
IBM TRAINING

Session V28

Will J. Roden, Jr.

Socket Programming

®

Orlando, FL

© IBM Corporation 2006

TrademarksTrademarks

The following are trademarks or registered trademarks of other companies.
Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation.
Tivoli is a trademark of Tivoli Systems Inc.
Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries
UNIX is a registered trademark of The Open Group in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

Language Environment*
MQSeries*
Multiprise*
MVS
NetRexx
OpenEdition*
OpenExtensions
OS/390*
Parallel Sysplex*
PR/SM
QMF
RACF*
RAMAC*
RISC
S/370

S/370
S/390*
S/390 Parallel Enterprise Server
Virtual Image Facility
VisualAge*
VisualGen*
VM/ESA*
VTAM*
VSE/ESA
WebSphere
z/Architecture
z/OS
zSeries
z/VM*

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
CICS*
DB2*
DB2 Connect
DB2 Universal Database
DFSMS/MVS*
DFSMS/VM*
e-business logo*
Enterprise Storage Server
ESCON
FICON
GDDM
HiperSockets
IBM*
IBM logo

* Registered trademarks of the IBM Corporation

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any
user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the
workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject
to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

IBM considers a product “Year 2000 ready” if the product, when used in accordance with its associated documentation, is capable of correctly processing, providing and/or receiving date
data within and between the 20th and 21st centuries, provided that all products (for example, hardware, software and firmware) used with the product properly exchange accurate date data
with it. Any statements concerning the Year 2000 readiness of any IBM products contained in this presentation are Year 2000 Readiness Disclosures, subject to the Year 2000 Information
and Readiness Disclosure Act of 1998.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Copyright IBM Corp., 2004 1-2

DisclaimerDisclaimer

The information contained in this document is not intended to be an assertion of future
action by IBM. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends on the customer's ability to
evaluate and integrate them into the operational environment. While each item may
have been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers attempting to
adopt these techniques to their own environment do so at their own risk.

In this presentation, any references made to an IBM licensed program are not intended
to state or imply that only IBM's licensed program may be used; any functionally
equivalent program may be used instead.

Any performance data contained in this presentation was determined in a controlled
environment and, therefore, the results which may be obtained in other operating
environments may vary significantly. Users of this presentation should verify the
applicable data for their specific environment.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming or services in your country.

Any feedback that you give IBM regarding this presentation will be treated as
non-confidential information. IBM reserves the right to use this information in any form.

Agenda Agenda

What are sockets?What are sockets?
C Socket CallsC Socket Calls

Basics of SocketsBasics of Sockets

REXX Socket CallsREXX Socket Calls
Pipeline Socket StagesPipeline Socket Stages
SnifferSniffer

Copyright IBM Corp., 2004 3-4

What are Sockets? What are Sockets?

GoalGoal
Provide a way for two computers to communicateProvide a way for two computers to communicate

SocketSocket
One way for that to happenOne way for that to happen

Client Stack
IP Addr

Stack
IP Addr Server

port
internet

What are Sockets? What are Sockets?
What is needed?What is needed?

Get communication with the stackGet communication with the stack
Describe yourself to the stackDescribe yourself to the stack
Tell the stack if you are asking (client) or waiting to be asked Tell the stack if you are asking (client) or waiting to be asked
(server)(server)
Ask or wait to be asked, then wait for data Ask or wait to be asked, then wait for data
Send / Receive communicationsSend / Receive communications

End communication End communication

Client Stack
IP Addr

Stack
IP Addrs Server

port
internet

Copyright IBM Corp., 2004 5-6

What are sockets? What are sockets?
What is needed?What is needed?

Get communication with the stackGet communication with the stack
socket()socket()

Describe yourself to the stackDescribe yourself to the stack
bind()bind()

Tell the stack if you are asking (client) or waiting to Tell the stack if you are asking (client) or waiting to
be asked (server)be asked (server)

connect() or listen() connect() or listen()
Wait to be asked (server) or wait for data (both)Wait to be asked (server) or wait for data (both)

accept() or select()accept() or select()
Send / Receive communicationsSend / Receive communications

send() or recv()send() or recv()
End communication End communication

close()close()

What are Sockets? What are Sockets?

