so that the first character becomes the last, the

last character becomes the first, the penultimate character becomes the second, the second

character becomes the penultimate, and so on.

►►──REVERSE──►◄

 Type: Filter.

Record Delay: reverse strictly does not delay the record.

Premature Termination: reverse terminates when it discovers that its output stream is not

connected.

 Converse Operation: reverse.

 Examples:

 pipe literal Hello, World! | reverse | console
► !dlroW ,olleH
►Ready;

To find records that end in “xyz”:

... | reverse | find zyx| reverse | ...

Note that the argument to find is reversed because the contents of the record are reversed

at the point where find is applied.

rexx—Run a REXX Program to Process Data
rexx runs a REXX program in the pipeline with access to input and output streams. rexx is

implied when no built-in program is found with a particular name; specify rexx explicitly

to bypass a built-in program, to run a program with a file type other than REXX, or to run

the program from an input stream.

546 CMS Pipelines User’s Guide and Reference

 rexx

►►──REXX──┬─fn─────────────────────────────────────┬──┬────────┬──►◄
 ├─(──┤ fileName ├──)─────────────────────┤ └─string─┘

├ ┤─┤ streamSpec ├─────────────────────────
 └ ┘─(──┤ streamSpec ├─ ──┬ ┬────────────── ─)─

└ ┘─┤ fileName ├─

fileName:

├──fn──┬────────────┬──┤
 └─ft──┬────┬─┘

└─fm─┘

streamSpec:

├─ ──┬ ┬──*: ─────── ─┤
└─*.stream:─┘

Type: Look up routine.

Syntax Description: Leading blanks are ignored; trailing blanks are significant. A word

is required; it may be followed by a string. If the first non-blank character is a left paren-

thesis, up to three words for file name, type, and mode can be specified in parentheses.

The default file type is REXX. On z/OS, the file type specifies the DDNAME of the library

that contains the program. When the first word begins with an asterisk and ends with a

colon, it specifies the input stream from where the REXX program is read; to set the file

name to be used in the REXX source string, the stream specification followed by the file

name (and optionally file type and file mode) must be specified in parentheses.

Operation: A REXX program runs as a pipeline filter. The string is passed to the program

as its argument string. The default command environment processes pipeline commands,

described in Chapter 25, “Pipeline Commands” on page 750. For a task-oriented guide,

see Chapter 7, “Writing a REXX Program to Run in a Pipeline” on page 97 and “Using

CALLPIPE to Run a Subroutine Pipeline” on page 103.

An EXEC can invoke itself as a filter. The seventh word of the source string is a question

mark when the program runs as a filter on CMS; it is PIPE on z/OS.

If, on CMS, the program is not already loaded in storage by an explicit EXECLOAD, it is

loaded with the EXECLOAD command before it is invoked. Concurrent invocations of a

program use the same copy as long as the file is accessible and has the same timestamp;

the program is removed from storage when the last concurrent invocation terminates.

Compiled REXX programs (with option CEXEC) are invoked by direct branch to the

compiler runtime environment. If the runtime environment is not installed as a nucleus

extension, it is invoked with CMSCALL to make it initialise itself.

Streams Used: The REXX program can select any defined stream using the SELECT pipe-

line command; it can define additional streams with the ADDSTREAM pipeline command; it

can determine the number of defined streams from the return code from the MAXSTREAM

pipeline command.

Record Delay: rexx does not read or write records. The delay depends on the program

being run.

Commit Level: rexx starts on commit level -1. When the program is read from an input

stream, rexx commits to zero before reading the program. When the program is not read

from an input stream, rexx commits to level 0 (unless the command NOCOMMIT has been

issued) when the first I/O operation (OUTPUT, PEEKTO, or READTO pipeline commands) is

 Chapter 23. Inventory of Built-in Programs 547

 rexx

requested or the pipeline command SELECT ANYINPUT is issued. The program can issue

COMMIT before doing I/O to test whether any other stage has returned with a nonzero return

code on commit level -1.

Examples: An EXEC that invokes itself as a filter:

/* Hello, world. */
signal on novalue
parse source . . $fn $ft . . how .
If how='?'

Then signal filter
 address command

'PIPE rexx (' $fn $ft ')|console'
 exit RC
filter:

'output Hello, world! (From a dual-path REXX.)'
 exit RC

 hello2
►Hello, world! (From a dual-path REXX.)
►Ready;

To read the program from the primary input stream:

 pipe literal /**/ 'output Hello, World!' | rexx *: | console
►Hello, World!
►Ready;

TESTALT EXEC reads the program from the secondary input stream:

/* TESTALT EXEC */
'PIPE (end ? name REXX)',

'|literal me Tarzan',
'|r: rexx *.1:',

 '|console',
"?literal /* */ 'output Hello, World!'; 'short'",

 '|r:'

 testalt
►Hello, World!
►me Tarzan
►Ready;

 Notes:

! 1. There is also a REXXCMD command to invoke a REXX program as subroutine rather

! than as a stage.

2. You need not use an explicit rexx to invoke a REXX program with file type REXX

unless there is a built-in program with the same name; CMS Pipelines looks for a

REXX program when it cannot resolve a filter in the built-in directories and attached

filter packages.

3. Compiled REXX programs are supported on CMS. Programs can be compiled with the

OBJECT option or the CEXEC option. The former programs are included in filter pack-

ages; the latter are run from disk or EXECLOADed.

4. A program that is used often should be EXECLOADed to improve performance.

5. CMS Pipelines installs an alternate EXEC interpreter in a slightly different way than

CMS does: When there is no nucleus extension installed for the processor, it is called

548 CMS Pipelines User’s Guide and Reference

 rexxvars

to install itself. This is done by CMSCALL with a call type program (flag byte is zero)

and register zero cleared to zeros. The interpreter should install itself (or its runtime

routine) as a nucleus extension and return. CMS Pipelines then looks again for the

runtime environment and branches to it. CMS Pipelines supports only EXECs requiring

an alternate processor that installs itself as a nucleus extension.

6. On z/OS, REXX filters run in dedicated reentrant environments. Such environments

cannot be merged with the TSO environment. Issue TSO commands with command,

tso, or subcom TSO instead.

/* Issue a TSO command */
'callpipe command time'

7. The rexx verb cannot be defaulted when the program is to be read from an input

stream.

: 8. Remember that REXX on CMS resolves an external function call using the type of the

program (for example, REXX when the function call is from a REXX filter). If you

have a filter with the same name as an external function, the filter will be invoked

! rather than the corresponding EXEC. REXX allows for no way to avoid this. To call

! the EXEC program from a REXX filter, you can use the EXEC prefix in the function

! name:

! /* FOO REXX */
! signal on error
! 'peekto rec'
! 'output' 'EXEC FOO'(rec)
! error: return rc * (rc <> 12)

9. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: Unless it is a return code associated with trouble finding the REXX

program to run, the return code is the one received from the REXX program.

rexxvars—Retrieve Variables from a REXX or CLIST Variable Pool
rexxvars writes the names and values of the currently exposed REXX variables (including

the source string) into the pipeline. rexxvars can retrieve variables from the current EXEC

(or REXX pipeline program) or from one of its ancestors.

Warning: The output from rexxvars must be buffered if other stages access the variable

pool concurrently, for example to return results with stem.

►►──REXXVARS─ ──┬ ┬────────── ──┬ ┬──────── ──┬ ┬────────── ─►
. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘

 └ ┘─MAIN─────

►─ ──┬ ┬─────────────────────────────────────── ──┬ ┬─────────────── ─►◄
 └─TOLOAD──┬───────────────────────────┬─┘ └─WIDTH──number─┘

 ├ ┤─NOCOMMENTS────────────────
 └─COMMENTS──delimitedString─┘

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 549

 rexxvars

Placement: rexxvars must be a first stage.

Syntax Description: It is possible to access a REXX variable pool other than the current

one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains rexxvars,

rather than the current stage. (This is a somewhat esoteric option.) To ensure that the

variable pool persists as long as this invocation of rexxvars, the stage that is connected to

the currently selected input stream must be blocked in an OUTPUT pipeline command while

the subroutine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, rexxvars can operate on variables in the program that issued the

pipeline specification to invoke rexxvars or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

of REXX environments created on the call path from the PIPE command, rexxvars continues

on the SUBCOM chain starting with the environment active when PIPE was issued.

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, rexxvars terminates with return code 233 on commit level -1 when

. the environment does not exist.

Specify TOLOAD to write output records in the format required as input to varset (and to

varload): each record contain the variable’s name as a delimited string followed by the

variable’s value. The delimiter is selected from the set of characters that do not occur in

the name of the variable; it is unspecified how this delimiter is selected. The keyword

COMMENTS is followed by a delimited string that enumerates the characters that should not

be used as delimiter characters. The keyword NOCOMMENTS specifies that the delimiter

character can be any character that is not in the variable’s name. By default, neither

asterisk nor blank is used as a delimiter, because these are the default comment characters

used by varload.

The keyword WIDTH specifies the minimum size in bytes of the buffer into which REXX

returns the value of a variable. The number specified is a minimum buffer size; rexxvars

may allocate more. The default width is 512.

Output Record Format: When TOLOAD is specified, one line is written for each variable

in the variable pool. The line contains these items (without additional separators):

1. A delimiter character (in column 1).

2. A variable’s name (beginning in column 2).

3. A delimiter character (a copy of the character in column 1).

: 4. The variable’s value.

When TOLOAD is omitted, the first line contains the source string for the REXX environ-

ment. Subsequent pairs of records describe variables; a record that contains the name of a

variable is followed by a record that contains the variable’s value. Each line is prefixed

with a character describing the item; three prefix characters are used:

550 CMS Pipelines User’s Guide and Reference

 rexxvars

s The source string. This is the first line written.

n The name of a variable. The value is on the following line.

v The data contained in the variable whose name is defined in the preceding record.

Only as much data as will fit within the width specified (or 512, the default) are

written to the pipeline.

There is one blank between the prefix character and the data.

Commit Level: rexxvars starts on commit level -1. It verifies that the REXX environment

exists (if it did not do so while processing its parameters). It fetches a dummy variable

from the pool to ensure that it starts fetching variables at the beginning of the pool and

then commits to level 0.

Premature Termination: rexxvars terminates when it discovers that its output stream is

not connected.

See Also: var, vardrop, varfetch, varset, and stem.

Examples: To dump the current REXX variables to a file for later analysis:

/* Sample Syntax error routine */
Syntax:
Say 'Syntax error' RC':' errortext(RC)
parse source . . $$$fn$$$ $$$ft$$$.
Say 'Error occurred on line' sigl 'of' $$$fn$$$ $$$ft$$$
Say sourceline(sigl)
address command 'PIPE rexxvars | >' $$$fn$$$ 'variables a'

The instruction Signal on Syntax causes the routine to be invoked whenever there is a

syntax error.

To display which REXX program has called a given one:

/* Who called me */
'pipe rexxvars 1 | take 1 | var caller'
if RC/=0 then exit RC
parse var caller . . . fn ft fm .
parse source . . myfn myft myfm .
say fn ft fm 'called' myfn myft myfm'.'

The first record written by rexxvars (in this case the only output record that is used)

contains the source string, from which the name of the program can be inferred.

A buffer stage is required to buffer the output from rexxvars when data derived from its

output are stored back into the variable pool with a var, stem, varload, or varset stage:

pipe rexxvars | find v_ARRAY.| spec 3-* | buffer | stem vars.

As shown in this example, it may be more efficient to buffer the variables that are set

rather than the output from rexxvars.

 Notes:

1. rexxvars uses the EXECCOMM “get next” interface when it processes a REXX variable

pool. REXX maintains, with the variable pool, a “cursor” to the next variable it will

fetch. The cursor is reset to the beginning when a variable is dropped, fetched, or set,

either by the interpreter itself or through the EXECCOMM interface. Thus, if some other

stage repeatedly causes the cursor to be reset to the beginning while rexxvars is

 Chapter 23. Inventory of Built-in Programs 551

 rexxvars

extracting the variables of a pool, an infinite number of records may be written by

rexxvars.

Clearly, the variable pool will be accessed if the pipeline writes its result back into

several variables in the same variable pool (stem, varset), but there are many other and

more subtle variations. For example, no other stage may access the variable pool to

fetch variables or drop variables (var, vardrop, and varfetch), lest the cursor be reset.

Thus, the output from a rexxvars stage must be buffered (for example, in a buffer

stage) if anything else in the CMS session could cause REXX to access the variable pool

before an unbuffered rexxvars stage would terminate. (This includes, but is not

limited to, current and future stages in the pipeline set or any pipeline set created by

the pipeline.) By inserting a buffer stage after rexxvars, you allow rexxvars to run to

completion before subsequent stages can possibly begin manipulating the variable

pool.

Special care is needed if the pipeline specification contains stages that access the vari-

able pool, if these stages cannot be proven to be synchronised with the buffered output

(that is, if they might access the variable pool before the buffer stage produces output),

and if there are any stages between rexxvars and buffer. No stage in this cascade may

suspend itself, nor may any stage have secondary streams defined. In this restricted

environment the otherwise unspecified pipeline dispatcher will be guaranteed not to

run stages outside the pipeline segment up to the buffer stage, once it has dispatched

rexxvars on commit level 0.

2. The output from rexxvars is unspecified when more than one rexxvars stage accesses a

particular variable pool concurrently. As far as REXX is concerned, these stages will

be sharing the read cursor and will fetch the variables in the variable pool between

them. When REXX comes to the end of the variable pool, it will signal this condition

to one of the rexxvars stages, which will then terminate. The remaining rexxvars

stages will then read the variable pool from the beginning. Thus, the rexxvars stages

will eventually all terminate, but the result is unlikely to be what you were looking

for.

3. rexxvars obtains variables exposed at the time the pipeline specification is issued.

Any variables hidden by a Procedure instruction are not returned by the underlying

interface.

4. The underlying interface does not provide the default value assigned to a stem,

because it cannot be distinguished from the compound variable with a null index.

Note the difference in these assignments:

array.=0 /* All existing compounds are reset */
ix=''
array.ix=1 /* Only one variable is set */

 5. PIPE var stem.|... reads the default value of a stem.

6. When a pipeline is issued as a TSO command, IKJCT441 is called to access the variable

pool. When the command is issued with Address Link or Address Attach, rexxvars

accesses the REXX environment from where the command is issued. When IKJCT441 is

used, the first line written has two words, TSO CLIST, to identify the environment.

7. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

552 CMS Pipelines User’s Guide and Reference

 runpipe

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

. 8. rexxvars cannot handle truncation of the value of a variable when the buffer is too

. small, because it cannot retry the call to the underlying interface. Use varfetch to

. ensure you get the complete value:

. pipe rexxvars|find n|substr 3-*|buffer|varfetch toload|...

runpipe—Issue Pipelines, Intercepting Messages
runpipe issues pipeline specifications in the same way that the PIPE command does. CMS

Pipelines messages issued while the pipeline is running are written to the output stream

rather than to the terminal. The TRACE option can be specified to force a trace of all

stages running in the new pipeline set.

When the option EVENTS is specified, runpipe writes detailed information about the pipe-

line specification and the progress of its execution. This information is designed to be

processed by a program.

►►──RUNPIPE─ ──┬ ┬────────────────────── ──┬ ┬─────────────────────── ─►◄
 └─MSGLevel──┬─number─┬─┘ ├─TRACE─────────────────┤

└─Xhex───┘ └─EVENTS──┬───────────┬─┘
 └─MASK──hex─┘

 Type: Control.

Placement: runpipe must not be a first stage.

Syntax Description: The arguments are optional.

MSGLEVEL Specify the message level setting for the pipeline sets that are created by

runpipe. The value after the keyword can be a decimal number or the

letter “x” followed by a hexadecimal string. There must be no blank

between the letter and the hexadecimal string. All of sixteen rightmost

bits can be set. If MSGLEVEL is omitted, the pipeline sets inherit the

message level established by PIPMOD rather than the one active for

runpipe.

TRACE Force the trace option for all pipeline specifications in the pipeline set.

This form of trace cannot be disabled in the individual pipeline

specification.

EVENTS Produce event records on the output stream.

 Chapter 23. Inventory of Built-in Programs 553

 runpipe

Operation: Input records are issued as pipeline specifications. A new pipeline set is

created for each record.

When EVENTS is omitted, the new pipeline runs until it completes or issues a message.

When a message is issued, the new pipeline waits while the message is written to the

primary output stream of runpipe; the new pipeline is resumed when the write completes.

When the keyword TRACE is specified, all pipelines in the new pipeline set are forced to be

run with the trace option; this cannot be disabled by options in the individual pipelines.

As TRACE produces messages, the trace of the subject pipeline set is also written to the

output of runpipe.

When EVENTS is specified, records are written by the pipeline specification parser and by

the pipeline dispatcher in addition to records for messages issued. The EVENTS option and

the MASK option apply to all pipeline specifications in the pipeline set.

The REXX environment for the new pipeline is the one in effect for runpipe.

A stall in a pipeline that is issued with runpipe does not affect the pipeline that contains

the runpipe stage. runpipe ignores errors when it writes output records, even errors that

indicate a stall in the pipeline that contains the runpipe stage. That is, error conditions

cannot leak between the two pipeline sets. This ensures that the pipeline issued by runpipe

can terminate in an orderly way, even in the event of severe errors in the controlling pipe-

line set.

Input Record Format: Each line contains a pipeline specification; the syntax of the line

is the same as the syntax of the argument string to PIPE. Specifically, global options are

specified in parentheses at the beginning of the line.

Output Record Format: When EVENTS is omitted, the output records contain CMS

Pipelines messages issued in response to the pipeline specifications and messages issued

with the MESSAGE pipeline command. The complete message is written irrespective of the

EMSG setting. The first word (10 or 11 characters) is the message identifier. Programs that

process these messages should be able to handle messages numbers that have both three

and four digits.

When EVENTS is specified, output records are written in the format described in

Appendix G, “Format of Output Records from runpipe EVENTS” on page 939.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: runpipe writes all output for an input record before consuming the input

record.

MASK: Specify a mask for event records to be suppressed. By default, the mask

: is zero, which enables all events records. Mask bit numbering follows

: standard IBM System/360 conventions; the mask for event type 0 is bit

: number 0, which is the leftmost one (X'80000000'). A record is

: suppressed when the corresponding mask bit is one. Beware that the

: hexadecimal number is scanned as a binary number; specify all eight

: hexadecimal digits. If six digits are specified, event records 0 through 7

: cannot be suppressed, because their mask will of necessity be zero. It

: makes no sense to specify four or fewer hexadecimal digits for the mask.

554 CMS Pipelines User’s Guide and Reference

 scm

 See Also: pipcmd.

Examples: To present error messages as XEDIT messages when a pipeline is issued during

an XEDIT session:

/* PIPE XEDIT */
parse arg pipe
address command 'PIPE var pipe | runpipe | xmsg'
r=RC
if r¬=0

then 'emsg Return code:' r'.'
exit r

runpipe is useful when tracing the pipeline dispatcher, which often generates large amounts

of data:

/* debug pipe */
pipe='(trace)' arg(1)
address command
'PIPE var pipe | runpipe | > pipeline trace a'

To test if a particular function is available or in general to issue a pipeline and be sure no

messages are written to the terminal:

/* Now see if it can do it */
'PIPE literal deblock Linend Eof | runpipe'
modern=RC=0

 Notes:

1. Do not mask off console input events (type X'0F') as this causes an input console

stage to produce an infinite number of input lines.

Return Codes: The return code is the aggregate of the return codes from the pipelines

that have been run: The aggregate return code is the minimum return code if any return

code is negative; otherwise it is the maximum of the return codes received.

scm—Align REXX Comments
scm (“shift comments” or “smarten up comments”) processes REXX and C programs to line

up comments and complete unclosed comments. scm is designed to be used from an

XEDIT or ISPF/PDF macro to format a few lines of a program. scm does not support

comments that span lines.

►►──SCM─ ──┬ ┬── ─►◄
 └─number──┬────────────────────────────┬─┘
 └─number──┬────────────────┬─┘
 └─word──┬──────┬─┘

└─word─┘

 Type: Filter.

Syntax Description: The first number specifies the column where a comment should

begin when the REXX instruction is short enough to leave room for alignment. The default

is 39. The second number specifies the ending column for the comment. The default is

71. The last two words specify the beginning and ending comment strings, respectively.

 Chapter 23. Inventory of Built-in Programs 555

 sec2greg

If both words are omitted, the defaults are /* and */. When the first word is specified,

the default for the second word is null (ADA-style comments).

Operation: A line is passed to the output unchanged when:

¹ It has no beginning comment string.

¹ It has a comment end string that is after the last comment begin string in the line, but

not at the end of the line.

When a line has only one comment begin string and this is the first non-blank string on

that line, the comment end string is aligned with the ending column (assuming the line

does not extend beyond this column).

When the line contains non-blank characters before the last comment string, the string is

aligned within the specified columns if the instruction part and the comment are both

shorter than the width of their respective column ranges.

When the instruction or the comment is longer than the column range allocated, but

together they are shorter than the area allocated, the comment is aligned to the right.

Otherwise the comment is appended to the instruction.

Record Delay: scm strictly does not delay the record.

Commit Level: scm starts on commit level -1. It verifies its arguments and then commits

to 0.

Premature Termination: scm terminates when it discovers that its output stream is not

connected.

 Examples:

 pipe literal /* Now we check a and b| scm | console
► /* Now we check a and b */
►Ready;

 pipe literal If a=b /* The same thing? | scm | console
► If a=b /* The same thing? */
►Ready;

 Notes:

1. Multiline comments (comments that are spanned over several lines) are not supported,

because the comment on the first line will be terminated. If such a program is proc-

essed by scm, it is likely to encounter errors when it is run.

2. scm is used in the SCM XEDIT program that is included with CMS Pipelines.

. sec2greg—Convert Seconds Since Epoch to Gregorian Timestamp

. Convert a number representing the seconds since January first, 1970. A negative number

. represents a point in time before the beginning of the epoch.

.

. ►►──SEC2GREG─ ──┬ ┬──────────────────── ─►◄

. └. ─OFFSET──┬─number─┬─┘

. └ ┘─*──────

556 CMS Pipelines User’s Guide and Reference

 sfsback

. Type: Filter.

. Syntax Description:

. Output Record Format: 14 characters without punctuation: yyyymmddhhmmss.

. Streams Used: Records are read from the primary input stream and written to the primary

. output stream. Null and blank input records are discarded.

. Record Delay: sec2greg does not delay the record.

. Premature Termination: sec2greg terminates when it discovers that its output stream is

. not connected.

. Converse Operation: greg2sec.

. See Also: dateconvert and spec.

. Notes:

. 1. The epoch started at 00:00:00 UTC on January first, 1970. This is the epoch used in

. UNIX systems.

. 2. LOCAL may also be specified to apply the local time zone offset.

. 3. A time zone offset of 86399 is not the same as one of -1.

. 4. For dates before year 1970, sec2greg ignores all issues as to whether the day actually

. occurred or the year existed at all.

. 5. The largest valid input number of seconds is 253402300799, which corresponds to the

. end of year 9999.

. 6. Leap seconds are not accounted for, as most UNIX systems also ignore this issue.

. OFFSET. A time zone offset is specified.

. number. Specify a number of seconds. The numerically largest acceptable value

. is 86399, as a time zone offset of 24 hours makes no sense. Positive

. values are east of Greenwich.

. *. Use the time zone offset set for the host system.

sfsback—Read an SFS File Backwards
sfsback reads the last record, then the second last record, and so on. sfsback accesses a file

that is stored in the Shared File System (SFS) directly, using a directory path or a

NAMEDEF. The directory need not be accessed as a mode.

 Chapter 23. Inventory of Built-in Programs 557

 sfsback

 CMS

►►──SFSBACK──fn──ft──dirid──┬───────┬──►
└─digit─┘

 ┌ ┐───────────────────────────
►─ ───6 ┴┬ ┬─────────────────────── ─►◄
 ├ ┤─ASIS──────────────────
 ├─ESM──delimitedString─ ─┤
 ├ ┤─OLDDATERef────────────
 ├ ┤─OPENRECOVER───────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

Placement: sfsback must be a first stage.

 Syntax Description:

Operation: Reading begins at the last record in the file and proceeds backwards to the

first record. The file is closed before sfsback terminates.

Commit Level: sfsback starts on commit level -2000000000. It creates a private unit of

work if WORKUNIT PRIVATE is specified, opens the file, allocates a buffer if required, and

then commits to level 0.

Premature Termination: sfsback terminates when it discovers that its output stream is not

connected.

See Also: disk, diskrandom, diskslow, filetoken, members, and pdsdirect.

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

OLDDATEREF Pass the keyword to the open routine. CMS will not update the date of

last reference for the file.

OPENRECOVER Pass the keyword to the open routine. This particular operation is

performed as if the file’s attributes were RECOVER and NOTINPLACE.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is DEFAULT.

558 CMS Pipelines User’s Guide and Reference

 sfsdirectory

Examples: To read a file backwards:

pipe diskback profile exec . | ...

This reads your profile from your root directory in the current file pool. diskback selects

sfsback to process the file, because the third word is present, but does not specify a mode.

: sfsdirectory—List Files in an SFS Directory
: sfsdirectory writes information about files in the specified directory and, if requested, all

: subdirectories of the specified directory.

: CMS :

: ►►──SFSDIRectory──word──┬───────────┬──►
: └ ┘─RECURSIVe─

: ┌ ┐─FORMAT──────────────────
: ►─ ──┼ ┼───────────────────────── ─►◄
: ├ ┤─NOFORMAT────────────────
: ├ ┤─SHOrtdate───────────────
: ├ ┤─ISOdate─────────────────
: ├ ┤─FULldate────────────────
: ├ ┤─STAndard────────────────
: └: ─STRing──delimitedString─┘

: Type: Device driver.

: Placement: sfsdirectory must be a first stage.

: Syntax Description:

: word: Specify a mode letter, a name definition, or a directory path. A mode

: letter must refer to an accessed directory (that is, not a minidisk).

: RECURSIVE: List the contents of subdirectories and their subdirectories, and so on.

: FORMAT: Information about files is written in a printable format using the short

: date format.

: NOFORMAT: The output record contains the raw format 1 (file) DIRBUFF control block

: describing the file or subdirectory.

: FULLDATE: The file’s timestamp is formatted in the American format, with the

: century: 3/09/1946 23:59:59.

: ISODATE: The file’s timestamp is formatted with the century in one of the formats

: approved by the International Standardisation Organisation:

: 1946-03-09 23:59:59.

: SHORTDATE: The file’s timestamp is formatted in the American format, without the

: century: 3/09/46 23:59:59.

: STANDARD: The file’s timestamp is formatted as a single word in a form that can be

: used for comparisons: 19460309235959.

: STRING: Specify custom timestamp formatting, similar to the POSIX strftime()
: function. The delimited string specifies formatting as literal text and

: substitutions are indicated by a percentage symbol (%) followed by a

: character that defines the substitution. These substitution strings are

: recognised by sfsdirectory:

 Chapter 23. Inventory of Built-in Programs 559

 sfsrandom

: Operation: A private unit of work is obtained to ensure a consistent view of the file

: space. A line is written for each file or directory in the specified root directory. When

: RECURSIVE is specified, the contents of subdirectories are also written.

: Output Record Format: For NOFORMAT, the output record is 112 bytes. Refer to the

: macro DIRBUFF in DMSGPI MACLIB for intent FILE and the description of DMSGETDI.

: Commit Level: sfsdirectory starts on commit level -2000000000. It obtains a unit of

: work, verifies that the root directory exists, and then commits to level 0.

: Premature Termination: sfsdirectory terminates when it discovers that its output stream

: is not connected.

: See Also: state and statew.

: Examples: To list the root directory of the server that runs the samples. It contains a

: single file:

: pipe sfsdir . str /%F/ | console
: ►ARCH - D 2015-08-13 SFS:P>
: ►DELTA - D 2015-07-30 SFS:P>
: ►FPLNOTES ENLIGD -1 V 16384 18 69 2015-09-28 SFS:P>
: ►MASTER - D 2015-12-04 SFS:P>
: ►PS - D 2015-08-04 SFS:P>
: ►Q - D 2015-08-13 SFS:P>
: ►UTILS - D 2015-07-30 SFS:P>
: ►V - D 2015-08-13 SFS:P>
: ►Z - D 2015-08-13 SFS:P>
: ►TMPHELP - D 2020-04-29 SFS:P>
: ►Ready;

: %% A single %.

: %Y Four digits year including century (0000-9999).

: %y Two-digit year of century (00-99).

: %m Two-digit month (01-12).

: %n Two-digit month with initial zero changed to blank (1-12).

: %d Two-digit day of month (01-31).

: %e Two-digit day of month with initial zero changed to blank (1-31).

: %H Hour, 24-hour clock (00-23).

: %k Hour, 24-hour clock first leading zero blank (0-23).

: %M Minute (00-59).

: %S Second (00-60).

: %F Equivalent to %Y-%m-%d (the ISO 8601 date format).

: %T Short for %H:%M:%S.

: %t Tens and hundredth of a second (00-99).

sfsrandom—Random Access an SFS File
sfsrandom reads records in a specified order from a CMS file that is stored in the Shared

File System (SFS) directly, using a directory path or a NAMEDEF. The directory need not

be accessed as a mode.

560 CMS Pipelines User’s Guide and Reference

 sfsrandom

 CMS

►►──SFSRANDOM──fn──ft──dirid──┬───────┬──►
└─digit─┘

 ┌ ┐─────────────────────────── ┌ ┐───────────
►─ ───6 ┴┬ ┬─────────────────────── ───6 ┴┬ ┬─────── ─►◄

├─ASIS──────────────────┤ └ ─range─┘
 ├ ┤─BLOCKed───────────────
 ├─ESM──delimitedString─ ─┤
 ├ ┤─NUMBER────────────────
 ├ ┤─OLDDATERef────────────
 ├ ┤─OPENRECOVER───────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

 Syntax Description:

Further arguments are ranges of records to be read. Use an asterisk as the end of a range

to read to the end of the file.

Commit Level: sfsrandom starts on commit level -2000000000. It creates a private unit

of work if WORKUNIT PRIVATE is specified, opens the file, allocates a buffer if required,

and then commits to level 0.

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

BLOCKED Write a range of records from the file as a single output record; the file

must have fixed record format.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

NUMBER Prefix the record number to the output record. The field is ten characters

wide; it contains the number with leading zeros suppressed.

OLDDATEREF Pass the keyword to the open routine. CMS will not update the date of

last reference for the file.

OPENRECOVER Pass the keyword to the open routine. This particular operation is

performed as if the file’s attributes were RECOVER and NOTINPLACE.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is DEFAULT.

 Chapter 23. Inventory of Built-in Programs 561

 sfsupdate

Premature Termination: sfsrandom terminates when it discovers that its output stream is

not connected.

See Also: disk, diskback, diskslow, filetoken, members, and pdsdirect.

Examples: Both of these commands read records 7, 8, 3, and 1 from a file and write

them to the pipeline in that order:

pipe diskrand profile exec . 7.2 3 1 |...
pipe literal 3 1 | diskrand profile exec . 7.2 |...

This reads your profile from your root directory in the current file pool. diskrand selects

sfsrandom to process the file, because the third word is present, but it does not specify a

file mode.

 Notes:

1. RECNO is a synonym for NUMBER.

2. sfsrandom performs at least one read operation for the records in the arguments, if

specified, and one read operation for each input record. When BLOCKED is specified,

all records in a range are read in a single operation. It is unspecified how many

additional read operations it performs for records specified in the arguments or a

particular input record. This may be significant when the file is updated with

diskupdate. Ensure that no stage delays the record between stages reading and writing

a file being updated.

! 3. When no options are specified and the first range consists of a single number less than

! 7, the file mode number is required to avoid the first range being interpreted as file

! mode number. Since the file mode number is ignored when reading an SFS file, any

! valid number may be specified. To avoid confusion, provide the ranges through input

! records to sfsrandom.

sfsupdate—Replace Records in an SFS File
sfsupdate replaces records in or appends records to a file in the Shared File System (SFS)

directly, using a directory path or a NAMEDEF. The directory need not be accessed as a

mode. A file is created if one does not exist.

562 CMS Pipelines User’s Guide and Reference

 sfsupdate

 CMS

►►──SFSUPDATE──fn──ft──dirid──┬───────┬──►
└─digit─┘

 ┌ ┐───────────────────────────
►─ ───6 ┴┬ ┬─────────────────────── ─►◄
 ├ ┤─ALLOWEMPTY────────────
 ├ ┤─ASIS──────────────────
 ├─ESM──delimitedString─ ─┤
 ├ ┤ ─Fixed─ ──┬ ┬──────── ────

│ └─number─┘ │
 ├ ┤ ─HARDEN─ ──┬ ┬──────── ───

│ └─number─┘ │
 ├ ┤─KEEP──────────────────
 ├─MDATE──number─ ────────┤
 ├ ┤─OPENRECOVER───────────
 ├ ┤─SAFE──────────────────
 ├ ┤─Variable──────────────
 └─WORKUNIT──┬─number──┬─┘
 ├ ┤─DEFAULT─
 └ ┘─PRIVATE─

Type: Device driver.

Placement: sfsupdate must not be a first stage.

 Syntax Description:

fn Specify the file name for the file.

ft Specify the file type for the file.

dirid Specify the mode, the directory, or a NAMEDEF for the directory for the

file.

digit Specify the file mode number for the file.

ALLOWEMPTY Pass the keyword to the open routine. When ALLOWEMPTY is specified,

CMS creates an empty file if no input is read. The default is not to

create a file when there is no input.

ASIS Use the file name and file type exactly as specified. The default is to

translate the file name and file type to upper case when the file does not

exist as specified.

ESM Provide a character string for an external security manager. The char-

acter string can be up to eighty characters and it may contain blanks.

FIXED The record length may be specified after FIXED. Create a new file with

fixed record format; verify that an existing file has fixed record format.

If the record length is specified and the file exists, it is verified that the

file is of the specified record length.

HARDEN Perform SFS commit operations to make the file contents permanent

before end-of-file is read. Specify the number of records to write to the

! file between each SFS commit operation. HARDEN is mutually exclusive

with SAFE.

 Chapter 23. Inventory of Built-in Programs 563

 sfsupdate

Operation: Columns 11 through the end of the input record replace the contents of the

record in the file. The file is closed before sfsupdate terminates.

Input Record Format: The first 10 columns of an input record contain the number of the

record to replace in the file (the first record has number 1). The number does not need to

be aligned in the field. It is an error if an input record is shorter than 11 bytes.

The valid values for the record number depends on the record format of the file:

Fixed For fixed record format files, any number can be specified for the record

number (CMS creates a sparse file if required). An input record can contain

any number of consecutive logical records as a block. The block has a single

10-byte prefix containing the record number of the first logical record in the

block.

Variable When the file has variable record format, the record number must be at most

one larger than the number of records in the file at the time the record is

written to it. The data part of input records must have the same length as the

records they replace in the file.

Streams Used: sfsupdate copies the input record (including the record number) to the

output after the file is updated with the record.

Record Delay: sfsupdate strictly does not delay the record.

KEEP! KEEP is ignored unless WORKUNIT PRIVATE is specified or defaulted.

When KEEP is specified, changes are committed to the file even when an

error has occurred. The default is to roll back the unit of work. KEEP is

mutually exclusive with SAFE.

MDATE Specify the file modification date and time. The timestamp contains

eight to fourteen digits. The first eight digits specify the year (four

digits), the month (two digits), and the day (two digits). The remaining

digits are padded on the right with zeros to form six digits time

consisting of the hour, the minute, and the second. A twenty-four hour

clock is used.

OPENRECOVER Pass the keyword to the open routine. This particular operation is

performed as if the file’s attributes were RECOVER and NOTINPLACE.

SAFE! SAFE is rejected if WORKUNIT PRIVATE is neither specified nor defaulted.

When SAFE is specified, sfsupdate performs a pipeline commit to level 1

before it returns the unit of work. It rolls back the unit of work if the

commit does not complete with return code 0. SAFE is mutually exclu-

sive with HARDEN and KEEP.

VARIABLE The record length may be specified after VARIABLE. Create a new vari-

able record format file; verify that an existing file has variable record

format.

WORKUNIT Specify the work unit to be used. You can specify the number of a

work unit you have allocated by the DMSGETWU callable service; you

can specify DEFAULT, which uses the default unit of work; or you can

specify PRIVATE, which gets and returns a work unit for the stage’s

exclusive use. The default is PRIVATE.

564 CMS Pipelines User’s Guide and Reference

 snake

Commit Level: sfsupdate starts on commit level -2000000000. It creates a private unit of

work if WORKUNIT PRIVATE is specified or defaulted, opens the file, allocates a buffer if

required, and then commits to level 0.

See Also: >, >>, disk, diskslow, and filetoken.

Examples: To replace records in a file with a particular key:

/* Update file */
'PIPE (end ?)',
 '| < input file .',
 '| spec number 1 1-* next',

'|c: change casei 11-* /apples/banana/',
 '| sfsupdate input file .',
 '?c:'

Note that sfsupdate runs on a private unit of work, whereas < runs on the default unit of

work. Defining the secondary output stream to change makes it write only changed

records to its primary output stream.

snake—Build Multicolumn Page Layout
snake breaks the input file into columns of the specified depth and pastes the columns

together side by side. Thus, the input file wiggles its way across the page like a snake.

►►──SNAKE──number──┬────────┬──►◄
└─number─┘

 Type: Filter.

Syntax Description: The first number specifies the number of columns to be made. The

second number specifies the number of lines on a “page”. If the second number is

omitted, snake reads the file and determines the minimum number of rows required to fill

all columns; when the number of input records is not evenly divisible by the number of

columns, the last column will not be filled completely.

Operation: When the second number is omitted, snake reads the entire file to determine

the number of records and sets the page depth accordingly.

Assuming the number of lines on a page is n, the first output line contains records 1, n+1,

2*n+1, and so on. Thus, if the input records are sorted, the columns on the page will be

sorted downwards.

Input Record Format: Input records should be of fixed length; snake neither pads nor

truncates to fit records into columns.

Record Delay: snake can delay all records that make up a “page”.

Commit Level: snake starts on commit level -1. It verifies its arguments and then

commits to 0.

Premature Termination: snake terminates when it discovers that its output stream is not

connected.

 See Also: join.

 Chapter 23. Inventory of Built-in Programs 565

 socka2ip

Examples: To arrange letters in a square:

 pipe literal a b c d | split | snake 2 | console
►ac
►bd
►Ready;

To transpose a matrix:

 pipe literal c d | literal a b | cons | split | snake 2 | console
►a b
►c d
►ac
►bd
►Ready;

The first two lines of output show the input matrix; the last two show the resulting matrix

without padding.

socka2ip—Format sockaddr_in Structure
socka2ip converts input records that are sixteen bytes to a readable port number and IP

address; it converts input records that are four bytes to a readable IP address.

►►──SOCKA2IP──►◄

 Type: Filter.

Input Record Format: When the input line is four bytes long, the input record contains

the unsigned long IP address to be converted.

Otherwise the input record contains a structure of sixteen bytes. Binary numbers are

stored in the network byte order, that is, with the most significant bit leftmost.

Output Record Format: When the input line is four bytes long, the output record

contains a single word, which is the IP address in dotted-decimal notation.

Otherwise the output record contains three blank-delimited words:

1. The literal constant “AF_INET”.

2. The port number, which is in the range 0 to 65535, inclusive.

3. The IP address in dotted-decimal notation.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Pos Len Description

1 2 The short unsigned number 2, which specifies that the addressing

family is AF_INET.

3 2 The short unsigned port number.

5 4 The unsigned IP address.

9 8 Reserved. Binary zeros

566 CMS Pipelines User’s Guide and Reference

 sort

Record Delay: socka2ip does not delay the record.

Premature Termination: socka2ip terminates when it discovers that its output stream is

not connected.

 Converse Operation: ip2socka.

 Examples:

To format a socket address structure:

 pipe strliteral x0002001101020304 | pad 16 00 | socka2ip | console
►AF_INET 17 1.2.3.4
►Ready;

 sort—Order Records
sort reads all input records and then writes them in a specified order.

 ┌ ┐─NOPAD─────
►►──SORT─ ──┬ ┬──────── ──┼ ┼─────────── ──┬ ┬───────── ─►

├─COUNT──┤ └─PAD──xorc─┘ └─ANYcase─┘
 └ ┘─UNIQue─

 ┌ ┐─Ascending─────────────────────────────────────
►─ ──┼ ┼─── ─►◄

 ├ ┤─Descending────────────────────────────────────
 │ │┌ ┐───
 │ ││ │┌ ┐─Ascending──

└──6─inputRange──┼────────────┼──┬───────────┬─┴─┘
 └ ┘─Descending─ ├ ┤─NOPAD─────
 └─PAD──xorc─┘

 Type: Sorter.

Syntax Description: Arguments are optional. If present, the keywords COUNT or UNIQUE

must be first. Write the keywords PAD or NOPAD in front of the sort fields to specify the

default for all fields; the default is NOPAD. The keyword NOPAD specifies that key fields

that are partially present must have the same length to be considered equal; this is the

default. The keyword PAD specifies a pad character that is used to extend the shorter of

two key fields.

The keyword ANYCASE specifies that case is to be ignored when comparing fields; the

default is to respect case. Up to 10 sort ranges can be specified. The default is to sort

ascending on the complete record. The ordering can be specified for each field; it is

ascending by default.

Operation: Records with identical sort keys remain in the order they appear on input

unless one of the keywords COUNT or UNIQUE is used.

The first record with a given key is retained when COUNT or UNIQUE is used; subsequent

records with duplicate keys are discarded. A 10-character count of the number of occur-

rences of the key is prefixed to the output record when COUNT is specified.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. sort reads all input records before it writes output. When COUNT or

UNIQUE is specified, records that have duplicate keys are written to the secondary output

 Chapter 23. Inventory of Built-in Programs 567

 sort

stream, if it is defined and connected. End-of-file on the secondary output stream is

ignored. When COUNT and UNIQUE are omitted, only one stream may be defined.

Record Delay: sort delays all records until end-of-file.

Commit Level: sort starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

See Also: collate, dfsort, lookup, merge, and unique.

Examples: To sort hexadecimal data correctly, use xlate to change the collating sequence

so that A through F sort after the numbers. Use another xlate to change the sequence back

after the sort. It is assumed that the sort field contains only blanks, numbers, and A

through F.

/* HEXSORT REXX: Sort in HEX */
'callpipe',
 '*: |',

'xlate *-* A-F fa-ff fa-ff A-F |',
'sort' arg(1) '|',
'xlate *-* A-F fa-ff fa-ff A-F |',

 '*:'
exit RC

sort sorts binary data, even when the data may look like numbers, which you might expect

to be sorted numerically rather than by the collating sequence:

 pipe literal 11 5 2 1 | split | sort | console
►1
►11
►2
►5
►Ready;

See “Numeric Sorting” on page 128 for an approach to sort this like numbers.

 Notes:

1. sort is stable. That is, records that have the same contents of the key field(s) are in

the same order on output as they were on input.

2. Use DFSORT/CMS, IBM Program Number 5664-325, to sort files that are too large for

sort. dfsort can be used to interface CMS Pipelines to this sort program.

3. Unless ANYCASE is specified, key fields are compared as character data using the IBM

System/360 collating sequence.

4. Use spec (or a REXX program) for example to put a sort key in front of the record if

you wish, for instance, to use a numeric field that is not aligned to the right within a

column range. Such a temporary sort key can be removed with substr for example

after the records are written by sort.

5. Use xlate to change the collating sequence of the file.

: 6. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

7. Note in particular that sort performs a binary comparison of key fields from left to

right. Thus, numeric fields will be sorted “correctly” only when the data to be

: compared are aligned to the right within sort fields of equal size. (Since padding is

applied on the right hand side only.) Thus, a numeric sort is unlikely to “work” when

568 CMS Pipelines User’s Guide and Reference

 space

the sort field is defined as, for example, a word. See also “Numeric Sorting” on

page 128.

8. sort UNIQUE orders the file and discards records with duplicate keys. Refer to lookup

for an example of extracting all unique records from a file without altering their order.

. space—Space Words Like REXX

. space is a generalisation of the REXX space built-in function.

.

. ►►──SPACE─ ──┬ ┬──────── ──┬ ┬───────────────────────────── ─►

. └─number─┘ ├─xorc────────────────────────┤

. └. ─┬────────┬──delimitedString─┘

. └ ┘─STRing─

. ►─ ──┬ ┬──────────────────────────── ─►◄

. ├─xorc───────────────────────┤

. └. ─┬───────┬──delimitedString─┘

. └ ┘─ANYof─

. Type: Filter.

. Syntax Description:

. Operation: Leading and trailing delimiters are removed from the record. Internal

. sequences of delimiter characters are replaced by the specified number of the replacement

. string.

. Record Delay: space strictly does not delay the record.

. Premature Termination: space terminates when it discovers that its output stream is not

. connected.

. Examples:

. number. Specify the number of occurrences of the pad string to insert for each

. internal string of delimiters. The default is 1.

. STRING. The second operand specifies the string to replace sequences of delimiter

. characters. The default is a single blank.

. ANYOF. The third operand specifies the delimiter character(s). This string

. contains an enumeration of characters that are all considered to be

. delimiters. The default is a single blank.

 Chapter 23. Inventory of Built-in Programs 569

 space

. pipe literal a b b |space|insert /*/ after | console

. ►a b b*

. ►Ready;

. pipe literal a b b |space blank|insert /*/ after | console

. ►a b b*

. ►Ready;

. pipe literal 3.6=7,3 |space 0 /,.=/ | console

. ►3673

. ►Ready;

. pipe literal a b c d |space /(*)/ | console

. ►a(*)b(*)c(*)d

. ►Ready;

. pipe literal a b c d |space 2 /(*)/ | console

. ►a(*)(*)b(*)(*)c(*)(*)d

. ►Ready;

. Notes:

. 1. When specifying a numeric replacement string of one or two characters (which parses

. as an xorc), you must specify a count even when you wish the default of 1.

. 2. When just one string argument is specified, it is taken to be the replacement string

. unless ANYOF is specified or the count is zero.

. 3. Unlike the REXX built-in function, space supports replacement strings longer than one

. character and more than one blank character.

570 CMS Pipelines User’s Guide and Reference

 spec

spec—Rearrange Contents of Records
spec builds output records from the contents of input records and literal fields. It does this

by processing a list of specifications (a specification list) for each input record. spec was

originally written to perform the function of the SPECS option on the CMS COPYFILE

command, but it has long since expanded far beyond moving columns to rearrange a

record. Though the syntax diagram below may look intimidating, spec is governed by a

few simple concepts that you will find easy enough to learn.

spec can convert the contents of fields in several ways. It can generate an output record

containing data from several input records, and it can generate several output records from

a single input record.

This article contains but an overview of spec. Refer to Chapter 16, “spec Tutorial” on

page 166 and Chapter 24, “spec Reference” on page 719.

 ┌ ┐─STOP──ALLEOF───── ┌ ┐────────────────────
►►──SPEC─ ──┼ ┼────────────────── ───6 ┴┬ ┬─┤ field ├────── ─►◄
 └ ┘ ─STOP─ ──┬ ┬─ANYEOF─ ├ ┤─READ───────────

└─number─┘ ├─READSTOP───────┤
 ├ ┤─WRITE──────────
 ├─SELECT──stream─┤
 └─PAD──xorc─ ─────┘

field:

├──┬─inputRange─────────────────────────────────────┬──┬───────┬──►
 ├ ┤ ──┬ ┬─NUMBER─ ──┬ ┬─────────────── ──┬ ┬───────────── └ ┘─STRIP─

│ └─RECNO──┘ └─FROM──snumber─┘ └─BY──snumber─┘ │
 ├ ┤─TODclock───────────────────────────────────────

└─delimitedString────────────────────────────────┘

►─ ──┬ ┬──────────────── ──┬ ┬ ──(1)──┬ ┬─Next───── ──┬ ┬─────────── ─►
└─┤ conversion ├─┘ │ └─NEXTWord─┘ └─.──number─┘ │

├─number────────────────────────┤
└─range─────────────────────────┘

►─ ──┬ ┬──────── ─┤
 ├ ┤─Left───
 ├ ┤─Centre─
 └ ┘─Right──

 conversion:

├─ ──(2)──┬ ┬──f2t ───────── ─┤
├─P2t(snumber)─┤
└─f2P(snumber)─┘

Notes:
1 There is no blank between the keyword, the period, and the number.
2 The conversion routines are B2C D2C F2C I2C P2C V2C X2C C2B C2D C2F C2I C2P C2V

C2X and selected direct conversions.

 Type: Filter.

Syntax Description: Specify STOP to terminate spec when it discovers that a specified

number of input streams are at end-of-file. The default is to process all input streams to

end-of-file.

Specify a list of one or more items. Each item defines a field in the output record or

contains a keyword to control processing.

 Chapter 23. Inventory of Built-in Programs 571

 spec

The specification of a field in the output record consists of:

¹ The source of the data to be loaded. It can refer to the input record; it can refer to

symbolic fields maintained by spec; or it can be a literal argument. When the input

record is the source of the data, the extent of the input field can be specified as a

column range, a range of blank-delimited words, or a range of tab-delimited fields.

The input field can also consist of a single column (or word or field); its position can

be relative to the beginning or the end of the input record.

¹ An optional keyword to specify that the input field is to be stripped of leading and

trailing blanks before further processing.

¹ An optional conversion routine. A conversion routine is specified as three characters

that has the digit 2 (an abbreviation for the word “to”) in the middle. The first and

the last character must both be one of the characters BCDFIPVX. The first letter

specifies the format of the input field; the last letter specifies the format to which the

field is to be converted. Not all combinations are supported (some make no sense).

When one of the formats is P (for packed), the name of the conversion routine may be

followed immediately by parentheses containing a signed number.

¹ The position of the field in the output record. This can be a column number, a range,

or the keywords NEXT or NEXTWORD.

¹ An optional keyword to specify the placement of the data within the output field. This

can be LEFT, CENTRE, or RIGHT.

These keywords specify functions of spec that are not related to formatting output fields:

READ Read another record from the currently active stream (after discarding the

current record). A stream at end-of-file is considered to contain a null record.

READSTOP Perform like READ, but terminate the pass over the specification list if the

stream is at end-of-file.

WRITE Write an output record containing the data from the specification items proc-

essed so far in the list.

SELECT Switch to another input stream and process the record available on that input

stream. The word following SELECT should be a stream number or a stream

identifier of the input stream to which the following specification items refer.

PAD Use the specified character to pad short fields when storing subsequent items

in the output record. The word following PAD specifies the character to be

used as the pad character; it can be specified as a single character, a two-

character hexadecimal code, or as one of the keywords BLANK or SPACE.

Operation: Output records are built from literal data and fields in input records, which

can come from multiple streams. The output record is built in the order the items are

specified. The length of a literal field is given by the length of the literal itself; TODCLOCK

is eight bytes long; NUMBER is 10 bytes long. A copied input field extends to the end of

the input record or the ending column of the input field, whichever occurs first.

The output record is at least long enough to contain all literal fields and all output fields

defined with a range. It is longer if there is an input data field beyond the last literal field,

and the input record does contain at least part of the input field.

Padding: Pad characters (blank by default) are filled in positions not loaded with charac-

ters from a literal or an input field. The keyword PAD sets the pad character to be used

when processing subsequent specification items.

572 CMS Pipelines User’s Guide and Reference

 spec

Input field: An input range specification defines a substring of an input record.

Depending on the length of a record, an input range may be present in full, partially, or

not at all. Input ranges not present in a record are considered to be null; that is, of length

zero.

The beginning and end of an input range are, in general, defined by a pair of numbers

separated by a semicolon (for example, 5;8). An unsigned number is relative to the

beginning of the record; a negative number is relative to the end of the record. None, any

one, or both of the numbers may be negative. When the two numbers have the same sign,

the first number must be less than or equal to the second number.

When both numbers in the range are unsigned, a hyphen may be used as the separator

rather than a semicolon. A range relative to the beginning of a record may also be

specified as two numbers separated by a period, denoting the beginning of the range and

its length, respectively.

An input range with no further qualification denotes a range of columns. WORDS may be

prefixed to indicate a word range; FIELDS may be prefixed to indicate a field range.

The record number: You can put the number of each record into the record, for instance,

to generate a sequence field. The keyword NUMBER (with synonym RECNO) describes a

10-byte input field generated internally; it contains the number of the current record, right

aligned with leading blanks (no leading zeros). Records are numbered from 1 (the

numeral, one) with the increment 1 (the numeral, one) when no further keywords are

specified. The word after the keyword FROM specifies the number for the first record; it

can be negative. The word after the keyword BY specifies the increment; it too can be

negative. The keywords apply to a particular instance of NUMBER. When the record

number is negative, a leading minus sign is inserted in front of the most significant digit in

the record number, unless the number has ten significant digits (in which case there is no

room for the sign). In applications where the 10-digit format is a concern, a counter can

be incremented as required and printed in the required format.

The Time-of-day Clock: The contents of the time-of-day clock are stored when a set of

input records is ready to be processed. The field is a 64-bit binary counter. It is constant

while output record(s) are built. Refer to Enterprise Systems Architecture/390 Principles of

Operation, SA22-7201, for a description of the time-of-day clock.

Literal field: This is a constant that appears in all output records. A literal character

string is written as:

¹ A delimited string (delimitedString) consisting of a character string between two

occurrences of a delimiter character, which cannot occur in the string. The delimiter

character cannot be blank. It is suggested that a special character be used for the

delimiter, but this is not enforced. However, when an alphanumeric character is used

as the delimiter, there is a possibility that today’s delimited string might become

tomorrow’s keyword.

¹ A hexadecimal literal consisting of a leading “x” or “h” (in lower case or upper case)

followed by an even number of hex characters.

¹ A binary literal consisting of a leading “b” (in lower case or upper case) followed by

zero and one characters in multiples of eight.

Stripping: The keyword STRIP specifies that the field (input field, sequence number, time

of day, or literal) is to be stripped of leading and trailing blanks before conversion (if any)

and before the default output field size is determined.

 Chapter 23. Inventory of Built-in Programs 573

 spec

Conversion: A field (input or literal) is put in the output record as it is when no conver-

sion is requested for the item. Put the name of a conversion routine between the input and

output specifications when you wish to change the format of a field. The functions also

defined for REXX work in a similar way. They are C2D, D2C, C2X, and X2C. The functions

not available in REXX convert bit strings, floating point, dates, packed decimal, and varying

length strings. Note that the REXX name for a conversion function can be misleading: For

instance, C2D is described in the REXX manual as converting from character to decimal;

what it does, however, is convert from the internal IBM System/390* two’s complement

notation of a binary number to the external representation in base-10, zoned decimal.

Some conversions are supported directly between printable formats, for example X2B. This

table summarises the supported combinations. A plus indicates that the combination is

supported. A blank indicates that the combination is not supported.

 CDXB FVPI To
 +++ ++++ From C
 + ++ From D
++ + ++++ From X

 +++ ++++ From B
 + ++ From F
 + ++ From V
 + ++ From P
 + ++ From I
 CDXB FVPI To

Composite conversion (x2y) is performed strictly via the C format; that is, x2C followed by

C2y.

Output field position: The output specification can consist of the keywords NEXT or

NEXTWORD, a column number, or a column range. NEXT indicates that the item is put

immediately after the rightmost item that has been put in the output buffer so far.

NEXTWORD appends a blank to a buffer that is not empty before appending the item. (A

field placed with NEXT or NEXTWORD can be overlaid by a subsequent specification indi-

cating a specific output column.) Append a period and a number to specify an explicit

field length with the keywords NEXT and NEXTWORD.

Output field length: Fields for which an explicit length is specified are always present in

the output record. Input fields that are not present in the input record or have become null

after stripping caused by the STRIP keyword are not stored in the output record. A null

literal field is stored in the output record. The default length of the output field is the

length of the input field after conversion (but before placement).

Placement of data in the output field: When an output range is specified without a place-

ment option, the input field after conversion is aligned on the left (possibly with leading

blank characters), truncated or padded on the right with pad characters.

A placement keyword (LEFT, CENTRE, CENTER, or RIGHT) is optional in the output field

definition. If a placement option is specified, the input field after conversion (and thus

after the length of the output field is determined) is stripped of leading and trailing blank

characters unless the conversion is D2C, F2C, I2C, P2C, or V2C.

LEFT The field is aligned on the left of the output field truncated or padded on the

right with pad characters.

CENTRE The field is loaded centred in the output field truncated or padded on both

sides with pad characters. If the field is not padded equally on both sides, the

right side gets one more pad character than the left side. If the field is not

574 CMS Pipelines User’s Guide and Reference

 spec

truncated equally on both sides, the left side loses one more character than the

right side.

RIGHT The field is aligned to the right in the output field, truncated on the left or

padded on the left with pad characters.

Multiple records: You can write input fields from consecutive input records to an output

record. Use the keywords READ and READSTOP to consume a record and peek (read

without consuming) the next record on the stream specified by the most recent SELECT (or

the primary stream if there is no prior SELECT). When READ is used, a null record is

assumed if the stream is at end-of-file. When READSTOP is used, end-of-file causes spec to

write the output record built so far and terminate processing of that set of input records.

READ is convenient, for example, to process the primary stream from lookup when it has

both master and detail records. (Do not use the READ keyword if you wish to write one

output record for each input record; a read on all used streams is implied at the end of the

specification list.)

You can write multiple output records based on the contents of an input record (or a set of

input records). The keyword WRITE writes the output record built so far to the primary

output stream, leaving the current output record empty.

Streams Used: The keyword SELECT specifies that subsequent input fields refer to the

specified input stream, which is specified by number or stream identifier. SELECT 0 is

implied at the beginning of the specification list unless an explicit selection occurs before

the first input specification referring to a field in an input record. When more than one

input stream is selected, a record is peeked (read in locate mode) from all specified input

streams before the list is processed. An input stream at end-of-file is considered to hold a

null record. Unless READ, READSTOP, or WRITE are used to read or write during the cycle,

a set of input records is consumed (released with a move mode read) after the output

record is written at the end of the cycle, before further input is obtained.

Input streams defined, but not referenced, are not read when SELECT is used. Only the

primary input stream is used when the specification list has no SELECT keyword (all other

streams are ignored). When STOP ALLEOF is specified (this is the default), spec processes

input records until all input streams being used are at end-of-file. When STOP ANYEOF is

specified, spec terminates when it encounters the first stream at end-of-file. When a

number is specified, spec terminates when that number of streams are at end-of-file, or

when all used streams are at end-of-file. The test for termination is performed only when

spec is reading input records at the beginning of the specification list. End-of-file on a

READ item does not terminate spec immediately; end-of-file on a READSTOP causes spec to

write the output record and terminate processing of the current set of input records.

Record Delay: spec synchronises the referenced input streams. It does not delay the

record, unless READ or READSTOP is used.

Commit Level: spec starts on commit level -2. It verifies that the primary output stream

is the only connected output stream, processes the arguments, and then commits to level 0.

Premature Termination: spec terminates when it discovers that any of its output streams

is not connected.

See Also: change, chop, insert, overlay, and timestamp.

Examples: To append an asterisk to each line on the primary input stream:

 Chapter 23. Inventory of Built-in Programs 575

 spec

... | spec 1-* 1 /*/ next | ...

To generate SEQ8 sequence fields (the record number in columns 73-76 and 77-80 zero):

...| spec 1.72 1.72 pad 0 number 73.4 right ?0000? 77 |...

Columns 1 to 72 are copied across in the first specification item; the output field size

ensures that short records are padded with blanks up to 72 characters. The pad character is

then set to 0 so that the leading blanks in the record number are stored as leading zeros;

the four rightmost characters of the record number are put in columns 73 to 76 and four

zeros appended to make the output record 80 bytes.

To prefix each record (assuming it is shorter than 64K) with a fullword that contains the

length of the data part of the record:

...| spec x0000 1 1-* v2c next |...

A literal with two bytes of binary zeros is put in front of the halfword length generated by

the conversion.

To prefix a record with a length field that is two plus the length of the record, as done in

structured fields:

...| spec 1-* 1 /xx/ next | spec 1-* v2c 1 | spec 1;-3 1 |...

This example uses three spec stages. The first one appends two characters to the record (it

does not matter what these two characters are); the second generates a halfword length

field counting these two characters; and the last one removes the two characters, leaving

the original record with the required length field in front.

To obtain the contents of the first structured field in the record (the converse of the

previous example):

... | spec 1-* 1 /xx/ next | spec 1-* c2v | spec 1;-3 | ...

To number records starting from zero with leading blanks suppressed:

... | spec number from 0 strip 1 1-* nextword | ...

Specify a scaling of zero to append a decimal point to the number being unpacked:

 pipe strliteral x123c | spec 1-* c2p | console
►+123
►Ready;
 pipe strliteral x123c | spec 1-* c2p(0) | console
►+123.
►Ready;
 pipe strliteral x123c | spec 1-* c2p(1) | console
►+12.3
►Ready;

 Notes:

1. Some simple functions of spec can be done easier with special purpose programs like

substr and insert.

2. In early releases of CMS Pipelines spec was called specs Gradually the association

with COPYFILE has been lost; most users of CMS Pipelines refer to the built-in as spec.

For compatibility reasons, specs is retained as a synonym.

576 CMS Pipelines User’s Guide and Reference

 spill

3. Floating point conversion (F2C and C2F) requires extended precision floating point

hardware.

4. Conversion to floating (F2C) is in most cases accurate within rounding of the least

significant bit.

5. C2F conversion can show the effect of rounding errors in the least significant digit

when the exponent is close to the limits of the representation.

6. When the specification is a single field with no output column and without PAD,

SELECT, READ, or WRITE, the output placement is assumed to be column 1.

7. Unlike the keywords FIELDSEPARATOR, PAD, and SELECT apply to the remainder of the

item list; FIELD and WORDS apply to only one input field.

8. An asterisk is rejected for the ending column in an output specification.

9. The time-of-day clock is stored by the machine instruction STCK. In general, this is

the time at the primary meridian. A local time zone offset is not applied.

10. RECNO is a synonym for NUMBER. CENTER is a synonym for CENTRE. The keyword

NWORD is a synonym for NEXTWORD; it can be abbreviated to two characters. The

keyword FS is a synonym for FIELDSEPARATOR. The keyword WS is a synonym for

WORDSEPARATOR.

spill—Spill Long Lines at Word Boundaries
spill splits lines longer than a specified number into multiple output lines. Unlike deblock

FIXED, spill splits at word boundaries.

 ┌ ┐ ─/ /───────────────────────────────────
►►──SPILL──number──┼───────────────────────────────────────┼──►
 │ │┌ ┐─STRing───────────
 └─┼──────────────────┼──delimitedString─┘
 └ ┘ ──┬ ┬─────── ─ANYof─
 └ ┘─NOT───(1)

 ┌ ┐─────────────────────────────────
►─ ───6 ┴┬ ┬───────────────────────────── ─►◄
 ├ ┤─ANYcase─────────────────────
 ├ ┤─KEEP────────────────────────
 └─OFFSET──┬─number──────────┬─┘

└─delimitedString─┘

Note:
1 Blanks are optional between NOT and ANYOF.

 Type: Filter.

Syntax Description: A positive number is required as the first operand. The second posi-

tional operand specifies the word separator; it is optional. Remaining operands are

optional and may be specified in any order.

number Specify the maximum output record length.

STRING The word separator is a string of characters. If the delimited string

contains more than one character, the word separator consists of the

specified characters in the order shown.

 Chapter 23. Inventory of Built-in Programs 577

 spill

Operation: Input records that are shorter than the specified length are passed unchanged

to the output.

A leading string is split off long input records until the remainder is not longer than the

: specified length. The remainder is then passed unmodified to the output with offset

: applied.

For the first output record for a long input record, the split position is at the specified

length or before; for subsequent records, the split point is at the specified length less the

length of the offset. The split point is established at the rightmost occurrence of the word

separator within the specified range, or abutting the range on the right.

If no word separator can be found within the required range, further processing depends on

whether the secondary output stream is defined or not. When the secondary output stream

is not defined, the split point is then established within a word. When the secondary

output stream is defined, no further attempts are made to split the record. Instead, the

remainder of the input record is written to the secondary output stream. It is prefixed with

the offset if one or more records were written to the primary output stream before the long

word was encountered.

Unless KEEP is specified, word separators are discarded when records are split; this can

lead to complete record segments being discarded on the output.

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected.

Record Delay: spill does not delay the last record written for an input record.

Commit Level: spill starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: spill terminates when it discovers that any of its output streams

is not connected.

 Converse Operation: join.

See Also: chop, deblock, and split.

ANYOF Any one of the characters enumerated in the delimited string is a word

separator.

NOT ANYOF Any one of the characters not enumerated in the delimited string is a

word separator. (This is the complement set.)

ANYCASE Ignore case when comparing for the word separator. The default is to

respect case.

KEEP Retain the word separator in the output record. The default is to strip

word separators at the split point.

OFFSET Specify the indent on the second and subsequent output lines for an

input record. A number specifies the number of blanks to insert; a

delimited string specifies the actual string to insert. Output records are

not offset when the number is zero or the string is null; this is the

default.

578 CMS Pipelines User’s Guide and Reference

 spill

Examples: To flow a paragraph:

 pipe literal This is a paragraph to be flowed.| spill 12 | console
►This is a
►paragraph to
►be flowed.
►Ready;

To flow an item in a numbered list:

 pipe literal 2. A most important item.| spill 14 offset 4 | console
►2. A most
► important
► item.
►Ready;

When there is no secondary output stream, very long words are split, but not discarded:

 pipe literal abcdefghi klmnopq| spill 4 | console
►abcd
►efgh
►i
►klmn
►opq
►Ready;

When the secondary output stream is defined, a very long word results in the rest of the

record being written to that stream:

 pipe (end ?) literal abc defghi klmn opq| s: spill 4 | hole ? s: | ...
... console

►defghi klmn opq
►Ready;

 pipe (end ?) literal abc defghi klmn | s: spill 4 offset 2 | ...
... hole ? s: | console

► defghi klmn
►Ready;

In the example above, the primary output stream from spill is discarded. When the second

word is processed, it is determined that the word cannot be spilt within the columns

allowed and the remainder of the record is written to the secondary output stream.

 Notes:

1. spill is designed to perform a function similar to XEDIT’s SET SPILL WORD; though it

has several enhancements, it is not suitable as a word processor.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

 Chapter 23. Inventory of Built-in Programs 579

 split

split—Split Records Relative to a Target
split writes one or more records based on the contents of an input record; each part ends

before or after a specified character or string.

►►──SPLIT─ ──┬ ┬───────── ──┬ ┬───────────────── ─►
└─ANYCase─┘ └─MINimum──number─┘

 ┌ ┐─AT──────────────────────
►─ ──┼ ┼───────────────────────── ──┬ ┬───── ─►

 └ ┘──┬ ┬───────── ──┬ ┬─BEFORE─ └ ┘─NOT─
└─snumber─┘ └─AFTER──┘

 ┌ ┐─BLANK──────────────────
►─ ──┼ ┼──────────────────────── ─►◄

 └ ┘─┤ target ├─ ──┬ ┬────────
└─number─┘

target:

├──┬─xrange──────────────────────┬──┤
 └─┬─STRing─┬──delimitedString─┘

 └ ┘─ANYof──

 Type: Filter.

Syntax Description: No arguments are required.

A relative position and the keyword NOT are optional in front of the target.

A relative position consists of the keyword AT or one of the keywords BEFORE or AFTER; a

signed number is optional before the latter two keywords.

The target can be a range of characters or a delimited string. A number is optional after

the target. A hex range matches any character within the range. The keyword STRING

followed by a delimited string matches the string. The keyword ANYOF followed by a

delimited string matches any one character in the string. (The keyword is optional before

a one character string, because the effect is the same in either case.)

The matching character or string is discarded when records are split at a target. AT is the

default qualifier. No parameters means split at blank characters.

Operation: split scans the record matching the pattern. When MINIMUM is specified, split

skips the number of characters specified before it starts looking for the pattern.

Use a number after the pattern to make split stop after the pattern has been matched that

number of times and write any remaining input data to the output stream; the default is to

continue to the end of the record. split writes at most n+1 records when a number is

specified.

A split position is established when the pattern has been matched. With no modifiers, it is

before the first character matching the pattern; with the options BEFORE and AFTER, it can

ANYCASE Ignore case. Conceptually, all processing is done in upper case.

MINIMUM Specify a positive number. split will not split within the specified

number of bytes from the beginning of the record or from a split posi-

tion.

580 CMS Pipelines User’s Guide and Reference

 split

be offset any number of characters to the left or right by coding snumber. n AFTER a

target is equivalent to m BEFORE a target, where m is -n-length(target). When a split posi-

tion is established within or after the record, a record is written with data from the

previous split position (initially before the first character in the record) to the newly estab-

lished split position or the end of the record, whichever occurs first. When splitting AT,

the split position is updated with the length of the target after a record is written, so that

the target is discarded; thus, records that consist entirely of the target are discarded.

Record Delay: split does not delay the last record written for an input record.

Premature Termination: split terminates when it discovers that its output stream is not

connected.

 Converse Operation: join.

See Also: chop, deblock, fblock, and spill.

Examples: To write each blank-delimited word as a separate record:

 pipe literal a b c | split | console
►a
►b
►c
►Ready;

The set buffer address order (X'11') marks the beginning of a field in an inbound 3270

data stream from a read modified command. If the 3270 data stream uses twelve-bit

addressing, you can split each inbound transmission into individual fields by | split
before 11 |. This is too simplistic if the 3270 data stream uses fourteen or sixteen bit

addressing: the two-byte buffer address that follows the order code could itself contain

X'11', which would trigger a split too early. To be sure:

... | split minimum 3 before 11 | ...

 Notes:

1. split copies null input records to the output; it does not generate null records.

: Caveat emptor! What this means is that a record that contains only the target string,

: no matter how many instances, is dropped. The pipeline below causes the variable

: ROB to be dropped.

: rob=' '
: 'PIPE var rob | split | var rob'

: One way to retain the variable is to strip before splitting; this creates a null record,

: which is passed by split.

: rob=' '
: 'PIPE var rob | strip | split | var rob'

2. Use deblock FIXED to split an input record into records of the specified length, where

only the last part can be shorter than the record length.

3. The minimum abbreviation of ANYCASE is four characters because ANYOF takes

precedence (ANYOF can be abbreviated to three characters).

: 4. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

 Chapter 23. Inventory of Built-in Programs 581

 sql

sql—Interface to SQL
sql queries DB2 tables, inserts rows into DB2 tables, and issues SQL statements in general.

 ┌ ┐──────────────────────
 │ │┌ ┐─COMMIT───────────
►►──SQL─ ───6 ┴┼ ┼─RELEASE────────── ──┬ ┬─┤ select-statement ├── ─►◄

├ ┤─NOCOMMIT───────── ├ ┤─┤ insert-statement ├──
├ ┤─REPEATable─────── ├ ┤─┤ connect-statement ├─

 ├ ┤─INDicators─────── └ ┘ ─EXECUTE─ ──┬ ┬──────── ──
├─NOINDicators─────┤ └─string─┘

 ├─PGMOWNER──word───(1) ┤
 ├─SUBSYSid──word───(2) ┤
 └─PLAN──word───(2) ────┘

select-statement:

├──┬─────────┬──┬──────────┬──SELECT──string──┤
 └ ┘─EXECUTE─ └ ┘─DESCRIBE─

 insert-statement:

├──┬─────────┬──INSERT──INTO──word──┬────────────────┬──┤
 └ ┘─EXECUTE─ │ │┌ ┐─,────

 └─(───6─word─┴──)─┘

connect-statement:

├──CONNECT─ ──┬ ┬───────────────────────────── ──┬ ┬──────────── ─┤
 └─word──IDENTIFIED BY──word───(1) ┘ └─TO──word───(3) ┘

Notes:
1 Available on CMS only.
2 Available on z/OS only.
3 The database name may be up to 18 characters long.

Type: Device driver.

Syntax Description: Optional keywords are followed by a function keyword. The

EXECUTE function does not require additional arguments; SELECT requires a SELECT state-

ment; INSERT requires at least three words of an INSERT statement.

General options:

COMMIT Commit the unit of work without releasing the connection to the DB2

service machine at completion, or roll back without releasing in the

event of an error. This is the default.

RELEASE Commit work with release at the completion of the stage, or roll back

work with release when a negative return code is received from DB2.

Use this option when you do not expect to use sql again in the near

future; being connected ties up resources in the DB2 virtual machine, but

on the other hand there is a certain overhead in reestablishing the

connection.

NOCOMMIT Do not commit the unit of work when processing is complete without

errors. Roll back without release in the event of an error. Use this

option when processing with multiple cursors or if you wish to issue SQL

statements from multiple invocations of sql as a single unit of work.

The connection to the DB2 server is retained.

582 CMS Pipelines User’s Guide and Reference

 sql

REPEATABLE Read repeatable isolation option is requested. The default is to use

cursor stability. This option is ignored on z/OS; the program isolation is

specified when the plan is bound.

INDICATORS The data streams used by sql SELECT and sql INSERT include indicator

halfwords in front of the field data proper. INDICATORS is the default for

sql SELECT.

NOINDICATORS The data streams used by sql SELECT and sql INSERT do not include indi-

cator halfwords in front of the field data proper. For sql SELECT, indi-

cator words are read and discarded; thus, errors are not reported when

null fields are selected. Null fields contain blanks or zeros, as appro-

priate to the field format. NOINDICATORS is the default for sql INSERT.

PGMOWNER The following word specifies the owner of the access module to use.

The default is a configuration variable; see below. The option applies to

the particular invocation of sql. (CMS only.)

SUBSYSID The following word specifies the subsystem identification of the DB2

system to be used. The default is DSN. SSID is a synonym for

SUBSYSID. (z/OS only.)

PLAN The following word specifies the plan to use. The default is FPLSQI;

your installation may have specified a different default. (z/OS only.)

Operation: Tables are loaded using sql INSERT, queried with sql SELECT, and maintained

with sql EXECUTE.

Select: Perform a query. The argument specifies a complete SELECT statement. One

record is written for each row of the result of the query. By default, each column is

preceded by a 2-byte indicator word specifying whether the column has a null value or

contains data. Use NOINDICATORS to suppress this field in the output record.

In an indicator word, binary zero indicates that the column has a value; a negative indi-

cator word indicates that the column is null. A positive value in the indicator word means

that the column is truncated; this should not occur, as each column has as many positions

reserved as sql DESCRIBE reports for the table. Blanks or zeros, as appropriate to the field

format, are stored in the unfilled positions of columns that contain a null value and

columns that have variable length. When the last field has variable length, the record is

truncated to the end of the data present.

/* Query a table */
'pipe sql select * from test where name="Oscar" |...'

When sql SELECT or sql DESCRIBE SELECT is issued with EXECUTE, output from the first

query is written to the primary output stream, the result of the second query goes to the

secondary output stream, and so on, until there are no further output streams; the result of

the remaining queries is written to the highest numbered stream defined. The streams must

be connected.

Describe select: The argument is a query to be described. One record is written for each

field of the query. Refer to the description of the SQLDA in DB2 Server for VSE & VM

Application Programming. Each record has five blank-delimited fields of fixed length:

3 The decimal number defining the field type.

16 The field type decoded, or “Unknown” if the field type is not recognised by CMS

Pipelines. The first four positions have the word LONG if the field is a long char-

acter or graphics field.

 Chapter 23. Inventory of Built-in Programs 583

 sql

5 The field length as reported by DB2. This is a single number except for decimal

fields where the precision and scale are reported with a comma between them.

5 The maximum length of the field in characters, including a halfword length field if

required, computed from the length and field type. This is the number of bytes sql

SELECT reserves for the field in the output record from a query, and the number of

bytes required in the input record to sql INSERT. The length does not include the

indicator word.

30 The field name. The record is truncated at the end of the name; the name field is

from 1 to 30 bytes.

Multiple queries are performed as described with SELECT above.

/* Describe the result of a query */
'pipe sql describe select * from test | console'

Insert: An insert statement with a values() clause or a subquery is executed immediately

without reference to an input stream. A values() clause cannot refer to host variables.

The remainder of this section describes how sql processes an insert statement that has no

values() clause and no subquery. This is supported only on CMS because DB2 does not

provide the underlying interface to insert on a cursor. When no values() clause is

specified, sql supplies one that references fields in input records. A row is inserted into

the table for each input record. You can specify a list of fields to insert in parentheses;

this list is used by sql to build a data area describing the input record.

When there is no list of columns after the name of the table, the input record contains data

for all columns in the table in the order returned by sql DESCRIBE SELECT * FROM. When a

list of columns is specified, the input record has the columns in the order specified and in

the format returned by the describe function. You cannot insert a literal value into a

column; use spec to put a literal into all input records. The format of an input record is

the same as the output record from sql SELECT. In particular, a variable length column

must be padded to its maximum length.

Use the option INDICATORS when you wish to load null values into selected columns. All

columns must have a 2-byte prefix, which is binary zero when the field has a value; it is

negative to indicate a null value. The default is not to use indicator words.

Input records are read from the primary input stream when EXECUTE is omitted. When sql

INSERT statement(s) with no values() clause are issued with the EXECUTE option, the first

statement reads records from the secondary input stream, the second statement reads from

stream number 2, and so on. It is an error if a stream is not defined.

/* Insert data into a table */
'pipe < to insert | sql insert into test' /* CMS ONLY */

Connect: Connect to a database. On VM, you can specify the user ID and password under

which you wish to communicate with DB2. The first word represents the user ID; the

second one represents the password. The keyword TO specifies that you wish to connect to

a particular database. The database name can be up to 18 characters long.

Execute: Perform SQL statements. A statement after EXECUTE is issued first; the primary

input stream is then read and each record is performed. All SQL statements are performed

as a single unit of work. Most SQL statements are supported; refer to the description of the

PREPARE statement in DB2 Server for VSE & VM Application Programming, for a list of

unsupported statements. sql processes COMMIT, CONNECT, and ROLLBACK directly; thus,

584 CMS Pipelines User’s Guide and Reference

 sql

they are also supported. Unsupported statements are rejected by DB2 with SQLCODE -515.

Processing stops as soon as an error is reported by DB2.

/* Drop a program */
'pipe literal drop program pipsqi | sql execute'

Using Multiple concurrent sql stages: Up to ten sql stages can run concurrently in all

active pipelines. It is paramount that the option NOCOMMIT be used. DB2 considers all sql

stages to be part of one unit of work; an implied commit by a stage causes errors when

other stages resume using their cursors. Explicit commit or rollback is done with sql

COMMIT and sql ROLLBACK.

/* Merge two tables */
'PIPE (end ?)',

'sql nocommit select * from table1 | p:... ',
'?sql nocommit select * from table2 | p:'

If RC/=0
 Then commit='rollback'
 Else commit='commit'

'PIPE sql execute' commit 'work release'

Streams Used: SQL statements are read from the primary input stream when EXECUTE is

used. On CMS, rows to insert are read from the input streams. The result of queries is

written to the output streams.

Record Delay: sql produces all output records from a query before it consumes the corre-

sponding input record.

Commit Level: sql starts on commit level -4. It connects to the database engine, allocates

a cursor, and then commits to level 0.

Premature Termination: sql terminates when it discovers that any of its output streams is

not connected. It also terminates if a negative return code (indicating an error) is received

from DB2; the unit of work is rolled back when a negative return code is received, unless

DB2 indicates it has already done so.

See Also: sqlcodes and sqlselect.

 Notes:

1. spec is often used to insert indicator words for columns that are always present.

2. On CMS, use SQLINIT to specify the database to access, before using sql to access it.

3. The result of a query can be a four byte binary integer; use spec to convert it to

decimal, if desired.

/* Determine query size */
'PIPE',

' sql select count(*) from test where name="Oscar" ',
'| spec 1-* c2d 1',
'| var rows'

if RC=0 then if rows>0 then call process

4. The access module must be generated before you can access DB2 tables with CMS

Pipelines. DMSPQI ASMSQL is the input to the preparation process. Your database

administrator must give connect privileges to the user DMSPIPE and specify the pass-

word (the examples use “wrench”).

 Chapter 23. Inventory of Built-in Programs 585

 sql

grant connect to dmspipe identified by wrench

From the user ID used to maintain CMS Pipelines, run the REXX program shown here

after you have issued SQLINIT to establish connection to DB2. The program generates

the access module and grants public use of it.

/* Generate access module */
'EXEC SQLPREP ASM PP(PREP=DMSPQI',
 'USER=DMSPIPE/WRENCH',

'NOPUNCH BLOCK ISOL(USER))',
 'IN(DMSPQI)'
if RC/=0 then exit RC
'PIPE',

' literal grant run on DMSPQI to public',
'| literal connect dmspipe identified by wrench',
'| sql execute'

exit RC

Discard the resulting ASSEMBLE file.

Do not put quotes around the user ID when you issue the CONNECT statement through

sql

5. sql supports DB2 on z/OS. Use the option SUBSYSID to specify the DB2 resource you

wish to use if different from the default (DSN). sql issues a Call Attachment Facility

(CAF) OPEN call to connect to DB2. The RELEASE option causes TSO Pipelines to issue

a CLOSE call when processing is complete. Make sure all requests are issued by the

same task. This is best done by issuing subroutine pipelines from a stage that is

written in REXX. If, however, several PIPE commands must be issued, it is de rigueur

to use Address LINK rather than TSO commands to issue pipeline specifications.

6. Because DB2 does not support insert on a cursor, sql INSERT must have a values()

clause specifying literals on z/OS. Use spec to construct an insert statement from data

in the record.

7. To access a z/OS database through distributed relational access you must export the

plan.

SQLINIT DB(VM_DB) PROTOCOL(AUTO)
FILEDEF PLAN DISK PIPE BIND A4
SQLDBSU
UNLOAD PACKAGE(DMSPIPE.DMSPQI) OUTFILE(PLAN);
CONNECT TO MVS_DB;
RELOAD PACKAGE(DMSPIPE.DMSPQI) REPLACE KEEP INFILE(PLAN);
EXIT

Note the semicolons after each statement in SQLDBSU. The assumptions are:

¹ VM_DB is the name of your local DB2 database on the system where you are

running CMS Pipelines.

¹ MVS_DB is the name of the DB2 for z/OS database.

¹ You can already connect from VM to z/OS. (That is, your UCOMDIR NAMES is

already set up.)

¹ You are using SQLDBSU Version 3.1 or later.

¹ You have bind authority in the destination z/OS database.

586 CMS Pipelines User’s Guide and Reference

 sqlcodes ¹ sqlselect

Return Codes: Error codes from DB2 are reflected in the return code; such return codes

are negative. Positive return codes represent errors detected by CMS Pipelines. When DB2

returns a positive number that is not 100 (which means “no more data”), CMS Pipelines

generates an error message and terminates.

Configuration Variables: On CMS, two configuration variables supply the default program

owner and the default program name to be used by sql.

SQLPGMOWNER specifies the program owner; the default is 5785RAC in the PIP style; it is

DMSPIPE in other styles.

SQLPGMNAME specifies the program name; the default is PIPSQI in the PIP style; it is

DMSPQI in other styles.

sqlcodes—Write the last 11 SQL Codes Received
sqlcodes writes a 44-byte record with the last 11 SQLCODEs received. It is used by help

SQLCODE.

►►──SQLCODES──►◄

Type: Arcane device driver.

Placement: sqlcodes must be a first stage.

Output Record Format: 44 bytes are written to the primary output stream; these are 11

fullwords with 4 bytes for each nonzero (other than 100) return code expressed as a binary

number in two’s complement notation. The return code received most recently is in the

last four bytes; the oldest is in the first four bytes. The leftmost slots contain zero when

fewer than 11 nonzero return codes have been received from SQL.

See Also: sql and help.

sqlselect—Query a Database and Format Result
sqlselect issues an SQL query and converts the result to printable format with a header line

showing the names of the columns.

►►──SQLSELECT─ ──┬ ┬─────────────────────── ─┤ Select Operands ├──►◄
 └ ┘ ─(──┤ SQL Options ├──)─

Type: Device driver.

Placement: sqlselect must be a first stage.

Syntax Description: If the first non-blank character is a left parenthesis, the string up to

the first right parenthesis is processed as options; refer to the description of the sql built-in

program. The remainder of the argument is processed as an SQL Select statement.

Operation: sqlselect obtains a description of the query from SQL, computes a pipeline that

will convert the query result to printable text, writes a heading line showing the names of

the columns in the output file, and then performs the query with formatting.

 Chapter 23. Inventory of Built-in Programs 587

 stack

Output Record Format: It issues a subroutine pipeline to describe the query. This will

cause a commit to level 0 if the query can be described.

Commit Level: sqlselect starts on commit level -4.

Premature Termination: sqlselect terminates when it discovers that its output stream is

not connected.

 See Also: sql.

Examples: To query one of the sample databases:

 pipe sqlselect salary, name from staff where years is null | console

 Notes:

1. Timestamps cannot be formatted, because their encoding is not published. Such fields

will display as apparently random alphanumeric characters.

2. sqlselect uses sql under the covers; the SQL configuration variables apply to sqlselect

as well.

stack—Read or Write the Program Stack
When stack is first in a pipeline, it reads lines from the console stack into the pipeline.

When stack is not first in a pipeline, it copies the lines in the pipeline onto the program

stack.

 ┌ ┐─FIFO─
►►──STACK─ ──┼ ┼────── ─►◄
 └ ┘─LIFO─

Type: Device driver.

Syntax Description: No argument is allowed when stack is first in a pipeline. A keyword

is optional when stack is not a first stage.

Operation: When stack is first in a pipeline, it issues the command SENTRIES on CMS to

obtain the number of lines on the console stack; it then reads as many lines from the stack

as indicated by the return code and writes these lines to the output stream. The intent is to

be able to drain the stack into the pipeline, including null lines that would make console

stop. A terminal read may result if another stage (possibly another invocation of stack)

reads from the stack concurrently with stack.

When stack is not first in a pipeline, records on the input stream are stacked and then

copied to the output stream. By default the lines are queued FIFO in the CMS console

stack. Beware of loops if lines are being read by console at the beginning of the pipeline;

such loops are best prevented with a buffer stage.

Streams Used: stack passes the input to the output.

Record Delay: stack strictly does not delay the record.

Premature Termination: When it is first in a pipeline, stack terminates when it discovers

that its output stream is not connected. An additional line may or may not have been

consumed from the stack when this is discovered.

588 CMS Pipelines User’s Guide and Reference

 starmon

Examples: The contents of the stack may be saved in REXX variables while running a

REXX program and a new stack created at the end of the program (see the following

example), but the effect of any MAKEBUF is lost.

/* Save the stack */
'PIPE',
 'stack|',
 'stem save_stack.'

/* Process */

/* Restore saved stack */
'PIPE',
 'stem save_stack.|',
 'stack'

 Notes:

1. Due to the limited width of the CMS stack, stacked data are truncated after 255 charac-

ters.

starmon—Write Records from the *MONITOR System Service
starmon connects to the *MONITOR system service and writes the data it receives into the

pipeline. The records are logical records, beginning with the twenty bytes prefix defined

for monitor records. You can elect to write only sample data or event data and you can

suppress records from one or more domains.

Before invoking starmon, you should attach the monitor segment to the virtual machine

using the CMS command “segment load” and also enable the monitor domains you wish

to process using the CP command “monitor”.

 CMS

 ┌ ┐─SHAREd────
►►──STARMON──word──┼───────────┼──┬───────────────┬──►◄

| ├ ┤─EXCLUSIVe─ ├ ┤─MONWRITE──────
├─SAMPLEs───┤ └─SUPPRESS──hex─┘

 └ ┘─EVENTs────

Type: Arcane host command interface.

Placement: starmon must be a first stage.

 Syntax Description:

word Specify the name of the monitor shared segment to be used. The

segment must have been attached to the virtual machine before starmon

is invoked.

The first keyword specifies the type of interface used to the system service.

SHARED SHARED is the default. It implies both EVENTS and SAMPLES.

EXCLUSIVE Connect to the monitor service with exclusive use of the monitor

! segment. starmon writes sample and event data as enabled by the

! MONITOR command.

 Chapter 23. Inventory of Built-in Programs 589

 starmon

Operation: starmon connects to the CP *MONITOR system service using the Inter User

Communication Vehicle (IUCV). The message limit is zero, which selects the default for

the service requested. The user parameters (IPUSER) are set according to the options

specified.

starmon sets up the immediate command HMONITOR. Issue this command to halt the

starmon stage.

starmon does not complete normally.

Output Record Format: Monitor records as defined in the MONITOR LIST1403 sample file.

In contrast to the MONWRITE command, starmon writes each monitor record as a separate

logical record. The logical record begins with the MRHDR structure.

Commit Level: starmon starts on commit level -2000000000. It verifies that no other

stage has requested a connection to the *MONITOR service, sets up an immediate command

(HMONITOR), connects to the system service, and then commits to level 0.

Premature Termination: starmon terminates when it discovers that its output stream is

not connected. starmon terminates when CP signals that it has not processed the data in

time. This is accompanied by error messages indicating a nonzero IPAUDIT field. This

indicates that CP has changed the monitor data under starmon; the integrity of the output

from the pipeline is questionable.

starmon terminates when the immediate command HMONITOR is issued while it is waiting

for CP to provide a new batch of monitor records. starmon also stops if the immediate

command PIPMOD STOP is issued or if a record is passed to pipestop.

See Also: starmsg and starsys.

 Examples:

The following REXX program to demonstrate extracting information from the monitor data.

The MONRED REXX is not provided with CMS Pipelines.

SAMPLES Connect to the monitor service in shared mode. Only sample data are to

! be retrieved from the monitor segment.

EVENTS Connect to the monitor service in shared mode. Only event data are to

! be retrieved from the monitor segment.

| MONWRITE| Write the monitor data in the same format as produced by the

| MONWRITE utility.

SUPPRESS Specify a bit map of the monitor domains you wish to suppress. The

next word is converted from hexadecimal to binary. The sixteen right-

most bits are used as a mask. Thus, SUPPRESS 8000 specifies that

starmon should not write records from the system domain. Performance

will improve if you enable monitor domains selectively using the

MONITOR command rather than using the SUPPRESS option to ignore data

from enabled domains.

590 CMS Pipelines User’s Guide and Reference

 starmsg

/* Monitor it */
address command
/* Enable domains */
'CP MONITOR SAMPLE ENABLE I/O ALL'
'CP MONITOR SAMPLE ENABLE USER ALL'
'CP MONITOR SAMPLE ENABLE PROCESSOR'
'CP MONITOR SAMPLE ENABLE STORAGE'
'CP MONITOR SAMPLE RATE 1 SEC'
/* Attach the monitor segment */
'SEGMENT LOAD MONDCSS'
/* Start the monitor */
'CP MONITOR START'

! 'PIPE',
! '| starmon mondcss sample', /* Obtain data */
! '| monred', /* Reduce it on the fly */
! '| >> monitor' date('s') 'a' /* Write the output file */
! r=RC

'CP MONITOR STOP' /* Stop the monitor */
'SEGMENT RELEASE MONDCSS' /* Detach segment */
exit r

 Notes:

! 1. When a performance monitor like Performance Toolkit is running, the startup proce-

! dure for the service virtual machine normally starts the CP monitor and enables the

! appropriate monitor domains. Running a pipeline with starmon in SHARED mode does

! not interfere with the normal operation of the performance monitor, but you should not

! issue MONITOR commands to stop the monitor or disable domains. Use the SUPPRESS

! option of starmon to ignore unwanted data from domains that are enabled for the

! performance monitor.

! 2. An IUCV directory statement is required for the virtual machine to connect to

! *MONITOR. When the monitor shared segment is defined as RSTD a NAMESAVE direc-

! tory statement is required to authorise the virtual machine to perform the required

! SEGMENT LOAD.

! 3. The CP *MONITOR system service does not support multiple connections per virtual

! machine.

| 4. Specify the MONWRITE option to have starmon create data that is compatible with the

| MONWRITE utility. Most tools processing MONWRITE format data require a file with

| fixed record format.

starmsg—Write Lines from a CP System Service
starmsg connects via the Inter User Communication Vehicle (IUCV) to a system service

(such as *MSG) to retrieve messages and write them into the pipeline. When starmsg is not

first in a pipeline, it reads CMS commands to be issued from its input stream.

 CMS

►►──STARMSG─ ──┬ ┬─────── ──┬ ┬──────── ─►◄
└─*word─┘ └─string─┘

Type: Host command interface.

 Chapter 23. Inventory of Built-in Programs 591

 starmsg

Syntax Description: The arguments are optional. A word beginning with an asterisk may

be followed by a command string.

To reach a service other than *MSG, specify as the first operand the name of the CP service

required, beginning with an asterisk (for example, *MSGALL). You can connect to any

system service that sends messages and does not require a reply. *MSG is the default.

Operation: starmsg connects to a CP system service using the Inter User Communication

Vehicle (IUCV). The message limit is zero, which selects the default for the service

requested. The user parameters (IPUSER) are set to binary zeros. Message data in the

. parameter list are not supported.

starmsg sets up an immediate command that may be used to halt the starmsg stage. The

name of the immediate command is the name of the service prefixed by an 'H' (for

instance, HMSG).

If it is present, the command string is sent to the CMS subcommand environment after

starmsg is connected to the system service.

When starmsg is not first in a pipeline, it issues each command to CMS. When the

command is complete, starmsg loops writing any responses trapped to the output and

suspending itself to let these responses be processed. When no more responses arrive,

starmsg tries to read the next input record. It disconnects from the system service and

terminates normally when it receives end-of-file on the input. When starmsg is first in a

pipeline, it does not terminate normally.

Output Record Format: Columns 1-8 contain the message class (IPTRGCLS) converted to

hexadecimal (eight bytes). The message class is the only field from the interrupt parame-

ters that is present in the output record. (Refer to z/VM CP Programming Services,

SC24-6272, for the authoritative meaning of the message class; some common message

classes are shown below.) The message follows (as received with IUCV RECEIVE). For

message classes 1, 2, 4, and 8, the first eight bytes of the message (columns 9-16 of the

output record) contain the user ID of the sending virtual machine, padded with blanks.

Figure 400 (Page 1 of 2). Often Used Message Classes

Class Enable Message Source

1 MSG Messages sent by the CP command “message” or the CP

command “msgnoh”.

2 WNG Warnings sent by the CP command “warning” command.

3 CPCONIO Output from CP commands that are issued by the virtual

machine (unless the command is issued by diagnose 8 with a

response buffer—see cp). Other CP output that is not covered

(or enabled) by the other message classes.

4 SMSG Special messages sent by the CP command “smsg”.

5 VMCONIO Virtual machine output to the console. For example, data

displayed by the REXX Say instruction.

6 EMSG CP error messages.

7 IMSG CP informational messages.

592 CMS Pipelines User’s Guide and Reference

 starmsg

Streams Used: Records are read from the primary input stream and written to the primary

output stream.

Record Delay: The delay is unspecified when starmsg is not a first stage.

Commit Level: starmsg starts on commit level -2000000000. It verifies that no other

stage has requested a connection to the CP service, sets up an immediate command envi-

ronment, establishes the connection to the CP service, and then commits to level 0.

Premature Termination: starmsg terminates when it discovers that its output stream is

not connected. A particular invocation of starmsg is terminated when the immediate

command exit is driven that has the name of the service with an 'H' substituted for the

leading asterisk; for instance, HMSGALL. starmsg also stops if the immediate command

PIPMOD STOP is issued or if a record is passed to pipestop.

See Also: starmon and starsys.

Examples: starmsg may be used as an alternative to the programmed operator. With

such an application, you may wish to stop the application by sending it a particular

message:

/* Listen for messages */
'PIPE starmsg | tolabel 00000001'left(userid(),8)'STOP| ...

Then, when you issue the CP command “message * stop”, starmsg writes an output line

that causes the tolabel stage to terminate. This severs starmsg’s output stream which in

turn causes starmsg to terminate. You must have issued the CP command “set msg iucv”

for the message to be trapped by starmsg; the tolabel stage is all in vain if the message

does not get trapped.

To issue a single command and then terminate:

cp set cpconio iucv
pipe literal RELEASE C (DET | starmsg | hole

cp set msg iucv
pipe literal CP SMSG RSCS Q SYS A | starmsg | ...
pipe hole | starmsg CP SMSG RSCS Q SYS A | ...

Still, the probability is low that RSCS will respond before starmsg discovers that is has no

more commands to issue. To terminate starmsg after five seconds:

Figure 400 (Page 2 of 2). Often Used Message Classes

Class Enable Message Source

8 Single console image facility output from a virtual machine

that has identified the machine running starmsg as its

secondary user. These messages cannot be redirected to the

console once starmsg *MSG has connected to the message

system service.

 Chapter 23. Inventory of Built-in Programs 593

 starsys

/* Wait for a short while */
'PIPE (end ? name STARMSG)',

'|literal +5', /* Five seconds */
'|delay', /* Wait a bit */
'|g: gate', /* Shut the gate */
'?starmsg CP SMSG RSCS Q SYS A', /* Trap responses */
'|g:', /* Until the interval expires */

 '|...

When the record is written by delay five seconds after it reads it, the output stream from

starmsg is severed. This will cause starmsg to terminate.

 Notes:

1. The CMSIUCV macro is used to connect to the message service.

2. Use CP SET to select which responses you wish to process; for instance, “cp set
cpconio iucv”.

3. When CPCONIO is set to IUCV, all CP console output is presented through the *MSG

interface. Enable IUCV for other settings to make it easier to distinguish different

forms of CP console output. For instance, messages are presented as CP console output

(message class 3) when the message setting is ON, but as messages (message class 1)

when the MSG setting is set to IUCV.

4. Any CP system service can be selected; results are unpredictable when the service is

not a message service or a similar one-way service.

5. You cannot connect to *MSGALL when CMS FULLSCREEN is ON because CMS is already

connected to the service; CP rejects further attempts to connect.

6. A virtual machine can have only one starmsg or starsys stage at a time for a particular

system service.

7. Though it is possible to use starmsg to connect to the *ACCOUNT, *LOGREC, and

*SYMPTOM system services, the recommended device driver is starsys. starmsg may

require large amounts of buffer space to hold all pending messages, and once a

message is read by starmsg, it is purged by CP. starsys, on the other hand, accepts

only one message from CP at a time and does not signal to CP that the message has

been received until after the corresponding output record has been consumed.

8. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

starsys—Write Lines from a Two-way CP System Service
starsys connects via the Inter User Communication Vehicle (IUCV) to a two-way system

service (*ACCOUNT, *LOGREC, or *SYMPTOM) to retrieve system information and write it

into the pipeline.

When starsys is not first in a pipeline, it reads replies to CP from its input.

594 CMS Pipelines User’s Guide and Reference

 starsys

 CMS

. ┌ ┐─────────────────────────────
►►──STARSYS───6┬─────────────────────────┬┴──*word──┬────────┬──►◄

. ├─ASYNchronous────────────┤ └─string─┘

. ├. ─IPUSER──delimitedString─┤

. ├ ┤─LOCAL───────────────────

. ├ ┤─PARMLIST────────────────

. ├ ┤─PRMDATA─────────────────

. └. ─TARGET──word─. ───────────┘

Type: Arcane host command interface.

. Syntax Description: Options may be specified when starsys is not first in a pipeline.

. After these, a word beginning with an asterisk may be followed by a command string.

Operation: starsys connects to a CP system service using the Inter User Communication

Vehicle (IUCV). The message limit is zero, which selects the default for the service

requested. The user parameters (IPUSER) are set to binary zeros except the byte at offset 8

which is set to X'02', indicating that the two-way protocol is desired. Message data in

. the parameter list are not supported unless starsys is not a first stage.

. ASYNCHRONOUS. The writing of messages is independent of the reading replies. This

. allows for multiple requests being processed simultaneously. Whether

. CP will allow multiple concurrent messages is another matter.

. ASYNCHRONOUS implies PARMLIST, since the interrupt parameter

. identifies the message to reply to. When ASYNCHRONOUS is omitted,

. there can be only one message in the pipeline at a time; starsys knows

. the message identifier to use in the reply.

. IPUSER. Specify a delimited string. The string is truncated after sixteen bytes.

. The delimited string specifies the value to pass in the IPUSER field of the

. IUCV connection request. The field is initialised to binary zeros, except

. that the two-way bit is set in offset 8. Only as many bytes as specified

. in the delimited string are copied to the IPUSER field. Thus the two-way

. flag is cleared only when more than eight bytes are specified.

. LOCAL. Set the IPLOCAL bit to limit the search for system services to the current

. system.

. PARMLIST. Prefix the 28-byte interrupt parameter list to the message received. The

. first 28 bytes of the input record are taken to be the reply parameter list.

. When the PRMDATA flag is off, the remainder of the input record (if any)

. is sent as the reply.

. PRMDATA. Set the IPRMDATA flag in the connect parameter list. Some services

. require this flag to be specified; others require it to be omitted.

. TARGET. Specify a word. The word is translated to upper case and inserted in the

. IPTARGET parameter on connect.

*word Specify the name of the CP service required, beginning with an asterisk

(for example, *LOGREC). When starsys is first in the pipeline, you can

connect to any CP service that sends messages and expects a reply:

*ACCOUNT, *LOGREC, *SYMPTOM.

 Chapter 23. Inventory of Built-in Programs 595

 starsys

starsys sets up an immediate command that may be used to halt the starsys stage. The

name of the immediate command is the name of the service prefixed by an 'H' (for

instance, HACCOUNT).

If it is present, the command string is sent to the CMS subcommand environment after

starsys is connected to the system service.

. When starsys is first in the pipeline, it sends a reply to the message as soon as the output

. record is consumed.

. When starsys is not first in a pipeline, it sends a reply when a record is available on the

. input. The record is discarded.

starsys does not complete normally.

Commit Level: starsys starts on commit level -2000000000. It verifies that no other stage

has requested a connection to the CP service, sets up an immediate command environment,

establishes the connection to the CP service, and then commits to level 0.

Premature Termination: starsys terminates when it discovers that its output stream is not

connected. A particular invocation of starsys is terminated when the immediate command

exit is driven that has the name of the service with an 'H' substituted for the leading

asterisk, for instance HACCOUNT. starsys also stops if the immediate command PIPMOD

STOP is issued or if a record is passed to pipestop.

See Also: starmon and starmsg.

 Examples:

! To process accounting data on z/VM to extract type 4 accounting records (potential hacker

activity):

/* Account to a file */
'CP RECORDING ACCOUNT ON LIMIT 255'
'PIPE (name STARSYS)',
 '|starsys *account',

'|locate 80 /4/',
'|spec /Hacker afoot? / 1 1.8 next 29-32 nextword 71-78 nextword',

 '|console'
If Userid() <> 'OPERACCT'

Then 'CP RECORDING ACCOUNT OFF PURGE QID' Userid()

 Notes:

1. The CMSIUCV macro is used to connect to the system service.

2. Any CP system service can be selected; results are unpredictable when the service is

not a two-way service.

3. A virtual machine can have only one starmsg or starsys stage at a time for a particular

system service.

. 4. starsys is still unsuitable for services to which the program must send, such as *SPL.

5. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

596 CMS Pipelines User’s Guide and Reference

 state

state—Provide Information about CMS Files
state writes information about CMS files on a minidisk or in a Shared File System (SFS)

directory.

 CMS

►►──STATE─ ──┬ ┬──────────────────────────────────── ─►◄
 │ │┌ ┐─FORMAT────
 ├ ┤ ──┼ ┼─────────── ──┬ ┬─────── ──┬ ┬──────
 │ │├ ┤─NODETAILS─ └ ┘─QUIET─ └ ┘─ASIS─
 │ │├ ┤─NOFORMAT──
 │ │├ ┤─SHOrtdate─
 │ │├ ┤─ISOdate───
 │ │├ ┤─FULldate──
 │ │└ ┘─STAndard──
 │ │┌ ┐─*──
 ├ ┤ ──┬ ┬─*── ──┬ ┬─*── ──┼ ┼──── ────────────

│ └─fn─┘ └─ft─┘ └─fm─┘ │
 └─fn──ft──dirid─ ─────────────────────┘

Type: Device driver.

Syntax Description: Arguments are optional. The argument string can consist of

keywords or the name of a file.

Alternatively, you can specify a file in the same format as an input record.

Operation: When a file argument is specified, the first output record contains information

about the specified file. Then a line is generated for the file specified on each input line

read.

Each file is processed as follows: The third word (file mode, name definition, or directory)

is translated to upper case. All accessed minidisks and directories are searched if the third

word is omitted or is an asterisk. state first looks for a file that has the file name and file

FORMAT Information about files that are found is written in a printable format

using the short date format.

NOFORMAT The raw control block describing a file is written.

NODETAILS The file name as specified is written.

QUIET Set return code 0 even when one or more files are not found; the default

is to set return code 28 or 36 when files are not found.

FULLDATE The file’s timestamp is formatted in the American format, with the

century: 3/09/1946 23:59:59.

ISODATE The file’s timestamp is formatted with the century in one of the formats

approved by the International Standardisation Organisation:

1946-03-09 23:59:59.

SHORTDATE The file’s timestamp is formatted in the American format, without the

century: 3/09/46 23:59:59.

STANDARD The file’s timestamp is formatted as a single word in a form that can be

used for comparisons: 19460309235959.

ASIS Do not look for files with the name and type in upper case after it is

determined that the file does not exist with the name and type as written.

 Chapter 23. Inventory of Built-in Programs 597

 state

type as written. If the file does not exist with a file name and a file type as entered and

ASIS is omitted, the file name and the file type are translated to upper case and the search

is retried. If the file is still not found, the file name, as written originally, is written to the

secondary output stream (if it is connected).

Input Record Format: Two or three words, specifying the file name, file type, and

optionally the file mode, name definition, or directory. When a mode is specified, the file

name or the file type, or both, can be specified as a single asterisk, which means that it

matches any file; other forms of “wildcards” are not supported by the underlying CMS

interface. The underlying interface to look in a directory does not support asterisks.

Output Record Format: The primary output stream: When NOFORMAT is specified, the

output record contains 64 bytes in the format defined by the FSTD data area. When

NODETAILS is specified, the output record contains the input record (if the file exists).

Otherwise, selected fields of the file status are formatted and written as a record: the file

name, type, and mode; the record format and logical record length; the number of records

and the number of disk blocks in the file; the date and time of last change to the file.

When the file is in an SFS directory that is not accessed, the file mode is shown as a

hyphen (-). When the file is on an accessed mode, the real file mode is shown. Thus, the

mode shown may not be the mode specified. When a name definition or a directory is

specified and the file resides in SFS, the fully qualified path to the directory that contains

the file is appended after the timestamp. (The file can reside on a minidisk that is

accessed as an extension to a mode on which the directory is accessed.)

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected. Null and blank input records are

discarded. When a file is found, information about it is written to the primary output

stream (if it is connected). When a file is not found, the input record (or the argument

string) is passed to the secondary output stream (if it is connected).

Record Delay: state does not delay the record.

Commit Level: state starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: state terminates when it discovers that no output stream is

connected. It also stops if it receives a return code from CMS that is neither 0, 28, nor 36.

See Also: aftfst, fmtfst, and statew.

Examples: To show which files in a list do not exist:

pipe (end ?) < file list | s:state ? s: | console

The primary output stream is not connected; the secondary output stream is connected to

the console stage.

To test whether a file exists without a CMS error message on failure, use:

/* Look for the file */
'PIPE state' file
return RC

598 CMS Pipelines User’s Guide and Reference

 state

 Notes:

1. When looking for a file on a mode, state exposes the way the CMS command STATE

works. Though it is not specified, the CMS command searches the active file table

before it looks for files on the file modes.

2. When testing whether several files exist, and you are interested only in the return

code, be sure to specify hole to avoid premature termination:

'PIPE ... | state | hole'
if RC=0 then return /* All fine */

3. When looking for a file in a directory, state exposes the callable services DMSVALDT

and DMSEXIST. These interfaces do not distinguish between a file not being present in

a directory and a missing directory in the path. Thus, return code 36 is not set for

such a file. Refer to z/VM: CMS Callable Services Reference, SC24-6259 for informa-

tion about these interfaces.

4. Be sure to set numeric digits 14 when performing comparisons on STANDARD

timestamps; REXX will by default use just nine digits precision. This means that the

first digit of the hour will be the least significant one and the remainder of the preci-

sion will be lost.

5. SORTED is a synonym for STANDARD.

6. It may be easier to use the CMS STATE command directly if the file is on an accessed

mode.

 Return Codes:

0 All input lines have been processed. All files exist, the keyword QUIET was

specified, or state terminated prematurely.

20 Invalid character in the file name or file type. Processing stops as soon as CMS

sets this return code.

24 Invalid file mode. Processing stops as soon as CMS sets this return code.

28 The keyword QUIET was omitted. One or more files were not found; all input

lines have been processed.

36 The keyword QUIET was omitted. One or more files referred to a mode that is

not accessed; all input lines have been processed.

other A return code other than 0, 28, or 36 is received from CMS. Processing is

terminated with this return code.

state—Verify that Data Set Exists
state reports the data set name (DSNAME) for a file. The file can be specified by DDNAME

or data set name.

 z/OS

►►──STATE─ ──┬ ┬──────────────────────── ─►◄
 ├ ┤─QUIET──────────────────

├─┬─word───────────────┬─┤
│ ├─word(generation)───┤ │
│ ├─'word'─────────────┤ │
│ ├─'word(generation)'─┤ │
│ └─DDname=word────────┘ │

 └─word──word─ ────────────┘

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 599

 statew

Syntax Description: Arguments are optional. The keyword QUIET specifies that return

code 0 is set also when one or more files are not found; the default is to set return code 28

when files are not found.

Alternatively you can specify the first (or only) file to search for.

Operation: When a DDNAME is specified, SVC 99 is issued to query the allocation. When

a DSNAME is specified, the master catalog is searched for the data set.

Input Record Format: There can be one file name per input record. The name is either a

DDNAME (prefixed by the keyword DDNAME=) or a data set name (DSNAME). The current

prefix (if any) is prefixed to the DSNAME unless it is enclosed in single quotes.

Output Record Format: The fully qualified DSNAME is written to the primary output

stream when the file is found. The input record is copied to the secondary output stream

when the file is not found.

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected. Null and blank input records are

discarded. When the file is found, information about it is written to the primary output

stream (if it is connected). When the file is not found, the input record (or the argument

string) is copied to the secondary output stream (if it is connected).

Record Delay: state strictly does not delay the record.

Premature Termination: state terminates when it discovers that no output stream is

connected.

Examples: To determine whether the DDNAME OSCAR is allocated:

pipe state dd=oscar | console

 Notes:

1. The fact that a data set exists does not imply that it is readable. You may not have

RACF authority; the data set could have been migrated.

2. state also supports a member name and a DDNAME for which TSO Pipelines maintains

an open DCB. It is unspecified which DCBs TSO Pipelines uses.

statew—Provide Information about Writable CMS Files
statew writes information about writable CMS files on a minidisk or in a Shared File

System (SFS) directory.

600 CMS Pipelines User’s Guide and Reference

 statew

 CMS

►►──STATEW─ ──┬ ┬──────────────────────────────────── ─►◄
 │ │┌ ┐─FORMAT────
 ├ ┤ ──┼ ┼─────────── ──┬ ┬─────── ──┬ ┬──────
 │ │├ ┤─NODETAILS─ └ ┘─QUIET─ └ ┘─ASIS─
 │ │├ ┤─NOFORMAT──
 │ │├ ┤─SHOrtdate─
 │ │├ ┤─ISOdate───
 │ │├ ┤─FULldate──
 │ │└ ┘─STAndard──
 │ │┌ ┐─*──
 ├ ┤ ──┬ ┬─*── ──┬ ┬─*── ──┼ ┼──── ────────────

│ └─fn─┘ └─ft─┘ └─fm─┘ │
 └─fn──ft──dirid─ ─────────────────────┘

Type: Device driver.

Syntax Description: Arguments are optional. The argument string can consist of

keywords or the name of a file.

Alternatively, you can specify a file in the same format as an input record.

Operation: When a file argument is specified, the first output record contains information

about the specified file. Then a line is generated for the file specified on each input line

read.

Each file is processed as follows: The third word (file mode, name definition, or directory)

is translated to upper case. All accessed minidisks and directories are searched if the third

word is omitted or is an asterisk. statew first looks for a writable file that has the file

name and file type as written. If the file does not exist with a file name and a file type as

entered and ASIS is omitted, the file name and the file type are translated to upper case and

the search is retried. If the file is still not found, the file name, as written originally, is

written to the secondary output stream (if it is connected).

FORMAT Information about files that are found is written in a printable format

using the short date format.

NOFORMAT The raw control block describing a file is written.

NODETAILS The file name as specified is written.

QUIET Set return code 0 even when one or more files are not found; the default

is to set return code 28 or 36 when files are not found.

FULLDATE The file’s timestamp is formatted in the American format, with the

century: 3/09/1946 23:59:59.

ISODATE The file’s timestamp is formatted with the century in one of the formats

approved by the International Standardisation Organisation:

1946-03-09 23:59:59.

SHORTDATE The file’s timestamp is formatted in the American format, without the

century: 3/09/46 23:59:59.

STANDARD The file’s timestamp is formatted as a single word in a form that can be

used for comparisons: 19460309235959.

ASIS Do not look for files with the name and type in upper case after it is

determined that the file does not exist with the name and type as written.

 Chapter 23. Inventory of Built-in Programs 601

 statew

Input Record Format: Two or three words, specifying the file name, file type, and

optionally the file mode, name definition, or directory. When a mode is specified, the file

name or the file type, or both, can be specified as a single asterisk, which means that it

matches any file; other forms of “wildcards” are not supported by the underlying CMS

interface. The underlying interface to look in a directory does not support asterisks.

Output Record Format: The primary output stream: When NOFORMAT is specified, the

output record contains 64 bytes in the format defined by the FSTD data area. When

NODETAILS is specified, the output record contains the input record (if the file exists).

Otherwise, selected fields of the file status are formatted and written as a record: the file

name, type, and mode; the record format and logical record length; the number of records

and the number of disk blocks in the file; the date and time of last change to the file.

When the file is in an SFS directory that is not accessed, the file mode is shown as a

hyphen (-). When the file is on an accessed mode, the real file mode is shown. Thus, the

mode shown may not be the mode specified. When a name definition or a directory is

specified and the file resides in SFS, the fully qualified path to the directory that contains

the file is appended after the timestamp.

Streams Used: Secondary streams may be defined. Records are read from the primary

input stream; no other input stream may be connected. Null and blank input records are

discarded. When a file is found, information about it is written to the primary output

stream (if it is connected). When a file is not found, the input record (or the argument

string) is passed to the secondary output stream (if it is connected).

Record Delay: statew does not delay the record.

Commit Level: statew starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: statew terminates when it discovers that no output stream is

connected. It also stops if it receives a return code from CMS that is neither 0, 28, nor 36.

See Also: aftfst, fmtfst, and state.

Examples: To show which files in a list do not exist:

pipe (end ?) < file list | s:statew ? s: | console

The primary output stream is not connected; the secondary output stream is connected to

the console stage.

To test whether a file exists and can be written without a CMS error message on failure,

use:

/* Look for the file */
'PIPE statew' file
return RC

 Notes:

1. When looking for a file on a mode, statew exposes the way the CMS command

STATEW works. Though it is not specified, the CMS command searches the active file

table before it looks for files on the file modes.

602 CMS Pipelines User’s Guide and Reference

 stem

2. When testing whether several files exist, and you are interested only in the return

code, be sure to specify hole to avoid premature termination:

'PIPE ... | statew | hole'
if RC=0 then return /* All fine */

3. When looking for a file in a directory, statew exposes the callable services DMSVALDT

and DMSEXIST. These interfaces do not distinguish between a file not being present in

a directory and a missing directory in the path. Thus, return code 36 is not set for

such a file. Refer to z/VM: CMS Callable Services Reference, SC24-6259 for informa-

tion about these interfaces.

4. Be sure to set numeric digits 14 when performing comparisons on STANDARD

timestamps; REXX will by default use just nine digits precision. This means that the

first digit of the hour will be the least significant one and the remainder of the preci-

sion will be lost.

5. SORTED is a synonym for STANDARD.

6. It may be easier to use the CMS STATEW command directly if the file is on an accessed

mode.

 Return Codes:

0 All input lines have been processed. All files exist, the keyword QUIET was

specified, or statew terminated prematurely.

20 Invalid character in the file name or file type. Processing stops as soon as CMS

sets this return code.

24 Invalid file mode. Processing stops as soon as CMS sets this return code.

28 The keyword QUIET was omitted. One or more files were not found; all input

lines have been processed.

36 The keyword QUIET was omitted. One or more files referred to a mode that is

not accessed; all input lines have been processed.

other A return code other than 0, 28, or 36 is received from CMS. Processing is

terminated with this return code.

stem—Retrieve or Set Variables in a REXX or CLIST Variable Pool
stem connects a stemmed array of variables to the pipeline. When stem is first in the

pipeline, the contents of the array are written to the pipeline; an array is built when stem is

not first in a pipeline.

A stemmed array consists of variables that have names ending in an integer that is zero or

positive (the index). The variable that has index 0 contains the count of “data” variables,

which are numbered from 1 onward.

►►──STEM──word──┬──────────┬──┬────────┬──┬──────────┬──►
. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘

 └ ┘─MAIN─────

 ┌ ┐─SYMBOLIC─
►─ ──┼ ┼────────── ──┬ ┬────────────── ─►◄

 └ ┘─DIRECT─── ├ ┤─APPEND───────
 └─FROM──number─┘

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 603

 stem

Warning: stem behaves differently when it is a first stage and when it is not a first stage.

Existing data can be overlaid when stem is unintentionally run other than as a first stage.

To use stem to read data into the pipeline at a position that is not a first stage, specify stem

as the argument of an append or preface control. For example, |append stem ...|
appends the data produced by stem to the data on the primary input stream.

Syntax Description: A word is required to specify the stem to fetch or store. It is

possible to access a REXX variable pool other than the current one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains stem, rather

than the current stage. (This is a somewhat esoteric option.) To ensure that the variable

pool persists as long as this invocation of stem, the stage that is connected to the currently

selected input stream must be blocked in an OUTPUT pipeline command while the subrou-

tine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, stem can operate on variables in the program that issued the

pipeline specification to invoke stem or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

of REXX environments created on the call path from the PIPE command, stem continues on

the SUBCOM chain starting with the environment active when PIPE was issued.

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, stem terminates with return code 233 on commit level -1 when the

. environment does not exist.

The keyword SYMBOLIC specifies that REXX should treat the variable names generated as it

would a variable that is written in a program. DIRECT specifies that REXX should use the

variable name exactly as written.

The keyword APPEND is optional when stem is not a first stage. The keyword FROM

followed by a number is optional.

When stem is first in a pipeline or the APPEND keyword is specified, the variable <stem>0

is read from the variable pool; it must be an integer that is zero or positive.

Operation: When stem is first in a pipeline the value of the variable <stem>0 specifies

the number of the last record to write to the pipeline; unless FROM is specified to set the

starting index number, the first output record contains the value of <stem>1, the second

record contains the value of <stem>2, and so on to the number specified. No record is

written if <stem>0 is zero or less than the value specified after FROM.

When stem is not first in a pipeline and the keywords APPEND and FROM are omitted,

variables <stem>1, <stem>2, and so on, are set to the contents of each successive input

record. Records are copied to the primary output stream (if it is connected) after the vari-

able is set. When APPEND is specified, writing starts with <stem>n where n is one more

than the value returned for <stem>0. The index of the last variable set is stored in the

604 CMS Pipelines User’s Guide and Reference

 stem

variable <stem>0 at end-of-file. When there are no input records, <stem>0 is left

unchanged if APPEND is specified; <stem>0 is set to zero if APPEND is not specified.

Record Delay: stem strictly does not delay the record.

Commit Level: stem starts on commit level -1. It verifies that the REXX environment

exists (if it did not do so while processing its parameters) and then commits to level 0.

See Also: var and varload.

Examples: To read a file and process it in the reverse order:

/* Reverse TYPE */
'PIPE <' arg(1) '| stem x.'
Do i=x.0 to 1 by -1
 Say x.i
End

To transfer an array from the caller:

/* Obtain parameters from caller */
address command,

'PIPE stem parms. 1 | stem parms.'

The inverse pipeline can be used to transfer the contents of the array back to the caller:

/* Return parameters to caller */
address command,

'PIPE stem parms. | stem parms. 1'

 Notes:

1. The APPEND keyword is not the same as the append built-in.

2. When a pipeline is issued as a TSO command, IKJCT441 is called to access the variable

pool. When the command is issued with Address Link or Address Attach, stem

accesses the REXX environment from where the command is issued.

3. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

4. Unless DIRECT is specified, stem uses the symbolic interface to access REXX variables.

This means that you should write the variable name the same way you would write it

in an assignment statement. Consider this program fragment:

 Chapter 23. Inventory of Built-in Programs 605

 stfle

/* Process an array */
x='fred'
'PIPE literal a | stem z.x.'

The variable Z.fred.1 is set to 'a '. On the other hand, this would set the variable

Z.x.1:

/* Process directly */
'PIPE literal a | stem Z.x. direct'

Note that the stem must be in upper case when DIRECT is used.

5. An unset variable (that is, a variable that has been dropped or has never been assigned

a value) is treated differently by the three variable repositories: REXX returns the

name of the variable in upper case; EXEC2 and CLIST return the null string.

6. It is unspecified how many variables stem obtains at a time from the variable pool.

Applications that update a stemmed array to add items to it should buffer the file

before it is written back to the array:

'pipe stem x. | dup | buffer | stem x.'

Without the buffering, variable x.2 could be created (containing a copy of the

contents of variable x.1) by the second stem stage before the first stage has read it.

Applications should not rely on this behaviour of stem.

7. For REXX stems, it is normal to specify a period as the last character of the stem (the

first word of the argument string). To allow access to EXEC2 variable pools, stem does

not append a period to the word specified. This means that you can use stem var to

set simple variables, such as VAR1, VAR2, and so on. VAR0 will be set to the count of

variables set.

! stfle—Store Facilities List
! stfle writes a single record in which the individual bits indicate the facilities installed in the

! configuration.

!

! ►►──STFLE──►◄

! Type: Arcane device driver.

! Placement: stfle must be a first stage.

! Output Record Format: The output consists of a single record of one or more binary

! double words produced by the STFLE instruction. Each bit in the output record corresponds

! to a facility assigned to that bit position. Refer to z/Architecture Principles of Operation

! for the list of assigned facility bits.

! Premature Termination: stfle terminates when it discovers that its output stream is not

! connected.

! Examples: A list of installed facilities can be produced by numbering the bits in the stfle

! output record:

606 CMS Pipelines User’s Guide and Reference

 storage

! pipe stfle | spec 1-* c2b | fblock 1 | ...
! ... spec 1 1 number from 0 n.4 r | find 1 | substr 2.4 |
! ... join 15 | console
! ► 0 7 8 9 10 12 14 15 16 17 18 19 20 21 22 23
! ► 24 25 26 27 28 30 31 32 33 34 35 37 38 40 41 42
! ► 43 44 45 47 48 49 50 51 52 53 54 55 57 58 59 61
! ► 73 74 75 76 77 80 81 82 128 129 131 133 134 135 146 147
! ► 156 168
! ►Ready;

! Notes:

! 1. The bitmap observed in a virtual machine may be different from the bitmap presented

! to CP by the real hardware. For instance, with z/VM running on z/Architecture hard-

! ware, a virtual machine running CMS will find bit 2 reset to indicate ESA/390 mode;

! under z/CMS the bit is set to indicate z/Architecture mode.

storage—Read or Write Virtual Machine Storage
storage connects virtual storage to the pipeline. It copies the contents of virtual storage

: into the pipeline when it is first in a pipeline or when READ is specified; otherwise it

: copies records from the pipeline into storage. The storage area may be in your own virtual

: machine’s primary space, a data space you created, or in someone else’s shared address

: space.

►►──STORAGE─ ──┬ ┬──┬ ┬────────── ─┤ Addrlen ├─ ──┬ ┬────── ─►◄
│ └─┤ Alet ├─┘ └─xorc─┘ │

 └ ┘ ─READ─ ──┬ ┬────────── ──┬ ┬─────────────
└ ┘─┤ Alet ├─ └ ┘─┤ Addrlen ├─

Addrlen:

├──hexString──number──┤

Alet:

├──ALET──hex──┤

Type: Arcane device driver.

Warning: storage behaves differently when it is a first stage and when it is not a first

stage. Existing data can be overlaid when storage is unintentionally run other than as a

first stage. To use storage to read data into the pipeline at a position that is not a first

stage, specify storage as the argument of an append or preface control. For example,

|append storage ...| appends the data produced by storage to the data on the primary

input stream.

Syntax Description: Two arguments are required, a hexadecimal string and a decimal

: number. When storage is not first in a pipeline and READ is omitted, a third word is

required to specify the protect key of the storage area. The key is in the leftmost four bits

of a character; the rightmost four bits must be zero. Key zero is rejected. The third

operand has no effect on z/OS; specify 80 to be consistent with the CMS implementation.

: When storage is first in a pipeline or READ is specified with an address and length, it

ensures that the first and last byte of the storage area are addressable. (On CMS, it only

: performs this check if the storage area ends beyond the size of the virtual machine unless

! ALET is specified.) When it is not first in a pipeline and READ is omitted, storage verifies

that it can modify the first and last byte of the storage area. Areas outside the virtual

machine can be specified, but a subsequent stage referencing the contents of the record

 Chapter 23. Inventory of Built-in Programs 607

 storage

sent in the pipeline fails with an addressing exception if part of the storage area is not

attached to the virtual machine.

Operation: The arguments are converted to binary and used as the address and length of

an area of virtual storage.

