

Abstract

Fuzzy Logic: A tutorial

In a course in switching theory or traditional symbolic logic, one studies a form of logic which has existed from the early Greeks, notably Aristotle. This session reviews the principles of this crisp symbolic logic (negation, and, or, ifthen, etc.) and then proceeds to introduce Fuzzy logic and Fuzzy sets. This new logic has interesting ramifications in fuzzy thinking and neural networks. An example using fuzzy rules in a control system will be introduced. You don't need a logic background for this session.

Ray Wicks
Independent Consultant
RayWicks@Yahoo.com

Background

Everyone in their own mind thinks of themselves as logical, clear thinking and free from bias.

In the middle ages, logic was taught as a method of arriving at correct answers from accepted assumptions. Metaphysics provided the unassailable assumptions. The approach was impeccable.

However, semantics of actual language is not binary (black and white) but fuzzy (shades of grey). The introduction of fuzziness into logic creates havoc among logicians but brings logic closer to every day usage.

Game Rules

P	Q	$P^{*} Q$
T	T	T
T	\perp	\perp
\perp	T	\perp
\perp	\perp	\perp

Crisp Definitions					
P is equivalent to Q					xcl or Q
P	Q	$P \equiv Q$	P	Q	$P \underline{\vee}$
0	0	1	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0
P? Q.?.Q? P			$\mathbf{P} \vee \mathbf{Q}=$	P?	Q.v. $\sim P$? Q
			Or		
			$\mathbf{P} \vee \mathbf{Q}=$	\sim (P)	

Reduction a la Russel Using "\|" = "is incompatible with" or "not both"			
P Stroke Q			$\sim P=P \mid P$
P	Q	$\mathbf{P} \mid \mathbf{Q}$	$\mathbf{P v Q}=\sim \mathbf{P \| \sim Q}$
0	0	1	$\mathbf{P} \boldsymbol{P} \mathbf{Q}=\sim(P \mid Q)$
0	1	1	$\mathbf{P} \boldsymbol{?} \mathbf{Q}=\mathbf{P} \mid \sim \mathbf{Q}$
1	0	1	
1	1	0	

Obscurities

If p or q and If q Then r, Then p or r. ((pvq)? (q? r))? (pvr) pvq.?.q? r:? :pvr CKApqCqrApr

Truth Analysis - A Game

v	0	1
0	0	1
1	1	1

-PVQ

- 1vQ replace with 1
$\square 0 v Q$ replace with Q
$\square P ? Q$
- $1 ? Q$ replace with Q
$\square 0 ? Q$ replace with 0
$\square P ? Q$

- P? 0 replace with ~P
- P ? 1 replace with 1
-1? Q replace with Q
- 0 ? Q replace with 1

Logical Fallacies

Fallacy of Affirming the Consequent

P? Q
 Q
 P

If I eat candy, my blood sugar will rise My blood sugar is elevated I must have eaten candy

Quantitative \& Visual Logic

$\Sigma x . A_{x} v B_{x}$

For some x, x has property A or x has Property B

$\Pi \mathbf{x} . \mathbf{B}_{\mathrm{x}} \subset \mathbf{C}_{\mathrm{x}}$
For all x, if x has property B thenr x has Property C

$\Sigma x . A_{x} \vee C_{x}$
For some \mathbf{x}, \mathbf{x} has property A or x has Property C

Semantic Evaluation of a CS

-Consistent - Nothing Logically absurd or self contradictory in meaning shall be a theorem, or that there shall not be two theorems of which one is the negation of the other. ($p v \sim p$ is not a theorem).

- Complete - Roughly, the system shall have all possible theorems not in conflict with the interpretation. (You can prove what you want to prove.)
${ }_{\square}$ Simple
- Pragmatic
- Verifiable

Philosophical Remark

In reaching a conclusion, we negotiate between the potential perceptual structures and the potential conceptual structures and memory events.

Our Perception is Fuzzy. Is Our Thinking Fuzzy?

Our Perception is Fuzzy. Is Our Thinking Fuzzy?

Paradox: $P \vee \sim P$?

The Liar: 'A man says he is lying. Is what he says true or false?’

The heap: If you have a heap of sand and remove one grain at a time, when does it cease to be a heap?

Parking: If you park in a parking lot and do not park exactly in the space between the lines, are you parked in the space or not?

In Ordinary Language

C: "How's the wine?"
F: "Pretty good."
C: "How's the cheese?"
F: "Not bad."
C: "Isn't anything ever just good or bad with you?"

F: "Sometimes."

Can Truth Be a Matter of Degree?

 Tall?

If the rule is Tall > 6', what about 5.99'? 5.95'?... One gets the feeling that the rule is not necessarily crisp since even the measurement is itself fuzzy.

To represent the Fuzzy rule, a non binary function is available which does not yield either 0 or 1 but a value on the interval $[0,1]$. Can you stand something being not necessarily true or false?

