Live Source Code Guide

Emily Celeskey Evan Driscoll Jason Herne

21 LIVE Introduction

1.1 Overview
2
1.2 Architecture Overview
2
1.3 Directory Hierarchy
2
1.4 Java Package Layout
3
2 Detailed Architecture Overview
4
2.1 Back End
4
2.1.1 Custom SMAPI Execs
4
2.1.2 SMAPI Wrapper
4
2.1.3 Tasks Library
5
2.1.4 Threaded Tasks Library
5
2.2 Front End
6
2.2.1 Struts
6
2.2.2 JSP and Tiles
7
2.3 Universal
8
2.3.1 Cache
8
2.3.2 Data Transfer Objects
8
3 Compiling
9
3.1 Javadoc
9
4 Adding to the Code
9
4.1 Adding a New SMAPI Wrapper Method
9
4.2 Adding a New Task Method
9
4.3 Adding a New Threaded Task
10
4.4 Adding a New Servlet (Action)
10
4.4.1 Creating a Querying Action
10
4.4.2 Creating a Modifying Action
12
4.5 Creating a New JSP
13
5 JUnit Test Cases
14
5.1 Test Case Layout
14
5.2 Unit Testing Problems
14

1 LIVE Introduction

1.1 Overview

Welcome to LIVE, Linux based Interface for Virtual Environments. The purpose of LIVE is to present administrative functions of a z/VM system in such a way that they are easy to use and understand.

Much of z/VM is complex and difficult to understand. Seemingly simple z/VM operations can often require an administrator to perform many steps before achieving the desired goal. This level of complexity can waste time for seasoned z/VM administrators and can hamper the efforts of new users and administrators in training.

1.2 Architecture Overview

The main goal of this project is to give a system administrator access to the administrative functionality of a z/VM system in a user friendly and intuitive way. The front end interface chosen for this task is the common web browser. The back end interface is the z/VM Systems Management APIs (SMAPI). Since the two interfaces being connected are not similar, LIVE is separated into several layers. These layers are discussed in the remainder of this section.

The lowest level is a wrapper for the SMAPIs. The purpose of the wrapper library is to expose the SMAPI’s functionality to other code in an easy to use way. The library simplifies the way the developer interacts with the SMAPI calls and it provides a Java interface for making the calls, receiving the results and translating any errors that may occur into exceptions.

The ZVMTasks library sits above the SMAPI library and uses it to provide a set of actions and tasks that a user may wish to perform. The tasks library provides a user-friendly and reasonably high-level view of VM administration. This layer essentially bridges SMAPI functionality with user-friendly application based functionality.

On top of all of the Java code is a JSP/HTML based user interface that makes use of the Apache Struts framework. Struts is a web design framework that provides tools for designing a modular and powerful web-based user interface. It provides many features and conveniences that would normally have to be hand coded. Such features include automatic handling of data forwarding, input validation and user session tracking. It is also being used because of its MVC architecture which helps maintain clean and modular code.

1.3 Directory Hierarchy

When you unpack the LIVE source code you will find a single directory named “live” that contains all of the LIVE code. Here is the basic hierarchy of the contents of the Live directory. Some elements of lesser importance have been omitted.

META-INF This is a directory that is use primarily by the application server. Nothing in this directory needs to be modified.

WEB-INF Contains the bulk of the web application.

classes Stores compiled binaries.

lib JAR files containing Java libraries needed by LIVE

src All of the source code to the LIVE application

live This is the base directory of the ‘live’ Java package. The contents are discussed in further detail in section 1.4.

tests Junit test cases can be found here.

build.xml This is the Ant build script used for compiling LIVE.

LIVE.properties Holds messages commonly used in LIVE. Also acts as the LIVE configuration file.

tiles Contains all of the tiles used by LIVE. This is where almost all of the HTML lives.

struts-config.xml Struts configuration file.

tiles-defs.xml Tiles definitions file.

web.xml File that configures the web application for an application server.

pages JSP pages that are accessed directly instead of from forwards.

resources All common CSS styles, Javascript, and graphics used by LIVE.