Just like a new Dr's officeJust like a new Dr's office
socket() - Register your businesssocket() - Register your business
bind() - Put up the sign with your skillsbind() - Put up the sign with your skills
listen() - Put an advertisement in the paperlisten() - Put an advertisement in the paper

Mention the number of chairs in your waiting roomMention the number of chairs in your waiting room
accept() or select() - Wait for patientsaccept() or select() - Wait for patients

Put "Open" sign on your doorPut "Open" sign on your door
Assign patients to their examination roomAssign patients to their examination room

send() or recv() - Communicate with patientsend() or recv() - Communicate with patient
close() - discharge patientclose() - discharge patient

Put "Closed" sign on your doorPut "Closed" sign on your door

Copyright IBM Corp., 2004 7-8

C Socket Calls C Socket Calls

Socket - establishes connection with stackSocket - establishes connection with stack
Used by both client and serverUsed by both client and server
socket(domain, type, 0); socket(domain, type, 0);

domaindomain
AF_INET - use the internetAF_INET - use the internet

AF_IUCV - use VM's IUCVAF_IUCV - use VM's IUCV

AF_UNIX - Local useAF_UNIX - Local use

type:type:
SOCK_STREAM - TCPSOCK_STREAM - TCP

SOCK_DGRAM - UDPSOCK_DGRAM - UDP

SOCK_RAW - IP, ICMPSOCK_RAW - IP, ICMP

protocol:protocol:
0, 0, IPPROTP_UDP, IPPROTO_TCPIPPROTP_UDP, IPPROTO_TCP

Returns the socket number (int)Returns the socket number (int)

C Socket Calls C Socket Calls

Bind - describe who you are to the stackBind - describe who you are to the stack
Used by server and optionally clientUsed by server and optionally client
bind(socket, struct sockaddr *, sizeof());bind(socket, struct sockaddr *, sizeof());

if AF_INET specified in socket() callif AF_INET specified in socket() call
use 'inet_addr("1.2.3.4");' to specify IP @ in use 'inet_addr("1.2.3.4");' to specify IP @ in
sin_addrsin_addr

struct sockaddr_in {
unsigned char sin_len; /* len of sockaddr or 0 */
unsigned char sin_family; /* AF_INET */
unsigned short sin_port; /* htons(5001) */
struct in_addr sin_addr; /* INADDR_ANY */
unsigned char sin_zero[8]; /* 0's */

}

Copyright IBM Corp., 2004 9-10

C Socket Calls C Socket Calls

Listen - tells stack that this port will only listen.Listen - tells stack that this port will only listen.
Used by serverUsed by server
listen(socket , backlog); listen(socket , backlog);

socket: rec'd from socket()socket: rec'd from socket()
backlog: 0 to SOMAXCONNbacklog: 0 to SOMAXCONN

Number of chairs in waiting room Number of chairs in waiting room

C Socket Calls C Socket Calls

Accept - waits for and accepts a new connectionAccept - waits for and accepts a new connection
Used by serverUsed by server

adlen = sizeof adminIn; adlen = sizeof adminIn;
Blocked, use fcntl() to unblock Blocked, use fcntl() to unblock
accept(SO, (struct sockaddr *) &adminIn, &adlen); accept(SO, (struct sockaddr *) &adminIn, &adlen);
Returns the new socket number that was obtained for Returns the new socket number that was obtained for
thisthis connection. This is usually passsed to a different connection. This is usually passsed to a different
thread allowing this thread to get ready for another thread allowing this thread to get ready for another
connection.connection.

Copyright IBM Corp., 2004 11-12

C Socket Calls C Socket Calls

Connect - attempt to establish a connectionConnect - attempt to establish a connection
Only used by clientOnly used by client
Will also do bind's functionWill also do bind's function
connect(socket, struct sockaddr *, sizeof()); connect(socket, struct sockaddr *, sizeof());

if AF_INET specified in socket() callif AF_INET specified in socket() call

struct sockaddr_in {
unsigned char sin_len; /* len of sockaddr or 0 */
unsigned char sin_family; /* AF_INET */
unsigned short sin_port; /* htons(5001) */
struct in_addr sin_addr; /* INADDR_ANY */
unsigned char sin_zero[8]; /* 0's */

}

C Socket Calls C Socket Calls

SendSend
Used by both client and serverUsed by both client and server
Blocked, use fcntl() to unblockBlocked, use fcntl() to unblock
bytes = send(socket, &buffer, len, flags)bytes = send(socket, &buffer, len, flags)

