
z/VM
7.3

z/Architecture
Extended Configuration (z/XC)
Principles of Operation

IBM

SC27-4940-73

Note:

Before you use this information and the product it supports, read the information in “Notices” on page
61.

This edition applies to version 7, release 3 of IBM® z/VM® (product number 5741-A09) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Last updated: 2022-08-31
© Copyright International Business Machines Corporation 1991, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About This Document..xi
Intended Audience..xi
Conventions... xi

Multiplier Prefix Symbols for Bytes.. xii
Where to Find More Information..xii

Links to Other Documents and Websites.. xiii

How to Send Your Comments to IBM...xv

Chapter 1. Introduction... 1
Highlights of z/XC...1

Additions to z/XC.. 1
The z/Architecture Base... 2

System Program...3
Compatibility.. 3

Compatibility among z/XC Implementations...3
Compatibility between z/XC and ESA/XC.. 4
Compatibility among z/XC, z/Architecture and ESA/390.. 5

Chapter 2. Organization... 7
Main Storage...7
Central Processing Unit..7

Access Registers...7
Host Access List... 8
Host Program... 8

Chapter 3. Storage...9
Storage Addressing.. 9
Absolute Storage Address Spaces...9

Private and Shareable Address Spaces... 10
Identification of Address Spaces... 10

Address Types and Formats.. 10
Address Types.. 10

Protection...12
Key-Controlled Protection..12
Host Access-List-Controlled Protection.. 13
Host DAT Protection... 13
Low-Address Protection...14
Suppression on Protection...14

Prefixing... 15
Dynamic Address Translation..15
Translation Control.. 15

Translation Modes.. 16
Address Summary..16

Addresses Translated...16

 iii

Handling of Addresses... 17
Assigned Storage Locations...18

Chapter 4. Control... 21
Program-Status Word.. 21

Program-Status-Word Format..21
Short PSW Format.. 21

Control Registers... 22
Tracing..22
Program-Event Recording..22
Guarded-Storage Facility... 23
Externally Initiated Functions... 23

Resets... 23
CPU Signaling and Response...24

Signal-Processor Orders.. 24
Facility Indications...24

Chapter 5. Program Execution..27
Authorization Mechanisms.. 27

Extraction-Authority Control..27
Access-Register Mechanisms.. 27

PC-Number Translation... 27
Home Address Space...27
Access-Register Introduction..27

Summary.. 28
Access-Register Functions...28

Host Access-Register Translation... 33
Host Access-Register Translation Control...34
Access Registers.. 34
Host Access-Register Translation Structures..34
Host Access-Register Translation Process.. 35

Subspace Groups...37
Linkage Stack..37

ESA/390-Compatibility-Mode Facility...37
Sequence of Storage References.. 38

Chapter 6. Interruptions.. 39
Interruption Action.. 39

Exceptions Associated with the PSW.. 39
Program Interruption...39

Program-Interruption Conditions.. 39
Multiple Program-Interruption Conditions.. 44

Chapter 7. Instructions..47
z/Architecture Instructions Not Provided... 47
Modified z/Architecture Instructions.. 48

DIAGNOSE.. 48
INSERT ADDRESS SPACE CONTROL..48
INSERT STORAGE KEY EXTENDED.. 48
INVALIDATE DAT TABLE ENTRY...48
INVALIDATE PAGE TABLE ENTRY.. 49
LOAD ADDRESS EXTENDED... 49
LOAD PSW...49
LOAD PSW EXTENDED..49
LOAD USING REAL ADDRESS...49
MONITOR CALL...49
PURGE ALB... 50

iv

PURGE TLB... 50
RESET REFERENCE BIT EXTENDED.. 50
RESUME PROGRAM..50
SET ADDRESS SPACE CONTROL and SET ADDRESS SPACE CONTROL FAST.....................................50
SET STORAGE KEY EXTENDED.. 51
SET SYSTEM MASK...51
STORE THEN OR SYSTEM MASK..51
STORE USING REAL ADDRESS...52
TEST ACCESS..52
TEST BLOCK..53
TEST PROTECTION...53
TRACE... 54

Chapter 8. Machine-Check Handling...57
Handling of Machine Checks... 57

Validation..57
Machine-Check Extended Interruption Information.. 57

Failing-Storage Address and ASIT... 57

Chapter 9. Input/Output.. 59
Handling of Addresses for I/O... 59

Notices..61
Programming Interface Information... 62
Trademarks.. 62
Terms and Conditions for Product Documentation...62
IBM Online Privacy Statement.. 63

Bibliography..65
Where to Get z/VM Information.. 65
z/VM Base Library.. 65
z/VM Facilities and Features..66
Prerequisite Products.. 68
Related Products..68
Other Publications... 69

Index.. 71

 v

vi

Figures

1. Handling of Addresses (Part 1 of 2)..17

2. Handling of Addresses (Part 2 of 2)..18

3. PSW Format...21

4. Short PSW Format... 22

5. Use of Access Registers.. 29

6. Priority of Access Exceptions..45

7. Priority of Execution: SET ADDRESS SPACE CONTROL and SET ADDRESS SPACE CONTROL FAST........ 51

8. Priority of Execution: TEST ACCESS..53

 vii

viii

Tables

1. Translation Modes... 16

2. Conditions that would normally cause a program exception but instead complete with condition
code 3... 52

3. Conditions that would normally cause a program exception but instead complete with condition
code 3... 54

 ix

x

About This Document

IBM z/Architecture® Extended Configuration (z/XC) virtual-machine architecture, as provided by z/VM, is
described in detail. z/XC virtual machine operation is described as it appears to an assembly language
programmer. Because z/XC is based on and is closely related to z/Architecture, z/XC is defined by
indicating the ways in which it is the same as, or different from, z/Architecture.

The following elements of the z/XC architecture are covered:

• Overall organization
• The structure of storage and address spaces
• Control facilities
• Program execution
• Interruptions
• The operation of instructions
• Input/output facilities

Intended Audience
This information is for programmers who write or debug programs that run in z/XC virtual machines.

You must have a basic familiarity with IBM z/Architecture, as described in IBM z/Architecture Principles of
Operation.

You must also have a basic knowledge of IBM assembly language and have experience with z/VM
programming concepts and techniques.

Conventions
This information is intended to be used with the definition of z/Architecture that is provided in IBM
z/Architecture Principles of Operation. Where possible, the z/XC principles are presented by using the
same style and general organization as IBM z/Architecture Principles of Operation. The following table
shows the relationship of the chapters in this document to the chapters in IBM z/Architecture Principles of
Operation.

Chapter in this document Corresponding chapters in IBM z/Architecture Principles of Operation,
SA22-7832

Chapter 1, “Introduction,” on page
1

Chapter 1, Introduction

Chapter 2, “Organization,” on page
7

Chapter 2, Organization

Chapter 3, “Storage,” on page 9 Chapter 3, Storage

Chapter 4, “Control,” on page 21 Chapter 4, Control

Chapter 5, “Program Execution,” on
page 27

Chapter 5, Program Execution

Chapter 6, “Interruptions,” on page
39

Chapter 6, Interruptions

© Copyright IBM Corp. 1991, 2022 xi

Chapter in this document Corresponding chapters in IBM z/Architecture Principles of Operation,
SA22-7832

Chapter 7, “Instructions,” on page
47

Chapter 7, General Instructions
Chapter 10, Control Instructions

Chapter 8, “Machine-Check
Handling,” on page 57

Chapter 11, Machine-Check Handling

Chapter 9, “Input/Output,” on page
59

Chapter 13, I/O Overview
Chapter 14, I/O Instructions
Chapter 15, Basic I/O Functions
Chapter 16, I/O Interruptions
Chapter 17, I/O Support Functions

Note: No material in this document corresponds to the following chapters in IBM z/Architecture Principles of
Operation:

Chapter 8, Decimal Instructions
Chapter 9, Floating-Point Overview and Support Instructions
Chapter 12, Operator Facilities
Chapter 18, Hexadecimal-Floating-Point Instructions
Chapter 19, Binary-Floating-Point Instructions
Chapter 20, Decimal-Floating-Point Instructions
Chapter 21, Vector Overview and Support Instructions
Chapter 22, Vector Integer Instructions
Chapter 23, Vector String Instructions
Chapter 24, Vector Floating-Point Instructions
Chapter 25, Vector Decimal Instructions
Chapter 26, Specialized-Function-Assist Instructions

Multiplier Prefix Symbols for Bytes
In this information, as in the IBM z/Architecture Principles of Operation publication, the letters K, M, and G
denote multipliers of powers of 2.

Symbol Value

K (kilo) 1,024=210

M (mega) 1,048,576 = 220

G (giga) 1,073,741,824 = 230

A multiplier symbol can be prefixed to the abbreviation for byte (B). For example:

• 4,096 bytes is expressed as 4 KB.
• 1,048,576 bytes is expressed as 1 MB.

Where to Find More Information
In addition to the IBM z/Architecture Principles of Operation publication, the following documents in the
z/VM library might be useful in understanding z/XC:

• z/VM: CP Programming Services
• z/VM: CMS Application Development Guide
• z/VM: CMS Callable Services Reference

xii About This Document

• z/VM: CMS Application Development Guide for Assembler
• z/VM: CMS Macros and Functions Reference

For the complete list of documents in the z/VM library, see the “Bibliography” on page 65.

Links to Other Documents and Websites
The PDF version of this document contains links to other documents and websites. A link from this
document to another document works only when both documents are in the same directory or database,
and a link to a website works only if you have access to the Internet. A document link is to a specific
edition. If a new edition of a linked document has been published since the publication of this document,
the linked document might not be the latest edition.

About This Document xiii

xiv z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity, accuracy, and
completeness of the information or give us any other feedback that you might have.

To send us your comments, go to z/VM Reader's Comment Form (https://www.ibm.com/systems/
campaignmail/z/zvm/zvm-comments) and complete the form.

If You Have a Technical Problem
Do not use the feedback method. Instead, do one of the following:

• Contact your IBM service representative.
• Contact IBM technical support.
• See IBM: z/VM Support Resources (https://www.ibm.com/vm/service).
• Go to IBM Support Portal (https://www.ibm.com/support/entry/portal/Overview).

© Copyright IBM Corp. 1991, 2022 xv

https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/systems/campaignmail/z/zvm/zvm-comments
https://www.ibm.com/vm/service/
https://www.ibm.com/support/entry/portal/Overview/

xvi z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 1. Introduction

This document describes, for reference purposes, the operation of virtual machines that run in the
z/Architecture Extended Configuration (z/XC) virtual-machine architecture as provided by z/VM. It is
organized as a supplement to the definition of z/Architecture that is described in IBM z/Architecture
Principles of Operation.

If a particular element of the architecture (instruction, operation, program exception, and so on) is
described in this document, then the definition that is contained in this document supersedes the
definition in IBM z/Architecture Principles of Operation. If a particular element of the architecture is
not discussed in this document, then the definition that is contained in IBM z/Architecture Principles of
Operation applies to z/XC.

z/XC comprises the architectural facilities that are available to the program that is running in the virtual
machine. z/XC virtual machines operate under the control of the z/VM Control Program (CP), a host
program that runs in the z/Architecture processor complex and manages the structures that establish the
virtual machines. The details of these structures do not directly affect the program in the virtual machine
and are therefore not described in this document.

Highlights of z/XC
The z/XC virtual-machine architecture is a derivative of z/Architecture that is designed for the DAT-
off virtual-machine environment. This virtual-machine architecture includes most of the facilities of z/
Architecture and offers major new capabilities.

z/XC was designed with special emphasis on the requirements of the interactive and service-virtual-
machine environments of z/VM. In these environments, the supervisor that runs in the virtual machine
is not an elaborate control program, but rather an application-program monitor. Consistent with such
a virtual-machine supervisor, z/XC allows application programs to benefit from architectural extensions
that are provided by z/Architecture without requiring the virtual-machine supervisor to complete complex
management functions. Instead, the host bears the responsibility for the support and management of the
real-machine facilities.

z/XC is also designed for the multiple-virtual-machine environment of z/VM. Responsibility for support
and control of the architecture is given to the host. The scope of access that is allowed by using
the architecture can be extended in a controlled and secure manner across multiple virtual machines.
Previously, the scope of access possible by using architectural facilities was necessarily limited to a single
virtual machine.

When compared to z/Architecture, z/XC offers the following extensions:

• DAT-off access-register addressing makes the access-register-addressing facility of z/Architecture
available to z/VM applications. The facility can be used by a virtual machine to access its own address
spaces and the address spaces of other virtual machines, subject to appropriate authorization.

• Multiple absolute-storage address spaces significantly extend the amount of storage available to z/VM
applications. Previously, the storage available to an application was limited to a single absolute-storage
address space. With this facility, an application can have multiple data-only spaces in addition to the
instruction space, providing greatly increased application storage.

• Address-space sharing provides a basis for high-performance data sharing within a z/VM system. A
virtual machine can authorize other virtual machines to access any of its address spaces (the instruction
address space, or any data-only address spaces) by using access-register addressing. Later, the shared
access can be revoked when appropriate.

Additions to z/XC
The following features might be available in a z/Architecture machine.

© Copyright IBM Corp. 1991, 2022 1

Configuration-z/XC-Mode Facility
In lieu of the configuration-z/Architecture-architectural-mode (CZAM) facility of z/Architecture, the
configuration-z/XC-mode (CZXM) facility can be present on a model that implements z/XC. When
the facility is installed in a configuration, the configuration is reset into the z/XC architectural mode
(rather than into the ESA/XC architectural mode). When the facility is installed in a configuration, the
configuration cannot be switched into the ESA/XC architectural mode.

The z/Architecture Base
z/XC includes, as its base, most of the facilities that are available to z/VM virtual machines in the original
z/Architecture and its extensions. However, some of the facilities that are available in z/Architecture are
not provided in z/XC.

The most significant difference between z/Architecture and z/XC is that in z/XC, guest dynamic address
translation (DAT) is not provided. So, z/XC does not have the following features:

• Guest virtual-storage address spaces are not provided. Therefore, the following features are not
provided:

– Guest region, segment, or page tables
– Guest translation-lookaside buffer
– Guest primary, secondary, and home spaces
– Secondary-space and home-space modes

• The following instructions are not provided because they depend on DAT:

– INSERT VIRTUAL STORAGE KEY
– LOAD REAL ADDRESS
– MOVE TO PRIMARY
– MOVE TO SECONDARY
– STORE REAL ADDRESS
– TRAP

• The ASN-translation and PC-number translation processes do not occur. Therefore, the following
features are not provided:

– Guest ASN first tables
– Guest ASN second tables
– Guest authority tables
– Guest linkage tables
– Guest entry tables

And the following instructions are not provided:

– EXTRACT PRIMARY ASN
– EXTRACT SECONDARY ASN
– LOAD ADDRESS SPACE PARAMETERS
– PROGRAM CALL
– PROGRAM TRANSFER
– SET SECONDARY ASN

• Guest access-register translation is not provided. Therefore, no guest access lists or dispatchable-unit-
control tables are provided. A guest ART-lookaside buffer is not provided. The BRANCH IN SUBSPACE
GROUP and EXTRACT AND SET EXTENDED AUTHORITY instructions are not provided.

Host access-register translation is provided as a comparable replacement for guest access-register
translation.

2 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

• The linkage stack is not provided. Therefore, the following instructions are not provided:

– BRANCH AND STACK
– EXTRACT STACKED REGISTERS
– EXTRACT STACKED STATE
– MODIFY STACKED STATE
– PROGRAM RETURN

• Facilities that depend on DAT are not provided:

– ASN-and-LX reuse facility
– DAT-enhancement facility 2
– Enhanced-DAT facilities 1 and 2
– Enhanced-monitor facility
– Instruction-execution-protection facility
– Local-TLB-clearing facility
– Move-with-optional-specifications facility

The instructions in DAT-enhancement facility 1 are provided but complete no useful function because
TLB and ALB are not provided.

• z/XC does not provide the START INTERPRETIVE EXECUTION instruction.
• The collaborative-memory-management facility that is defined in z/VM: CP Programming Services is not

provided in z/XC.

Instructions that are introduced by these excluded functions and facilities are not provided. An attempt
to use an instruction that is not provided in z/XC results in either an operation exception or a special-
operation exception. Fields that are defined for these facilities in the PSW, control registers, data
structures, and assigned storage locations are reserved. The program must set fields for the unsupported
facilities to zeros to ensure compatible operation in the future.

Note: The listed facilities that are not provided in the virtual machine, and the extensions of those
facilities, are available to the host program. Only the architecture of the virtual-machine environment is
documented in detail. Host facilities are referenced only as needed to clearly describe the programming
environment that is provided by the virtual machine.

Except for those facilities that are identified as not provided, z/XC includes all facilities that are defined in
z/Architecture and supported by z/VM for z/Architecture guests.

System Program
z/XC is typically used with a virtual-machine supervisor program, such as z/CMS, that cooperates with
the host to provide application-level service interfaces for application programs that run in a single virtual
machine. A z/XC virtual machine operates under the control of the z/VM Control Program (CP), which runs
in the z/Architecture processor complex. The z/VM Control Program acts as the host program, manages
the running of virtual machines, and provides system-level services to the virtual machines.

Compatibility

Compatibility among z/XC Implementations
z/XC virtual machines can be provided when z/VM is operating on different real-processor
implementations, and can be provided by different implementations of the host program. These different
implementations of z/XC are logically compatible. Specifically, any program that is written for z/XC gives
identical results on any z/XC implementation, if the program meets the following criteria:

1. The program is not time-dependent.

Chapter 1. Introduction 3

2. The program does not depend on system facilities when the facilities are not included in the
configuration or are not provided by the host program implementation. System facilities include
storage capacity, I/O equipment, optional machine facilities, and optional or release-dependent host-
program facilities.

3. The program does not depend on the absence of system facilities when the facilities are included in
the configuration. For example, the program must not depend on interruptions that are caused by the
use of operation codes or command codes that are not installed in some real-processor models, or not
provided by some host program versions. Also, it must not use or depend on fields that are associated
with uninstalled facilities. For example, data must not be placed in an area that is used by another
model for fixed-logout information. Similarly, the program must not use or depend on unassigned
fields in machine formats (control registers, instruction formats, and so on) that are not explicitly made
available for program use.

4. The program does not depend on results or functions that are defined to be unpredictable or model-
dependent or are identified as undefined. The program must not depend on the assignment of device
numbers and CPU addresses.

5. The program does not depend on results or functions that are defined in the functional-characteristics
publication for a particular real-processor model to be deviations from the z/Architecture where those
results or functions of z/Architecture are applicable in z/XC.

6. The program accounts for any changes that are made to the architecture that affect compatibility.

Compatibility between z/XC and ESA/XC

Control Program Compatibility
A control program that is written for ESA/XC cannot be directly transferred to systems that operate as
defined by z/XC architecture because the following elements are changed:

• General-register and control-register sizes
• PSW size
• Scope of prefixing
• Assigned storage locations

Application Program Compatibility
A high degree of compatibility exists at the problem-state level in transferring from ESA/XC to z/XC.
Because most of a user’s applications are written by using only problem-state instructions, this problem-
state compatibility is useful in many installations.

Most privileged instructions that are used in applications on CMS (the control program for which the XC
architectures are designed) in ESA/XC are compatible with z/XC. If the application relies on its control
program (CMS or z/CMS) to deal with architectural differences, it can run in z/XC as it does in ESA/XC.

A problem-state program that is written for ESA/XC operates with z/XC if the program meets the following
criteria:

1. The program complies with the limitations that are described in “Compatibility among z/XC
Implementations” on page 3.

2. The program is not dependent on host or virtual-machine supervisor facilities that are not available on
the system.

3. The program is not sensitive to architectural differences between ESA/XC and z/XC. The differences
are generally a subset of the differences between ESA/390 and z/Architecture, such as the size and
layout of the prefix area and the assigned storage locations therein.