1.4 Java Package Layout

The Java package layout can be found in WEB-INF/src/java/live. It consists of:

cache Code for caching basic information about the system. It stores a list of group names, the guests who are a member of each group (and those that are a member of no group), the list of VSwitches, and the list of saved segments.

constants Holds commonly used string keys

dto Data structures used throughout LIVE. It consists of ConnectionInfo, Group, Guest, Interval, Minidisk, NameList, SavedSegment, Network, and Thread. These rarely do any logic of their own, and any methods are just accessors or mutators.

smapi Wraps SMAPI socket calls and error handling in Java functions and exceptions.

struts Front-end code that interacts directly with struts.

actions Code that’s called automatically by struts when a request is submitted to the server.

forms Code that stores and validates data submitted from HTML forms

threads Wraps each of the methods in zvmtasks.ZVMTasks in a class that descends (indirectly) from java.lang.Thread so that they can be called asynchronously. Also provides the direct base class (ThreadedUserAction) that takes care of common chores, and two “runners” that run a sequence of other ThreadedUserActions.

zvmtasks Provides a higher level view of the z/VM system than the SMAPI library, containing common administrative functions.

2 Detailed Architecture Overview

2.1 Back End

2.1.1 Custom SMAPI Execs

LIVE includes 10 new and 1 modified non-supported, custom SMAPI execs that define new API calls. These new scripts are:

•
SSSQACTV to query all the active guests on the system,

•
SSSNAMEL to query the entire name list file, and

•
SSSQNTAD to query a guest’s virtual NIC address on a network,

•
SSSQVIRT to query a guest’s virtual address space,

•
SSSFNDAD to find the lowest free virtual address for a guest (not currently used in our program),

•
SSSQNTME to query the access list of a network,

•
SSSVMAKE to create a VSwitch without any members,

•
SSSVDEL to delete a VSwitch,

•
SSSVDET to detach a guest from a VSwitch,

•
SSSQNSS to query a shared segment (not currently used in our program),

•
SSSFNDST to find a valid page range for a saved segment,

There are a number of common idioms that were necessary to these scripts work with our project, such as: if a target guest is not active, we XAUTOLOG it without IPL, perform the action, and force it off; we have our input parameters separated by a hexadecimal zero because that is how the existing scripts have to be sent to the server; finally, we have our return strings separated with four bytes because the old SMAPI server sent back the length of each of the return strings (passed through EBCDIC to ASCII translation) before the string.

2.1.2 SMAPI Wrapper

The SMAPI wrapper library takes each of the SMAPI calls that our program uses and converts them into a Java function. At the top of the file are constants for the short name of each SMAPI call. Most of the calls do little processing of the data, they take in the parameters, and return exactly what they get from the call. Some of the parameters are set by our program, this is the layer where default parameters are put into the function. Each Java function in the wrapper library calls two functions: ConnectRequest (or in some cases ConnectRequestRAW) and ErrorCheck. ConnnectRequest:

1.
opens a socket,

2.
pads the parameters,

3.
sends the request,

4.
receives the return string,

5.
closes the socket,

6.
tokenizes the return string on the length delimiters, and

7.
returns a LinkedList of these tokens.

ErrorCheck reads the return code and reason code, compares it to known return codes and throws exceptions when appropriate. The exceptions are all subclasses of SMAPIException, which is defined in the smapi folder.

2.1.3 Tasks Library

The ZVMTasks layer is where much of the processing of the data is done. Here is where the tasks are divided up into their SMAPI calls and the returned data is put into useful format. Many of the tasks still pass through with relatively little processing. Usually if a function (such as VSwitch Connect) has both a static (DirMaint under the default setup of SMAPI, though it doesn’t effect LIVE) and dynamic version, we will call both SMAPI versions. If the target guest isn’t active, the tasks layer catches the ImageNotActiveException thrown by the dynamic call and silently ignores it. This ensures that the change will take place as soon as is possible, but also be permanent. If a SMAPI call throws an unexpected exception, the tasks library will catch it and rethrow it wrapped in a ZVMTasksException. (The only exception that originates in tasks is NoCommonAddressFound, thrown when findLowestAddress fails.)

Two methods in the tasks layer that involve a substantial amount of logic are cloning guests and finding the lowest common free virtual address amongst several guests. Both of these involve several supporting functions and a fair amount of parsing.

2.1.4 Threaded Tasks Library

In order that functions in the tasks library can be executed independently of the time span of a request, they need to be started in a separate thread. The threaded tasks library provides this functionality.

