

Introducing the Linux Health Checker

Peter Oberparleiter <peter.oberparleiter@de.ibm.com>

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AIX*	IBM*	PowerVM	System z10	z/OS*
BladeCenter*	IBM eServer	PR/SM	WebSphere*	zSeries
DataPower*	IBM (logo)*	Smarter Planet	z9*	z/VM*
DB2*	InfiniBand*	System x*	z10 BC	z/VSE
FICON*	Parallel Sysplex*	System z*	z10 EC	
GDPS*	POWER*	System z9*	zEnterprise	
HiperSockets	POWER7*	-	·	

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license there from.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

InfiniBand is a trademark and service mark of the InfiniBand Trade Association.

Intel, Intel Iogo, Intel Inside, Intel Inside Iogo, Intel Centrino, Intel Centrino Iogo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

2 Tux logo by Larry Ewing.

Agenda – Part 1

1. Introducing health checking

- 2. Using the Linux Health Checker
- 3. How to write a check

Introducing health checking

• What is a health check?

A process that identifies conditions which may lead to problems

What is the Linux Health Checker?

- A tool that performs an automated health check of a Linux system
- Checks status and configuration
- Presents report on identified problems

Helps keeping Linux systems healthy (operational)

What does it do?

Example problem classes

- Configuration errors
- Deviations from best-practice setups
- Hardware running in degraded mode
- Unused accelerator hardware
- Single point-of-failures
- Detailed problem report
 - Enable users to understand and solve problems
 - Make expert knowledge available to wider audience

Goals

Ease of use

- Simple setup: Install and run
- Primary tasks easily accessible through command line interface

Flexibility through Framework/Plug-in concept

- Health check plug-ins
 - Contain all problem area specific knowledge
- Consumer plug-ins
 - Handle output processing
- Extend functionality by adding new plug-ins

Basic approach to health checking

Collect system information

- File contents, for example /var/log/messages
- Program output, for example /bin/df

Analyze information

- Find relevant data points
- Compare with best-practice values
- Produce report

System overview

Health checks in version 1.0

Verify that the bootmap file is up-to-date	Screen users with superuser privileges	
Check whether the path to the OpenSSL library is configured correctly	Identify network services that are known to be insecure	
Identify unusable I/O devices	Identify multipath setups that consist of a single path only	
Check for CHPIDs that are not available	Confirm that automatic problem reporting is activated	
Identify I/O devices that are in use although they are on the exclusion list	Ensure that panic-on-oops is switched on	
Identify I/O devices that are not associated with a device driver	Check whether the CPUs run with reduced capacity	
Check for an excessive number of unused I/O devices	Spot getty programs on the /dev/console device	
Check Linux on z/VM for the "nopav" DASD parameter	Identify unused terminals (TTY)	
Check file systems for adequate free space	Checks by component	
Check file systems for an adequate number of free inodes		
Check whether the recommended runlevel is used and set as default	CSS System	
Check the kernel message log for out-of-memory (OOM) occurrences	Storage Filesystem Security	
Identify bonding interfaces that aggregate qeth interfaces with the same CHPID		
Check for an excessive error ratio for outbound HiperSockets traffic	■ Boot □ Crypto	
Check the inbound network traffic for an excessive error or drop ratio	Init Kernel Hardware	
Identify qeth interfaces that do not have an optimal number of buffers		
Confirm that the dump-on-panic function is enabled		

Agenda – Part 2

- 1. Introducing health checking
- **2. Using the Linux Health Checker**
 - 3. How to write a check

Preparations

Requirements

- Linux
 - Framework should run on any hardware platform
 - Health checks may be platform specific
- Perl 5.8 or later
 - Additional Perl modules which are usually part of default installation

Obtaining the Linux Health Checker

- Open source under Eclipse Public License v1.0
- Download RPM or source package from http://lnxhc.sourceforge.net
- Install using RPM command or make install

First health check run

[user@lnxhost ~]\$ lnxhc run Collecting system information Running checks (12 checks)		
CHECK NAME	HOST	RESULT
boot_zipl_update_required	lnxhost	SUCCESS
css_ccw_availability	lnxhost	SUCCESS
css_ccw_chpid	lnxhost	SUCCESS
css_ccw_no_driver	lnxhost	SUCCESS
css_ccw_unused_devices	lnxhost	EXCEPTION-LOW
Of 4664 I/O devices, 4659 (99.89% fs_disk_usage mm_oom_killer_triggered) are unused lnxhost lnxhost	SUCCESS SUCCESS
ras dump on panic	lnxhost	EXCEPTION-HIGH
>EXCEPTION ras_dump_on_panic.no_stand The dump-on-panic function is not	dalone(high) enabled	
sec_services_insecure	lnxhost	SUCCESS
sys_sysctl_call_home	lnxhost	NOT APPLICABLE
sys_sysinfo_cpu_cap	lnxhost	SUCCESS
10 checks run, 2 exceptions found (use	e 'lnxhc runreplay	-V' for details)