4. The program is not dependent on withholding authorization for access-register translation through
the TEST ACCESS, SET ACCESS CONTROL, and SET ACCESS CONTROL FAST instructions through
the address-space-function control in control register 0. The address-space-function control is not

4 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

provided in z/XC. The bit that ESA/XC uses for address-space-function control corresponds to a bit in
z/XC that is reserved.

5. The program does not depend on the TOD clock in a z/XC configuration to be synchronized with the
TOD clock of the host or other ESA/XC or z/XC virtual machines. (Unlike ESA/XC, z/XC provides the SET
CLOCK and PERFORM TIMING FACILITY instructions and analogous operator commands, which allow
guest and host TOD clocks to differ.)

Programming notes:

1. This publication and the z/VM: ESA/XC Principles of Operation assign meanings to various operation
codes, to bit positions in instructions, channel-command words, registers, and table entries, and to
fixed locations in the low 512 bytes and bytes 4096-8191 of storage. Unless noted, the remaining
operation codes, bit positions, and low-storage locations are reserved for future assignment to new
facilities and other extensions of the architecture.

Observe the following guidelines to ensure that existing programs continue to operate when such new
facilities are installed:

• Programs must not depend on an indication of an exception as a result of invalid values that are
currently defined as checked.

• If a value must be placed in unassigned positions that are not checked, the program must enter
zeros.

• When the machine provides a code or field, the program must account for new codes and bits that
might be assigned in the future.

• The program must not use unassigned low-storage locations for storing information. Low-storage
locations might be assigned in the future in such a way that the machine causes the contents of the
locations to be changed.

2. Application programs that run in z/CMS are shielded from some architectural differences. For example,
z/CMS accommodates programs that expect to work with interruption PSWs in the format and
locations that are defined in ESA/390 and ESA/XC.

In other cases, applications that are sensitive to architectural details might need to be adjusted
to run in z/XC on z/CMS. For example, the size and location of the translation-exception ID that is
stored on a protection exception differs between ESA/XC and z/XC. Also, the size and location of the
failing-storage address that is stored on a machine-check interruption differs between ESA/XC and
z/XC.

Compatibility among z/XC, z/Architecture and ESA/390

Control Program Compatibility
A control program that is written for z/Architecture that uses the dynamic-address-translation (DAT)
facility cannot be transferred to a z/XC virtual machine because z/XC does not provide DAT. Also, a
program that uses z/Architecture instructions that are not provided in z/XC cannot be transferred to z/XC.

A control program that is written for z/Architecture can run in a z/XC virtual machine if the control
program meets the following criteria:

• The control program does not use the DAT facilities.
• The control program complies with the limitations that are described in “Compatibility among z/XC

Implementations” on page 3.
• The control program does not depend on receiving a special-operation exception in the following

situation: A control instruction that in z/Architecture requires DAT is attempted in a z/XC virtual
machine.

• The control program does not use z/Architecture instructions that are not provided in z/XC. For more
information, see “The z/Architecture Base” on page 2.

Chapter 1. Introduction 5

Problem State Compatibility
A high degree of compatibility exists at the problem-state level for transferring applications from ESA/390
or z/Architecture to z/XC. Because most of a user’s applications are written by using only problem-state
instructions, this problem-state compatibility is useful in many installations.

A problem-state application that is written for ESA/390 or z/Architecture operates with z/XC if the
application meets the following criteria:

1. The application complies with the limitations that are described in “Compatibility among z/XC
Implementations” on page 3.

2. The application is not dependent on host or virtual-machine supervisor facilities that are not available
on the system.

3. The application accounts for other changes that are made to the z/Architecture architectural definition
that affect compatibility among the z/XC, z/Architecture, and ESA/390 modes.

6 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 2. Organization

The basic organization of a z/XC virtual machine follows the definition of system organization that is
provided in Chapter 2 of IBM z/Architecture Principles of Operation. In addition, the configuration of a z/XC
virtual machine is extended to provide access to additional host address spaces, which can be private or
shared with other virtual machines.

A z/XC virtual-machine configuration contains all of the basic organizational elements that are defined for
z/Architecture systems: main storage, one or more central processing units (CPUs), operator facilities,
a channel subsystem, and I/O devices. In addition, a z/XC configuration can have more separate
absolute-storage address spaces, up to 15 of which are concurrently addressable as provided by access-
register addressing. These 15 absolute-storage address spaces are selected from among a larger set as
determined by a table called a host access list.

Certain elements of a z/XC virtual-machine configuration are regulated by host controls that are available
to the z/VM installation. For example, the total main storage that is provided to a virtual machine is
regulated by host controls. These host controls are specified in the host (CP) directory entry for the virtual
machine.

In contrast to the z/Architecture definition, the main storage of a z/XC virtual machine is not necessarily
isolated from access by the CPUs of other virtual machines. By using host services, the main storage of
one virtual machine can be made directly addressable by the CPUs of another configuration. This shared
main storage can provide shared data for a collection of virtual machines that run on a single z/VM
system.

Main Storage
As in z/Architecture, directly addressable main storage is provided for high-speed processing of data by
the CPU and the channel subsystem.

Main storage is allocated in extents that are known as absolute-storage address spaces, or simply address
spaces. When a virtual machine is created by the host, an initial address space is provided for the virtual
machine; this address space is known as the host-primary address space. Initially, the host-primary
address space is directly addressable only by the CPUs of the associated virtual machine. However, by
using host services, the host-primary address space can be made directly addressable by the CPUs of
other virtual machines.

More absolute-storage address spaces can be added to the virtual configuration by using host services.
The additional address spaces can be established as directly addressable by the CPUs of the associated
virtual machine and by the CPUs of other virtual machines with appropriate authorization.

Central Processing Unit
A central processing unit (CPU) of a z/XC virtual configuration includes all of the registers that are
provided in z/Architecture.

Access Registers
As in z/Architecture, z/XC provides 16 access registers numbered 0-15. An access register contains an
indirect specification of an absolute-storage address space. When the CPU is in access-register mode, an
instruction B field specifies whether a logical or real address for a storage-operand reference designates
an access register. The storage-operand is considered to be within the absolute-storage address space
that is specified by the access register. For some instructions, an R field is used instead of a B field.
Instructions are provided for loading and storing the contents of access registers and for moving the
contents of one access register to another.

© Copyright IBM Corp. 1991, 2022 7

Each of access registers 1-15 can designate any address space, including the instruction space (the
host-primary address space). Access register 0 always designates the instruction space. When one of the
access registers 1-15 is used to designate an address space, the CPU determines which address space is
designated by translating the contents of the access register by using host-managed tables. When access
register 0 is used to designate an address space, the CPU treats the access register as designating the
instruction space, and it does not examine the actual contents of the access register. Therefore, the 16
access registers can concurrently designate the instruction space and a maximum of 15 other address
spaces.

Host Access List
A z/XC virtual machine has a host-primary address space. A host access list specifies additional address
spaces, which are available when the CPU is in the access-register mode. The host access list contains a
directory-specified number of host access list entries. Each entry either designates a particular address
space or is not used.

By using host services, a host access-list entry can be set to designate a particular address space or can
be returned to the unused state.

Host Program
A z/XC virtual machine operates under the control of the z/VM Control Program (CP). This supervisory
program is called the host program, or simply the host. The host runs in z/Architecture mode on the
processor complex and manages the running of virtual machines, which can be of several different
architectures. The host provides special service functions in addition to the facilities that are described by
the architectures.

The extended addressing capabilities of z/XC are under the control of the host, which determines the
extent to which a particular z/XC virtual machine can use these extended capabilities. Services are
provided by which a z/XC virtual machine can request that its capabilities be altered. These services
include the creation and deletion of additional address spaces and the modification of host access lists.
These host services are described in detail in the publication z/VM: CP Programming Services.

8 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 3. Storage

The structure of main storage, including addressing and protection aspects for a z/XC virtual machine,
is described. The handling of storage for a z/XC virtual machine follows the definition of storage that is
provided in Chapter 3 of IBM z/Architecture Principles of Operation, with the exceptions that are described
in the following topics.

Terminology note: Because most references to storage for a z/XC virtual machine apply to (guest) real
storage, the abbreviated term storage is often used in place of real storage. The term storage is sometimes
used in place of main storage or absolute storage when the meaning is clear.

Storage Addressing
The addressable storage of a z/XC virtual machine consists of one or more extents of main storage that
are known as absolute-storage address spaces. The storage that is contained within a single absolute-
storage address space is viewed as a long horizontal string of bits, subdivided into bytes as is usual for
z/Architecture.

Absolute Storage Address Spaces
An absolute-storage address space is a single extent of main storage that is directly addressable by a CPU
or the channel subsystem. An absolute-storage address space consists of a collection of byte locations,
and a set of byte addresses that are assigned to those byte locations.

Terminology note: Because all references to address spaces for a z/XC virtual machine apply to absolute-
storage address space and not to virtual-storage address spaces, the abbreviated term address space is
often used in place of absolute-storage address space.

Each byte location in storage is identified by a non-negative integer, which is the byte address of the
storage location within an absolute storage address space. Byte locations are assigned addresses that
start at 0, and the addresses are always assigned in complete 4 KB blocks on integral boundaries.

A byte address uniquely identifies a byte within the collection of bytes associated with a specific
absolute-storage address space. However, a particular value of a byte address might not identify a unique
byte because a particular byte address can be associated with more than one absolute-storage address
space.

A virtual machine has at least one absolute-storage address space, which is known as its host-primary
address space. The host-primary address space is provided by the host when the virtual machine is
created.

A virtual machine can obtain more absolute-storage address spaces by using the ADRSPACE CREATE host
service. These additional absolute-storage address spaces can later be destroyed by using the ADRSPACE
DESTROY host service. A subsystem reset also destroys all absolute-storage address spaces that were
created by the ADRSPACE CREATE service.

In an absolute-storage address space that is created by using the ADRSPACE CREATE host service,
addresses are assigned in a single contiguous range. However, in the host-primary address space of a
virtual machine, addresses can be assigned in multiple discontiguous ranges.

The number and total size of absolute-storage address spaces that are permitted for the virtual machine
are subject to directory-specified limits.

Programming note: The ADRSPACE CREATE host service is described in the publication z/VM: CP
Programming Services. The number and total size of address spaces that the virtual machine can create
by using ADRSPACE CREATE are specified by the XCONFIG ADDRSPACE statement in the CP directory.
The size of the virtual machine's host-primary address space is specified by the USER or IDENTITY
statement in the CP directory. These three directory statements are described in the publication z/VM: CP
Planning and Administration.

© Copyright IBM Corp. 1991, 2022 9

Private and Shareable Address Spaces
An absolute-storage address space is considered to be either a private address space or a shareable
address space.

An address space is a private address space if the address space is directly addressable only by the CPUs
of a single virtual machine. An address space is a shareable address space if the address space can be
directly addressed by the CPUs of more than one virtual machine.

Immediately after an address space is created by the host, the address space is a private address
space. By using the ADRSPACE PERMIT host service, a private address space can be transformed into a
shareable address space, subject to a directory-specified authorization to share address spaces. Then, by
using the ADRSPACE ISOLATE host service, a shareable address space can be transformed into a private
address space. A subsystem reset also transforms a shareable address space into a private address
space.

Programming note: The ADRSPACE PERMIT and ADRSPACE ISOLATE host services are described in the
publication z/VM: CP Programming Services.

Identification of Address Spaces
As a mechanism for differentiating one address space from another, each address space has an 8-byte
identifying value that is called an address-space identification token, or ASIT.

The host assigns an ASIT to each address space when the address space is created. The ASIT that is
associated with a particular absolute-storage address space is fixed from the time the address space is
created by the host until the ASIT is destroyed.

The host assigns ASITs in such a way that a particular ASIT value is associated with at most one absolute-
storage address space for the scope of the host IPL. That is, after a particular ASIT value is assigned
to an absolute-storage address space, that ASIT value is not reassigned to another absolute-storage
address space within the scope of the same host IPL. The ASIT value is not reassigned, even if the
absolute-storage address space to which the ASIT value was originally assigned is destroyed. ASIT values
are not guaranteed to be assigned in any particular manner across a host IPL.

The value 0000000000000000 hex is never assigned as an ASIT.

The specific format of an ASIT is undefined. In general, a particular ASIT value has no significance to z/XC
programs.

Address Types and Formats

Address Types
For purposes of addressing main storage, two basic types of addresses are recognized: absolute
addresses and real addresses. The addresses are distinguished by the transformations that are applied to
the address during a storage access. In addition to the two basic address types, more types are defined
and are treated as one or another of the two basic types, depending on the instruction and the translation
mode.

Absolute Address
An absolute address is the address that is assigned to a main-storage location within a particular address
space. An absolute address is used for access to storage that is contained in a particular address space
without any transformations.

Host-Primary Absolute Address
A host-primary absolute address is an absolute address that identifies a location that is contained within
the host-primary address space.

10 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

AR-Specified Absolute Address
An AR-specified absolute address is an absolute address that identifies a location that is contained within
an address space that is determined by host access-register translation.

Real Address
A real address identifies a location within a real address space. In z/XC, each real address is considered to
be one of two types: type-R or type-A. These types determine how the real address is converted into an
absolute address. They also determine the applicability of low-address protection and fetch protection to
references that use the real address.

When a type-R real address is used for access to main storage, it is converted to an absolute address by
using prefixing. Low-address protection is applied to storage references that are made by using a type-R
real address, if the low-address-protection control in control register 0 is one. Fetch-protection checking
is performed for storage references that are made by using a type-R real address subject to the setting of
the fetch-protection-override control in control register 0.

When a type-A real address is used for access to main storage, it is treated unchanged as an absolute
address; no prefixing is applied. Low-address protection is never applied to a storage reference that is
made by using a type-A real address, regardless of the setting of the low-address-protection control in
control register 0. Fetch-protection checking is always applied to a storage reference that is made by
using a type-A real address, regardless of the setting of the fetch-protection-override control in control
register 0.

The set of byte locations with a single absolute-storage address space that are sequenced according to
their real addresses is referred to as a real address space.

Host-Primary Real Address
A host-primary real address is a real address that identifies a location that is contained within the
host-primary address space. A host-primary real address is considered to be a type-R real address.

AR-Specified Real Address
An AR-specified real address is a real address that identifies a location that is contained within an address
space that is determined by host access-register translation. An AR-specified real address is considered
to be a type-R real address when the ALET is 00000000 hex. An AR-specified real address is considered
to be a type-A real address when the ALET is other than 00000000 hex.

Virtual Addresses
Because the dynamic-address-translation facility is not provided in z/XC, virtual addresses and virtual
storage are not available for z/XC virtual machines.

Logical Addresses
Except where otherwise specified, the storage-operand addresses for instructions are logical addresses.
Logical addresses are treated as host-primary real addresses when in the primary-space mode, and as
AR-specified real addresses when in the access-register mode. Some instructions have storage operand
addresses, or storage accesses that are associated with the instruction, that do not follow the rules for
logical addresses. In all such cases, the instruction definition contains a definition of the type of address.

Instruction Address
Addresses that are used to fetch instructions from storage are called instruction addresses. An instruction
address is treated as a host-primary real address in all cases. The set of addresses that are treated as
instruction addresses is the same in z/XC as in z/Architecture.

Chapter 3. Storage 11

Protection
Four protection facilities protect the contents of main storage from destruction or misuse by programs
that contain errors or are unauthorized:

1. Key-controlled protection
2. Host access-list-controlled protection
3. Host DAT protection
4. Low-address protection

These protection facilities are applied independently. Access to main storage is authorized only when
none of the facilities prohibits the access.

Key-controlled protection affords protection against improper storing or against improper storing and
fetching, but not against improper fetching alone. The key-controlled-protection mechanism is under the
control of the program in the virtual machine.

Host access-list-controlled protection, host DAT protection, and low-address protection afford protection
against improper storing. Host access-list-controlled protection and host DAT protection are under control
of the host and cannot be circumvented by a program in the virtual machine. Low-address protection is
under control of the program in the virtual machine.

Guest access-list-controlled protection, DAT protection, and instruction-execution protection as defined
in z/Architecture are not available in z/XC because access register translation and dynamic address
translation are not provided with guest tables.

Programming note: Key-controlled protection is said to be under control of the program in the virtual
machine because that program can always establish a virtual-machine state in which any particular
storage access is permitted. Hence, key-controlled protection is inadequate when sharing storage among
virtual machines where non-circumventable storage protection is required.

In contrast, if the host enables either host access-list-controlled protection or host DAT protection to
prevent a particular storage or storage-key alteration by the virtual machine, the program in the virtual
machine cannot circumvent this protection. Hence, host access-list-controlled protection and host page
protection are appropriate for protecting storage that is shared among virtual machines.

Host access-list-controlled protection is particularly useful for sharing storage among virtual machines
because it regulates accesses by using an attribute of an individual reference rather than using an
attribute of the shared storage itself. Host access-list-controlled protection allows some virtual machines
to be given authorization to store into the share storage while other, less authorized, virtual machines are
prevented from storing.

Low-address protection is not discussed because low-address protection applies only to a virtual
machine's references to its own host-primary address space. Therefore, low-address protection is not
applicable to cross-virtual-machine sharing of storage under z/VM.

Key-Controlled Protection
Key-controlled protection as defined in z/Architecture applies to z/XC, except for the applicability of the
fetch-protection-override control as described in the following topic.

Fetch-Protection-Override Control
Fetch protection override is set when bit 38 of control register 0 is one. Fetch protection override depends
on the address type.

For a type-R address
A storage reference can be made with a type-R real address or a logical address that is treated
as a type-R real address. If fetch protection override is set, fetch protection is ignored for storage
references to locations at effective addresses 0-2047.

12 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

For a type-A address
A storage reference can be made with a type-A real address or a logical address that is treated as a
type-A real address. Fetch protection checking is always performed, regardless of the setting of the
fetch-protection-override control.

Host Access-List-Controlled Protection
Host access-list-controlled protection controls store accesses to an address space by using a read-only
or read/write access type that is maintained in each host access-list entry. The access-type control is
not directly accessible to any virtual machine. Host access-list-controlled protection provides protection
against unauthorized storing or explicit storage-key alteration.

In the access-register mode, when a host access-list entry is used in the host access-register translation
part of a reference and the host access-list entry indicates read/write access, both fetch and store
accesses are permitted to the address space that is specified by the host access-list entry. Explicit
alteration of storage keys within the address space is also permitted. When the host access-list entry
indicates read-only access, fetch accesses to storage or storage keys are permitted. An attempt to store
or to explicitly alter a storage key causes a protection exception to be recognized and the execution of the
instruction to be terminated or suppressed.

Host access-list-controlled protection applies to all store accesses or storage-key alterations that are
made by using a host access-list entry.

The access type that is permitted by a host access-list entry is established when the host access-list entry
is made valid by using the ALSERV ADD host service. If the host access-list entry designates an address
space that is owned by another virtual machine, a host access-list entry that permits read/write access is
subject to authorization. This authorization is granted by using the ADRSPACE PERMIT host service by the
virtual machine that owns the address space.

Programming note: The ALSERV ADD and ADRSPACE PERMIT host services are described in the
publication z/VM: CP Programming Services.

Host DAT Protection
Host DAT protection controls store-type references to a 4 KB block of storage (page) by using a read-only
or read/write authorization that is associated with each 4 KB block of storage. The authorization control
is not accessible by any virtual machine. Host DAT protection provides protection against unauthorized
storing or storage-key alteration.

When the authorization that is associated with a 4 KB block of storage indicates read/write access, both
fetching of and storing into the block are permitted. The storage key for the block can be explicitly altered.

When the authorization that is associated with the block indicates read-only access, only fetching is
permitted. When an attempt is made to store into a protected block or alter the storage key for a
protected block, a protection exception is recognized and the operation is terminated or suppressed. The
contents of the protected location remain unchanged.

