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System/370 Extended  Architecture: 
Facilities for Virtual  Machines 

This paper describes the evolution of facilities  for virtual machines on IBM System/370 computers, and presents the elements 
of a new architectural facility designed for the virtual-machine environment. Assists that have  been added to various 
Systern/370 models to support the  use of virtual machines  are summarized, and a general facility  for this purpose which was 
introduced with the System/370 Extended Architecture (370-XA) is described. A new instruction of the 370-XA architecture 
places the  machine  in a specific mode in which several special capabilities are enabled. These allow the  machine to provide 
execution in the virtual-machine environment of most of the instructions (including many privileged instructions) and most of 
the facilities (such as dynamic address translation) of both the Systeml370 and  the 370-XA architectures. The major  features 
of this new facility are individually discussed and summarized. 

Introduction 
One of the noteworthy and unexpected  developments asso- 
ciated  with  System/360  and  then  System/370 was the 
prominence attained in the use of virtual machines. The 
concept  lends  itself to  interactive use, provides a conceptually 
simple and  complete  computing  environment  for  each user, is 
inherently  secure,  and allows efficient development of pro- 
grams  from  simple  ones  to complex control  programs. A 
description of  how the  virtual-machine facilities provided by 
the  IBM  Virtual  Machine  Facility/370  (VM/370)  control 
program  are used at  the  IBM  Thomas J. Watson  Research 
Center a t  Yorktown Heights,  New  York,  may  be found in 
[ 11. Considerable value lies in the utility of convenient  access 
to  the  functions provided in the  virtual-machine environ- 
ment, including the  simple  and effective  file-management 
and  general  editing facilities, the high-level languages,  the 
communications possibilities when these  systems  are linked 
together in an extensive  network [2],  and  an  array of other 
capabilities. 

Virtual  machines  are  the  outgrowth of a combination of 
leading-edge  developments of several years ago,  including 
interactive access, dynamic  address  translation,  text editing, 
and  the  advent of complex control  programs. A  history of the 

development of VM/370 is presented in  [3].  A collection of 
articles covering  several facets of VM/370  may  be found in 
[4]. The  architecture of System/370 is specified in [5]; a 
history of the evolution of the  machine  architecture  from 
System/360  to  System/370 is  found  in [6]. 

This  paper discusses the  continuing evolution in  sophisti- 
cation of virtual-machine  functions  that  are  incorporated in 
IBM  System/370  computers.  The  paper is organized  into 
two main parts: Part 1 (System/370  Virtual-Machine  Sup- 
port) provides an introductory overview of the  virtual- 
machine  capability on System/370 machines,  with emphasis 
on the development of assists for  virtual machines; Part 2 
(370-XA  Interpretive-Execution  Architecture) describes the 
extensions  in the  System/370  Extended  Architecture  (370- 
XA) provided in support of virtual machines. Extended 
functions  are provided in the  areas of multiprocessing, tim- 
ing, the  handling of guest  storage  and  dynamic  address 
translation,  the  interface with  host  simulation programs,  and 
the  ensuring of integrity between the  guest  and  the host. 

A  discussion of all of the extensions,  not just those for 
virtual machines, incorporated in 370-XA  may  be found  in 
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[7].  The  370-XA  channel  subsystem  architecture is 
described in [8]; both the  370-XA  CPU  architecture  and  the 
channel subsystem architecture  are specified in detail in [9]. 

Originally,  all privileged instructions,  the  maintenance of 
certain  translation  tables,  and  the  presentation of interrup- 
tions to a virtual  machine, called the guest system,  were 
handled by a  second control  program, called the host system 
(an  example of which is the  VM/370  control  program).  That 
is, these  functions were provided for the  guest  through 
simulation by means of a host program. On the  other  hand, 
the execution of problem-program  instructions was provided 
entirely by the  machine.  Reference [ lo]  provides a  more 
complete  introduction  to  the  capabilities of the  VM/370 
control  program.  An introduction to  the  nature of the 
virtual-machine  environment is presented  in the first  section 
of Part 1 of this  paper (Virtual-machine  concept). 

The  number of host instructions  executed in simulation 
routines, and  the frequency  with  which the  routines  are used, 
can result in the consumption of significant amounts of CPU 
time.  This  has  encouraged  the design of machine  functions 
referred to  as assists to be added  to  the  CPU  to  perform some 
of the functions that were previously simulated. Assists 
reduce  the  number of instructions  that  must be executed  for 
these  overhead  activities; the effect is to  shift  the processing 
resource back  to  the execution of guest  instructions, often 
dramatically improving  both the  number of virtual  machines 
supported  and  the responsiveness to  them.  The  variables 
affecting performance in a virtual  machine  are discussed  in 
the second  section of Part 1 (Performance variables). 

Over time,  quite a number of assists  have  been created  to 
improve the  operation of a VM/370 system [ 111. Most of 
these provide for the execution of guest  instructions which 
otherwise would have  been simulated. However, some assists 
provide improvement by supplanting  frequently executed 
portions of the host control  program [ 121. Not  all assists  have 
been made  available on all systems;  sometimes only a  subset 
of an assist is provided on a particular model. A summary of 
the development of assists for VM/370 is given in the  third 
section of Part 1 of this  paper (Evolution  of  assists). 

A primary objective of the  370-XA interpretive-execution 
architecture is the  realization of benefits from a comprehen- 
sive extension of the  capabilities previously available only 
through assists. The  capability provided is thus a continua- 
tion of the evolution of assists. Most previous assists are 
subsumed in some form  under a  basic added  function of the 
machine,  referred to  as  an interpretive-execution capability. 
This is provided as a  mode in the  machine which causes  it  to 
recognize the special handling of instructions,  facilities, and 
events that is necessary in a virtual-machine  environment. 
The  370-XA interpretive-execution capability is invoked by 

means of an  instruction,  the  operand of which is a  control 
block in storage. This block describes the  “machine”  to  be 
executed, including the values of some of the registers of the 
virtual  CPU  and  the  storage  available for  use by the  guest. 
The  capability is provided for the execution of virtual 
machines  in which either  the  System/370 or the  370-XA 
architecture is used by the  virtual  machine. 

Part I: System/370 virtual-machine support 

0 Virtual-machine concept 
Suppose we envision an  operating system, the  CPU on which 
it is running,  the main storage  it is using, and  the existing 
assemblage of 1/0 equipment  as stopped at  an  instant in 
time.  Imagine moving the  control  and application programs 
intact-main storage  contents  and  the  contents of the  CPU 
registers-to another computer-system  environment,  along 
with copies of requisite files. Then, let  execution resume at  
the next  sequential instruction.  The  programs have been 
moved from execution in a native environment to execution 
in  a virtual-machine environment. The new environment is in 
essence or in effect (i.e., virtually)  the  same  as  the old 
environment:  ideally the system that is moved cannot  detect 
a  difference, though in fact  the environments are different. 
The system that is moved is referred  to as the  guest system. 
The environment to which it is moved is provided by another 
control program called the host  system. While  the  change is 
in practice not made so abruptly,  this  scenario conceptually 
focuses on a major goal of a virtual  machine of making real 
circumstances  transparent  to a guest.  The objective in fash- 
ioning the environment in which the  guest  programs  are 
placed is to  cause  the  same  changes  to occur  for  things to 
which the  programs have access-registers, files, and  stor- 
age-as would occur in any  other environment. In VM/370, 
this  may be regarded  as being achieved by techniques which 
provide equivalents or imitations of the places  where  these 
things originally  resided. This often involves a translation of 
a guest “address”-a storage  address, device address, or 
cylinder address-into a  host address a t  which VM/370  (the 
host) is maintaining  the  information for the  guest  (a  means is 
always provided to  cause control to  be given to  the host when 
an  unaltered value is about  to be used by the  guest). For 
example, usually  a complete  replacement is used for  a  guest 
channel  program,  accommodating at  once substitutions for 
storage addresses,  device address,  and device characteristics. 
There  are, on the  other  hand, cases  where substitution is 
typically  not  used; storage keys and  timing facilities, for 
example,  are used directly by the  guest,  though  the use is 
shared  somewhat with the host. 

