
This paper is an overview of IBM’S Virtual Machine Facilityl370.
It describes the virtual machine concept and its capabilities and
implementation in VMl370. Two components of VMl370 are dis-
cussed-the control program and the Conversational Monitor
System. The usefulness of VMl370 in multiple and diverse environ-
ments is covered. New developments in VMl370 from hardware
assists to system extensions, networking, and handshaking are
briefly described as an introduction to the rest of the papers in
this issue.

VM/370-a study of multiplicity and usefulness
by L. H. Seawright and R. A. MacKinnon

The productivity of data processing professionals and other pro-
fessionals can be enhanced through the use of interactive and
time-sharing systems. Similarly, system programmers can bene-
fit from the use of system testing tools. A systems solution to
both areas can be the virtual machine concept, which provides
multiple software replicas of real computing systems on one real
processor. Each virtual machine has a full complement of input/
output devices and provides functions similar to those of a real
machine. One system that implements virtual machines is IBM’S
Virtual Machine Facility1370 (VM1370).’

VMl370 is an operating system that gives multiple users access to a
computer by means of keyboard and display terminals for time
sharing, system testing, production, and conversion. VMl370 man-
ages the resources of a computer so that every user, local or re-
mote, appears to have a complete replica of a System 370 includ-
ing inpudoutput (I/o) devices. Each user of VM/370 can select a
different operating system, if desired, because different operating

I systems can run concurrently in different virtual machines.

This paper describes the capabilities of VMl370. For a historical
perspective on VMl370 and the virtual machine concept, see Refer-
ences 2 ,3,4, and 5. One of the objectives of this paper and those
that follow in this issue is to show how VMl370 has provided an
architectural base for production as well as experimentation for a
wide variety of users and installations.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

4 SEAWRIGHT AND MACKINNON IBM SYST J VOL 18 NO 1 1979

Virtual machine environments

VMi370 has two main components-the control program (CP) and
the Conversational Monitor System (cMS). CP is the resource
manager of the system. It creates virtual machines in which oper-
ating systems can run. It supports, as virtual machines, the oper-
ating systems that normally control real IBM System/360, System/
370, and 303X (3031, 3032, 3033) processors. CMS provides an
environment for interactive program development and personal
computing, with functions such as language processors, editors,
debugging tools, and applications packages.

The operating systems supported in the VM/370 environment are

VM/370.6 They execute under the control of CP, which manages the
resources of the real system, giving each user or virtual machine
access to appropriate I/O devices and the real central processing
unit. CP multiprograms one virtual machine against another by
using various time slicing algorithms and priorities, whereas
batch systems would multiprogram tasks or partitions. Figure 1
illustrates multiple virtual machines that contain a variety of op-
erating systems, including CMS, OS/vSl, and DOS/VS.

While executing under CP, a virtual machine produces results that
are functionally equivalent to those of a real machine, although
execution is slower because the real machine is normally being
shared. The role played by CP is transparent to a virtual machine,
even though CP services are used continually to allow it to run.
Interfaces between CP and the virtual machine are described in
the Appendix.

CP commands are available, if the user desires them, to enhance
the control and debugging of the operating system in the virtual
machine environment. These commands provide for displaying
storage of the virtual machine (not real storage), setting instruc-
tion address stops, and dumping virtual storage. In essence, these
are the functions a system programmer would perform at the con-
sole of a real CPU.

During virtual machine execution, all virtual machine code (both
supervisor and problem state) executes unchanged from that
which would run on a real machine. It relies on the normal oper-
ating system files and data sets to execute, and it communicates
with the virtual machine operator through a console, usually a
terminal. Thus the messages displayed on the console are identi-
cal to those that would be produced by a real machine.