&buffer is ptr to the buffer&buffer is ptr to the buffer
len is the length of the bufferlen is the length of the buffer
flags are usually '0'flags are usually '0'

consider converting buffer to ascii or ebcdicconsider converting buffer to ascii or ebcdic
others: sendmsg, sendto, write, and writev others: sendmsg, sendto, write, and writev

Copyright IBM Corp., 2004 13-14

C Socket Calls C Socket Calls

RecvRecv
Used by both client and serverUsed by both client and server
Blocked, use fcntl() to unblockBlocked, use fcntl() to unblock
bytes = recv(socket, &buffer, len, flags)bytes = recv(socket, &buffer, len, flags)

&buffer is ptr to the buffer&buffer is ptr to the buffer
len is the length of the bufferlen is the length of the buffer
flags are usually '0'flags are usually '0'

consider converting result to ascii or ebcdicconsider converting result to ascii or ebcdic
others: recvmsg, recvfrom, read, and readv others: recvmsg, recvfrom, read, and readv

C Socket Calls C Socket Calls

Select - waits for multiple eventsSelect - waits for multiple events
Used by both client and serverUsed by both client and server
Can wait for accept, send, recv, or time outCan wait for accept, send, recv, or time out
rc2 = select(num_fds, read, write, except, timeout); rc2 = select(num_fds, read, write, except, timeout);

rc2 contains the number of ready file descriptorsrc2 contains the number of ready file descriptors
Test for ... with FD_ISSET() Test for ... with FD_ISSET()
zero and reset FDs before every call to select().zero and reset FDs before every call to select().

fd_set reading;

FD_ZERO(&reading); /* reset to zero */
FD_SET(0, &reading); /* std in */
FD_SET(socket, &reading); /* other socket */
num_fds = 1+socket; /* max socket num */
rc2 = select(num_fds, &reading, NULL, NULL, NULL);
FD_ISSET(0, &reading) /* test */

Copyright IBM Corp., 2004 15-16

C Socket Calls C Socket Calls

Close - shuts down the socketClose - shuts down the socket
Used by both client and serverUsed by both client and server
rc = close(socket); rc = close(socket);

socket - rec'd from socket()socket - rec'd from socket()

C Socket Calls C Socket Calls

Error CheckingError Checking
rc is different on different callsrc is different on different calls

socket, accept: <= socket numbersocket, accept: <= socket number
send, recv: <= number of bytessend, recv: <= number of bytes
select: <= number of ready file descriptorsselect: <= number of ready file descriptors
all others: rc=0 <= successall others: rc=0 <= success
all: rc=-1 <= errorall: rc=-1 <= error

Check variable 'errno' for specificsCheck variable 'errno' for specifics

Copyright IBM Corp., 2004 17-18

C Socket Calls C Socket Calls

Client Stack
IP Addr

Stack
IP Addrs Server

port
internet

 socket()

 connect()
 send() recv()
 close()

Client ServerClient Server
 socket()
 bind()
 listen()
 accept()

 recv() send()
 close()

C Socket CallsC Socket Calls

Example - socket preparationExample - socket preparation

int SO, NS, rc, adlen;
struct sockaddr_in sinet;
struct sockaddr_in adminIn;

SO = socket(AF_INET, SOCK_STREAM, 0);
rc = bind(SO, (struct sockaddr *) &sinet, sizeof(sinet));
rc = listen(SO, 5);
adlen = sizeof adminIn;
NS = accept(SO, (struct sockaddr *) &adminIn, &adlen);

Copyright IBM Corp., 2004 19-20

C Socket CallsC Socket Calls
Example - receive dataExample - receive data

char buffer[999]
char *pBuf;
int read_len = 0, nb = 0, len = 998;

while (read_len < len) {
 nb = recv(NS, pBuf + read_len, len - read_len, 0);
 if (nb > 0)
 read_len += nb;
 else
 break;
}
 or
rc = recv(NS, buffer, len, 0);
buffer[rc] = '\0';

C Socket CallsC Socket Calls
Example - send dataExample - send data
char out[999]; /* data to be sent */
int rc=0, len;

len = strlen(out);
rc = send(NS, out, len, 0);

Example - Close Example - Close

rc = close(NS);