The  representation of guest  main  storage by a  portion of a 
host address  space typifies the  utility of substitution, in this 
case using virtual  storage  as a replacement for real  storage. 
This  tactic relies on the  characteristic  that most programs 53 1 
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Figure 1 VM/370 address translation. 
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The host program  maintains  control over the use of the 
real  machine registers-program-status word (PSW), con- 
trol registers, timing-by placing the  machine in  problem 
state when the  guest is given control. Thus,  the privileged 
operations used by the  guest  cause  an exception to  be 
recognized, returning control to  the host program before the 
contents of a register  are  changed  and providing the host 
overall  control of the  real configuration. Registers which are 
changeable by problem-program instructions-the general 
registers and  the floating-point  registers-are given over 
fully to  the guest. The design of many assists  relies  on the 
recognition of the exception  for privileged operations. The 
assist is given control  after  the exception is recognized but 
before the host control  program is given control. The assist 
first  examines the  circumstances  under which it  has received 
control  and  then  either completes the original function on 
behalf of the  guest  or allows control  to revert to  the host, 
normally for  the original  exception. 

Figure 2 Run-time intervals. Ri = the ith instruction-execution 
interval, i = 1 ,  2, . . -, n. Wi = the ith idle interval (waiting, 
overhead, handling other work, etc.), i = 1 ,  2, . . 1, n. 

(with few exceptions that  are  dealt with in other ways) will in 
fact  execute  correctly without change in either a real-address 
or a virtual-address space. The  machine provides a mecha- 
nism for one level of translation-from  a virtual  address  to a 
real storage  address.  The  use of dynamic address translation 
(DAT) by the  guest, which implies translation  from a guest 
virtual  address  to a  host virtual  address in the host address 
space  containing  guest  main  storage, is  not directly provided 
by the  machine.  The basic machine  mechanism uses real 
translation-table-entry  addresses,  and  thus  cannot  use  guest 
tables which  reside in a  host virtual-address space. The 
technique employed by VM/370 is to use shadow translation 
tables. These  are  tables which are  usable by the  machine in 
the usual  way, but  their  contents have  been  supplied by 
VM/370 such  that a translation of a guest  virtual  address 
produces  a  corresponding real  (host)  storage  address. A 
VM/370 program (or the page-validation assist)  accom- 
plishes  this by treating  guest  translation-table-entry 
addresses as host virtual addresses. In  this way,  a guest 
virtual  address is first converted to a guest  “real”  address; 
that  address is equivalent to a host virtual  address.  The host 
virtual  address is then converted to a host real-storage 
address, which is then placed in the  shadow-page-table  entry. 
This  procedure  takes a minimum of eight  storage references 
to  obtain  the host real address corresponding to a guest 
virtual  address.  Additional references are  made  to VM/370 
control blocks to  obtain  the origins of the  host-managed 
translation tables, and  to fill in the  shadow-page-table  entry. 
Figure 1 illustrates  the  address  spaces  and  translations 
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Performance variables 
This section  identifies  some of the  aspects of execution that 
contribute  to a  difference in the  performance of a program 
executed in a virtual  machine  and  the  same  program exe- 
cuted natively. Figure 2 illustrates  the  salient  features of 
execution in a  native  environment:  typically, run  time con- 
sists of a  sequence of alternating  intervals of execution and 
waiting. The  durations of both  kinds of intervals  are  irregu- 
lar. A  typical  way of measuring system performance is to 
present  a  workload to  the system and  measure  the  real  time 
taken  to  complete  the work. The CPU spends some  time 
executing  the  instructions comprising that workload, the R 
intervals, and  some  time idling or executing other work, the 
W intervals. The  sum of both  kinds of intervals  taken 
together is a measure of performance. 

In a virtual-machine environment,  both the  rate  at which 
instructions  are executed and  the frequency and  duration of 
periods of execution and suspension change.  Let  the  time 
taken natively to  execute a  workload be represented by T,, 
and let the  time  taken in  a virtual  machine  for  the  same 
workload be represented by T,. A  commonly used measure of 
execution performance in  a virtual  machine is relative batch 
throughput (RBT), defined as  the  ratio of the  native execu- 
tion time  to  the  virtual-machine execution  time, or 

RBT = T,/  T,,. 

A general objective is to  achieve a  value for  this  ratio 
approaching 1, which would indicate a virtual-machine 
execution time  equal  to native  execution time.  The effective- 
ness of an assist can be expressed in terms of the improve- 
ment in RBT that is observed when the assist is utilized. 

Other useful measures of the effectiveness of an assist are 
its reduction of supervisor-state busy time or its reduction of 
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CPU busy time.  That is, the effectiveness of an assist can also 
be evaluated by its ability  to  reduce  the  number of machine 
cycles required to perform the work,  since  in  a time-sharing 
system, efficient use can be made of additional  available 
CPU time  to  execute  other work. 

Figure 3 illustrates  the  factors  that  elongate  the execution 
time of a given workload in a virtual  machine.  The  additional 
factors  are  indicated by the symbols E,  X ,  S, T,  I ,  and M .  
They  characterize  the  intervals  according  to  criteria perti- 
nent to  the  virtual-machine environment. They  are shown as 
additional  types of, or effects on, intervals  and  represent 
additional work that  must be accomplished  in  a virtual- 
machine environment. The  additional  factors  may be sum- 
marized as follows: 

E 

X 

S 
T 

I 

M 

The  added overhead to  dispatch a guest, including setting 
up  the  timing facilities, program-status word, and control 
registers. 
The  added overhead to  store  away guest status  and 
reestablish the host  environment  when  execution of the 
guest is discontinued. 
Simulation of guest  instructions by a  host program. 
Guest  wait-state  handling, usually involving establish- 
ment  and  then deletion of real-time-interval monitoring 
of the  guest wait period. 
Interruption  handling, usually involving handling of the 
interruption twice-once by the host and once by the 
guest. 
Even instructions which are executed by the  machine  are 
subject  to  apparent elongation of execution time.  There 
are two  principal contributors:  1) for some  instructions, 
tables  must be referenced  in the  virtual-machine environ- 
ment  that  are not used natively, and 2)  such things  as 
address  translation, which occurs  for multiple  layers of 
addressing in the  virtual-machine  environment, have the 
statistical effect of making all instructions  appear  to  take 
longer on the  average  to execute. 

A fundamental purpose of assists and  the  370-XA  interpre- 
tive-execution capability is to diminish the effect of one or 
more of these factors. 

Evolution of assists 
The  term assist is applied  to a function which is to be 
distinguished from  the basic architecture.  The principal 
reason  for this distinction is to  call  attention  to a  function 
normally  not  considered usable  outside  the  environment of  a 
specific control  program.  Often  the function has a depen- 
dency on a  control-block structure  that is normally estab- 
lished only by a particular  control  program.  That is, there is 
an implied reliance on the  structure being used by the 
machine function  in the  same way the  control  program uses 
the  structure. 

Begin 
execution Comolete 

R2 WI R ,  

Elapsed  real  time (7J  - 
Expansion effects: 

Figure 3 Virtual  run-time  intervals. 