A virtual machine assumes total responsibility for the manage-
ment of jobs or function within it. Therefore, the virtual machine
depends largely on its own operating system for access methods

versions Of DOS/VS, OS/MFT, OS/MVT, DOS/VS, OS/VSl, SVS, MVS, and

IBM SYST J VOL 18 NO 1 1979 SEAWRIGHT AND MACKINNON

control
program

Figure 1 A VM/370 environment

I CMS CMS

5

EATCt

CP

Figure 2 VMi370 running in a virtu-
al machine

MVS

VIRTUAL CP

CP

Conversational
Monitor System (CMS)

6

and services such as error recovery, multiprogramming and mul-
titasking control, spooling (other than that which CP can provide),
demand paging (if the virtual machine is running a virtual sys-
tem), job initiation and termination, and handling of abnormal sit-
uations. CP provides only those services required to resolve dif-
ferences between the virtual machine and the real system, to dis-
patch virtual machines, and to handle the real system. Unless
certain communications interfaces are ~ t i l i z e d , ~ virtual machines
execute with a high degree of isolation and protection because of
the virtual machine architecture.’

Just as o s i v s and DOS~VS can execute in a virtual machine, CP can
execute in a virtual machine to provide a virtual VMi370 environ-
ment. This environment is particularly useful in debugging parts
of CP or introducing experimental or maintenance versions of CP
into a production system. For example, at the IBM Cambridge
Scientific Center, an experimental virtual machine was used to
test proposed performance enhancements for MVS in the VMi370
System Extensions Program P r o d ~ c t . ~ The real system was a
System/370 Model 158 uniprocessor. A virtual machine on the
Model 158 was brought up, and an experimental copy of CP was
loaded into the virtual machine. A virtual MVS machine and CMS
were then executed under virtual CP to test the proposed perform-
ance enhancements for MVS. During execution in the virtual ma-
chine, virtual CP dispatched virtual machines in the same manner
as the real CP. All of this activity appeared as one virtual machine
to real CP, as shown in Figure 2.

CMS provides program development and personal computing
functions in an interactive fashion to an individual terminal user.
That is, CMS supports a single user of VMi370 at a single terminal,
rather than supporting multiple terminals. Access to multiple ter-
minals is accomplished by CP’S ability to support multiple CMS
virtual machines-one for each interactive user. Although each
CMS user occupies a separate virtual machine, code is shared
among CMS machines. CMS is designed specifically for VMi370 and
depends on CP for its execution. Thus it cannot operate indepen-
dently on a real machine, as can the other operating systems dis-
cussed above.

CMS provides both problem solvers and application programmers
with the language processors and compilers normally associated
with o s i v S and D O S I V S . ~ ~ It also provides many of the file access
methods associated with those operating systems. Consequently,
CMS can be used for execution of applications that might other-
wise run in another virtual machine under DOSiVS or OS/VS. CMS
also has editing, text formatting, and debugging capabilities; it
includes command procedures and application packages; and it
provides for interactive execution of user programs.

SEAWRIGHT AND MACKINNON IBM SYST I 0 VOL 18 0 NO 1 0 1979

Table 1 Type of access allowed by CMS, for specified access methods, to CMS, OS, and
DOS disk files

Access method C M S format OS format DOS formut

VSAM - read/write readlwrite
SAM read/write

BDAM
read only read only

readwrite -
PAM readiwrite read only

-
-

In addition to its use of many standard OS/VS and DOS/VS access
methods, CMS supports its own file system, which has a format
unlike that of os or DOS. CMS assumes total responsibility for file
management, including blocking and deblocking. The,user Of CMS
deals with files only on a named basis. Individual file space is not
pre-allocated, but is obtained and deleted dynamically. At any
time, the user can query CMS as to the amount of remaining free
space. CMS also gives the user access to os and DoS disks, the
formats of which are controlled by the user through the appropri-
ate OS and DOS access methods. The types of access allowed for
each type of disk are listed in Table 1.

CP provides disk space for CMS and other virtual machines by
means of minidisks, which are predefined sets of contiguous cyl-
inders on a disk. A minidisk normally is considered a subset of a
full disk, even though it can be an entire disk. CP maps the user’s
input and output to the disk. Minidisks can be shared with other
users on a VM1370 system or reserved exclusively for a particular
virtual machine.