Copyright IBM Corp., 2004 21-22

REXX Socket Calls REXX Socket Calls

socket(socket('SOCKET', 'AF_INET', 'SOCK_STREAM''SOCKET', 'AF_INET', 'SOCK_STREAM'))
socket(socket('BIND', socket,'BIND', socket, 'AF_INET port ip@''AF_INET port ip@'))
socket(socket('LISTEN','LISTEN', socket, backlog)socket, backlog)
socket(socket('ACCEPT', socket'ACCEPT', socket))
socket(socket('CONNECT', socket,'CONNECT', socket, AF_INET port ip@'AF_INET port ip@'))
socket(socket('SEND', socket, data, '''SEND', socket, data, ''))
socket(socket('RECV''RECV' , socket, socket))
socket(socket('SELECT', mask, timeout'SELECT', mask, timeout))
socket('socket('CLOSE', socketCLOSE', socket))

Pipeline Socket Stages Pipeline Socket Stages

tcpclient - all client callstcpclient - all client calls
socket, connect, send, recv, closesocket, connect, send, recv, close

tcplisten - server setuptcplisten - server setup
socket, bind, listen, accept, closesocket, bind, listen, accept, close

tcpdata - server data movementtcpdata - server data movement
send, recv, closesend, recv, close

Copyright IBM Corp., 2004 23-24

Pipeline Socket StagesPipeline Socket Stages
TcpclientTcpclient

primary input stream -> tcpipprimary input stream -> tcpip
tcpip -> primary output streamtcpip -> primary output stream
stops when output stream terminated or 20 seconds stops when output stream terminated or 20 seconds
have passedhave passed

(same) stack port linger sec. stack ID

tcpclient 127.0.0.0 9999 linger 20 tcpip

input data - going to the server

output data - coming from the server

Pipeline Socket StagesPipeline Socket Stages
TcplistenTcplisten

must be the first stagemust be the first stage
passes information to tcpdatapasses information to tcpdata
stops when output stream terminatedstops when output stream terminated

TcpdataTcpdata
input stream:input stream:

first record must be from tcplistenfirst record must be from tcplisten
following records are treated as datafollowing records are treated as data

output stream is data from the networkoutput stream is data from the network
can do blockingcan do blocking

stops when output stream terminatedstops when output stream terminated
ConsiderationsConsiderations

how to handle multiple connectionshow to handle multiple connections
how to stop the pipelinehow to stop the pipeline

Copyright IBM Corp., 2004 25-26

Pipeline Socket StagesPipeline Socket Stages

take 1
data for a tcpdata

fanin

tcpdata

data to be sent

< data tosend a

Flow diagram for only one connectionFlow diagram for only one connection

take 20

> data recd a

A way to stop the pipe

tcplisten port
data for a tcpdata

Pipeline SnifferPipeline Sniffer

To run TCPSNIFFTo run TCPSNIFF

tcpsniff 10001 1.2.3.4 3000 tcpsn output a
 input port IP@out and port output fileid

What is a sniffer?What is a sniffer?
Debug tool that records packets sent between a client Debug tool that records packets sent between a client
and a serverand a server

Client Sniffer Serverport port

IP @

file id

xlate?I O

Copyright IBM Corp., 2004 27-28

Pipeline Sniffer CodePipeline Sniffer Code
TCPSNIFF EXEC - diagramTCPSNIFF EXEC - diagram

immcmd

gate

tcplisten port

fanout

(prepare) tcpsniff arg(1)

cons

Pipeline Sniffer CodePipeline Sniffer Code

TCPSNIFF EXEC - page 1TCPSNIFF EXEC - page 1

/* TCP port sniffer. */
/* John Hartmann 7 Feb 1996 12:38:57 */
Signal on novalue

parse arg port remote_sys remote_port fn ft fm '(' options

/***/
/* Send TCP socket data to a remote host and pass the result back. */
/* To sniff a telnet session, this program would be the server as */
/* seen by the telnet client. The real telnet server is specified */
/* as the second and third operand. */
/* */
/* Specify (ascii if the data stream is in ASCII and you want the */
/* log file in EBCDIC (from 850 to 1047). */
/***/
say 'Type: stop to stop this sniffer.'