Many assists  also  have the  characteristic  that  correct 
execution of the  control  program does  not  depend on their 
use, their value  lying  instead  largely  in their  ability  to 
improve performance.  This  characteristic  has allowed the 
VM/370  control  program  to  be run on  a variety of models, 
some with different  assist capabilities  and  some with dif- 
ferent levels of the  same assist. 

The following sections briefly review the assists provided 
for  use by VM/370. Different  assists attack different factors 
contributing  to  the  expanded  time for  execution  in  a virtual 
machine.  Another comprehensive discussion of assists  for 
VM/370  may  be found  in  [13]. 

Virtual-machine assist 
The virtual-machine assist, commonly referred  to  as  VMA 
[I  11, was developed almost a decade ago. As  much  as 
anything,  the development of the assist  was stimulated by the 
need to  maintain  virtual-machine  performance  as  guests 
began to  make  use of DAT.  The assist  consists of 13 
functions, 12 of which  accomplish  execution  for the guest of 
one  problem-program  and 11 privileged instructions which 
otherwise would be simulated by the host program.  The  13th 
function  takes over from  the host program  certain  aspects of 
the  management of tables used by the host program in 
support of the  guest.  The  functions for which assists are 
provided by VMA  are shown  in Table 1. 

This collection of assists dramatically improved virtual- 
machine  performance for some  types of guests.  Of the  factors 
described  in the preceding  section “Performance variables,” 
for the assisted instructions  the assists  nearly eliminated 
factors E, X ,  and S from  the  expanded virtual-execution 
intervals. Improvements in RBT from a  value of 0.35 to a 
value of 0.70 or higher  were  not  uncommon  for certain types 
of guest  control programs [ 131. VMA  demonstrated value 
not only in  assisting specific guest  instructions,  but also  in 
subsuming  frequently  occurring host support  operations, 
exemplified by the page-validation  function. This success  set 
the  stage for extending  the assist approach  to fit more and 
different  kinds of guests,  and  for  taking  advantage of the 533 
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Table 1 Virtual-machine  assist  functions. 

Assist collection Number of 
functions 

Virtual-machine  assist (VMA)' 13 
Extended  control  program  support: 

Control  program  assist 22 
Expanded  virtual-machine  assist 12 
Virtual  interval-timer  assist 1 

Shadow-table-bypass  assist 8 
Preferred-machine  assist 22 
Dual-address-space  assist 20 
Extended-storage-key  assist 3 

Total: 

The  following functions  caused  changes  to  many of the above assists: 

Common-segment  bit 
0 Segment  protection 
0 Low-address  protection 

26-bit  real  addressing 

Provision  for use in a virtual  machine was included in the base definition of the assists for MVS (14 functions). 

'The assists for the following functions  comprise the virtual-machine  assist: 

INSERT PSW KEY (IPK) SET SYSTEM MASK (SSM) 
INSERT STORAGE KEY (ISK) STORE CONTROL (STCTL) 
LOAD  PSW (LPSW) STORE AND AND SYSTEM MASK (STNSM) 
LOAD  REAL  ADDRESS (LRA) STORE THEN OR SYSTEM MASK (STOSM) 
RESET REFERENCE BIT (RRB) SET PSW  KEY FROM  ADDRESS (SPKA) 
SUPERVISOR CALL  (SVC)  Shadow-page-table  validation 
SET STORAGE KEY (SSK) 

characteristics of different  classes of machines. This  initial 
effort demonstrated  the  enormous  potential in the  approach 
of using  assists. 

In testimony to  its usefulness, VMA is a rare  instance of a 

control  program  that was  eventually  used by another  control 
program,  the specialized Airlines  Control  Program  (ACP) 

, package of functions designed specifically for a particular 

1141. 

Extended Control Program Support 
The next major collection of assist functions were  developed 
under  the  name  Extended  Control  Program  Support:VM/ 
370  (ECPS:VM/370). Thirty-five distinguishable  functions 
are provided in this collection. They  represent a  response to 
identified opportunities, a  focus on the kind of guest  that is of 
predominant  interest  to users of intermediate-scale  System/ 
370 machines, and  an effective utilization of the design 
characteristics of this  class of machines. In addition  to 
incorporating  VMA,  ECPS:VM/370 assists  in the  mainte- 
nance of the interval timer, assists more  guest  instructions, 
assists  in  more circumstances  some of the  same  instructions 
originally  assisted by VMA, assists the  handling of I/O, and 
provides assists which are  replacements for 22 sections of the 
host program. A  more complete  description of these func- 

534 tions appears in [ 121. 

Specialized support 
With  the efficacy of a wide range of assists established, 
attention  then focused on special situations.  Examples  are 
the so-called virtual-equals-real (V = R), or preferred, vir- 
tual  machine,  and  the use of shared  segments  under  the 
Conversational Monitor  System  (CMS)  operating system.  A 
common  mode of operation  consists of supporting  many 
on-line terminals by means of individually dedicated  virtual 
machines,  each normally under control of a CMS guest 
operating system. In addition, a  single virtual  machine, often 
heavily used, through which batch work is scheduled, is 
usually  provided. The  batch  system is  usually run as a V = R 
virtual  machine. 

The V = R guest is executed  with the host address  space 
representing  guest  main  storage  mapped one-to-one onto real 
main  storage  (from which the V = R designation  comes), 
except  for usually one or a few pages. The  primary benefit is 
that most channel  programs for a V = R guest  can  be 
executed as is, eliminating  the overhead of a host program 
having to  construct copies with valid real  (host) addresses. 
The usually tolerable exposure is that  an  errant  guest  chan- 
nel program  might  read or write  real  storage  outside  the 
range assigned to  the  guest.  The  CPU, however, continues  to 
process guest  instruction  and  operand addresses through 
translation  tables whose validity is controlled by the host 
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program.  This includes the use of shadow translation  tables 
when the  guest  enters  DAT-on mode. Two classes of assists 
have  been provided for this environment. 

Shadow-table-bypass assist: If there is sufficient trust in 
the reliability of the  guest, use of the shadow translation 
tables  can be dispensed with, relying instead mostly  on the 
translation  tables provided by the  guest.  The  guest  tables  are 
not used wholly as is because  the  guest is not  normally given 
control of real  page  frame zero, which previously was “hid- 
den” by a suitable  adjustment of the shadow translation 
tables. The shadow-table-bypass assist, described  in [I  11, 
accommodates  the  handling of special page  frames,  yet 
generally  allows  use of guest  page-translation  tables  as is, 
with  a  consequent  benefit to  performance. Experience has 
shown that  generally  satisfactory  operation is achieved  with 
reliable  guests. 

Preferred-machine assist: More  recently,  this idea of rely- 
ing on the well-behaved characteristic of some  guests  has led 
to  the preferred-machine assist (PMA).  With  this assist,  not 
only are host translation  tables not  used, but  the  guest is 
allowed to  run in the  real supervisory state  and is given access 
to real page  frame zero. Most uses of privileged instructions 
are  thus executed for  the  guest essentially as  native  instruc- 
tions. This includes the execution of most 1 / 0  instructions, 
such as  START 1 / 0  FAST  RELEASE  (SIOF),  for devices 
attached  to real channels considered “dedicated”  to  the 
guest. Under  PMA,  only  minimal  checks are imposed on the 
use of privileged instructions by the  guest; most normal 
operations by the  guest, privileged or not, involve no inter- 
vention by the host program. Violation of a check, or the 
establishment of the  pending  state of an 1 / 0  interruption not 
intended for  the  guest,  cause  control  to  revert  automatically 
to  the host. 