CMS provides for terminal-based, interactive execution of appli-
cations unless the user chooses to logically disconnect his termi-
nal and run his application in the background. An APL interpreter,
VWBASIC, PLn, and FORTRAN also provide a high degree of inter-
activity and problem solving capability for the CMS

CMS interfaces to the terminal user through a series of commands,
rather than through a job control language as in other operating
systems. Because of the file support provided by CMS, little oper-
ating system knowledge is required on the user’s part other than
familiarity with the activities directly related to accomplishing the
desired function. Thus CMS can be said to present a “user-
friendly” interface to the user. Job control is eliminated, punched
cards are unnecessary, and terminal prompting provides for error
correction at the source. There are no turn-around delays like
those associated with batch processing and remote job entry.
Doherty and Ke l i~ky’~ describe the evolution of CMS interactive
computing services at the IBM Thomas J. Watson Research Cen-
ter and their advantages for users.

IBM SYST J VOL 18 0 NO 1 1979 SEAWRIGHT AND MACKINNON

Usefulness of VM/370

VM/370 can be used for a wide variety of purposes. It is important
to understand that there is no typical user of VM/370; to try to find
such a user is to overlook the system’s most valuable attribute-
accommodation of diverse computing environments. Discussed
below are some of the purposes for which VM/370 is used.

multiple Because it can run multiple operating systems concurrently,
operating systems VM/370 can be used to advantage when an installation is convert-

ing from one production operating system to another. The old
system can continue to run while the new one executes with con-
verted programs in a separate virtual machine. CMS can be used
as an interactive tool to make the necessary program changes and
test the modified code.

Similarly, maintenance changes can be applied to the production
operating system or to application programs. As previously
noted, this same approach can be applied to VM/370 itself. In ef-
fect, maintenance is viewed as conversion, and the use of virtual
machines ensures that the production work load can be handled
without interruption.

Occasionally, a special application program may have to be writ-
ten to execute in some operating system other than the produc-
tion system. With virtual machines, the application can be run
without dedicating the real system to the other operating system.
This approach can be used when certain applications are to be
phased out eventually and not converted to a new operating sys-
tem.

Some installations run multiple copies of the same operating sys-
tem to obtain additional function-for example, to increase the
number of executable job partitions, to enhance performance, or
to isolate operating systems and application programs from each
other.

address space Every virtual machine has its own virtual address space, which is
isolation accessed through dynamic address translation hardware and

which uses a unique set of segment and page-translation tables.
These attributes can be important in minimizing the effects of
software failure either in the operating system or in application
code. It is this isolation of address spaces that helps VM/370 run
multiple operating systems, as discussed above.

security Where there is concern about access to sensitive data, or where
there has been unwillingness to allow access via terminals, the
virtual machine architecture of VM/370 provides a high degree of
system integrity and security.* In addition to providing address
space isolation, VM/370 requires a password when each user logs

8 SEAWRIGHT AND MACKINNON IBM SYST J 8 VOL 18 NO 1 1979

on. Minidisks can be protected by passwords for writing, reading,
or both. Further, VM/370 provides several levels of protection for
the virtual machine description, which is protected in the system
directory.

The real system controlled by V M ~ O can operate essentially un-
attended, unless the mounting of tape or disk volumes is required,
or a catastrophic error occurs. Few messages requiring operator
intervention are presented to the system console, and the system
provides for automatic restarting of CP. For instance, after a bliz-
zard in February 1978, the VM/370 system at the Cambridge Scien-
tific Center, which services many remote users, operated for a
week with the computer room locked and the operator’s console
locked and logically disconnected. The system continued to pro-
vide service and was monitored remotely from a terminal with
operator privileges.

Because CMS has a full complement of language processors, com-
pilers, file access methods, command procedures, debugging ca-
pabilities, and editors, a terminal user can create, document,
compile, test, and debug programs in a true interactive environ-
ment. A dedicated real machine is not required, and system and
application programmers alike can benefit from increased produc-
tivity. Program development can be combined with time sharing
and production work under central management and operation.

Under CMS, interactive tools such as VSIBASIC and APL are avail-
able for commercial time sharing and management science appli-
cations, or, at a university, for student time sharing and academic
computing. End user applications can range from computer-
assisted instruction to departmental reporting systems and query
facilities, from word processing to electronic mail. Many enter-
prises have used VM1370 for time sharing to make use of excess
capacity or to achieve economy of scale by expanding the in-
stalled configuration.