Host DAT protection applies to all store accesses or storage-key alterations that are made by a virtual
machine.

The access authorization that is associated with a 4 KB block of storage is established by the host based
on the host-defined characteristics of that block of storage.

Programming note: The following 4 KB blocks of storage are established by z/VM as read-only pages:

• Blocks that correspond to shared read-only (SR) or exclusive read-only (ER) ranges of named saved
systems or named saved segments that are embedded in the host-primary address space.

• Blocks that are mapped by using the MAPMDISK host service to minidisk blocks on a read-only
minidisk. The MAPMDISK host service is described in the publication z/VM: CP Programming Services.

All other 4 KB blocks of storage that are addressable by the virtual machine are established as read/write
pages. The read-only state of a block applies to all accesses, including accesses by a virtual machine with
which the containing host address space is shared.

Chapter 3. Storage 13

Low-Address Protection
Low-address protection operates as defined in z/Architecture, with the following exceptions.

Low-address-protection control is set in bit 35 of control register 0. Low-address protection depends on
the address type.

For a type-R address
A storage reference can be made with a type-R real address or a logical address that is treated as
a type-R real address. When the low-address-protection control bit is set, low-address protection
applies to storage references to locations at effective addresses 0-511 and 4096-4607. Addresses
0-511 and 4096-4607 are the first 512 bytes of each of the first and second 4 KB effective-address
blocks.

For a type-A address
A storage reference can be made with a type-A real address or a logical address that is treated
as a type-A real address. Low-address protection does not apply, regardless of the setting of the
low-address-protection control.

Suppression on Protection
During a program interruption due to a protection exception, information is stored in the translation-
exception identification (TEID) and optionally in the exception-access identification (EAID). The TEID
and the EAID are assigned storage locations in low storage of the host-primary address space. As in
z/Architecture, the contents of these locations depend on the type of suppression-on-protection (SOP)
facility that is installed. However, the validity and meaning of the contents of these fields differ from
z/Architecture in the following ways:

• Although DAT is always off in z/XC, TEID bit 61 can be set to one.
• The operation is suppressed and the remainder of TEID and the EAID are meaningful when either of the

following conditions is true:

– Bit 61 is one.
– Enhanced suppression-on-protection facility 2 (ESOP-2) is installed and bits 56, 60, and 61 are not

all zeros.

The effective address that caused the protection exception, which is stored in TEID bits 0-51, is a real or
absolute address. TEID bits 62 and 63 indicate the address space by using the following values:
00

00 indicates that the address is in the host-primary space.
01

01 indicates that the address is in an AR-specified address space, as identified by the EAID.
• If the ALET that is used to reference the address that caused the exception was not obtained from an

access register, then TEID bits 56, 60 and 61 are set to zeros. The remainder of the TEID and the EAID
are unpredictable. (An exception ALET is not stored on a protection exception.)

• When enhanced suppression-on-protection facility 1 is installed, a zero value in TEID bit 61 means that
the operation is terminated.

Unlike their counterparts in z/Architecture, host DAT protection and host access-list-controlled protection
are not guaranteed to result in suppression rather than termination.

More differences from z/Architecture depend on which suppression-on-protection facility is installed.

Basic Suppression-on-Protection Facility
When the basic suppression-on-protection facility is installed, TEID bit 61 does not indicate the condition
that caused the protection exception. As in the z/Architecture definition, a one value in TEID bit 61
indicates that the operation is suppressed; a zero value indicates that the operation is either suppressed
or terminated. If bit 61 is one, then bit 60 indicates whether the cause is host access-list-controlled
protection.

14 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Enhanced Suppression-on-Protection Facility 1
In z/XC, ESOP-1 offers no enhancement over basic SOP. Unlike the z/Architecture definition, a zero value
in TEID bit 61 indicates that the operation is terminated. TEID bit 61 does not indicate the condition that
caused the protection exception.

Enhanced Suppression-on-Protection Facility 2
ESOP-2 defines TEID bits 56, 60 and 61 as a 3-bit protection code that identifies the cause of the
protection exception. In z/XC, protection code 000 indicates that the operation is terminated; the cause
of the exception is not indicated, and the remainder of the TEID and the EAID are not meaningful. When
a protection code other than 000 is stored, the operation is suppressed. The remainder of the TEID
and EAID identify the effective address and address space that caused the protection exception. For
more information about the location of the protection-exception information in the TEID and EAID, see
“Suppression on Protection” on page 14.

The protection codes have the following meanings:
000

The cause is not determined; the operation is terminated.
001

Host DAT protection; the operation is suppressed.
010

Key-controlled protection, the operation is suppressed.
011

Host access-list-controlled protection; the operation is suppressed.
100

Low-address protection; the operation is suppressed.
Codes 101-111 are not used.

Prefixing
Prefixing operates as defined in z/Architecture, with the following exceptions.

Prefixing is applied to convert a type-R real address into an absolute address. Prefixing is not applied
to convert a type-A real address into an absolute address, but rather the type-A real address is treated
unchanged as an absolute address.

Dynamic Address Translation
The dynamic address translation function that is provided in z/Architecture is not available in z/XC.

Therefore, the following additional DAT-related facilities that are defined in z/Architecture are also not
available in z/XC:

• Virtual-storage address spaces
• Address-space numbers (ASNs)
• ASN-translation controls, tables, and process
• ASN-authorization controls and process
• DAT tables and process
• Translation-lookaside buffer

Translation Control
Address translation is controlled by a bit in the PSW.

Chapter 3. Storage 15

More controls are provided as described in Chapter 5, “Program Execution,” on page 27. These
additional controls determine whether the contents of each access register can be used to designate
an address space.

Translation Modes
PSW bit 17, called the address-space-control bit, determines the translation mode. The translation mode
is either primary-space mode (bit 17 is zero) or access-register mode (bit 17 is one). The handling of
addresses in these two modes is summarized in Table 1 on page 16.

Table 1. Translation Modes

PSW Bit
17

Mode Handling of Addresses

Instruction Addresses Logical1 Addresses

0 Primary-space mode Host-primary real Host-primary real

1 Access-register mode Host-primary real AR-specified real

Explanation:

1
Certain real addresses are also handled differently according to the address-space-control mode. These real addresses are explicitly specified
elsewhere in this publication.

Address Summary

Addresses Translated
Most addresses that are explicitly specified by the program and are used by the CPU to refer to storage
operands are logical addresses. The addresses are subject to implicit translation by using host access-
register translation when the CPU is in the access-register mode. Analogously, the addresses that are
indicated to the program as the result of executing an instruction are logical.

The addresses that are used by the CPU for fetching instructions are instruction addresses and are
host-primary real addresses. Similarly, the instruction addresses that are indicated to the program on an
interruption are host-primary real addresses.

Translation is not applied to quantities that are formed from the values that are specified in the B and
D fields of an instruction byte that are not used to address storage. This restriction includes operand
addresses in EXTRACT CPU ATTRIBUTE, LOAD ADDRESS, LOAD ADDRESS EXTENDED, MONITOR CALL,
the second operand address in SHIFT AND ROUND PACKED, and the shifting instructions. This restriction
also includes the addresses that are in control registers 10 and 11 that designate the starting and ending
locations for PER.

Except for TEST PROTECTION, addresses that explicitly designate storage keys (operand addresses
in SET STORAGE KEY EXTENDED, INSERT STORAGE KEY EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses that are resolved according to the translation mode. These addresses
are considered host-primary real addresses when in the primary-space mode, and AR-specified real
addresses when in the access-register mode. Similarly, the address of the storage operand for TEST
BLOCK is a real address that is resolved according to the translation mode.

The addresses that are implicitly used by the CPU for such sequences as interruptions are host-primary
real addresses.

The addresses that are used by channel programs to transfer data and to refer to CCWs or IDAWs are
host-primary absolute addresses.

The handling of storage addresses that are associated with DIAGNOSE depends on the particular
DIAGNOSE code. For more information, see z/VM: CP Programming Services.

16 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Handling of Addresses
The handling of addresses in z/XC is summarized in Figure 1 on page 17. This figure lists all addresses
that are encountered by the program and specifies the address type.

The following addresses are instruction addresses:

• Instruction address in PSW
• Branch address
• Target of EXECUTE and EXECUTE RELATIVE LONG
• Address that is stored in the word at real location 152 on a program interruption for PER
• Address that is placed in general register by BRANCH AND LINK, BRANCH AND SAVE, BRANCH AND SAVE AND

SET MODE, BRANCH RELATIVE AND SAVE, and BRANCH RELATIVE AND SAVE LONG
• Addresses that are used by BRANCH PREDICTION RELOAD and BRANCH PREDICTION RELATIVE RELOAD
• Aborted-transaction instruction address (in the transaction diagnostic block)

The following addresses are logical addresses:

• Addresses of storage operands for instructions that are not otherwise specified
• Address placed in general register 1 by EDIT AND MARK and TRANSLATE AND TEST
• Addresses in general registers that are updated by MOVE LONG, MOVE LONG EXTENDED, COMPARE LOGICAL

LONG, and COMPARE LOGICAL LONG EXTENDED
• Addresses in general registers that are updated by CHECKSUM, COMPARE AND FORM CODEWORD, and

UPDATE TREE
• Address for TEST PENDING INTERRUPTION when the second operand address is nonzero
• Addresses for the parameter list of RESUME PROGRAM
• Address of the TBEGIN-specified transaction-diagnostic block

The following addresses are real addresses that are resolved according to the translation mode:

• Address of the storage key for INSERT STORAGE KEY EXTENDED, RESET REFERENCE BIT EXTENDED, and SET
STORAGE KEY EXTENDED

• Address of the storage operand for TEST BLOCK

The following addresses are host-primary real addresses:

• Storage operand of INVALIDATE DAT TABLE ENTRY, INVALIDATE PAGE TABLE ENTRY, LOAD USING REAL
ADDRESS, and STORE USING REAL ADDRESS

• Trace-entry address in control register 12
• Dispatchable-unit-control-table origin in control register 2 (used by BRANCH AND SET AUTHORITY)

The following addresses are permanently assigned host-primary real addresses:

• Address of the doubleword into which TEST PENDING INTERRUPTION stores when the second operand
address is zero

• Addresses of PSWs, interruption codes, and the associated information that is used during interruption
• Addresses that are used for machine-check logout and save areas
• Address of the STORE FACILITY LIST operand

The following addresses are absolute addresses:

• Failing-storage address that is stored in the doubleword at real location 248

Figure 1. Handling of Addresses (Part 1 of 2)

Chapter 3. Storage 17

The following addresses are host-primary absolute addresses:

• Prefix value
• Channel-program address in ORB
• Data address in CCW
• IDAW address in a CCW that specifies indirect data addressing
• MIDAW address in a CCW that specifies modified indirect data addressing
• CCW address in a CCW that specifies transfer in channel
• Data address in IDAW
• Data address in MIDAW
• Measurement-block origin that is specified in SET CHANNEL MONITOR
• Address limit that is specified in SET ADDRESS LIMIT
• Addresses that are used by the store-status-at-address SIGNAL PROCESSOR order
• CCW address in SCSW

The following addresses are permanently assigned host-primary absolute addresses:

• Addresses that are used for the store-status function
• Addresses of PSW and first two CCWs that are used for initial program loading

The following addresses are not used to reference storage:

• PER starting address in control register 10
• PER ending address in control register 11
• Address that is stored in the word at real location 176 for a monitor event
• Address in shift instructions and other instructions that are specified not to use the address to reference

storage

Figure 2. Handling of Addresses (Part 2 of 2)

Assigned Storage Locations
All of the storage locations that are assigned in z/Architecture are also assigned for the same purpose
in z/XC, except as specified in the following section. All assigned storage locations reside within the
host-primary address space.
160

(Real Address)

Exception Access Identification: The storage contents depend on the cause of the program
interruption:

ALEN-translation or addressing capability exception
If the ALET that is translated was obtained from an access register, the number of the access
register is stored in bit positions 4-7 of location 160. Zeros are stored in bit positions 0-3. If the
ALET that is translated was not obtained from an access register, then zeros are stored at location
160.

Protection exception
Depending on the suppression-on-exception facility that is installed and the contents of the
translation-exception ID, location 160 might indicate the address space to which the exception
applies. For more information, see "Assigned Storage Locations" in IBM z/Architecture Principles
of Operation.

In z/XC, unlike z/Architecture, the validity of byte 160 is not affected by the following conditions:

18 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

• Validity is not affected by whether the value of PSW bit 5 is zero.
• Validity is not affected by whether the address in the TEID is real or absolute.

168-171
(Real Address)

Exception ALET: During a program interruption due to an ALEN-translation or addressing-capability
exception, the ALET that is translated is stored at locations 168-171.

168-175
(Real Address)

Translation-Exception Identification (TEID):

The only exception that presents a TEID in z/XC is a protection exception.

Translation-Exception Identification for Protection Exceptions:

The contents of this field in z/XC differ from the contents in the same field in z/Architecture as follows:

When either the basic suppression-on-protection (BSOP) or enhanced suppression-on-protection
(ESOP) facility 1 is installed and bit 61 is zero, the remainder of the TEID is not meaningful. When
ESOP facility 2 is installed and the protection code in bits 56, 60 and 61 is 000, the remainder of the
TEID is not meaningful.

The following statements apply when the TEID is meaningful:

• Under BSOP and ESOP-1, the validity of the TEID is not affected, even though DAT is off. A value of
one in bit 61 does not indicate that the effective address is a virtual address. A value of B'11' in bits
60 - 61 indicates that host access-list-controlled protection is the cause of the exception.

• Under ESOP-1, bit 61 does not indicate the cause of the protection exception. (For example, a value
of zero in bit 61 does not indicate key-controlled or low-address protection.)

• Under ESOP-2, the meanings of the protection codes are as defined in “Enhanced Suppression-on-
Protection Facility 2” on page 15. The effective address can be real or absolute.

• TEID bit positions 62-63 identify the address space that contains the protected address, as follows:
00

A type-R real address was used. The referenced address was in the host-primary space.
01

The CPU was in the access-register mode, and either the access was an instruction fetch or it
was a storage-operand reference that used an AR-specified real address. The exception access
ID, real location 160, indicates the address space that contains the address.

256-263
(Real Address)

Failing-Storage ASIT: During a machine-check interruption, a failing-storage ASIT might be stored at
locations 256-263. A failing-storage ASIT is stored whenever a failing-storage address is stored at
locations 248-251.

Chapter 3. Storage 19

20 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 4. Control

z/XC includes many of the z/Architecture control facilities that are described in Chapter 4 of IBM
z/Architecture Principles of Operation. z/XC includes the following unique facilities for controlling,
measuring, and recording the operation of one or more CPUs.

Program-Status Word
The z/XC program-status word (PSW) is the same as defined in z/Architecture, except as described in the
following topics.

Program-Status-Word Format

+-+-+-------+-+-+-------+-+-+-+-+-+-+----+------+-+-----------+-+
| | | |I|E| | | | | | |A| | Prog |R| |E|
|0|R|0 0 0 0|O|X| Key |0|M|W|P|0|S| CC | Mask |I|0 0 0 0 0 0|A|
+-+-+-------+-+-+-------+-+-+-+-+-+-+----+------+-+-----------+-+
 0 1 2 5 6 7 8 12 16 18 20 24 31

+-+---+
|B| |
|A|0 0|
+-+---+
32 33 63

+---+
| Instruction address |
+---+
64 95

+---+
| Instruction address (continued) |
+---+
96 127

Figure 3. PSW Format

In addition to those bit positions that are unassigned in z/Architecture, bit positions 5 and 16 are also
unassigned in z/XC. A specification exception is recognized when these bit positions do not contain zeros.

All PSW fields that are not required to be zeros have the same function in z/XC as in z/Architecture, except
for PSW bit 17.

Address-Space Control (AS)
Bit 17 of the PSW controls the translation mode. When bit 17 is zero, the CPU is in the primary-space
mode; all logical, real, and absolute addresses are considered host-primary addresses. When bit 17 is
one, the CPU is in the access-register mode; all logical and certain real and absolute addresses are
considered AR-specified addresses that reside within the address space that is determined by host
access-register translation.

Short PSW Format
z/XC has a short (64-bit) PSW format, like that in z/Architecture. As with the 128-bit PSW format, bits
5 and 16 of the short PSW are unassigned in z/XC. If bits 5 and 16 are not zero, then a specification
exception is recognized.

© Copyright IBM Corp. 1991, 2022 21

+-+-+-------+-+-+-----+-+-+-+-+-+-+----+------+-+-----------+-+
| | | |I|E| | | | | | |A| | Prog |R| |E|
|0|R|0 0 0 0|O|X| Key |1|M|W|P|0|S| CC | Mask |I|0 0 0 0 0 0|A|
+-+-+-------+-+-+-----+-+-+-+-+-+-+----+------+-+-----------+-+
 0 1 2 5 6 7 8 12 16 18 20 24 31

+-+---+
|B| |
|A| Instruction Address |
+-+---+
32 33 63

Figure 4. Short PSW Format

Control Registers
z/XC control registers and control-register fields are the same as defined in z/Architecture, with the
following exceptions.

Control registers 1, 4, 5, 7, 13, and 15
All bit positions are unassigned.

Control register 0
Bits 33, 37, 40, 43, and 44 are unassigned.

Control register 3
Bits 0-31 and 48-63 are unassigned.

Control register 8
Bits 16-47 are unassigned.

Control register 12
Bit 62 is unassigned.

Control register 14
Bits 44-63 are unassigned.

All of these unassigned control-register positions are initialized to zero.

Tracing
Tracing as defined in z/Architecture applies in z/XC except that ASN tracing is not provided. The ASN-
trace-control bit is not provided, and the following trace entries are never formed:

• BRANCH IN SUBSPACE GROUP
• PROGRAM CALL
• PROGRAM RETURN
• PROGRAM TRANSFER
• SET SECONDARY ASN

Program-Event Recording
The z/Architecture definition of program-event recording (both PER 2 and PER 3) applies in z/XC, with the
following exceptions.

The means of restricting storage-alteration events to designated address spaces is not provided in z/XC.
In z/XC, storage-alteration events are not restricted to particular address spaces.

Bit 42 of control register 9 is not ignored when DAT is off. Instead, when bit 42 of control register 9 is one,
it is unpredictable whether any storage-alteration events are indicated.

The PER ASCE identification is at bits 14-15 of the PER code at real locations 150-151. The validity and
value of the PER ASCE identification do not depend on PSW bit 5 having a value of one. The validity and
value of the PER ASCE identification do not depend on the use of an ASCE to translate the reference that

22 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

caused the event. The PER ASCE identification is set to 00 if the reference was made to the host-primary
address space, or 01 if an AR-specified reference was made. When 01 is set, the PER access ID, real
location 161, can be examined to determine the address space that is referenced.

Guarded-Storage Facility

Guarded-Storage-Event Parameter-List-Address (GSEPLA) Register

Regardless of the address-space-control mode, the GSEPLA is a real address in the host-primary address
space.

Guarded-Storage-Event Parameter List (GSEPL)

The address-space indication (AS) bits in the guarded-storage-event access information (GSEAI) are
meaningful even though DAT is off.

Externally Initiated Functions
Externally initiated functions in z/XC are the same as defined in z/Architecture, except as described in the
following topics.

Resets
The five reset functions that are provided in z/Architecture are also provided in z/XC. The z/XC reset
functions performs all actions that are defined in z/Architecture. The z/XC subsystem reset function
performs the following extra actions.

In z/Architecture, certain reset operations under certain conditions cause the architectural mode of the
configuration to be set to the ESA/390 mode. In z/XC, these same conditions cause the architectural
mode to be set instead to the ESA/XC mode.