Segment protection: Another  important special situation 
arises  from  the extensive use of several concurrently on-line 
virtual  machines,  each of which is under  control of a CMS. 
Advantage is taken of this  to  reduce paging  traffic by sharing 
segments of commonly used programs. Previously, special 
tests  were made, by programmed  means at  a performance 
cost, to  detect  improper  changes  to  areas  that could other- 
wise be shared. A performance  improvement is  achieved by 
incorporating a  protection mechanism at  the  segment level 
that  enables  the host program  to prevent storing  into  certain 
segments of storage,  eliminating  the need  for the special 
testing. Segment protection is not  considered to  be  an assist 
but  rather  an extension of the base architecture. 

Effects of functional enhancements 
Over  time, enhancements were also  added  to  the  System/370 
architecture for  purposes independent of VM/370.  Invari- 
ably, however, such developments must  be considered in the 
VM/370  context. Because of the  ease with which the envi- 
ronment of a virtual  machine is controlled and  examined,  it 

has become the  primary vehicle for the development of 
control programs,  with the consequence that  almost  all new 
architectural  enhancements  are  immediately  sought for use 
in the  appropriate  virtual-machine environment.  Depending 
on the  facility,  VM/370  either  a) ignores the facility  because 
it is  unaffected by its presence, b)  requires modifications of 
various  existing  assists, or c)  does not allow guests  to use the 
facility. Some examples of the  variety of ways in which new 
functions  are  accommodated in the  virtual-machine environ- 
ment  are  the following. For  the assists for MVS, provision 
for  operating in a virtual  machine is incorporated in the 
native definition of the facility (MVS  denotes  the control 
program for Multiple  Virtual  Storages).  In  the  case of the 
dual-address-space (DAS) facility, new assists  were devised. 
In  the  case of the  introduction of 4K storage-protection keys, 
old  assists  were modified to  the  unusual  extent of providing 
function not  originally available natively for  the assisted 
instruction; in addition, new assists  were added for new 
instructions. Extended  addressing, with addresses of either 
25 or 26 bits, depending on the model, causes  changes  to 
several  assists.  However, extended  addressing is not made 
available for use by the  guest  (except  under  PMA). 

Summary of the development of assists 
More  than 100 individual  assist functions have been defined 
for use with virtual machines. This  number does  not include 
12 of the  instructions of the assists  for MVS whose basic 
design incorporates provision for  operating in both  the  native 
and a virtual-machine environment. Among  the assisted 
instructions  are  nine which are multiply  assisted, some in as 
many  as  three different ways. That is, depending on the 
natures of the  particular  virtual  machine  and  the  instruction, 
one of the two or three assists available  for  that  instruction is 
invoked. There  are  three  variations of page-exception han- 
dling, in addition  to  the  handling provided by one of the 
assists  for MVS.  There  are  almost  three dozen  individual 
changes  to existing  assists to  accommodate  subsequent devel- 
opments,  such  as  DAS,  4K-byte key blocks, 26-bit real 
addressing, and protection and common  bits  in DAT seg- 
ment-table  entries. 

At  times,  this diversity is a source of confusion. It some- 
times costs extra  machine resources  (microcode space  and 
performance)  because of the  lack of a sharing of common 
subfunctions. Each  machine model  usually  offers a distinct 
collection of assist  functions. The effectiveness of the  partic- 
ular collection of assists on any  one  machine usually depends 
on the  particular  guest  control  program,  and sometimes even 
on the  particular  release of that control program.  Still,  these 
assists enable a variety of guests  to be run on  a variety of 
IBM  System/370 models, generally a t  quite  acceptable 
performance levels. 

The achievements  of the assists for  VM/370, especially 
the 22 functions  added  to  support  the host control  program, 535 
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were instrumental in encouraging efforts to define  assists for 
other  control  programs, including Virtual  Storage/ 1 (VS/  1) 
and  MVS,  some of which  have been carried  into  370-XA as 
well. 

This brief  description of assists  associated  with VM/370 
has  not touched on other  types of assists, such  as, for 
example,  the assist provided on some models  for  A Program- 
ming Language  (APL). Nor is the Disk Operating  System 
(DOS) assist  described,  which  is  a functional  forerunner of 
the facility  described in the next part of this  paper.  The  DOS 
assist  allows  a DOS system that does not use DAT  to be 
executed as a guest of the  MVS  control  program in much  the 
same way a problem program is handled by MVS. A  list of 
such  additions  to  certain models and references to  more 
complete  documentation  are  contained in  Appendix  D of 
151. 

Part 2: 370-XA interpretive-execution architec- 
ture 
A  principal  objective  in the development of the  370-XA 
interpretive-execution architecture was to provide compre- 
hensive support of the  virtual-machine environment. This 
included  providing, in the  virtual-machine  environment,  the 
facilities of both the new and  precursor  architectures.  Inter- 
pretive  execution of System/370 provides a  way of running 
the  machine in the new extended-architecture mode  while 
continuing to  make  major  use of programs using the previous 
System/370  architecture,  thus  adding a degree of flexibility 
in migrating  to  the new architecture  and mode. Interpretive 
execution of 370-XA  aids in the development, checkout,  and 
use of new or changed  programs which use the new facilities 
of the  extended  architecture. 

A primary  goal was to  make  the facilities of either 
architecture  usable a t  reasonable  performance by a variety 
of users  employing the facilities  in  a variety of ways on a 
range of machines.  Providing full handling  for more instruc- 
tions and facilities and providing the  same  complement of 
functions  uniformly  on all  machines avoids uncertainties 
regarding  just which aspects of an  instruction or facility are 
most  usefully  assisted.  Providing  comprehensive capabilities 
is a natural extension of the  growth over time of the  number 
of assists and  the completeness  with which they were provid- 
ing  execution  in the  virtual-machine environment. This  tends 
to  make  virtual-machine  support less specialized to  particu- 
lar  guest  systems,  and  it  also  makes  machines more 
interchangeable. 

Additional objectives  were to  make  the interpretive-execu- 
tion capability, or a t  least parts of it,  usable by more  than  one 
host control program,  thus  broadening  the usefulness of the 
facility, and  to provide a base into which it would be simpler 
to  incorporate  future extensions to  the  architecture.  Since  the 
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within an established control  program  are  always difficult 
and time-consuming, an additional objective  was to minimize 
the  number of new control-program  interfaces implied in 
supporting  the  architecture. 

The following sections describe  the significant functional 
aspects of the  370-XA interpretive-execution architecture. 
Emphasis is placed on those aspects of the  architecture  that 
are a departure  from  capabilities previously provided. The 
major  features  are  the following: 

An  instruction is provided that establishes  a  mode in the 
machine in which instructions  and facilities are  interpreted 
for  the  virtual-machine environment. This is called inter- 
pretive-execution mode. 

0 Interpretive execution of two  architectures is provided, 
either  the  System/370  architecture  or  370-XA. 

0 With  the exception of the 1/0 instructions,  most privileged 
instructions  are completely  executed  in the  virtual environ- 
ment.  In most  cases, an option is also provided for individ- 
ual  instructions which causes  control  to be returned  to  the 
host when the  instruction is encountered in the guest. In 
addition, most program  interruptions  are handled entirely 
within the  guest. 
Guest main storage is represented either by the  corre- 
sponding real  storage  or by a  portion of a host address 
space,  variable in amount in both  cases and beginning a t  
an offset when a  host address  space is used. Shadow 
translation  tables  are not  normally used. Prefixing  is 
provided as  required  for  operation of a  guest  multiprocess- 
ing  system. As  appropriate,  24-bit, 26-bit, and 31-bit 
addressing are provided to  the  guest. Depending  on the 
model, under  certain  circumstances  address  translation is 
accomplished a t  native performance. Guest  programs  are 
prevented from accessing storage  outside  storage assigned 
for  use by the guest. 
A  full complement of guest  timing facilities is provided. 
Interval  timing is provided for  System/370-mode  guests 
(even though  there is no interval  timer natively  in the 
370-XA mode). The  value of the  guest  TOD clock can  be 
set  separately  from  that of the host TOD clock. Host 
timing is unaffected by,the  commencement of timing for  a 
guest. 
Most facilities of the  architecture, including,  for  example, 
DAS  and program event recording (PER),  are provided 
for the  guest,  generally without  affecting the use of the 
same facilities by the host. 
All forms of protection provided in the  architecture  are 
provided on behalf of the  guest.  In addition, in pageable- 
storage mode,  host page protection is in effect for guest 
store accesses to  guest  main  storage. 