Many installations run a batch processing system under VM1370,
along with other uses of virtual machines. CMS also has a batch
capability which can be used for production work. The final sec-
tion of this paper, on virtual machine performance, discusses the
options by which CP can give higher priority to batch machines
when maximal throughput is desired.

vW370 can provide a computer science laboratory on a single ma-
chine. Its isolation and ease of use, and the great variety of avail-
able system and application programs, make it a capable host for
computer science applications. At the Cambridge Scientific Cen-
ter, for instance, VW370 provides for interactive computing and
experimentation by the staff and for remote time sharing by IBM

IBM SYST J VOL 18 NO 1 1979 SEAWRIGHT AND MACKINNON

subscribers throughout the United States, and it is a part of a
networking facility that services many IBM location^.^' Remote
time sharing and networking are considered production opera-
tions in that high levels of service and function are provided to the
user. With this type of function, VW370 can significantly extend
lines of communication among technologists who may be hun-
dreds of miles apart.

New developments

Changes have been made in specific VM1370 implementations
which have affected the function and performance of the total
system. This discussion thus far has stressed the isolation of vir-
tual machines. Subsequent papers, by MacKinnon on archi-
tectural changes,' Jensen on inter-virtual-machine communica-
tion,I6 Hendricks and Hartmann on the networking capability,"
and Attanasio on Virtual Control Storage," relate to the increas-
ing trend toward communication among virtual machines and the
advent of subsystem architectures that exploit the virtual ma-
chine environment.

The manner in which VM/370 supports the problem solving lan-
guage APL is a significant development. VSIAPL under CMS uses
the APL microcode assist, which is available on certain mod-
els of S y ~ t e d 3 7 0 . ~ Also recently introduced is attached pro-
cessor support in VM1370 for Models 158 and 168 and the 3031
processor, providing processing power beyond the capabilities of
a single CPU. Such additional power might be required, for ex-
ample, by a CMS user with cpu-bound applications that can bene-
fit from additional instruction processing capabilities. Holley et
ai." describe the architecture and implementation of multi-
processing within an environment originally designed only for
uniprocessing.

Total system performance has always been a concern when con-
sidering use of ~ ~ 3 7 0 . The overhead imposed by the hypervision
and simulation activities of CP for nOn-CMS virtual machines nor-
mally decreases batch throughput and increases the response
time of these machines compared with the performance of a real
machine. New developments have occurred in this area and are
discussed below, along with the ways in which VM1370 normally
addresses performance.

performance A single virtual machine can run in virtual-equals-real mode,
options whereby the virtual machine's real storage is not demand-paged

by CP. Specified page frames can be locked into real storage. De-
vices and channels can be allocated to a virtual machine on a
dedicated basis. And executable code can be shared among vir-
tual machines.

10 SEAWRIGHT AND MACKINNON IBM SYST J VOL 18 NO 1 1979

For scheduling of virtual machines, CP employs either a biased
scheduler"' or a resource manager' that uses the fair-share sched-
uling concept, by which CP can give preferential service to a par-
ticular virtual machine to enhance its throughput. CP executes in
its own address space without dynamic address translation (but in
extended control mode). CMS also operates without dynamic ad-
dress translation, but in basic control mode. Thus certain levels
of paging overhead incurred by other virtual system control pro-
grams are not incurred by CP or CMS. These performance options
generally are available through software on all processors capable
of running VMl370.

v ~ m o has a system performance measurement facility, which
provides a method of obtaining system resource utilization on line
while CP is running, as well as collecting measurement data for
later analysis. A methodology for analyzing system performance
is described by Tetzlaff.2'

Other software developments are more specialized and involve
changes to VMi370 and other system control programs, such as
DOS~VS and osivs~, that utilize the virtual machine environment.
These changes allow the operating system in a virtual machine to
recognize that it is running under VMi370 and to communicate with
CP. Thus osivsl and DOS~VS virtual machines have a direct inter-
face to CP, so they no longer have to perform operations that are
redundant when they are operating in a virtual machine environ-
ment. The results of these changes, collectively termed hand-
shuking, are greater operational efficiency and improved virtual
machine performance. Handshaking is discussed in some detail
by Ma~Kinnon .~