Hedge Words

"Joe Montana always came through in the clutch."

Hedge Word	Avg Min			
Always	Max		CV	
Very often	98.08	95	100	0.022
Rather often	78.15	70	95	0.07
Usually	76.08	65	85	0.09
Often	73.38	50	85	0.093
Frequently	72.54	50	87	0.166
Generally	71.92	60	85	0.139
About as often as not	46.54	5	50	0.268
Sometimes	40.77	20	60	0.267
Occasionally	36.15	15	65	0.442
Now and then	31.54	5	45	0.385
Once in a while	27.08	5	60	0.587
Not often	22.67	10	35	0.352
Usually not	19.69	6	40	0.538
Seldom	16.92	8	30	0.45
Rarely	13.23	3	30	0.541
Almost never	12.69	2	85	1.736
Hardly ever	11.23	1	30	0.65
Very seldom	10.92	5	20	0.455
Never	1.231	0	5	1.526

Fuzz is Not Probability

In probability you deal with frequencies of events. When you throw a pair of dice, the probability of getting a 2 is 1 in 36 . You will get one of the values.

In fuzzy you deal with degrees.
When you fill a glass $3 / 4$ full, is it full or not? Yes to 0.75 degree.

			Logic
$\mathbf{P , Q}$ M, \{0,1\}			P,Q M, [0,1]
P	Q	P? Q	\mathbf{P} ? $\mathrm{Q}=\operatorname{Min}(\mathrm{P}, \mathrm{Q})$
0	0	0	0.7 ? $0.3=0.3$
0	1	0	
1	0	0	
1	1	1	
P Q P ? Q 0			\mathbf{P} ? $\mathbf{Q}=\sim(\mathbf{P}$? $\sim \mathbf{Q})$
0	0	1	$=\sim P \vee Q$
0	1	1	$=\operatorname{Max}(1-\mathrm{P}, \mathrm{Q})$
1	0	0	0.75 ? $0.5=0.5$
1	1	1	

Crisp Set

Just Right Response Time $=[40,65]$

Fuzzy Set

Just Right Response Time $=[40,65]$

Crisp ~Just Right

~Just Right

Fuzzy ~Just Right

~Just Right

Fuzzy Just Right and ~JR

Fuzzy Rules For Response Time

Rule 1: If too short, lower priority a lot.
Rule 2: If short, then lower priority a bit.
Rule 3: If just right, then leave priority unchanged.
Rule 4: If long, then raise priority a bit.
Rule 5: If very long, then raise priority a lot.

Hedge for Response 63

Add Rule Output

DeFuzzify the Result

Process

Applications

Fuzzy Statistics
 T-Test @ 0.05

t -Test: Two-Sample Assuming Unequal Variances

	Variable 1	Variable 2
Mean	134.49	125.005
Variance	231.5271	165.2302
Observations	40	40
Hypothesized Mean Difference	0	
df	76	
t Stat	3.011653	
$P(T<=t)$ one-tail	0.001763	
t Critical one-tail	1.665151	
$P(T<=t)$ two-tail	0.003527	
t Critical two-tail	1.991673	

What about $0.06 \boldsymbol{0} 0.08 \boldsymbol{0} \mathbf{0 . 0 2 5}$?

Fuzzy Cognitive Maps

"Fuzzy cognitive maps (CFMs) are fussy signed directed graphs with feedback. The directed edge e_{ij} from causal concept C_{i} to concept C_{j} measures how much C_{i} causes C_{j}. The time-varying concept $\mathrm{C}_{\mathrm{i}}(\mathrm{t})$ measures the nonnegative occurrence of some fuzzy event." [Kosko 2]

Fuzzy Cognitive Maps

C1=Football
C2= Alcohol Consumption C3=Raised Testosterone C4=Competitive Nature C5=Respect for Women C6=Long Term Relationship C7=Practical Jokes

C8=Video Games

Created by Daniel Adams for UMD Honors Seminar, 1999

Fuzzy Cognitive Maps

C1=Football
C2= Alcohol Consumption C3=Raised Testosterone C4=Competitive Nature C5=Respect for Women C6=Long Term Relationship C7=Practical Jokes

C8=Video Games

Created by Daniel Adams for UMD Honors Seminar, 1999

Bibliography

1. Fuzzy Thinking: The New Science of Fuzzy Logic, Bart Kosko, Hyperion, 1993, A popular Introduction.
2. Neural Networks and Fuzzy Systems Bart Kosko, Prentice Hall, 1992, A technical approach.
3. Fuzzy Logic for Business and Industry, Earl D. Cox, Charles River Media, 1995, Applications with implementations.
4. Fuzzy Logic: The Revolutionary Computer Technology That is Changing the World, Daniel McNeill \& Paul Freiberger, Simon \& Schuster, 1993, Some Logic and some philosophy.
5. Elementary Logic, W.V. Quine, Harvard, 1980, Good Intro to Logic.