There are several building blocks in the library:

•
ThreadedUserAction is the base class for all of the actions. It provides a number of bookkeeping services such as tracking the status of the task (in progress, complete, error, etc.), updating the ActiveThreadsInfo instance passed into init with the state, providing easy access to the cache and a ZVMTasks object, et cettera. After the thread is started and the bookkeeping is done, ThreadedUserAction calls the abstract method runImpl. This function must be overloaded by the actual tasks, and should perform the action.

In addition, it provides the abstract methods description and rawResult. description provides a user-friendly description of what the thread is doing. rawResult returns the result of the function in a format that’s most convienient (but, of course, as an Object). There’s also a method result, but typically subclasses needn’t override this.

Finally, to tell ThreadedUserAction’s bookkeeping methods how the task went, there are several setState functions. However, typically ThreadedUserAction handles the setting of states correctly, and subclasses needn’t call any.

•
Runner is a subclass of ThreadedUserAction that more or less creates a composite pattern for threaded tasks (see Design Patterns, Gamma, et. al., 1995). They are containers for other threaded tasks that, when run themselves, will run their contents. There are two types: SerialRunner is created for tasks that are necessarily sequential, and will abort future tasks if one step fails; ParallelRunner is created for tasks that are parallelizable, and will run a specified number of sub-tasks at once.

Runner provides the schedule method to add a threaded task to the runner. Either runner will display an error in the status page if any of their subtasks have an error.

•
ActiveThreadsInfo objects keep track of what threads are currently active. One object is associated with each session. They track a list of in progress threads, completed threads, and “recently” complete threads (i.e. those that have completed since the previous function call).

•
ThreadInitInfo simply encapsulates all of the information a generic ThreadedUserAction needs for bookkeeping purposes in one object. This avoids having to change function signatures if more information should be added.

Finally, the ThreadedZVMTasks class contains a number of static inner classes that wrap each of the methods of ZVMTasks. Most are very simple.

2.2 Front End

2.2.1 Struts

The bulk of this package is the collection of actions. It’s necessary to have at least a basic understanding of how Jakarta Struts operates (mapping URLs to actions, form beans, etc.) to fully understand this code; for more information see the Struts documentation at http://struts.apache.org, or any number of other introductions. (http://www.coreservlets.com has a number of very good slides.)

However, a very general overview is that when a request comes in for a URL, Struts looks at the configuration file struts-config.xml to see if it matches any “action mappings” specified within. If so, it calls a method specified in the configuration. This action then forwards the request to a “forward” that’s also specified in struts-config, usually a JSP that actually displays the information to the user.

All of our code that is called by Struts (i.e. is pointed to by an action mapping) is in the package live.struts.actions. They all extend the Action class provided by Struts (though most indirectly). However, while all of our actions are subclasses of Action, almost all directly inherit from either DisplayAction or SwitchedAction, both of which extend LIVE’s CheckedAction. These classes do a lot of leg work that’s common to almost all page loads.

DisplayAction is used when the user is merely querying information, and has one method (displayPage), which is called for any kind of request. For mutating requests however, a different approach must be taken. These requests should only be accepted if submitted using HTTP POST, so LIVE overloads the action classes and URLs: if a GET request is submitted, the action will display a form to the user to collect the information needed to perform the action, and if the request is POSTed, the action will actually perform the task. This logic is implemented by the SwitchedAction class, which adds the performAction method. All but the login action extends one of these two classes.

There are also a number of classes that extend the Struts ActionForm. These are used to gather information about the HTML forms the user fills out in an easier-to-access manner than reading request parameters in each action. In addition, there’s a validate method that checks to be sure that the submitted data is well-formed; if not, SwitchedAction sends the form back with an error message explaining what is wrong. (CheckedAction doesn’t perform the validation because forms aren’t used for anything but SwitchedActions.)

There are again a number of common tasks (such as reporting an error) that LIVE abstracts into a base class, in this case LiveForm. LIVE also departs from the convention usually demonstrated with ActionForms of doing all validation in validate, and instead checks the data in each setter method. The reason this is done is that a possible future improvement would be to display error messages next to the field that was malformed instead of in a clump at the top. This requires storing the field name in the ActionMessage object that holds the error. If the validation was done in validate this would require passing the field name as an explicit parameter, so increases the number of places the name is referred to. (It’s especially bad because the name is passed as a string, so a mistake wouldn’t be detected by the compiler.) However, if the validation is done in the setter method, the fieldname is available in the current stack trace, and LiveForm’s addError method uses this information to detect which field is invalid.