Certain models of the Systed370 and 303X processors incorpo-
rate hardware designed to handle most-frequently-executed CP
functions in order to reduce the overhead associated with CP hy-
pervision and to enhance virtual machine performance. This as-
sistance, provided by virtual machine assist and Extended Con-
trol Program Support (ECPS) hardware, also is discussed by
Ma~Kinnon .~

Summary

This introductory paper has attempted to explain the essential
elements of VMl370 structure and the interfaces it provides for vir-
tual machines. Throughout, an effort has been made to show why
VMi370 is used, how it encompasses a multiplicity of uses, and
where development has progressed over the years.

The things that have changed most about VMi370 are how it is
viewed and the uses to which it has been put within many dif-

IBM SYST J VOL 18 NO 1 1979 SEAWRIGHT AND MACKINNON

ferent installations. What has changed least is its ability to be in-
stalled rapidly and become productive in many circumstances
and for many purposes.

ACKNOWLEDGMENTS
The authors express their appreciation to the many people who,
over the years, have helped with an understanding of the uses,
development, potential, and future of virtual machines. Too nu-
merous to name individually, they represent many activities
within IBM and many non-IBM organizations such as GUIDE and
SHARE, and they include many individual users. They continue to
enhance our understanding of how the virtual machine concept
helps them achieve their data processing objectives.

Appendix: CP interfaces to virtual machines

The architecture of the virtual machines that run under CP is de-
fined to be that of IBM Systed370. Thus there is almost total
commonality between the instruction sets of the virtual machine
and the real machine that executes real CP. While v ~ m o runs on
the 303X processors, CP itself does not use the 14 new instruc-
tions that extend the Systed370 instruction set to those proces-
sors. However, if the MVS System Extensions Program Productz2
is running as a virtual machine on any of the 303X processors,
MVS can execute the new instructions.' If any non-Systed370
emulation is run in the virtual machine, it is controlled by an oper-
ating system emulator program, which appears as a normal Sys-
tend370 program to CP.

CP code executes on the real machine in the real supervisor state.
When a virtual machine is dispatched, or run by CP, it executes on
the real machine in the real problem state. For each virtual ma-
chine, CP maintains a central control block, called the VMBLOK, in
its nucleus. Among the contents of the VMBLOK are a virtual pro-
gram status word, virtual general-purpose and floating-point reg-
isters, and information on whether the virtual machine is oper-
ating in the virtual supervisor or virtual problem state. Thus the
virtual machine operating system continues to alternate between
supervisor and problem state as it would when in control of a real
machine. Only CP recognizes that, in fact, the virtual machine
executes in the real problem state at all times. The virtual oper-
ating system can issue no instruction (or sequence of instructions)
that will reveal that CP is, in fact, running the virtual machine in
the real problem state, except in the case of handshaking.')

CPcontrol A virtual machine executes Systend370 instructions directly on
the real machine unless CP gains control because of an inter-
ruption by an asynchronous event or by a supervisor call or pro-
gram exception. Examples of asynchronous events are I/O inter-
ruptions and timer interruptions associated with the completion

12 SEAWRIGHT AND MACKINNON IBM SYST J VOL 18 NO 1 1979

of a time slice. Program exception interruptions occur whenever
a virtual machine tries to execute a privileged instruction. The
most likely source of privileged instructions is within the oper-
ating system code of the virtual machine, but CP can also handle
privileged instructions in application code. Thus until CP com-
pletes its analysis, it does not regard program exception inter-
ruptions as unusual. Program interruptions are the chief inter-
faces between the virtual machine and CP that allow CP to gain
control when virtual operating system services have been re-
quested.