: When storage is first in the pipeline or READ is specified, the address and length are used

: in an output call, in effect writing virtual machine storage into the pipeline. The area is

: first copied into your primary space when ALET is specified for a read request.

: When READ is specified, storage first writes that storage area specified by the address and

: length, if any, and then a record for each non-blank input record. The record specifies the

: address (hexadecimal) and length (decimal); the addressability of this area is not verified

: by storage (but it will be by whatever processes the record).

Otherwise, when storage is not first in the pipeline, input records are copied into the area

in storage. The last part of the record is not copied if the input record is longer than the

length of the storage area. The input record is copied to the output, if it is connected.

: Streams Used: When storage is first in a pipeline and READ is omitted, it writes a record

: to the primary output stream. When it is not first in the pipeline and READ is omitted, it

copies the input record to the output after its contents have been copied into storage.

Record Delay: storage strictly does not delay the record.

See Also: adrspace and alserv.

Examples: To display some possibly not randomly chosen bytes from storage:

 pipe storage 200 32 | console
►z/VM V6.4.0 2019-07-24 16:40
►Ready;

 Notes:

1. storage can cause message 530 to be issued (destructive overlap) if the storage area

overlaps a buffer used by a filter later in the pipeline.

2. Writing to storage has deliberately been made different from reading from storage; this

insures against accidental misplacement of a storage stage in a pipeline.

: 3. On CMS, the virtual machine must be in XC mode to use ALET. An error message is

: issued otherwise.

: 4. The ALET operand is supported on both CMS and z/OS, but on z/OS you must create

: and discover the ALET yourself. As CP uses only the primary list, this flag is added on

: CMS, that is, ALETs 2 and 01000002 are equivalent. On z/OS the ALET must be

: specified exactly.

: 5. Specifying ALET 0 has no effect. You cannot specify ALET 1 on CMS.

608 CMS Pipelines User’s Guide and Reference

 strasmfind

strasmfind—Select Statements from an Assembler File as XEDIT Find
strasmfind selects Assembler statements that begin with the specified string. It discards

statements that do not begin with the specified string. An Assembler statement can span

lines. XEDIT rules for FIND apply.

►►──STRASMFIND──┬─────────┬──delimitedString──►◄
 └ ┘─ANYcase─

Type: Selection stage.

Syntax Description: A string is required. The maximum string length is 71 characters.

Operation: Input records are matched the same way XEDIT matches text in a FIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

When the first line of a statement is matched, strasmfind copies all lines of the statement

without further inspection to the primary output stream, or discards them if the primary

output stream is not connected. When the first line of a statement is not matched,

strasmfind discards all lines of the statement without further inspection, or copies them to

the secondary output stream if it is connected.

Input Record Format: An Assembler statement consists of one or more lines. Lines

before the last one have a non-blank character in column 72. The last line of a statement

is blank in column 72, or shorter than 72 characters.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strasmfind strictly does not delay the record.

Commit Level: strasmfind starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: strasmfind terminates when it discovers that no output stream is

connected.

 Converse Operation: asmnfind.

See Also: asmcont, asmfind, and asmxpnd.

Examples: To select all statements in an Assembler program that have a label beginning

with 'LAB':

... | asmfind LAB|...

 Chapter 23. Inventory of Built-in Programs 609

 strasmnfind

To select all statements in an Assembler program that have the label 'LAB':

... | asmfind LAB_|...

The underscore indicates that column 4 must be blank; thus the label is three characters.

To select all comments in an Assembler program:

...| asmfind *|...

To select all statements of an Assembler program, except comments and those having a

label:

...| asmfind _|...

 Notes:

1. strasmfind does not support changes to the statement format by the ICTL Assembler

instruction.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

strasmnfind—Select Statements from an Assembler File as XEDIT NFind
strasmnfind selects Assembler statements that do not begin with the specified string. It

discards statements that begin with the specified string. An Assembler statement can span

lines. XEDIT rules for NFIND apply.

►►──STRASMNFIND──┬─────────┬──delimitedString──►◄
 └ ┘─ANYcase─

Type: Selection stage.

Syntax Description: A string is required. The maximum string length is 71 characters.

Operation: Input records are matched the same way XEDIT matches text in an NFIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

When the first line of a statement is not matched, strasmnfind copies all lines of the state-

ment without further inspection to the primary output stream, or discards them if the

primary output stream is not connected. When the first line of a statement is matched,

strasmnfind discards all lines of the statement without further inspection, or copies them to

the secondary output stream if it is connected.

Input Record Format: An Assembler statement consists of one or more lines. Lines

before the last one have a non-blank character in column 72. The last line of a statement

is blank in column 72, or shorter than 72 characters.

610 CMS Pipelines User’s Guide and Reference

 strfind

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strasmnfind strictly does not delay the record.

Commit Level: strasmnfind starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: strasmnfind terminates when it discovers that no output stream

is connected.

 Converse Operation: asmfind.

See Also: asmcont and asmxpnd.

Examples: To select labelled or comment statements from an Assembler program:

...| asmnfind _|...

 Notes:

1. strasmnfind does not support changes to the statement format by the ICTL Assembler

instruction.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

strfind—Select Lines by XEDIT Find Logic
strfind selects records that begin with the specified string. It discards records that do not

begin with the specified string. XEDIT rules for FIND apply.

►►──STRFIND──┬─────────┬──delimitedString──►◄
 └ ┘─ANYcase─

Type: Selection stage.

! Syntax Description: A keyword is optional. A delimited string is required.

Operation: Input records are matched the same way XEDIT matches text in a FIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

Case is ignored if ANYCASE is specified.

strfind copies records that match to the primary output stream, or discards them if the

primary output stream is not connected. It discards records that do not match or copies

them to the secondary output stream if it is connected.

 Chapter 23. Inventory of Built-in Programs 611

 strfrlabel

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strfind strictly does not delay the record.

Commit Level: strfind starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: strfind terminates when it discovers that no output stream is

connected.

 Converse Operation: strnfind.

See Also: find and locate.

 Notes:

1. All matching records are selected, not just the first one.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

strfrlabel—Select Records from the First One with Leading String
strfrlabel discards input records up to the first one that begins with the specified string.

. That record and the records that follow are selected. When EXCLUSIVE is specified, the

. matching record is also discarded.

! ┌ ┐─INCLUSIVe─
►►──STRFRLABel──┬─────────┬──┼───────────┼──delimitedString──►◄

: └ ┘─ANYcase─ └ ┘─EXCLUSIVe─

Type: Selection stage.

Syntax Description: A string is required.

Operation: Characters at the beginning of each input record are compared with the argu-

ment string. When ANYCASE is specified, case is ignored in this comparison. Any record

matches a null argument string. A record that is shorter than the argument string does not

match.

strfrlabel copies records up to (but not including) the matching one to the secondary output

stream, or discards them if the secondary output stream is not connected. It then passes

the remaining input records to the primary output stream.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. strfrlabel severs the

secondary output stream before it shorts the primary input stream to the primary output

stream.

ANYCASE Perform caseless compare.

. EXCLUSIVE. The matching record is discarded.

. INCLUSIVE. The matching record is selected. This is the default.

612 CMS Pipelines User’s Guide and Reference

 strip

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strfrlabel strictly does not delay the record.

Commit Level: strfrlabel starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: strfrlabel terminates when it discovers that no output stream is

connected.

 Converse Operation: tolabel.

 See Also: frlabel.

Examples: To discard records on the primary input stream up to the first one beginning

with the characters 'abc':

/* Skip to first record with label */
'callpipe *: | strfrlabel /abc/'

Because this invocation of strfrlabel has no secondary output stream, records before the

first one beginning with the string are discarded. The CALLPIPE pipeline command ends

when strfrlabel shorts the primary input stream to the unconnected primary output stream;

the matching record stays in the pipeline.

 Notes:

1. strfromlabel is a synonym for strfrlabel.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

strip—Remove Leading or Trailing Characters
strip removes leading or trailing characters or strings.

 ┌ ┐─BOTH─────
►►──STRIP─ ──┬ ┬───────── ──┼ ┼────────── ──┬ ┬───── ─►
 └ ┘─ANYCase─ ├ ┤─LEADING── ├ ┤─TO──
 └ ┘─TRAILING─ └ ┘─NOT─

 ┌ ┐─BLANK──────────────────
►─ ──┼ ┼──────────────────────── ─►◄

 └ ┘─┤ target ├─ ──┬ ┬────────
└─number─┘

target:

├──┬─xrange──────────────────────┬──┤
 └─┬─STRing─┬──delimitedString─┘

 └ ┘─ANYof──

 Type: Filter.

Syntax Description: No arguments are required.

ANYCASE Ignore case. Conceptually, all processing is done in upper case.

BOTH Strip from both the beginning and the end of the record.

LEADING Strip from the beginning of the record.

 Chapter 23. Inventory of Built-in Programs 613

 strliteral

The target can be a range of characters or a delimited string. A number is optional after

the target. A hex range matches any character within the range. The keyword STRING

followed by a delimited string matches the string. The keyword ANYOF followed by a

delimited string matches any one character in the string. (The keyword is optional before

a one character string, because the effect is the same in either case.) A number after the

target limits the number of characters stripped; this can cause part of a string to remain in

the record. This number applies independently to each side when stripping BOTH. The

default target is a blank; thus, the default is to strip leading and trailing blank characters.

Record Delay: strip strictly does not delay the record.

Premature Termination: strip terminates when it discovers that its output stream is not

connected.

Examples: To remove trailing blanks:

 pipe literal abc | strip trailing | spec 1-* 1 /*/ next | console
► abc*
►Ready;

The specs stage appends an asterisk to the record to show where it ends.

 Notes:

1. The minimum abbreviation of ANYCASE is four characters because ANYOF takes

precedence (ANYOF can be abbreviated to three characters).

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

TRAILING Strip from the end of the record.

NOT

TO
Negate the target. Characters not matching the following specification

are removed from the record. TO and NOT are synonymous.

strliteral—Write the Argument String
strliteral writes its argument string into the pipeline before or after it passes records on the

input to the output stream.

►►──STRLITeral─ ──┬ ┬────────────────────────────── ─►
 │ │┌ ┐─PREFACE─
 ├ ┤ ──┼ ┼───────── ──┬ ┬─────────────
 │ │└ ┘─APPEND── └ ┘─CONDitional─
 └ ┘─IFEMPTY──────────────────────

►─ ──┬ ┬───────────────── ─►◄
└─delimitedString─┘

Type: Device driver.

Syntax Description: One or more keywords are optional to specify if and when a record

with the specified string is written to the primary output stream

614 CMS Pipelines User’s Guide and Reference

 strliteral

Operation: strliteral writes a null record when the parameter string is null.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. strliteral PREFACE shorts the input to the output after it has written the

argument string to the pipeline.

Record Delay: The first output record is produced before any input is read. Thus,

strliteral has the potential to delay one record. strliteral with APPEND does not delay the

record.

Premature Termination: strliteral terminates when it discovers that its output stream is

not connected.

See Also: append, literal, preface, and var.

Examples: To generate the trailer record in the netdata format:

'pipe ... | strliteral append /\INMR06/ | block 80 netdata | punch'

To write a heading to the output, but suppress it when there are no output records:

 pipe cp q v da | locate w4 ,(TEMP), | strliteral cond /T-disks:/ | ...
... console

►Ready;

To write a line instead of the output:

 pipe cp q v da | locate w4 ,(VDSK), | ...
... strliteral ifempty /No V-disk/ | console

►DASD 0192 9336 (VDSK) R/W 5000 BLK ON DASD VDSK SUBCHANNEL = 000A
►Ready;

Use two strliteral stages, one with CONDITIONAL and one with IFEMPTY, to get a header

when there is output and an error message when there is no output.

 Notes:

1. Records from a cascade of strliteral stages appear in the reverse order of their appear-

ance in the pipeline specification unless APPEND is specified; see Figure 62 on

page 34.

2. Use var to write data that contain stage separators, end characters, and other characters

that have a special meaning to the pipeline specification parser.

3. strliteral may be used to inject a record in front of the file somewhere downstream in

a pipeline, but it can also be a first stage. Note that if you wish to insert a record in

front of a file that comes from disk, you must retain the disk stage as the first in the

pipeline. If not, disk appends the single record to the file instead of reading from the

file.

PREFACE Write the output record before passing the input to the output.

APPEND Write the output record after passing the input to the output.

CONDITIONAL Write the output record only when there is input. That is, if strliteral

CONDITIONAL cannot read an input record, it terminates without writing

anything.

IFEMPTY Write the output record only when there are no input records.

 Chapter 23. Inventory of Built-in Programs 615

 strnfind

4. Be careful when strliteral is used where the contents of a stemmed array are being

updated or in similar situations where the output overwrites the original data source.

Because strliteral PREFACE writes the first record before it reads input, this record may

be produced before the input has been read; thus, the first record of the updated object

may be written before it is read, leading to a “destructive overlap”.

5. strliteral IFEMPTY can be useful in front of a var stage, to supply a default.

6. It does not make sense to cascade strliteral IFEMPTY as the second one will see the

first one’s record and thus never write its literal.

strnfind—Select Lines by XEDIT NFind Logic
strnfind selects records that do not begin with the specified string. It discards records that

begin with the specified string. XEDIT rules for NFIND apply.

►►──STRNFIND──┬─────────┬──delimitedString──►◄
 └ ┘─ANYcase─

Type: Selection stage.

Syntax Description: A string is required. A keyword is optional. A delimited string is

required.

Operation: Input records are matched the same way XEDIT matches text in an NFIND

command (tabs 1, image off, case mixed respect):

¹ A null string matches any record.

¹ Blank characters in the string represent positions that must be present in the input

record, but can have any value.

¹ An underscore in the string represents a position where there must be a blank char-

acter in the input record.

¹ All other characters in the string must be equal to the contents of the corresponding

position in the input record.

Case is ignored if ANYCASE is specified.

strnfind copies records that do not match to the primary output stream, or discards them if

the primary output stream is not connected. It discards records that match or copies them

to the secondary output stream if it is connected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strnfind strictly does not delay the record.

Commit Level: strnfind starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: strnfind terminates when it discovers that no output stream is

connected.

 Converse Operation: strfind.

See Also: nlocate and nfind.

616 CMS Pipelines User’s Guide and Reference

 strtolabel

Examples: To discard lines with 'a' in column 1 and 'c' in column 3:

 pipe literal abc axc axy xyc | split | strnfind /a c/ | console
►axy
►xyc
►Ready;

 Notes:

1. notfind is a synonym for strnfind.

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

strtolabel—Select Records to the First One with Leading String
strtolabel selects input records up to the first one that begins with the specified string.

. That record and the records that follow are discarded. When INCLUSIVE is specified, the

. matching record is also selected.

: ┌ ┐─EXCLUSIVe─
►►──STRTOLABEL──┬─────────┬──┼───────────┼──delimitedString──►◄

. └ ┘─ANYcase─ └ ┘─INCLUSIVe─

Type: Selection stage.

Syntax Description: A string is required.

Operation: Characters at the beginning of each input record are compared with the argu-

ment string. When ANYCASE is specified, case is ignored in this comparison. Any record

matches a null argument string. A record that is shorter than the argument string does not

match.

strtolabel copies records up to (but not including) the matching one to the primary output

stream, or discards them if the primary output stream is not connected. If the secondary

output stream is defined, strtolabel then passes the remaining input records to the

secondary output stream.

The matching record stays in the pipeline if the secondary output stream is not defined; it

can be read again if the current pipeline is defined with CALLPIPE.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. If the secondary output

stream is defined, strtolabel severs the primary output stream before it passes the

remaining input records to the secondary output stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strtolabel strictly does not delay the record.

Commit Level: strtolabel starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

ANYCASE Perform caseless compare.

. EXCLUSIVE. The matching record is discarded. This is the default.

. INCLUSIVE. The matching record is selected.

 Chapter 23. Inventory of Built-in Programs 617

 structure

Premature Termination: strtolabel terminates when it discovers that no output stream is

connected.

 Converse Operation: strfrlabel.

See Also: between, inside, notinside, outside, tolabel, and whilelabel.

Examples: To load records up to the first one beginning with '.end':

/* Load batch of records into stem */
'callpipe *: | strtolabel /.end/| stem todo.'

strtolabel is before the stem stage that loads the variables; all lines would be processed if

the order of the stages were reversed.

 Notes:

: 1. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

: structure—Manage Structure Definitions
: structure maintains CMS Pipelines’s defined structures. Depending on the keyword

: specified, it defines, deletes, or lists structure definitions.

:

: ┌ ┐─SET────
: ►►──STRUCTure─ ──┬ ┬: ─ADD─ ──┬ ┬───────── ──┼ ┼──────── ─────── ─►◄
: │ │└ ┘─ANYcase─ ├ ┤─CALLER─
: │ │└ ┘─THREAD─
: │ │┌ ┐─SET────
: ├ ┤: ─DELete─ ──┼ ┼──────── ──┬ ┬─────────── ──
: │ │├ ┤─CALLER─ └ ┘─┤ Names ├─
: │ │└ ┘─THREAD─
: ├ ┤: ─LIST─ ──┬ ┬─────────── ────────────────
: │ │└ ┘─┤ Names ├─
: │ │┌ ┐─────────────
: └ ┘: ─LISTALL─ ──┬ ┬───────── ───6 ┴┬ ┬─────────
: └ ┘─MEMBERs─ ├ ┤─CALLER──
: ├ ┤─SET─────
: ├ ┤─THREAD──
: └ ┘─BUILTIN─

: Names:

: ┌ ┐──────────────
: ├───6─identifier─┴──┤

: Type: Gateway.

: Placement: structure LISTALL must be a first stage.

: Syntax Description:

618 CMS Pipelines User’s Guide and Reference

 structure

: Operation: For structure DELETE, the structures specified in the operand list and each set

: of structures in an input record are processed as a unit. You may delete a structure that

: embeds other structures in the same scope if all are deleted in the same record. Otherwise

: ADD: Add to the set of active structures. The structure

: definitions are read from the primary input stream. The

: default is to define structures in set scope having case

: sensitive identifiers. Specifically, DELETE and LIST

: requests for such a structure will also be caseless.

: ANYCASE: Structures defined when ANYCASE is active are marked

: as caseless. That means that case is ignored in all

: searches for structure names and member names within

: such a structure, but case may still be respected in

: embedded structures, depending on how they, in turn,

: are defined.

: CALLER: Define structures in caller scope.

: SET: Define structures in set scope.

: THREAD: Define structures in thread scope.

: DELETE: Remove from the set of active structures. Additional

: names are read from the primary input stream. The

: default is to remove structures from the topmost set

: scope.

: CALLER: Remove structures from caller scope.

: SET: Remove structures from set scope.

: THREAD: Remove structures from thread scope.

: LIST: Write the definition of one or more active structures.

: Additional names are read from the primary input

: stream. The specified names are searched in all four

: structure scopes including nesting caller and set scopes.

: LISTALL: Write the names of all defined structures in specified

: scopes. The default is CALLER, SET, and THREAD. The

: order of listing is the same as the search order: caller,

: set, thread, and built in. Thus caller and set scope struc-

: tures are intermixed.

: MEMBERS: Include the definition of each structure in the list of

: defined structures.

: CALLER: List structures in the current caller scope followed by

: nesting scopes.

: SET: List structures in the current set scope followed by

: nesting scopes.

: THREAD: List structures in thread scope.

: BUILTIN: List structures that are built in.

: identifier: The name of a structure. Structure names must begin

: with a letter in the English alphabet or one of the special

: characters @#$!?_. The second and subsequent character

: may also be a digit.

 Chapter 23. Inventory of Built-in Programs 619

 structure

: you cannot remove a structure that is embedded in another structure; you must delete the

: embedding structure first. For caller and set scope, you can delete from the outermost

: scope only.

: Input Record Format: For structure ADD, the input is in free form; it may be spanned

: across lines. The syntax of the input stream is::

: ┌ ┐─────────────────
: ►►─ ───6 ┴─┤ Structure ├─ ─►◄
:

: Structure:

: ┌ ┐──────────────────
: ├──:──identifier───6┬─┤ Constant ├─┬┴──┤
: └ ┘─┤ Member ├───
:

: Constant:

: ├──identifier──=──number──┤
:

: Member:

: ├──┬: ─┬─┤ Identdim ├─┬──┬──────────┬──┬─number────────┬─┬: ──┤
: │ ├─-────────────┤ └─┤ Type ├─┘ ├─number.number─┤ │
: │ │└ ┘─.──────────── └ ┘─┤ Datafield ├─
: └: ─identifier──┤ Wordstyle ├─: ────────────────────────┘
:

: Identdim:

: ├──identifier──┬────────────────────────┬──┤
: └: ─(──┬─number───────┬──)─┘
: ├─identifier───(1) ┤
: └ ┘─*────────────

: Note:

: 1 The identifier must be declared as a manifest constant.
:

: Type:

: ├──letter─┬───────────┬──(1)───┤
: └─(snumber)─┘

: Note:

: 1 No blanks are allowed from the letter to the right parenthesis, if a scale is present.
:

: Datafield:

: ├──┬: ─Member──┤ Identsub ├──┬────────┬──┬─number─┬─: ─┬──┤
: │ │└ ┘─Length─ └ ┘─*──────
: ├: ─Length──┬─number─┬─: ───────────────────────────┤
: │ │└ ┘─*──────
: └: ─STRUCTure──identifier──┬─number─────────────┬─┘
: ├: ─Member──identifier─┤
: └ ┘─Next───────────────
:

: Identsub:

: ├──identifier──┬───────────┬──┤
: └─subscript─┘

620 CMS Pipelines User’s Guide and Reference

 structure

:

: Wordstyle:

: ┌ ┐──────────────────────────
: ├──identifier───6┬──────────────────────┬┴──┬─Word──────┬──range──┤
: ├: ─WORDSEParator──xorc─: ─┤ ├─Field─────┤
: └: ─FIELDSEparator──xorc─┘: └─Autofield─┘

: The input to structure ADD defines one or more structures, or is empty (consists of blanks

: only). The first non-blank character must be a colon. A colon marks the beginning of the

: definition of a structure.

: For each structure, the first word after the colon specifies the name of the structure.

: The structure identifier must not exist within the innermost of the specified scope (there is

: one thread scope only). In caller or set scope, the structure may also exist in thread scope

: or in one of the nesting caller or set scopes. In particular, it is allowed to define a struc-

: ture in set scope that is obscured by an already defined structure in caller scope within the

: current set; likewise an obscured structure can be defined in thread scope. Thus, the new

: definition replaces the existing one(s) until it is removed or the scope ends.

: Input data up to the next colon or to end-of-file define the contents of the structure. The

: definition is written as tokens that are delimited by blanks or line ends. The members may

: be manifest constants or members. During definition, a current position is maintained as

: the next available position after the last defined member, unless that definition precludes

: such a definition.

: A manifest constant is a symbolic reference to a number; it is specified by an identifier, an

: equal sign, and a number.

: A member defines a range of the record. The first word of the member definition contains

: an identifier, which must be unique within the structure being defined, optionally followed,

: in parentheses, by a dimension, which is a positive number, an identifier for a manifest

: constant, or an asterisk indicating an unbounded array. No position is established when

: the dimension is an asterisk. Members come in two flavours, which can be intermixed:

: ¹ “Proper” members define a fixed number of columns in the record; they can be

: chained indicating that the member immediately follows the previous one (when a

: position has been established). A hyphen or period instead of the member identifier

: specifies an unnamed filler.

: ¹ The word style is, in effect, a symbolic name for a range of words or fields. Such

: members do not establish a position.

: The balance of this section describes the first type only.

: A single letter other than L defines the type of the member (L is the abbreviation of

: LENGTH). structure makes this type upper case, but it does not attach any particular

: meaning to it; however, pick and spec do for types C, D, F, P, R, and U.

: Refer to “Using Typed Data” on page 93 for the description of typed data.

: A signed number in parentheses is optional after the type character. If present, there must

: be no blanks in the type and number. The number is restricted to -32768 through 32767.

: Again, structure attaches no meaning to this number, but pick and spec interpret it as a

: scale factor when the type is P (packed decimal); that is, a positive number specifies the

: number of decimal places after the implied decimal point.

 Chapter 23. Inventory of Built-in Programs 621

 structure

: Following this single letter and optional number, you specify the location of the member in

: the record. This can be:

: ¹ A single number, or two numbers separated by a period (asterisks are not allowed).

: The first or only number is the beginning column. The second number is the count of

: bytes in the field; when omitted, the length is one.

: ¹ The keyword MEMBER, which can be abbreviated down to one letter, followed by an

: identifier, an optional subscript, and a count. A subscript is a positive number in

: parentheses. This defines the member as being overlaid on the already defined

: member for the specified length. This is equivalent to the ORG instruction in Assem-

: bler parlance.

: ¹ The keyword LENGTH, which can be abbreviated down to one letter, followed by a

: number defining the field length, or an asterisk indicating a field of variable length that

: extends to the end of the record for an input field; for an output field, an asterisk

: specifies that the output will have the same length as the input. A position must have

: been established unless this is the first member of the structure, in which case column

: 1 is the position. There is no current position after the field when an asterisk is

: specified; such a field does not contribute to the length of the structure as it is poten-

: tially infinite.

: ¹ The keyword STRUCTURE defines an embedded structure, which must have been

: defined previously, perhaps earlier in the input stream. When adding structures to

: thread scope, only other structures in thread scope may be referenced; any structure

: may be referenced when defining in caller scope, but structures in set scope cannot

: resolve to structures defined within call scope in the outermost set (though they can

: resolve any structure defined in a nesting set). The keyword is followed by the

: identifier of the structure being referenced and the position within the embedding

: structure (the structure being defined). The length of the member is defined by the

: length of the structure; you cannot specify it explicitly. The position of the embedded

: structure is specified by:

: – A number, which is the beginning column.

: – The keyword MEMBER, which can be abbreviated down to one letter, followed by

: an identifier and an optional subscript. This defines the structure as being overlaid

: on the already defined member.

: – The keyword NEXT, which can be abbreviated down to one letter. A position

: must have been established unless this is the first member of the structure, in

: which case column 1 is the position.

: Output Record Format: structure ADD and structure DELETE produce no output.

: The output from structure LIST is in a form that can be passed to structure ADD if

: comments are removed, for example, by chop <. Note, however, that it may not be the

: form used to define the structure, but the two definitions are equivalent.

: The output from structure LISTALL is unspecified.

: Streams Used: Records are read from the primary input stream and written to the primary

: output stream.

! Record Delay: structure does not delay the record when listing. &jphsnmaf. ADD delays

! the line of the structure definition by at least one record.

: Record Delay: structure does not delay the record.

622 CMS Pipelines User’s Guide and Reference

 structure

: Premature Termination: structure terminates when it discovers that its output stream is

: not connected. This can happen only when listing structure definitions.

: Examples: To define and list a structure:

: pipe literal : s mbr 1 len 4|struct add|append struct list s|cons
: ►:s <length 4>
: ► mbr 1.01
: ► len 4.01
: ►Ready;
: pipe struct listall|cons
: ►Ready;

: The structure is defined in set scope. Note that this defines two members rather than

: specify a length for the first member (to do that you must specify mbr 1.4 or mbr len 4).

: The append stage ensures that the list is made after all input structures are defined. Struc-

: ture S is discarded when the PIPE command terminates, thus the second pipeline produces

: no output as there is nothing to list.

: A really contorted example of a nested pipeline set and an obscured structure:

: pipe literal : s m 1|struct add thread
: ►Ready;
: pipe literal : s mbr 1 len 4|struct add| ...
: ... strliteral after /(stagesep ?) struct listall members?cons/|
: ... runpipe|cons
: ►Set level 1
: ►:s <length 4>
: ► mbr 1.01
: ► len 4.01
: ►Thread
: ►:s <length 1>
: ► m 1.01
: ►Ready;
: pipe struct del thread s
: ►Ready;

: Notes:

: 1. These caseless structures are built into CMS Pipelines:

: EVENTRECORD Records produced by runpipe EVENTS (Member EVENTREC of FPLOM

: MACLIB).

: FPLASIT The first eighty bytes of a data space from adrspace CREATE

: INITIALISE.

: FPLSTORBUF The output record from instore.

: VMCMHDR VMCF interrupt header (see VMCLISTEN).

: VMCPARM VMCF parameter list (see VMCLIENT and VMCDATA).

: DIRBUFF The CMS data area, which is the data returned by DMSGETDI.

: 2. A structure that is not in the current pipeline set can be obscured by defining a struc-

: ture of the same name in caller or set scope. A structure in the current set is obscured

: by one in caller scope. A built-in structure is obscured by a definition in any scope.

: 3. Embedded structure names are resolved when the structure is defined. Obscuring an

: embedded structure has no effect on already existing definitions.

 Chapter 23. Inventory of Built-in Programs 623

 structure

: 4. You can delete only structures in thread scope, in the current pipeline set, or in the

: calling stage; structures cannot be deleted in nesting pipeline sets or caller scopes

: within those sets, but they can be obscured.

: 5. structure ADD cannot issue messages that relate to the original input records because it

: conditions the input stream so that a structure definition does not span record bounda-

: ries. Instead, it relates messages to the count of complete structure definitions proc-

: essed and members processed within the structure being defined.

: 6. Be sure that structures are defined before they are referenced, because defining a struc-

: ture implies reading input records, which must happen on commit level 0. Thus, it is

: likely that any reference to a structure in the same pipeline specification would be a

: reference to an undefined structure.

: This can be resolved in three ways:

: ¹ Define the structures in thread scope. The drawback is that this may make them

: more visible than desired, and possibly obscured by other definitions in a nesting

: set scope.

: ¹ Make the PIPE command run a REXX program that issues CALLPIPE to add the

: structure definitions to caller or set scope before it issues the “real” pipeline, also

: with CALLPIPE. This is recommended for production strength code. (Remember

: that an EXEC can invoke itself as a REXX stage; you do not need an additional file,

: but the EXEC will then be processed twice by the interpreter.)

: ¹ Cascade structure ADD and append to issue a subroutine pipeline after structure

: ADD has ended. This is a handy way, for example, to list the definition of a

: structure. Note that the entire pipeline must be the argument to APPEND, or at

: least the stages that reference the newly defined structure. (Double up the vertical

: bars or use a different stage separator.)

: One advantage of the first two approaches is that you can inspect the return code from

: the pipeline that loads the structures before issuing the “real” pipeline.

: 7. You may wonder whether it is possible to create a recursion in embedded structures.

: You can prove by induction that this is not possible because a structure cannot contain

: itself. This is because the structure is not defined until the next colon or end-of-file is

: met; nor can it embed an undefined structure. However, a structure definition can

: embed a structure that it is about to obscure, but that structure could not embed itself

: when it was defined, so there is still no recursion.

: 8. The index origin is 1 for arrays. That is, the first member of an array has subscript 1.

: 9. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

: 10. spec does not allow a question mark in an identifier, as the question mark is parsed as

: the conditional operator.

: 11. structure starts at commit level 0. This has implications when it is issued with

: CALLPIPE on a negative commit level, as this commit will force a commit of the caller.

: 12. The motivation for caller scope is this: Suppose two REXX programs both require a

: particular structure, perhaps the first creates a record containing the structure and the

: second formats such a structure, but they do not always run as a cascade, so the

: second program cannot rely on the first program always defining the structure. Thus

: each program will wish to add the structure definition, but as it turns out, there is no

: way for a stage to determine whether it would be successful in adding a structure to

: the set. It might query by LISTALL, but even when the query indicates that a particular

: structure does not exist, that does not preclude one from being defined by the time the

624 CMS Pipelines User’s Guide and Reference

 strwhilelabel

: stage is resumed. Conversely, a REXX stage may define structures in caller scope with

: impunity.

: 13. Using ADDPIPE to issue a pipeline specification to define a structure will not increase

: the commit level of the current pipeline specification, but it is undefined when the

: structure will be defined and the issuer will be unable to determine whether the

: definition was successful or not.

! 14. The output lines generated for LISTALL and LIST are buffered internally by structure

! and represent a snapshot of the structures as defined when structure processed the

! arguments or input record.

strwhilelabel—Select Run of Records with Leading String
strwhilelabel selects input records up to the first one that does not begin with the specified

string. That record and the records that follow are discarded.

►►──STRWHILElabel──┬─────────┬──delimitedString──►◄
 └ ┘─ANYcase─

Type: Selection stage.

Syntax Description: A string is required.

Operation: Characters at the beginning of each input record are compared with the argu-

ment string. When ANYCASE is specified, case is ignored in this comparison. Any record

matches a null argument string. A record that is shorter than the argument string does not

match.

strwhilelabel copies records up to (but not including) the first one that does not match to

the primary output stream, or discards them if the primary output stream is not connected.

strwhilelabel passes the remaining input records to the secondary output stream.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. strwhilelabel severs the

primary output stream before it passes the remaining input records to the secondary output

stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. strwhilelabel strictly does not delay the record.

Commit Level: strwhilelabel starts on commit level -2. It verifies that the secondary

input stream is not connected and then commits to level 0.

Premature Termination: strwhilelabel terminates when it discovers that no output stream

is connected.

See Also: between, frlabel, inside, notinside, outside, and tolabel.

 Notes:

: 1. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

! 2. pick can do what strwhilelabel does and much more.

 Chapter 23. Inventory of Built-in Programs 625

 stsi ¹ subcom

. stsi—Store System Information

. stsi writes a single record containing the information requested.

.

. ►►──STSI──hexString──►◄

. Type: Arcane device driver.

. Placement: stsi must be a first stage.

. Syntax Description: The operand consists of three hexadecimal digits that specify the

. configuration level to write. These configurations can currently be requested: 111, 121,

. 122, 221, 222, 322.

. Output Record Format: The output record is 4096 bytes long, as this is the size of the

. system information block specified by the architecture, but most of it contains binary zeros.

. Refer to the z/Architecture Principles of Operation for the contents of the system informa-

. tion block.

. Premature Termination: stsi terminates when it discovers that its output stream is not

. connected.

. Publications: z/Architecture Principles of Operation, SA22-7832

subcom—Issue Commands to a Subcommand Environment
subcom issues commands to a subcommand environment without intercepting terminal

output.

►►──SUBCOM──word──┬────────┬──►◄
└─string─┘

Type: Host command interface.

Syntax Description: A word is required. A string is allowed, when no secondary output

stream is defined.

Operation: The first blank-delimited word of the argument string is the name of the

subcommand environment to process the commands. If there is no environment with the

name specified, the environment name is translated to upper case. The remainder of the

argument string (if present) and input lines are issued as commands to the subcommand

environment.

: Input records are passed to the output after the command is issued; no output is produced

: on the primary output stream for a command specified as operands to subcom.

On z/OS, the default REXX environment is searched for the subcommand environment,

even when subcom is in a pipeline specification that was issued from a REXX filter (which

runs in a reentrant environment).

626 CMS Pipelines User’s Guide and Reference

 subcom

When the secondary output stream is defined, the return code is written to this stream after

each command has been issued and the command has been written to the primary output

stream.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected.

Record Delay: subcom strictly does not delay the record. When the secondary output

stream is defined, the record containing the return code is written after the input record is

passed to the output.

Commit Level: subcom starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: When the secondary output stream is not defined, subcom termi-

nates as soon as it receives a negative return code on a command. The corresponding

input record is not copied to the output and it is not consumed. When the secondary

output stream is defined, subcom terminates as soon as it discovers that this stream is not

connected. If this is discovered while a record is being written, the corresponding input

record is not consumed.

See Also: aggrc, cms, command, cp, starmsg, xedit, and xmsg.

Examples: subcom is often used to send commands to XEDIT; this example shows how to

insert records into the current file:

...| change //i / | subcom xedit

Remember that the lines are processed according to the XEDIT settings of CASE, IMAGE, and

so on.

Use the fact that subcom copies input lines to the output after the command has been

issued to write a line to the console:

/* Append ready message to commands */
'PIPE immcmd CMS',

'| subcom CMS', /* This won't "trap" the command output */
'| spec /Ready!/ 1',

 '| console'

 Notes:

1. Use cms (or command) to pass a command on to SUBCOM EXEC if you wish to issue a

subcommand and intercept terminal output:

/* SUBCOM EXEC: Issue command to a subcommand environment */
signal on novalue
parse arg where command
address value where
''command
exit RC

2. Null and blank input lines are issued to the subcommand environment. The CMS

subcommand environment ignores such commands, but this should not be taken as a

general rule; it is clearly up to the individual environment to interpret the command

: string it is issued. Likewise, XEDIT ignores blank and null lines, unless it is in insert

: mode. XEDIT, for instance, will insert a blank line into the file in input mode.

 Chapter 23. Inventory of Built-in Programs 627

 substring ¹ synchronise

3. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

Return Codes: When a secondary output stream is not defined and a negative return

code is received on a subcommand, the return code from subcom is that negative return

code. When a secondary output stream is not defined and the return code is zero or posi-

tive, all input records have been processed; the return code is the maximum of the return

codes received. When the secondary output stream is defined, the return code is zero

unless an error is detected by subcom.

. substring—Write substring of record

. substring writes the specified input range to the output.

.

. ►►──SUBSTRing──inputRange──►◄

. Type: Filter.

. Syntax Description:

. Record Delay: substring strictly does not delay the record.

. Premature Termination: substring terminates when it discovers that its output stream is

. not connected.

. See Also: spec.

. Notes:

. 1. substring is an optimisation for a special case of spec.

. 2. Use substring instead of not chop number.

synchronise—Synchronise Records on Multiple Streams
synchronise forces records on parallel streams of a pipeline to move in unison through the

pipeline. synchronise waits until there is a record available on every input stream and then

copies one record from each input stream to the corresponding output stream. It copies no

further records to its output until there is again a record available on each input stream.

With synchronise, the records on one stream can be used to pace the flow through the

pipeline of the records on some other stream.

►►─ ──┬ ┬─SYNChronise─ ─►◄
 └ ┘─SYNChronize─

Type: Arcane gateway.

Operation: synchronise processes a record from all input streams in this cycle:

¹ It peeks at each input stream, beginning with the primary input stream and proceeding

in numerical order.

628 CMS Pipelines User’s Guide and Reference

 synchronise

¹ When all input streams have a record available (that is, all streams have been peeked),

the records are written to the corresponding output streams, beginning with the

primary output stream and proceeding in numerical order.

¹ Only when all output streams have been written successfully are the input records

consumed, beginning with the primary input stream and proceeding in numerical order.

Streams Used: All input streams are read; all output streams are written.

Record Delay: synchronise synchronises its input streams. It strictly does not delay the

record.

Premature Termination: synchronise terminates as soon as it meets end-of-file on any

input or output stream.

: That is, when synchronise terminates because end-of-file is met on an input stream, no

: input has been consumed for this set of records. When synchronise discovers that an

: output stream is not connected, a record has been written to streams that have lower

: numbers.

Examples: synchronise can be used to tie the processing of records to external events,

such as the receipt of a message from the *MSG system service.

/* PACER REXX: Use external events to pace record processing */
'CALLPIPE (endchar ?) *.input: | sync: synchronize | *.output:',

'? starmsg | sync: | hole'
Exit RC*(RC<>12)

synchronise peeks a record from its primary input stream, which is connected to the calling

pipeline, but it does not process that record until the starmsg stage has captured a message

and made it available on the secondary input stream of synchronise. synchronise then

copies the record that it received from the calling pipeline to its primary output stream,

which is also connected to the calling pipeline, and copies the message record to its

secondary output stream, which is connected to the hole stage. Thus, only one record

flows through the calling pipeline for each message received from *MSG.

synchronise is useful to control an infinite supply of records going into a stream of

overlay, for instance to provide a background grid.

/* gridit REXX */
'callpipe (end ?)',

'|literal' copies(left('.', 10), 7), /* Grid line */
'|dup *', /* Infinite supply of these */
'|sync: synchronise', /* While there are input lines */
'|o:overlay', /* Overlay the two */
'|*.output:', /* Write output */
'?*.input:', /* Input file */
'|sync:', /* Synchronise grid with this stream */

 '|o:' /* Overlay. */
exit RC

duplicate * produces as many records as it can, but it cannot produce another record until

the previous record has been consumed by synchronise. Once synchronise has received

input on its secondary input stream, which is connected to the calling pipeline, it copies

one record from each stream to its corresponding output streams, which are connected to

the input streams for overlay. overlay overlays the record from its secondary input stream

on the record from its primary input stream and then writes the combined record on its

 Chapter 23. Inventory of Built-in Programs 629

 sysdsn

primary output stream, which is connected to the calling pipeline. Thus, when the records

are returned to the calling pipeline, they have had a background grid added to them. The

purpose of using synchronise here is to prevent duplicate * from flooding the overlay stage

with input records.

To run a stage (here udp) until it produces an output record, store the record in a variable,

and then force the stage to terminate because its output stream is severed, without the

record being consumed:

/* TFTPUDP REXX -- Destroy socket after reading lines from it. */
signal on novalue
signal on error
do forever

'callpipe (end \ name TFTPUDP)',
'|udp 69', /* Listen on port */
'|s:synchronise', /* Cheat it to get a line */
'|stem dgram.', /* Load into stem */
'\literal', /* Get a null line */
'|s:' /* And synchronise with udp's output */

If dgram.0=0 /* Was it forced to stop? */
 Then exit

'output' dgram.1 /* Write the line */
end
error: exit RC*(RC<>12)

synchronise first waits for udp to produce a record. When the record becomes available on

its primary input stream, synchronise then peeks at the null record on its secondary input

stream. It now has a record on all defined input streams, so it writes the record from its

primary input stream to its primary output stream, where stem stores it in the stemmed

array. But when it tries to write the null record from its secondary input stream, it

discovers that its secondary output stream is not connected, so it terminates without

consuming either input record. This causes udp to terminate, because its OUTPUT

command receives a return code of 12 (end-of-file).

The point is that udp is forced to terminate immediately rather than when it tries to write

the next record. That is, the resource used by udp is released as soon as it has produced

one record, thus immediately becoming available to be used elsewhere.

 Notes:

1. synchronise has been used in front of spec in the past to make spec terminate as soon

as one of its input streams reached end-of-file. This usage should be replaced with

spec STOP ANYEOF.

sysdsn—Test whether Data Set Exists
sysdsn calls the REXX function sysdsn() and writes the function’s result to the output

stream.

 z/OS

►►──SYSDSN─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Device driver.

630 CMS Pipelines User’s Guide and Reference

 sysout

Syntax Description: If an argument string is specified, it is processed before sysdsn reads

input records, as if it were an input record.

Record Delay: sysdsn strictly does not delay the record.

Commit Level: sysdsn starts on commit level -2. It commits to level 0 before processing

data.

Premature Termination: sysdsn terminates when it discovers that its primary output

stream is not connected.

See Also: listdsi and state.

Examples: To test for the existence of a data set:

 pipe sysdsn tso.exec | terminal
►OK
►READY
 pipe sysdsn exec | terminal
►DATASET NOT FOUND
►READY
 pipe sysdsn ? | terminal
►INVALID DATASET NAME, ?
►READY

 Notes:

1. Data set names follow the TSO conventions. Enclose a name that is fully qualified in

single quotes. The prefix is applied to data set names that are not enclosed in quotes.

sysout—Write System Output Data Set
sysout writes a system output data set.

 z/OS

 ┌ ┐─CLASS──*──────────
►►──SYSOUT─ ──┼ ┼─────────────────── ──┬ ┬───────────────────── ─►
 └─CLASS──┬─letter─┬─┘ └─OUTDESCriptor──word─┘

└─digit──┘

 ┌ ┐─SPIN───
►─ ──┬ ┬──────────────────────── ──┼ ┼──────── ──┬ ┬───────── ─►◄

 └─DESTination──word.word─┘ └─NOSPIN─┘ ├─MACHine─┤
 └ ┘─ASA─────

Type: Device driver.

 Syntax Description:

CLASS Specify the output class. Asterisk, which is the default, selects the

default output class for the job. The class can be a letter or a digit;

letters are translated to upper case.

 Chapter 23. Inventory of Built-in Programs 631

 sysvar

sysout allocates the data set, opens it, and then commits to level 0.

Operation: sysout writes each input record to SPOOL and then copies it to the output, if it

is connected.

Record Delay: sysout does not delay the record.

Commit Level: sysout starts on commit level -2000000000.

See Also: > and >>.

Examples: To send a message in one card:

pipe literal Hello, there? | sysout class b dest dkibmvm2.john

 Notes:

1. If the options supported by sysout are not adequate for your application, use then

ALLOCATE command to allocate a SYSOUT data set and then use > DD= to write the

data set.

2. Specify a class on TSO. The default output class is usually purged.

3. printmc is a synonym for sysout, which sets MACHINE by default.

4. punch is a synonym for sysout, which does not set carriage control by default.

5. Option code J is not supported.

OUTDESCRIPT Specify an output descriptor, which has been defined by the TSO

command OUTDES or the JCL statement OUTPUT. The output descriptor

can be one to twelve characters; it is translated to upper case. By

default, no output descriptor is associated with the data set. Only one

output descriptor is supported.

DESTINATION Specify the destination node and user ID separated by a period. The two

words are translated to upper case and truncated after eight characters.

SPIN Release the data set as soon as it is closed. This is the default.

NOSPIN Release the data set at the end of the job.

MACHINE The records contain machine carriage control in the first column.

ASA The records contain ASA carriage control in the first column.

sysvar—Write System Variables to the Pipeline
sysvar writes the contents of system variables to the pipeline. Specify variable names as

arguments, on input records, or both.

 z/OS

 ┌ ┐──────────
►►──SYSVAR─ ───6 ┴┬ ┬────── ─►◄
 └ ─word─┘

Type: Device driver.

Syntax Description: The arguments are optional.

632 CMS Pipelines User’s Guide and Reference

 take

Operation: The contents of the system variables specified in the arguments string (if any)

are written to the pipeline. For each input record, the contents of the specified system

variables are written to the pipeline.

Input Record Format: System variable names separated by blanks.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: sysvar does not delay the last record written for an input record. It does

not delay the response to an input record that contains a single word. It produces all

output records before consuming the input record that contains the corresponding variable

names.

Premature Termination: sysvar terminates when it discovers that its output stream is not

connected. sysvar also terminates if an undefined variable is referenced.

 See Also: tso.

Examples: To display the user identification:

 pipe sysvar sysuid | console
►DPJOHN
►READY

 Notes:

1. sysvar is both a filter and a host command interface. It is classified as a filter because

it terminates as soon as its output stream is not connected. Querying variables has no

side effects; there is no point in continuing when the result of the query is discarded.

take—Select Records from the Beginning or End of the File
take FIRST selects the first n records and discards the remainder. take LAST discards

records up to the last n and selects the last n records.

 ┌ ┐─FIRST─ ┌ ┐─1──────
►►──TAKE─ ──┼ ┼─────── ──┼ ┼──────── ──┬ ┬─────── ─►◄

└─LAST──┘ ├─number─┤ └─BYTES─┘
 └ ┘─*──────

Type: Selection stage.

Syntax Description: The arguments are optional. Specify a keyword, a number, a

keyword, or any combination.

FIRST Records are selected from the beginning of the file. This is the default.

LAST Records are selected from the end of the file.

number Specify the count of records or bytes to select. The count may be zero,

in which case nothing is selected.

* All records are selected.

BYTES The count is bytes rather than records.

 Chapter 23. Inventory of Built-in Programs 633

 tape

Operation: When BYTES is omitted, take FIRST copies the specified number of records to

the primary output stream, or discards them if the primary output stream is not connected.

If the secondary output stream is defined, take FIRST then passes the remaining input

records to the secondary output stream.

take LAST stores the specified number of records in a buffer. For each subsequent input

record (if any), take LAST writes the record that has been longest in the buffer to the

secondary output stream (or discards it if the secondary output stream is not connected).

The input record is then stored in the buffer. At end-of-file take LAST flushes the records

from the buffer into the primary output stream (or discards them if the primary output

stream is not connected).

When BYTES is specified, operation proceeds as described above, but rather than counting

records, bytes are counted. Record boundaries are considered to be zero bytes wide. In

general, the specified number of bytes will have been taken in the middle of a record,

which is then split after the last byte. When FIRST is specified the first part of the split

record is selected and the remainder is discarded. When LAST is specified, the first part of

the split record is discarded and the second part is selected.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. take FIRST severs the

primary output stream before it shorts the input to the secondary output stream. take LAST

severs the secondary output stream before it flushes the records from the buffer to the

primary output stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. take FIRST does not delay the record. When BYTES is not specified

take LAST delays the specified number of records. When BYTES is specified, take LAST

delays the number of records to needed for the specified number of bytes.

Commit Level: take starts on commit level -2. It verifies that the secondary input stream

is not connected and then commits to level 0.

Premature Termination: take terminates when it discovers that no output stream is

connected.

 Converse Operation: drop.

See Also: frlabel and tolabel.

Examples: To select the last line of a command’s response:

pipe cms query disk | take last | ...

tape—Read or Write Tapes
tape connects the pipeline to a tape drive. The tape is read into the pipeline when tape is

first in a pipeline; records are copied from the pipeline to the tape when tape is not first in

the pipeline.

 CMS

►►──TAPE─ ──┬ ┬─────────── ──┬ ┬───────────────── ──┬ ┬─────── ─►◄
├─hexString─┤ │ ┌─1──────┐ │ └─EOTOK─┘
└─TAPchar───┘ └─WTM──┼────────┼─┘

└─number─┘

634 CMS Pipelines User’s Guide and Reference

 tape

Type: Device driver.

Warning: tape behaves differently when it is a first stage and when it is not a first stage.

Existing data can be overlaid when tape is unintentionally run other than as a first stage.

To use tape to read data into the pipeline at a position that is not a first stage, specify tape

as the argument of an append or preface control. For example, |append tape ...|
appends the data produced by tape to the data on the primary input stream.

Syntax Description: One word is optional when tape is first in a pipeline; a word, a

keyword with an optional number, and a keyword are optional when tape is not first in a

pipeline. The first argument is a hexadecimal address, or four characters that are translated

to upper case and copied to the CMS RDTAPE or WRTAPE parameter list without inspection.

TAP0 through TAPF are the only practical specifications. Refer to z/VM CMS Macros and

Functions Reference, SC24-6262 for the supported address and names.

When writing to the tape, use the keyword WTM to write one or more tape marks at end-

of-file or end of tape; the default is not to write a tape mark. Specify EOTOK to suppress

the message issued when the tape is full.

Operation: tape reads and writes the tape without positioning it (for instance, the tape is

not rewound).

tape writes records to the tape when it is not first in a pipeline. It stops at end-of-file on

the input or when the tape drive signals end of tape. Having written the file, tape writes

tape marks, as requested by the keyword WTM. Message 291 is issued at end of tape after

the tape marks (if any) are written, unless suppressed with the keyword EOTOK. A control

stage can invoke tape repetitively to write a multivolume file from a single input file.

tape does not inspect tape labels (you can create tape labels with CMS Pipelines if you

wish). Use WTM to write a tape mark after a file is written to tape. Other tape control

operations are performed with the CMS TAPE command or equivalent.

tape handles blocks up to 65535 characters (64K-1), which is the maximum length for the

underlying CMS interface.

Streams Used: tape passes the input to the output.

Record Delay: tape strictly does not delay the record.

Premature Termination: When it is first in a pipeline, tape terminates when it discovers

that its output stream is not connected. When it is writing to a tape, tape terminates when

the end of tape indicator is turned on.

 See Also: qsam.

Examples: To copy one tape to another one:

 Chapter 23. Inventory of Built-in Programs 635

 tape

/* Tape copy */
address command
signal on error
'TAPE REW'
'TAPE REW (TAP2'
'TAPE MODESET (TAP2 DEN 6250'
do until recs.1=0

'PIPE tape | tape TAP2 wtm | count lines | stem recs.'
end
error: exit RC

To write a file on several unlabelled volumes, switching repeatedly between tapes 181 and

182:

/* Multivolume unlabelled tape write */
signal on novalue
tapes='181 182'
do forever

parse var tapes tape tapes /* Get drive to use */
tapes=tapes tape /* Put it at the end of the list */
'callpipe (name MVULTAPE)',

'|*:', /* Input file */
'|tape' tape 'wtm eotok' /* Write tape */

 If RC/=0
Then exit RC

 'peekto' /* End-of-file? */
 If RC/=0

Then leave /* Most likely */
address command 'TAPE RUN (' tape
'callpipe cp MSG OPERATOR Please mount next tape.'

end
exit RC*(RC¬=12)

To write a trailer file:

/* Write EOT or EOF trailer records */
signal on error
do forever

'callpipe *: | tape wtm eotok | count lines | var blocks'
signal off error

 'peekto'
signal on error
if RC=12 then leave /* Done */
'callpipe literal EOT1' blocks'| tape wtm eotok'

end
'callpipe literal EOF1' blocks'| tape wtm eotok'
error: exit RC

To extract the data records from a file in CMS TAPE DUMP format that contains records of

variable length:

/* Read dumped file */
'PIPE',
 ' tape',

'|whilelabel' '02'x || 'CMSV' ||,
 '|spec 6-*',
 '|deblock cms',

'|> tape file a'

636 CMS Pipelines User’s Guide and Reference

 tcpcksum

 Notes:

1. A tape mark is written on output only if you ask for it. This lets you build a tape file

with multiple pipeline commands. Remember to write a tape mark when you want

one.

2. CMS tapes usually end with two tape marks.

3. tape does not convert to and from the TAPE DUMP format; it reads and writes blocks

from a tape.

4. Some (if not all) tape units specify that certain command sequences are not valid, but

do not check for such sequences. Refer to the reference manual for the tape drive you

are using when mixing reads and writes to a tape. Usually it is required that a tape

mark be spaced over before starting to write after it. Therefore, if you have been

reading a file and wish to write after the tape mark that terminated the read operation,

you must perform a backward space file (TAPE BSF) followed by a forward space file

(TAPE FSF) before invoking the pipeline to write to the tape.

5. Many tape drives require a minimum of 18 bytes in a block. Shorter blocks may be

considered noise.

: tcpcksum—Compute One’s complement Checksum of a Message
: tcpcksum computes the one’s complement checksum of the input record and optionally

: stores it at a specified location in the record.

:

: ►►──TCPCKSUM─ ──┬ ┬──────── ─►◄
: └─number─┘

: Type: Filter.

: Operation: Without an operand, tcpcksum computes the checksum of each input record

: and produces a 16-bit result checksum on its output. This result is all zeros when the

: input message contains a valid TCP/IP checksum field.

: When specified, the operand designates the begin column of the 16-bit checksum field

: within the record. The checksum of the record is computed and stored into the specified

: position; the updated record is then written to the output. For correct interoperation with

: TCP/IP, the checksum field in the input record must contain binary zeros.

: Record Delay: tcpcksum does not delay the record.

: Premature Termination: tcpcksum terminates when it discovers that its output stream is

: not connected.

: See Also: crc.

: Notes:

: 1. tcpcksum interoperates with the IP, TCP, and UDP headers.

: 2. Refer to RFCs 1071, 1141, 1624, and 1936.

 Chapter 23. Inventory of Built-in Programs 637

 tcpclient

tcpclient—Connect to a TCP/IP Server and Exchange Data
tcpclient connects itself to a TCP/IP server using the Transmission Control Protocol,

| optionally secured by z/VM System SSL. It transmits its input records to the server and

writes data it receives from the server onto its output stream.

►►──TCPCLIENT──IPaddress──number──►

 ┌ ┐──
►─ ───6 ┴┬ ┬────────────────────────────────────── ─►◄

├ ┤─┤ Deblock ├──────────────────────────
. ├ ┤─EMSGSF4──────────────────────────────

 ├ ┤─GETSOCKName──────────────────────────
 ├ ┤─GREETING─────────────────────────────
 ├ ┤─KEEPALIVe────────────────────────────
 ├─LINGER──number─ ──────────────────────┤
 │ │┌ ┐─ANY───────
 ├ ┤ ─LOCALIPaddress─ ──┼ ┼─HOSTID──── ───────

│ └─IPaddress─┘ │
 ├─LOCALport──number─ ───────────────────┤
 ├ ┤─ONERESPONSE──────────────────────────
 ├ ┤─OOBINLINE────────────────────────────
 ├ ┤─REUSEADDR────────────────────────────

| ├ ┤──(1)| ─SECURE─ ──┬ ┬──────────── ──┬ ┬────────
| │ │└ ┘─GETSECINFO─ ├ ┤─SAFE───
| │ │└ ┘─UNSAFE─

 ├ ┤─SF───────────────────────────────────
 ├ ┤─SF4──────────────────────────────────
 ├ ┤─STATistics───────────────────────────
 ├─TIMEOUT──number─ ─────────────────────┤
 └─USERid──word─ ────────────────────────┘

Deblock:

├──DEBLOCK─ ──┬ ┬─CRLF──────────────────── ─►
 ├ ┤ ─LINEND─ ──┬ ┬────── ───────

│ └─xorc─┘ │
 ├ ┤─SF──────────────────────
 ├ ┤─SF4─────────────────────
 └─STRING──delimitedString─┘

►─ ──┬ ┬──────────────────────── ─┤
 └─GROUP──delimitedString─┘

Note:

| 1 Available on CMS only.

Type: Device driver.

Syntax Description: Two positional operands are required. The first operand specifies the

| address of the host where the server is running. The address is specified as a “dotted-

decimal” number (for example, 9.55.5.13) or (on CMS) as a host name or a host name and

a domain (for example, jph.dk.ibm.com). The second operand specifies the port at which

the server is listening.

638 CMS Pipelines User’s Guide and Reference

 tcpclient

DEBLOCK Specify the deblocking to be performed on data received from the

socket.

CRLF The byte stream received is split at the two-byte

sequence of carriage return and line feed in EBCDIC

(X'0D25'). Lines are considered to be terminated by

this sequence.

LINEND The byte stream received is split at EBCDIC line end

characters, which by default are X'25'. Specify a

single character or a two-character hexadecimal value.

(0A is a “good” value, as this is an ASCII line feed.)

Lines are considered to be terminated by a line end

character.

SF Each record received has a two-byte length prefix.

The length is a binary number in network byte order;

it includes the length of this record descriptor word.

SF4 Data received from TCP/IP is considered to contain

records prefixed four-byte length prefix. The length is

a binary number in network byte order; it includes the

length of this record descriptor word.

STRING Specify a delimited string for the record delimiter.

Lines are considered to be terminated by this string.

(0D0A is a “good” string, as this is the ASCII represen-

tation of carriage return and line feed.)

GROUP Specify a stage that will group all responses for a

transaction into a single record, or will delete all but

the last record of the response. You can specify any

stage in the delimited string, but it is useful only if it

does not delay the record. The group stage is applied

after the deblocking. The stage specified in the delim-

ited string can be a REXX program; it cannot be a

cascade of stages.

. EMSGSF4. Process data with four-byte record descriptors as done by SF4. In addi-

. tion, the first byte received is inspected for being zero in its five leftmost

. bits. If these are not all zero, it is assumed that the data received are

. error messages in ASCII from the process setting up the server (for

. example, inetd on a UNIX system). If this is the case, message 1287 is

. issued and all data received are converted to EBCDIC, deblocked and

. issued as message 39.

GETSOCKNAME Write the contents of the socket address structure to the primary output

stream after the socket is connected.

GREETING The server is expected to send a single line of response as soon as the

client is connected (that is, before it receives any data). Be sure to

specify a deblocking option so that tcpclient can determine when the

complete line has been received.

KEEPALIVE Turn on the KEEPALIVE socket option.

LINGER Specify the number of seconds that tcpclient should wait after it receives

end-of-file on its input before it closes the connection. The default is

zero. This allows time for a final response to travel across the network.

 Chapter 23. Inventory of Built-in Programs 639

 tcpclient

LOCALIPADDR Specify the local IP address to be used when binding the socket. The

default, ANY, specifies that TCP/IP may use any interface address. (An IP

address of binary zeros is used to bind the socket.) HOSTID specifies that

TCP/IP should use the IP address that corresponds to the host name.

Specify the dotted-decimal notation or (on CMS) the host name for a

particular interface to be used.

LOCALPORT Specify the local port to be bound to the client. The default is zero,

which causes TCP/IP to assign the port number. Use this option if a port

is reserved for your use.

ONERESPONSE Expect one response record to each transmitted record.

OOBINLINE Turn on the OOBINLINE socket option.

REUSEADDR Turn on the REUSEADDR socket option.

SF Add a two-byte length field to records being sent. The length field

includes its own length; the null record would be transmitted as

X'0002'. Expect a two-byte length field in messages received; deblock

or block messages and write output records for each complete logical

record.

SF4 Add a four-byte length field to records being sent. The length field

includes its own length; the null record would be transmitted as

X'00000004'. Expect a four-byte length field in messages received;

deblock or block messages and write output records for each complete

logical record.

| SECURE| Indicates that a secure TCP/IP connection is established through z/VM

| System SSL.

| GETSECINFO| Write a record to primary output of tcpclient after completion of the

| SSL/TLS handshake. The record contains diagnostic information about

| the secure connection; the contents of the record is unspecified.

| SAFE| Request z/VM System SSL to verify that the destination specified as the

| argument on tcpclient matches the identity of the server stated in the

| server certificate. This is the default when the destination is specified as

| host name or host name with domain.

| UNSAFE| Does not request z/VM System SSL to verify that the destination

| specified as the argument on tcpclient matches the identity of the server

| stated in the server certificate. This is the default when the destination is

| specified as a dotted-decimal IP address.

STATISTICS

STATS
Write messages containing statistics when tcpclient terminates. The

format of these statistics is undefined. STATS is a synonym.

TIMEOUT Specify the timeout value in seconds. tcpclient will terminate after the

timeout if it receives no response to sending a transaction. When SF, SF4

or DEBLOCK is specified, tcpclient will read the entire response record; it

will time out if any segment does not arrive. When none of these

options is specified, tcpclient can ensure only that the first segment of

the response arrives within the specified time limit.

USERID Specify the user ID of the virtual machine or started task where TCP/IP

runs. The default is TCPIP.

640 CMS Pipelines User’s Guide and Reference

 tcpclient

Operation: Input records are written to the socket as they arrive; records are read from

the socket and passed to the primary output stream as they arrive. When SF or SF4 is

specified (without specifying DEBLOCK), a record descriptor word is transmitted in front of

each input record.

Data received on the socket are written to the primary output stream. When DEBLOCK is

specified, the appropriate deblocking stage is inserted into the output stream. When GROUP

is further specified, the grouping stage is inserted into the output stream. A response is

deemed to have been received only when a record is passed to the stage initially connected

to the output of tcpclient. Thus, ONERESPONSE and TIMEOUT apply to the point after the

deblocking and grouping stages.

| When SECURE is specified, tcpclient uses z/VM System SSL to initiate the SSL/TLS hand-

| shake and secure the TCP/IP connection. When the secondary input stream is connected, the

| SSL/TLS handshake is initiated when a record becomes available on the secondary input

| stream; when no secondary input stream is connected, the SSL/TLS handshake is initiated

| immediately after the TCP/IP connection setup is complete. When GETSECINFO is specified,

| tcpclient writes a record to the primary output stream showing additional information about

| the SSL/TLS handshake. The record is written when the SSL/TLS handshake is complete.

. The primary output stream is severed when end-of-file is received from the socket. The

. socket shutdown for write function is performed when tcpclient discovers that the primary

. input stream has been severed. If ONERESPONSE is specified, the socket is then closed.

When end-of-file is received on the input stream and LINGER is specified, tcpclient waits

until the connection is closed or the number of seconds specified has expired, whichever

occurs first. No indication is provided as to which event occurs; indeed, they could occur

simultaneously.

| Streams Used: Secondary streams may be defined. When the secondary output stream is

| connected, a record is written to it when tcpclient terminates after TCP/IP has reported an

“ERRNO”.

Commit Level: tcpclient starts on commit level -10. It connects to the server’s port, and

then commits to level 0.

Premature Termination: When it is first in a pipeline, tcpclient terminates when it

discovers that its output stream is not connected.

tcpclient also terminates when an error is reflected by TCP/IP (known as an ERRNO). How

it terminates depends on whether the secondary output stream is defined or not.

| When the secondary output stream is not connected, error messages are issued to describe

the error and tcpclient terminates with a nonzero return code.

| When the secondary output stream is connected, a single record is written to the secondary

output stream; tcpclient then terminates with the return code zero. The record written

contains the error number; the second word contains the symbolic name of the error

number if the error number is recognised by CMS Pipelines. The assumption is that a

REXX program will inspect the error number and decide whether it should retry the opera-

tion, discard the current transaction and retry, or give up entirely.

tcpclient also stops if the immediate command PIPMOD STOP is issued or if a record is

passed to pipestop.

 Chapter 23. Inventory of Built-in Programs 641

 tcpclient

See Also: tcpdata, tcplisten, and udp.

 Examples:

pipe literal HELO | tcpclient 9.55.5.13 7 linger 5 | console

 Notes:

1. TCP/IP transports a byte stream; you cannot expect record boundaries to be preserved

across the network. Use the option SF or SF4 to add record descriptors to the data

sent. This presumes that the server expects such record descriptors; this is not the

TCP/IP tradition.

2. Many servers expect ASCII commands that are terminated by line ends.

3. tcpclient does not perform name resolution on TSO; you must specify the dotted-

decimal notation for the location of the server.

On CMS, you can specify a host name or a host name followed by a domain. CMS

Pipelines calls RXSOCKET to do the actual name resolution. As a consequence, the

name is resolved using RXSOCKET rules. This implies that the file TCPIP DATA must be

available and must point to the name server. RXSOCKET (unlike CMS Pipelines) uses

the server virtual machine specified in TCPIP DATA.

| 4. The LINGER option does not enable the SO_LINGER socket option.

5. CMS Pipelines defines error numbers in the 5000 range in addition to the ones defined

by TCP/IP:

5000 (EpipeResponseTimedOut) No response was received within the interval

specified by TIMEOUT.

5001 (EpipeStopped) The pipeline was signalled to stop by passing a record to

pipestop or through a similar action.

5002 (EpipeSocketClosed) ONERESPONSE is specified and the socket was closed by

the communications partner without it sending a response to a transaction.

CMS Pipelines also defines this error number:

0000 (OKSocketClosed) The connection was closed by the communications partner.

The stage is not expecting a response; that is, ONERESPONSE is omitted.

| When SECURE is specified, protocol failures detected by the z/VM SSL Server are

| reported by error number as well. For protocol errors detected in the Cryptographic

| Services Library, the SSL function return code incremented with 10,000 is reported by

| tcpclient. The SSL function return codes are documented in z/OS System SSL

| Programming, SC14-7495. You are most likely to encounter these:

| 1001 (EIBMBADPARM) The z/VM SSL Server may not have the service applied to

| support host name validation that tcpclient requests when the destination is

| specified as host name. The UNSAFE option can be used to disable host name

| validation.

| 1012 (EibmNoTLS) No z/VM SSL Server associated with the VM TCP/IP stack.

| 4008 (ValidationFailed) The address of the TCP/IP host specified as argument for

| tcpclient does not match the public certificate presented by the host. Verify that

| the correct host name and domain is specified for which the server certificate

| was issued. When you have verified the destination and are unable to use the

| host name that matches the certificate, the UNSAFE option can be used to disable

| the validation.

642 CMS Pipelines User’s Guide and Reference

 tcpdata

| 10008 (GskCertValidation) The public certificate presented by the remote server

| could not be verified against a root certificate in the database. Obtain the corre-

| sponding root certificate and have it imported it in the z/VM System SSL

| certificate database.

| 10401 (GskExpired) The certificate has expired or is not yet valid.

| 10402 (GskNoCiphers) The client and server did not find a common cipher to use for

| the connection.

| 10417 (GskSelfSigned) The remote side presented a self-signed server certificate.

| This is not supported by the z/VM SSL Server.

| 10420 (GskSocketClosed) The remote side closed the connection during the hand-

| shake.

| The z/VM SSL Server logging may provide additional information that can be helpful

| to diagnose connection problems.

Return Codes: When the secondary output stream is defined and tcpclient terminates due

to an error that is reported by TCP/IP as an ERRNO, tcpclient sets return code 0 because the

error information is available in the record that is written to the secondary output stream.

When tcpclient terminates because of some other error (for example, if it could not connect

to the TCP/IP address space), the secondary output stream is ignored and the return code is

not zero, reflecting the number of the message issued to describe this error condition.

tcpdata—Read from and Write to a TCP/IP Socket
tcpdata is used as the stage in a server that receives data from the client and transmits data

to the client. The socket to use is described by the first input record, which should have

been written by a tcplisten stage.

 ┌ ┐──────────────────────────
►►──TCPDATA─ ───6 ┴┬ ┬────────────────────── ─►◄

├ ┤─┤ Deblock ├──────────
 ├ ┤─GETSOCKName──────────

. ├ ┤─GREETING─────────────
 ├ ┤─KEEPALIVe────────────
 ├─LINGER──number─ ──────┤
 ├ ┤─ONERESPONSE──────────
 ├ ┤─OOBINLINE────────────
 ├ ┤─REUSEADDR────────────
 ├ ┤─SF───────────────────
 ├ ┤─SF4──────────────────

| ├ ┤──(1)| ──┬ ┬─SECURE─────────
| │ └| ─TLSLABEL──word─┘| │

 └ ┘─STATistics───────────

Deblock:

├──DEBLOCK─ ──┬ ┬─CRLF──────────────────── ─►
 ├ ┤ ─LINEND─ ──┬ ┬────── ───────

│ └─xorc─┘ │
 ├ ┤─SF──────────────────────
 ├ ┤─SF4─────────────────────
 └─STRING──delimitedString─┘

►─ ──┬ ┬──────────────────────── ─┤
 └─GROUP──delimitedString─┘

Note:

| 1 Available on CMS only.

 Chapter 23. Inventory of Built-in Programs 643

 tcpdata

Type: Device driver.

Syntax Description: All operands are optional.

DEBLOCK Specify the deblocking to be performed on data received from the

socket.

CRLF The byte stream received is split at the two-byte

sequence of carriage return and line feed in EBCDIC

(X'0D25'). Lines are considered to be terminated by

this sequence.

LINEND The byte stream received is split at EBCDIC line end

characters, which by default are X'25'. Specify a

single character or a two-character hexadecimal value.

(0A is a “good” value, as this is an ASCII line feed.)

Lines are considered to be terminated by a line end

character.

SF Each record received has a two-byte length prefix.

The length is a binary number in network byte order;

it includes the length of this record descriptor word.

SF4 Data received from TCP/IP is considered to contain

records prefixed four-byte length prefix. The length is

a binary number in network byte order; it includes the

length of this record descriptor word.

STRING Specify a delimited string for the record delimiter.

Lines are considered to be terminated by this string.

(0D0A is a “good” string, as this is the ASCII represen-

tation of carriage return and line feed.)

GROUP Specify a stage that will group all responses for a

transaction into a single record, or will delete all but

the last record of the response. You can specify any

stage in the delimited string, but it is useful only if it

does not delay the record. The group stage is applied

after the deblocking. The stage specified in the delim-

ited string can be a REXX program; it cannot be a

cascade of stages.

GETSOCKNAME Write the contents of the socket address structure to the primary output

stream after the socket is taken.

. GREETING. The client is expected to send an initial message line (that is, before it

. expects to receive any data). Be sure to specify a deblocking option so

. that tcpdata can determine when the complete line has been received.

KEEPALIVE Turn on the KEEPALIVE socket option.

LINGER Specify the number of seconds that tcpdata should wait after it receives

end-of-file on its input before it closes the connection. The default is

zero.

ONERESPONSE Expect one response record to each transmitted record.

OOBINLINE Turn on the OOBINLINE socket option.

REUSEADDR Turn on the REUSEADDR socket option.

644 CMS Pipelines User’s Guide and Reference

 tcpdata

Operation: tcpdata peeks at the first input record, which contains the information required

to take the socket that represents the conversation with the client. When tcpdata has

obtained the socket, it passes input records to the client and writes data it reads from the

socket to the output stream. When SF or SF4 is specified (without specifying DEBLOCK), a

record descriptor word is transmitted in front of each input record.

Data received on the socket are written to the primary output stream. When DEBLOCK is

specified, the appropriate deblocking stage is inserted into the output stream. When GROUP

is further specified, the grouping stage is inserted into the output stream. A response is

deemed to have been received only when a record is passed to the stage initially connected

to the output of tcpdata. Thus, ONERESPONSE and TIMEOUT apply to the point after the

deblocking and grouping stages.

| When SECURE is specified, tcpdata uses z/VM System SSL to initiate the SSL/TLS hand-

| shake and secure the TCP/IP connection. When the secondary input stream is connected, the

| SSL/TLS handshake is expected to be initiated when a record becomes available on the

| secondary input stream; when no secondary input stream is connected, the SSL/TLS hand-

| shake is initiated immediately after the TCP/IP connection setup is complete.

. The primary output stream is severed when end-of-file is received from the socket. The

. socket shutdown for write function is performed when tcpdata discovers that the primary

. input stream has been severed. If ONERESPONSE is specified, the socket is then closed.

Input Record Format: The first record must be in the format written by tcplisten:

SF Add a two-byte length field to records being sent. The length field

includes its own length; the null record would be transmitted as

X'0002'. Expect a two-byte length field in messages received; deblock

or block messages and write output records for each complete logical

record.

SF4 Add a four-byte length field to records being sent. The length field

includes its own length; the null record would be transmitted as

X'00000004'. Expect a four-byte length field in messages received;

deblock or block messages and write output records for each complete

logical record.

| SECURE| Indicates that a secure TCP/IP connection is established through z/VM

| System SSL. SECURE is mutually exclusive with TLSLABEL.

| TLSLABEL| Specifies the label of the certificate defined in the z/VM System SSL

| certificate database to be used for a secure connection. TLSLABEL is

| mutually exclusive with SECURE.

STATISTICS

STATS
Write messages containing statistics when tcpdata terminates. The

format of these statistics is undefined. STATS is a synonym.

Pos Len Description

1 8 Check word. The constant pipetcp (one trailing blank).

9 8 The ID of the virtual machine or started task that runs TCP/IP. (The

USERID operand on the tcplisten stage.)

17 40 The clientid structure filled with information about the tcpdata stage.

57 4 The socket number, binary.

 Chapter 23. Inventory of Built-in Programs 645

 tcpdata

| Streams Used: Two streams must be defined. When the secondary output stream is

| connected, a record is written to it when tcpdata terminates after TCP/IP has reported an

“ERRNO”.

Commit Level: tcpdata starts on commit level -10. It and then commits to level 0.

Premature Termination: tcpdata terminates when it discovers that no output stream is

connected.

tcpdata also terminates when an error is reflected by TCP/IP (known as an ERRNO). How it

terminates depends on whether the secondary output stream is defined or not.

| When the secondary output stream is not connected, error messages are issued to describe

the error and tcpdata terminates with a nonzero return code.

| When the secondary output stream is connected, a single record is written to the secondary

output stream; tcpdata then terminates with the return code zero. The record written

contains the error number; the second word contains the symbolic name of the error

number if the error number is recognised by CMS Pipelines. The assumption is that a

REXX program will inspect the error number and decide whether it should retry the opera-

tion, discard the current transaction and retry, or give up entirely.

tcpdata also stops if the immediate command PIPMOD STOP is issued or if a record is

passed to pipestop.

See Also: tcpclient, tcplisten, and udp.

Examples: A simplistic echo server:

'callpipe *:| i: fanin | tcpdata | elastic | i:'

The input record is fed through fanin to tcpdata before fanin completes the loop that will

transmit the response back to the client. The record received is sent unmodified.

 Notes:

1. Normally, the server will send a response that is based on a transaction from the

client. To do this, the pipeline must have feedback. Be sure to avoid stalls resulting

from this; elastic is recommended to buffer sufficient records to prevent the stall.

2. TCP/IP may segment transmissions so that tcpdata may write a different number of

output records (fewer or more, in general) than the corresponding tcpclient stage read

on its input when it transmitted the data.

If both the server and the client are implemented using CMS Pipelines, you can use

the SF or SF4 options in both device drivers to maintain the record structure across the

byte streams of the network.

If you are writing a server, you can specify that the package as transmitted contains

the package length in the first two or four bytes and then use the appropriate option to

Pos Len Description

61 4 A fullword of zeros (for the socket number in takesocket).

65 16 The network address of the client (the structure sockaddr_in).

81 4 The address of tcpdata’s work area.

646 CMS Pipelines User’s Guide and Reference

 tcpdata

simplify your server; but beware that this may not be popular with the client imple-

menters.

3. CMS Pipelines defines error numbers in the 5000 range in addition to the ones defined

by TCP/IP:

5000 (EpipeResponseTimedOut) No response was received within the interval

specified by TIMEOUT.

5001 (EpipeStopped) The pipeline was signalled to stop by passing a record to

pipestop or through a similar action.

5002 (EpipeSocketClosed) ONERESPONSE is specified and the socket was closed by

the communications partner without it sending a response to a transaction.

CMS Pipelines also defines this error number:

0000 (OKSocketClosed) The connection was closed by the communications partner.

The stage is not expecting a response; that is, ONERESPONSE is omitted.

| When SECURE or TLSLABEL is specified, protocol failures detected by the z/VM SSL

| Server are reported by error number as well. For protocol errors detected in the

| Cryptographic Services Library, the SSL function return code incremented with 10,000

| is reported by tcpdata. The SSL function return codes are documented in z/OS System

| SSL Programming, SC14-7495. You are most likely to encounter these:

| 1001 (EIBMBADPARM) The z/VM SSL Server may not have the service applied to

| support host name validation that tcpdata requests when the destination is

| specified as host name. The UNSAFE option can be used to disable host name

| validation.

| 1012 (EibmNoTLS) No z/VM SSL Server associated with the VM TCP/IP stack.

| 1016 (EibmLabNr) No key is found in the database with the requested label.

| 10006 (KeyLabelNotFound) When TLSLABEL is used, not key is associated with the

| label specified. When SECURE is used, no default key is set in the database.

| 4008 (ValidationFailed) The address of the TCP/IP host specified as argument for

| tcpdata does not match the public certificate presented by the host. Verify that

| the correct host name and domain is specified for which the server certificate

| was issued. When you have verified the destination and are unable to use the

| host name that matches the certificate, the UNSAFE option can be used to disable

| the validation.

| 10008 (GskCertValidation) The public certificate presented by the remote server

| could not be verified against a root certificate in the database. Obtain the corre-

| sponding root certificate and have it imported it in the z/VM System SSL

| certificate database.

| 10401 (GskExpired) The certificate has expired or is not yet valid.

| 10402 (GskNoCiphers) The client and server did not find a common cipher to use for

| the connection.

| 10417 (GskSelfSigned) The remote side presented a self-signed server certificate.

| This is not supported by the z/VM SSL Server.

| 10420 (GskSocketClosed) The remote side closed the connection during the hand-

| shake.

| The z/VM SSL Server logging may provide additional information that can be helpful

| to diagnose connection problems.

 Chapter 23. Inventory of Built-in Programs 647

 tcplisten

| 4. The LINGER option does not enable the SO_LINGER socket option.

Return Codes: When the secondary output stream is defined and tcpdata terminates due

to an error that is reported by TCP/IP as an ERRNO, tcpdata sets return code 0 because the

error information is available in the record that is written to the secondary output stream.

When tcpdata terminates because of some other error (for example, if it could not connect

to the TCP/IP address space), the secondary output stream is ignored and the return code is

not zero, reflecting the number of the message issued to describe this error condition.

tcplisten—Listen on a TCP Port
tcplisten listens for and accepts connection requests on a TCP port using the socket inter-

: face to TCP/IP and writes a record describing the connection to its primary output stream.

: The socket representing the connection should be transferred by passing this record to a

: tcpdata stage, which exchanges data with the client. See the operations section below for

important usage information.

 ┌ ┐───────────────────────────────────
►►──TCPLISTEN──number───6┬───────────────────────────────┬┴──►◄
 ├─BACKLOG──number─ ──────────────┤
 ├ ┤─GETSOCKName───────────────────
 │ │┌ ┐─ANY───────
 ├ ┤ ─LOCALIPaddress─ ──┼ ┼─HOSTID────

│ └─IPaddress─┘ │
 ├ ┤─REUSEADDR─────────────────────
 ├ ┤─STATistics────────────────────
 └─USERid──word─ ─────────────────┘

Type: Device driver.

Syntax Description: Specify as the first operand the number of the port that tcplisten

should listen on. Specify 0 to have TCP/IP assign the port number; use the GETSOCKNAME

option to discover the port number assigned by TCP/IP.

BACKLOG Specify the maximum number of pending connection requests for the

port. The default is 10.

GETSOCKNAME Write the contents of the socket address structure to the primary output

: stream after the socket is bound. That is, as the first record after

: tcplisten has committed to level 0, but before it starts listening.

LOCALIPADDR Specify the local IP address to be used when binding the socket. The

default, ANY, specifies that TCP/IP may use any interface address. (An IP

address of binary zeros is used to bind the socket.) HOSTID specifies that

TCP/IP should use the IP address that corresponds to the host name.

Specify the dotted-decimal notation or (on CMS) the host name for a

particular interface to be used.

REUSEADDR Turn on the REUSEADDR socket option.

STATISTICS

STATS
Write messages containing statistics when tcplisten terminates. The

format of these statistics is undefined. STATS is a synonym.

USERID Specify the user ID of the virtual machine or started task where TCP/IP

runs. The default is TCPIP.

648 CMS Pipelines User’s Guide and Reference

 tcplisten

: Operation: tcplisten creates a socket, binds it to the specified port, writes the socket

: address if GETSOCKNAME is specified, and listens on the socket. tcplisten then performs

these steps repeatedly:

. 1. If tcplisten is not a first stage, it waits for a record to arrive on the primary input

. stream. It terminates if the primary input stream is severed.

. 2. It accepts a connection. This will cause it to wait when no connection request is

. queued in the TCP/IP stack.

3. It performs the givesocket() function to allow another program to take the socket.

4. It writes an output record that describes the socket that is allocated to the connection.

This record should be passed to a tcpdata stage without being delayed. The tcpdata

will perform the takesocket() function to obtain the socket.

5. It closes the socket. If the socket has not been taken by a tcpdata stage, possibly

because the request should be rejected, TCP/IP will now terminate the connection.

. 6. If tcplisten is not a first stage, it consumes the record on the primary input stream.

Output Record Format:

| Streams Used: Secondary streams may be defined. When the secondary output stream is

| connected, a record is written to it when tcplisten terminates after TCP/IP has reported an

“ERRNO”.

Record Delay: tcplisten does not delay the record.

Commit Level: tcplisten starts on commit level -10. It binds a socket to the port, verifies

that its secondary input stream is not connected, and then commits to level 0.

Premature Termination: When tcplisten is first in the pipeline, it does not terminate

normally. It terminates when it discovers that its primary output stream is not connected.

tcplisten also terminates when an error is reflected by TCP/IP (known as an ERRNO). How

it terminates depends on whether the secondary output stream is defined or not.

| When the secondary output stream is not connected, error messages are issued to describe

the error and tcplisten terminates with a nonzero return code.

Pos Len Description

1 8 Check word. The constant pipetcp (one trailing blank).

9 8 The ID of the virtual machine or started task that runs TCP/IP. (The

USERID operand on the tcplisten stage.)

17 40 The clientid structure filled with information about the tcplisten

stage.

57 4 The socket number, binary.

61 4 A fullword of zeros (for the socket number in takesocket).

65 16 The network address of the client (the structure sockaddr_in).

81 4 The address of tcplisten’s work area.

 Chapter 23. Inventory of Built-in Programs 649

 tcplisten

| When the secondary output stream is connected, a single record is written to the secondary

output stream; tcplisten then terminates with the return code zero. The record written

contains the error number; the second word contains the symbolic name of the error

number if the error number is recognised by CMS Pipelines. The assumption is that a

REXX program will inspect the error number and decide whether it should retry the opera-

tion, discard the current transaction and retry, or give up entirely.

tcplisten also stops if the immediate command PIPMOD STOP is issued or if a record is

passed to pipestop.

See Also: tcpclient, tcpdata, and udp.

Examples: A generalised server could look like this:

pipe tcplisten 260 | tcpserver

/* TCPSERVER REXX */
signal on error
do forever

'peekto' /* Wait for connection request */
'addpipe *.output: | i: fanin | tcpdata | server | i:' /* subtask */
'callpipe *: | take 1 | *:' /* Pass one record to subtask */
'sever output' /* Let server run unconnected */

end
error: exit RC*(RC<>0)

The four pipeline commands in the example above implement a loop that spawns a sepa-

rate pipeline for each connection request. The record produced when tcplisten receives a

connection request is passed to this pipeline, which is then cut loose to live its own inde-

pendent life.

Any vetting of the client should be done before the ADDPIPE pipeline command is issued.

If the client is not authorised, the input record should be consumed by a READTO pipeline

command. This will cause tcplisten to close the socket without its being taken by the

server task, and thus, the request will be rejected.

 Notes:

1. tcplisten does not read or write data to the sockets it handles.

2. CMS Pipelines defines error numbers in the 5000 range in addition to the ones defined

by TCP/IP:

5000 (EpipeResponseTimedOut) No response was received within the interval

specified by TIMEOUT.

5001 (EpipeStopped) The pipeline was signalled to stop by passing a record to

pipestop or through a similar action.

5002 (EpipeSocketClosed) ONERESPONSE is specified and the socket was closed by

the communications partner without it sending a response to a transaction.

CMS Pipelines also defines this error number:

0000 (OKSocketClosed) The connection was closed by the communications partner.

The stage is not expecting a response; that is, ONERESPONSE is omitted.

3. It is customary to terminate tcplisten by passing a record to a gate stage that is

connected to the output. Be sure to connect the gate to both output streams when you

are using the secondary output stream.

650 CMS Pipelines User’s Guide and Reference

 threeway

4. The file transfer protocol requires TCP/IP to assign a port number for listening; this is

arcane usage.

. 5. By controlling the rate of arrival of input records, the pipeline programmer can avoid

. running the virtual machine or address space out of resources in the event of it being

. flooded with connection requests.

: 6. A validation stage may be inserted immediately after the tcplisten stage. Its purpose is

: toe pass the input record to the output when the request is authorized, but to consume

: the record when the request should be rejected.

Return Codes: When the secondary output stream is defined and tcplisten terminates due

to an error that is reported by TCP/IP as an ERRNO, tcplisten sets return code 0 because the

error information is available in the record that is written to the secondary output stream.

When tcplisten terminates because of some other error (for example, if it could not connect

to the TCP/IP address space), the secondary output stream is ignored and the return code is

not zero, reflecting the number of the message issued to describe this error condition.

. threeway—Split record three ways

. threeway splits the record in three parts: The part up to the specified input range is written

. to the primary output stream; the contents of the input range are then written to the

. secondary output stream; finally, the remainder of the record is written to the tertiary

. output stream.

.

. ►►──THREEWAY──inputRange──►◄

. Type: Gateway.

. Syntax Description: Specify an input range.

. Operation: The input record is split before and after the specified input range. The part

. up to the beginning of the range is written to the primary output stream; the contents of

. the input range is then written to the secondary output stream; and the balance of the

. record is then written to the tertiary output stream. Finally, the input record is consumed.

. Streams Used: Three streams must be defined. Records are read from the primary input

. stream; no other input stream may be connected.

. Record Delay: threeway strictly does not delay the record.

. Commit Level: threeway starts on commit level -2. It verifies that the primary input

. stream is the only connected input stream and then commits to level 0.

. Premature Termination: threeway terminates when it discovers that no output stream is

. connected.

. See Also: chop and substring.

. Notes:

. 1. 3way is a synonym for threeway.

! 2. A null record is written when the corresponding part of the record is not present.

 Chapter 23. Inventory of Built-in Programs 651

 timestamp

timestamp—Prefix the Date and Time to Records
timestamp prefixes each record with a timestamp showing when the record was processed

by timestamp.

►►──TIMEstamp─ ──┬ ┬──┬ ┬──────────────────────── ─►◄
 │ ││ │┌ ┐─8──────
 │ └─┴─number─┴──┬────────┬─┘ │

: │ └─number─┘ │
: ├ ┤─SHOrtdate──────────────────
: ├ ┤─ISOdate────────────────────
: ├ ┤─FULldate───────────────────
: ├ ┤─STAndard───────────────────
: └: ─STRing──delimitedString─: ───┘

 Type: Filter.

Syntax Description: The arguments are optional. The formatted timestamp can be the

“raw” 16-byte sorted timestamp, a predefined format, or a custom format.

number The first number specifies the position, relative to the end of the

formatted timestamp, of the first character to include; it is quietly limited

to 16. The default is 8, which omits the date when the second number

: is omitted. The second number specifies the count of characters to

: include. The default is the same as the first number; it is quietly

! restricted to 16 minus the first number.

: FULLDATE: The file’s timestamp is formatted in the American format, with the

: century: 3/09/1946 23:59:59.

: ISODATE: The file’s timestamp is formatted with the century in one of the formats

: approved by the International Standardisation Organisation:

: 1946-03-09 23:59:59.

: SHORTDATE: The file’s timestamp is formatted in the American format, without the

: century: 3/09/46 23:59:59.

: STANDARD: The file’s timestamp is formatted as a single word in a form that can be

: used for comparisons: 19460309235959.

: STRING: Specify custom timestamp formatting, similar to the POSIX strftime()
: function. The delimited string specifies formatting as literal text and

: substitutions are indicated by a percentage symbol (%) followed by a

: character that defines the substitution. These substitution strings are

: recognised by timestamp:

652 CMS Pipelines User’s Guide and Reference

 timestamp

The length of the formatted timestamps and the equivalent string are:

Operation: A 16-character timestamp is developed whenever a record has been read. It

consists of the year (including the century), the month, day, hour, minute, second, and

: hundredth of a second. It is formatted as specified by the operands.

Record Delay: timestamp strictly does not delay the record.

Premature Termination: timestamp terminates when it discovers that its output stream is

not connected.

: See Also: spec.

Examples: To see what the current time or the current date and time is:

 pipe literal | timestamp | console
►14503501
►Ready;
 pipe literal | timestamp 16 | console
►2020042914503502
►Ready;

: pipe literal | timestamp string /Day %e of Month %n in %Y at %H/ | ...
: ... console
: ►Day 29 of Month 4 in 2020 at 14
: ►Ready;

To timestamp records that are logged in a service machine:

'pipe starmsg | ... | timestamp 16 | >> service log a'

 Notes:

: 1. timestamp obtains the local time. Use spec TOD C2T 1 to obtain the current time in

: UTC, assuming, of course, that the TOD clock is set to the standard epoch.

: %% A single %.

: %Y Four digits year including century (0000-9999).

: %y Two-digit year of century (00-99).

: %m Two-digit month (01-12).

: %n Two-digit month with initial zero changed to blank (1-12).

: %d Two-digit day of month (01-31).

: %e Two-digit day of month with initial zero changed to blank (1-31).

: %j Julian day of year (001-366).

: %H Hour, 24-hour clock (00-23).

: %k Hour, 24-hour clock first leading zero blank (0-23).

: %M Minute (00-59).

: %S Second (00-60).

: %F Equivalent to %Y-%m-%d (the ISO 8601 date format).

: %T Short for %H:%M:%S.

: %t Tens and hundredth of a second (00-99).

Standard 14 %Y%m%d%H%M%S

ISO 19 %F %T

Full 19 %n/%d/%Y %k:%M:%S

Short 17 %n/%d/%y %k:%M:%S

 Chapter 23. Inventory of Built-in Programs 653

 tokenise

 tokenise—Tokenise Records
tokenise splits an input record into tokens, writing an output record for each. Blanks

always delimit tokens; they are discarded. The specified string contains additional charac-

ters; when an input record contains one of these characters, the character is written by

itself in an output record.

►►──┬─TOKENISE─┬──delimitedString──┬─────────────────┬──►◄
└─TOKENIZE─┘ └─delimitedString─┘

 Type: Filter.

Syntax Description: One delimited string is mandatory; one is optional.

Operation: A line is written for each token in the input record. Blanks always delimit

tokens. The first delimited string lists characters that delimit other tokens.

The second argument string, if present, is written as a separate record after each input line

is processed.

Record Delay: tokenise does not delay the last record written for an input record.

Premature Termination: tokenise terminates when it discovers that its output stream is

not connected.

Examples: To tokenise according to the CMS rules, adding a blank line after the tokens of

an input record:

...| tokenise /()/ / / | pad 8 | chop 8 | xlate upper |...

To tokenise without padding, chopping, or translation:

 pipe literal apples = bananas(cherries+dates) | tokenise /()=+/ | ...
... console

►apples
►=
►bananas
►(
►cherries
►+
►dates
►)
►Ready;

 Notes:

1. Tokens are neither padded, truncated, nor translated to upper case.

654 CMS Pipelines User’s Guide and Reference

 tolabel

tolabel—Select Records to the First One with Leading String
tolabel selects input records up to the first one that begins with the specified string. That

record and the records that follow are discarded.

►►──TOLABEL─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant.

Operation: Characters at the beginning of each input record are compared with the argu-

ment string. Any record matches a null argument string. A record that is shorter than the

argument string does not match.

tolabel copies records up to (but not including) the matching one to the primary output

stream, or discards them if the primary output stream is not connected. If the secondary

output stream is defined, tolabel then passes the remaining input records to the secondary

output stream.

The matching record stays in the pipeline if the secondary output stream is not defined; it

can be read again if the current pipeline is defined with CALLPIPE.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. If the secondary output

stream is defined, tolabel severs the primary output stream before it passes the remaining

input records to the secondary output stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. tolabel strictly does not delay the record.

Commit Level: tolabel starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: tolabel terminates when it discovers that no output stream is

connected.

 Converse Operation: frlabel.

See Also: between, inside, notinside, outside, strtolabel, and whilelabel.

Examples: To load records up to the first one beginning with '.end':

/* Load batch of records into stem */
'callpipe *: | tolabel .end| stem todo.'

tolabel is before the stem stage that loads the variables; all lines would be processed if the

order of the stages were reversed.

 Notes:

! 1. Use strtolabel with ANYCASE for a caseless compare.

2. Remember that REXX continuation functionally replaces a trailing comma with a blank.

 Chapter 23. Inventory of Built-in Programs 655

 totarget

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

totarget—Select Records to the First One Selected by Argument Stage
The argument to totarget is a stage to run. totarget passes records to this stage until the

stage produces an output record on its primary output stream. The trigger record and the

remaining input are then shorted to the secondary output stream (if it is defined). Records

that are rejected by the argument stage are passed to the primary output stream.

►►──TOTARGET──word──┬────────┬──►◄
└─string─┘

 Type: Control.

Syntax Description: The argument string is the specification of a selection stage. The

stage must support a connected secondary output stream. If the secondary input stream to

totarget is connected, the argument stage must also support a connected secondary input

stream.

Streams Used: Two streams may be defined.

Record Delay: totarget does not add delay.

Commit Level: totarget starts on commit level -2. It issues a subroutine pipeline that

contains the argument stage. This subroutine must commit to level 0 in due course.

Premature Termination: totarget terminates when it discovers that no output stream is

connected.

 Converse Operation: frtarget.

See Also: gate and predselect.

Examples: To pass to the primary output stream all records up to the first one that

contains a string and to pass the remaining records to the secondary output stream:

/* Totarget example */
'callpipe (end ? name TOTARGET)',

'|*:', /* Connect to input */
'|f: totarget locate /abc/', /* Look for it */
'|*.output.0:', /* Up to target */

 '?f:',
'|*.output.1:' /* Target and rest */

exit RC

 Notes:

1. It is assumed that the argument stage behaves like a selection stage: the stage should

produce without delay exactly one output record for each input record; it should termi-

nate without consuming the current record when it discovers that its output streams are

no longer connected. However, for each input record the stage can produce as many

records as it pleases on its secondary output stream; it can delete records. The stage

656 CMS Pipelines User’s Guide and Reference

 trackblock

should not write a record first to its secondary output stream and then to its primary

output stream; this would cause the trigger record to be written to both output streams.

If the argument stage has delayed record(s) (presumably by storing them in an internal

buffer) at the time it writes a record to its primary output stream, it will not be able to

write these records to any output stream; the streams that are connected to the two

output streams are severed when the argument stage writes a record to its primary

output stream. End-of-file is reflected on this write. The records held internally in the

argument stage will of necessity be lost when the stage terminates.

2. The argument string to totarget is passed through the pipeline specification parser only

once (when the scanner processes the totarget stage), unlike the argument strings for

append and preface.

. 3. totarget is implemented using fillup and fanoutwo. The stage under test has only

. primary streams defined. The primary output stream is connected to a stage that reads

. a record without consuming it and then terminates. This means that any usage that

. depends on the secondary stream in the stage under test, will fail.

Return Codes: If totarget finds no errors, the return code is the one received from the

selection stage.

. trackblock—Build Track Record

. trackblock builds a standard format track from its constituent home address and data

. records (blocks).

.

. ►►──TRACKBLOCK──►◄

. Type: Arcane filter.

. Input Record Format: For each track, the home address (FCCHH) is followed by as many

. records as there are data records (blocks) on the track. The data records begin with an

. 8-byte count area (CCHHRKDD). The end of track record is optional.

. Output Record Format: An 8-byte check word that contains the string fpltrack. Then

. follows the contents of the track as read by the read track CCW. This contains a 5-byte

. home address and a number of records starting with record 0 (if the track is formatted in

. the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

. ¹ Data area, if present.

. Record Delay: When a track contains an end of track record, the output record is not

. delayed relative to the end of track record; otherwise the output is delayed until the arrival

. of the next home address record.

. Premature Termination: trackblock terminates when it discovers that its output stream is

. not connected.

. Converse Operation: trackdeblock.

 Chapter 23. Inventory of Built-in Programs 657

 trackdeblock

. Notes:

! 1. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. trackdeblock—Deblock Track

. trackdeblock splits the track into its parts, the home address and data records.

.

. ►►──TRACKDEBLOCK─ ──┬ ┬─────────── ─►◄

. └ ┘─TERMinate─

. Type: Arcane filter.

. Syntax Description: A keyword is optional.

. Input Record Format: An 8-byte check word that contains the string fpltrack. Then

. follows the contents of the track as read by the read track CCW. This contains a 5-byte

. home address and a number of records starting with record 0 (if the track is formatted in

. the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

. ¹ Data area, if present.

. Output Record Format: For each track, the home address (FCCHH) is followed by as

. many records as there are data records (blocks) on the track. The data records begin with

. an 8-byte count area (CCHHRKDD). When TERMINATE is specified, trackdeblock writes a

. record containing 8 bytes of all one bits as an end of track marker.

. Record Delay: trackdeblock does not delay the record.

. Premature Termination: trackdeblock terminates when it discovers that its output stream

. is not connected.

. Converse Operation: trackblock.

. See Also: tracksquish and ckddeblock.

. Notes:

. 1. The beginning of a new track can be inferred by the length of the 5-byte home

. address; all other records contain at least the eight bytes of their count area.

! 2. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. TERMINATE. Append an end of track marker of 8 bytes of binary ones.

658 CMS Pipelines User’s Guide and Reference

 trackread

. trackread—Read Full Tracks from ECKD Device

. trackread reads the contents of one or more tracks from a disk that supports the Extended

. Count Key Data (ECKD) command set, such as an IBM 3390.

. CMS .

. ►►──TRACKREAD──devaddr──┬────────────────────────────┬──►◄

. └. ─number──number──┬────────┬─┘

. └─number─┘

. Type: Arcane device driver.

. Syntax Description: Specify the device number and an initial range of tracks to read.

! Operation: trackread verifies the device number as part of the syntax trackread writes

! one output record for each track that was read from the disk.

. Input Record Format: Additional extents to be read. Specify two or three blank-

. delimited words: the initial cylinder and track, and the count of tracks or an asterisk.

. Output Record Format: An 8-byte check word that contains the string fpltrack. Then

. follows the contents of the track as read by the read track CCW. This contains a 5-byte

. home address and a number of records starting with record 0 (if the track is formatted in

. the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

. ¹ Data area, if present.

. Record Delay: trackread does not delay the record.

. Premature Termination: trackread terminates when it discovers that its primary output

. stream is not connected.

. Converse Operation: trackwrite.

. See Also: tracksquish and trackverify.

. Examples: To save a disk image:

. pipe trackread 190 0 0 * | tracksquish | pack | > 190 image a

. Notes:

. 1. The disk needs not be accessed or even supported by CMS.

! 2. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

. devaddr. The virtual device number of the disk to read.

. number. The starting cylinder number.

. number. The starting track number.

. number. The number of tracks to read. The default is 1. Specify an asterisk (*)

. to read to the end of the device.

 Chapter 23. Inventory of Built-in Programs 659

 tracksquish ¹ trackverify

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. tracksquish—Squish Tracks

. tracksquish reduces the size of a standard track that is formatted, but unused.

.

. ►►──TRACKSQUISH──►◄

. Type: Arcane filter.

. Operation: tracksquish passes records that already are in the squished format; it reduces

. the size of a track in the standard format (as written by trackread) that is formatted by CP

. or CMS.

. Input Record Format: An 8-byte check word that contains the string fpltrack. Then

. follows the contents of the track as read by the read track CCW. This contains a 5-byte

. home address and a number of records starting with record 0 (if the track is formatted in

. the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

. ¹ Data area, if present.

. Output Record Format: An 8-byte check word that contains the string fplsquis. The

. remainder of the record is unspecified.

. Record Delay: tracksquish does not delay the record.

. Premature Termination: tracksquish terminates when it discovers that its primary output

. stream is not connected.

. Converse Operation: trackxpand.

. See Also: trackdeblock.

. Notes:

. 1. tracksquish does not compress the track.

! 2. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. trackverify—Verify Track Format

. trackverify verifies that the input records contain valid tracks in the standard format (as

. produced by trackread). It issues diagnostic messages and terminates as soon as it finds a

. track that is not valid.

.

. ►►──TRACKVERIFY──►◄

660 CMS Pipelines User’s Guide and Reference

 trackwrite

. Type: Arcane filter.

. Input Record Format: An 8-byte check word that contains the string fpltrack. Then

. follows the contents of the track as read by the read track CCW. This contains a 5-byte

. home address and a number of records starting with record 0 (if the track is formatted in

. the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

. ¹ Data area, if present.

. Streams Used: Records are read from the primary input stream; no other input stream

. may be connected. trackverify does not produce output.

. Notes:

! 1. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. trackwrite—Write Full Tracks to ECKD Device
: trackwrite writes the contents of one or more tracks to a disk that supports the Extended

. Count Key Data (ECKD) command set, such as an IBM 3390.

. CMS .

. ►►──TRACKWRITE──devaddr──┬─word────────────────────┬──number──►

. ├. ─STRing──delimitedString─┤

. └ ┘─*───────────────────────

. ►──number──►◄

. Type: Arcane device driver.

. Placement: trackwrite must not be a first stage.

. Syntax Description: Specify the device number, the current label on the device, and the

. first and last cylinder in the writable extent.

. The first and last cylinders specify the extent into which tracks are written; the actual track

. address is obtained from the input record.

. devaddr. The virtual device number of the disk to write.

. word

. STRING

. *

. The current volume label on the device.

. ¹ A word, which is made upper case.

. ¹ The keyword STRING followed by a delimitedString for a label

. that contains characters in lower case or blanks.

. ¹ An asterisk to indicate that no label is present, for example, on a

. fresh temporary disk.

. number. The first writable cylinder number.

. number. The last writable cylinder number.

 Chapter 23. Inventory of Built-in Programs 661

 trackxpand

. Operation: trackwrite verifies the device number and label as part of the syntax check.

. Input Record Format: trackwrite supports input records in the format produced by both

. the standard track format (trackread) and the squished track format (tracksquish).

. The standard track format contains an 8-byte check word that contains the string

. fpltrack. Then follows the contents of the track as read by the read track CCW. This

. contains a 5-byte home address and a number of records starting with record 0 (if the track

. is formatted in the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

. ¹ Data area, if present.

. The squished track format contains an 8-byte check word that contains the string

. fplsquis. The remainder of the record is unspecified.

. Streams Used: trackwrite passes the input to the output.

. Record Delay: trackwrite strictly does not delay the record.

. Converse Operation: trackread.

. See Also: trackxpand.

. Notes:

! 1. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. trackxpand—Unsquish Tracks

. trackxpand expands a squished track to the standard format.

.

. ►►──TRACKXPAND──►◄

. Type: Arcane filter.

. Operation: trackxpand passes records that already are in the standard format; it expands

. squished records to the standard format.

. Input Record Format: An 8-byte check word that contains the string fplsquis. The

. remainder of the record is unspecified.

. Output Record Format: An 8-byte check word that contains the string fpltrack. Then

. follows the contents of the track as read by the read track CCW. This contains a 5-byte

. home address and a number of records starting with record 0 (if the track is formatted in

. the standard format). Each record contains one to three parts:

. ¹ The count area. This is an 8-byte area that contains the cylinder, head, and record

. number followed by the size of the key area and the data area (CCHHRKDD).

. ¹ Key area, if present.

662 CMS Pipelines User’s Guide and Reference

 trfread

. ¹ Data area, if present.

. Streams Used: Records are read from the primary input stream and written to the primary

. output stream. Null input records are discarded.

. Record Delay: trackxpand does not delay the record.

. Premature Termination: trackxpand terminates when it discovers that its output stream is

. not connected.

. Converse Operation: tracksquish.

. Notes:

: trackexpand is a synonym for trackxpand

! 1. For ECKD devices with more than 65519 cylinders, Extended Address Volumes

! format specifies how a 28-bit cylinder number and 4-bit track number are encoded in

! the 32-bit word referred to as CCHH.

. trfread—Read a Trace File

. trfread reads a trace file through diagnose E0.

. CMS .

. ►►──TRFREAD──number──┬───────────────────┬──►◄

. ├ ┤. ─CP─ ──┬ ┬───────────

. │ │└ ┘─LOCALtime─

. └ ┘─TRSOURCE──────────

. Type: Device driver.

. Placement: trfread must be a first stage.

. Syntax Description:

. When no keyword is specified, the raw CP data are prefixed four bytes that specify the file

. type. It contains binary zero when the SPOOL file is a TRSOURCE file; it contains four when

. the SPOOL file contains CP trace records. You must deblock the file yourself.

. Operation: When no keyword is specified, the raw data are written to the primary output

. stream. The actual file contents are prefixed a fullword that indicates the type of trace

. data. This fullword contains zero for TRSOURCE data; it contains four when the record

. contains CP trace data. When the first fullword of the output record contains binary zero, it

. can be removed and the buffer deblocked by deblock V. When the first fullword of the

. output record contains binary four, the record is 4K+4 bytes long. Of the 4K buffer, the

. number. Specify the number of the SPOOL file to be read.

. CP. Process the file as if it is a CP trace file. The file is deblocked accord-

. ingly.

. LOCALTIME. Convert the timestamp in the trace entries to local time.

. TRSOURCE. Process the file as if it is a TRSOURCE file. The file is deblocked accord-

. ingly.

 Chapter 23. Inventory of Built-in Programs 663

 tso

. first 36 bytes contain a header. Refer to the CP Programming Services manual for further

. information.

. When CP is specified, it is verified that the SPOOL file contains CP trace data. The output

. record is 32 or 60 bytes long and contains the full 8-byte TOD timestamp of the entry.

. When LOCALTIME is specified, the timestamp is adjusted with the local time zone, which is

. present in the input record. The leftmost bit of the CPUID field indicates a double length

. entry created from a 64-byte trace table entry. The last fullword of the 64-byte trace table

. entry is not present.

. When TRSOURCE is specified, it is verified that the file contains TRSOURCE data. The indi-

. vidual data records are deblocked.

. Commit Level: trfread starts on commit level -2. It opens the SPOOL file and then

. commits to level 0.

. Premature Termination: trfread terminates when it discovers that no output stream is

. connected.

. See Also: reader.

tso—Issue TSO Commands, Write Response to Pipeline
tso issues TSO commands and captures the command response, which is then written to the

output rather than being displayed on the terminal.

 z/OS

►►──TSO─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Host command interface.

 Syntax Description:

Operation: The argument string (if present) and input lines are issued to TSO. The

response from the TSO commands is not written to the terminal. The response from each

command is buffered until the command ends; the response is then written to the output.

Record Delay: tso writes all output for an input record before consuming the input

record.

Premature Termination: tso terminates as soon as a negative return code is received.

 See Also: command.

Examples: To display data set allocation in a more readable format:

 pipe tso lista st | drop 1 | spec 1-* 15 read 1.10 1 | take 3 | console
► STEPLIB DPJOHN.TSO.LOAD
► SYSHELP SYS1.HELP
► PIPEHELP DPJOHN.PIPE.HELPLIB
►READY

664 CMS Pipelines User’s Guide and Reference

 udp

 Notes:

1. tso is implemented as a REXX program that uses the OUTTRAP function. Thus, tso can

trap only what can be trapped by OUTTRAP.

udp—Read and Write an UDP Port
When udp is first in a pipeline it reads requests from the specified port into the pipeline.

When udp is not first in a pipeline it sends its input records to a port and writes the

responses into the pipeline.

 ┌ ┐───────────────────────────────────
►►──UDP──number───6┬───────────────────────────────┬┴──►◄
 ├ ┤─ASYNChronously────────────────
 ├ ┤─BROADCASt─────────────────────
 ├ ┤─GETSOCKName───────────────────
 │ │┌ ┐─ANY───────
 ├ ┤ ─LOCALIPaddress─ ──┼ ┼─HOSTID────

│ └─IPaddress─┘ │
 ├ ┤─REUSEADDR─────────────────────
 ├ ┤─STATistics────────────────────
 └─USERid──word─ ─────────────────┘

Type: Device driver.

Syntax Description: A decimal number is required; it can be from 0 to 65535 (inclusive).

The number specifies the number of the receive port. Zero indicates that you wish TCP/IP

to assign a port number.

Operation: When udp is first in a pipeline, it waits for messages on the port and writes

each message as an output record as it arrives.

When udp is not first in a pipeline and the keyword ASYNCHRONOUSLY is specified, it

ASYNCHRON This keyword is optional when udp is not first in a pipeline; it is not

allowed when udp is first in a pipeline.

udp should receive independently of how it sends. By default, udp

sends one record and then waits for a response.

BROADCAST Turn on the BROADCAST socket option.

GETSOCKNAME Write the contents of the socket address structure to the primary output

stream after the socket is bound.

LOCALIPADDR Specify the local IP address to be used when binding the socket. The

default, ANY, specifies that TCP/IP may use any interface address. (An IP

address of binary zeros is used to bind the socket.) HOSTID specifies that

TCP/IP should use the IP address that corresponds to the host name.

Specify the dotted-decimal notation or (on CMS) the host name for a

particular interface to be used.

REUSEADDR Turn on the REUSEADDR socket option.

STATISTICS

STATS
Write messages containing statistics when udp terminates. The format of

these statistics is undefined. STATS is a synonym.

USERID Specify the user ID of the virtual machine or started task where TCP/IP

runs. The default is TCPIP.

 Chapter 23. Inventory of Built-in Programs 665

 udp

reads input records and sends them to the destination specified in the record. It writes

arriving messages to the output as they arrive.

When ASYNCHRONOUSLY is not specified, udp loops performing these steps:

1. Ensure that the output stream is still connected and terminate if not.

2. Read a record (if udp is not first in the pipeline). If the record is 24 bytes or longer,

the datagram is sent to the port specified in the record. If the first four bytes are

nonzero they specify a timeout value in seconds.

3. Wait for a datagram to arrive at the port specified in the arguments or for a timeout to

occur. When a datagram is received, it is written to the pipeline. If udp is not first in

the pipeline, a null record is written in case of a timeout.

Input Record Format: The input record must be four bytes long (to indicate that UDP

should listen only for the indicated period of time) or at least 24 bytes long (to specify a

timeout value and a port to receive the datagram). The input record contains information

required by the SENDTO IUCV socket function:

Output Record Format: A null record indicates a timeout; no datagram was received. A

record that is not null contains a datagram received:

Offs Len Contents

0 4 Timeout value in seconds (binary). A value of zero specifies that udp

should not wait for a reply. This value is ignored when

ASYNCHRONOUSLY is specified.

4 4 Flag bytes. Usually binary zeros. The value 4 specifies

MSG_DONTROUTE, which is used by diagnostic or routing programs.

8 16. Network address of the destination port. This consists of the

. addressing family (X'0002' to indicate AF_INET), the port number (16

bits), the Internet adapter address (32 bits), and eight bytes of zeros.

24 n The datagram to be sent. For TFTP, it begins with a two-byte operation

code.

The Internet does not limit datagrams to a specific size, but

suggests that networks and gateways should be prepared to

handle datagrams of up to 576 octets without fragmenting

them.

(From Douglas E Comer, Internetworking with TCP/IP, Prentice-Hall,

1988.)

Offs Len Contents

0 16. Network address of the origin port. This consists of the address family

. (X'0002'), the port number (16 bits), the Internet adapter address (32

bits), and eight bytes of zeros.

16 n The datagram received. For TFTP, it begins with a two-byte operation

code.

666 CMS Pipelines User’s Guide and Reference

 udp

Streams Used: Records are read from the primary input stream; no other input stream

| may be connected. When the secondary output stream is connected, a record is written to

it when udp terminates after TCP/IP has reported an “ERRNO”.

Commit Level: udp starts on commit level -10. It creates a socket, verifies that its

secondary input stream is not connected, and then commits to level 0.

Premature Termination: udp terminates when it discovers that its primary output stream

is not connected.

udp also terminates when an error is reflected by TCP/IP (known as an ERRNO). How it

terminates depends on whether the secondary output stream is defined or not.

| When the secondary output stream is not connected, error messages are issued to describe

the error and udp terminates with a nonzero return code.

| When the secondary output stream is connected, a single record is written to the secondary

output stream; udp then terminates with the return code zero. The record written contains

the error number; the second word contains the symbolic name of the error number if the

error number is recognised by CMS Pipelines. The assumption is that a REXX program

will inspect the error number and decide whether it should retry the operation, discard the

current transaction and retry, or give up entirely.

udp also stops if the immediate command PIPMOD STOP is issued or if a record is passed to

pipestop.

Examples: To write TFTP requests to the pipeline:

pipe udp 69 |

 Notes:

1. The User Datagram Protocol is said to be connectionless. That is, it is like one virtual

machine sending a message to other virtual machines (as opposed to having an IUCV

connection); any response is generated by the receiver of its own accord.

2. While TCP/IP tries to deliver messages as best it can, the User Datagram Protocol does

not specify that messages must arrive in the order they are sent; nor does it provide

for notification of lost messages. A protocol must be defined at a higher level to

implement error recovery. (This is often called “the end to end argument”.)

3. For compatibility with earlier releases, udp also accepts an abbreviated format for its

arguments:

►►──UDP─ ──┬ ┬──────────────── ─port─ ──┬ ┬───────── ─►◄
 └ ┘─ASYNchronously─ └ ┘─machine─

. 4. A null packet from the net contains 16 bytes of socket address of the origin, whereas a

. timeout causes a null record to be written.

Return Codes: When the secondary output stream is defined and udp terminates due to an

error that is reported by TCP/IP as an ERRNO, udp sets return code 0 because the error

information is available in the record that is written to the secondary output stream. When

udp terminates because of some other error (for example, if it could not connect to the

TCP/IP address space), the secondary output stream is ignored and the return code is not

zero, reflecting the number of the message issued to describe this error condition.

 Chapter 23. Inventory of Built-in Programs 667

 unique

unique—Discard or Retain Duplicate Lines
unique compares key fields in pairs of input records and selects records based on the result

of this comparison and specified options. It can select:

¹ The first record in a run of records having a particular key, discarding further records

with this key.

¹ The last record in a run of records having a particular key, discarding the leading

records with this key.

¹ Records for which there are no duplicates.

¹ Records for which there are duplicates.

¹ Pairs of records that are not duplicates.

The sequence number of the record within a run of records with identical keys can be

prefixed to the record; when the last occurrence of a record is selected, this sequence

number becomes the count of records with that particular key.

 ┌ ┐─NOPAD─────
►►──UNIQue─ ──┬ ┬─────── ──┼ ┼─────────── ──┬ ┬───────── ─►

└─COUNT─┘ └─PAD──xorc─┘ └─ANYcase─┘

 ┌ ┐─LAST─────
►─ ──┬ ┬────────────────── ──┼ ┼────────── ─►◄

└ ┘─┤ uniqueRanges ├─ ├ ┤─SINGLEs──
 ├ ┤─FIRST────
 ├ ┤─MULTiple─
 └ ┘─PAIRwise─

uniqueRanges:

├──┬─inputRange──────────────────────────┬──┤
 │ │┌ ┐─────────────────────────────
 └─(───6─inputRange──┬───────────┬─┴──)─┘

 ├ ┤─NOPAD─────
 └─PAD──xorc─┘

Type: Selection stage.

Syntax Description: The keyword NOPAD specifies that key fields that are partially

present must have the same length to be considered equal; this is the default. The

keyword PAD specifies a pad character that is used to extend the shorter of two key fields.

The keyword ANYCASE specifies that case is to be ignored when comparing fields; the

default is to respect case. An optional input range or a list of input ranges in parentheses

may be followed by up to two keywords. Each input range may be followed by the

keywords PAD or NOPAD to specify padding for this particular field. For compatibility with

the past, unique also accepts two optional keywords followed by an optional input range or

a list of input ranges in parentheses. PAIRWISE cannot be specified with COUNT.

Operation: Records are written to the primary output stream or the secondary output

stream, depending on the contents of the column ranges and the option specified.

1. When PAIRWISE is omitted:

For each record on the primary input stream, the contents of the column ranges

specified (the complete record by default) are compared with the contents of the corre-

sponding ranges in the following record. A run of records having the same contents

of the column ranges comprises a set of duplicate records. When the keyword NOPAD

is specified (or the padding option is omitted), a position not present in a record has a

668 CMS Pipelines User’s Guide and Reference

 unique

value that is not equal to any possible contents of a position that is present. When

PAD is specified, short key fields are extended with the pad character for purposes of

comparison. Otherwise, when a range is partially present, two records must be the

same length and contain the same data within the range to compare equal.

When the keyword COUNT is used, each record is prefixed with a 10-character field

indicating its position in a run of equal records (starting with 1). When combined

with the default option LAST, COUNT sets the count of identical records in the first 10

positions of the record written to the primary output stream.

For a set of duplicate records, keywords determine which records are selected:

SINGLES Runs that consist only of one record are copied to the primary

output stream. Thus, only truly unique records are selected.

FIRST The first record of a run is copied to the primary output stream.

That is, all singles and the first record of each set of duplicates are

selected.

LAST The last record of a run is copied to the primary output stream.

Thus, singles and the last record of a set of duplicates are selected.

(This is the default.)

MULTIPLE Runs that contain more than one record are written to the primary

output stream. That is, only truly duplicate records are selected.

2. When PAIRWISE is specified, a record is read and compared with the following record.

Both records are written to the primary output stream when their key fields are not

equal.

Records that are not written to the primary output stream are written to the secondary

output stream (or discarded if it is not connected). For example, unique SINGLES writes

complete sets of duplicates on the secondary output stream.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. Output is written to the

primary output stream and the secondary output stream depending on options.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. Except for FIRST, which does not delay the record, and PAIRWISE,

which delays the first record of a pair but not the second, unique delays one record.

Commit Level: unique starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: unique terminates when it discovers that no output stream is

connected.

 See Also: sort.

Examples: To list files that are on both of two minidisks or accessed directories:

 Chapter 23. Inventory of Built-in Programs 669

 unpack

/* BOTHDISK REXX -- Select files on two disks */
signal on novalue
arg mode1 fm fn ft .
If fm=''
Then signal tell
parse value fn ft '* *' with fn ft .
'callpipe',
'| literal LISTFILE' fn ft mode1 '(NOH',
'| command LISTFILE' fn ft fm '(NOH',

 '| sort', /* Order */
'| unique 1.17 mult', /* Get duplicate files */
'| unique 1.17 first', /* Just first occurrence */

 '| *:'
exit RC

tell:
say 'Usage: BOTHDISK <fm1> <fm2> [<fn> [<ft>]]'

 Notes:

1. unique compares only adjacent records. It is normal to sort the file earlier in the

pipeline.

2. Use sort UNIQUE instead of a cascade of sort and unique when the file has many dupli-

cate records and you do not wish to process the duplicates further.

3. Unless ANYCASE is specified, key fields are compared as character data using the IBM

System/360 collating sequence.

4. Use spec (or a REXX program) for example to put a sort key in front of the record if

you wish, for instance, to use a numeric field that is not aligned to the right within a

column range. Such a temporary sort key can be removed with substr for example

after the records are written by unique.

5. Use xlate to change the collating sequence of the file.

: 6. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

7. unique has no option to specify the inverse of PAIRWISE. Use not unique to swap the

contents of the output streams.

unpack—Unpack a Packed File
unpack turns a packed file back into plain records; it does not modify a file that is not

packed.

►►──UNPACK──►◄

 Type: Filter.

Operation: A file not in the packed format created by XEDIT, COPYFILE, or pack is passed

through unmodified. A null record is interpreted as end-of-file and the next record is

inspected to see if that is the beginning of a packed file.

Streams Used: Records are read from the primary input stream and written to the primary

output stream.

670 CMS Pipelines User’s Guide and Reference

 untab

Record Delay: unpack delays input records as required to build an output record. The

delay is unspecified.

Premature Termination: unpack terminates when it discovers that its output stream is not

connected.

 Converse Operation: pack.

Examples: To unpack a file:

 pipe cms listfile pipodent copy * (format | console
►FILENAME FILETYPE FM FORMAT LRECL
►PIPODENT COPY K1 F 1024
►Ready;
 pipe < pipodent copy | unpack | chop 72 | console
►*COPY PGMID
► GBLC &PGMID,&MODULE
►&PGMID SETC 'PIP'
►Ready;

 Notes:

1. unpack can unpack files that XEDIT and COPYFILE cannot cope with.

2. unpack is “safe” after <. It unpacks a file if it is packed, and passes a file that is not

packed through unchanged; it does not issue a diagnostic if the file is not packed.

untab—Replace Tabulate Characters with Blanks
untab expands tab characters in the record to blanks to line up columns.

 ┌ ┐─ -3────────
►►──UNTAB─ ──┼ ┼──────────── ─►◄

├─ -number───┤
 │ │┌ ┐──────────

└──6─number─┴─┘

 Type: Filter.

Syntax Description: No arguments are required. A single negative number or a list of

positive numbers may be specified.

A list of positive numbers enumerates the tab stops; the numbers may be in any order.

The smallest number specifies where the left margin is; use 1 to put the left margin at the

beginning of the record.

A negative number specifies a tab stop in column 1, and for each n columns.

The default is -3, which is equivalent to 1 4 7 ...

Record Delay: untab strictly does not delay the record.

Premature Termination: untab terminates when it discovers that its output stream is not

connected.

 Converse Operation: retab.

 Chapter 23. Inventory of Built-in Programs 671

 update

Examples: To expand a field read from a 3270:

/* Expand input */
'callpipe var data | untab | var data'

update—Apply an Update File
update applies an update in the format defined for the CMS command UPDATE. A cascade

of update stages can be used to apply several updates to a file.

►►──UPDATE─ ──┬ ┬─────── ──┬ ┬─────── ──┬ ┬────── ──┬ ┬─────────── ─►◄
└─range─┘ └─FIRST─┘ └─LAST─┘ └─*──string─┘

 Type: Gateway.

Syntax Description: Arguments are optional. A column range may be followed by two

keywords. An asterisk indicates the beginning of a comment string.

When present as the first argument, a column range specifies the location of the sequence

field; the default is 73-80. The maximum length of the sequence field is 15.

FIRST specifies that the filter is the first (or only) in a cascade of updates; it is ensured that

the input file is correctly sequenced.

LAST specifies that update output sequencing is not to be verified. This lets you generate

an updated file without sequence numbers. Note that this option should be used only when

it is desired to suppress sequence numbering for the lines added by the last update applied.

Comments may be entered at the end of the argument string following an asterisk. This

field can be used for the name of the update file being applied to identify the specific stage

in error messages issued by CMS Pipelines. The comment string is not used by update.

Operation: The master file is read from the primary input stream and updated with the

update file from the secondary input stream. The updated file is written to the primary

output stream and the update log is written to the secondary output stream.

Control cards supported are the ones defined for UPDATE when using full sequence

numbers (SEQ8).

Messages for errors that do not terminate update during processing are logged to the

update log rather than being written to the terminal.

Streams Used: Two streams must be defined. Records are read and written on the

primary stream and the secondary stream.

Record Delay: It is unspecified if update delays records. Applications should be written

to tolerate if update does not delay records.

Premature Termination: update terminates when it discovers that either of its output

streams is not connected. Connect the secondary output stream to hole to discard the

update log.

Examples: To apply two updates to a file and discard the update logs:

672 CMS Pipelines User’s Guide and Reference

 urldeblock

/* Update file with two updates */
'PIPE (end ? name UPDATE)',

'| < source file',
'|u1: update first',
'|u2: update last',
'| > $source file a fixed',
'? < first update',

 '|u1:' ,
 '| hole',

'? < second update',
 '|u2:' ,
 '| hole'

The global options define the question mark as the end character. The first pipeline reads

the source file and passes it through the two update stages. The second pipeline reads the

first update file and passes it to the first update stage (because the label u1: refers back to

the first update); the update log is discarded in hole. Likewise, the third pipeline reads the

second update file into the second update stage.

 Notes:

1. update is intended to apply an update created with XEDIT using the CTL option.

Updates are applied in parallel when update stages are cascaded. update may treat

some errors differently than the CMS command UPDATE does.

2. Use a cascade of update stages to apply several updates to a source file.

Return Codes: The following return codes are reflected when errors have been noted in

the update log; when multiple errors are detected, the final return code is the highest one

encountered.

