

Abstract

Fuzzy Logic: A tutorial

In a course in switching theory or traditional symbolic logic, one studies a form of logic which has existed from the early Greeks, notably Aristotle. This session reviews the principles of this crisp symbolic logic (negation, and, or, ifthen, etc.) and then proceeds to introduce Fuzzy logic and Fuzzy sets. This new logic has interesting ramifications in fuzzy thinking and neural networks. An example using fuzzy rules in a control system will be introduced. You don't need a logic background for this session.

Ray Wicks Independent Consultant RayWicks@Yahoo.com

Obscurities

If p or q and If q Then r, Then p or r. ((pvq) ? (q? r)) ? (pvr) pvq.?.q? r:? :pvr CKApqCqrApr

 Consistent - Nothing Logically absurd or self contradictory in meaning shall be a theorem, or that there shall not be two theorems of which one is the negation of the other. (p v ~p is not a theorem).

 Complete – Roughly, the system shall have all possible theorems not in conflict with the interpretation. (You can prove what you want to prove.)

- Simple
- Pragmatic
- Verifiable

Hedge Words										
Hedge Word	Δνα	Min	Max	ΩV						
Always	98.08	95	100	0.022						
Verv often	87 15	70	95	0.07						
Rather often	78.08	65	85	0.07						
Lisually	76.08	60	85	0.00						
Often	73.38	50	90	0.166						
Frequently	72.54	50	87	0.139						
Generally	71.92	60	85	0.104						
About as often as not	46.54	5	50	0.268						
Sometimes	40.77	20	60	0.267						
Occasionally	36.15	15	65	0.442						
Now and then	31.54	5	45	0.385						
Once in a while	27.08	5	60	0.587						
Not often	22.67	10	35	0.352						
Usually not	19.69	6	40	0.538						
Seldom	16.92	8	30	0.45						
Rarely	13.23	3	30	0.541						
Almost never	12.69	2	85	1.736						
Hardly ever	11.23	1	30	0.65						
Very seldom	10.92	5	20	0.455						
Never	1.231	0	5	1.526						

Fuzzy Logic								
Ρ,Q ε {0,1} Ρ ~Ρ	P,Q ɛ [0,1]							
0 1	Not P = 1-P							
1 0	~0.7 = 0.3							
P Q PvQ								
0 0 0	PvQ= Max(P,Q)							
0 1 1	0.3 V 0.75 = 0.75							
1 0 1								
1 1 1								
<u> </u>								

Rule 1: If too short, lower priority a lot.

Rule 2: If short, then lower priority a bit.

Rule 3: If just right, then leave priority unchanged.

Rule 4: If long, then raise priority a bit.

Rule 5: If very long, then raise priority a lot.

t-Test: Two-Sample Assuming Unequal Variances Variable 1 Variable 2 Variable 1 Variable 2 1177 Variable 1 Variable 2 1177 134.49 125.005 1185 Mean 134.49 125.005 1184 Variance 231.5271 165.2302 1185 Observations 40 40 1184 Hypothesized Mean Difference 0 1188 t Stat 3.011653 1188 t Stat 3.011653 1188 P(T<=t) one-tail 0.001763 1107 t Critical one-tail 1.665151 1185 P(T<=t) two-tail 0.003527 1185 t Critical two-tail 1.991673	t-Test: Two-Sample Assuming Unequal Variances Variable 1 Variable 2 Variable 1 Variable 2 1127 Variable 1 Variance 231.5271 165.2302 1184 Hypothesized Mean Difference 0 1185 Ital 0.001763 1185 P(T<=t) one-tail 0.003527 1185 I Critical two-tail 1.991673	T-Test	@ 0.05	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 1333 t-Test: Two-Sample Assumi 6 134.8 6 128.7 4 1444	ng Unequal Vari	ances
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 117.7	Variable 1	Variable 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1181 Variance 231.5271 165.2302 1181 Observations 40 40 1142 Hypothesized Mean Difference 0 1144 Hypothesized Mean Difference 0 1144 Hypothesized Mean Difference 0 1144 Hypothesized Mean Difference 0 1145 t Stat 3.011653 1165 1187 P(T<=t) one-tail 0.001763 1107 t Critical one-tail 1.665151 1.665151 1184 P(T<=t) two-tail 0.003527 1.185 1185 t Critical two-tail 1.991673 1.991673	19.8 118.5 Mean	134.49	125.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹²⁸ 118.1 Variance	231 5271	165 2302
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33 + 1375 Coservations 40 40 $33 + 1342$ Hypothesized Mean Difference 0 $44 + 1083$ df 76 $58 + 144$ df 76 $58 + 144$ f 0.001763 $58 + 144$ 0.001763 $58 + 1077$ rt Critical one-tail 1.665151 $58 + 1017$ t Critical one-tail 0.003527 $58 + 1057$ 1186 t Critical two-tail 1.991673	$^{32.2}$ $^{127.5}$ Valiance	201.0271	100.2002
Intra Thypothesized Mean Difference 0 1174 1184 Hypothesized Mean Difference 0 1174 1083 df 76 1174 1189 t Stat 3.011653 1283 1158 P(T<=t) one-tail	Hat Hypothesized Mean Difference 0 44 108.9 df 76 56 144 df 76 56 1255 t Stat 3.011653 1168 178 P(T<=t) one-tail	47.3 137.5 UDSer Validits 40.3 114.2 Live at has in a d Maser Differen	40	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hypothesized Mean Differer	nce 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	158 144 df	76	
283 1168 $P(T <= t)$ one-tail 0.001763 228 1101 t Critical one-tail 1.665151 228 1101 t Critical one-tail 1.665151 426 1398 $P(T <= t)$ two-tail 0.003527 229 1151 t Critical two-tail 1.991673	1168 1768 $P(T <= t)$ one-tail 0.001763 1101 t Critical one-tail 1.665151 1101 t Critical one-tail 0.003527 1183 $P(T <= t)$ two-tail 0.003527 1185 t Critical two-tail 1.991673	^{27.6} 118.9 29.5 125.5 t Stat	3.011653	
1021 1101 t (ritical one-tail 1.665151 1123 1107 t Critical one-tail 0.003527 1289 1151 t Critical two-tail 0.991673 1185 t Critical two-tail 1.991673	110.1 t (ritical one-tail 1.665151 110.7 t Critical one-tail 0.003527 113.8 P(T<=t) two-tail	^{26.3} 116.8 68.8 137.8 P(T<=t) one-tail	0.001763	
Introduction Introduction Introduction 1138 P(T<=t) two-tail	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.8 110.1 t Critical one-tail	1 665151	
t_{293} t_{151} t_{1456} 0.003527 t_{293} t_{151} $t_{1991673}$ t_{233} t_{186} $t_{1991673}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.9 113.8 P(T - t) two toil	0.002527	
129.3 118.5 T Critical two-tall 1.991673	1185 <u>t Critical two-tall</u> 11837 11837	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.003027	
	1 133.7	29.3 118.5 I UTITICAI TWO-TAII	1.991673	