In z/Architecture, when the configuration-z/Architecture-architectural-mode (CZAM) facility is installed,
this architectural mode change is inhibited, and the configuration remains in z/Architecture mode. The
analogous configuration-z/XC-architectural-mode (CZXM) facility of z/XC, if installed, inhibits the change
from z/XC to ESA/XC mode.

Subsystem Reset
Subsystem reset provides a means for clearing floating interruption conditions and for starting I/O-system
reset. It also provides a means for resetting elements of the z/XC environment that are controlled by the
host on behalf of the virtual machine.

Subsystem reset operates only on those elements in the configuration that are not CPUs. In addition
to the actions that are defined in z/Architecture, subsystem reset in z/XC also performs the following
operations:

1. All entries in the host access list are set to the unused state.
2. Any address spaces created by using the ADRSPACE CREATE host service are destroyed.
3. The host-primary address space, if in the shareable state, is placed in the private state and access

permission is granted to other virtual machines is rescinded.
4. Certain other host-controlled entities are reset.

Programming note: A list of the subsystem-reset actions on host-controlled entities is provided in
the description of the SYSTEM RESET command in the publication z/VM: CP Commands and Utilities
Reference.

Chapter 4. Control 23

Store Status
The store-status operation in z/XC operates as in z/Architecture, including the storing of hex 01 in
absolute location 163. All stores that are completed by the store-status operation are made into the
host-primary address space.

CPU Signaling and Response
CPU signaling and response in z/XC is the same as defined in z/Architecture, except as described in the
following topics.

Signal-Processor Orders
z/Architecture describes some SIGP orders that reset the CPU into the ESA/390 architectural mode.
Those orders reset the CPU into the ESA/XC architectural mode when those orders run in z/XC.

The configuration-z/Architecture-mode (CZAM) facility in z/Architecture inhibits switching to the ESA/390
architectural mode. The analogous configuration-z/XC-mode (CZXM) facility in z/XC inhibits switching
from the z/XC to the ESA/XC architectural mode.

Store Status
In z/XC, the address that is specified in the parameter register is a host-primary absolute address.

Store Additional Status at Address
In z/XC, the address that is specified in the parameter register is a host-primary absolute address.

Set Architecture
When the configuration-z/XC-mode (CZXM) facility is not installed, the set-architecture order operates
as in z/Architecture, with the following exception: The order switches between the ESA/XC architectural
mode and the z/XC architectural mode.

The ESA/XC architectural mode is selected by code 0 in bits 56-63 of the parameter register. The z/XC
architectural mode is selected by code 1 or 2 in the parameter register.

When the CZXM facility is installed, the order is not accepted. Instead, bit 55 (invalid parameter) of the
general register that is designated by the R1 field of the SIGNAL PROCESSOR instruction is set to one, and
condition code 1 is set.

Programming note: The Set Architecture order has no effect on the contents of the host access list, the
existence of extra created address spaces, or the shared state of any address space that is owned by the
configuration.

Facility Indications
Definitions of certain facility bits in z/XC differ from those in z/Architecture. Definitions of certain facility
bits in ESA/XC differ from those in ESA/390. The following facility bits in XC architectures differ from the
facility bits in the base architectures from which the XC architectures are derived.

• Facility bit 1 in ESA/XC indicates that the z/XC architectural mode is installed. This bit is stored as one in
z/XC mode. In ESA/XC mode, a value of one indicates that the program can switch into z/XC mode.

• Facility bit 2 in z/XC indicates that the z/XC architectural mode is active, and therefore is stored as one.
The bit is stored as zero in ESA/XC mode.

• Facility bit 8 is unpredictable and not meaningful in ESA/XC and is zero in z/XC. Enhanced-DAT facility 1
is not available in either XC architecture.

• Facility bit 138 in z/XC indicates that the configuration-z/XC-architectural-mode facility is installed. That
is, the configuration is in z/XC architecture and cannot be switched to ESA/XC architecture by a program
action, reset function, or IPL operation.

24 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

• Any bit that z/Architecture defines to mean that a particular facility is installed in the z/Architecture
architectural mode, in z/XC and ESA/XC means that that facility is installed in the z/XC architectural
mode.

In other words, such a bit is reported the same in both XC architectures, but the facility is available only
in z/XC mode. In ESA/XC mode, the bit tells the program that if the virtual machine is switched into z/XC
mode, then the facility will be available.

Certain facilities that are available in z/Architecture are never provided in z/XC. The corresponding facility
bits are stored as zeros. The following facilities are not provided in z/XC:

Bit z/Architecture Facility or Function

4 Selective TLB clearing by IDTE

5 Selective TLB clearing by IDTE

6 ASN-and-LX reuse facility

8 Enhanced-DAT facility 1

27 Move-with-optional-specifications facility

36 Enhanced-monitor facility

51 Local-TLB-clearing facility

78 Enhanced-DAT facility 2

130 Instruction-execution-protection facility

Instructions that are not provided in z/XC are listed in “The z/Architecture Base” on page 2.

Chapter 4. Control 25

26 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 5. Program Execution

Program execution for z/XC proceeds as defined in Chapter 5 of the IBM z/Architecture Principles of
Operation, with some exceptions. Some facilities that are referenced in IBM z/Architecture Principles of
Operation are not applicable to z/XC. z/XC program execution also has the following differences from
z/Architecture program execution.

Authorization Mechanisms
z/Architecture includes several authorization mechanisms to permit the control program to establish the
degree of function that is provided to a particular semi-privileged program. Most of these authorization
mechanisms are related to functions that are not provided in z/XC and therefore do not apply in z/XC. In
particular, the following z/Architecture authorization mechanisms do not apply in z/XC:

• Mode requirements (DAT on)
• Secondary-space control
• Subsystem-linkage control
• ASN-translation control
• Authorization index
• Instructions and controls that are related to ANS-and-LX reuse

The following z/Architecture authorization mechanisms apply in z/XC as defined in z/Architecture except
as stated in the following sections:

• Extraction-authority control
• PSW-key mask
• Access-register mechanisms

Extraction-Authority Control
In z/XC, the extraction-authority control does not apply to the execution of the INSERT ADDRESS SPACE
CONTROL instruction. That is, the instruction can be successfully run regardless of the setting of bit 36 of
control register 0.

Access-Register Mechanisms
The use of access registers also involves various host-managed authorization mechanisms. These
mechanisms are described in the publication z/VM: CP Programming Services.

PC-Number Translation
The PC-number translation process and the PROGRAM CALL instruction are not provided in z/XC.

Home Address Space
The home address space and the home-space mode are not provided in z/XC.

Access-Register Introduction
Access registers are an important aspect of z/XC, and z/XC access register definitions are significantly
different from z/Architecture access register definitions. z/XC access register documentation does not
merely state the differences from z/Architecture, but completely replaces the documentation that is in the
corresponding section of IBM z/Architecture Principles of Operation.

© Copyright IBM Corp. 1991, 2022 27

Information on z/XC access registers is also in the following topics of z/XC principles of operations:

• “Host Access-Register Translation” on page 33 and “Sequence of Storage References” on page 38
describe functions that are related to access registers.

• Chapter 3, “Storage,” on page 9 describes translation modes and host access-list-controlled protection.
• Chapter 4, “Control,” on page 21 describes the handling of address spaces, access registers, and host

access lists during resets and during the store-status operation.
• Chapter 6, “Interruptions,” on page 39.

For reference, information on access registers is available in other publications:

• In IBM z/Architecture Principles of Operation:

– Chapter 5, "Program Execution", topic “Sequence of Storage References”, describes functions that
are related to access registers.

– Chapter 11, "Machine-Check Handling", describes the handling of access registers during a machine-
check interruption and the validation of the access registers.

– Chapter 12, "Operator Facilities", describes the alter-and-display controls for access registers.
• z/VM: CP Commands and Utilities Reference describes alter and display facilities for access registers and
access-register-specified storage.

Summary
z/XC provides the following access register functions:

• z/XC provides a maximum of 16 address spaces, including the instruction space, for immediate and
simultaneous use by a semi-privileged program. The address spaces are specified by 16 special
registers called access registers.

• z/XC provides instructions for examining and changing the contents of the access registers.

Control and authority mechanisms are incorporated to control these functions.

Access registers allow a sequence of instructions, or even a single instruction such as MOVE (MVC) or
MOVE LONG (MVCL) to operate on storage operands in multiple address spaces. Thus, a program that
resides in one address space can use the complete instruction set to operate on data in that address
space and in up to 15 other address spaces. The program can move data between any pairs of these
address spaces. Furthermore, the program can change the contents of the access registers to access still
other address spaces.

The instructions for examining and changing access-register contents are unprivileged. The instructions
are described in Chapter 7, "General Instructions" of IBM z/Architecture Principles of Operation and
Chapter 7, “Instructions,” on page 47. z/XC provides the following access register instructions:

• COPY ACCESS
• EXTRACT ACCESS
• LOAD ACCESS MULTIPLE
• LOAD ADDRESS EXTENDED
• SET ACCESS
• STORE ACCESS MULTIPLE

Access registers specify address spaces when the CPU is in the access-register mode. The SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE CONTROL FAST instructions set the access-register mode,
and the INSERT ADDRESS SPACE CONTROL instruction indicates the access-register mode. These
instructions are described in Chapter 7, “Instructions,” on page 47.

Access-Register Functions

28 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Access-Register-Specified Address Spaces
The CPU includes sixteen 32-bit access registers numbered 0-15. Access register mode results when
PSW bit 17 is one. In the access-register mode, an instruction B or R field can be used to specify the
logical address of a storage operand. Such a field designates not only a general register but also an
access register. In certain cases, an instruction R field that is used to specify the real address of a storage
operand designates both a general register and an access register. The designated general register is used
in the ordinary way to form the logical or real address of the storage operand. The designated access
register contains a parameter that is called an access-list-entry token (ALET) that determines the address
space to which the logical or real address is relative. This address space is known as the target address
space.

For certain host services that are started in the access-register mode, ALETs can be provided in the
parameter list for the host service. ALETs can also be provided in access registers. These parameter-list
ALETs specify the target address spaces for particular storage operands of the host service.

Regardless of its source, an ALET specifies the target address space for an operand by indirectly
specifying the address-space identification token (ASIT) for the target address space.

In the general case, the ALET specifies an address space by using a host-managed table called a host
access list. The ALET selects an entry in a host access list, and the selected host access-list entry in turn
specifies the target address space. However, a special ALET value can specify the host-primary address
space without using a host access-list entry.

The process of using an ALET to determine the address space that contains an operand is called host
acces-register translation (ART). The process is depicted, for an ALET obtained from an access register, in
Figure 5 on page 29.

 Instruction
 +------------+---+---------+ Displacement
 | | B | D +----------------+
 +------------++-++---------+ |
 | | |
 | | General Register |
In Access-Register Mode | | +---------------------+ |
+--------------------------+ +->| Base Address | |
| +----------+----------+ |
| | |
| Access Register ˅ |
| +---------------------+ +---+ |
+->| ALET | | + |<----------+
 +----------+----------+ +-+-+
 | |
 ˅ |
 +-----+ |
 | ART | |
 +--+--+ |
 | |
 ˅ ˅
 ASIT that Identifies Address Within the
 the Target Address Space Address Space

Figure 5. Use of Access Registers

An access register is said to specify an AR-specified address space. The addresses in an AR-specified
address space are AR-specified real or AR-specified absolute addresses.

In the access-register mode, as in the primary-space mode, all instruction addresses are host-primary
real addresses.

Designating Access Registers
In the access-register mode, an instruction B or R field designates an access register, for use in host
access-register translation, under the following conditions:

• The field is a B field that designates a general register that contains a base address. The base address
is used, along with a displacement (D) and possibly an index (X) to form the logical address of a storage
operand.

Chapter 5. Program Execution 29

• The field is an R field that designates a general register that contains the logical address, or for certain
instructions the real address, of a storage operand.

For example, consider the following instruction:

 MVC 0(L,1),0(2)

The second operand, of length L, is to be moved to the first-operand location. The logical address of the
second operand is in general register 2, and that of the first-operand location is in general register 1.
The address space that contains the second operand is specified by access register 2, and the address
space that contains the first-operand location is specified by access register 1. These two address spaces
can be different address spaces, and each can be different from the instruction space (the host-primary
address space).

The COMPARE AND FORM CODEWORD and UPDATE TREE instructions specify storage operands by
implicitly designating general registers and access registers.

An instruction R field can designate an access register for other than the purpose of host access-register
translation.

The fields that can designate access registers, whether for host access-register translation or not, are
indicated in the summary figure at the beginning of each instruction chapter in IBM z/Architecture
Principles of Operation.

Host Access-Register Translation (ART) Fundamentals
The host access-register translation process (ART) and concepts that are related to access lists are
introduced. The process and concepts are explained in detail in “Host Access-Register Translation” on
page 33.

Terminology note: In z/XC, ART is an acronym for "host access-register translation". The ART acronym
is used in IBM z/Architecture Principles of Operation as "access-register translation" (without prefixed
"host"). Unless stated otherwise herein, references to "ART" in IBM z/Architecture Principles of Operation
must be interpreted as references to host access-register translation in the context of z/XC.

Determining the Target Address Space

The target address space that is specified by an ALET is determined by host access-register translation by
the following process:

• If the ALET that is contained in the access register or in the parameter list that is supplied to a host
service is 00000000 hex, the target address space is the host-primary address space.

• If the ALET is any value other than 00000000 hex, the target address space is identified by an address-
space identification token (ASIT) that is obtained from a host access-list entry. The ALET selects a
host access-list entry, which contains the address-space identification token that identifies the address
space.

Access register 0 is treated in a special way by host access-register translation. Access register 0 is
treated as containing 00000000 hex, and its actual contents are not examined. Thus, a logical or real
address that is specified by a zero-value B or R field in the access-register mode is always relative to the
host-primary address space.

The one exception to the special treatment of access register 0 involves the TEST ACCESS instruction. The
TEST ACCESS instruction uses the actual contents of access register 0.

The special treatment of register 0 allows the host-primary address space to be addressed in the access-
register mode without requiring the use of a host access-list entry. Removing the requirement for a host
access-list entry is useful for moving data to or from the host-primary address space.

Access Lists

Each z/XC virtual machine is provided with a separate host access list to access address spaces when
in the access-register mode. The access list is protected from direct examination or modification by the

30 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

virtual machine. The virtual machine for which a host access list is provided can alter the set of adders
spaces that are designated by the host access list by using host services.

An access list can contain 6 - 1022 entries, each of which can designate a different address space. The
size of a virtual machine's access list is controlled by the host directory entry for the virtual machine.

Access-List-Entry Token

The contents of an access register are called an access-list-entry token (ALET) because, in the general
case, they select an entry in a host access list. The ALET is a 32-bit token, the structure of which is not
further defined.

An ALET can exist in an access register, in a general register, in a parameter list for certain host services,
or in storage. An ALET has no special protection from manipulation by the program. Any program can
transfer ALETs back and forth among access registers, general registers, and storage. A called program
can complete the following operations:

1. Save the contents of the access registers in any storage area available to the program.
2. Load and use the access registers for the program's own purposes.
3. Restore the original contents of the access registers before the program returns control to the caller.

Allocating and Invalidating Access-List Entries

The host provides to each z/XC virtual machine a separate host access list. The host access list that is
associated with a particular virtual machine specifies the collection of address spaces that are available
to a program when it is in the access-register mode. Those address spaces are in addition to the virtual
machine's host-primary address space. All alterations of host access lists are completed by host services.

Each entry in a host access list is considered to be in one of 3 states: Valid, Revoked, or Unused.
Valid

A valid host access-list entry specifies an address space and can be used in the access-register mode
to reference that space.

Unused
An unused host access-list entry is available for allocation as a valid entry.

Revoked
A revoked host access-list entry is an entry that was previously valid, but at some time after the
allocation of the entry the virtual machine's authorization to access the designated address space was
revoked. For more information, see “Revoking Accessing Capability” on page 32.

The host provides services for allocating a valid host access-list entry (changing an unused entry to a valid
entry) and for deallocating a valid or revoked entry (changing the status to unused).

Allocation of a host access-list entry consists of the following steps.

1. A program starts the ALSERV ADD host service and passes two parameters:

• One parameter is the address-space identification token (ASIT). The ASIT specifies the address
space for which access is requested.

• One parameter indicates whether read-only or read/write access is requested.

If the ASIT identifies a space that is not owned by the requesting virtual machine, the host checks that
the requesting virtual machine is authorized for the requested access. Authorization is granted through
use of the ADRSPACE PERMIT host service by the virtual machine that owns the address space.

If the ASIT identifies a space that is owned by the requesting virtual machine, it is always authorized
for read/write access.

2. If the virtual machine's request is authorized, the host completes the following steps:

a. The host selects an unused entry in the virtual machine's host access list.
b. The host changes the unused entry to a valid entry that specifies the subject address space.

Chapter 5. Program Execution 31

c. The host establishes the entry for read-only or read/write access, as requested by the virtual
machine.

d. The host returns to the program an access-list-entry token (ALET) that designates the entry.

After the ALET is assigned, the ALET remains uniquely associated with the entry until the entry returns
to the unused state.

The program can place the ALET in an access register to access the address space. The program can also
place the ALET in a parameter list for a host service to access the address space through certain host
services.

Later, by using the ALSERV REMOVE host service, the host access-list entry that was allocated can be
returned to the unused state. Returning the entry to the unused state makes the entry available for
reallocation to designate a different address space.

Notes on the Authorization Mechanism

A host access list is a kind of capability list, in the sense in which the word "capability" is used in
computer science. The host establishes the policies that are used to allocate entries in a host access list
and completes appropriate authorization checking during the allocation of an entry. After a valid entry
is made in a host access list, the host access-register translation process enforces the host policies in a
well-performing way.

Revoking Accessing Capability

It is possible that a particular valid host access-list entry specifies an address space that is owned by
another virtual machine and the owning virtual machine revokes the accessing virtual machine's authority
to access the address space. In this case, the revocation process causes all host access-list entries of the
accessing virtual machines that designate the subject space to be changed from the valid to the revoked
state. The owning virtual machine revokes access authority by using the ADRSPACE ISOLATE host service.

Similarly, a particular valid host access-list entry might specify an address space (owned by the same or
another virtual machine) that is destroyed before the host access-list entry is deallocated. The destroy
process causes all host access-list entries of all virtual machines that designate the subject space to be
changed from the valid to the revoked state. The owning virtual machine destroys an address space by
using the ADRSPACE DESTROY host service.

An exception is recognized during host access-register translation if an ALET is used that selects a
revoked host access-list entry. No distinction is made between the two causes when a a host access-list
entry changes to the revoked state.

Preventing Store Accesses

Each host access-list entry contains an access-type indicator, which determines whether the entry can
be used for fetch and store accesses to the subject address space or only for fetch accesses. This access-
type indicator is established when the entry is allocated by the host, depending on the requested type
of access to the address space and the requesting virtual machine's authorization. When the access-type
indicator in a host access-list entry specifies read-only access, the entry cannot be used to complete
store accesses or explicit storage-key alterations. For more information, see “Host Access-List-Controlled
Protection” on page 13.

Improving Translation Performance

Host access-register translation (ART) conceptually occurs each time that a logical or real address is
used to reference a storage operand in the access-register mode. To improve performance, ART normally
is implemented such that some or all of the information that is contained in the host-managed ART
structures is maintained in a special buffer. The buffer is referred to as the ART-lookaside buffer (ALB).
The information in the ART structures can be placed in the ALB and subsequent translations can be
completed by using the information in the ALB. Conceptually, the ALB buffers the information that is
necessary to transform an ALET into the identification of the address space that the ALET designates. The
ALB is typically implemented such that it can buffer the ART structures that are related to a relatively
small number of recent translations.

32 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

The host manages the ALB to ensure that the contents of the ALB never represent obsolete ART
structures. Other than the effect on performance, the structure and management of the ALB are not
visible to the z/XC virtual machine. The ALB is not further described in this publication.