4 Sequence request that is not first in an update file.

4 Sequence error in the input master file.

8 Trouble with the sequence control card: Start or increment is not numeric.

8 Sequence error in the output master file.

12 Trouble with the sequence number field. A sequence number is not numeric, is

missing, is longer than the sequence field width; or the dollar sign is missing.

12 No record is found with the required sequence number.

32 Unsupported or missing control card.

urldeblock—Process Universal Resource Locator
urldeblock processes escape sequences and line end sequences in Universal Resource Loca-

. tors. The input and output records are ASCII unless EBCDIC is specified.

►►──URLDEBLOCK─ ──┬ ┬──────── ─►◄
. └ ┘─EBCDIC─

 Type: Filter.

Operation: Most characters of a URL are written to the output record unchanged. These

characters are processed specially:

 Chapter 23. Inventory of Built-in Programs 673

 uro

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: urldeblock does not delay the record.

Premature Termination: urldeblock terminates when it discovers that its output stream is

not connected.

 Examples:

 pipe < sample url | join | xlate e2a | urldeblock | xlate a2e | console
►name=Craig R. Doe
►class=90
►grad=
►email=xyz@prodigy.com
►bdate=03/15/68
►url=
►Ready;

The file SAMPLE URL contains:

name=Craig%20R.%20Doe&class=90&grad=&email=xyz@prodigy.com&
bdate=03%2F15%2F68&url=

 Notes:

1. Unlike most CMS Pipelines built-in programs, urldeblock performs its operation in the

ASCII domain. If the input record has already been translated to EBCDIC by a gateway,

it must be translated back to ASCII before it is passed to urldeblock.

. 2. The EBCDIC option is useless for a URL that was built on an ASCII system and then

. translated to EBCDIC by, for example, a mail gateway since the escape sequences will

. contain the ASCII value of the characters.

Char Dec Description

. &
;

38

59

(Ampersand or semicolon.) Split the record. The character is

discarded.

+ 43 (Plus.) Substitute a blank.

% 37 (Percent.) Hexadecimal escape sequence. The next two ASCII charac-

. ters contain the hexadecimal value to be used. For example, %2b (in

. ASCII, that is, X'253262') becomes an ASCII plus.

uro—Write Unit Record Output
uro copies the lines in the pipeline to a virtual unit record output device (printer or punch).

 CMS

 ┌ ┐─00E─────
►►──uro─ ──┼ ┼───────── ──┬ ┬────── ─►◄

└─devaddr─┘ └─STOP─┘

Type: Arcane device driver.

Placement: uro must not be a first stage.

674 CMS Pipelines User’s Guide and Reference

 uro

Syntax Description: Arguments are optional. Specify the device address of the virtual

printer or punch to write to if it is not the default 00E. The virtual device must be a unit

record output printer or punch device. The keyword STOP allows you to inspect the

channel programs built by uro.

Operation: The first byte of each record designates the CCW command code (machine

carriage control character); it is inserted as the CCW command code. The remaining char-

acters are identified for transport to SPOOL by the address and length fields of the CCW. A

single blank character is written if the input record has only the command code. Control

and no operation CCWs can specify data; the data are written to the SPOOL file. X'5A'
operation codes are supported, but other read commands are rejected with an error

message; command codes are not otherwise inspected.

Records may be buffered by uro to improve performance by writing more than one record

with a single call to the host interface. A null input record causes uro to flush the contents

of the buffer into SPOOL, but the null record itself is not written to SPOOL. After the

producing stage has written a null record, it is assured that uro can close the unit record

device without loss of data. Input lines are copied to the primary output stream, if it is

connected.

uro issues no CP commands; specifically, the virtual device is not closed.

The virtual Forms Control Buffer (FCB) for a virtual printer (the virtual carriage control

tape) can be loaded by a CCW or the CP command LOADVFCB. The channel program is

restarted after a channel 9 or 12 hole causes it to terminate; even so, such holes in the

carriage tape should be avoided, because they serve no useful purpose; and they generate

additional overhead.

uro has not been tested with a dedicated printer or a dedicated punch.

Record Delay: uro strictly does not delay the record.

Commit Level: uro starts on commit level -2000000000. It ensures that the device is not

already in use by another stage, allocates a buffer, and then commits to level 0.

See Also: printmc, punch, and reader.

 Examples:

To close the printer every 50 records:

'PIPE (end ?)',
 '?... ',

'|o: fanout', /* Get two copies */
'|i:faninany', /* Merge with nulls */
'|uro 00e', /* Print; nulls flush */
'?o:', /* The records */
'|chop 0', /* Make them null */
'|join 49', /* Join 50 null records */
'|c: fanout', /* Still a null record */
'|i:', /* Send to printer */
'?c:', /* Trigger record */
'|spec /CLOSE 00E/', /* Build command */
'|cp' /* Issue it */

 Chapter 23. Inventory of Built-in Programs 675

 utf

The trick is to pass a null record to uro to force it to flush the contents of its buffer into

CP SPOOL before the device is closed.

 Notes:

1. Use punch to write records without carriage control to a virtual punch.

: 2. Set NOPDATA on to write into SPOOL any data in a record that has a carriage control

: designating no operation (X'03').

3. Any output data can be written, including 3800 CCWs, but be aware that CP support

depends on the virtual device type. For example, the maximum record length

(including CCW operation code prefix) is 133 bytes on a virtual 1403.

4. STOP causes CP console function mode to be entered after each channel program has

been given to CP. General register 2 points to the HCPSGIOP data area, from which

information about the channel program can be extracted.

Make sure you SET RUN OFF when using this option. This function was written to help

debug uro, but it may also be useful to discover errors in input data.

: utf—Convert between UTF-8, UTF-16, and UTF-32
: utf converts data encoded in any of the formats UTF-8, UTF-16, and UTF-32 to any other

: of these formats.

: UTF-8 is variable length encoding of Unicode that has the property that 7-bit ASCII is

: encoded unchanged. UTF-16 is a fixed length encoding that is close to Unicode, but see

: the usage notes below. UTF-32 stores the Unicode code point in 32-bits.

:

: ►►──UTF─ ──┬ ┬────── ─┤ Encoding ├─ ──┬ ┬──── ─┤ Encoding ├─ ──┬ ┬──────── ─►◄
: └ ┘─FROM─ └ ┘─TO─ └ ┘─REPORT─

: Encoding:

: ├─ ──┬ ┬: ──┬ ┬────────── ─UTF-8─ ─┤
: │ │└ ┘─MODIFIED─
: ├ ┤─UTF-16──────────────
: └ ┘─UTF-32──────────────

: Type: Filter.

: Syntax Description:

: UTF-8: Variable length byte stream encoding that has the property that the first

: 128 values are 7-bit ASCII.

: MODIFIED

: UTF-8

: UTF-8 encoding where U+0000 is encoded as two bytes (X'C080').

: This has the advantage that the byte X'00' cannot legally occur in such

: a string.

: UTF-16: Halfword encoding where the assigned Unicode code points in the Multi

: Lingual Plane (MLP, U+0000 through U+FFFF) are encoded as the same

: value with the most significant byte first. A value larger than X'FFFF'
: (U+10000 through U+10FFFF) is encoded as a “surrogate pair”; that is,

: two halfwords using one code point in the range X'D800' through

: X'DBFF' followed by a code point in the range X'DC00' through

: X'DFFF' for a total of twenty bits.

676 CMS Pipelines User’s Guide and Reference

 utf

: Input Record Format:

: UTF-8: This format uses from one to four bytes to encode the Unicode character set. It

: offers many encodings that are not valid. In particular, overlong encodings are possible.

: Such encodings use more bits that necessary to encode a Unicode code point. For

: example, X'41' and X'C181' encode “A”, but the second encoding is not valid.

: Valid encoded strings consists of byte strings of these formats:

: ¹ B'0xxxxxxx'; 7-bit ASCII. X'00' is valid only when MODIFIED is omitted.

: ¹ B'110ppppx 10xxxxxx' encodes U+80 through U+7FF. The four p bits must not all

: be zero, except that X'C080' encodes U+0000 when MODIFIED is specified.

: ¹ B'1110pppp 10pxxxxx 10xxxxxx' encodes U+800 through U+FFFF. The four p bits

: must not all be zero, nor are code points in the range U+D800 through U+DFFF
: allowed.

: ¹ B'11110ppp 10ppxxxx 10xxxxxx 10xxxxxx' encodes U+10000 through U+10FFFF.

: The five p bits must not all be zero.

: UTF-16: This format uses two bytes to encode the valid code points in the MLP. Values

: in the higher planes are encoded in a surrogate pair, which is four bytes of the form

: B'110110pp ppxxxxxx 110111xx xxxxxxxx', where pppp is one less the number of the

: plane (thus, a code point in the MLP cannot be encoded as a surrogate pair).

: UTF-32: The 22-bit code point number is stored in 32 bits. Values larger than

: X'0010FFFF' are not valid.

: Streams Used: Records are read from the primary input stream and written to the primary

: output stream. Null input records are discarded.

: Record Delay: utf does not delay the record.

: Premature Termination: utf terminates when it discovers that its output stream is not

: connected.

: See Also: xlate.

: Notes:

: 1. In Unicode terminology, a code point represents an unsigned value in the range 0

: through 1114111 (X'10FFFF'). A code point uniquely identifies a character or

: control code.

: Unicode code points are by convention marked up as U+xxxx, where the value is

: specified in hexadecimal.

: 2. Use the same encoding format for input and output operands to validate an encoded

: data stream without conversion.

: UTF-32: Fullword encoding containing the binary value of the Unicode code

: point with the most significant byte first.

: REPORT: Report input data that are not valid; that is, issue a message and termi-

: nate. The default is to substitute U+FFFD for the code point(s) in error.

 Chapter 23. Inventory of Built-in Programs 677

 var

: Publications:

: As of this writing (January 2010), the current Unicode standard can be found at

: http://www.unicode.org/versions/Unicode5.2.0/

: RFC 3629 describes UTF-8, but so does the current Unicode standard.

var—Retrieve or Set a Variable in a REXX or CLIST Variable Pool
var connects a variable to the pipeline. When var is first in the pipeline, the contents of

the specified variable are written to the pipeline. When var is not first in a pipeline, it sets

the specified variable to the contents of the first input record and then passes all input to

the output; the variable is dropped if there is no input and TRACKING is omitted.

►►──VAR──word──┬──────────┬──┬────────┬──┬──────────┬──►
. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘

 └ ┘─MAIN─────

 ┌ ┐─SYMBOLIC─
►─ ──┼ ┼────────── ──┬ ┬────────── ─►◄

 └ ┘─DIRECT─── └ ┘─TRACKING─

Type: Device driver.

Warning: var behaves differently when it is a first stage and when it is not a first stage.

Existing data can be overlaid when var is unintentionally run other than as a first stage.

To use var to read data into the pipeline at a position that is not a first stage, specify var

as the argument of an append or preface control. For example, |append var ...|
appends the data produced by var to the data on the primary input stream.

Syntax Description: A word is required to specify the variable to fetch or store. It is

possible to access a REXX variable pool other than the current one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains var, rather

than the current stage. (This is a somewhat esoteric option.) To ensure that the variable

pool persists as long as this invocation of var, the stage that is connected to the currently

selected input stream must be blocked in an OUTPUT pipeline command while the subrou-

tine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, var can operate on variables in the program that issued the

pipeline specification to invoke var or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

of REXX environments created on the call path from the PIPE command, var continues on

the SUBCOM chain starting with the environment active when PIPE was issued.

678 CMS Pipelines User’s Guide and Reference

http://www.unicode.org/versions/Unicode5.2.0/

 var

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, var terminates with return code 233 on commit level -1 when the

. environment does not exist.

The keyword SYMBOLIC specifies that REXX should treat the variable names generated as it

would a variable that is written in a program. DIRECT specifies that REXX should use the

variable name exactly as written.

The keyword TRACKING specifies that var should continuously obtain the value of the vari-

able and write it to the output or (if var is not first in a pipeline) set the variable to the

contents of each input record, as it is read.

: Operation:

: When var is first in the pipeline, and TRACKING is omitted, var writes a single record

: containing the value of the variable and terminates.

: When var is first in the pipeline, and TRACKING is specified, var continuously suspends

: itself and then writes the current value of the variable until it senses end-of-file on the

: primary output stream.

Note: Be sure that the pipeline limits the number of records consumed when var

TRACKING is first in a pipeline; it does not terminate normally.

: When var is not first in a pipeline, and TRACKING is omitted, it sets the variable from the

: first record read, passes the record to the primary output stream, consumes the record, and

: then shorts the primary input stream to the primary output stream. var drops the variable

: if no input record arrives.

: When var is not first in a pipeline, and TRACKING is specified, it sets the variable as

: records become available and then passes the record to the primary output stream.

Record Delay: var strictly does not delay the record.

Commit Level: var starts on commit level -1. It verifies that the REXX environment exists

(if it did not do so while processing its parameters) and then commits to level 0.

See Also: stem and varload.

Examples: To reverse the current line in the current XEDIT session, irrespective of its

length.

/* REVCL XEDIT: Reverse current line */
'extract ,curline'
nuline=reverse(curline.3)
address command,

'PIPE var nuline | xedit'
exit RC

XEDIT advances the current line pointer after a record is read or replaced; therefore, the

EXTRACT XEDIT subcommand is used (rather than the xedit device driver) to get the

contents of the current line.

The cascade of split and drop is useful to set several variables to different words in the

input line:

pipe ... | split | var word1 | drop | var word2

 Chapter 23. Inventory of Built-in Programs 679

 var

split reformats the file to have a record for each blank-delimited word in the input. The

first var sets the variable word1 to the contents of the first line (which contains the first

word of the input file), and then copies the input to the output. The drop stage discards

the first record (which has already been stored); it passes the second word of the input file

as the first record on the output. Thus, the first line that is read by the second var stage

contains the second word of the input file. This word is then stored in the variable word2.

Though you can add as many drop-var pairs as you like, is may be simpler to set a

stemmed array when there are many words in the input file.

Note these three ways of using var. They produce the same result when the input file

contains one record:

... | var x

... | var x tracking

... | append literal | var x

When there is no input file, the variable is dropped in the first example; the variable is left

unchanged in the second example; and the variable is set to a null value in the third

example (because append can always supply a null record).

When there is more than one input record, the first and third examples set the variable to

the contents of the first record, but the second example sets it to the contents of the last

record.

To set a variable to a Boolean indication of the presence of data:

... | stem x. | take 1 | count lines | var haveData

The file is stored in a stemmed array by stem. Then the first line is selected and counted.

The count will be zero if there are no lines in the file. Because the count can only be zero

or one, the variable haveData is set to a Boolean value.

 Notes:

1. When a pipeline is issued as a TSO command, IKJCT441 is called to access the variable

pool. When the command is issued with Address Link or Address Attach, var

accesses the REXX environment from where the command is issued.

2. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

680 CMS Pipelines User’s Guide and Reference

 vardrop

3. Unless DIRECT is specified, var uses the symbolic interface to access REXX variables.

This means that you should write the variable name the same way you would write it

in an assignment statement. Consider this program fragment:

/* Process an array */
x='fred'
'PIPE literal a | var z.x'

! The variable Z.fred is set to 'a '. On the other hand, the following would set the

variable Z.x:

/* Process directly */
'PIPE literal a | var Z.x direct'

Note that the stem must be in upper case when DIRECT is used.

4. An unset variable (that is, a variable that has been dropped or has never been assigned

a value) is treated differently by the three variable repositories: REXX returns the

name of the variable in upper case; EXEC2 and CLIST return the null string.

5. Use TRACKING when you wish to leave the current value of the variable unchanged if

there are no input records. Use take 1 to ensure there is only one input record.

vardrop—Drop Variables in a REXX Variable Pool
vardrop reads input records that contain the names of variables to be dropped from a REXX

variable pool.

 ┌ ┐─SYMBOLIC─
►►──VARDROP─ ──┬ ┬────────── ──┬ ┬──────── ──┬ ┬────────── ──┼ ┼────────── ─►◄

. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘ └─DIRECT───┘
 └ ┘─MAIN─────

Type: Device driver.

Placement: vardrop must not be a first stage.

Syntax Description: The arguments are optional. It is possible to access a REXX variable

pool other than the current one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains vardrop,

rather than the current stage. (This is a somewhat esoteric option.) To ensure that the

variable pool persists as long as this invocation of vardrop, the stage that is connected to

the currently selected input stream must be blocked in an OUTPUT pipeline command while

the subroutine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, vardrop can operate on variables in the program that issued the

pipeline specification to invoke vardrop or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

 Chapter 23. Inventory of Built-in Programs 681

 vardrop

of REXX environments created on the call path from the PIPE command, vardrop continues

on the SUBCOM chain starting with the environment active when PIPE was issued.

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, vardrop terminates with return code 233 on commit level -1 when

. the environment does not exist.

The keyword SYMBOLIC specifies that REXX should treat the variable names generated as it

would a variable that is written in a program. DIRECT specifies that REXX should use the

variable name exactly as written.

Input Record Format: One variable per input record. The name of the variable begins in

the first column of the record. Trailing blanks are retained.

Record Delay: vardrop strictly does not delay the record.

Commit Level: vardrop starts on commit level -1. It verifies that the REXX environment

exists (if it did not do so while processing its parameters) and then commits to level 0.

See Also: var, varfetch, and varset.

Examples: To drop two variables in the EXEC that invoked the PIPE:

/* Now drop the variables */
'callpipe literal oscar petrea | split | vardrop main'

 Notes:

1. On z/OS, if vardrop is used in a pipeline specification that is issued with the PIPE

command, the command must be issued by Address LINK.

2. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

682 CMS Pipelines User’s Guide and Reference

 varfetch

varfetch—Fetch Variables in a REXX or CLIST Variable Pool
varfetch reads input records that contain the names of variables to be read from a variable

pool. The value of the named variables is written to the output.

►►──VARFETCH─ ──┬ ┬────────── ──┬ ┬──────── ──┬ ┬────────── ─►
. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘

 └ ┘─MAIN─────

 ┌ ┐─SYMBOLIC─
►─ ──┼ ┼────────── ──┬ ┬─────────────────────────────────────── ─►◄

 └ ┘─DIRECT─── └ ┘ ─TOLOAD─ ──┬ ┬───────────────────────────
 ├ ┤─NOCOMMENTS────────────────
 └─COMMENTS──delimitedString─┘

Type: Device driver.

Placement: varfetch must not be a first stage.

Syntax Description: An argument is optional. It is possible to access a REXX variable

pool other than the current one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains varfetch,

rather than the current stage. (This is a somewhat esoteric option.) To ensure that the

variable pool persists as long as this invocation of varfetch, the stage that is connected to

the currently selected input stream must be blocked in an OUTPUT pipeline command while

the subroutine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, varfetch can operate on variables in the program that issued the

pipeline specification to invoke varfetch or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

of REXX environments created on the call path from the PIPE command, varfetch continues

on the SUBCOM chain starting with the environment active when PIPE was issued.

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, varfetch terminates with return code 233 on commit level -1 when

. the environment does not exist.

The keyword SYMBOLIC specifies that REXX should treat the variable names generated as it

would a variable that is written in a program. DIRECT specifies that REXX should use the

variable name exactly as written.

Specify TOLOAD to write output records in the format required as input to varset (and to

varload): each record contain the variable’s name as a delimited string followed by the

variable’s value. The delimiter is selected from the set of characters that do not occur in

the name of the variable; it is unspecified how this delimiter is selected. The keyword

COMMENTS is followed by a delimited string that enumerates the characters that should not

 Chapter 23. Inventory of Built-in Programs 683

 varfetch

be used as delimiter characters. The keyword NOCOMMENTS specifies that the delimiter

character can be any character that is not in the variable’s name. NOCOMMENTS is the

default.

Operation: When the secondary output stream is not defined, varfetch writes an output

record to the primary output stream for each input record. This record contains the value

returned from the environment.

When the secondary output stream is defined, varfetch inspects the SHVNEWV flag to see if

the variable exists. If the flag indicates that the variable does not exist, the input record is

copied to the secondary output stream. If the flag indicates that the variable does exist, an

output record is built and written to the primary output stream.

Input Record Format: One variable per input record. The name of the variable begins in

the first column of the record. Trailing blanks are retained.

Output Record Format: When TOLOAD is omitted, the output record contains the value of

the variable.

! When TOLOAD is specified, output records are produced that can be used in varset. The

output record contains:

1. A delimiter character (in column 1).

2. A variable’s name (beginning in column 2).

3. A delimiter character (a copy of the character in column 1).

: 4. The variable’s value.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null input records are discarded.

Record Delay: varfetch does not delay the record.

Commit Level: varfetch starts on commit level -1. It verifies that the REXX environment

exists (if it did not do so while processing its parameters) and then commits to level 0.

Premature Termination: varfetch terminates when it discovers that no output stream is

connected.

See Also: var, vardrop, varload, and varset.

Examples: Obtain the value of two variables in the EXEC that invoked the PIPE:

/* Now get the variables into our environment */
'callpipe (name VARFETCH)',

'|literal oscar petrea', /* the variable names */
'|split ', /* One per line */
'|varfetch main toload', /* Get the variables */
'|varset direct' /* Store locally */

 Notes:

! 1. varfetch is identical to varload, except for the defaults.

2. When a pipeline is issued as a TSO command, IKJCT441 is called to access the variable

pool. When the command is issued with Address Link or Address Attach, varfetch

accesses the REXX environment from where the command is issued.

684 CMS Pipelines User’s Guide and Reference

 varload

3. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

4. An unset variable (that is, a variable that has been dropped or has never been assigned

a value) is treated differently by the three variable repositories: REXX returns the

name of the variable in upper case; EXEC2 and CLIST return the null string. Only REXX

sets the SHVNEWV flag.

varload—Set Variables in a REXX or CLIST Variable Pool
varload sets the values of variables based on the contents of its input records.

 ┌ ┐─DIRECT───
►►──VARLOAD─ ──┬ ┬────────── ──┬ ┬──────── ──┬ ┬────────── ──┼ ┼────────── ─►

. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘ └─SYMBOLIC─┘
 └ ┘─MAIN─────

►─ ──┬ ┬─────────────────────────── ─►◄
 ├ ┤─NOCOMMENTS────────────────
 └─COMMENTS──delimitedString─┘

Type: Device driver.

Placement: varload must not be a first stage.

Syntax Description: It is possible to access a REXX variable pool other than the current

one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains varload,

rather than the current stage. (This is a somewhat esoteric option.) To ensure that the

variable pool persists as long as this invocation of varload, the stage that is connected to

the currently selected input stream must be blocked in an OUTPUT pipeline command while

the subroutine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

 Chapter 23. Inventory of Built-in Programs 685

 varload

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, varload can operate on variables in the program that issued the

pipeline specification to invoke varload or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

of REXX environments created on the call path from the PIPE command, varload continues

on the SUBCOM chain starting with the environment active when PIPE was issued.

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, varload terminates with return code 233 on commit level -1 when

. the environment does not exist.

The keyword SYMBOLIC specifies that REXX should treat the variable names generated as it

would a variable that is written in a program. DIRECT specifies that REXX should use the

variable name exactly as written. The keyword COMMENTS is followed by a delimited

string that enumerates the characters that can mark comment lines in the input. The

keyword NOCOMMENTS specifies that the input contains no comment records. The default

is COMMENT /* /.

Input Record Format: Records that contain one of the characters in the comment string

in the first column are considered comments and are ignored. The first position of each is

a delimiter character unless the record is treated as a comment. The name of the variable

to set begins in column 2 and ends at the next occurrence of the delimiter character. That

is, a delimitedString beginning in column 1 defines the name of the variable to set. In

order that stemmed variables with any stem can be loaded, the variable name is not trans-

lated in any way; simple variables (and stems) must be in upper case. There is no substi-

tution in stemmed variables when they are set.

Data to load into the variable, if any, immediately follow the second occurrence of the

delimiter character and extend to the end of the record; use strip TRAILING to remove

trailing blanks.

Record Delay: varload strictly does not delay the record.

Commit Level: varload starts on commit level -1. It verifies that the REXX environment

exists (if it did not do so while processing its parameters) and then commits to level 0.

See Also: stem, var, and varset.

Examples: To store the CP settings in an associative array:

/* Store CP SETs */
'PIPE' ,

'CP QUERY SET', /* Do the CP command */
'| split ,', /* One option per line */
'| strip', /* Remove blanks */
'| spec /=CPSET./ next', /* Set stem name */

'word 1 next', /* ... index */
 '/=/ next', /* Terminator */
 'word 2-* next', /* Value */

'| varload' /* Load variables */

msg='MSG'; vmconio='VMCONIO'
Say cpset.msg cpset.vmconio

To load variables defining the GDDM codes for colours:

686 CMS Pipelines User’s Guide and Reference

 varload

/* Setvars subroutine to set variables */
address Command,

'PIPE < gddm setvars|varload 1'
exit RC

A sample input file for this is shown here; note that the variable names are all in upper

case.

* GDDM SETVARS:
,WHITE,-2
,BLACK,-1
,BLUE,1
,RED,2
,MAGENTA,3
,GREEN,4
,CYAN,5
,YELLOW,6
,NEUTRAL,7
,BACKGROUND,8

rexxvars can be used to save the variables in a program so that they can be restored later:

/* Save variables */
'PIPE (name VARLOAD)',

'|rexxvars', /* Read all variables */
'| drop 1', /* Drop source string */
'| spec /=/ 1 3-* next', /* Beginning of delimiter */
'| join 1', /* Join name and value */
'| > saved variables a' /* Write file */

/* Restore variables */
'PIPE (name VARLOAD)',

'|< saved variables', /* Read variables */
'| varload' /* Set them */

This example works with “well behaved” variables, but note that rexxvars cannot obtain

the default value for a stem; it also truncates the value of a variable after 512 bytes. A

more subtle thing to beware of is that a compound variable can have an equal sign as part

of its name; this would cause a longer value to be restored than was saved.

To set all possible compound values whose names begin with STEM. (the default):

'PIPE literal /STEM./Value for array|varload'

 Notes:

1. varload is identical to varset, except for the defaults.

2. When a pipeline is issued as a TSO command, IKJCT441 is called to access the variable

pool. When the command is issued with Address Link or Address Attach, varload

accesses the REXX environment from where the command is issued.

3. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

 Chapter 23. Inventory of Built-in Programs 687

 varset

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

4. varload cannot set a compound variable whose derived name is the same as its stem (a

compound variable with a null index). This can be accomplished with var if there

exists a simple variable containing a null value; this example hijacks the question

mark:

... | literal | var ? | drop 1 | var stem.?

A null record is generated by literal, stored in the question mark variable, and

discarded. The next record is assigned to the compound variable with the null index.

varset—Set Variables in a REXX or CLIST Variable Pool
varset sets the values of variables based on the contents of its input records.

 ┌ ┐─SYMBOLIC─
►►──VARSET─ ──┬ ┬────────── ──┬ ┬──────── ──┬ ┬────────── ──┼ ┼────────── ─►

. ├─PRODUCER─┤ └─number─┘ └─NOMSG233─┘ └─DIRECT───┘
 └ ┘─MAIN─────

►─ ──┬ ┬─────────────────────────── ─►◄
 ├ ┤─NOCOMMENTS────────────────
 └─COMMENTS──delimitedString─┘

Type: Device driver.

Placement: varset must not be a first stage.

Syntax Description: An argument is optional. It is possible to access a REXX variable

pool other than the current one.

The keyword PRODUCER may be used when the pipeline specification is issued with

CALLPIPE. It specifies that the variable pool to be accessed is the one for the stage that

produces the input to the stage that issues the subroutine pipeline that contains varset,

rather than the current stage. (This is a somewhat esoteric option.) To ensure that the

variable pool persists as long as this invocation of varset, the stage that is connected to the

currently selected input stream must be blocked in an OUTPUT pipeline command while the

subroutine pipeline is running.

The keyword MAIN specifies that the REXX variable pool to be accessed is the one in effect

at the time the pipeline set was created (either by the PIPE command or by the runpipe

stage). MAIN is implied for pipelines that are issued with ADDPIPE.

A number that is zero or positive is optional. It specifies the number of REXX variable

pools to go back. That is, varset can operate on variables in the program that issued the

pipeline specification to invoke varset or in one of its ancestors. (When the number is

prefixed by either PRODUCER or MAIN, the variable pool to be accessed is the producer’s or

the main one, or one of their ancestors.) On CMS, if the number is larger than the number

688 CMS Pipelines User’s Guide and Reference

 varset

of REXX environments created on the call path from the PIPE command, varset continues on

the SUBCOM chain starting with the environment active when PIPE was issued.

. Specify the option NOMSG233 to suppress message 233 when the REXX environment does

! not exist. Either way, varset terminates with return code 233 on commit level -1 when the

. environment does not exist.

The keyword SYMBOLIC specifies that REXX should treat the variable names generated as it

would a variable that is written in a program. DIRECT specifies that REXX should use the

variable name exactly as written. The keyword COMMENTS is followed by a delimited

string that enumerates the characters that can mark comment lines in the input. The

keyword NOCOMMENTS specifies that the input contains no comment records. The default

is NOCOMMENT.

Operation: When the secondary output stream is not defined, varset copies the input

record to the primary output stream after the variable is set.

When the secondary output stream is defined, varset inspects the SHVNEWV flag to see if

the variable existed before. If the flag indicates that the variable already exists, the input

record is copied to the primary output stream. If the variable is new, the input record is

copied to the secondary output stream.

Input Record Format: Records that contain one of the characters in the comment string

in the first column are considered comments and are ignored. The first position of each is

a delimiter character unless the record is treated as a comment. The name of the variable

to set begins in column 2 and ends at the next occurrence of the delimiter character. That

is, a delimitedString beginning in column 1 defines the name of the variable to set. In

order that stemmed variables with any stem can be loaded, the variable name is not trans-

lated in any way; simple variables (and stems) must be in upper case. There is no substi-

tution in stemmed variables when they are set.

Data to load into the variable, if any, immediately follow the second occurrence of the

delimiter character and extend to the end of the record; use strip TRAILING to remove

trailing blanks.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected. Null input records are discarded.

Record Delay: varset strictly does not delay the record.

Commit Level: varset starts on commit level -1. It verifies that the REXX environment

exists (if it did not do so while processing its parameters) and then commits to level 0.

Premature Termination: varset terminates when it discovers that no output stream is

connected.

See Also: var, vardrop, and varfetch.

 Notes:

1. When a pipeline is issued as a TSO command, IKJCT441 is called to access the variable

pool. When the command is issued with Address Link or Address Attach, varset

accesses the REXX environment from where the command is issued.

 Chapter 23. Inventory of Built-in Programs 689

 vchar

2. CMS Pipelines maintains a reference to the current variable environment for each

stage. Initially this is the environment in effect for the PIPE command with which the

original pipeline was started.

When a REXX program is invoked (as a stage or with the REXX pipeline command), its

environment becomes the current one, with a pointer to the previous one.

When a pipeline specification is issued with the runpipe built-in program or the

CALLPIPE pipeline command, the current environment is the one in effect for the stage

issuing runpipe or CALLPIPE; it is known to persist while the subroutine pipeline runs.

On the other hand, when a pipeline specification is issued with the ADDPIPE pipeline

command, the stage that issues ADDPIPE runs in parallel with the added pipeline

specification; it can terminate at any time (indeed, even before the new pipeline

specification starts running). Therefore, for ADDPIPE, the current environment is set to

the one for the last runpipe or the one at initial entry on the PIPE command. Thus, the

MAIN option has effect only for pipeline specifications that are issued by the CALLPIPE

pipeline command.

3. varset cannot set a compound variable whose derived name is the same as its stem (a

compound variable with a null index). This can be accomplished with var if there

exists a simple variable containing a null value; this example hijacks the question

mark:

... | literal | var ? | drop 1 | var stem.?

A null record is generated by literal, stored in the question mark variable, and

discarded. The next record is assigned to the compound variable with the null index.

vchar—Recode Characters to Different Length
vchar changes the character length, inserting or discarding leftmost bits. Input and output

records are considered to contain characters of the length specified, spanned over bytes.

. ┌ ┐──────────────────────────────
►►──VCHAR──number──number─ ───6 ┴┬ ┬────────────────────────── ─►◄

. ├. ─PAD──┬─xorc────────────┬─┤

. │ └─delimitedString─┘ │

. ├ ┤. ─PADIN─ ──┬ ┬────── ─────────

. │ └─xorc─┘ │

. ├ ┤. ─PADOUT─ ──┬ ┬────── ────────

. │ └─xorc─┘ │

. └ ┘─TRUNCate─────────────────

 Type: Filter.

Syntax Description: The first argument is the number of bits per character in the input

. record; the second argument is the number of bits per character in the output record. Up

. to three options may follow the two numbers.

690 CMS Pipelines User’s Guide and Reference

 vchar

. The default is PAD 00 PADOUT 00.

Operation: Bits are truncated on the left when the first number is larger than the second

one. Zero bits are inserted on the left when the second number is larger than the first

number. The input and output records are bit streams. A record is written for each input

record. Only complete input characters are copied, effectively truncating the input record

. if it contains a number of bits that is not evenly divisible by the first number unless PADIN

. is specified. If the output record contains a number of bits that is not evenly divisible by

eight, the last byte of the output record is padded with zeros on the right.

Record Delay: vchar strictly does not delay the record.

Premature Termination: vchar terminates when it discovers that its output stream is not

connected.

Examples: To recode a file containing four 6-bit characters packed into every three 8-bit

bytes:

...| vchar 6 8 |...

This example keeps the six bits together, adding two zero bits to the left of each byte.

To convert ASCII from 6-bit code to 8-bit code with three input bits and a leading zero into

each output nibble (halfbyte):

...| vchar 3 4 |...

To truncate the record to contain an even number of bytes:

 pipe literal a bb ccc dddd eeeee | split | vchar 16 16 | console
►
►bb
►cc
►dddd
►eeee
►Ready;

This exploits the fact that vchar discards any partial output field at the end of the input

record. This can be modified to pad with an asterisk to an even length:

. PAD. Padding to be inserted in each character when the output character is

. longer than the input one. Specify a single character or a delimited

. string. The character or string is replicated as much as required; bits

. from the left of this string are inserted in the leftmost added bits.

. PADIN. Padding to be inserted at the end of each input record to complete the

. last character. This padding is at the right of the character. Specify a

. xorc or take the default padding of binary zeros.

. PADOUT. Padding to be inserted at the end of each output record to complete the

. last byte. As many of the leftmost bits of the pad character as required

. are appended to the right of the last character. Specify a xorc or take

. the default padding of binary zeros.

. TRUNCATE. Do not pad the output record; truncate any partial byte.

 Chapter 23. Inventory of Built-in Programs 691

 verify

 pipe literal a bb ccc| split | spec 1-* 1 /*/ next | vchar 16 16 | ...
... console

►a*
►bb
►ccc*
►Ready;

First an asterisk is suffixed to each record; and then it is removed from records that

contain an odd number of characters.

To insert a blank in front of each four characters (assuming that no input record contains

X'00'):

 pipe literal abcdefgh| vchar 32 40 | xlate *-* 00 blank | console
► abcd efgh
►Ready;

For production use, this should be enhanced to suffix three blanks to the record before the

vchar stage; otherwise the records are truncated when they contain a number of characters

! that is not evenly divisible by four. Using pad with MODULO and the PADIN on vchar

! avoids the xlate stage and the restriction on the X'00' characters.

! pipe literal abcdefghi| pad modulo 4 | vchar 32 40 padin 40 | console
! ► abcd efgh i
! ►Ready;

To write a string in two records, each pair of input characters arranged vertically:

 pipe literal 47F0F120| spec 1-* 2 write 1-* 1 | vchar 16 8 | console
►4FF2
►7010
►Ready;

This example uses spec to produce two copies of the input record where the first one is

offset one byte to the right. For each pair of input characters, vchar selects the rightmost

character.

verify—Verify that Record Contains only Specified Characters
verify selects records that contain only specified characters. It rejects records that contain

characters that are not present in the specified string.

►►──VERIFY──┬─────────┬──┬────────────┬──delimitedString──►◄
└─ANYCASE─┘ └─inputRange─┘

Type: Selection stage.

Syntax Description: Specify ANYCASE to make the comparison case insensitive. An input

range is optional. This specifies the part of the record to be inspected. The delimited

string enumerates the characters that are allowed within the input range.

Operation: verify tests the characters within the input range for being in the specified

string. If the input range is null or all characters in the range are in the specified string,

the record is passed to the primary output stream. Otherwise, the record is discarded, or

passed to the secondary output stream if the secondary output stream is connected.

692 CMS Pipelines User’s Guide and Reference

 vmc

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. verify strictly does not delay the record.

Commit Level: verify starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: verify terminates when it discovers that no output stream is

connected.

Examples: To verify that a range contains a number:

... | verify 5.5 /0123456789/ | ...

To verify that a range contains at least one character that is not numeric:

... | not verify 5.5 /0123456789/ | ...

 Notes:

1. verify is similar to the REXX built-in function verify().

: 2. CASEANY, CASEIGNORE, CASELESS, and IGNORECASE are all synonyms for ANYCASE.

vmc—Write VMCF Reply
vmc sends commands to a service machine and writes the reply to the output. It uses the

protocol used by the Realtime Monitors for VM/System Product, VM/XA* System

! Product, VM/ESA and z/VM.

 CMS

►►──VMC──word──┬────────┬──►◄
└─string─┘

Type: Device driver.

Syntax Description: The first word specifies the virtual machine to send commands to.

An initial message is optional after the name of the virtual machine.

Operation: If an argument string is present, it is issued as the first message. Further

messages are read from the input.

vmc sends messages over the Virtual Machine Communications Facility (VMCF) to a

service machine. It expects a single reply. The reply is deblocked to 80-byte records and

written to the output.

Commands must be 256 characters or shorter.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null and blank input records are discarded.

Record Delay: vmc writes all output for an input record before consuming the input

record.

 Chapter 23. Inventory of Built-in Programs 693

 vmcdata

Premature Termination: vmc terminates when it discovers that its output stream is not

connected.

! Examples: To display part of a performance display of the PERFSVM service machine:

! pipe vmc perfsvm 1 | take 7 | chop 62 | console
! ► FCX325 CPU 1090 SER 25F8B CPU data menu
! ►
! ►
! ► CPU activity reports
! ► S Command Description
! ► _ CPU CPU Load and Transactions
! ► _ DSVBKACT Dispatch Vector Activity
! ►Ready;

 Notes:

: 1. vmc interoperates with vmclisten and vmcreply, but as it deblocks the reply into

: 80-byte output records, vmclient may be a more appropriate choice.

! 2. IBM Performance Toolkit requires DATA authorisation for the user in FCONRMT

! AUTHORIZ to use the vmc to retrieve data through VMCF.

! 3. Remember that REXX continuation functionally replaces a trailing comma with a blank.

! Also recall that when two strings are separated by one or more blanks, REXX concat-

! enates them with a single blank. Use the concatenation operator (||) before the

! comma at the end of the line if your portrait style has the stage separators at the left

! side of the stage and the trailing blank is significant to your application.

: vmcdata—Receive, Reply, or Reject a Send or Send/receive Request
: vmcdata can receive data explicitly, which may be required when RECEIVE is omitted from

: vmclisten. It completes a send/receive transaction by either rejecting or replying.

: CMS :

: ►►──VMCDATA──►◄

: Type: Device driver.

: Operation: The supported function codes are:

: Input Record Format: A 40-byte message header followed by optional reply data. The

: fields VMCMMID and VMCMUSER must remain unchanged from vmclisten, as they identify

: the message being responded to.

: Output Record Format: The 40-byte parameter list after the VMCF function has

: completed. For the receive function, data received are appended to the parameter list.

: VMCPRECV: Receive, X'0005'. The input record contains the message header only.

: The output record contains the data received appended to the parameter

: list.

: VMCPREPL: Reply, X'0007'. The reply data must be appended to the message

: header in the input record. The reply function is also performed when

: the function code is unchanged from the message header (VMCPSNDR).

: VMCPRJCT: Reject, X'000B'.

694 CMS Pipelines User’s Guide and Reference

 vmclient

: Record Delay: vmcdata does not delay the record.

: See Also: vmclient and vmclisten.

: Publications:

: z/VM CP Programming Services, SC24-6272, appendix C.

: vmclient—Send VMCF Requests
: vmclient sends requests to a virtual machine and writes the response to the primary output

: stream.

: CMS :

: ►►──VMCLIENT─ ──┬ ┬────── ─►◄
: └─word─┘

: Type: Device driver.

: Syntax Description: The word specifies the target virtual machine. When present, it is

: inserted in all input records.

: Operation: vmclient issues the VMCF diagnose for each input record. For identify it then

: outputs the parameter list. For other functions, it waits for the final response interrupt,

: which indicates that the transaction is complete, and then produces an output record that

: contains the message header and reply data, if any.

: Input Record Format: A VMCF parameter list (40 bytes) followed by data to transmit.

: The parameter list must have been filled in for function, user (unless an operand is

: specified), and (for send/receive) the length of the desired response buffer. The message

: identifier is reserved for CMS Pipelines use unless the identify function is specified.

: Supported function codes are send, sendx, send/receive, and identify. The first buffer

: and length (VMCPVADA and VMCPLENA) are set to reflect the balance of the record from

: position 41 and on. For a send/receive function, a sufficient buffer is allocated for the

: response, as specified by VMCPLENB. If VMCPLENB is zero, the current size of the response

: buffer, which is at least 4056 bytes, is used.

: Output Record Format: For identify, the parameter list; otherwise the message header

: (40 bytes) for the response interrupt followed by reply data, if any.

: Streams Used: Records are read from the primary input stream and written to the primary

: output stream. Null input records are discarded.

: Record Delay: vmclient does not delay the record. That is, the output record is produced

: before the input record is consumed; however, there may well be a temporal delay while

: the server processes the request. vmclient waits forever if the server neither rejects the

: message nor produces a response.

: Commit Level: vmclient starts on commit level -2. It ensures that the external interrupt

: infrastructure is available, that the virtual machine is authorized for VMCF, and then

: commits to level 0.

 Chapter 23. Inventory of Built-in Programs 695

 vmclisten

: Premature Termination: vmclient terminates when it discovers that its output stream is

: not connected; vmclient also stops if the immediate command PIPMOD STOP is issued or if a

: record is passed to pipestop.

: See Also: vmclisten and vmcdata.

: Notes:

: 1. When an operand is specified and no vmclisten stage is active, a specific authorise is

: used for the target unless another vmclient stage is active and has specified a different

: user; the authorization is upgraded to full in this case, as it will be by vmclisten.

: Publications:

: z/VM CP Programming Services, SC24-6272, appendix C.

: vmclisten—Listen for VMCF Requests
: vmclisten listens for VMCF requests and writes the message header and possibly send data

: to the primary output stream for each VMCF interrupt it receives.

: CMS :

: ►►──VMCLISTEN─ ──┬ ┬───────── ─►◄
: └ ┘─RECEIVE─

: Type: Device driver.

: Placement: vmclisten must be a first stage.

: Syntax Description:

: Output Record Format: The 40-byte message header followed by any sendx data or

: send data if RECEIVE is specified.

: Commit Level: vmclisten starts on commit level -2. It ensures that the external interrupt

: infrastructure is available, that the virtual machine is authorized for VMCF, and then

: commits to level 0.

: Premature Termination: vmclisten terminates when it discovers that its output stream is

: not connected; vmclisten also stops if the immediate command PIPMOD STOP is issued or if

: a record is passed to pipestop.

: See Also: vmclient and vmcdata.

: Notes:

: 1. There can be at most one vmclisten stage active within a virtual machine at any one

: time.

: 2. If a specific authorize is active when vmclisten starts, it is upgraded to a general one.

: RECEIVE: An automatic immediate receive is performed for messages indicating

: the send or the send/receive function. Thus, such messages cannot be

: rejected for the send function.

696 CMS Pipelines User’s Guide and Reference

 waitdev

: 3. When send/receive is indicated in the function code, the pipeline must generate an

: appropriate reply or reject and pass this to vmcdata.

: Publications:

: z/VM CP Programming Services, SC24-6272, appendix C.

: waitdev—Wait for an Interrupt from a Device
: waitdev waits for the next interrupt from a device and writes the subchannel status word to

: the primary output stream. When a real device is already present for the virtual device,

: waitdev shorts the primary input stream to the primary output stream and terminates imme-

: diately.

:

: ►►──WAITDEV──devaddr──►◄

: Type: Device driver.

: Syntax Description:

: Operation: waitdev may terminate for one of three reasons:

: 1. A real device is already present for the virtual device. This means that a terminal is

: already present. This cannot occur for readers and channel to channel adapters.

: The primary input stream is shorted to the primary output stream.

: 2. An interrupt arrives on the virtual device. For terminals and graphics, it is likely a

: device end indicating that a user has dialled in. For readers, a device end indicates

: that a file has arrived. For channel to channel adapters, an attention indicates that the

: other side has made a channel command pending.

: The 12 byte channel status word is written to the primary output stream.

: 3. The pipeline is signalled to stop.

: No output is generated.

: Record Delay: waitdev does not delay the record.

: Commit Level: waitdev starts on commit level -2000000000. It verifies that the virtual

: device exists and is of a supported type, and then commits to level 0.

: Premature Termination: waitdev terminates when it discovers that its output stream is

: not connected; waitdev also stops if the immediate command PIPMOD STOP is issued or if a

: record is passed to pipestop.

: Examples: To wait for a user to dial in and then display the input 3270 data stream until

: the user generates an attention interrupt:

: devaddr: The virtual device number of the device to wait on. The virtual device

: type must be terminal, graphic, unit record input, or channel to channel

: adapter.

 Chapter 23. Inventory of Built-in Programs 697

 warp

: /* Wait for someone to dial in and then pass data to fullscr. */
: parse arg dev
: 'callpipe (end \ name WDIAL.REXX:10)',
: '\literal',
: '|waitdev' dev,
: '|stem how.',
: '|append literal', /* Be sure to shut the gate */
: '|g:gate',
: '*:',
: '|g:',
: '|hole'

: If how.0=0
: Then exit /* Stopped. */
: say dev 'now dialed.'

: 'callpipe (end \ name WDIAL.REXX:6)',
: '*:',
: '|fullscr' dev 'asyn'

: address command 'CP RESET' dev

: The first pipeline drains the input while waiting for the interrupt.

: The second pipeline passes the input to the screen. Should the user generate an attention

: interrupt, fullscr will produce a record which will cause it to terminate as there is no

: consumer.

: Notes:

: waitdev does not inspect the interrupt status.

: warp—Pipeline Wormhole
: warp passes data through a wormhole from a pitcher, which is a warp stage that is not a

: first stage, to a catcher, which is a warp stage that is a first stage; the records are passed to

: the pitcher’s primary output stream and also emanate from the catcher’s primary output

: stream.

: Within a pipeline set, there can be any number of pitcher stages, but at most one catcher

: stage by a particular name.

:

: ►►──WARP──word──►◄

: Type: Arcane gateway.

: Syntax Description: Specify the wormhole’s name as the only operand. The name is

: truncated after eight characters. Case is respected in wormhole names. The scope of a

: wormhole name is the pipeline set.

: Operation: When warp is first in the pipeline, it waits for records to fall out of the

: wormhole and passes them to its primary output stream.

: When warp is not first in the pipeline, it sends its input records through the wormhole. A

: pitcher will terminate without consuming the record if the catcher no longer exits or cannot

698 CMS Pipelines User’s Guide and Reference

 warplist

: write the record. The pitcher waits for the catcher to complete writing its output record; it

: then passes the record to its own primary output stream, ignoring end-of-file.

: Streams Used: Records are read from the primary input stream and written to the primary

: output stream. End-of-file is propagated from the catcher’s primary output stream to the

: pitchers’ primary input stream.

: Record Delay: A pitcher warp stage delays the record until it has been written by the

: catcher.

: Commit Level: warp starts on commit level -20. When it is first in the pipeline warp

: verifies that no other wormhole exist with the specified name and then commits to level 0.

: When it is not first in the pipeline, warp commits to level -1 to give a catcher time to start;

: if there then is no catcher, the stage terminates with an error message; otherwise it

: proceeds to commit level 0.

: Premature Termination: A catcher terminates when it cannot write its output; this causes

: the pitcher to terminate as well.

: A pitcher ignores end-of-file on its primary output stream.

: warp also stops if the immediate command PIPMOD STOP is issued or if a record is passed

: to pipestop.

: Examples: A rather contrived example:

: pipe (end ?) literal howdy!|warp catch-22 ? warp catch-22 | console
: ►howdy!
: ►Ready;

: Notes:

: 1. warp does not implement function that cannot be implemented with multistream pipe-

: lines, proper connection of streams, faninany, and, not least, sufficient stamina, but it

: is an easy way to gather data from a number of pipeline specifications.

: 2. warp sets the internal wait flag, which means that it cannot cause the pipeline set to

: go into a wait state; thus it cannot obscure a stall.

: 3. The workings of warp are similar to a UNIX named pipe. In fact, a pitcher can estab-

: lish a catcher by a different name to receive a reply, and then send the private

: catcher’s name in the message it pitches to a server that has a well known name.

: However, such practice is not considered pipethink.

: 4. warp can send records back to a previously defined pipeline specification, notably one

: issued by ADDPIPE; but it cannot send records to a pipeline specification that has not

: yet been issued.

: warplist—List Wormholes
: warplist writes a record for each active wormhole in the pipeline set. The record contains

: the name of the wormhole, padded with blanks on the right to eight characters.

:

: ►►──WARPLIST──►◄

: Type: Arcane service program.

 Chapter 23. Inventory of Built-in Programs 699

 whilelabel

: Placement: warplist must be a first stage.

: Premature Termination: warplist terminates when it discovers that its output stream is

: not connected.

: Examples:

: pipe (end ?) warp x|hole ? warp y|hole ? warplist | console
: ►y
: ►x
: ►Ready;

whilelabel—Select Run of Records with Leading String
whilelabel selects input records up to the first one that does not begin with the specified

string. That record and the records that follow are discarded.

►►──WHILELABEL─ ──┬ ┬──────── ─►◄
└─string─┘

Type: Selection stage.

Syntax Description: A string is optional. The string starts after exactly one blank char-

acter. Leading and trailing blanks are significant.

Operation: Characters at the beginning of each input record are compared with the argu-

ment string. Any record matches a null argument string. A record that is shorter than the

argument string does not match.

whilelabel copies records up to (but not including) the first one that does not match to the

primary output stream, or discards them if the primary output stream is not connected.

whilelabel passes the remaining input records to the secondary output stream.

Streams Used: Records are read from the primary input stream. Secondary streams may

be defined, but the secondary input stream must not be connected. whilelabel severs the

primary output stream before it passes the remaining input records to the secondary output

stream.

Record Delay: An input record is written to exactly one output stream when both output

streams are connected. whilelabel strictly does not delay the record.

Commit Level: whilelabel starts on commit level -2. It verifies that the secondary input

stream is not connected and then commits to level 0.

Premature Termination: whilelabel terminates when it discovers that no output stream is

connected.

See Also: between, frlabel, inside, notinside, outside, and tolabel.

Examples: To select the ESD cards from the first text deck in a file, discarding any update

log in front of it:

700 CMS Pipelines User’s Guide and Reference

 wildcard

/* FIRSTESD REXX */
'callpipe',
 '*:',

'|frlabel' '02'x || 'ESD',
'|whilelabel' '02'x || 'ESD',

 '|*:'

To discard a run of records, all beginning with an asterisk:

/* DropComm REXX */
'callpipe (name WHILELAB)',
 '|*:',

'|whilelabel *' ||,
 '|hole'

hole ensures that whilelabel does not terminate prematurely when it discovers that the

primary output stream is not connected and there is no secondary output stream defined.

The concatenation operator ensures that lines that contain just an asterisk are dropped, as

are lines that have a character other than a blank in column 2.

 Notes:

! 1. Use strwhilelab with ANYCASE for caseless compare.

! 2. pick can do what whilelabel does and much more.

3. Remember that REXX continuation functionally replaces a trailing comma with a blank.

Also recall that when two strings are separated by one or more blanks, REXX concat-

enates them with a single blank. Use the concatenation operator (||) before the

comma at the end of the line if your portrait style has the stage separators at the left

side of the stage and the trailing blank is significant to your application.

. wildcard—Select Records Matching a Pattern

. wildcard is a selection stage that matches an input range in a way similar to the way in

. which the CMS command “LISTFILE” uses wildcards. wildcard selects records that match

. the specified string. It discards records that do not match the specified string.

.

. ┌ ┐────────────────────────────────────

. ►►──WILDCARD─ ──┬ ┬───────── ───6 ┴┬ ┬──────────────────────────────── ─►

. └ ┘─ANYCase─ │ │┌ ┐─BLANK────────

. ├ ┤. ─BLANK─ ──┴ ┴─┤ Charspec ├─ ───────

. │ │┌ ┐─%────────────

. ├ ┤. ─ANYCHaracter─ ──┴ ┴─┤ Charspec ├─

. │ │┌ ┐─*────────────

. └ ┘. ─ANYSTRing─ ──┴ ┴─┤ Charspec ├─ ───

. ►──┬────────────┬──delimitedString──►◄

. └─inputRange─┘

. Charspec:

. ├──┬─xorc─┬──┤

. └ ┘─OFF──

. Type: Selection stage.

. Syntax Description:

 Chapter 23. Inventory of Built-in Programs 701

 wildcard

. The word delimiter, any character, and any string are collectively referred to as “meta

. characters”. The meta characters are case sensitive, irrespective of the case setting. This

. applies also to word delimiter characters in the input range.

. The meta characters must all be different; this is enforced during the parse of the operands.

. Meta characters may be defined more than once. The last occurrence of the definition of

. any particular meta character is the one used.

. Operation: Matching the pattern against the input range is conceptually done by first

. breaking the pattern and the input range into words delimited by the word delimiter meta

. character. There must be the same number of words in both for the record to match. For

. each word, again conceptually, the literals, any characters and any strings in the pattern are

. matched against the word in the input range. A pattern word that consists of any strings

. only will match any single character, but not the empty string (as LISTFILE assumes that

. file names, types, and modes are not blank). In combination with the any character or

. literals, the any string can match the null string.

. The handling of word delimiters at the boundaries of the input range is not symmetrical:

. ¹ In the left margin, they are observed rigorously. When the pattern includes no leading

. word delimiters, matching will fail when the input range contains a leading word

. delimiter; conversely, when the pattern includes a leading word delimiter, matching

. will fail when the input range contains no leading word delimiter.

. ¹ In the right margin, on the other hand, trailing word delimiters are allowed at the end

. of the input range. Thus, the pattern /a/ matches an input range that contains “a” in

. the first column and any number of trailing blanks. If the pattern contains a trailing

. word delimiter, the input range must have trailing word delimiter(s).

. Streams Used: Records are read from the primary input stream. Secondary streams may

. be defined, but the secondary input stream must not be connected.

. Record Delay: An input record is written to exactly one output stream when both output

. streams are connected. wildcard strictly does not delay the record.

. Commit Level: wildcard starts on commit level -2. It verifies that the secondary input

. stream is not connected and then commits to level 0.

. ANYCASE. Comparison with literal characters is caseless.

. BLANK. Specify the word delimiter. A string of one or more word delimiters in

. the pattern matches a string of one or more word delimiters in the input

. range. The default word delimiter is the blank.

. ANYCHARACTER. Specify the pattern character that matches any single character in the

. input range, except word delimiters. Specify OFF to disable the any

. character. The default any character is the percent sign (%).

. ANYSTRING. Specify the pattern character that matches zero or more characters in the

. input range, except for word delimiters. Specify OFF to disable the any

. string. The default any string is the asterisk (*).

. inputRange. Specify the part of the record to be matched. The default is the entire

. record.

. delimitedString. Specify the pattern to be matched against the input range.

702 CMS Pipelines User’s Guide and Reference

 writepds

. Premature Termination: wildcard terminates when it discovers that no output stream is

. connected.

. Examples: To “swap” two meta characters, one of them must be disabled temporarily:

. ... | wildcard anychar off anystring % anychar * /*bcd%/ | ...

. Notes:

. 1. When processing the output from the LISTFILE command that has more than three

. words, be sure to restrict the range to the first three words (usually 1.19). Also be

. sure to specify all three words, possibly using an any string meta character for the

. mode.

writepds—Store Members into a Partitioned Data Set
writepds stores members into a partitioned data set. The records for each member are

prefixed by a record that specifies the member name.

 z/OS

►►──WRITEPDS──pods──┬────────┬──┬────────────────────────────┬──►
└─SHARED─┘ └─DELIMiter──delimitedString─┘

►─ ──┬ ┬──────── ──┬ ┬─────────── ──┬ ┬─────────────────────────── ─►◄
├─COERCE─┤ └─PAD──xorc─┘ ├─INDELimiter───────────────┤

 └ ┘─CHOP─── ├ ┤─ISPFSTATs─────────────────
 └─USERDATA──delimitedString─┘

pods:

├──┬─dsname───────────────┬──┤
├─dsname(generation)───┤
├─'dsname'─────────────┤
├─'dsname(generation)'─┤
└─DDname=word──────────┘

Type: Device driver.

Placement: writepds must not be a first stage.

 Syntax Description:

pods Enclose a fully qualified data set name in single quotes; the trailing

quote is optional. Specify the DSNAME without quotes to have the

prefix, if any, applied. Append parentheses containing a signed number

to specify a relative generation of a data set that is a member of a gener-

ation data group. To store members into an already allocated data set,

specify the keyword DDNAME= followed by the DDNAME already allo-

cated. The minimum abbreviation is DD=.

SHARED Allocate the data set shared rather than exclusive write. For a PDS you

must ensure that no other stage or user allocates the data set for write

concurrently.

DELIMITER Specify the delimiter string that separates members in the input stream.

The string must match the leading characters of an input record. The

following word of the input record is then taken to be the member name.

The default is /*COPY /, which has a trailing blank.

 Chapter 23. Inventory of Built-in Programs 703

 writepds

The options COERCE, CHOP, and PAD are used with fixed record format data sets. COERCE

specifies that the input records should be padded with blanks or truncated to the record

length of the data set. CHOP specifies that long records are truncated; input records must

be at least as long as the record length for the data set. PAD specifies the pad character to

use when padding the record. Input records must not be longer than the record length of

the data set when PAD is specified alone.

Input Record Format: The delimiter record contains the specified string beginning in

column one. The member name is specified after the delimiter string. If it is requested,

the following word contains the user data string. The first input record must be a delimiter

(so that the name for the first member can be specified).

Streams Used: writepds passes the input to the output.

Record Delay: writepds strictly does not delay the record.

Commit Level: writepds starts on commit level -2000000000. It opens the DCB and and

then commits to level 0.

See Also: listispf and listpds.

Examples: To create the individual members of the TSO Pipelines help library:

/* Build Help library */
'PIPE',

'|< dd=fplparms(fplhelp) ',
'| unpack ',
'| writepds dd=fplhelp delimiter /%COPY% /

Members in the composite help file are separated by delimiter records that contain %COPY%

in the left margin.

 Notes:

1. pdswrite is a synonym for writepds.

2. Note that the delimiter is specified in a different way than done in maclib.

INDELIMITER User data to be stowed in the member is present in the delimiter record

as an unpacked hexadecimal string, which follows the member name.

ISPFSTATS Update or create status information associated with the member. This

information is kept in the user data field of the PDS directory entry. The

information is in the ISPF format.

USERDATA Specify the user data to be associated with all members created or

replaced. This information is kept in the user data field of the PDS direc-

tory entry. The data need not be in ISPF format.

704 CMS Pipelines User’s Guide and Reference

 xab ¹ xedit

xab—Read or Write External Attribute Buffers
When xab is first in a pipeline it writes the contents of an external attribute buffer (XAB)

into the pipeline; the buffer can be associated with a virtual printer device or a SPOOL file.

When xab is not first in a pipeline, the first record in the pipeline is copied into the XAB

for a virtual printer device or a SPOOL file.

 CMS

 ┌ ┐─00E──────────────────────
►►──XAB─ ──┼ ┼────────────────────────── ─►◄

├─devaddr──────────────────┤
 └─┬────────┬──FILE──number─┘
 └ ┘─READER─

Type: Device driver.

Warning: xab behaves differently when it is a first stage and when it is not a first stage.

Existing data can be overlaid when xab is unintentionally run other than as a first stage.

To use xab to read data into the pipeline at a position that is not a first stage, specify xab

as the argument of an append or preface control. For example, |append xab ...|
appends the data produced by xab to the data on the primary input stream.

Syntax Description: Arguments are optional. The default is to read or write the external

attribute buffer of the virtual printer on address 00E. Specify a device address of a virtual

printer to reach one at some other address. Write the SPOOL file number after the keyword

FILE to process a particular file. Specify READER when the file is on the reader chain; the

file is assumed to be on the printer chain if READER is omitted.

Operation: An external attribute buffer is read from a virtual printer or from a file when

xab is first in a pipeline.

The buffer is replaced with the contents of the first input record when xab is not first in a

pipeline. The input file is shorted to the output after the buffer is set successfully.

Record Delay: xab strictly does not delay the record.

Examples: To discover the XAB set up by Print Services Facility (PSF):

psf some file
pipe xab | > xab 00e a

xedit—Read or Write a File in the XEDIT Ring
xedit connects the pipeline to a file in the XEDIT ring; it reads lines from the file into the

pipeline or writes lines from the pipeline into the file. Records written to the file replace

existing records or are added to the end of the file.

 CMS

►►──XEDIT─ ──┬ ┬──────────────────── ─►◄
 └─fn──┬────────────┬─┘
 └─ft──┬────┬─┘

└─fm─┘

Type: Device driver.

 Chapter 23. Inventory of Built-in Programs 705

 xedit

Warning: xedit behaves differently when it is a first stage and when it is not a first stage.

Existing data can be overlaid when xedit is unintentionally run other than as a first stage.

To use xedit to read data into the pipeline at a position that is not a first stage, specify

xedit as the argument of an append or preface control. For example, |append xedit
...| appends the data produced by xedit to the data on the primary input stream.

Syntax Description: The arguments are the file name, type, and mode of the file to

process. An asterisk (*) is used for components that are not specified. The default is the

current file.

Operation: When xedit is first in the pipeline, lines from the file are copied into the pipe-

line starting at the current line pointer (which XEDIT advances to the next line after each

line is read). xedit suspends itself to let other stages run before it obtains each record from

the host interface. When xedit is resumed, it ensures that the primary output stream is still

connected. The complete line up to the LRECL is available when reading from XEDIT; the

VERIFY and ZONE settings have no effect. For variable record format files, XEDIT strips

trailing blanks down to a minimum of one blank. Position the file at the top before

reading to get all lines in the file.

When xedit is not first in a pipeline, lines in the file are replaced with records from the

pipeline starting at the current line or are added to the file if the current line is at the

end-of-file. (XEDIT advances to the next line after each line is replaced.) To replace the

entire contents of a file, ensure that the file is empty before using xedit to add lines to the

file. To add lines to the file, ensure that the current line is at the end-of-file. For fixed

record format files, records must be exactly as long as the XEDIT logical record length; use

pad to extend the record. You must have sufficient WIDTH for the longest record when

you write to a variable record format file; lines are truncated at the width by XEDIT when

SPAN is OFF. CASE, IMAGE, TABS, and TRUNC settings have no effect on lines appended to

or replaced in the file by xedit. The record is also copied to the primary output stream (if

it is connected).

Record Delay: xedit strictly does not delay the record.

Premature Termination: When it is first in a pipeline, xedit terminates when it discovers

that its output stream is not connected.

See Also: subcom and xmsg.

Examples: Issue these commands from the XEDIT command line to count the number of

blank-delimited words in the file (or you could make an XEDIT macro with the subcom-

mands):

top
cms pipe xedit | count words | xmsg

The result is displayed as an XEDIT message. The file will be left positioned at the end of

the file.

To count the number of words in the first five lines (or the entire file if it contains fewer

than five lines):

:1 pipe xedit | take 5 | count words | xmsg

The file will be left positioned on line 6, because XEDIT moves the current line forward

after xedit has obtained the fifth line.

706 CMS Pipelines User’s Guide and Reference

 xedit

To position the file after the first line that is longer than 80 bytes:

:0 pipe xedit | locate 81

This example relies on the fact that locate will terminate without consuming its current

input record when it discovers that its output streams are no longer connected. As used

here, locate will discard records that are 80 bytes or shorter without trying to write to an

output stream. When locate writes the first line that is 81 bytes or longer, it discovers that

its primary output stream is not connected and terminates. xedit will terminate because

this severs its primary output stream. XEDIT will have advanced the read pointer to the

next line.

 Notes:

1. An XEDIT session must exist or be set up before PIPE is issued to process a pipeline

specification. Queue or stack a pipeline command before invoking XEDIT:

/* Process reader files */
queue 'cms pipe cp q rdr * all | procrdr | xedit'
'XEDIT READER FILES S'

You can also issue the PIPE command from the XEDIT profile.

2. Lines are read and written in files in the topmost XEDIT ring; you cannot access files in

an XEDIT session that has invoked XEDIT recursively.

3. You cannot directly insert records through the interface used by xedit; for records

shorter than 253 bytes you might be able to use:

...| change //i / | Subcom Xedit...

Any lines inserted this way are processed according to the settings of TABS, IMAGE,

CASE, and so on. You can also add a dummy line and overwrite it without having to

worry about these settings:

'PIPE (end ? name XEDIT)',
 ' ...',

'|o:fanout', /* Make copy of file */
'|spec /command input /', /* Insert a blank line */

 '|subcom xedit',
'?o:', /* Second copy of line */
'|xedit', /* Overwrite current line */
'|spec /command locate -1/', /* Command to back up */
'|subcom xedit' /* Do so */

This works because all stages do not delay the record. For each input record, fanout

first passes the record to its primary output stream where it is turned into an XEDIT

command that adds a record to the file. XEDIT advances the current line pointer to

point to the newly inserted line, which contain blanks.

fanout then passes the input record to its secondary output stream, which is connected

to the xedit stage. This causes the contents of the current line to be replaced by the

contents of the record, in effect adding the record to the file. XEDIT then advances the

current line to the next line. To compensate for this, the record is then turned into an

XEDIT command to back the current line up to the one just inserted.

One final point: This example assumes that the file has variable record format. If the

file is fixed record format, the record that is passed to XEDIT must be as long as the

record length set for the file. Use chop and pad to coerce the record into the correct

format.

 Chapter 23. Inventory of Built-in Programs 707

 xlate

4. The RANGE and SCOPE settings control which records are read from the file or

replaced. Only lines with a selection level in the range between the limits set by the

DISPLAY XEDIT subcommand are made available or replaced by xedit when SCOPE is

DISPLAY. When a range is set by the RANGE XEDIT subcommand, only lines within

that range are available or replaced. It appears that the selection level for lines added

or replaced is set to the lowest value in the display range.

5. Set the file mode to S to be sure that a work file is not stored on disk accidentally.

6. Multiple xedit stages processing the same file are not recommended. XEDIT advances

the line pointer after a line is read or written; it is difficult to predict the order in

general.

7. XEDIT does not document which settings have any effect for the underlying interface.

xlate—Transliterate Contents of Records
xlate transliterates the contents of records in accordance with a translate table.

►►─ ──┬ ┬─XLATE───── ──┬ ┬────────────────────── ─►
└─TRANSlate─┘ ├─inputRange───────────┤

! │ │┌ ┐──────────────
! └! ─(───6─inputRange─┴──)─┘

 ┌ ┐─────────────────────── ┌ ┐────────────────────
►─ ───6 ┴┬ ┬─────────────────── ───6 ┴┬ ┬──────────────── ─►◄
 └─┤ default-table ├─┘ └─xrange──xrange─┘

default-table:

├─ ──┬ ┬─INput────────────────────────── ─┤
 ├ ┤─OUTput─────────────────────────
 ├ ┤─UPper──────────────────────────
 ├ ┤─LOWer──────────────────────────
 └─┬─TO───┬──┬──────────┬──number─┘

 └ ┘─FROM─ └ ┘─CODEPAGE─

 Type: Filter.

Syntax Description: The parameter list to xlate contains three sections:

¹ One or more input ranges, which specify the part of the record that is to be transliter-

ated.

¹ One or more keywords that specify default translate tables. A composite table is

constructed that maps directly from the input of the first table to the output of the last

one.

¹ One or more hexadecimal ranges, which specify modifications to the default mapping.

This modification is applied to the composite table; the modified translations replace

the ones in the default table.

All three parts are optional.

An input range or a list of input ranges in parentheses is optional as the first argument.

One or more translate tables are optional after the input ranges. When more than one

translate table is specified, the resulting table is the cumulative effect of the tables

specified, in the order specified. The upper case table is used if there are no arguments or

only input ranges and the secondary input stream is not defined. The neutral table is used

708 CMS Pipelines User’s Guide and Reference

 xlate

if there are additional arguments and no keyword is recognised for the default table. You

may use an upper to lower table or one of the three CMS translate tables (upper case, SET

INPUT, and SET OUTPUT). The tables for INPUT and OUTPUT default to the neutral one when

no such SET is in effect.

When LOWER is used, the lower case translation table is constructed as the inverse of the

CMS upper case translation table. If the upper case translate table translates two or more

characters to a particular upper case one, the character with the lower hex value is used in

constructing the upper to lower table.

Tables translating between codepage 500 and one of the national use codepages are

provided with the keywords TO and FROM. Figure 401 shows the supported codepages.

The first column contains the codepage number; the second column contains the base type

(EBCDIC or ASCII); and the last column contains the country name (where it is known).

Figure 401 (Page 1 of 2). Country Extended Codepages

37 EBCDIC United States, Canada, Netherlands, Portugal, Brazil, Australia,

New Zealand.

37-2 EBCDIC The real 3279 APL codepage, as used by C/370. This codepage is

very close to 1047, except that the caret and the not sign are

inverted. Codepage 37-2 is not recognised by IBM, even

though SHARE have repeatedly pointed out its de facto existence.

273 EBCDIC Austria, Germany.

274 EBCDIC Belgium.

275 EBCDIC Brazil.

277 EBCDIC Denmark, Norway.

278 EBCDIC Finland, Sweden.

279 EBCDIC

280 EBCDIC Italy.

281 EBCDIC Japan.

282 EBCDIC Portugal.

283 EBCDIC

284 EBCDIC Spain, Latin America.

285 EBCDIC United Kingdom.

297 EBCDIC France.

437 ASCII PC Display: United States, Switzerland, Austria, Germany,

France, Italy, United Kingdom.

500 EBCDIC Belgium, Canada, Switzerland, International Latin-1. Interna-

tional number 5. This is the base codepage for xlate.

819 ASCII ISO 8859 Latin Character Set 1 (Western Europe).

850 ASCII PC Data-190: Latin Alphabet Number 1; Latin-1 countries.

863 ASCII PC Display: Canada.

 Chapter 23. Inventory of Built-in Programs 709

 xlate

You can modify the translation further with translation elements, which map a “from”

character or range into a “to” character or range. Each element of a from/to pair may be

specified as a character, a two-character hex code, or a range of characters (xrange).

Modifications to the starting translate table are made in the order they appear in the argu-

ment list. A character can be specified more than once; the last modification is the one

that is used.

If a range is specified for the “from” part of a translation element and the “to” range is

shorter than the “from” range, the last part of the “from” range is translated to the last (or

only) character of the “to” range. That is, the last character is “sticky”. For example,

00-02 0-1 causes X'00' to be translated to 0; both X'01' and X'02' are translated to 1

(=X'F1').

Operation: If the secondary input stream is connected, a record is read from it before the

primary stream is processed. The first 256 characters of this first record are used as the

initial translate table, which is then modified as described above.

For each record on the primary input stream, xlate builds an output record with the same

length as the input record.

The contents of the input record are copied into a buffer. Input ranges are then processed

in the order specified in the first argument; the contents of a column are replaced by the

corresponding value from the translate table. Depending on the contents of the table,

multiple translates may change a character to a different character than the original trans-

lation. A column outside all ranges is left unchanged.

Streams Used: If the secondary input stream is defined, one record is read and consumed

from it. The secondary input stream is severed before the primary input stream is proc-

essed. The secondary output stream must not be connected.

Record Delay: xlate strictly does not delay the record.

Commit Level: xlate starts on commit level -2. It verifies that the secondary output

stream is not connected and then commits to level 0.

Premature Termination: xlate terminates when it discovers that its output stream is not

connected. The corresponding input record is not consumed.

Examples: To remove punctuation and other special characters except single quotes:

... | xlate *-* 40-7f blank ' ' | ...

Modifications replace the default translate table; they are not performed in addition to this

table:

Figure 401 (Page 2 of 2). Country Extended Codepages

865 ASCII PC Display: Denmark, Norway.

871 EBCDIC Iceland.

1047 EBCDIC C/370 variant of codepage 37, which takes into account the

encoding of, for example, brackets that was inherited from the

3270 display system.

710 CMS Pipelines User’s Guide and Reference

 xlate

 pipe literal abcABC | xlate upper a z | console
►zBCABC
►Ready;
 pipe literal abcABC | xlate e2a a z | console
►zÂÄAâä
►Ready;

Zoned decimal data are just like normal numbers, except that the sign is encoded in the

leftmost bits of the rightmost digit. Positive numbers are indicated by a “digit” that is “A”

through “I” for 1 through 9, respectively. Negative numbers are represented by “J”

through “R”. (And presumably one should interpret 1 through 9 themselves as unsigned.)

A zero digit is represented by the national use characters X'C0' and X'D0', respectively.

ZONE2DEC REXX, which is shown in Figure 402, is a sample filter to convert zoned decimal

data in columns 1 through 5 to humanly readable format:

 Notes:

1. For compatibility with the past, xlate A2E is equivalent to xlate from 819. xlate E2A

is equivalent to xlate to 819. These represent mappings between codepage 500, the

international base codepage, and codepage 819, ISO 8859 Latin Character Set 1

(Western Europe).

2. Use a placeholder range *-* when the complete record is to be translated with

modification to the neutral table; this is de rigueur when the first “from” range is a

valid range (for instance 40), but it is a good habit to use the placeholder even when

the first “from” range cannot be taken for a range.

3. Modifications to the default table specify the direct input to output mapping; they are

not performed after the default mapping. Beware, in particular, when the default table

translates between EBCDIC and ASCII.

4. Use a cascade of xlate stages to perform stepwise translation. You can also compute a

composite translate table by sending the neutral table (from xrange) through the

cascade of xlate stages. Then provide this table on the secondary input stream to a

Figure 402. ZONE2DEC REXX Converts Zoned Decimal to Normal Decimal

/* Convert columns 1-5 to normal decimal. */
Signal on novalue
'callpipe (name ZONE2DEC.REXX:4)',
 '|*:',

'|spec 5 1 1-* 2', /* Sign to 1 1-5 to 2-6 */
'|xlate 1 00-ff blank', /* Handle sign; default unsigned */

'C0-I +', /* These get plus ... */
'D0-R -', /* and these are negative */

'|xlate 6', /* Now do the loworder digit */
'C0-I 0-9', /* Remove positive sign */
'D0-R 0-9', /* and remove negative sign */

 '|*:'
exit RC

 pipe literal 12345 1234E 1234N 0000{ | split | zone2dec | console
► 12345
►+12345
►-12345
►+00000
►Ready;

 Chapter 23. Inventory of Built-in Programs 711

 xmsg

single xlate stage. This may give a marginal improvement of performance for large

files.

. 5. The location of input ranges is computed based on the original input record. For

. example, translating blanks to a non-blank character does not change the position of a

. particular word.

xmsg—Issue XEDIT Messages
xmsg displays input lines as messages in the current XEDIT session.

 CMS

►►─ ──┬ ┬─XMSG───── ─►◄
 └ ┘─XEDITMSG─

Type: Device driver.

Operation: Lines are prefixed msg and then directed to XEDIT as commands, so that the

text will be displayed on the XEDIT screen (as determined by the SET MSGLINE XEDIT

subcommand).

Streams Used: xmsg passes the input to the output.

Record Delay: xmsg strictly does not delay the record.

See Also: subcom and xedit.

Examples: This XEDIT macro runs the arguments as a pipeline, writing its output as

XEDIT messages:

/* PIPE XEDIT */
address command 'PIPE' arg(1) '| xmsg'

 Notes:

1. The number of message lines that can be displayed on the XEDIT screen is controlled

by the XEDIT command “set msgline n m overlay”. XEDIT reverts to line mode

output when more messages are queued than can be displayed on the screen.

2. XEDIT may not display the message immediately. Use the REFRESH XEDIT subcom-

mand to show the queued messages. You can turn the output from xmsg into refresh

requests and issue these with subcom XEDIT, but more craftiness is required to display

more than one message at a time and be sure the messages stay on the screen long

enough to be read. Experiment with this kind of pipeline:

/* Issue output as messages and wait */
'PIPE ...

'| elastic', /* Buffer messages while we wait */
'| xmsg', /* Issue messages */
'| spec read read read read /command refresh/ 1', /* See below */
'| subcom xedit', /* Issue refresh command */
'| spec /+5/ 1', /* Make it a delay */
'| delay', /* Wait five seconds */
'| hole' /* Done; must stay connected */

The elastic stage decouples the pipeline segment shown from the rest of the pipeline,

which can proceed even though xmsg may not be ready to read more messages. The

messages are issued with xmsg. spec is used to drop four records (the four READ

712 CMS Pipelines User’s Guide and Reference

 xpndhi ¹ xrange

keywords) and transform every fifth record into a refresh command which the subcom

stage issues to XEDIT. The subcom stage also passes the record to the next stage, spec,

which transforms it to the string “+5”. When the following delay stage reads this

record, it causes the pipeline to wait for five seconds. The xmsg stage also waits for

five seconds before reading more messages because none of the stages in this partial

pipeline delay the record.

xpndhi—Expand Highlighting to Space between Words
xpndhi manipulates the contents of descriptor records produced by overstr such that a run

of blanks between highlighted characters is also made highlighted.

►►──XPNDHI─ ──┬ ┬──────── ─►◄
└─number─┘

Type: Arcane filter.

Syntax Description: A number is optional. It specifies the maximum number of contig-

uous blank characters to be turned into highlighted blank characters. The default is one.

Operation: Records that do not have X'00' in column one are copied unchanged to the

output.

Descriptor records (having X'00' in the first position) in a data stream in the format of the

output from overstr are changed to make spaces between highlighted words highlighted as

well.

Streams Used: Records are read from the primary input stream and written to the primary

output stream. Null input records are discarded.

Record Delay: xpndhi does not delay the record.

Premature Termination: xpndhi terminates when it discovers that its output stream is not

connected.

 Notes:

1. xpndhi is intended to be used between overstr and buildscr when the resultant data are

to be displayed in reverse video on a 3270 terminal.

xrange—Write a Range of Characters
xrange writes a single output record containing characters from one hexadecimal value to

another one.

►►──XRANGE─ ──┬ ┬──────────── ─►◄
├─xrange─────┤

 └─xorc──xorc─┘

Type: Device driver.

Placement: xrange must be a first stage.

 Chapter 23. Inventory of Built-in Programs 713

 zone

Syntax Description: If the argument string is a single word, it is scanned for a range of

characters. Otherwise it must be two words, which specify the beginning character

followed by the ending character.

 See Also: literal.

Examples: To write the first nine letters:

 pipe xrange a-i | console
►abcdefghi
►Ready;
 pipe xrange a.9 | console
►abcdefghi
►Ready;
 pipe xrange a i | console
►abcdefghi
►Ready;

Note that the output record contains all values in the range:

 pipe xrange i j | console
►i«»‰–ĳffi°j
►Ready;

You can use two hexadecimal digits:

 pipe xrange f0 f9 | console
►0123456789
►Ready;

The range wraps from X'FF' to X'00':

 pipe xrange fe 01 | spec 1-* c2x | console
►FEFF0001
►Ready;
 pipe xrange 9 0 | count bytes | console
►248
►Ready;

zone—Run Selection Stage on Subset of Input Record
The argument to zone is a stage to run. zone invokes the specified stage. It then passes a

specified range of the input records to this stage. When the stage writes a record to its

primary output stream, the corresponding original input record is written to the primary

output stream from zone; likewise, the original input record is written to the secondary

output stream (if it is defined), when the stage writes to its secondary output stream.

The argument is assumed to be a selection stage; that is, it should specify a program that

reads only from its primary input stream and passes these records unmodified to its

primary output stream or its secondary output stream without delaying them.

►►──ZONE──inputRange──┬───────┬──┬─────────┬──word──┬────────┬──►◄
└─CASEI─┘ └─REVERSE─┘ └─string─┘

 Type: Control.

714 CMS Pipelines User’s Guide and Reference

 3277bfra

Syntax Description: An input range and a word (the name of the program to run) is

required; further arguments are optional as far as zone is concerned, but the specified

program may require arguments.

Operation: zone constructs a subroutine pipeline to perform the required transformation

on input records. If CASEI is specified, the specified part of the input record is translated to

upper case before it is passed to the specified stage (see casei). If REVERSE is specified,

the contents of the zone are reversed before being passed to the specified stage.

Streams Used: Records are read from the primary input stream; no other input stream

may be connected.

Record Delay: zone does not add delay.

Commit Level: zone starts on commit level -2. It does not perform an explicit commit;

the specified program must do so.

See Also: casei, predselect, and spec.

Examples: To select records between those that end in “on” and “off”:

pipe ... | zone -3;-1 reverse between /no/ /ffo/ | ...

 Notes:

1. Use asmfind or asmnfind as the argument to zone only if you understand the impli-

cations of shifting the continuation column in the input records that the selection stage

reads.

2. The argument string to zone is passed through the pipeline specification parser only

once (when the scanner processes the zone stage), unlike the argument strings for

append and preface.

. 3. End-of-file is propagated from the streams of zone to the corresponding stream of the

. specified selection stage.

Return Codes: If zone finds no errors, the return code is the one received from the

selection stage.

3277bfra—Convert a 3270 Buffer Address Between Representations
. 3277bfra converts a halfword buffer address between two of three possible representations.

. ┌ ┐─FROM16bit─────────────────────── ┌ ┐──────────
►►──┬─3277BFRA─┬──┼─────────────────────────────────┼───6─number─┴──►◄

. └ ┘─3270BFRA─ ├ ┤. ──┬ ┬─ROWCOL─── ──┬ ┬───────────────

. │ └─TOROWCOL─┘ └. ─WIDTH──number─┘. │
 └ ┘─TO16BIT─────────────────────────

Type: Arcane filter.

 Syntax Description:

 Chapter 23. Inventory of Built-in Programs 715

 3277bfra

. The final numbers specify the columns where the buffer addresses begin. Up to ten

. numbers may be specified.

Record Delay: 3277bfra strictly does not delay the record.

Premature Termination: 3277bfra terminates when it discovers that its output stream is

not connected.

Examples: To generate a set buffer address order for each line on a screen:

/* Build screen */
'PIPE (name 3277BFRA)',

'|stem data. ',
'|spec x11 1 number from 0 by 80 d2c 2.2 right 1-* next',

 '|3277bfra 2',
 '|join *',
 '|var buffer'

To reverse this process on an inbound 3270 data stream:

/* Deblock inbound data (read modified) */
parse var inbound AID+1 cursor+2 fields
'PIPE (name 3277BFRA)',
 '|var fields',

'|split minimum 3 before 11',
'|3270bfra 2 to16bit',

 '|...'

 Notes:

. 1. For compatibility with previous releases, the operands can also be specified as a single

. number followed by the keyword TO16BIT.

. FROM16BIT. A binary 12-bit buffer address is encoded in two printable characters. If

. the four leftmost bits are not zero, the buffer address remains unchanged.

. ROWCOL. The two bytes are interpreted as a 1-byte row and column, respectively.

. The converted result is a 12-bit encoded buffer address when it is less

. than 4096; it is a 16-bit binary buffer address otherwise.

. TOROWCOL. The buffer address is first converted to a binary address as done for

. TO16BIT. The binary buffer address is then divided by the screen width

. to obtain the row and column; these are each truncated to 8 bits and

. combined with the row in the leftmost 8 bits.

TO16BIT Convert a 12-bit buffer address from encoded form to binary. If the two

leftmost bits of both bytes are nonzero, a 12-bit binary address is

extracted from the rightmost six bits of the two bytes. If either of the

two bytes contain zeros in the two leftmost bits, the buffer address

remains unchanged.

WIDTH Specify the screen width. The default width is 80.

716 CMS Pipelines User’s Guide and Reference

 3277enc ¹ 64decode

3277enc—Write the 3277 6-bit Encoding Vector
3277enc writes a single record containing 64 characters.

►►─ ──┬ ┬─3277ENC─ ─►◄
 └ ┘─3270ENC─

Type: Arcane device driver.

Placement: 3277enc must be a first stage.

Operation: A 64-byte record is written. The first byte contains the encoding for X'00';

the second byte contains the encoding for X'01'; and so on.

Examples: To encode an attribute byte:

/* Get encoding vector */
'PIPE 3277enc | var encoder'
attr=translate(attr, encoder, xrange("00"x, "3f"x))

The encoding string can also be fed to xlate’s secondary input stream to be used to trans-

late a stream of records that contain an attribute value followed by data. Assume that the

input record contains three fields: the first two columns contain the buffer address (16-bit

addressing); the third position contains the attribute byte; and the remainder of the record

contains the data to be put into a field having the specified attribute at the specified

address.

The buffer address and the attribute byte are processed according to their natures. The

data part of the record is then translated to ensure it cannot interfere with the device

orders. Finally, the 3270 device orders are inserted into the data stream.

'callpipe (end ? name 3277ENC)',
'|*:', /* Input file */
'|3277bfra 1', /* Make buffer address "printable" */
'|x: xlate 3', /* Make attribute "printable" */
'|xlate 4-* 01-3f blank ff blank', /* Rub out other controls */
'|spec x11 1 1.2 next x1d next 3-* next', /* Orders */
'|*:', /* Write to output */
'?3277enc', /* Get encoding vector */
'|x:' /* Pass it to XLATE. */

. 64decode—Decode MIME Base-64 Format

. 64decode decodes records that have been encoded according to RFC 1521.

.

. ►►──64DECODE──►◄

. Type: Filter.

. Operation: 64decode produces one output record for each input record.

. Input Record Format: The encoded data are represented in EBCDIC. The records should

. be a multiple of four bytes in length, but this is not enforced.

 Chapter 23. Inventory of Built-in Programs 717

 64encode

. Record Delay: 64decode does not delay the record.

. Premature Termination: 64decode terminates when it discovers that its output stream is

. not connected.

. 64encode—Encode to MIME Base-64 Format

. 64encode encodes binary data according to RFC 1521.

.

. ►►──64ENCODE──►◄

. Type: Filter.

. Input Record Format: A byte stream.

. Output Record Format: 76-byte records, except possibly for the last.

. Streams Used: Records are read from the primary input stream and written to the primary

. output stream. Null input records are discarded.

. Record Delay: 64encode does not delay the record.

. Premature Termination: 64encode terminates when it discovers that its output stream is

. not connected.

718 CMS Pipelines User’s Guide and Reference

 spec Reference

 Chapter 24. spec Reference

This chapter contains the definitive syntax reference for spec. Chapter 16, “spec Tutorial”

on page 166 contains a tutorial. The inventory of built-in programs contains an article on

spec, which contains a simplified syntax description.

This chapter contains a description of the syntax of spec in the form of annotated syntax

diagrams. Instead of presenting a single enormous syntax diagram followed by explana-

tion, this chapter intermixes syntax diagrams and their explanation.

 Overview

spec builds output records based on the contents of input records, constant fields, and data

generated internally. spec supports any number of input and output streams.

The format of the output record is specified by a list of items, one for each field; thus the

list is called a specification list.

You can think of the specification list as a program that is run for each input record. Each

item in the list is a step in this program. Performing the action specified in an item is

called issuing the specification item. Specification items that are not issued are ignored.

spec ignores case in keywords, but respects case in stream identifiers, field identifiers, and

in literal strings.

spec can compute numeric expressions, compare fields and numbers, and issue items

: conditionally. It stores values in counters, which persist from record to record.

Though spec clearly does not require specialised hardware, it can be viewed as a software

simulation of a hardware architecture. (Indeed, all programs can.) Figure 403 shows the

parts of spec, that you, the programmer of this abstract machine, can reach.

Rest assured that no hardware knowledge is required to use spec effectively. But you will

have a head start if you have past experience with the IBM 407 Accounting Machine,

which influenced the design of spec.

Figure 403. Anatomy of SPEC

 ┌────┐
 │ 6
 │ ┌─────────────┐
 │ │second │
 │ │reading │
 │ └─────────────┘
 │ │
 │ 6
 │ ┌─────────────┐ ┌────────┐
───────┴─►│ │───►│output │──┬──────────►

│ A ┌──────┤ │record │ │
input ───►│ │ctr 0 │ └────────┘ ├───► output
 │ L ├──────┤ │
streams ─►│ │ctr 1 │ └──► streams
 │ U ├──────┤
─────────►│ │ctr n │
 └──────┴──────┘

 Copyright IBM Corp. 1986, 2020 719

 spec Reference

If you have experience with RPG, most of the concepts will be familiar as well; this is no

coincidence, because RPG, too, has its roots in accounting machines.

 Concepts

 The Cycle
To perform a cycle, spec issues the items in the specification list from left to right. At the

beginning of a cycle, spec synchronises the input streams it uses; that is, it peeks at all

input streams it uses before issuing any specification items. This ensures that a record is

available on all streams at the beginning of the cycle. At the end of a cycle, spec

consumes an input record from each of the streams it uses.

In addition to the streams, spec can store the previous record from the primary input

stream into a buffer known as the second reading station and make this available as a

. pseudo input stream on the next cycle. The primary input stream is also known as the first

. reading station.

 Streams
The primary input stream is selected at the beginning of the cycle unless a SELECT item

precedes the first item that refers to an input range. With this proviso, spec uses all

streams that are mentioned in SELECT items, even when no data field is referenced from the

stream. BREAK, EOF, SELECT SECOND, and break() imply reading the primary input

: stream because they refer the second reading, which is derived from the primary input

: stream.

At the beginning of each cycle, spec sets the primary output stream as the one to receive

the next record. This can be modified by the OUTSTREAM and NOWRITE items.

When the second reading is the only referenced stream, spec reads the first record from the

primary input stream directly into the second reading before taking the first cycle, having

the second record at the primary input stream.

When both the first and the second reading are used, spec performs an initial runin cycle

with the first record at the primary input stream and a null record at the second reading.

Any specification items that are subject to SELECT SECOND are ignored during the runin

cycle. This prevents a spurious subtotal.

When the EOF item or the second reading is used, spec performs a final runout cycle after

it comes to end-of-file on its input; the first reading contains a null record during this cycle

. (and the second reading contains the previous record on the primary input stream).

: If an EOF specification item is present, it will be the first issued during the runout cycle;

: otherwise the normal sequence is issued. In either case, any specification items that are

subject to SELECT FIRST are ignored during the runout cycle to prevent a spurious heading.

Field Identifiers, Control Breaks, Break Levels
A field identifier is associated with a specification item when an input range (which repres-

ents data from an input record) is prefixed by a letter and a colon. This allows for subse-

quent reference to the input range without repeating the actual specification. The field

identifier is a single alphabetic character; case is respected.

720 CMS Pipelines User’s Guide and Reference

 spec Reference

The scope of a field identifier is from the specification item where it is defined to the next

READ or READTO, or to the end of the specification list. Field identifiers cannot be defined

in specification items that are issued conditionally; that is, after EOF or BREAK; or within an

: IF or WHILE group.

When a field identifier is referenced in a BREAK item or by the built-in function break(),

a test is performed to determine whether a break is established for this level or not. This

is determined at the time the identified item is issued, not at the time of the test. The

break levels are ordered from “a” (lowest) through “z” and further from “A” through “Z”

(higher). End-of-file represents an even higher break level.

When a specification item is issued and it has an identifier that is used to control breaks,

the fields are compared as follows:

¹ If SELECT SECOND is in effect for the item, the contents of the equivalent field on the

primary input stream are compared with the field specified in the item. That is, the

first and second readings are compared.

¹ If some other select is in effect, the field is compared with the equivalent field in the

second reading station. Normally, the primary input stream would be selected to allow

consecutive records to be tested, but it is not an error to test some other input stream;

maybe it contains the same data as the corresponding record on the primary input

stream.

A break at some level also establishes the break at all lower levels, but the break must be

established before it takes effect. That is, the specification item that defines the field that

causes the break to be established must have been issued.

: Structured Data
: Fields in input and output records may be referenced as members of structures (see

: Chapter 6, “Processing Structured Data” on page 91).

: A data type may be associated with a member of a structure, specified by a single char-

: acter. The types recognised by spec are:

: A blank type, which means no type defined, as well as other letters are treated the same as

: character strings.

: C: A character string.

: D: Binary integer (big endian) in two’s complement notation. The input field may

: have any length.

: F: System/360 hexadecimal floating point. The input field may have any length,

: but only the first sixteen bytes are used (corresponding to extended precision).

: If it is present, the eighth byte is ignored; it is the characteristic of the lower

: half.

: P: System/360 packed decimal integer. A scale may optionally be associated

: with the member by specifying a signed number in parentheses. A positive

: scale specifies the number of decimal places; a negative one specifies the

: number of integer digits to drop on the right.

: R: Byte-reversed (little endian) binary integer in two’s complement notation. The

: input field may have any length.

: U: Unsigned binary integer. The input field may have any length.

 Chapter 24. spec Reference 721

 spec Reference

: Note that explicit conversion in a specification item disables a numeric member type

: including any scale; an output placement that specifies a member will contribute only the

: position and field length.

 Counters
: Data, numbers as well as strings, are stored in counters. Counters are referenced by inte-

gers that are zero or positive. There is no arbitrary limit to the number of counters; and

you should not worry overly about which numbers you use. Do avoid, however, a large

range of unused counter numbers.

: The counters are initialised to contain a null value (which converts to 0 or a null string, as

: appropriate for the context) when spec starts; after that they are set only as a side effect of

evaluating expressions.

: A particular counter may hold a number at some time and be assigned a string at other

: times. That is, counters are not declared to contain a particular data type.

 Number Representation
Arithmetic is done in signed decimal floating point with thirty-one significant digits and an

: exponent range from -2G to 2G-1. (This is not the decimal floating point recently intro-

: duced in IBM’s Power Systems and System z machines.) For division, the significance of

the divisor is reduced to fifteen digits due to the System/390 hardware implementation.

This may affect the precision of division, integer division, and remainder operations.

. In addition to the numeric value, an exactness latch is associated with the contents of a

. counter. This latch can be tested with the exact() built-in function; it is set in several

: ways:

: ¹ When a string is converted to load into a counter. The counter will be exact unless

: more than thirty-one significant digits are present and a nonzero digit is dropped.

: ¹ Assignment from a member that has D type is always exact.

: ¹ Assignment from a member that has F type is also exact, even though the input data

: may have lost exactness at an earlier time. For example, 1.3 cannot be represented as

: an exact hexadecimal floating point number.

: ¹ Assignment from a member that has P type first sets the exactness from the sign of the

: input field. Exactness is lost when significant digits are truncated as part of the

: assignment.

: The sign nibble A represents an exact positive number; B represents an exact negative

: one; D represents inexact negative; and the three remaining ones all represent inexact

: positive.

: Exactness is exposed on output to a member that has the packed type; truncation of

: significant digits in this assignment will make the output field inexact even when the

: source number is exact.

When an expression is evaluated to control the issuing of specification items, a zero result

represents the Boolean value false; other values represent the Boolean value true.

722 CMS Pipelines User’s Guide and Reference

 spec Reference

 Expressions
: spec supports numeric and string expressions.

spec computes expressions using data from input records, constants, and the contents of

: counters. The result can be stored in a counter or formatted for printing, or both. spec

: can compare the contents of counters, the contents of an identified input field, and literals

: in any combination. Comparison is numeric or by character, as determined by the oper-

: ator.

The result of an expression can alter the flow through specification items to issue items

: selectively (if/then/else) or repeatedly (while).

 Syntax Recursion
While it may be a strange programming language, the arguments to spec support many

concepts that are normally associated with programming languages. Supporting general

constructs, such as nested conditional statements or expressions whose terms can be

expressions in their own right, invariably leads to recursive syntax diagrams.

But let them not intimidate you; the infinities are easily resolved. Consider this diagram:

Construct:

├──┤ Part ├─ ──┬ ┬─────────────── ─┤
└ ┘─┤ Construct ├─

Such a syntax diagram should be read in this way: A construct must contain one part,

because the part is on the main track. After the part you have a choice; you can end the

construct right there by taking the straight exit line; or you can make a recursion by taking

one more construct, which would lead you to one more part, and so on for as long as you

wish.

 Syntax Description

 Syntax Overview
The arguments to spec contain options followed by a group of specification items. The

options must be first in the argument string.

►►──SPECs─ ──┬ ┬───────────────── ─┤ ItemGroup ├──►◄
└ ┘─┤ MainOptions ├─

 Main Options
Keywords that control the general behaviour of spec are specified at the beginning of the

argument string.

 Chapter 24. spec Reference 723

 spec Reference

MainOptions:

 ┌ ┐─STOP──ALLEOF─────
├─ ──┼ ┼────────────────── ──┬ ┬───────────────────────────────── ─►

 └─STOP──┬─ANYEOF─┬─┘ └─PRINTONLY──┬─letter─┬──┬──────┬─┘
: └─number─┘ └─EOF────┘ └─KEEP─┘

►─ ──┬ ┬────────────────── ─┤
: └: ─COUNTERS──number─┘

STOP Specify when spec should terminate. ALLEOF, the default, specifies that

spec should continue as long as at least one input stream is connected.

ANYEOF specifies that spec should stop as soon as it determines that an

input stream is no longer connected. A number specifies the number of

unconnected streams that will cause spec to terminate. The number 1 is

: equivalent to ANYEOF. STOP must be specified first.

PRINTONLY Output records will be suppressed unless the specified break level has

been established. The break level can be a letter (case is respected) or it

can be the keyword EOF, which specifies that records are written only

after the input reaches end-of-file or the condition specified with STOP is

satisfied.

: KEEP: Do not reset the output buffer when write is suppressed due to the break

: level. This allows the contents of several input records to be made

: present in a single output record.

: COUNTERS: Specify the largest counter number referenced as an array member. spec

: allocates at least counters 0 through the number specified.

 Item Group
An item group is a list of specification items that are issued sequentially. Each item in a

group can be a plain item, an IF group, which is a group from which some items are issued

: and others are suppressed, or a WHILE group, which is a group that is issued repeatedly

: while an expression evaluates to true.

ItemGroup:

├─ ──┬ ┬─┤ PlainItem ├── ──┬ ┬─────────────── ─┤
├ ┤─┤ IfGroup ├──── └ ┘─┤ ItemGroup ├─

: └ ┘─┤ WhileGroup ├─

: If Groups and While Groups are known collectively as conditional groups. They can nest

: one inside another in any combination to a depth of sixteen. There is no ambiguity of, for

: example, ELSE because each nested group is terminated with a distinct keyword (ENDIF or

: DONE).

: Conditional groups cannot contain input sources that have identifiers, as it is indeterminate,

: in general, whether the field has been defined or not.

724 CMS Pipelines User’s Guide and Reference

 spec Reference

 If Group
A group of specification items from IF to the matching ENDIF is called an IF group.

Depending on the result of evaluating an expression, some of the specification items are

issued and others are ignored. Because an IF group can contain several tests, it is similar

to the REXX Select instruction.

IfGroup:

├──IF──┤ Expression ├──THEN──┤ ItemGroup ├──►

 ┌ ┐───
►─ ───6 ┴┬ ┬─── ─►
 └ ┘─ELSEIF──┤ Expression ├──THEN──┤ ItemGroup ├─

►─ ──┬ ┬───────────────────── ─ENDIF──┤
 └ ┘─ELSE──┤ ItemGroup ├─

The IF group contains four parts:

¹ The opening keyword and the first test to be performed:

– The keyword IF.

– An expression to be evaluated.

– The keyword THEN.

– An item group, which is issued if the result of the expression is true (that is,

nonzero). Control then transfers to the end of the IF group, ignoring any

remaining items. If the expression evaluates to false, the item group is ignored.

¹ Additional tests to perform if the initial test evaluated to false. The tests are evalu-

ated in the order they appear until a nonzero result is obtained. This sequence is

optional; it can occur zero or more times.

– The keyword ELSEIF. (ELSIF is also recognised.)

– An expression to be evaluated.

– The keyword THEN.

– An item group, which is issued if the result of the expression is true (that is,

nonzero). Control then transfers to the end of the IF group, ignoring any

remaining items. If the expression evaluates to false, the item group is ignored.

¹ The default case. This sequence is optional; it can occur at most once.

– The keyword ELSE. (OTHERWISE is also recognised.)

– An item group.

¹ The ending sequence.

– The keyword ENDIF. (FI and IFEND are also recognised.)

: ELSE IF is also recognised, but this starts a new IF group that is nested within the ELSE

: group. The nested IF group could be followed by other specification items as part of the

: ELSE group.

: While Group
: A group of specification items from WHILE to the matching DONE is called a WHILE group.

: Depending on the result of evaluating an expression, the specification items in the group

: are either skipped or issued repeatedly until the expression evaluates to false.

: Ensure that the loop always terminates. If it does not, PIPMOD STOP ACTIVE will terminate

: spec.

 Chapter 24. spec Reference 725

 spec Reference

:

: WhileGroup:

: ├──WHILE──┤ Expression ├──DO──┤ ItemGroup ├──DONE──┤

: The WHILE group contains two parts:

: ¹ The opening keyword and the test to be performed:

: – The keyword WHILE.

: – An expression to be evaluated.

: – The keyword DO.

: ¹ An item group, which is issued if the result of the expression is true (that is,

: nonzero). The group is terminated by the DONE keyword.

 Plain Item
A plain item can describe a field in an output record; it can control input and output

streams; it can react to control breaks; it can specify a pad character; it can specify an

: expression to evaluate for its side effects; and it can establish or disable a qualifier for use

: in specifying members of structures.

PlainItem:

├─ ──┬ ┬─┤ DataField ├── ─┤
├ ┤─┤ StreamControl ├──
├ ┤─┤ BreakControl ├───

 ├─PAD──xorc─ ───┤
 ├ ┤─SET──┤ expression ├──────────────────────────────────────

: │ │┌ ┐─BOTH───
: └: ─Qualify──┬─────┬──┼────────┼──┬: ─identifier──┬────────┬─┬: ─┘
: └─ALL─┘ ├─INput──┤ │ └─number─┘ │
: └ ┘─OUTput─ ├ ┤─-──────────────────────
: └ ┘─.──────────────────────

: Notes:

: 1. Using a qualifier that applies to a particular input stream is definitely useful when

: several members are referenced in a number of specification items interspersed with

: SELECT items.

PAD Specify the character to insert in the output record between output fields.

The default pad character is the blank.

SET Specify an expression to be evaluated for its side effects. (That is, to set

variables.) The result is discarded.

: QUALIFY: Specify the qualifier for all streams or the currently selected stream of

: the specified type, or both input and output. The number specifies the

: beginning column for the structure; column 1 is the default. You must

: specify a number when the next item is an input source that also is a

: single column. A period or a hyphen disables any active qualifier.

: Specify BOTH explicitly when the identifier scans as one of the

: input/output keywords.

: The QUALIFY item can be specified anywhere in the item list; in partic-

: ular, a member need not follow, as it must when used in an inputRange.

726 CMS Pipelines User’s Guide and Reference

 spec Reference

 Stream Control
The stream control items read or write records during the cycle; they select the source of

data for subsequent input fields; and they select the stream to which subsequent writes will

be directed.

StreamControl:

├──┬─SELECT──┬─stream─┬─┬ ──┤
. │ │├ ┤─FIRST──

 │ │└ ┘─SECOND─
 ├ ┤─READ───────────────
 ├ ┤─READSTOP───────────
 ├─OUTSTREAM──stream─ ─┤
 ├ ┤─WRITE──────────────
 └ ┘─NOWRITE────────────

SELECT Select the source for input data in subsequent field items. Specify the

stream identifier for the input stream you wish to process.

. Or specify one of the keywords FIRST and SECOND to use the record in

. that particular reading station. SELECT FIRST is a convenience for

. SELECT 0.

SELECT 0 is implied at the beginning of the cycle unless some other

SELECT item precedes the first data field.

READ

READSTOP
Consume the record on the currently selected input and peek at the next

input record. For READSTOP, terminate the cycle if the stream is at end-

of-file. Otherwise a null record is assumed if the stream is at end-of-file.

This record is used as the source of input fields in subsequent field

items. The second reading station is unaffected. All field identifiers

become undefined. The break level is reset to no break established.

: READ and READSTOP for the primary input stream discards the current

: record; it will not be available from the second reading.

. READ and READSTOP are not valid after SELECT SECOND as there is no

. stream to read.

OUTSTREAM Specify the stream to receive output records. Subsequent WRITE items

will write to the specified stream. The last OUTSTREAM item issued in a

cycle specifies where to write the record at the end of the cycle.

OUTSTREAM 0 is implied at the beginning of a cycle.

WRITE Write the output record built so far to the stream specified in the last

OUTSTREAM item issued. Reset the output record to be null.

NOWRITE: Suppress the write at the end of the cycle. NOPRINT is a synonym for

: NOWRITE

 Break Control
Specification items after a break control are issued only if a break level has been estab-

lished at least to the level specified.

Break items are not allowed in IF groups. The break items are a convenience; they can

also be formulated with IF.

 Chapter 24. spec Reference 727

 spec Reference

BreakControl:

├──┬─BREAK──┬─letter─┬─┬ ──┤
. │ │├ ┤─FIRST──
. │ │└ ┘─EOF────

 └ ┘─EOF───────────────

BREAK

letter
The subsequent specification items are issued only if a break has been

established at the specified level or higher. Otherwise all items up to the

next break control are ignored. Further break items are allowed.

. BREAK FIRST. The subsequent specification items are issued only on the runin cycle.

. Further break items are allowed.

. BREAK EOF. The subsequent specification items are issued only on the runout cycle.

. Further break items are allowed.

EOF The remainder of the specification list is issued only on the last cycle

performed by spec; it is ignored on other cycles. No further break items

! are allowed in the specification list. If no runout cycle is scheduled; that

: is, the second reading is not used, a final cycle is taken issuing only the

: items that follow EOF.

 Data Field
A data field inserts a field in the output record. You must specify an input source and an

output placement; you may also specify conversion of the contents of the field from one

representation to another one; and you may specify that the input field is stripped of blanks

before it is converted (or before it is placed in the output, if you specify no conversion).

A data field is suppressed if it refers to an input range that is not present in the record and

the output placement does not specify an explicit length for the output field; the item is

then ignored.

DataField:

├──┤ InputSource ├─ ──┬ ┬─────── ──┬ ┬──────────────── ─►
└ ┘─STRIP─ └ ┘─┤ Conversion ├─

►─ ──┬ ┬─┤ OutputPlacement ├─ ─┤
 └ ┘─.───────────────────

STRIP. Strip the input field of leading and trailing blanks for subsequent use

. within this specification item. Other specification items that reference

. this specification item through a field identifier use the original contents

. of the input range.

. (A period.) Do not insert the field into the output record. The period

makes sense only if the field originates in an input record and a field

identifier is specified; specifying a period with other items has the same

! effect as omitting them, except that any side effects of evaluating a

: PRINT expression will still occur.

728 CMS Pipelines User’s Guide and Reference

 spec Reference

 Input Source
The input source specifies where data come from. Data can originate in an input record;

they can be the result of evaluating an expression; they can be a literal constant; or they

can be generated internally in spec.

There is a length associated with an input field.

InputSource:

├──┬─┬─────────┬──inputRange─────────────────────────────┬──┤
│ └─letter:─┘ │

 ├ ┤ ─NUMBER─ ──┬ ┬─────────────── ──┬ ┬───────────── ─────────
 │ └─FROM──snumber─┘ └─BY──snumber─┘ │
 ├ ┤─TODclock──
 ├─ID──letter─ ───┤
 ├ ┤─PRINT──┤ Expression ├─ ──┬ ┬──────────────────────────
 │ └─PICture──word──┬───────┬─┘ │

. │ │└ ┘─ROUND─
└─delimitedString─────────────────────────────────────┘

inputRange: Data originate in an input record or specify a manifest constant.

Specify a substring of an input record to reference input data. The

record used is the one selected by the last SELECT issued. A substring

that is completely outside the record is considered null. (It contains no

data.)

You can prefix the input range with a letter and a colon unless the item

is in a conditional group. This identifies the field for use in subsequent

expressions or ID items.

The implied field length is the length of the input field.

: A manifest constant is syntactically a subset of an inputRange, but the

: structure defines the member as a constant rather than as a field. A

: manifest constant is not valid in conjunction with a field identifier. A

: manifest constant refers to four bytes binary (two’s complement nota-

: tion), which are of type D. The default placement is right aligned.

: Thus, vmcparm.vmcpsend resolves to a field that contains X'00000002'.

 Chapter 24. spec Reference 729

 spec Reference

! Notes:

! 1. NUMBER is a convenience; the same result can be obtained by incrementing a counter.

! 2. No provision exists to store the complete time-of-day clock.

NUMBER! Data originate in spec. When no additional keywords are specified, and

! NUMBER is not issued conditionally, the number generated is the number

! of the current cycle. That is, READ or READSTOP items do not increase

: the number generated.

Two subkeywords are optional. FROM specifies the record number to use

for the first record; the default is 1. BY specifies the increment; the

default is 1. Numbers can be negative.

: The number is incremented each time the specification item is issued,

: and only then. Thus, when NUMBER is issued conditionally or in a

: break, it may not reflect the number of records processed by spec; it

: may be higher when in a WHILE group. Specifically, NUMBER that is

: issued on end-of-file, will not have been incremented previously. Use

: the number() built-in function to obtain the number of the current

: record.

The record number is computed in decimal arithmetic with up to fifteen

significant digits. Overflow is ignored; the carry out of the leftmost digit

is lost; the sign remains unchanged. The number is aligned to the right

with a drifting minus sign.

The implied field length is ten characters.

Each NUMBER item maintains a separate record number.

TODCLOCK Data originate in spec. Eight bytes are provided containing the value of

the time-of-day clock at the beginning of the cycle. The field contains a

64-bit binary counter; the thirty-first bit is incremented slightly less often

than once a second. Refer to z/Architecture Principles of Operation,

SA22-7832, for a description of the time-of-day clock.

The implied field length is eight bytes.

ID. Refer back to the contents, before stripping, of a previously defined

input range.

The implied field length is the length of the input range.

PRINT Compute an expression and format the result. You may specify PICTURE

to supply the picture under which the result is presented. Refer to

“Pictures” on page 747 for the syntax of a picture. The default picture

. is eleven digits with a drifting minus sign. When a picture is specified,

. the expression must evaluate to a numeric result; when the picture is

. omitted, a string expression is also acceptable. When a picture is used,

. the value is truncated unless ROUND is specified.

The implied field length is the length of the picture (ignoring a V, if one

is specified).

delimitedStringThe delimited string represents a constant in all cycles. The constant

can be specified as a string between delimiter characters, as a

hexadecimal literal, or as a binary literal.

The implied field length is the length of the literal.

730 CMS Pipelines User’s Guide and Reference

 spec Reference

 Conversions
The conversions are modelled on the REXX built-in functions to convert between binary

and other formats.

The conversion routine names are of the form x2y, where x represents the data format

before conversion and y represents the format desired for the result.

The REXX function names may be confusing; if so, the confusion is carried over into spec.

The confusion stems from the fact that the format C (for character) is not usually printable

characters, rather it is the internal form of the data, as represented inside the computer.

Thus, d2c converts from printable decimal to four bytes of binary data. Possibly, you

would have expected it to be the other way round, but there you are; REXX works the same

way.

: Note: Explicit conversion disables any numeric type specified for a member, both in the

: input source and in the output placement. In general, explicit conversion is incompatible

: with structured data.

conversion:

. ├─ ──(1). ──┬ ┬─C2D(8)───────────────────── ─┤

. ├ ┤. ─C2T─ ──┬ ┬───────────────────

. │ ││ │┌ ┐─0───────

. │ └. ─(──┼─snumber─┼──)─┘. │

. │ │└ ┘─*───────
: ├ ┤─C2U(8)─────────────────────
. ├ ┤─D2C(8)─────────────────────
. ├ ┤. ─T2C─ ──┬ ┬───────────────────
. │ ││ │┌ ┐─0───────
. │ └. ─(──┼─snumber─┼──)─┘. │
. │ │└ ┘─*───────
: ├ ┤─U2C(8)─────────────────────

├ ┤──f2t ───────────────────────
├─P2t(snumber)───────────────┤
└─f2P(snumber)───────────────┘

Note:
1 The conversion routines are B2C D2C F2C I2C P2C T2C U2C V2C X2C C2B C2D C2F C2I

C2P C2T C2U C2V C2X and selected direct conversions.

These routines convert from internal representation (binary) to a format that can be printed

or displayed on a terminal:

C2B Convert bytes to bit string (unpack bytes to bit strings). For each character in

the input field, the result has eight bytes containing the character 0 or 1

(X'F0' or X'F1').

C2D Convert a binary integer using two’s complement notation for negative

. numbers to a character string. C2D operates on 32-bit integers; C2D(8) operates

. on 64-bit integers. This is the format used for fixed point integers on IBM

System/360 and its descendants. Numbers must be within the 32-bit (64-bit)

precision of the fixed point instruction set; input fields longer than 4 (8) char-

: acters are allowed only if the leading characters represent a sign extension that

: can be stripped down to 4 (8) bytes. For C2D, the conversion result is 11

characters, aligned to the right, padded with blanks on the left. (It has no

. leading zeros.) C2D(8) produces a field that is large enough to contain the

. number, but, unlike C2D, no longer. That is, the number aligned to the left; be

 Chapter 24. spec Reference 731

 spec Reference

. sure to specify an output range with right alignment in tabular reports. Nega-

tive numbers have a leading minus; other numbers are unsigned.

C2F Convert a doubleword of IBM System/360 long floating point representation

. (hexadecimal floating point) to scientific notation. The input field must be

between two and eight bytes long. A field that is shorter than eight bytes is

padded on the right with binary zeros. Exact zero (with either sign) is

converted to the single character, 0. The conversion result for other numbers

is a 22-character string containing the number in scientific notation. It has a

leading sign, one significant digit before the decimal point, and a 15-digit frac-

tion. Numbers with an absolute value from 1 to 10 have four trailing blanks.

Numbers numerically 10 and larger are represented with a positive exponent;

numbers numerically less than 1 are shown with a negative exponent.

C2I Convert from z/OS Julian date format to ISO (or “sorted”) timestamp format.

The input field may contain between three and seven characters. Each halfbyte

contains a decimal digit, except for a sign (which must be X'F') in the right-

most four bits of the third or fourth byte. When the sign is in the third byte,

the year is in the century beginning with the year 1900. When the sign is in

the fourth byte, the first byte contains the number of centuries beyond 1900.

Up to three bytes containing a timestamp are allowed after the sign. The

output field contains at least eight characters for the date, expressed in ISO

format: yyyymmdd. Additional characters are appended when the input field

contains a timestamp.

. C2T Convert eight bytes binary time-of-day clock value to an ISO timestamp. A

. time zone offset in seconds can be specified as a signed number in paren-

. theses; specify a positive number east of Greenwich. The default is 0.

. Specify * to use the time zone offset that CP stores on diagnose 0.

C2P Convert a packed decimal number to a printable form. The input field must

contain a valid IBM System/360 packed decimal number (but it is not

restricted in length). A scale factor in parentheses may be appended to the

name of the conversion routine. When no scaling is specified, the output field

contains a sign (plus or minus) and an integer number. When scaling is

specified, a positive scaling indicates the number of decimal places; a negative

scaling represents additional orders of magnitude in the number. The output

field contains a sign (plus or minus), the integer part of the number (if any), a

decimal point, and the decimal fraction (if any).

: C2U Convert an unsigned binary integer. Except for sign, processing is identical to

: the corresponding variant of C2D.

C2V Select substring. The input field is a varying length character string. It

consists of a halfword that contains the length in binary (unsigned); this is

followed by the characters of the string. The string length may be in the range

0 through 65535 inclusive. The conversion result begins with the third byte of

the input field; it has as many characters from the input field as the halfword

string length specifies. It is an error if the string length is larger than the

length of the input field minus two.

C2X Convert bytes to hexadecimal (unpack hex). The conversion result has two

characters (0 through 9 and A through F) for each input character.

These routines convert a “readable” representation to the internal (binary) representation:

B2C Pack bits. The input field must consists entirely of the characters 0 and 1; the

length must be a multiple of 8. The result has one character for each 8 char-

acters in the input field.

732 CMS Pipelines User’s Guide and Reference

 spec Reference

D2C Convert from signed decimal to binary. The input field must contain a

decimal integer that may be signed or unsigned. Leading and trailing blanks

are allowed; blanks are allowed between the sign and the number. The result

. is 4 bytes (8 bytes for C2D(8)). with the number in binary using two’s comple-

ment notation for negative numbers. The number must be within the 32-bit

. (64-bit) precision of IBM System/360 integer arithmetic.

! F2C Convert from decimal to hexadecimal floating point. The input field must

contain the external representation of a floating point number which can be

signed and can have an exponent. The result is 8 bytes containing the number

. in the format of a long floating point number in IBM System/360 hexadecimal

. floating point notation.

I2C Convert from ISO timestamp to z/OS Julian date format. The length of the

input field must be even, between six and fourteen. When the input field is six

characters, three bytes output is generated. When the input field is eight char-

acters or longer, the first four characters specify the year.

P2C Pack a decimal number. The input field consists of an optional sign, an

optional integer, and an optional decimal fraction. Blanks are allowed before

and after the number, and between the sign and the number. A scale factor in

parentheses may be appended to the name of the conversion routine. When no

scale factor is present, the packed number contains all digits from the input

field, right aligned; if present, a decimal point is ignored. When the scale

factor is zero, the packed number contains only the integer part of the input

field. When a negative scale factor is specified, that number of integer digits

are truncated on the right (the fraction is ignored). When a positive scale

factor is specified, the fraction is truncated or padded with zero on the right to

this number of digits.

. T2C Convert an ISO timestamp to eight bytes time-of-day clock. A time zone offset

. in seconds can be specified as a signed number in parentheses; specify a posi-

. tive number east of Greenwich. The default is 0. Specify * to use the time

. zone offset that CP stores on diagnose 0.

: U2C Convert from decimal to unsigned binary. Except for the lack of sign and the

: extended number range, processing is identical to the corresponding D2C

: variant.

V2C Prefix field length. The result consists of an unsigned halfword (16 bits) with

the length of the input field, followed by the contents of the input field. The

longest acceptable input field is 65535 bytes.

X2C Convert pairs of hexadecimal digits to single characters. The input field must

contain an even number of hex characters. As for REXX hexadecimal

constants, blanks are allowed at byte boundaries internally in the input field,

but not at the beginning or the end. The result is a character string with one

character for each two hex characters in the input field.

Some conversions are supported directly between printable formats, for example X2B. This

table summarises the supported combinations. A blank indicates that the combination is

not supported.

 Chapter 24. spec Reference 733

 spec Reference

Composite conversion (x2y) is performed strictly via the C format; that is, x2C followed by

C2y.

Figure 404. Composite Conversions Supported

D X B F V P I T U

D D2X D2B

X: X2D: X2B: X2F: X2V: X2P: X2I: X2T: X2U

B: B2D: B2X: B2F: B2V: B2P: B2I: B2T: B2U

F F2X F2B

V V2X V2B

P P2X P2B

I I2X I2B

T T2X T2B

U: U2X: U2B

 Output Placement
The output placement specifies where a field is stored in the output record. It consists of a

position and a placement option, which specifies the alignment of the data within the field.

When no explicit length is specified for the output field, the length of the data to be stored

is used as the size of the output field.

OutputPlacement:

├─ ──┬ ┬ ──(1)──┬ ┬─Next────── ──┬ ┬─────────── ──┬ ┬──────── ─┤
│ ├─NEXTWord──┤ └─.──number─┘ │ ├─Left───┤

 │ │└ ┘─NEXTField─ ├ ┤─Centre─
├─number─────────────────────────┤ └─Right──┘
├─range──────────────────────────┤

: ├: ─Member──identifier─: ────────────┤
: └ ┘─┤ CompOut ├────────────────────

CompOut:

. ├──(──┤ Expression ├──►

. ►─ ──┬ ┬── ─)──┤
: └ ┘: ─,──┤ Expression ├─ ──┬ ┬───────────────────
: └ ┘: ─,──┤ Expression ├─

Note:
1 There is no blank between the keyword, the period, and the number.

NEXT Append the field to the end of the output record built so far. You may

append a period and a number to specify an explicit field length.

NEXTWORD

NW
Append a blank to the output record if it is not null. Then append the

field to the end of the output record built so far. You may append a

period and a number to specify an explicit field length. NWORD is a

synonym; it can be abbreviated to NW.

734 CMS Pipelines User’s Guide and Reference

 spec Reference

An optional keyword specifies the placement of the source field within the output field;

this is called a placement option. When a placement option is specified, the input field

after conversion (and thus after the default length of the output field is determined) is

stripped of leading and trailing blank characters unless the conversion is D2C, F2C, I2C,

: P2C, U2C, or V2C. This field is then inserted in the output field, truncated or padded with

the pad character, as specified by the keyword used:

NEXTFIELD

NF
Append a horizontal tabulate character (X'05') to the output record if it

is not null. Then append the field to the end of the output record built

so far. You may append a period and a number to specify an explicit

field length. NFIELD is a synonym; it can be abbreviated to NF.

number Specify the beginning column of the output field. The field will be the

size of the source data to be stored.

range Specify the extent of the output field. If the field length is different

: from the size of the data to be stored, the data are padded with the pad

: character or truncated on the right, unless a placement option is

specified.

: MEMBER: Specify the identifier for the member that defines the output field and its

: type. For members that are typed D, F, or P and without picture,

: explicit conversion, or STRIP, the input source is converted automatically

: to the requested output type. When the input is not a typed member, the

: character input field is converted to a counter and thence to the

: requested output format. Direct automatic conversion between the three

: types is also applied when the input source is a typed field and no

: explicit conversion or STRIP is specified, except that conversion to or

: from packed decimal is performed via assigning the value to a counter,

: which may truncate the significant digits to 31.

. Expression: The parenthesised expression specifies the column number and optionally

: the field width and placement. The first expression must evaluate to a

: positive integer; the second expression must evaluate to an integer that is

: zero or positive; and the third expression must evaluate to a string that

: matches one of the placement options described below. A length of zero

: specifies that the length is the default length for the particular input

: source.

: When the third expression is present, the placement option described

: below is ignored.

. The parentheses are required.

: These two output placements are identical, except that the second one

: will take somewhat longer than the first one:

: ... 1.8 c ...
: ... (1, 8, "c") ...

LEFT The field is aligned to the left of the output field, truncated or padded on

the right with pad characters.

 Chapter 24. spec Reference 735

 spec Reference

CENTRE The field is loaded centred in the output field truncated or padded on

both sides with pad characters. If the field is not padded equally on both

sides, the right side gets one more pad character than the left side. If

the field is not truncated equally on both sides, the left side loses one

more character than the right side.

CENTER is also recognised.

RIGHT The field is aligned to the right of the output field truncated on the left

or padded on the left with pad characters.

 Expression
: An expression contains terms that are combined with operators. All REXX numeric opera-

tors are supported, except for the exponentiation operator (**) and the exclusive OR oper-

: ator (&&). The REXX concatenate operator (||) is also supported, but the blank operator is

: not (concatenate with blank). In addition, several operators are borrowed from the C

language, as is the notion that assignment is an operator.

A few diagrams are required to show the correct precedence of the conditional operator,

which selects one of two expressions depending upon the result of evaluating a third

expression. The precedence of the remaining operators is not shown by diagrams, but by

the order in which they are described.

Blanks are ignored between syntactic entities in the part of an expression that is enclosed

in parentheses. But an expression that contains no parenthesis cannot contain blanks,

because the first blank will mark the end of the expression. Enclose the entire expression

in parentheses to be able to use blanks liberally.

: spec parses expressions differently than most other components of CMS Pipelines. For

: example, a word need not be blank-delimited (in some contexts, it must not be followed by

: a blank); an operator or a separator will do just as well, while in other stages or not within

: an expression, the operator or separator would be included in the word.

Expression:

├──┤ AssignmentExpression ├─ ──┬ ┬─────────────────── ─┤
 └ ┘─;──┤ Expression ├─

The semicolon operator evaluates its left hand operand and then its right hand one. The

result is the left hand operand; the right hand result is discarded. Thus, the semicolon

operator can be used to reset a counter after it is printed.

 Assignment Expression
The operand of the semicolon operator can be a conditional expression (which is defined

later); or it can be an assignment expression.

An assignment expression evaluates the first operand and then assigns a value to the

specified counter. How this is done depends on the particular assignment operator used.

736 CMS Pipelines User’s Guide and Reference

 spec Reference

AssignmentExpression:

├─ ──┬ ┬─┤ CondExpr ├─── ─┤
 └ ┘─── ──┤ Counter ├─ ─┤ Aoperator ├──┤ AssignmentExpression ├─

Counter:

├──┬─#number─────────────┬──┤
: └ ┘──#(─┤ Expression ├─)

: After the pound sign, specify the number of the counter to receive a value or an integer

: expression in parentheses to compute the number of the counter.

The assignment operators are:

:= Assignment. The counter is assigned the value of the right hand side.

Nota bene: A colon is used to distinguish the assignment operator from the

relational equality operator.

+= Increment. The right hand operand is added to the counter.

-= Decrement. The right hand operand is subtracted from the counter.