2.2.2 JSP and Tiles

LIVE uses Struts Tiles for page layout. Tiles are a way of setting up a website with a common layout without duplicating the layout code. Conceptually, each page that is actually displayed is associated with a layout and a number of parameters which describe what the layout should contain. Unlike most template-based approaches (such as server-side includes), in which each page includes common headers, footers, and other elements, the layout itself is stored in a separate file. Because of this, it’s possible to more drastically change the look and feel of a website easily.

The tiles are all defined in WEB-INF/tiles-defs.xml. For each page in the main UI, there are two tile definitions, one for that page and one for the associated help page. (This document refers to the former as the “primary” definition.) The name of the primary definition is category.page.page, and the help definition is category.page.help. The only differences are the base layout that it uses — the primary page has a full banner at the top, while the help pages have a much smaller header — and the content.

The layout files are located in WEB-INF/tiles, the primary pages in WEB-INF/tiles/pieces, and the help pages in WEB-INF/tiles/help.

The path attribute of action mappings in WEB-INF/struts-config.xml can contain the name of a tile definition instead of a URL, in which case that tile definition is loaded.

Note on restrictions/limitations: If the primary definition doesn’t end with “.page”, no “help” link will appear in the title bar. If it does end with “.page” but there is not a corresponding “.help” definition, the link will appear but will display an error if loaded. Also, the help link will only appear if the page being displayed was forwarded to from a CheckedAction via an action mapping with a path that is a tile name. (Specifically, creating a JSP page that loads a tile and forwarding to that will result in the help link being absent.)

The primary JSP pages are pretty standard JSPs for the most part. Two things to note are that they read a lot of attributes that are set in the actions (it follows a classic servlets/JSP MVC model) and that many have scriptlets. While scriptlets are frowned upon when using such a model, we found them to be essentially unavoidable; going to the trouble of eliminating them would have been far more trouble than it’s worth. In particular, WEB-INF/tiles/pieces/actionStatus.jsp is almost entirely a scriptlet, because it uses a recursive function call to generate the HTML. Moving the Java code into an action would have required either generating the actual HTML code in the action or creating new DTOs to pass out information about each line. (Each field, how far the description should be indented, etc.) The LIVE JSPs may not be the cleanest code from a design perspective, but we feel it is the best solution for a project of this caliber from an engineering perspective.

For more information on JSPs, see http://java.sun.com/products/jsp/ or any number of other sources. (http://pdf.coreservlets.com has the complete text of an old edition book available.)

2.3 Universal

The following components are used across several layers.

2.3.1 Cache

The cache layer deals with caching that LIVE does. LIVE caches four types of data: guests, groups, networks, and shared segments. LIVE stores this information rather than querying it via SMAPI each time one of the list pages is loaded so that page load times are reduced and the SMAPI server doesn’t become overloaded.

The cache contains public methods to maintain the cache (adding and removing items, and, in the case of guests, changing their group), refresh the cache by querying the server, and perform a couple maintainence tasks such as querying the cache’s status.

Cache refreshes are performed the first time the user logs in, at periodic intervals thereafter (specified by the constant UPDATE_DELTA_MS in CacheThread), when the user clicks the “update cache” link in the header, and at the end of each threaded task if it completed successfully. (If there’s an error, no update takes place.)

2.3.2 Data Transfer Objects

The dto package contains classes that are used in several of the previous layers. Conceptually they are used in the same manner as is a struct in C. However, they provide accessor and mutator functions instead of allowing bare field access. (This is mostly done to allow them to be used with the Struts tags, which require method access, rather than for some lofty OOD ideal.)

3 Compiling

LIVE uses Apache Ant to compile the code, run the test suite, and generate Javadoc. For downloads and information on how to install and use Ant, please see http://ant.apache.org/.

Once Ant is installed, running the command ant compile from WEB-INF/src will compile LIVE.