DIAGNOSE is a privileged instruction used by some virtual ma-
chines as a specially-defined interface to CP. In a sense, DIAG-
NOSE is a special-purpose supervisor call that allows virtual
machines to request CP services. CMS, being dependent on CP,
is the most common user of the DIAGNOSE interface, but modi-
fications have been made to DOS/VS and osivs1 to allow them to
signal CP with DIAGNOSE. This use of DIAGNOSE is covered by
Ma~Kinnon.~

Once CP gains control, an analysis is performed to determine the
reason for the program exception generated by the virtual ma-
chine. If the virtual machine was operating in the virtual problem
state, CP passes or reflects the real program interruption to the
virtual machine, which thus regains control and proceeds through
its analysis and handling of the interruption. If the virtual ma-
chine was in the virtual supervisor state, CP simulates execution
of the privileged instruction in the following manner: First, it de-
termines what function the virtual machine is trying to perform. If
input or output is involved (START I/O, HALT I/O. or TEST UO), CP
must make any necessary adjustments in mapping between the
virtual and real devices. CP translates virtual machine channel
command words (CCW’S) into real CCW’S to reflect the real storage
page frames to be used. It uses the indirect data addressing facili-
ty of System/370 in doing so. In the case of I/O from or to mini-
disks, CP must map logical track addresses to physical (real) track
addresses to get to the proper minidisk space. CP then schedules
the I/O operation. Control ultimately returns to the virtual ma-
chine’s operating system, which proceeds as if the I/O had been
initiated.

CP attempts to return control to the virtual machine as soon as it
has completed its simulation process. The objective is to allow
the virtual machine to complete its time slice with minimal inter-
ruption. When the simulation cannot be completed (as when YO
cannot be scheduled immediately), CP dispatches another virtual
machine in its run list.

Other interruptions most commonly involve some process or op-
eration for which CP is responsible. When they involve an activity

IBM SYST J VOL 18 NO I 1979 SEAWRIGHT AND MACKINNON

undertaken on behalf of a virtual machine (such as UO) , CP turns
control over to the virtual machine’s operating system, just as the
real hardware would indicate completion of an activity. Thus in
the case of Iio, the virtual machine (when enabled for this inter-
ruption) has its old program status word and a correct channel
status word stored, and control passes to its I ~ O interruption han-
dler.

enhanced Finally, CP undertakes a variety of operations as part of the ser-
operation vices it provides to enhance virtual machine operation. These op-

erations are described below:

demand CP performs demand paging of its real storage outside the fixed
paging nucleus. Consequently, virtual machines such as DOSIVS, oSivS1,

SVS, and MVS, which employ demand paging for their virtual ad-
dress space, are subject to two levels of paging: that initiated by
the virtual machine (and regarded by CP as normal I/O) and that
undertaken by CP (which is transparent to the virtual machine).
Therefore, operating systems such as OSIMVT, which do not em-
ploy demand paging, are paged by CP. Performance options pro-
vided by CP, however, permit a particular virtual machine to run
in virtual-equals-real mode if no paging by CP is required for the
virtual machine. CP’S performance options also permit individual
page frames to be locked and some virtual machines to dispense
with redundant paging through handshaking.

spooling CP provides a spooling system that handles unit-record I/O from or
to the virtual machine. This system does not negate the use of any
spooling system run in the virtual machine as part of the virtual
operating system. In fact the virtual spooling system can be used
exclusively by the virtual machine in place of CP spooling. CMS
relies on CP spooling, however, since no such facility is integrated
into its code.

DASD management CP provides for DASD (direct access storage device) management
in a variety of ways:

A DASD volume can be dedicated to a particular virtual ma-
chine and be under the complete control of that machine. No
sharing is implied.
CP can divide a DASD volume into subsets called minidisks,
each of which appears to the virtual machine operating system
as a complete physical device but normally contains fewer
cylinders. CP maps minidisks to real disks, but it is up to the
virtual machine operating system to manage the space within
the bounds of the minidisks. (CP does not allow the virtual
machine to get outside the bounds.) Minidisks can be shared
among machines on a read-only basis. With proper controls,
they can also be shared for writing.

14 SEAWRIGHT AND MACKINNON IBM SYST J VOL 18 NO 1 1979

-

CP can share a DASD volume among several virtual machines
by means of the minidisk concept, as well as by supporting
RESERVEIRELEASE for os virtual machines.