*= The counter is multiplied by the right hand operand.

/= The counter is divided by the right hand operand.

%= The counter is divided by the right hand operand. The result is truncated to an

integer.

//= The counter is assigned the remainder after division by the right hand operand.

x//y == x-((x%y)*y)

: ||= : The string representation of the right hand operand is appended to the contents

: of the counter, which is converted to a string, as required.

 Conditional Expression
The conditional expression evaluates a binary expression. The question mark operator is a

ternary operator. It evaluates its first operand and then one of its two remaining operands,

which are separated by a colon. When the first operand evaluates true, the operand to the

left of the colon is evaluated and the other one is ignored; when the result is false, the

colon’s left operand is ignored and the right hand one is evaluated.

CondExpr:

├──┤ BinaryExpression ├──►

►─ ──┬ ┬── ─┤
 └ ┘─?──┤ AssignmentExpression ├──:──┤ AssignmentExpression ├─

. The two assignment expressions must be of the same type. The result takes on this type.

. Two field identifiers are taken to be numeric; one field identifier is taken to be a string

. reference when the other expression is a string expression. The built-in function string()

. can be used to cast a field identifier into a string.

. When one of the assignment expressions is a string and the other one is numeric, that

. number will be converted to a string.

 Chapter 24. spec Reference 737

 spec Reference

 Binary Expression

BinaryExpression:

├─ ──┬ ┬─────────────── ─┤ Term ├──►
└ ┘─┤ Uoperator ├─

►─ ──┬ ┬───────────────────────────────────── ─┤
 └ ┘─┤ Boperator ├──┤ BinaryExpression ├─

The unary operators bind closest to a term. They are:

The binary operators are described here in the order of precedence, the operators that have

the highest precedence are first. Operators in a group have the same precedence. Opera-

tors that have the same precedence group from left to right.

: Operands are converted to the appropriate type, as required. An error is reported when a

: string operand cannot be converted to a number.

: Note that unlike REXX, numeric comparison operators do not perform string comparisons

when an operand is not numeric.

When the order of evaluation of the operands is not specified, it is indeed unspecified. Do

not rely on the order of evaluation, even though you can determine it easily enough. For

example, it is unpredictable whether an assignment in one operand has effect for the evalu-

ation of the other operand.

- Minus. The sign is inverted.

+ Plus. The term is unchanged.

¬ Negate. When the term is zero, the result is the number 1. Otherwise the

result is the number 0.

The multiplicative operators have the highest precedence of the binary operators.

* Multiplication.

/ Division.

% Integer division. Truncate the result to an integer.

// Remainder after division.

x//y == x-((x%y)*y)

Addition and subtraction.

+ Add.

- Subtract.

: The concatenate operator is alone in its group.

: || : Concatenate the two string operands.

The relational operators. The result is 1 if the relation holds; otherwise it is 0.

< : Test for the first operand being numerically less than the second one.

<=
¬>

: Test for the first operand being numerically less than or equal to the second

one.

738 CMS Pipelines User’s Guide and Reference

 spec Reference

> : Test for the first operand being numerically greater than the second one.

>=
¬<

: Test for the first operand being numerically greater than or equal to the second

one.

<< : Test for the first operand being string being strictly less than the second one.

<<=
¬>>

: Test for the first operand being string being strictly less than or equal to the

second one.

>> : Test for the first operand being string being strictly greater than the second

one.

>>=
¬<<

: Test for the first operand being string being strictly greater than or equal to the

second one.

Equality operators. The result is 1 if the relation holds; otherwise it is 0.

=: Test for the first operand being numerically equal to the second one.

¬=: Test for the first operand being numerically not equal to the second one.

==: Test for the first operand being string being strictly equal to the second one.

¬==: Test for the first operand being string being strictly not equal to the second

one.

The AND operator is alone in its group.

& First evaluate the left hand side. When it evaluates to 0, the result is set to 0

. and the second operand is not evaluated. The second operand is evaluated

only if the first one evaluates to a nonzero value. If the second operand then

evaluates to 0, the result is set to 0. The result is 1 only when both operands

evaluate to a nonzero value. Note that this behaviour is different from REXX;

it is similar to the C && operator.

The OR operator is alone in its group.

| First evaluate the left hand side. When it evaluates to a nonzero value, the

. result is set to 1 and the second operand is not evaluated. The second operand

is evaluated only if the first one evaluates to 0. If the second operand then

evaluates to a nonzero value, the result is set to 1. When both operands eval-

uate to 0, the result is 0. Note that this behaviour is different from REXX; it is

similar to the C || operator.

 Term
A term represents a floating point number, the value of an identified field, the value of a

: counter, the result of a call to a built-in function, the contents of a member of a structure,

or the result of evaluating an expression in parentheses.

Term:

├─ ──┬ ┬─┤ FPnumber ├───────────────────────── ─┤
├ ┤─┤ FunctionCall ├─────────────────────
├─letter───────────────────────────────┤

: ├: ─identifier──┬──────────────────────┬─┤
: │ │└ ┘: ─(──┤ Expression ├──)─

├─quotedString─────────────────────────┤
├─#number──────────────────────────────┤

: ├ ┤──#(─┤ Expression ├─) ─────────────────
 └ ┘─(──┤ Expression ├──)─────────────────

 Chapter 24. spec Reference 739

 spec Reference

: The ambiguity in the syntax of counters, field identifiers, functions, and member names is

: resolved as follows:

: ¹ A single letter that has also been specified as an identifier for an input source is

: scanned as a field identifier.

: ¹ A number sign (#) that is followed by only digits and no letters or any of the special

: characters @#$! is scanned as a counter.

: ¹ An identifier followed by a left parenthesis is scanned as a function name when it

: represents one of the built-in functions or a user written function in a filter package.

: Otherwise it is scanned as a subscripted member. You must prefix a member name

: that is also a built-in or user written function by a period to select the active qualifier.

: ¹ Otherwise it is scanned as an identifier. Thus #0x is scanned as an identifier.

: Note that identifiers in expressions cannot contain a question mark because that is

: scanned as the conditional operator, but they are valid in input sources and output

: placements.

letter Specify the identifier for a field to reference the contents of that field.

: When used alone in assignment and PRINT and no type is specified, the

contents of the field are converted to the internal representation of a

: number. When no specification item has been declared for the letter, it

: is parsed as an identifier instead.

: identifier: Specify the name of a member of a structure, optionally with a

: computed subscript. The identifier may specify a fully qualified member

: name by prefixing it with two periods; you may specify that the current

: qualifier is to be used by prefixing one period. When the structure

: contains nested structures, such structures can also be subscripted.

: While the subscript is shown as optional, it should be taken to mean that

: you must specify a subscript when referencing a member that is an

: array; and you may not specify a subscript for a scalar member.

: Note in particular that this usage does not apply to an inputRange that

: specifies a field in the input record; for that you are limited to constant

: subscripts.

: When the identifier resolves to a member of a structure that is a manifest

: constant, the value of the constant is used as if it were entered as a

: number. Thus vmcparm.vmcpsend will resolve to the number 2.

#number Specify the number of the counter to reference.

#(): Specify an expression to compute the number of the counter to refer-

: ence.

quotedString Specify a character string for strict comparison operators. The string

follows the REXX rules. That is, double occurrences of the enclosing

quote specify a single occurrence of the enclosing quote inside the

string; hexadecimal constants are denoted by an X after the closing

. quote. Binary constants are denoted by a B after the closing quote.

. '0', 'f0'x, and 1111000'b all designate the same character.

740 CMS Pipelines User’s Guide and Reference

 spec Reference

Floating point Numbers
A number consists of an optional sign followed by an integer part. A fraction and an

exponent part are optional. Blanks are not allowed in a floating point number. This

syntax also applies to input fields that are converted to the internal representation of

numbers.

FPnumber:

 ┌ ┐─────────
├──┬───┬───6─digit─┴──┬────────────────┬──┬─────────────────────┬──┤

 ├ ┤─+─ │ │┌ ┐─────────── │ │┌ ┐─────────
└─-─┘ └─.───6┬───────┬┴─┘ └─E──┬───┬───6─digit─┴─┘

 └ ─digit─┘ ├─+─┤
 └ ┘─-─

The implementation also supports fractional numbers that begin with a period; for example,

.5. In this format, at least one digit must be specified after the period. To retain clarity,

this is not shown in the railroad track above.

: Any additional significant digits beyond the 31-digit precision are ignored.

 Functions
: spec supports user written functions in type-2 filter packages, as well as built-in ones.

: Some, but not all, built-in functions can be replaced by functions in the PTF filter package;

: which ones is unspecified and may change over time. The search order is:

: 1. “Hardwired” function names.

: 2. Functions in the PTF filter package.

: 3. Other built-in functions (those that are not hard wired).

: 4. Functions in other filter packages, in the order they were loaded.

: Built-in Functions
: spec expressions use a number of built-in functions. They are described here in four

: sections:

: ¹ Functions that perform as the function by the same name in the REXX language.

: ¹ Functions that are particular to spec and return a Boolean value.

: ¹ Functions that are particular to spec and return a number.

: ¹ Functions that are particular to spec and return a string.

FunctionCall:

. ┌ ┐─,──────────────────
├──┤ FunctionName ├───(1) ─(─ ───6 ┴──┬ ┬──────────────── ─)──┤

: └ ┘─┤ Expression ├─

FunctionName:

├──word──┤

Note:
1 No blanks are allowed between the name and the opening parenthesis.

 Chapter 24. spec Reference 741

 spec Reference

: While arguments are, in general, expressions, some functions require particular data, such

: as a single letter. This is noted in the syntax diagrams below.

: Functions Modelled on REXX
: The following functions have the same argument requirements and results as the corre-

: sponding REXX function.

: The functions are not described further (except for word, which is enhanced); refer to REXX

: documentation for details.

: ABBREV C2X LEFT SPACE WORDPOS
: ABS DATATYPE LENGTH STRIP WORDS
: BITAND DELSTR MAX SUBSTR XRANGE
: BITOR DELWORD MIN SUBWORD X2C
: BITXOR FIND OVERLAY TRANSLATE X2D
: CENTRE INDEX POS VERIFY
: COMPARE INSERT REVERSE WORD
: COPIES JUSTIFY RIGHT WORDINDEX
: C2D LASTPOS SIGN WORDLENGTH

: Notes:

: 1. datatype with one argument returns NUM when the first string can be assigned to a

: counter without error. Thus, it returns NUM for many strings that cannot be processed

: by the D2C conversion on a specification item.

: 2. Several conversion functions by the same name as a REXX function are defined as

: specific to spec because they either perform a slightly different function or they

: support fewer operands.

: 3. max and min with no or two or more arguments are described below.

: 4. word is also described below, because it supports a third argument to make it parallel

: to field.

: 5. spec has no concept of NUMERIC DIGITS, which may cause the numeric result of a

: function to be converted to string differently from REXX.

Boolean Built-in Functions

BooleanFunction:

├──┬─BREAK(letter)─────────────┬──┤
├ ┤──EOF() ────────────────────

. ├ ┤──EXACT(─┤ CondExpr ├─) ────
├ ┤──FIRST() ──────────────────

: └─PRESENT(─┬─letter─────┬─)─┘
: └─identifier─┘

742 CMS Pipelines User’s Guide and Reference

 spec Reference

break The argument must be a single literal letter, which specifies a field

identifier that must have been associated with an input field previously in

the specification list. break() returns 1 if a break has been established

on the level specified. On the runin cycle, no break is reported if the

field is null. A break is always reported on the runout cycle.

eof A niladic function. eof() returns 1 during the runout cycle. It returns

0 during all other cycles.

. exact. The argument must evaluate to a number. Often it is just a term that

. refers to a counter. The result is 1 if no truncation has occurred in the

. evaluation of the expression. The estimate is conservative, that is, the

. result may be zero even when the argument is in fact exact.

first A niladic function. first() returns 1 during the runin cycle. It returns

0 during all other cycles.

: present: Return 1 when the field is present in the record and 0 otherwise.

: length() for the contents of a field is 0 both when the field is present,

: but null, and when the field is not present.

Numeric Built-in Functions

NumericFunction:

. ├──┬─AVERAGE(letter)────────────────┬──┤

. ├ ┤──C2D(─┤ String ├─) ─────────────
: ├ ┤──C2F(─┤ String ├─) ─────────────
: ├ ┤──C2U(─┤ String ├─) ─────────────
: ├─DELTA(identifier)──────────────┤
. ├ ┤──MAX(──┬ ┬────────────) ─────────
. │ │└ ┘─┤ MaxMin ├─
. ├ ┤──MIN(──┬ ┬────────────) ─────────
. │ │└ ┘─┤ MaxMin ├─
. ├ ┤──NUMBER() ──────────────────────
: ├─PRIMARY(identifier)────────────┤
: ├─SECONDARY(identifier)──────────┤
. ├ ┤──SQRT(─┤ CondExpr ├─) ──────────
. ├ ┤──STDDEV(─┤ IdOrCondExpr ├─) ────
. ├ ┤──STDERRMEAN(─┤ IdOrCondExpr ├─)
. ├ ┤──VARIANCE(─┤ IdOrCondExpr ├─) ──
: ├ ┤──X2D(─┤ String ├─) ─────────────
: ├ ┤──X2F(─┤ String ├─) ─────────────
: └ ┘──X2U(─┤ String ├─) ─────────────

IdOrCondExpr:

. ├──┬─letter───┬──┤

. └ ┘───┤ CondExpr ├─ ,─┤ CondExpr ├─ ,─┤ CondExpr ├─

MaxMin:

. ┌ ┐─,────────────

. ├─ ───┤ CondExpr ├─ , ───6 ┴─┤ CondExpr ├─ ─┤

 Chapter 24. spec Reference 743

 spec Reference

. average. The argument must be a single literal letter, which specifies a field

. identifier that must have been associated with an input field previously in

. the specification list. The contents of the specified field must evaluate to

. a number in all input records. The number returned is the average over

. the input records seen so far. The average of no records is zero.

. c2d. The argument is a string expression. The string is interpreted as a

. binary number in two’s complement notation. The maximum number of

. significant input bits is 108 (which is not an integral number of bytes).

. The result is a number that expresses the binary input number in

. decimal.

: c2f: The argument is a string expression of two to sixteen bytes. The string

: is interpreted as the internal representation of a System/360 hexadecimal

: floating point number.

: c2u: The argument is a string expression. The string is interpreted as an

: unsigned binary number. The maximum number of significant input bits

: is 108 (which is not an integral number of bytes). The result is a

: number that expresses the binary input number in decimal.

: delta! Returns the difference in value of a member of a structure in subsequent

! input records. A convenience for primary(x)-secondary(x). The

! second term is zero during the runin cycle, effectively making the result

! equal to the first term. Use

! if first() then noprint else .. endif

! to avoid working with the full value from the first record during the

! runin cycle.

: delta implies both SELECT FIRST and SELECT SECOND.

. max. None, two, or more arguments must be specified. All arguments must

. evaluate to numbers. The result is the largest number in the argument

: list. When no arguments are specified, max() returns the largest (most

: positive) number that a counter can store.

. min. None, two, or more arguments must be specified. All arguments must

. evaluate to numbers. The result is the smallest number in the argument

: list. When no arguments are specified, min() returns the smallest (most

: negative) number that a counter can store.

. number. number() is niladic. The result is the number of the current cycle,

. starting with 1 on the runin cycle, if any is taken. During the runout

. cycle number() returns the total number of cycles taken. That is, it is

. not incremented during the runout cycle, unlike the NUMBER data source.

: primary: Return the numeric contents of the specified member from the first

: reading. The member must have a type that is D or F. primary implies

: SELECT FIRST.

: secondary: Return the numeric contents of the specified member from the second

: reading. The member must have a type that is D or F. secondary
: implies SELECT SECOND.

. sqrt. The argument must evaluate to a number that is zero or positive. The

. result is the square root of the number.

744 CMS Pipelines User’s Guide and Reference

 spec Reference

. stddev. For the monadic stddev() the argument must be a single literal letter,

. which specifies a field identifier that must have been associated with an

. input field previously in the specification list. The contents of the

. specified field must evaluate to a number in all input records. For the

. triadic stddev() the arguments must all evaluate to numbers. The first

. argument is considered to be the sum of a series of numbers (s); the

. second argument is considered to be the sum of the squares of the series

. (q) and the third argument is considered to be the count of observations

. (n). stddev(f) evaluates the triadic stddev(s, q, n) on the values

. seen so far in the field f.

. stddev:=sqrt(variance(s, q, n))

. stderrmean. For the monadic stderrmean() the argument must be a single literal

. letter, which specifies a field identifier that must have been associated

. with an input field previously in the specification list. The contents of

. the specified field must evaluate to a number in all input records. For

. the triadic stderrmean() the arguments must all evaluate to numbers.

. The first argument is considered to be the sum of a series of numbers

. (s); the second argument is considered to be the sum of the squares of

. the series (q) and the third argument is considered to be the count of

. observations (n). stderrmean(f) evaluates the triadic stderrmean(s,

. q, n) on the values seen so far in the field f.

. stderrmean:=stddev(s, q, n)/sqrt(n-1)

. variance. For the monadic variance() the argument must be a single literal

. letter, which specifies a field identifier that must have been associated

. with an input field previously in the specification list. The contents of

. the specified field must evaluate to a number in all input records. For

. the triadic variance() the arguments must all evaluate to numbers.

. The first argument is considered to be the sum of a series of numbers

. (s); the second argument is considered to be the sum of the squares of

. the series (q) and the third argument is considered to be the count of

. observations (n). variance(f) evaluates the triadic variance(s, q,

. n) on the values seen so far in the field f.

. variance:=q/n-(s/n)**2

: x2d: Similar to c2d, except the the input is an unpacked hexadecimal repre-

: sentation of the signed two’s complement binary number.

: x2f: Similar to c2d, except the the input is an unpacked hexadecimal repre-

: sentation of the hexadecimal floating point number. (Two different

: meanings of “hexadecimal”.)

: x2u: Similar to c2d, except the the input is an unpacked hexadecimal repre-

: sentation of the unsigned binary number.

 Chapter 24. spec Reference 745

 spec Reference

. String Built-in Functions

.

. StringFunction:

: ├──┬─FIELD(─┤ String ├─,snumber─┬───────────────┬─)─┬──┤
: │ │└ ┘: ─,──┤ String ├─
: ├ ┤──RECORD(──┬ ┬────────────────────────) ──────────
: │ └: ─snumber──┬───────────┬─┘: │
: │ └: ─,──number─┘: │
: ├ ┤──STORAGE(─┤ String ├─,─┤ number ├─) ────────────
. ├ ┤──STRING(─┤ String ├─) ──────────────────────────
: ├ ┤──SUBSTITUTE(─┤ Substitute ├─) ──────────────────
: ├─TYPE(─┬─letter─────┬─)─────────────────────────┤
: │ └─identifier─┘ │
: └─WORD(─┤ String ├─,snumber─┬───────────────┬─)──┘
: └ ┘: ─,──┤ String ├─

. Substitute:

: ├──┤ String ├──,──┤ String ├──,─ ──┬ ┬──────────── ─,─ ──┬ ┬──────── ─┤
: └─┤ String ├─┘ └─number─┘

: The string argument may be a literal letter which refers to the identified input range; an

: identifier that specifies a member; a quoted string literal; or the result of a string function.

: field: Return the nth field of the first string. The number must be nonzero.

: The field number is counted from the end of the string when the number

: is negative. If present, the second string argument must have length 1; it

: specifies the field separator; the default is X'05', horizontal tab.

: record: Return the current input record or a substring of it. If present, the first

: number specifies the starting position of the result within the record; it

: must be nonzero. When this number is negative, the position is relative

: to the end of the record. The second number specifies the maximum

: number of columns to include in the result. The default is to the end of

: the record. The second number must be zero or positive. The result is

: never padded.

: storage: Return the contents of virtual storage at the specified address.

: The first argument is the address in printable hexadecimal; the second

: argument is a number that must be zero or positive.

: pipe spec eof print storage('230', 32) 1 | console
: ►VM Conversational Monitor System
: ►Ready;

. string. The result is the argument string without modification, syntactically cast

. as a string. Thus, string("1") returns a string, not a number.

. string() may be needed in conjunction with the conditional operator to

. cast one of the operands into a string.

: substitute: Return a modified string where occurrences of one substring are replaced

: by another, much as done the the XEDIT change command. The first

: argument is the string to be changed. The second argument is the

: substring to be replaced; it must be at least one character. The third

: argument is the replacement string, the default is an empty string. The

: fourth argument, if present, must be positive. It specifies the maximum

: number of substitutions to perform; the default is infinity.

746 CMS Pipelines User’s Guide and Reference

 spec Reference

: type: Return the data type associated with the field (if it is a member of a

: structure) or member, or a single blank.

: word: Return the nth word of the first string. The number must be nonzero.

: The word number is counted from the end of the string when the

: number is negative. If present, the second string argument must have

: length 1; it specifies the word separator; the default is X'40', a blank.

 Pictures

A picture is a pictorial description of the desired formatting of a numeric quantity. It is

specified after the keyword PICTURE.

A picture contains a character for each column of the formatted field, except that the V

character does not represent an output character. Thus, the output fields are fixed in

length. Case is ignored in pictures.

The picture characters are a subset of the ones defined for PL/I. They are

S+-$9Z*Y,./BVE. They comprise five groups: Sign, digit select, punctuation, implied

decimal point, and exponent.

It is customary to suppress leading zeros in formatted numbers. To support this, spec

maintains a significance latch internally. (“Latch” is the engineer’s jargon for what a

programmer calls a “switch”.) The latch remembers that a significant digit has been met.

A leading zero is replaced with a blank when the significance latch is off and the picture

character is the letter “Z”. The significance latch is off at the beginning of the picture. It

is turned on by a nonzero digit or the picture character 9. It is forced off again by the E

pattern character.

 Sign Characters

A sign character can be stand-alone or part of a drifting sign. A stand-alone sign character

occupies the column where it is specified. A drifting sign is specified by successive

columns containing the particular sign character, possibly with interspersed punctuation

characters. The sign occupies the column before the one where the significance latch is

turned on. Prior columns contain a blank. The first column of a drifting sign can never

contain a digit.

S (The letter S.) Insert the sign (+ or -) of the number. Zero is consid-

ered positive.

+ Insert a + if the number is zero or positive; a blank if the number is

negative.

- Insert a - if the number is negative; a blank if the number is not nega-

tive.

$ (The dollar sign.) Insert the currency symbol irrespective of the sign of

the number. (This is the pound sterling symbol on a UK terminal.)

 Chapter 24. spec Reference 747

 spec Reference

 Digit Selection
9 Insert a digit. The significance latch is set unconditionally.

Z Insert a digit, suppressing leading zeros. The position contains a blank

when the digit is zero and the significance latch is off. It contains a

digit if the digit is nonzero or the significance latch is on. A nonzero

digit sets the significance latch on.

* Insert cheque protection. The position contains an asterisk when the

digit is zero and the significance latch is off. It contains a digit if the

digit is nonzero or the significance latch is on. A nonzero digit sets the

significance latch. That is, the asterisk is similar to Z, except that it

inserts an asterisk rather than a blank when it processes a leading zero.

Y Insert a blank when the digit is zero, and the digit otherwise. A nonzero

digit sets the significance latch. Thus, Y is similar to Z, but it does not

test the significance latch.

 Punctuation
, Insert a comma if the significance latch is set; insert a blank otherwise.

. Insert a period if the significance latch is set; insert a blank otherwise.

/ Insert a forward slash if the significance latch is set; insert a blank other-

wise.

B Insert a blank.

Implied Decimal Point
V Insert nothing. The position corresponds to the implied beginning of the

fraction of the number. The significance latch is set if the counter

contains a nonzero value. When no V is present in a picture, a period

(if one is present) indicates the implied beginning of the fraction.

! The implied V in the picture is not compatible with the picture in PL/I

! and the use of this feature is discouraged.

 Exponent
E Insert the character “E”. This marks the beginning of the exponent.

The exponent field can contain only an optional sign, which cannot drift,

followed by digit selectors Z (suppress zero) or 9.

 General
The default picture is ----------9, which is eleven columns with a drifting minus sign.

These rules apply to the pattern as a whole:

1. There can be at most one E and its attendant exponent field.

2. There can be at most one V. The V must be before the E (if one is present).

3. A sign that does not drift can be at the beginning of the picture or after the decimals.

Only an exponent may follow a sign that is after digit selectors.

4. A drifting sign must be specified with the same sign character in all positions.

748 CMS Pipelines User’s Guide and Reference

 spec Reference

5. Drifting signs, zero suppress, and cheque protection are mutually exclusive. Only the

digit selector 9 can be used after any of these.

Continental European Conventions
Pictures can be used to format numbers according to Continental European conventions,

for example zzz.zz9v,99. Here, the V is mandatory. If it were omitted, it would be

assumed that the fraction begins after three digits rather than six. Note that a number

formatted in this way cannot be processed directly by another spec stage. You can use

change to remove the periods and xlate to change the comma to a decimal point.

 Chapter 24. spec Reference 749

 Pipeline Commands

 Chapter 25. Pipeline Commands

This chapter contains Programming Interfaces.

The default command environment of a REXX program running as a pipeline filter proc-

esses pipeline commands, described in alphabetical order in the following sections. This

list is an overview by function.

Figure 405. Overview of Pipeline Commands

Transport Data BEGOUTPUT Enter implied output mode.

READTO Read a record from the currently selected input stream.

PEEKTO Preview the next record from the currently selected input stream. The

record stays in the pipeline.

OUTPUT Write the argument string to the currently selected output stream.

SHORT Connect the currently selected input stream to the currently selected

output stream. The streams are no longer connected to the program.

Control Pipeline

Topology

ADDPIPE Add a pipeline specification to run in parallel with your program.

This is used, for instance, to replace the current input stream with a

file to embed.

ADDSTREAM Add an unconnected stream to the program.

CALLPIPE Run a subroutine pipeline.

SELECT Select an input or output stream, or both. Subsequent requests for

data transport are directed to this stream.

SEVER Detach a stream from the program. The other side of the connection

sees end-of-file.

Control Programs COMMIT Commit the program to a particular level. The return code is the

aggregate return code for the pipeline specification so far.

EOFREPORT Modify the return codes reported by the data transport commands.

NOCOMMIT Disable automatic commit first time a program performs an I/O opera-

tion.

REXXCMD Call a subroutine REXX program. The program has access to the pipe-

line command environment and the caller’s streams.

SETRC Set the return code for the program writing a record to the currently

selected input stream.

SUSPEND Allow other stages to run.

Scanning GETRANGE Extract part of record or string.

SCANRANGE Parse an inputRange.

SCANSTRING Parse an delimitedString.

Issue Messages MESSAGE Write the argument string as a message.

ISSUEMSG Issue a CMS Pipelines message. The argument specifies a message

number; the message text is obtained from a message table.

Query Program’s

Environment

MAXSTREAM Return the highest stream number available.

RESOLVE Return entry point address for a pipeline program.

STAGENUM Return position in pipeline.

STREAMNUM Return stream number corresponding to an identifier.

STREAMSTATE Return connection status of stream.

750 Copyright IBM Corp. 1986, 2020

 ADDPIPE

The following pipeline commands are also available to the pipcmd built-in program and

the underlying macro PIPCMD: ADDPIPE, ADDSTREAM, CALLPIPE, COMMIT, EOFREPORT,

ISSUEMSG, MAXSTREAM, MESSAGE, OUTPUT, RESOLVE, REXXCMD, SELECT, SETRC, SEVER,

SHORT, STAGENUM, STREAMNUM, STREAMSTATE, SUSPEND. Whether it makes sense to use

them all with pipcmd is another matter; in particular, COMMIT to a positive number will

cause a stall.

The following pipeline commands are available only through the REXX interface:

BEGOUTPUT, GETRANGE, NOCOMMIT, PEEKTO, READTO, SCANRANGE, SCANSTRING, and

STREAMSTATE ALL.

Return code -7 on a pipeline command means that the pipeline command processor cannot

resolve the command. Refer to “Return Codes -3 and -7” on page 116.

ADDPIPE—Add a Pipeline Specification to the Running Set

►►──ADDPIPE──┤ pipeSpec ├──►◄

Syntax: The argument string to ADDPIPE is processed as a pipeline specification. Refer to

Chapter 21, “Syntax of a Pipeline Specification Used with PIPE, runpipe, ADDPIPE, and

CALLPIPE” on page 237.

Operation: The pipeline specification is added to the current set of pipelines. Its stages

run in parallel with the stage issuing ADDPIPE, independent of the commit level of the stage

that issues the ADDPIPE pipeline command.

Connectors in the pipeline specification designate how the stage’s current streams are

modified. All streams mentioned in connectors are disconnected from the stage.

¹ The stream is connected to the new pipeline when the connector is before a pipeline

and the second component of the connector is INPUT, or the connector is after the

pipeline and the second component is OUTPUT.

/* Process input and output independently */
"addpipe *.input:|xlate upper|> output file a"

The stage cannot reconnect to a stream that has been transferred to another pipeline in

this way.

¹ The connection is saved on a stack for the stream when the the connector is after a

pipeline and the second component is INPUT, or the connector is before the pipeline

and the second component is OUTPUT. The new pipeline is connected to the stream

instead of the saved connection. End-of-file on the new connection sets return code

12 in a READTO or PEEKTO pipeline command. SEVER restores the stacked connection.

/* Read parameter file */
"addpipe < parm file | *.input:" /* Connect input to file */
"nocommit" /* Disable automatic commit */
"readto line" /* Read first line of file */
do while RC=0 /* Process all lines */

/* Process line */
"readto line" /* Read next line */

end
"sever input" /* Reinstate input file */
"commit 0" /* See if other stages are OK */
if RC/=0 then exit 0 /* Exit quietly if not */

 Chapter 25. Pipeline Commands 751

 ADDSTREAM ¹ BEGOUTPUT

¹ A pipeline is inserted in front of (or after) the stream when a side of a stream is

referenced both at the beginning and end of a pipeline, for instance:

"addpipe *.input: |deblock net|*.input:"
"addpipe *.output:|xlate upper|*.output:"

 Return Codes:

0 The pipeline specification has been added to the running set. The stage issuing

ADDPIPE runs in parallel with the stages added to the pipeline set.

± The pipeline specification has one or more syntax errors. Error messages are issued.

ADDSTREAM—Create a Stream

 ┌ ┐─BOTH───
►►──ADDSTREAm─ ──┼ ┼──────── ──┬ ┬────────── ─►◄
 ├ ┤─INput── └ ┘─streamID─
 └ ┘─OUTput─

Syntax: ADDSTREAM accepts an optional keyword and an optional stream identifier.

Operation: An unconnected stream is added to the stage on the side(s) specified by the

first keyword. If present, the stream identifier is set; the stream has no identifier by

default. Use MAXSTREAM to discover the number of the stream just added. Use ADDPIPE

to connect a stage to the stream.

 Return Codes:

0 The stream(s) are added to the stage.

-112 Too many arguments. This may be caused by a misspelled keyword that is assumed

to be a stream identifier.

-174 A stream already exists with the stream identifier specified.

 Examples:

"addstream output errs"
"addpipe *.output.errs:|> error file a"

Remember to select the error stream before using OUTPUT to write to it. Select the

primary output stream when writing “normal” output.

BEGOUTPUT—Enter Implied Output Mode

►►──BEGOUTPUT─ ──┬ ┬──────── ─►◄
 └ ┘─string─

Syntax: A string is optional with BEGOUTPUT. It specifies an ending delimiter record. A

null delimiter record is assumed when the string is omitted. The string is truncated after

eight bytes.

Operation: The argument string is stored, but is otherwise ignored; the REXX interface

then enters the implied output mode.

Subsequent pipeline commands are treated as output data rather than commands. That is,

752 CMS Pipelines User’s Guide and Reference

 CALLPIPE

they are processed by the OUTPUT pipeline command; this includes implied commit proc-

essing. The complete command is written to the currently selected output stream.

A command that contains exactly the string specified (or is null when no string was

specified) terminates the implied output mode and the command interface reverts to its

normal operation; the terminating command is discarded.

Return Codes: The return code is always 0.

Examples: To write two lines of output. Note that the lines are still processed as REXX

expressions. In practice this means that literals must be enclosed in quotes.

'begoutput'
'Field 1 Field 2'
'------------ ---------------------'
'' /* Null command to terminate */
'callpipe *: | spec 37.14 1 89-* 16 | *:' /* Command mode active */

Notes:

1. BEGOUTPUT can be issued from a REXX program only; it is not available to pipcmd or

the underlying PIPCMD macro.

CALLPIPE—Run a Subroutine Pipeline

►►──CALLPIPE──┤ pipeSpec ├──►◄

Syntax: The argument string to CALLPIPE is processed as a pipeline specification. Refer to

Chapter 21, “Syntax of a Pipeline Specification Used with PIPE, runpipe, ADDPIPE, and

CALLPIPE” on page 237.

Operation: The subroutine pipeline may be connected to the stage’s input and output

streams. The stage issuing CALLPIPE is suspended until all stages of the subroutine pipe-

line have returned. The stage that issues CALLPIPE commits to the highest commit level of

the subroutine pipeline while it waits for it to complete. The subroutine pipeline can run

on a commit level that is lower than the caller’s. A short-through pipeline forces a commit

to level 0 to avoid a stall.

Connectors in the subroutine pipeline connect to streams in the stage issuing the CALLPIPE

pipeline command until end-of-file is transferred across the connection; the connection to

the calling stage is restored when end-of-file is transmitted from the subroutine.

 Return Codes:

0 The pipeline specification is syntactically correct. All stages of the pipeline return

code 0.

± There is a syntax error in the pipeline specification or a stage of the subroutine pipe-

line gives a return code that is not zero.

Examples: This subroutine pipeline takes a literal, makes it upper case, and passes it on

the currently selected output stream.

 Chapter 25. Pipeline Commands 753

 COMMIT

To position the input stream at the next line with a comma in column 1 (or read to

end-of-file):

'callpipe *:|tolabel ,|hole'
'peekto'
if RC=12 then exit /* End-of-file */

Notes:

1. A pipeline stall is possible if all these conditions are satisfied:

¹ The stage issuing CALLPIPE is on a negative commit level.

¹ The subroutine pipeline is connected to both an input stream and an output

stream.

¹ The subroutine completes without committing to level 0 and without running a

program that commits to level 0. A stage that issues the SHORT pipeline

command without committing satisfies this condition.

The stage should commit to level 0 before issuing a subroutine pipeline of this nature.

TCALLP REXX Example of Use

/* CALLPIPE example */ */
'callpipe (name TCALLP)',

'|literal Hello, world',
 '|xlate upper',
 '|*:'
exit RC

 pipe rexx tcallp | console
►HELLO, WORLD
►Ready;

COMMIT—Commit Stage to a New Level

►►──COMMIT──snumber──►◄

Syntax: COMMIT requires a numeric argument.

Operation: Commit to the level specified. When the number is less than or equal to the

level the stage is already committed at, the return code is the current aggregate return code

for the pipeline specification.

The stage is suspended when the level requested is higher than the level the stage is

currently committed at. The stage is suspended until all stages in the pipeline specification

(and the caller, if the stage is in a subroutine pipeline) have committed at least to the level

the stage requests. The return code is the aggregate return code when all stages are

committed to the level specified.

REXX programs begin at commit level -1. The interface commits to level 0 when the stage

reads or writes unless a NOCOMMIT pipeline command is issued first.

 Return Codes:

0 All stages that have returned did so with return code zero.

-2147483648 The arguments are in error. Message 58, 112, or 113 is issued.

± A stage has returned with the return code.

754 CMS Pipelines User’s Guide and Reference

 EOFREPORT

Example: Use COMMIT to test the return code of other REXX programs and those built-in

programs that are committed to start on level -1 or before. You can abandon the program

if the return code is not zero. In the second example below, console is not started because

the first stage returns with code 112. (TISSUE REXX is shown on page 758.)

TCOMMT REXX Example of Use

/* Test commit */
say 'Tcommt started.'
'commit 0' /* Explicit */
If rc/=0 /* Trouble? */

Then exit 0
'output all is well'

 pipe rexx tcommt | console
►Tcommt started.
►all is well
►Ready;

 pipe tissue word | tcommt | console
►Tcommt started.
►Excessive options "word"
►... Issued from stage 1 of pipeline 1
►... Running "tissue word"
►R(00112);

EOFREPORT—Enable Reporting of Stream Events

►►──EOFREPORT─ ──┬ ┬─CURRENT─ ─►◄
 ├ ┤─ALL─────
 └ ┘─ANY─────

Syntax: EOFREPORT requires a keyword argument.

Operation: The return codes reported by OUTPUT, PEEKTO, READTO, and SELECT

ANYINPUT are modified, depending on the specified keyword.

 Return Codes:

0 End-of-file reporting is set as specified. At least one input stream and one output

stream are connected.

8 No input stream is connected or no output stream is connected (or no stream at all is

connected).

-111 The word is not a recognised option.

-112 The argument string is more than one word.

-113 The argument string is empty.

CURRENT The original CMS Pipelines behaviour is desired. Stream events are

ignored when they do not relate to the currently selected stream at the

time of I/O.

ALL Return code 8 is to be reported on PEEKTO and SELECT ANYINPUT when

all output streams are severed.

ANY Return code 8 is to be reported on PEEKTO and SELECT ANYINPUT when

all output streams are severed.

Return code 4 is to be reported on OUTPUT, PEEKTO, and SELECT

ANYINPUT when any stream is severed. For OUTPUT, return code 4 is

reported only if the record was not seen by the following stage.

 Chapter 25. Pipeline Commands 755

 GETRANGE

Example: Use EOFREPORT ALL in stages that should propagate end-of-file. The stage will

stop waiting for an input record when the output stream is severed.

Use EOFREPORT ANY. in multistream stages that need to propagate end-of-file immediately.

GETRANGE—Extract Part of Record or String
GETRANGE can be used by the filter programmer to extract the part of a record to be proc-

essed in the same way CMS Pipelines built-in programs select a substring of the input

record.

►►──GETRANGE──word─ ──┬ ┬─VARiable─ ─word─ ──┬ ┬──────── ─►◄
 └ ┘─STEM───── └ ┘─string─

Syntax: The first word specifies the name of a variable that contains the token repres-

enting the inputRange. This variable must have been set by a previous SCANRANGE pipe-

line command. It must not be modified by the REXX program.

The second word is a required keyword. It specifies how the input range should be

returned to the program.

The third word specifies the name of the variable or the stem to receive the input range.

The remaining string after exactly one blank is the record from which to extract the

contents of an input range.

Operation: When VARIABLE is specified, the third word contains the name of a single

variable, which is set to a substring of the input record, as determined by the contents of

the token.

The remainder of this section discusses the operation when STEM is specified. The result is

stored into a stemmed array; the third word contains the stem to use. The stem would

normally end with a period.

When the input range is not present in the record (as opposed to its being of length zero),

the compound variables are set as follows:

When the input range is present in the record, the compound variables are set as follows:

 See also: SCANRANGE.

VARIABLE Return contents of the input range in a single variable.

STEM Return contents of the input range in a stemmed array. The array has

one or three variables. Specify a period at the end of the stem to

generate REXX compound variables.

stem0 1

stem1 The entire input record.

stem0 3

stem1 The part of the record up to the beginning of the input range.

stem2 The contents of the input range.

stem3 The balance of the record.

756 CMS Pipelines User’s Guide and Reference

 ISSUEMSG

Example: This example program writes the reverse of a substring of the input record:

/* Getrange sample */
parse arg inputRange

'scanrange required field rest' inputRange
if RC¬=0

then exit RC

'eofreport all'
signal on error
do forever
 'peekto line'

'getrange field var range' line
 'output' reverse(range)
 'readto'
end

error:
exit RC*(wordpos(RC, '8 12)=0)

Notes:

1. GETRANGE can be issued from a REXX program only; it is not available to pipcmd or

the underlying PIPCMD macro.

2. The first and the third word are names of variables, but string represents a string.

ISSUEMSG—Issue a Message from the Repository

 ┌ ┐─────────────────────
►►──ISSUEMSG──number──word─ ───6 ┴┬ ┬───────────────── ─►◄
 └ ┘ ─delimitedString─

Syntax: The first word of the arguments to ISSUEMSG is the number of the message to

issue. The second word should be six characters for the module identifier. Delimited

strings are optional after the two required arguments.

Operation: Issue the message with the number specified. The message text is obtained

from the internal message text table. There must be a delimited string for each substitution

in the message.

See also: MESSAGE. Use MESSAGE to issue messages where you include the message

identifier (component, module, number, and severity) as well as the substituted message

text.

 Return Codes:

0 Message 0 is issued.

+ The number of the message issued.

-58 The first word is not a positive number or zero.

-60 A delimited string is not properly delimited.

-113 There are fewer than two words in the argument string.

Example: This example program issues message 112 if the argument string is not blank.

 Chapter 25. Pipeline Commands 757

 MAXSTREAM

Notes:

1. Refer to Chapter 26, “Message Reference” on page 773 for a list of the messages in

the built-in message text table.

TISSUE REXX Example of Use

/* Test ISSUEMSG */
If arg(1) =''

Then exit 0
'issuemsg',

'112 TSTISSUE /'arg(1)'/'
exit RC

 pipe tissue abc
►Excessive options "abc"
►... Issued from stage 1 of pipeline 1
►... Running "tissue abc"
►R(00112);

MAXSTREAM—Return the Highest Stream Number

►►──MAXSTREAm─ ──┬ ┬─INput── ─►◄
 └ ┘─OUTput─

Syntax: MAXSTREAM requires a keyword to designate which side is queried.

Operation: The return code is set to the highest stream number available on the side

specified by the keyword. When a stage starts, it has as many input as output streams

defined. Streams can be added to one side with ADDSTREAM.

 Return Codes:

0 The primary stream is the only stream.

+ The largest number allowed in a SELECT pipeline command.

-112 The argument string is more than one word.

-163 No keyword is specified.

-164 The keyword is not valid.

Example: A program uses MAXSTREAM to test how many streams it has available.

TMAXSTR REXX Example of Use

/* Test MAXSTREAM */
'maxstream output'
select
 when RC=0

Then 'issuemsg 222 TMAXSTR'
 when RC>1

Then 'issuemsg 264 TMAXSTR'
 otherwise
 nop
end
If RC/=1

Then exit RC

 pipe tmaxstr
►Secondary stream not defined
►... Issued from stage 1 of pipeline 1
►... Running "tmaxstr"

 pipe (end ?) m:tmaxstr?m:
►Ready;

 pipe (end ?) m:tmaxstr?m:?m:
►Too many streams
►... Issued from stage 1 of pipeline 1
►... Running "tmaxstr"
►R(00264);

758 CMS Pipelines User’s Guide and Reference

 MESSAGE ¹ NOCOMMIT

MESSAGE—Issue a Message

►►──MESSAGE──string──►◄

Syntax: The argument string to MESSAGE is a substituted message. It should have the

standard message identifier in the first ten positions.

Operation: The argument string is issued as a pipeline message.

See also: ISSUEMSG issues a message by number using the message text tables built into

CMS Pipelines.

 Return Code: 0.

Example: The message identifier is suppressed when EMSG is set to TEXT so as to display

only the text of the message.

TMSG REXX Example of Use

/* TMSG REXX Test Message */
'message tmsgrx001I TMSG here.'
exit RC

 pipe tmsg
►TMSG here.
►Ready;
 cp set emsg on
►Ready;
 pipe tmsg
►tmsgrx001I TMSG here.
►Ready;

NOCOMMIT—Disable Automatic Commit on I/O

►►──NOCOMMIT──►◄

Syntax: NOCOMMIT accepts no arguments.

Operation: The REXX interface does not commit for level 0 on subsequent I/O commands.

To have any effect, NOCOMMIT must be issued before any READTO, PEEKTO, OUTPUT, or

SELECT ANYINPUT pipeline commands are issued; otherwise the interface has already

committed to level 0.

 Return Code:

0 The interface will not commit automatically.

4 A NOCOMMIT or COMMIT pipeline command has already been issued.

8 A read or write pipeline command has already committed the stage to level 0.

-112 NOCOMMIT found operands.

Example: This example shows how to use NOCOMMIT and ADDPIPE to read a file on

commit level -1. The return code is the number of lines in the file. This causes the

remainder of the pipeline to be abandoned because the REXX program returns 11 without

committing to level 0. Note that an equivalent CALLPIPE subroutine pipeline setting the

variable directly commits the caller to level 0.

 Chapter 25. Pipeline Commands 759

 OUTPUT

Notes:

1. NOCOMMIT can be issued from a REXX program only; it is not available to pipcmd or

the underlying PIPCMD macro.

TCMT REXX Example of Use

/* TCMT REXX: Test nocommit */
signal on novalue
trace error
'nocommit'
'addpipe (name TCMT)',

'|< tcmt rexx',
 '|count lines',
 '|*.input:'
'readto line'
exit line
error: exit RC

 pipe tcmt|literal abc|cons
►R(00011);

OUTPUT—Write a Line

►►──OUTPUT─ ──┬ ┬──────── ─►◄
 └ ┘─string─

Syntax: A string is optional with OUTPUT.

Operation: When issued from a REXX program, the stage commits to level 0 if the stage

is not already committed unless NOCOMMIT has been issued to disable the implied commit

operation. The argument string is written to the currently selected output stream. The

record written begins after the blank ending the command verb; the record can have

leading blanks. A null record is written when the string is omitted.

 Return Codes:

0 The line is read by the stage connected to the output stream.

4 EOFREPORT ALL is in effect and a stream event has occurred before the consumer

peeked at the record (or read it). The program should process the stream event and

then reissue the OUTPUT command.

12 The output stream is not connected.

-4095 The pipeline is stalled. All input streams and output streams are severed.

± The stage connected to the stream issued the pipeline command SETRC to set a return

code.

 Example:

HELLO REXX Example of Use

/* HELLO REXX: REXX filter */
'output' 'Hello, World!'

 pipe hello | console
►Hello world!
►Ready;

760 CMS Pipelines User’s Guide and Reference

 PEEKTO

PEEKTO—Preview the next Input Line

►►──PEEKTO─ ──┬ ┬────── ─►◄
 └ ┘─word─

Syntax: When present, the argument is the name of the variable that PEEKTO should set.

The word must represent a valid name for a REXX variable as it would be written in a

REXX program.

Operation: The stage commits to level 0 if the stage is not already committed unless

NOCOMMIT has been issued to disable the implied commit operation. The next record on

the currently selected input stream is copied into the variable. The record remains in the

pipeline; use READTO to read or discard the line. Use PEEKTO without argument to test if

the input stream is at end-of-file without setting a variable to the contents of the next

record.

 Return Codes:

0 The next record is available.

4 EOFREPORT ALL is in effect and a stream event occurred that did not cause return

codes 8 or 12 to be set.

8 EOFREPORT ALL or EOFREPORT ANY is in effect. There is no longer a connected

output stream.

12 The stream is at end-of-file. If a word is specified, the variable is dropped.

-4095 The pipeline is stalled.

Example: PEEKTO is used after a subroutine pipeline to see if there are more input data to

process.

The generic filter to pass records from the input to the output without delay and propa-

gating end-of-file both forwards and backwards:

! HEADING REXX! Example of Use

! /* A heading every 55 lines */
! do until RC/=0
! 'callpipe (name HEADING)',
! '|*:',
! '|take 55',
! '|change // /',
! '|literal 1The heading',
! '|*:'
! 'peekto'
! end

! pipe < heading rexx | heading | cons
! ►1The heading
! ► /* A heading every 55 lines */
! ► do until RC/=0
! ► 'callpipe (name HEADING)',
! ► '|*:',
! ► '|take 55',
! ► '|change // /',
! ► '|literal 1The heading',
! ► '|*:'
! ► 'peekto'
! ► end
! ►Ready;

 Chapter 25. Pipeline Commands 761

 READTO

/* COPYND REXX -- Copy without potential to delay */
Signal on novalue

'eofreport all' /* Propagate EOF backwards too */
signal on error

do forever
'peekto line' /* Look for next input line */
/* Process line here */
'output' line /* Pass it to the output */
'readto' /* Consume the record */

end

error: exit RC*(wordpos(RC, '8 12')=0)

Notes:

1. PEEKTO can be issued from a REXX program only; it is not available to pipcmd or the

underlying PIPCMD macro.

2. If EOFREPORT ALL or EOFREPORT ANY is in effect, subsequent PEEKTO pipeline

commands without intervening READTO pipeline commands will set return codes 4 or

8 when suitable stream events have occurred since the previous PEEKTO, even when an

input record is available.

READTO—Read or Discard an Input Line

►►──READTO─ ──┬ ┬────── ─►◄
 └ ┘─word─

Syntax: When present, the argument is the name of the variable that READTO should set.

The word must represent a valid name for a REXX variable as it would be written in a

REXX program.

Operation: The stage commits to level 0 if the stage is not already committed unless

NOCOMMIT has been issued to disable the implied commit operation. The next record on

the currently selected input stream is copied into the variable and discarded.

No variable is set when the word is omitted; a record is discarded from the input stream if

one is available.

 Return Codes:

0 The next record is available.

12 The stream is at end-of-file. If specified, the variable is dropped.

-4095 The pipeline is stalled.

Example: Use READTO to read records in a filter program.

762 CMS Pipelines User’s Guide and Reference

 RESOLVE ¹ REXXCMD

Notes:

1. READTO can be issued from a REXX program only; it is not available to pipcmd or the

underlying PIPCMD macro.

COPY REXX Example of Use

/* COPY REXX -- Copy unchanged */
signal on error
Do forever
 'readto record'
 'output' record
End
error: exit RC*(RC<>12)

! pipe literal a line | copy | cons
►a line
►Ready;

RESOLVE—Return Entry Point of Built-in Program

►►──RESOLVE──word──►◄

Syntax: RESOLVE requires a word.

Operation: The word is looked up in the directories for built-in programs and attached

filter packages. When positive, the return code is the entry point address.

 Return Codes:

0 The name is not resolved as a built-in program or a program in an attached filter

package.

+ The entry point address.

-42 The argument is missing.

-112 There is more than one word in the argument string.

Example: RESOLVE can test if a filter package is installed.

TRES REXX Example of Use

/* Test RESOLVE */
'resolve strings'
If RC=0
 Then
 'message',
 'TRESxx001E',

'Strings not installed'

 pipe tres
►Strings not installed
►... Issued from stage 1 of pipeline 1
►... Running "rexx tres"

REXXCMD—Call a REXX Pipeline Program from a Filter

! ►►──REXXcmd──string──►◄

Syntax: The argument string to REXXCMD is the same format as for the rexx built-in

program.

 Chapter 25. Pipeline Commands 763

 SCANRANGE

Operation: The program is called as a pipeline filter. It can access the caller’s streams

while it runs. The argument string is passed as the first argument string to the called

program. The return code is the return code from running the program or the number of a

message issued because the program could not be found.

Return Codes: The corresponding return code is set if message 21, 22, 40, 113, 122, 381,

or 382 is issued. The return code is the return code from the program when the interface

does not reflect an error.

! Example: (PIPPCEND REXX is on the MAINT 193 disk; it generates an END card for an object

module.)

Notes:

1. Using the pipeline command REXX in a REXX filter is equivalent to calling an external

function in a command procedure. Variables are not shared between the caller and the

called program.

2. The pipeline command environment is not available in an external function called

from a REXX filter.

3. The function performed by REXX is also available with CALLPIPE where all connected

streams are passed to a subroutine pipeline consisting of the one stage; REXX is

retained for compatibility with the past.

TREXXC REXX Example of Use

/* REXX pipeline command */
'output Now follows the end card:'
'rexx pippcend'
Exit RC

 pipe trexxc | console
►Now follows the end card:
► END 1hartma
►Ready;

SCANRANGE—Parse an input range
SCANRANGE can be used by the filter programmer to parse an argument string containing

an inputRange specification in the same way that CMS Pipelines built-in programs scan

their arguments when an inputRange can be specified.

►►──SCANRANGe─ ──┬ ┬─OPTional─ ─token─ ──┬ ┬─rest─ ──┬ ┬──────── ─►◄
 └ ┘─REQuired─ └ ┘─.──── └ ┘ ─string─

Syntax: The first word is a required keyword:

The second word specifies the name of a variable that will be set to a token representing

the inputRange. The variable can be used in subsequent GETRANGE pipeline commands to

select that input range. The contents of this token are unspecified; other tokens can repre-

sent other inputRanges. This variable must not be modified by the REXX program.

OPTIONAL The argument string need not begin with a syntactically correct

inputRange; the range 1-* is assumed instead.

REQUIRED The argument string must begin with a syntactically correct inputRange.

764 CMS Pipelines User’s Guide and Reference

 SCANRANGE

The third word specifies the name of the variable to receive the residual string after the

inputRange specification has been scanned from the beginning of the argument string.

Specify a period (.) to discard the residual string.

The remaining string is the argument string from which to scan the specification of an

inputRange. Leading blanks are ignored.

: The default word and field separators are not remembered between instances of

: SCANRANGE; the defaults apply to each invocation. Any qualifier set in the inputRange

: specification is discarded when it has been parsed.

 See also: GETRANGE.

Return Codes: Error messages have been issued when a nonzero return code is set. The

program should deallocate any resources it may have allocated and exit with the return

code.

Example: SCANRANGE is typically used at the beginning of a REXX filter where it scans its

arguments string. For example, to scan an argument string that may specify one input

range but no other arguments:

parse arg argstring
'scanrange optional range_definition rest' argstring
If RC¬=0

Then exit RC /* Messages are already issued */
If rest¬=''

Then call err 112, rest /* Too much */

To scan an argument string that must specify two input ranges and no other arguments:

parse arg argstring
'scanrange required first rest' argstring
If RC¬=0

Then exit RC
'scanrange required second rest' rest
If RC¬=0

Then exit RC
If rest¬=''

Then call err 112, rest /* Too much */

Notes:

1. SCANRANGE can be issued from a REXX program only; it is not available to pipcmd or

the underlying PIPCMD macro.

2. The token representing the input range remains valid only as long as the stage is

running. Once the stage has terminated, the contents of the token are stale. Using it

(for example, in some other REXX filter) may cause random ABENDs.

3. The second and the third word are names of variables, but string represents a string.

4. To determine the length of the string scanned, subtract the length of the residual text

from the length of the argument string.

: 5. PARSERANGE is a synonym for SCANRANGE.

 Chapter 25. Pipeline Commands 765

 SCANSTRING ¹ SELECT

SCANSTRING—Parse a delimited string
SCANSTRING can be used by the filter programmer to parse an argument string containing a

delimitedString specification in the same way that CMS Pipelines built-in programs scan

their arguments when a delimitedString can be specified.

►►──SCANSTRIng──word─ ──┬ ┬─rest─ ──┬ ┬──────── ─►◄
 └ ┘─.──── └ ┘ ─string─

Syntax: The first word specifies the name of a variable that will be set to the contents of

the delimited string.

The second word specifies the name of the variable to receive the residual string after the

delimitedString specification has been scanned from the beginning of the argument

string. Specify a period (.) to discard the residual string.

The remaining string is the argument string from which to scan the specification of a

delimitedString. Leading blanks are ignored.

Return Codes: Error messages have been issued when a nonzero return code is set. The

program should deallocate any resources it may have allocated and exit with the return

code.

 Example:

parse arg argstring
'scanstring word rest' argstring

The variable argstring could contain /abc/ or xf1f2f3; the variable word would then

be set to abc or 123, respectively.

Notes:

1. SCANSTRING can be issued from a REXX program only; it is not available to pipcmd or

the underlying PIPCMD macro.

2. The first and the second word are names of variables, but string represents a string.

3. To determine the length of the string scanned, subtract the length of the residual text

from the length of the argument string.

: 4. PARSESTRING is a synonym for SCANSTRING.

SELECT—Select a Stream

 ┌ ┐─BOTH───
►►──SELECT─ ──┬ ┬──┼ ┼──────── ─stream─ ─►◄
 │ │├ ┤─INput──
 │ │└ ┘─OUTput─
 └ ┘─ANYINput───────────

Syntax: The argument string to SELECT has an optional keyword followed by a stream

identifier, or a keyword.

766 CMS Pipelines User’s Guide and Reference

 SETRC

Operation: When the operation is SELECT ANYINPUT from a REXX program, the stage

commits to level 0 if the stage is not already committed unless NOCOMMIT has been issued

to disable the implied commit operation. The stream is selected on the side(s) specified.

Use STREAMNUM to discover the number of the input stream selected when any input

stream is desired.

 Return Codes:

0 The stream(s) are selected.

4 When ANYINPUT is not specified, the stream does not exist; No message is issued.

4 EOFREPORT ALL is in effect and a stream event occurred that did not cause return

codes 8 or 12 to be set.

8 EOFREPORT ALL or EOFREPORT ANY is in effect. There is no longer a connected

output stream.

12 The pipeline command is SELECT ANYINPUT; all input streams are at end-of-file.

-112 There are too many words in the argument string.

-168 OUTPUT or BOTH is used with ANY.

-169 Stream identifier not specified.

SETRC—Set Return Code in Stage Writing

►►──SETRC──snumber──►◄

Syntax: SETRC requires a numeric argument.

Operation: In this description, the stage issuing SETRC is called the consumer stage. The

stage connected to the currently selected input stream is called the producer stage.

It is verified that the stage connected to the currently selected input stream (the producer

stage) is waiting for an output record to be read by the consumer stage on that particular

stream. You can be sure of this only after a PEEKTO pipeline command and before the

next READTO pipeline command.

The argument is stored as the return code that the producer stage sees when the consumer

stage issues the next READTO pipeline command to consume the record.

 Return Codes:

0 The return code is set

-4 The currently selected input stream is not connected (the stage is first in a pipeline)

or the stage connected to the currently selected input stream has selected a different

output stream or it is not waiting for an OUTPUT pipeline command to complete. No

message is issued.

-58 The first word of the argument string is not a number.

-112 There is more than one word in the argument string.

-113 The argument string is empty.

Example: A REXX program to issue CP commands may feed the return code back using

SETRC.

 Chapter 25. Pipeline Commands 767

 SEVER

/* Issue CP commands with RC */
'peekto in'
do while RC=0
address command 'CP' in

 'setrc' RC
 'readto'
 'peekto in'
end

Notes:

1. SETRC should only be used when connected to programs that are prepared for any

return code on OUTPUT.

SEVER—Break a Connection

►►──SEVER─ ──┬ ┬─INput── ─►◄
 └ ┘─OUTput─

Syntax: SEVER requires a keyword.

Operation: When the currently selected stream on the side specified is connected, these

actions are performed at the stream at the other side of the connection: If the stream was

created with CALLPIPE, the previous connection is reinstated. If the stream was not created

with CALLPIPE, the stream becomes not connected; end-of-file is set if the stage is waiting

for I/O on this stream or it is the last remaining input stream and the stage is waiting for

any input stream.

For the stream specified at the stage issuing SEVER, the connection on the top of the

ADDPIPE stack (if any) is reinstated. The stream becomes not connected if the stack is

empty.

 Return Codes:

0 The stream is severed.

-112 There is more than one word in the argument string.

-163 The argument string is empty.

-164 The argument is not INPUT or OUTPUT.

Example: In a stage with more than one output stream, sever a stream as soon as you

have finished writing to it. This may avoid a stall.

/* Process from label to secondary output */
parse arg label
'callpipe (name PIPCMDS)',
 '|*:',

'|tolabel' label ||,
 '|*:'
'sever output'
'callpipe *:|procem|*.output.1:'
exit RC

Note: Though much CMS Pipelines documentation speaks of severing a stream rather

than severing the connection to a stream, it is understood that the severance occurs by

removing the connector between the stream being severed and the stream it is connected

768 CMS Pipelines User’s Guide and Reference

 SHORT ¹ STAGENUM

to, if any. Streams are created by the pipeline specification parser and by the pipeline

command ADDSTREAM; once created a stream exists as long as the stage to which it is

attached. There is no pipeline command to destroy a stream.

SHORT—Connect Input and Output Stream

►►──SHORT──►◄

Syntax: SHORT accepts no arguments.

Operation: The currently selected input stream and the currently selected output stream

are connected directly, bypassing the stage issuing SHORT.

 Return Code: 0.

Example: Use SHORT when you wish to copy all input to the output.

RDROP REXX Example of Use

/* Drop records */
do word(arg(1) 1, 1)
 'readto in'
end
'short'

 pipe < rdrop rexx | rdrop 2 | console
► 'readto in'
►end
►'short'
►Ready;

STAGENUM—Return Stage’s Position in Pipeline

►►──STAGENUM──►◄

Syntax: STAGENUM accepts no arguments.

Operation: The return code is set to the position of the stage in the pipeline of its primary

stream. The first stage gets return code 1.

Example: Use STAGENUM when you wish to ensure that a program is first (or not first) in

a pipeline.

TPOS REXX Example of Use

/* Test position */
'stagenum'
If RC=1
 Then
 Do

'issuemsg 127 TPOSxx'
 exit RC
 End

 pipe tpos
►This stage cannot be first in a pipeline
►... Issued from stage 1 of pipeline 1
►... Running "rexx tpos"
►R(00127);

 Chapter 25. Pipeline Commands 769

 STREAMNUM ¹ STREAMSTATE

STREAMNUM—Return Stream Number

 ┌ ┐─*──────
►►──STREAMNUm─ ──┬ ┬─INput── ──┼ ┼──────── ─►◄
 └ ┘─OUTput─ └ ┘─stream─

Syntax: STREAMNUM requires a keyword for the side to operate on. An asterisk, a

number, or a stream identifier is optional.

Operation: The return code is set to the number of the stream. When the stream

identifier is omitted or specified as an asterisk, the number associated with the currently

selected stream is returned. When a number is specified as the stream identifier, it is

verified that the stream exists; the return code is the number. The number of the stream

that has the identifier specified is returned when the identifier is neither an asterisk nor a

number.

 Return Codes:

0 The primary stream is selected or associated with the identifier.

-4 The stream is not defined.

-102 The second argument is a number. The stream does not exist.

-112 There are more than two words in the argument string.

-163 The argument string is empty.

-164 The argument is not INPUT or OUTPUT.

-178 The second argument is a stream identifier. The stream does not exist.

Example: Use STREAMNUM to test if there is a stream with a particular ID.

TSTRNO REXX Example of Use

/* Test streamno */
parse arg stream_ID .
trace off
'streamnum output' stream_ID
If RC>=0
 Then
 'callpipe',

' literal Testing:',
 '|*..'stream_ID':'

 pipe .dbg: tstrno gryf
►Stream "gryf" not found
►... Processing "streamnum output gryf"
►... Issued from stage 1 of pipeline 1
►... Running "rexx tstrno gryf"
►Ready;
 pipe .dbg: tstrno dbg | console
►Testing:
►Ready;

STREAMSTATE—Return Stream Status

 ┌ ┐─*──────
►►──STREAMSTate─ ──┬ ┬ ──┬ ┬─INput── ──┼ ┼──────── ─►◄
 │ │└ ┘─OUTput─ └ ┘─stream─
 ├ ┤─SUMMARY────────────────
 └ ┘─ALL──variable──────────

770 CMS Pipelines User’s Guide and Reference

 STREAMSTATE

Syntax: STREAMSTATE queries the state of all streams or of a specified stream.

When SUMMARY is specified, the return code is zero if at least one input stream is

connected and at least one output stream is connected. The program receives no indication

of which streams are connected.

When ALL is specified, the state of each pair of input and output streams is stored as a

word in the specified variable, which will contain as many words as the highest number of

input or output streams. Each word contains the state of the input stream, a colon (:), and

the state of the output stream. These states are defined in the “Return Codes” section

below.

When neither SUMMARY nor ALL is specified, STREAMSTATE requires a keyword for the

side to operate on; if it is present, the second word specifies the stream to test. The

default is the currently selected stream.

Operation: The return code is set to indicate the summary status or the status of the

specified stream.

The return code from STREAMSTATE ALL is zero unless there is trouble setting the variable.

 Return Codes:

0 The stream is connected; the stage on the other side is waiting for I/O on this stream.

4 The stream is connected; the stage on the other side is waiting for I/O on this stream

on a different commit level. The pipeline stalls if you try to read or write the stream

before committing to the level the other side is at.

8 The stream is connected; the stage on the other side is not waiting for the stream.

12 The stream is not connected.

-4 The stream is not defined.

-112 There are more than two words in the argument string.

-163 The argument string is empty.

-164 The argument is not INPUT or OUTPUT.

Example: Use STREAMSTATE to test if an input or output stream is connected.

Notes:

1. STREAMSTATE ALL can be issued from a REXX program only; it is not available to

pipcmd or the underlying PIPCMD macro.

TSTRST REXX Example of Use

/* Test streamstate */
trace off
'streamstate input 1'
If find('12 -4', RC)>0

Then exit 0
'issuemsg 539 STRMST'
exit RC

 pipe tstrst
►Ready;
 pipe (end ?) t:tstrst?t:
►Ready;
 pipe (end ?) t:tstrst?hole|t:
►Secondary input stream is connected
►... Issued from stage 1 of pipeline 1
►... Running "tstrst"
►R(00539);

 Chapter 25. Pipeline Commands 771

 SUSPEND

SUSPEND—Allow other Stages to Run

►►──SUSPEND──►◄

Syntax: SUSPEND accepts no arguments.

Operation: The stage is put at the end of the dispatch list. The return code is set to the

number of other stages that are ready to run at the time the stage was suspended. (That is,

the return code is computed at the time the stage is suspended even though the stage must

of necessity resume before it can inspect the return code.)

 Return Codes:

0 There were no other stages ready to run. The stage was resumed immediately.

+ The number of stages that were ready to run at the time the stage was suspended.

Example: To try to obtain some confidence that an output record will be consumed:

'suspend' /* give consumer a chance to read */
'streamstate output' /* Now, did it? */
if RC<0 /* Not defined? */

then exit RC /* This is an impossibility */
if RC=12 /* End-of-file; quit */

then exit 0
'peekto line' /* Now try to read a line */

Notes:

1. The order of dispatching is unspecified. The pipeline dispatcher could select the

suspended stage before it has run all stages that were ready at the time the stage

issued SUSPEND. If the return code is positive, at least one other stage has run.

2. A program should not go into a loop waiting for a producer or a consumer to commit

itself to write or read a record. Two stages using SUSPEND can be chasing each

other’s tails forever doing this.

772 CMS Pipelines User’s Guide and Reference

 Messages

 Chapter 26. Message Reference

Messages issued by CMS Pipelines are listed in numerical order on the following pages.

Use the CP command “set emsg on” to include the standard VM identification (module,

number, and severity) in the message displayed on your terminal. Severity codes are

defined in z/VM: CMS and REXX/VM Messages and Codes.

In addition to the reference in this chapter, you can obtain more information about a

message in these ways:

¹ The command “pipe help” invokes help for the last message issued (excluding some

informational messages). “pipe help 1” gives help on the second last error message,

and so on for the last 11 messages.

¹ The messages are listed alphabetically in Appendix B, “Messages, Sorted by Text” on

page 897.

¹ Unless disabled, additional messages (192 and 1 through 4) are issued automatically

by CMS Pipelines to identify the stage or command causing the error.

In the list of messages on the following pages, the first line for a message is set in bold

type. It gives the message number, severity code, and text. Words in the message text

that are set in italics type are replaced with variable data.

Most stages return with the same return code as the number of the last message issued

when the message indicates an error. Some errors are considered sufficiently grave to give

negative return codes.

The text for a message displayed on your terminal is generated from the same Script input

file that is used here. If you see a message not listed on the following pages or listed

differently, then something is downlevel (though it could well be this book). To resolve

this, type the command “pipe query” to obtain message 86 identifying the level of CMS

Pipelines you are using.

 Copyright IBM Corp. 1986, 2020 773

 0E ¹ 13E

0E No message text for message number

Explanation: CMS Pipelines has discovered an internal

error. A CMS Pipelines module requests the message with

the number shown, but there is no action defined for the

message.

System Action: Depends on where the message is issued.

User Response: Ensure the message level is odd (it is

unless you have changed it). Note the string substituted in

message 1, if one follows. Contact your systems support

staff.

System Programmer Response: If message 1 is issued and

it indicates a REXX program, the program may have issued

the ISSUEMSG pipeline command; ensure that it uses a correct

message number. If message 1 is not issued, the unknown

message is issued in the pipeline specification parser.

Contact IBM for programming assistance if the pipeline

module is unmodified and the number shown is not in the

file PIPELINE HELPIN. If the message is defined in the HELPIN

file, then ensure that the message text table is correctly

generated and inspect the file $$PIPE UPDLOG to ensure that

the correct version of it is included when generating PIPELINE

MODULE.

1I ... Running "string"

Explanation: This message is issued after any other

message when a stage is currently running and the message

level is odd. The first 60 characters of the specification of

the stage are substituted in the message.

System Action: None.

User Response: The message level is set by the command

PIPMOD MSGLEVEL, by the global or local MSGLEVEL, and by

the MSGLEVEL option on runpipe.

2I ... Processing "command"

Explanation: This message is issued after messages issued

by the pipeline command processor if the bit for 2 is on in

the message level. The first 60 characters of the pipeline

command issued are substituted in the message.

System Action: Message 1 is issued if the message level is

odd. Processing continues.

3I ... Issued from stage number of pipeline number

Explanation: This message is issued to identify which

stage is the cause of the previously issued message when the

option NAME is not used in the pipeline specification.

System Action: Message 1 is issued if the message level is

odd. Processing continues.

4I ... Issued from stage number of pipeline number

name "name"

Explanation: This message is issued to identify which

stage is the cause of the previously issued message when the

option NAME is used in the pipeline specification.

System Action: Message 1 is issued if the message level is

odd. Processing continues.

10E Extended format parameter list is required

Explanation: PIPE is invoked with a call type flag, indi-

cating that only a tokenised parameter list is available. Most

likely you have entered the command from EXEC1 or the

command line of BROWSE.

Stages check that an extended parameter list is present and

exit with return code -10 if the flag in the leftmost byte of

register 1 indicates that no parameter list address is provided

in register 0. No message is issued in this case because such

an error indicates that the stage is not entered from the pipe-

line dispatcher.

System Action: The PIPE command or the stage returns

with return code -10.

User Response: Use CMDCALL to issue a command using

the required parameter parameter lists when the environment

does not build such parameter lists.

11E Null or blank parameter list found

Explanation: A null parameter list is found by PIPE, the

pipeline command processor, or a stage needing parameters.

System Action: PIPE, the pipeline command processor, or

the stage returns with return code -11.

12E Null pipeline

Explanation: The last character of a pipeline specification

is the pipeline end character; two consecutive end characters

are met; or global options are present (in parentheses) with

no more data.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -12.

13E No ending right parenthesis for global options

Explanation: A leading left parenthesis is found, indicating

global options, but there is no closing parenthesis.

System Action: Pipeline scan terminates with return code

13.

User Response: Terminate global options with a right

parenthesis.

774 CMS Pipelines User’s Guide and Reference

 14E ¹ 21E

14E Option word not valid

Explanation: The word substituted is not recognised as one

of the global options supported.

System Action: Pipeline scan terminates with return code

14.

User Response: Defined global options are: NAME TRACE

LISTRC LISTERR LISTCMD STOP SEPARATOR ENDCHAR ESCAPE

MSGLEVEL.

15E Value missing for keyword "keyword"

Explanation: An operand is specified that requires a value

(for instance, NAME), but the following non-blank character is

the right parenthesis that ends the global options, or the

operand is the last word of the argument string to a stage.

This message is issued when an option list ends prematurely,

and by stages that use values with operands.

System Action: Pipeline scan terminates with return code

15. When issued by a stage, the stage returns with return

code 15.

16E Last character is escape character

Explanation: The escape character (declared by the option

ESCAPE) is the last character of a pipeline specification. This

is an error because there is nothing to escape.

System Action: Pipeline scan terminates with return code

-16.

17E Null stage found

Explanation: There is a stage separator at the end of a

pipeline specification; a stage separator is adjacent to an end

character; or there are two stage separators with only blank

characters between them.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -17.

User Response: Ensure that the pipeline specification is

complete. Check if a comma is missing to indicate REXX

continuation to the next stage on the following line.

The INTM shell adds console stages to the beginning or end

(or both) of a pipeline specification beginning or ending with

a stage separator; the PIPE command does not.

Ensure that there are no blanks between what you intend to

be a pair of self-escaping vertical bars (||).

18E CMS Pipelines incorrectly generated with character

Explanation: CMS Pipelines has discovered an internal

error. CMS Pipelines is generated with unacceptable charac-

ters for one of the delimiter characters (stage separator, left

parenthesis, right parenthesis, period, or colon).

System Action: Pipeline scan terminates with return code

-18.

User Response: Contact your systems support staff.

System Programmer Response: Restore a working copy

of CMS Pipelines. Issue NUCXDROP PIPMOD followed by

PIPINIT if the broken module was activated with “pipinit
test”. If not, you may have to resort to a backup of the

product tape.

Correct the error introduced in the operand table (SYSTEM

KWDTABLE by default) for the operands sc, lp, rp, cn, dt, and

as.

19W Label "word" truncated to eight characters

Explanation: The first word of a stage ends in a colon;

there are more than eight characters before the colon or the

first period in the label.

System Action: The label is truncated on the right. Proc-

essing continues.

20I Stage returned with return code number

Explanation: Pipeline dispatcher trace is active; option

LISTRC or option LISTERR is in effect. The stage has

completed processing.

System Action: The pipeline dispatcher continues with

other work. Control returns to the caller when all stages are

complete.

21E Unable to find EXECCOMM for REXX

Explanation: CMS Pipelines has discovered an internal

error. The EXEC interpreter did not set up a subcommand

environment for EXECCOMM before issuing a command to the

default command environment.

System Action: The REXX interface returns with code -21.

User Response: Contact your systems support staff.

System Programmer Response: Ensure that the pipeline

module is generated correctly. This message indicates a

change in the implementation of VM/REXX. Investigate

whether corrective service is available.

 Chapter 26. Message Reference 775

 23E ¹ 31I

23E Impossible record (number bytes from X'address')

Explanation: A stage writes a record (or tries to read into a

buffer) that is completely or partially beyond the size of an

address space for the virtual machine architecture (16M in a

370-mode virtual machine; 2G in an XA-mode virtual

machine).

The contents of general registers zero and one are substi-

tuted.

System Action: Control returns to the stage with return

code -23. The call is ignored.

User Response: Check the input file. If the contents of

register zero are shown as negative, there may be a program-

ming error in CMS Pipelines.

24W Descriptor list for program "command" is not

doubleword aligned; it is ignored

Explanation: A PIPREXX macro is issued and the rightmost

three bits of general register 2 are not all zero.

System Action: The program in storage is ignored.

User Response: Contact your systems support staff.

System Programmer Response: Make sure registers 2 and

3 are zero before issuing the macro PIPREXX to run a REXX

program from disk as a pipeline stage.

26E Error number obtaining storage

Explanation: An error other than “no storage” is received

from the system service to obtain storage. Note that the

return code is displayed in hexadecimal.

System Action: The stage terminates with return code 26.

27E Entry point word not found

Explanation: The named entry point is not a built-in

program; it is not found in any declared local directory; and

there is no file with file name word and file type REXX..

System Action: Message 1 is issued if the message level is

odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -27. The stage terminates with return code -27 when

this message is issued by a look up routine.

User Response: If the error seems to originate in a specs

stage or some other stage that allows for a long and complex

parameter list, check your pipeline specification to see if you

have inadvertently used a stage separator or an end character

without doubling it up to let it escape through the scanner.

If you forgot, what you think of as a parameter list is, in

fact, several stages or even several pipelines.

The usually useless piece of advice is: Verify the spelling of

the name of the program to run. If, however, this shows that

the name substituted is not the name you wrote, the pipeline

specification has been truncated in the middle of the

command verb. Most likely, message 1145 was also issued;

address your CMS commands to COMMAND, not to XEDIT.

Issue “pipe query” to display the level of CMS Pipelines

that you are using; compare the response with the response

in this book. Contact your systems support staff if this book

applies to the level of CMS Pipelines that you are using and

the program is a built-in one.

System Programmer Response: If CMS Pipelines is

installed in a shared segment, ensure that sufficient space has

been allocated.

28I Starting stage with save area at X'address' on

commit level number

Explanation: Pipeline dispatcher trace is active; the option

STOP is specified. The address substituted designates the

save area that contains the initial register set for the stage.

System Action: None.

29E Pipelines stalled

Explanation: A set of pipelines is deadlocked.

System Action: The state of each stage is listed in subse-

quent message 30s. PIPDUMP EXEC is called to write the pipe-

line control blocks to the file PIPDUMP LISTING A. All stages

that have not completed have their input and output

connections severed before being dispatched with return code

-4095.

User Response: It may help to use faninany instead of

fanin. Ensure that there is buffering in all loops when this

does not help.

30I Stage is in state state

Explanation: The pipeline is stalled. The state of each

stage is listed. The following states are defined:

System Action: None.

31I Resuming stage; return code is number

Explanation: Pipeline dispatcher trace is active. The stage

is being resumed. The return code from the call to the pipe-

line dispatcher is shown.

System Action: None.

ready The stage is ready to run.

wait loc Waiting for data in locate mode.

wait in Waiting for data in move mode.

wait out Waiting for a stage to read its output.

wait ecb Waiting for an event control block to be

posted.

unavail The stage has been redefined by

CALLPIPE; it waits for the subroutine

pipeline to complete.

wait any Waiting for data on any input stream.

returned The stage has completed execution.

wait com Waiting for other stages to commit.

776 CMS Pipelines User’s Guide and Reference

 32I ¹ 43E

32I Storage address length

Explanation: When a pipeline specification is issued from

runpipe TRACE, this message is issued before message 39 is

issued to describe a data record and before message 34 is

issued to indicate that a CALLPIPE or ADDPIPE pipeline

command is being processed. The message text can be used

as a pipeline stage to obtain the complete record or

command.

33I Input requested for number bytes

Explanation: Pipeline dispatcher trace is active. A

PIPINPUT macro or a READTO pipeline command is issued.

The contents of register 0 are substituted for number.

System Action: None.

34I "entry point" called

Explanation: Pipeline dispatcher trace is active. The entry

point shown is called.

System Action: Message 39 may follow with the pipeline

command being issued.

35I Output number bytes

Explanation: Pipeline dispatcher trace is active. A PIPOUTP

macro or a OUTPUT pipeline command is issued. The

contents of register 0 are substituted for number.

System Action: Message 39 follows.

36I Select side stream number

Explanation: Pipeline dispatcher trace is active. A PIPSEL

macro or a SELECT pipeline command is issued.

System Action: None.

37I Streamnum side stream number intersection

number

Explanation: Pipeline dispatcher trace is active. A

PIPSTRNO macro or a STREAMNUM pipeline command is

issued.

System Action: None.

38I Setting dispatcher exit to X'address'

Explanation: Pipeline dispatcher trace is active. A PIPEXIT

macro is issued.

System Action: None.

39I ... Data: "data"

Explanation: Pipeline dispatcher trace is active. The first

60 bytes of the record are shown.

System Action: None.

User Response: To see all data passing between two stages

in the pipeline, insert a stage that copies the data to a file;

then look at it later. Or write a REXX program to “say” the

data.

When capturing a copy of the data flowing in the pipeline it

may be important that end-of-file is propagated backwards

through this device driver stage. Use eofback to run the

device driver, for example:

... | eofback > trace file1 a | ...

40E REXX program name not found

Explanation: The rexx interface cannot find a file for the

program you request. (Return code 8 on EXECSTAT.)

System Action: The stage terminates with return code 40.

41E Request "code" not valid on service call to module

Explanation: PIPMOD receives a service call with an argu-

ment that indicates neither that CMS ABEND processing is in

process (PURGE) nor that the nucleus extension is being

dropped (RESET). The first token of the argument is substi-

tuted.

System Action: The service call is ignored.

User Response: Contact your systems support staff.

System Programmer Response: Ensure that no program

issues SVC 202 or CMSCALL with a call type of X'FF'.

42E Entry point missing

Explanation: The RESOLVE pipeline command is issued

! with no operands; ldrtbls or nucext has no operands; a

! required keyword is missing in the parameter list of a builtin

! program using a secondary entry point table.

System Action: Return code 42 or -42 is set.

43E Null label

Explanation: The first non-blank character of a stage

definition is a colon.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -43.

User Response: Use any one of these ways to invoke a

REXX program that has a colon in its name:

¹ Add rexx to specify that the program is in REXX.

¹ Define an escape character; put the escape character

before the colon.

¹ Add a null label (.:).

 Chapter 26. Message Reference 777

 44E ¹ 53E

44E Label string is not valid

Explanation: string does not conform to the syntax for a

label. For instance, there may be two or more periods in it.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -44.

45W Stream identifier "name" truncated to four charac-

ters

Explanation: There are more than four characters between

the period beginning a stream identifier and the colon ending

the label.

System Action: The stream identifier is truncated. Proc-

essing continues.

46E Label label not declared

Explanation: No specification for a stage is found the first

time the label is used. The first usage of a label defines the

stage to run, and any operands it may have. Subsequent

references are to the label by itself.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -46.

User Response: Ensure that the label is spelt correctly. If

this is the case, inspect the pipeline specification to see if a

stage separator is erroneously put between the label and the

verb for the stage.

47E Label label is already declared

Explanation: A reference is made to a label that is already

defined. The label reference should be followed by a stage

separator or an end character to indicate reference rather than

definition.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -47.

User Response: Ensure that the label is spelt correctly. If

this is the case, add a stage separator after the label to indi-

cate that this is a reference to a stream other than the

primary one. Note that all references to a label refer to the

invocation of the stage that is defined with the first usage of

the label.

48E Conflicting value for keyword keyword: character

Explanation: The character used for the operand is already

a special character in the pipeline specification parser.

The following characters are reserved for other uses in a

pipeline specification: left and right parentheses “()”, colon

“:”, period “.”, blank, asterisk “*”. Other special characters

are defined by the global options option SEPARATOR (by

default “|”), option ENDCHAR, and option ESCAPE.

System Action: Scan terminates with return code 48.

User Response: Use another character for the function.

49E Value for keyword "keyword" is not acceptable

Explanation: The value must be a single character or two-

digit hexadecimal representation of the character to be used

for the function indicated by the operand.

System Action: Scan terminates with return code 49.

50E Not a character or hexadecimal representation:

word

Explanation: word is not a character or a two-digit

hexadecimal representation of a character.

System Action: Return code 50 is set. If issued from the

scanner, scan terminates with return code 50. If issued from

a stage, the stage terminates with return code 50.

51E Missing operand after inputRange(s)

Explanation: A column range or a list enclosed in paren-

theses is specified, but no further operands are present.

System Action: The stage terminates with return code 51.

User Response: Specify the range “*-*” if you wish to

change left parentheses; or rearrange the list of translations

so that the first one is not the beginning of a valid range.

52E Unknown translate table "word"

Explanation: The table is not INPUT, OUTPUT, LOWER,

UPPER, A2E, or E2A; nor is it one of the operands TO or FROM

(which designate a codepage number).

word is the first word specified after column ranges, if any.

It is neither a translation specification nor one of the oper-

ands designating a translate table.

System Action: The stage terminates with return code 52.

53E Odd number of translate pairs

Explanation: The argument string ends prematurely.

System Action: The stage terminates with return code 53.

User Response: The most likely cause of this error is that

the first operand is interpreted as a column range instead of a

translation specification. For instance, “xlate 40 a” gives

this message instead of translating blank characters to lower

778 CMS Pipelines User’s Guide and Reference

 54E ¹ 64E

case “a”. “xlate space a” or “xlate 1-* 40 a” performs

the intended function.

54E Range "numbers" not valid

Explanation: A list of column ranges is opened or a

keyword is specified that indicates a list of words or fields.

A word in it does not conform to a column range syntax. If

a valid decimal range is specified, the beginning column is

zero or the end of the range is before the beginning.

System Action: The stage terminates with return code 54.

User Response: Add the range “*-*” if you wish to trans-

late the left parenthesis; or rearrange the list of translations

so that the first one is not the beginning of a valid range.

55E No inputRange(s) in list

Explanation: A left parenthesis is found, which indicates

the beginning of a list of input ranges. The next non-blank

character is a right parenthesis, which indicates that the list

contains no ranges.

System Action: The stage terminates with return code 55.

User Response: Add the range “*-*” for the column range

if you intend to translate left parentheses to right paren-

theses, like this: “xlate *-* ()”; or rearrange the list of

translations so that the first one is not the beginning of a

valid range.

56E More than 10 inputRanges specified

Explanation: There are more than 10 words in the list of

column ranges.

System Action: The stage terminates with return code 56.

User Response: Use a cascade of xlate if you need to

translate more than 10 ranges. Alternatively, use a subrou-

tine pipeline with a spec to put the fields to be translated

adjacent to each other; perform the transliteration desired;

then use another spec to put them back where they were in

the input record.

57E Missing right parenthesis after inputRanges

Explanation: A left parenthesis is found, meaning a range

of columns is specified, but no closing right parenthesis is

found.

System Action: The stage terminates with return code 57.

User Response: Add the range *-* if you wish to translate

left parentheses; or rearrange the list of translations so that

the first one is not the beginning of a valid range.

58E Decimal number expected, but "word" was found

Explanation: The word contains a character that is not a

digit.

System Action: The stage terminates with return code 58.

59E Logical record length number is not valid

Explanation: The number is zero or negative.

System Action: The stage terminates with return code 59.

60E Delimiter missing after string "string"

Explanation: No closing delimiter is found for a delimited

string.

System Action: The stage terminates with return code 60.

User Response: Most likely you never intended to specify

a delimited string, but a mistake in a column range caused

the specification error.

61E Output specification missing

Explanation: The output column is not specified for the

last item.

System Action: The stage terminates with return code 61.

User Response: A likely cause is that an earlier

specification is interpreted as a delimited string instead of

what it was intended to be.

62E Command length number too long for CP

Explanation: The argument string or an input line is longer

than the 240 bytes supported by CP, even after leading blank

characters are stripped.

System Action: The stage terminates with return code 62.

63E Output specification word is not valid

Explanation: The word specifies where to put a field in the

output record; it is not a positive number or a column range.

System Action: The stage terminates with return code 63.

User Response: A mistake in a conversion or placement

option can trigger this message. Another likely cause is that

an earlier input specification has been scanned as a delimited

string where it should have been a column.

64E Hexadecimal data missing after prefix

Explanation: A prefix is found, indicating that a

hexadecimal constant should follow, but the next character is

blank or the end of the argument string.

System Action: The stage terminates with return code 64.

User Response: Do not use letters as delimiters for a

delimited string.

 Chapter 26. Message Reference 779

 65E ¹ 73E

65E "string" is not hexadecimal

Explanation: An h, H, x, or X is found in the first char-

acter of a specification item to specify a hexadecimal literal,

but the remainder of the word is not composed of

hexadecimal digits.

System Action: The stage terminates with return code 65.

User Response: Do not use letters as delimiters for a

delimited string.

66E Number number is outside the valid range

Explanation: The number is not appropriate in the context

where it is used.

System Action: The stage terminates with return code 66.

67E The number is incompatible with "option"

Explanation: A number is found first in the argument

string, indicating a modifier, but the AT option implies that

the target is removed when splitting. split cannot split

before or after this target.

System Action: The stage terminates with return code 67.

68E Incorrect OS block descriptor word X'hex'

Explanation: The first four bytes of an input record are

substituted. The last two bytes of the block descriptor word

are not zero.

System Action: The stage terminates with return code 68.

User Response: Check the input file. The most likely

cause is that the file you are trying to deblock is not a vari-

able format OS file with block and record descriptor words.

69E Block size mismatch; number bytes read, but block

descriptor word contains number

Explanation: The block size in the block descriptor word

does not agree with the amount of data read.

System Action: The stage terminates with return code 69.

User Response: Check the input file. The most likely

cause is that the file you are trying to deblock is not a vari-

able format OS file with block and record descriptor words.

Another reason for this error may be that the file has been

edited and trailing blank characters were removed when it

was stored by XEDIT.

Spurious characters have been observed at the end of

monitor records.

The following REXX program pads or truncates a record to

the length indicated in the block descriptor word.

/* FIXBDW REXX -- make as long as BDW says */
signal on error
do forever
 'readto in'
 'output' left(in,c2d(left(in,2)))
end
error: exit RC*(RC<>12)

70E Incorrect OS record descriptor word X'hex'

Explanation: The last byte of the record descriptor word is

not zero. If less than 4 bytes of hexadecimal data are substi-

tuted, there may be spurious data at the end of a block.

System Action: The stage terminates with return code 70.

User Response: Check the input file. The most likely

cause is that the file you are trying to deblock is not a vari-

able format OS file with block and record descriptor words.

71E Column number "number" must be positive

Explanation: The number is not positive.

System Action: The stage terminates with return code 71.

72E Last record not complete

Explanation: Premature end-of-file is received by deblock

CMS or unpack. That is, end-of-file is received in the middle

of a logical record.

System Action: The stage terminates with return code 72.

User Response: Check the input file. The most likely

cause is that the input is not blocked with CMS record

descriptor words or not in packed format.

73E Segmentation flags not compatible; previous is

X'previous' and current is X'current'

Explanation: The segmentation flags are incompatible in

the sense that the end of a record is not followed by the

beginning of another one, or a segment that is not the end of

a record is followed by a segment indicating the beginning

of a record.

System Action: The stage terminates with return code 73.

User Response: Check the input file. The most probable

cause of this error is that the data set is not in the specified

format. When using deblock NETDATA on a reader file, be

sure to:

¹ Select only records with X'41' in the first column.

¹ Delete the first column.

¹ Pad the record to 80 bytes.

780 CMS Pipelines User’s Guide and Reference

 74E ¹ 85E

74E Fixed records not same length; last bytes followed

by current bytes

Explanation: Input records to block FIXED are not all the

same length.

System Action: The stage terminates with return code 74.

User Response: Check the input file. Maybe you wanted

the function performed by fblock rather than block; fblock

accepts records of any length. Use pad to increase the

length of short records, chop to truncate records.

75E Block size not integral multiple of record length;

remainder is number

Explanation: The block size specified is not an integral

: multiple of the length of the first record read. For fbawrite

: the block less the prefix does not contain a multiple of 512

: bytes.

System Action: The stage terminates with return code 75.

User Response: Use fblock if you wish to combine records

irrespective of their lengths.

76I Waiting on ECB at X'address': hex

Explanation: Pipeline dispatcher trace is active. The stage

issues the macro PIPWECB. The address of the ECB and its

contents are shown. Bit 1 of the ECB (X'40') indicates that

it is posted.

System Action: Processing continues.

77I Return code number

Explanation: The return code from a pipeline command is

not zero. The option LISTERR is active.

System Action: None.

78E Record length number is too much

Explanation: The input record is too long for the device

driver or blocking filter in question.

System Action: The stage terminates with return code 78.

User Response: Check the input file. block CMS, disk,

fullscr, printmc, punch, and uro only accept up to 65535

bytes of data.

block V and block VB do not support input records longer

than 32752 bytes (which is equivalent to the OS restriction of

32756 including the record descriptor word). Use block VBS

to process records of any length.

79E CCW command code X'hex' is not valid

Explanation: Except for X'5A', the first byte of a record

does not contain a write or control CCW: the rightmost bit is

zero.

System Action: The stage terminates with return code 79.

User Response: Check the input file. Most likely there is

no CCW operation code in the first column of the data record.

Use punch instead of uro or printmc if you do not need to

create records that have no operation carriage control.

80E More than 255 conversion triplets specified

Explanation: More than 765 operand words are found;

overstr cannot handle more than 255 triplets.

System Action: The stage terminates with return code 80.

User Response: Build a cascade of c14to38 filters if you

need to process that many combinations.

81E Incomplete conversion triplet

Explanation: The number of operand words is not divisible

by three.

System Action: The stage terminates with return code 81.

82E Device address word is not hexadecimal

Explanation: The device address shown is not composed of

hexadecimal characters.

System Action: The stage terminates with return code 82.

User Response: Ensure operands are spelt correctly; a

misspelled keyword is interpreted as a device address.

83E Device word does not exist

Explanation: CP sets condition code 3 on diagnose 24,

indicating that the virtual device does not exist.

System Action: The stage terminates with return code 83.

User Response: Ensure operands are spelt correctly; a

misspelled keyword is interpreted as a device address.

84E Virtual device word is not a supported virtual type

Explanation: The virtual device class and type returned for

the device are not compatible with the function requested.

For instance, it is not a printer for printmc or not a punch for

punch.

System Action: The stage terminates with return code 84.

85E Virtual device word is not a supported real type

Explanation: The real device class and type returned for

the device are not compatible with the function requested.

System Action: The stage terminates with return code 85.

 Chapter 26. Message Reference 781

 86I ¹ 95E

86I CMS Pipelines, 5741-A07 modlevel

(Version.Release/Mod) - Generated April 29, 2020

at 2:50 p.m.

Explanation: This is the response to the command PIPE

QUERY. Date and time shown here represent the time when

this book was formatted. In the actual message they are

replaced with the date and time the module was generated.

This time is normally less than a minute before the

timestamp of PIPELINE MODULE, unless the file has been trans-

ported with SENDFILE across time zone boundaries or

between systems with dissimilar time zone specification in

DMKSYS or HCPSYS.

System Action: Return code 86 is set.

87E This stage must be the first stage of a pipeline

Explanation: A program that cannot process input records

is not in the first position of the pipeline.

System Action: The stage terminates with return code 87.

88E Buffer overflow

Explanation: buildscr needs more than 16K to build the

screen image.

System Action: The stage terminates with return code 88.

User Response: Check the input file. Ensure (for instance

with asatomc) that the input file does have machine carriage

control.

89E Return code number reading the virtual reader

Explanation: Diagnose 14 sets the return code shown.

System Action: The stage terminates with return code 89.

User Response: One reason is that the first file in the

reader is a VMDUMP file and you did not use the option

4KBLOCK. Refer to z/VM CP Programming Services,

SC24-6272, for a description of the error codes for diagnose

14.

90E No reader file available

Explanation: There are no files in your reader that can be

processed.

System Action: The stage terminates with return code 90.

User Response: The option MONITOR, or lack thereof,

determines which type of file reader tries to read. There

may still be files ready for reading of the other kind (monitor

or not, as appropriate).

91E Return code number from CONSOLE type macro

Explanation: The CONSOLE interface is used to a 3270

terminal and the return code shown is received from CMS.

type displays the second doubleword of the CONSOLE param-

eter list.

System Action: The stage terminates with return code 91.

User Response: The return codes from CONSOLE are

described in the z/VM CMS Macros and Functions Reference,

SC24-6262.

92E More than ten key fields

Explanation: More than the maximum ten key fields are

specified for sort or merge.

System Action: The stage terminates with return code 92.

User Response: Use spec to rearrange the records to make

the fields contiguous so that they can be coalesced.

93E Pipeline not installed as a nucleus extension; use

PIPE command

Explanation: CMS Pipelines is initialised, but general

register 2 does not point to an SCBLOCK for its entry point.

This message has also been observed when a downlevel or

modified NUCXLOAD MODULE is used to install the pipeline

module as a nucleus extension.

System Action: Processing terminates with return code 93.

User Response: Use the command PIPE to run a pipeline

specification. Do not issue the command PIPELINE or NXPIPE;

these modules run in the user area when invoked directly as

a command.

System Programmer Response: Ensure that the PIPELINE

MODULE is relocatable.

94E Token token is not valid for PIPMOD

Explanation: The PIPMOD command is issued with flag

byte zero. The subcommand is not supported.

System Action: Processing terminates with return code 94.

User Response: Do not issue the PIPMOD command from an

EXEC1.

95E Operand word is not valid for PIPMOD

Explanation: The PIPMOD command is issued from the

command line or from an EXEC. The word shown is not

supported.

System Action: Processing terminates with return code 95.

782 CMS Pipelines User’s Guide and Reference

 96E ¹ 105E

96E Missing PIPMOD operand

Explanation: The PIPMOD command is issued with a

register 1 flag byte of zeros. No arguments are found.

System Action: Processing terminates with return code 96.

97E Userword for pipe nucleus extension is zero

Explanation: CMS Pipelines has discovered an internal

error. The nucleus extension for PIPE is installed, but no

pipeline header is allocated.

System Action: Processing terminates with return code 97.

User Response: Contact your systems support staff.

System Programmer Response: This is an error in CMS

Pipelines.

98E Connector not by itself

Explanation: A label is found that has an asterisk as the

first component, but a stage definition follows.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -98.

User Response: Connectors must be at the beginning or the

end of a pipeline. Most likely an end character or a stage

separator is missing.

99E Connector not at the beginning or the end of a

pipeline

Explanation: A connector is in the middle of a pipeline.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -99.

User Response: Connectors specify how to couple streams

between the active pipeline and the one being added to the

pipeline set. Connectors must be at the beginning or the end

of a pipeline. Most likely an end character or a stage sepa-

rator is missing.

100E Direction "word" not input or output

Explanation: The second component of a connector is not

a recognised operand.

System Action: Pipeline scan terminates with return code

100.

101E Connector connector can be specified with

ADDPIPE or CALLPIPE

Explanation: A connector is found, but the pipeline was

not issued with an ADDPIPE or CALLPIPE.

System Action: Pipeline scan terminates with return code

101.

102E Stream number not defined

Explanation: A connector requests the stream with the

number shown, but the calling stage does not have that many

streams defined.

System Action: Pipeline scan terminates with return code

102.

User Response: Note that the primary stream has number

0; the secondary stream is number 1.

103E Stream identifier not defined

Explanation: The calling stage does not have a stream with

the identifier specified in the third component of the

connector.

System Action: Pipeline scan terminates with return code

103.

104E Compiler stack overflow

Explanation: CMS Pipelines has discovered an internal

error. A filter is out of space for its compiler stack while

generating code.

System Action: The stage terminates with return code 104.

User Response: Try to reduce the complexity of the argu-

ment string. Contact your systems support staff.

System Programmer Response: This is a programming

error in CMS Pipelines. Investigate whether corrective

service is available.

105E Compiler overflow

Explanation: A filter is compiling a program; the program

is too large to fit into the area that has been allocated for this

purpose.

System Action: The stage terminates with return code 105.

User Response: For sort, the fields required such a

complex program to compare that the available storage is

exhausted. Use spec to rearrange the sort fields to become

less complex. sort has read all input, but produces no

output.

System Programmer Response: This is not a program-

ming error in CMS Pipelines.

 Chapter 26. Message Reference 783

 107E ¹ 118E

107E PIPMOD nucleus extension dropped before PIPE

command is complete

Explanation: The PIPMOD nucleus extension is dropped

while a pipeline is active.

System Action: Control is returned to CMS with return code

107. Results are unpredictable when control returns to the

pipeline; an ABEND is likely.

User Response: Do not issue PIPINIT or NUCXDROP PIPMOD

while a pipeline specification is being run.

108E Return code number from operation operation on

tape tape

Explanation: CMS refuses to perform an I/O operation on

the tape drive.

System Action: The stage terminates with return code 108.

User Response: Refer to the RDTAPE or WRTAPE macro

description in the z/VM CMS Macros and Functions

Reference, SC24-6262, for a description of the error codes.

Error 2 on write means that end of tape is reached while

writing tape mark(s) after the file; all input records have

been processed.

109E Keyword word is not a valid blocking format

Explanation: The operand is not Fixed, Variable, C, and so

on.

System Action: The stage terminates with return code 109.

User Response: deblock V supports all OS variable record

formats, blocked or spanned, or both.

110E Unsupported record in IEBCOPY unloaded data

Explanation: The top three bits of the first record are not

all zero.

System Action: The stage terminates with return code 110.

User Response: Check the input file. If the data is indeed

an IEBCOPY unloaded PDS, then there seems to be a note list.

Remove it in a drop or nfind stage.

111E Operand word is not valid

Explanation: A keyword operand is expected, but the word

does not match any keyword that is valid in the context.

System Action: The stage terminates with return code 111.

112E Excessive options "string"

Explanation: A stage has scanned all options it recognises;

the string shown remains.

System Action: The stage terminates with return code 112.

User Response: This error may occur when a delimited

string is intended, but a single character is found. For

example, in “chop / ,/|” the first forward slash means the

literal character '/' rather than the opening of a delimited

string. Though “chop /, /|” would scan the intended way,

the preferred specification is “chop any / ,/”.

Another likely cause is that a stage separator is missing and

what is intended as a following stage is treated as additional

operands to the current stage.

113E Required operand missing

Explanation: A stage has found some, but not all, required

operands.

System Action: The stage terminates with return code 113.

114E Block size missing

Explanation: block is issued without an operand.

System Action: The stage terminates with return code 114.

User Response: Specify the block size for a default of

Fixed.

115E Block size too small; number is minimum for this

type

Explanation: The block size is too small to hold a record

or segment, even of one byte.

System Action: The stage terminates with return code 115.

116E File type missing

Explanation: The argument string is one word (the file

name).

System Action: The stage terminates with return code 116.

User Response: Write file names, types, and modes as

blank-delimited words. Specify both the file name and the

file type.

117E File mode "word" longer than two characters

Explanation: Three or more characters are found in the

third word of the argument string.

System Action: The stage terminates with return code 117.

118E Return code number from renaming the file

Explanation: An erase and write operation is requested for

a file. The file exists, so a utility file is written and renamed.

The RENAME function fails with the return code shown.

System Action: The stage terminates with return code 118.

User Response: Contact your systems support staff.

System Programmer Response: This is an error in CMS

Pipelines. Investigate whether corrective service is available.

784 CMS Pipelines User’s Guide and Reference

 119E ¹ 124E

119E Mode letter not available or read only

Explanation: A mode letter is specified; the mode letter is

not accessed, or it is accessed read only.

System Action: The stage terminates with return code 119.

User Response: Most likely mode A is not accessed when

a file is to be written there. Another cause could be that the

one character abbreviation of the record format is written

without a file mode; add a mode letter or directory. Yet

another cause could be that you are accessing an SFS direc-

tory that belongs to some other user; CMS will access this

directory read only, even if you have write privileges, unless

you specify the option FORCERW on the ACCESS command.

120E Return code error number from parameter list func-

tion fn ft fm

Explanation: An unexpected return code is returned from

the CMS file system. function displays the first token of the

parameter list. It is 'Vblockw' when the full block interface

is used to create a file. The last three words show the name,

type, and mode of the file.

System Action: The stage terminates with return code 120.

User Response: Error code 3 often means that a file has

been replaced on a shared minidisk. Access the disk again if

this is the case. Consider moving the file to an SFS direc-

tory.

Refer to the error codes for the FSREAD and FSWRITE macros

in the z/VM CMS Macros and Functions Reference,

SC24-6262.

Error code 15 when function is 'Vblockw' can mean that

CMS has updated the disk file directory while a file was being

created. This is normally caused by the ERASE command.

To circumvent this, use diskslow or buffer the file in buffer

before writing it with disk. Write the file to an SFS directory

or a separate minidisk if the file is too large to buffer and

diskslow performance is not acceptable.

! Error code 16 when function is 'Vblockw' has been

! observed when two > stages were writing the same file.

121E File not found in the active file table

Explanation: CMS Pipelines has discovered an internal

error. Having written a file through the full block interface,

the disk device driver is unable to find the AFT entry for the

newly created file.

System Action: The stage terminates with return code 121.

User Response: The reason may be that the file has been

closed during execution, possibly by some other stage going

into subset. Use diskslow to overcome this problem or

buffer the file with buffer before writing it.

122E Insufficient free storage

Explanation: A stage requesting storage has received a

nonzero return code.

System Action: The stage terminates with return code -122.

There may be too little storage left even to issue this

message. In that case, the message is suppressed, but the

pipeline return code is likely to be -122.

123E Not same ADT

Explanation: CMS Pipelines has discovered an internal

error. disk found an entry in the active file table describing

the file being written, but it seems not to be on the disk it

should be.

System Action: The stage terminates with return code 123.

User Response: Contact your systems support staff. Use

diskslow to write the file.

System Programmer Response: The error is either in the

disk device driver or in DMSLAF, or the format of the param-

eter list to DMSLAF has changed.

This message is issued by modification levels 0 through 2 of

CMS Pipelines when disk is used to write variable format

files on VM/System Product Release 6. The file is written

correctly. Install the current modification level.

This message has also been observed when the program level

in NUCON was changed to indicate a release earlier than 6

when the system was in fact release 6 or later.

124E Error reading file: Length of record is number but

file has logical record length number

Explanation: A V format file is being read through the full

block interface. A record is met with a length field indi-

cating a length longer than the logical record length in the

file status table entry for the file.

This error can occur when a file on a shared minidisk has

been updated by another virtual machine after you have

accessed the minidisk.

System Action: The stage terminates with return code 124.

User Response: Access the disk and try again if the file is

on a shared minidisk. Contact your systems support staff if

you can XEDIT the file or read it with diskslow.

System Programmer Response: This may be a real error

in the file system, or it may be a programming error in the

disk device driver. You can disk dump a file to yourself and

read it with READCARD if you wish to see the record

descriptor words.

 Chapter 26. Message Reference 785

 125E ¹ 138E

125E File mode missing

Explanation: An erase and write operation (>) is requested

for a file without specifying the file mode.

System Action: The stage terminates with return code 125.

User Response: Specify the mode letter where you wish to

write the file.

126E File mode * not allowed

Explanation: An erase and write operation (>) is requested

with an asterisk as the file mode.

System Action: The stage terminates with return code 126.

User Response: Specify the mode letter where you wish to

write the file.

127E This stage cannot be first in a pipeline

Explanation: A device driver that requires an input stream

is first in a pipeline, where there can be no input to read.

System Action: The stage terminates with return code 127.

128E Record format not existing file format letter

Explanation: A file is to be appended to. The explicit

record format specified is not the same as the one for the

existing file.

System Action: The stage terminates with return code 128.

User Response: Specify the correct record format; use > to

replace a file; or erase the existing file before issuing the

pipeline.

129E Error reading file: Premature end of file

Explanation: A V format file is being read through the full

block interface. The end-of-file record is not expected.

This error can occur when a file on a shared minidisk has

been updated by another virtual machine after you accessed

the minidisk.

System Action: The stage terminates with return code 129.

User Response: Access the disk and try again if the file is

on a shared minidisk. If the file is indeed in order, there is a

programming error in disk. Use diskslow instead.

131E Specified logical record length does not match

existing logical record length number

Explanation: A file that has fixed record format is to be

appended to. The record length specified is not the same as

the one for an existing file.

System Action: The stage terminates with return code 131.

User Response: Specify the correct record length or erase

the existing file.

132E Stream "word" already replaced

Explanation: The stream is requested to be replaced in two

or more connectors. For instance, two or more connectors

refer to *.input: at the beginning of a pipeline.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -132.

133E Stream "word" already prefixed

Explanation: The stream is referenced in two or more

connectors that specify a prefix type connection. For

instance, two or more connectors refer to *.input: at the

end of a pipeline.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -133.

134E Record is number bytes, but format F file record

length is number

Explanation: While file that has fixed record format is

being written, an input record does not have the correct

length.

System Action: The stage terminates with return code 134.

User Response: Check the input file. Use pad to extend

records; chop to truncate.

137E The string of operands is too long

Explanation: The operand string for asmfind or asmnfind is

longer than 71 bytes, indicating that the target is not entirely

in the first record. The argument string to sql is 32K or

. longer. An input line to attach is 32K or longer.

System Action: The stage terminates with return code 137.

User Response: Use asmcont to combine continuation

records before find or nfind; reconstruct the Assemble file

with asmxpnd.

138E Short circuit not from input to output in connector

Explanation: Two connectors are in a pipeline of their own

with no stage between them. In this case, the first one must

be for input and the second one must be for output.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -138.

786 CMS Pipelines User’s Guide and Reference

 139E ¹ 149E

139E No connection available to redefine for connector

Explanation: A redefine operation is attempted with a

ADDPIPE or CALLPIPE pipeline command, but the connection

is severed, and thus there is no connection to redefine.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -139.

140E Record longer than specified length bytes bytes

Explanation: An input record does not fit in the buffer

when creating format V or VB records or a record is longer

than an explicit length on pack VARIABLE. The length of the

record is substituted.

System Action: The stage terminates with return code 140.

User Response: Check the input file. Increase the block

size to accommodate the required length if you are indeed

blocking the data you intend to block.

141E XEDIT not active

Explanation: The xedit device driver is invoked; it finds no

active XEDIT subcommand environment. (The return code

from CMS is -3.)

System Action: The stage terminates with return code 141.

142E File "fn ft fm" is not in the XEDIT ring

Explanation: The named file is not in the active XEDIT

ring; the return code from XEDIT is 28.

System Action: The stage terminates with return code 142.

User Response: Use the XEDIT subcommand of XEDIT to

load a file into the ring.

143E Return code number from XEDIT state

Explanation: A return code not -3 or 28 is received on

STATE of a file in XEDIT. Return code 24 means that the file

name or the file type begins with X'FF'.

System Action: The stage terminates with return code 143.

User Response: Ensure the file is correctly named. If so

refer to the description of the return codes in “Using XEDIT

to Access Files in Storage” in z/VM CMS Application Devel-

opment Guide for Assembler, SC24-6257.

144E Return code number from XEDIT operation

Explanation: The return code shown is received from

XEDIT. Error 13 has been observed when there is no more

storage to insert lines.

This message is also issued when it is not possible to find

the subcommand environment to transport data; message 145

indicates the function as SUBCOM.

System Action: The stage terminates with return code 144.

User Response: Try the error codes listed for FSREAD and

FSWRITE in z/VM CMS Macros and Functions Reference,

SC24-6262.

145I Requesting function on fn ft fm

Explanation: The last three words show the file being

accessed. The function is DMSXFLST for a STATE request; it

is DMSXFLRD to read a line from the file; it is DMSXFLWR to

write a line into the file.

System Action: None.

146E File "fn ft fm" does not exist

Explanation: A file does not exist. It is requested by

pdsdirect, members, or file read is requested with the

synonym <.

System Action: The stage terminates with return code 146.

User Response: Use disk to treat missing files as if they

have no records.

147E File not a proper PDS

Explanation: The first record of the file does not contain a

recognised identifier.

System Action: The stage terminates with return code 147.

148E Directory pointer number not compatible with file

of size number

Explanation: The record number of the directory for the

simulated partitioned data set is less than two or larger than

the number of records in the file.

System Action: The stage terminates with return code 148.

User Response: Ensure that the data set is generated

correctly. This error is reported when reading a maclib that

is not generated completely. A null directory is identified

while the library is being built; a failure in maclib (for

instance disk full) can leave the output file in a state that is

not valid.

. 149E Offset is not smaller than modulo

. System Action:

. Explanation: The first number specified must be zero or

. positive and smaller than the second. The stage terminates

. with return code 149.

 Chapter 26. Message Reference 787

 150E ¹ 167E

150E Member word not found

Explanation: The member listed does not exist in the

library.

System Action: The stage terminates with return code 150.

User Response: When extracting members from a TXTLIB,

members requires the name of the first CSECT in an object

module. It does not resolve entry points the way the CMS

loader does.

151E Operand "string" is not range of characters or a

delimited string

Explanation: The operand is neither a range of characters

nor a delimitedString of enumerated characters.

System Action: The stage terminates with return code 151.

152E Block size number too large; number is the

maximum

Explanation: The block size for block is larger than the

size supported for the blocking format in question. For V

and the three other variable formats, the maximum is 32760.

For AWSTAPE, the maximum is 65541.

User Response: Choose a smaller block size.

154E Operating environment not supported by stage

Explanation: A stage is requested which does not run on

the operating system at hand.

System Action: The stage terminates with return code 154.

155E "attribute" is not three characters or hexadecimal

Explanation: One of the first four words in the arguments

to buildscr is neither an asterisk nor three characters.

System Action: The stage terminates with return code 155.

User Response: Write three characters for extended attri-

butes, or a single asterisk.

156E String missing

Explanation: An operand (for instance, ANYOF) is found,

indicating that a string should follow, but there are no more

operands.

System Action: The stage terminates with return code 156.

157E Null string found

Explanation: There are two consecutive delimiter charac-

ters.

System Action: The stage terminates with return code 157.

. 158E Modulo must be positive (it is number)

. System Action: The stage terminates with return code 158.

159E Device address no longer exists

Explanation: Condition code 3 is received on an I/O opera-

tion to the device.

System Action: The stage terminates with return code 159.

161E 64K or more inbound data

Explanation: A 3270 generates 64K bytes or more of input

data.

System Action: The stage terminates with return code 161.

User Response: If your terminal is a personal computer,

the terminal simulator may have generated an incorrect

inbound transmission.

162E Return code number from NUCEXT

Explanation: The return code shown is received when

installing or retracting a nucleus extension.

System Action: Processing terminates with return code

162.

163E Missing keyword INPUT or OUTPUT

Explanation: SELECT and SEVER must have an operand.

System Action: Processing terminates with return code

163.

164E Direction "word" not valid or not supported

Explanation: A stage issues a pipeline command where the

first operand is the word shown. This combination is not

supported.

System Action: Processing terminates with return code

164.

165E Stream identifier word not valid

Explanation: A stage issues a pipeline command where

word is expected to be a stream identifier. The combination

shown is not supported.

System Action: Processing terminates with return code

165.

166E No real device attached for device

Explanation: The device driver requires a real device, but

one is not attached.

System Action: The stage terminates with return code 166.

. 167E You cannot READ from the second reading station

. Explanation: SELECT SECOND is in effect. The second

. reading station has no input stream associated and thus no

. record can be read.

. System Action: The stage terminates with return code 167.

788 CMS Pipelines User’s Guide and Reference

 169E ¹ 181E

169E Stream identifier missing

Explanation: SELECT has no operands.

System Action: Processing terminates with return code

169.

170E Prefix or suffix type connector not allowed

Explanation: A pipeline specification that is issued with

CALLPIPE contains an output connector at the beginning of a

pipeline or an input connector at the end of a pipeline.

System Action: Processing terminates with return code

170.

User Response: Use the ADDPIPE pipeline command to

process alternative input or redirect output.

172E Help not available for relative message number;

issue PIPE HELP MENU for the Pipelines help

menu

Explanation: The operand on PIPE HELP specifies a relative

number for which no message is stored.

System Action: Processing terminates with return code

172.

173E No stage found to run

Explanation: CMS Pipelines has discovered an internal

error. The pipeline is stalled, but error recovery finds no

stage that is forced ready to run.

System Action: Processing terminates with return code

173.

User Response: Contact your systems support staff.

System Programmer Response: This is an error in CMS

Pipelines. Provide as documentation PIPDUMP LISTING

created on the user’s A disk.

174E Stream "identifier" is already defined

Explanation: The second component of the label refers to a

stream that is already defined for the stage.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -174.

User Response: Choose another stream identifier for the

label reference.

175E Language table not generated

Explanation: The language table describing message texts

for multiple languages has not been generated in CMS

Pipelines.

System Action: Processing terminates with return code

175.

176E Language "word" not found

Explanation: Messages for the requested language were not

generated with CMS Pipelines.

System Action: Processing terminates with return code

176.

177I Spent number milliseconds in routine

Explanation: This message is issued when the message

level includes the bit for 8K. A message is issued for each

stage as it completes. Further messages are issued to list

time spent in system services.

System Action: None.

178E Stream "identifier" is not found

Explanation: fanin is used with operands to designate a

specific order of streams to be read, but the one shown

cannot be selected. SELECT on spec requests a stream that is

not defined.

System Action: The stage terminates with return code 178.

User Response: This error can be caused by a missing

stage separator after fanin.

179E Character "char" is not an ASA carriage control

character

Explanation: The file is not in the correct format.

System Action: The stage terminates with return code 179.

User Response: Check the input file.

180E Character X'hex' is not a machine carriage control

character

Explanation: The file is not in the correct format.

System Action: The stage terminates with return code 180.

User Response: Check the input file.

181E PSW mask and key are X'hex', not X'FFE0' or

X'03E0'

Explanation: With the bit for 2K on in the message level,

the pipeline dispatcher finds that it is called from a program

that is either disabled or executes in a key other than the one

reserved for CMS user programs. The first two bytes of the

PSW are substituted. They should be X'FFE0' in a

370-mode virtual machine, X'03E0' in an XA-mode virtual

machine.

System Action: Control returns to the stage with return

code 181. The function requested is not performed.

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Contact your systems support staff.

 Chapter 26. Message Reference 789

 182W ¹ 192I

182W String "string" ignored in command

Explanation: An input operation is performed through the

REXX interface. The pipeline command has more than two

words.

System Action: Remaining words are ignored.

User Response: Ensure the pipeline command is issued

correctly.

183E Output buffer overflow; number required

Explanation: While unpacking a file, a logical record is

met that is longer than the maximum record length declared

for the file in the first record.

System Action: The stage terminates with return code 183.

User Response: Check the input file. Use XEDIT to test if

the input file is a proper packed file. Do not try to unpack

with COPYFILE; it may cause a CMS ABEND.

184E Storage at address not released; R12 hex R14 hex

Explanation: A stage obtained storage. The area of

storage was not released through the proper interface. The

contents of general registers 12 and 14, at the time storage

was allocated, are substituted in the message.

System Action: None.

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Contact your systems support staff.

System Programmer Response: Use NUCXMAP to locate

the pipeline module. Determine if the module not releasing

storage is part of CMS Pipelines.

185E Entry point name is not executable

Explanation: The entry point for the stage contains the

operation code zero. Executing it would lead to a program

check.

System Action: Message 1 is issued if the message level is

odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -185.

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Issue “pipe query” to display the

level of CMS Pipelines that you are using; compare the

response with the response in this book. Contact your

systems support staff if this book applies to the level of CMS

Pipelines that you are using and the program is a built-in

one.

System Programmer Response: If CMS Pipelines is

installed in a shared segment, ensure that sufficient space has

been allocated.

186I PIPMOD MSGLEVEL number

Explanation: This is the response to “pipe query
msglevel”.

System Action: Return code 186 is reflected.

187E Keyword word must be LIFO or FIFO

Explanation: The operand to stack is not valid.

System Action: The stage terminates with return code 187.

189I Messages issued: list

Explanation: This message is issued or stacked when the

message list is queried by PIPMOD QUERY MSGLIST. The list

is 44 bytes long with four bytes for each message. Each

message has a 3-three byte number and a 1-byte severity

code. The entry for the last issued message is to the right.

Zeros are provided in the leftmost entries when less than 11

messages have been issued since the pipeline module was

initialised.

System Action: Processing continues. Return code 0 is

reflected.

190E The character cannot begin a stage

Explanation: The first character of the definition of a stage

is a special character.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -190.

191E Second character of connector not a period

Explanation: The first character is an asterisk, indicating a

connector, but the second character is not a period.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -191.

192I ... Scan at position number; previous data "string"

Explanation: The number substituted is the number of

characters from the beginning of the pipeline specification

(including global options) to the current scan pointer. The

last 20 characters before the scan pointer are substituted for

string.

System Action: None.

User Response: The error is at or before the character indi-

cated by the scan pointer.

790 CMS Pipelines User’s Guide and Reference

 193E ¹ 215E

193E Colon missing in connector

Explanation: The definition of a stage begins with an

asterisk, but a blank character or a parenthesis is met before

a colon.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -193.

194E Parenthesis not supported in connector

Explanation: A parenthesis is met in a connector.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -194.

195E Pipeline cannot contain only a connector

Explanation: A connector at the beginning of a pipeline

ends the operand string, or it is followed by an end char-

acter.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -195.

196E Column ranges must be in ascending order and not

overlapping

Explanation: change finds overlapping ranges or ranges

that are not in ascending order from left to right.

System Action: The stage terminates with return code 196.

197E Range shorter than first string

Explanation: The “from” string is longer than a range.

System Action: The stage terminates with return code 197.

198E Count must be one when first string is null

Explanation: A null “from” string is present; the only

acceptable count is one.

System Action: The stage terminates with return code 198.

200E Missing ending parenthesis in expression

Explanation: More left parentheses are met than can be

paired with right parentheses in the expression.

System Action: The stage terminates with return code 200.

204E Too many ending parentheses in expression

Explanation: A right parenthesis is met for which there is

no open left parenthesis.

System Action: The stage terminates with return code 204.

206E Expression missing

Explanation: An opening parenthesis is followed by a

closing one or a comma; a comma is followed by a comma,

or a comma is followed by a closing parenthesis.

System Action: The stage terminates with return code 206.

209E Segment length number not 2 or more

Explanation: The length byte in front of a a segment is

zero or one. This is not valid for data blocked in the netdata

format.

System Action: The stage terminates with return code 209.

User Response: Check the input file. Ensure that the input

stream is indeed in the netdata format and that records are

padded to 80 bytes.

211E Second target missing

Explanation: A delimited string is found for the first target,

but the second target is not present.

System Action: The stage terminates with return code 211.

212E Screen size number less than 1920 or greater than

16384

Explanation: The screen size (the product of the number of

lines and columns) is less than the 1920 capacity of a model

2 screen, or larger than the 16384 positions addressable with

14-bit addressing.

System Action: The stage terminates with return code 212.

214E Mode fm is not accessed or not CMS format

Explanation: No CMS minidisk or directory is found with

the mode letter shown. Either the mode is not accessed, the

character is not a letter, or the disk is in OS format.

System Action: The stage terminates with return code 214.

215E File identifier "file" not complete or too long

Explanation: The identifier of a file to be looked up by

state or statew is not two or three blank-delimited words.

System Action: The stage terminates with return code 215.

 Chapter 26. Message Reference 791

 219E ¹ 229E

219E Input not in correct format (check word is "check

word", not "word")

Explanation: A stage that expects a particular record from

another stage did not read what it expected. For example,

outstore finds an input record that does not describe a file in

storage; or tcpdata reads a record that is not generated by

: tcplisten. “Input” should be taken to include records passed

: in a data space.

System Action: The stage terminates with return code 219.

User Response: Check the input file. Ensure that the

correct stage is used to generate the file.

220E First record not a delimiter: "data"

Explanation: maclib finds that the first input record does

not define the name of a member. The beginning of the first

record is shown. Two double quotes with no substitution

means that the first record is null. This is an error because

the record belongs to no member.

System Action: The stage terminates with return code 220.

User Response: Check the input file. Ensure that the input

stream has members delimited properly and that the operand,

if used, is written correctly and in the correct case.

By default, members are delimited by “*COPY” starting in

the first position of the record.

Note that the operand is not translated to upper case; write in

upper case if the delimiters are upper case.

System Action: The stage terminates with return code 220.

221E Incorrect character "character" in expression

Explanation: The character shown is not valid in an

expression.

System Action: The stage terminates with return code 221.

222E Secondary stream not defined

Explanation: Only the primary stream is defined. update

requires two input and output streams. lookup requires at

least two streams.

System Action: The stage terminates with return code 222.

User Response: update reads the master file from the

primary input and writes the updated file to the primary

output. Transactions (update control cards and

replaced/inserted records) are read from the secondary input.

The update log is written to the secondary output.

/* Sample update */
'pipe (end ?)',

'< mstr fl|u:update|> m fl a',
'?< upd fl|u: |> u log a'

223E Sequence error in output file: previous to new

Explanation: A sequence error is introduced in the output

file.

System Action: This message is written to the update log

stream. Processing continues. Return code 8 is set unless

other errors force a higher return code.

224E Premature end of primary input stream; sequence

number number not found

Explanation: An update control record references the

number shown, but it is not found before the input stream is

exhausted.

System Action: This message is written to the update log

stream. Processing continues. Return code 12 is set unless

other errors force a higher return code.

225E Sequence number not found

Explanation: An update control record references the

number shown, but it is not found. A line with a higher

serial number is encountered.

System Action: This message is written to the update log

stream. Processing continues. Return code 12 is set unless

other errors force a higher return code.

226E Sequence field length length too long; 15 is

maximum

Explanation: The length of the sequence field is larger than

the maximum supported.

System Action: The stage terminates with return code 226.

227E Sequence field not present in record; number bytes

read

Explanation: An input record is too short to contain the

sequence field. All master input records are checked for

this; detail records being inserted are checked if the control

record indicates that the sequence field in the record is to be

retained.

System Action: The stage terminates with return code 227.

User Response: Check the input file. Ensure that all

records have a sequence field. Move the sequence field to

the beginning of variable length records.

229E Sequence error in input stream from previous to

new

Explanation: The input master file has a sequence error.

System Action: This message is written to the update log

stream. Processing continues. Return code 8 is set unless

other errors force a higher return code.

792 CMS Pipelines User’s Guide and Reference

 230E ¹ 238E

230E Unsupported format "type"

Explanation: The record format for the packed file is

neither fixed nor variable.

System Action: The stage terminates with return code 230.

231E Null variable name

Explanation: The first two characters of an input record are

the same.

System Action: The stage terminates with return code 231.

User Response: Check the input file. Ensure that a single

delimiter is used to delimit the variable name from the data

to load. The name must begin in the second column of the

input record.

A blank or an asterisk (*) in column one indicates a

comment line for which no variable is set.

232E Stem or variable name is too long; length is number

bytes

Explanation: The variable name is too long. var supports

at most 250 bytes for the variable name. stem supports at

most 240 bytes in the name of the stem to allow for a

10-character sequence number.

System Action: The stage terminates with return code 232.

User Response: Choose a shorter name for the variable or

stem.

233E No active EXECCOMM environment found

Explanation: A stage refers to the EXEC environment, but

no such environment is found.

System Action: The stage terminates with return code 233.

User Response: Ensure that the pipeline is started from an

EXEC when using filters referencing EXEC or REXX variables.

System Programmer Response: A NUCEXT for EXECCOMM

received a nonzero return code.

234E Caller not REXX

Explanation: rexxvars is unable to obtain the interpreter

private data. Most likely, an EXEC2 issued the PIPE

command.

System Action: The stage terminates with return code 234.

User Response: Ensure that rexxvars is only called from

REXX programs. Such programs begin with a REXX comment

(/* ... */).