Access-Register Instructions
The following instructions are provided for examining and changing the contents of access registers:
COPY ACCESS

The instruction moves the contents of one access register to another.
EXTRACT ACCESS

The instruction moves the contents of an access register to a general register.
LOAD ACCESS MULTIPLE

The instruction loads a specified set of consecutively numbered access registers from a specified
storage location whose length in words equals the number of access registers that are loaded.

LOAD ADDRESS EXTENDED
The instruction is similar to the LOAD ADDRESS instruction. Both instructions load a specified general
register with an effective address that is specified by using the B, X, and D fields of the instruction.

In addition, LOAD ADDRESS EXTENDED operates on the access register that has the same number as
the general register that is loaded. The operation depends on the value of the address-space control,
PSW bit 17:

• If the address-space control is zero, then the instruction loads the access register with 00000000
hex.

• If the address-space control is one, then the instruction loads the target access register with a value
that depends on the B field of the instruction:

– If the B field is zero, then the instruction loads the target access register with 00000000 hex.
– If the B field is not zero, then the instruction loads the target access register with the contents of

the access register that is designated by the B field. However, in the last case, when the contents
of the access register that is designated by the B field are not a correctly formed ALET, the results
in the target general register and access register are unpredictable.

The address-space-control value zero specifies the primary-space mode. The address-space-control
value one specifies the access-register mode.

When used in host access-register translation, the access-register value 00000000 hex specifies the
host-primary address space.

SET ACCESS
The instruction replaces the contents of a specified access register with the contents of a specified
general register.

STORE ACCESS MULTIPLE
The instruction function stores the contents of a set of access registers at a storage location.

Host Access-Register Translation
Host access register translation is an important aspect of z/XC. The z/XC documentation for host access
register translation does not merely state the differences from z/Architecture, but completely replaces
the documentation that is in the corresponding section of IBM z/Architecture Principles of Operation.

Host access-register translation is introduced in “Host Access-Register Translation (ART) Fundamentals”
on page 30.

Terminology note: In z/XC, ART is an acronym for "host access-register translation". The ART acronym
is used in IBM z/Architecture Principles of Operation as "access-register translation" (without prefixed
"host"). Unless stated otherwise herein, references to "ART" in IBM z/Architecture Principles of Operation
must be interpreted as references to host access-register translation in the context of z/XC.

Chapter 5. Program Execution 33

Host Access-Register Translation Control
Host access-register translation is controlled by the address-space control bit, PSW bit 17, which is
described in “Translation Modes” on page 16.

More controls are located in the host-managed access-register translation structures.

Address-Space-Function Control
ESA/XC defined an address-space function control, bit 15 of control register 0, enabling execution of
certain instructions. This control is not provided in z/XC (just as it is not provided in z/Architecture). No
authorization is needed to execute the SET ADDRESS SPACE CONTROL, SET ADDRESS SPACE CONTROL
FAST, or TEST ACCESS instruction.

Access Registers
Sixteen 32-bit access registers are numbered 0-15. The contents of an access register are called an
access-list-entry token (ALET). An ALET has the following format:

+-----------------------------------+
| ALET |
+-----------------------------------+
0 31

When the ALET is not 00000000 hex, it is treated as a 32-bit token that can be associated with at most
one entry in the virtual machine's host access list. During host access-register translation, the ALET is
used as a selection token to determine whether an entry in the host access list that is associated with the
ALET exists. If such an entry does not exist, an ALEN-translation exception is recognized.

Not all possible 32-bit values are valid for use as an ALET. If an incorrectly formed value is used as an
ALET during host access-register translation, an ALET-specification exception is recognized.

When the ALET is 00000000 hex, it specifies the host-primary address space and is not used to select an
entry from the host access list. A logical or real address that is used with an ALET equal to 00000000 hex
is treated as a type-R real address.

Access register 0 usually is treated in host access-register translation as containing 00000000 hex, and
its actual contents are not examined; the host access-register translation that is completed as part of
TEST ACCESS is the only exception. Access register 0 is also treated as containing 00000000 hex when it
is designated by the B field of LOAD ADDRESS EXTENDED when PSW bit 17 is one. When access register
0 is specified for TEST ACCESS or as a source for COPY ACCESS, EXTRACT ACCESS, or STORE ACCESS
MULTIPLE, the actual contents of the access register are used. Access register 0, like any other access
register, can be loaded by COPY ACCESS, LOAD ACCESS MULTIPLE, LOAD ADDRESS EXTENDED, and SET
ACCESS.

Host Access-Register Translation Structures
When the ALET that is translated is not 00000000 hex, host access-register translation selects an entry in
the virtual machine's host access list.

Host Access List
Each z/XC virtual machine is associated with a host access list that specifies those address spaces
that are available to a virtual CPU when it is in the access-register mode. The address spaces are in
addition to the host-primary address space. The host access list contains a directory-specified number
of host access-list entries, each of which conceptually contains the information that is defined in “Host
Access-List Entries” on page 35. The host access list is not explicitly addressable by the virtual machine.
Instead, entries in the host access list are manipulated by using host services.

34 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Programming note: The size of the host access list that is allocated for a virtual machine is specified by
the XCONFIG ACCESSLIST statement in the CP directory. This CP directory statement is described in the
publication z/VM: CP Planning and Administration.

Host Access-List Entries
Each host access-list entry has the following logical structure:

+---+------+----------+---+---+
| S | ALET | ASIT | A | F |
+---+------+----------+---+---+

The fields within the host access-list entry are described in the following sections.

Access-list-entry state (S)
This field indicates the state of the host access-list entry: valid, revoked, or unused.

Host access-list entries in the valid or revoked state are allocated for use by the program and can
be selected by host access-register translation. If the entry that is selected by host access-register
translation is in the valid state, the translation process proceeds. If the entry that is selected by host
access-register translation is in the revoked state, an addressing-capability exception is recognized.

Host access-list entries in the unused state are not currently allocated for use by the program and cannot
be selected by host access-register translation. The other fields of the host access-list entry have no
meaning when the entry is in the unused state.

Selection ALET (ALET)
For a host access-list entry in the valid or revoked state, the ALET field specifies the ALET that selects
the entry during host access-register translation. There is at most one valid or revoked entry in the host
access list that contains a particular ALET value as the selection ALET. The ALET field has no meaning in
an entry in the unused state.

Designated address space (ASIT)
For a host access-list entry in the valid state, the ASIT field contains the address-space identification
token (ASIT) that identifies the address space that is designated by the host access-list entry. The ASIT
field has no meaning in an entry in the revoked or unused state.

Access type (A)
For a host access-list entry in the valid state, the A field specifies the types of access that is permitted
to the address space that is designated by the host access-list entry. Access can be read-only or read/
write. If the A field indicates read/write access, both fetch and store accesses are permitted. If the A
field indicates read-only access, only fetch accesses are permitted, and an attempt to store recognizes a
protection exception for host access-list-controlled protection. The A field has no meaning in an entry in
the revoked or unused state.

Fault handling (F)
For a host access-list entry in the valid state, the F field indicates the manner in which host segment or
page faults are to be handled: synchronously or asynchronously. The F field has no meaning in an entry
in the revoked or unused state. Information on the options for handling host segment and page faults are
included in the descriptions of the PFAULT and ALSERV services in the publication z/VM: CP Programming
Services.

Host Access-Register Translation Process
The host access-register translation process is described for a storage-operand reference in the access-
register mode by any instruction except TEST ACCESS and TEST PROTECTION. TEST PROTECTION in

Chapter 5. Program Execution 35

the access-register mode, and TEST ACCESS in any translation mode, complete host access-register
translation as described here, except that the following exceptions set the condition code and are not
treated as program-interruption conditions:

• Addressing capability
• ALET specification
• ALEN translation

Host access-register translation operates on the access register that is designated in a storage-operand
reference to determine the address space that contains the storage operand. That address space is called
the target address space. When one of access-registers 1-15 is designated, the access-list-entry token
(ALET) that is in the access register is used to determine the address space. When access register 0 is
designated, an ALET that has the value 00000000 hex is used, except that TEST ACCESS uses the actual
contents of access register 0. In certain cases, host access-register translation operates on an ALET that
is obtained from a parameter list for a host service.

When the ALET is 00000000 hex, the host-primary address space is the target address space.

When the ALET is other than 00000000 hex, the following translation operations are completed:

1. The ALET is verified to be correctly formed.
2. The ALET is used in a lookup process to select an entry in the virtual machine's host access list.
3. The selected host access-list entry is verified to be in the valid state.
4. If a store access or an explicit storage-key alteration is attempted, the access-type indication in the

host access-list entry is checked to determine whether read/write access is permitted.
5. If no exceptions are recognized, then the ASIT that is in the selected host access-list entry identifies

the target address space.

Selecting the Access-List-Entry Token
When any of access registers 1-15 is designated, or for the access register that is designated by the R1
field of TEST ACCESS, host access-register translation uses the access-list-entry token (ALET) that is in
the access register. When access register 0 is designated, except for TEST ACCESS, an ALET with value
00000000 hex is used, and the contents of access register 0 are not examined.

In certain cases, host access-register translation uses an ALET that is contained in a parameter list for a
host service. The ALET that is associated with storage operands for host services is described as part of
the definition of the service in the publication z/VM: CP Programming Services.

An operation can change the contents of an access register. The ALET that was obtained at the start of the
operation is in effect until the completion of the operation in the following cases:

• LOAD ACCESS MULTIPLE changes the contents of an access register that is used by host access-register
translation.

• A store access changes the contents of an ALET field in a parameter list for a host service.

Making the Host-Primary Address Space the Target Space
When the ALET that is translated is 00000000 hex, the virtual machine's host-primary address space is
established as the target address space and host access-register translation is completed.

Checking the ALET for Validity
The ALET is checked for being a correctly formed ALET. If the ALET is not correctly formed, an ALET-
specification exception is recognized, and the operation is suppressed.

Access-List Lookup
A lookup in the virtual machine's host access list is completed.

36 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Conceptually, each host access-list entry in the valid or revoked state is examined to determine whether
the selection ALET in the host access-list entry matches the ALET that is translated. Host access-list
entries in the unused state are not considered by this lookup process.

There is at most one valid or revoked host access-list entry that contains a selection ALET that matches
the ALET that is translated. If there is an entry with a selection ALET that matches the ALET that is
translated, that entry is said to be the entry that is selected by the ALET that is translated. If the selected
entry is in the valid state, the host access-register translation process proceeds. If the selected entry is
in the revoked state, an addressing-capability exception is recognized, and the operation is terminated. If
there is no valid or revoked host access-list entry that contains a selection ALET that matches the ALET
that is translated, an ALEN-translation exception is recognized, and the operation is nullified.

Checking for Host Access-List-Controlled Protection
If a store access or an explicit storage-key alteration is attempted and the access-type indication in the
selected host access-list entry specifies read-only access, a protection exception is recognized, and the
operation is terminated.

Establishing the Target Address Space
When the ALET that is translated is other than 00000000 hex and the access-type specifies read/write
access, the address space that is identified by the ASIT field in the selected host access-list entry is
established as the target address space and host access-register translation is completed.

Recognition of Exceptions during Host Access-Register Translation
The exceptions that can be encountered during the host access-register translation process and their
priority are shown in “Access Exceptions” on page 44.

Subspace Groups
Subspace groups are not provided in z/XC.

Linkage Stack
The linkage stack is not provided in z/XC.

ESA/390-Compatibility-Mode Facility
The presence of the ESA/390-Compatibiltiy-Mode (390-CM) facility has no effect on execution in the z/XC
architectural mode. (That is, a configuration in z/XC mode is not in 390-CM.) However, the effects of this
facility do apply to a configuration in the ESA/XC architectural mode. Generally, instructions, capabilities,
and functions that are defined in z/XC but not in ESA/XC might operate in ESA/XC fully or partially as they
do in z/XC. Such behavior is unpredictable.

The results of attempting such operations are largely as described in the “ESA/390-Compatibility-Mode
Facility” section of IBM z/Architecture Principles of Operation. References therein to ESA/390 apply to
ESA/XC and references to z/Architecture apply to z/XC. References to bit positions in control and general
registers in that text use the 64-bit register number convention of z/Architecture and z/XC, rather than the
32-bit number convention of ESA/390 and ESA/XC.

Execution in ESA/XC with 390-CM differs from execution in ESA/XC without 390-CM in the following ways.
(References are to the 32-bit control registers that are defined in ESA/XC.)

• Attempted execution of the BRANCH AND SET AUTHORITY instruction results in either an operation
exception or a special-operation exception.

• The address-space-function control is bit 15 of control register 0. A special-operation exception might
be recognized when the address-space-function control value is cleared (zero value) in the following
cases:

Chapter 5. Program Execution 37

– The SET ADDRESS SPACE CONTROL or SET ADDRESS SPACE CONTROL FAST instruction is executed
to enter access-register mode.

– The TEST ACCESS instruction is executed.
• Branch tracing, which is governed by bit 0 of control register 12, cannot be enabled.
• The effect is unpredictable of any reserved bits of a control register whose corresponding bit positions

in z/XC are assigned:

– It is unpredictable whether bit 0 of control registers 10 and 11 (corresponding to bit 32 in z/XC) is
used in forming the PER address range.

– For explicit tracing, it is unpredictable whether bit 0 of control register 12 (corresponding to bit 32 in
z/XC) is used in forming the trace-entry address.

• The effect of running an instruction that is unique to the z/Architecture or z/XC architectural mode is
unpredictable. The instruction might run according to its z/Architecture or z/XC definition or yield an
operation exception.

• If the program issues an instruction that is defined to enable the 64-bit addressing mode, the possible
results are as described in the “ESA/390-Compatibility-Mode Facility” section of IBM z/Architecture
Principles of Operation.

• The result of an instruction that is valid in both the ESA/XC and z/XC architectural modes, but
specifies an attribute that is specific to the z/XC architectural mode, is unpredictable. The attribute
might be ignored, the instruction might run according to its z/XC definition, or an exception might be
recognized. More information is available in the “ESA/390-Compatibility-Mode Facility” section of IBM
z/Architecture Principles of Operation.

• It is unpredictable whether PER instruction-fetching nullification, zero-address-detection, and storage-
key-alteration events are recognized.

• SIGP order codes that are unique to the z/Architecture and z/XC architectural modes result in an
invalid-order status.

Sequence of Storage References
The effects that can be observed in storage due to overlapped operations and piecemeal execution of a
CPU program in z/Architecture are defined in IBM z/Architecture Principles of Operation. The effects apply
to z/XC as well, with the following exceptions:

• References to virtual storage or virtual addresses in z/Architecture apply instead to real storage, real
addresses (type-R and type-A) and absolute addresses in z/XC.

• References to the following storage elements do not apply to z/XC:

– Real mode
– Secondary-space mode
– Home-space mode
– ART-table and DAT-table fetches
– ALB entries

38 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 6. Interruptions

The interruption mechanism for z/XC is similar to the definition for z/Architecture. Except as described
in the following topics, the definition for interruptions that is provided in Chapter 6 of IBM z/Architecture
Principles of Operation applies to z/XC as well.

Interruption Action
The interruption action in z/XC is the same as defined for z/Architecture except as described in the
following topics.

During an interruption, the old PSW and interruption parameters are stored in, and the new PSW is
fetched from, the host-primary address space.

Exceptions Associated with the PSW
In addition to the error conditions that are defined in z/Architecture, z/XC includes some additional error
conditions that cause recognition of PSW-format errors when the erroneous information is introduced into
the PSW. Error conditions that are recognized as part of the execution of the next instruction are the same
as defined in z/Architecture.

Early Exception Recognition
In z/XC, a program interruption for a specification exception occurs for the error conditions that are
defined in z/Architecture. In z/XC, a program interruption for a specification exception also occurs
immediately after the PSW becomes active if a one is introduced into bit positions 5 or 16 of the PSW.

For these additional causes, interruption occurs as defined in z/Architecture for other PSW-format errors
that are recognized early.

Program Interruption
Program interruptions follow the definition in z/Architecture except as described in the following topics.

Program-Interruption Conditions
Program-interruption conditions that are either recognized only in z/XC or are defined differently in z/XC
than in z/Architecture are listed.

The following program-interruption conditions that are defined in z/Architecture are never recognized in
z/XC:

• AFX-translation exception
• ALE-sequence exception
• ASCE-type-specification exception
• ASTE-instance exception
• ASTE-sequence exception
• ASTE-validity exception
• ASX-translation exception
• EX-translation exception
• Extended-authority exception
• LFX-translation exception
• LSTE-sequence exception

© Copyright IBM Corp. 1991, 2022 39

• LSX-translation exception
• LX-translation exception
• Page-translation exception
• PC-translation-specification exception
• Primary-authority exception
• Region-first-translation exception
• Region-second-translation exception
• Region-third-translation exception
• Secondary-authority exception
• Segment-translation exception
• Space-switch event
• Stack-empty exception
• Stack-full exception
• Stack-operation exception
• Stack-specification exception
• Stack-type exception
• Translation-specification exception

Any other z/Architecture program-interruption conditions that are not described in one of the following
sections is defined in z/XC in the same way that it is defined for z/Architecture. However, the z/
Architecture definition might include causes that are not applicable to z/XC because the related facilities
are not provided.

The addressing-capability exception, which is defined only in z/XC, is defined in the following section.

Addressing Exception
In addition to the causes that are defined in z/Architecture, an addressing exception is recognized if all of
the following conditions are true:

• A reference is made to a storage location in a shared address space that is the primary space of a
z/Architecture guest.

• The location is within a 4 KB block in the unused block-usage state and the logically-zero block-content
state, as defined for collaborative memory management.

For information about the collaborative memory management assist, see z/VM: CP Programming Services

Addressing-Capability Exception
An addressing-capability exception is recognized during host access-register translation when the access-
list-entry token used is correctly formed but designates a host access-list entry that is in the revoked
state.

The access-list-entry token that is translated is stored at real locations 168-171. If the access-list-entry
token was obtained from an access register, the number of the access register is stored in bit positions
4-7 at real location 160, and bits 0-3 are set to zeros. If the access-list-entry token was obtained from the
parameter list for a host service, then zeros are stored in bit positions 0-7 at real location 160.

The operation is ended.

The instruction-length code is 1, 2 or 3.

An addressing-capability exception is indicated by any of four program-interruption codes. The code
indicates whether other events occurred concurrently:

40 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Code Concurrent PER event Concurrent transactional-execution-aborted event

0136 No No

01B6 Yes No

0336 No Yes

03B6 Yes Yes

Programming note: An addressing-capability exception indicates that the program's authority to access
an address space is revoked by the owner of that address space. Depending on the programs involved,
this exception might result from normal operation and does not necessarily indicate a failure on the part
of the program that receives the exception.

ALEN-Translation Exception
An ALEN-translation exception is recognized during host access-register translation when the access-list-
entry token is correctly formed but does not designate a host access-list entry that is in either the valid or
revoked state.

The access-list-entry token that is translated is stored at real locations 168-171. If the access-list-entry
token was obtained from an access register, the number of the access register is stored in bit positions
4-7 at real location 160, and bits 0-3 are set to zeros. If the access-list-entry token was obtained from a
host-service parameter list, then zeros are stored in bit positions 0-7 at real location 160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

An ALEN-translation exception is indicated by any of four program-interruption codes. The code indicates
whether other events occurred concurrently:

Code Concurrent PER event Concurrent transactional-execution-aborted event

0029 No No

00A9 Yes No

0229 No Yes

02A9 Yes Yes

Programming note: An ALEN-translation exception indicates that the program attempted to use a
correctly formed but currently unassigned ALET. It is possible that the ALET was associated with a valid
host access-list entry that was later deallocated.