0 Information is provided on exit  from interpretive-execu- 
tion mode  concerning the reason  for the  exit,  to improve 
the efficiency with which the  subsequent host program 
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handles  the condition which caused  the exit. 
Capabilities  are provided for both host and  guest  multi- 
processing. Means  are provided for the host to provide 
asynchronous  indications of events of interest  to  the guest. 
Interlocks are provided to control access to  shared 
resources among  the  guest  CPUs,  and between the  guest 
and host programs. 

0 In a preferred-storage mode  in  which guest  channel pro- 
grams  are used as is, a capability is provided whereby the 
machine monitors the addresses  used by guest  channel 
programs:  an optional  control may  be  set, on a  per- 
subchannel basis, to prevent guest  channel  programs  from 
accessing storage  outside  the  storage limits  assigned  for 
use by the guest. 

Most of these topics are covered in more  detail in the 
following sections. 

START  INTERPRETIVE EXECUTION (SIE) instruc- 
tion 
Interpretive-execution  mode, that is, the mode  in  which the 
instructions of a virtual  machine  are  directly executed by the 
machine, is entered by means of the privileged START 
INTERPRETIVE  EXECUTION  (SIE)  instruction.  The 
operand of this  instruction, called  a state description, defines 
the environment of the guest  system. The  environmental 
information  falls into  four  general categories. One  category 
consists of the  contents of  various registers of the  guest  CPU. 
The second defines how the  guest is to fit into  the host 
system,  mainly  specifying how much  and  what kind (real or 
virtual) of host storage is to be used  for guest  main  storage. 
Also in this  category  are  designations of additional  satellite 
control  tables. The  third  category includes  controls over the 
use of various  facilities and  instructions of the  architecture 
by the guest. The  fourth  category consists of the specialized 
information developed on exit from interpretive-execution 
mode  for  use by the  subsequent host program.  The  contents 
of the  state description are  summarized in Table 2. 

Interception 
Exit  from interpretive-execution  mode occurs in two general 
ways. One is by interruption, with control going to the host 
interruption handlers. The  SIE  instruction is designed 
according  to  the  criteria of interruptible  instructions  for  this 
purpose; the  instruction  address  that is recorded in the host 
interruption old program-status word designates  the location 
of the  SIE  instruction. 

The second  method of exit is to  return  control  to  the host 
program at  the  instruction following SIE, which may be 
considered to have been completed in this  case.  Exit in this 
form is normally  induced by a  condition encountered in the 
guest which requires  treatment by a  host program.  This 
process of leaving  interpretive-execution  mode is termed 
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Table 2 Contents of the  state  description. 

Architecture  mode  selection: 
System/370 or 370-XA 

Storage definition: 
preferred or pageable  mode 
prefix 
offset (origin  within host address  space) 
extent  (amount of guest  main  storage) 

Program-status word (PSW) 
General  registers 14 and 15 
Control  registers 
Timing: 

residue  (interval-timer  accumulator) 
CPU  timer 
clock comparator 
T’OD epoch offset 
interval-timing-enablement control 
interval  timer  pending  interruption  indicator 

pending 1/0 interruption 
pending  external  interruption 
pending  stop  (operator  control  interpretation) 

Intervention  controls  (which  can be set  asynchronously): 

Instruction  and  facility  interception controls 
Interception  information: 

bytes 1 and 2 of the  instruction 
operand  address  information 
interception  reasons: 

0 instruction program  interruption 
instruction  and  program 0 external  intervention 

interruption 0 external  interruption 
1 / 0  intervention wait state 

0 validity stop 
operation  exception 

I-fetch PER applies 
interception  applies to  target of EXECUTE instruction 

interception  status  indicators: 

Satellite  table  origins 
Parameters of a  guest  interruption: 

program  interruption 
external  interruption  (mandatory  interception) 

interception. The  three  main  functions of interception  are  the 
following: 

a.  Storing  into  the  state description the  status of the  guest 
that will be needed for  resuming  the  guest. 

b. Storing  information  that will be convenient to  the host 
program  that  deals with the  particular reason  for the 
interception. 

c. Restoring  the host program. 

The  general flow  of entry  to  and exit from  interpretive- 
execution  mode is shown  in  Fig. 4. 

Among  the causes  for interception  are  the following: 

Instructions which are not  executed (for which “execu- 
tion” is usually provided through simulation by a host 
program).  Interception is mandatory. 

the host. Interception is mandatory. 
An  instruction or interruption whose execution depends 
on whether a control  bit is set; i.e., interception is condi- 

An exception  condition  for  which control is always given to 
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Figure 4 Interpretive-execution  entry and exit. 

tional. Depending on the instruction, execution may be 
either suppressed or completed at interception. In  some 
cases, interception is recognized  only  for certain aspects of 
execution, normally selected by a mask, or only when 
certain results are obtained during execution. 
An externally set intervention condition is detected (these 
conditions are more fully discussed in a subsequent section 
on intervention requests). 

0 A special case is  recognized, such as recognizing that the 
guest has entered the wait state. 

The efficiency  of the process of simulating an instruction is 
improved by providing several pieces  of information about 
the instruction, including the following: 

0 Whether the instruction is the target of an  EXECUTE 

Whether an I-fetch PER event is applicable. 
0 At least the first  two bytes of the instruction. 
0 Either the complete instruction, the effective-operand- 

address value or values, or the values designating the 
general registers containing operand information. In  some 
cases, such as in the case of the  DIAGNOSE instruction, 
special handling is  provided. 

instruction. 

A summary of the handling of guest instructions is  given  in 
538 Table 3. 

Timing 
The machine maintains both a host set and a guest set of 
timing facilities while  in interpretive-execution mode. The 
timing facilities for an individual guest are, however, main- 
tained only  while the machine is  in interpretive-execution 
mode for that guest. Separate time-of-day (TOD) clock 
values are provided  for the host and  the guest, and each 
control program can use,  respectively, a CPU timer and 
clock comparator. An interruption, when due, is appropri- 
ately generated for either the host or the guest, depending on 
whether the request arises from a guest or a host timing- 
facility condition. A constant kept in the  state description, 
which represents the difference in the epochs of the guest and 
the host, is  used to generate a TOD-clock value for the guest 
that is independent of the value of the host TOD clock. 

The interval timer, in location 80 in storage, is optionally 
maintained for a System/370 guest. The interval-timer 
stepping is  sufficiently infrequent that it is  possible to enter 
interpretive-execution mode, do useful  work, and then exit 
from interpretive-execution mode without consuming 
enough elapsed time to cause a decrementing of the timer. 
Work could appear to be accomplished  “for free” since no 
time was charged. This is  avoided by the use  of an additional 
time-accumulation mechanism that has an accuracy compa- 
rable to that of the  TOD clock.  When  sufficient time 
accumulates, it is  posted to the interval timer as an additional 
decrement. The precision  with  which the interval timer is 
maintained is,  however,  model dependent; that is, decre- 
menting may occur only  in multiples of the minimum inter- 
val  of the timer. Although the time between updates varies 
by model, it is constrained to be  roughly related to processor 
performance. 