3.1 Javadoc

We have tried to assure that every function in WEB-INF/src (excluding the test suite) has proper Javadoc documentation. You can generate the Javadoc with the command ant javadoc from WEB-INF/src. The documentation will be placed in WEB-INF/doc/api, where there will be an index.html file. Javadoc allows you to see all the methods and for any class and the arguments each one takes. For more information on Javadoc please see http://java.sun.com/j2se/javadoc/.

4 Adding to the Code

This section will detail the process via which an additional function could be added.

4.1 Adding a New SMAPI Wrapper Method

If LIVE’s SMAPI wrapper doesn’t contain a call for the function you need, you first have to write a new wrapper. Adding new methods is not difficult; you can model new calls after existing ones and only a few changes should need to be made. To add a function to the wrapper library, add a method in SMAPI_Interface. The method should have arguments that match the SMAPI call itself, minus any defaults that you want. Then make a call to ConnectRequest, passing in the function name and a concatenated string of the SMAPI call’s parameters separated by spaces. If the call’s arguments may contain spaces, you should use ConnectRequestRAW and separate your parameters with the line terminator character (the constant B_LINETERM). The connect function will return a LinkedList of tokens from the SMAPI server (tokenized on the four-byte binary length field), with the first two elements being the rc and rs. The final step, assuming the call is to either a standard SMAPI function or one that uses the same return and reason codes, is to call errorCheck, passing in a string with the function name (added to any error it finds and later displayed) and your rc and rs. errorCheck will return normally if there was no error and throw an exception if there was an error.

The method nullRequest is heavily documented; refer to it for any additional clarification.

4.2 Adding a New Task Method

After you’ve added your function to the SMAPI wrapper library you will want to create a task that uses it. LIVE tasks are stored in ZVMTasks.java; you may wish to add your task to this class or create your own. The tasks library serves a couple purposes. First, it provides a set of functions that perform a task that is meaningful to users. (An individual SMAPI call often isn’t unless paired with other calls. For instance, IMAGE_LOCK is something the LIVE interface doesn’t let the user do explicitly, but that the tasks library uses to do a complete task.) Second, the tasks layer does any data processing and and type conversions that are necessary. Third, it is also where it does any formatting of return information that’s appropriate. To conform with the convention of existing code, any new methods should catch any SMAPIException thrown by the SMAPI call and throw a ZVMTasksException with the caught exception as a cause. (This assumes that the exception represents an error you wish to propagate rather than fix or ignore.) This interface allows code calling the tasks method to not be dependent on the SMAPI exceptions, but still allows it to access information as to the root cause if it is needed.

4.3 Adding a New Threaded Task

Next you will need to add a function to the threaded tasks layer, either in your own file or ThreadedZVMTasks.java. Create a class that extends ThreadedUserAction (which, in turn, extends java.lang.Thread). Because the method that starts the new thread (start) takes no arguments and returns nothing, any information that the thread will need must be stored in instance variables before it is started. There are a number of ways to do this, but LIVE usually takes the approach of passing the information in constructor parameters. (No default constructor is provided, so this way it is impossible to avoid providing required information.) At some point your thread must call init in ThreadedUserAction, so you’ll need to accept an object of type ThreadInitInfo to pass in. (Again, LIVE does this during construction.)

The next step is to implement the abstract runImpl. This function shouldn’t do any actual processing, but just call the tasks method you created earlier. If the tasks function you’re calling is in ZVMTasks, you can use the protected field tasks set by ThreadedUserAction’s init. The thread should store any return value in another instance variable. (Exceptions are caught by ThreadedUserAction’s run method.) Next, implement description so it returns a user-friendly description of what is occuring; this will be displayed on the status pages. Finally, implement rawResult so it returns the result of getException or the return value from the tasks method (if any), whichever is not null.

4.4 Adding a New Servlet (Action)

In order to respond to a user’s request to the server, code you write in an application based on Struts should be in an action class. This section covers the construction of this class. When implementing a new action, you must decide if the action is simply a query to display information to the user or if it is one that actually changes the state of the z/VM system.

4.4.1 Creating a Querying Action

There are five steps to creating an action that makes either no SMAPI calls or only queries:

1.
Create an Action Mapping. Within WEB-INF/struts-config.xml add a new “action mapping” based on the one for the path /Guests/List. Change the path to whatever you want (the actual path will add either a .do or .page as an extension) and the name and path of the forward to something more appropriate. (The name is essentially a key to the path.) Change the type to the fully-qualified class name of the action class you will write next. If you think other actions may want to forward to the one you are writing when they are complete, add an entry to the global-forwards element.