ALET-Specification Exception
An ALET-specification exception is recognized during host access-register translation when the access-
list-entry token is not a correctly formed ALET.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

An ALET-specification exception is indicated by any of four program-interruption codes. The code
indicates whether other events occurred concurrently:

Code Concurrent PER event Concurrent transactional-execution-aborted event

0028 No No

00A8 Yes No

Chapter 6. Interruptions 41

Code Concurrent PER event Concurrent transactional-execution-aborted event

0228 No Yes

02A8 Yes Yes

Programming note: An ALET-specification exception indicates that the program attempted to use as
an ALET a 32-bit value that is never valid for use as an ALET. That is, the value is never assigned by
the host as the selection ALET for a valid or revoked host access-list entry. (Contrast an ALEN-translation-
exception condition, which indicates that the program attempted to use an ALET that can be assigned to
a host access-list entry, but currently is not.) Often, this exception indicates that the program loaded an
access register from a storage location that does not currently contain an ALET value that is provided by
the host.

Block-Volatility Exception
A block-volatility exception is recognized when all of the following conditions are true:

• A reference is made to a storage location in a shared address space that is the primary space of a
z/Architectureguest.

• The location is within a 4 KB block that is in the volatile block-usage state and the logically-zero
block-content state, as defined for collaborative memory management.

For information about the collaborative memory management assist, see z/VM: CP Programming Services.

The unit of operation is nullified.

The instruction length code is 1, 2, or 3.

A block-volatility exception is indicated by any of four program-interruption codes. The code indicates
whether other events occurred concurrently:

Code Concurrent PER event Concurrent transactional-execution-aborted event

001A No No

009A Yes No

021A No Yes

029A Yes Yes

Privileged-Operation Exception
The definition for the privileged-operation exception is the same as for z/Architecture, with the following
exceptions:

• No privileged-operation exception is recognized if the INSERT ADDRESS SPACE CONTROL instruction is
executed when the extraction-authority control, bit 36 of control register 0, is zero.

• No privileged-operation exception is recognized if bits 52-55 of the second-operand address of the SET
ADDRESS SPACE CONTROL or SET ADDRESS SPACE CONTROL FAST instructions have the value 0011.
Instead, a specification exception is recognized.

Protection Exception
The definition for the protection exception is the same as for z/Architecture, with the following
exceptions.

In z/XC, a protection exception is not recognized due to access-list-controlled protection, DAT protection,
or instruction-execution protection as defined in z/Architecture. Instead, a protection exception is
recognized for host access-list-controlled protection or host DAT protection when either of the following
conditions are true:

42 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

1. Host DAT Protection: The CPU attempts to store into or change explicitly the storage key of a 4 KB block
of storage that has host DAT protection.

2. Host Access-List-Controlled Protection: The CPU attempts a store access, or an explicit storage-key
alteration by using an ALET that designates a host access-list entry that permits only fetch accesses.

Exceptions that are due to key-controlled protection and low-address protection are recognized as in
z/Architecture.

The operation is suppressed or terminated as described in “Suppression on Protection” on page 14.

Programming note: In z/VM, host DAT protection is applied to the following address ranges:

• Address ranges within an IPLed named saved system (NSS) or a loaded discontiguous saved segment
(DCSS) that were defined as read-only, except for ranges in a DCSS that was loaded nonshared. Read-
only storage ranges are type ER, SR, or SC.

• Ranges of an address space into which blocks of a read-only minidisk were mapped by the MAPMDISK
service.

Special-Operation Exception
In addition to the causes that are defined in z/Architecture, a special-operation exception can be
recognized in lieu of an operation exception. The special-operation exception is recognized when certain
instructions that are provided in z/Architecture but not in z/XC are attempted. See “z/Architecture
Instructions Not Provided” on page 47.

The operation is suppressed.

The instruction-length code is 2 or 3.

A special-operation exception is indicated by any of four program-interruption codes. The code indicates
whether other events occurred concurrently:

Code Concurrent PER event Concurrent transactional-execution-aborted event

0013 No No

0093 Yes No

0213 No Yes

0293 Yes Yes

The special-operation exception is indicated by a program-interruption code of 0013 hex (or 0093 hex if a
concurrent PER event is indicated).

Specification Exception
The specification exception is defined as in z/Architecture, except that SET SYSTEM MASK does not give a
specification exception, even though bit 33 of control register 0 is one. (In z/Architecture, a specification
exception is recognized when bit 33 of control register 0 is one.) Also, a specification exception is
recognized in z/XC when either of the following conditions occur:

1. A 1 is introduced into bit position 5 or 16 of the PSW. This situation is handled as an early PSW
specification exception.

2. Bits 54-55 of the second-operand address of SET ADDRESS SPACE CONTROL or SET ADDRESS SPACE
CONTROL FAST are not 00 or 10.

The execution of the instruction that is identified by the old PSW is suppressed. However, for early
PSW specification exceptions (causes 1-3 in IBM z/Architecture Principles of Operation, and situation
“1” on page 43), the operation that introduces the new PSW is completed, but an interruption occurs
immediately thereafter.

Chapter 6. Interruptions 43

When the exception is recognized because of an early PSW specification exception (causes 1-3 in IBM
z/Architecture Principles of Operation, and situation “1” on page 43), and the exception was introduced by
LOAD PSW or an interruption, the ILC is zero. When the exception is introduced by SET SYSTEM MASK or
by STORE THEN OR SYSTEM MASK, the ILC is 2 or 3.

Multiple Program-Interruption Conditions
As in z/Architecture, except for PER events, when multiple program-interruption conditions exist, only the
condition with the highest priority is indicated in the interruption code. When two conditions have the
same priority, which condition is indicated is unpredictable.

The priority of all program-interruption conditions other than PER events and exceptions that are
associated with some of the more complex control instructions is the same as defined in Figure 6-8
of IBM z/Architecture Principles of Operation. In that figure, all exceptions that are associated with
references to storage for a particular instruction halfword or a particular operand byte are grouped as
a single entry called "access exceptions". Figure 6 on page 45 lists the priority of access exceptions for
a single access. Thus, Figure 6-8 of IBM z/Architecture Principles of Operation specifies the priority of an
access-exception condition in relation to other conditions that are detected in the operation. Figure 6 on
page 45 specifies which of several access exceptions, encountered either in the access of a particular
portion of an instruction or in any particular access that is associated with an operand, has highest
priority.

The priority for exceptions that occur as part of tracing is the same as defined in Figure 6-7 of IBM
z/Architecture Principles of Operation.

For some instructions, the priority is shown in the individual instruction description.

Access Exceptions
The access exceptions consist of those exceptions that can be encountered when an absolute, instruction,
logical, or real address is used to access storage. Thus, in the access-register mode, the following
exceptions can occur:

1. ALET specification
2. ALEN translation
3. Addressing capability
4. Protection (host access-list controlled)
5. Addressing
6. Protection (key-controlled, host DAT, and low-address)

When in the primary-space mode, only addressing, key-controlled protection, host DAT protection, and
low-address protection exceptions can be encountered.

The access exceptions are listed in detail in Figure 6 on page 45.

44 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

A.
Protection exception (low-address protection) due to a store-type operand reference with an
effective address in the range 0-511 or 4096-4607

B.1.A.1
ALET-specification exception due to an incorrectly formed ALET

B.1.A.2
ALEN-translation exception due to an ALET that does not select a host access-list entry in either
the valid or revoked states

B.1.B
Addressing-capability exception due to an ALET that designates a host access-list entry in the
revoked state

B.2.
Protection exception (host access-list controlled protection) due to a store-type operand reference
that uses a host access-list entry that permits read-only access

B.3.
Addressing exception for access to instruction or operand

B.4.
Protection exception (host DAT protection) due to a store-type operand reference to an address
that is protected by the host against stores

B.5.
Protection exception (key-controlled protection) due to an attempt to access a protected
instruction or operand location

Figure 6. Priority of Access Exceptions

ASN-Translation Exceptions
None of the z/Architecture ASN translation exceptions apply to z/XC.

Subspace-Replacement Exceptions
None of the z/Architecture subspace-replacement exceptions apply to z/XC.

Chapter 6. Interruptions 45

46 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 7. Instructions

The operation of z/XC instructions, other than the instructions for input/output, is described and
compared with z/Architecture.

Except as specified in the following topics, z/XC provides all general, decimal, floating point, and control
instructions that are provided by z/Architecture. The instructions operate as described in Chapters 7 - 10,
18 and 19 of IBM z/Architecture Principles of Operation.

z/Architecture Instructions Not Provided
The following instructions are provided in z/Architecture but are not provided in z/XC. An operation
exception is recognized on an attempt to execute any of these instructions.

• BRANCH AND STACK
• BRANCH IN SUBSPACE GROUP
• EXTRACT PRIMARY ASN
• EXTRACT SECONDARY ASN
• EXTRACT STACKED REGISTERS
• EXTRACT STACKED STATE
• INSERT VIRTUAL STORAGE KEY
• LOAD ADDRESS SPACE PARAMETERS
• LOAD REAL ADDRESS
• MODIFY STACKED STATE
• MOVE TO PRIMARY
• MOVE TO SECONDARY
• PROGRAM CALL
• PROGRAM RETURN
• PROGRAM TRANSFER
• SET SECONDARY ASN
• START INTERPRETIVE EXECUTION

The following instructions might be provided in z/Architecture but are not provided in z/XC. Attempted
execution of any of these instructions results in either an operation exception or a special-operation
exception; which exception occurs is unpredictable.

• COMPARE AND REPLACE DAT TABLE ENTRY
• EXTRACT AND SET EXTENDED AUTHORITY
• EXTRACT AND SET STORAGE ATTRIBUTE (defined in z/VM: CP Programming Services)
• EXTRACT PRIMARY ASN AND INSTANCE
• EXTRACT SECONDARY ASN AND INSTANCE
• LOAD PAGE TABLE ENTRY ADDRESS
• MOVE WITH OPTIONAL SPECIFICATIONS
• PERFORM FRAME MANAGEMENT FUNCTION
• PROGRAM TRANSFER WITH INSTANCE
• SET SECONDARY ASN WITH INSTANCE
• STORE REAL ADDRESS

© Copyright IBM Corp. 1991, 2022 47

• TRAP

Modified z/Architecture Instructions
The following topics describe the operation of instructions that operate differently in z/XC than in z/
Architecture.

DIAGNOSE
The DIAGNOSE instruction is used in a virtual-machine environment to request services from the host. For
more information, see z/VM: CP Programming Services.

INSERT ADDRESS SPACE CONTROL
The address-space-control bit, bit 17 of the current PSW, is placed in bit position 54 of the general
register that is designated by the R1 field. Bits 48-53 and 55 of the register are set to zeros, and bits
0-47 and 56-63 of the register remain unchanged. The address-space-control bit is also used to set the
condition code.

Resulting Condition Code
0

PSW bit is 17 zero, which indicates primary-space mode.
1

--
2

PSW bit 17 is one, which indicates access-register mode.
3

--

Programming Note: See the programming notes for the INSERT ADDRESS SPACE CONTROL instruction in
IBM z/Architecture Principles of Operation.

INSERT STORAGE KEY EXTENDED
This instruction operates as defined for z/Architecture, with the following addition:

When the CPU is in the primary-space mode, the address of the 4 KB block that is designated by the
contents of the general register R2 is a host-primary real address. When the CPU is in the access-register
mode, the address of the 4 KB block that is designated by the contents of general register R2 is an
AR-specified real address. The address is interpreted to be within the address space that is specified by
the access register that is designated by the R2 field.

INVALIDATE DAT TABLE ENTRY
This instruction operates as defined for z/Architecture, with the following additions.

For the invalidation-and-clearing operation, a table-entry address is formed by using a table origin
address and an index. The table origin address is in the register that is designated by the R3 field and
the index is in the register that is designated by the R2 field. In z/XC, that table-entry address is treated as
a host-primary real or absolute address.

Programming note: In z/XC, (guest) DAT is not provided and (guest) TLB entries are never formed.
Therefore, the clearing-by-ASCE operation is executed as a no-operation. The invalidation-and-clearing
operation provides little utility; the setting of a bit in storage can be accomplished more efficiently by
using the OR instruction. On some models, the INVALIDATE DAT TABLE ENTRY instruction requires a
significant amount of time and might cause a performance degradation.

48 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

INVALIDATE PAGE TABLE ENTRY
This instruction operates as defined for z/Architecture, with the following additions.

A real address is formed by using a page-table origin address and a page index. The page-table origin
address is in the register that is designated by the R1 field and the page index is in the register that is
designated by the R2 field. In z/XC, that real address is treated as a host-primary real address.

Programming note: In z/XC, (guest) DAT is not provided and (guest) TLB entries are never formed. This
instruction provides little utility in ESA/XC. The setting of a bit in storage can be accomplished more
efficiently by using the OR instruction. On some models, the INVALIDATE PAGE TABLE ENTRY instruction
requires a significant amount of time, and might cause a performance degradation.

LOAD ADDRESS EXTENDED
The operation is executed as defined for z/Architecture, except that the value that is placed in access
register R1 is as shown in the following table:

PSW Bit
17

Value that is Placed in Access Register R1

0 00000000 hex (zeros in bits positions 0-31) is placed in access register R1.

1 If B2 field is zero: 00000000 hex (zeros in bit positions 0-31) is placed in access register
R1.

If B2 field is nonzero: The contents of access register B2 is placed in access register R1.

LOAD PSW
This instruction operates as defined for z/Architecture, with the following special conditions.

Special conditions: The PSW fields that are loaded by the instruction are not checked for validity
before they are loaded, except for the optional checking of bit 12. However, immediately after loading,
a specification exception is recognized and a program interruption occurs if the newly loaded PSW
contains a one in bit position 5 or 16. In these cases, the operation is completed, and the resulting
instruction-length code is 0. (These reasons for a specification exception are in addition to those reasons
that are described in IBM z/Architecture Principles of Operation.)

LOAD PSW EXTENDED
This instruction operates as defined for z/Architecture, with the following modifications:

Special conditions: The value that is loaded into the PSW is not checked for validity before it is loaded.
However, immediately after loading, a specification exception is recognized and a program interruption
occurs if the PSW contains a one in bit position 5 or 16. In these cases, the instruction is completed,
and the instruction-length code is 0. (These reasons for a specification exception are in addition to those
reasons that are described in IBM z/Architecture Principles of Operation.)

LOAD USING REAL ADDRESS
This instruction operates as defined for z/Architecture, with the following addition.

The contents of the general register that is designated by the R2 field are treated as a host-primary real
address.

MONITOR CALL
Because the z/Architecture enhanced-monitor facility is not provided in z/XC, monitor-event counting is
not attempted. If bits 16-31 of control register 8 are not set to zeros, then results are unpredictable.

Chapter 7. Instructions 49

PURGE ALB
The instruction is executed as a no-operation.

Programming note: In z/XC, (guest) ART is not provided and (guest) ALB entries are never used. This
instruction completes no useful function in the z/XC mode. On some models, this instruction requires a
significant amount of time, and might cause a performance degradation.

PURGE TLB
The instruction is executed as a no-operation.

Programming note: In z/XC, (guest) ART is not provided and (guest) TLB entries are never used. This
instruction completes no useful function in the z/XC mode. On some models, this instruction requires a
significant amount of time, and might cause a performance degradation.

RESET REFERENCE BIT EXTENDED
This instruction operates as defined for z/Architecture, with the following additions.

When the CPU is in the primary-space mode, the address of the 4 KB block that is designated by the
contents of the general register R2 is a host-primary real address.

When the CPU is in the access-register mode, the address of the 4 KB block that is designated by the
contents of general register R2 is an AR-specified real address. The address is interpreted as within the
address space that is specified by the access register that is designated by the R2 field.

The reference to the storage key is subject to host DAT protection and host access-list-controlled
protection.

RESUME PROGRAM
In z/XC, bit 16 of the PSW field in the second operand must be zero; otherwise, a specification exception
is recognized. This exception has the same priority as the access exceptions for the second operand.

SET ADDRESS SPACE CONTROL and SET ADDRESS SPACE CONTROL FAST
Bits 52-55 of the second-operand address are used as a code to set the address-space-control bit in the
PSW. The second-operand address is not used to address data; instead, bits 52-55 form the code. Bits
0-51 and 56-63 of the second-operand address are ignored. Bits 20, 53, and 55 of the second-operand
address must be zeros; otherwise, a specification exception is recognized.

The following table summarizes the operation of SET ADDRESS SPACE CONTROL and SET ADDRESS
SPACE CONTROL FAST:

Code Name of Mode Result in PSW bit 17

0000 Primary space 0

0010 Access register 1

Any other Invalid

For SET ADDRESS SPACE CONTROL, a serialization and checkpoint-synchronization function is completed
before the operation begins and again after the operation is completed. This function is not attempted for
SET ADDRESS SPACE CONTROL FAST.

Special conditions: The priority of recognition of program exceptions for the instruction is shown in
Figure 7 on page 51.

Condition Code
The code remains unchanged.

50 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Program Exceptions
• Special operation
• Specification

1.-6.
Exceptions with the same priority as the priority of program-interruption conditions for the general
case

7.A
Access exceptions for the second instruction halfword

7.B
Transaction constraint

9.
Specification because of a nonzero value in bit positions 52, 53, or 55 of the second-operand
address

Figure 7. Priority of Execution: SET ADDRESS SPACE CONTROL and SET ADDRESS SPACE CONTROL FAST

Programming note: Programming notes for the SET ADDRESS SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST instructions are included in IBM z/Architecture Principles of Operation.

SET STORAGE KEY EXTENDED
This instruction operates as defined for z/Architecture, with the following additions.

When the CPU is in the primary-space mode, the address of the 4 KB block that is designated by the
contents of the general register R2 is a host-primary real address.

When the CPU is in the access-register mode, the address of the 4 KB block that is designated by the
contents of general register R2 is an AR-specified real address. The address is interpreted as within the
address space that is specified by the access register that is designated by the R2 field.

The reference to the storage key is subject to host DAT protection and host access-list-controlled
protection.

Because the z/Architecture enhanced-DAT facility 1 is not provided in z/XC, the multiple-block control (bit
3 of the M3 field) is not provided; this bit must be set to zero.

SET SYSTEM MASK
This instruction operates as defined for z/Architecture, with the following modifications.

The SSM-suppression control (bit 33 of control register 0) is not checked, and no special-operation
exception is recognized if the control is one.

Special conditions: The value that is loaded into the PSW is not checked for validity before it is loaded.
However, immediately after loading, a specification exception is recognized and a program interruption
occurs if the PSW contains a one in bit position 5. In this case, the instruction is completed, and the
instruction-length code is set to 2 or 3. (This reason for a specification exception is in addition to those
reasons that are described in IBM z/Architecture Principles of Operation.)

STORE THEN OR SYSTEM MASK
This instruction operates as defined for z/Architecture, with the following special conditions.

Special conditions: The value that is loaded into the PSW is not checked for validity before it is loaded.
However, immediately after loading, a specification exception is recognized and a program interruption
occurs if the PSW contains a one in bit position 5. In this case, the instruction is completed, and the

Chapter 7. Instructions 51

instruction-length code is set to 2 or 3. (This reason for a specification exception is in addition to those
reasons that are described in IBM z/Architecture Principles of Operation.)

STORE USING REAL ADDRESS
This instruction operates as defined for z/Architecture, with the following addition.

The contents of the general register that is designated by the R2 field are treated as a host-primary real
address.

TEST ACCESS
The access-list-entry token (ALET) in access register R1 is tested for exceptions that are recognized during
host access-register translation (ART). The ALET is also tested for 00000000 hex.

The contents of bits 32-47 of general register R2 are expected to be 0001 hex.

When the R1 field is zero, the actual contents of access register 0 are used in ART, instead of the
00000000 hex that is usually used.

Bits 0-31 and 48-63 of general register R2 are ignored.

The operation does not depend on the translation mode; bit 17 of the PSW is ignored.