Interpreting list view

Some health checks found no problems

boot_zipl_update_required	lnxhost	SUCCESS
css_ccw_availability	lnxhost	SUCCESS
css_ccw_chpid	lnxhost	SUCCESS
css_ccw_no_driver	lnxhost	SUCCESS

• A health check did not run

net_hsi_tx_errors lnxhost NOT APPLICABLE	
--	--

A requirement was not met, for example platform, hypervisor or Linux version

More reasons why a health check cannot run

- ► FAILED_SYSINFO
 - Some of the required input data could not be collected
- ► FAILED_CHKPROG
 - There was a run-time error in the analysis step

Interpreting list view (continued)

A potential problem was found

css_ccw_unused_devices lnxhost EXCEPTION-LOW >EXCEPTION css_ccw_unused_devices.many_unused_devices(low) Of 4664 I/O devices, 4659 (99.89%) are unused

Full exception ID

- css_ccw_unused_devices.many_unused_devices
- Exception severity
 - low
- Exception summary
 - Of 4664 I/O devices, 4659 (99.89%) are unused

Getting more details

[user@lnxhost ~]\$ lnxhc run -V css_ccw_unused_devices		
CHECK NAME	HOST	RESULT
css_ccw_unused_devices	lnxhost	EXCEPTION-LOW

>EXCEPTION css_ccw_unused_devices.many_unused_devices(low)

SUMMARY

Of 4664 I/O devices, 4659(99.89%) are unused

EXPLANATION

The number of unused (offline) I/O devices, 4664 (99.89%) of a total of 4659, exceeds the specified threshold. During the boot process, Linux senses and analyzes All available I/O devices, including unused devices. Therefore, unused devices unnecessarily consume memory and CPU time.

SOLUTION

Use the "cio_ignore" feature to exclude I/O devices that you do not need from being sensed and analyzed. Be sure not to inadvertently exclude required devices. To exclude devices, you can use the "cio_ignore" kernel parameter or a command like this:

echo "add <device_bus_id>" > /proc/cio_ignore

where <device_bus_id> is the bus ID of an I/O device to be excluded.

REFERENCE

For more information about the "cio_ignore" feature, see the section about the "cio_ignore" kernel parameter in "Device Drivers, Features, and Commands".

Additional functions

Viewing list of available health checks

[user@lnxhost ~]\$ lnxhc check --list

CHECK NAME	COMPONENT	STATE
heat sinl undets noguined	heet	======================================
boot_zipi_update_required		active
crypto_openssl_ibmca_config	crypto	inactive
css_ccw_availability	channel subsystem	active
css_ccw_chpid	channel subsystem	active
css_ccw_ignored_online	channel subsystem	active
css_ccw_no_driver	channel subsystem	active
css_ccw_unused_devices	channel subsystem	active
dasd_zvm_nopav	storage	active
fs_disk_usage	filesystem	active
fs_inode_usage	filesystem	active
init_runlevel	init	active
mm_oom_killer_triggered	kernel	active
net_bond_dev_chpid	network	active
net_hsi_tx_errors	network	active
net_inbound_packets	network	active
net_qeth_buffercount	network	active
ras_dump_on_panic	system	active
<pre>sec_non_root_uid_zero</pre>	security	active
sec_services_insecure	security	active

Viewing health check information

[user@lnxhost ~]\$ lnxhc check --info fs_disk_usage

Check fs_disk_usage (active)

Title:

Check file systems for adequate free space

Description:

Some applications and administrative tasks require an adequate amount of free space on each mounted file system. If there is not enough free space, these applications might no longer be available or the complete system might be compromised. Regular monitoring of disk space usage averts this risk.

Exceptions:

```
critical_limit=high (active)
warn_limit=low (inactive)
```

Parameters:

```
critical_limit=95
File system usage (in percent) at which to raise a high-severity exception.
Valid values are integers in the range 1 to 100.
```

Default value is "95".

Health check properties

- Fixed properties
 - Name
 - Meta-data
 - Component to be checked
 - Author name
 - Exceptions
 - Exception IDs
- Some properties can be modified
 - Activation state
 - Parameter values
 - Exception activation state and severity

Modifying health check properties

Activation state

Specifies if a check should be performed during health check run

```
[user@lnxhost ~]$ lnxhc check fs_disk_usage --state inactive
Setting state of check 'fs_disk_usage' to 'inactive'
Done.
```

Parameter values

- Values defined by health checks
- Enable users to customize certain aspects of the health check

```
[user@lnxhost ~]$ lnxhc check --param fs_disk_usage.critical_limit=99
Setting value of parameter fs_disk_usage.critical_limit to '99'
Done.
```