235E Variable name is not valid: word

Explanation: The variable name is unacceptable to the

EXECCOMM interface. The variable may be longer than 250

characters or it may contain a character that is not valid in a

variable name.

System Action: The stage terminates with return code 235.

User Response: Ensure that the stem or variable name is

spelt correctly. Do not put an ampersand (&) at the begin-

ning of it. varload requires that the stem part of a variable

name must be in upper case; a simple variable must be

completely in upper case.

236E Too much data for variable name

Explanation: Too much data is to be set. The maximum

length supported for EXEC2 variables is 255 bytes. This

message is also issued when there is insufficient storage for

EXECCOMM processing to complete.

System Action: The stage terminates with return code 236.

User Response: Use chop to truncate records if using

EXEC2. With REXX, it is likely that you have run out of

storage; it may help to increase virtual machine storage.

237E Error code X'hex' (return code number) from

EXECCOMM

Explanation: CMS Pipelines is not prepared for the return

code it receives from EXECCOMM.

System Action: Message 552 displays the EXECCOMM

parameter list. The stage terminates with return code 237.

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Contact your systems support staff.

System Programmer Response: This is probably an error

in CMS Pipelines. Consult the status codes defined in the

member SHVBLOCK in DMSGPI MACLIB to see the meaning of

the return code.

238E Record count "word" not zero or positive

Explanation: The contents of the variable that specifies the

number of variables in a stemmed array cannot be converted

to a number that is zero or positive. The name of this vari-

able is formed by appending a zero (X'F0') to the operand

to stem. The contents of the variable are substituted; results

differ between REXX and EXEC2 when the variable is not

“set” (when no assignment has been made to the variable).

An unset EXEC2 variable is shown as null; REXX returns the

name of an unset variable as its value.

System Action: The stage terminates with return code 238.

User Response: Remember to set the variable to an integer

value before calling a subroutine pipeline using stem to read

a stemmed array.

 Chapter 26. Message Reference 793

 240E ¹ 264E

Ensure that the variable set is the one referenced. Do not

put an ampersand (&) at the beginning of a variable name

when accessing variables in EXEC2 programs.

240E Function name not supported

Explanation: An expression has an identifier followed by a

left parenthesis, indicating a function call, but the function

requested does not exist.

System Action: The stage terminates with return code 240.

241E Record format or logical record length is not valid

Explanation: members is used with a file that is not fixed

with 80 byte records; qsam is used for a file with a record

format for which it is not designed.

System Action: The stage terminates with return code 241.

User Response: For members, correct the way the library is

generated. For qsam, use a utility to change the record

format to fixed or variable.

: 242E Too few arguments; number is minimum

: Explanation: Too few arguments were present for the func-

: tion call.

: System Action: The stage terminates with return code 242.

: 243E Too many arguments; number is maximum

: Explanation: Too many arguments were present for the

: function call.

: System Action: The stage terminates with return code 243.

245W Operand word ignored

Explanation: You have specified options for fullscr that

are incompatible amongst themselves or with the virtual

machine architecture.

¹ Both operands CONSOLE and DIAG58 are specified.

¹ DIAG58 is specified in a virtual machine that is not in

370 mode.

¹ ASYNCHRONOUS and either or both of NOCLOSE or DIAG58

are specified.

. You have specified SENDTIME without specifying SENDDATE

. with inmr123.

System Action: Processing continues. The operand substi-

tuted is ignored.

250E Syntax error in expression

Explanation: A malformed expression is met. This

includes adjacent operators, empty parentheses, and strings

that are not separated by an operator.

System Action: The stage terminates with return code 250.

253E Data not a NETDATA control record

Explanation: A record is met that does not conform to the

transmission data format. The beginning of the record is not

X'E0' followed by 'INMR0' followed by a number 1

through 4, 6, or 7.

System Action: The stage terminates with return code 253.

User Response: Check the input file. Most likely, the

input data is not from a file in the netdata format or data

records have not been removed.

256I No pipeline specified on pipe command

Explanation: The PIPE command is issued without argu-

ments.

System Action: The return code is 256.

User Response: Provide a pipeline specification with the

PIPE command.

257E Subcommand environment word not found

Explanation: A device driver interfacing to a subcommand

environment is unable to locate the requested environment.

System Action: The stage terminates with return code 257.

261E Unable to open DDNAME

Explanation: The third bit of DCBOFLGS stays zero.

System Action: The stage terminates with return code 261.

A companion CMS message (DMSSOP036R) may have been

issued.

User Response: The most likely cause is that no FILEDEF

has been issued to define the data set. Ensure that DCB attri-

butes are specified.

264E Too many streams

Explanation: Too many streams are defined for merge; a

selection stage has more than two streams; a secondary

stream is defined for a stage that does not use it.

System Action: The stage terminates with return code 264.

User Response: Cascade merge stages to merge the

required number of streams. For other stages, this message

usually indicates trouble with the multistream topology. For

instance, this is a subroutine pipeline to select lines with A,

B, or C:

794 CMS Pipelines User’s Guide and Reference

 279E ¹ 289E

'callpipe (end ? name ALLMSGS)',
 '|*:',

'|a:locate string /A/',
 '|f:faninany',
 '|*:',
 '?a:',

'|b:locate string /B/',
 '|f:',
 '?b:',

'| locate string /C/',
 '|f:'

279E Tape identifier word not valid

Explanation: CMS gives return code 4 when the tape is

read or written. This means that the device name is not

valid.

System Action: The stage terminates with return code 279.

User Response: Valid operands are device addresses in the

ranges 180 through 187 and 288 through 28F, and the oper-

ands TAP0 through TAPF.

280E Delimiter 16M or longer

Explanation: The argument string to maclib is longer than

16M.

System Action: The stage terminates with return code 280.

User Response: Choose a shorter token.

281W Mixed case command verb "word"

Explanation: command finds the first word to be different

from its translation to upper case.

System Action: The tokenised parameter list is translated to

upper case.

User Response: This message alerts you to the fact that

results may be different on VM/System Product Releases 4

and 5. Write the command entirely in upper case to be sure

the results are the same on the two releases of VM.

System Programmer Response: command inspects the

operand defined by CD in SYSTEM KWDTABLE to see if it

should translate the tokenised parameter list and issue this

message. Use one of these values:

0 Issue no message and translate to upper case.

1 Issue message 281 and translate to upper case. This

is the default.

2 Issue no message and leave the tokens in lower case.

3 Issue message 281 and leave the tokens in lower case.

282E Stage cannot be used with ADDPIPE

Explanation: One of the device drivers referring to REXX

or EXEC variables is requested in a pipeline specification

issued with ADDPIPE. Since the two programs would run in

parallel, it is not possible to ensure that the EXECCOMM envi-

ronment will remain for the duration of the new pipeline.

System Action: The stage terminates with return code 282.

User Response: Use CALLPIPE to load or store variables in

a REXX filter.

283W Operand word ignored with console

Explanation: WAIT is specified for fullscr, and CONSOLE is

specified or defaulted; WAIT is only valid with DIAG58.

System Action: Processing continues.

284E Field or string longer than 16M

Explanation: The first word in the argument to maclib is

longer than 16M. Other stages may also require strings that

are shorter than 16M.

It is more likely that there is an error in CMS Pipelines.

System Action: The stage terminates with return code 284.

287E Number number cannot be negative

Explanation: A negative number is specified for an

operand to a stage that only supports zero or positive

numbers.

System Action: The stage terminates with return code 287.

288I Posting ECB at address

Explanation: Information message issued when the

dispatcher posts an ECB because the stage has no more

streams connected. The option TRACE is active.

Note that posting an ECB is not traced in the normal course

of events.

System Action: Processing continues.

289E Intervention required on device

Explanation: Intervention is required on the virtual device

shown. On virtual unit record devices this may mean that

system SPOOL space is full.

System Action: The stage terminates with return code 289.

No message is issued to the system operator.

User Response: For a virtual unit record device, issue the

CP command “ready” to make the device ready.

 Chapter 26. Message Reference 795

 290E ¹ 303E

290E Tape address is write protected

Explanation: The tape does not have the write enable ring

mounted. For an IBM 3480 or 3490 cartridge tape, the

cartridge is protected against write.

System Action: The stage terminates with return code 290.

No message is issued to the system operator.

User Response: Ensure the correct tape is mounted on the

device. Ask the system tape operator to make the medium

writable.

291E End of tape on device

Explanation: The tape has reached the end of the volume

while writing a data record.

System Action: The stage terminates with return code 291.

User Response: Write a tape mark to the output tape.

Mount another tape to continue. Use a control stage when

writing more than one volume; the next record to write is

available in the pipeline.

292E I/O error on address; CSW X'hex', CCW X'hex'

Explanation: An error occurred on the device.

System Action: The stage terminates with return code 292.

System Programmer Response: Note that this message is

only issued for terminals that are locally attached; CP does

not reflect the error on terminals connected through PVM,

VM/VCNA, or VM/VTAM.

293I Sense data

Explanation: Sense data is available for the error reported

with message 292. Sense bytes are normally shown in

hexadecimal; a single sense byte having only one of the first

six bits on is decoded:

System Action: None.

297E Return code number from diagnose X'A8'

Explanation: An error is reported on diagnose A8 to write

unit record output.

System Action: The stage terminates with return code 297.

Message 298s are written to list the contents of the param-

eter list to diagnose A8.

User Response: Inspect the sense data and determine the

cause of error.

298I HCPSGIOP contents: hex

Explanation: The contents of the HCPSGIOP control block

(used with diagnose A8) are listed in hexadecimal, 32 bytes

at a time.

System Action: None.

300E Namelist does not end

Explanation: A left parenthesis is found opening a name

list in a table definition, but no right parenthesis is found to

close it.

System Action: The stage terminates with return code 300.

301E No position for last variable

Explanation: The argument string ends prematurely.

System Action: The stage terminates with return code 301.

302E Too many variable names specified (number);

maximum is 254

Explanation: The ISPF maximum is exceeded.

System Action: The stage terminates with return code 302.

303E Return code number from function

Explanation: The return code shown is received when

performing the ISPF or CMS function shown.

System Action: The stage terminates with return code 303.

EqpmtCk Equipment check. An equipment

malfunction is detected. This error is

not likely to occur on a virtual SPOOL

device.

DataCk Data check. This error is not likely to

occur on a virtual SPOOL device.

Overrun The channel did not transmit data fast

enough for the device. This error is not

likely to occur.

CmdRej Command reject. The virtual device

does not support the operation. On a

terminal, this may indicate that write

structured field is not supported. A

printer rejects punch command codes

and vice versa.

IntvReqd Intervention required. On a special

GRAF, a dialled terminal has dropped.

On unit record output, the CP command

“notready” has been issued or the CP

SPOOL system is full; issue the CP

command “ready” to ready the device.

BusOutCk Bus out check. The device detected a

parity error on the data bus. This is an

unlikely error condition, and it should

not occur on a virtual unit record device.

796 CMS Pipelines User’s Guide and Reference

 304E ¹ 315E

304E ISPF is not active

Explanation: No ISPLINK subcommand environment is

active, so it is not possible to access ISPF. Return code 1 is

received when querying the subcommand environment

ISPLINK.

System Action: The stage terminates with return code 304.

User Response: Ensure that ISPF is active.

System Programmer Response: Regenerate the pipeline

module with the current ISPLINK TEXT if the ISPLINK interface

has changed.

305E Table word is not open

Explanation: ISPF indicates with a return code 12 that the

requested table is not open.

System Action: The stage terminates with return code 305.

User Response: Issue TBOPEN to open the table before

running the pipeline referencing the table.

306E IUCV application name already active (HNDIUCV

RC=4)

Explanation: The application name used by CMS Pipelines

to establish IUCV connections is already known to CMS. This

can happen when the PIPE command is entered recursively

from a pipeline that uses starmsg.

User Response: Find out what is already connected to the

system service.

System Action: The stage terminates with return code 306.

307E Unable to connect to service

Explanation: The path to the system service shown is

severed rather than connected. For *MSG and *MSGALL this

indicates that there is already a path connected to the service.

User Response: Find out what is already connected to the

system service. This can be a starmsg stage in a pipeline

that has invoked the PIPE command recursively, or it can be

a different application, for instance full screen CMS.

System Action: Message 312 is issued if the user data field

unless it contains all zero bits all one bits, or is blank. The

path is severed. The stage terminates with return code 307.

308E CP system service name not valid

Explanation: Return code 1016 is received on a CMSIUCV

macro. This indicates that the name of a CP system service

is not valid.

System Action: The stage terminates with return code 308.

User Response: Check the first operand. starmsg is

intended to connect to the services *MSG and *MSGALL.

309E This machine has too many IUCV connections

Explanation: Return code 1013 is received on CMSIUCV

CONNECT.

System Action: The stage terminates with return code 309.

User Response: Contact your systems support staff.

310E Return code number from HNDIUCV

Explanation: CMS sets the code shown when a path to an

IUCV service is declared.

System Action: The stage terminates with return code 310.

User Response: Return codes are listed in z/VM CMS

Macros and Functions Reference, SC24-6262. Return code 4

indicates an attempt by two programs to access the same

function.

311E Return code number from CMSIUCV function

Explanation: The return code shown was received from

CMS when attempting to connect to a service.

System Action: The stage terminates with return code 311.

User Response: Return codes are listed in z/VM CMS

Macros and Functions Reference, SC24-6262.

312I IPUSER: hex

Explanation: A path was severed. If the IPUSER field is

neither blank nor zero, its contents are substituted. The

substitution is a character string when the field consists

entirely of printable characters; otherwise the field is

displayed in hexadecimal.

313E IPRCODE number received on IUCV instruction

Explanation: The return code is not expected.

System Action: The stage terminates with return code 313.

314E Server user ID is not available

Explanation: Return code 1011 is received on CMSIUCV

CONNECT. On CMS, the virtual machine is not logged on or

has not enabled IUCV communications. On z/OS, no address

space has connected to the VMCF subsystem for the name

specified.

System Action: The stage terminates with return code 314.

315E Server has not declared a buffer

Explanation: Return code 1012 is received on CMSIUCV

CONNECT.

System Action: The stage terminates with return code 315.

 Chapter 26. Message Reference 797

 317E ¹ 340I

317E IUCV is not available to CMS

Explanation: The return code from HNDIUCV is 32.

System Action: The stage terminates with return code 317.

User Response: Contact your systems support staff to

determine which product bypasses CMSIUCV.

318E Server machine has too many connections

Explanation: Return code 1014 is received on CMSIUCV

CONNECT to the server machine.

System Action: The stage terminates with return code 318.

319E Not authorised to communicate with service

Explanation: Return code 1015 is received on CMSIUCV

CONNECT. There is no IUCV statement in the directory

authorising communication to the server.

System Action: The stage terminates with return code 319.

System Programmer Response: Use the IUCV ALLOWANY

statement in the directory entry for the server virtual machine

if anyone should be allowed to connect to it; use IUCV state-

ments in the directory entries for individual users when you

wish to authorise only some virtual machines to communi-

cate with a server.

320E Unexpected IUCV interrupt with IPTYPE type on

path number

Explanation: An IUCV interrupt is fielded where the type is

not the expected one.

System Action: The stage terminates with return code 320.

. 324E CMSIUCV application not active in server

. Explanation: The connection to the server was severed

. with user data all binary ones. For CMSIUCV this means that

. there is no active application by the name specified.

. System Action: The stage terminates with return code 324.

333E System service name is in use

Explanation: The requested system service is already being

used by a stage; it cannot be used by more than one stage at

a time.

System Action: The stage terminates with return code 333.

User Response: Use fanout to create multiple copies of the

output stream from starmsg.

334E FROM value not valid for file of size number

records

Explanation: The FROM option on diskslow specifies a

number that is larger than the number of records in the file

when reading, or it specifies a number that is one larger than

the number of records in the file when writing.

System Action: The stage terminates with return code 334.

335E Odd number of characters in hex data: string

Explanation: A prefix indicating a hexadecimal constant is

found, but the remainder of the word does not contain an

even number of characters.

System Action: The stage terminates with return code 335.

336E String length not divisible by 8: string

Explanation: A prefix indicating a binary constant is

found, but the number of characters in the remainder of the

word is not divisible by eight.

System Action: The stage terminates with return code 336.

337E Binary data missing after prefix

Explanation: A prefix indicating a binary constant is

found, but there are no more characters in the argument

string or the next character is blank.

System Action: The stage terminates with return code 337.

338E Not binary data: string

Explanation: A prefix indicating a binary constant is

found, but the remainder of the word contains a character

that is neither 0 nor 1.

System Action: The stage terminates with return code 338.

339E PIPSDEL return code number

Explanation: A return code is received on a conversion

operation.

User Response: Contact your systems support staff.

System Programmer Response: This is an error in CMS

Pipelines. Recreate the message with SET EMSG ON to

display the module that issues the message. Contact IBM

for service.

340I IPARML: message (R0=number)

Explanation: The bits for 128 or 64 are on in the message

level. The number is decoded when it represents a valid

IUCV code.

798 CMS Pipelines User’s Guide and Reference

 341I ¹ 356I

341I . hex: hex *char*

Explanation: Three lines are displayed for the IUCV param-

eter list and the ECB that are used for the request. Each line

contains the hexadecimal storage address of the beginning of

the data displayed. Up to 16 bytes are displayed in

unpacked hexadecimal with character equivalents in EBCDIC.

342I Path number is connected to service

Explanation: The bit for 16 is on in the message level. A

connection complete interrupt has been fielded.

343E IPAUDIT is not zero: hex

Explanation: The audit field in a message complete inter-

rupt parameter is not all zero bits. If the audit field contains

a single one bit for which there is a defined explanation, this

is substituted in the message; otherwise the contents of the

audit field are substituted. This indicates a programming

error unless the audit field indicates that the message was

rejected or the path was severed, in which case the cause is

an action at the other end of the IUCV connection.

System Action: The stage terminates with return code 343.

User Response: Refer to “IUCV SEND” and “Message

Complete External Interrupt” in CP Programming Services,

SC24-6272.

344I IUCV External Interrupt type

Explanation: The bit for 32 is on in the message level. An

external interrupt is being processed. The contents of the

interrupt parameters are dumped from storage.

345E Originator name severed path number

Explanation: A connection pending interrupt was received

from the virtual machine shown on the path shown. When

accepting the connection, the CMSIUCV ACCEPT macro returns

code 1020, indicating that the originator has severed the path

in the meantime.

System Action: The stage terminates with return code 345.

346E No message found (id number)

Explanation: Condition code 2 is received on an IUCV

instruction. This means that the message specified does not

exist.

System Action: The stage terminates with return code 346.

347E Condition code 3 on IUCV instruction

Explanation: Condition code 3 is received on an IUCV

instruction.

System Action: The stage terminates with return code 347.

348I UserData data

. Explanation: An IUCV service severed the path

. unexpectedly. TCP/IP will indicate the reason in the user data

. field. The user data field is neither all zeros nor all ones. If

it is printable the contents are shown as sixteen characters,

otherwise the contents are shown as thirty-two hexadecimal

characters.

350E Primary key longer than secondary

Explanation: The primary key is longer than the secondary

key.

System Action: The stage terminates with return code 350.

352E Input record is number bytes; it should be number

Explanation: The input record does not have the length

required for the function.

System Action: The stage terminates with return code 352.

User Response: fmtfst is intended to process the output

from state NOFORMAT.

354E Return code number from SQL, detected in module

module

Explanation: A negative return code is received from SQL.

System Action: The stage terminates with the return code

shown. Messages 355, 356, and 369 are issued to describe

the error further.

User Response: Try the command “pipe help sqlcode”

to see if it is possible to obtain the information about the

return code from SQL. Refer to the section on SQLCODEs in

SQL/Data System Messages and Codes for IBM VM Systems,

SH09-8079 if online help fails.

355I ... RDS: number DBSS: number; number rows

done; string

Explanation: This message is issued after message 354 to

display additional information from the SQL communications

area.

System Action: None.

System Programmer Response: The numbers are obtained

from the SQL communications area. string shows the flags;

blanks have been changed to minus to maintain alignment.

356I ... Message parameter string

Explanation: The SQL communication area has a parameter

string with one or more items in it; each is listed in a sepa-

rate message.

System Action: None.

 Chapter 26. Message Reference 799

 357E ¹ 366E

357E SQL RC -934: Unable to find module module; run

SQLINIT

Explanation: SQL is unable to initialise.

System Action: The stage terminates with return code -934.

User Response: The most likely cause is that the SQL inter-

face modules are not generated on your A disk. Issue

“Filedef * clear” followed by “sqlinit db(sqldba)” to

create the modules SQL uses to find the resource manager.

Specify the name of the database in the SQLINIT command.

Be sure to access the minidisk that contains the SQL parame-

ters (normally SQLDBA 195). Contact your systems support

staff if there is no SQLINIT EXEC available to you or if there is

no ARIRVSTC TEXT available to you.

358E SQL RC -805: Access module name not found;

refer to help for SQL to generate access module

Explanation: The access module is not generated.

System Action: The stage terminates with return code -805.

User Response: Contact your systems support staff.

System Programmer Response: An access module must

be generated before CMS Pipelines can access SQL. The

recommended approach (which is the way CMS Pipelines is

shipped) is to generate the access module as 5785RAC.PIPSQI

and then grant the use of that to everyone (“grant run on
5785rac.pipsqi to public”).

Use PGMOWNER to specify a program owner for a particular

invocation of sql.

SQL/Data System Application Programming for IBM VM

Systems, SH09-8086 describes how to use SQLPREP to

generate an access module.

359E SQL object already exists

Explanation: SQLCODE -601 is received, indicating that the

object you tried to create is already known to SQL.

System Action: The stage terminates with return code -601.

360E Table table does not exist

Explanation: SQLCODE -204 is received, indicating that

SQL is not able to find the table in its catalogues.

System Action: The stage terminates with return code -204.

361I ... SQL processing: string

Explanation: An error occurred in a SQL statement. The

statement is shown.

System Action: None.

362E DESCRIBE followed by "word"; must be SELECT

Explanation: You must provide the select statement you

wish described.

System Action: The stage terminates with return code 362.

User Response: Use the operand SELECT to designate the

beginning of the query.

363E SQL RC -205: Column name not found in

creator.table

Explanation: SQL indicates that a column is not present in

a table.

System Action: The stage terminates with return code -205

364E Unable to obtain help from SQL (return code

number)

Explanation: A nonzero return code is obtained when

reading the index to the SQL return code information in

SQLDBA.SYSTEXT1..

System Action: The stage terminates with return code 364.

User Response: The error reported is likely to be -934 or

-806, which indicate that you have not identified the SQL

virtual machine or that the access module for CMS Pipelines

has not been generated. Additional messages are likely to be

issued; refer to help for the message issued.

365E SQL has no information about topic

Explanation: help is processing a help request for the SQL

topic shown. The tables are successfully selected, but the

query result is null. This means that there is no information

available about the topic.

System Action: The stage terminates with return code 365.

User Response: Ensure that the correct return code is put

in the query. Use “pipe help sqlcode” to display help for

the last SQLCODE received by sql.

366E Too few input streams

Explanation: EXECUTE is used to perform SQL commands.

The primary input stream. has more sql INSERT statements

without values() than there are additional input streams

defined.

System Action: The stage terminates with return code 366.

User Response: Provide the input for the first INSERT on

the secondary input stream. The primary input stream is

read for additional statements; it is not available for data.

800 CMS Pipelines User’s Guide and Reference

 367E ¹ 378E

367E Use SQL CONNECT TO to identify the subsystem

(Reason hex)

Explanation: sql receives return code 12 from DSNALI.

The most likely reasons are that the database is not the

default DSN or that you are not authorised to use the plan

PIPSQI with the resource you are connected to.

System Action: The stage terminates with return code 367.

User Response: Use sql CONNECT TO to specify the

subsystem name that you wish to connect to. This

specification remains in effect until the end of the PIPE

command.

368E 10 SQL stages already active

Explanation: There are already 10 sql stages active.

System Action: The stage terminates with return code 368.

User Response: Try to change the pipeline topology to

make some sql stages complete before starting others.

369I ... SQL statement prepared: string

Explanation: An error is reported by SQL while it is proc-

essing a dynamically prepared statement. The statement is

substituted.

370E Cursor has been closed

Explanation: SQL code -504 is received while a cursor is

used to read a line of a query or insert a line. The most

likely cause is that another sql stage has committed the unit

of work or rolled it back.

System Action: The stage terminates with return code -504.

User Response: Ensure that all concurrent sql stages

specify NOCOMMIT. Use a buffer stage to separate a query

from the stage processing the result.

Use a subroutine pipeline to ensure that a query is processed

correctly before the result is processed further; direct the

result to a stemmed array where it can be referenced by a

second pipeline after the return code for the first one is

tested and found OK.

371E ARIRVSTC TEXT is not available; run SQLINIT

Explanation: The object module that contains the SQL

bootstrap code is not linked into the pipeline module, nor is

it accessible as a file.

System Action: The stage terminates with return code 371.

User Response: Issue “Filedef * clear” followed by

“sqlinit db(sqldba)” to create the modules SQL uses to

find the resource manager. Specify the name of the database

in the SQLINIT command. Be sure to access the minidisk that

contains the SQL parameters (normally SQLDBA 195). Contact

your systems support staff if there is no SQLINIT EXEC avail-

able to you or if there is no ARIRVSTC TEXT available to you.

373E No SQL stub module or DB2 not present in system

Explanation: On CMS, the entry point ARIRVSTC is not

resolved. On z/OS, the module DSNALI could not be loaded.

This indicates that DB2 is not installed in the system.

System Action: The stage terminates with return code 373.

User Response: Contact your systems support staff.

System Programmer Response: Make sure the pipeline

module is linked with the SQL interface module if you do not

wish the interface code to be loaded dynamically.

pipgmod arirvstc.text
rename nxpipe module a pipeline = =
nucxdrop pipmod

374E DB2 connection using plan word already active

Explanation: The option PLAN is specified, but a different

plan is already in use.

System Action: The stage terminates with return code 374.

375E DB2 already connected to subsystem word

Explanation: The option SSID is specified, but a different

subsystem is already in use.

System Action: The stage terminates with return code 375.

376E Return code number reason hex from call to

DSNALI

Explanation: The return code (register 15) and reason code

(register 0) substituted are received in response to a call to

CAF OPEN.

System Action: The stage terminates with return code 376.

377E Subsystem word is not defined

Explanation: DSNALI returns reason code X'00F30006',

which means that the subsystem identification is not valid (or

more likely not defined).

User Response: Contact your database administrator to

determine the subsystem id to specify or contact your

systems support staff to generate the correct default in TSO

Pipelines.

System Programmer Response: The system keyword QZ

defines the default subsystem identifier. This is DSN by

default.

System Action: The stage terminates with return code 377.

378E Plan word is not authorised

Explanation: DSNALI returns reason code X'00F30034',

which means that the user is not authorised for the plan

name substituted.

System Action: The stage terminates with return code 378.

 Chapter 26. Message Reference 801

 379E ¹ 392E

379E Subsystem name is not up

Explanation: DSNALI returns reason codes X'00F30002',

X'00F30011', or X'00F30012'. These indicate that the DB2

subsystem is not up.

System Action: The stage terminates with return code 379.

380E Left parenthesis missing

Explanation: A left parenthesis is expected for a list of

items, but one is not found.

System Action: The stage terminates with return code 380.

381E Right parenthesis missing

Explanation: A left parenthesis for a list of items has been

met, but no right parenthesis is found.

System Action: The PIPE command or stage terminates with

return code 381.

382E Nothing specified within parentheses

Explanation: An opening parenthesis is found with only

blank characters before the closing parenthesis.

System Action: The stage terminates with return code 382.

391E Unsupported conversion type

Explanation: The type shown is syntactically correct to

request a conversion of a field, but the conversion is not

available. An example of such conversion is B2F.

System Action: The stage terminates with return code 391.

User Response: Use two spec stages to perform the

conversion via an intermediary format; for instance, char-

acter.

392E Conversion error in routine 2: type, record 3:

number (reason code 1: reason); data: "4: string"

Explanation: The string shown has a value that is not valid

for the conversion requested.

System Action: The stage terminates with return code 392.

User Response: Check the input file.

The naming conventions for the conversion routines are

adopted from REXX. The formats of the input and output

types are defined by the characters surrounding the number

'2':

C A character string with the internal representation of

the data type. In C2D, for instance, the input character

string should be four characters corresponding to a

fullword integer in two’s complement notation.

X A zoned hexadecimal string containing the digits 0

through 9 and the letters a through f (in upper case or

lower case, or a mixture). There must be an even

number of hexadecimal digits in the string; blanks are

only allowed at byte boundaries.

D A zoned decimal integer made up from the digits 0

through 9, possibly with a leading sign. Leading and

trailing blanks are allowed, as are blanks between the

sign and the number.

B A string of zeros and ones. The length must be a

multiple of eight.

F A floating point number. Examples of floating point

numbers are -5, .03, 2.7e-76.

V A variable length character field that has a halfword

(two bytes) length prefix.

P A zoned decimal number made up from the digits 0

through 9 with an optional leading sign and an

optional decimal point. Leading and trailing blanks

are allowed, as are blanks between the sign and the

number.

I A date. If the field contains six characters, it is taken

to be year, month, and date (two digits each). When

the field is eight characters or longer, it consists of

two characters century followed by six characters date

followed by an optional timestamp which can contain

up to six digits. The timestamp contains three two-

digit fields for hours, minutes, and seconds.

The reason code describes what went wrong:

4 Missing character in number or exponent.

8 A character in number or exponent is not valid.

12 Exponent overflow or underflow.

16 Incorrect character in integer or number too large for

fullword representation.

20 The input field for C2D is longer than 4 bytes and the

sign is not propagated.

24 The first or last character of a hexadecimal field is

blank.

28 Odd number of characters in a hexadecimal field.

32 Incorrect character in a hexadecimal field.

36 The number of characters in a bit field is not divisible

by 8.

40 Character in a bit field is neither 0 nor 1.

44 Floating point number is shorter than 2 bytes or

longer than 8 bytes.

48 A field to be converted to varying character is 64K or

longer; the length cannot be expressed as a halfword

integer.

52 The length of a varying character field is longer than

the input field available.

56 A number consists of blanks or a sign. That is, it

contains no digits.

60 Incorrect character (not a decimal digit) in number to

be packed.

64 A packed decimal field contains a sign that is not

valid (it is a digit).

68 A packed decimal field contains a digit that is not

valid (it is a sign).

72 A packed decimal field is null.

802 CMS Pipelines User’s Guide and Reference

 393E ¹ 410E

76 A Julian date is shorter than six characters, it has an

odd number of characters, or it is longer than fourteen

characters.

80 A Julian date that is eight characters or longer begins

with two digits that are less than 19.

84 Incorrect digit in Julian date (not decimal).

88 Month or day is zero or too large.

92 A field to be converted to Julian is shorter than three

bytes or longer than seven bytes.

96 A field to be converted to Julian does not contain

X'F' in the rightmost four bits of the third or fourth

byte.

100 A field to be converted to Julian contains a character

that is not valid (it is not not decimal).

104 A field to be converted to Julian contains a value that

is not valid (century field over X'80', which means

beyond year 9999; day larger than 365/366; hours,

minutes, seconds out of range).

108 Hours are larger than 23; minutes or seconds are

larger than 59.

393E Output field too short to contain field length

Explanation: V2C conversion is requested with an explicit

output field length. The length is less than 3, which means

that no characters can be loaded in the field.

System Action: The stage terminates with return code 393.

400E Delay word is not acceptable

Explanation: The first word of an input record is not three

(or fewer) decimal numbers separated by colons.

System Action: The stage terminates with return code 400.

401E Input record too short (number bytes)

Explanation: For asmcont, an input record after a state-

ment indicating continuation is shorter than 16 bytes, which

means that there is no continuation text. For join

KEYLENGTH, the input record was shorter than the specified

key length.

For lookup SETCOUNT, the input master record is shorter than

10 bytes, which means that it does not contain a full count

field. Likewise, for lookup INCREMENT, the input detail

record is shorter than 10 bytes and thus cannot contain the

: increment field. For fbawrite, the record is shorter than 24

: bytes.

System Action: The stage terminates with return code 401.

User Response: Check the input file. If you are using

asmcont, ensure that the input file is indeed an Assembler

file.

402I Calling Syntax Exit

Explanation: Pipeline dispatcher trace is active. The stage

is defined with a syntax exit which is called.

System Action: None.

405E Minimal C program tries to extend DSA

Explanation: A program using a minimal C runtime has

run out of stack space.

System Action: The program terminates. The stage returns

with code 405.

User Response: Use the C systems programmer environ-

ment for the program. This makes it look like any other

Assembler program.

406E Unsupported language code number for entry point

Explanation: The eleventh byte in the entry point table

entry for the stage has an unsupported code.

System Action: The stage terminates with return code 406.

User Response: Write no more than three words before the

first asterisk on a line in an entry point table unless you wish

to select a high level language interface.

407E PLISTART or CEESTART is not present

Explanation: A PL/I or C program is requested in the entry

point table, but no such program is linked into the module.

System Action: The stage terminates with return code 407.

User Response: Inspect the fourth word in the entry point

table used to resolve the program to see if the specified high

level language is indeed the intended one.

409E Assert failure code at address

Explanation: CMS Pipelines has discovered an internal

error. A program check operation exception is forced to

indicate a condition which should not occur.

System Action: Message 411 is issued if the information is

available. CMS ABEND processing continues.

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Make a note of the code and the

following message. Contact your systems support staff.

System Programmer Response: Investigate whether

corrective service is available.

410E ABEND code at address; PSW hex

Explanation: A CMS ABEND has occurred in the main pipe-

line module. The ABEND code indicates the type of failure.

The immediate CMS command HX causes ABEND 222.

The PSW at time of ABEND (ABNPSW) is substituted. The

contents of storage locations 140-143 (Program Interruption

Identification) are displayed after the PSW when bit 12 of the

PSW is one. This field is meaningful only if a program check

caused the ABEND.

System Action: Message 411 is issued if the information is

available. CMS ABEND processing continues.

 Chapter 26. Message Reference 803

 411I ¹ 505E

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Make a note of the information for

your systems support staff. Contact your systems support

staff.

System Programmer Response: Investigate whether

corrective service is available.

411I ... In procedure; offset offset in module

Explanation: Informational message issued at ABEND when

it can be determined in which module the failure occurred.

System Action: Message 412 is issued four times to

display the contents of the general registers at the time of

failure.

User Response: Note the information and provide it along

with information in messages 409 and 410.

412I ... GPRn: hex

Explanation: The contents of the general registers at the

time of failure are displayed.

User Response: Note the information and provide it along

with information in messages 409 through 411.

413I ... Store hex: hex

Explanation: The contents of storage at the point of failure

are substituted.

420E Return code number reading or writing block

number on disk mode

Explanation: The return code shown is received when

reading a block from the disk.

System Action: The stage terminates with return code 420.

User Response: Ensure that the block is within the disk

extents. Ensure that the disk is formatted correctly. Ensure

that the block number(s) are in decimal.

421E File mode string more than one character

Explanation: A word in the argument string to adtfst is

longer than one character.

System Action: The stage terminates with return code 421.

User Response: Write each mode letter as a blank-

delimited word when more than one mode letter is proc-

essed.

498E Output descriptor name is not valid

Explanation: Reason code X'035C8002' was received

when dynamically allocating a SYSOUT data set. The output

descriptor contains a character that is not valid.

System Action: The stage terminates with return code 498.

499E Output descriptor name is not defined

Explanation: Reason code X'04CC8002' was received

when dynamically allocating a SYSOUT data set.

System Action: The stage terminates with return code 499.

500E Data set DSNAME is partitioned

Explanation: The requested data set is partitioned but no

second operand is provided to indicate a specific member.

System Action: The stage terminates with return code 500.

User Response: Select a specific member when allocating

the data set.

501E No data set is allocated for DDNAME

Explanation: There is no data set allocated for the data

definition name shown. The return code 4 is received on the

RDJFCB macro.

System Action: The stage terminates with return code 501.

502E Member name already selected by allocation

Explanation: A second operand is found to indicate that a

member of a partitioned data set is to be read or written, but

the specific member name substituted is specified in the allo-

cation of the data set.

System Action: The stage terminates with return code 502.

User Response: Allocate the complete partitioned data set

when referring to members.

503E Return code number obtaining data set control

block

Explanation: The return code from OBTAIN is greater than

8. Return code 12 indicates an error reading the volume

table of contents. Return code 16 indicates a programming

error in CMS Pipelines.

System Action: The stage terminates with return code 503.

504E Data set DSNAME does not exist

Explanation: Return code 4 or 8 is received when trying to

locate the data set with OBTAIN, which indicates that the

volume is not mounted or that the data set does not exist.

System Action: The stage terminates with return code 504.

505E Data set DSNAME is not partitioned

Explanation: A member is requested and the data set

control block does not indicate partitioned organisation.

System Action: The stage terminates with return code 505.

804 CMS Pipelines User’s Guide and Reference

 506E ¹ 530E

506E DDNAME name is permanently concatenated

Explanation: qsam does not support permanent concat-

enations.

System Action: The stage terminates with return code 506.

User Response: Use > to specify the particular data set into

which the member should be stored.

507E Member name not found

Explanation: FIND or BLDL gives return code 4, indicating

that the requested member is not in the data set.

System Action: The stage terminates with return code 507.

508E Output descriptor too long: word

Explanation: The word is longer than 26 characters. This

is the limit for an output descriptor.

System Action: The stage terminates with return code 508.

509E Unacceptable spool file identifier SFID

Explanation: For reader, the number shown is negative;

for xab, the number is negative or larger than 64K.

System Action: The stage terminates with return code 509.

510E Spool ID SFID not found or incompatible with

reader

Explanation: For reader, the file cannot be ordered; CP

returns condition code 2 on diagnose 14 subcode X'C',

which means that the file does not exist, is in hold, does not

have the class that the reader is spooled for, or is open on

another reader.

For xab, CP gives return code 44, indicating that the SPOOL

file does not exist.

System Action: The stage terminates with return code 510.

511E Spool file identifier SFID rejected by CP

Explanation: CP gives return code 44 on the diagnose

instruction to manipulate the external attribute buffer.

System Action: The stage terminates with return code 511.

512E Virtual device device not a spooled printer

Explanation: The virtual device type class is not unit

record output.

System Action: The stage terminates with return code 512.

513E Return code number reading or writing XAB

(parameters hex)

Explanation: CP gives the return code shown on the diag-

nose instruction used to perform the function you have

requested. The two fullwords of RY and RY+1 are

displayed.

System Action: The stage terminates with return code 513.

User Response: Refer to the error description of diagnose

codes B4 and B8. Diagnose B4 is used to set or read the

external attribute buffer of a virtual printer; diagnose B8 is

used with a SPOOL file.

514E Record length number is over the maximum 32767

Explanation: The first input record is longer than the

maximum allowed.

System Action: The stage terminates with return code 514.

User Response: Check the input file.

515E Not a decimal range: word

Explanation: A decimal number or range is expected but

the word shown is found.

System Action: The stage terminates with return code 515.

516E Not a record number or a range of record

numbers: word

Explanation: Though an acceptable range of decimal

numbers, the word shown cannot represent a range of

records. The beginning of the range is zero or less, or the

end of the range is less than the beginning.

System Action: The stage terminates with return code 516.

517E Record number not present in file

Explanation: The record requested is not in the file.

System Action: The stage terminates with return code 517.

518E Record number truncated

Explanation: The record requested has been replaced or

added since diskrandom obtained information about the file

from CMS.

System Action: The stage terminates with return code 518.

530E Destructive overlap

Explanation: A record is moved or appended to a buffer.

Condition code 3 is set, indicating destructive overlap. This

can be caused by indiscriminate use of storage.

System Action: The stage terminates with return code 530.

 Chapter 26. Message Reference 805

 531E ¹ 544I

531E Word must be 8 characters; it is number

Explanation: An operand to optcdj is present, but not eight

characters.

System Action: The stage terminates with return code 531.

532E Storage key hex not acceptable

. Explanation: The third operand to storage or the input to

. adrspace CREATE does not designate an acceptable storage

key. For storage, storage key zero is not accepted and the

. rightmost four bits of the key must be zero. In all cases, the

. three leftmost bytes must be zero.

System Action: The stage terminates with return code 532.

User Response: Specify E0 for the user storage key; specify

F0 for the nucleus key.

533E Storage at address is protected

Explanation: storage gets a program check code 4

(protection) while loading data into the storage area.

System Action: The stage terminates with return code 533.

534E Storage at address is not addressable

Explanation: storage gets program check code 5

(addressing).

System Action: The stage terminates with return code 534.

535E Program check code

Explanation: storage gets a program check that is neither

protection nor addressing.

System Action: The stage terminates with return code 535.

536E Buffer header destroyed: hex

Explanation: CMS Pipelines has discovered an internal

error. The pointer to the next available byte is below the

base address of the buffer.

System Action: The stage terminates with return code 536.

User Response: Ensure the message level is odd (it is

unless you have changed it) and that message 1 is issued to

show the stage in error. Contact your systems support staff.

System Programmer Response: This is likely to be an

error in CMS Pipelines.

537I Commit level number

Explanation: Pipeline dispatcher trace is active. The stage

commits to the level shown.

System Action: None.

538I Query state of side stream stream

Explanation: Pipeline dispatcher trace is active. The stage

requests the status of the stream on the side shown.

System Action: None.

539E Do not connect unused side stream stream

Explanation: A stream is connected that the stage does not

use. This is often a symptom of an incorrect placement of a

label reference.

A selection stage (for instance, find) detects that the

secondary input stream is connected. collate detects that the

tertiary input stream is connected. fanin, faninany, merge,

and overlay detect a connected output stream other than the

primary one. fanout detects a connected input stream other

than the primary one. lookup detects that input stream 4 is

connected.

System Action: The stage terminates with return code 539.

User Response: Ensure that the reference to the label that

specifies the secondary output stream for a selection stage is

after an end character.

540E Command is longer than 132 (number characters)

Explanation: A command to vmc is longer than the

maximum of 132 characters.

System Action: The stage terminates with return code 540.

541E VMCF is in use by another stage

Explanation: vmc cannot use VMCF because another stage

is using it.

System Action: The stage terminates with return code 541.

542E Unable to communicate with user ID

Explanation: CP sets return code 5 when vmc tries to

communicate with the server.

System Action: The stage terminates with return code 542.

543E Return code number from VMCF: string

Explanation: CP sets the return code shown on a VMCF

request.

System Action: Message 544 is issued to display the

parameter list. The stage terminates with return code 543.

544I VMCPARMS: hex

Explanation: The parameter list is displayed for the request

that CP rejects.

System Action: None.

806 CMS Pipelines User’s Guide and Reference

 545E ¹ 557E

545E VMCF message rejected by user user ID

Explanation: The VMCF message is rejected by the user ID

shown.

System Action: The stage terminates with return code 545.

546E Input record length number is too short; 11 is

minimum

Explanation: diskupdate reads a record that is too short to

have a record number prefix (columns 1 through 10) and one

byte of data to write to the file.

System Action: The stage terminates with return code 546.

547E Record number number is beyond end-of-file

Explanation: diskupdate receives return code 7 writing the

record. This means that the file has variable record format

and that the record number is larger than one plus the

number of records in the file.

System Action: The stage terminates with return code 547.

User Response: Specify fixed format to create sparse files.

548I SEVER function requested for side

Explanation: Pipeline dispatcher trace is active. The stage

severs the connection on the side shown.

System Action: None.

549E Return code number, reason code number, R0 hex

from IRXINIT

Explanation: The return code and reason code shown are

received when trying to find the environment for the REXX

program that issued a pipeline specification with Address

link or Address attach. The reason code is valid only when

the return code is 20.

User Response: Refer to the IRXINIT return and reason

codes in TSO Extensions Version 2 REXX Reference,

SC28-1883.

System Action: The stage terminates with return code 549.

System Programmer Response: Reason code 24 means

that the environment table has too few entries for the number

of concurrent REXX programs that the user wishes to run.

Refer to TSO Extensions Version 2 REXX Reference,

SC28-1883.

550E Unable to access variables

Explanation: The TSO service routine gives return code 40,

indicating that there is no active CLIST environment.

System Action: The stage terminates with return code 550.

552I SHVBLOCK: hex

Explanation: The EXECCOMM parameter list is displayed on

two lines.

553E Return code number calling IRXSUBCM function

Explanation: The return code shown is received.

System Action: The stage terminates with return code 553.

554E Stream identifier string must not be numeric

Explanation: A stream identifier in a label declaration or

label reference is numeric.

System Action: Message 192 is issued if the message level

is odd. Pipeline scan continues to the end of the pipeline

specification, at which time processing terminates with return

code -554.

User Response: Begin a stream identifier with a letter.

Stream numbers are assigned when labels are referenced.

You cannot specify that a particular stream is to have a

particular number; use a stream identifier to refer to a stream

without knowing its number.

555I Issue PIPE AHELP PIPE or PIPE AHELP MENU

Explanation: “pipe ?” was issued. This message tells you

where to go for help.

System Action: Return code 0 is set.

556E Asterisk cannot end output column range

Explanation: An output column range ends with an

asterisk.

System Action: Return code 556 is set.

User Response: Write a single column to put a field at a

particular position, extending as far as required. Use a range

to put the field into a particular range of columns, padding or

truncating as necessary. Use the operand NEXT instead of a

range or column number to abut the field to the contents of

the output buffer; this is equivalent to the concatenate oper-

ator (||) in REXX. Use the operand NEXTWORD instead of a

range or column number to append a blank and the field to

the output record built so far. (The blank is suppressed if

the record is empty.)

557E Not authorised to obtain CP load map

Explanation: A program check is reflected on the diagnose

38 that is issued to read the CP symbol table.

System Action: The stage terminates with return code 557.

User Response: Ensure that the virtual machine has

command privileges to issue diagnose 38. By default, privi-

lege class C or E is required; your installation may have

changed the privilege classes in an override file.

 Chapter 26. Message Reference 807

 558E ¹ 571E

558E No symbol table available

Explanation: Condition code 1 is set on the diagnose 38,

indicating that there is no CP symbol table available.

System Action: The stage terminates with return code 558.

559E Paging error reading symbol table

Explanation: Condition code 3 is set on the diagnose 38,

indicating that CP is unable to read the symbol table.

System Action: The stage terminates with return code 559.

560I CMS Pipelines, 5741-A07 level hex

Explanation: The fullword version identifier is substituted.

The first digit is the version number, currently 1. The

second digit is the release number, currently 1. The third

and fourth digit is the modification level, currently 12. The

last four digits are the serial number within the modification

level.

System Action: Return code 0 is set.

561E File file is no longer in storage

Explanation: The file shown was found to be in storage

(return code 0 from EXECSTAT) when the pipeline

specification was scanned. By the time the file is to be read,

EXECSTAT no longer gives return code zero.

System Action: The stage terminates with return code 561.

User Response: Investigate whether a REXX program,

which has started at commit level -1, has dropped the file

from storage.

562E Alternate exec processor name; return code number

Explanation: The REXX compiler runtime library is not

available if the return code shown is -3.

System Action: The stage terminates with return code 562.

563W ANYOF assumed in front of string

Explanation: A delimited string that contains more than

one character is specified without a keyword to specify how

to interpret it. It is most likely that you wish this interpreted

as a string rather than as an enumerated list of characters.

This message is suppressed if the delimited string contains

one character; the question is clearly moot.

User Response: Use the keyword ANYOF to specify a

delimited string of characters enumerating characters that

match a single character position in the input record. Use

STRING to specify that the target is a string of characters that

must occur in the sequence shown to match.

564W Range(s) should be before keyword; put more than

one in parentheses

Explanation: A range is specified after the keyword. The

order should be reversed.

565W Stage is obsolete; use name instead

Explanation: A stage is used that will be retracted.

User Response: Use the name for the stage that will

continue to be available.

566W Use secondary output instead of stack

Explanation: count specifies an option to put the result on

the program stack.

User Response: Connect the secondary output stream and

process the result without using the program stack. This

does not disturb the contents of the stack and does not

expose you to problems with multiple count stages.

568I PL/I: message

Explanation: The PL/I runtime environment has called the

message server to issue the message substituted.

569E Path to service severed (path number)

Explanation: The path to the system service shown was

unexpectedly severed. A connection complete interrupt was

received previously for the path.

System Action: The path is severed. The stage terminates

with return code 569.

570E Unexpected IUCV interrupt with IPTYPE type on

path number

Explanation: An IUCV interrupt is fielded while the stage is

waiting for a connection complete or path severed interrupt.

This represents a CP/CMS IUCV protocol error.

System Action: The path is severed. The stage terminates

with return code 570.

571E Virtual device device number is in use by another

stage

Explanation: Two stages try to operate the same device

concurrently.

System Action: The stage terminates with return code 571.

Old New

cpasis cp

countlns count LINES

xtract members. Add TXTLIB * between the file name

and the list of members.

808 CMS Pipelines User’s Guide and Reference

 572E ¹ 585I

572E Unable to load file (EXECLOAD return code

number)

Explanation: In the syntax exit for a REXX filter, CMS indi-

cates that the program is disk resident. When the time

comes to run the program, EXECLOAD fails with the return

code shown.

System Action: The stage terminates with return code 572.

573E Last text unit or GDF order not complete

Explanation: The length field of a text unit specifies a

count that is larger than the number of bytes remaining in

the input record. A GDF order specifies more data than

remain in the record.

System Action: The stage terminates with return code 573.

574E Address is odd

Explanation: The entry address specified with runat is odd.

System Action: The entry point is not resolved.

575E Block padded with hex; it should be X'00'

Explanation: A GDF structured field ends in the penultimate

position of an input block. The last byte of the block should

be zero, but it contains the data shown.

System Action: The stage terminates with return code 575.

576E Input record is number bytes; disk block size is

number bytes

Explanation: The length of an input record is not zero or

10 plus the disk block size.

System Action: The stage terminates with return code 576.

577E Return code number from STIMERM

Explanation: A nonzero return code is received on the

macro to set a timer interval on z/OS. This message is most

likely to be the result of a programming error in CMS

Pipelines.

System Action: The stage terminates with return code 577.

User Response: Refer to the return codes for the STIMERM

macro instructions in MVS/ESA Application Development

Reference: Services for Assembler Language Programs,

GC28-1642.

579E Return code number from DYNALOC; reason hex

Explanation: The error number shown is returned from

dynamic allocation. The error number and reason code are

substituted.

System Action: The stage terminates with return code 579.

User Response: Refer to the section “SVC 99 Return

Codes” in MVS/ESA Application Development Guide:

Authorized Assembler Language Programs, GC28-1645.

580I DDNAME allocated: word

Explanation: Display the DDNAME allocated to the data set.

This message is issued only if the bit for 1024 is turned on

in the message level.

581E >> cannot append to a member

Explanation: >> does not support a member name.

System Action: The stage terminates with return code 581.

582E Incorrect DSNAME "string"

Explanation: The data set name is not well formed (null or

missing ending quote) or SVC 99 gives error code X'035C'
for the data set name.

System Action: The stage terminates with return code 582.

583E Incorrect member name "string"

Explanation: The member name is not well formed (null or

no opening parenthesis) or SVC 99 gives error code X'035C'
for the member name.

System Action: The stage terminates with return code 583.

584I Enter PIPESTOP, PIPESTALL, or immediate

pipeline command

Explanation: You have entered the TSO Pipelines attention

exit for the first time. If you enter the command PIPESTOP or

enter a null line and hit attention again, all stages that wait

on an ECB will be signalled to terminate. This is likely to

bring the pipeline to a halt.

System Action: None.

585I ECBs posted: number; hit attention again to stall

the pipeline

Explanation: You have entered the TSO Pipelines attention

exit for the second time. If you hit attention again, the pipe-

line will be stalled. This will terminate the pipeline unless a

stage is in a loop.

System Action: All stages waiting on an external event

(waiting on an ECB) are signalled to terminate.

 Chapter 26. Message Reference 809

 586I ¹ 601E

586I Hit attention again to terminate waiting stages

Explanation: You have entered the TSO Pipelines attention

exit for the first time. If you hit attention again, all stages

that wait on an ECB will be signalled to terminate. This is

likely to bring the pipeline to a halt.

System Action: None.

587E Immediate command name is not active

Explanation: An immediate command was entered, but no

immcmd stage is active for this command.

System Action: The command is ignored. A subsequent

attention will cause TSO Pipelines to terminate those stages

that wait on an external event.

590E User data length is over 62 or odd (it is number)

Explanation: Explicit user data to STOW with a member in

a partitioned data set is either too long or it contains an odd

number of characters.

System Action: The stage terminates with return code 590.

591E Return code number reason code hex from BLDL

Explanation: The return code shown was received when

searching for a member in the directory of a partitioned data

set. The contents of register 0 (the reason code) are substi-

tuted in hexadecimal.

System Action: The stage terminates with return code 591.

592E Conflicting allocation for data set DSNAME

Explanation: Dynamic allocation sets return code

02100002, which indicates that the data set is already allo-

cated with a disposition that conflicts with the one requested.

< and pdsdirect allocate DISP=SHR; > allocates DISP=OLD; >>
allocates DISP=MOD.

System Action: The stage terminates with return code 592.

593E Shared data set DSNAME cannot be allocated

exclusive

Explanation: Dynamic allocation sets return code

020C0000, which indicates that a request for exclusive allo-

cation of a shared data set was rejected.

User Response: Ensure you wish to modify the data set.

Use the SHR operand to indicate that a shared allocation

should be used.

System Action: The stage terminates with return code 593.

594E Return code number reason code hex from STOW

Explanation: The return code shown was received when

adding a member to the partitioned data set. The contents of

register 0 (the reason code) are substituted in hexadecimal.

System Action: The stage terminates with return code 594.

595E Member name is not allowed for this function

Explanation: The program does not support a member

name.

System Action: The stage terminates with return code 595.

596E Data set name too long: name

Explanation: The data set name plus the prefix (if active)

is longer than forty-four characters.

System Action: The stage terminates with return code 596.

597E Member name or generation too long in DSNAME

name

Explanation: The argument contains a left parenthesis,

indicating that a generation number or a member is present.

There are more than eight characters to the end of the argu-

ment.

System Action: The stage terminates with return code 597.

598E Null member name or generation in DSNAME

name

Explanation: The argument contains a left parenthesis,

indicating that a generation number or a member is present,

but no further characters are present.

System Action: The stage terminates with return code 598.

599E Null DSNAME name

Explanation: The argument consists of a single quote or

two quotes, or the first character is a right parenthesis for the

beginning of a member. This is not a valid DSNAME.

System Action: The stage terminates with return code 599.

600E Return code number from TGET

Explanation: The return code shown is received when

reading the terminal.

System Action: The stage terminates with return code 600.

601E Return code number from STFSMODE

Explanation: Full screen mode is not set.

System Action: The stage terminates with return code 601.

810 CMS Pipelines User’s Guide and Reference

 602E ¹ 616E

602E Unsupported data set organisation hex

Explanation: The data set organisation is neither physical

sequential nor partitioned. The DSORG field is substituted.

System Action: The stage terminates with return code 602.

603E Unable to read directory for member name

Explanation: FIND gives a return code that is neither zero

nor four.

System Action: The stage terminates with return code 603.

604E Null DDNAME

Explanation: The argument begins with the keyword

DDNAME=, but there are no further characters or the next

character is a left parenthesis to indicate a member.

System Action: The stage terminates with return code 604.

605E DDNAME longer than 8 characters: word

Explanation: The argument begins with the keyword

DDNAME=; it is followed by a word that is more than eight

characters.

System Action: The stage terminates with return code 605.

606E Null member name in DDNAME name

Explanation: The argument contains a left parenthesis,

indicating that a member is present, but no further characters

are present.

System Action: The stage terminates with return code 606.

607E Member name too long in DDNAME name

Explanation: The argument contains a left parenthesis,

indicating that a member is present. There are more than

eight characters to the end of the argument.

System Action: The stage terminates with return code 607.

608E Incorrectly specified DSNAME word

Explanation: A generation data group number in paren-

theses is followed by a character that is not a left paren-

thesis.

System Action: The stage terminates with return code 608.

609E ABEND code reason code number

Explanation: The DCB ABEND exit is driven for the

abnormal termination condition substituted.

System Action: The ABEND condition is reset. The stage

terminates with return code 609.

611E Cannot set CONSOLE exit

Explanation: fullscr ASYNCHRONOUS cannot set the console

exit routine because the path turned out to be opened

already.

User Response: Do not specify a path; let fullscr assign

one.

System Action: The stage terminates with return code 611.

612I Parmlist: hex

Explanation: The contents of the EXECCOMM parameter list

are substituted.

613E Pipeline specification is not issued with CALLPIPE

Explanation: The PRODUCER is requested, but the stage is

not in a pipeline specification that has been issued with

CALLPIPE. Thus, the integrity of the requested variable pool

cannot be ensured.

System Action: The stage terminates with return code 613.

614E Caller’s current input stream is not connected

Explanation: The PRODUCER is requested and the stage is

in a pipeline specification that has been issued with

CALLPIPE, but the caller’s currently selected input stream is

not connected. Thus, there is no producer stage and hence

no variable pool to select.

System Action: The stage terminates with return code 614.

615E Caller’s producer is not connected to caller

Explanation: The PRODUCER is requested, the stage is a

pipeline specification that has been issued with CALLPIPE, and

the caller’s currently selected input stream is connected, but

the output stream from the stage has been reconnected, or

the stage has selected another output stream. Thus, input

records do not correlate with the variable pool requested.

System Action: The stage terminates with return code 615.

616E Caller’s producer is not blocked waiting for output

Explanation: The PRODUCER is requested, the stage is in a

pipeline specification that has been issued with CALLPIPE, the

caller’s currently selected input stream is connected, and the

output stream from the stage is connected to the caller, but

the stage is not waiting for an output operation to complete.

Thus, the integrity of the variable pool cannot be ensured.

System Action: The stage terminates with return code 616.

 Chapter 26. Message Reference 811

 617E ¹ 636E

617E File does not have fixed format records; do not

specify keyword

Explanation: The keyword BLOCKED is specified for a file

that has variable length records. CMS does not support

blocked read of such a file.

System Action: The stage terminates with return code 617.

620W Unsupported code page number

Explanation: A code page number is requested that xlate

does not support.

System Action: The code page number is ignored.

621W Impossible target string

Explanation: The target string is longer than the column

range in which to look for the string; no input record can

ever be matched.

System Action: None.

622E Mask and string are not the same length

Explanation: The two delimited strings specified for MASK

are not the same length.

System Action: The stage terminates with return code 622.

623E Unrecognised relational operator word

Explanation: A relational operator is expected, but not

found. The valid operators are: ==, ¬==, <<, <<=, >>, >>=,

EQ, NE, LT, LE, GT, and GE.

System Action: The stage terminates with return code 623.

624E Premature end of expression

Explanation: An operator or left parenthesis is met at the

end of the expression. The expression is not complete.

System Action: The stage terminates with return code 624.

625E Target expression missing

Explanation: A keyword (for instance TO) is met, indi-

cating that a target should follow, but there are no more

arguments.

System Action: The stage terminates with return code 625.

626E Target data missing for keyword

Explanation: A keyword (for instance RECORD) is met,

indicating the type of target to match, but there are no more

arguments.

System Action: The stage terminates with return code 626.

627E Null program read from stream

Explanation: The program list contains no lines.

System Action: The stage terminates with return code 627.

635E Option word conflicts with option word

Explanation: Two incompatible options are specified.

System Action: The stage terminates with return code 635.

636E Error in encoded pipeline specification; reason

code number

Explanation: Pass 1 of the scanner found a syntax error in

a pipeline specification. This is an error in CMS Pipelines.

System Action: The stage terminates with return code 636.

User Response: Contact your systems support staff.

System Programmer Response: Report which built-in

program issues the message, its argument string, and the

reason code. The reason codes are:

-8 The level of the encoded pipeline block is higher than

supported by the version of CMS Pipelines that is

being used.

-4 A bit is on other than the ones for ADDPIPE and

CALLPIPE.

1 Null pipeline. A pipeline begin item is after another

pipeline begin item.

2 Stage after end connector. A connector that is not at

the beginning of the pipeline has been processed. It is

followed by a stage item rather than a pipeline begin

item.

3 Label after ending connector. A connector that is not

at the beginning of the pipeline has been processed.

It is followed by a label reference item rather than a

pipeline begin item.

4 Blank label reference. The label field of a label refer-

ence item has a leading blank.

5 More than one ending connector. A connector that is

not at the beginning of the pipeline has been proc-

essed. It is followed by another connector item rather

than a pipeline begin item.

6 Bad input parameter list. Unrecognised item code.

Most likely the item list is not terminated properly.

7 Incomplete pipeline. The last pipeline has no stages,

no label reference, and at most one connector.

8 The specification does not begin with a pipeline begin

item.

812 CMS Pipelines User’s Guide and Reference

 637E ¹ 652E

637E Return code number on IDENTIFY for entry point

Explanation: z/OS sets the return code shown when TSO

Pipelines attempts to identify the entry point shown.

User Response: Ensure that the PIPE command is called

correctly; the module must be invoked or loaded in a way

that allows the entry point to be identified.

System Programmer Response: Investigate whether the

entry point name is already in LINKPACK or JOBPACK.

System Action: The stage terminates with return code 637.

638I SVC 99 parameter list hex

Explanation: Message level 1024 is on or dynamic allo-

cation indicates an error in the parameter list. The parameter

list is displayed.

639E Scaling allowed with packed data only

Explanation: A conversion routine is requested and a left

parenthesis follows immediately. This is valid only when

converting to or from packed decimal.

System Action: The stage terminates with return code 639.

640I Text unit type data

Explanation: The six bytes type/count/length field is

substituted followed by the contents of the first data field. If

the data are entirely printable, they are shown as characters;

otherwise they are shown in hexadecimal.

641I Last connected output stream severed by its

consumer

Explanation: Tracing is active for the stage. All output

streams are now severed. The last output stream was

severed by its consumer, rather than by the stage.

642E ZONE already specified

Explanation: The keyword ZONE is specified with zone or

it is specified twice with casei.

System Action: The stage terminates with return code 642.

643E HLASM not found in storage

Explanation: The High Level Assembler module (HLASM)

was loaded into storage, but the PROGMAP command did not

provide information about the module.

System Action: The stage terminates with return code 643.

644E Timestamp word not valid; reason code number

Explanation: An ISO timestamp is not valid. The input

record must contain the year (four digits) followed by five

fields containing month, day, hour (24 hour clock), minute,

and second (two digits each). It may be followed by one to

six decimal digits representing a fraction of a second.

The reason code shows which test has failed:

4 The input record is shorter than 14 characters or

longer than 20 characters after stripping leading and

trailing blanks.

8 Year is not a number or the number is less than 1900.

12 Month is not a number, it is not positive, or it is

greater than 12.

! 16 Day is not a number, it is not positive, or it is greater

! than the number of days in the month specified.

20 Hour is not a number, it is negative, or it is greater

than 23.

24 Minute is not a number, it is negative, or it is greater

than 59.

28 Second is not a number, it is negative, or it is greater

than 59.

32 Fraction is not a number, it is negative, or it is greater

than 999999.

System Action: The stage terminates with return code 644.

650E CP system service word is in use by another

program

Explanation: CP severs a connection request to the system

service substituted. This indicates that the service is already

connected by some program that does not run under control

of CMS Pipelines.

System Action: The stage terminates with return code 650.

651E DCSS word is not loaded

Explanation: An attempt was made to connect to

*MONITOR using the segment name substituted. The monitor

severed the connection with error code X'18', indicating

that the segment was not available.

System Action: The stage terminates with return code 651.

652E DCSS name word does not match the DCSS name

already established

Explanation: An attempt was made to connect to

*MONITOR using the segment name substituted. The monitor

severed the connection with error code X'28', indicating

that some other virtual machine is already connected to the

monitor using a different segment name.

User Response: Issue the CP command “monitor query”

to determine the name of the segment currently in use.

System Action: The stage terminates with return code 652.

 Chapter 26. Message Reference 813

 653E ¹ 664E

653E Monitor is currently running in shared mode;

exclusive request rejected

Explanation: An attempt was made to connect to

*MONITOR for exclusive use of the monitor segment. The

monitor severed the connection with error code X'34', indi-

cating that some other virtual machine is already connected

to the monitor in shared mode.

System Action: The stage terminates with return code 653.

654E Monitor is currently running in exclusive mode;

shared request rejected

Explanation: An attempt was made to connect to

*MONITOR for shared use of the monitor segment. The

monitor severed the connection with error code X'38', indi-

cating that some other virtual machine is already connected

to the monitor in exclusive mode.

System Action: The stage terminates with return code 654.

655E Not a named saved segment: word

Explanation: An attempt was made to connect to

*MONITOR using the segment name substituted. The monitor

severed the connection with error code X'3C', indicating

that the substituted word is not the name of a discontiguous

shared segment; it could, for instance, be a named saved

system.

System Action: The stage terminates with return code 655.

656E Connection to word severed with code word

Explanation: A connection request to a system service was

rejected.

User Response: Refer to the documentation for the system

service shown.

System Action: The stage terminates with return code 656.

657E Limit of connections to word is reached

Explanation: A connection request to a system service was

rejected with return code X'0C', indicating that the

maximum number of connections supported for this service

has already been reached.

System Action: The stage terminates with return code 657.

658E Too many concurrent STIMERM requests

Explanation: Return code X'1C' is received on a timer

request. This indicates that 16 requests are already pending

for the task. The other timer requests can be issued by delay

stages or by host commands run through, for example,

command.

System Action: The stage terminates with return code 658.

659E Return code number from LINEWRT macro

Explanation: The return code shown was received on a

LINEWRT macro. Return code 104 means that there was

insufficient storage to complete the request. Return code 24

means that the parameter list built by CMS Pipelines is

rejected by CMS.

User Response: For return code 24, contact your systems

support staff to report the problem.

System Action: The stage terminates with return code 659.

660E Unsupported code page number

Explanation: A FROM or TO was met, but the following

word does not represent a supported code page number.

System Action: The stage terminates with return code 660.

661E Please ask nicely

Explanation: The dmsabend built-in program did not find

the appropriate argument string for it to cause an ABEND.

User Response: Do not try to force ABENDs in CMS

Pipelines unless you have been instructed to do so by IBM.

System Action: The stage terminates with return code 661.

662E Environment already specified (keyword is met)

Explanation: A number or one of the keywords MAIN or

PRODUCER has already been specified to designate the envi-

ronment to use. The keyword that is substituted is met later

in the operand list.

System Action: The stage terminates with return code 662.

663E Unable to generate delimiter for variable name

Explanation: The name of the variable and the characters

declared as beginning a comment (these characters are not

eligible to be delimiter characters) contain between them all

256 possible values for a byte. Thus it is impossible to

generate a delimiter character to be used to delimit the name

of the variable.

User Response: Specify a shorter comment string.

System Action: The stage terminates with return code 663.

664E Keyword is not supported when stage is first: word

Explanation: The program is used as a first stage of a

pipeline. The operand is valid only in a stage that is not first

in a pipeline.

System Action: The stage terminates with return code 664.

814 CMS Pipelines User’s Guide and Reference

 665E ¹ 677E

665E Exponent is not valid: word

Explanation: A numeric constant is being scanned. The

letter “E” is met. Either there is no number after the letter

or the value of the exponent overflows a 32-bit integer.

System Action: The stage terminates with return code 665.

666E Syntax error in expression; reason code number

Explanation: The expression is not syntactically correct.

The number describes the error:

- Internal error (negative length remains to be scanned).

0 Unexpected character at the beginning of an

expression or after (.

1 A digit is expected for the number of a counter, but

something else was found.

2 A counter was scanned; it was not followed by an

operator or a).

3 An identifier or an expression has been scanned; it

was not followed by an operator or a). Note that

assignment operators cannot be immediately to the

right of identifiers or expressions.

4 ! not followed by =.

5 Assignment attempted to something that is not a

counter.

6 A vertical bar is not followed by another one to make

up the logical OR operator. Be sure to use four

vertical bars if they are also stage separators This self-

escapes them down to two bars that are seen by specs.

7 An ampersand is not followed by another one to make

up the logical AND operator.

100 Unpaired colon (:).

101 Two consecutive question marks (?). Use parentheses

to group a conditional expression between the ? and

the : of a containing one.

System Action: The stage terminates with return code 666.

667E Arithmetic overflow

Explanation: The result of evaluating an expression or an

intermediary result is beyond the range that can be repres-

ented.

System Action: The stage terminates with return code 667.

668E Divisor is zero

Explanation: Division by zero is attempted.

System Action: The stage terminates with return code 668.

670E Picture longer than 255 characters: picture

Explanation: The word following PICTURE contains more

than 255 characters.

System Action: The stage terminates with return code 670.

671E Unacceptable character character in picture picture

Explanation: The character is not one of the valid charac-

ters.

System Action: The stage terminates with return code 671.

672E Unacceptable picture picture; word is incorrect

(reason code number)

Explanation: An incorrect sequence of picture characters is

found.

User Response: Compare the contents of the word substi-

tuted with the contents of the picture string to see where in

the string the error was detected.

System Programmer Response: The reason code should

be reported when calling IBM for service. It reflects the

internal state of the finite state machine that is used to

decode the picture; the encoding is unspecified; it might

change as a result of corrective service or new function

being added.

System Action: The stage terminates with return code 672.

673E Picture has more than one V: picture

Explanation: Only one V character is allowed in a picture.

System Action: The stage terminates with return code 673.

674E Unacceptable drifting sign in picture picture

Explanation: A drifting sign character is not the same as

the original sign character.

System Action: The stage terminates with return code 674.

675E Unacceptable zero suppress/protect in picture

picture

Explanation: A zero suppress or currency protect character

is not the same as the previous one.

System Action: The stage terminates with return code 675.

676E No digits selected in picture picture

Explanation: A leading sign is found in a picture, but no

digits are selected.

System Action: The stage terminates with return code 676.

677E No exponent digits in picture picture

Explanation: The letter E is met, but no digit select char-

acters follow.

System Action: The stage terminates with return code 677.

 Chapter 26. Message Reference 815

 678E ¹ 686E

678E More than fifteen exponent digits in picture picture

Explanation: The letter E is met followed by more than

fifteen digit selectors. The exponent can contain at most ten

digits.

System Action: The stage terminates with return code 678.

679E Exponent too large: number

Explanation: The exponent has more significant digits than

the picture allows. The exponent is substituted.

System Action: The stage terminates with return code 679.

680E Record length is zero

Explanation: The first byte of a logical record contains

binary zeros. This is not valid, because the minimum record

length is one (a record that contains a byte count of one and

no data).

System Action: The stage terminates with return code 680.

681E Input record length (number) is over the maximum

allowed (number)

Explanation: An input record is longer than the maximum

allowed.

System Action: The stage terminates with return code 681.

User Response: Check the input file.

682I TXTunit list hex

Explanation: Message level 1024 is on or dynamic allo-

cation indicates an error in the parameter list. The list of

pointers to text units is displayed.

683I STAX return code number

Explanation: A nonzero return code is received on a STAX

macro. The attention exit is not established.

System Programmer Response: Note the conditions under

which this message is issued and report the problem to IBM

if TSO Pipelines is being used in a supported environment.

684E Unsupported system variable word

Explanation: sysvar receives a syntax error when it tries to

obtain the variable.

System Action: The stage terminates with return code 684.

685E OpenExtensions is not available (reason code

number)

Explanation: CMS Pipelines is unable to call a service

routine to access an OpenExtensions file. The reason code

indicates which particular test failed:

1 The CVT field CSRTABLE does not contain a pointer. It

contains -1. (Offset 544, decimal).

. 2 The resource slot in the OpenExtensions callable

. services function table points to a dummy entry.

. 3 The OpenMVS slot in the CSR table does not contain a

. pointer. It contains zero. (Offset 24, decimal).

. 4 The table of entry points to OpenExtensions callable

. services is too short to contain the function requested.

. That is, the operating system does not support the

. function requested.

. 5 The table of entry points to OpenExtensions callable

. services contains a dummy entry for the function

. requested. That is, the operating system does not

. support the function requested or the function is not

. available in this particular configuration.

. 10 The CMS is a release where the simulated CVT is too

. short to contain the pointer to the CSRTABLE.

. 4 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed. It is either zero or

. negative.

. 5 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed. It does not point

. within the virtual machine.

. 6 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed, or the CVT has

. been corrupted. The byte at offset X'74' has the bit

. for X'40' zero. This bit indicates that the system is

. CMS.

. 7 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed, or the CVT has

. been corrupted. The byte at offset X'74' has one or

. more of the bits for X'3F' nonzero. These bits must

. be zero on CMS.

User Response: Contact your systems support staff if the

reason code indicates that the CVT pointer is destroyed.

These reason codes are issued on CMS only.

System Programmer Response: Investigate if corrective

service is available. In particular, ensure that the fix for

APAR VM61261 is applied.

System Action: The stage terminates with return code 685.

686E OpenExtensions return code number reason code

hex function: word

Explanation: A call to the OpenExtensions failed.

The return code is shown as a decoded errno if the value is

one of those recognised by CMS Pipelines; otherwise the

return code is shown as a decimal number.

The reason code is shown in hexadecimal. Only the last

four digits are significant.

The function is shown as the name of the equivalent POSIX

function.

! User Response: For CMS, refer to OpenExtensions Call-

! able Service Reference, SC24-6203. For z/OS, refer to

. OS/390 Messages and Codes for the error codes. In earlier

. releases, the codes were listed in the appendices of

SC23-3020, UNIX System Service Programming: Assembler

Callable Services Reference. Appendix A describes the

816 CMS Pipelines User’s Guide and Reference

 687E ¹ 704E

return codes; Appendix B describes the reason codes; and

Appendix C describes the offsets.

System Action: The stage terminates with return code 686.

687E Relational operator expected; found word

Explanation: A relational operator is expected, but the

word is not a supported one.

User Response: Note that the operators are the “strict”

operators:

== Equal.

¬== Not equal

<< Less than.

<<= Less than or equal.

>> Greater than.

>>= Greater than or equal.

For example, a single equal sign is not a supported relational

operator.

688I CSW hex; last CCW hex; some data hex

Explanation: The channel status word is displayed.

689E Workstation file is missing: word

Explanation: Error code 110 is received when the file is

opened by the server program.

System Action: The stage terminates with return code 689.

690E Logical drive was not found: word

Explanation: Error code 15 is received when the file is

opened by the server program.

System Action: The stage terminates with return code 690.

691E Directory is missing: word

Explanation: Error code 3 is received when the file is

opened by the server program.

System Action: The stage terminates with return code 691.

692E No diskette in drive: word

Explanation: Error code 21 is received when the file is

opened by the server program.

System Action: The stage terminates with return code 692.

693I Packages sent: number; packages received: number

Explanation: This message is issued when os2file discovers

an error after at least one package has been exchanged with

the workstation server program.

694E Pipeline is not called from a driving program

Explanation: fitting is invoked in a pipeline set that has not

been initialised for fittings. Thus, the stages have nothing

with which to interface.

System Action: The stage terminates with return code 694.

695E Fitting already defined: "name"

Explanation: fitting is issued in a pipeline set that already

has a fitting of that name defined.

System Action: The stage terminates with return code 695.

699E Return code number from function (file: word)

Explanation: An error was returned from the communi-

cation device. This could be a result of a programming error

in CMS Pipelines or in the device driver that processes the

request on the work station.

System Action: The stage terminates with return code 699.

700E File descriptor number is not open (reason code

hex)

Explanation: Return code 113 (EBADF) is received on a

request to read or write a file. The reason code further

describes the error condition.

System Action: The stage terminates with return code 700.

701E File or directory does not exist (path "string"

reason code hex)

Explanation: Return code 129 (ENOENT) is received on a

request to open a file. The reason code further describes the

error condition.

System Action: The stage terminates with return code 701.

702I ... Parameter: hex

Explanation: The bit for message level 1024 is on and an

error was reported for a call to OpenExtensions. The first

eight bytes of each parameter are shown.

703I Opening "hex"

Explanation: The bit for message level 1024 is on. A file

in the hierarchical file system is being opened.

704E A component of path is not a directory (path

"string", reason code hex)

Explanation: Return code 135 (ENOTDIR) is received on a

request to open a file. The reason code further describes the

error condition.

System Action: The stage terminates with return code 704.

 Chapter 26. Message Reference 817

 705E ¹ 718I

705E Last character is a slash (path "string")

Explanation: Return code 129 (ENOENT) and reason code

X'0109' (JREndingSlashOCreat) is received on a request

to open a file.

System Action: The stage terminates with return code 705.

706E File system is quiescing (path "string")

Explanation: Return code 129 (ENOENT) and reason code

X'018F' (JRQuiescing) is received on a request to open a

file.

System Action: The stage terminates with return code 706.

707E Component in path name is too long: path

"string"

Explanation: Return code 126 (ENAMETOOLONG) with

reason code X'003E' (JRCompNameTooLong) is received on a

request to open a file. A component (file name) is longer

than NAME_MAX (255).

System Action: The stage terminates with return code 707.

708E Path name is too long: path "string"

Explanation: Return code 126 (ENAMETOOLONG) with

reason code X'0039' (JRPathTooLong) is received on a

request to open a file. A path name is longer than

PATH_MAX (1023). This can be a result of the substitution of

symbolic links.

System Action: The stage terminates with return code 708.

709E Unsupported file type number (path "string")

Explanation: The file is neither a regular file nor a FIFO.

The actual file type is substituted:

1 Directory.

5 Symbolic link.

6 Block special file.

System Action: The stage terminates with return code 709.

710E Unsupported file type number (file descriptor

"number")

Explanation: The file is neither a regular file nor a FIFO.

The actual file type is substituted:

1 Directory.

5 Symbolic link.

6 Block special file.

System Action: The stage terminates with return code 710.

711E Function not supported: word

Explanation: The first word of an input record to hfsxecute

or hfsquery is not a supported one.

System Action: The stage terminates with return code 711.

712E Path name is missing from the input record

Explanation: An input record to hfsxecute contains only

one word.

System Action: The stage terminates with return code 712.

713E Mode is not valid: word

Explanation: The second word of an input record to

hfsxecute does not contain a valid mode specification. The

mode contains one to four octal digits.

System Action: The stage terminates with return code 713.

714E Unacceptable interval word

Explanation: The word is not proper for seconds with an

optional fraction of microseconds. There may be at most six

digits after the period; no component of the number may be

negative; and the number must be positive.

System Action: The stage terminates with return code 714.

715E Not octal: word

Explanation: A leading zero is found, but one of the digits

is not in the range from zero to seven. The second character

is not “x”, which would indicate a hexadecimal value.

System Action: The stage terminates with return code 715.

716E Not a dotted decimal network address: word

Explanation: A word that begins with a digit is scanned

for a network address, but the word does not conform to the

dotted decimal notation defined for inet_addr(). A compo-

nent could be too large; or there could be more than three

dots.

System Action: The stage terminates with return code 716.

. 717I Ignoring IUCV interrupt for message number;

. waiting for number (interrupt on path number; sent

. on number)

Explanation: One of the device drivers for TCP/IP received

an IUCV interrupt for a message that it does not have

outstanding with TCP/IP.

System Action: The interrupt is ignored.

. System Programmer Response: If the two path numbers

. are different, the interrupt is being processed by the wrong

. stage. Investigate whether corrective service is available.

718I Returning to application

Explanation: A copipe is returning to the application

program.

818 CMS Pipelines User’s Guide and Reference

 719I ¹ 735E

719I Resuming pipeline

Explanation: The application program has resumed the

copipe with a request.

720I Terminating pipeline

Explanation: The application program has resumed the

copipe without a request parameter list.

721I RPL hex

Explanation: The Request Parameter List is displayed.

722I Resolved fitting identifier

Explanation: A Request Parameter List is paired with an

active fitting stage.

723I Fitting identifier not resolved

Explanation: A Request Parameter List was not paired

with an active fitting stage. No current stage is active for the

fitting.

724I Posting fitting identifier with hex

Explanation: A Request Parameter List is paired with an

active fitting stage and it has work to do.

725I Returning to the pipeline dispatcher

Explanation: All Request Parameter Lists have been proc-

essed and the fitting stages posted to wake up.

726I No RPLs changed state

Explanation: All Request Parameter Lists have been proc-

essed, but none changed state. Thus, the application has

cheated.

System Action: The status code is set accordingly.

727I string

Explanation: A tracing message.

728I number description

Explanation: Statistics are requested. The contents of a

counter are displayed.

729I Letting dispatcher wait

Explanation: The application has indicated that it does not

wish to regain control until a particular fitting stage has

produced or consumed a record.

730E No data sets found matching DSNAME

Explanation: The return code from LOCATE was eight.

This indicates that no matching entries were found.

User Response: The leading qualification should not end

with a period.

System Action: The stage terminates with return code 730.

731E Return code number from SVC 26

Explanation: The return code from LOCATE was neither

zero nor eight.

System Action: The stage terminates with return code 731.

732E Return code number from DMSCSL

Explanation: The callable services interface returned a

return code that was not expected.

System Action: The stage terminates with return code 732.

733E Return code number reason code number from

routine

Explanation: The callable services interface returned a

nonzero return code. The return code, reason code, and

routine name are substituted.

System Action: The stage terminates with return code 733.

734E CSL Routine name is not loaded

Explanation: Return code -7 was received from Callable

Services.

User Response: Contact your system support staff to inves-

tigate whether the callable services have been set up

correctly for your virtual machine.

System Programmer Response: It is an error in CMS

Pipelines if this message is issued on releases prior to

VM/ESA Version 1 Release 2.0.

System Action: The stage terminates with return code 734.

735E Callable Services are not available

Explanation: Return code -12 was received from Callable

Services.

User Response: Contact your system support staff to inves-

tigate whether the callable services have been set up

correctly for your virtual machine.

System Programmer Response: It is an error in CMS

Pipelines if this message is issued on releases prior to

VM/ESA Version 1 Release 2.0.

System Action: The stage terminates with return code 735.

 Chapter 26. Message Reference 819

 736E ¹ 748E

736E Too few parameters in call to name (number found)

Explanation: Return code -11 was received from Callable

Services.

User Response: Contact your system support staff.

System Programmer Response: This is a programming

error in CMS Pipelines. Investigate whether corrective

service is available.

System Action: The stage terminates with return code 736.

737E Too many parameters in call to name (number

found)

Explanation: Return code -10 was received from Callable

Services.

User Response: Contact your system support staff.

System Programmer Response: This is a programming

error in CMS Pipelines. Investigate whether corrective

service is available.

System Action: The stage terminates with return code 737.

738E Router did not resolve entry point

Explanation: The routine to resolve the entry point

returned a value of zero.

User Response: Contact your system support staff.

System Programmer Response: This is a programming

error in CMS Pipelines or an error in generating PIPELINE

MODULE (DMSPIPE MODULE on VM/ESA). Investigate

whether corrective service is available.

System Action: The stage terminates with return code 738.

740E File "words" does not exist or you are not

authorised for it

Explanation: Reason code 90220 was received from Call-

able Service DMSEXIST.

System Action: The stage terminates with return code 740.

741E Record format "character" is not supported

Explanation: The record format is neither F nor V. A

blank indicates OS-format file; a hyphen indicates that the file

is migrated.

System Action: The stage terminates with return code 741.

742E Incorrect file "file" (reason code number)

Explanation: The file name and file type are both an

asterisk; or reason codes 90420, 90430, 90445, 90450, or

90455 were returned by DMSEXIST. A component of the file

identification is longer than eight characters, contains an

asterisk, or a percent sign. Reason code zero is set when the

file name is an asterisk and the file type is an asterisk. For

information about nonzero reason codes, refer to DMSEXIST in

CMS Application Development Reference, SC24-5451.

System Action: The stage terminates with return code 742.

743I File "file"

Explanation: Open failed for a file. The file name param-

eter is shown.

744I Open flags words

Explanation: Open failed for a file. The open flags param-

eter is shown.

745E Existing record length is not number

Explanation: Reason code 90121 is received when over-

writing a record of a variable record format file.

System Action: The stage terminates with return code 745.

746E File file is open with incompatible intent

Explanation: Reason code 44200 is received when opening

the file. If you are trying to read, the file is already open for

write. If you are trying to write, the file is already open.

User Response: Use fanin or faninany, as appropriate to

your application, to merge the two streams; then use one disk

stage to write the file.

System Action: The stage terminates with return code 746.

747E Not authorised to read file

Explanation: Reason code 44000 is received when opening

the file for read. It could also be that the file was removed

after CMS Pipelines determined that it exists, but this is

probably unlikely.

System Action: The stage terminates with return code 747.

748E Disk mode is full

Explanation: Reason code 90131 is received when writing

to the file.

System Action: The stage terminates with return code 748.

820 CMS Pipelines User’s Guide and Reference

 749E ¹ 763E

749E File file is on OS or DOS minidisk

Explanation: The file status byte contains 8.

User Response: Use qsam to read the file.

System Action: The stage terminates with return code 749.

750E Incorrect input block format

Explanation: deblock MONITOR has read a block that

contains a length field of binary zeros, but the remainder of

the block does not consist entirely of binary zeros.

752E No default file pool defined

Explanation: A SFS file is to be read from the default file

pool, but no file pool is currently the default. Reason code

90590 was received when locating the file.

User Response: Specify a file pool explicitly or use the

CMS command SET FILEPOOL to set the default file pool.

System Action: The stage terminates with return code 752.

753E NAMEDEF too long in string

Explanation: Reason code 90510 was received from

DMSVALDT. A temporary name for a file name and type is

longer than 16 characters.

System Action: The stage terminates with return code 753.

754E Improper use of stage; reason code number

Explanation: A built-in program that is reserved for IBM

use has been invoked in a way that is not correct. The

reason codes are:

1 Argument string is not eight bytes long.

2 The input record is not the length in the argument

string.

System Action: The stage terminates with return code 754.

755E Offset not shorter than width

Explanation: The length of the offset specified (either as a

number or as the length of the delimited string) is equal to or

greater than the width.

System Action: The stage terminates with return code 755.

756W Use the := assignment operator instead of =

Explanation: A single equal sign is scanned.

User Response: Change to use the colon equal operator.

757W Use the ¬ operator instead of !

Explanation: An exclamation point is scanned.

User Response: Change to use the not operator.

758W Do not double up relational operators

Explanation: A double bar or a double ampersand is

scanned.

User Response: Change to use a single operator character.

759E Incompatible types

Explanation: An operation is requested between a string

and a counter. Relational operators must be between like

types. Strings cannot be used with computational operators.

System Action: The stage terminates with return code 759.

760E No data will be available for input field

Explanation: An input range is specified after EOF without

SELECT SECOND in effect. Thus, there are no data available

to specs to supply.

User Response: Use SELECT SECOND to refer to the second

reading station, where a copy of the last record is. However,

if you were not using the second reading station and the field

you require can be stored in a counter, it is more efficient to

save the value in a counter while processing the detail record

and then refer to the contents of this counter after the EOF

item.

System Action: The stage terminates with return code 760.

761E Different key fields not allowed with AUTOADD

Explanation: AUTOADD was specified and the key field is

defined in a different place in the detail and in the master

records. This would make adding the record ambiguous.

User Response: Use specs to move the key field in the

master or the detail records.

System Action: The stage terminates with return code 761.

762E Return code number reason code number from TSO

Explanation: The TSO command service routine (IKJEFTSR)

gave the return code and reason code shown.

User Response: Refer to TSO Programming Services,

SC28-1875.

System Action: The stage terminates with return code 762.

763E File token word is not valid (reason code number)

Explanation: The file token could not be converted from

hexadecimal to binary. The reason codes are:

1 Leading blank in field.

2 Trailing blank in field.

3 Odd number of hex digits.

4 Digit not hex.

5 Output field exhausted.

Reason codes 1 and 2 should not occur.

 Chapter 26. Message Reference 821

 764E ¹ 777E

System Action: The stage terminates with return code 763.

764E Timestamp too short:string

Explanation: The time stamp must contain at least eight

digits.

System Action: The stage terminates with return code 764.

765E Timestamp too long:string

Explanation: The time stamp must contain at most four-

teen digits.

System Action: The stage terminates with return code 765.

766E Century incorrect in timestamp: string

Explanation: The first two characters of the timestamp are

less than 19.

System Action: The stage terminates with return code 766.

767E Not numeric character in timestamp: string

Explanation: A character of the time stamp is not numeric.

User Response: The timestamp is specified as a sequence

of digits without the usual delimiter characters.

System Action: The stage terminates with return code 767.

768E Incorrect record in file; reading record number

Explanation: Return code 8 reason code 90117 is received

on DMSREAD. This indicates that the file contains an impos-

sible record length; it could be larger than the record length

of the file or it could be zero.

User Response: Contact your systems support staff to have

the problem diagnosed.

System Programmer Response: Open the file using

DMSOPDBK and then read the blocks of the file with filetoken

BLOCKED. Pass this file to deblock CMS to validate the file.

If deblock does not issue a message, the record length is

zero, indicating a premature end-of-file.

System Action: The stage terminates with return code 768.

769E SYSOUT Class char is not a letter

Explanation: A single character is specified, which is

neither an asterisk, a letter, nor a digit. Or the keyword

CLASS is specified and not followed by a one-character

operand.

User Response: Use the keyword OUTDESC to specify a

one-character output descriptor.

System Action: The stage terminates with return code 769.

770E Period missing in destination word

Explanation: A DESTINATION keyword is met, but the

following word contains no period.

User Response: Make sure the destination contains both a

system ID (also known as a node ID) and a user ID:

| sysout dest dkibmvm2.john

System Action: The stage terminates with return code 770.

771E Leading period in destination word

Explanation: The first character of the destination is a

period. This implies a null node ID.

System Action: The stage terminates with return code 771.

772E Ending period in destination word

Explanation: The last character of the destination is a

period. This implies a null user ID.

System Action: The stage terminates with return code 772.

773E Node word is not defined to JES

Explanation: The first component of the destination is not

known to JES.

System Action: The stage terminates with return code 773.

774E Syntax error: explanation

Explanation: REXX signalled a syntax error. The error text

is substituted.

System Action: The stage terminates with return code 774.

775E Incorrect file name word

Explanation: Reason code 90420 is returned by DMSVALDT.

The file name is longer than eight characters or contains a

character that is not allowed.

System Action: The stage terminates with return code 775.

776E Incorrect file type word

Explanation: Reason code 90430 is returned by DMSVALDT.

The file type is longer than eight characters or contains a

character that is not allowed.

System Action: The stage terminates with return code 776.

777E Incorrect file mode number word

Explanation: Reason code 90430 is returned by DMSVALDT.

The file mode number is not a digit between “0” and “6”.

System Action: The stage terminates with return code 777.

822 CMS Pipelines User’s Guide and Reference

 778E ¹ 789E

778E Forbidden character in file name or file type words

Explanation: Reason code 90450 is returned by DMSVALDT.

The file name or the file type contains an asterisk or a

percent sign.

System Action: The stage terminates with return code 778.

779E Incorrect directory word

Explanation: Reason code 90430 is returned by DMSVALDT.

The directory is longer than some limit or it contains a char-

acter that is not allowed.

System Action: The stage terminates with return code 779.

780E You are not allowed to write to file

Explanation:

¹ The directory record for an existing file indicates that

you cannot write to it. The reason can be that you do

not have write authorisation or that the file is in a

DIRCTL directory, which is currently accessed for write

by some other user.

¹ Reason code 44000 is received when opening the file for

append or replace. It is a remote possibility that the file

was removed between the time CMS Pipelines deter-

mined that the file existed and the time it was opened.

System Action: The stage terminates with return code 780.

781E Incorrect file token hex

Explanation: The file token parameter does not refer to an

open file.

User Response: If you have opened the file in a REXX

program, remember to convert the token to printable

hexadecimal before using it with the filetoken built-in

program:

call csl 'dmsopen ... filetoken ...'
'pipe filetoken' c2x(filetoken) '|...'

System Action: The stage terminates with return code 781.

782E Open intent is incompatible with stage position

(intent is char)

Explanation: The file token parameter identifies a file that

is open with an intent that is not compatible with the posi-

tion of the filetoken stage in the pipeline. A read intent is

required when it is first in a pipeline; a write or replace

intent is required when it is not first in a pipeline.

System Action: The stage terminates with return code 782.

783E Storage group space limit exceeded

Explanation: The storage group is full. It is not possible

to write more data into the storage group. You may or may

not have exceeded your space quota for the storage group.

System Action: The unit of work is rolled back. The stage

terminates with return code 783.

784E Space quota exceeded

Explanation: You have exceeded your space quota for the

storage group, or you have no space quota.

System Action: If the file was opened successfully, the unit

of work is rolled back. The stage terminates with return

code 784.

785E DMSOPBLK is not supported

Explanation: The file token represents a file that is opened

through the DMSOPBLK callable service.

User Response: Use DMSOPDBK instead.

System Action: The stage terminates with return code 785.

786E Specified work unit does not exist

Explanation: Reason code 90540 is received from the call-

able service DMSEXIST.

System Action: The stage terminates with return code 786.

787E Too much ESM data (number bytes)

Explanation: More than eighty characters are specified for

ESM data. This is over the maximum allowed by SFS.

System Action: The stage terminates with return code 787.

788E File pool is not available

Explanation: Reason code 97500 was received from

DMSEXIST. The specified file pool or the one set by SET

FILEPOOL is not known to CP.

User Response: Check your spelling carefully. Note that

SET FILEPOOL does not report an error if the specified file

pool is not known to CP.

System Action: The stage terminates with return code 788.

789E SAFE can be specified only for PRIVATE work

unit

Explanation: SAFE was specified, but the stage is not using

a private unit of work.

System Action: The stage terminates with return code 789.

 Chapter 26. Message Reference 823

 790E ¹ 1000E

790E File locked by other user or other unit of work

Explanation: Reason code 2200 was received from

DMSOPEN or DMSOPDBK. The specified file is locked by some

other user or another of your units of work.

User Response: Be careful about using the WORKUNIT

DEFAULT option with stages the would otherwise acquire a

private unit of work. When you do so, CMS Pipelines

cannot commit the default unit of work; you must do so

yourself. (For example by this REXX instruction

call csl 'dmscomm c_rc c_reason'

If the a file is updated on the default unit of work and then

opened for modification on a different unit of work, a

locking conflict is evident to the SFS server, even though this

may not be obvious to you.

System Action: The stage terminates with return code 790.

791E File was committed by other user or other unit of

work

Explanation: Reason code 20000 was received from

DMSCOMMT. You were creating a file at the same time as

another user or another unit of work was creating the same

object. The another user or another unit of work managed to

commit the file first.

User Response: Create a null file and then replace it if it

takes an appreciable amount of time to create the file, partic-

ularly if the file is generated as a result of asynchronous

events. This ensures that you can gain exclusive access to

the file.

System Action: The unit of work was rolled back by CMS.

The stage terminates with return code 791.

792E Fitting placement incompatible with RPL

Explanation: A fitting Request Parameter List that refer-

ences the stage specifies an initial operation (read or write)

that is incompatible with the placement of the fitting stage.

System Action: The stage terminates with return code 792.

793E Initial RPL state is not valid: number

Explanation: A fitting Request Parameter List that refer-

ences the stage specifies an initial state that is neither IDLE,

READ, nor WRITE.

System Action: The stage terminates with return code 793.

794E More than one RPL refers to stage

Explanation: Two fitting Request Parameter Lists reference

the stage. This is an error, because the stage only supports

one request at a time.

System Action: The stage terminates with return code 794.

796E 370 accommodation must be turned on (CP SET

370ACCOM ON)

Explanation: A device driver that performs I/O to a device

that is not supported for Diagnose A8 has received an opera-

tion exception on a 370-mode I/O instruction.

User Response: Unless you run applications that require

370ACCOM to be off to work correctly, you should turn this

option on in your PROFILE EXEC by the CP command “set
370accom on”. If you cannot run with the 370 accommo-

dation on permanently, turn it on before issuing the PIPE

command and turn it off after the pipeline has completed.

System Action: The stage terminates with return code 796.

797E Program check code 'hex'x on TIO to communi-

cations device

Explanation: An unexpected program check is received

while testing if the communications device can be used.

User Response: Contact your systems support staff.

System Programmer Response: This may be an error in

CMS Pipelines. The hexadecimal value substituted shows

the program exception encountered. Have this code ready

when reporting the error to IBM.

System Action: The stage terminates with return code 797.

798I Forcing pipeline stall

Explanation: The fitting interface ran its pipeline without

any change to the fitting stage(s). A stall is forced, because

no further action is possible and the pipeline would never

complete.

System Action: The pipeline is stalled.

1000E Secondary vector too short for epname or entry

not present; install current CMS Pipelines

Explanation: A filter requires a routine that is reached via

the extension to the secondary entry point vector, but the

actual vector found is either too short or does not contain the

address of the specified entry point.

User Response: Issue “pipe query level” to determine

which version of CMS Pipelines you are using. You need

PIPELINE MODULE level 110C0004 for the first extension to

the secondary vector; you may need a higher level for the

entry point being tested.

System Action: The stage terminates with return code

1000.

824 CMS Pipelines User’s Guide and Reference

 1010E ¹ 1022I

1010E VMCF CVT not found

Explanation: There is no active VMCF address space.

User Response: Ensure that TCP/IP is installed correctly and

that the IUCV started task is active.

System Action: The stage terminates with return code

1010.

1011E Return/condition code number on IUCV QUERY

Explanation: The query function fails with the condition

code (CMS) or return code (z/OS) shown.

User Response: Refer to the description of the condition

codes associated with the IUCV instructions in CP Program-

ming Services, SC24-6272.

System Action: The stage terminates with return code

1011.

1012E Return/condition code number on IUCV declare

buffer

Explanation: CMS Pipelines is unable to declare the IUCV

buffer. The condition code (CMS) or return code (z/OS) is

substituted.

User Response: Refer to the description of the IUCV

instructions in CP Programming Services, SC24-6272.

System Action: The stage terminates with return code

1012.

1013E No IUCV paths can be connected

Explanation: The maximum number of paths returned by

IUCV QUERY is zero.

System Action: The stage terminates with return code

1013.

1014E IPAUDIT hex

Explanation: The audit field is not all zero bits.

User Response: Refer to the description of the IUCV SEND

instruction in CP Programming Services, SC24-6272.

System Action: Message 1022 is issued to display the

parameter list. The stage terminates with return code 1014.

1015E ERRNO number: chars

Explanation: The TCP/IP sets the error number shown.

System Action: The stage terminates with return code

1015.

User Response: The error number is defined for the socket

calls described in TCP/IP Version 2 for MVS: Programmer’s

Reference, SC31-6087; refer to bind(), select(),

sendto(), socket(), and recvfrom().

1016I Reason: chars:

Explanation: The reason given by the server for severing

the path.

1017E Unable to connect to server

Explanation: A nonzero return code was received when

connecting to the service.

System Action: Messages 1018 are issued to display the

parameter list. The stage terminates with return code 1017.

User Response: Ensure that TCP/IP is started and ready to

process socket calls.

1018I ... hex: hex char

Explanation: Three lines are displayed for the IUCV param-

eter list and the ECB that are used for the request. Each line

contains the hexadecimal storage address of the beginning of

the data displayed. Up to 16 bytes are displayed in

unpacked hexadecimal with character equivalents in EBCDIC.

1019E Input record is shorter than 24 bytes (it is number)

Explanation: An input record is too short to contain the

complete network address prefix. The prefix contains these

fields:

¹ Four bytes containing the timeout value in seconds.

¹ Four bytes of flags which are usually binary zeros.

¹ A halfword binary constant of 2. (Meaning that this is

an Internet address.)

¹ A halfword containing the destination port number.

¹ A fullword containing the network address of the

network interface where the destination port is.

¹ Eight bytes of binary zero.

System Action: The stage terminates with return code

1019.

1020E Socket operation cancelled (message is purged)

Explanation: udp finds its ECB posted with the code used

by pipestop to indicate that the stage should terminate.

System Action: The stage terminates with return code

1020.

1021I Path number is connected for application

Explanation: Informational message that a connection

complete interrupt has been fielded. This message is issued

when the bit for 16 is on in the message level.

1022I IPARML: message (R0=number)

Explanation: Trace message issued when the bits for 128

or 64 are on in the message level. The message further

describes the operation being traced. The number is decoded

when it represents a valid IUCV code.

 Chapter 26. Message Reference 825

 1023E ¹ 1074E

1023E All application slots in use

Explanation: There are too many applications in use for

TCP/IP. As many slots are allocated as there can be IUCV

connections. On z/OS the maximum number of paths is

usually 255. One slot (and path) is allocated by each invo-

cation of the udp built-in program.

System Action: The stage terminates with return code

1023.

User Response: Consider serialising the function being

performed.

1032E Not a valid field identifier: word

Explanation: One letter is required for the field identifier.

The word is longer than one character or it does not contain

one of the characters from a to z (either case).

System Action: The stage terminates with return code

1032.

1033E Field ID is not defined

Explanation: The field being referenced has not been

declared.

System Action: The stage terminates with return code

1033.

1036E Field ID is already defined

Explanation: The field identifier has been declared for a

previous specification item.

System Action: The stage terminates with return code

1036.

1037E Field identifiers cannot be defined in break items

Explanation: A field identifier is specified after a BREAK

item has been scanned. Specification items for breaks cannot

have field identifiers.

System Action: The stage terminates with return code

1037.

1038E Not a decimal number: "word"

Explanation: A field to be loaded into a counter does not

contain a valid decimal number or the number is too large.

System Action: The stage terminates with return code

1038.

1039E Counter overflow

Explanation: The exponent of a counter has overflowed.

Amazing! (Unless you did this on purpose.) The counter

can store numbers of the order 10**2000000000, whereas

there are about 10**80 atoms in the visible universe. What

were you counting?

System Action: The stage terminates with return code

1039.

1040E Hex data too long (number bytes)

Explanation: A counter was loaded from a packed field

that has more significant digits than the counter can contain.

System Action: The stage terminates with return code

1040.

1041E Multiplication overflow

Explanation: One of the two numbers being multiplied

contains too many digits.

System Action: The stage terminates with return code

1041.

1048E Data not packed decimal: X'hex'

Explanation: A counter is to be updated, but the operand is

not a valid packed field.

System Action: The stage terminates with return code

1048.

1049E More than one decimal point in data: string

Explanation: A string is converted to packed decimal. The

string contains two decimal points.

System Action: The stage terminates with return code

1049.

1050E Counter contains more digits than picture: string

Explanation: The contents of the counter cannot be

formatted with the picture specified.

System Action: The stage terminates with return code

1050.

1074E Too many nested IFs

Explanation: More than fifteen nested IFs are met.

User Response: Simplify the structure; try to use the condi-

tional operator instead of IF.

System Action: The stage terminates with return code

1074.

826 CMS Pipelines User’s Guide and Reference

 1075E ¹ 1087E

1075E THEN expected; word was found

Explanation: A condition expression has been scanned

after IF or ELSEIF, but there is no further data or the next

word is not THEN.

System Action: The stage terminates with return code

1075.

1076E Unexpected keyword: word

Explanation: A ELSEIF, ELSE, or ENDIF is met, but there is

no IF or ELSEIF to match it with.

System Action: The stage terminates with return code

1076.

1077E ENDIF expected; word was found

Explanation: A condition expression has been scanned

after ELSE. The IF statement cannot have further condition

clauses.

System Action: The stage terminates with return code

1077.

1078E Function does not support arguments; word was

found

Explanation: A function reference was found for a function

that does not accept arguments.

User Response: Write an empty parameter list: first().

System Action: The stage terminates with return code

1078.

1079E Function requires one-character argument; "word"

was found

Explanation: A function reference was found. The argu-

ment was empty or too long. The argument string is substi-

tuted.

System Action: The stage terminates with return code

1079.

1080E Incomplete IF

Explanation: The list contains more IF than ENDIF items.

System Action: The stage terminates with return code

1080.

1081E Unexpected character char

Explanation: The character shown is not valid at the point

where it is.

System Action: The stage terminates with return code

1081.

1082E Missing colon

Explanation: Two question marks are met without an inter-

vening colon

User Response: Enclose the innermost conditional in

parentheses if you wish to perform a conditional within the

“true” branch of an outer conditional.

System Action: The stage terminates with return code

1082.

1083E Assignment is not to a counter

Explanation: An equal sign or an update operator is met,

but the left hand side is not a counter.

User Response: Use two equal signs to test two terms for

equality.

System Action: The stage terminates with return code

1083.

1084E BREAK items are not allowed after EOF item

Explanation: BREAK, NOBREAK, or a second EOF is met

after EOF has been specified.

User Response: Use IF to test for end-of-file rather than

EOF if you do wish subsequent specification items to be

executed for detail records.

System Action: The stage terminates with return code

1084.

1085E Counter number expected

Explanation: A number sign (#) is met indicating a

counter, but the next character is not a digit.

System Action: The stage terminates with return code

1085.

1086E Improper operand for string expression

. Explanation: A strictly compare operator or a colon for

. selection of expressions is met, but its operands are not

. strings, references to input fields, or the result of a condi-

. tional operator with string operands.

System Action: The stage terminates with return code

1086.

1087E String operand not acceptable to operator

Explanation: An operator is met that requires numeric

operands, but one of its operands is a literal string.

System Action: The stage terminates with return code

1087.

 Chapter 26. Message Reference 827

 1088W ¹ 1122E

1088W Last operation is not assignment

Explanation: SET is specified to compute an expression, but

the result is not stored. Since it is discarded by CMS

Pipelines, this is unlikely what you had in mind.

User Response: Remember that the assignment operator is

colon equal (:=). An equal sign is the comparison operator.

System Action: Processing continues.

1089E Too many counters

Explanation: The span of numbers used for counters is so

large that it would require more than a 2G area to store them

all.

User Response: Try to reduce the span of counter numbers

in use.

System Action: The stage terminates with return code

1089.

1090E Unrecognised operator word

Explanation: One or more operator characters are met, but

the aggregate string is not a valid operator.

System Action: The stage terminates with return code

1090.

1091E Operator expected; found word

Explanation: An operator or the end of the expression is

expected, but the character shown was met.

User Response: specs does not support the comma oper-

ator. Use the SET and semicolon operators instead.

System Action: The stage terminates with return code

1091.

1100E Record descriptor is too small (it contains number)

Explanation: A TCP/IP device driver that is specified with

SF or SF4 detects a record that contains a record descriptor

that is shorter than its own length.

User Response: Ensure that the application sending data to

you observes the protocol you expect. In particular, pay

attention to word sizes and byte ordering.

System Action: The stage terminates with return code

1100.

1110I Received number bytes

Explanation: The bit for 16 is on in the message level. A

data packet is received. Zero bytes means end-of-file.

1111I Sent number bytes

Explanation: The bit for 16 is on in the message level. A

data packet is sent.

1112I Closing socket (reason number)

Explanation: The bit for 16 is on in the message level.

The socket is being closed.

1113I Purging IUCV message

Explanation: The bit for 32 is on in the message level. An

IUCV operation is purged because an input record has arrived.

1114I IUCV reply number bytes

Explanation: The bit for 32 is on in the message level. An

IUCV reply was received.

1115I Socket call for type

Explanation: The bit for 32 is on in the message level. A

socket function is passed to TCP/IP.

1120E Stage cannot run in CMS subset

Explanation: The stage requires an interface that is not

supported in CMS subset mode.

User Response: Issue the RETURN command to return to

full CMS.

System Action: The stage terminates with return code

1120.

1121E Stage cannot run while DOS is ON

Explanation: The stage requires an interface that is not

supported in CMS DOS mode.

User Response: Issue the SET DOS OFF command.

System Action: The stage terminates with return code

1121.

1122E Expression result is a string: string

Explanation: The result of an expression is a character

string rather than a number in a context where a string is not

valid.

User Response: Inspect the expressions in IF, PRINT, and

SET clauses for single literals, such as these:

. ... | spec set "sh" | ...

. ... | spec ... if #0?'a':"b" then ... | ...

. ... | spec print "sh" picture 99 1 | ...

System Action: The stage terminates with return code

1122.

828 CMS Pipelines User’s Guide and Reference

 1123E ¹ 1134E

1123E Unacceptable input record length number

Explanation: An input record that is not null is not the

required length. For socka2ip, the input record is neither

four nor sixteen bytes.

System Action: The stage terminates with return code

1123.

1124E Incorrect NAMEDEF word (a directory name must

contain a period)

Explanation: Reason code 90530 is returned by DMSVALDT.

The third word of the argument string is taken as a name

definition for the directory containing the file, but there is no

such name defined.

User Response: You probably wanted to refer to a direc-

tory. Ensure that the third word contains either an explicit

file pool name and user ID, or at least one period. For

example, to read from JOHN’s top level directory in the

current file pool:

pipe < profile exec john. | hole

System Action: The stage terminates with return code

1124.

1125E No space left in PDS directory

Explanation: Return code 12 reason code 0 is received on

the STOW macro. This indicates that the directory is full.

System Action: The stage terminates with return code

1125.

1126E Record descriptor indicates number bytes, but

minimum is number

Explanation: When deblocking records that contain their

record length (such as SF4), the record descriptor indicates a

record length that would not include the record descriptor

itself. For example, an input record that contains four binary

zeros is not valid for deblock SF4.

System Action: The stage terminates with return code

1126.

1127E Host name too long: string

Explanation: A word of an input record to nsquery is

longer than 1024 characters. If the word contains no

periods, the length of the word plus the length of the domain

origin (the argument to nsquery) is larger than 1023. This

limit is imposed by the domain name system.

System Action: The stage terminates with return code

1127.

1128E Two consecutive periods in host name: string

Explanation: A word of an input record to nsquery

contains two adjacent periods, which would indicate a null

component in the host name. If the word contains no

periods, the domain origin (the argument to nsquery)

contains a leading period or two consecutive periods.

System Action: The stage terminates with return code

1128.

1129E Component of host name too long: string

Explanation: A component of a host name (or of the

domain name, which is the argument to nsquery) Contains

more than 255 consecutive characters without a period. This

limit is imposed by the domain name system.

System Action: The stage terminates with return code

1129.

1130E Variable name is not defined in file string

Explanation: A variable is not defined in the TCPIP DATA
file.

System Action: The stage terminates with return code

1130.

1131E Name server on port number at IPaddress timed

out

Explanation: No response is received from the name server

after the number of retries specified in TCPIP DATA.

System Action: The stage terminates with return code

1131.

1132E Name server response is truncated

Explanation: The response from the name server indicates

that the response was truncated.

System Action: The stage terminates with return code

1132.

1133E Name server query in wrong format

Explanation: The name server return code is 1.

System Action: The stage terminates with return code

1133.

1134E Host word does not exist

Explanation: The name server return code is 3 and the

secondary output stream to nsresponse is not defined.

System Action: The stage terminates with return code

1134.

 Chapter 26. Message Reference 829

 1135E ¹ 1145W

1135E Host word does not exist

Explanation: The name server return code is 0, but no

response is returned. The secondary output stream to

nsresponse is not defined. The word is recognised as a

domain, not as a host.

System Action: The stage terminates with return code

1135.

1136E Return code from name server: number

Explanation: The return code substituted was returned by

the name server.

User Response: Refer to the current RFC for the meaning

of the return code. This RFC is likely to have replaced RFC

1035.

System Action: The stage terminates with return code

1136.

1137E Unexpected response record type: number

Explanation: The first response record from the name

server is not an address record.

User Response: Refer to the current RFC for the meaning

of the record type. This RFC is likely to have replaced RFC

1035.

System Action: The stage terminates with return code

1137.

1138E Unsupported RESOLVEVIA: word

Explanation: The method specified in the TCPIP DATA file

for name resolution is not supported.

System Action: The stage terminates with return code

1138.

1139I Query summary state of streams

Explanation: Pipeline dispatcher trace is active. The stage

requests the summary status of its streams.

System Action: None.

1140E Unable to resolve word (RXSOCKET is not avail-

able)

Explanation: The host name could not be resolved because

the RXSOCKET interface was not available.

System Action: The stage terminates with return code

1140.

1141E Unable to resolve word (RXSOCKET did not

return a result)

Explanation: The host name could not be resolved because

the RXSOCKET interface did not return a result on the function

invocation.

System Action: The stage terminates with return code

1141.

1142E Unable to resolve word (RXSOCKET error string)

Explanation: The host name could not be resolved because

the RXSOCKET interface gave a return code.

System Action: The stage terminates with return code

1142.

1143E Unable to resolve word (RXSOCKET Version 2 is

required)

Explanation: The host name could not be resolved because

the RXSOCKET interface was downlevel. The string '-1' was

returned; this is the way Version 1 reacts to errors.

System Action: The stage terminates with return code

1143.

User Response: Install RXSOCKET Version 2 or VM/ESA

Version 2 Release 2, which has RXSOCKET built in. Name

resolution will work with Version 1 if you initialise the

socket interface externally to CMS Pipelines.

1144E Key/ID field is not anchored at the extremities of

the input record (number before; number after)

Explanation: The STRIP option was specified to delete the

key field or the stream identifier from the output record.

This is not possible since the field is inside the record. The

number of bytes before the key field and the number of bytes

after the key field are substituted.

System Action: The stage terminates with return code

1144.

1145W PIPE command was issued from XEDIT, which

truncates at or before 255 characters (use Address

Command in XEDIT macros)

Explanation: The PIPE command which caused an error

message to be issued in the scanner was issued from XEDIT.

User Response: When issuing PIPE commands from XEDIT

macros, be sure to remember to address them to COMMAND,

rather than to the default XEDIT command environment.

XEDIT truncates commands after 255 bytes without issuing a

warning message.

830 CMS Pipelines User’s Guide and Reference

 1146E ¹ 1165E

1146E Expect OF; found: word

Explanation: The SUBSTR keyword was specified, but the

closing OF was not found where it was expected. The word

found is substituted. If the message ends in the colon, the

the stage’s argument string was too short.

System Action: The stage terminates with return code

1146.

1147E Creation time cannot be changed for an existing

file

Explanation: Reason code 51051 was received from

DMSCLOSE or DMSCLDBK

The file to be replaced exists and CMS refuses to change its

creation date.

User Response: If you really wish to change the creation

date for a file, rename the file and then use CMS Pipelines to

create it again. You will effectively lose all authorisations

that you may have granted on the file because they will stay

with the renamed file.

System Action: The stage terminates with return code

1147.

1148E Expected parameter token "sysv"; found "word"

Explanation: The PIPMOD nucleus extension is called with

a parameter token, but the first parameter token is not the

one for the system services vector.

System Action: The stage terminates with return code

1148.

1149E Too many parameter tokens found (second is

"word")

Explanation: The PIPMOD nucleus extension is called with

a parameter token and the first parameter token is the one for

the system services vector, but it is not followed by a fence

indicating the end of the list of parameter tokens.

System Action: The stage terminates with return code

1149.

1150E Lost race for SCBWKWRD

Explanation: PIPMOD was invoked to initialise CMS

Pipelines. When the initialisation started, the user word for

the PIPMOD nucleus extension was zero, but by the time it

came to set the user word, the SCBLOCK already had a

nonzero user word.

System Action: The stage terminates with return code

1150.

System Programmer Response: Investigate whether the

virtual machine runs a vendor multitasking system. If it

does, ensure that CMS Pipelines is initialised before the

vendor multitasking package takes over control of CMS.

1161E Unable to load module name (return code number)

Explanation: The hlasm interface cannot load the interface

module to invoke it on CMS. The LOADMOD command fails

with the return code shown.

User Response: Ensure that Release 2 of the High Level

Assembler product is installed; CMS Pipelines does not

support release 1.

System Action: The stage terminates with return code

1161.

1162E Unable to find module name

Explanation: The hlasm interface cannot find the interface

module in storage after it has been loaded. This is likely to

be the result of a programming error in CMS Pipelines or a

change in the response to the PROGMAP command. CMS

Pipelines assumes that the response contains two lines and

that the load address of the module is the second word of the

second line; it further assumes that this word is in printable

hexadecimal.

System Action: The stage terminates with return code

1162.

1163E Unable to declare exit

Explanation: The hlasm interface cannot declare its exit

because an instance is already declared at some other

address. The return code on the IDENTIFY macro instruction

is X'14'.

User Response: Return to the CMS ready prompt to clear

this stale exit pointer. Then retry the pipeline.

System Action: The stage terminates with return code

1163.

1164W Variable name is not valid: contents

Explanation: A pipeline global variable does not contain

an acceptable value.

System Action: The value is ignored and the default is

used instead.

1165E Configuration variable name is not recognised

Explanation: The configuration variable is not known to

CMS Pipelines.

User Response: Note that the names of configuration vari-

ables must be spelt out. Some are longer than eight charac-

ters; they must be specified in their entirety. Case is ignored

in the names of configuration variables.

System Action: The stage terminates with return code

1165.

 Chapter 26. Message Reference 831

 1166E ¹ 1173I

1166E Keyword name is not recognised for configuration

variable name

Explanation: The first word of an input line to configure is

recognised as the name of a keyword configuration variable,

but the keyword specified is not valid for that configuration

variable.

User Response: Note that the keywords must be spelt out.

Some are longer than eight characters; they must be specified

in their entirety. Case is ignored in keywords.

System Action: The stage terminates with return code

1166.

1167I Cannot load message repository word

Explanation: CMS Pipelines was unable to add its message

repository to the current language. Other CMS messages may

also have been issued.

CMS Pipelines issued this command, where xxx contains the

repository set for CMS Pipelines or inferred from its default

style:

set language (add xxx user

The default message repository is FPL.

User Response: Either make the message repository avail-

able, set the language to a language for which there is a

message repository, or disable the repository by this

command:

PIPE literal REPOSITORY -|configure

You will receive these nuisance messages until you take

some action to avoid them.

System Action: Processing continues. The message was

issued from the internal message table, which is in English.

1168E Cannot convert relative date format word to abso-

lute date format word

Explanation: Some date formats are absolute; that is, they

reference a particular moment in time. Other date formats

are relative; that is they specify some amount of time. A

relative date cannot be converted to an absolute date.

User Response: Change the input date format to an abso-

lute date format or change the output date format to a rela-

tive date format. The default date format is an absolute date

format. Therefore, when converting a relative date format

you must specify a relative output date format.

System Action: The stage terminates with return code

1168.

1169E Variable word is not a token set by SCANRANGE

(reason code number)

Explanation: The contents of the variable were not set by

the SCANRANGE pipeline command. In particular, the vari-

able may have no value. The reason codes are:

1. The variable is not set.

2. The variable contains too many characters.

3. The variable contains too few characters.

4. The check word in the variable is incorrect.

User Response: Be sure that you quote the name of the

variable; it must not be substituted by REXX.

'scanrange required range1 .' arg(1)
'peekto line'
'inputrange range1 string' line

System Action: The stage terminates with return code

1169.

1170E The input date is not valid: word (reason code

number)

Explanation: The date could not be converted. The reason

code is from the DateTimeSubtract callable services library

routine.

User Response: Correct the error described by the reason

code for DateTimeSubtract. If the reason is not obvious,

refer to For Timer Services section in the Return and Reason

Code Values appendix of the CMS Application Multitasking

manual to find the symbolic name for the reason code. (The

VM library contains no further description of these error

codes.)

System Action: The stage terminates with return code

1170.

1171W No output date format specified; the default

output date format is the same as the input date

format

Explanation: The output date format was not specified. It

defaults to the ISODATE date format. This value is the same

as the input date format.

System Action: Processing continues. The stage validates

all dates as requested.

User Response: Specify the output date format to avoid

this message when you wish to validate dates without

converting them.

1172I Restoring fitting name word

Explanation: A fitting stage is terminating. The fitting

name is restored in the Request Parameter List.

1173I No RPL to restore

Explanation: A fitting stage is terminating. The fitting

name was not resolved and thus it cannot be restored.

832 CMS Pipelines User’s Guide and Reference

 1174E ¹ 1182E

1174E Not a hexadecimal address word

Explanation: The word is not the unpacked hexadecimal

representation of a machine address. This may be caused by

a corrupt control block structure for CMS Pipelines.

User Response: Do not invoke fplricdf; use pipdump or

jeremy instead.

System Action: The stage terminates with return code

1174.

1175E Incorrect check word in PIPEBLOK: word

Explanation: This may be caused by a corrupt control

block structure for CMS Pipelines. The check word is

shown in unpacked hexadecimal. It should have been

“pipe”, which is X'97899785'.

System Action: The stage terminates with return code

1175.

1176W The pointer to the Contents Vector table is

destroyed (reason code number); investigate

VM61261

Explanation: The pointer in low storage to the Contents

Vector Table is destroyed. The reason codes are:

1 The CVT pointer is either zero or negative.

2 The CVT pointer does not point within the virtual

machine.

3 The byte at offset X'74' in the CVT has the bit for

X'40' zero. This bit (originally meaning the Primary

Control Program) should be on for CMS.

. 4 The byte at offset X'74' in the CVT has one or more

. of the bits for X'3F' nonzero.

User Response: Contact your systems support staff.

System Programmer Response: Investigate whether

corrective service is available. In particular, ensure that the

fix for APAR VM61261 is applied.

Issue the command cp trace store into 10.4 to set a

trap for storing into the primary CVT pointer.

1177E The system does not support date format word

Explanation: The specified date format is not supported for

the level of CMS on which you are running and in particular

not by the version of the DMSDTS callable service you are

using The date format may be valid on a later level of CMS

or it may not be valid for any level of CMS.

System Action: The stage terminates with return code

1177.

1178W The pointer to the Contents Vector table has been

restored from the alternate pointer

Explanation: The pointer in low storage to the Contents

Vector Table is destroyed, but the alternate pointer is intact.

User Response: Contact your systems support staff.

System Programmer Response: Investigate whether

corrective service is available. In particular, ensure that the

fix for APAR VM61261 is applied.

Issue the command cp trace store into 10.4 to set a

trap for storing into the primary CVT pointer.

1179W The alternate pointer to the Contents Vector table

has been restored from the primary pointer

Explanation: The alternate pointer in low storage to the

Contents Vector Table is destroyed, but the primary pointer

is intact.

User Response: Contact your systems support staff.

System Programmer Response: Investigate whether

corrective service is available. In particular, ensure that the

fix for APAR VM61261 is applied.

Issue the command cp trace store into 500.4 to set a

trap for storing into the alternate CVT pointer.

1180E A directory in the path string does not exist or you

are not authorised for it

Explanation: Reason code 44000 was received when

. creating a file. Reason code 90230 was received when

. opening a directory.

System Action: The stage terminates with return code

1180.

1181E Directory control directory string is accessed read

only

Explanation: Reason code 63700 was received when

opening the file.

System Action: The stage terminates with return code

1181.

1182E Date format word cannot be used as an input date

format

Explanation: The specified date format can be used only as

an output date format.

System Action: The stage terminates with return code

1182.

 Chapter 26. Message Reference 833

 1183E ¹ 1197E

1183E Date cannot be converted; input date word is not

valid

Explanation: The input date (that is, the contents of the

specified field in an input record) is not a valid date for the

input date format specified. Possible causes for this error

include:

¹ The input date format does not match the input date.

¹ The input range includes information other than the date.

¹ The input range is not the correct syntax for a date of

the specified format.

¹ The input date specifies a date which cannot occur, such

as, February 29, 1997 (1997 is not a leap year).

System Action: The stage terminates with return code

1183.

1184E Input date word cannot be expressed in the output

date format

Explanation: The input date has no meaning for the output

date format. This occurs when one of three conditions

exists:

¹ The input date is prior to the epoch for the output date

format. For example, it is before January first 1900 for

TOD Absolute.

¹ The input date is negative and the output date format is

MET.

¹ The input date specifies a negative year and the output

date format is not SCIENTIFIC_ABSOLUTE.

System Action: The stage terminates with return code

1184.

1185E Cannot convert absolute date format word to rela-

tive date format word

Explanation: Some date formats are absolute; that is, they

reference a particular moment in time. Other date formats

are relative; that is they specify some amount of time. An

absolute date cannot be converted to a relative date.

System Action: The stage terminates with return code

1185.

User Response: Change the input date format to a relative

date format or change the output date format to an absolute

date format.

1186W Operand string is ignored for input date format

word

Explanation: You specified the use of a sliding window for

an input date format of REXX_DATE_C or REXX_DATE_D.

System Action: The sliding window operand is ignored.

The date is converted using a base year of the current

century for REXX_DATE_C or the current year for

REXX_DATE_D.

User Response: Do not specify a sliding window for an

input date format of REXX_DATE_C or REXX_DATE_D.

1191I Close flags string

Explanation: The callable service DMSCLOSE gave an unex-

pected return code. The close flags are displayed.

1192I Close flags string; record length number, count

number

Explanation: The callable service DMSCLDBK gave an unex-

pected return code. The close flags, record length, and

record counts are displayed.

1193I Current input stream number has record available

Explanation: Tracing message. SELECT ANYINPUT is issued

and the producer on the currently selected input stream has a

record available.

1194I Producer on input stream number has record avail-

able

Explanation: Tracing message. SELECT ANYINPUT is

issued. A producer other than the currently selected one has

a record available.

1195I Selecting input stream number

Explanation: Tracing message. The stage is waiting after

SELECT ANYINPUT has been issued. A record is now avail-

able.

1196E Do not connect unused input stream stream

Explanation: A stream is connected that the stage does not

use. This is often a symptom of an incorrect placement of a

label reference. lookup detects that input stream 4 or 5 is

connected.

User Response: Verify the streams to the stage in question.

In particular, pay attention to streams that are used both for

input and output; there must be only one label reference to

represent both the input and the output stream.

System Action: The stage terminates with return code

1196.

1197E Do not connect unused output stream stream

Explanation: A stream is connected that the stage does not

use. This is often a symptom of an incorrect placement of a

label reference.

User Response: Verify the streams to the stage in question.