Copyright IBM Corp., 2004 29-30

Pipeline Sniffer CodePipeline Sniffer Code
TCPSNIFF EXEC - page 2TCPSNIFF EXEC - page 2

address command
'PIPE (end \ name TCPSNIFF.EXEC:18)',
 '\immcmd stop',
 '|g:gate',
 '\tcplisten' port,
 '|g:',
 '|go:fanout',
 '|change 72 //x00', /* Make sure positive... */
 '|change 71 //x00', /* ...numbers for... */
 '|change 70 //x00', /*formatting. */
 '|change 69 //x00',
 '|spec 67.2 c2d 1',
 '69.2 c2d nw 71.2 c2d nw',
 '73.2 c2d nw 75.2 c2d nw',
 '|spec /Request from port/ 1 w1 nw /on/ nw',
 'w2 nw /./ n w3 n /./ n',
 'w4 n /./ n w5 n',
 '|cons',
 '\go:',
 '|tcpsniff' arg(1)
Exit RC

Pipeline Sniffer CodePipeline Sniffer Code
TCPSNIFF REXX - diagramTCPSNIFF REXX - diagram

*.input:

fanin

take 1

tcpdata

(prepare) I

>> fn ft fm

fanout

faninany

tcpclient

fanout

(prepare) O elastic

Copyright IBM Corp., 2004 31-32

Pipeline Sniffer CodePipeline Sniffer Code

TCPSNIFF REXX - page 1TCPSNIFF REXX - page 1

/* Sniffer to process one connection request */
/* John Hartmann 7 Feb 1996 12:49:10 */
Signal on novalue
signal on error

parse arg . remote_sys remote_port fn ft fm '(' options
upper options
xlate=''
If wordpos('ASCII', options)>0
 Then xlate='|xlate from 850 to 1047'

Pipeline Sniffer CodePipeline Sniffer Code
TCPSNIFF REXX - page 2TCPSNIFF REXX - page 2

do forever
 'peekto'
 'callpipe (end \ name TCPECHOD.REXX:7)',
 '*.input:',
 '|take 1',
 '|i:fanin',
 '|tcpdata',
 '|in:fanout',
 xlate,
 '|change ,,I ,',
 '|wi:faninany',
 '|>>' word(fn 'TCP', 1) word(ft 'TRACE', 1) word(fm 'A', 1),
 '\in:',
 '|tcpclient' remote_sys remote_port,
 '|o:fanout',
 xlate,
 '|change ,,O ,',
 '|wi:',
 '\o:',
 '|elastic',
 '|i:'
 say 'Connection closed.'
end
error: exit RC*(RC<>12)

Copyright IBM Corp., 2004 33-34

What did we discuss? What did we discuss?

What are sockets?What are sockets?
C Socket CallsC Socket Calls

Basics of SocketsBasics of Sockets

REXX Socket CallsREXX Socket Calls
Pipeline Socket StagesPipeline Socket Stages
SnifferSniffer

References References

John Hartmann (IBM Denmark)John Hartmann (IBM Denmark)
JOHN@dk.ibm.comJOHN@dk.ibm.com

Pipelines author and Sniffer authorPipelines author and Sniffer author

Melinda Varian's pitch on MaristMelinda Varian's pitch on Marist
"Plumbing the Internet: CMS/TSO Pipelines Support "Plumbing the Internet: CMS/TSO Pipelines Support
for TCP/IP", revised 06/09/97 for TCP/IP", revised 06/09/97
http://vm.marist.edu/%7Epipeline/#MWVhttp://vm.marist.edu/%7Epipeline/#MWV

Copyright IBM Corp., 2004 35-36

References References

VM LibraryVM Library
"OE for VM/ESA Sockets Reference" SC24-5741"OE for VM/ESA Sockets Reference" SC24-5741
"REXX/VM Reference" SC24-5770 Ch 16"REXX/VM Reference" SC24-5770 Ch 16
"CMS Pipelines Users Guide" SC24-6077 Ch 11"CMS Pipelines Users Guide" SC24-6077 Ch 11
"CMS Pipelines Reference" SC24-6076"CMS Pipelines Reference" SC24-6076
"CMS Pipelines Author's Edition" SL26-0018"CMS Pipelines Author's Edition" SL26-0018

Development ContactsDevelopment Contacts

Will J. Roden, Jr.Will J. Roden, Jr.
Phone:Phone: (607) 429-3278(607) 429-3278
Internet:Internet: RODEN@US.IBM.COM RODEN@US.IBM.COM
Web:Web: http://www.vm.ibm.com/devpages/roden http://www.vm.ibm.com/devpages/roden
Postal mailPostal mail

IBM Department G79GIBM Department G79G
1701 North Street1701 North Street

Endicott, NY 13760 U.S.A.Endicott, NY 13760 U.S.A.

Copyright IBM Corp., 2004 37-38