When the ALET in access register R1 is 00000000 hex, the instruction is completed by setting condition
code 0.

When the ALET in access register R1 is other than 00000000 hex, the ART process is applied to the ALET.
When a condition exists that would normally cause one of the exceptions that are shown in the following
table, the instruction is completed by setting condition code 3:

Table 2. Conditions that would normally cause a program exception but instead complete with condition
code 3

Exception Name Cause

Addressing capability ALET is correctly formed and selects a host access-list
entry that is in the revoked state.

ALET specification ALET is not correctly formed.

ALEN translation ALET is correctly formed but does not select a host
access-list entry that is in either the valid or revoked state.

When ART is completed without any of the exceptions that are in Table 2 on page 52, the instruction is
completed by setting condition code 2. ART is described in the section “Host Access-Register Translation”
on page 33.

If the instruction is executed and the contents of bits 32-47 of general register R2 are not 0001 hex, the
resulting condition code is unpredictable.

The priority of recognition of program exceptions for the instruction is shown in Figure 8 on page 53.

Resulting Condition Code
When the contents of bits 32-47 of general register R2 are 0001 hex:
0

Access-list-entry token (ALET) is 00000000 hex.
1

--
2

ALET is not 00000000 hex and does not cause exceptions in ART.

52 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

3
ALET causes exceptions in ART.

When the contents of bits 32-47 of general register R2 are not 0001 hex, the resulting condition code is
unpredictable.

Program Exceptions
There are no program exceptions.

The priority of recognition of program exceptions and setting of condition codes for the instruction is
shown in Figure 8 on page 53.

1.-6.
Exceptions with the same priority as the priority of program-interruption conditions for the general
case

7.A
Access exceptions for the second instruction halfword

7.B
Transaction constraint

8.
Condition code 0 because the access-list-entry-token (ALET) value is 00000000 hex

9.
Condition code 3 because of an incorrectly formed ALET

10.
Condition code 3 because the ALET did not select a host access-list entry that is in the valid or
revoked state

11.
Condition code 3 because the ALET selected a host access-list entry that is in the revoked state

12.
Condition code 2

Figure 8. Priority of Execution: TEST ACCESS

TEST BLOCK
This instruction operates as defined for z/Architecture, with the following additions.

When the CPU is in the primary-space mode, the address of the 4 KB block that is designated by the
contents of the general register R2 is a host-primary real address.

When the CPU is in the access-register mode, the address of the 4 KB block that is designated by the
contents of general register R2 is an AR-specified real address. The address is interpreted as within the
address space that is specified by the access register that is designated by the R2 field.

The access to the block that is designated by the second operand address is subject to host DAT
protection and host access-list-controlled protection.

TEST PROTECTION
The location that is designated by the first-operand address is tested for protection exceptions by using
the access key that is specified in bits 56-59 of the second-operand address.

The second-operand address is not used to address data. Instead, bits 56-59 of the address form the
access key that is used in testing. Bits 0-55 and 60-63 of the second-operand address are ignored.

The first-operand address is a logical address. When the CPU is in the access-register mode (when
PSW bit 17 is one), the first-operand address is subject to translation by using the host access-register

Chapter 7. Instructions 53

translation process (ART). ART applies to the access register that is designated by the B1 field to
determine the address space that contains the first operand.

When ART is attempted and a condition exists that would normally cause one of the exceptions that are
shown in the following table, the instruction is completed by setting condition code 3.

Table 3. Conditions that would normally cause a program exception but instead complete with condition
code 3

Exception Name Cause

Addressing capability ALET is correctly formed and selects a host access-list
entry that is in the revoked state.

ALET specification ALET is not correctly formed.

ALEN translation ALET is correctly formed but does not select a host
access-list entry that is in either the valid or revoked state.

When the access register contains 00000000 hex, the first operand is contained in the host-primary
address space and ART does not attempt translation by using the host access list. When the B1 field
designates access register 0, ART treats the access register as containing 00000000 hex and does not
examine the actual contents of the access register.

The storage key for the block that is designated by the first-operand address is tested against the access
key that is specified in bits 56-59 of the second-operand address when any of the following conditions is
true:

• Translation of the first-operand address can be completed.
• The CPU is in the primary-space mode.

The condition code is set to indicate whether store and fetch accesses are permitted. All applicable
protection mechanisms are considered.

For example, if low-address protection is active and the first-operand effective address is in the
range 0-511 or 4096-4607, then a store access is not permitted. Host DAT protection, host access-list-
controlled protection, storage-protection override, and fetch-protection override are also considered.

The contents of storage, including the change bit, are not affected. Depending on the model, the reference
bit for the first-operand address might be set to one, even for the case in which the location is protected
against fetching.

Resulting Condition Code
0

Fetching permitted; storing permitted.
1

Fetching permitted; storing not permitted.
2

Fetching not permitted; storing not permitted.
3

ALET causes exceptions in ART.

Program Exceptions
• Privileged operation

TRACE
This instruction operates as defined for z/Architecture, with the following addition.

54 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

The contents of bits 2-61 of control register 12, with two zero bits appended on the right, are treated as a
host-primary real address.

Chapter 7. Instructions 55

56 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 8. Machine-Check Handling

Machine checks in z/XC are handled similarly to machine checks in z/Architecture. Except as described
in the following topics, the definition for machine-check handling that is provided in Chapter 11 of IBM
z/Architecture Principles of Operation applies to z/XC.

Handling of Machine Checks
The overall handling of machine checks in z/XC is the same as defined for z/Architecture, except that z/XC
provides automatic validation of certain register entities.

Validation
In ESA/XC, certain register entities are automatically validated as part of the machine-check interruption
sequence after the original contents of the registers are placed in the appropriate save areas.
After validation, the contents of these registers are restored to the values that were placed in the
corresponding save areas. The contents of the registers are restored even if the associated machine-
check-interruption-code validity bit for the logged-out copy is zero.

Machine-Check Extended Interruption Information
In z/XC, all of the machine-check extended interruption information that is defined for z/Architecture is
provided in the same cases as defined for z/Architecture. In addition, z/XC provides a failing-storage ASIT
for certain interruptions.

Failing-Storage Address and ASIT
z/Architecture defines the results of certain machine-check codes that indicate storage and storage-key
errors. The associated address, called the failing-storage address, is stored in real locations 248-255
when a machine-check code indicates any of the following conditions:

• Storage error uncorrected
• Storage error that is corrected
• Storage-key error uncorrected

An indication of the address space in which the error occurred, called the failing-storage ASIT, is stored
at locations 256-263. The failing-storage address and failing-storage ASIT fields are valid only if the
failing-storage-address validity bit, bit 24 of the machine-check-interruption code, is one.

When a storage error or storage-key error occurs in the host-primary address space, zeros are stored as
the failing-storage ASIT. When the storage error or storage-key error occurs in an address space other
than the host-primary address space, the ASIT for the address space is stored as the failing-storage ASIT.

Programming note: In ESA/XC, the failing-storage address is a 31-bit address in locations 248-251. In
z/XC, the failing-storage address is a 64-bit address in locations 248-255. A program that was written for
ESA/XC must be adjusted to account for this difference if it is to run in z/XC.

© Copyright IBM Corp. 1991, 2022 57

58 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Chapter 9. Input/Output

Input/output processing for z/XC is similar to processing that is defined for z/Architecture. The definitions
for I/O instructions, I/O functions, I/O interruptions and I/O support functions that are provided in
Chapters 13 - 17 of IBM z/Architecture Principles of Operation apply to z/XC, with the exceptions that are
described in the following topics.

Handling of Addresses for I/O
Except for the logical-address operands of the I/O instructions, all main-storage addresses that are used
by the channel subsystem in completing I/O operations, or in completing I/O-measurement operations,
refer to the host-primary address space. That is, they are host-primary absolute or host-primary real
addresses.

The following addresses are host-primary absolute addresses:

• Address limit, which is specified in SET ADDRESS LIMIT
• Measurement-block origin, which is specified in SET CHANNEL MONITOR
• Channel-program address in an operation request block
• Data address in a channel-command word (CCW)
• CCW address in a CCW that specifies a transfer in channel
• Indirect-data-address word (IDAW) address in a CCW that specifies indirect data addressing
• Modified indirect-data-address word (MIDAW) address in a CCW that specifies modified indirect data

addressing
• Data address in an IDAW
• Data address in an MIDAW
• CCW address in a subchannel status word
• Failing-storage address in a format-0 extended-status word
• Addresses of PSW and first two CCWs that are used for initial program loading

The following addresses are host-primary real addresses:

• Address into which TEST PENDING INTERRUPTION stores when the second-operand address is zero
• Addresses into which information is stored and from which the PSW is fetched on an I/O interruption

© Copyright IBM Corp. 1991, 2022 59

60 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1991, 2022 61

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information may contain examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not
be liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This manual documents intended Programming Interfaces that allow the customer to write programs to
obtain services of z/VM.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., in the United States and/or other countries. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on IBM Copyright and
trademark information (https://www.ibm.com/legal/copytrade).

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

62 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

https://www.ibm.com/legal/us/en/copytrade.shtml
https://www.ibm.com/legal/us/en/copytrade.shtml

Personal Use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial Use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience,
to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you
to collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see:

• The section entitled IBM Websites at IBM Privacy Statement (https://www.ibm.com/privacy)
• Cookies and Similar Technologies (https://www.ibm.com/privacy#Cookies_and_Similar_Technologies)

Notices 63

https://www.ibm.com/privacy
https://www.ibm.com/privacy#Cookies_and_Similar_Technologies

64 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Bibliography

This topic lists the publications in the z/VM library. For abstracts of the z/VM publications, see z/VM:
General Information.

Where to Get z/VM Information
The current z/VM product documentation is available in IBM Documentation - z/VM (https://
www.ibm.com/docs/en/zvm).

z/VM Base Library

Overview
• z/VM: License Information, GI13-4377
• z/VM: General Information, GC24-6286

Installation, Migration, and Service
• z/VM: Installation Guide, GC24-6292
• z/VM: Migration Guide, GC24-6294
• z/VM: Service Guide, GC24-6325
• z/VM: VMSES/E Introduction and Reference, GC24-6336

Planning and Administration
• z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6261
• z/VM: CMS Planning and Administration, SC24-6264
• z/VM: Connectivity, SC24-6267
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: Getting Started with Linux on IBM Z, SC24-6287
• z/VM: Group Control System, SC24-6289
• z/VM: I/O Configuration, SC24-6291
• z/VM: Running Guest Operating Systems, SC24-6321
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Secure Configuration Guide, SC24-6323

Customization and Tuning
• z/VM: CP Exit Customization, SC24-6269
• z/VM: Performance, SC24-6301

Operation and Use
• z/VM: CMS Commands and Utilities Reference, SC24-6260
• z/VM: CMS Primer, SC24-6265
• z/VM: CMS User's Guide, SC24-6266
• z/VM: CP Commands and Utilities Reference, SC24-6268

© Copyright IBM Corp. 1991, 2022 65

https://www.ibm.com/docs/en/zvm
https://www.ibm.com/docs/en/zvm

• z/VM: System Operation, SC24-6326
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: XEDIT Commands and Macros Reference, SC24-6337
• z/VM: XEDIT User's Guide, SC24-6338

Application Programming
• z/VM: CMS Application Development Guide, SC24-6256
• z/VM: CMS Application Development Guide for Assembler, SC24-6257
• z/VM: CMS Application Multitasking, SC24-6258
• z/VM: CMS Callable Services Reference, SC24-6259
• z/VM: CMS Macros and Functions Reference, SC24-6262
• z/VM: CMS Pipelines User's Guide and Reference, SC24-6252
• z/VM: CP Programming Services, SC24-6272
• z/VM: CPI Communications User's Guide, SC24-6273
• z/VM: ESA/XC Principles of Operation, SC24-6285
• z/VM: Language Environment User's Guide, SC24-6293
• z/VM: OpenExtensions Advanced Application Programming Tools, SC24-6295
• z/VM: OpenExtensions Callable Services Reference, SC24-6296
• z/VM: OpenExtensions Commands Reference, SC24-6297
• z/VM: OpenExtensions POSIX Conformance Document, GC24-6298
• z/VM: OpenExtensions User's Guide, SC24-6299
• z/VM: Program Management Binder for CMS, SC24-6304
• z/VM: Reusable Server Kernel Programmer's Guide and Reference, SC24-6313
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: z/Architecture Extended Configuration (z/XC) Principles of Operation, SC27-4940

Diagnosis
• z/VM: CMS and REXX/VM Messages and Codes, GC24-6255
• z/VM: CP Messages and Codes, GC24-6270
• z/VM: Diagnosis Guide, GC24-6280
• z/VM: Dump Viewing Facility, GC24-6284
• z/VM: Other Components Messages and Codes, GC24-6300
• z/VM: VM Dump Tool, GC24-6335

z/VM Facilities and Features

Data Facility Storage Management Subsystem for z/VM
• z/VM: DFSMS/VM Customization, SC24-6274
• z/VM: DFSMS/VM Diagnosis Guide, GC24-6275
• z/VM: DFSMS/VM Messages and Codes, GC24-6276
• z/VM: DFSMS/VM Planning Guide, SC24-6277

66 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

• z/VM: DFSMS/VM Removable Media Services, SC24-6278
• z/VM: DFSMS/VM Storage Administration, SC24-6279

Directory Maintenance Facility for z/VM
• z/VM: Directory Maintenance Facility Commands Reference, SC24-6281
• z/VM: Directory Maintenance Facility Messages, GC24-6282
• z/VM: Directory Maintenance Facility Tailoring and Administration Guide, SC24-6283

Open Systems Adapter
• Open Systems Adapter-Express Customer's Guide and Reference (https://www.ibm.com/support/

pages/node/6019492), SA22-7935
• Open Systems Adapter-Express Integrated Console Controller User's Guide (https://www.ibm.com/

support/pages/node/6019810), SC27-9003
• Open Systems Adapter-Express Integrated Console Controller 3215 Support (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SA23-2247
• Open Systems Adapter/Support Facility on the Hardware Management Console (https://www.ibm.com/

docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm), SC14-7580

Performance Toolkit for z/VM
• z/VM: Performance Toolkit Guide, SC24-6302
• z/VM: Performance Toolkit Reference, SC24-6303

RACF® Security Server for z/VM
• z/VM: RACF Security Server Auditor's Guide, SC24-6305
• z/VM: RACF Security Server Command Language Reference, SC24-6306
• z/VM: RACF Security Server Diagnosis Guide, GC24-6307
• z/VM: RACF Security Server General User's Guide, SC24-6308
• z/VM: RACF Security Server Macros and Interfaces, SC24-6309
• z/VM: RACF Security Server Messages and Codes, GC24-6310
• z/VM: RACF Security Server Security Administrator's Guide, SC24-6311
• z/VM: RACF Security Server System Programmer's Guide, SC24-6312
• z/VM: Security Server RACROUTE Macro Reference, SC24-6324

Remote Spooling Communications Subsystem Networking for z/VM
• z/VM: RSCS Networking Diagnosis, GC24-6316
• z/VM: RSCS Networking Exit Customization, SC24-6317
• z/VM: RSCS Networking Messages and Codes, GC24-6318
• z/VM: RSCS Networking Operation and Use, SC24-6319
• z/VM: RSCS Networking Planning and Configuration, SC24-6320

TCP/IP for z/VM
• z/VM: TCP/IP Diagnosis Guide, GC24-6328
• z/VM: TCP/IP LDAP Administration Guide, SC24-6329
• z/VM: TCP/IP Messages and Codes, GC24-6330

Bibliography 67

https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019492
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/support/pages/node/6019810
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ioa/ioa.htm

• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: TCP/IP Programmer's Reference, SC24-6332
• z/VM: TCP/IP User's Guide, SC24-6333

Prerequisite Products

Device Support Facilities
• Device Support Facilities (ICKDSF): User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf), GC35-0033

Environmental Record Editing and Printing Program
• Environmental Record Editing and Printing Program (EREP): Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5gc350152/$file/ifc2000_v2r5.pdf), GC35-0152

• Environmental Record Editing and Printing Program (EREP): User's Guide (https://www.ibm.com/
servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf), GC35-0151

Related Products

z/OS
• Common Programming Interface Communications Reference (https://publibfp.dhe.ibm.com/epubs/pdf/

c2643999.pdf), SC26-4399
• z/OS and z/VM: Hardware Configuration Definition Messages (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf), SC34-2668

• z/OS and z/VM: Hardware Configuration Manager User's Guide (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf), SC34-2670

• z/OS: Network Job Entry (NJE) Formats and Protocols (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf), SA32-0988

• z/OS: IBM Tivoli Directory Server Plug-in Reference for z/OS (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf), SA76-0169

• z/OS: Language Environment Concepts Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf), SA38-0687

• z/OS: Language Environment Debugging Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf), GA32-0908

• z/OS: Language Environment Programming Guide (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf), SA38-0682

• z/OS: Language Environment Programming Reference (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf), SA38-0683

• z/OS: Language Environment Runtime Messages (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf), SA38-0686

• z/OS: Language Environment Writing Interlanguage Communication Applications (https://
www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf),
SA38-0684

• z/OS: MVS Program Management Advanced Facilities (https://www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf), SA23-1392

• z/OS: MVS Program Management User's Guide and Reference (https://www.ibm.com/servers/
resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf), SA23-1393

68 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350033/$file/ickug00_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc2000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5gc350151/$file/ifc1000_v2r5.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342668/$file/cbdm100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sc342670/$file/eequ100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa320988/$file/hasa600_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa760169/$file/glpa300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380687/$file/ceea800_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5ga320908/$file/ceea100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380682/$file/ceea200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380683/$file/ceea300_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380686/$file/ceea900_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa380684/$file/ceea400_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231392/$file/ieab200_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosv2r5sa231393/$file/ieab100_v2r5.pdf

XL C++ for z/VM
• XL C/C++ for z/VM: Runtime Library Reference, SC09-7624
• XL C/C++ for z/VM: User's Guide, SC09-7625

Other Publications
IBM Enterprise Systems Architecture/390 Principles of Operation, SA22-7201
IBM z/Architecture Principles of Operation, SA22-7832

Bibliography 69

70 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

Index

A
absolute address 10
access exceptions

priority of 44, 45
access registers

designating in instructions 29
identification stored on a program interruption 18, 19
instructions for use of 33
introduction to 27
use of 29

access-list-controlled protection
not provided in z/XC 12

access-register mode 16
access-type indication (in host access-list entry) 35
address

stored into by TEST PENDING INTERRUPTION 59
summary information 17

address limit (specified in SET ADDRESS LIMIT) 59
address space

AR-specified (access-register-specified) 29
assignment of ASIT to 10
deletion of, by subsystem reset 23
determining space specified by ALET 30
home, not provided in z/XC 27
host-primary 9
initial state of sharing 10
isolation of, by subsystem reset 23
private and shareable states 10

address translation
summary information 16

address-space control bit 21
address-space number (ASN), not provided in z/XC 15
address-space-control bit 16
address-space-function (ASF) control bit

not available in z/XC 34
addressing exception, as an access exception 44
addressing-capability exception

as an access exception 44
AFX-translation exception, not recognized in z/XC 39
ALB (ART lookaside buffer) 32
ALE-sequence exception, not recognized in z/XC 39
ALEN-translation exception

as an access exception 44
ALET (access-list-entry token)

stored on a program interruption 19
values treated specially by ART 30

ALET-specification exception
as an access exception 44

ALETT 29
AR-specified (access-register-specified) address spaces 29
AR-specified absolute address 11
AR-specified real address 11
ART (host access-register translation 29
ART lookaside buffer (ALB) 32
ASCE-type-specification exception, not recognized in z/XC
39

ASIT (address-space identification token)
in host access-list entry 35
special value never assigned as ASIT 10
stored on a machine-check interruption 19