In particular, pay attention to streams that are used both for

input and output; there must be only one label reference to

represent both the input and the output stream.

System Action: The stage terminates with return code

1197.

834 CMS Pipelines User’s Guide and Reference

 1198I ¹ 1224I

. 1198I Stage is active

. Explanation: The ABEND recovery routine found an active

. stage. Additional messages are issued to identify the stage,

. if enabled in the message level for the stage.

. 1210I Request for hex doublewords unsuccessful (from

. hex)

. Explanation: Free storage management trace is enabled.

. The storage request failed. Note that the number of

. doublewords are shown in hexadecimal.

. 1211I Got hex doublewords at hex

. Explanation: Free storage management trace is enabled. A

. block of storage is allocated.

. 1212I Rel hex doublewords at hex

. Explanation: Free storage management trace is enabled. A

. block of storage is deallocated.

. 1213E Storage at address is not on allocated chain

. Explanation: Free storage management validation is

. enabled. The block being released is not on the chain of

. storage that was allocated by CMS Pipelines.

. System Action: The storage is not returned to the operating

. system. Processing continues.

. 1214E Storage at address; check word at address is

. destroyed

. Explanation: Free storage management validation is

. enabled and a block of storage is being released. The

. fullword immediately after the allocated area has been

. corrupted.

. System Action: The storage is not returned to the operating

. system. Processing continues.

. User Response: It is likely that the storage allocation is

. insufficient.

. 1215E Storage at address allocated hex doublewords;

. releasing hex

. Explanation: Free storage management validation is

. enabled and a block of storage is being released. The size

. being returned is not the one allocated.

. System Action: The storage is not returned to the operating

. system. Processing continues.

. User Response: Be sure to return the number of

. doublewords actually allocated; this number may be larger

. than the number of doublewords requested.

. 1216E Storage at address; check word is destroyed

. Explanation: Free storage management validation is

. enabled and a block of storage is being released. The

. fullword immediately before the allocated area has been

. corrupted.

. System Action: The storage is not returned to the operating

. system. Processing continues.

. User Response: It is likely that the error is an insufficient

. request for the storage that preceded this particular block of

. storage. This is a particularly nasty bug to track down, espe-

. cially on TSO.

. 1217I Contents: hex

. Explanation: Free storage management validation is

. enabled and an error is discovered when a block of storage is

. released. The first thirty-two bytes of the allocated block are

. displayed.

. 1220E IEANTRT RC=hex not equal to R15 (=hex.)

. Explanation: The FPLDEBUG command found that the

. return code stored by IEANTRT is not equal to the return code

. in general register 15.

. System Action: The command terminates with return code

. 1220.

. 1221I The TSO Pipelines name/token is not established

. Explanation: IEANTRT gave return code 4. No PIPE

. command has been issued for the address space or FPLRESET

. has been issued to delete the TSO Pipelines global informa-

. tion area.

. 1222E IEANTRT RC=hex

. Explanation: The FPLDEBUG command received a return

. code that is neither 0 nor 4.

. System Action: The command terminates with return code

. 1222.

. 1223E Nametoken field name contains value; expect value

. Explanation: The token returned by the IEANTRT callable

. service does not contain the expected data.

. System Action: The command terminates with return code

. 1223.

. 1224I TSO Pipelines global area is at hex

! Explanation: This is a debugging message.

 Chapter 26. Message Reference 835

 1225E ¹ 1232E

. 1225E ABEND hex accessing the global data area

. Explanation: The FPLDEBUG command received a program

. check when it tried to verify the address of the global data

. area returned in the name/token.

. System Action: The command terminates with return code

. 1225.

. 1226E Global area is corrupted

. Explanation: The FPLDEBUG command could not verify the

. first twenty-four bytes of the global data area returned in the

. name/token.

. System Action: The command terminates with return code

. 1226.

. 1227E Insufficient data returned by DMSGETDI; got

. number expect number

. Explanation: The callable service returned fewer bytes than

. required for the function requested.

. User Response: If FPLSTAT was specified and no output is

. produced, your system is does not support the function

. requested.

. System Programmer Response: If FPLSTAT is omitted and

. some output was produced, the combination of buffer size

. used by sfsdir and the record length returned is such that a

. partial record is generated in a downlevel format at the end

. of the buffer. Open an APAR against DMSGETDI.

. 1228I Return code number erasing work file

. Explanation: While replacing a file in a SFS directory that

. is accessed as a mode letter using >mdsk, the file is created

. correctly, but erasing the work file fails with the return code

. substituted. The configuration variable DISKREPLACE is set to

. COPY.

. System Action: The error is ignored.

. User Response: Do not panic. The file is created correctly;

. most likely the work file had mode number 3 and the copy

. operation has removed the work file. The return code is 28

. in this case.

. 1229E Length code char is not valid

. Explanation: The first position of an input record to

. uudecraw is not one of the valid characters for the encoding

. format.

. User Response: Be sure to remove the header and trailer

. records from a file in the uuencode format.

. System Action: The stage terminates with return code

. 1229.

. 1230E Expect "begin", found string

. Explanation: The first input record to uudecode does not

. contain the word “begin” followed by a blank.

. System Action: The stage terminates with return code

. 1230.

. 1231E Expect "end", found string

. Explanation: The input record to uudecode that follows an

. encoded file does not contain the word “end”.

. System Action: The stage terminates with return code

. 1231.

. 1232E Native sockets are not available (reason code

. number)

. Explanation: CMS Pipelines is unable to call the service

. routine to create a TCP/IP socket using the native z/OS call-

. able service BPX1SOC. The reason code indicates which

. particular test failed:

. 1 The CVT field CSRTABLE does not contain a pointer. It

. contains -1. (Offset 544, decimal).

. 2 The resource slot in the OpenExtensions callable

. services function table points to a dummy entry.

. 3 The OpenMVS slot in the CSR table does not contain a

. pointer. It contains zero. (Offset 24, decimal).

. 4 The table of entry points to OpenExtensions callable

. services is too short to contain the function requested.

. That is, the operating system does not support the

. function requested.

. 5 The table of entry points to OpenExtensions callable

. services contains a dummy entry for the function

. requested. That is, the operating system does not

. support the function requested or the function is not

. available in this particular configuration.

. 10 The CMS is a release where the simulated CVT is too

. short to contain the pointer to the CSRTABLE.

. 4 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed. It is either zero or

. negative.

. 5 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed. It does not point

. within the virtual machine.

. 6 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed, or the CVT has

. been corrupted. The byte at offset X'74' has the bit

. for X'40' zero. This bit indicates that the system is

. CMS.

. 7 The pointer to the Contents Vector Table (CVT) in

. location 16 (decimal) is destroyed, or the CVT has

. been corrupted. The byte at offset X'74' has one or

. more of the bits for X'3F' nonzero. These bits must

. be zero on CMS.

. User Response: Contact your systems support staff if the

. reason code indicates that the CVT pointer is destroyed.

. These reason codes are issued on CMS only.

836 CMS Pipelines User’s Guide and Reference

 1233E ¹ 1244E

. System Programmer Response: Investigate if corrective

. service is available. In particular, ensure that the fix for

. APAR VM61261 is applied.

. System Action: The stage terminates with return code

. 1232.

. 1233E ERRNO string reason string in string

. Explanation: An error has occurred in the native z/OS

. TCP/IP stack. The decoded error number and reason code are

. shown. If the numbers are not known, the actual numbers

. are substituted.

. User Response: Refer to OpenExtensions Programming:

. Assembler Callable Services Reference or to the member

. BPXYERNO in the system macro library.

. System Action: The stage terminates with return code

. 1233.

. 1234I Attention exit disabled. Hit attention to terminate

. command

. Explanation: The attention routine was entered a third

. time. Further attentions will cause TSO to terminate the

. command or be handled by REXX.

. 1235I Reason Code hex (hex) number (decimal)

. Explanation: The reason code for an error from callable

. services is shown. The first substitution displays the entire

. reason code in hexadecimal. The second displays the right-

. most halfword in decimal; this is the number defined with

. the JR reason codes in the macro BPXYERNO.

. 1236I USS return code number reason hex function: word

. Explanation: A call to the Unix System Services failed,

. but the stage will recover or provide its own diagnostics.

. This message is issued when message level 1024 is set.

. The return code is shown as a decoded errno if the value is

. one of those recognised by CMS Pipelines; otherwise the

. return code is shown as a decimal number.

. The reason code is shown as a decoded value if the value is

. one of those recognised by CMS Pipelines; otherwise the

. reason code is shown in hexadecimal. Only the last four

. digits are significant.

. The function is shown as the name of the equivalent POSIX

. function.

. User Response: Refer to OS/390 Messages and Codes for

. the error codes.

. System Action: The error is percolated.

. 1237I Active process and thread IDs:hex (hexadecimal)

. Explanation: The FPLDEBUG command is issued on z/OS.

. The process and thread IDs are displayed in hexadecimal for

. all threads on which TSO Pipelines is active.

. 1238I Shutting down for write

. Explanation: Tracing message.

. The socket is being shut down for write. This should cause

. the partner to see end-of-file, but still be able to send a

. response.

. 1239I About to receive from socket

. Explanation: Tracing message.

. The stage will enter a blocking read from the socket.

. 1240I Unknown CP/CMS command: string

. Explanation: The command specified after the system

. service name was not recognised by the system.

. System Action: The error is ignored by CMS Pipelines.

. User Response: But you may wish to investigate. A likely

. cause is that keyword operands for the starsys stage were

. entered after the name of the system service rather than

. before.

. 1241I Suppressed CP/CMS command: string

. Explanation: The starsys stage was unable to connect to a

. system service and as a result it did not issue the command

. shown.

. System Action: The original error is reported.

. User Response: Ensure that the command shown is indeed

. a command you wish to have executed. It is possible that

. the connect failed because the IPUSER field was not set

. correctly. Remember that keyword operands for the starsys

. stage must precede the name of the system service; the string

. after the name of the system service is a CMS command that

. is issued after the stage has connected to the system service.

. 1242I STOPECB hex called

. Explanation: Tracing message. The ECB address is substi-

. tuted, or “off”.

. 1243T PSTV at address corrupt: string

. Explanation: General register 9 has been destroyed.

. 1244E Input record contains incorrect data for ASCII

. quoted-printable format: X'hex'

. Explanation: The character X'3D' is met in a position

. other than the last of an input record. Such an equal sign

. should be followed by two characters representing the

. hexadecimal encoding of four bits, but either there is only

. one character following the equal sign (four hexadecimal

. digits substituted) or the two characters are not valid

. hexadecimal (six hexadecimal digits substituted).

 Chapter 26. Message Reference 837

 1245E ¹ 1255E

. Note that the hexadecimal digits should be represented in

. ASCII. Thus, the numbers should be from X'30' to X'39'

. and the letters X'41' through X'45'.

. User Response: Be sure that the input is correct ASCII. If

. you are processing a mail file that has been converted to

. EBCDIC, be sure to translate it back to ASCII before passing it

. to qpdecode.

. To make a robust decoder, connect the secondary output

. stream from qpdecode and perform error recovery or ignore

. the error.

. System Action: The stage terminates with return code

. 1244.

. 1245E You need pipeline version hex for this stage

. Explanation: A stage in a filter package has determined

. that it runs on a version of CMS Pipelines that does not

. provide sufficient infrastructure for the stage to work.

. User Response: Install the required level of CMS Pipelines.

. System Action: The stage terminates with return code

. 1245.

. 1246E You need a more modern VM (interrupt code

. number)

. Explanation: A program check was received on a STSI

. instruction. This indicates that your release of VM/ESA

. does not support the instruction. It is indeterminate whether

. the hardware has the store-system-information facility

. installed.

. User Response: Contact your friendly IBM salesperson to

. order the required software. Also enquire whether your

. hardware has the store-system-information facility installed.

. System Action: The stage terminates with return code

. 1246.

. 1247E Incorrect selector value specified (interrupt code

. number)

. Explanation: A program check was received on a STSI

. instruction to obtain the requested piece of system informa-

. tion. The hardware and software combination is known to

. support the store-system-information facility; thus the

. operand is not a valid combination of selectors.

. User Response: The selector is specified as a three digit

. number.

. System Action: The stage terminates with return code

. 1247.

. 1249E Requested SYSIB information not available

. Explanation: A nonzero condition code was received on a

. STSI instruction to return the actual configuration information.

. User Response: At the time of writing, these are the valid

. selectors:

. 111 Basic machine.

. 121 Basic machine CPU

. 122 Basic machine CPUs.

. 221 Logical partition CPU.

. 222 Logical partition CPUs.

. 322 Virtual machine CPUs.

. System Action: The stage terminates with return code

. 1249.

. 1250E Incorrect code point X'hex' in first byte

. Explanation: utf8 DECODE STRICT met a byte that contains

. an incorrect value.

. System Action: The stage terminates with return code

. 1250.

. 1251E Incomplete UTF-8 multibyte character

. Explanation: utf8 DECODE STRICT met a byte that contains

. the first half of an encoded value, but there are no more

. bytes in the input record.

. System Action: The stage terminates with return code

. 1251.

. 1252E Incorrect code point X'hex' in second byte

. Explanation: utf8 DECODE STRICT met a byte that correctly

. begins a two-byte sequence, but the second byte contains a

. value that is not valid.

. System Action: The stage terminates with return code

. 1252.

. 1253E Address X'hex' before section base

. Explanation: Columns 5-8 of the input record contains a

. value that is smaller than the value in the first record for that

. particular section.

. System Action: The stage terminates with return code

. 1253.

. 1254E Incorrect device number hex (larger than FFFF)

. Explanation: The device number does not contain all zero

. bits in the leftmost halfword.

. System Action: The stage terminates with return code

. 1254.

. 1255E CP paging error on diagnose 210 device number

. hex

. Explanation: CP has set the condition code indicating that

. it was unable to provide information about the device.

. System Action: The stage terminates with return code

. 1255.

838 CMS Pipelines User’s Guide and Reference

 1256E ¹ 1271W

. 1256E Cylinder number number beyond disk capacity

. number

. Explanation: The disk has only the number of cylinders

. shown.

. System Action: The stage terminates with return code

. 1256.

. 1257E Track number number beyond cylinder capacity

. number

. Explanation: The disk has only the number of tracks

. shown.

. System Action: The stage terminates with return code

. 1257.

. 1258E Number of tracks number beyond remaining device

. capacity number

. Explanation: You have specified a track count that is

. larger than the total number of tracks remaining on the

. device.

. System Action: The stage terminates with return code

. 1258.

. 1259E Volume does not have label specified

. System Action: The stage terminates with return code

. 1259.

. 1260E Ending cylinder (number) lower than the beginning

. one

. System Action: The stage terminates with return code

. 1260.

. 1261E Input record too long (it is number)

. System Action: The stage terminates with return code

. 1261.

. 1264E Incorrect home address X'hex'

. Explanation: The first byte (the flag byte) is not binary

. zeros, the cylinder and head fields do not contain data within

. the device geometry.

. System Action: The stage terminates with return code

. 1264.

. 1265E Incorrect record 0 count field X'hex'

. Explanation: The cylinder and head fields of record 0 are

. not equal to the ones in the home address or record 0 does

. not have a key length of 0 and data length of 8.

. System Action: The stage terminates with return code

. 1265.

. 1266E Missing end of track marker

. Explanation: The the last eight bytes of the record do not

. contain all one bits.

. System Action: The stage terminates with return code

. 1266.

. 1267E Device number hex is read only

. Explanation: An operation is rejected with sense bytes that

. include the write inhibited sense bit.

. System Action: The stage terminates with return code

. 1267.

. 1268E Too many records on track (number)

. Explanation: The track contains more than 255 records,

. including record 0. While such a track could be constructed,

. it is not supported by the way CMS Pipelines writes the

. track.

. System Action: The stage terminates with return code

. 1268.

. 1269E Spurious end of track marker

. Explanation: The count area of a record contains all one

. bits, but there remains more than eight bytes in the record.

. System Action: The stage terminates with return code

. 1269.

. 1270E Record zero missing

. Explanation: The track contains no record zero. All

. modern disks must have a record zero.

. System Action: The stage terminates with return code

. 1270.

. 1271W Using obsolete version of word word

. Explanation: CMS Pipelines determined that a program or

. file that is EXECLOADed is not the current version, but

. EXECLOAD failed to load the latest version. Message

. DMSEXL414E is also issued.

. The most likely cause for this message is that a REXX filter

. has been updated while it is executing and a new invocation

. is requested in a pipeline specification being added to the

. pipeline set.

. System Action: The version already in storage is used.

. User Response: To defeat CMS Pipelines’s loading and

. unloading of programs, use the EXECLOAD command to load

. your REXX filters before running the pipeline that uses them.

 Chapter 26. Message Reference 839

 1272E ¹ 1285I

. 1272E Unable to find DMSEXI

. Explanation: CMS Pipelines is running on CMS 14 or later,

. but the command table does not contain the command EXEC.

. Further, the work area for rexx is above the 16M line. As a

. consequence, there is no way to invoke the interpreter in the

. current environment.

. System Action: The stage terminates with return code

. 1272.

. User Response: Contact your systems support staff. As a

. circumvention, reduce the size of the virtual machine to less

. than 16M.

. System Programmer Response: Investigate whether

. corrective service is available.

. 1273E Count area incomplete (number bytes available)

. Explanation: The track after the last record contains less

. than eight bytes of data and is thus neither a valid count area

. nor a valid end of track marker.

. System Action: The stage terminates with return code

. 1273.

. 1274E Record incomplete (number bytes available; number

. bytes required)

. Explanation: The track after the last record contains a

. count area, but the count area indicates a longer record than

. the actual data present.

. System Action: The stage terminates with return code

. 1274.

. 1275I Processing cylinder number track number record

. number

. Explanation: Informational message when an incorrect

. track format is detected.

. 1276E Buffer length is not valid (hex doublewords

. requested)

. Explanation: A buffer is to be extended to a size that

. would be negative and also larger than 31-bit addressing

. allows.

. User Response: If this message is issued by a built-in

. program, this is an error in CMS Pipelines.

. System Action: The stage terminates with return code

. 1276.

. 1277E Record length (number) is not

. 8+keylength+datalength (number)

. Explanation: The input record does not represent a valid

. CKD block.

. System Action: The stage terminates with return code

. 1277.

. 1278E Track number is not specified in input record

. number

. Explanation: The input contains one word, not the

. minimum two.

. System Action: The stage terminates with return code

. 1278.

. 1279E No messages in queue, but interrupt received.

. Explanation: iucvclient or iucvdata is confused.

. System Action: The stage terminates with return code

. 1279.

. User Response: Contact your systems support staff.

. System Programmer Response: This is a programming

. error in CMS Pipelines. Investigate whether corrective

. service is available.

. 1281E Unsupported IUCV message format

. Explanation: A message pending or message complete

. interrupt is received that either requests a reply or has an

. incorrect message class.

. System Action: The interrupt parameters are displayed.

. The stage terminates with return code 1281.

. 1282E Error number on HNDIO

. Explanation: CMS Pipelines was unable to establish an

. interrupt handler for a virtual device. Refer help for macro

. hndio for a list of return codes.

. System Action: The stage terminates with return code

. 1282.

. 1283E More than number CCWs in input record

. Explanation: An input record contains sixteen or more

. control CCWs.

. System Action: The stage terminates with return code

. 1283.

. 1284E Subchannel for device number hex is busy

. Explanation: The device is not available to start a channel

. program. Condition code 2 was set on the start subchannel

. instruction.

. System Action: The stage terminates with return code

. 1284.

. 1285I Input stream number is only stream connected

. Explanation: Tracing message. SELECT ANYINPUT is

. issued. Return code 4 is being set as there is only one input

. stream left connected.

840 CMS Pipelines User’s Guide and Reference

 1286E ¹ 1303E

. 1286E SF4 is not specified

. Explanation: EMSGSF4 is specified, but SF4 has not been

. specified or has been quietly overridden by an other

. deblocking option.

. System Action: The stage terminates with return code

. 1286.

. 1287E Server responds without SF4

. Explanation: tcpclient with EMSGSF4 is specified and the

. first byte of data from the server is not zero in the leftmost

. five bits. This can be caused by inetd issuing error

. messages, in conjunction with starting the server.

. System Action: The data stream is converted from ASCII to

. EBCDIC, deblocked, and then issued with message 39 by a

. separate stage. On end-of-file from the server, the stage

. terminates with return code 1287.

. 1288I Branch to zero probably from hex

. Explanation: A program check has occurred while

. executing an instruction at location zero in storage. Register

. 14 indicates a branch and link instruction and register 15 is

. zero.

. The branch to zero may be due to the branch and link, but it

. is also possible that the zero in register 15 is the return code

. from a subroutine. In this case, the branch must have been

. subsequent to the subroutine call, or from the subroutine.

. 1289E Third level interrupt exit is already set at hex

. Explanation: A different exit address was specified for an

. external interrupt that already has an exit established.

. System Action: The stage terminates with return code

. 1289.

. 1291I The field ADMSCWR in NUCON is incorrect;

. found hex; display of ABEND information may be

. in jeopardy

. Explanation: This message is issued when CMS Pipelines

. initialises itself and finds that the address in NUCON of the

. console write routine does not point into the CMS nucleus, as

. defined by the fields nucalpha and nucsigma. This condi-

. tion may occur when CMS Pipelines is initialised under

. control of other programs that trap console output.

. CMS Pipelines will not be able to issue meaningful diag-

. nostic messages in the event of a CMS ABEND while cms or

. command is running.

. User Response: Initialise the CMS Pipelines explicitly in

. the virtual machine’s profile. This may be accomplished by

. PIPE HOLE.

. 1296I ABEND in CMS command. Last number lines of

. output follow

. Explanation: A command issued through command or cms

. has ended abnormally.

. System Action: The command output is discarded, except

. that the last five lines of output are displayed.

. 1297I Trace table at hex

. Explanation: Debugging message when an IUCV trace table

. is present and one of the tracing flags are on. The format of

. the contents of the trace table is unspecified.

. 1298E Binary number too large for counter (reason

. number)

. Explanation: The input field contains too many significant

. digits to fit within the 31 decimal digits available in a

. counter.

. System Action: The stage terminates with return code

. 1298.

. 1299W number duplicate masters were discarded

. Explanation: The input master file contained duplicates.

. This is unlikely to be what you desire.

. 1300E Time zone offset number is not valid (86399 is

. max)

. Explanation: A time zone offset is numerically larger than

. the number of seconds in a day.

. System Action: The stage terminates with return code

. 1300.

. 1301E Not a built-in function: word

. Explanation: A string of characters and digits is met, but it

. does not name any of the built-in functions.

. System Action: The stage terminates with return code

. 1301.

. 1302E Leftmost word of 32-bit counter number is not zero

. (hex)

. System Action: The stage terminates with return code

. 1302.

. 1303E Function name expected, but identifier found:

. number

. Explanation: The 407 emulator does not support identifiers

. as variables. Specify either a single character for a field

. identifier or the name of a built-in function with a suffixed

. left parenthesis.

. System Action: The stage terminates with return code

. 1303.

 Chapter 26. Message Reference 841

 1306E ¹ 1320E

. 1306E First record on track not 5 bytes long (it is

. number)

. Explanation: The deblocked track must begin with a

. pseudo home address, which is five bytes long.

. System Action: The stage terminates with return code

. 1306.

. 1307E Track capacity exceeded

. Explanation: The length of the track being built is larger

. than 64K, which is the architectural maximum for a CKD

. track.

. System Action: The stage terminates with return code

. 1307.

. 1308I Device hex is busy or has interrupt pending

. Explanation: Return code 5 is received on a Diagnose A8

. instruction.

. System Action: The operation is retried up to four times.

. If the operation cannot be started, the stage terminates with

. return code 1308.

. 1309E Undefined return code number from Diagnose A8

. on device hex

. Explanation: An undocumented return code is received on

. a Diagnose A8 instruction.

. System Action: The stage terminates with return code

. 1309.

. User Response: Contact your systems support staff.

. System Programmer Response: This would appear to be a

. change in the Control Program. Investigate the meaning of

. the return code in the documentation of Diagnose A8 in the

. latest edition of CP Programming Services.

. 1310I Device hex has unsolicited status pending

. Explanation: Return code 16 is received on a Diagnose A8

. instruction.

. System Action: The operation is retried up to four times.

. If the operation cannot be started, the stage terminates with

. return code 1310.

. 1311I Not squished track reason hex

. Explanation: A debug message.

. 1312E Filter package word is already loaded

. System Action: The stage terminates with return code

. 1312.

. 1313E PTF filter package word is already loaded

. System Action: The stage terminates with return code

. 1313.

. 1314E Unable to load module word (return code number)

. System Action: The stage terminates with return code

. 1314.

. 1315E Filter package word has bad eye-catcher word

. User Response: The filter package must be linked with the

. object module FPLNXG.

. System Action: The stage terminates with return code

. 1315.

. 1316E Filter package word is not loaded

. Explanation: The specified filter package is not known to

. CMS Pipelines. On CMS, it is neither loaded actively nor

. passively.

. System Action: The stage terminates with return code

. 1316.

. 1317E Filter package word is not loaded by

. FILTERPACK LOAD

. Explanation: A filter package with the specified name

. exists, but it was not installed by the fltpack stage.

. User Response: Use the NUCXDROP command to drop the

. filter package.

. System Action: The stage terminates with return code

. 1317.

. 1318E Filter package word is in use by number stages

. System Action: The stage terminates with return code

. 1318.

. 1319E Filter package cannot be loaded globally (task is

. not job step)

. Explanation: fltpack LOAD GLOBAL was specified, but the

. task is not the job step task.

. System Action: The stage terminates with return code

. 1319.

. 1320E Module word contains a type 1 filter package; run

. it as a CMS command to install

. Explanation: The filter package cannot be loaded explic-

. itly.

. User Response: Invoke the module as a CMS command to

. load the filter package. On z/OS, link the module with

. FPLNXG rather than with FPLNXF.

842 CMS Pipelines User’s Guide and Reference

 1321I ¹ 1332E

. System Action: The stage terminates with return code

. 1320.

. 1321I Assembler requests number bytes output for record

. number on stream number

. Explanation: The High Level Assembler has called an exit

. to write a record, but the exit request information contains a

. negative length, which is displayed in the message.

. System Action: The request is ignored.

. 1322I Ignoring HALT at hex

. Explanation: A specification exception is recognised and

. the instruction is a diagnose with code 8 and a length of 0.

. This is used on CMS to put the virtual machine into console

. function mode so the user can inspect storage and registers

. and in general use CP debugging facilities.

. System Action: Retry is attempted. If the system allows,

. execution continues with the next sequential instruction after

. the diagnose. In effect, the halt is ignored.

. 1323E Expression evaluated to the string "string"

. Explanation: The expression was parsed as returning a

. number, but the actual result is a string.

. System Action: Processing terminates with return code

. 1323.

. User Response: Contact your systems support staff.

. System Programmer Response: This is an error in CMS

. Pipelines.

. 1324E Expression evaluated to the number "hex"

. Explanation: The expression was parsed as returning a

. string, but the actual result is a number, which is substituted

. as a hexadecimal dump of its internal representation.

. System Action: Processing terminates with return code

. 1324.

. User Response: Contact your systems support staff.

. System Programmer Response: This is an error in CMS

. Pipelines.

. 1325E Unrecognised option string

. Explanation: The second argument to the strip() func-

. tion does not begin with “b”, “l”, or “t” (in either upper or

. lower case).

. System Action: Processing terminates with return code

. 1325.

. 1326E Pad is not a single character (it is string)

. Explanation: The third argument to the strip() function

. is a string with more than one byte.

. System Action: Processing terminates with return code

. 1326.

. 1327E Scanner jammed in state number in start condition

. number

. Explanation: The expression does not contain a valid

. sequence of characters. The substituted numbers are useful

. only when debugging CMS Pipelines.

. System Action: Processing terminates with return code

. 1327.

. 1328E There is no default for the type argument

. Explanation: The second argument to DATATYPE is a null

. string. You must specify at least one character.

. System Action: Processing terminates with return code

. 1328.

. 1329E Attempt to extract the square root of a negative

. number

. Explanation: Note that arithmetic in specs is carried out

. using approximate numbers. As a result, the normal laws of

. algebra do not all hold. For example, 1-(1/3)*3 will not be

. zero (it will be negative), whereas 1-(1*3)/3 will be zero.

. System Action: Processing terminates with return code

. 1329.

. 1330E Return code number on diagnose E0 subcode hex

. System Action: Processing terminates with return code

. 1330.

. 1331E SPOOL file number does not exist

. Explanation: The specified SPOOL file is not available to

. the virtual machine or it is not a trace file.

. User Response: Use CP command “query trf *” to

. display the trace files available to you.

. System Action: Processing terminates with return code

. 1331.

. 1332E SPOOL file number contains CP trace data

. Explanation: The specified SPOOL file is not the requested

. format.

. User Response: Use CP command “query trf *” to

. display the trace files available to you and their file types.

. System Action: Processing terminates with return code

. 1332.

 Chapter 26. Message Reference 843

 1333E ¹ 1352E

. 1333E SPOOL file number does not contain CP trace data

. Explanation: The specified SPOOL file is not the requested

. format.

. User Response: Use CP command “query trf *” to

. display the trace files available to you and their file types.

. System Action: Processing terminates with return code

. 1333.

. 1334E SPOOL file number is in use

. Explanation: The specified SPOOL file is open by another

. user or in another stage.

. User Response: If a pipeline ends abnormally while

. reading trace data, the file will not be closed and this

. message is issued on a subsequent attempt to read the trace

. file. It may be necessary to reset the virtual machine; that is,

. IPL CMS.

. System Action: Processing terminates with return code

. 1334.

. 1335W Concatenated data set(s) for DD=DDNAME

. ignored. Use QSAM instead

. Explanation: Two or more concatenated input data sets are

. specified on the allocation and a member is requested from

. the first one. Subsequent data sets in the concatenation are

. ignored as errors in their specification cannot be verified by

. CMS Pipelines.

. User Response: Replace the device driver with qsam.

. qsam will allow the concatenation (it does not inspect the

. allocation at all); whether it will process the concatenation is

. another matter. For example, concatenating a member of a

. partitioned data set with an entire partitioned data set (which

. reads its directory) will lead to error messages depending on

. the record format of the first data set in the concatenation.

. System Action: Processing continues with the first data set

. in the concatenation.

. 1336E Reason number on string: string

. Explanation: A call to WebSphere MQ Series failed with

. the reason code shown on a call to the function name in the

. second substitution.

. System Action: Processing terminates with return code

. 1336.

. 1337E Expect CSQN205I; received string

. Explanation: The first response message from the

. command processor is not the expected one.

. User Response: Inspect the substituted message text to

. determine whether it indicates some other kind of error.

. System Action: Processing terminates with return code

. 1337.

. 1338E ABEND hex reason number on LOAD of entry point

. System Action: Processing terminates with return code

. 1338.

. 1339E Error opening string for string

. Explanation: A queue could not be opened.

. User Response: Look for accompanying RACF messages

. that indicate missing authorisation.

. System Action: Processing terminates with return code

. 1339.

. 1340E message

. Explanation: The MQ command processor has indicated an

. error in processing the command.

. User Response: Refer to the documentation of the message

. substituted (CSQN205I). If the return code is 20, you are not

. authorised to issue commands through the system command

. queue.

. System Action: Processing terminates with return code

. 1340.

. 1341I data data

. 1342I data data data

. 1343I data data data data

. 1344I data data data data data

. 1345I data data data data data data

. 1346I data data data data data data data

. 1347I data data data data data data data data

. 1348I data data data data data data data data data

. 1349I data data data data data data data data data data

. Explanation: Messages used for tracing and debugging.

. 1350E Already connected to queue manager string

. Explanation: Another stage is active with the specified

. queue manager.

. System Action: Processing terminates with return code

. 1350.

. 1351E Key length number is not valid

. Explanation: The record containing the key must be eight,

. sixteen, or twenty-four bytes for cipher DES; it must be

! sixteen or twenty-four bytes for cipher 3DES. For cipher AES

! the key must be sixteen, twenty-four or thirty-two bytes.

. System Action: Processing terminates with return code

. 1351.

. 1352E Cipher Message instruction not available

. System Action: Processing terminates with return code

. 1352.

844 CMS Pipelines User’s Guide and Reference

 1353E ¹ 1362E

. 1353E Cipher functions are not available hex

! Explanation: Hardware support for the combination of

! cipher function and key length is not available.

. System Action: Processing terminates with return code

. 1353.

. 1354E Computed output column is not positive (it is

. number)

. System Action: Processing terminates with return code

. 1354.

. 1355E Unable to convert to integer. number digits in

. fraction

. Explanation: The result of an expression is being

. converted to integer for use in specifying a position.

. System Action: Processing terminates with return code

. 1355.

. 1356E Unable to convert to integer: number

. Explanation: The result of an expression is being

. converted to integer for use in specifying a position. The

. number has more significant digits than can be represented in

. a 32-bit integer.

. System Action: Processing terminates with return code

. 1356.

. 1357E Unable to convert to integer. Exponent too large.

. (number)

. Explanation: The result of an expression is being

. converted to integer for use in specifying a position. The

. exponent is too large to convert to a 31-digit number.

. System Action: Processing terminates with return code

. 1357.

. 1358W Global lock held by R12=address R14=address

. Explanation: The message level for thorough dispatcher

. checks is on and the dispatcher is called by a stage that

. holds the global lock.

. The message is issued only the first time that the condition is

. detected in all concurrently active pipeline sets, as this

. supposedly is the point of failure. Further dispatching

. activity is likely to lead to continued detection until the

. original holder of the lock releases it.

. User Response: Contact your systems support staff.

. System Programmer Response: This is an error in CMS

. Pipelines if the stage is a built-in program.

. For stages written by a user: Congratulations on managing

. to obtain the global lock. Holding the lock when calling the

. dispatcher is not a good idea as the dispatcher may switch to

. another stage. If that stage adds a pipeline specification to

. the pipeline set, the stage resolution process also acquires the

. global lock and an assert error 128 results.

. System Action: Processing continues. Message 411 is

. issued if the procedure can be identified. In particular, the

. lock is not released as that would lead to an assert error 129

. when the lock is released by the code that obtained the lock.

. 1359E Record length number not multiple of cipher block

. size number

. System Action: Processing terminates with return code

. 1359.

. 1360E Degenerate Triple DES key

: Explanation: The key is 16 or 24 bytes, consisting of two

: or three keys of eight bytes each. Both or all keys should

: not be equal as this would degenerate the algorithm to single

: DES.

. User Response: Specify CIPHER DES if you wish to down-

. grade to single DES. Performance may improve by speci-

. fying eight bytes key.

. System Action: Processing terminates with return code

. 1360.

: 1361E IEWBFDAT code code returns code number reason

: X'hex'

: Explanation: An error is reported by the binder fast data

: interface.

: User Response: Refer to the reason codes in chapter 6 of

: MVS Program Management: Advanced Facilities, SA22-7644.

: System Action: Processing terminates with return code

: 1361.

: 1362E Unable to load module word (ABEND code HEX

: reason number cause number)

: Explanation: The cause describes the error condition:

: 0 OK; LOAD macro completed OK. It is a program-

: ming error in CMS Pipelines if this reason code is

: displayed.

: 1 The contents of general register 0 is not correct. This

: is a programming error in CMS Pipelines.

: 2 General register 2 does not contain an assigned

: number. This is a programming error in CMS

: Pipelines. (FPLOSM likely needs reassembly.)

: 3 LOAD instruction failed. The return code describes the

: error.

: System Action: The stage terminates with return code

: 1362.

 Chapter 26. Message Reference 845

 1363E ¹ 1377E

: 1363E Odd string length number

: System Action: The stage terminates with return code

: 1363.

: 1364W Member word has no sections

: Explanation: Reason code X'10800062' is returned by

: IEWBFDAT.

: System Action: Processing continues. bfda writes a null

: record to both its streams and continues with the next

: member.

: 1365E Warp word not registered

: Explanation: The stage is not first in a pipeline, but the

: specified warp ID has not been registered by a warp stage

: that is first in a pipeline.

: System Action: The stage terminates with return code

: 1365.

: 1366E Warp word already registered

: Explanation: The stage is first in a pipeline, but the

: specified warp ID has already been registered by another

: warp stage that is first in a pipeline.

: System Action: The stage terminates with return code

: 1366.

: 1367E Warp word no longer registered

: Explanation: The warp has terminated.

: System Action: The stage terminates with return code

: 1367.

: 1368E Format character 'char' not valid

: System Action: The stage terminates with return code

: 1368.

: 1369E IDR record does not begin X'80'; found X'char'

: System Action: The stage terminates with return code

: 1369.

: 1370E IDR record indicates number bytes present, but

: record is number

: Explanation: The record contains X'80' in column 1, but

: column 2 does not contain one less than the record length.

: System Action: The stage terminates with return code

: 1370.

: 1371E Improper IDR language processor flag byte X'hex'

: at offset number

: Explanation: The byte should be 0 or 1, but it is not. The

: offset is relative to the first CESD number for a particular

: control section; not to the beginning of a particular record, as

: this type of identification data is spanned across records.

: System Action: The stage terminates with return code

: 1371.

: 1372E Improper control record prefix hex

: Explanation: One of the two length fields in the control

: record contains a number that is not a multiple of four.

: System Action: The stage terminates with return code

: 1372.

: 1373E Control record requests number bytes, but only

: number bytes are available

: System Action: The stage terminates with return code

: 1373.

: 1374E CESD IDs descending number follows number

: System Action: The stage terminates with return code

: 1374.

: 1375E CTL or RLD record expected, but found hex

: Explanation: A control record has indicated that a number

: of relocation dictionary records will follow the text record,

: but some other kind of record was found. The load module

: is probably broken.

: System Action: The stage terminates with return code

: 1375.

: 1376E RLD record expected, but found CTL hex

: Explanation: A control record has indicated that a number

: of relocation dictionary records will follow the text record,

: but some other kind of record was found. The load module

: is probably broken.

: System Action: The stage terminates with return code

: 1376.

: 1377E CTL record found as record X'hex', but count is

: X'hex'

: Explanation: A control record has indicated that a number

: of relocation dictionary records will follow the text record,

: but some other kind of record was found after that run. The

: load module is probably broken.

: This is rather vague because the load module format

: provides a one byte count, but more than 256 RLD has been

: observed in the wild. However, the modulo 256 does not

: agree.

846 CMS Pipelines User’s Guide and Reference

 1378E ¹ 1391E

: System Action: The stage terminates with return code

: 1377.

: 1378E Installation validation routine rejected SVC 99

: Explanation: An installation exit has denied dynamic allo-

: cation.

: System Action: The stage terminates with return code

: 1378.

: User Response: Contact your systems support staff.

: 1379E Unexpected return code X'hex' on SVC 99

: Explanation: The return code was not one of the docu-

: mented ones.

: System Action: The stage terminates with return code

: 1379.

: User Response: Contact your systems support staff.

: 1380E Data set string is not a program library; member

: word

: Explanation: IEWBFDAT returns code 4 reason

: X'10800029', which indicates that the data set is not a

: proper program library or the selected member is broken.

: System Action: The stage terminates with return code

: 1380.

: User Response: Contact your systems support staff.

: 1381I Pipeline word committed to number worst return

: code number

: Explanation: Pipeline dispatcher trace is active. The pipe-

: line specification commits to the level shown.

: System Action: None.

: 1382E Tertiary stream not defined

: Explanation: The primary stream and the secondary stream

: are defined.

: System Action: The stage terminates with return code

: 1382.

: 1383E Unexpected EOF on primary input

: Explanation: The primary stream comes to end-of-file

: without having presented a control record indicating end of

: module.

: System Action: The stage terminates with return code

: 1383.

: 1384E Structure name expected; found string

: Explanation: A structure specifier is expected at the begin-

: ning of the input.

: System Action: The stage terminates with return code

: 1384.

: 1385E Structure name is empty

: Explanation: A colon is the next nonblank character after

: the structure name or there is no further input.

: System Action: The stage terminates with return code

: 1385.

: 1386E No structure name found

: Explanation: End-of-file was met after a colon indicating

: the beginning of the definition of a structure.

: System Action: The stage terminates with return code

: 1386.

: 1387E Incorrect first character in identifier: string

: Explanation: Structure and member names (often referred

: to as identifiers) must begin with a letter in the English

: alphabet or one of the special characters “@#$!?_” (at sign,

: number sign, dollar sign, exclamation point, question mark,

: and underscore). The second and subsequent character may

: also be a digit.

: Identifiers are case sensitive unless the structure is defined as

: caseless.

: System Action: The stage terminates with return code

: 1387.

: 1388E Structure already defined: name

: System Action: The stage terminates with return code

: 1388.

: 1389E Member already defined: name

: System Action: The stage terminates with return code

: 1389.

: 1390E Incomplete member definition: name

: Explanation: A member name or hyphen is found, but the

: definition is missing. Either end-of-file or a colon is met.

: System Action: The stage terminates with return code

: 1390.

: 1391E "char" is not valid in identifier string

: System Action: The stage terminates with return code

: 1391.

 Chapter 26. Message Reference 847

 1392E ¹ 1407E

: 1392E Structure not defined: name

: System Action: The stage terminates with return code

: 1392.

: 1393E No structures defined in pipeline set

: System Action: The stage terminates with return code

: 1393.

: 1394E Structure still in use: name (number users)

: Explanation: An attempt is made to delete a structure that

: is embedded in another structure.

: User Response: Delete the embedding structure first or

: pass the two structure names on the same input line in any

: order.

: System Action: The stage terminates with return code

: 1394.

: 1395E Unqualified member name: name

: Explanation: No qualifier is active and the member name

: contains no period.

: System Action: The stage terminates with return code

: 1395.

: 1396E Incomplete inputRange string

: Explanation: A keyword is met that is valid in an

: inputRange, but no columns or members are specified.

: System Action: The stage terminates with return code

: 1396.

: 1397E Missing identifier in qualified name: word

: Explanation: The last character of the word is a period.

: System Action: The stage terminates with return code

: 1397.

: 1398E Member name not defined in structure name

: Explanation:

: System Action: The stage terminates with return code

: 1398.

: 1399E Member name further qualified with name

: Explanation: A scalar member is met in an identifier that

: is continued with a period to indicate a member of a struc-

: ture.

: System Action: The stage terminates with return code

: 1399.

: 1400E Structure not further qualified: name

: Explanation: No member name is found.

: System Action: The stage terminates with return code

: 1400.

: 1401E Qualifier contains member: name

: Explanation: A qualifier is requested, but one of the levels

: refer to a member that is not an embedded structure.

: System Action: The stage terminates with return code

: 1401.

: 1402E No structures defined in thread

: System Action: The stage terminates with return code

: 1402.

: 1403E Premature end of expression; term expected

: Explanation: An operator or left parenthesis is met at the

: end of the expression.

: System Action: The stage terminates with return code

: 1403.

: 1404E Floating point number too short (length number)

: Explanation: The field length is less than 2.

: System Action: The stage terminates with return code

: 1404.

: 1405E Floating point number too long (length number)

: Explanation: The field length is greater than 8.

: System Action: The stage terminates with return code

: 1405.

: 1406E Fixed number needs at least number columns

: Explanation: The output field length is too short to contain

: the number without truncating significant leftmost bits.

: System Action: The stage terminates with return code

: 1406.

: 1407E Exponent overflow (number)

: Explanation: The input fixed point number is too large to

: convert to a hexadecimal floating point number.

: System Action: The stage terminates with return code

: 1407.

848 CMS Pipelines User’s Guide and Reference

 1408E ¹ 1425W

: 1408E Length of output member (number) is above

: maximum number

: Explanation: For fixed point, the limit is 128 bytes; for

: floating point, it is eight.

: System Action: The stage terminates with return code

: 1408.

: 1409E Counter exponent out of range for hexadecimal:

: number

: System Action: The stage terminates with return code

: 1409.

: 1410E No record read from stream number

: Explanation: End-of-file was received when trying to read

: a record.

: System Action: The stage terminates with return code

: 1410.

: 1411E Too few streams are defined; number are present,

: but three streams are needed

: System Action: The stage terminates with return code

: 1411.

: 1412E Allocation would require more than two gigabytes

: System Action: The stage terminates with return code

: 1412.

: 1413E Found number columns

: System Action: The stage terminates with return code

: 1413.

: 1414E Found number rows

: System Action: The stage terminates with return code

: 1414.

: 1415E Record length number is not a multiple of four

: (stream number)

: System Action: The stage terminates with return code

: 1415.

: 1416E Null record read from stream number

: System Action: The stage terminates with return code

: 1416.

: 1417E String length cannot be negative: number

: System Action: The stage terminates with return code

: 1417.

: 1418E String position cannot be zero

: System Action: The stage terminates with return code

: 1418.

: 1419E Too few arguments in function call

: System Action: The stage terminates with return code

: 1419.

: 1420E Too many arguments in function call

: System Action: The stage terminates with return code

: 1420.

: 1421E DO expected; word was found

: Explanation: A condition expression has been scanned

: after WHEN, but there is no further data or the next word is

: not DO.

: System Action: The stage terminates with return code

: 1421.

: 1422E DONE expected; word was found

: Explanation: A condition expression has been scanned

: after WHILE and DO, but the next word terminates an IF

: group.

: System Action: The stage terminates with return code

: 1422.

: 1423E Incomplete WHILE

: System Action: A WHILE group has been opened, but end-

: of-file is met without a matching DONE. The stage termi-

: nates with return code 1423.

: 1424E Counter underflow

: Explanation: The exponent of a counter has underflowed.

: System Action: The stage terminates with return code

: 1424.

: 1425W Use parentheses when using the result of an

: assignment: string

: Explanation: An operator sees a counter assignment as its

: right hand operand.

: User Response: Enclose the assignment in parentheses.

: System Action: So far, this is a nuisance message to prod

: you to fix the expression.

 Chapter 26. Message Reference 849

 1426I ¹ 1440E

: 1426I ... Evaluating "string"

: Explanation: This message is issued after an error message

: has been issued by the spec expression evaluator and the

: message level is odd.

: System Action: None.

: 1427E Exponent out of range: number

: Explanation: The fixed point binary number is too large

: for conversion to the internal counter format.

: The number can be represented in the internal representation,

: but the conversion algorithm uses a limited exponent range

: corresponding to the one that is valid for hexadecimal

: floating point numbers.

: System Action: The stage terminates with return code

: 1427.

: 1428E Member name has no type

: System Action: The stage terminates with return code

: 1428.

: 1429E Member name has unsupported type char

: System Action: The stage terminates with return code

: 1429.

: 1430E Not hexadecimal: X'string'

: System Action: The stage terminates with return code

: 1430.

: 1431E Member name longer than 16M (it is number)

: System Action: The stage terminates with return code

: 1431.

: 1432E Bad placement option string

: Explanation: The third parameter in the output placement

: expression it not CENTRE (CENTER), LEFT, or RIGHT; or an

: abbreviation of these words.

: System Action: The stage terminates with return code

: 1432.

: 1433E Computed output length is negative (it is number)

: Explanation: A length of zero means take the default

: length as by the data to be loaded.

: System Action: Processing terminates with return code

: 1433.

: 1434E Parse error in state number, unexpected string at

: offset number: "string"

: Explanation: The expression does not parse according to

: the grammar. The state number is of interest only to the

: author of CMS Pipelines; the first string shows the

: mnemonic name of the input token that the grammar cannot

: parse.

: System Action: Message 1435 is issued. Processing termi-

: nates with return code 1434.

: 1435I Expecting string

: Explanation: List the acceptable token names in the current

: parser state.

: System Action: Processing terminates with return code

: 1435.

: 1436E FIXED specified, but no record length specified

: and no input

: Explanation: Specify an explicit record length if you really

: want to create a null file with a particular record length.

: System Action: Processing terminates with return code

: 1436.

: 1437E Previous member did not establish a position for

: word

: Explanation: The previous member was specified as a

: word, field, auto field, or length * Its position is not known

: at the time the structure is defined.

: System Action: Processing terminates with return code

: 1437.

: 1438I Incorrect text unit type X'hex'

: System Action: Further informational messages are issued.

: Processing terminates eventually.

: 1439E Left hand operand is a string

: Explanation: The left hand operand of an arithmetic oper-

: ator is a counter that contains a string.

: System Action: Processing terminates with return code

: 1439.

: 1440E Right hand operand is a string

: Explanation: The right hand operand of an arithmetic oper-

: ator is a counter that contains a string.

: System Action: Processing terminates with return code

: 1440.

850 CMS Pipelines User’s Guide and Reference

 1441I ¹ 1456E

: 1441I ... Processed number structures and number

: members in next structure

: Explanation: Informational message issued when structure

: ADD is terminating because of an error. The first number

: represent the number of completely finished structure

: definitions; zero mean that the error is in the first structure or

: member.

: 1442E Both ranges specify same length as other string

: Explanation: The two ranges in the comparison both

: specify plus as the length; this makes the length indetermi-

: nate.

: System Action: Processing terminates with return code

: 1442.

: 1443E Comma list is available only with equal compares

: Explanation: The right hand range specifies plus as its

: length.

: System Action: Processing terminates with return code

: 1443.

: 1444E Comma list is not available with implied length

: Explanation: The operator must be = or ==.

: System Action: Processing terminates with return code

: 1444.

: 1445I Error in call to function: string

: Explanation: A built-in function has detected an error.

: 1446E String contains leading or trailing blank: "string"

: Explanation: The argument to X2C must not contain

: leading or trailing blanks.

: System Action: Processing terminates with return code

: 1446.

: 1447E String contains blank not on byte boundary:

: "string"

: System Action: Processing terminates with return code

: 1447.

: 1448E String contains a character that is not hexadecimal

: char: string

: System Action: Processing terminates with return code

: 1448.

: 1449E Pad character is a string, not a single character:

: string

: System Action: Processing terminates with return code

: 1449.

: 1450E Option string is null

: Explanation: If specified, the string must contain at least

: one character (it can be any positive length).

: System Action: Processing terminates with return code

: 1450.

: 1451E Option string is not valid for function: character

: Explanation: The first character of the option string does

: not contain a character that is valid for the function.

: System Action: Processing terminates with return code

: 1451.

: 1452E Argument is a string, not a single character:

: string

: Explanation: The arguments to the XRANGE function must

: both be a single character unless they are omitted.

: System Action: Processing terminates with return code

: 1452.

: 1453I Trap issued the CP command "string"

: Explanation: Informational message to indicate that an

: activated trap has sprung and a CP command was issued.

: Most likely there will be a dump of the virtual machine in a

: reader somewhere.

: 1454E Not valid packed data hex

: Explanation: A field that should contain packed decimal

: data contains an incorrect bit combination.

: System Action: Processing terminates with return code

: 1454.

: 1455E Output field is number bytes, but packed number

: requires number bytes to avoid truncation

: Explanation: A counter is converted to packed decimal

: integer.

: System Action: Processing terminates with return code

: 1455.

: 1456E Scale not numeric: string

: Explanation: A member type character is met followed by

: a left parenthesis, but the word in the parentheses is not a

: number

: System Action: Processing terminates with return code

: 1456.

 Chapter 26. Message Reference 851

 1457E ¹ 1470E

: 1457E Scale out of bounds: number (-32768 to 32767 is

: valid range)

: Explanation: A member type character is met followed by

: a left parenthesis, the word in the parentheses is a number,

: but it is too large.

: System Action: Processing terminates with return code

: 1457.

: 1458E Semicolon expected; found string

: Explanation: A prefix or suffix specification does not end

: at a semicolon.

: System Action: Processing terminates with return code

: 1458.

: 1459E Plus or minus expected; found string

: Explanation: A prefix or suffix specification must indicate

: whether matching it means to write a hit record (plus) or not

: (minus).

: System Action: Processing terminates with return code

: 1459.

: 1460E Incomplete pattern

: Explanation: A prefix or suffix specification is not ended

: in a comma or semicolon; an optional pattern list does not

: end in >.

: System Action: Processing terminates with return code

: 1460.

: 1461E Missing pattern at string

: System Action: Processing terminates with return code

: 1461.

: 1462E Comma expected; found string

: Explanation: A prefix or suffix specification does not end

: at a comma or semicolon.

: System Action: Processing terminates with return code

: 1462.

: 1463E No matching specified

: Explanation: A hyphen is specified for both the prefix and

: the postfix pattern (an omitted postfix is treated like a

: hyphen).

: System Action: Processing terminates with return code

: 1463.

: 1464E Odd number of nibbles (number) in pattern: string

: Explanation: You guessed it. The pattern must cover

: complete bytes.

: User Response: If you desire an odd number of matched

: nibbles, add a “don’t care” nibble (a period).

: System Action: Processing terminates with return code

: 1464.

: 1465E Missing number at end of pattern: string

: Explanation: An ampersand ends the pattern. It must have

: a number to specify the register to hold the nibble.

: System Action: Processing terminates with return code

: 1465.

: 1466E Pattern longer than 32767 bytes

: Explanation: The pattern to match or the control structure

: to describe it is too long.

: System Action: Processing terminates with return code

: 1466.

: 1467E Expect >; found char

: Explanation: And optional item list was opened, but it was

: terminated by a comma or semicolon.

: System Action: Processing terminates with return code

: 1467.

: 1468E Semicolon, colon, or comma expected; found char

: Explanation: An required item list ends in >.

: System Action: Processing terminates with return code

: 1468.

: 1469E Unexpected end of module word

: Explanation: End-of-file or a null record is read. The

: module should end with an end of module flag bit in a

: control record.

: System Action: Processing terminates with return code

: 1469.

: 1470E CCW length number differs from record length

: number module word

: Explanation: The control record specifies a different length

: than the actual text record that follows. The module being

: read is broken.

: System Action: Processing terminates with return code

: 1470.

852 CMS Pipelines User’s Guide and Reference

 1471E ¹ 1489E

: 1471E Unrecognised STOP parameter: word

: Explanation: PIPMOD STOP is issued, but the additional

: keyword is not ACTIVE.

: System Action: Processing terminates.

: 1472E Unrecognised PIPMOD immediate command:

: word

: Explanation: PIPMOD is issued, but the subcommand is not

: valid.

: System Action: Processing terminates.

: 1473E Unable to obtain global lock; held by hex

: Explanation: The global lock is held, which makes further

: processing impossible. The address of the lock control word

: is substituted in the message.

: System Action: Processing terminates.

: 1474I Global hex

: 1475I Thread hex

: 1476I Header hex

: 1477I Vector hex

: 1478I Stage hex

: Explanation: Messages issued in response to the immediate

: command PIPMOD WHERE that display the pipeline control

: blocks

: 1479I Running: string

: Explanation: Message issued in response to the immediate

: command PIPMOD ACTIVE.

: 1480I In procedure word

: Explanation: Message issued in response to the immediate

: command PIPMOD ACTIVE.

: 1481I Stage is flagged to stop. PSW not in CMS Pipe-

: lines code

: Explanation: PIPMOD STOP ACTIVE was issued. The active

: stage has been flagged to stop next time it enters the

: dispatcher. The instruction address of the I/O PSW does not

: point to CMS Pipelines code.

: 1482I Stage is in the dispatcher; likely to stop on the way

: out.

: Explanation: PIPMOD STOP ACTIVE was issued. The active

: stage has been flagged to stop. The instruction address of

: the I/O PSW points into the dispatcher; the stage is likely to

: terminate immediately.

: 1483I Stage is flagged to stop. PSW in wait/free storage

: management.

: Explanation: PIPMOD STOP ACTIVE was issued. The active

: stage has been flagged to stop next time it enters the

: dispatcher. The instruction address of the I/O PSW points to

: the wait routine or the free storage manager.

: 1484I Stage is flagged to stop. It is not summarily

: stoppable

: Explanation: PIPMOD STOP ACTIVE was issued. The active

: stage has been flagged to stop next time it enters the

: dispatcher. The stage cannot be stopped at this point, but it

: is likely to terminate next time it calls the dispatcher.

: 1485I Stage is flagged to stop. I/O old PSW and IOPSW

: fields are not the same. Type B to continue

: Explanation: PIPMOD STOP ACTIVE was issued. The active

: stage has been flagged to stop next time it enters the

: dispatcher. The stage cannot be stopped at this point

: because the CMS I/O information is in an inconsistent state.

: A CP read has been put up to allow you to examine the CMS

: control blocks and low core.

: 1486I Stage is flagged to stop. Forcing exit from word

: Explanation: PIPMOD STOP ACTIVE was issued. The PSW

: has been modified to force the stage to return.

: 1487E Checksum field in column number is not within

: record length number

: Explanation: The field to receive the checksum is not

: present in the input record.

: System Action: Processing terminates with return code

: 1487.

: 1488E Convert index number is not implemented

: Explanation: The conversion routine selected is not present

: in CMS Pipelines.

: User Response: Contact your systems support staff.

: System Programmer Response: This is an error in CMS

: Pipelines.

: System Action: Processing terminates with return code

: 1488.

: 1489E Unable to convert from negative to unsigned

: Explanation: Conversion to unsigned binary is requested,

: but the input number is negative.

 Chapter 26. Message Reference 853

 1490I ¹ 1503E

: 1490I Processing item number number: string

: Explanation: Informational message from spec when it

: terminates due to a a run time error. Specification items are

: numbered from zero. The first item is a SELECT item gener-

: ated internally to select the primary input stream.

: 1491E Field identifier specified, but no further operands

: are present

: System Action: Processing terminates with return code

: 1491.

: 1492E Field identifier specified, but no valid range found:

: word

: System Action: Processing terminates with return code

: 1492.

: 1493E Too few streams are defined; number are present,

: but number are required

: System Action: The stage terminates with return code

: 1493.

: 1494E Equal sign expected; end of member found

: Explanation: A left parenthesis is met indicating that a list

: of manifest constants is to follow and an identifier has been

: scanned, but end of input or a colon was met where an equal

: sign is expected.

: System Action: Processing terminates with return code

: 1494.

: 1495E Equal sign expected; found char

: Explanation: A left parenthesis is met indicating that a list

: of manifest constants is to follow and an identifier has been

: scanned, but the next non-blank character is not an equal

: sign.

: System Action: Processing terminates with return code

: 1495.

: 1496E Number expected; end of member found

: Explanation: A left parenthesis is met indicating that a list

: of manifest constants is to follow and an identifier has been

: scanned as well as an equal sign, but end of input or a colon

: was met where a number is expected.

: System Action: Processing terminates with return code

: 1496.

: 1497E Comma or right parenthesis expected; end of

: member found

: Explanation: A complete manifest constant has been

: scanned, but end of input or a colon was met where a

: comma or a right parenthesis is expected.

: System Action: Processing terminates with return code

: 1497.

: 1498E Comma or right parenthesis expected; found char

: Explanation: A complete manifest constant has been

: scanned, but end of input or a colon was met where a

: comma or a right parenthesis is expected.

: System Action: Processing terminates with return code

: 1498.

: 1499E Member word is a manifest constant

: Explanation: A complete manifest constant has been

: scanned, but it is not valid in the context. This includes

: specifying a manifest constant:

: ¹ After MEMBER in a structure definition.

: ¹ After a field identifier in spec.

: ¹ After SUBSTR.

: ¹ With string compare in pick.

: System Action: Processing terminates with return code

: 1499.

: 1500E Member word is not a manifest constant (it is a

: data member)

: Explanation: A reference to a member is found in the

: array bounds for a member. It must be number that is zero

: or positive, or a manifest constant.

: System Action: Processing terminates with return code

: 1500.

: 1501E Right parenthesis expected after array bound;

: found char

: System Action: Processing terminates with return code

: 1501.

: 1502E Word-style not supported with an array

: System Action: Processing terminates with return code

: 1502.

: 1503E Array size is greater than 2G

: System Action: Processing terminates with return code

: 1503.

854 CMS Pipelines User’s Guide and Reference

 1504E ¹ 1520E

: 1504E Index missing for member word

: Explanation: A member has been resolved to an array and

: a left parenthesis is scanned indicating that an index is

: present, but no further data are present.

: System Action: Processing terminates with return code

: 1504.

: 1505E Right parenthesis expected after index

: System Action: Processing terminates with return code

: 1505.

: 1506E Index number is out of bounds (number)

: System Action: Processing terminates with return code

: 1506.

: 1507E Cannot access entire varying bounds array word

: An member is requested without specifying an

: index, but the member is defined as an array

: without specific bound.

: System Action: Processing terminates with return code

: 1507.

: 1508E Member word is an array An member is requested

: without specifying an index, but the member is

: defined as an array.

: System Action: Processing terminates with return code

: 1508.

: 1509E Member word is a scalar A member is requested

: with an index expression, but the member is not

: defined as an array.

: System Action: Processing terminates with return code

: 1509.

: 1510E Index number is not positive

: System Action: Processing terminates with return code

: 1510.

: 1511E Incomplete subscript in string

: Explanation: A qualifier or member name is being

: scanned. A left parenthesis has been met, but no matching

: right parenthesis is found.

: System Action: Processing terminates with return code

: 1511.

: 1512E "char" is not valid in subscript of identifier string

: Explanation: The subscript must consist of digits only.

: System Action: The stage terminates with return code

: 1512.

: 1513E Expect period after subscript of identifier string;

: found word

: Explanation: The subscript must consist of digits only.

: System Action: The stage terminates with return code

: 1513.

: 1514E Subscript "word" is not valid in identifier string

: Explanation: The member must be subscripted. The

: subscript must consist of digits only. It must also evaluate

: to 1 or more and not larger than the array bound.

: System Action: The stage terminates with return code

: 1514.

: 1515E Top level structure "word" cannot be subscripted

: Explanation: A structure name cannot be subscripted.

: System Action: The stage terminates with return code

: 1515.

: 1516E Last character of identifier is a period: word

: Explanation: A member name is required after the period.

: System Action: The stage terminates with return code

: 1516.

: 1517E No active qualifier for word

: Explanation: A single period is specified at the beginning

: of a member name to indicate that the current qualifier must

: be used, but no qualifier has been established for the stream.

: System Action: The stage terminates with return code

: 1517.

: 1518E No identifier found

: Explanation: The keyword MEMBER was specified, but the

: member name consists of one or two periods only.

: System Action: The stage terminates with return code

: 1518.

: 1519E Address space name longer than 24: word

: System Action: The stage terminates with return code

: 1519.

: 1520E Return code number on

: ADRSPACE/ALSERV/MAPMDISK diagnose

: System Action: The stage terminates with return code

: 1520.

 Chapter 26. Message Reference 855

 1521E ¹ 1535E

: 1521E ALET hex is not valid

: Explanation: The ALET supplied on input will cause a

: program check, if used (alserv TEST) or return code 12 is set

: on ALSERV REMOVE to indicate that the ALET is malformed.

: System Action: The stage terminates with return code

: 1521.

: 1522E Virtual machine is not in XC mode

: Explanation: Validating the ALET supplied on input will

: cause a program check for special operation exception.

: System Action: The stage terminates with return code

: 1522.

: 1523E ASIT hex is not valid

: Explanation: The ASIT supplied on input does not identify

: an address space owned by the virtual machine. (Return

: code 4 on ADRSPACE PERMIT)

: System Action: The stage terminates with return code

: 1523.

: 1524E VCIT hex does not represent a user that is logged

: in

: Explanation: The VCIT specified does not represent the

: primary space of a user that is currently logged on. (Return

: code 28 on ADRSPACE PERMIT)

: System Action: The stage terminates with return code

: 1524.

: 1525E User word is not logged on

: Explanation: (Return code 28 on ADRSPACE PERMIT)

: System Action: The stage terminates with return code

: 1525.

: 1526E Virtual machine may not share address spaces

: Explanation: (Return code 32 on ADRSPACE PERMIT)

: System Action: The stage terminates with return code

: 1526.

: 1527E Address space word is not available for user word

: Explanation: Either the address space does not exist or you

: have not been granted access rights. Note that the access

: rights do not survive an IPL in the virtual machine that

: granted the permission. (Return code 4 on ADRSPACE QUERY)

: System Action: The stage terminates with return code

: 1527.

: 1528E Address space name word is not valid

: Explanation: The name contains a character that is not

: valid in an address space name. (Return code 16 on

: ADRSPACE)

: System Action: The stage terminates with return code

: 1528.

: 1529E Address space name word already exists

: Explanation: (Return code 4 on ADRSPACE CREATE)

: System Action: The stage terminates with return code

: 1529.

: 1530E Maximum number of address spaces is exceeded

: Explanation: Note that your quota is zero unless the user

: directory entry for your virtual machine contains a xconfig
: adrspace statement. (Return code 8 on ADRSPACE CREATE)

: System Action: The stage terminates with return code

: 1530.

: 1531E Maximum size of address spaces is exceeded

: Explanation: (Return code 12 on ADRSPACE CREATE)

: System Action: The stage terminates with return code

: 1531.

: 1532E Address space size is not valid: number

: Explanation: The number is larger than 524,288, which is

: the number of pages in a two gigabyte address space.

: (Return code 20 on ADRSPACE CREATE)

: System Action: The stage terminates with return code

: 1532.

: 1533W ASIT hex is already permitted to user word

: Explanation: The secondary output stream is not defined.

: (Return code 24 on ADRSPACE PERMIT)

: System Action: Processing continues.

: 1534W ASIT hex is already permitted to VCIT hex

: Explanation: The secondary output stream is not defined.

: (Return code 24 on ADRSPACE PERMIT)

: System Action: Processing continues.

: 1535E Host access list is full

: Explanation: (Return code 4 on ALSERV ADD)

: System Action: The stage terminates with return code

: 1535.

856 CMS Pipelines User’s Guide and Reference

 1536W ¹ 1550E

: 1536W ALET hex is neither valid nor revoked.

: Explanation: (Return code 4 on ALSERV REMOVE)

: System Action: Processing continues.

: 1537E Device hex is not a reserved minidisk

: Explanation: (Return code 12 on DISKID)

: System Action: The stage terminates with return code

: 1537.

: 1538E Device hex is not attached

: Explanation: (Return code 100 on DISKID)

: System Action: The stage terminates with return code

: 1538.

: 1539E Too many ranges to save

: Explanation: More than 509 ranges are presented in one

: input record to mapmdisk SAVE.

: System Action: The stage terminates with return code

: 1539.

: 1540E Page number too large: number

: Explanation: The number is larger than the maximum

: number of pages in a data space.

: System Action: The stage terminates with return code

: 1540.

: 1541E Digit "character" is not hexadecimal in string

: number

: System Action: The stage terminates with return code

: 1541.

: 1542E Hexadecimal string too long: number

: System Action: The stage terminates with return code

: 1542.

: 1543E No minidisk pool has been defined

: Explanation: (Return code 32 on MAPMDISK DEFINE)

: System Action: The stage terminates with return code

: 1543.

: 1544W Dispatcher called with address space control hex

: Explanation: The pipeline dispatcher is called in access

: register mode in an XC virtual machine. The dispatcher does

: not manage access registers or address space control

: System Action: The mode is set to primary space mode.

: 1545E Data space ALET hex is not initialised properly;

: eye-catcher is word

: Explanation: A stage that loads data into a data space is

: invoked with a nonzero ALET operand, but the first part of

: the data space is not the proper format. In particular, the

: first eight bytes do not contain the string fplasit1.

: System Action: The stage terminates with return code

: 1545.

: 1546E Data space ALET hex is in use; lock is word

: Explanation: A stage that loads data into a data space is

: invoked with a nonzero ALET operand, but the lock word in

: the data space is not binary zeros. This indicates that some

: other stage is also using the address space. The contents of

: the lock show may give a clue to the name of the stage that

: holds the lock.

: System Action: The stage terminates with return code

: 1546.

: 1547W Data space ALET hex contains unexpected lock

: word

: Explanation: A stage can load data into a data space is

: invoked with a nonzero ALET operand. When the is termi-

: nating it is finds that the lock in the data space has been

: changed to the value shown.

: System Action: The stage terminates normally.

: 1548E Insufficient space in the data space for number

: bytes

: Explanation: A stage that loads data into a data space is

: invoked with a nonzero ALET operand, and the data space is

: full.

: System Action: The stage terminates with return code

: 1548.

: 1549E ALET and PGMLIST are incompatible

: System Action: The stage terminates with return code

: 1549.

: 1550E Data space ALET hex contains unexpected lock

: word

: Explanation: A stage can read data from a data space is

: invoked with a nonzero ALET operand, but it is found that

: the lock in the data space contains the lock value shown

: rather than the expected one.

: System Action: The stage terminates with return code

: 1550.

 Chapter 26. Message Reference 857

 1551E ¹ 1562E

: 1551E Data space ALET hex is not locked

: Explanation: A stage can read data from a data space is

: invoked with a nonzero ALET operand, but it is found that

: the lock in the data space was cleared.

: System Action: The stage terminates with return code

: 1551.

: 1552E Data space is fetch protected in key hex (PSW key

: hex)

: Explanation: A stage that accesses a data space will not be

: able to do so because the data space is fetch protected and

: the PSW key is nonzero and different from the key of the first

: frame in the data space.

: System Action: The stage terminates with return code

: 1552.

: 1553E Data space is write protected in key hex (PSW key

: hex)

: Explanation: A stage that moves data into a data space

: will not be able to do so because the data space is fetch

: protected and the PSW key is nonzero and different from the

: key of the first frame in the data space.

: System Action: The stage terminates with return code

: 1553.

: 1554E Data space ALET hex cannot be written

: Explanation: A stage that moves data into a data space

: will not be able to do so because of the protection system.

: The data space can be read, but not written.

: System Action: The stage terminates with return code

: 1554.

: 1555E Data space ALET hex is not accessible

: Explanation: A stage that accesses a data space will not be

: able to do so because of the protection system. (Test protect

: condition codes 2 or 3.)

: System Action: The stage terminates with return code

: 1555.

: 1556E Input record too short for complete VMCMHDR

: (number bytes available; 40 required)

: System Action: The stage terminates with return code

: 1556.

: 1557W VMCF message arrived, but no listener is active

: Explanation: A VMCF message arrived that is not a final

: response message. No stage is listening for such messages.

: System Action: The stage terminates with return code

: 1557.

: 1558E Unsupported VMCF function code number

: Explanation: The input to vmclient contains an unsup-

: ported function code, for example unauthorize.

: System Action: The stage terminates with return code

: 1558.

: 1559E Structure word is not built in

: Explanation: struct BUILD finds an embedded structure that

: is not built in. As the time of use of the structure is

: unknown this could lead to a dangling reference.

: System Action: The stage terminates with return code

: 1559.

: 1560I Scanned member: string

: Explanation: The string is the part of the member

: definition in error that has been scanned so far.

: 1561E Counter number number is not valid (valid:

: number to number)

: Explanation: The subscript to the counter array is out of

: bounds. Be sure to specify COUNTERS when using counter

: arrays. No counter array is allocated when the second

: number is larger than the third.

: System Action: The stage terminates with return code

: 1561.

: 1562E Incorrect UTF-number X'hex' reason code number

: Explanation: The input contains a sequence of characters

: that are not valid for the UTF format specified. The reason

: code indicates the error:

: 4 The UTF-8 input is binary zeros, but MODIFIED is

: specified (U+0000 should be encoded as X'C080').

: 8 The first byte of an UTF-8 encoded character is of the

: form B'10xxxxxx', which is reserved for additional

: bytes in a multibyte sequence. Most likely, a multi-

: byte sequence is too long.

: 12 More bytes are required for the character, but the

: input record is exhausted.

: 16 A byte other than the first for a UTF-8 encoded char-

: acter has the leftmost bit zero (B'0xxxxxxx'). That

: is, a multibyte sequence ended prematurely.

: 20 A byte other than the first for a UTF-8 encoded char-

: acter has the second bit one (B'x1xxxxxx'). That is,

: a multibyte sequence ended prematurely.

: 24 The first byte of an UTF-8 encoded character contains

: five leftmost one bits (B'11111xxx'). Such

: sequences were defined in RFC 2279 for encodings

: needing more than 21 bits, but retracted in RFC 2279.

: 28 Overlong UTF-8 encoding. Two bytes for a seven bit

: code point, except for zero when MODIFIED is

: specified. Also a any longer sequence that could be

: expressed in fewer bytes.

858 CMS Pipelines User’s Guide and Reference

 1563E ¹ 1578E

: 32 A UTF-16 surrogate low signature found without a

: leading surrogate high.

: 36 A UTF-16 surrogate high signature found without two

: bytes for the surrogate low halfword.

: 40 A UTF-16 surrogate high signature found without a

: trailing surrogate low.

: 44 A UTF-32 code point is larger than the maximum

: allowed by Unicode.

: 44 A UTF-32 code point is within the range assigned to

: UTF-16 surrogates.

: System Action: The stage terminates with return code

: 1562.

: 1563E Senary stream is incompatible with word.

: Explanation: When replacing a record, it must be unam-

: biguous which record to replace.

: System Action: The stage terminates with return code

: 1563.

: 1564E Beginning block number number larger than

: device capacity number

: System Action: The stage terminates with return code

: 1564.

: 1565E Ending block number number larger than device

: capacity number

: System Action: The stage terminates with return code

: 1565.

: 1566E Record size (number blocks) does not agree with

: block count number in record

: System Action: The stage terminates with return code

: 1566.

: 1567E Beginning block number is greater than ending

: block number

: Explanation: The third operand is larger than the fourth.

: System Action: The stage terminates with return code

: 1567.

: 1568E Block number before first writable block

: System Action: The stage terminates with return code

: 1568.

: 1569E Block number after last writable block

: System Action: The stage terminates with return code

: 1569.

: 1570E Mode word does not refer to an SFS directory

: System Action: The stage terminates with return code

: 1570.

: 1571E Self-defining is too long (number bits): string

: System Action: The stage terminates with return code

: 1571.

: 1572E Needle cannot be empty

: Explanation: the second argument to SUBSTITUTE is a null

: string.

: System Action: The stage terminates with return code

: 1572.

: 1573E Argument number is required

: Explanation: An argument that is not optional was omitted.

: System Action: The stage terminates with return code

: 1573.

: 1574E Number is not an integer: number

: System Action: The stage terminates with return code

: 1574.

: 1575E First argument to D2C/D2X is negative, but

: second argument is omitted: number

: Explanation: d2c() and d2x() with one argument support

: positive or zero only.

: System Action: The stage terminates with return code

: 1575.

: 1576E Stage is not running in a subroutine pipeline

: Explanation: structure with CALLER is not running in a

: subroutine pipeline. Thus, it has no caller and the caller

: scope does not exist.

: System Action: The stage terminates with return code

: 1576.

: 1577E No structures defined in caller

: System Action: The stage terminates with return code

: 1577.

! 1578E Cannot obtain lock for COMMAND stage (held by

! process number thread number)

! Explanation: The lock to serialise command stages is held

! by another process or thread.

! System Action: The stage terminates with return code

! 1578.

 Chapter 26. Message Reference 859

 1579W ¹ 1592E

! 1579W Cannot release lock for COMMAND stage: hex

! Explanation: The lock to serialise command stages could

! not be released. The contents of the lock are substituted.

! This is an error in CMS Pipelines. The error is ignored, but

! it may not be possible to run command or cms stages until

! CMS Pipelines is restarted.

! 1580E Do not convert numeric type member as if it were

! a string

! Explanation: One of the functions to convert from binary

! to numeric is applied to a member of a structure that is

! declared as having numeric type. The conversion is auto-

! matic; you should not need to do anything.

! User Response: Remove the erroneous function call.

! System Action: The stage terminates with return code

! 1580.

! 1581I Trap requested

! Explanation: Reserved for debugging the message trap.

! 1582I Trap issued the CMS command "string"

! Explanation: Informational message to indicate that an

! activated trap has sprung and a CMS command was issued

! through the subcommand interface.

! 1583I Trap dropped into CP Read

! Explanation: Informational message to indicate that an

! activated trap has sprung and that a CP console read was

! requested.

! 1584E Return code 70 renaming the file. Use >SFS

! instead

! Explanation: An erase and write operation is requested for

! a file. The file exists, so a utility file is written and renamed.

! The RENAME function fails with the undocumented return

! code 70, which is assumed to imply work unit trouble.

! User Response: Do not use the minidisk interface to files

! in the shared file system; use >sfs or specify a directory

! instead of a file mode.

! System Action: The stage terminates with return code

! 1584.

! 1585I Invoking CMS command word with header hex at

! hex in process hex thread hex

! Explanation: This is a debugging message.

! 1586I Return from CMS command word

! Explanation: This is a debugging message.

! 1587E No compression dictionary provided

! Explanation: The secondary input stream is connected, but

! no record is present that is not null.

! System Action: The stage terminates with return code

! 1587.

! 1588E Symbol translation and format-1 sibling descrip-

! tors are mutually exclusive

! Explanation: A number is specified for the symbol trans-

! lation offset as well as the keyword FORMAT1. Results are

! documented for the hardware as unpredictable.

! System Action: The stage terminates with return code

! 1588.

! 1589E Dictionaries provided are number, but number is

! expected

! Explanation: A number is specified for the symbol trans-

! lation offset. The specified number, when multiplied by 128

! and increased by a quarter, is the expected size of the

! combined compression and symbol substitution dictionaries.

! System Action: The stage terminates with return code

! 1589.

! 1590E Dictionary size is not a multiple of 4096

! (X'number')

! Explanation: No number is specified for the symbol trans-

! lation offset or expansion is requested. The size of the first

! record that is not null on the secondary input stream is not a

! multiple of 4K.

! System Action: The stage terminates with return code

! 1590.

! 1591E Dictionary size is not a power of 2 (X'number')

! Explanation: No number is specified for the symbol trans-

! lation offset or expansion is requested. The size of the first

! record that is not null on the secondary input stream is not a

! power of 2.

! System Action: The stage terminates with return code

! 1591.

! 1592E Dictionary size is too small

! Explanation: Format-1 sibling descriptors are specified,

! which effectively halves the size of the dictionary. As 4K

! are provided, this is too little.

! System Action: The stage terminates with return code

! 1592.

860 CMS Pipelines User’s Guide and Reference

 1593E ¹ 1603E

! 1593E Dictionary size is too large (number)

! Explanation: The dictionary provided, possibly after

! halving its size for FORMAT1, is larger than 64K. This is

! larger than supported by the hardware.

! System Action: The stage terminates with return code

! 1593.

! 1594I Issuing wait to operating system

! Explanation: This is a debugging message.

! 1595E Prologue not recognised (hex)

! Explanation: The stage has resolved to a save instruction

! that would indicate that the function is a C language program

! that has been processed by GCC for z/Linux, but the

! instructions that follow the save instruction are not as

! expected.

! System Action: The stage terminates with return code

! 1595.

! User Response: Contact your systems support staff.

! System Programmer Response: The most likely cause is

! that the compiler has generated code that was not antic-

! ipated.

! 1596W Cannot erase original file renamed to fileid. Try

! SFS device driver instead

! Explanation: A double rename and erase operation was

! attempted to replace a file on a mode letter. The replace-

! ment file has been written correctly, but the original file

! cannot be removed.

! User Response: Check whether the work file still exists. If

! it does, and the mode letter is an accessed SFS directory,

! consider switching to use the native SFS device drivers, such

! as >sfs or specify a directory instead of a file mode.

! 1597E GLOBALV service not available

! Explanation: Entry point for GLOBALV interface is not

! available.

! System Programmer Response: The DMSGLOBE entry

! point is 0.

! System Action: The stage terminates with return code

! 1597.

| 1598E Incorrect compression signature X'hex'

| Explanation: The data can not be uncompressed by the

| selected protocol.

| User Response: The first two bytes of the signature show

| the protocol used to compress the data. Find the corre-

| sponding protocol to expand the data. When the signature

| does not match any listed signatures, the data may have been

| encrypted or otherwise modified.

| System Action: The stage terminates with return code

| 1598.

| 1599E Expansion failed after number bytes (reason

| number)

| Explanation: The data is not correctly compressed.

| User Response: Verify that the data was correctly trans-

| ferred between systems and not truncated or padded incor-

| rectly. While the mismatch is noticed at a specific location in

| the input data, there may have been errors earlier in the data

| that were not detected.

| Contact your systems support staff. The reason code

| provides additional detail about the inconsistency in the data.

| 1 String code found where character is expected

| 2 Excessive chain of bytes

| 3 Potential loop in dictionary lookup

| System Action: The stage terminates with return code

| 1599.

| 1600E FTP error: string

| Explanation: The File Transfer Protocol server reports an

| error that prevents correct file transfer.

| User Response: Investigate the error message from the FTP

| server and verify the specified URL. The TRACE option

| may be helpful to diagnose the problem.

| System Action: The stage terminates with return code

| 1600.

| 1601E Error number parsing URL at "string"

| Explanation: The argument is not a correctly formed

| Unified Resource Locator (URL). An error is found at or

| before the position reported.

| 1 No "scheme" specified in the URL.

| 2 Unsupported "scheme" in URL; supported schemes

| are "ftp" and "ftps".

| 3 Missing "hostname" in URL.

| 4 Incorrect qualifier; only "type=" is supported.

| 5 Incorrect type value; valid values are A, I, and D.

| System Action: The stage terminates with return code

| 1601.

| 1602E Unable to open FTP data connection

| System Action: The stage terminates with return code

| 1602.

| 1603E FTP processing error number

| Explanation: The stage failed to process the response from

| the FTP server when requesting a port to connect the data

| channel.

 Chapter 26. Message Reference 861

 1604I

| 1 Port address section truncated.

| 2 Delimiters missing in 229 response.

| 3 Port number missing

| 4 IP address incomplete.

| 5 Port address in parentheses is missing.

| User Response: Consider running stage with the TRACE

| option to diagnose the problem.

| System Action: The stage terminates with return code

| 1603.

| 1604I FTP word "data"

| Explanation: The message displays diagnostic information

| produced as result of the TRACE option. The first word indi-

| cates the type of diagnostic information, the data shows the

| message exchanged.

| >> Command sent to the FTP Server.

| << Response received from the FTP Server. The responses

| start with a numeric code as documented in RFC 959

| and later. Response codes in the "2xx" range indicate

| success, the "5xx" responses indicate failure.

| -- Additional diagnostic information.

862 CMS Pipelines User’s Guide and Reference

 PIPMOD Command

Chapter 27. PIPMOD Command (CMS Pipelines only)

You do not need to understand PIPMOD to run normal pipelines; this chapter is for “master

plumbers”.

The PIPE Bootstrap Module

The first PIPE command in a CMS session invokes a small module. The PIPE module estab-

lishes the pipeline environment in this way:

¹ It tests if the PIPMOD nucleus extension is installed. It could be in a shared segment

which is already loaded; for example, by the system profile.

! ¹ It installs the DMSPIPE MODULE as the nucleus extension PIPMOD, if the nucleus exten-

sion is not already installed.

¹ It issues the command PIPMOD INSTALL to make the main module initialise itself.

PIPMOD then installs a PIPE nucleus extension to service future PIPE commands.

¹ It reissues the PIPE command to let it be processed by the newly installed nucleus

extension.

CMS Pipelines uses two nucleus extensions, because PIPMOD is reentrant and refreshable

and is thus loaded into system storage to be protected from user programming errors. The

PIPE command, however, can potentially run user programs and therefore uses user storage

for work areas. Running the PIPE command as a user command also means that CMS will

perform ABEND recovery in the event of an error.

You can drop the PIPE nucleus extension at any time; it will be installed again by the next

PIPE command.

 Red Neon!

Do not drop the PIPMOD nucleus extension from a pipeline stage (for example, cms).

CMS Pipelines issues message 107 when its service entry point is called as a result of

the NUCXDROP command, but it is unable to prevent the storage occupied by the

module from being released. An ABEND is most probable when control returns to CMS

Pipelines.

The PIPMOD Nucleus Extension

The main pipeline module is installed as the nucleus extension PIPMOD. It can be invoked

in three ways:

¹ As a normal CMS command. The PIPMOD command is used to set permanent options

for CMS Pipelines. (It was used previously for the functions performed by the query

and help services; use the PIPE command to invoke these services.)

: ¹ As an immediate command. Refer to “PIPMOD Immediate Commands” on page 865.

¹ As a program (CMSCALL TYPE=PROGRAM). This interface is used to install and remove

filter packages. The details of this interface are unspecified and may change at any

time; they are implemented by the filter package glue modules PIPNXF (Program

! Offering), DMSPFP (VM/ESA), and FPLNXF and FPLNXG (runtime library and z/VM).

 Copyright IBM Corp. 1986, 2020 863

 PIPMOD Command

Setting Permanent Pipeline Options

 ┌ ┐─PIPE─
►►──PIPMOD─ ──┬ ┬ ─INSTall─ ──┼ ┼────── ─►◄
 │ │└ ┘─word─
 └ ┘─MSGLevel──number──

INSTALL Create the PIPE nucleus extension (if it does not already exist) and install

filter packages that are not already installed. If a word is specified, it is

used instead of PIPE as the name of the command that runs a pipeline

specification.

MSGLEVEL Set the rightmost halfword of the pipeline message level to the number

that follows. The number is decimal (unlike the option on runpipe).

The PIPMOD MSGLEVEL command can set all of the rightmost sixteen bits

of the message level (unlike the global or local option MSGLEVEL, which

is masked by X'17FF'). The individual bits are explained below.

The Message Level
Figure 406 shows the bits defined in the rightmost halfword of the pipeline message level.

Figure 406 (Page 1 of 2). Bits of the Message Level

Hex Dec Description

X'8000' Undefined.

X'4000' Undefined.

X'2000' 8,192 Account for time spent in stages and pipeline services. A

message showing the amount of time spent in the stage is issued

as each stage terminates. At the completion of a pipeline set,

messages are issued to show the time spent in the scanner, the

dispatcher, and various other internal services. Use of this

facility can add substantial overhead if the underlying hardware

does not support timing assists.

X'1000' 4,096 Check dispatcher entries thoroughly. Whenever it is called, the

pipeline dispatcher ensures that it is running in user key (key

X'E0') and that it is enabled for interrupts. This facility is

used when testing CMS Pipelines. Use of this facility will add

some overhead to the dispatcher path.

X'0800' 2,048 Account for storage allocated. When this facility is enabled, the

CMS Pipelines storage manager keeps track of storage allocated

to individual stages and to common services. It verifies that:

¹ All storage allocated by a stage is released before the stage

terminates and that all storage allocated by a pipeline set is

released before the pipeline set terminates.

¹ The same amount of storage is released as was allocated.

¹ The doubleword following an allocated area is not over-

written.

When a check fails, a message may be issued or the storage

manager may force an assert failure.

864 CMS Pipelines User’s Guide and Reference

 PIPMOD Command

The default message level is 15 (X'000F').

Figure 406 (Page 2 of 2). Bits of the Message Level

Hex Dec Description

X'0400' 1,024 Enable additional debugging messages. Some built-in programs

issue additional messages or write additional output records

when this bit is enabled. The format of this information is

unspecified.

X'0200' 512 Trace storage management. Messages are issued as storage is

allocated and released. The format of these messages is

unspecified. The bit for 2048 must also be turned on to obtain a

reliable trace of storage allocation.

X'0100' 256 Stack messages. CMS Pipelines messages are queued on the

program stack rather than issued (written to the terminal). This

facility is obsolete. Use runpipe to obtain messages issued by a

pipeline set.

X'0080' 128 Reserved for debugging of individual stages. Do not enable this

bit.

X'0040' 64 Reserved for debugging of individual stages. Do not enable this

bit.

X'0020' 32 Reserved for debugging of individual stages. Do not enable this

bit.

X'0010' 16 Reserved for debugging of individual stages. Do not enable this

bit.

X'0008' 8 Undefined.

X'0004' 4 Issue message 4 after an error message has been issued.

X'0002' 2 Issue message 2 after an error message has been issued while

processing a pipeline command.

X'0001' 1 Issue message 1 after an error message has been issued.

PIPMOD Immediate Commands

The following immediate commands are available:

ACTIVE Show the active stage.

: STOP Terminate all stages that are waiting on an asynchronous event or the

: currently active stage.

: WHERE Display the addresses of the active pipeline control blocks.

: CMS does not allow immediate commands to issue error messages. Thus, PIPMOD issues

: diagnostic messages and responses through CP messages to the virtual machine.

 Chapter 27. PIPMOD Command (CMS Pipelines only) 865

 PIPMOD Command

: ACTIVE—Show the Active Stage
:

: ►►──PIPMOD──ACTIVE──►◄

: In general the currently active stage will change as the dispatcher manages the flow of

: work in the pipeline.

STOP—Terminating Stages that Wait Forever

►►──PIPMOD──STOP─ ──┬ ┬──────── ─►◄
 └ ┘─ACTIVE─

: When ACTIVE is omitted all stages that are waiting for an asynchronous event are signalled

that they should terminate. It can be used to stop a stage that is waiting for an event that

will never occur. Note that CMS services are in general synchronous; the immediate

command PIPMOD will not terminate a stage such as disk. Note that PIPMOD STOP does not

terminate a stage that is in a loop unless it calls the dispatcher (use HI for REXX programs

or HX). See “Device Drivers that Wait for External Events” on page 251 for a list of the

built-in programs that can potentially wait on asynchronous events.

: PIPMOD STOP ACTIVE signals the currently running stage to stop.

: A stopable stage (sometimes called summarily stopable) is a stage that has specified that it

: uses only resources that the dispatcher knows how to release. It is not documented which

: stages are stopable (and this attribute may indeed change for a stage over time), but most

: filters are, including spec.

: When the stage is terminated because the dispatcher sees the flag to stop, the stage is

: resumed with return code -4092. When the running stage is stopable and the I/O old PSW

: does not indicate that control is in the pipeline dispatcher, the stage will be forcefully

: terminated by making it return to the dispatcher with return code -4091 immediately when

: DMSITI returns to the interrupted program.

: WHERE—Show Addresses of Pipeline Control Blocks
:

: ►►──PIPMOD──WHERE──►◄

866 CMS Pipelines User’s Guide and Reference

 Configuration Variables

 Chapter 28. Configuring CMS Pipelines

! The “Field Test Version” of CMS Pipelines and the implementation shipped with z/VM

have diverged in some respects over time. For example, the way a file is replaced is

different when the file is in an SFS directory that is accessed as a mode letter.

As of level 1.1.10/0015, these differences are no longer fixed in the code; instead, the

behaviour is specified by pipeline configuration variables.

! There are two types of configuration variables, keyword variables and value variables.

Keyword variables must be set to one of the supported keywords; a value variable specifies

a word of up to eight characters to be used in some context. Case is ignored in the names

of configuration variables; value variables are folded to upper case.

A default is determined by this hierarchy, where the first item has highest priority:

1. It can be set explicitly by the configure built-in program.

2. It can be stored in the system variable repository (a GLOBALV variable on CMS).

3. It is inferred from a default style (see below).

For each variable that has not been set explicitly, CMS Pipelines reads the variable from

the system variable repository the first time it needs to inspect a particular variable; it

saves the value internally from then on.

 Default Styles
The default style specifies the default for configuration variables that you have not set

explicitly and for which there is no variable in the system variable repository. You can

select one of three default styles by setting the configuration variable STYLE:

DMS This style sets the defaults to the values associated with the behaviour in

! z/VM. This style is the default for the DMSPIPE module shipped with z/VM.

PIP This style sets the defaults to the values associated with the field test version

of CMS Pipelines prior to 1.1.10/0015. This style is the default for the

“runtime distribution” and for the module available from the VMTOOLS tools

disk internally in IBM.

FPL This style sets the defaults to a mixture of the two previous styles. It repres-

ents the recommended choice for each variable.

 CMS Considerations
On CMS, the pipeline variables are stored by default within the GLOBALV group FPL. The

group to use for subsequent queries can be changed by

! pipe literal group MYPIPE | configure

The variables may be set using any method, such as

 ¹ globalv select fpl setp diskreplace copy

¹ Setting the desired variables in the file INITIAL GLOBALV.

 Copyright IBM Corp. 1986, 2020 867

 Configuration Variables

 Configuration Variables

The following sections contain an alphabetical list of CMS Pipelines’s configuration vari-

ables. The name of the variable is used for the section heading. The valid values for

keyword variables are described in tables. The three columns of each table contain:

1. The value or keyword.

2. The style in which it is the default, if any.

 3. A description.

 Diskreplace
This keyword variable controls how >mdsk replaces a file in an SFS directory that is

accessed with a mode letter. After the data are written to a temporary file, CMS Pipelines

replaces either the file or its contents. The acceptable values are:

Notes:

1. Since level 1.1.9, CMS Pipelines has been able to replace files directly in a SFS direc-

tory (CMS9 required). Specify the directory where the file resides instead of the mode

letter. When a directory is specified, > uses native CSL routines to replace the file and

this configuration variable becomes irrelevant.

Copy DMS Use the DMSFILEC callable service to make the SFS

server replace the previous contents of the output file

with the contents of the temporary file. This retains the

characteristics of the file at the expense of additional I/O

in the SFS server virtual machine.

Replace PIP

FPL
Use the copy/erase method of replacing the old file with

the new one. This reduces the load on the SFS server;

but because the file is replaced, all authorisations are lost

and the file creation date is changed.

 Disktempfiletype
! This keyword variable specifies the file type used by >mdsk when it replaces a file on a

! minidisk or a file in SFS that is accessed as a mode letter.

TOD Use the contents of the time-of-day clock as file name

and file type. The sixty-four bits are unpacked to

sixteen bytes printable hexadecimal. The file name and

file type will be unique across a system, but not neces-

sarily across a collection or an AVS network.

CMSUT1 DMS

PIP

FPL

Use the file type CMSUT1 and a file name related to the

particular stage; this will be unique within the virtual

machine.

USERID Use the user ID as reported by diagnose 0 for the file

type. Use a file name that is related to the particular

stage. Thus, for all virtual machines that use the USERID

keyword, the temporary file will be unique, but also

easily found.

868 CMS Pipelines User’s Guide and Reference

 Configuration Variables

Notes:

1. Since level 1.1.9, CMS Pipelines has been able to replace files directly in a SFS direc-

tory (CMS9 required). Specify the directory where the file resides instead of the mode

letter. When a directory is specified, > uses native CSL routines to replace the file and

this configuration variable becomes irrelevant.

 Group
The value of this variable specifies the GLOBALV group where configuration variables are

stored. The default group is FPL in all styles; it can be changed only by the configure

built-in program (clearly, the group cannot be specified by a variable within itself).

 Repository
The value of this variable specifies the message repository to use for messages. A single

hyphen (-) means that no message repository is used; CMS Pipelines then issues built-in

messages.

Specify three letters to use a repository. The corresponding message repository is

xxxUMEy TEXT, where xxx represents the three letters you specified; y is a code that repre-

sent the default language for your session.

- PIP

FPL
Do not use a message repository. Use the message texts

that are stored within the pipeline module. The module

prefix used is the same as the default style.

FPL DMS! Use the default message repository for z/VM.

 SQLpgmname
The value of this variable specifies the program name to use by the sql stage. The

program name must match the value specified by the PREP= operand of the SQLPREP

command that generated the access module.

DMSPQI DMS

FPL
! The z/VM default.

PIPSQI PIP The original name.

 SQLpgmowner
The value of this variable specifies the program owner to use by the sql stage. The

program owner must match the SQL user ID that issued the SQLPREP command that gener-

ated the access module.

Notes:

1. The user ID must begin with a letter when DB2 is used.

DMSPIPE DMS

FPL
! The z/VM default.

5785RAC PIP The original name.

 Chapter 28. Configuring CMS Pipelines 869

 Configuration Variables

 Stallaction
This keyword variable controls the behaviour when the pipeline dispatcher determines that

the pipeline is stalled. The original implementation issued message 29 and a message for

each stage in the pipeline set; it then appended a formatted dump of the control block

structure to a disk file.

JEREMY FPL Issue message 29 and append a readable summary of the

status of each stage to the file specified by the

STALLFILETYPE configuration variable.

QUIET Issue message 29 only. Do not append to file.

STATUS Issue message 29 and a message for each stage to show

the state it is in. Do not append to file.

STATUSDUMP PIP

DMS
Issue message 29; issue a message for each stage to

show the state it is in; and append a formatted dump of

the control block structure to the file specified by the

STALLFILETYPE configuration variable.

 Stallfiletype
The value of this variable controls the file type used when appending the status of the

stages in a pipeline set to a dump file. The STALLFILETYPE configuration variable is of

interest only when the STALLACTION configuration variable is set to JEREMY or to

STATUSDUMP.

When the last character of the STALLFILETYPE configuration variable is an asterisk (*), the

characters before the asterisk are used as they are; the remaining characters up to a length

of eight are inserted as a number, starting with zeros. CMS Pipelines loops incrementing

this number until it finds a file type for which there is no file. If all files exist, the dump

is appended to the last file found.

LISTING PIP

FPL
Append all dumps to a single file, PIPDUMP LISTING.

LIST00* DMS Write the dump to the first file that does not exist with a

file type as specified. When all hundred files exist,

append the dump to the file PIPDUMP LIST0099.

 Style
This keyword variable controls the defaults for other variables. There are three default

styles:

! For compatibility, the default for the Style configuration variable is DMS for z/VM; it is PIP

for the field test version.

The style also governs other actions, which cannot be controlled through individual vari-

ables:

DMS! Use the behaviour of VM/ESA and z/VM.

PIP Use the behaviour of the original Program Offering and

the subsequent “field test versions”.

FPL Use the recommended set.

870 CMS Pipelines User’s Guide and Reference

 Configuration Variables

Notes:

! 1. The way help works is governed by the active style. For PIP and FPL, it behaves as

ahelp, which displays information from PIPELINE HELPLIB (if it is available); for DMS,

! it issues the CMS HELP command to display a standard z/VM help file.

2. The application ID in the message prefix is controlled by the default style when the

repository value is set to a hyphen. In the PIP style, the application ID is set to PIP; in

the other two styles it is set to FPL.

Installation-wide Customisation (CMS)

! A z/VM installation can force a particular default setting by passing the appropriate record

to configure in the system profile after the pipeline segment has been loaded.

 Chapter 28. Configuring CMS Pipelines 871

 Diagnostic Information

: Chapter 29. Diagnosis

: This chapter contains information that may help you diagnose problems with CMS

: Pipelines or CMS.

: Determining and Terminating the Currently Running Stage

: You can determine the currently running stage through an immediate command; the proce-

: dure is different on virtual machine and z/OS.

: VM
: The PIPMOD immediate command support the options ACTIVE and STOP ACTIVE. As imme-

: diate commands are not allowed to perform I/O, the command response is via CP messages.

: The commands are applied to all threads. This discussion assumes that only the main

: thread is running a pipeline; that is, we ignore CMS multitasking.

: PIPMOD ACTIVE shows the currently running stage.

: PIPMOD STOP ACTIVE sets a flag for the dispatcher to terminate the stage, but whether the

: dispatcher sees this flag is another matter.

: Refer to “PIPMOD Immediate Commands” on page 865 for a discussion of these two

: immediate commands.

: A stage that is not stopable and in a loop will not call the dispatcher and therefore it

: cannot be terminated. CMS command HX is still the only option in this case.

: Also note that CMS will interpret the PIPMOD command as a normal command when

: entered at the Ready prompt. Neither ACTIVE nor STOP are valid PIPMOD subcommands.

872 Copyright IBM Corp. 1986, 2020

 Traps

Figure 407. Sample Use of PIPMOD Immediate Commands

: pipe literal|dup *|count lines|cons
: pipmod active
: 12:55:20 * MSG FROM JOHN : PIPMOD1479I Running: dup *
: 12:55:20 * MSG FROM JOHN : PIPMSG003I ... Issued from stage 2 of pipeline 1
: 12:55:20 * MSG FROM JOHN : PIPMSG001I ... Running "dup *"
: pipmod stop active
: 12:55:27 * MSG FROM JOHN : PIPMOD1479I Running: count lines
: 12:55:27 * MSG FROM JOHN : PIPMSG003I ... Issued from stage 3 of pipeline 1
: 12:55:27 * MSG FROM JOHN : PIPMSG001I ... Running "count lines"
: 12:55:27 * MSG FROM JOHN : PIPMOD1482I Stage is in the dispatcher; likely to stop on th
: Ready(-4092); T=11.05/11.11 12:55:27

: term linend off
: Ready; T=0.01/0.01 13:13:04
: pipe literal | spec while #0=0 do set #1+=1 done print #1 1 | cons
: pipmod active
: 13:13:13 * MSG FROM JOHN : PIPMOD1479I Running: spec while #0=0 do set #1+=1 done print
: 13:13:13 * MSG FROM JOHN : PIPMSG003I ... Issued from stage 2 of pipeline 1
: 13:13:13 * MSG FROM JOHN : PIPMSG001I ... Running "spec while #0=0 do set #1+=1 done pr
: 13:13:13 * MSG FROM JOHN : PIPMOD1480I In procedure COMPARE
: pipmod stop active
: 13:13:21 * MSG FROM JOHN : PIPMOD1479I Running: spec while #0=0 do set #1+=1 done print
: 13:13:21 * MSG FROM JOHN : PIPMSG003I ... Issued from stage 2 of pipeline 1
: 13:13:21 * MSG FROM JOHN : PIPMSG001I ... Running "spec while #0=0 do set #1+=1 done pr
: 13:13:21 * MSG FROM JOHN : PIPMOD1486I Stage is flagged to stop. Forcing exit from FPL
: Ready(-4091); T=11.52/11.58 13:13:21

: Traps

: A trap facility is implemented for CMS Pipelines to allow the user to specify CP

: commands to issue when a particular message is issued.

: The facility is enabled for messages FPLDSK124E and FPLDSK129E. There is no user inter-

: face to enable other messages, though it would be possible to write a REXX program to

: enable other messages in the field, should this be necessary.

: When an enabled message has been issued, the global variable corresponding to the

: module, message, and severity (for example, DSK124E) is fetched from the global variable

: group FPLTRAP and inspected. If the contents of the variable are not blank, its value is

: stripped of leading blanks and passed directly to CP with diagnose 8 and then logged with

: message 1453. The return code is ignored.

: The most useful command to issue by these means is expected to be the CP command

: VMDUMP, but you could also display storage or send a message to someone instead (or

: given sufficient privileges, shut down the system).

: The usual rules apply: The command is limited to 240 bytes; it should be upper case

: unless for strings that you wish to be mixed case; line end characters (X'15') separate

: multiple commands.

: It is deliberate that the command is issued directly to CP; this makes the current register set

: easy to find (registers 0 through 12 are the ones of the program that issued the message);

 Chapter 29. Diagnosis 873

 Traps

: had a CMS command been issued instead, it would be tedious to find the registers (though

: clearly possible given sufficient stamina).

: Assuming you create a VMDUMP SPOOL file, you can use DUMPLOAD to read it in, then

: access MAINT 193 and inspect it with VMDUMPTL. The CMS Pipelines home page contains

: a sample VM Dump Tool macro, FPLDSK VMDT, to extract information from the dump file

: for the two enabled messages. Refer to:

: http://vm.marist.edu/%7epipeline/FPLDSK.vmdt

: For a task-oriented explanation of what to do with a dump, refer to:

: http://vm.marist.edu/%7epipeline/traps.html

874 CMS Pipelines User’s Guide and Reference

http://vm.marist.edu/%7epipeline/FPLDSK.vmdt
http://vm.marist.edu/%7epipeline/traps.html

 Part 5. Appendices

This part of the book contains miscellaneous information.

Appendix A, “Summary of Built-in Programs” contains the synopses for the built-in

programs, ordered by keywords; it can be useful when looking for a program to perform a

particular function.

Appendix B, “Messages, Sorted by Text” contains a reference to message numbers in the

order of their text.

Appendix C, “Implementing CMS Commands as Stages in a Pipeline” describes how some

CMS commands can be formulated as pipeline specifications; it shows device drivers and

filters that can be used to accomplish the equivalent function of a CMS command. This is

intended for the experienced CMS user who wishes to perform almost the function of a CMS

command. Given how a CMS command is implemented with CMS Pipelines, it is easy to

tune the pipeline specification to a slightly different operation.

Appendix D, “Running Multiple Versions of CMS Pipelines Concurrently” describes how

CMS Pipelines initialises itself when the first PIPE command is issued in a CMS session. It

also explains how different versions of CMS Pipelines can be active concurrently in a

virtual machine.

Appendix E, “Generating and Using Filter Packages with CMS Pipelines” describes filter

packages and explains how to generate them.

Appendix F, “Pipeline Compatibility and Portability between CMS and TSO” describes

compatibility and portability between the CMS and z/OS environments.

Appendix G, “Format of Output Records from runpipe EVENTS” contains information

useful for the authors of PIPEDEMO, RITA, and others who process the detailed trace of

CMS Pipelines operation that is produced by runpipe EVENTS.

 Copyright IBM Corp. 1986, 2020 875

 Stage Selection Guide

Appendix A. Summary of Built-in Programs

This appendix contains a keyword out of context

listing of the synopses of the built-in programs. The

first column is a keyword, the second column has the

name of the stage, and the remainder of the line is the

synopsis for the program.

*ACCOUNT starsys Write Lines from a Two-way CP System Service

*LOGREC starsys Write Lines from a Two-way CP System Service

*MONITOR starmon Write Records from the *MONITOR System Service

*MSG starmsg Write Lines from a CP System Service

*MSGALL starmsg Write Lines from a CP System Service

*SYMPTOM starsys Write Lines from a Two-way CP System Service

abbreviation abbrev Select Records that Contain an Abbreviation of a Word in the First Positions

access list alserv Manage the Virtual Machine’s Access List

ACI acigroup Write ACI Group for Users

active aftfst Write Information about Open Files

address ip2socka Build sockaddr_in Structure

address socka2ip Format sockaddr_in Structure

address 3277bfra Convert a 3270 Buffer Address Between Representations

AES cipher Encrypt and Decrypt Using a Block Cipher

AFT aftfst Write Information about Open Files

after append Put Output from a Device Driver after Data on the Primary Input Stream

after preface Put Output from a Device Driver before Data on the Primary Input Stream

aggregate aggrc Compute Aggregate Return Code

ALET alserv Manage the Virtual Machine’s Access List

align scm Align REXX Comments

and combine Combine Data from a Run of Records

APL apldecode Process Graphic Escape Sequences

APL aplencode Generate Graphic Escape Sequences

append >>mdsk Append to or Create a CMS File on a Mode

append >>sfs Append to or Create an SFS File

append >>sfsslow Append to or Create an SFS File

append append Put Output from a Device Driver after Data on the Primary Input Stream

append diskfast Read, Create, or Append to a File

append diskslow Read, Create, or Append to a File

append diskupdate Replace Records in a File

append fanin Concatenate Streams

append join Join Records

append joincont Join Continuation Lines

append mdskfast Read, Create, or Append to a CMS File on a Mode

append mdskslow Read, Append to, or Create a CMS File on a Mode

append mdskupdate Replace Records in a File on a Mode

append preface Put Output from a Device Driver before Data on the Primary Input Stream

arrange spec Rearrange Contents of Records

ASA asatomc Convert ASA Carriage Control to CCW Operation Codes

ASA mctoasa Convert CCW Operation Codes to ASA Carriage Control

ASCII qpdecode Decode to Quoted-printable Format

ASCII qpencode Encode to Quoted-printable Format

876 Copyright IBM Corp. 1986, 2020

 Stage Selection Guide

ASCII urldeblock Process Universal Resource Locator

assembler asmcont Join Multiline Assembler Statements

assembler asmfind Select Statements from an Assembler File as XEDIT Find

assembler asmnfind Select Statements from an Assembler File as XEDIT NFind

assembler asmxpnd Expand Joined Assembler Statements

assembler hlasm Interface to High Level Assembler

assembler hlasmerr Extract Assembler Error Messages from the SYSADATA File

assembler strasmfind Select Statements from an Assembler File as XEDIT Find

assembler strasmnfind Select Statements from an Assembler File as XEDIT NFind

ATTN stack Read or Write the Program Stack

attribute xab Read or Write External Attribute Buffers

backwards diskback Read a File Backwards

backwards mdskback Read a CMS File from a Mode Backwards

backwards noeofback Pass Records and Ignore End-of-file on Output

backwards sfsback Read an SFS File Backwards

base-64 64decode Decode MIME Base-64 Format

base-64 64encode Encode to MIME Base-64 Format

between between Select Records Between Labels

between inside Select Records between Labels

between notinside Select Records Not between Labels

between outside Select Records Not between Labels

BFS filedescriptor Read or Write an OpenExtensions File that Is Already Open

bits vchar Recode Characters to Different Length

block block Block to an External Format

block deblock Deblock External Data Formats

block fblock Block Data, Spanning Input Records

blocking addrdw Prefix Record Descriptor Word to Records

Blowfish cipher Encrypt and Decrypt Using a Block Cipher

browse browse Display Data on a 3270 Terminal

buffer buffer Buffer Records

buffer dfsort Interface to DFSORT/CMS

buffer elastic Buffer Sufficient Records to Prevent Stall

buffer instore Load the File into a storage Buffer

buffer outstore Unload a File from a storage Buffer

buffer sort Order Records

buffer xab Read or Write External Attribute Buffers

buffer 3277bfra Convert a 3270 Buffer Address Between Representations

byte parcel Parcel Input Stream Into Records

byte files <oe Read an OpenExtensions Text File

byte files >>oe Append to or Create an OpenExtensions Text File

byte files >oe Replace or Create an OpenExtensions Text File

byte files filedescriptor Read or Write an OpenExtensions File that Is Already Open

byte files hfs Read or Append File in the Hierarchical File System

byte files hfsdirectory Read Contents of a Directory in a Hierarchical File System

byte files hfsquery Write Information Obtained from OpenExtensions into the Pipeline

byte files hfsreplace Replace the Contents of a File in the Hierarchical File System

byte files hfsstate Obtain Information about Files in the Hierarchical File System

byte files hfsxecute Issue OpenExtensions Requests

byte stream block Block to an External Format

byte stream deblock Deblock External Data Formats

bytes count Count Lines, Blank-delimited Words, and Bytes

 Appendix A. Summary of Built-in Programs 877

 Stage Selection Guide

cards punch Punch Cards

cards reader Read from a Virtual Card Reader

cards uro Write Unit Record Output

carriage asatomc Convert ASA Carriage Control to CCW Operation Codes

carriage buildscr Build a 3270 Data Stream

carriage c14to38 Combine Overstruck Characters to Single Code Point

carriage mctoasa Convert CCW Operation Codes to ASA Carriage Control

carriage overstr Process Overstruck Lines

carriage printmc Print Lines

case casei Run Selection Stage in Case Insensitive Manner

case zone Run Selection Stage on Subset of Input Record

CAT optcdj Generate Table Reference Character (TRC)

catenate join Join Records

catenate joincont Join Continuation Lines

CCW asatomc Convert ASA Carriage Control to CCW Operation Codes

CCW mctoasa Convert CCW Operation Codes to ASA Carriage Control

century dateconvert Convert Date Formats

CGI urldeblock Process Universal Resource Locator

change change Substitute Contents of Records

character vchar Recode Characters to Different Length

CHARS optcdj Generate Table Reference Character (TRC)

checksum tcpcksum Compute One’s complement Checksum of a Message

chop chop Truncate the Record

cipher cipher Encrypt and Decrypt Using a Block Cipher

CKD ckddeblock Deblock Track Data Record

client vmclient Send VMCF Requests

CLIST rexxvars Retrieve Variables from a REXX or CLIST Variable Pool

CLIST stem Retrieve or Set Variables in a REXX or CLIST Variable Pool

CLIST varfetch Fetch Variables in a REXX or CLIST Variable Pool

CLIST varload Set Variables in a REXX or CLIST Variable Pool

CLIST varset Set Variables in a REXX or CLIST Variable Pool

CMS <mdsk Read a CMS File from a Mode

CMS <sfs Read an SFS File

CMS <sfsslow Read an SFS File

CMS >>mdsk Append to or Create a CMS File on a Mode

CMS >>sfs Append to or Create an SFS File

CMS >>sfsslow Append to or Create an SFS File

CMS >mdsk Replace or Create a CMS File on a Mode

CMS >sfs Replace or Create an SFS File

CMS cms Issue CMS Commands, Write Response to Pipeline

CMS command Issue CMS Commands, Write Response to Pipeline

CMS diskfast Read, Create, or Append to a File

CMS diskslow Read, Create, or Append to a File

CMS filetoken Read or Write an SFS File That is Already Open

CMS mdskfast Read, Create, or Append to a CMS File on a Mode

CMS sfsback Read an SFS File Backwards

CMS sfsrandom Random Access an SFS File

CMS sfsupdate Replace Records in an SFS File

CMS subcom Issue Commands to a Subcommand Environment

CMSCALL cms Issue CMS Commands, Write Response to Pipeline

code aggrc Compute Aggregate Return Code

code crc Compute Cyclic Redundancy Code

codes sqlcodes Write the last 11 SQL Codes Received

collate collate Collate Streams

878 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

collect fanin Concatenate Streams

collect faninany Copy Records from Whichever Input Stream Has One

collect fanintwo Pass Records to Primary Output Stream

columns snake Build Multicolumn Page Layout

combine collate Collate Streams

command cms Issue CMS Commands, Write Response to Pipeline

command command Issue TSO Commands

command command Issue CMS Commands, Write Response to Pipeline

command cp Issue CP Commands, Write Response to Pipeline

command immcmd Write the Argument String from Immediate Commands

command mqsc Issue Commands to a WebSphere MQ Queue Manager

command tso Issue TSO Commands, Write Response to Pipeline

commands pipcmd Issue Pipeline Commands

comments scm Align REXX Comments

compare pick Select Lines that Satisfy a Relation

compiler polish Reverse Polish Expression Parser

conditional if Process Records Conditionally

configuration configure Set and Query CMS Pipelines Configuration Variables

console fullscrq Write 3270 Device Characteristics

console stack Read or Write the Program Stack

continuation asmcont Join Multiline Assembler Statements

continuation asmxpnd Expand Joined Assembler Statements

continuation joincont Join Continuation Lines

contract retab Replace Runs of Blanks with Tabulate Characters

control asatomc Convert ASA Carriage Control to CCW Operation Codes

control mctoasa Convert CCW Operation Codes to ASA Carriage Control

conversion dateconvert Convert Date Formats

copies buffer Buffer Records

copies duplicate Copy Records

copipe fitting Source or Sink for Copipe Data

copy copy Copy Records, Allowing for a One Record Delay

copy dam Pass Records Once Primed

copy noeofback Pass Records and Ignore End-of-file on Output

count count Count Lines, Blank-delimited Words, and Bytes

count sort Order Records

count unique Discard or Retain Duplicate Lines

CP acigroup Write ACI Group for Users

CP cp Issue CP Commands, Write Response to Pipeline

CP devinfo Write Device Information

CP starmon Write Records from the *MONITOR System Service

CP starmsg Write Lines from a CP System Service

CP starsys Write Lines from a Two-way CP System Service

CP stsi Store System Information

CRC crc Compute Cyclic Redundancy Code

create >>mdsk Append to or Create a CMS File on a Mode

create >mdsk Replace or Create a CMS File on a Mode

create >sfs Replace or Create an SFS File

create diskfast Read, Create, or Append to a File

create diskslow Read, Create, or Append to a File

create diskupdate Replace Records in a File

create mdskfast Read, Create, or Append to a CMS File on a Mode

create mdskslow Read, Append to, or Create a CMS File on a Mode

create mdskupdate Replace Records in a File on a Mode

cyclic crc Compute Cyclic Redundancy Code

 Appendix A. Summary of Built-in Programs 879

 Stage Selection Guide

data structure Manage Structure Definitions

data set <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

data set >>mvs Append to a Physical Sequential Data Set

data set >mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set

data set iebcopy Process IEBCOPY Data Format

data set listcat Obtain Data Set Names

data set listdsi Obtain Information about Data Sets

data set listispf Read Directory of a Partitioned Data Set into the Pipeline

data set listpds Read Directory of a Partitioned Data Set into the Pipeline

data set qsam Read or Write Physical Sequential Data Set through a DCB

data set readpds Read Members from a Partitioned Data Set

data set state Verify that Data Set Exists

data set sysdsn Test whether Data Set Exists

data set writepds Store Members into a Partitioned Data Set

data space adrspace Manage Address Spaces

data space mapmdisk Map Minidisks Into Data spaces

database sql Interface to SQL

database sqlselect Query a Database and Format Result

datagram udp Read and Write an UDP Port

date dateconvert Convert Date Formats

date greg2sec Convert a Gregorian Timestamp to Second Since Epoch

date sec2greg Convert Seconds Since Epoch to Gregorian Timestamp

date timestamp Prefix the Date and Time to Records

DB2 sql Interface to SQL

DCB <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

DCB >>mvs Append to a Physical Sequential Data Set

DCB >mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set

DCB qsam Read or Write Physical Sequential Data Set through a DCB

DCB sysout Write System Output Data Set

deblock deblock Deblock External Data Formats

deblock fblock Block Data, Spanning Input Records

deblock iebcopy Process IEBCOPY Data Format

decode 64decode Decode MIME Base-64 Format

decrypt cipher Encrypt and Decrypt Using a Block Cipher

delay beat Mark when Records Do not Arrive within Interval

delay copy Copy Records, Allowing for a One Record Delay

delay delay Suspend Stream

DES cipher Encrypt and Decrypt Using a Block Cipher

describe sql Interface to SQL

descriptor addrdw Prefix Record Descriptor Word to Records

destruct predselect Control Destructive Test of Records

device devinfo Write Device Information

device eofback Run an Output Device Driver and Propagate End-of-file Backwards

device fullscrq Write 3270 Device Characteristics

device fullscrs Format 3270 Device Characteristics

device waitdev Wait for an Interrupt from a Device

diagnose fullscrq Write 3270 Device Characteristics

diagnose E0 trfread Read a Trace File

diagnose E4 diage4 Submit Diagnose E4 Requests

diagnose 14 reader Read from a Virtual Card Reader

diagnose 58 fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached Screen

diagnose 8 cp Issue CP Commands, Write Response to Pipeline

directory hfsdirectory Read Contents of a Directory in a Hierarchical File System

directory listispf Read Directory of a Partitioned Data Set into the Pipeline

880 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

directory listpds Read Directory of a Partitioned Data Set into the Pipeline

directory sfsdirectory List Files in an SFS Directory

discard chop Truncate the Record

discard drop Discard Records from the Beginning or the End of the File

discard hole Destroy Data

discard strip Remove Leading or Trailing Characters

disk >>mdsk Append to or Create a CMS File on a Mode

disk >>sfs Append to or Create an SFS File

disk >>sfsslow Append to or Create an SFS File

disk >mdsk Replace or Create a CMS File on a Mode

disk >sfs Replace or Create an SFS File

disk diskfast Read, Create, or Append to a File

disk diskslow Read, Create, or Append to a File

disk diskupdate Replace Records in a File

disk fbaread Read Blocks from a Fixed Block Architecture Drive

disk fbawrite Write Blocks to a Fixed Block Architecture Drive

disk mdiskblk Read or Write Minidisk Blocks

disk mdskback Read a CMS File from a Mode Backwards

disk mdskfast Read, Create, or Append to a CMS File on a Mode

disk mdskrandom Random Access a CMS File on a Mode

disk mdskslow Read, Append to, or Create a CMS File on a Mode

disk mdskupdate Replace Records in a File on a Mode

disk members Extract Members from a Partitioned Data Set

disk pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

disk qsam Read or Write Physical Sequential Data Set through a DCB

disk sfsupdate Replace Records in an SFS File

display browse Display Data on a 3270 Terminal

display fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached Screen

driver <mdsk Read a CMS File from a Mode

driver <sfs Read an SFS File

driver <sfsslow Read an SFS File

driver >>mdsk Append to or Create a CMS File on a Mode

driver >>sfs Append to or Create an SFS File

driver >>sfsslow Append to or Create an SFS File

driver >mdsk Replace or Create a CMS File on a Mode

driver >sfs Replace or Create an SFS File

driver aftfst Write Information about Open Files

driver cms Issue CMS Commands, Write Response to Pipeline

driver command Issue TSO Commands

driver command Issue CMS Commands, Write Response to Pipeline

driver cp Issue CP Commands, Write Response to Pipeline

driver diskfast Read, Create, or Append to a File

driver diskslow Read, Create, or Append to a File

driver diskupdate Replace Records in a File

driver eofback Run an Output Device Driver and Propagate End-of-file Backwards

driver filetoken Read or Write an SFS File That is Already Open

driver fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached Screen

driver immcmd Write the Argument String from Immediate Commands

driver literal Write the Argument String

driver mdiskblk Read or Write Minidisk Blocks

driver mdskback Read a CMS File from a Mode Backwards

driver mdskfast Read, Create, or Append to a CMS File on a Mode

driver mdskrandom Random Access a CMS File on a Mode

driver mdskslow Read, Append to, or Create a CMS File on a Mode

 Appendix A. Summary of Built-in Programs 881

 Stage Selection Guide

driver mdskupdate Replace Records in a File on a Mode

driver members Extract Members from a Partitioned Data Set

driver pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

driver printmc Print Lines

driver punch Punch Cards

driver reader Read from a Virtual Card Reader

driver sfsback Read an SFS File Backwards

driver sfsrandom Random Access an SFS File

driver sfsupdate Replace Records in an SFS File

driver sql Interface to SQL

driver sqlselect Query a Database and Format Result

driver stack Read or Write the Program Stack

driver starmsg Write Lines from a CP System Service

driver starsys Write Lines from a Two-way CP System Service

driver state Verify that Data Set Exists

driver state Provide Information about CMS Files

driver statew Provide Information about Writable CMS Files

driver stem Retrieve or Set Variables in a REXX or CLIST Variable Pool

driver storage Read or Write Virtual Machine Storage

driver strliteral Write the Argument String

driver subcom Issue Commands to a Subcommand Environment

driver tape Read or Write Tapes

driver tso Issue TSO Commands, Write Response to Pipeline

driver uro Write Unit Record Output

driver var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

driver vardrop Drop Variables in a REXX Variable Pool

driver varfetch Fetch Variables in a REXX or CLIST Variable Pool

driver varload Set Variables in a REXX or CLIST Variable Pool

driver varset Set Variables in a REXX or CLIST Variable Pool

driver xedit Read or Write a File in the XEDIT Ring

driver xmsg Issue XEDIT Messages

drop drop Discard Records from the Beginning or the End of the File

dump jeremy Write Pipeline Status to the Pipeline

duplicate duplicate Copy Records

EBCDIC qpdecode Decode to Quoted-printable Format

EBCDIC qpencode Encode to Quoted-printable Format

EBCDIC urldeblock Process Universal Resource Locator

ECKD ckddeblock Deblock Track Data Record

ECKD trackblock Build Track Record

ECKD trackdeblock Deblock Track

ECKD trackread Read Full Tracks from ECKD Device

ECKD tracksquish Squish Tracks

ECKD trackverify Verify Track Format

ECKD trackwrite Write Full Tracks to ECKD Device

ECKD trackxpand Unsquish Tracks

edit asmcont Join Multiline Assembler Statements

edit change Substitute Contents of Records

edit chop Truncate the Record

edit pad Expand Short Records

edit spec Rearrange Contents of Records

edit split Split Records Relative to a Target

edit strip Remove Leading or Trailing Characters

edit xlate Transliterate Contents of Records

882 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

elastic copy Copy Records, Allowing for a One Record Delay

EMSG emsg Issue Messages

encode 64encode Encode to MIME Base-64 Format

encoding 3277enc Write the 3277 6-bit Encoding Vector

encrypt cipher Encrypt and Decrypt Using a Block Cipher

end-of-file eofback Run an Output Device Driver and Propagate End-of-file Backwards

end-of-file noeofback Pass Records and Ignore End-of-file on Output

error emsg Issue Messages

error hlasmerr Extract Assembler Error Messages from the SYSADATA File

error sqlcodes Write the last 11 SQL Codes Received

escape escape Insert Escape Characters in the Record

event pause Signal a Pause Event

exclusive combine Combine Data from a Run of Records

EXECCOMM rexxvars Retrieve Variables from a REXX or CLIST Variable Pool

EXECCOMM stem Retrieve or Set Variables in a REXX or CLIST Variable Pool

EXECCOMM var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

EXECCOMM vardrop Drop Variables in a REXX Variable Pool

EXECCOMM varfetch Fetch Variables in a REXX or CLIST Variable Pool

EXECCOMM varload Set Variables in a REXX or CLIST Variable Pool

EXECCOMM varset Set Variables in a REXX or CLIST Variable Pool

execution if Process Records Conditionally

expand asmxpnd Expand Joined Assembler Statements

expand untab Replace Tabulate Characters with Blanks

extend pad Expand Short Records

extension nucext Call a Nucleus Extension

FBA fbaread Read Blocks from a Fixed Block Architecture Drive

FBA fbawrite Write Blocks to a Fixed Block Architecture Drive

file < Read a File

file <mdsk Read a CMS File from a Mode

file <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

file <oe Read an OpenExtensions Text File

file <sfs Read an SFS File

file <sfsslow Read an SFS File

file > Replace or Create a File

file >> Append to or Create a File

file >>mdsk Append to or Create a CMS File on a Mode

file >>mvs Append to a Physical Sequential Data Set

file >>oe Append to or Create an OpenExtensions Text File

file >>sfs Append to or Create an SFS File

file >>sfsslow Append to or Create an SFS File

file >mdsk Replace or Create a CMS File on a Mode

file >mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set

file >oe Replace or Create an OpenExtensions Text File

file >sfs Replace or Create an SFS File

file aftfst Write Information about Open Files

file diskback Read a File Backwards

file diskfast Read, Create, or Append to a File

file diskrandom Random Access a File

file diskslow Read, Create, or Append to a File

file diskupdate Replace Records in a File

file filetoken Read or Write an SFS File That is Already Open

file ftp Connect to an FTP Server and Exchange Data

file hfs Read or Append File in the Hierarchical File System

 Appendix A. Summary of Built-in Programs 883

 Stage Selection Guide

file hfsreplace Replace the Contents of a File in the Hierarchical File System

file hfsstate Obtain Information about Files in the Hierarchical File System

file mdskback Read a CMS File from a Mode Backwards

file mdskfast Read, Create, or Append to a CMS File on a Mode

file mdskrandom Random Access a CMS File on a Mode

file mdskslow Read, Append to, or Create a CMS File on a Mode

file mdskupdate Replace Records in a File on a Mode

file members Extract Members from a Partitioned Data Set

file pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

file qsam Read or Write Physical Sequential Data Set through a DCB

file sfsback Read an SFS File Backwards

file sfsrandom Random Access an SFS File

file sfsupdate Replace Records in an SFS File

file state Provide Information about CMS Files

file statew Provide Information about Writable CMS Files

file descriptor filedescriptor Read or Write an OpenExtensions File that Is Already Open

files getfiles Read Files

filter filterpack Manage Filter Packages

find asmfind Select Statements from an Assembler File as XEDIT Find

find asmnfind Select Statements from an Assembler File as XEDIT NFind

find find Select Lines by XEDIT Find Logic

find nfind Select Lines by XEDIT NFind Logic

find strasmfind Select Statements from an Assembler File as XEDIT Find

find strasmnfind Select Statements from an Assembler File as XEDIT NFind

find strfind Select Lines by XEDIT Find Logic

find strnfind Select Lines by XEDIT NFind Logic

fitting fitting Source or Sink for Copipe Data

format fmtfst Format a File Status Table (FST) Entry

format scm Align REXX Comments

FST fmtfst Format a File Status Table (FST) Entry

FST state Provide Information about CMS Files

FST statew Provide Information about Writable CMS Files

FTP ftp Connect to an FTP Server and Exchange Data

full pack diage4 Submit Diagnose E4 Requests

full screen buildscr Build a 3270 Data Stream

full screen fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached Screen

gateway overlay Overlay Data from Input Streams

gateway stem Retrieve or Set Variables in a REXX or CLIST Variable Pool

gateway var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

gateway vardrop Drop Variables in a REXX Variable Pool

gateway varfetch Fetch Variables in a REXX or CLIST Variable Pool

gateway varset Set Variables in a REXX or CLIST Variable Pool

gather fanin Concatenate Streams

gather faninany Copy Records from Whichever Input Stream Has One

gather fanintwo Pass Records to Primary Output Stream

generate maclib Generate a Macro Library from Stacked Members in a COPY File

hash digest Compute a Message Digest

heartbeat beat Mark when Records Do not Arrive within Interval

help help Display Help for CMS Pipelines or DB2

hexadecimal xrange Write a Range of Characters

HFS filedescriptor Read or Write an OpenExtensions File that Is Already Open

884 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

hierarchical <oe Read an OpenExtensions Text File

hierarchical >>oe Append to or Create an OpenExtensions Text File

hierarchical >oe Replace or Create an OpenExtensions Text File

hierarchical hfs Read or Append File in the Hierarchical File System

hierarchical hfsdirectory Read Contents of a Directory in a Hierarchical File System

hierarchical hfsquery Write Information Obtained from OpenExtensions into the Pipeline

hierarchical hfsreplace Replace the Contents of a File in the Hierarchical File System

hierarchical hfsstate Obtain Information about Files in the Hierarchical File System

hierarchical hfsxecute Issue OpenExtensions Requests

hold dam Pass Records Once Primed

host hostid Write TCP/IP Default IP Address

host hostname Write TCP/IP Host Name

host tso Issue TSO Commands, Write Response to Pipeline

http httpsplit Split HTTP Data Stream

HTTP urldeblock Process Universal Resource Locator

huge dfsort Interface to DFSORT/CMS

hypertext httpsplit Split HTTP Data Stream

IEBCOPY iebcopy Process IEBCOPY Data Format

image combine Combine Data from a Run of Records

immediate immcmd Write the Argument String from Immediate Commands

IMSG emsg Issue Messages

information devinfo Write Device Information

information stfle Store Facilities List

information stsi Store System Information

inject literal Write the Argument String

inject strliteral Write the Argument String

insert insert Insert String in Records

insert sql Interface to SQL

interface ldrtbls Resolve a Name from the CMS Loader Tables

interface nucext Call a Nucleus Extension

interface rexx Run a REXX Program to Process Data

interface stem Retrieve or Set Variables in a REXX or CLIST Variable Pool

interface var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

interface vardrop Drop Variables in a REXX Variable Pool

interface varfetch Fetch Variables in a REXX or CLIST Variable Pool

interface varset Set Variables in a REXX or CLIST Variable Pool

Internet tcpclient Connect to a TCP/IP Server and Exchange Data

Internet tcpdata Read from and Write to a TCP/IP Socket

Internet tcplisten Listen on a TCP Port

interrupt waitdev Wait for an Interrupt from a Device

interval delay Suspend Stream

inverse not Run Stage with Output Streams Inverted

IP hostbyaddr Resolve IP Address into Domain and Host Name

IP hostbyname Resolve a Domain Name into an IP Address

IP hostid Write TCP/IP Default IP Address

ISPF ispf Access ISPF Tables

ISPF listispf Read Directory of a Partitioned Data Set into the Pipeline

ISPF subcom Issue Commands to a Subcommand Environment

IUCV starmsg Write Lines from a CP System Service

IUCV starsys Write Lines from a Two-way CP System Service

join join Join Records

 Appendix A. Summary of Built-in Programs 885

 Stage Selection Guide

join joincont Join Continuation Lines

join snake Build Multicolumn Page Layout

key lookup Find Records in a Reference Using a Key Field

label frlabel Select Records from the First One with Leading String

label strfrlabel Select Records from the First One with Leading String

label strtolabel Select Records to the First One with Leading String

label strwhilelabel Select Run of Records with Leading String

label tolabel Select Records to the First One with Leading String

label whilelabel Select Run of Records with Leading String

labels asmfind Select Statements from an Assembler File as XEDIT Find

labels asmnfind Select Statements from an Assembler File as XEDIT NFind

labels between Select Records Between Labels

labels find Select Lines by XEDIT Find Logic

labels inside Select Records between Labels

labels nfind Select Lines by XEDIT NFind Logic

labels notinside Select Records Not between Labels

labels outside Select Records Not between Labels

labels strasmfind Select Statements from an Assembler File as XEDIT Find

labels strasmnfind Select Statements from an Assembler File as XEDIT NFind

labels strfind Select Lines by XEDIT Find Logic

labels strnfind Select Lines by XEDIT NFind Logic

level query Query CMS Pipelines

line end block Block to an External Format

line end deblock Deblock External Data Formats

line feed block Block to an External Format

line feed deblock Deblock External Data Formats

lines count Count Lines, Blank-delimited Words, and Bytes

link diage4 Submit Diagnose E4 Requests

list warplist List Wormholes

listener vmclisten Listen for VMCF Requests

LISTFILE wildcard Select Records Matching a Pattern

listing printmc Print Lines

listing sfsdirectory List Files in an SFS Directory

listing uro Write Unit Record Output

literal literal Write the Argument String

literal strliteral Write the Argument String

literal xrange Write a Range of Characters

loader tables ldrtbls Resolve a Name from the CMS Loader Tables

locate all Select Lines Containing Strings (or Not)

locate locate Select Lines that Contain a String

locate nlocate Select Lines that Do Not Contain a String

lookup ldrtbls Resolve a Name from the CMS Loader Tables

lookup nucext Call a Nucleus Extension

machine asatomc Convert ASA Carriage Control to CCW Operation Codes

MACLIB maclib Generate a Macro Library from Stacked Members in a COPY File

MACLIB members Extract Members from a Partitioned Data Set

map diskid Map CMS Reserved Minidisk

map mapmdisk Map Minidisks Into Data spaces

mark juxtapose Preface Record with Marker

members structure Manage Structure Definitions

886 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

merge collate Collate Streams

merge gather Copy Records From Input Streams

merge juxtapose Preface Record with Marker

merge merge Merge Streams

message digest Compute a Message Digest

message emsg Issue Messages

message mqsc Issue Commands to a WebSphere MQ Queue Manager

message starmsg Write Lines from a CP System Service

message xmsg Issue XEDIT Messages

messages hlasmerr Extract Assembler Error Messages from the SYSADATA File

messages runpipe Issue Pipelines, Intercepting Messages

MIME qpdecode Decode to Quoted-printable Format

MIME qpencode Encode to Quoted-printable Format

mime 64decode Decode MIME Base-64 Format

mime 64encode Encode to MIME Base-64 Format

minidisk <mdsk Read a CMS File from a Mode

minidisk >>mdsk Append to or Create a CMS File on a Mode

minidisk >mdsk Replace or Create a CMS File on a Mode

minidisk diage4 Submit Diagnose E4 Requests

minidisk diskfast Read, Create, or Append to a File

minidisk diskid Map CMS Reserved Minidisk

minidisk diskslow Read, Create, or Append to a File

minidisk mapmdisk Map Minidisks Into Data spaces

minidisk mdskfast Read, Create, or Append to a CMS File on a Mode

minidisk trackread Read Full Tracks from ECKD Device

minidisk trackwrite Write Full Tracks to ECKD Device

mixed casei Run Selection Stage in Case Insensitive Manner

mixed zone Run Selection Stage on Subset of Input Record

monitor starmon Write Records from the *MONITOR System Service

MONWRITE starmon Write Records from the *MONITOR System Service

MQ mqsc Issue Commands to a WebSphere MQ Queue Manager

multicolumn snake Build Multicolumn Page Layout

multiple duplicate Copy Records

multiple unique Discard or Retain Duplicate Lines

multistream >>mdsk Append to or Create a CMS File on a Mode

multistream >>sfs Append to or Create an SFS File

multistream >>sfsslow Append to or Create an SFS File

multistream >mdsk Replace or Create a CMS File on a Mode

multistream >sfs Replace or Create an SFS File

multistream abbrev Select Records that Contain an Abbreviation of a Word in the First Positions

multistream all Select Lines Containing Strings (or Not)

multistream asmfind Select Statements from an Assembler File as XEDIT Find

multistream asmnfind Select Statements from an Assembler File as XEDIT NFind

multistream between Select Records Between Labels

multistream chop Truncate the Record

multistream combine Combine Data from a Run of Records

multistream deal Pass Input Records to Output Streams Round Robin

multistream diskfast Read, Create, or Append to a File

multistream diskslow Read, Create, or Append to a File

multistream drop Discard Records from the Beginning or the End of the File

multistream fanin Concatenate Streams

multistream faninany Copy Records from Whichever Input Stream Has One

multistream fanintwo Pass Records to Primary Output Stream

multistream fanout Copy Records from the Primary Input Stream to All Output Streams