CP maintains responsibility for the terminal used by each virtual console
machine as an operator’s console. The terminal may be locally management
attached, on a communications link, or disconnected by the user

, when a console is not needed.

CP maintains complete control of the real hardware system and real hardware
manages real storage. It initiates I/O, handles first-level inter- control
ruptions, and recovers from errors caused by machine checks. CP
recovers from errors in IIO that it initiates, including paging,
spooling, and DIAGNOSE IiO, but it reflects other IiO errors back to
the appropriate virtual machine. CP may terminate the affected
virtual machine rather than terminate the entire real machine. CP
manages the real storage in 4K-byte page frames and 64K-byte
segments but allows each virtual operating system to manage its
virtual storage in its own way. (DOSiVS and OSIVSl, for example,
use virtual page frames of 2K bytes, and DOSI360, OSIMFT, and
OSIMVT do not make use of demand paging.)

CITED REFERENCES AND NOTES
1. IBM Virtual Machine Facilityi370 Introduction, ISM Systems Library, order

number GC20-1800, IBM Corporation. Department D58, P.O. Box 390,
Poughkeepsie, New York 12602.

2. R. A. Meyer and L. H. Seawright, “A virtual machine time-sharing system,’’
IBM Systems Journal 9, No. 3, 199-218 (1970).

3. R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J. Hatfield, “Virtual
storage and virtual machine concepts,” IBM Systems Journal 11, No. 2, 99-
130 (1972).

4. M. A. Auslander and J . F. Jaffe, “Functional structure of IBM virtual storage
operating systems-Part I: Influences of dynamic address translation on oper-
ating system technology,” IBM Systems Journal 12, No. 4, 368-381 (1973).

5. R. P. Goldberg, “Survey of virtual machine research,” Computer, June 1974,
pages 34-35.

6. IBM Virtual Muchine FacilityI370: Operating Systems in (I Virtual Machine,
IBM Systems Library, order number GC20-1821, IBM Corporation, Depart-
ment D58, P.O. Box 390, Poughkeepsie, New York 12602.

7. R. A. MacKinnon, “The changing virtual machine environment-Interfaces
to real hardware, virtual hardware, and other virtual machines,” IBM Sys-
tems Journd 18, No. 1, 18-46 (1979, this issue).

8. J . J. Donovan and S. E. Madnick, “Virtual machine advantages in security,
integrity, and decision support systems,” IBM Systems Journal 15, No. 3,

9. IBM Virtual Machrne Facilityi370 System Extensions General Information
Manual, IBM Systems Library, order number GC20-1827, IBM Corporation,
Department DS8, P.O. Box 390, Poughkeepsie, New York 12602.

IO. CMS language processors are provided as follows:
Assembler: OSIVS, DOSIVS, VM/370 Assembler.
COBOL: OSiVS COBOL, OS ANS COBOL Version 4, OS COBOL Inter-
active Debug, DOSiVS COBOL.
FORTRAN: OS Code-and-Go, OS FORTRAN IV (Gl) , OS FORTRAN IV

270-278 (1976).

SEAWRIGHT AND MACKINNON 15

PLII: OS PLII Optimizing Compiler, OS PLII Checkout Compiler, DOS PLII
Optimizing Compiler.
VSIBASIC: VSIBASIC Processor.
VSIAPL: VSIAPL Interpreter.

11. VS APL: General Information, IBM Systems Library, order number GH20-
9064, IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose,
California 95 150.

12. VS BASIC General Information, IBM Systems Library, order number GC28-
8302, IBM Corporation, P.O. Box 50020, Programming Publishing, Palo Alto,
California 95150.

13. IBM FORTRAN Program Products for OS and the CMS Component of VMI
370 General Information, ISM Systems Library, order number GC28-6884,
IBM Corporation, Programming Publishing, 1271 Avenue of the Americas,
New York, New York 10020.

14. W. J. Doherty and R. P. Kelisky, “Managing VMICMS systems for user ef-
fectiveness,” IBM Systems Journal 18, No. 1, 143-163 (1979, this issue).