I/O support aids 
The following items constitute the facilities provided  in 
support of the handling of guest I/O: 

0 Except for the TEST  CHANNEL  (TCH) instruction for 
System/370-mode guests, guest 1 / 0  instructions cause 
interception. The information provided at interception 
contributes to the efficient handling of the functions by the 
host. 
A bit pattern with a correspondence to System/370 chan- 
nels is used by the  TCH instruction for recognizing 
interception or for completing execution by setting a 
condition code. 

0 Intervention-request bits, asynchronously settable by other 
host CPUs, are interrogated regularly to normally cause 
interception only  when the guest is enabled (see the 
subsequent section on intervention requests). 
Three functions are incorporated in the new 370-XA 
channel subsystem specifically for support of virtual 
machines: 
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Table 3 Guest instruction handling. 

Privileged instructions: 

1 / 0  related 
Others' 

1/0 related 
Others' 

Always  executed' 

Mandatory interception: 

Conditional interception: 

Problem-program  instructions: 
Conditional interception* 
Always  executed (all others) 

Notes: 

'Instructions that  are not  executed (other than I/O): 

DIAGNOSE 
SET CLOCK (SCK) 
SIGNAL PROCESSOR (SIGP) 
SET PREFIX (SPX) 
START  INTERPRETIVE  EXECUTION (SIE)** 

'Conditionally  executed instructions: 

a. Privileged instructions: 

INSERT  STORAGE KEY (ISK)* 
INSERT  STORAGE KEY EXTENDED  (ISKE) 
INVALIDATE PAGE TABLE ENTRY  (IPTE) 
LOAD CONTROL  (LCTL) 
LOAD ADDRESS SPACE PARAMETERS (LASP) 
LOAD PSW (LPSW) 
PROGRAM CALL (PC) 
PROGRAM TRANSFER  (PT) 
PURGE TLB (PTLB) 
RESET REFERENCE BIT (RRB)* 
RESET REFERENCE BIT EXTENDED (RRBE) 

b.  Problem-program instructions: 

COMPARE DOUBLE AND SWAP (CDS) 
COMPARE  AND  SWAP  (CS) 
STORE CLOCK (STCK) 

'Privileged instructions that are always executed: 

EXTRACT PRIMARY ASN (EPAR) 
EXTRACT SECONDARY ASN (ESAR) 
INSERT ADDRESS SPACE CONTROL  (IAC) 
INSERT PSW  KEY (IPK) 
INSERT VIRTUAL STORAGE KEY (IVSK) 
LOAD REAL ADDRESS (LRA) 
MOVE TO  PRIMARY (MVCP) 

370 

11  
8 

1 
22 
12 

5 
- 

STORE CPU ADDRESS (STAP) 
STORE  CPU  ID (STIDP) 
STORE  PREFIX (STPX) 
TEST BLOCK (TB) 

370-XA 

13 
9 

0 
19 
13 

5 
- 

SET CLOCK COMPARATOR (SCKC) 
SET CPU TIMER (SPT) 
SET  STORAGE KEY (SSK)* 
SET STORAGE KEY EXTENDED (SSKE) 
SET SYSTEM MASK (SSM) 
STORE CLOCK COMPARATOR (STCKC) 
STORE  CONTROL (STCTL) 
STORE  CPU  TIMER (STPT) 
STORE THEN AND SYSTEM MASK (STNSM) 
STORE THEN OR SYSTEM MASK (STOSM) 
TEST PROTECTION (TPROT) 

*System/370 only 

TEST  AND SET (TS) 
SUPERVISOR CALL (SVC) 

MOVE TO  SECONDARY (MVCS) 
MOVE WITH KEY (MVCK) 
SET ADDRESS SPACE CONTROL (SAC) 
SET PSW  KEY FROM ADDRESS (SPKA) 
SET  SECONDARY ASN (SSAR) 
TRACE(TRACE)** 

**370-XA  only 

0 A checking  mode can be enabled on an individual 
subchannel basis that prevents  execution of a channel- 
command word (CCW) that refers to  storage beyond a 
specified limit. Normally  this is the limit of storage 
assigned to a preferred guest. 

0 For supervisory uses by the host, primarily  to  retrieve 
status for some  control-unit  malfunctions, a control 
allowing an override of the limit check in an individual 
instance is provided. 

To permit  the condition  code to  be set correctly  and in  a 
timely  fashion  for  a START 1/0 (SIO) instruction,  an 
interruption  can  be requested from  designated  subchan- 
nels when an 1/0 operation is initiated. 

Additionally there is the  preferred mode, which eliminates 
the need for the host  control program to construct copies of 
guest  channel  programs. In pageable mode, copies of guest 
channel  programs  are  constructed in the host in which guest 539 
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Figure 6 Translation-mechanism  differences: (a) System/370 
(shadow-table  maintenance); (b) 370-XA (SIE). 

addresses  are replaced  with real  storage  addresses, also 
simultaneously  verifying that  the  designated  storage  has 
been  assigned to  the  guest.  The  absence of overhead in the 
preferred mode to perform the conversion improves  perfor- 
mance,  and  the  use of dynamically modified channel pro- 
grams is allowed. 

Storage 
One of the most  distinctive aspects of virtual  machines is the 
ways in which guest  “main  storage” is represented. Two 
distinctly different techniques  are used. One  technique  rep- 
resents guest  main  storage by a portion of a  host address 
space.  A constant is added  to  each  guest  absolute  address  to 
form a  host virtual  address which is then  translated in turn  to 
a host main  (real)  storage  address.  Guest  real  page  frame 
zero must  be “fixed”; i.e., a  host page-translation exception 
on access to  this  particular  frame of guest  storage is treated 
as  an  error.  This is called  the pageable-storage mode. With 
the second technique,  guest  absolute  addresses  are consid- 
ered  to  be  the corresponding  host absolute addresses. The 

540 machine  makes no use of host DAT with this  method, 
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referred  to  as  the preferred-storage mode. With both  tech- 
niques, the use of guest  DAT is allowed. Further, guest 
prefixing is always  applied. 

Figure 5 illustrates  the  address-translation  mechanism 
provided by the  SIE  instruction. In the most general case,  a 
guest  virtual  address  (GV), when pageable mode is specified, 
is translated ( I )  by use of guest  translation  tables residing  in 
guest  main  storage.  After  the  application of guest prefixing, 
a guest  absolute  (GA)  main-storage  address is obtained. 
That  address is verified to lie within the allowed extent, 
shown as L, and is then converted to a host virtual  (HV) 
address by the  addition of an offset, shown as N.  The host 
virtual  address is translated,  indicated by 11, by using host 
translation  tables,  into a host absolute  (HA)  address. A 
guest-type translation lookaside buffer (TLB)  entry is 
made, consisting of the guest virtual  address  and  the corre- 
sponding  host absolute address. 

Figure 6 illustrates  the differences in the  translation of 
guest  virtual  addresses  under  VM/370  and  under 370-XA. 
The symbols (A),  (B), - refer to  parts of the figure. Under 
VM/370, a “miss” in the  translation lookaside buffer (A) 
causes a reference  to  be  made  to  the  current  translation 
tables ( C ) .  With  some probability, the  address is translated 
by using these  tables, with the  result  returned (B) to  (A). If a 
“page  fault” is recognized, reference is then  made  to guest 
translation  tables  (E),  such references involving additional 
subsequent references to  the host tables (F) which provide 
translation of the addresses of the host space  containing 
guest main storage. If the  translation is successful,  a  real 
address  from  the host table (F) is placed (D) in the  current 
tables  (C),  and  the whole translation process is retried.  When 
the  translation is not  successful  because of the  contents of the 
(F)  tables, a “page  fault” is recognized in the host. When 
translation is not  successful  because of the  (E)  tables, a 
“page  fault” is simulated  for  the guest. When  VMA is 
installed,  the accesses to  tables  (E)  and  (F),  and  the  updating 
(D) of the  page  tables of (C)  are handled by the page- 
validation  function. 