 Appendix A. Summary of Built-in Programs 887

 Stage Selection Guide

multistream fanoutwo Copy Records from the Primary Input Stream to Both Output Streams

multistream fillup Pass Records To Output Streams

multistream find Select Lines by XEDIT Find Logic

multistream frlabel Select Records from the First One with Leading String

multistream gather Copy Records From Input Streams

multistream inside Select Records between Labels

multistream locate Select Lines that Contain a String

multistream lookup Find Records in a Reference Using a Key Field

multistream maclib Generate a Macro Library from Stacked Members in a COPY File

multistream mdskfast Read, Create, or Append to a CMS File on a Mode

multistream mdskslow Read, Append to, or Create a CMS File on a Mode

multistream merge Merge Streams

multistream nfind Select Lines by XEDIT NFind Logic

multistream nlocate Select Lines that Do Not Contain a String

multistream notinside Select Records Not between Labels

multistream outside Select Records Not between Labels

multistream overlay Overlay Data from Input Streams

multistream pack Pack Records as Done by XEDIT and COPYFILE

multistream pick Select Lines that Satisfy a Relation

multistream spec Rearrange Contents of Records

multistream sql Interface to SQL

multistream state Verify that Data Set Exists

multistream state Provide Information about CMS Files

multistream statew Provide Information about Writable CMS Files

multistream strasmfind Select Statements from an Assembler File as XEDIT Find

multistream strasmnfind Select Statements from an Assembler File as XEDIT NFind

multistream strfind Select Lines by XEDIT Find Logic

multistream strfrlabel Select Records from the First One with Leading String

multistream strnfind Select Lines by XEDIT NFind Logic

multistream strtolabel Select Records to the First One with Leading String

multistream strwhilelabel Select Run of Records with Leading String

multistream synchronise Synchronise Records on Multiple Streams

multistream take Select Records from the Beginning or End of the File

multistream tolabel Select Records to the First One with Leading String

multistream unique Discard or Retain Duplicate Lines

multistream update Apply an Update File

multistream verify Verify that Record Contains only Specified Characters

multistream whilelabel Select Run of Records with Leading String

multistream wildcard Select Records Matching a Pattern

MVS listcat Obtain Data Set Names

MVS sysdsn Test whether Data Set Exists

name hostbyaddr Resolve IP Address into Domain and Host Name

name hostbyname Resolve a Domain Name into an IP Address

netdata block Block to an External Format

netdata deblock Deblock External Data Formats

not find asmnfind Select Statements from an Assembler File as XEDIT NFind

not find nfind Select Lines by XEDIT NFind Logic

not find strasmnfind Select Statements from an Assembler File as XEDIT NFind

not find strnfind Select Lines by XEDIT NFind Logic

notation polish Reverse Polish Expression Parser

nucleus nucext Call a Nucleus Extension

number random Generate Pseudorandom Numbers

888 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

OpenExtensions <oe Read an OpenExtensions Text File

OpenExtensions >>oe Append to or Create an OpenExtensions Text File

OpenExtensions >oe Replace or Create an OpenExtensions Text File

OpenExtensions filedescriptor Read or Write an OpenExtensions File that Is Already Open

OpenExtensions hfs Read or Append File in the Hierarchical File System

OpenExtensions hfsdirectory Read Contents of a Directory in a Hierarchical File System

OpenExtensions hfsquery Write Information Obtained from OpenExtensions into the Pipeline

OpenExtensions hfsreplace Replace the Contents of a File in the Hierarchical File System

OpenExtensions hfsstate Obtain Information about Files in the Hierarchical File System

OpenExtensions hfsxecute Issue OpenExtensions Requests

or combine Combine Data from a Run of Records

OS <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

OS >>mvs Append to a Physical Sequential Data Set

OS >mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set

OS block Block to an External Format

OS deblock Deblock External Data Formats

OS iebcopy Process IEBCOPY Data Format

OS qsam Read or Write Physical Sequential Data Set through a DCB

OUTDESC sysout Write System Output Data Set

output eofback Run an Output Device Driver and Propagate End-of-file Backwards

overlay combine Combine Data from a Run of Records

overlay overlay Overlay Data from Input Streams

overstrikes c14to38 Combine Overstruck Characters to Single Code Point

overstrikes overstr Process Overstruck Lines

pack pack Pack Records as Done by XEDIT and COPYFILE

pack unpack Unpack a Packed File

package filterpack Manage Filter Packages

pad pad Expand Short Records

page snake Build Multicolumn Page Layout

parser polish Reverse Polish Expression Parser

partition frtarget Select Records from the First One Selected by Argument Stage

partition totarget Select Records to the First One Selected by Argument Stage

partitioned <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

partitioned iebcopy Process IEBCOPY Data Format

partitioned listispf Read Directory of a Partitioned Data Set into the Pipeline

partitioned listpds Read Directory of a Partitioned Data Set into the Pipeline

partitioned members Extract Members from a Partitioned Data Set

partitioned pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

partitioned readpds Read Members from a Partitioned Data Set

partitioned writepds Store Members into a Partitioned Data Set

pattern wildcard Select Records Matching a Pattern

pause pause Signal a Pause Event

PDS pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

pipeline pipcmd Issue Pipeline Commands

pipeline runpipe Issue Pipelines, Intercepting Messages

Polish polish Reverse Polish Expression Parser

POSIX <oe Read an OpenExtensions Text File

POSIX >>oe Append to or Create an OpenExtensions Text File

POSIX >oe Replace or Create an OpenExtensions Text File

POSIX filedescriptor Read or Write an OpenExtensions File that Is Already Open

POSIX hfs Read or Append File in the Hierarchical File System

predicate not Run Stage with Output Streams Inverted

predicate predselect Control Destructive Test of Records

 Appendix A. Summary of Built-in Programs 889

 Stage Selection Guide

print sysout Write System Output Data Set

printer printmc Print Lines

printer uro Write Unit Record Output

printer xab Read or Write External Attribute Buffers

pseudorandom random Generate Pseudorandom Numbers

punch punch Punch Cards

punch sysout Write System Output Data Set

punch uro Write Unit Record Output

QSAM <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

QSAM >>mvs Append to a Physical Sequential Data Set

QSAM >mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set

QSAM qsam Read or Write Physical Sequential Data Set through a DCB

query diage4 Submit Diagnose E4 Requests

query fullscrq Write 3270 Device Characteristics

query fullscrs Format 3270 Device Characteristics

query query Query CMS Pipelines

queue mqsc Issue Commands to a WebSphere MQ Queue Manager

queue stack Read or Write the Program Stack

quoted-printable qpdecode Decode to Quoted-printable Format

quoted-printable qpencode Encode to Quoted-printable Format

random diskrandom Random Access a File

random diskupdate Replace Records in a File

random mdskrandom Random Access a CMS File on a Mode

random mdskupdate Replace Records in a File on a Mode

random random Generate Pseudorandom Numbers

random sfsrandom Random Access an SFS File

random sfsupdate Replace Records in an SFS File

range pick Select Lines that Satisfy a Relation

range substring Write substring of record

read < Read a File

read <mdsk Read a CMS File from a Mode

read <sfs Read an SFS File

read <sfsslow Read an SFS File

read diskback Read a File Backwards

read diskfast Read, Create, or Append to a File

read diskrandom Random Access a File

read diskslow Read, Create, or Append to a File

read fbaread Read Blocks from a Fixed Block Architecture Drive

read filetoken Read or Write an SFS File That is Already Open

read getfiles Read Files

read mdskback Read a CMS File from a Mode Backwards

read mdskfast Read, Create, or Append to a CMS File on a Mode

read mdskrandom Random Access a CMS File on a Mode

read mdskslow Read, Append to, or Create a CMS File on a Mode

read pdsdirect Write Directory Information from a CMS Simulated Partitioned Data Set

read sfsback Read an SFS File Backwards

read sfsrandom Random Access an SFS File

read trackread Read Full Tracks from ECKD Device

reader reader Read from a Virtual Card Reader

rearrange spec Rearrange Contents of Records

recode vchar Recode Characters to Different Length

890 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

record addrdw Prefix Record Descriptor Word to Records

record format asatomc Convert ASA Carriage Control to CCW Operation Codes

record format block Block to an External Format

record format deblock Deblock External Data Formats

record format fblock Block Data, Spanning Input Records

record format iebcopy Process IEBCOPY Data Format

record format mctoasa Convert CCW Operation Codes to ASA Carriage Control

record format pack Pack Records as Done by XEDIT and COPYFILE

record format unpack Unpack a Packed File

recursive sfsdirectory List Files in an SFS Directory

redundancy crc Compute Cyclic Redundancy Code

reformat parcel Parcel Input Stream Into Records

relational sql Interface to SQL

relational sqlselect Query a Database and Format Result

replace >mdsk Replace or Create a CMS File on a Mode

replace >sfs Replace or Create an SFS File

replace change Substitute Contents of Records

reserve diskid Map CMS Reserved Minidisk

resolution hostbyaddr Resolve IP Address into Domain and Host Name

resolution hostbyname Resolve a Domain Name into an IP Address

return aggrc Compute Aggregate Return Code

reverse polish Reverse Polish Expression Parser

reverse reverse Reverse Contents of Records

REXX rexx Run a REXX Program to Process Data

REXX rexxvars Retrieve Variables from a REXX or CLIST Variable Pool

REXX scm Align REXX Comments

REXX space Space Words Like REXX

REXX stem Retrieve or Set Variables in a REXX or CLIST Variable Pool

REXX var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

REXX vardrop Drop Variables in a REXX Variable Pool

REXX varfetch Fetch Variables in a REXX or CLIST Variable Pool

REXX varload Set Variables in a REXX or CLIST Variable Pool

REXX varset Set Variables in a REXX or CLIST Variable Pool

row/column 3277bfra Convert a 3270 Buffer Address Between Representations

SAM <mvs Read a Physical Sequential Data Set or a Member of a Partitioned Data Set

SAM >>mvs Append to a Physical Sequential Data Set

SAM >mvs Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set

SAM qsam Read or Write Physical Sequential Data Set through a DCB

SCBLOCK nucext Call a Nucleus Extension

search lookup Find Records in a Reference Using a Key Field

secure digest Compute a Message Digest

select abbrev Select Records that Contain an Abbreviation of a Word in the First Positions

select all Select Lines Containing Strings (or Not)

select asmfind Select Statements from an Assembler File as XEDIT Find

select asmnfind Select Statements from an Assembler File as XEDIT NFind

select between Select Records Between Labels

select drop Discard Records from the Beginning or the End of the File

select find Select Lines by XEDIT Find Logic

select frlabel Select Records from the First One with Leading String

select inside Select Records between Labels

select locate Select Lines that Contain a String

select nfind Select Lines by XEDIT NFind Logic

select nlocate Select Lines that Do Not Contain a String

 Appendix A. Summary of Built-in Programs 891

 Stage Selection Guide

select notinside Select Records Not between Labels

select outside Select Records Not between Labels

select pick Select Lines that Satisfy a Relation

select predselect Control Destructive Test of Records

select sql Interface to SQL

select sqlselect Query a Database and Format Result

select strasmfind Select Statements from an Assembler File as XEDIT Find

select strasmnfind Select Statements from an Assembler File as XEDIT NFind

select strfind Select Lines by XEDIT Find Logic

select strfrlabel Select Records from the First One with Leading String

select strnfind Select Lines by XEDIT NFind Logic

select strtolabel Select Records to the First One with Leading String

select strwhilelabel Select Run of Records with Leading String

select take Select Records from the Beginning or End of the File

select tolabel Select Records to the First One with Leading String

select unique Discard or Retain Duplicate Lines

select verify Verify that Record Contains only Specified Characters

select whilelabel Select Run of Records with Leading String

select wildcard Select Records Matching a Pattern

selection casei Run Selection Stage in Case Insensitive Manner

selection frtarget Select Records from the First One Selected by Argument Stage

selection totarget Select Records to the First One Selected by Argument Stage

selection zone Run Selection Stage on Subset of Input Record

server runpipe Issue Pipelines, Intercepting Messages

server vmclisten Listen for VMCF Requests

service filterpack Manage Filter Packages

service help Display Help for CMS Pipelines or DB2

service query Query CMS Pipelines

SFS <sfs Read an SFS File

SFS <sfsslow Read an SFS File

SFS >>sfs Append to or Create an SFS File

SFS >>sfsslow Append to or Create an SFS File

SFS >sfs Replace or Create an SFS File

SFS filetoken Read or Write an SFS File That is Already Open

SFS sfsback Read an SFS File Backwards

SFS sfsdirectory List Files in an SFS Directory

SFS sfsrandom Random Access an SFS File

SFS sfsupdate Replace Records in an SFS File

single unique Discard or Retain Duplicate Lines

SMART vmc Write VMCF Reply

sockaddr in ip2socka Build sockaddr_in Structure

sockaddr in socka2ip Format sockaddr_in Structure

socket ip2socka Build sockaddr_in Structure

socket socka2ip Format sockaddr_in Structure

sockets tcpclient Connect to a TCP/IP Server and Exchange Data

sockets tcpdata Read from and Write to a TCP/IP Socket

sockets tcplisten Listen on a TCP Port

sort dfsort Interface to DFSORT/CMS

sort merge Merge Streams

sort sort Order Records

space space Space Words Like REXX

span block Block to an External Format

span deblock Deblock External Data Formats

span fblock Block Data, Spanning Input Records

892 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

spin sysout Write System Output Data Set

split spill Spill Long Lines at Word Boundaries

split split Split Records Relative to a Target

split threeway Split record three ways

SPOOL sysout Write System Output Data Set

SQL sql Interface to SQL

SQL sqlcodes Write the last 11 SQL Codes Received

SQL sqlselect Query a Database and Format Result

SSL ftp Connect to an FTP Server and Exchange Data

stack stack Read or Write the Program Stack

statements asmcont Join Multiline Assembler Statements

statements asmxpnd Expand Joined Assembler Statements

status jeremy Write Pipeline Status to the Pipeline

stop dam Pass Records Once Primed

stop gate Pass Records Until Stopped

stop pipestop Terminate Stages Waiting for an External Event

storage storage Read or Write Virtual Machine Storage

stream parcel Parcel Input Stream Into Records

streams synchronise Synchronise Records on Multiple Streams

string insert Insert String in Records

string xrange Write a Range of Characters

strip strip Remove Leading or Trailing Characters

structure structure Manage Structure Definitions

subcommand subcom Issue Commands to a Subcommand Environment

subset substring Write substring of record

substring substring Write substring of record

substring threeway Split record three ways

suspend delay Suspend Stream

SVC 202 cms Issue CMS Commands, Write Response to Pipeline

symbolic structure Manage Structure Definitions

synchronise synchronise Synchronise Records on Multiple Streams

system stfle Store Facilities List

system stsi Store System Information

system sysvar Write System Variables to the Pipeline

tab retab Replace Runs of Blanks with Tabulate Characters

tab untab Replace Tabulate Characters with Blanks

table ispf Access ISPF Tables

table sql Interface to SQL

table sqlselect Query a Database and Format Result

tape tape Read or Write Tapes

TCP/IP hostbyaddr Resolve IP Address into Domain and Host Name

TCP/IP hostbyname Resolve a Domain Name into an IP Address

TCP/IP hostid Write TCP/IP Default IP Address

TCP/IP hostname Write TCP/IP Host Name

TCP/IP ip2socka Build sockaddr_in Structure

TCP/IP socka2ip Format sockaddr_in Structure

TCP/IP tcpcksum Compute One’s complement Checksum of a Message

TCP/IP tcpclient Connect to a TCP/IP Server and Exchange Data

TCP/IP tcpdata Read from and Write to a TCP/IP Socket

TCP/IP tcplisten Listen on a TCP Port

TCP/IP udp Read and Write an UDP Port

terminal console Read or Write the Terminal in Line Mode

terminal fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached Screen

 Appendix A. Summary of Built-in Programs 893

 Stage Selection Guide

test predselect Control Destructive Test of Records

TEXT apldecode Process Graphic Escape Sequences

TEXT aplencode Generate Graphic Escape Sequences

text unit block Block to an External Format

text unit deblock Deblock External Data Formats

tick juxtapose Preface Record with Marker

time delay Suspend Stream

time greg2sec Convert a Gregorian Timestamp to Second Since Epoch

time sec2greg Convert Seconds Since Epoch to Gregorian Timestamp

timeout beat Mark when Records Do not Arrive within Interval

timestamp timestamp Prefix the Date and Time to Records

tokenise tokenise Tokenise Records

trace trfread Read a Trace File

track ckddeblock Deblock Track Data Record

track trackblock Build Track Record

track trackdeblock Deblock Track

track trackread Read Full Tracks from ECKD Device

track tracksquish Squish Tracks

track trackverify Verify Track Format

track trackwrite Write Full Tracks to ECKD Device

track trackxpand Unsquish Tracks

transfer ftp Connect to an FTP Server and Exchange Data

translate xlate Transliterate Contents of Records

transport httpsplit Split HTTP Data Stream

transport vmcdata Receive, Reply, or Reject a Send or Send/receive Request

triple DES cipher Encrypt and Decrypt Using a Block Cipher

TRSOURCE trfread Read a Trace File

truncate chop Truncate the Record

TSO command Issue TSO Commands

TSO subcom Issue Commands to a Subcommand Environment

TSO sysvar Write System Variables to the Pipeline

TSO tso Issue TSO Commands, Write Response to Pipeline

TXTLIB members Extract Members from a Partitioned Data Set

type fullscrq Write 3270 Device Characteristics

UDP udp Read and Write an UDP Port

unicode utf Convert between UTF-8, UTF-16, and UTF-32

unique sort Order Records

unique unique Discard or Retain Duplicate Lines

unique unique Discard or Retain Duplicate Lines

unix greg2sec Convert a Gregorian Timestamp to Second Since Epoch

unix sec2greg Convert Seconds Since Epoch to Gregorian Timestamp

unpack unpack Unpack a Packed File

update diskupdate Replace Records in a File

update mdskupdate Replace Records in a File on a Mode

update sfsupdate Replace Records in an SFS File

update update Apply an Update File

url httpsplit Split HTTP Data Stream

URL urldeblock Process Universal Resource Locator

UTF-16 utf Convert between UTF-8, UTF-16, and UTF-32

UTF-32 utf Convert between UTF-8, UTF-16, and UTF-32

UTF-8 utf Convert between UTF-8, UTF-16, and UTF-32

894 CMS Pipelines User’s Guide and Reference

 Stage Selection Guide

variable var Retrieve or Set a Variable in a REXX or CLIST Variable Pool

variable vardrop Drop Variables in a REXX Variable Pool

variable varfetch Fetch Variables in a REXX or CLIST Variable Pool

variable varset Set Variables in a REXX or CLIST Variable Pool

variables configure Set and Query CMS Pipelines Configuration Variables

variables rexxvars Retrieve Variables from a REXX or CLIST Variable Pool

variables sysvar Write System Variables to the Pipeline

variables varload Set Variables in a REXX or CLIST Variable Pool

verify verify Verify that Record Contains only Specified Characters

VMCF vmc Write VMCF Reply

VMCF vmcdata Receive, Reply, or Reject a Send or Send/receive Request

VMCF vmclient Send VMCF Requests

VMCF vmclisten Listen for VMCF Requests

volume diage4 Submit Diagnose E4 Requests

wait dam Pass Records Once Primed

wait delay Suspend Stream

wait gate Pass Records Until Stopped

wait waitdev Wait for an Interrupt from a Device

warp warp Pipeline Wormhole

web httpsplit Split HTTP Data Stream

web urldeblock Process Universal Resource Locator

word space Space Words Like REXX

word spill Spill Long Lines at Word Boundaries

words count Count Lines, Blank-delimited Words, and Bytes

words split Split Records Relative to a Target

wormhole warp Pipeline Wormhole

wormhole warplist List Wormholes

write > Replace or Create a File

write >> Append to or Create a File

write >>mdsk Append to or Create a CMS File on a Mode

write >>sfs Append to or Create an SFS File

write >>sfsslow Append to or Create an SFS File

write >mdsk Replace or Create a CMS File on a Mode

write >sfs Replace or Create an SFS File

write diskfast Read, Create, or Append to a File

write diskslow Read, Create, or Append to a File

write diskupdate Replace Records in a File

write fbawrite Write Blocks to a Fixed Block Architecture Drive

write filetoken Read or Write an SFS File That is Already Open

write mdskfast Read, Create, or Append to a CMS File on a Mode

write mdskslow Read, Append to, or Create a CMS File on a Mode

write mdskupdate Replace Records in a File on a Mode

write sfsupdate Replace Records in an SFS File

write trackwrite Write Full Tracks to ECKD Device

WWW httpsplit Split HTTP Data Stream

XEDIT subcom Issue Commands to a Subcommand Environment

XEDIT xedit Read or Write a File in the XEDIT Ring

XEDIT xmsg Issue XEDIT Messages

12-bit 3277bfra Convert a 3270 Buffer Address Between Representations

14-bit 3277bfra Convert a 3270 Buffer Address Between Representations

 Appendix A. Summary of Built-in Programs 895

 Stage Selection Guide

1403 c14to38 Combine Overstruck Characters to Single Code Point

1403 optcdj Generate Table Reference Character (TRC)

1403 overstr Process Overstruck Lines

1403 xpndhi Expand Highlighting to Space between Words

3270 apldecode Process Graphic Escape Sequences

3270 aplencode Generate Graphic Escape Sequences

3270 browse Display Data on a 3270 Terminal

3270 buildscr Build a 3270 Data Stream

3270 fullscr Full screen 3270 Write and Read to the Console or Dialled/Attached Screen

3270 fullscrs Format 3270 Device Characteristics

3277 3277bfra Convert a 3270 Buffer Address Between Representations

3277 3277enc Write the 3277 6-bit Encoding Vector

3800 c14to38 Combine Overstruck Characters to Single Code Point

3800 optcdj Generate Table Reference Character (TRC)

6-bit 3277enc Write the 3277 6-bit Encoding Vector

8c fullscrq Write 3270 Device Characteristics

896 CMS Pipelines User’s Guide and Reference

 Message texts

Appendix B. Messages, Sorted by Text

To enable you to obtain help for a message that was

issued without the message number, the messages are

here listed sorted on the contents, truncated in the right

margin. Text set in italics font is replaced with a

value when the message is issued.

Issue the command “pipe help” (with no operands) to

invoke help for the last message issued. Use a

numeric operand to obtain help for the ten messages

issued before the last one.

 1478I Stage hex

 1477I Vector hex

1476I Header hex

 1475I Thread hex

 341I . hex: hex *char*

 1018I ... hex: hex char

 39I ... Data: "data"

1426I ... Evaluating "string"

 412I ... GPRn: hex

411I ... In procedure; offset offset in module

3I ... Issued from stage number of pipeline number

4I ... Issued from stage number of pipeline number name "name"

356I ... Message parameter string

 702I ... Parameter: hex

1441I ... Processed number structures and number members in next structure

2I ... Processing "command"

355I ... RDS: number DBSS: number; number rows done; string

1I ... Running "string"

192I ... Scan at position number; previous data "string"

361I ... SQL processing: string

369I ... SQL statement prepared: string

413I ... Store hex: hex

581E >> cannot append to a member

 1341I data data

1342I data data data

1343I data data data data

1344I data data data data data

1345I data data data data data data

1346I data data data data data data data

1347I data data data data data data data data

1348I data data data data data data data data data

1349I data data data data data data data data data data

 1340E message

 728I number description

1299W number duplicate masters were discarded

186I PIPMOD MSGLEVEL number

107E PIPMOD nucleus extension dropped before PIPE command is complete

 727I string

155E "attribute" is not three characters or hexadecimal

1391E "char" is not valid in identifier string

1512E "char" is not valid in subscript of identifier string

 34I "entry point" called

65E "string" is not hexadecimal

704E A component of path is not a directory (path "string", reason code hex)

 Copyright IBM Corp. 1986, 2020 897

 Message texts

1180E A directory in the path string does not exist or you are not authorised for it

410E ABEND code at address; PSW hex

609E ABEND code reason code number

1225E ABEND hex accessing the global data area

1338E ABEND hex reason number on LOAD of entry point

1296I ABEND in CMS command. Last number lines of output follow

1239I About to receive from socket

1237I Active process and thread IDs:hex (hexadecimal)

574E Address is odd

1527E Address space word is not available for user word

1529E Address space name word already exists

1528E Address space name word is not valid

1519E Address space name longer than 24: word

1532E Address space size is not valid: number

1253E Address X'hex' before section base

1536W ALET hex is neither valid nor revoked.

1521E ALET hex is not valid

1549E ALET and PGMLIST are incompatible

1023E All application slots in use

1412E Allocation would require more than two gigabytes

1350E Already connected to queue manager string

562E Alternate exec processor name; return code number

563W ANYOF assumed in front of string

1573E Argument number is required

1452E Argument is a string, not a single character: string

371E ARIRVSTC TEXT is not available; run SQLINIT

 667E Arithmetic overflow

1503E Array size is greater than 2G

1533W ASIT hex is already permitted to user word

1534W ASIT hex is already permitted to VCIT hex

1523E ASIT hex is not valid

1321I Assembler requests number bytes output for record number on stream number

409E Assert failure code at address

1083E Assignment is not to a counter

556E Asterisk cannot end output column range

1329E Attempt to extract the square root of a negative number

1234I Attention exit disabled. Hit attention to terminate command

1432E Bad placement option string

1567E Beginning block number is greater than ending block number

1564E Beginning block number number larger than device capacity number

337E Binary data missing after prefix

1298E Binary number too large for counter (reason number)

1569E Block number after last writable block

1568E Block number before first writable block

575E Block padded with hex; it should be X'00'

152E Block size number too large; number is the maximum

69E Block size mismatch; number bytes read, but block descriptor word contains number

114E Block size missing

75E Block size not integral multiple of record length; remainder is number

115E Block size too small; number is minimum for this type

1442E Both ranges specify same length as other string

1288I Branch to zero probably from hex

1084E BREAK items are not allowed after EOF item

898 CMS Pipelines User’s Guide and Reference

 Message texts

536E Buffer header destroyed: hex

1276E Buffer length is not valid (hex doublewords requested)

 88E Buffer overflow

735E Callable Services are not available

234E Caller not REXX

614E Caller’s current input stream is not connected

616E Caller’s producer is not blocked waiting for output

615E Caller’s producer is not connected to caller

402I Calling Syntax Exit

1507E Cannot access entire varying bounds array word

1185E Cannot convert absolute date format word to relative date format word

1168E Cannot convert relative date format word to absolute date format word

1596W Cannot erase original file renamed to fileid. Try SFS device driver instead

1167I Cannot load message repository word

1578E Cannot obtain lock for COMMAND stage (held by process number thread number)

1579W Cannot release lock for COMMAND stage: hex

611E Cannot set CONSOLE exit

79E CCW command code X'hex' is not valid

1470E CCW length number differs from record length number module word

766E Century incorrect in timestamp: string

1374E CESD IDs descending number follows number

179E Character "char" is not an ASA carriage control character

180E Character X'hex' is not a machine carriage control character

1487E Checksum field in column number is not within record length number

1353E Cipher functions are not available hex

1352E Cipher Message instruction not available

1191I Close flags string

1192I Close flags string; record length number, count number

1112I Closing socket (reason number)

18E CMS Pipelines incorrectly generated with character

86I CMS Pipelines, 5741-A07 modlevel (Version.Release/Mod) - Generated April 29, 2020 at 2:50 p.m.

560I CMS Pipelines, 5741-A07 level hex

324E CMSIUCV application not active in server

193E Colon missing in connector

71E Column number "number" must be positive

196E Column ranges must be in ascending order and not overlapping

1462E Comma expected; found string

1443E Comma list is available only with equal compares

1444E Comma list is not available with implied length

1497E Comma or right parenthesis expected; end of member found

1498E Comma or right parenthesis expected; found char

540E Command is longer than 132 (number characters)

62E Command length number too long for CP

537I Commit level number

 105E Compiler overflow

104E Compiler stack overflow

707E Component in path name is too long: path "string"

1129E Component of host name too long: string

1354E Computed output column is not positive (it is number)

1433E Computed output length is negative (it is number)

1335W Concatenated data set(s) for DD=DDNAME ignored. Use QSAM instead

347E Condition code 3 on IUCV instruction

1165E Configuration variable name is not recognised

 Appendix B. Messages, Sorted by Text 899

 Message texts

592E Conflicting allocation for data set DSNAME

48E Conflicting value for keyword keyword: character

656E Connection to word severed with code word

101E Connector connector can be specified with ADDPIPE or CALLPIPE

99E Connector not at the beginning or the end of a pipeline

98E Connector not by itself

 1217I Contents: hex

1373E Control record requests number bytes, but only number bytes are available

392E Conversion error in routine 2: type, record 3: number (reason code 1: reason); data: "4: string"

1488E Convert index number is not implemented

1273E Count area incomplete (number bytes available)

198E Count must be one when first string is null

1050E Counter contains more digits than picture: string

1409E Counter exponent out of range for hexadecimal: number

1561E Counter number number is not valid (valid: number to number)

1085E Counter number expected

 1039E Counter overflow

 1424E Counter underflow

1255E CP paging error on diagnose 210 device number hex

308E CP system service name not valid

650E CP system service word is in use by another program

1147E Creation time cannot be changed for an existing file

734E CSL Routine name is not loaded

688I CSW hex; last CCW hex; some data hex

1375E CTL or RLD record expected, but found hex

1377E CTL record found as record X'hex', but count is X'hex'

1193I Current input stream number has record available

370E Cursor has been closed

1256E Cylinder number number beyond disk capacity number

253E Data not a NETDATA control record

1048E Data not packed decimal: X'hex'

504E Data set DSNAME does not exist

505E Data set DSNAME is not partitioned

500E Data set DSNAME is partitioned

1380E Data set string is not a program library; member word

596E Data set name too long: name

1554E Data space ALET hex cannot be written

1547W Data space ALET hex contains unexpected lock word

1550E Data space ALET hex contains unexpected lock word

1546E Data space ALET hex is in use; lock is word

1555E Data space ALET hex is not accessible

1545E Data space ALET hex is not initialised properly; eye-catcher is word

1551E Data space ALET hex is not locked

1552E Data space is fetch protected in key hex (PSW key hex)

1553E Data space is write protected in key hex (PSW key hex)

1183E Date cannot be converted; input date word is not valid

1182E Date format word cannot be used as an input date format

375E DB2 already connected to subsystem word

374E DB2 connection using plan word already active

651E DCSS word is not loaded

652E DCSS name word does not match the DCSS name already established

506E DDNAME name is permanently concatenated

900 CMS Pipelines User’s Guide and Reference

 Message texts

 580I DDNAME allocated: word

605E DDNAME longer than 8 characters: word

58E Decimal number expected, but "word" was found

1360E Degenerate Triple DES key

400E Delay word is not acceptable

60E Delimiter missing after string "string"

280E Delimiter 16M or longer

362E DESCRIBE followed by "word"; must be SELECT

24W Descriptor list for program "command" is not doubleword aligned; it is ignored

 530E Destructive overlap

159E Device address no longer exists

1310I Device hex has unsolicited status pending

1308I Device hex is busy or has interrupt pending

1537E Device hex is not a reserved minidisk

1538E Device hex is not attached

83E Device word does not exist

82E Device address word is not hexadecimal

1267E Device number hex is read only

1589E Dictionaries provided are number, but number is expected

1590E Dictionary size is not a multiple of 4096 (X'number')

1591E Dictionary size is not a power of 2 (X'number')

1593E Dictionary size is too large (number)

1592E Dictionary size is too small

761E Different key fields not allowed with AUTOADD

1541E Digit "character" is not hexadecimal in string number

100E Direction "word" not input or output

164E Direction "word" not valid or not supported

1181E Directory control directory string is accessed read only

691E Directory is missing: word

148E Directory pointer number not compatible with file of size number

748E Disk mode is full

1544W Dispatcher called with address space control hex

668E Divisor is zero

785E DMSOPBLK is not supported

1421E DO expected; word was found

539E Do not connect unused side stream stream

1196E Do not connect unused input stream stream

1197E Do not connect unused output stream stream

1580E Do not convert numeric type member as if it were a string

758W Do not double up relational operators

1422E DONE expected; word was found

585I ECBs posted: number; hit attention again to stall the pipeline

291E End of tape on device

1077E ENDIF expected; word was found

1565E Ending block number number larger than device capacity number

1260E Ending cylinder (number) lower than the beginning one

772E Ending period in destination word

584I Enter PIPESTOP, PIPESTALL, or immediate pipeline command

185E Entry point name is not executable

27E Entry point word not found

42E Entry point missing

662E Environment already specified (keyword is met)

1494E Equal sign expected; end of member found

 Appendix B. Messages, Sorted by Text 901

 Message texts

1495E Equal sign expected; found char

 1015E ERRNO number: chars

1233E ERRNO string reason string in string

26E Error number obtaining storage

1282E Error number on HNDIO

1601E Error number parsing URL at "string"

237E Error code X'hex' (return code number) from EXECCOMM

1445I Error in call to function: string

636E Error in encoded pipeline specification; reason code number

1339E Error opening string for string

124E Error reading file: Length of record is number but file has logical record length number

129E Error reading file: Premature end of file

112E Excessive options "string"

745E Existing record length is not number

1599E Expansion failed after number bytes (reason number)

1467E Expect >; found char

1230E Expect "begin", found string

1231E Expect "end", found string

1337E Expect CSQN205I; received string

1146E Expect OF; found: word

1513E Expect period after subscript of identifier string; found word

1148E Expected parameter token "sysv"; found "word"

 1435I Expecting string

665E Exponent is not valid: word

1427E Exponent out of range: number

1407E Exponent overflow (number)

679E Exponent too large: number

1324E Expression evaluated to the number "hex"

1323E Expression evaluated to the string "string"

 206E Expression missing

1122E Expression result is a string: string

10E Extended format parameter list is required

1036E Field ID is already defined

1033E Field ID is not defined

1491E Field identifier specified, but no further operands are present

1492E Field identifier specified, but no valid range found: word

1037E Field identifiers cannot be defined in break items

284E Field or string longer than 16M

561E File file is no longer in storage

749E File file is on OS or DOS minidisk

746E File file is open with incompatible intent

 743I File "file"

146E File "fn ft fm" does not exist

142E File "fn ft fm" is not in the XEDIT ring

740E File "words" does not exist or you are not authorised for it

700E File descriptor number is not open (reason code hex)

617E File does not have fixed format records; do not specify keyword

215E File identifier "file" not complete or too long

790E File locked by other user or other unit of work

126E File mode * not allowed

421E File mode string more than one character

117E File mode "word" longer than two characters

125E File mode missing

147E File not a proper PDS

902 CMS Pipelines User’s Guide and Reference

 Message texts

121E File not found in the active file table

701E File or directory does not exist (path "string" reason code hex)

788E File pool is not available

706E File system is quiescing (path "string")

763E File token word is not valid (reason code number)

116E File type missing

791E File was committed by other user or other unit of work

1315E Filter package word has bad eye-catcher word

1312E Filter package word is already loaded

1318E Filter package word is in use by number stages

1316E Filter package word is not loaded

1317E Filter package word is not loaded by FILTERPACK LOAD

1319E Filter package cannot be loaded globally (task is not job step)

1575E First argument to D2C/D2X is negative, but second argument is omitted: number

220E First record not a delimiter: "data"

1306E First record on track not 5 bytes long (it is number)

723I Fitting identifier not resolved

695E Fitting already defined: "name"

792E Fitting placement incompatible with RPL

1406E Fixed number needs at least number columns

74E Fixed records not same length; last bytes followed by current bytes

1436E FIXED specified, but no record length specified and no input

1405E Floating point number too long (length number)

1404E Floating point number too short (length number)

778E Forbidden character in file name or file type words

798I Forcing pipeline stall

1368E Format character 'char' not valid

1413E Found number columns

1414E Found number rows

334E FROM value not valid for file of size number records

1604I FTP word "data"

1600E FTP error: string

1603E FTP processing error number

240E Function name not supported

1078E Function does not support arguments; word was found

1303E Function name expected, but identifier found: number

711E Function not supported: word

1079E Function requires one-character argument; "word" was found

 1474I Global hex

1226E Global area is corrupted

1358W Global lock held by R12=address R14=address

1597E GLOBALV service not available

1211I Got hex doublewords at hex

 298I HCPSGIOP contents: hex

172E Help not available for relative message number; issue PIPE HELP MENU for the Pipelines help menu

1040E Hex data too long (number bytes)

64E Hexadecimal data missing after prefix

1542E Hexadecimal string too long: number

586I Hit attention again to terminate waiting stages

643E HLASM not found in storage

1134E Host word does not exist

1135E Host word does not exist

1535E Host access list is full

 Appendix B. Messages, Sorted by Text 903

 Message texts

1127E Host name too long: string

292E I/O error on address; CSW X'hex', CCW X'hex'

1369E IDR record does not begin X'80'; found X'char'

1370E IDR record indicates number bytes present, but record is number

 1222E IEANTRT RC=hex

1220E IEANTRT RC=hex not equal to R15 (=hex.)

1361E IEWBFDAT code code returns code number reason X'hex'

1322I Ignoring HALT at hex

717I Ignoring IUCV interrupt for message number; waiting for number (interrupt on path number; sent on nu

587E Immediate command name is not active

23E Impossible record (number bytes from X'address')

621W Impossible target string

1372E Improper control record prefix hex

1371E Improper IDR language processor flag byte X'hex' at offset number

1086E Improper operand for string expression

754E Improper use of stage; reason code number

1480I In procedure word

 759E Incompatible types

81E Incomplete conversion triplet

 1080E Incomplete IF

1396E Incomplete inputRange string

1390E Incomplete member definition: name

 1460E Incomplete pattern

1511E Incomplete subscript in string

1251E Incomplete UTF-8 multibyte character

 1423E Incomplete WHILE

221E Incorrect character "character" in expression

1175E Incorrect check word in PIPEBLOK: word

1250E Incorrect code point X'hex' in first byte

1252E Incorrect code point X'hex' in second byte

1598E Incorrect compression signature X'hex'

1254E Incorrect device number hex (larger than FFFF)

779E Incorrect directory word

582E Incorrect DSNAME "string"

742E Incorrect file "file" (reason code number)

777E Incorrect file mode number word

775E Incorrect file name word

781E Incorrect file token hex

776E Incorrect file type word

1387E Incorrect first character in identifier: string

1264E Incorrect home address X'hex'

750E Incorrect input block format

583E Incorrect member name "string"

1124E Incorrect NAMEDEF word (a directory name must contain a period)

68E Incorrect OS block descriptor word X'hex'

70E Incorrect OS record descriptor word X'hex'

768E Incorrect record in file; reading record number

1265E Incorrect record 0 count field X'hex'

1247E Incorrect selector value specified (interrupt code number)

1438I Incorrect text unit type X'hex'

1562E Incorrect UTF-number X'hex' reason code number

608E Incorrectly specified DSNAME word

1510E Index number is not positive

1506E Index number is out of bounds (number)

904 CMS Pipelines User’s Guide and Reference

 Message texts

1504E Index missing for member word

793E Initial RPL state is not valid: number

1184E Input date word cannot be expressed in the output date format

219E Input not in correct format (check word is "check word", not "word")

1244E Input record contains incorrect data for ASCII quoted-printable format: X'hex'

576E Input record is number bytes; disk block size is number bytes

352E Input record is number bytes; it should be number

1019E Input record is shorter than 24 bytes (it is number)

681E Input record length (number) is over the maximum allowed (number)

546E Input record length number is too short; 11 is minimum

1261E Input record too long (it is number)

401E Input record too short (number bytes)

1556E Input record too short for complete VMCMHDR (number bytes available; 40 required)

33I Input requested for number bytes

1285I Input stream number is only stream connected

1378E Installation validation routine rejected SVC 99

1227E Insufficient data returned by DMSGETDI; got number expect number

122E Insufficient free storage

1548E Insufficient space in the data space for number bytes

289E Intervention required on device

1585I Invoking CMS command word with header hex at hex in process hex thread hex

 340I IPARML: message (R0=number)

 1022I IPARML: message (R0=number)

 1014E IPAUDIT hex

343E IPAUDIT is not zero: hex

313E IPRCODE number received on IUCV instruction

 312I IPUSER: hex

304E ISPF is not active

555I Issue PIPE AHELP PIPE or PIPE AHELP MENU

1594I Issuing wait to operating system

306E IUCV application name already active (HNDIUCV RC=4)

344I IUCV External Interrupt type

317E IUCV is not available to CMS

1114I IUCV reply number bytes

1351E Key length number is not valid

1144E Key/ID field is not anchored at the extremities of the input record (number before; number after)

1166E Keyword name is not recognised for configuration variable name

109E Keyword word is not a valid blocking format

187E Keyword word must be LIFO or FIFO

664E Keyword is not supported when stage is first: word

47E Label label is already declared

46E Label label not declared

44E Label string is not valid

19W Label "word" truncated to eight characters

176E Language "word" not found

175E Language table not generated

705E Last character is a slash (path "string")

16E Last character is escape character

1516E Last character of identifier is a period: word

641I Last connected output stream severed by its consumer

1088W Last operation is not assignment

72E Last record not complete

573E Last text unit or GDF order not complete

 Appendix B. Messages, Sorted by Text 905

 Message texts

771E Leading period in destination word

1439E Left hand operand is a string

380E Left parenthesis missing

1302E Leftmost word of 32-bit counter number is not zero (hex)

1229E Length code char is not valid

1408E Length of output member (number) is above maximum number

729I Letting dispatcher wait

657E Limit of connections to word is reached

690E Logical drive was not found: word

59E Logical record length number is not valid

1150E Lost race for SCBWKWRD

622E Mask and string are not the same length

1530E Maximum number of address spaces is exceeded

1531E Maximum size of address spaces is exceeded

502E Member name already selected by allocation

1428E Member name has no type

1429E Member name has unsupported type char

1398E Member name not defined in structure name

507E Member name not found

1364W Member word has no sections

1499E Member word is a manifest constant

1509E Member word is a scalar

1508E Member word is an array

1500E Member word is not a manifest constant (it is a data member)

150E Member word not found

1389E Member already defined: name

1399E Member name further qualified with name

595E Member name is not allowed for this function

1431E Member name longer than 16M (it is number)

597E Member name or generation too long in DSNAME name

607E Member name too long in DDNAME name

 189I Messages issued: list

405E Minimal C program tries to extend DSA

96E Missing PIPMOD operand

 1082E Missing colon

1266E Missing end of track marker

200E Missing ending parenthesis in expression

1397E Missing identifier in qualified name: word

163E Missing keyword INPUT or OUTPUT

1465E Missing number at end of pattern: string

51E Missing operand after inputRange(s)

1461E Missing pattern at string

57E Missing right parenthesis after inputRanges

281W Mixed case command verb "word"

214E Mode fm is not accessed or not CMS format

119E Mode letter not available or read only

1570E Mode word does not refer to an SFS directory

713E Mode is not valid: word

1320E Module word contains a type 1 filter package; run it as a CMS command to install

158E Modulo must be positive (it is number)

654E Monitor is currently running in exclusive mode; shared request rejected

653E Monitor is currently running in shared mode; exclusive request rejected

1283E More than number CCWs in input record

906 CMS Pipelines User’s Guide and Reference

 Message texts

678E More than fifteen exponent digits in picture picture

1049E More than one decimal point in data: string

794E More than one RPL refers to stage

92E More than ten key fields

56E More than 10 inputRanges specified

80E More than 255 conversion triplets specified

 1041E Multiplication overflow

1131E Name server on port number at IPaddress timed out

1133E Name server query in wrong format

1132E Name server response is truncated

753E NAMEDEF too long in string

300E Namelist does not end

1223E Nametoken field name contains value; expect value

1232E Native sockets are not available (reason code number)

1572E Needle cannot be empty

233E No active EXECCOMM environment found

1517E No active qualifier for word

1587E No compression dictionary provided

139E No connection available to redefine for connector

501E No data set is allocated for DDNAME

730E No data sets found matching DSNAME

760E No data will be available for input field

752E No default file pool defined

676E No digits selected in picture picture

692E No diskette in drive: word

13E No ending right parenthesis for global options

677E No exponent digits in picture picture

1518E No identifier found

55E No inputRange(s) in list

1013E No IUCV paths can be connected

1463E No matching specified

346E No message found (id number)

0E No message text for message number

1279E No messages in queue, but interrupt received.

1543E No minidisk pool has been defined

1171W No output date format specified; the default output date format is the same as the input date format

256I No pipeline specified on pipe command

301E No position for last variable

90E No reader file available

166E No real device attached for device

1410E No record read from stream number

1173I No RPL to restore

726I No RPLs changed state

1125E No space left in PDS directory

373E No SQL stub module or DB2 not present in system

173E No stage found to run

1386E No structure name found

1577E No structures defined in caller

1393E No structures defined in pipeline set

1402E No structures defined in thread

558E No symbol table available

773E Node word is not defined to JES

 Appendix B. Messages, Sorted by Text 907

 Message texts

1301E Not a built-in function: word

50E Not a character or hexadecimal representation: word

1038E Not a decimal number: "word"

515E Not a decimal range: word

716E Not a dotted decimal network address: word

1174E Not a hexadecimal address word

655E Not a named saved segment: word

516E Not a record number or a range of record numbers: word

1032E Not a valid field identifier: word

319E Not authorised to communicate with service

557E Not authorised to obtain CP load map

747E Not authorised to read file

338E Not binary data: string

1430E Not hexadecimal: X'string'

767E Not numeric character in timestamp: string

715E Not octal: word

123E Not same ADT

1311I Not squished track reason hex

1454E Not valid packed data hex

382E Nothing specified within parentheses

 604E Null DDNAME

599E Null DSNAME name

 43E Null label

606E Null member name in DDNAME name

598E Null member name or generation in DSNAME name

11E Null or blank parameter list found

 12E Null pipeline

627E Null program read from stream

1416E Null record read from stream number

17E Null stage found

157E Null string found

231E Null variable name

287E Number number cannot be negative

66E Number number is outside the valid range

1496E Number expected; end of member found

1574E Number is not an integer: number

1258E Number of tracks number beyond remaining device capacity number

335E Odd number of characters in hex data: string

1464E Odd number of nibbles (number) in pattern: string

53E Odd number of translate pairs

1363E Odd string length number

149E Offset is not smaller than modulo

755E Offset not shorter than width

744I Open flags words

782E Open intent is incompatible with stage position (intent is char)

685E OpenExtensions is not available (reason code number)

686E OpenExtensions return code number reason code hex function: word

 703I Opening "hex"

1186W Operand string is ignored for input date format word

245W Operand word ignored

283W Operand word ignored with console

111E Operand word is not valid

95E Operand word is not valid for PIPMOD

151E Operand "string" is not range of characters or a delimited string

908 CMS Pipelines User’s Guide and Reference

 Message texts

154E Operating environment not supported by stage

1091E Operator expected; found word

635E Option word conflicts with option word

14E Option word not valid

1451E Option string is not valid for function: character

1450E Option string is null

345E Originator name severed path number

35I Output number bytes

183E Output buffer overflow; number required

499E Output descriptor name is not defined

498E Output descriptor name is not valid

508E Output descriptor too long: word

1455E Output field is number bytes, but packed number requires number bytes to avoid truncation

393E Output field too short to contain field length

63E Output specification word is not valid

61E Output specification missing

693I Packages sent: number; packages received: number

1449E Pad character is a string, not a single character: string

1326E Pad is not a single character (it is string)

1540E Page number too large: number

559E Paging error reading symbol table

194E Parenthesis not supported in connector

 612I Parmlist: hex

1434E Parse error in state number, unexpected string at offset number: "string"

1021I Path number is connected for application

342I Path number is connected to service

712E Path name is missing from the input record

708E Path name is too long: path "string"

569E Path to service severed (path number)

1466E Pattern longer than 32767 bytes

770E Period missing in destination word

673E Picture has more than one V: picture

670E Picture longer than 255 characters: picture

1145W PIPE command was issued from XEDIT, which truncates at or before 255 characters (use Address Com

1381I Pipeline word committed to number worst return code number

195E Pipeline cannot contain only a connector

694E Pipeline is not called from a driving program

93E Pipeline not installed as a nucleus extension; use PIPE command

613E Pipeline specification is not issued with CALLPIPE

 29E Pipelines stalled

339E PIPSDEL return code number

 568I PL/I: message

378E Plan word is not authorised

661E Please ask nicely

407E PLISTART or CEESTART is not present

1459E Plus or minus expected; found string

288I Posting ECB at address

724I Posting fitting identifier with hex

170E Prefix or suffix type connector not allowed

624E Premature end of expression

1403E Premature end of expression; term expected

224E Premature end of primary input stream; sequence number number not found

1437E Previous member did not establish a position for word

350E Primary key longer than secondary

 Appendix B. Messages, Sorted by Text 909

 Message texts

1275I Processing cylinder number track number record number

1490I Processing item number number: string

1194I Producer on input stream number has record available

535E Program check code

797E Program check code 'hex'x on TIO to communications device

1595E Prologue not recognised (hex)

1243T PSTV at address corrupt: string

181E PSW mask and key are X'hex', not X'FFE0' or X'03E0'

1313E PTF filter package word is already loaded

1113I Purging IUCV message

1401E Qualifier contains member: name

538I Query state of side stream stream

1139I Query summary state of streams

54E Range "numbers" not valid

197E Range shorter than first string

564W Range(s) should be before keyword; put more than one in parentheses

1336E Reason number on string: string

1235I Reason Code hex (hex) number (decimal)

 1016I Reason: chars:

1110I Received number bytes

517E Record number not present in file

518E Record number truncated

238E Record count "word" not zero or positive

1126E Record descriptor indicates number bytes, but minimum is number

1100E Record descriptor is too small (it contains number)

741E Record format "character" is not supported

128E Record format not existing file format letter

241E Record format or logical record length is not valid

1274E Record incomplete (number bytes available; number bytes required)

134E Record is number bytes, but format F file record length is number

1277E Record length (number) is not 8+keylength+datalength (number)

1415E Record length number is not a multiple of four (stream number)

514E Record length number is over the maximum 32767

78E Record length number is too much

1359E Record length number not multiple of cipher block size number

680E Record length is zero

140E Record longer than specified length bytes bytes

547E Record number number is beyond end-of-file

1566E Record size (number blocks) does not agree with block count number in record

1270E Record zero missing

1212I Rel hex doublewords at hex

687E Relational operator expected; found word

41E Request "code" not valid on service call to module

1210I Request for hex doublewords unsuccessful (from hex)

1249E Requested SYSIB information not available

145I Requesting function on fn ft fm

113E Required operand missing

722I Resolved fitting identifier

1172I Restoring fitting name word

 719I Resuming pipeline

31I Resuming stage; return code is number

120E Return code error number from parameter list function fn ft fm

77I Return code number

910 CMS Pipelines User’s Guide and Reference

 Message texts

553E Return code number calling IRXSUBCM function

1228I Return code number erasing work file

303E Return code number from function

699E Return code number from function (file: word)

311E Return code number from CMSIUCV function

91E Return code number from CONSOLE type macro

297E Return code number from diagnose X'A8'

732E Return code number from DMSCSL

579E Return code number from DYNALOC; reason hex

310E Return code number from HNDIUCV

659E Return code number from LINEWRT macro

162E Return code number from NUCEXT

108E Return code number from operation operation on tape tape

118E Return code number from renaming the file

354E Return code number from SQL, detected in module module

601E Return code number from STFSMODE

577E Return code number from STIMERM

731E Return code number from SVC 26

600E Return code number from TGET

543E Return code number from VMCF: string

144E Return code number from XEDIT operation

143E Return code number from XEDIT state

503E Return code number obtaining data set control block

1520E Return code number on ADRSPACE/ALSERV/MAPMDISK diagnose

1330E Return code number on diagnose E0 subcode hex

637E Return code number on IDENTIFY for entry point

420E Return code number reading or writing block number on disk mode

513E Return code number reading or writing XAB (parameters hex)

89E Return code number reading the virtual reader

376E Return code number reason hex from call to DSNALI

591E Return code number reason code hex from BLDL

594E Return code number reason code hex from STOW

733E Return code number reason code number from routine

762E Return code number reason code number from TSO

549E Return code number, reason code number, R0 hex from IRXINIT

1136E Return code from name server: number

1584E Return code 70 renaming the file. Use >SFS instead

1586I Return from CMS command word

1012E Return/condition code number on IUCV declare buffer

1011E Return/condition code number on IUCV QUERY

718I Returning to application

725I Returning to the pipeline dispatcher

40E REXX program name not found

1440E Right hand operand is a string

1501E Right parenthesis expected after array bound; found char

1505E Right parenthesis expected after index

381E Right parenthesis missing

1376E RLD record expected, but found CTL hex

738E Router did not resolve entry point

 721I RPL hex

 1479I Running: string

789E SAFE can be specified only for PRIVATE work unit

1456E Scale not numeric: string

1457E Scale out of bounds: number (-32768 to 32767 is valid range)

 Appendix B. Messages, Sorted by Text 911

 Message texts

639E Scaling allowed with packed data only

1560I Scanned member: string

1327E Scanner jammed in state number in start condition number

212E Screen size number less than 1920 or greater than 16384

191E Second character of connector not a period

211E Second target missing

222E Secondary stream not defined

1000E Secondary vector too short for epname or entry not present; install current CMS Pipelines

209E Segment length number not 2 or more

73E Segmentation flags not compatible; previous is X'previous' and current is X'current'

36I Select side stream number

1195I Selecting input stream number

1571E Self-defining is too long (number bits): string

1458E Semicolon expected; found string

1468E Semicolon, colon, or comma expected; found char

1563E Senary stream is incompatible with word.

 293I Sense data

1111I Sent number bytes

225E Sequence number not found

229E Sequence error in input stream from previous to new

223E Sequence error in output file: previous to new

226E Sequence field length length too long; 15 is maximum

227E Sequence field not present in record; number bytes read

314E Server user ID is not available

315E Server has not declared a buffer

318E Server machine has too many connections

1287E Server responds without SF4

38I Setting dispatcher exit to X'address'

548I SEVER function requested for side

1286E SF4 is not specified

593E Shared data set DSNAME cannot be allocated exclusive

138E Short circuit not from input to output in connector

1238I Shutting down for write

 552I SHVBLOCK: hex

1115I Socket call for type

1020E Socket operation cancelled (message is purged)

784E Space quota exceeded

131E Specified logical record length does not match existing logical record length number

786E Specified work unit does not exist

177I Spent number milliseconds in routine

1332E SPOOL file number contains CP trace data

1333E SPOOL file number does not contain CP trace data

1331E SPOOL file number does not exist

1334E SPOOL file number is in use

511E Spool file identifier SFID rejected by CP

510E Spool ID SFID not found or incompatible with reader

1269E Spurious end of track marker

365E SQL has no information about topic

359E SQL object already exists

363E SQL RC -205: Column name not found in creator.table

358E SQL RC -805: Access module name not found; refer to help for SQL to generate access module

357E SQL RC -934: Unable to find module module; run SQLINIT

282E Stage cannot be used with ADDPIPE

1120E Stage cannot run in CMS subset

912 CMS Pipelines User’s Guide and Reference

 Message texts

1121E Stage cannot run while DOS is ON

1198I Stage is active

1486I Stage is flagged to stop. Forcing exit from word

1485I Stage is flagged to stop. I/O old PSW and IOPSW fields are not the same. Type B to continue

1484I Stage is flagged to stop. It is not summarily stoppable

1483I Stage is flagged to stop. PSW in wait/free storage management.

1481I Stage is flagged to stop. PSW not in CMS Pipelines code

30I Stage is in state state

1482I Stage is in the dispatcher; likely to stop on the way out.

1576E Stage is not running in a subroutine pipeline

565W Stage is obsolete; use name instead

20I Stage returned with return code number

28I Starting stage with save area at X'address' on commit level number

683I STAX return code number

232E Stem or variable name is too long; length is number bytes

1242I STOPECB hex called

32I Storage address length

1215E Storage at address allocated hex doublewords; releasing hex

534E Storage at address is not addressable

1213E Storage at address is not on allocated chain

533E Storage at address is protected

184E Storage at address not released; R12 hex R14 hex

1214E Storage at address; check word at address is destroyed

1216E Storage at address; check word is destroyed

783E Storage group space limit exceeded

532E Storage key hex not acceptable

103E Stream identifier not defined

102E Stream number not defined

174E Stream "identifier" is already defined

178E Stream "identifier" is not found

133E Stream "word" already prefixed

132E Stream "word" already replaced

554E Stream identifier string must not be numeric

165E Stream identifier word not valid

45W Stream identifier "name" truncated to four characters

169E Stream identifier missing

37I Streamnum side stream number intersection number

182W String "string" ignored in command

1448E String contains a character that is not hexadecimal char: string

1447E String contains blank not on byte boundary: "string"

1446E String contains leading or trailing blank: "string"

1417E String length cannot be negative: number

336E String length not divisible by 8: string

 156E String missing

1087E String operand not acceptable to operator

1418E String position cannot be zero

1385E Structure name is empty

1559E Structure word is not built in

1388E Structure already defined: name

1384E Structure name expected; found string

1392E Structure not defined: name

1400E Structure not further qualified: name

1394E Structure still in use: name (number users)

1284E Subchannel for device number hex is busy

 Appendix B. Messages, Sorted by Text 913

 Message texts

257E Subcommand environment word not found

1514E Subscript "word" is not valid in identifier string

379E Subsystem name is not up

377E Subsystem word is not defined

1241I Suppressed CP/CMS command: string

638I SVC 99 parameter list hex

1588E Symbol translation and format-1 sibling descriptors are mutually exclusive

250E Syntax error in expression

666E Syntax error in expression; reason code number

774E Syntax error: explanation

769E SYSOUT Class char is not a letter

333E System service name is in use

360E Table table does not exist

305E Table word is not open

290E Tape address is write protected

279E Tape identifier word not valid

626E Target data missing for keyword

625E Target expression missing

 720I Terminating pipeline

1382E Tertiary stream not defined

640I Text unit type data

1179W The alternate pointer to the Contents Vector table has been restored from the primary pointer

190E The character cannot begin a stage

1291I The field ADMSCWR in NUCON is incorrect; found hex; display of ABEND information may be in jeo

1170E The input date is not valid: word (reason code number)

67E The number is incompatible with "option"

1178W The pointer to the Contents Vector table has been restored from the alternate pointer

1176W The pointer to the Contents Vector table is destroyed (reason code number); investigate VM61261

137E The string of operands is too long

1177E The system does not support date format word

1221I The TSO Pipelines name/token is not established

1075E THEN expected; word was found

1328E There is no default for the type argument

1289E Third level interrupt exit is already set at hex

309E This machine has too many IUCV connections

127E This stage cannot be first in a pipeline

87E This stage must be the first stage of a pipeline

1300E Time zone offset number is not valid (86399 is max)

644E Timestamp word not valid; reason code number

765E Timestamp too long:string

764E Timestamp too short:string

94E Token token is not valid for PIPMOD

1419E Too few arguments in function call

242E Too few arguments; number is minimum

366E Too few input streams

736E Too few parameters in call to name (number found)

1493E Too few streams are defined; number are present, but number are required

1411E Too few streams are defined; number are present, but three streams are needed

1420E Too many arguments in function call

243E Too many arguments; number is maximum

658E Too many concurrent STIMERM requests

1089E Too many counters

204E Too many ending parentheses in expression

1074E Too many nested IFs

914 CMS Pipelines User’s Guide and Reference

 Message texts

1149E Too many parameter tokens found (second is "word")

737E Too many parameters in call to name (number found)

1539E Too many ranges to save

1268E Too many records on track (number)

264E Too many streams

302E Too many variable names specified (number); maximum is 254

236E Too much data for variable name

787E Too much ESM data (number bytes)

1515E Top level structure "word" cannot be subscripted

1297I Trace table at hex

1307E Track capacity exceeded

1257E Track number number beyond cylinder capacity number

1278E Track number is not specified in input record number

1583I Trap dropped into CP Read

1582I Trap issued the CMS command "string"

1453I Trap issued the CP command "string"

 1581I Trap requested

1224I TSO Pipelines global area is at hex

1128E Two consecutive periods in host name: string

682I TXTunit list hex

550E Unable to access variables

542E Unable to communicate with user ID

1017E Unable to connect to server

307E Unable to connect to service

1489E Unable to convert from negative to unsigned

1355E Unable to convert to integer. number digits in fraction

1357E Unable to convert to integer. Exponent too large. (number)

1356E Unable to convert to integer: number

1163E Unable to declare exit

1272E Unable to find DMSEXI

21E Unable to find EXECCOMM for REXX

1162E Unable to find module name

663E Unable to generate delimiter for variable name

572E Unable to load file (EXECLOAD return code number)

1161E Unable to load module name (return code number)

1362E Unable to load module word (ABEND code HEX reason number cause number)

1314E Unable to load module word (return code number)

1473E Unable to obtain global lock; held by hex

364E Unable to obtain help from SQL (return code number)

261E Unable to open DDNAME

1602E Unable to open FTP data connection

603E Unable to read directory for member name

1141E Unable to resolve word (RXSOCKET did not return a result)

1142E Unable to resolve word (RXSOCKET error string)

1140E Unable to resolve word (RXSOCKET is not available)

1143E Unable to resolve word (RXSOCKET Version 2 is required)

671E Unacceptable character character in picture picture

674E Unacceptable drifting sign in picture picture

1123E Unacceptable input record length number

714E Unacceptable interval word

672E Unacceptable picture picture; word is incorrect (reason code number)

509E Unacceptable spool file identifier SFID

675E Unacceptable zero suppress/protect in picture picture

1309E Undefined return code number from Diagnose A8 on device hex

 Appendix B. Messages, Sorted by Text 915

 Message texts

1081E Unexpected character char

1469E Unexpected end of module word

1383E Unexpected EOF on primary input

320E Unexpected IUCV interrupt with IPTYPE type on path number

570E Unexpected IUCV interrupt with IPTYPE type on path number

1076E Unexpected keyword: word

1137E Unexpected response record type: number

1379E Unexpected return code X'hex' on SVC 99

1240I Unknown CP/CMS command: string

52E Unknown translate table "word"

1395E Unqualified member name: name

1090E Unrecognised operator word

1325E Unrecognised option string

1472E Unrecognised PIPMOD immediate command: word

623E Unrecognised relational operator word

1471E Unrecognised STOP parameter: word

620W Unsupported code page number

660E Unsupported code page number

391E Unsupported conversion type

602E Unsupported data set organisation hex

710E Unsupported file type number (file descriptor "number")

709E Unsupported file type number (path "string")

230E Unsupported format "type"

1281E Unsupported IUCV message format

406E Unsupported language code number for entry point

110E Unsupported record in IEBCOPY unloaded data

1138E Unsupported RESOLVEVIA: word

684E Unsupported system variable word

1558E Unsupported VMCF function code number

1425W Use parentheses when using the result of an assignment: string

566W Use secondary output instead of stack

367E Use SQL CONNECT TO to identify the subsystem (Reason hex)

756W Use the := assignment operator instead of =

757W Use the ¬ operator instead of !

1525E User word is not logged on

590E User data length is over 62 or odd (it is number)

 348I UserData data

97E Userword for pipe nucleus extension is zero

1271W Using obsolete version of word word

1236I USS return code number reason hex function: word

49E Value for keyword "keyword" is not acceptable

15E Value missing for keyword "keyword"

1130E Variable name is not defined in file string

1164W Variable name is not valid: contents

1169E Variable word is not a token set by SCANRANGE (reason code number)

235E Variable name is not valid: word

1524E VCIT hex does not represent a user that is logged in

571E Virtual device device number is in use by another stage

512E Virtual device device not a spooled printer

85E Virtual device word is not a supported real type

84E Virtual device word is not a supported virtual type

1522E Virtual machine is not in XC mode

1526E Virtual machine may not share address spaces

1010E VMCF CVT not found

916 CMS Pipelines User’s Guide and Reference

 Message texts

541E VMCF is in use by another stage

1557W VMCF message arrived, but no listener is active

545E VMCF message rejected by user user ID

 544I VMCPARMS: hex

1259E Volume does not have label specified

76I Waiting on ECB at X'address': hex

1366E Warp word already registered

1367E Warp word no longer registered

1365E Warp word not registered

531E Word must be 8 characters; it is number

1502E Word-style not supported with an array

689E Workstation file is missing: word

141E XEDIT not active

780E You are not allowed to write to file

167E You cannot READ from the second reading station

1246E You need a more modern VM (interrupt code number)

1245E You need pipeline version hex for this stage

642E ZONE already specified

368E 10 SQL stages already active

796E 370 accommodation must be turned on (CP SET 370ACCOM ON)

161E 64K or more inbound data

 Appendix B. Messages, Sorted by Text 917

 CMS Commands Formulated as Pipelines

Appendix C. Implementing CMS Commands as Stages in a Pipeline

For those knowing CMS commands, it may be interesting to see how the known primitives

can be implemented with CMS Pipelines. This chapter may also be useful if you wish to

“add an option” to a CMS command. Here you find how to write the original command as

a pipeline specification; often, all you have to do is to “open it up” and add stages.

If the CMS command produces console output, another approach may be to run the

command with cms and post process the output in the pipeline.

Though most CMS commands control the CMS environment, the ones listed below process

data and are thus potential pipelines.

These commands cannot be formulated simply using the device drivers and filters of CMS

Pipelines: COMPARE, DISK, EXECUPDT, LISTIO, MACLIB (one can be generated), TAPE (there

is a device driver), TAPPDS, TXTLIB (members can be extracted).

EXECMAP, IDENTIFY, LISTFILE, MACLIB MAP, MODMAP, NUCXMAP, QUERY, and TXTLIB MAP

can be issued via cms and command to obtain the output and process it in the pipeline.

 Copyfile
The simplest usage of COPYFILE (to copy a file from one minidisk or directory to another

one) is written as a cascade of two disk device drivers. Figure 408 shows how to copy a

file from one mode letter to another one (making the output file variable record format).

Most of the options on COPYFILE to change the file format or contents are implemented as

separate stages, described below.

FROM drop <n-1>.

FRLABEL frlabel, but the argument is not restricted to eight bytes.

TOLABEL tolabel, similarly not restricted.

FOR take.

SPECS spec.

OVLY overlay.

RECFM Use FIXED or VARIABLE option on the disk device driver.

LRECL pad or strip.

TRUNC chop or strip.

OLDDATE No equivalent function is available.

PACK pack, though with care: see the usage notes for pack.

UNPACK unpack.

FILL pad or strip.

EBCDIC xlate. Archaic.

UPCASE xlate UPPER.

LOWCASE xlate LOWER.

TRANS xlate.

SINGLE fanin and multiple streams concatenate files.

Figure 408. Copying a Disk File

copyfile some file a = = b
pipe < some file a|> some file b

918 Copyright IBM Corp. 1986, 2020

 CMS Commands Formulated as Pipelines

 Execio
Most of the functions of EXECIO can be done with device drivers and filters. CMS

Pipelines supports more devices than does EXECIO, notably tape and 3270 full screen; unit

record device addresses can be specified to use other than the standard devices. These are

the device drivers corresponding to the EXECIO device options:

DISKR disk and < read a CMS file. Use diskslow FROM to start at a particular line.

Use diskback to read a CMS file backwards. Use diskrandom to read a CMS file

randomly.

DISKW disk, >, and >> write a CMS file. Use diskslow FROM to start at a particular

line. Use diskupdate to replace records in a file.

CARD reader reads card images. Select lines with X'41' in column 1 with find and

discard the first column with spec.

/* CARD REXX, subroutine to read cards */
'callpipe reader|find' '41'x'|spec 2-* 1|*:'

CP cp.

PUNCH punch.

PRINT printmc is equivalent to PRINT with the carriage control option (PRINT). Use

asatomc to ensure the carriage control is converted to machine carriage

control.

/* PRINT REXX; subroutine to generate CC */
parse arg cc
if cc='' then cc='09' /* Write space */
'callpipe *:|spec x'cc '1 1-* 2|asatomc|printmc'

EMSG emsg.

STEM stem.

VAR var.

LIFO stack LIFO.

FIFO stack FIFO.

SKIP hole.

STRING literal.

Other EXECIO options are used to edit lines. The equivalent CMS Pipelines filters are:

FIND find selects records with a leading string. EXECIO also stacks a line with the

number of the line selected. diskrandom NUMBER provides the record number

in the first ten columns. For sequential read from the beginning of the file, use

spec to put the record number into each record. Look for the string in

columns 11 and onward.

LOCATE locate to search for a string.

AVOID nlocate to search for lines without a string.

ZONE Use the column range option on locate and nlocate; offset the argument to

find.

MARGINS spec.

STRIP strip TRAILING.

CASE Use xlate UPPER to upper case lines.

 Movefile
Combine device drivers; no filters are needed.

 Appendix C. Implementing CMS Commands as Stages in a Pipeline 919

 CMS Commands Formulated as Pipelines

 Netdata
Part of the function of this command is available in block NETDATA and deblock NETDATA.

deblock TEXTUNIT deblocks the information in control records.

 Print
Printing files with carriage control is done by printmc, possibly in conjunction with

asatomc. Though more scaffolding is needed, the crux of the matter is:

'pipe <' file '| asatomc | printmc'
'cp sp e close'

 Punch
For NOHeader option:

'pipe <' file '|punch'
'cp sp d close'

The header can easily be built from the output from state.

 Readcard
Partly available using reader. Batched files and the :READ control card to name the file

need a little more work.

 Type
Immediately available as < connected to console. Use spec to do cols nn-nn and hex
options. members is used instead of disk to read a member of a library.

 Update
Single level update is available with update. Multilevel update is done as a cascade of

such stages.

920 CMS Pipelines User’s Guide and Reference

 Using Different Versions of CMS Pipelines

Appendix D. Running Multiple Versions of CMS Pipelines
Concurrently

This appendix describes how CMS Pipelines initialises itself and how you can use two or

more versions of CMS Pipelines concurrently if you perform the initialisation explicitly.

 Basic Initialisation
These steps are performed when the PIPE command is issued for the first time in a CMS

session (assuming, for the moment, that the code is loaded from disk):

1. The PIPE MODULE is brought into the CMS transient area. This is a small bootstrap

module.

2. The bootstrap module looks for the nucleus extension PIPMOD, which contains the

main pipeline module. Initially, this module is not loaded as a nucleus extension.

! 3. The bootstrap module loads DMSPIPE MODULE as a system nucleus extension under the

! name PIPMOD. The PIPE MODULE bootstrap included with the Runtime Library loads

! the PIPELINE MODULE instead.

4. The bootstrap issues PIPMOD INSTALL to make the main pipeline module initialise

itself.

5. The main pipeline module declares a (user) nucleus extension for PIPE. This nucleus

extension will process future PIPE commands.

6. The bootstrap module regains control when the main module has been initialised. The

bootstrap clears out the name of the module loaded in the transient area (to avoid a

recursion) and then reissues the original PIPE command to process the pipeline

specification. This time the command is processed by the main pipeline module.

A CMS ABEND will cause the PIPE nucleus extension to be dropped, because it is a user

extension; but the PIPMOD nucleus extension will remain installed, because it is a system

extension. A subsequent PIPE command will then bypass step 3.

Initialisation of a Shared Segment
Because the main module is several hundred kilobytes in size, it is recommended that it be

! installed in a shared segment. Define the shared segment and create or modify the

! definition file to list the logical segments in the physical segment. Create the definition file

! for the logical segment.

This statement should be used to include the main pipeline module in a logical segment:

MODULE PIPELINE (SYSTEM SERVICE IMMCMD NAME PIPMOD

! The segment is generated with the SEGGEN command.

When the main pipeline module is installed in a shared segment, the segment is attached to

the virtual machine by the CMS command SEGMENT LOAD. This is normally performed in

the system profile before any pipeline specifications have been issued. The main module is

now installed as a nucleus extension by CMS. Thus, step 3 is bypassed when the pipeline

is initialised on the first PIPE command.

 Copyright IBM Corp. 1986, 2020 921

 Using Different Versions of CMS Pipelines

 Coexistence
The Runtime Library version of CMS Pipelines can coexist with the version shipped as

part of z/VM. The version used is determined by which of the two PIPE bootstrap modules

is loaded into the transient area in step 1. Make sure the module you wish to use is first in

the search order or installed as a nucleus extension.

You can perform part or all of this initialisation procedure by hand to install a different

module or to use a command name other than PIPE.

Assuming you are running with the Program Offering level of CMS Pipelines and you

wish to try some commands against the pipeline shipped in VM/ESA, you can issue these

commands to make an EPIPE command:

nucxload epipmod dmspipe (system service immcmd
epipmod install epipe

To use QPIPE to issue pipeline specifications to the Program Offering:

nucxload qpipmod pipeline (system service immcmd
qpipmod install qpipe

! Filter Packages
! To use a filter package with CMS Pipelines, the filter package must be associated with the

! pipeline module. When multiple pipeline modules are installed, the filter package must

! associated with the right pipeline module (or both).

: CMS Pipelines supports two types of filter packages:

: ¹ Type 1, which is available with CMS only. Such a package includes the FPLNXF glue

: module. It is installed by invoking it as a CMS command. The balance of this section

: discusses type 1 filter packages.

: ¹ Type 2 filter packages include the FPLNXG glue module. They are managed by

! filterpack. The filter package is associated with the pipeline module in which the

! filterpack stage runs.

: The glue code in FPLNXF assumes that the main pipeline module is installed as the nucleus

extension PIPMOD. Explicit installation of a filter package is required to use it with a

pipeline that resides in a different nucleus extension. Perform these steps to install the

! module FPACK as a filter package with a main pipeline module that is installed as EPIPMOD.

As case is important in these commands, they should be issued from an EXEC that has

issued the instruction Address Command.

1. Install the filter package module as a nucleus extension with SYSTEM and SERVICE

attributes:

NUCXLOAD FPACK (SYSTEM SERVICE

2. Invoke the filter package with the argument as shown:

FPACK 5785-RAC load EPIPMOD

3. The association from the main module must be broken before the nucleus extension

that contains the filter package can be dropped (unless the main module itself is

dropped before the filter package is):

FPACK 5785-RAC drop EPIPMOD

4. You can now drop the filter package:

922 CMS Pipelines User’s Guide and Reference

 Using Different Versions of CMS Pipelines

NUCXDROP FPACK

! When the filter package must be associated with multiple pipeline modules, step 2 must be

! done for each pipeline module. Before unloading the filter package nucleus extension, step

! 3 must also be done for each pipeline module.

Warning: Results are unpredictable (but are likely to be catastrophic) if a filter package

is dropped without the main pipeline module being notified. This leaves a dangling pointer

to what was once the entry point table in the filter package. A program check is likely

next time an entry point is to be resolved by that particular pipeline module.

 Appendix D. Running Multiple Versions of CMS Pipelines Concurrently 923

 Filter Packages

. Appendix E. Generating and Using Filter Packages with CMS

. Pipelines

This chapter introduces the concept of a filter package; it explains the original PRPQ way to

generate filter packages; and it shows how to use filter packages.

! For compatibility with earlier releases, z/VM supplies the two commands PIPGFTXT and

PIPGFMOD to enable CMS users to generate filter packages.

: The programming interfaces in a filter package are described in CMS Pipelines: PIPE

: Command Programming Interface, in particular for user written functions for spec.

. Note for MVS Users

. CMS file terminology is used in this chapter. On z/OS, the file type should be read as the

. file (DDNAME) allocated to a partitioned data set (PDS) and the file name should be read as

. the member name in this PDS. Sequential data sets are not supported by the utility

. programs that build filter packages.

 Introduction
A filter package is a module that contains additional built-in programs. These programs

can be written in Assembler or REXX; REXX programs can be compiled. Programs in filter

packages must be reentrant.

Once the main pipeline module “knows” about a filter package, it can resolve programs to

run in a pipeline from the programs that are contained in the filter package as well as from

the built-in ones. The filter package contains an entry point vector which the main pipe-

line module uses to resolve programs in the filter package.

: A filter package contains mostly code you supply, but the interface to CMS Pipelines is

: embodied in a bootstrap module.

. Filter packages are available on CMS in two flavours, type 1 and type 2; and on z/OS in

. one flavour, type 2. The type 1 filter package is the original, which installs itself actively

. through the PIPMOD command. Once loaded, a type 1 filter package remains available until

. it is deleted explicitly. In contrast, a type 2 filter package is passive; it is loaded and

: deleted by the fltpack service program, though, on CMS, a second bootstrap module can be

: added to the filter package to make it self-installing and self-removing.

. Filter packages are loaded as global or local to the thread (task). A global filter package is

. available to all pipelines within the virtual machine or address space, but a local filter

. package is available to pipelines on the thread (task) where it is loaded. On CMS, filter

. packages are by default loaded globally, whereas on z/OS, they are by default local unless

. the task is the job step task.

. One filter package, the PTF filter package, receives special attention. Only one filter

. package can be the PTF filter package at any time.

The entry point vector is declared to the main pipeline module when the filter package’s

. main entry point is invoked as a CMS command (type 1) or when the filter package is

. explicitly loaded (type 2).

924 Copyright IBM Corp. 1986, 2020

http://vm.marist.edu/%7epipeline/FPLDSK.vmdt
http://vm.marist.edu/%7epipeline/FPLDSK.vmdt

 Filter Packages

. On CMS, four type 1 filter packages are installed in storage automatically when the main

pipeline module initialises (and whenever you issue the command PIPMOD INSTALL). CMS

Pipelines loads the modules as system nucleus extensions and attaches their entry point

tables to its own built-in entry point table. The filter package modules that are installed

. automatically are those named PIPPTFF, PIPSYSF, PIPLOCF, and PIPUSERF. If PIPPTFF is

. available, it will be loaded as the PTF filter package. The entry point table in the PTF filter

. package is searched before the main module’s entry point table; thus, filters in this package

. effectively override the built-in ones. All other filter packages are searched after the main

module.

. Additional filter packages must be installed manually. On CMS, a type 1 filter package is

. installed by issuing the file name of the filter package as a CMS command. This will make

it install itself as a nucleus extension (if it is not already one) and declare itself to the main

pipeline module.

. Filter packages are managed by the the fltpack control. This stage loads and deletes filter

. packages and also list installed filter packages of both types.

. A type 1 filter package is detached from the pipeline when its nucleus extension is

dropped, when the main pipeline module is dropped, and at CMS ABEND cleanup (HX).

. z/OS contents management deletes all modules loaded by a task when the task terminates.

. This has the effect of deleting all filter packages loaded by the task.

Figure 409. A Filter Package

┌─────────────────────┐
│ │
│ Main pipeline │
│ │
│ │
│ │ ┌───────────────────────────────────────┐
│ │ │ Filter Package │
│ │ │ │
│ ───────────────│────────│──►┌───────┐ ┌──────────────────┐ │
│ │ │ │prog1 │─────►│ Program 1 │ │
│ │ │ ├───────┤ └──────────────────┘ │
└─────────────────────┘ │ │prog2 │───┐ │

│ └───────┘ │ ┌───────────┐ │
│ └─────►│ Program 2 │ │

 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ └───────────┘ │
 │ │
 └───────────────────────────────────────┘

. Specifying Files

. The utilities to generate filter packages use a notation for input and output files that specify

. the file name, type, and mode as a single word where the components are separated by

. periods. The file mode can specify an SFS directory on CMS.

. Multiple input files are specified by concatenating the specifications for the individual files

. with a forward forward slash.

 Appendix E. Generating and Using Filter Packages with CMS Pipelines 925

 Filter Packages

.

. filespec:

. ├─ ──┬ ┬─fn─────── ─┤

. ├ ┤──fn.ft ───

. └ ┘──fn.ft.fm

. input:

. ┌ ┐─/────────────

. ├─ ───6 ┴─┤ filespec ├─ ─┤

. output:

. ├──┤ filespec ├──┤

. When a default is applicable, its three components are applied independently. Specifically,

. when a default file mode is specified, it can be overridden only by an explicit file mode.

Contents of a Filter Package

In general, a filter package is made up from glue code supplied with CMS Pipelines,

parameter files that you supply, and the actual filter programs, which you also supply. The

individual components (which are separate object modules) are described in separate

sections below.

The minimum filter package contains a glue code module, an entry point table, and the

actual program to run. In addition, the filter package may contain a message text table and

a keyword table. How to generate the object modules that contain your parameters (the

entry point, keyword, and message text tables) is described below.

Once the object files have been generated, the filter package is generated on CMS by the

. CMS LOAD, INCLUDE, and GENMOD commands; on z/OS, the executable filter package

. module is created by the binder (linkage editor).

. Except for the glue code module, the contents of a type 1 and a type 2 filter package is the

. same.

 Glue Code
! The object module PIPNXF TEXT contains the code that is invoked when a type 1 filter

! package module is invoked as a CMS command. This code is also invoked on service

calls.

. The type 2 glue module is FPLNXG TEXT. It may be combined with a third module,

: FPLNXH TEXT, which contains code to load the type-2 filter package so that it is opera-

: tionally (but not as far as its contents are concerned) mimics a type-1 filter package.

: All three modules are supplied in FPLLIB TXTLIB.

Entry Point Table
The entry point table is used by the pipeline specification parser to resolve programs

within the filter package. The entry point table is generated from one or more source files

that have the file type EPTABLE.

A source entry point table contains a line for each entry point and optionally comments.

Comments begin with an asterisk and extend to the end of the line. Blank lines and lines

926 CMS Pipelines User’s Guide and Reference

 Filter Packages

that contain only comments are ignored. Case is ignored in the source entry point table.

Entry points are defined by blank-delimited words:

1. The name of the filter, as it would be used in a PIPE command.

2. The ESD name of the entry point for the program. This defaults to the name in the

first word when the line contains one word.

3. A number specifying the minimum truncation that should be accepted for the filter. If

the first word contains more than eight characters, you must specify a minimum trun-

. cation count and it must be a number that is 8 or less. 0 (the default) specifies that no

truncation should be accepted.

4. The programming language in which the program is written or a period as a

placeholder. The default is Assembler or REXX as determined by inspecting the

program.

5. The commit level at which the program should start. The commit level can be

specified as a number between -128 and 127 (inclusive). Be sure you know what you

are doing if you specify this number positive, as this precludes using the program with

the CMS Pipelines built-in programs.

A sample line of an entry point table:

console pipconep 4

FPLEPTBL—Generate Entry Point Table Object Module

. ►►──FPLEPTBL─ ──┬ ┬─────────────────────────── ─►

. └ ┘. ─┤ input ├─ ──┬ ┬────────────

. └ ┘─┤ output ├─

►─ ──┬ ┬────────────────────── ─►◄
. └ ┘. ─(──CSECT name─ ──┬ ┬───
. └ ┘─)─

. The FPLEPTBL command generates an object entry point table from one or more source

. entry point tables. The FPLEPTBL command supports two blank-delimited words and an

option:

. 1. Input file specifications. The default input file is SYSTEM EPTABLE on CMS; it is

. FPLEPT FPLPARMS, the member FPLEPT of the data set allocated to FPLPARMS.

. 2. The output file (which contains a single object module). By default, the output file is

. FPLEPT TEXT.

3. The ESD name of the control section that will contain the object entry point table is

specified after a left parenthesis. The default is the file name of the output file or its

. default. For a type 1 filter package, it must be specified as PIPEPT; for a type 2 filter

. package, it must be specified as FPLEPT.

Message Text Table
The message text table contains the message texts for messages that are issued by the

PIPERM macro and the ISSUEMSG pipeline command. When CMS Pipelines resolves a

message, it looks in its internal message text table and in the message text tables of all

attached filter packages in this order:

1. The message text table in the PTF filter package, if one is installed and it contains a

message text table.

 Appendix E. Generating and Using Filter Packages with CMS Pipelines 927

 Filter Packages

. 2. The message text table in the filter package where the stage that issues the message

. was resolved, if any.

. 3. The main message text table in module FPLMTX, which is linked with the PIPELINE

module.

4. The message text table in each attached filter package. The packages are searched in

the order they were attached. Thus, it would be normal to search PIPSYSF before

PIPLOCF and PIPUSERF.

. The source message text table is in BookMaster format. It often contains the information

required to build a manual or help file, or both, in addition to the message text tags.

. FPLMSGTB processes the tags :msgno and :msg. All other lines and tags are ignored. For

. each message, the tags must be specified in the order :msgno followed by :msg. The two

. tags may be on the same line or separate lines, but no other tag may follow them on the

. same line. That is, the parsing of GML is simplistic. The :msgno tag specifies the message

. number and one character for severity code. If the severity code is lower case or the

. number 0 (zero), no additional identification messages are issued; if it is the number zero

. the message is not entered into the message list. The message text and substitution items

. are specified with the :msg tag.

. Use DCF variables for characters that would interfere with the markup:

. Semicolon &semi.

. Colon &colon.

. Ampersand &.

. Quote &csq. However, this will be converted to a normal single quote (X'7D').

. Within the message text, substitution is indicated by text that is bracketed within :mv and

. :emv tags. No other tags are allowed in the message text. By default, the items are

. substituted in the order they occur. A message value (a substitution item) is associated

. with a particular substitution if a number follows the opening tag; a colon must follow the

. number.

A sample entry in a message text table:

:msgno.900E
:msg.This is the first test message. (:mv.word:emv.)

. FPLMSGTB—Generate Message Text Table Object Module

.

. ►►──FPLMSGTB─ ──┬ ┬─────────────────────────── ─►

. └ ┘. ─┤ input ├─ ──┬ ┬────────────

. └ ┘─┤ output ├─

. ►─ ──┬ ┬────────────────────── ─►◄

. └ ┘. ─(──CSECT name─ ──┬ ┬───

. └ ┘─)─

. The FPLMSGTB command generates an object message text table from one or more source

message text tables. It supports two blank-delimited words and an option:

. 1. Input file specification. The default is FPLMSGS SCRIPT.

. 2. The output file, which will contain a single object module. The default output file is

. FPLMTX TEXT.

928 CMS Pipelines User’s Guide and Reference

 Filter Packages

. 3. The ESD name of the control section that will contain the object message text table

. may be specified after a left parenthesis. The default is the file name of the output file

. or its default. For a type 1 filter package, this must be specified as PIPMTX; for a type

. 2 filter package it must be specified as FPLMTX.

 Keyword Table
The keyword table contains keyword definitions that are tested by programs in the filter

package. REXX filters cannot access entries in the keyword table.

A source keyword table contains a line for each keyword and optionally comments.

Comments begin with an asterisk and extend to the end of the line. Blank lines and lines

that contain only comments are ignored. Case is ignored in the source keyword table.

CMS Pipelines keywords are defined by blank-delimited words:

1. The keyword identifier. This is a symbolic name under which a keyword is known to

the code. The keyword identifier must be one or two characters. It is prefixed with

the module name to obtain the label that will be the entry point for the keyword in the

keyword table. Thus, the identifier must contain only characters that can be specified

as an entry point in an Assembler control section. (That is, English alphanumerics and

the three national use characters “#@$”.)

2. The keyword. This is the character string that is tested against an operand of a stage

in a pipeline. Synonyms are specified by several lines that have the same identifier

(the first word). The keywords are tested in the order they appear in the concatenated

input files (the source keyword tables).

3. A number specifying the minimum truncation that should be accepted for the keyword.

If the second word contains more than eight characters, you must specify a minimum

. truncation count and it must be a number that is 8 or less. 0 (the default) specifies

that no truncation should be accepted.

A sample line of a keyword table:

at assist 3

FPLKWDTB—Generate a Keyword Table Object Module

. ►►──FPLKWDTB─ ──┬ ┬─────────────────────────── ─►

. └ ┘. ─┤ input ├─ ──┬ ┬────────────

. └ ┘─┤ output ├─

►─ ──┬ ┬─── ─►◄
. └ ┘. ─(─ ──┬ ┬──────────── ──┬ ┬─────────── ──┬ ┬───
. └ ┘─csect-name─ └ ┘. ─=──DECODE─ └ ┘─)─

. The FPLKWDTB command generates an object keyword table from one or more source

keyword tables. It supports two blank-delimited words and options, which is specified

after a left parenthesis:

. 1. Input file specification. The default input file is SYSTEM KWDTABLE on CMS; it is

. FPLKWD FPLPARMS on z/OS, the member FPLKWD of the data set allocated to

. FPLPARMS.

. 2. The output file (which contains a single object module). By default, the output file is

. FPLKWD TEXT.

3. The options field contains the ESD name of the control section that will contain the

object keyword table and a keyword, which is specified after an equal sign.

 Appendix E. Generating and Using Filter Packages with CMS Pipelines 929

 Filter Packages

The default control section is the file name of the output file or its default.

When the option DECODE is specified, the object module also contains a table (in a format

similar to an entry point table) that is used to decode a keyword to determine the identifier

for the keyword. Because more than one keyword identifier is used for a particular

keyword, this entry point table contains one to three identifiers rather than a pointer to an

entry point. The DECODE option must be specified when generating the keyword table in

the main pipeline module. Do not specify this option for a keyword table that is included

. in a type 1 filter package. When decode is specified for a type 2 filter package, the

. control section name must be specified as FPLKWD.

! PIPGFTXT—Generate Object Module from Program Directory
!

! ►►──PIPGFTXT──fn─ ──┬ ┬─────────────────────── ─►
! └ ┘! ─ft─ ──┬ ┬───────────────
! └ ┘! ─fm─ ──┬ ┬───────
! └ ┘! ─csect─

! ►─ ──┬ ┬─────────────────────── ─►◄
! └ ┘! ─(──┤ Options ├─ ──┬ ┬───
! └ ┘─)─

! Options:

! ├─ ──┬ ┬──────────────── ──┬ ┬────────── ─┤
! └ ┘! ─NODIR──DIRONLY─ └ ┘─COMPRESS─

! Use the PIPGFTXT EXEC to create a filter package (TEXT file) from a pipeline filter package

! description file (input file) containing either REXX or Assembler user written CMS

! Pipelines programs. The input file consists of one or more records, and each record

! contains fields describing various aspects of the stage. PIPGFTXT also generates an entry

! point table as part of the filter package, unless you specify the NODIR option. The DIRONLY

! option generates only the entry point table. The name of each REXX program is its entry

! point. An Assembler program can have multiple entry points. Specify the name of the

! Assembler program on the PIPDESC assembler macro.

! The filter package (TEXT file) is created with the same name specified by the FN operand.

! PIPGFMOD—Generate Filter package Load Module
!

! ►►──PIPGFMOD──fn─ ──┬ ┬────────────────────────────── ─►◄
! └ ┘! ─extension─ ──┬ ┬───────────────
! └ ┘! ─PIPEPT──csect─

 Programs
The programs must be in the format of object modules. For Assembler programs, this is

clearly the output from the Assembler.

REXX programs can be processed in two different ways:

. ¹ The FPLGREXX command (which is used by FPLGRMOD) builds an object module that

contains the lines of the REXX program. This program is passed to the interpreter

when it is called. If the program is in the alternate format (compiled with the CEXEC
option), the program is run by the runtime environment it specifies.

930 CMS Pipelines User’s Guide and Reference

 Filter Packages

Specify the NODIR option if you will be supplying the entry point table for the filter

package, for example, if it will contain compiled REXX programs as well as interpreted

ones.

¹ The REXX compiler generates an object module when the option OBJECT is used.

.

. ►►──FPLGREXX──fname─ ──┬ ┬──────────────────── ──┬ ┬─────── ─►

. └ ┘──.ftype ──┬ ┬──────── └ ┘─csect─

. └ ┘──.fmode

. ►─ ──┬ ┬──────────────────────────── ─►◄

. └ ┘. ─(─ ──┬ ┬─────── ──┬ ┬──────────

. └ ┘─NODIR─ └ ┘─COMPRESS─

. Generating a Sample Type-1 Filter Package

Given this REXX program stored in the file MYFILTER REXX:

/* My very own filter. */
parse source s
'output This is my very own filter:' s
exit RC

Perform these steps:

1. Compile the REXX program:

 rexxc myfilter rexx (object nocexec

2. This PIPE command builds an entry point table that specifies that the entry point

SAMPFILT will call the REXX program just compiled:

 pipe literal sampfilt myfilter | > sample eptable a
►Ready;

You may instead wish to use XEDIT to create the source entry point table.

3. Generate the object module containing the entry point table:

 fpleptbl sample sampept.text (pipept
►Ready;

4. Point at the object module library that contains the glue code:

. global txtlib fpluser

. ►Ready;

. This step is required only for the “Runtime Library Distribution” of CMS Pipelines;

skip this step with VM/ESA.

5. Load the glue code:

 load pipnxf (rldsave noauto
►Ready;

(On VM/ESA, use DMSPFP for the name of the module to be loaded.) Ignore any

messages that PIPEPT is undefined. This step must be done separately to ensure that

the glue module is first in the generated module. RLDSAVE specifies that the module

should be relocatable. NOAUTO specifies that CMS should not search for PIPEPT TEXT.

6. Include the other object modules:

 include sampept myfilter
►Ready;

 Appendix E. Generating and Using Filter Packages with CMS Pipelines 931

 Filter Packages

You may wish to inspect the load map at this point.

7. Make a module file:

 genmod sampfp (from pipnxf
►Ready;

The FROM option is de rigueur. (Specify the option from dmspfp on VM/ESA.)

8. Remove any existing filter package from storage:

 nucxdrop sampfp

If the filter package is one that is installed automatically (for example, PIPUSERF), the

nucleus extension has a leading asterisk (to reduce the risk of accidentally invoking

the package as a command). Thus, you might drop the nucleus extension *pipuser.

9. Install the filter package:

 sampfp
►Ready;

If the filter package is one that is installed automatically (for example, PIPUSERF), you

should issue the command PIPMOD INSTALL to make the main module install the filter

package.

10. Test the filter:

 pipe sampfilt | console
►This is my very own filter: CMS COMMAND SAMPFILT REXX * sampfilt ?
►Ready;

932 CMS Pipelines User’s Guide and Reference

 CMS/TSO Compatibility and Portability

Appendix F. Pipeline Compatibility and Portability between CMS
and TSO

CMS Pipelines is implemented in a layered fashion. The bulk of the CMS Pipelines code

uses only CMS Pipelines services. This part does not depend on any particular operating

system; it will run on any processor that is supported by the operating system.

Some modules determine the operating environment at run time, selecting the appropriate

path dynamically. A few device driver modules are specific to the CMS or z/OS environ-

ment.

Level 1.1.9 of TSO Pipelines is incorporated into BatchPipes/MVS Release 2 (IBM

Program Number 5655-065) under the name of BatchPipeWorks. This product is not

being enhanced.

. TSO Commands Supplied with TSO Pipelines

. The pipeline module FPLPIPE is linked with seven aliases: FPLDEBUG, FPLHLASX,

. FPLMVATT, FPLRESET, FPLRXSC, FPLUNIX, and PIPE. The aliases FPLHLASX, FPLMVATT, and

. FPLRXSC are reserved for TSO Pipelines internal use; program checks are likely if they are

. invoked as TSO commands.

. FPLRESET

. This command is equivalent to the CMS command “NUCXDROP PIPMOD”. It causes TSO

. Pipelines to release any resources and storage it may have acquired. Do not issue

. FPLRESET while any pipelines are running.

. FPLDEBUG

. This command is not intended for general use. It verifies the TSO Pipelines global area

. and displays information that may be helpful in isolating a problem.

. When the pipeline environment (its control blocks) is correct, FPLDEBUG will just display

. the address of the global area.

. fpldebug

. PLMVS1224I TSO Pipelines global area is at 16D01628.

. READY

. In addition, FPLDEBUG may issue messages identifying tasks it knows about. The informa-

. tion displayed includes the contents of the TCB tokens. Note that the fact that TSO

. Pipelines knows about a task does not mean that the task is still active; most likely the

. task represents the last TSO command, which has terminated by the time you can issue the

. FPLDEBUG command.

 Copyright IBM Corp. 1986, 2020 933

 CMS/TSO Compatibility and Portability

. pipe q

. FPLINX086I CMS/TSO Pipelines, 5654-030/5655-A17 1.0111 (Version.Release/Mod) -

. Generated 21 Feb 2003 at 15:46:43

. READY

. fpldebug

. FPLMVS1224I TSO Pipelines global area is at 1FB012B8

. FPLMVS1237I Active process and thread IDs:00000948 0000004D 00000036 008A5AB8(

. hexadecimal)

. READY

. FPLUNIX

. Is the entry point for running the PIPE command in the UNIX System Services environment;

. that is, from the shell. See the following section.

. Using the PIPE Command from Unix System Services

. TSO Pipelines supports running under the USS shell. For this to work, you need to create

. an external link to the FPLUNIX entry point:

. erwxrwxrwx 1 CCJOHN MKTGRP 7 Jul 24 1999 pipe -> FPLUNIX

. Note in particular that the external link contains the member name rather than anything

. else you might think it should contain.

. In addition, the STEPLIB environment variable must be set if the module is not in link pack:

. CCJOHN:/home/ccjohn: >echo $STEPLIB

. CCJOHN.TSO.LOAD

. CCJOHN:/home/ccjohn: >pipe q

. FPLINX086I CMS/TSO Pipelines, 5654-030/5655-A17 1.0111 (Version.Re

. lease/Mod) - Generated 15 Feb 2000 at 12:28:57

. TSO Pipelines writes error messages to standard error (file descriptor 2). console reads

. from standard input (file descriptor 0) and writes to standard output (file descriptor 1). In

. addition, the conveniences stdin, stdout, and stderr are available.

. Be sure to quote your pipeline specifications:

. CCJOHN:/home/ccjohn: >pipe literal abc|cons

. cons: FSUM7351 not found

. CCJOHN:/home/ccjohn: >pipe "literal abc|cons"

. abc

. In the first command the pipe character was interpreted by the shell; the PIPE command

. saw only the literal stage.

Pipeline Specifications—The PIPE Command

The pipeline specification parser does not depend on the operating system; a pipeline

specification is scanned in the same way on CMS and on TSO.

. From a REXX program (EXEC) on TSO, issue the pipeline specification may be addressed to

. several environments.

934 CMS Pipelines User’s Guide and Reference

 CMS/TSO Compatibility and Portability

. From a normal TSO REXX program (the merged environment, as it is called), you may

. address these environments: TSO, LINK, or ATTACH. From a stage written in REXX, can

. address only LINK or ATTACH, but you can issue TSO commands using command or tso.

. Address LINK is required when issuing multiple PIPE commands that must run in the same

unit of work under DB2.

On TSO, REXX filters are resolved from partitioned data sets. The CMS file name (first

word) corresponds to the member name; the CMS file type (second word) specifies the

DDNAME of the data set. DDNAME=FPLREXX is the default.

 Built-in Programs
Only device drivers and host command interfaces depend on the operating system; all

filters and gateways are available both on CMS and on TSO.

Device Drivers and Host Command Interfaces Supported Identically on
CMS and on TSO
These device drivers are available in both environments and perform the same function:

browse, emsg, hole, hfs, hfsdirectory, hfsquery, hfsreplace, hfsstate, hfsxecute, immcmd,

ispf, literal, subcom, tcpclient, tcpdata, tcplisten, timestamp, udp, and 3277enc.

Device Drivers and Host Command Interfaces Supported on CMS only
These device drivers are supported only on CMS: aftfst, cms, cp, diskback, diskrandom,

diskupdate, ldrtbls, mdiskblk, nucext, reader, starmsg, starmon, starsys, statew, tape, uro,

vmc, xab, xedit, and xmsg. In addition all device drivers for SFS files are supported on CMS

only.

Device Drivers and Host Command Interfaces Supported on TSO only
. The device drivers in Figure 410 are available with TSO Pipelines only. The fourth

column shows the level at which the support was incorporated.

Figure 410. Summary of TSO Only Device Drivers

Program Description L

listcat Provide data set names that are qualified by a specified qualifier. 9

listdsi Provide detailed information about data sets. 9

listispf Reads the directory of a PDS into the pipeline, formatting the user data if it was stored by

ISPF. The output can be limited to information about selected members.

7

. mqsc. Send commands to a WebSphere MQ queue manager.. 11

sysdsn Test if data sets exist. 9

sysout Write a SYSOUT data set. 9

sysvar Write the contents of system variables into the pipeline. 7

tso Issue TSO commands and trap the response into the pipeline. The individual return codes

are written to the secondary output stream, if one is defined.

7

writepds Replace members of a PDS. ISPF status can be maintained. 7

 Appendix F. Pipeline Compatibility and Portability between CMS and TSO 935

 CMS/TSO Compatibility and Portability

Device Drivers and Host Command Interfaces Supported Differently on
CMS and on TSO
Figure 411 lists the device drivers that are available both on CMS and on TSO, but are not

entirely compatible. The first column shows the program name(s). The second and third

columns contain remarks about the differences between the two implementations. The

fourth column shows the level of the TSO Pipelines at which the support was added.

Figure 411 (Page 1 of 2). Differences Between CMS and TSO

Program CMS TSO (MVS) L

<

>

>>

CMS file name specifications are used.

Output data sets are created if they do not

already exist.

z/OS DSNAME or DDNAME specifications

are used. Generation data groups are

supported. Output data sets written by

DSNAME must be allocated and cataloged.

Only the primary stream is supported.

7

command Does not intercept the response. 6

console Only EOF and NOEOF are supported. 6

delay At most 16 delay stages can be active

concurrently.

7

fullscr Only NOREAD, CONDREAD, and READFULL

are supported. fullscr works with the TSO

terminal only.

7

fullscrq

fullscrs

No arguments are allowed; only the TSO

terminal is supported.

7

getfiles Input lines should contain file names or data set specifications that are appropriate to the

< device driver. If it is present, the string “ &1 &2 ” is removed from columns 1 to 7 of

the record.

7

help Uses browse to display the help file. It

defaults to TSO help if it cannot find the

pipeline help library.

7

listpds Files are specified with three words: file

name, type, and mode.

The data set name or DDNAME is specified

as a single word.

7

members Files are specified with three words: file

name, type, and mode.

A single word specifying the DSNAME or

DDNAME is followed by the list of

members to read. readpds is a synonym.

7

Always supply the member names on the input stream to make these as compatible as

possible.

pdsdirect Reads the first record and the directory

records without unblocking them. Files

are specified with three words: file name,

type, and mode.

Synonym for listpds. The data set name

or DDNAME is specified as a single word.

7

printmc A synonym for sysout, which writes a

SYSOUT data set that has machine carriage

control (SYSOUT=A). The output class and

the output definition can be specified.

8

936 CMS Pipelines User’s Guide and Reference

 CMS/TSO Compatibility and Portability

Figure 411 (Page 2 of 2). Differences Between CMS and TSO

Program CMS TSO (MVS) L

punch A synonym for sysout, which writes a

SYSOUT data set that does not have

carriage control (SYSOUT=B). The output

class and the output definition can be

specified.

8

rexx REXX programs run in reentrant environ-

ments, which are not merged with TSO.

6

rexxvars No environments can be reached beyond

the one applying to the PIPE command.

6

sql Insert on a cursor is not supported by DB2.

The subsystem name is specified as an

option.

6

sqlcodes The memory of these codes is lost when

the PIPE command terminates.

6

stack When first in the pipeline, stack empties

the program stack but does not read lines

on the external input queue.

When first in the pipeline, stack empties

the program stack and the external data

queue. stack uses the IRXSTK default

service.

7

state Only the data set name is written to the

primary output stream. Allocations can be

queried. The existence of a data set does

not imply that the user has read authority;

nor does it imply that the data set is

immediately available (it could be

migrated).

7

stem No environments can be reached beyond

the one applying to the PIPE command.

6

storage The third operand is ignored, but it must

still be specified with correct syntax.

When storage is not first in a pipeline, it

does not change the PSW protection key

when it copies a record into storage (it

cannot, being an unauthorised program).

6

var

vardrop

varfetch

varload

varset

No environments can be reached beyond

the one applying to the PIPE command.

6

 Appendix F. Pipeline Compatibility and Portability between CMS and TSO 937

 CMS/TSO Compatibility and Portability

 REXX Filters
Programs that do not use the Address instruction and do not rely on external functions are

directly transportable between the two environments; they should work without change if

they do not contain pipeline specifications that have incompatible device drivers.

Consider using CALLPIPE instead of Address command pipe; the results are the same for

correct pipelines.

When incompatible device drivers are used, you must use the Parse Source instruction to

determine the environment in which the program runs:

/* Dual-path for TSO and CMS */
parse source where . my_fname my_ftype my_fmode . env .
If where='TSO'
 Then dsn='names.text'

Else dsn=userid() 'names a'
'callpipe <' dsn '|...

 Assembler Programs
Programs should be 31-bit capable and should use CMS Pipelines services rather than

services of an operating system. The interface defined in CMS Pipelines Toolsmith’s

Guide and Filter Programming Reference, SL26-0020 remains supported. The PIPEPVR

macro is now required. The macro library is shipped as part of TSO Pipelines.

 Filter Packages
. TSO Pipelines supports packages managed with filterpack.

938 CMS Pipelines User’s Guide and Reference

 Event Records

Appendix G. Format of Output Records from runpipe EVENTS

runpipe EVENTS produces a detailed trace of the execution of a pipeline set in a format that

is suitable for processing by a program that runs concurrently with the pipeline set.

The event record contains an 8-byte common prefix which is followed by variants that

define the individual record types.

 Record Prefix
The format of the first eight bytes is common to all event records.

Offs Len Description

0 1 Record type. This byte defines which particular variant record is

present. The variant data (if any) begin at offset 8.

1 1 X'00' to indicate the format specified here. A nonzero value would

indicate that the record is extended or contains different information.

2 2 Reserved.

4 4 Reference. A unique number that defines a particular stage, pipeline

specification, or pipeline set. This number is unique across all concur-

rent stages, pipeline specifications, and pipeline sets. The reference for

a stage or a pipeline specification is unique until the pipeline

specification ends. The reference for the pipeline set is unique for the

particular input record which is being processed by runpipe. Thus, the

references are not necessarily unique over the entire CMS session; they

might be reused.

8 v Beginning of record variations.

 00—Message
This record is written when a message is issued. The message is suppressed.

Offs Len Description

0 1 X'00' for Message.

4 4 The reference for the issuing stage, if known. This field contains

binary zeros when the stage is not known.

8 4 Zeros or the address of a character field containing the module name.

12 4 The message number. If negative, substitution is a list; if positive, a

single item is substituted.

16 8 Substitution item if the message number is positive.

16 4 Address of substitution list if the message number is negative.

20 4 Number of items in substitution list.

24 1 Number of bytes of substituted message text.

25 n Substituted message text.

 Copyright IBM Corp. 1986, 2020 939

 Event Records

01—Begin Pipeline Set

Offs Len Description

0 1 X'01' for Begin Pipeline Set.

4 4 Reference for the pipeline set.

8 4 The address of the initial pipeline specification.

12 4 The length of the initial pipeline specification.

02—End Pipeline Set

Offs Len Description

0 1 X'02' for End Pipeline Set.

4 4 Reference for the pipeline set.

8 4 Return code.

 03—Enter Scanner
This record has no variant data. The pipeline specification is described in a set of event

records consisting of one for the overall pipeline specification and a record for each pipe-

line, stage, connector, and label reference. The scanner end record identifies the end of the

pipeline specification.

Offs Len Description

0 1 X'03' for Enter Scanner.

4 4 Reference for the pipeline set.

04—Pipeline Vector Allocated
This record contains the PIPSCBLK data area.

Offs Len Description

0 1 X'04' for Pipeline Vector Allocated.

4 4 Reference for the pipeline specification.

8 8 pipedef (one trailing blank). A magic token.

16 1 The level of the scanner records.

01 Initial specification. This record is 40 bytes long. The last two

bytes contain zeros.

02 The record is 88 bytes long.

940 CMS Pipelines User’s Guide and Reference

 Event Records

Offs Len Description

17 1 Flag byte. When the flag byte contains zeros, the pipeline specification

was issued by PIPE or runpipe.

01 Function is CALLPIPE

02 Function is ADDPIPE

When both bits are on, the pipeline specification is scanned after the

CALLPIPE rules, but connected after the ADDPIPE rules.

18 1 Option flag byte.

01 option TRACE

02 option LISTERR

04 option LISTRC

10 option STOP

80 option LISTCMD

19 1 Reserved.

20 8 The option NAME. The value is truncated after eight bytes. See below

for a pointer to the complete name.

28 2 Bits to turn on in the rightmost halfword of the message level.

30 2 Bits to clear in the rightmost halfword of the message level.

32 1 The stage separator character. This byte contains X'00' when the

pipeline specification is issued as an encoded pipeline specification.

33 1 The end character. This byte contains a blank when no end character is

defined. It contains X'00' when the pipeline specification is issued as

an encoded pipeline specification.

34 1 The escape character. This byte contains a blank when no escape char-

acter is defined. It contains X'00' when the pipeline specification is

issued as an encoded pipeline specification.

35 3 Reserved.

38 2 Offset to the address of the list of stage definitions. This offset is zero

in the first level of the block.

40 4 Address of the original pipeline specification (when the pipeline

specification was issued from a command string) or zero for an

encoded pipeline specification for which there is no original string.

44 4 The length of the original pipeline specification string.

48 4 The address of the name for the pipeline specification.

52 4 The length of the name. This length may be greater than 8.

56 32 Reserved. Contains zeros.

 Appendix G. Format of Output Records from runpipe EVENTS 941

 Event Records

 05—Leave Scanner
The pipeline specification is either abandoned or handed over to the pipeline dispatcher to

run.

Offs Len Description

0 1 X'05' for Leave Scanner.

4 4 Reference for the pipeline specification.

8 4 Return code. The pipeline specification is abandoned if this return code

is not zero.

 06—Scanner Item
The scanner items describe the beginning of a pipeline, a stage, a label reference, or a

connector. The first scanner item is a pipeline begin variant. This variant of the event

record contains the PIPSCSTG data area; it has four variants.

Offs Len Description

0 1 X'06' for Scanner Item.

4 4 Reference to the pipeline specification, except for record variant 01

(stage) where this defines the reference for the stage.

8 4 Pipeline number. The first pipeline has number 1.

12 4 Stage number. This field is zero in the pipeline begin item.

16 2 Number of bytes in the remainder of the record.

18 1 Item type. This specifies the variant of the remaining data in the

record.

Variant for pipeline begin.

18 1 X'00' Beginning of a pipeline.

19 1 Reserved.

Variant for stage.

18 1 X'01' Stage.

19 1 Option flag byte.

01 option TRACE

02 option LISTERR

04 option LISTRC

10 option STOP

80 option LISTCMD

20 2 Bits to turn on in the rightmost halfword of the message level.

22 2 Bits to clear in the rightmost halfword of the message level.

24 8 Label or blank.

32 4 Stream identifier or zeros.

36 4 Entry point address or zero to resolve the entry point from the verb.

942 CMS Pipelines User’s Guide and Reference

 Event Records

Offs Len Description

40 4 Address of verb.

44 4 Length of verb string. The length of the verb string is zero when rexx

is implied and in some other cases. The length includes a trailing

blank; it might include leading blanks.

48 4 Address of parameter string.

52 4 Length of parameter string.

Variant for label.

18 1 X'02' Label reference.

19 1 Reserved.

20 4 Reference number for the stage being referenced.

24 8 The label being referenced.

32 4 Stream identifier or zeros.

Variant for connector.

18 1 X'03' Connector.

19 1 Flag.

01 Input.

02 Output.

04 Conditional. Connect only if the referenced stream exists. This

flag is supported only for encoded pipeline specifications.

20 4 Stream identifier or zeros.

24 4 Stream number.

07—Calling Syntax Exit
The pipeline specification parser’s third pass is about to call a syntax exit. No record is

produced to indicate the return from the exit. If records of this type are produced, a

nonzero return code in record type 05 indicates that one or more syntax exits returned with

a nonzero return code.

Offs Len Description

0 1 X'07' for Calling Syntax Exit.

4 4 Reference for the stage.

8 4 Address of work area allocated for stage.

12 4 Register 1. Depending on the programming language, this may be a

pointer the the stage’s work area or to a parameter list.

16 48 Registers 0 through 11.

 Appendix G. Format of Output Records from runpipe EVENTS 943

 Event Records

 08—Start Stage
The pipeline dispatcher is about to call the initial entry point for a stage.

This variant has no additional data.

Offs Len Description

0 1 X'08' for Start Stage.

4 4 Reference for the stage.

 09—End Stage
The stage returns to the pipeline dispatcher.

Offs Len Description

0 1 X'09' for End Stage.

4 4 Reference for the stage.

8 4 Return code.

12 4 Size of the work area allocated (in doublewords).

16 4 Highwater mark of other allocated storage (in doublewords).

 0A—Resuming Stage
The pipeline dispatcher is about to return control to a stage. The stage has previously

called a pipeline dispatcher service.

Offs Len Description

0 1 X'0A' for Resuming Stage.

4 4 Reference for the stage.

8 4 Return code.

12 4 Register 0.

16 4 Register 1.

20 2 Reserved.

22 2 Two-character service code for the previous service call issued by the

stage. Refer to the description of record type 0B.

24 4 Number of the input stream that is currently selected by the stage.

28 4 0 if the currently selected input stream is not connected. -1 if the

currently selected input stream is not selected by the other end of the

connection. If positive, the reference to the producer stage.

32 4 Stream number selected by producer. -1 when the previous field is not

positive.

36 4 Number of the output stream that is currently selected by the stage.

944 CMS Pipelines User’s Guide and Reference

 Event Records

Offs Len Description

40 4 0 if the currently selected output stream is not connected. -1 if the

currently selected output stream is not selected by the other end of the

connection. If positive, the reference to the consumer stage.

44 4 Stream number selected by consumer. -1 when the previous field is not

positive.

0B—Calling Dispatcher Service
A stage issues a service request to the pipeline dispatcher.

The service codes are:

CM Issue Pipeline Command. Register 1 contains the address of the command; register

0 contains the length of the command.

CT Commit. Register 0 contains the commit level requested.

ES The stage returns on the initial call from the dispatcher. An end stage variant (09)

follows.

LO PEEKTO.

MS Miscellaneous services. The value in register 0 defines the service requested:

0 Stall the pipeline specification.

1 Suspend.

2 Set break wait flag.

3 Clear break wait flag.

4 Process an encoded pipeline specification. This is used to issue ADDPIPE and

CALLPIPE requests that are assembled into built-in programs.

5 Test if events are enabled. Register 1 contains the address of a fullword into

which the dispatcher stores the stage’s reference number.

PA Set parameter registers to their original values on entry to stage. (Not used.)

PI READTO. Register 1 contains the address of the buffer; register 0 contains the length

of the buffer (zero means release input record).

PO OUTPUT. Register 1 contains the address of the record; register 0 contains the length

of the record. When the stage is resumed, register 0 contains the number of bytes

consumed. This is reflected in the next record with type 0A.

SA STREAMSTATE. Register 0 contains the encoding of the side to test:

Offs Len Description

0 1 X'0B' for Calling Dispatcher Service.

4 4 Reference for the stage.

8 4 Reserved.

12 4 Register 0.

16 4 Register 1.

20 2 Reserved.

22 2 Two-character service code. See below.

 Appendix G. Format of Output Records from runpipe EVENTS 945

 Event Records

-1 Input.

-2 Output.

Register 1 contains the stream number or stream identifier (if the leftmost byte is

nonzero).

SH SHORT.

SL SELECT. Register 0 contains the encoding of the side to select:

-1 Input.

-2 Output.