C1=Fo	othall	CFN		omj	outa	atio	าร			
C2= AI	cohol Consu	mption		Alwa	ys = 1					
C3=Ra	ised Testoste	erone		Usually= 0.8						
C4=Co	mpetitive Nat	ture		Freq	uently = 0.6					
C5=Re	spect for Wo	men		Som	- etimes = 0 4	L				
C6=Lo	ng Term Rela	ationship		Boro						
C7=Pra	actical Jokes			Kare	iy = 0.2					
C8=Vic	leo Games			Neve	r = 0					
	C1	C2	C3	C4	C5	C6	C7	C8		
C1	1	0	1	1	-0.4	0	0	0		
C2	0	0	0.8	0.6	-1	0	0	0		
C3	0	0.6	0	1	0	0.6	0	0		
C4	0.2	0	0.8	0	-0.6	1	0	0.8		
C5	0	0	0	-0.6	0	0	0.8	0		
C6	0	0	0	0.2	0	0	0	0		
C7	0	-0.2	-0.4	-0.8	0.8	0	0	0		
C8	0	0	0	1	0	0	0	0		
S0	1	0	0	0	0	0	0	0		
S1	1	0	1	1	-0.4	0	0	0		
S1*	1	0	1	1	0	0	0	0 DeFuzzify		
S2	1.2	0.6	1.8	2	-1	1.6	0	0.8		
S2*	1	1	1	1	0	1	0	1 DeFuzzify		
S3	1.2	0.6	2.6	3.8	-2	1.6	0	0.8		
S3*	1	1	1	1	0	1	0	1 DeFuzzify		

	\mathbf{C}		\mathbf{C}	mni	itat	ion	c					
C2= Healthy Diet												
C3=Not Smoking		C1	C2	63	C4	C5	C6	C7				
C4=Avoiding Alcohol	C1	0	0	0	0	0	0.3	0.7				
C5=Exercise	C2 C3	0.3	0	0.1	0.1	0	0.3	0.2				
C6=Decreased Stress	C4	0.6	0	0.1	0	0 0	-0.2	0.5				
C7=Increased Energy	C5 C6	0.5 -0.2	0 0.1	0.1 0.6	0 0.1	0 0	0.2 0	0.2 0.5				
	C7	0.6	0	0	0	0	0.4	0				
	S1	1	0	0	0	0	0	0				
	S2	0	0	0	0	0	0.3	0.7				
	S2*	1	0	0	0	0	0	1				
	S3	0.6	0	0	0	0	0.7	0.7				
	53	0.4	01	0	01	0	07	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$				
	S4*	0.4	0.1	0.0	0.1	0	0.7	1				
	S5	0.2	0.1	0.6	0.1	0	0.4	2.1				
	S5*	1	0	1	0	0	0	1				
	S6	0.4	0	0	0	0	0.4	1.6 /				
	S6*	1	0	0	0	0	0	1 ′				

Bibliography

- 1. Fuzzy Thinking: The New Science of Fuzzy Logic, Bart Kosko, Hyperion, 1993, A popular Introduction.
- 2. Neural Networks and Fuzzy Systems Bart Kosko, Prentice Hall, 1992, A technical approach.
- 3. *Fuzzy Logic for Business and Industry*, Earl D. Cox, Charles River Media, 1995, Applications with implementations.
- 4. Fuzzy Logic: The Revolutionary Computer Technology That is Changing the World, Daniel McNeill & Paul Freiberger, Simon & Schuster, 1993, Some Logic and some philosophy.
- 5. *Elementary Logic*, W.V. Quine, Harvard, 1980, Good Intro to Logic.