See man page for full list of properties

```
> man lnxhc_properties.7
```


Advanced health checking modes

Collect data to file

lnxhc sysinfo --collect --file lnxhost.sysinfo

Analyze from file

lnxhc run --file lnxhost.sysinfo

Analyze from remote host

ssh user@remote lnxhc sysinfo -c -f - | lnxhc run -f -

Analyze from multiple hosts

Collect

Internal DB

Analyze

Collect

Agenda – Part 3

- 1. Introducing health checking
- 2. Using the Linux Health Checker
- 3. How to write a check

Preparations for writing a health check

Required skills

- Basic programming skills
- Any programming language
 - Shell
 - Perl
 - C, C++, etc.
- Required resources
 - Linux system
 - Inxhc package installed
 - Text editor
 - Some time

Finding a suitable idea

Sources for health check ideas

- Own experience
- Read documentation
- Analyze previous outages

What to look for

- Single points of failure
- System values reaching limits
- Unhealthy combinations of configurations

Example idea

- What to check?
 - Value of sysctl setting 'panic_on_oops' should be '1'

Why?

- "Kernel oops" = severe kernel error
- Indication that the kernel can no longer be trusted
- Kernel will continue anyway if panic_on_oops is '0'

How to check

```
[user@lnxhost ~]$ cat /proc/sys/kernel/panic_on_oops
0
```

Solution

echo 1 > /proc/sys/kernel/panic_on_oops

Implementation without framework

Check program 'check.sh'

```
#!/bin/bash
FILENAME="/proc/sys/kernel/panic_on_oops"
PANIC_ON_OOPS=`cat $FILENAME`

if [ "$PANIC_ON_OOPS" -eq 0 ] ; then
        echo "The panic-on-oops setting is disabled"
        echo "Enable it using 'echo 1 > /proc/sys/kernel/panic_on_oops'"
fi
exit 0
```

Sample output

[user@lnxhost ~]\$./check.sh
The panic-on-oops setting is disabled
Enable it using 'echo 1 > /proc/sys/kernel/panic_on_oops'

Writing checks for the Linux Health Checker framework

One directory per check

Directory name is check name

Files for

- Meta data
- Text
- Check program

panic_on_oops — definitions

- descriptions
- _ exceptions
- check

Definitions file

Contains data about the health check

[check]
author = user@host
component = system

```
[sysinfo panic_on_oops]
file = /proc/sys/kernel/panic_on_oops
```

[exception no_panic_on_oops]
severity = high

- Meta-data
- System information
 - ► Files, command output, etc.
- Exceptions
 - ID and severity
- Optional parameters

Descriptions file

Contains health check and parameter descriptions

[title] Ensure that panic-on-oops is enabled

[description]

The panic-on-oops setting ensures that a Linux instance is stopped if a kernel oops occurs.

Check title

Basic check description

Description of parameters

Exceptions file

Contains problem report text

[summary no_panic_on_oops] The panic-on-oops setting is disabled

[explanation no_panic_on_oops] Without the panic-on-oops setting, a Linux instance might keep running after an oops.

[solution no_panic_on_oops] Use the following command to enable the panic-on-oops setting

echo 1 > /proc/sys/kernel/panic_on_oops

[reference no_panic_on_oops] See kernel documentation on panic-on-oops setting. Problem summary

- Explanation
 - Why is this a problem?
- Solution
 - Step-by-step instruction
- Reference for further reading
 - If available

Check program

Implements health check analysis logic

► 64 = Missing dependency

Other = Run-time error

Putting it all together

[user@lnxhost ~]\$ lnxhc run -V ./p Collecting system information Running checks (1 checks)	anic_on_oops	
CHECK NAME	HOST	RESULT
panic_on_oops	lnxhost	EXCEPTION-HIGH
>EXCEPTION panic_on_oops.no_panic	_on_oops(high)	
SUMMARY The panic-on-oops setting is d	isabled	
EXPLANATION Without the panic-on-oops s keep running after an oops.	etting, a Linux instance	might
SOLUTION Use the following command to enable the panic-on-oops setting echo 1 > /proc/sys/kernel/panic_on_oops		
REFERENCE See kernel documentation on pa	nic-on-oops setting.	

If it doesn't work, add more "-V"s

Increase level of verbosity to help debugging

Wrap-up

- To implement a check
 - Create a directory
 - Add files
 - Meta-data
 - Text files
 - Check program
 - Run/debug until it works
- Health check creation dialog

lnxhc devel --create-check my_check

- Creates template files according to dialog input
- Once done, consider contributing it!
 - Post to Inxhc-list@lists.sourceforge.net
 - See contribution guidelines at http://lnxhc.sourceforge.net/contributing.html

Further reading

Man pages

- Once installed use 'apropos Inxhc' to list man pages
- Also available on the web: http://lnxhc.sourceforge.net/manpages.html

User's Guide

- http://lnxhc.sourceforge.net/documentation.html
- Main web page
 - http://lnxhc.sourceforge.net/
- Mailing list
 - Open for questions, comments, ideas, contributions, etc.
 - Inxhc-list@lists.sourceforge.net