-3 Both.

-4 Any input.

Register 1 contains the stream number or stream identifier (if the leftmost byte is

nonzero).

SN STAGENUMBER.

SV SEVER. Register 0 contains the encoding of the side to sever:

-1 Input.

-2 Output.

WE WAITECB. Register 0 contains the code to post when an input record arrives (if the

break wait flag is enabled). Register 1 contains the address of the PIPECB.

X Set dispatcher exit. Register 0 contains the address of the exit routine or zeros.

0C—Pipeline is Stalled
This event has no variant data. A record with code X'0D' is written for each stage.

Offs Len Description

0 1 X'0C' for Pipeline is Stalled.

4 4 Reference for the pipeline set.

0D—State of Stage

Offs Len Description

0 1 X'0D' for State of Stage.

4 4 Reference for the stage.

8 4 Encoded state of stage.

12 8 Decoded state of stage.

 0E—Pipeline Committing

Offs Len Description

0 1 X'0E' for Pipeline Committing.

4 4 Reference for the pipeline specification.

8 4 The committed aggregate return code.

12 4 The level to which the pipeline is committed.

946 CMS Pipelines User’s Guide and Reference

 Event Records

 0F—Console Input
A console stage that is first in a pipeline requires a record. The console stage that runs

under control of runpipe EVENTS does not read from the terminal; rather, it signals a

console input event. A stage that processes the event records without their being delayed

from the runpipe stage can store an input record in the input buffer and set the number of

bytes in the feedback word. If this event record is consumed without a record being

stored, the console stage assumes a null record was entered.

Offs Len Description

0 1 X'0F' for Console Input.

4 4 Reference for the console stage.

8 4 Address of the input buffer.

12 4 Length of the input buffer. The controlling stage must at most store

this number of bytes in the buffer.

16 4 Address of a fullword into which the controlling stage should store the

actual length of the input line. (The feedback word.)

 10—Console Output
A console stage that is not first in a pipeline has read an input record. The console stage

that runs under control of runpipe EVENTS does not write to the terminal; rather, it signals

a console output event. A stage that processes the event records without their being

delayed from the runpipe stage can obtain the record from the buffer.

Offs Len Description

0 1 X'10' for Console Output.

4 4 Reference for the console stage.

8 4 Address of the output buffer.

12 4 Length of the output buffer.

 11—Pause
pause has read an input record. A stage that processes the event records without their

being delayed from the runpipe stage can now react to this event. The pause stage is

resumed as soon as this record is consumed. There are no variant data for this event.

Offs Len Description

0 1 X'11' for Pause.

4 4 Reference for the pause stage.

 Appendix G. Format of Output Records from runpipe EVENTS 947

 Event Records

12—Subroutine Pipeline Complete
This record is generated when all stages of a subroutine have terminated and all

connections are either at end-of-file or restored to their original state.

Offs Len Description

0 1 X'12' for Subroutine Pipeline Complete.

4 4 Reference for the pipeline specification.

8 4 The return code.

13—Caller is Waiting for Subroutine Pipeline to Complete
This record is generated when a stages has issued the CALLPIPE pipeline command. A type

12 record is generated when the stage is again ready to be dispatched.

Offs Len Description

0 1 X'13' for Caller is Waiting for Subroutine Pipeline to Complete.

4 4 Reference for the stage that issued the CALLPIPE pipeline command.

8 4 The reference value for the pipeline specification that the stage is now

waiting on.

948 CMS Pipelines User’s Guide and Reference

 Notices

This information was developed for products and services

offered in the US. This material might be available from

IBM in other languages. However, you may be required to

own a copy of the product or product version in that

language in order to access it.

IBM may not offer the products, services, or features

discussed in this document in other countries. Consult your

local IBM representative for information on the products and

services currently available in your area. Any reference to

an IBM product, program, or service is not intended to state

or imply that only that IBM product, program, or service

may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual prop-

erty right may be used instead. However, it is the user's

responsibility to evaluate and verify the operation of any

non-IBM product, program, or service.

IBM may have patents or pending patent applications

covering subject matter described in this document. The

furnishing of this document does not grant you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set

(DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPO-

RATION PROVIDES THIS PUBLICATION "AS IS"

WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE. Some juris-

dictions do not allow disclaimer of express or implied

warranties in certain transactions, therefore, this statement

may not apply to you.

This information could include technical inaccuracies or

typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in

new editions of the publication. IBM may make improve-

ments and/or changes in the product(s) and/or the program(s)

described in this publication at any time without notice.

Any references in this information to non-IBM websites are

provided for convenience only and do not in any manner

serve as an endorsement of those websites. The materials at

those websites are not part of the materials for this IBM

product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply

in any way it believes appropriate without incurring any obli-

gation to you.

Licensees of this program who wish to have information

about it for the purpose of enabling: (i) the exchange of

information between independently created programs and

other programs (including this one) and (ii) the mutual use of

the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate

terms and conditions, including in some cases, payment of a

fee.

The licensed program described in this document and all

licensed material available for it are provided by IBM under

terms of the IBM Customer Agreement, IBM International

Program License Agreement or any equivalent agreement

between us.

The performance data and client examples cited are

presented for illustrative purposes only. Actual performance

results may vary depending on specific configurations and

operating conditions.

Information concerning non-IBM products was obtained from

the suppliers of those products, their published announce-

ments or other publicly available sources. IBM has not

tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to

non-IBM products. Questions on the capabilities of

non-IBM products should be addressed to the suppliers of

those products.

Statements regarding IBM's future direction or intent are

subject to change or withdrawal without notice, and represent

goals and objectives only.

This information may contain examples of data and reports

used in daily business operations. To illustrate them as

completely as possible, the examples include the names of

individuals, companies, brands, and products. All of these

names are fictitious and any similarity to the names and

addresses used by an actual business enterprise is entirely

coincidental.

 Copyright IBM Corp. 1986, 2020 949

COPYRIGHT LICENSE:

This information contains sample application programs in

source language, which illustrate programming techniques on

various operating platforms. You may copy, modify, and

distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using,

marketing or distributing application programs conforming to

the application programming interface for the operating plat-

form for which the sample programs are written. These

examples have not been thoroughly tested under all condi-

tions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. The sample

programs are provided “AS IS”, without warranty of any

kind. IBM shall not be liable for any damages arising out of

your use of the sample programs.

Programming Interface Information

This book documents intended Programming Interfaces that

allow the customer to write programs to obtain the services

of z/VM.

 Trademarks

IBM, the IBM logo, and ibm.com are trademarks or regis-

tered trademarks of International Business Machines Corp.,

registered in many jurisdictions worldwide. Other product

and service names might be trademarks of IBM or other

companies. A current list of IBM trademarks is available on

the web at IBM copyright and trademark information -

United States (www.ibm.com/legal/us/en/copytrade.shtml).

Linux is a registered trademark of Linus Torvalds in the

United States, other countries, or both.

Terms and Conditions for Product
Documentation

Permissions for the use of these publications are granted

subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of

use for the IBM &website..

Personal Use

You may reproduce these publications for your personal,

noncommercial use provided that all proprietary notices are

preserved. You may not distribute, display or make deriva-

tive work of these publications, or any portion thereof,

without the express consent of IBM.

Commercial Use

You may reproduce, distribute and display these publications

solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works

of these publications, or reproduce, distribute or display these

publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other

permissions, licenses or rights are granted, either express or

implied, to the publications or any information, data, soft-

ware or other intellectual property contained therein. IBM

reserves the right to withdraw the permissions granted herein

whenever, in its discretion, the use of the publications is

detrimental to its interest or, as determined by IBM, the

above instructions are not being properly followed.

You may not download, export or re-export this information

except in full compliance with all applicable laws and regu-

lations, including all United States export laws and regu-

lations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT

OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED “AS-IS” AND WITHOUT WARRANTY OF

ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED

WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTIC-

ULAR PURPOSE.

950 CMS Pipelines User’s Guide and Reference

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

IBM Online Privacy Statement

IBM Software products, including software as a service

solutions, (.Software Offerings.) may use cookies or other

technologies to collect product usage information, to help

improve the end user experience, to tailor interactions with

the end user, or for other purposes. In many cases no

personally identifiable information is collected by the Soft-

ware Offerings. Some of our Software Offerings can help

enable you to collect personally identifiable information. If

this Software Offering uses cookies to collect personally

identifiable information, specific information about this

offering.s use of cookies is set forth below. This Software

Offering does not use cookies or other technologies to collect

personally identifiable information.

If the configurations deployed for this Software Offering

provide you as customer the ability to collect personally

identifiable information from end users via cookies and other

technologies, you should seek your own legal advice about

any laws applicable to such data collection, including any

requirements for notice and consent.

For more information about the use of various technologies,

including cookies, for these purposes, see IBM Online

Privacy Statement Highlights at http://www.ibm.com/privacy

and the IBM Online Privacy Statement at

http://www.ibm.com/privacy/details in the section entitled

“Cookies, Web Beacons and Other Technologies”, and the

IBM Software Products and Software-as-a-Service Privacy

Statement at http://www.ibm.com/software/info/product-

privacy.

 Notices 951

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy

 Explanation of Terms

 Glossary

A

Abut. To put two things together with nothing between

them. For instance, two abutted strings are put together

without separating blanks.

Argument string. Characters coded after the name of a

stage. The argument string is made available to the stage.

B

Backus-Naur form. (BNF) A notation for syntax definition,

invented in the early sixties. The dialect used in CMS

Pipelines manuals is described in Chapter 20, “Syntax

Notation” on page 222.

Block descriptor word. (BDW) z/OS term. The BDW is a

fullword prefix to a block in variable format. It contains the

total length of the block in the first halfword and zeros in the

second.

Blocked. When the pipeline dispatcher has blocked a stage,

the stage is not run. A stage is blocked when it accesses a

connection if the other side of the connection is not prepared

to read or write a record.

Buffer. A stage that reads all its input before writing any

output. Such a stage may be needed to ensure that a multi-

stream pipeline does not stall. buffer and sort buffer the file;

lookup buffers the secondary input stream.

C

Card. See Punched card.

Carriage control. Vertical skipping and spacing of line

printers is controlled by commands that are normally stored

in the first column of a print line. There are two types of

carriage control, machine and ASA. Machine carriage

control is the CCW command code that is to be used to print

the line, whereas ASA carriage control consists of the char-

acters 1, space, 0, -, and +.

Cascade. A sequence of filters to perform a function by

each doing its little bit of the work. For instance, a cascade

of locate stages finds lines containing all the strings specified

in the cascade.

Channel Command Word. (CCW) An order to a

System/370 channel to read or write a record, or to cause

mechanical movement at the device.

CMS. Conversational Monitor System is the component of

VM that provides timesharing facilities.

Collating sequence. Ordering of the character set used in a

computer. When the binary encoding of one character is less

than the encoding of some other character, then the first

character is said to be before the second one in the collating

sequence. Also used to designate all possible values for a

single character. A byte contains 8 bits in IBM/370, so the

collating sequence has 256 characters from X'00' to X'FF'.

Connection. A data path between two stages. A stage can

have several input and output connections, but only one

input and one output can transport data at a time. The active

connection is changed by the select function.

Connector. An item at the beginning or end of a pipeline

indicating how the pipeline is to be connected to streams in

the stage defining the pipeline. A full connector consists of

an asterisk, a period, a keyword indicating a direction, a

period, a stream identifier, and a colon; it can be as short as

*:.

Console. The terminal for the virtual machine. Also the

name of a CMS macro that is used to access the terminal in

full screen mode rather than in line mode.

Control stage. A stage that inspects the contents of a file

and calls one of several subroutine pipelines to process the

particular file format.

Coroutines. Programs being multiprogrammed in a way

where programs explicitly transfer control amongst them-

selves.

CP. The Control Program component of VM manages the

resources of a real computing system in such a way that

multiple machines appear to exist. Each user on a VM

system has a virtual machine.

D

Data stream. A data stream flows into a stage’s input and

out of its output. When pipelines intersect in a stage, the

program can access more than one data stream. Streams are

numbered from zero onward as the intersections are defined.

A stream can be named with a stream identifier.

Device driver. A program that interfaces between the

sequential data streams of CMS Pipelines and the world

outside the pipeline. An example is disk, which reads and

writes files on CMS minidisks.

Diagnose instruction. An interface between the virtual

machine and CP.

Dispatcher. An operating system routine that selects work

to be done and coordinates the execution of individual units

of work.

952 Copyright IBM Corp. 1986, 2020

 Explanation of Terms

DOS. (Disk Operating System.) A precursor of VSE.

Driver. Shorthand for device driver.

E

EDF. See Enhanced Disk Format.

End character. A character in a pipeline specification that

separates pipelines. The stage to the left of an end character

is a last stage; the one to the right of an end character is a

first stage.

Enhanced Disk Format. (EDF) A CMS file storage format

used on minidisks that are attached to the user’s virtual

machine. The minidisk is formatted into 512, 1K, 2K, or 4K

physical blocks. See also “shared file system”.

Enumerate. To list all instances. When matching, for

instance in split, a string can be interpreted as a list of char-

acters which must match successive positions in the input

record, or as an enumerated scalar which matches a single

character if it is any one of the characters in the string.

Escape character. A character in a pipeline specification

that disables any special meaning of the following character.

EXEC. A command procedure normally written in the

language REXX. It is stored in a file with file type EXEC.

Commands in an EXEC are processed by CMS.

EXEC2. The command procedure language available in

CMS prior to the introduction of REXX in VM/System Product

Release 3.

F

F. Code indicating fixed record format. All records of a

fixed file have the same length.

FB. Code indicating fixed blocked record format. Blocks in

a FB file have a length that is a multiple of the record length.

File. A collection of records; an entity stored in a file

system. Also used about the data that pass through a stage

even though no physical file will exist.

Filter. A program using CMS Pipelines for data transport.

Filters are stages that somehow transform the data passing

through. Often, but not always, a filter completely processes

one record before reading the next.

Filter package. Filter packages are separate module files

with pipeline programs and message tables. Such modules

are loaded as CMS nucleus extensions and identify themselves

to CMS Pipelines. A filter package can contain any mixture

of programs written in REXX, PL/I, IBM C/370, or assembler.

First stage. The leftmost stage of a pipeline. A pipeline

specification can contain several pipelines separated by end

characters. A stage to the right of an end character is also a

first stage.

File Status Table. (FST) Information about a file on a CMS

minidisk is stored in the FST for the minidisk. This informa-

tion includes the record format, the record length, and the

date the file was written or appended to.

Flush. To empty a buffer.

Forms Control Buffer. (FCB) Control information to define

where on a page a skip to a given channel should stop. A

forms control buffer can be associated with a SPOOL file.

G

G. (Gigabyte.) =1024M =1,048,576K =1,073,741,824.

Gateway. A program used in a pipeline that is not a device

driver or a filter.

Glue. A program that makes two other ones work together

without modifying them. A glue module often transforms

one data format or record layout to another.

H

Host. The operating system that CMS Pipelines runs on.

Host Interface. An interface to a CP, CMS, TSO, or z/OS

function used by CMS Pipelines.

I

IEBCOPY. The name of a z/OS utility program used to

transport data sets between systems.

Infrastructure. Collective name for service routines that

provide services for the parts of a program that are related to

performing the actual task as perceived by the user. Param-

eter scanning is such a routine.

Intersection. A stage that has access to more than one

pipeline. The pipelines are said to intersect in that stage.

K

K. (Kilobyte.) =1024.

 Glossary 953

 Explanation of Terms

L

Label. An identifier for a stage that defines multiple data

streams, one for each occurrence of the label in a pipeline

specification.

Landscape. Format for a command where all information is

entered on a single line.

Last stage. A stage at the end of a pipeline specification.

A stage to the left of an end character is also a last stage.

Left. Stages are ordered left to right such that a stage

receives its input from the output of the stage to the left of

it.

Line. Originally used for records printed on a printer or a

terminal. CMS Pipelines uses this term interchangeably with

record.

Line end character. A character in a file marking the end

of one line and the beginning of another. The line end char-

acter is not considered part of either record. Line end char-

acters are not used by CMS, except in OpenExtensions text

files. CP uses X'15' as a line end character for responses

returned to the virtual machine in a storage buffer, but this is

not visible to the user since CMS Pipelines performs the

deblocking.

Locate mode. Term for data management processing where

the record is processed in a buffer allocated by the access

method instead of a buffer allocated by, or in, the program.

Data management provides the address and length of input

records. The converse is move mode.

M

M. (Megabyte.) =1024K =1,048,576.

Message level. A number set by the command PIPMOD

MSGLEVEL. The binary representation of this number is

interpreted as a set of switches controlling the degree of

additional checking performed, and the number of additional

messages issued, if any.

Move mode. Term for data management processing where

the record is processed in a buffer allocated by, or in, the

program; data management moves the record to or from the

user’s buffer. The converse is locate mode.

MVS. (Multiple Virtual Storage.) An operating system for

IBM System/390 mainframe computers.

N

Netdata. A blocking format used to transmit files between

IBM systems. The format includes information about the file

as well as the contents of the file.

Null. Empty; containing nothing; having zero length.

Null record. A record with no data; it has length zero.

Such a record can indicate end-of-file.

Null stage. Two stage separators next to each other with

only blanks between them; a stage separator next to an end

character or at the end of the pipeline specification.

O

Operating System. (OS) IBM’s operating system for the

System/360 family of computers was called OS (OS/360 to be

precise). It was a family of operating systems, which

evolved into z/OS. A subset of the interfaces defined for

this system are available under CMS.

P

Pipeline. A list of programs where the output of one is

passed to the input of the next. Each program is written to

use a simple interface that transports a sequential data

stream.

Pipeline command. A command issued from a stage (in

particular a REXX program) to the pipeline dispatcher. The

pipeline topology is controlled by pipeline commands. In a

REXX filter, the default command environment processes

pipeline commands rather than CMS commands.

Pipeline dispatcher. The program that transfers control

between stages to ensure an orderly flow of data through the

pipeline.

Pipeline specification. The character string that defines a

pipeline. Stages are separated by a special character, the

stage separator, which is the solid vertical bar (|) by default.

Portrait. A command written over several lines is said to

be in portrait format. The portrait format of a pipeline

command typically has the specification of each stage on a

separate line.

Primary data stream. Stream number 0.

Printer. A virtual device, simulated by CP, used to write

virtual printer SPOOL files in the CP SPOOL system.

Public. SQL term meaning that a resource is available to

everyone.

Punch. A virtual device, simulated by CP, used to write

virtual punch SPOOL files in the CP SPOOL system.

954 CMS Pipelines User’s Guide and Reference

 Explanation of Terms

Punched card. Archaic data storage medium where charac-

ters are represented by holes cut in a piece of cardboard.

The most widely used format stores 80 characters. A deck

of punched cards is simulated by CP as a SPOOL file with a

record for each card. CP enforces a maximum record length

of 80 bytes.

Q

Quietly. Jargon for “with error messages suppressed” or

“without issuing error messages”.

R

Record. Unit of information transmitted as a whole. A line

of a file.

Record descriptor word. (RDW) In z/OS, a RDW is a

fullword describing a logical record with the aggregate

length (including the RDW) in the first halfword and zeros in

the second one. Also used to describe the halfword length

that precedes a record in the CMS file system when the file is

in variable format.

REXX. (Reformed EXtended eXecutor.) The name of a

programming language, implemented in CMS by the System

Product Interpreter. Also designates programs written in

REXX where the host commands go to the pipeline and are

used for data transport.

Right. Stages are ordered left to right such that a stage

delivers its output to the input of the stage to the right of it.

S

Scope. Where an identifier is recognised.

Secondary data stream. Stream number 1.

Segment descriptor word. (SDW) z/OS term. A fullword

describing part of a logical record. The first halfword

contains the length of the segment including the SDW. The

third byte contains the segmentation flags that define whether

the segment is the first, the last, or an intermediate one. The

last byte is zero.

Segmentation Flags. Flag bits that define which part of a

logical record is in the present segment. z/OS uses a

different encoding for variable spanned than it uses for the

netdata format. The encoding specifies whether the segment

is the first, the last, the only, or a middle segment of a

record.

Sequential data stream. Informal way to express a data

stream that is processed in a sequential fashion, one record at

a time, without going back to previous data.

Sever. Terminate the use of a stream. All connections to

streams are severed when a stage returns control on the

original invocation from the pipeline dispatcher. A stage can

sever a connection explicitly with the SEVER pipeline

command.

Shared File System. (SFS.) A file system introduced in

VM/System Product Release 6. To facilitate sharing of data

without compromising data integrity, data are stored on mini-

disks that are attached to a “server” virtual machine; the user

cannot access the file pool minidisks directly.

Shell. A program that reads lines from the terminal and

interprets them as commands. Also called a Terminal

Monitor Program.

Short Circuit. A stage can connect an input stream and an

output stream with a short circuit. Records then bypass the

stage that has performed the short circuit operation. A stage

can issue the SHORT command to short circuit the currently

selected input and output stream without waiting. It can also

issue CALLPIPE to perform this operation: the stage waits

until end-of-file is reflected on the short circuit; the output

stream is available for further output when the stage

resumes.

Span. A record is spanned across blocks when the first part

of the record is in one block, and the rest of it is in one or

more other blocks.

SPOOL. (Simultaneous Peripheral Operations On Line.) A

system for controlling unit record devices. Also used to

refer to the data set that holds the data being SPOOLed.

Stage. A program in a pipeline specification.

Stage separator. The character (normally |) that separates

stages in a pipeline specification.

Stall. A condition in a pipeline network where not all

stages have completed but stages are interlocked in such a

way that no stage can be run.

Stemmed Array. A collection of REXX compound variables

having the same stem, and a numeric index. The variable

with index zero (for instance array.0) contains the number

of data variables in the array; data are stored in variables

with positive index, starting at 1. Thus, the first variable is

array.1, the second variable is array.2, and so on.

Stream. Informal name for a data stream.

Stream identifier. A symbolic reference to a data stream.

Subcommand Environment. A named environment to

which commands can be addressed on CMS. Many programs

set up a subcommand environment to process commands

issued by REXX programs that are called as a result of a user

command to the program establishing the subcommand envi-

ronment.

 Glossary 955

Subroutine pipeline. A pipeline, defined by CALLPIPE, to

process data. The stage waits until the subroutine pipeline is

complete.

SVC. (SuperVisor Call.) An instruction causing a switch

from the user program to the operating system.

SVC 202. Used in CMS to issue commands by name.

SVC 203. Used in CMS to issue functions by number.

T

Task. An independent unit of work in an operating system.

Each pipeline stage can be considered a task. CMS Pipelines

tasks run as coroutines because control is passed from one to

another when the pipeline dispatcher is called to read or

write a record.

Terminal Monitor Program. (TMP) Program that reads

lines from the terminal and interprets them as commands.

Also called a Shell.

Tertiary data stream. Stream number 2.

Token. A word delimited by blank characters, parentheses,

or both. A command is said to be comprised of tokens.

Tokenise. Build a list of doubleword (eight bytes) tokens

from a character string. How this is done depends on the

scanning rules, defining which characters end a token. The

CMS scanning rules are that blank characters and parentheses

delimit tokens; parentheses are scanned as separate tokens.

Transparent. A stage is transparent for return codes from

CMS when it returns with the return code it got from the

host.

TSO. The “Time Sharing Option” for z/OS. This allows

z/OS users interactive access to the facilities of the operating

system. Over the years many products have moved between

the TSO and the CMS platforms.

U

Unit record. A (virtual) punched card or printed line.

Readers, printers, and punches process unit records, and are

thus referred to as unit record devices.

Unlimited. Often means “within the virtual storage avail-

able”.

V

V. Variable format.

VB. Variable blocked format.

VBS. Variable blocked spanned format.

Verb. The name of the entry point for a stage.

X

XEDIT. The editor used to edit files on CMS. Its formal

name is VM/System Product Editor.

XEDIT Macro. A program written in REXX (or EXEC2) that

is called from XEDIT. Through a defined interface, the

program can obtain data from XEDIT and issue XEDIT

commands.

956 CMS Pipelines User’s Guide and Reference

 Bibliography

| Where to Get z/VM Information

| The current z/VM product documentation is available in

| IBM Knowledge Center - z/VM

| (www.ibm.com/support/knowledgecenter/SSB27U)

| Additional References

¹ The data streams used by 3270 terminals are described

in:

IBM 3270 Information Display System, Data Stream

Programmer’s Reference, GA23-0059.

¹ These manuals may be needed when using ispf to access

ISPF tables:

Interactive System Productivity Facility Dialog Manage-

ment Guide, SC34-4009. Interactive System Productivity

Facility Dialog Management Services and Examples,

SC34-4010.

¹ This manual may be useful when using sql:

DB2 Server for VSE & VM Application Programming,

SC09-2889.

 ¹ General references:

Bell Systems Technical Journal 57.6 (July-August 1978).

AT&T Bell Laboratories Technical Journal 63.8

(October 1984).

Stuart J. McRae, CMS and UNIX—What They Can

Learn from Each Other Document SYSTELL/SJM-84.1,

Systems & Telecoms Limited [now defunct].

Brian W. Kernighan and P. J. Plauger, Software Tools in

Pascal Addison-Wesley 1981 ISBN 0-201-10342-7.

J. P. Morrison, Data Stream Linkage Mechanism IBM

Systems Journal 7.4, 1978, G321-5081 (reprint).

 Copyright IBM Corp. 1986, 2020 957

https://www.ibm.com/support/knowledgecenter/SSB27U

958 CMS Pipelines User’s Guide and Reference

 Index

 Index

Special Characters
; 573

-

Picture character 747

,

Picture character 748

! 23

OR character in all 295

/

Picture character 748

.

Picture character 748

field identifier 720, 196, 179

filter 2

filter package 924

Type 1 924

Type 2 924

first reading station 720

$

Picture character 747

*

Picture character 748

*ACCOUNT 594, 595

*COPY 66, 483

*LOGREC 594, 595

*MONITOR 589

*MSG 592, 797

*MSGALL 592, 797

*SYMPTOM 594, 595

&

AND character in all 295

Coroutines

Glossary definition 952

Locate mode

Glossary definition 954

Move mode

Glossary definition 954

+

Picture character 747

< built-in program 263

Example of use 9, 10, 11, 12, 15, 17, 18, 29, 30, 36, 40,

46, 63, 66, 78, 80

<mdsk built-in program 264

<mvs built-in program 265

<oe built-in program 266

<sfs built-in program 267

<sfsslow built-in program 268

> built-in program 270

Example of use 8, 14, 15, 17, 29, 30, 44, 78, 81

>> built-in program 278

Example of use 78

>>mdsk built-in program 279

>>mvs built-in program 281

>>oe built-in program 282

>>sfs built-in program 282

>>sfsslow built-in program 285

>mdsk built-in program 271

>mvs built-in program 273

>oe built-in program 275

>sfs built-in program 276

¬
NOT-character in all 295

| 23

OR character in all 296

Numerics
14

Diagnose 542

3270bfra built-in program 715

3270DS Structured Field 417

3270enc built-in program 717

3277bfra built-in program 715

3277enc built-in program 717

370 accommodation 824

3800

EXEC 35

3way built-in program 651

407 Accounting Machine 719

4224 417

4F

Code point 23

500 character limit on REXX clause 243

5A

Carriage control 535, 675

64decode built-in program 717

64encode built-in program 718

9

Picture character 748

A
A8

Diagnose 536, 537, 676

abbrev built-in program 287

Example of use 84

Abut

Glossary definition 952

ACCESS 30, 785

Access list entry token 211

Access register 211

Accounting machines 149

 Copyright IBM Corp. 1986, 2020 959

 Index

acigroup built-in program 288

ADDPIPE pipeline command 751

addrdw built-in program 289

Address ATTACH 935

Address instruction 114

Address LINK 935

Address space 28

address space identification token 210

address spaces 210

Address TSO 935

ADDSTREAM pipeline command 752

adrspace built-in program 290

ADRSPACE 290

AFTER program option

chop 326

Example of use 60

insert 450

pick 518

split 580

aftfst built-in program 293

aggrc built-in program 294

Aggregate 39

Aggregate return code 247

ahelp built-in program 430, 428

AID 415

ALL

XEDIT Subcommand 44

all built-in program 295

Example of use 53

All Points Addressable printer 350, 508, 512

ALLDIRS

REXX 471

alserv built-in program 296

ALSERV 296

ANYCASE program option 57, 128

abbrev 287

between 309

change 323

chop 326

collate 332

inside 450

joincont 460

locate 472

lookup 475

merge 498

nlocate 501

notinside 505

outside 508

pick 518

sort 567

spill 577

split 580

strasmfind 609

strasmnfind 610

strfind 611

strfrlabel 612

ANYCASE program option (continued)

strip 613

strnfind 616

strtolabel 617

structure 618

strwhilelabel 625

unique 668

verify 692

wildcard 701

ANYOF program option

chop 326

Example of use 59, 68

joincont 460

locate 472

nlocate 501

space 569

spill 577

split 580

strip 613

APA 350, 508, 512

apldecode built-in program 298

aplencode built-in program 299

append built-in program 300

Example of use 37, 38, 440

Arcane 253

Argument string

Glossary definition 952

ARIRVSTC

TEXT 800, 801

ASA carriage control 152

asatomc built-in program 302

asmcont built-in program 303

Example of use 67, 68, 69

asmfind built-in program 304

asmnfind built-in program 306

ASMSQL

DMSPQI 585

asmxpnd built-in program 307

Assignment operator 179

ASYNCMS

REXX 163

ATTACH

Address 935

Attention ID 415

B
B

Picture character 748

Backus-Naur form

Glossary definition 952

Backwards propagation of end-of-file 90

beat built-in program 308

BEGOUTPUT pipeline command 752

between built-in program 309

Example of use 55

960 CMS Pipelines User’s Guide and Reference

 Index

bfs built-in program 430

bfsdirectory built-in program 431

bfsquery built-in program 432

bfsreplace built-in program 433

bfsstate built-in program 434

bfsxecute built-in program 435

Binding the plan 138

bit syntax variable 224

polish 527

BLANK program option 227

overlay 510

pad 514

split 580

strip 613

wildcard 701

blank syntax variable 224

block built-in program 310, 275, 282

Example of use 124

Block descriptor word

Glossary definition 952

Blocked

Glossary definition 952

BOTHDISK

REXX 670

Bottom up parsing 182

BPXYERNO 837

BPXYERNO macro 837

BPXYSTAT 434

BPXYUSTN 433

BREAK program option 196

Break key 417

Breaks 195

browse built-in program 315

brw built-in program 315, 315

Buffer

Glossary definition 952

buffer built-in program 317

Example of use 81, 82, 87

buildscr built-in program 319

Byte streams 365

BYTES program option 345

drop 381

take 633

C
c14to38 built-in program 350

C2X

REXX 212

CAF OPEN 801

CALLPIPE 246

CALLPIPE pipeline command 753, 246

Card

Glossary definition 952

Card file 149

Carriage 150

Carriage control

5A 535, 675

Glossary definition 952

Carriage control character 150

Carriage tape 150

Cascade

Glossary definition 952

Case, ignoring 128

casei built-in program 322

Example of use 57

Caseless 57

CATTWO

REXX 388

PRINT 919

CCW 150

CD System keyword 795

CEXEC 547

CHANGE

XEDIT Subcommand 47, 323, 325

change built-in program 323

Example of use 47, 50, 69

Channel command word 150

Glossary definition 952

Channel commands 150

char syntax variable 224

buildscr 319

polish 527

tape 634

CHARS program option 345

Cheque protection 188

chop built-in program 326, 133

Example of use 6, 12, 19, 36, 56, 58, 59, 60, 62, 64, 68,

132

cipher built-in program 328

ckddeblock built-in program 330

CLEAR

REXX 115

CLOSE 79, 543

CLOSE 151

cmd built-in program 339, 337, 337
CMS

Glossary definition 952

cms built-in program 331

Example of use 18, 41

CMSRET 506

CNCTD

REXX 16

CNCTDN

REXX 12

CNTLOG

EXEC 13

Code point 677

collate built-in program 332, 87

Collating sequence 228

Glossary definition 952

 Index 961

 Index

combine built-in program 335

command built-in program 339, 337

Example of use 41, 42, 70, 127

Command environments 114

Comments

Formatting 26

COMMIT 246

COMMIT pipeline command 754, 246

Commit level 247

Compatibility 933

Computational-3 171

Computed output position 181

Configuration variable

Diskreplace 273

Disktempfiletype 273

Configuration variables 867

Conditional operator 192

configure built-in program 340, 867

Configuring CMS Pipelines 867

Connection 2

Example of use 11, 12, 16, 18, 19

Glossary definition 952

Connector

Example of use 64

Glossary definition 952

Connectors 241

Console

Glossary definition 952

Path 414

console built-in program 341

Example of use 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 17,

18, 20, 33, 34, 35, 44, 52, 77, 124

CONSOLE Query 418

Console queue 341

Console stack 34

Consumer stage 767, 249

Consumes 249

Consuming read 249

Control break 195

Control stage

Glossary definition 952

Controls 253

Conversion 175, 571, 711

Zoned decimal 711

COPY 56

REXX 98, 763

copy built-in program 343

COPYFILE 918

COPYFILE 50

COPYFILE Option

EBCDIC 918

FILL 918

FOR 918

FRLABEL 51, 918

FROM 918

LOWCASE 918

COPYFILE Option (continued)

LRECL 918

OLDDATE 918

OVLY 918

PACK 918

RECFM 918

SINGLE 918

SPECS 918

TOLABEL 51, 918

TRANS 918

TRUNC 918

UNPACK 918

UPCASE 918

COPYND

REXX 99, 762

coroutines 113

count built-in program 344

Example of use 3, 5, 6, 11, 13, 15, 46, 63, 636

Counter 178

Counters 722

countlns built-in program 808
CP

Glossary definition 952

cp built-in program 345

Example of use 8, 13, 14, 17, 40, 79

CP Monitor 589

CP System Services

*ACCOUNT 594, 595

*LOGREC 594, 595

*MSG 592

*MSGALL 592

*SYMPTOM 594, 595

cpasis built-in program 808

CPHRSAMP

EXEC 330

CPRC

REXX 768

CRC 347

crc built-in program 347

Cycle 720, 166

Cyclic Redundancy Code 347

D
dam built-in program 351

DAMSAMP

REXX 352

DANAID

EXEC 524

Data stream

Glossary definition 952

dateconvert built-in program 352

DateTimeSubtract callable service 833

DB2 583

DDNAME 539

SYSTSPRT 119

962 CMS Pipelines User’s Guide and Reference

 Index

ddname syntax variable 234

<mvs 265

>mvs 274

Defined 79

deal built-in program 360, 424

deblock built-in program 365, 133, 267

Example of use 62, 65, 66

Decimal Sorting 128

Declaring a label 242

DECODE 930

Decoding trees 82

Default configuration variable 870

delay built-in program 369

Delay the record 89

delimitedString syntax variable 224

<sfs 267

<sfsslow 268

>>sfs 283

>>sfsslow 285

>mvs 274

>sfs 276

aftfst 293

all 295

beat 308

between 309

block 310

buffer 317

change 323

chop 326

cipher 328

console 341

deblock 365

escape 387

fbawrite 394

fmtfst 404

ftp 409

insert 450

inside 450

join 458

joincont 460

locate 472

nlocate 501

notinside 505

outside 508

pick 518

readpds 544

rexxvars 549

sfsback 558

sfsdirectory 559

sfsrandom 561

sfsupdate 563

space 569

spec 571, 729

spill 577

split 580

starsys 595

delimitedString syntax variable (continued)

strasmfind 609

strasmnfind 610

strfind 611

strfrlabel 612

strip 613

strliteral 614

strnfind 616

strtolabel 617

strwhilelabel 625

tcpclient 638

tcpdata 643

timestamp 652

tokenise 654

trackwrite 661

varfetch 683

varload 685

varset 688

vchar 690

verify 692

wildcard 701

writepds 703

delimiter syntax variable 224

change 323

delover built-in program 512

Destructive selection 84

devaddr syntax variable 224

browse 315

devinfo 371

diage4 373

fbaread 393

fbawrite 394

fullscr 413

fullscrq 418

fullscrs 419

mapmdisk 485

printmc 534

punch 536

reader 542

trackread 659

trackwrite 661

uro 674

waitdev 697

xab 705

Device driver 2

Glossary definition 952

Isolating from main pipeline 90

Device drivers 253, 7

devinfo built-in program 371

dfsort built-in program 372

DFSORT/CMS 372

DFSRTLIB TXTLIB 372

diage4 built-in program 373

Diagnose

14 542

24 418

 Index 963

 Index

Diagnose (continued)

8C 321, 418

A8 536, 537, 676

Diagnose A8 824

Diagnose instruction

Glossary definition 952

digest built-in program 374

digit syntax variable 224

<sfs 267

<sfsslow 268

>>sfs 283

>>sfsslow 285

>sfs 276

sfsback 558

sfsrandom 561

sfsupdate 563

spec 741

sysout 631

DIRBUFF 623

DIRBUFF 560

Direct read 341

Direct read from terminal 341

dirid syntax variable 231

<sfs 267

<sfsslow 268

>>sfs 283

>>sfsslow 285

>sfs 276

sfsback 558

sfsrandom 561

sfsupdate 563

state 597

statew 601

Discard operator 184

diskback built-in program 376

diskfast built-in program 376

diskid built-in program 378

DISKID 378, 857

diskrandom built-in program 378

Diskreplace 273

Diskreplace configuration variable 868

diskslow built-in program 379

Disktempfiletype 273

Disktempfiletype configuration variable 868

diskupdate built-in program 380

Dispatcher

Glossary definition 952

DISPLAY

XEDIT Subcommand 708

DMSDTS 833

DMSEXIST 599, 603

DMSFILEC 868

DMSGETDI 560, 623, 836

DMSGETWU 268, 269, 278, 284, 287, 558, 561, 564

DMSOPBLK 823

DMSOPDBK 823

DMSPIPE 867

DMSPQI

ASMSQL 585

dmsstoar built-in program

DMSVALDT 599, 603

DONE program option 725
DOS

Glossary definition 953

Dotted-decimal IP address 638

Dotted-decimal network address 638

Drift 185

Drifting sign 747, 186

Driver

Glossary definition 953

drop built-in program 381

Example of use 56, 79, 82

DSN (DB2 Subsystem ID) 583

dsname syntax variable 234

<mvs 265

>mvs 274

listispf 468

listpds 469

readpds 544

writepds 703

Dual speed carriage 150

DUMPLOAD 874

duplicate built-in program 382

E
E

Picture character 748

EBADF 817

EBCDIC

COPYFILE Option 918
EDF

Glossary definition 953

elastic built-in program 384

ELSIF program option 725

emsg built-in program 385

ENAMETOOLONG 818

end character 74, 19

Example of use 19, 77, 81

Glossary definition 953

End-of-file 90

Backwards propagation 90

endChar syntax variable 224

ENDCHAR pipeline option 238

ENDIF program option 725

Enhanced Disk Format

Glossary definition 953

ENOENT 817, 818

ENOTDIR 817

Entry point table 927

964 CMS Pipelines User’s Guide and Reference

 Index

Enumerate

Glossary definition 953

Enumerated scalar 953

EOF program option 183

block 310

console 341

deblock 365

eofback built-in program 386

EOFREPORT pipeline command 755

ERASE 41

escape built-in program 387

ESCAPE pipeline option 238

Escape character 120

Glossary definition 953

European pictures 749

EVENTRECORD 623

EVERY

REXX 161

Exactness latch 722

EXEC 342

3800 35

CNTLOG 13

CPHRSAMP 330

DANAID 524

GENMLIB 80

Glossary definition 953

HELLO2 548

HONK2 440

INSPIPE 456

NS0 129

NS1 130

PD 27

QCPSETS 686

REPRINT 79

RESBYU 84

SAMPLOC 77

SAYBAR 23

SPECNT 345

SQLINS 140

SQLQ3 141

SUBCOM 627

TESTALT 548

WHOCALLS 551

XMASTREE 516

EXEC2

Glossary definition 953

EXECCOMM 118, 551

EXECIO 919

EXECUPDT 25

Execution profiler 208

Extended attribute buffer 151

External function 116, 117

EXTRACT

XEDIT Subcommand 679

extract built-in program 498

F
F

Glossary definition 953

F program option 228

fanin built-in program 387

Example of use 78, 81, 87

faninany built-in program 388

Example of use 77, 132

fanintwo built-in program 389

fanout built-in program 391, 90

fanoutwo built-in program 392, 408, 657

Example of use 90
FB

Glossary definition 953

fbaread built-in program 393

fbawrite built-in program 394

fblock built-in program 395, 133

FI program option 725

Field test version xx

FIELDS program option 228

FIELDSEPARATOR program option 168, 228

structure 621

File

Glossary definition 953

File Status Table 293, 404

Glossary definition 953

fileback built-in program 376

filedescriptor built-in program 396

filefast built-in program 377

FILELIST 27, 42

filerandom built-in program 379

fileslow built-in program 380

filetoken built-in program 397

fileupdate built-in program 381

FILL

COPYFILE Option 918

fillup built-in program 399, 408, 657

Filter

Glossary definition 953

Filter package

Glossary definition 953

filterpack built-in program 400

Filters 253

FIND

XEDIT Subcommand 44

find built-in program 402

Example of use 14, 42, 53, 66, 67, 68

FINDANY

REXX 532

First stage

Glossary definition 953

fitting built-in program 404

fltpack built-in program 924

Flush

Glossary definition 953

 Index 965

 Index

fm syntax variable 231

<mdsk 264

>>mdsk 279

listpds 469

mdskback 490

mdskfast 488

mdskrandom 491

mdskslow 493

mdskupdate 495

members 496

pdsdirect 517

rexx 547

state 597

statew 601

xedit 705

fmode syntax variable 231

>mdsk 271

fmtfst built-in program 404

FMTP

XEDIT 24, 121

FMTPCBIN

REXX 368

fn syntax variable 231

<mdsk 264

<sfs 267

<sfsslow 268

>>mdsk 279

>>sfs 283

>>sfsslow 285

>mdsk 271

>sfs 276

listpds 469

mdskback 490

mdskfast 488

mdskrandom 491

mdskslow 493

mdskupdate 495

members 496

pdsdirect 517

rexx 547

sfsback 558

sfsrandom 561

sfsupdate 563

state 597

statew 601

xedit 705

FOR

COPYFILE Option 918

FORCERW program option 785

Formatting a pipeline 24

Formatting comments 26

Forms control buffer 150

Glossary definition 953

FPL global variable group 867

FPLASIT 291, 623

FPLEPTBL 927

FPLGREXX 930

FPLHELP 23

FPLHLASX 439

FPLKWDTB 929

FPLMSGTB 928

FPLNXG

TEXT 926

FPLNXH

TEXT 926

FPLOM

MACLIB 623

FPLREXX 23, 97

FPLSTORBUF 623

FRLABEL

COPYFILE Option 51, 918

frlabel built-in program 406

Example of use 55, 56

FROM

COPYFILE Option 918

fromlabel built-in program 407

fromtarget built-in program 408

frtarget built-in program 407

FS program option 168, 228

FST

See File Status Table

ft syntax variable 231

<mdsk 264

<sfs 267

<sfsslow 268

>>mdsk 279

>>sfs 283

>>sfsslow 285

>mdsk 271

>sfs 276

listpds 469

mdskback 490

mdskfast 488

mdskrandom 491

mdskslow 493

mdskupdate 495

members 496

pdsdirect 517

rexx 547

sfsback 558

sfsrandom 561

sfsupdate 563

state 597

statew 601

xedit 705

ftp built-in program 408

Full block interface 78

fullscr built-in program 413

fullscrq built-in program 418

fullscrs built-in program 419

966 CMS Pipelines User’s Guide and Reference

 Index

Function pool variables 145

Functional programming xix

G
G

Glossary definition 953

gate built-in program 422

Gateway

Glossary definition 953

Gateways 253

gather built-in program 423

generation syntax variable 234

<mvs 265

>>mvs 281

>mvs 274

listispf 468

listpds 469

members 496

readpds 544

state 599

writepds 703

GENMLIB

EXEC 80

GENMOD 926

getfiles built-in program 425

Example of use 5, 38, 39

GETRANGE pipeline command 756

Global option 19

Global options 237

GLOBAL TXTLIB 372

GLOBALV 867

Glue

Glossary definition 953

greg2sec built-in program 426

GRIDIT

REXX 629

Group configuration variable 869

H
HCPSGIOP 536, 537, 676, 796

HEADING

REXX 761

HELLO

REXX 97, 760

HELLO2

EXEC 548

Help 23

help built-in program 427

hex syntax variable 224

adrspace 290

filedescriptor 396

filetoken 397

instore 451

outstore 509

hex syntax variable (continued)

polish 527

runpipe 553

starmon 589

storage 607

hexString syntax variable 224

buildscr 319

crc 347

diskid 378

mapmdisk 484, 485

storage 607

stsi 626

tape 634

hfs built-in program 430, 267, 282

hfsdirectory built-in program 431

hfsquery built-in program 432

hfsreplace built-in program 433, 275

hfsstate built-in program 434

hfsxecute built-in program 435

HLASM 813

hlasm built-in program 437

hlasmerr built-in program 439

hole built-in program 440

Example of use 440

HONK2

EXEC 440

Host

Glossary definition 953

Host command processors 253

Host commands from REXX filters 114

Host interface 2

Glossary definition 953

Host-primary address space 210

hostbyaddr built-in program 441

hostbyname built-in program 442

hostid built-in program 443

hostname built-in program 444

httpsplit built-in program 445

HX 194

I
IBM 407 Accounting Machine 719

identifier syntax variable 225

polish 526, 527

spec 726, 734, 739, 742, 743, 746

structure 618, 620, 621

IEANTRT 835
IEBCOPY

Glossary definition 953

iebcopy built-in program 446

IEWBFDAT 846

if built-in program 447

IF program option 725

IFEND program option 725

 Index 967

 Index

Ignored 719

Ignoring case 128

Ignoring case in comparisons 57

IKJCT441 552, 605, 680, 684, 687, 689

IKJEFTSR 821

immcmd built-in program 448

Implied REXX Filters 117

INCLUDE 926

Infrastructure

Glossary definition 953

INITIAL GLOBALV 867

Input stream 2

Input translate table 708

inputRange syntax variable 228, 50

change 323

collate 332

dateconvert 352

deal 361

gather 423

insert 450

ispf 455

joincont 460

lookup 475

merge 498

pick 518

sort 567

spec 571, 729

substring 628

threeway 651

unique 668

verify 692

wildcard 701

xlate 708

zone 714

inputRanges syntax variable 225

locate 472

nlocate 501

insert built-in program 450

inside built-in program 450

Example of use 56

INSPIPE

EXEC 456

instore built-in program 451

Interactive System Productivity Facility 145

Internal representation 175

Interpret REXX Instruction 100

Intersecting pipelines 76

Intersection

Glossary definition 953

Invisible input 342

Invocation 2

IP address 638

ip2socka built-in program 454

IPaddress syntax variable 225

ftp 409

tcpclient 638

IPaddress syntax variable (continued)

tcplisten 648

udp 665

IPDS 417

IRXSTK 937

Isolating a device driver from main pipeline 90

ISPCMDS 148

ISPF 145

ispf built-in program 455

ISSUEMSG pipeline command 757

Issuing 719

IUCV 589, 592, 595, 797

*MONITOR 589

J
jeremy built-in program 457

JES 36

join built-in program 458

Example of use 14, 17, 60

joincont built-in program 460

Journeyman plumber 127

JRCompNameTooLong 818

JREndingSlashOCreat 818

JRPathTooLong 818

JRQuiescing 818

JRxxx reason codes 837

juxtapose built-in program 462

Example of use 84

K
K

Glossary definition 953

Keyboards 23

Keyword table 929

L
Label 242, 79

Declaring 242

Glossary definition 954

Label reference 242

Landscape 24

Glossary definition 954

Landscape format 11

Language diskette 23

LAST program option

combine 336

drop 381

Example of use 54, 55

take 633

unique 668

update 672

Last stage

Glossary definition 954

968 CMS Pipelines User’s Guide and Reference

 Index

ldrtbls built-in program 464

LEADING program option

Example of use 59, 67, 68

joincont 460

strip 613

Left

Glossary definition 954

Left-handed pipeline 75

Length of records 131

letter syntax variable 226

mdiskblk 487

spec 724, 728, 729, 739, 742, 743, 746

structure 620

sysout 631

Libraries 80

Limit on REXX clause 243

Line

Glossary definition 954

Line end character

Glossary definition 954

Line splicing 61

LINK

Address 935

LIST3820 369

listcat built-in program 465

Example of use 72

LISTCMD pipeline option 238

listdsi built-in program 466

Example of use 73

LISTERR pipeline option 238

LISTFILE 5, 41, 70

LISTFILE 702

listispf built-in program 468

listpds built-in program 469

Example of use 6

LISTRC pipeline option 238

LITAFTER

REXX 104

literal built-in program 471

Example of use 30, 34, 44, 56

LOAD 926

LOCAL program option 427, 557

starsys 595

Local options 237, 122

locate

OR of targets 128

locate built-in program 472

Example of use 52, 67, 68, 77

LOCATE 819

locate mode read 249

Look up routines 253

lookup built-in program 474, 87

Example of use 88

Loss of precision 722

LOWCASE

COPYFILE Option 918

LRECL

COPYFILE Option 918

M
M

Glossary definition 954

Machine carriage control character 150

MACLIB

FPLOM 623

maclib built-in program 483

Example of use 81, 82

MACLIB 483

Macro libraries 80

MACWRITE

REXX 81

MAKEDC

REXX 307

mapmdisk built-in program 484

MAPMDISK 484

MAPPDS

REXX 517

Master file update 74

MAXSTREAM 103

MAXSTREAM pipeline command 758, 103

mctoasa built-in program 486

mdiskblk built-in program 487

mdskback built-in program 490

mdskfast built-in program 488

mdskrandom built-in program 491

mdskslow built-in program 493

mdskupdate built-in program 495

member syntax variable 234

<mvs 265

>mvs 274

readpds 544

members built-in program 496, 545

merge built-in program 498, 87

MESSAGE pipeline command 759

Message level

Glossary definition 954

Message text table 928

Mixed case file names 41, 231

Monitor System Service 589

MONWRITE 590, 591

move mode read 249

MOVEFILE 919

mqsc built-in program 499

MRHDR 590

MSGLEVEL pipeline option 238

Multi Lingual Plane 676

Multilevel update 86

Multistream pipelines 2, 18, 74, 101
MVS

Glossary definition 954

 Index 969

 Index

MVS SPOOL 36

MVULTAPE

REXX 636

MYASIT

REXX 212

MYFILTER

REXX 931

N
NAME pipeline option 238

NAME_MAX 818

NAMEDEF 264, 267, 268, 271, 276, 279, 282, 285, 377, 380,

557, 560, 562

NAMESAVE 591

NETDATA 920

Glossary definition 954

NETDATA program option

block 310

deblock 365

Example of use 65

Network address 638

NEXT program option 172

spec 571

structure 620

NEXTW program option 168

NEXTWORD program option 168

spec 571

nfind built-in program 500

Example of use 15, 67, 68

ninside built-in program 505

nlocate built-in program 501

Example of use 10, 11, 16

NOCOMMIT pipeline command 759

noeofback built-in program 503

not built-in program 503

NOT program option

chop 326

digest 374

Example of use 59

joincont 460

spill 577

split 580

strip 613

Not connected 74

noteofback built-in program 503

notfind built-in program 617, 501

notinside built-in program 505

notlocate built-in program 503

NOTREADY 796

NS0

EXEC 129

NS1

EXEC 130

nucext built-in program 506

Null

Glossary definition 954

Null fields. 168

Null record

Glossary definition 954

Null stage

Glossary definition 954

NUMBER program option 173

Example of use 49

filetoken 397

mdiskblk 487

mdskrandom 491

sfsrandom 561

spec 571

vchar 690

number syntax variable 226

<sfs 267

<sfsslow 268

>>mdsk 279

>>sfs 283

>>sfsslow 285

>mdsk 271

>sfs 276

3277bfra 715

abbrev 287

asmcont 303

beat 308

between 309

block 310

browse 315

buffer 317

buildscr 319

combine 336

cp 345

dateconvert 352

deal 361

deblock 365

devinfo 371

diage4 373

drop 381

fanout 391

fbaread 393

fbawrite 394

fblock 395

filedescriptor 396

ftp 409

gather 423

greg2sec 426

help 428

hfsxecute 436

inside 450

join 458

lookup 475

mapmdisk 484, 485

mdskfast 488

mdskslow 493

970 CMS Pipelines User’s Guide and Reference

 Index

number syntax variable (continued)

mdskupdate 495

notinside 505

outside 508

pack 512

pad 514

pick 518

pipcmd 523

random 541

reader 542

retab 545

rexxvars 549

runpipe 553

scm 555

sec2greg 556

sfsback 558

sfsrandom 561

sfsupdate 563

snake 565

space 569

spec 571, 724, 726, 734, 737, 739, 746

spill 577

split 580

stem 603

storage 607

strip 613

structure 620

take 633

tape 634

tcpcksum 637

tcpclient 638

tcpdata 643

tcplisten 648

timestamp 652

trackread 659

trackwrite 661

trfread 663

udp 665

untab 671

var 678

vardrop 681

varfetch 683

varload 685

varset 688

xab 705

xlate 708

xpndhi 713

Number representation 711

Zoned decimal 711

Numeric Sorting 128

numorstar syntax variable 226

change 323

NW program option 168

O
octalDigit syntax variable 226

hfsxecute 437

OLDDATE

COPYFILE Option 918

OMVS 349

OpenExtensions Files 31

Operating System

Glossary definition 954

optcdj built-in program 507

Options

See Pipeline option

See Program option

See Syntax variable

OR for locate targets 128

OS record descriptor words 62

OTHERWISE program option 725

OUTDES 632

OUTPUT pipeline command 760

OUTPUT 632

Output stream 2

Output translate table 708

outside built-in program 508

outstore built-in program 509

OUTSTREAM program option 178

OUTTRAP 41

overlay built-in program 510

Overlong encodings 677

Overriding a built-in program 117

overstr built-in program 511

OVLY

COPYFILE Option 918

P
PACK

COPYFILE Option 918

pack built-in program 512

Packed numbers 722

pad built-in program 514

Example of use 17, 66, 81

PAD program option 174, 175

>>mvs 281

>>sfs 283

>>sfsslow 285

>mvs 274

>sfs 276

collate 332

filetoken 397

lookup 475

merge 498

pick 518

sort 567

spec 571

unique 668

 Index 971

 Index

PAD program option (continued)

vchar 690

writepds 703

Pad character 174

parcel built-in program 515

PARSERANGE 765

PARSERANGE pipeline command 765

PARSESTRING 766

PARSESTRING pipeline command 766

Parsing error 182

Past data 83

Path

console 414

PATH_MAX 818

pause built-in program 516

PD

EXEC 27

pdsdirect built-in program 517, 471

pdslist built-in program 471

pdslisti built-in program 469

pdsread built-in program 545

pdswrite built-in program 704

PEEKTO pipeline command 761

PFX

REXX 100

PGM= 342

pick built-in program 518

Example of use 69

Picture 747, 185, 178

Default 748

European conventions 749

pipcmd built-in program 523

PIPDATE

REXX 71

PIPDESC 245

PIPDUMP 126

PIPE 863, 864

Pipeline

Formatting 24

Glossary definition 954

Pipeline command

Glossary definition 954

Pipeline configuration variables 867, 867

pipeline dispatcher 2

Glossary definition 954

Pipeline option 238—239

Defined 120

Pipeline specification 2

Pipeline specification

Glossary definition 954

Pipeline stall 88

pipestop built-in program 525

Pipethink 7

PIPGFMOD 924

PIPGFTXT 924

PIPMOD 863

PIPMOD INSTALL 932

PIPNXF

TEXT 926

PIPPTFF filter package 117

PIPSCBLK 940

PIPSCSTG 942

PIPSQI 801

PIPWECB 246

PIPXSAMP

XEDIT 244

Placement option 735, 173

Plan (DB2) 583

pods syntax variable 235

listispf 468

readpds 544

writepds 703

polish built-in program 525

Portrait 24

Glossary definition 954

Portrait format 12

Potential to delay a record 251

Prefix connector 241

Precision, loss of 722

predselect built-in program 531

Example of use 85

preface built-in program 532

Preparing the access module 138

Primary data stream

Glossary definition 954

Primary stream 76, 74

Pring Services Facility 151

PRINT 920

Print Services Facility 350, 508, 512

Printer 151

Glossary definition 954

Printer Carriage Control 152

Printing a counter 179

printmc built-in program 534, 632

Example of use 35, 36, 79

Producer stage 767, 249

PROFILE WTPMSG 23, 119

Profiler 208

Program Access key 1 415

Program option

: 409

(295

) 295

* 319, 336, 381, 382, 458, 541, 591, 595, 597, 601, 631,

633, 672, 701

% 701

0 319

00C 542

00E 705

1 298, 299, 319, 336, 381, 382, 458, 633, 634

15 310, 365

972 CMS Pipelines User’s Guide and Reference

 Index

Program option (continued)

16-BIT 347

2 298, 299, 319

32-BIT 347

3277 298, 299, 319

3278 298, 299, 319

3279 298, 299, 319

3DES 328

3F 310, 365

4KBLOCK 542

8 652

80 326, 365

8192 345

A 409

ACCT 410

ADD 296, 618

ADDLENGTH 347

ADMSF 310, 365

AES 328

AFTER 326, 450, 518, 580

ALET 290, 451, 509, 607

ALL 400, 465

ALLEOF 361, 391, 423, 523, 571

ALLMASTER 475

ALLOWEMPTY 276, 283, 285, 563

AND 336, 518

ANY 638, 648, 665

ANYCASE 287, 309, 323, 326, 332, 450, 460, 472, 475,

498, 501, 505, 508, 518, 567, 577, 580, 609, 610, 611,

612, 613, 616, 617, 618, 625, 668, 692, 701

ANYCHARACTER 701

ANYEOF 332, 361, 391, 423, 523, 571

ANYOF 326, 460, 472, 501, 569, 577, 580, 613

ANYSTRING 701

APL 298, 299, 319

APPEND 347, 374, 409, 603, 614

ASA 631

ASCENDING 498, 567

ASCII 409

ASIS 267, 268, 276, 283, 285, 465, 544, 558, 561, 563,

597, 601

ASSEMBLER 525

ASYNCHRONOUS 595

ASYNCHRONOUSLY 341, 413, 665, 667

AT 580

AUTOADD 475

AUTOFIELD 621

AUTOSTOP 389

AWSTAPE 310, 365

BACKLOG 648

BACKWARDS 397

BASEYEAR 352

BEFORE 326, 450, 475, 580

BLANK 510, 514, 580, 613, 701

BLOCKED 397, 491, 561

BLOWFISH 328

Program option (continued)

BOTH 613

BROADCAST 665

BUILTIN 618

BUILTINS 428

BY 571

BYTES 381, 633

C 310, 365

CALLER 618

CASEI 714

CBC 328

CC 315

CCITT-16 347

CDATE 276

CEILING 475

CENTRE 571

CHARACTERS 344

CHDIR 436

CHMOD 436

CHOP 274, 276, 281, 283, 285, 397, 703

CKSUM 347

CLASS 631

CMS 289, 310, 365

CMS4 289, 310, 365

CODEPAGE 708

COERCE 274, 276, 281, 283, 285, 397, 703

COMMANDS 428

COMMENTS 549, 683, 685, 688

COMMIT 582

COMPLEMENT 347

CONDITIONAL 614

CONDREAD 413

CONNECT 582

COUNT 458, 462, 475, 518, 567, 668

CP 663

CRC-16 347

CRC-16I 347

CRC-32 347

CRCFIRST 347

CREATE 290

CRLF 310, 365, 638, 643

CSL 353

D 409, 527

DARK 341

DATACODEPAGE 315

DB2 353

DDNAME 265, 274, 281, 468, 469, 496, 544, 599, 703

DEBLOCK 638, 643

DECIMAL 365

DECRYPT 328

DEFAULT 267, 268, 276, 283, 285, 558, 561, 563

DEFINE 484

DELAY 460

DELETE 618

DELIMITER 544, 703

DES 328

 Index 973

 Index

Program option (continued)

DESCENDING 498, 567

DESCRIBE 582

DESTINATION 631

DESTROY 290

DETAIL 332, 475

DETAILS 409

DIRECT 341, 603, 678, 681, 683, 685, 688

DROP 400

DSNAME 465

EACH 347

EBCDIC 409, 445, 673

EMSGSF4 638

ENCRYPT 328

EOF 310, 341, 365

EOTOK 634

ESM 267, 268, 276, 283, 285, 558, 561, 563

EUR 353

EVENTS 553, 589

EXCLUSIVE 365, 589, 612, 617

EXCLUSIVEOR 336

EXECUTE 582

FETCH 484

FIELD 621

FIELDSEPARATOR 621

FIFO 588

FILE 542, 705

FIRST 336, 381, 633, 668, 672

FIXED 271, 276, 279, 283, 285, 310, 365, 488, 493, 495,

512, 563

FLOOR 475

FORMAT 559, 597, 601

FROM 268, 285, 493, 518, 571, 603, 676, 708

FROM16BIT 715

FROMRIGHT 365

FTP:// 409

FTPS:// 409

FULLDATE 293, 353, 404, 559, 597, 601, 652

FULLPACK 373

FULLVOL 373

GDFORDERS 365

GETSECINFO 638

GETSOCKNAME 638, 643, 648, 665

GLOBAL 400

GREETING 638, 643

GROUP 638, 643

HARDEN 285, 563

HEADING 400

HEXADECIMAL 525

HOLD 542

HOST 428

HOSTID 638, 648, 665

I 409, 527

IDENTIFIED BY 582

IDENTIFY 484

IFEMPTY 614

Program option (continued)

IMMEDIATE 391

INCLUSIVE 365, 612, 617

INCREMENT 475

INDELIMITER 703

INDICATORS 582

INITIALISE 290

INPLACE 276

INPUT 708

INSERT 582

INTERNAL 448

INTO 582

IPUSER 595

ISODATE 293, 353, 404, 559, 597, 601, 652

ISOLATE 290

ISPFSTATS 274, 703

IV 328

JULIAN 353

K 527

KEEP 276, 283, 285, 460, 542, 563, 577

KEEPALIVE 638, 643

KEY 361

KEYLENGTH 336, 458

KEYONLY 475

L 527

LAST 336, 381, 633, 668, 672

LATCH 361

LEADING 460, 613

LEFT 514, 571

LENGTH 620

LEVEL 540

LIFO 588

LINEND 310, 365, 638, 643

LINES 344

LINGER 638, 643

LINK 436

LIST 400, 618

LISTALL 618

LOAD 400

LOCAL 595

LOCALIPADDRESS 638, 648, 665

LOCALPORT 638

LOCALTIME 663

LOWER 708

MACHINE 631

MAIN 549, 603, 678, 681, 683, 685, 688

MASK 553

MASTER 332, 475

MAXCOUNT 475

MAXLINE 344

MD5 374

MDATE 276, 283, 285, 563

MEMBER 620

MEMBERS 544, 618

MENU 428

MESSAGES 428

974 CMS Pipelines User’s Guide and Reference

 Index

Program option (continued)

MET 353

MINIMUM 580

MINLINE 344

MIXED 472, 501

MKDIR 436

MKFIFO 436

MODIFIED 676

MODLIST 400

MODULO 514

MONITOR 365

MONWRITE 589

MSG 428

MSGLEVEL 540, 553

MSGLIST 540

MULTIPLE 668

N 527

NETDATA 310, 365

NEXT 571, 620

NEXTWORD 571

NOBSCAN 455

NOCHOP 276, 283, 285, 397

NOCLOSE 413

NOCOMMENTS 549, 683, 685, 688

NOCOMMIT 582

NODETAILS 597, 601

NOEOF 341

NOFORMAT 293, 434, 559, 597, 601

NOHOLD 542

NOINDICATORS 582

NOKEEP 542

NOMSG233 549, 603, 678, 681, 683, 685, 688

NOPAD 276, 283, 285, 332, 397, 475, 498, 518, 567, 668

NOREAD 413

NORECOVER 276

NORMAL 353

NOSPIN 631

NOT 326, 374, 460, 577, 580, 613

NUMBER 397, 487, 491, 561, 571, 690

O 527

OFF 701

OFFSET 303, 426, 556, 577

OLDDATEREF 267, 268, 558, 561

ONCE 308

ONEBYTE 365

ONERESPONSE 638, 643

ONES 472, 501

OOBINLINE 638, 643

OPENRECOVER 268, 285, 558, 561, 563

OR 336, 518

ORDER 455

OSPDSDIR 446

OTHER 428

OUTDESCRIPTOR 631

OUTPUT 708

PAD 274, 276, 281, 283, 285, 332, 397, 475, 498, 518,

567, 571, 668, 690, 703

Program option (continued)

PADIN 690

PADOUT 690

PAIRWISE 475, 668

PARMLIST 595

PASS 410

PATH 413

PERMIT 290

PGMLIST 451

PGMOWNER 582

PIPE 353

PLAN 582

POSIX 353

PREFACE 614

PRELOAD 347

PRIVATE 267, 268, 276, 283, 285, 558, 561, 563

PRMDATA 595

PRODUCER 549, 603, 678, 681, 683, 685, 688

PURGE 542

QLINK 373

QMDISK 373

QUERY 290

QUIET 434, 597, 599, 601

RANDOM 397

RANGE 460

RDW 365

READ 487, 571, 607

READER 705

READFULL 413

READSTOP 571

RECEIVE 696

RECNO 571

RECURSIVE 559

REFLIN 347

REFLOUT 347

RELEASE 361, 582

REMOVE 296, 484

RENAME 436

REPEATABLE 582

REPORT 676

RESOLVE 400

RETAIN 484

REUSEADDR 638, 643, 648, 665

REVERSE 322, 451, 714

RFC959 365

RIGHT 514, 571

RMDIR 436

ROWCOL 715

S 527

SAFE 276, 283, 285, 409, 563, 638

SAMPLES 589

SAVE 484

SCIABS 353

SCIREL 353

SECONDARY 361

SECURE 638, 643

 Index 975

 Index

Program option (continued)

SELECT 571, 582

SET 618

SETCOUNT 475

SF 289, 310, 365, 638, 643

SF4 289, 310, 365, 638, 643

SHA1 374

SHA224 374

SHA256 374

SHA384 374

SHA512 374

SHARED 589, 703

SHORTDATE 293, 353, 404, 559, 597, 601, 652

SHR 274

SINGLES 668

SITE 409

SPECS 723

SPIN 631

SQL 428

SQLCODE 428

SQUISH 499

STANDARD 293, 404, 559, 597, 601, 652

STATISTICS 638, 643, 648, 665

STOP 332, 361, 391, 423, 523, 534, 536, 571, 674

STREAMID 361, 423

STRICT 388, 422, 475

STRING 293, 310, 326, 365, 394, 404, 559, 569, 577,

580, 613, 638, 643, 652, 661

STRIP 361, 365, 571

STRIPKEY 446

STRUCTURE 620

SUBSYSID 582

SUPPRESS 589

SYMBOLIC 603, 678, 681, 683, 685, 688

SYMLINK 436

SYNTAX 428

T 527

TAP 634

TARGET 595

TBADD 455

TBMOD 455

TBPUT 455

TBSKIP 455

TCPIP 409

TERMCODEPAGE 315

TERMINATE 310, 365, 458, 658

TEST 296

TEXT 298, 299, 319

TEXTFILE 310, 365

TEXTUNIT 365

THREAD 400, 618

TIMEOUT 352, 638

TLSLABEL 643

TO 518, 582, 613, 676, 708

TO16BIT 715

TOD 328

Program option (continued)

TODABS 353

TODCLOCK 571

TODREL 353

TOLOAD 549, 683

TOROWCOL 715

TRACE 409, 553

TRACKCOUNT 475

TRACKING 678

TRAILING 460, 613

TRSOURCE 663

TRUNCATE 690

TYPE 409

UDP 667

UMASK 436

UNIQUE 409, 567

UNLINK 436

UNSAFE 409, 638

UPDATE 397

UPPER 708

USA 353

USER 290, 410

USERDATA 274, 544, 703

USERID 443, 444, 638, 648, 665

UTF-16 676

UTF-32 676

UTF-8 676

UTIME 436

VARIABLE 271, 276, 279, 283, 285, 289, 310, 365, 488,

493, 495, 512, 563

VB 310

VBS 310

VCIT 290

VCOPY 455

VERIFY 374

VERSION 540

VMDATE 353

VREPLACE 455

VS 310

WAIT 413

WHILE 518

WIDTH 549, 715

WINDOW 352

WORD 621

WORDS 344

WORDSEPARATOR 621

WORKUNIT 267, 268, 276, 283, 285, 558, 561, 563

WRITE 290, 296, 487, 571

WTM 634

X 319

XOROUT 347

ZERO 484

ZEROS 472, 501

ZONE 322

Program stack 341

976 CMS Pipelines User’s Guide and Reference

 Index

Programmable Operator 163

PROP 163

PROPAGATE pipeline option 238

PRTPAGE

REXX 206

psds syntax variable 235

<mvs 265

PSF 151, 350, 508, 512

PTF filter package 924

Public

Glossary definition 954

PUNCH 920

Glossary definition 954

punch built-in program 536, 632

Example of use 36, 40, 64

Punched card 149

Glossary definition 955

Q
QCPSETS

EXEC 686

qpdecode built-in program 537

qpencode built-in program 538

qsam built-in program 539

Qualifier 180

qualifier syntax variable 226

QUALIFY pipeline option 238

query built-in program 540

QUERY NAMES 7

Quietly

Glossary definition 955

quotedString syntax variable 226

<oe 266

>>oe 282

>oe 275

spec 739

R
random built-in program 541

RANGE

XEDIT Subcommand 708

range syntax variable 226

change 323

deblock 365

filetoken 397

ispf 455

mapmdisk 485

mdiskblk 487

mdskrandom 491

sfsrandom 561

spec 571, 734

structure 621

update 672

RDROP

REXX 769

Re-entrant REXX environments on MVS 119

READ program option 176

mdiskblk 487

spec 571

storage 607

READCARD 920

reader built-in program 542

Example of use 35, 36, 65, 79

readpds built-in program 544, 498

Example of use 6

READSTOP program option 176

spec 571

READTO pipeline command 762

READY 795, 796

REALUSER

REXX 15

RECFM

COPYFILE Option 918

Record

Glossary definition 955

Record delay 250, 89

Record descriptor word

Glossary definition 955

Record descriptor words 62

RECORDS program option 345

Redefine connector 241

reentrant environments 115

Referenced 79

Referencing a label 242

REFRESH

XEDIT Subcommand 712

Register 179

Remembering past data 83

Repairing LIST3820 369

Repository configuration variable 869

REPRINT

EXEC 79

RESBYU

EXEC 84

RESOLVE pipeline command 763

Resume 246

retab built-in program 545

Return codes

-102 770

-111 755

-112 752, 755, 758, 759, 763, 767, 768, 770, 771

-113 755, 757, 767

-122 785

-163 758, 768, 770, 771

-164 758, 768, 770, 771

-168 767

-169 767

-174 752

-178 770

 Index 977

 Index

Return codes (continued)

-2147483648 754

-3 116

-4 767, 770, 771

-4095 252, 760, 761, 762

-42 763

-58 757, 767

-60 757

-7 116, 252, 751

-9 252

0 752, 753, 754, 755, 757, 758, 759, 760, 761, 762,

763, 767, 768, 770, 771

12 98, 760, 761, 762, 767, 771

13 272, 281, 490, 494, 496

16 272, 281, 490, 494, 496

20 265, 272, 281, 457, 490, 491, 492, 494, 496

24 265, 273, 281, 490, 491, 493, 494, 496

25 265, 273, 281, 490, 491, 493, 494, 496

4 759, 760, 761, 767, 771

8 755, 759, 761, 767, 771

reverse built-in program 546

REVWORD1

REXX 90

REXX 97

ALLDIRS 471

ASYNCMS 163

BOTHDISK 670

C2X 212

CATTWO 388

CLEAR 115

CNCTD 16

CNCTDN 12

COPY 98, 763

COPYND 99, 762

CPRC 768

DAMSAMP 352

EVERY 161

FINDANY 532

FMTPCBIN 368

Glossary definition 955

GRIDIT 629

HEADING 761

HELLO 97, 760

LITAFTER 104

MACWRITE 81

MAKEDC 307

MAPPDS 517

MVULTAPE 636

MYASIT 212

MYFILTER 931

PFX 100

PIPDATE 71

PRTPAGE 206

RDROP 769

Re-entrant environments 119

REALUSER 15

REXX (continued)

Reentrant environments 115

REVWORD1 90

RXP 100

RXPD 113

RXPI 101

SCOMP 102

TAGNSPL 154

TCALLP 754

TCMT 760

TCOMMT 755

THROTTLE 363

TISSUE 758

TMAXSTR 758

TMSG 759

TPOS 769

TRES 763

TREXXC 764

TSTRNO 770

TSTRST 771

USER2NAM 18

USERTERM 19

VMCSERV 158

ZONE2DEC 711

rexx built-in program 546

REXX clause

Limit on size 243

REXX Compiler Runtime Environment 547

REXXCMD pipeline command 763

rexxvars built-in program 549

Right

Glossary definition 955

Rita 208

RSCS 163

RSTD 591

Run list 246

Runin 195

Runin cycle 720

Runout 195

Runout cycle 720, 183

runpipe built-in program 553

Runtime library xx

Runtime profiler 208

RXP

REXX 100

RXPD

REXX 113

RXPI

REXX 101

RXSOCKET 225, 442, 443

S
S

Picture character 747

978 CMS Pipelines User’s Guide and Reference

 Index

SAMPLOC

EXEC 77

SAYBAR

EXEC 23

Scanning rules 956

SCANRANGE pipeline command 764

SCANSTRING pipeline command 766

SCBLOCK 782

SCBLOCK 506

SCIF 164

SCM

XEDIT 26, 556

scm built-in program 555

SCOMP

REXX 102

Scope

Glossary definition 955

sec2greg built-in program 556

Second reading station 720, 194

Secondary data stream

Glossary definition 955

Secondary stream 76

Segment descriptor word

Glossary definition 955

SEGMENT LOAD 589

Segmentation Flags

Glossary definition 955

SELECT program option 197

spec 571

sql 582

SELECT pipeline command 766

Selecting records 82

Selection by irreversible modification 84

Selection stages 253

Semantics 222

SEPARATOR pipeline option 238

Sequential data stream

Glossary definition 955

Service programs 253

SET EMSG ON 773

SET MSGLINE

XEDIT Subcommand 712

SET PREFIX 31

SET SPILL WORD 579

SETRC pipeline command 767

Sever 617, 655

Glossary definition 955

SEVER pipeline command 768

SFBLOK 151

sfsback built-in program 557

sfsdirectory built-in program 559

sfsrandom built-in program 560

sfsupdate built-in program 562

SGIOP 536, 537, 676

Shared File System

Glossary definition 955

Shell

Glossary definition 955

SHORT pipeline command 769

Short circuit 34, 104, 617, 655

Glossary definition 955

Short-through connection 242, 239

SHVBLOCK 793

SHVNEWV 684, 689

Sign 722

SINGLE

COPYFILE Option 918

Single Console Image Facility 164

Skip to a channel 150

snake built-in program 565

snumber syntax variable 227

chop 326

dateconvert 352

duplicate 382

random 541

spec 571, 729, 731, 746

split 580

structure 620

socka2ip built-in program 566

Solicited read 414

sort built-in program 567

Example of use 17, 37, 62, 63, 70

Problems with 133

Sorters 253

Sorting

Numeric 128

Source entry point table 927

Source keyword table 929

Source message text table 928

Source virtual machine 156

space built-in program 569

SPACE program option 227

Span

Glossary definition 955

spec built-in program 719, 571, 133

Example of use 13, 18, 19, 35, 40, 42, 49, 50, 58, 62,

65, 66, 68, 69, 71, 79

spec parsing error 182

specification items 166

Specification list 719, 571

SPECNT

EXEC 345

SPECS

COPYFILE Option 918

spill built-in program 577

Spilling words 577

Splicing lines 61

split built-in program 580, 133

Example of use 9, 10, 11, 16, 56, 58, 59, 60, 63

Splitting records 133
SPOOL

Glossary definition 955

 Index 979

 Index

sql built-in program 582

Example of use 139

SQL/DS 138

sqlcodes built-in program 587

SQLDBSU 586

SQLINS

EXEC 140

SQLpgmname configuration variable 869

SQLpgmowner configuration variable 869

SQLQ3

EXEC 141

sqlselect built-in program 587

Example of use 20, 139

Stack 341

stack built-in program 588

Example of use 440

Stage 8, 2

Glossary definition 955

Stage separator 23

Glossary definition 955

Stage separator character 23

STAGENUM pipeline command 769

stageSep syntax variable 227

STAGESEP pipeline option 238

Stall 88

Glossary definition 955

Stallaction configuration variable 870

Stalled 88

Stallfiletype configuration variable 870

starmon built-in program 589

starmsg built-in program 591

Example of use 44

starsys built-in program 594

state built-in program 599, 597

Example of use 70, 71, 72

statew built-in program 600

STATS program option 640, 645, 648, 665

STAX 816

stderr built-in program 397

stdin built-in program 397

stdout built-in program 397

stem built-in program 603

Example of use 36, 37, 127, 636

stembuild built-in program 480

Stemmed array 36

Glossary definition 955

Stepwise refinement 7

stfle built-in program 606

STOP pipeline option 238

STOPERROR pipeline option 239

Stopping an infinite pipeline 161

storage built-in program 607

STOW 829

strasmfind built-in program 609

strasmnfind built-in program 610

Stream

Glossary definition 955

stream syntax variable 227

fanin 387

rexx 547

spec 571, 727

stream identifier 103

Stream identifier

Glossary definition 955

streamID syntax variable 227

STREAMNUM pipeline command 770

STREAMSTATE pipeline command 770

strfind built-in program 611

Example of use 65

strfrlabel built-in program 612

strfromlabel built-in program 613

STRING program option

aftfst 293

block 310

chop 326

deblock 365

Example of use 58, 59

fbawrite 394

fmtfst 404

sfsdirectory 559

space 569

spill 577

split 580

strip 613

tcpclient 638

tcpdata 643

timestamp 652

trackwrite 661

string syntax variable 227

< 263

> 270

>> 278

append 300

asmfind 304

asmnfind 306

casei 322

change 323

cms 331

command 337, 339

cp 345

dfsort 372

diskback 376

diskfast 377

diskrandom 378

diskslow 379

diskupdate 380

eofback 386

find 402

frlabel 406

frtarget 407

help 428

980 CMS Pipelines User’s Guide and Reference

 Index

string syntax variable (continued)

hfs 430

hfsdirectory 431

hfsquery 432

hfsreplace 433

hfsxecute 437

hlasm 437

if 447

ldrtbls 465

listdsi 466

literal 471

nfind 500

not 503

nucext 506

preface 532

rexx 547

sql 582

starmsg 591

starsys 595

subcom 626

sysdsn 630

tolabel 655

totarget 656

tso 664

update 672

vmc 693

whilelabel 700

zone 714

strip built-in program 613

Example of use 9, 10, 11, 16, 19, 58, 59, 67, 68

STRIP program option 184

deal 361

deblock 365

spec 571

strliteral built-in program 614

strnfind built-in program 616

Example of use 65, 69

strtolabel built-in program 617

structure built-in program 618

Structured Fields 417

3270DS 417

strwhilelabel built-in program 625

stsi built-in program 626

Style configuration variable 870

SUBCOM

EXEC 627

subcom built-in program 626

Example of use 42

Subcommand Environment

Glossary definition 955

Subroutine pipeline 103, 10, 2, 11, 103

Glossary definition 956

subscript syntax variable 227

structure 620

substring built-in program 628

Suppress leading zeros 747

Surrogate pair 677

SUSPEND pipeline command 772
SVC

Glossary definition 956
SVC 202

Glossary definition 956
SVC 203

Glossary definition 956

synchronise built-in program 628

Synchronises 251, 177

synchronize built-in program 628

syncsort built-in program 372

Syntax 222

Syntax variable 224—236

sysdsn built-in program 630

SYSIN 36

SYSOUT 36

sysout built-in program 631

SYSTSPRT 23

SYSTSPRT DDNAME 119

sysvar built-in program 632

T
TABULATE program option 227

Tag 151

TAGNSPL

REXX 154

take built-in program 633

Example of use 9, 54, 55, 66

tape built-in program 634

Example of use 62

TAPn 635

Target virtual machine 156

Task

Glossary definition 956

TCALLP

REXX 754

TCMT

REXX 760

TCOMMT

REXX 755

TCP/IP 665

tcpcksum built-in program 637

tcpclient built-in program 638

tcpdata built-in program 643

tcplisten built-in program 648

Terminal 342

terminal built-in program 341, 341

Terminal Monitor Program

Glossary definition 956

Terminals 23

Terminate prematurely 254

Terminology xxi

Tertiary data stream

Glossary definition 956

 Index 981

 Index

TESTALT

EXEC 548

Testing by destruction 84

TEXT

ARIRVSTC 800, 801

FPLNXG 926

FPLNXH 926

PIPNXF 926

Text file 31

threeway built-in program 651

THROTTLE

REXX 363

timestamp built-in program 652

Timestamp string sample 653

TISSUE

REXX 758

TMAXSTR

REXX 758

TMSG

REXX 759

TO program option

Example of use 67, 68

pick 518

sql 582

strip 613

utf 676

xlate 708

Token

Glossary definition 956

Tokenise

Glossary definition 956

tokenise built-in program 654

tokenize built-in program 654, 654

TOLABEL

COPYFILE Option 51, 918

tolabel built-in program 655

Example of use 44, 55, 56

Topology diagram 19

totarget built-in program 656

TPOS

REXX 769

TRACE pipeline option 239

trackblock built-in program 657

trackdeblock built-in program 658

trackexpand built-in program 663

trackread built-in program 659

tracksquish built-in program 660

trackverify built-in program 660

trackwrite built-in program 661

trackxpand built-in program 662

TRAILING program option

Example of use 59

joincont 460

strip 613

TRANS

COPYFILE Option 918

translate built-in program 708, 708

Transparent

Glossary definition 956

TRES

REXX 763

TREXXC

REXX 764

trfread built-in program 663

TRUNC

COPYFILE Option 918

truncate built-in program 326, 326

TSO

Address 935

Glossary definition 956

tso built-in program 664

TSO Logon Procedure 23

TSTRNO

REXX 770

TSTRST

REXX 771

TXTLIB 372

DFSRTLIB 372

TYPE 920

Type 1 filter package 924

Type 2 filter package 924

U
udp built-in program 665

Unconnected pipeline specification 248

unique built-in program 668

Example of use 56, 63

Unit record

Glossary definition 956

Unlimited

Glossary definition 956

UNPACK

COPYFILE Option 918

unpack built-in program 670

Example of use 35, 56, 62, 69, 80

untab built-in program 671

UPCASE

COPYFILE Option 918

UPDATE 920

update built-in program 672

Example of use 87

UPDATE 86

UPPER program option

Example of use 44, 62, 63

xlate 708

Upper case translation 708

urldeblock built-in program 673

uro built-in program 674

USER2NAM

REXX 18

982 CMS Pipelines User’s Guide and Reference

 Index

USERTERM

REXX 19

utf built-in program 676

V
V

Glossary definition 956

Picture character 748

var built-in program 678

vardrop built-in program 681

varfetch built-in program 683

VARIABLE program option

>>mdsk 279

>>sfs 283

>>sfsslow 285

>mdsk 271

>sfs 276

addrdw 289

block 310

deblock 365

Example of use 62

mdskfast 488

mdskslow 493

mdskupdate 495

pack 512

sfsupdate 563

Variable length record format 62

varload built-in program 685

varset built-in program 688
VB

Glossary definition 956
VBS

Glossary definition 956

VBS program option

block 310

Example of use 124

vchar built-in program 690

Verb

Glossary definition 956

verify built-in program 692

Virtual configuration identification token 211

Virtual unit record 149

vmc built-in program 693

vmcdata built-in program 694

VMCF address space 825

vmclient built-in program 695

vmclisten built-in program 696

VMCMPARM 623

VMCSERV

REXX 158

VMDUMP 542

VMDUMP 873

VMDUMPTL 874

VMMHDR 623

vmsort built-in program 372

W
W program option 167, 228

waitdev built-in program 697

Warm start data 150

warp built-in program 698

warplist built-in program 699

WCC 415

WHILE program option 725

pick 518

whilelabel built-in program 700

WHOCALLS

EXEC 551

wildcard built-in program 701

word syntax variable 227

<oe 266

>>mvs 281

>>oe 282

>oe 275

abbrev 287

adrspace 290

casei 322

diage4 373

eofback 386

fbawrite 394

filterpack 400

fitting 404

frtarget 407

ftp 409, 410

fullscr 413

help 428

hfs 430

hfsdirectory 431

hfsquery 432

hfsreplace 433

hfsxecute 437

hlasm 437

hostid 443

hostname 444

if 447

immcmd 448

ispf 455

ldrtbls 465

listcat 465

listispf 468

listpds 469

maclib 483

members 496

mqsc 499

not 503

nucext 506

optcdj 507

qsam 539

readpds 544

 Index 983

 Index

word syntax variable (continued)

scm 555

sfsdirectory 559

spec 729, 741

sql 582

starmon 589

starmsg 591

starsys 595

state 599

stem 603

subcom 626

sysout 631

sysvar 632

tcpclient 638

tcpdata 643

tcplisten 648

totarget 656

trackwrite 661

udp 665

var 678

vmc 693

vmclient 695

warp 698

writepds 703

zone 714

Word spill 577

WORDS program option 167, 228

count 344

WORDSEPARATOR program option 228

structure 621

WRITE program option 177

adrspace 290

alserv 296

mdiskblk 487

spec 571

Write Control Character 415

writepds built-in program 703

Writing REXX filters 3, 97

WS program option 228

WTPMSG 23, 119

X
XAB 151

xab built-in program 705

XEDIT

FMTP 24, 121

Glossary definition 956

PIPXSAMP 244

SCM 26, 556

xedit built-in program 705

Example of use 65

XEDIT Macro

Glossary definition 956

XEDIT Subcommand

ALL 44

XEDIT Subcommand (continued)

CHANGE 47, 323, 325

DISPLAY 708

EXTRACT 679

FIND 44

RANGE 708

REFRESH 712

SET MSGLINE 712

ZONE 47

xeditmsg built-in program 712, 712

xithlp03 built-in program 429

xlate built-in program 708

Example of use 44, 45, 46, 62, 63

XMASTREE

EXEC 516

XMIT 36

XMITMSG 109

xmsg built-in program 712

xorc syntax variable 227

>>mvs 281

>>sfs 283

>>sfsslow 285

>mvs 274

>sfs 276

block 310

c14to38 350

collate 332

deblock 365

fblock 395

filetoken 397

lookup 475

merge 498

overlay 510

pad 514

pick 518

sort 567

space 569

spec 571, 726

storage 607

structure 621

tcpclient 638

tcpdata 643

unique 668

vchar 690

wildcard 701

writepds 703

xrange 713

xpndhi built-in program 713

xrange built-in program 713

xrange syntax variable 228

chop 326

split 580

strip 613

xlate 708

xrange 713

984 CMS Pipelines User’s Guide and Reference

 Index

xtract built-in program 498, 808

Y
Y

Picture character 748

Z
Z

Picture character 748

z/OS format V 62

ZONE

XEDIT Subcommand 47

zone built-in program 714

Example of use 67

ZONE2DEC

REXX 711

Zoned decimal 711

 Index 985

ÉÂÔÙ

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC24-6252-01

	Contents
	About This Book
	What Is CMS Pipelines?
	Who Is CMS Pipelines for?
	Skills Expected
	How to Use this Book
	When Viewing this Book with a PDF Viewer
	Web Links

	Additional Information, Download Site
	Syntax Notation and Typography
	Examples
	Stage Separator
	Supported Operating Environments
	VM Environment
	z/OS Environment

	Compatibility with Older Releases
	Migrating from Older Releases
	General Compatibility Concerns
	z/VM 6.3
	Runtime Library Distribution
	Signiﬁcant Documentation Fixes

	How to Send Your Comments to IBM
	Summary of Changes
	SC24-6252-01, CMS Pipelines 1.1.12/0012

	Part 1. Introduction
	Chapter 1. Summary and Two Examples
	Summary
	Many Streams
	Writing Programs
	A Pipeline Example
	Another Example

	Chapter 2. A Walk Through a Pipeline
	Getting Data In and Out of the Pipeline
	Filtering Pipeline Data
	Subroutine Pipelines
	Writing EXECs with Pipeline Commands
	Writing a REXX Program to Process Data in the Pipeline
	Issuing CMS Commands
	Multistream Pipelines
	A DB2 Query

	Part 2. Task Oriented Guide
	Chapter 3. Where Do I Start?
	IBM Manuals
	Tutorials and Papers
	Ensure CMS Pipelines Is Installed
	Find the Stage Separator on Your Terminal
	TSO Logon Procedure
	Pipe Help
	Editing Tools
	Using FMTP
	Using SCM

	Issuing the PIPE Command from a FILELIST Panel
	Sample Pipelines and REXX Filters
	Compatibility Between TSO Pipelines and CMS Pipelines

	Chapter 4. Building a PIPE Command
	Using Device Drivers to Get Data in and out of a Pipeline
	Reading and Writing CMS Files
	Reading and Writing MVS Files
	OpenExtensions Text Files
	Libraries
	Typing on the Terminal
	Injecting Data into the Pipeline
	Console Stack (External Data Queue)
	Using Virtual Unit Record Devices (VM/CMS)
	MVS SPOOL
	Accessing Variables
	Using Device Drivers to Read Data into the Pipeline Downstream
	Another Way to Read a File

	Issuing Commands
	CP
	CMS
	TSO
	Subcommand Environments
	Obtaining CP Messages and other Console Output

	Using Filters
	Translate Characters
	Counting
	Editing and Conversion
	Specifying Input Ranges
	Selecting Records
	Splitting, Chopping, and Stripping
	Joining
	Changing Record Formats
	Sorting

	Cascading Filters
	Netdata Format
	IEBCOPY Unloaded Data
	Building a Selection Key
	Selecting, Revisited

	Obtaining Information about Files
	CMS ﬁles
	TSO data sets

	Chapter 5. Using Multistream Pipelines
	Building Blocks for Multistream Pipelines
	Combining Data Streams
	Splitting a Data Stream
	Generating a CMS Macro Library
	Decoding Trees
	Remembering Past Data
	Destructive Testing
	Other Multistream Programs
	Update
	Merge
	Collate
	Lookup

	Some Fine Points
	Ensure the Pipeline Does not Stall
	Keep the Order of Records
	Allow End-of-ﬁle to Travel Backwards

	Chapter 6. Processing Structured Data
	Deﬁning Structured Data
	Activating a Structure Deﬁnition
	Referencing Fields in a Structure
	Using Typed Data
	Using Arrays
	Deactivating a Structure Deﬁnition
	Structure Scopes
	Caller Scope
	Set Scope
	Thread Scope
	Built-in Scope

	Chapter 7. Writing a REXX Program to Run in a Pipeline
	Reading and Writing the Pipeline
	Using Multiple Streams in REXX Filters
	Controlling Streams
	Using CALLPIPE to Run a Subroutine Pipeline
	Sipping at Data—Processing the Input File Piecemeal
	Short Circuits
	Accessing REXX Variables
	Obtaining the Source String
	Scanning the Argument String
	Getting a Range from an Input Record
	Building Production Strength REXX Filters
	Scanning Arguments
	Issuing Error Messages
	Using the COMMIT Pipeline Command to Ensure other Stages Are Committed to Process Data
	Propagating End-of-ﬁle
	A Complete Robust REXX Filter

	Building a REXX Program Dynamically
	Implementing a REXX Macro Processor
	Miscellaneous Issues
	Issuing Commands from a REXX Filter on CMS
	Issuing Commands from a REXX Filter on TSO
	Issuing Pipeline Commands from an External Function
	Return Codes -3 and -7

	Pitfalls
	Calling External Functions from a REXX Filter
	The Dangers of Using Implied REXX Filters

	Performance
	Should You Compile Your REXX Filters?

	MVS Considerations

	Chapter 8. Using Pipeline Options
	Options for the Pipeline Speciﬁcation Parser
	Options for the Pipeline Dispatcher

	Chapter 9. Debugging
	Error Messages
	Other Hints
	Who Did That?
	No Output
	Pipeline Stall

	Chapter 10. Pipeline Idioms—or—Frequently Asked Questions
	How Can I Do xxx and Get the Result into REXX Variables?
	Locating One of Several Targets
	Making Things Case Insensitive
	Numeric Sorting
	Hexadecimal Sorting
	Obtaining the Length of Records
	Running a Filter on Part of the Record
	When the Sort Does Not
	Why Does QUERY CMSTYPE not Work?
	Why Does SPLIT 80 Not Work?
	Why Can’t I Update a Stemmed Array?
	Wondering If It Is a Bug?

	Part 3. Specialised Topics, Tutorials
	Chapter 11. Accessing and Maintaining Relational Databases (DB2 Tables)
	sqlselect—Format a Query
	Creating, Loading, and Querying a Table
	Using spec to Convert Fields
	About the Unit of Work
	Using Multiple Streams with sql Stages
	Using Concurrent sql Stages
	CMS Considerations
	Obtaining Help

	Chapter 12. Using CMS Pipelines with Interactive System Productivity Facility
	Issuing ISPF Commands from REXX Filters
	Accessing ISPF Tables
	Accessing ISPF Function Pool Variables
	Interaction (on TSO) Between ISPF and Stages that Access REXX Variables
	Deﬁning PIPE to ISPF

	Chapter 13. SPOOL Files and Virtual SPOOL Devices on VM
	Introduction to Unit Record Equipment
	VM SPOOL Files Contain More than Just Cards
	Overview of Unit Record Device Drivers
	Creating a SPOOL File
	Errors on Unit Record Output Devices
	Controlling a Unit Record Output Device
	Reader SPOOL Files

	Chapter 14. Using VMCF with CMS Pipelines
	Supported Functions
	Identify
	Sendx
	Send
	Send/receive

	Parameter lists
	Example Server Application

	Chapter 15. Event-driven Pipelines in Clients and Servers
	Waking Up Once a Minute
	Terminating an Event-driven Pipeline
	Reacting to Immediate Commands
	Processing Messages
	Validating a User ID

	Chapter 16. spec Tutorial
	Basic Mechanics
	Basic Field Handling
	Input Ranges
	Literals
	Manifest Constants
	The Record Number
	Output Placement
	Padding

	Conversion
	Combining Input Records into One Output Record
	Multiple Input Streams
	Generating Several Output Records from One Input Record
	Multiple Output Streams
	Expressions
	Counter Expressions
	String Processing
	Dealing with Errors in Expressions

	Special Processing at End-of-ﬁle
	Pictures
	Boolean Operators
	Conditional Processing
	The Second Reading Station
	Control Breaks
	Suppressing Repetitions
	Generating Title Records
	Printing Subtotals
	Break Hierarchies
	When spec Establishes a Break
	Suppressing Detail Printing

	Driving spec with Due Care and Attention
	Examples
	Page Formatter

	And Finally

	Chapter 17. Rita, the CMS Pipelines Runtime Proﬁler
	Example

	Chapter 18. Using VM Data Spaces with CMS Pipelines
	Terminology
	Querying an Address Space
	Accessing the Contents of a Data Space
	Creating a Data Space
	Sharing Address Spaces
	Using Mapped Minidisks
	Destroying a Data Space

	Chapter 19. CMS Pipelines Built-in Programs supporting Data Spaces

	Part 4. Reference
	Chapter 20. Syntax Notation
	How to Read a Syntax Diagram
	Syntactic Variables
	Input Range

	CMS File Names
	Mixed case File Names
	File Mode *
	Shared File System Considerations

	MVS File Names
	OpenExtensions File Names

	Chapter 21. Syntax of a Pipeline Speciﬁcation Used with PIPE, runpipe, ADDPIPE, and CALLPIPE
	Options
	Pipeline
	Stage
	Connectors
	Labels
	Example
	Considerations when Issuing the PIPE Command
	REXX Limit of 500 Characters in Clause
	Pipelines in XEDIT Macros

	Chapter 22. Scanning a Pipeline Speciﬁcation and Running Pipeline Programs
	Pipeline Scanner
	Pipeline Dispatcher
	States of a Stage
	Commit Level
	Reading, Writing
	Delaying the Record
	Device Drivers that Wait for External Events
	Return Codes

	Chapter 23. Inventory of Built-in Programs
	Overview - >>sfs
	Overview by Category
	<—Read a File
	<mdsk—Read a CMS File from a Mode
	<mvs—Read a Physical Sequential Data Set or a Member of a Partitioned Data Set
	<oe—Read an OpenExtensions Text File
	<sfs—Read an SFS File
	<sfsslow—Read an SFS File
	>—Replace or Create a File
	>mdsk—Replace or Create a CMS File on a Mode
	>mvs—Rewrite a Physical Sequential Data Set or a Member of a Partitioned Data Set
	>oe—Replace or Create an OpenExtensions Text File
	>sfs—Replace or Create an SFS File
	>>—Append to or Create a File
	>>mdsk—Append to or Create a CMS File on a Mode
	>>mvs—Append to a Physical Sequential Data Set
	>>oe—Append to or Create an OpenExtensions Text File
	>>sfs—Append to or Create an SFS File

	>>sfsslow - asmxpnd
	>>sfsslow—Append to or Create an SFS File
	abbrev—Select Records that Contain an Abbreviation of a Word in the First Positions
	acigroup—Write ACI Group for Users
	addrdw—Preﬁx Record Descriptor Word to Records
	adrspace—Manage Address Spaces
	aftfst—Write Information about Open Files
	aggrc—Compute Aggregate Return Code
	all—Select Lines Containing Strings (or Not)
	alserv—Manage the Virtual Machine’s Access List
	apldecode—Process Graphic Escape Sequences
	aplencode—Generate Graphic Escape Sequences
	append—Put Output from a Device Driver after Data on the Primary Input Stream
	asatomc—Convert ASA Carriage Control to CCW Operation Codes
	asmcont—Join Multiline Assembler Statements
	asmﬁnd—Select Statements from an Assembler File as XEDIT Find
	asmnﬁnd—Select Statements from an Assembler File as XEDIT NFind
	asmxpnd—Expand Joined Assembler Statements

	beat - configure
	beat—Mark when Records Do not Arrive within Interval
	between—Select Records Between Labels
	block—Block to an External Format
	browse—Display Data on a 3270 Terminal
	buffer—Buffer Records
	buildscr—Build a 3270 Data Stream
	casei—Run Selection Stage in Case Insensitive Manner
	change—Substitute Contents of Records
	chop—Truncate the Record
	cipher—Encrypt and Decrypt Using a Block Cipher
	ckddeblock—Deblock Track Data Record
	cms—Issue CMS Commands, Write Response to Pipeline
	collate—Collate Streams
	combine—Combine Data from a Run of Records
	command—Issue CMS Commands, Write Response to Pipeline
	command—Issue TSO Commands
	conﬁgure—Set and Query CMS Pipelines Conﬁguration Variables

	console - diskfast
	console—Read or Write the Terminal in Line Mode
	copy—Copy Records, Allowing for a One Record Delay
	count—Count Lines, Blank-delimited Words, and Bytes
	cp—Issue CP Commands, Write Response to Pipeline
	crc—Compute Cyclic Redundancy Code
	c14to38—Combine Overstruck Characters to Single Code Point
	dam—Pass Records Once Primed
	dateconvert—Convert Date Formats
	deal—Pass Input Records to Output Streams Round Robin
	deblock—Deblock External Data Formats
	delay—Suspend Stream
	devinfo—Write Device Information
	dfsort—Interface to DFSORT/CMS
	diage4—Submit Diagnose E4 Requests
	digest—Compute a Message Digest
	diskback—Read a File Backwards
	diskfast—Read, Create, or Append to a File

	diskid - fbawrite
	diskid—Map CMS Reserved Minidisk
	diskrandom—Random Access a File
	diskslow—Read, Create, or Append to a File
	diskupdate—Replace Records in a File
	drop—Discard Records from the Beginning or the End of the File
	duplicate—Copy Records
	elastic—Buffer Sufﬁcient Records to Prevent Stall
	emsg—Issue Messages
	eofback—Run an Output Device Driver and Propagate End-of-ﬁle Backwards
	escape—Insert Escape Characters in the Record
	fanin—Concatenate Streams
	faninany—Copy Records from Whichever Input Stream Has One
	fanintwo—Pass Records to Primary Output Stream
	fanout—Copy Records from the Primary Input Stream to All Output Streams
	fanoutwo—Copy Records from the Primary Input Stream to Both Output Streams
	fbaread—Read Blocks from a Fixed Block Architecture Drive
	fbawrite—Write Blocks to a Fixed Block Architecture Drive

	fblock - getfiles
	fblock—Block Data, Spanning Input Records
	ﬁledescriptor—Read or Write an OpenExtensions File that Is Already Open
	ﬁletoken—Read or Write an SFS File That is Already Open
	ﬁllup—Pass Records To Output Streams
	ﬁlterpack—Manage Filter Packages
	ﬁnd—Select Lines by XEDIT Find Logic
	ﬁtting—Source or Sink for Copipe Data
	fmtfst—Format a File Status Table (FST) Entry
	frlabel—Select Records from the First One with Leading String
	frtarget—Select Records from the First One Selected by Argument Stage
	ftp—Connect to an FTP Server and Exchange Data
	fullscr—Full screen 3270 Write and Read to the Console or Dialled/Attached Screen
	fullscrq—Write 3270 Device Characteristics
	fullscrs—Format 3270 Device Characteristics
	gate—Pass Records Until Stopped
	gather—Copy Records From Input Streams
	getﬁles—Read Files

	greg2sec - iebcopy
	greg2sec—Convert a Gregorian Timestamp to Second Since Epoch
	help—Display Help for CMS Pipelines or DB2
	hfs—Read or Append File in the Hierarchical File System
	hfsdirectory—Read Contents of a Directory in a Hierarchical File System
	hfsquery—Write Information Obtained from OpenExtensions into the Pipeline
	hfsreplace—Replace the Contents of a File in the Hierarchical File System
	hfsstate—Obtain Information about Files in the Hierarchical File System
	hfsxecute—Issue OpenExtensions Requests
	hlasm—Interface to High Level Assembler
	hlasmerr—Extract Assembler Error Messages from the SYSADATA File
	hole—Destroy Data
	hostbyaddr—Resolve IP Address into Domain and Host Name
	hostbyname—Resolve a Domain Name into an IP Address
	hostid—Write TCP/IP Default IP Address
	hostname—Write TCP/IP Host Name
	httpsplit—Split HTTP Data Stream
	iebcopy—Process IEBCOPY Data Format

	if - literal
	if—Process Records Conditionally
	immcmd—Write the Argument String from Immediate Commands
	insert—Insert String in Records
	inside—Select Records between Labels
	instore—Load the File into a storage Buffer
	ip2socka—Build sockaddr_in Structure
	ispf—Access ISPF Tables
	jeremy—Write Pipeline Status to the Pipeline
	join—Join Records
	joincont—Join Continuation Lines
	juxtapose—Preface Record with Marker
	ldrtbls—Resolve a Name from the CMS Loader Tables
	listcat—Obtain Data Set Names
	listdsi—Obtain Information about Data Sets
	listispf—Read Directory of a Partitioned Data Set into the Pipeline
	listpds—Read Directory of a Partitioned Data Set into the Pipeline
	literal—Write the Argument String

	locate - noeofback
	locate—Select Lines that Contain a String
	lookup—Find Records in a Reference Using a Key Field
	maclib—Generate a Macro Library from Stacked Members in a COPY File
	mapmdisk—Map Minidisks Into Data spaces
	mctoasa—Convert CCW Operation Codes to ASA Carriage Control
	mdiskblk—Read or Write Minidisk Blocks
	mdskfast—Read, Create, or Append to a CMS File on a Mode
	mdskback—Read a CMS File from a Mode Backwards
	mdskrandom—Random Access a CMS File on a Mode
	mdskslow—Read, Append to, or Create a CMS File on a Mode
	mdskupdate—Replace Records in a File on a Mode
	members—Extract Members from a Partitioned Data Set
	merge—Merge Streams
	mqsc—Issue Commands to a WebSphere MQ Queue Manager
	nﬁnd—Select Lines by XEDIT NFind Logic
	nlocate—Select Lines that Do Not Contain a String
	noeofback—Pass Records and Ignore End-of-ﬁle on Output

	not - polish
	not—Run Stage with Output Streams Inverted
	notinside—Select Records Not between Labels
	nucext—Call a Nucleus Extension
	optcdj—Generate Table Reference Character (TRC)
	outside—Select Records Not between Labels
	outstore—Unload a File from a storage Buffer
	overlay—Overlay Data from Input Streams
	overstr—Process Overstruck Lines
	pack—Pack Records as Done by XEDIT and COPYFILE
	pad—Expand Short Records
	parcel—Parcel Input Stream Into Records
	pause—Signal a Pause Event
	pdsdirect—Write Directory Information from a CMS Simulated Partitioned Data Set
	pick—Select Lines that Satisfy a Relation
	pipcmd—Issue Pipeline Commands
	pipestop—Terminate Stages Waiting for an External Event
	polish—Reverse Polish Expression Parser

	predselect - scm
	predselect—Control Destructive Test of Records
	preface—Put Output from a Device Driver before Data on the Primary Input Stream
	printmc—Print Lines
	punch—Punch Cards
	qpdecode—Decode to Quoted-printable Format
	qpencode—Encode to Quoted-printable Format
	qsam—Read or Write Physical Sequential Data Set through a DCB
	query—Query CMS Pipelines
	random—Generate Pseudorandom Numbers
	reader—Read from a Virtual Card Reader
	readpds—Read Members from a Partitioned Data Set
	retab—Replace Runs of Blanks with Tabulate Characters
	reverse—Reverse Contents of Records
	rexx—Run a REXX Program to Process Data
	rexxvars—Retrieve Variables from a REXX or CLIST Variable Pool
	runpipe—Issue Pipelines, Intercepting Messages
	scm—Align REXX Comments

	sec2greg - starmon
	sec2greg—Convert Seconds Since Epoch to Gregorian Timestamp
	sfsback—Read an SFS File Backwards
	sfsdirectory—List Files in an SFS Directory
	sfsrandom—Random Access an SFS File
	sfsupdate—Replace Records in an SFS File
	snake—Build Multicolumn Page Layout
	socka2ip—Format sockaddr_in Structure
	sort—Order Records
	space—Space Words Like REXX
	spec—Rearrange Contents of Records
	spill—Spill Long Lines at Word Boundaries
	split—Split Records Relative to a Target
	sql—Interface to SQL
	sqlcodes—Write the last 11 SQL Codes Received
	sqlselect—Query a Database and Format Result
	stack—Read or Write the Program Stack
	starmon—Write Records from the *MONITOR System Service

	starmsg - structure
	starmsg—Write Lines from a CP System Service
	starsys—Write Lines from a Two-way CP System Service
	state—Provide Information about CMS Files
	state—Verify that Data Set Exists
	statew—Provide Information about Writable CMS Files
	stem—Retrieve or Set Variables in a REXX or CLIST Variable Pool
	stfle—Store Facilities List
	storage—Read or Write Virtual Machine Storage
	strasmﬁnd—Select Statements from an Assembler File as XEDIT Find
	strasmnﬁnd—Select Statements from an Assembler File as XEDIT NFind
	strﬁnd—Select Lines by XEDIT Find Logic
	strfrlabel—Select Records from the First One with Leading String
	strip—Remove Leading or Trailing Characters
	strliteral—Write the Argument String
	strnﬁnd—Select Lines by XEDIT NFind Logic
	strtolabel—Select Records to the First One with Leading String
	structure—Manage Structure Deﬁnitions

	strwhilelabel - timestamp
	strwhilelabel—Select Run of Records with Leading String
	stsi—Store System Information
	subcom—Issue Commands to a Subcommand Environment
	substring—Write substring of record
	synchronise—Synchronise Records on Multiple Streams
	sysdsn—Test whether Data Set Exists
	sysout—Write System Output Data Set
	sysvar—Write System Variables to the Pipeline
	take—Select Records from the Beginning or End of the File
	tape—Read or Write Tapes
	tcpcksum—Compute One’s complement Checksum of a Message
	tcpclient—Connect to a TCP/IP Server and Exchange Data
	tcpdata—Read from and Write to a TCP/IP Socket
	tcplisten—Listen on a TCP Port
	threeway—Split record three ways
	timestamp—Preﬁx the Date and Time to Records

	tokenise - untab
	tokenise—Tokenise Records
	tolabel—Select Records to the First One with Leading String
	totarget—Select Records to the First One Selected by Argument Stage
	trackblock—Build Track Record
	trackdeblock—Deblock Track
	trackread—Read Full Tracks from ECKD Device
	tracksquish—Squish Tracks
	trackverify—Verify Track Format
	trackwrite—Write Full Tracks to ECKD Device
	trackxpand—Unsquish Tracks
	trfread—Read a Trace File
	tso—Issue TSO Commands, Write Response to Pipeline
	udp—Read and Write an UDP Port
	unique—Discard or Retain Duplicate Lines
	unpack—Unpack a Packed File
	untab—Replace Tabulate Characters with Blanks

	update - waitdev
	update—Apply an Update File
	urldeblock—Process Universal Resource Locator
	uro—Write Unit Record Output
	utf—Convert between UTF-8, UTF-16, and UTF-32
	var—Retrieve or Set a Variable in a REXX or CLIST Variable Pool
	vardrop—Drop Variables in a REXX Variable Pool
	varfetch—Fetch Variables in a REXX or CLIST Variable Pool
	varload—Set Variables in a REXX or CLIST Variable Pool
	varset—Set Variables in a REXX or CLIST Variable Pool
	vchar—Recode Characters to Different Length
	verify—Verify that Record Contains only Speciﬁed Characters
	vmc—Write VMCF Reply
	vmcdata—Receive, Reply, or Reject a Send or Send/receive Request
	vmclient—Send VMCF Requests
	vmclisten—Listen for VMCF Requests
	waitdev—Wait for an Interrupt from a Device

	warp - 64encode
	warp—Pipeline Wormhole
	warplist—List Wormholes
	whilelabel—Select Run of Records with Leading String
	wildcard—Select Records Matching a Pattern
	writepds—Store Members into a Partitioned Data Set
	xab—Read or Write External Attribute Buffers
	xedit—Read or Write a File in the XEDIT Ring
	xlate—Transliterate Contents of Records
	xmsg—Issue XEDIT Messages
	xpndhi—Expand Highlighting to Space between Words
	xrange—Write a Range of Characters
	zone—Run Selection Stage on Subset of Input Record
	3277bfra—Convert a 3270 Buffer Address Between Representations
	3277enc—Write the 3277 6-bit Encoding Vector
	64decode—Decode MIME Base-64 Format
	64encode—Encode to MIME Base-64 Format

	Chapter 24. spec Reference
	Overview
	Concepts
	The Cycle
	Streams
	Field Identiﬁers, Control Breaks, Break Levels
	Structured Data
	Counters
	Number Representation
	Expressions
	Syntax Recursion

	Syntax Description
	Syntax Overview
	Main Options
	Item Group
	If Group
	While Group
	Plain Item
	Stream Control
	Break Control
	Data Field
	Input Source
	Conversions
	Output Placement
	Expression
	Assignment Expression
	Conditional Expression
	Binary Expression
	Term
	Floating point Numbers
	Functions

	Pictures
	Sign Characters
	Digit Selection
	Punctuation
	Implied Decimal Point
	Exponent
	General
	Continental European Conventions

	Chapter 25. Pipeline Commands
	ADDPIPE—Add a Pipeline Speciﬁcation to the Running Set
	ADDSTREAM—Create a Stream
	BEGOUTPUT—Enter Implied Output Mode
	CALLPIPE—Run a Subroutine Pipeline
	COMMIT—Commit Stage to a New Level
	EOFREPORT—Enable Reporting of Stream Events
	GETRANGE—Extract Part of Record or String
	ISSUEMSG—Issue a Message from the Repository
	MAXSTREAM—Return the Highest Stream Number
	MESSAGE—Issue a Message
	NOCOMMIT—Disable Automatic Commit on I/O
	OUTPUT—Write a Line
	PEEKTO—Preview the next Input Line
	READTO—Read or Discard an Input Line
	RESOLVE—Return Entry Point of Built-in Program
	REXXCMD—Call a REXX Pipeline Program from a Filter
	SCANRANGE—Parse an input range
	SCANSTRING—Parse a delimited string
	SELECT—Select a Stream
	SETRC—Set Return Code in Stage Writing
	SEVER—Break a Connection
	SHORT—Connect Input and Output Stream
	STAGENUM—Return Stage’s Position in Pipeline
	STREAMNUM—Return Stream Number
	STREAMSTATE—Return Stream Status
	SUSPEND—Allow other Stages to Run

	Chapter 26. Message Reference
	0 - 128
	0 - 15
	0
	1
	2
	3
	4
	10
	11
	12
	13
	14
	15

	16 - 28
	16
	17
	18
	19
	20
	21
	23
	24
	26
	27
	28

	29 - 39
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39

	40 - 50
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50

	51 - 61
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61

	62 - 72
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

	73 - 83
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83

	84 - 94
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94

	95 - 105
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105

	107 - 117
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117

	118 - 128
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128

	129 - 305
	129 - 142
	129
	131
	132
	133
	134
	137
	138
	139
	140
	141
	142

	143 - 154
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	154

	155 - 166
	155
	156
	157
	158
	159
	161
	162
	163
	164
	165
	166

	167 - 179
	167
	169
	170
	172
	173
	174
	175
	176
	177
	178
	179

	180 - 191
	180
	181
	182
	183
	184
	185
	186
	187
	189
	190
	191

	192 - 209
	192
	193
	194
	195
	196
	197
	198
	200
	204
	206
	209

	211 - 225
	211
	212
	214
	215
	219
	220
	221
	222
	223
	224
	225

	226 - 237
	226
	227
	229
	230
	231
	232
	233
	234
	235
	236
	237

	238 - 261
	238
	240
	241
	242
	243
	245
	250
	253
	256
	257
	261

	264 - 290
	264
	279
	280
	281
	282
	283
	284
	287
	288
	289
	290

	291 - 305
	291
	292
	293
	297
	298
	300
	301
	302
	303
	304
	305

	306 - 553
	306 - 317
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	317

	318 - 339
	318
	319
	320
	324
	333
	334
	335
	336
	337
	338
	339

	340 - 352
	340
	341
	342
	343
	344
	345
	346
	347
	348
	350
	352

	354 - 364
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364

	365 - 376
	365
	366
	367
	368
	369
	370
	371
	373
	374
	375
	376

	377 - 401
	377
	378
	379
	380
	381
	382
	391
	392
	393
	400
	401

	402 - 421
	402
	405
	406
	407
	409
	410
	411
	412
	413
	420
	421

	498 - 508
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508

	509 - 530
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	530

	531 - 541
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541

	542 - 553
	542
	543
	544
	545
	546
	547
	548
	549
	550
	552
	553

	554 - 694
	554 - 564
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564

	565 - 576
	565
	566
	568
	569
	570
	571
	572
	573
	574
	575
	576

	577 - 590
	577
	579
	580
	581
	582
	583
	584
	585
	586
	587
	590

	591 - 601
	591
	592
	593
	594
	595
	596
	597
	598
	599
	600
	601

	602 - 613
	602
	603
	604
	605
	606
	607
	608
	609
	611
	612
	613

	614 - 626
	614
	615
	616
	617
	620
	621
	622
	623
	624
	625
	626

	627 - 644
	627
	635
	636
	637
	638
	639
	640
	641
	642
	643
	644

	650 - 660
	650
	651
	652
	653
	654
	655
	656
	657
	658
	659
	660

	661 - 672
	661
	662
	663
	664
	665
	666
	667
	668
	670
	671
	672

	673 - 683
	673
	674
	675
	676
	677
	678
	679
	680
	681
	682
	683

	684 - 694
	684
	685
	686
	687
	688
	689
	690
	691
	692
	693
	694

	695 - 1041
	695 - 708
	695
	699
	700
	701
	702
	703
	704
	705
	706
	707
	708

	709 - 719
	709
	710
	711
	712
	713
	714
	715
	716
	717
	718
	719

	720 - 730
	720
	721
	722
	723
	724
	725
	726
	727
	728
	729
	730

	731 - 742
	731
	732
	733
	734
	735
	736
	737
	738
	740
	741
	742

	743 - 754
	743
	744
	745
	746
	747
	748
	749
	750
	752
	753
	754

	755 - 765
	755
	756
	757
	758
	759
	760
	761
	762
	763
	764
	765

	766 - 776
	766
	767
	768
	769
	770
	771
	772
	773
	774
	775
	776

	777 - 787
	777
	778
	779
	780
	781
	782
	783
	784
	785
	786
	787

	788 - 1000
	788
	789
	790
	791
	792
	793
	794
	796
	797
	798
	1000

	1010 - 1020
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020

	1021 - 1041
	1021
	1022
	1023
	1032
	1033
	1036
	1037
	1038
	1039
	1040
	1041

	1048 - 1239
	1048 - 1081
	1048
	1049
	1050
	1074
	1075
	1076
	1077
	1078
	1079
	1080
	1081

	1082 - 1100
	1082
	1083
	1084
	1085
	1086
	1087
	1088
	1089
	1090
	1091
	1100

	1110 - 1124
	1110
	1111
	1112
	1113
	1114
	1115
	1120
	1121
	1122
	1123
	1124

	1125 - 1135
	1125
	1126
	1127
	1128
	1129
	1130
	1131
	1132
	1133
	1134
	1135

	1136 - 1146
	1136
	1137
	1138
	1139
	1140
	1141
	1142
	1143
	1144
	1145
	1146

	1147 - 1167
	1147
	1148
	1149
	1150
	1161
	1162
	1163
	1164
	1165
	1166
	1167

	1168 - 1178
	1168
	1169
	1170
	1171
	1172
	1173
	1174
	1175
	1176
	1177
	1178

	1179 - 1193
	1179
	1180
	1181
	1182
	1183
	1184
	1185
	1186
	1191
	1192
	1193

	1194 - 1215
	1194
	1195
	1196
	1197
	1198
	1210
	1211
	1212
	1213
	1214
	1215

	1216 - 1228
	1216
	1217
	1220
	1221
	1222
	1223
	1224
	1225
	1226
	1227
	1228

	1229 - 1239
	1229
	1230
	1231
	1232
	1233
	1234
	1235
	1236
	1237
	1238
	1239

	1240 - 1371
	1240 - 1251
	1240
	1241
	1242
	1243
	1244
	1245
	1246
	1247
	1249
	1250
	1251

	1252 - 1264
	1252
	1253
	1254
	1255
	1256
	1257
	1258
	1259
	1260
	1261
	1264

	1265 - 1275
	1265
	1266
	1267
	1268
	1269
	1270
	1271
	1272
	1273
	1274
	1275

	1276 - 1287
	1276
	1277
	1278
	1279
	1281
	1282
	1283
	1284
	1285
	1286
	1287

	1288 - 1303
	1288
	1289
	1291
	1296
	1297
	1298
	1299
	1300
	1301
	1302
	1303

	1306 - 1316
	1306
	1307
	1308
	1309
	1310
	1311
	1312
	1313
	1314
	1315
	1316

	1317 - 1327
	1317
	1318
	1319
	1320
	1321
	1322
	1323
	1324
	1325
	1326
	1327

	1328 - 1338
	1328
	1329
	1330
	1331
	1332
	1333
	1334
	1335
	1336
	1337
	1338

	1339 - 1349
	1339
	1340
	1341
	1342
	1343
	1344
	1345
	1346
	1347
	1348
	1349

	1350 - 1360
	1350
	1351
	1352
	1353
	1354
	1355
	1356
	1357
	1358
	1359
	1360

	1361 - 1371
	1361
	1362
	1363
	1364
	1365
	1366
	1367
	1368
	1369
	1370
	1371

	1372 - 1492
	1372 - 1382
	1372
	1373
	1374
	1375
	1376
	1377
	1378
	1379
	1380
	1381
	1382

	1383 - 1393
	1383
	1384
	1385
	1386
	1387
	1388
	1389
	1390
	1391
	1392
	1393

	1394 - 1404
	1394
	1395
	1396
	1397
	1398
	1399
	1400
	1401
	1402
	1403
	1404

	1405 - 1415
	1405
	1406
	1407
	1408
	1409
	1410
	1411
	1412
	1413
	1414
	1415

	1416 - 1426
	1416
	1417
	1418
	1419
	1420
	1421
	1422
	1423
	1424
	1425
	1426

	1427 - 1437
	1427
	1428
	1429
	1430
	1431
	1432
	1433
	1434
	1435
	1436
	1437

	1438 - 1448
	1438
	1439
	1440
	1441
	1442
	1443
	1444
	1445
	1446
	1447
	1448

	1449 - 1459
	1449
	1450
	1451
	1452
	1453
	1454
	1455
	1456
	1457
	1458
	1459

	1460 - 1470
	1460
	1461
	1462
	1463
	1464
	1465
	1466
	1467
	1468
	1469
	1470

	1471 - 1481
	1471
	1472
	1473
	1474
	1475
	1476
	1477
	1478
	1479
	1480
	1481

	1482 - 1492
	1482
	1483
	1484
	1485
	1486
	1487
	1488
	1489
	1490
	1491
	1492

	1493 - 1604
	1493 - 1503
	1493
	1494
	1495
	1496
	1497
	1498
	1499
	1500
	1501
	1502
	1503

	1504 - 1514
	1504
	1505
	1506
	1507
	1508
	1509
	1510
	1511
	1512
	1513
	1514

	1515 - 1524
	1515
	1516
	1517
	1518
	1519
	1520
	1521
	1522
	1523
	1524

	1525 - 1534
	1525
	1526
	1527
	1528
	1529
	1530
	1531
	1532
	1533
	1534

	1535 - 1544
	1535
	1536
	1537
	1538
	1539
	1540
	1541
	1542
	1543
	1544

	1545 - 1554
	1545
	1546
	1547
	1548
	1549
	1550
	1551
	1552
	1553
	1554

	1555 - 1564
	1555
	1556
	1557
	1558
	1559
	1560
	1561
	1562
	1563
	1564

	1565 - 1574
	1565
	1566
	1567
	1568
	1569
	1570
	1571
	1572
	1573
	1574

	1575 - 1584
	1575
	1576
	1577
	1578
	1579
	1580
	1581
	1582
	1583
	1584

	1585 - 1594
	1585
	1586
	1587
	1588
	1589
	1590
	1591
	1592
	1593
	1594

	1595 - 1604
	1595
	1596
	1597
	1598
	1599
	1600
	1601
	1602
	1603
	1604

	Chapter 27. PIPMOD Command (CMS Pipelines only)
	The PIPE Bootstrap Module
	The PIPMOD Nucleus Extension
	Setting Permanent Pipeline Options
	The Message Level

	PIPMOD Immediate Commands
	ACTIVE—Show the Active Stage
	STOP—Terminating Stages that Wait Forever
	WHERE—Show Addresses of Pipeline Control Blocks

	Chapter 28. Conﬁguring CMS Pipelines
	Default Styles
	CMS Considerations
	Conﬁguration Variables
	Diskreplace
	Disktempﬁletype
	Group
	Repository
	SQLpgmname
	SQLpgmowner
	Stallaction
	Stallﬁletype
	Style

	Installation-wide Customisation (CMS)

	Chapter 29. Diagnosis
	Determining and Terminating the Currently Running Stage
	VM

	Traps

	Part 5. Appendices
	Appendix A. Summary of Built-in Programs
	Appendix B. Messages, Sorted by Text
	Appendix C. Implementing CMS Commands as Stages in a Pipeline
	Appendix D. Running Multiple Versions of CMS Pipelines Concurrently
	Basic Initialisation
	Initialisation of a Shared Segment
	Coexistence
	Filter Packages

	Appendix E. Generating and Using Filter Packages with CMS Pipelines
	Note for MVS Users
	Introduction
	Specifying Files
	Contents of a Filter Package
	Glue Code
	Entry Point Table
	FPLEPTBL—Generate Entry Point Table Object Module
	Message Text Table
	FPLMSGTB—Generate Message Text Table Object Module
	Keyword Table
	FPLKWDTB—Generate a Keyword Table Object Module
	PIPGFTXT—Generate Object Module from Program Directory
	PIPGFMOD—Generate Filter package Load Module
	Programs

	Generating a Sample Type-1 Filter Package

	Appendix F. Pipeline Compatibility and Portability between CMS and TSO
	TSO Commands Supplied with TSO Pipelines
	FPLRESET
	FPLDEBUG
	FPLUNIX

	Using the PIPE Command from Unix System Services
	Pipeline Speciﬁcations—The PIPE Command

	Appendix G. Format of Output Records from runpipe EVENTS
	00—Message
	01—Begin Pipeline Set
	02—End Pipeline Set
	03—Enter Scanner
	04—Pipeline Vector Allocated
	05—Leave Scanner
	06—Scanner Item
	07—Calling Syntax Exit
	08—Start Stage
	09—End Stage
	0A—Resuming Stage
	0B—Calling Dispatcher Service
	0C—Pipeline is Stalled
	0D—State of Stage
	0E—Pipeline Committing
	0F—Console Input
	10—Console Output
	11—Pause
	12—Subroutine Pipeline Complete
	13—Caller is Waiting for Subroutine Pipeline to Complete

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Glossary
	Bibliography
	Where to Get z/VM Information
	Additional References

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