ASN authorization, not provided in z/XC 15
ASN tracing, not provided in z/XC 22
ASN translation, not provided in z/XC 15
ASN-translation control bit, not provided in z/XC 27
ASN-translation exceptions, not recognized in z/XC 45
ASTE-instance exception, not recognized in z/XC 39
ASTE-sequence exception, not recognized in z/XC 39
ASTE-validity exception, not recognized in z/XC 39
ASX-translation exception, not recognized in z/XC 39
asynchronous page-fault handling option (in host access-list
entry) 35
authorization index (AX), not provided in z/XC 27
authorization mechanisms 27
automatic validation of registers 57

B
BAKR (BRANCH AND STACK) instruction, not provided in
z/XC 47
block-volatility exception 42
BRANCH AND STACK (BAKR) instruction, not provided in
z/XC 47
BRANCH IN SUBSPACE GROUP (BSG) instruction, not
provided in z/XC 47
BSG (BRANCH IN SUBSPACE GROUP) instruction, not
provided in z/XC 47
byte

prefixes xii

C
CCW address

in subchannel status word 59
in TIC CCW 59

channel-program address, in ORB 59
compatibility

among z/XC implementations 3
among z/XC, ESA/XC, z/Architecture
5
application program

z/XC and ESA/XC 4
control-program

z/XC and ESA/XC 4
z/XC, ESA/XC, z/Architecture
5

of z/XC and ESA/XC 4
problem state

z/XC, ESA/XC, z/Architecture
6

configuration 7
configuration-z/XC-mode 2
control instructions 47
control registers

Index 71

control registers (continued)
assignment of 22

CPU signaling and response 24
CZAM 2
CZXM 2

D
DAT (dynamic address translation), not provided in z/XC 15
DAT protection

not provided in z/XC 12
DAT tables, not provided in z/XC 15
data address (in CCW or IDAW) 59
decimal instructions 47
DIAGNOSE instruction 48
dynamic address translation (DAT), not provided in z/XC 15

E
early exception recognition 39
EPAR (EXTRACT PRIMARY ASN) instruction, not provided in
z/XC 47
EREG (EXTRACT STACKED REGISTERS) instruction, not
provided in z/XC 47
ESA/390-Compatibility-Mode Facility 37
ESAR (EXTRACT SECONDARY ASN) instruction, not provided
in z/XC 47
ESTA (EXTRACT STACKED STATE) instruction, not provided in
z/XC 47
event

space-switch, not recognized in z/XC 40
EX-translation exception, not recognized in z/XC 39
exception access identification 18
exception ALET 19
exceptions

access (collective program-interruption name) 44
addressing-capability 40
AFX-translation, not recognized in z/XC 39
ALE-sequence, not recognized in z/XC 39
ALEN-translation 41
ALET-specification 41
ASCE-type-specification, not recognized in z/XC 39
ASN-translation (collective program-interruption name)
45
ASTE-instance, not recognized in z/XC 39
ASTE-sequence, not recognized in z/XC 39
ASTE-validity, not recognized in z/XC 39
ASX-translation, not recognized in z/XC 39
EX-translation, not recognized in z/XC 39
extended-authority, not recognized in z/XC 39
LFX-translation, not recognized in z/XC 39
LSTE-sequence, not recognized in z/XC 39
LSX-translation, not recognized in z/XC 40
LX-translation, not recognized in z/XC 40
page-translation, not recognized in z/XC 40
PC-translation-specification, not recognized in z/XC 40
primary-authority, not recognized in z/XC 40
priority of 44
privileged-operation 42
protection 42
region-first-translation, not recognized in z/XC 40
region-second-translation, not recognized in z/XC 40
region-third-translation, not recognized in z/XC 40

exceptions (continued)
secondary-authority, not recognized in z/XC 40
segment-translation, not recognized in z/XC 40
special-operation 43
specification 43
stack-empty, not recognized in z/XC 40
stack-full, not recognized in z/XC 40
stack-operation, not recognized in z/XC 40
stack-specification, not recognized in z/XC 40
stack-type, not recognized in z/XC 40
subspace-replacement 45
translation-specification, not recognized in z/XC 40

extended-authority exception, not recognized in z/XC 39
EXTRACT PRIMARY ASN (EPAR) instruction, not provided in
z/XC 47
EXTRACT SECONDARY ASN (ESAR) instruction, not provided
in z/XC 47
EXTRACT STACKED REGISTERS (EREG) instruction, not
provided in z/XC 47
EXTRACT STACKED STATE (ESTA) instruction, not provided in
z/XC 47
extraction-authority control 27

F
facility indications 24
failing-storage address

in format-0 extended-status word 59
failing-storage ASIT

assigned storage locations for 19
validity bit for 57

fault-handling option (in host access-list entry) 35
fetch protection

applicability based on real-address type 12
override control bit 12

floating-point instructions 47

G
general instructions 47
GSEPLA 23
guarded-storage-event access information (GSEAI) 23
guarded-storage-event parameter list (GSEPL) 23

H
home address space, not provided in z/XC 27
home-space mode, not provided in z/XC 27
host

use of host DAT protection 13
z/VM Control Program (CP) as 8

host access list
access type provide by 32
allocation and invalidation of entries in 31
concepts 30
number of entries in 34
resetting of, by subsystem reset 23
revocation of accessing capability 32

host access-list entry
access-type indication in 35
address space designated by 35
ASIT contained in 35
entry state in 35

72 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

host access-list entry (continued)
page fault handling options for 35
selection ALET in 35
valid, revoked and unused states 35

host access-list-controlled protection 13
host access-register translation

as part of TEST ACCESS and TEST PROTECTION 35
introduction to 30
structures 34

host controls on virtual machines
ability to share address spaces 10
number and size of address spaces 9
number of entries in host access list 34

host DAT protection 13
host services

for allocating host access-list entries 31
for deallocating host access-list entries 32
for destroying absolute-storage address spaces 9
for establishing access type in ALE 13
for granting access to address spaces 31
for mapping blocks of storage to minidisk blocks 13
for obtaining additional address space 9
for revoking access to address spaces 32
for sharing and isolating address spaces 10

host-primary address space
isolation of, by subsystem reset 23

host-primary real address 11
host-primaryabsolute address 10

I
IAC (INSERT ADDRESS SPACE CONTROL) instruction 48
IDAW (indirect-data-address word) address (in CCW) 59
INSERT ADDRESS SPACE CONTROL (IAC) instruction 48
INSERT STORAGE KEY EXTENDED (ISKE) instruction 48
INSERT VIRTUAL STORAGE KEY (IVSK) instruction, not
provided in z/XC 47
instruction address 11
instructions

control 47
decimal 47
floating-point 47
general 47

interruption
action 39
program 39

INVALIDATE DAT TABLE ENTRY instruction 48
INVALIDATE PAGE TABLE ENTRY (IPTE) instruction 49
IPTE (INVALIDATE PAGE TABLE ENTRY) instruction 49
ISKE (INSERT STORAGE KEY EXTENDED) instruction 48
IVSK (INSERT VIRTUAL STORAGE KEY) instruction, not
provided in z/XC 47

K
key-controlled protection 12

L
LAE (LOAD ADDRESS EXTENDED) instruction 49
LASP (LOAD ADDRESS SPACE PARAMETERS) instruction, not
provided in z/XC 47
LFX-translation exception, not recognized in z/XC 39

linkage stack
not provided 37

LOAD ADDRESS EXTENDED (LAE) instruction 49
LOAD ADDRESS SPACE PARAMETERS (LASP) instruction, not
provided in z/XC 47
LOAD PSW (LPSW) instruction 49
LOAD PSW EXTENDED 49
LOAD REAL ADDRESS (LRA) instruction, not provided in z/XC
47
LOAD USING REAL ADDRESS (LURA) instruction 49
logical address 11
low-address protection

applicability based on real-address type 14
LPSW (LOAD PSW) instruction 49
LRA (LOAD REAL ADDRESS) instruction, not provided in z/XC
47
LSTE-sequence exception, not recognized in z/XC 39
LSX-translation exception, not recognized in z/XC 40
LURA (LOAD USING REAL ADDRESS) instruction 49
LX-translation exception, not recognized in z/XC 40

M
machine check

interruption information 57
main storage 9
measurement-block origin 59
MIDAW address

in TIC CCW 59
mode

access-register 16
home-space, not provided in z/XC 27
primary-space 16
requirements for semiprivileged instructions, not
applicable in z/XC 27
translation 16

MODIFY STACKED STATE (MSTA) instruction, not provided in
z/XC 47
MONITOR CALL 49
MOVE TO PRIMARY (MVCP) instruction, not provided in z/XC
47
MOVE TO SECONDARY (MVCS) instruction, not provided in
z/XC 47
MSTA (MODIFY STACKED STATE) instruction, not provided in
z/XC 47
multiplier prefixes for bytes xii
MVCP (MOVE TO PRIMARY) instruction, not provided in z/XC
47
MVCS (MOVE TO SECONDARY) instruction, not provided in
z/XC 47

P
page-translation exception, not recognized in z/XC 40
PALB (PURGE ALB) instruction 50
PC (PROGRAM CALL) instruction, not provided in z/XC 47
PC-number translation, not provided in z/XC 27
PC-translation-specification exception, not recognized in
z/XC 40
PER (program-event recording) 22
PR (PROGRAM RETURN) instruction, not provided in z/XC 47
prefixes

multipliers for bytes xii

Index 73

prefixing
applicability based on real-address type 15

primary-authority exception, not recognized in z/XC 40
primary-space mode 16
priority of exception conditions 44
privileged-operation exception 42
PROGRAM CALL (PC) instruction, not provided in z/XC 47
program exception 39
program interruption 39
PROGRAM RETURN (PR) instruction, not provided in z/XC 47
PROGRAM TRANSFER (PT) instruction, not provided in z/XC
47
protection exception

as an access exception 44
PSW (program-status word)

format errors 39
format of 21
short format 21

PSW-key mask (PKM) 27
PT (PROGRAM TRANSFER) instruction, not provided in z/XC
47
PTLB (PURGE TLB) instruction 50
PURGE ALB (PALB) instruction 50
PURGE TLB (PTLB) instruction 50

R
read-only access, permitted by host access-list entry 35
read/write access, permitted by host access-list entry 35
real address

fetch protection for references that use 11
low-address protection for references that use 11
prefixing of 11
type-A 11
type-R 11

real address space 11
region-first-translation exception, not recognized in z/XC 40
region-second-translation exception, not recognized in z/XC
40
region-third-translation exception, not recognized in z/XC 40
registers

access 7
reset

subsystem 23
RESET REFERENCE BIT EXTENDED (RRBE) instruction 50
revoked host access-list entry 35
RRBE (RESET REFERENCE BIT EXTENDED) instruction 50

S
SAC (SET ADDRESS SPACE CONTROL) instruction 50
SACF (SET ADDRESS SPACE CONTROL FAST) instruction 50
secondary-authority exception, not recognized in z/XC 40
secondary-space control bit, not provided in z/XC 27
segment-translation exception, not recognized in z/XC 40
selection ALET (in host access-list entry) 35
SET ADDRESS SPACE CONTROL (SAC) instruction 50
SET ADDRESS SPACE CONTROL FAST (SACF) instruction 50
set architecture 24
SET SECONDARY ASN (SSAR) instruction, not provided in
z/XC 47
SET STORAGE KEY EXTENDED (SSKE) instruction 51
SET SYSTEM MASK (SSM) instruction 51

SIE (START INTERPRETIVE EXECUTION) instruction, not
provided in z/XC 47
signal processor orders 24
space-switch event, not recognized in z/XC 40
special-operation exception 43
specification exception 43
SSAR (SET SECONDARY ASN) instruction, not provided in
z/XC 47
SSKE (SET STORAGE KEY EXTENDED) instruction 51
SSM (SET SYSTEM MASK) instruction 51
stack-empty exception, not recognized in z/XC 40
stack-full exception, not recognized in z/XC 40
stack-operation exception, not recognized in z/XC 40
stack-specification exception, not recognized in z/XC 40
stack-type exception, not recognized in z/XC 40
START INTERPRETIVE EXECUTION (SIE) instruction, not
provided in z/XC 47
state

access-list-entry 35
storage

main storage 9
protection facilities 12

storage error corrected (machine-check condition) 57
storage error uncorrected (machine-check condition) 57
storage-key error uncorrected (machine-check condition) 57
store additional status at address 24
store status 24
store status at address 24
STORE THEN OR SYSTEM MASK (STOSM) instruction 51
STORE USING REAL ADDRESS (STURA) instruction 52
STOSM (STORE THEN OR SYSTEM MASK) instruction 51
STURA (STORE USING REAL ADDRESS) instruction 52
subspace groups

not provided 37
subspace-replacement exceptions, not recognized in z/XC
45
subsystem reset 23
subsystem-linkage control bit, not provided in z/XC 27
suppression on protection 14
synchronous page-fault handling option (in host access-list
entry) 35

T
TAR (TEST ACCESS) instruction 52
TB (TEST BLOCK) instruction 53
TEST ACCESS (TAR) instruction 52
TEST BLOCK (TB) instruction 53
TEST PROTECTION (TPROT) instruction 53
TPROT (TEST PROTECTION) instruction 53
TRACE (TRACE) instruction 54
tracing facilities

ASN, not provided in z/XC 22
translation lookaside buffer, not provided in z/XC 15
translation modes

address-space control bit 21
translation-exception identification 19
translation-specification exception, not recognized in z/XC
40
type-A real address 11
type-R real address 11

74 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

U
unused host access-list entry 35

V
valid host access-list entry 35
validation of registers, automatic 57
virtual address 11
virtual machine supervisor 3
virtual-storage address space, not provided in z/XC 15

Z
z/Architecture

relationship to z/XC 1
z/Architecture architecture

availability of facilities in z/XC 3
z/Architecture Principles of

Operation
relationship of this document to 1

z/VM Control Program (CP) 1, 8
z/XC architecture

capabilities controlled by host 8
compatibility with ESA/XC 4
compatibility with ESA/XC, z/Architecture 5
highlights of 1
relationship to z/Architecture 1
summary of differences from z/Architecture
2
z/Architecture facilities included in 3

Index 75

76 z/VM: 7.3 z/Architecture Extended Configuration (z/XC) Principles of Operation

IBM®

Product Number: 5741-A09

Printed in USA

SC27-4940-73

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Conventions
	Multiplier Prefix Symbols for Bytes

	Where to Find More Information
	Links to Other Documents and Websites

	How to Send Your Comments to IBM
	Chapter 1. Introduction
	Highlights of z/XC
	Additions to z/XC
	Configuration-z/XC-Mode Facility

	The z/Architecture Base

	System Program
	Compatibility
	Compatibility among z/XC Implementations
	Compatibility between z/XC and ESA/XC
	Control Program Compatibility
	Application Program Compatibility

	Compatibility among z/XC, z/Architecture and ESA/390
	Control Program Compatibility
	Problem State Compatibility

	Chapter 2. Organization
	Main Storage
	Central Processing Unit
	Access Registers

	Host Access List
	Host Program

	Chapter 3. Storage
	Storage Addressing
	Absolute Storage Address Spaces
	Private and Shareable Address Spaces
	Identification of Address Spaces

	Address Types and Formats
	Address Types
	Absolute Address
	Host-Primary Absolute Address
	AR-Specified Absolute Address
	Real Address
	Host-Primary Real Address
	AR-Specified Real Address
	Virtual Addresses
	Logical Addresses
	Instruction Address

	Protection
	Key-Controlled Protection
	Fetch-Protection-Override Control

	Host Access-List-Controlled Protection
	Host DAT Protection
	Low-Address Protection
	Suppression on Protection
	Basic Suppression-on-Protection Facility
	Enhanced Suppression-on-Protection Facility 1
	Enhanced Suppression-on-Protection Facility 2

	Prefixing
	Dynamic Address Translation
	Translation Control
	Translation Modes

	Address Summary
	Addresses Translated
	Handling of Addresses

	Assigned Storage Locations

	Chapter 4. Control
	Program-Status Word
	Program-Status-Word Format
	Address-Space Control (AS)

	Short PSW Format

	Control Registers
	Tracing
	Program-Event Recording
	Guarded-Storage Facility
	Externally Initiated Functions
	Resets
	Subsystem Reset
	Store Status

	CPU Signaling and Response
	Signal-Processor Orders
	Store Status
	Store Additional Status at Address
	Set Architecture

	Facility Indications

	Chapter 5. Program Execution
	Authorization Mechanisms
	Extraction-Authority Control
	Access-Register Mechanisms

	PC-Number Translation
	Home Address Space
	Access-Register Introduction
	Summary
	Access-Register Functions
	Access-Register-Specified Address Spaces
	Designating Access Registers
	Host Access-Register Translation (ART) Fundamentals
	Determining the Target Address Space
	Access Lists
	Access-List-Entry Token
	Allocating and Invalidating Access-List Entries
	Notes on the Authorization Mechanism
	Revoking Accessing Capability
	Preventing Store Accesses
	Improving Translation Performance

	Access-Register Instructions

	Host Access-Register Translation
	Host Access-Register Translation Control
	Address-Space-Function Control

	Access Registers
	Host Access-Register Translation Structures
	Host Access List
	Host Access-List Entries
	Access-list-entry state (S)
	Selection ALET (ALET)
	Designated address space (ASIT)
	Access type (A)
	Fault handling (F)

	Host Access-Register Translation Process
	Selecting the Access-List-Entry Token
	Making the Host-Primary Address Space the Target Space
	Checking the ALET for Validity
	Access-List Lookup
	Checking for Host Access-List-Controlled Protection
	Establishing the Target Address Space
	Recognition of Exceptions during Host Access-Register Translation

	Subspace Groups
	Linkage Stack

	ESA/390-Compatibility-Mode Facility
	Sequence of Storage References

	Chapter 6. Interruptions
	Interruption Action
	Exceptions Associated with the PSW
	Early Exception Recognition

	Program Interruption
	Program-Interruption Conditions
	Addressing Exception
	Addressing-Capability Exception
	ALEN-Translation Exception
	ALET-Specification Exception
	Block-Volatility Exception
	Privileged-Operation Exception
	Protection Exception
	Special-Operation Exception
	Specification Exception

	Multiple Program-Interruption Conditions
	Access Exceptions
	ASN-Translation Exceptions
	Subspace-Replacement Exceptions

	Chapter 7. Instructions
	z/Architecture Instructions Not Provided
	Modified z/Architecture Instructions
	DIAGNOSE
	INSERT ADDRESS SPACE CONTROL
	Resulting Condition Code

	INSERT STORAGE KEY EXTENDED
	INVALIDATE DAT TABLE ENTRY
	INVALIDATE PAGE TABLE ENTRY
	LOAD ADDRESS EXTENDED
	LOAD PSW
	LOAD PSW EXTENDED
	LOAD USING REAL ADDRESS
	MONITOR CALL
	PURGE ALB
	PURGE TLB
	RESET REFERENCE BIT EXTENDED
	RESUME PROGRAM
	SET ADDRESS SPACE CONTROL and SET ADDRESS SPACE CONTROL FAST
	Condition Code
	Program Exceptions

	SET STORAGE KEY EXTENDED
	SET SYSTEM MASK
	STORE THEN OR SYSTEM MASK
	STORE USING REAL ADDRESS
	TEST ACCESS
	Resulting Condition Code
	Program Exceptions

	TEST BLOCK
	TEST PROTECTION
	Resulting Condition Code
	Program Exceptions

	TRACE

	Chapter 8. Machine-Check Handling
	Handling of Machine Checks
	Validation

	Machine-Check Extended Interruption Information
	Failing-Storage Address and ASIT

	Chapter 9. Input/Output
	Handling of Addresses for I/O

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	IBM Online Privacy Statement

	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products
	Related Products
	Other Publications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	P
	R
	S
	T
	U
	V
	Z