2.
Extend DisplayAction and Implement displayPage. Create a new class that extends DisplayAction, an abstract class representing an action that only gathers information to send to the user. Write the displayPage method, which is called whenever a user requests the URL that is associated with the class by struts-config.xml. This function should get any request parameters it needs (the javax.servlet.http.HttpServletRequest object that is traditionally passed as a parameter directly is wrapped in the CheckedInfo.ActionInfo object that displayPage accepts.

3.
Perform the Query. It then retrieves any information from the SMAPI server, cache, or whatever source the desired data comes from. If querying the SMAPI server directly, you can do it through either a threaded tasks call which is joined indefinitely
 or a tasks call (or even a SMAPI call); LIVE uses the convention of only using threads to be consistent, but there’s no technical reason a call to a lower layer wouldn’t work.

If you use a ThreadedUserAction, you should pass in the threadInfo field of the ActionInfo object. This contains information about the user’s login name and password, the host to connect to, and the session’s ActiveThreadsInfo object.

4.
Store Attributes in the Request Object. The action needs to send the JSP page the results of the query, and it does it by passing them in the request object as attributes. Store them in the request object using setAttribute, or setRequestAttribute method of ActionInfo. (In the JSP pages you’ll read them using getAttribute.)

You can sort of think of JSP pages as functions that display something to the user, with arguments passed in as attributes.

5.
Forward to a JSP. The final step is to return an ActionForward that specifies where to go. Rather than make one yourself from a URL, call the findForward method of the ActionInfo parameter, passing in the name of a forward specified in struts-config.xml. Note that you can pass in the name of a forward defined in either the specific action mapping or global-forwards section.

Now all you have to do is create the JSP you’re forwarding to (see section 4.5), add links to the path you specified in the action mapping (plus a “.do” or “.page” extension) in an existing page and you’re done!

4.4.2 Creating a Modifying Action

The situation is a bit more involved if you want to create an action that makes modifications. There are two reasons for this. First, usually the user needs to enter some information into a form first, and that data needs to be gathered and validated. This, along with any logic required to generate the form, is considered part of the same process. Second, actions that change things should only be activated if the request is submitted with HTTP POST and not with HTTP GET. This is both to keep with the consistency of what the HTTP spec recommends and also to allow the browser to warn the user (with a pop-up dialog box) before resubmitting a potentially dangerous request.

The process does share much with the query case however. The differences are enumerated below.

1.
Create an Action Mapping and (optionally) a Form Bean. While it’s possible to do this part the same as before, the increased need for input parameters necessitates input validation, form redisplaying in the case of an error, etc. To reduce unnecessary code duplication (especially in the action), LIVE uses Struts ActionForms, and it’s recommended for extensions. Creating a form object is later on this list, but the choice to use one affects the action mapping. If you choose to use a form, base the mapping on the one for the path /Login, and additionally change the name to one more fitting. Finally, create a new entry in form-beans with the same name as in the action mapping and the fully-qualified name of the ActionForm you’ll create.

(Do NOT use validate=“true” with any SwitchedAction; doing so will lead to infinite recursion. SwitchedAction performs the validation rather than Struts. See the comments in SwitchedAction for more detail.)

2.
Extend SwitchedAction and Implement displayPage and performAction. displayPage works exactly as before, and is called when a HTTP GET request is received. Some pages require information gathering even to display the form, and it should be done here.

3.
Perform the Task. In displayPage this is exactly the same as before. In performAction things are a little different. Instead of using getRequestParameter to get input parameters, if you are using an ActionForm you should retrieve that from the form field of the ActionInfo parameter. Second, instead of joining the threaded task indefinitely, you will want to join it for the default timeout interval. This is stored in the constant live.actions.Util.TIMEOUT_MS.

4.
Store Attributes in the Request Object. This doesn’t change from before.

5.
Forward to a JSP or another action. In displayPage this is exactly the same as before. In performAction, the heuristics are a bit different. Chances are that you want to forward to another action rather than a JSP, although this doesn’t have to be the case. All LIVE actions have forwards defined in the global-forwards section of struts-config.xml, and you can use those just as you would a forward to a JSP. However, there’s another difference. Instead of using ActionInfo.findForward, use the smartForward. This takes an additional thread parameter, and forwards the user to the specified forward, task timeout page, or task error page depending on the state of the thread.