The  performance of this  mechanism is highly dependent 
on the probability of a  successful translation on the first 
access to  tables  (C).  Performance is also  a  function of the 
efficiency of use of tables  (E)  and (F), and  the probability of 
obtaining a  successful translation  from  them. 

The  contents of tables  (C)  are sensitive to  the  characteris- 
tics of the guest. Changes  to  the  contents of guest  tables  (E) 
must be reflected in the  current  tables  (C).  Such guest 
operations  as  LOAD  CONTROL  (LCTL),  PURGE  TLB 
(PTLB),  and  INVALIDATE  PAGE  TABLE  ENTRY 
(IPTE)  must  also  result in changes  to  the  current  tables, 
which  sometimes cause deletion and reconstruction of the 
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tables. To  reduce  the  performance  impact of handling  guest 
IPTE  instructions, a  special additional  table  structure  must 
be maintained if shadow-table  entries  are  also  to  be selec- 
tively invalidated. Yet  another  table  can  be  maintained  to 
improve the  handling of LCTL. 

The above mechanism  contrasts with the  370-XA  mecha- 
nism in that  there  are no intermediate  tables in 370-XA 
interpretive-execution mode. The  frequency of references to 
tables (E) and  (F),  at a higher cost in machine cycles than for 
successful references  to  the  intermediate  tables  (C), 
increases, but  this is counterbalanced by the  absence of 
overhead to  maintain  the  intermediate  tables.  With a shad- 
ow-table approach,  the cost in maintenance processing time 
and  table  space could  have  increased remarkably for guests 
using 3 I-bit real and/or  virtual  addresses.  The effects would 
be compounded as  more guest applications  made more use of 
multiple address  spaces  through  the  use of the  dual-address- 
space  (DAS) facility. An  additional  table  structure is not 
required for the efficient handling of IPTE. 

A  perspective on the significance of this  mechanism  (and 
on shadow tables in the  case of VM/370)  may be gained by 
observing that  the  mechanism is not used for  high-per- 
formance  preferred guests. Since C M S  does not use (guest) 
DAT,  neither is the  mechanism employed in support of this, 
the most frequently used on-line  environment. On the  other 
hand, for supporting  pageable  guests  that  use  DAT,  the 
370-XA  mechanism for translating  guest  virtual  addresses 
not only simplifies and reduces support  programming,  but is 
also amenable  to  implementation using high-performance 
mechanisms provided in the  machine. 

Multiprocessing 
In significant  distinction to previous virtual-machine  sup- 
port, 370-XA interpretive-execution  mode provides for full 
use of both host and  guest multiprocessing. The following 
benefits are realized: 

0 A high-performance multiprocessing preferred  guest  can 

The  ability is provided to more thoroughly  check  out a new 
or changed multiprocessing operating system when it is 
executed as a guest  system, even using pageable mode. 
Full, effective use is made of multiple host processors. Both 
overall performance  and availability benefit by having 
such flexibility. 

be provided. 

Key capabilities  that  contribute  to  the effective  use of 
multiprocessing are  the following: 

Prefixing  (discussed in the preceding  section on storage). 
Interception  control of the  COMPARE  AND  SWAP 
(CS)  and  COMPARE  DOUBLE  AND  SWAP  (CDS) 
instructions. 

Figure 7 RCP table byte. I = interlock  control; HR = saved  host 
reference  indicator; HC = saved  host change  indicator; GR = saved 
guest  reference  indicator; GC = saved  guest change  indicator. 

Interlock control of access to  the  additional  tables used by 
the key-handling  operations (a special handling required 
in pageable mode only). 

0 Interlock  control of the  IPTE  instruction. 
0 Asynchronously settable intervention  controls. 

The  last  four items are discussed further in the following 
sections. 

Spin locks 
The  compare-and-swap  instructions  are typically used to 
implement operating-system locks. A lock is used to control 
serial access to resources. The  compare-and-swap instruc- 
tions resolve any  potential  race conditions  for  ownership of 
the lock and deposit an identifier  associated  with the reques- 
ter,  task or CPU, on behalf of which the lock is set closed. 

One  type of lock, called  a spin lock, poses special  problems 
when used by a guest. By definition,  a requester of a closed 
spin lock loops, waiting for the lock to open. The  critical 
consideration in the original  design is that  the lock, once 
closed, is almost never held  for  a  “long” time; i.e., the 
possible alternatives  to spinning would take  as  much  time  as 
the expected remaining hold time.  Ordinarily, except  for 
machine checks, the owning CPU is not interruptible until 
the lock is cleared. However,  in  a virtual-machine environ- 
ment,  the  guest  has no control over when one of the real 
processors is interrupted.  Thus, a second processor could be 
left  spinning  indefinitely, though  this is not likely when ready 
guests  are being  regularly redispatched. However, host pro- 
grams  can, if experience in an individual instance indicates 
excessive time is being lost, gain  control  to  analyze  the 
circumstances by intercepting on the condition  code  typically 
set for the closed-lock condition (alternatively, a guest sys- 
tem  can  be modified to explicitly indicate  this condition to 
the host program). 

Key handling 
The reference-and-change-preservation (RCP)  table,  one of 
the  satellite  tables  designated by the  state description, serves 
a  purpose similar  to  the  swap  tables provided by VM/370 
(see [lo]). One byte is provided in the  RCP  table for each  4K 
bytes of guest  real storage. In each byte there  are two change 
and two reference bits, one  each for  guest and for host use, 
and  an interlock bit.  This is illustrated in Fig. 7. When  either 
the host or the  guest modifies the  change  and reference 
indicators in the  real key associated with an assigned  page 54 1 
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frame of host real  storage,  the old values of these  indicators 
are saved in the  RCP  byte for the  other  system, guest or host. 
For each system, the logically correct  status of a  page frame 
is the O R  of the  current  value of the  real  indicators  and RCP 
byte indicators for that system. The use of R C P  information 
is implicit in the execution of guest key-handling instruc- 
tions, but  must be developed by programmed  means in the 
host. Two of the six  key-handling instructions  are success- 
fully  executed by using only R C P  information,  instead of 
causing  interception, when  a  host translation exception  pre- 
vents  access to  the  real key. This is a significant  difference 
from  System/370,  where execution of the  remaining  instruc- 
tions is also provided, through assists, under  this condition. 
There, execution uses the key in the  swap  table, which is not 
provided in the  RCP  table. 

Because  two separate locations are  referenced  (the  real 
key and  the corresponding RCP byte)  and  must be kept 
consistent, and because separate accesses  could be  attempted 
by two different CPUs  nearly  concurrently in  a  multiprocess- 
ing system, all accesses are normally required  to  set  the 
interlock  control. When execution of a  key-handling opera- 
tion for the  guest is attempted, exit from  interpretive- 
execution  mode by interception  takes place if an interlock is 
already set. The interlock  bit in each  byte of the  RCP  table 
facilitates two  activities. 