15. R. P. Crabtree, “Job Networking,”lBM Systems Journal 17, No. 3,206-220
(1978).

16. R. M. Jensen, “A formal approach for communications between logically iso-
lated virtual machines,” IBM Systems Journal 18, No. 1, 71-92 (1979, this
issue).

17. E. C. Hendricks and T. C. Hartmann, “Evolution of a virtual machine sub-
system,” IBM Systems Journal 18, No. 1, 111-142 (1979, this issue).

18. C. R. Attanasio, “Virtual Control Storage-security measures in System1
370,” IBM Systems Journal 18, No. 1, 93-110 (1979, this issue).

19. L. H. Holley, R. P. Parmelee, C. A. Salisbury, and D. N. Saul, “VMi370
asymmetric multiprocessing,” IBM Systems Journal 18, No. 1,47-70 (1979,
this issue).

20. Virtual Machine Facilityi370 Features Supplement, IBM Systems Library,
order number GC20-1757, IBM Corporation, Department 824, 1133 West-
Chester Avenue, White Plains, New York 10604.

21. W. H. TetzlaE, “State sampling of interactive VMl370 users,” ZBM Systems
Journal 18, No. 1, 164-180 (1979, this issue).

22. OSIVS2 MVSISystem Extensions General Information Manual, IBM Systems
Library, order number GC28-0872, IBM Corporation, Department D58, P.O.
Box 390, Poughkeepsie, New York 12602.

GENERAL REFERENCES
In addition to the cited references, the publications listed below address many
details touched on in this paper and may enhance the reader’s understanding of
VM/370 and its facilities.
IBM Virtual Machine Facilityl370: Planning and System Generation Guide, IBM
Systems Library, order number GC20-1801, IBM Corporation, P.O. Box 390,
Poughkeepsie, New York 12602.
IBM Virtual Machine Facilityl370: CMS User’s Guide, IBM Systems Library,
order number GC20-1819, IBM Corporation, Department D58, P.O. Box 390,
Poughkeepsie, New York 12602.
IBM Virtual Machine Facility1370 Basic System Extensions General Information
Manual, IBM Systems Library, order number GC20-1828, IBM Corporation, De-
partment D58, P.O. Box 390, Poughkeepsie, New York 12602.
Network Job Interface General Information Manual, IBM Systems Library, or-
der number GH20-1941, IBM Corporation, Department 825, 1133 Westchester
Avenue, White Plains, New York 10604.
VMi370 Networking Program Reference and Operations Manual, IBM Systems
Library, order number SH20-1977, IBM Corporation, Department 825, 1133
Westchester Avenue, White Plains, New York 10604.

16 SEAWRIGHT AND MACKlNNON IBM SYST .I VOL 18 * NO I 1979

Y. Bard, “An analytic model of the VM/370 system,” IBM Journal of Research
and Development 22, No. 5 , 498-SO8 (September 1978).
P. H. Callaway, “Performance measurement tools for VMl370,” IBM Systems
Journal 14, No. 2, 134-160 (1975).
J. J. Donovan, Use of Virtual Machines in Information Systems, Report No. MIT-
EL-7s-010, MIT Energy Laboratory, Cambridge, Massachusetts 02139 (May
1975).
J. J. Donovan and S. E. Madnick, “Hierarchical approach to computer system
integrity,” IBM Systems Journal 14, No. 2, 188-202 (1975).
C. Y. Lam and S. E. Madnick, Useof Virtual Machines forDevelopment ofDeci-
sion Support Systems: Strategies for Interfacing Virtual Machines, Internal Re-
port No. R001-7804-01, Center for Information Systems Research, MIT Sloan
School of Management, SO Memorial Drive, Cambridge, Massachusetts 02139
(March 1978).
A. J. Smith, “Bibliography on paging and related topics,” ACM Operating Sys-
tems Review 12, No. 4, 39-56 (October 1978).
ACM SIGARCH-SIGOPS Workshop on Virtual Computer Systems (Harvard Uni-
versity, March 1973), ACM, 1133 Avenue of the Americas, New York, New York
10036.

Reprint Order No. G321-5084.

SEAWRIGHT AND MACKINNQN 17