6.
Optionally Subclass ActionForm. An ActionForm is just a class that contains fields that match the fields of an HTML form, and has accessors and mutators for each of those fields. When using a form bean, for each request parameter Struts automatically populates the ActionForm using the setParameter method. You can then call the appropriate accessor to get at the parameter in a nicer way.

Provide validation for your form by implementing the validate method. Optionally (though strongly recommended) you can extend LiveForm rather than ActionForm and validate the parameters in the mutators, recording any errors using addError. See the package live.struts.forms for examples.

7.
Optionally use the Struts HTML Tags in Your JSP. If you are using a form bean and ActionForm with your action, you can optionally use the Struts HTML JSP tag library to gain additional benefits in conciseness, clarity, and correctness while writing your JSP.

For more information on form beans, ActionForms, and the Struts HTML tags, please see any Struts reference.

4.5 Creating a New JSP

The usual sequence of events for creating a new JSP page is as follows:

1.
Add Tile Definitions for the New Page and Corresponding Help. In WEB-INF/tiles-defs.xml, add two new tile definitions — one for the page and one for help — based on guests.list.page and guests.list.help. Replace the titles with one more fitting, and the content with URLs to pages you will create. Replace the root definition name with one more fitting, but keep the “.page” and “.help” endings, and keep the root the same. You can also change the “extends” property of the page definition to “.miniLayout” if you don’t want the navigation bars to show up.

2.
Create a Page at Each of the Locations Specified. The contents of both pages will be inserted into a template inside an HTML div tag, so you shouldn’t include the html, head, body, etc. tags.

In the “primary” page (probably inside WEB-INF/tiles/pieces) you should write what is actually to be displayed to the user. You can use the Struts HTML tags if you’re using a form bean, and it’s strongly recommended that you use the Struts rewrite tag to render URLs in any case. (Rewrite performs two tasks: rewrites the URL if necessary to include the JSESSIONID if cookies aren’t enabled, and allows you to enter webapp-relative URLs, e.g. WEB-INF/tiles instead of WEB-INF/tiles. Note that forwarding can break truly relative URLs, and you need to be very careful if using them.)

Be sure that if you are calling an action that changes state you POST to it from a form. (See the code for examples of how to do this with the appearance of normal links in browsers that support Javascript.)

3.
Finally, create a help page (probably inside WEB-INF/tiles/help) to be displayed when the user clicks the help link in the menu.

5 JUnit Test Cases

LIVE uses JUnit as a testing tool. It provides a way to create an automated test suite in Java. In Windows you can run the test suite by running the command ant test-all-gui from the directory WEB-INF/src. To run specific parts of the test suite just substitute the Java package name (e.g. “smapi” or “tasks”) for “all”. For more information on JUnit, please visit the JUnit site at http://www.junit.org.

The LIVE tests assume that:

•
The guests LIVET000, LIVET001, Steve1, OP1 and OPERATOR exist,

•
VSMSTEVE is a guest authorized to issue SMAPI commands,

•
None of the networks defined in our test suite already exist,

•
No user has the name BADUSER, and

•
DASD is available in a group called LVDASD.

5.1 Test Case Layout

All our test cases are located in the folder WEB-INF/src/tests. The cases consist of cache, dto, smapi, threads, and zvmtasks. In addition there is a file testAll.java that runs all of the above.

You can add to the test suite by adding files to the test folders. These new classes must extend TestCase and contain the methods setUp (which should set up the needed objects for the whole file), teardown, main, and suite; the contents of these methods can be copied from another file. To get your new tests to run you should add the class to the addTests method in that folder’s testAll.java.

5.2 Unit Testing Problems

Our test suite is very incomplete, and should really only be used as an example of how a JUnit test suite works. No tests are very thorough, very little is tested above the tasks layer, and none of the actions or JSPs are tested.

There are testing frameworks that can be used for more thorough testing (such as HttpUnit), but writing a full set of test cases would take a substantial investment of time.

�This is okay since the socket calls will time out and your action will get an error back from the thread rather than waiting forever.