First,  it allows the  machine  to  execute  guest key-handling 
instructions in a guest  multiprocessing  environment. 
Natively  sequential access is enforced  for  references to  the 
real storage key, to  either  ensure consistent updating or (for 
the  RESET  REFERENCE  BIT  [RRB]  instruction)  to 
provide a read access followed by a write access  without an 
intervening  access, thus  ensuring  that  accurate  information 
is maintained.  The existence of the  RCP  table in interpre- 
tive-execution  mode introduces  the need for  additional con- 
trols. For example, since a guest SET  STORAGE  KEY 
(SSK) instruction  must initially obtain  the  information  with 
which to  update  the associated R C P  byte  for  the host, it must 
employ the  same interlock on access to  the  real key as was 
employed natively by the  RRB  instruction.  The  additional 
RCP interlock  bit is used to prevent an intervening  access  for 
key information before the  RCP  byte is updated;  it is also 
used by the  INSERT  STORAGE  KEY (ISK) instruction  to 
ensure use of consistent information.  The R C P  interlock  does 
not inhibit  the  channel  from  concurrently  updating  the  real 
changes  and  reference  indicators,  as  must  the interlock  on 
the real key. 

Second, in a  host  multiprocessing system,  the  RCP  inter- 
lock control allows use of key-handling instructions by the 
host program on blocks assigned to  the  guest without 
suspending  execution of that  guest on another  CPU.  Thus 
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disturbing  an ongoing  execution of that guest. By using the 
interlock,  each  system, host and  guest,  can independently 
conduct paging activity  that affects the  same  real host  page 
frame.  This  mechanism is not  used  in preferred mode  since 
the host makes no attempt  to  dynamically reassign real host 
storage assigned to a preferred  guest. 

The  comments in this section apply  as well to  the 
extended-key-handling  instructions. 

INVALIDATE  PAGE  TABLE  ENTRY  (IPTE) instruction 
handling 
Besides setting  the invalid  bit  in the  designated  guest  page 
table  entry  to one, the  IPTE  instruction  deletes  an associated 
entry in a TLB.  Under  interpretive execution,  however, the 
TLB  may  manifest itself in  several distinct places. If the 
guest  has been dispatched on several host CPUs, residual 
guest  entries  may  or  may  not reside  in the  TLB of several  real 
CPUs. If guest multiprocessing  is  being  used,  a  relevant TLB 
entry  may exist  in one  or more real  CPUs for other  guest 
CPUs.  In  addition,  one or more of the  guest  CPUs  may be 
suspended, awaiting  simulation of a  function by a host 
program.  The host program  may be using the  result of 
translating a  guest address,  an  address possibly affected by 
the  IPTE on another  guest  CPU. 

There  are two fundamental problems to be dealt with: a )  
how the residual entries in TLBs on other  CPUs  are  to be 
removed, and b) how the  interaction with  a host program is 
to  be handled. These problems are  dealt with  differently 
depending on whether  the  guest is being treated  as a uni- 
processor machine  or  as a  multiprocessor  machine. Residual 
TLB  entries for  a  uniprocessor guest  are handled as follow: 

1. If the real processors are  implemented so that  guest 
entries  are not retained in the real TLB  after leaving 
interpretive-execution  mode, IPTE purges only the  TLB 
of the issuing processor. 

2. If the  real processors retain residual guest  entries  after 
exiting  from interpretive-execution  mode, then, in addi- 
tion to purging the  TLB of the issuing processor, the  real 
CPU  address is stored in the  current  state description on 
exit  from interpretive-execution  mode. When  interpre- 
tive-execution mode is subsequently  entered on any  other 
processor,  a mismatch of the stored CPU  address  and  the 
address of the  real  CPU  causes  the  TLB  to  be purged of 
all  guest  TLB  entries associated  with the  current  state 
description.  As  a programming  technique, a mismatching 
value  can be deliberately inserted to effectively accom- 
plish a guest  PTLB  operation, or to  induce  the equivalent 
of a guest  PTLB  instruction when the host has  changed 
guest  translation  parameters or tables. 

The  interaction with the host  for  a  uniprocessor guest is 
relatively  simple:  since  simulation  is  synchronous  for  a 
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uniprocessor guest, residual  products of translating guest 
addresses normally do not  exist  in the host program  domain 
while that  guest is being  executed. The host program 
normally does not need to  use  the  interlock control. 

For a  multiprocessing guest, two additional  capabilities 
are provided to  help  handle  the  additional considerations. 
Broadcasting  can  be  enabled for guest  IPTE instructions, 
and  an interlock control is provided for coordinating  the  use 
of translations of guest addresses by host simulation pro- 
grams on other  CPUs;  interception is recognized  for IPTE 
when the  interlock is set. 

Finally, regardless of whether or not  multiprocessor guests 
in addition  to uniprocessor guests  are being supported, a host 
IPTE  purges not only the  designated host entry  but  also  all 
existing guest  entries which  have  a  dependency  on the host 
entry being removed (normally accomplished by deleting  all 
guest entries  from  the  real  TLB).  Whether or not  additional 
interlocks  within the host control  program  are needed 
depends on the  particular host control  program; in general, 
the  usual  considerations apply. 

Intervention requests 
Interruption  requests  arising  from conditions external  to  the 
guest  program  are kept  pending  in the  form of bits in the 
state description. They  are used to signal the availability  of 
guest  I/O-interruption  information, which may have  been 
received from  the host channel on another host CPU,  to 
signal an  external  interruption condition, and  to  signal  an 
operator  request  to STOP the  guest  CPU. Collectively, they 
are  called  the intervention controls. In  contrast  with most 
other controls, these  bits  may be set  asynchronously by one 
CPU while interpretive execution  is  in  progress  on another 
CPU using the  associated  state  description, with the  assur- 
ance  that  the new setting will be observed  on  behalf of the 
running  guest.  As a  consequence,  host-to-host CPU signaling 
to  obtain  the  attention of the  appropriate real CPU  that is 
handling  the affected guest is  not  usually  needed. This avoids 
disrupting  the ongoing  execution of a guest when the  guest is 
disabled for  the corresponding interruption.  It  also avoids 
using interception  to monitor guest events for  changes  to  the 
enabled  state. 

The intervention controls  are necessarily examined  under 
two conditions: a )  when  a guest  operation is executed  that 
enables  the  guest for the corresponding interruption, or b) 
periodically, a t  least for  request  types for  which the  guest is 
enabled.  Since  the  time elapsing  between  periodic inspec- 
tions is model dependent, responsiveness to  the condition that 
a request for an  interruption has  been made pending  differs 
from native  execution.  However, since  this period  is  chosen 
with reasonable  timing  variations in 1/0 activities for  a 
model taken  into  consideration,  any  discrepancy  with  native 
execution  should  have  no  significant effect. 

Conclusions 
The  370-XA interpretive-execution architecture  makes 
available  for use by guest systems most of the facilities of 
both  the  System/370  and  the  370-XA  architectures. 
Machine resources are used relatively efficiently, migration 
of applications to  the new architecture  and  use of the new 
mode of the  machine is facilitated,  performance is generally 
improved,  complexity is reduced in both the  machine  and  the 
supporting  control  program, less time  and fewer  resources 
are needed in making new machine functions also  available 
in  a virtual  machine,  and  performance  disparities  among a 
variety of guests  are diminished.  Engineers  have greater 
latitude in adapting  the  characteristics of different machine 
designs to meet the  architecture.  Where  more  than  one 
control  program is expected to  act  as a  host, an  additional 
reduction  is  realized  in what  might otherwise be essentially 
redundant  support  programming.  Thus, efficiencies are 
achieved at  the  same  time a more generally usable  capability 
is provided. These  characteristics  are expected to  encourage 
an expansion  in the  use of virtual-machine capabilities, 
including  in particular  the  further development of applica- 
tions as  virtual  machines (i.e., subsystems) intended  to  run 
only in the guest-host  environment. 
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