

z/VM 6.4 Performance Update

Version 2018-02-18.1

Brian K. Wade, Ph.D. IBM z/VM Performance bkw@us.ibm.com

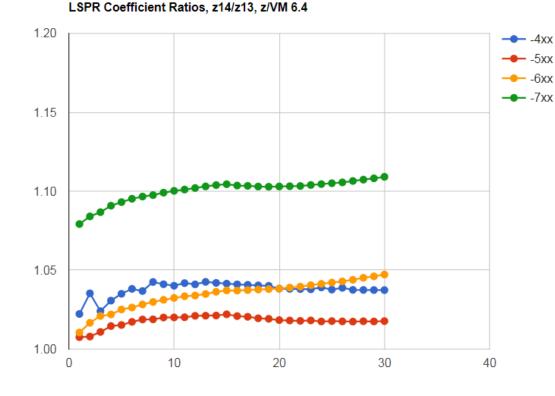
Credits

- Your z/VM 6.4 Performance team:
 - Dean DiTommaso
 - Bill Guzior
 - Steve Jones
 - Virg Meredith
 - Bernd Nitsch
 - Dave Spencer
 - Marek Szermutzky
 - Eric Thornton
 - Xenia Tkatschow
 - Brian Wade
- The z/VM 6.4 Performance Report:
 - Dean DiTommaso
 - Steve Jones
 - Bob Neill
 - Patty Rando
 - Ann Shepherd
 - Dave Spencer
 - Eric Thornton
 - Xenia Tkatschow
 - Brian Wade

- Your z/VM 6.4 Performance Toolkit team:
 - Maxim Bochagov
 - Victor Boyarintsev
 - Rob van der Heij
 - Don McGlynn
 - Bob Neill
 - Mikhail Podmarkov
 - Ann Shepherd
- This chart deck:
 - Steve Jones
 - Xenia Tkatschow
 - Brian Wade
 - Eric Thornton
- Thanks also to anyone we inadvertently failed to mention

Agenda

- z/VM 6.4 on z14, performance
- z/VM 6.4, regression performance
- Performance of new functions
 - Dynamic SMT
 - Memory scaling and the 2 TB support limit
 - HyperPAV and zHPF paging
 - CP scheduler improvements
 - Impact of the changed default for the SSL cipher
 - RSCS TCPNJE encryption
- z/VM 6.3 performance APARs that are in z/VM 6.4
- z/VM 6.4 performance APARs
- Small performance fixes in z/VM 6.4


- z/VM Performance Toolkit changes
- z/VM 6.4 1Q17 performance update
 - Concurrent I/O support for XIV EDEVs
 - Dump channel program improvements
 - CRYPTO APVIRT support
 - Encrypted paging
 - Pause-reduced garbage collection
- z/VM 6.4 3Q17 performance update
- z/VM 6.4 4Q17 performance update
- z/VM 6.4 1Q18 performance update
- Summary
- Appendix: Monitor record changes

z/VM 6.4 on z14, Performance

z/VM 6.4 on z14

Per-core capacity statements:

- 1. From z13 non-SMT to z14 non-SMT is in the range of 6% to 17% (high end did better) with an average of 10%
- 2. From z13 SMT-2 to z14 SMT-2 is expected to be in the neighborhood of 15%
- 3. From z14 non-SMT to z14 SMT-2 is expected to be in the range of 10% to 40%, with an average of 25%

Sources:

- 1. <u>https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/lsprITRzVMv6r4?OpenDocument</u>
- 2. https://www.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=ZSD03046USEN&

CPs

Ratio, z14/z13

z/VM Support for the z14

Refer to <u>http://www.vm.ibm.com/service/vmreqz14.html</u>

Regression Performance

z/VM 6.4 Regression Performance

- We ran about 120 scenarios:
 - Some non-SMT, some SMT-2
 - Some using Apache static file web serving in various ways
 - Some using our VIRSTOR load generator
 - Some using DayTrader (a WAS and DB/2 workload)
 - Some storage-rich, some storage-constrained
 - Some 1-core, some 3-core, some mid-sized, and some as large as 64-core
 - Most on z13, but some on zEC12
- z/VM levels we used:
 - Base runs were done on z/VM 6.3 plus all closed PTFs as of March 31, 2016
 - Comparison runs were done on the z/VM 6.4 code freeze driver of August 15, 2016
- Typical measures of accomplishment:
 - ETR (external transaction rate): units of application work per second
 - ITR (internal transaction rate): what ETR would scale to if the LPAR could run this workload completely busy
- Our findings:
 - ETR ratios, comparison/base: mean (μ) = 1.10, standard deviation (σ) = 0.24
 - ITR ratios, comparison/base: $\mu = 1.15$, $\sigma = 0.37$
- Notes:
 - Storage-constrained workloads got the benefits of the storage management and paging line items
 - VSwitch-intensive workloads got the benefits of some things we fixed along the way
 - Most other workloads had ratios close to 1

New Function

Dynamic SMT

- In z/VM 6.3 1Q15, the SMT level non-SMT, SMT-1, or SMT-2 was chosen in the system configuration file
- In z/VM 6.4, if in the system configuration file you chose SMT-x, you can then switch between SMT-1 and SMT-2 without an IPL
- We measured z/VM 6.4 SMT-1 compared to z/VM 6.4 non-SMT and found no difference
 - So you can feel confident about IPLing z/VM 6.4 in SMT-1 and then using z/VM 6.4's new command CP SET MULTITHREADING to try SMT-2
- Mixed-engines note: it's still only the logical IFL cores that run in SMT-2
- Remember the z/VM limits on logical *cores*:
 - Logical cores are what you define in the LPAR's activation profile
 - Non-SMT: up to 64 logical cores are permitted in the LPAR
 - SMT-x: only the first 32 logical cores of the LPAR will be used (the rest are ignored)
- Remember: to switch between non-SMT and one of the SMT modes, you must change the system configuration file and re-IPL
- Let us know how this works for you
- Remember to collect application performance data and MONWRITE data

Non-SMT, SMT-1, and SMT-2

Assuming the LPAR is entirely IFL:

Non-SMT:									
Core IDs	->	0	1	2	3	4	5	6	7
CPU IDS	->	0	1	2	3	4	5	6	7
SMT-1:									
Core IDs	->	0	1	2	3	4	5	6	7
CPU IDS	->	0	2	4	6	8	Α	С	Е
SMT-2:									
Core IDs	->	0	1	2	3	4	5	6	7
CPU IDS	->	01	23	4 5	6 7	89	AB	CD	ΕF

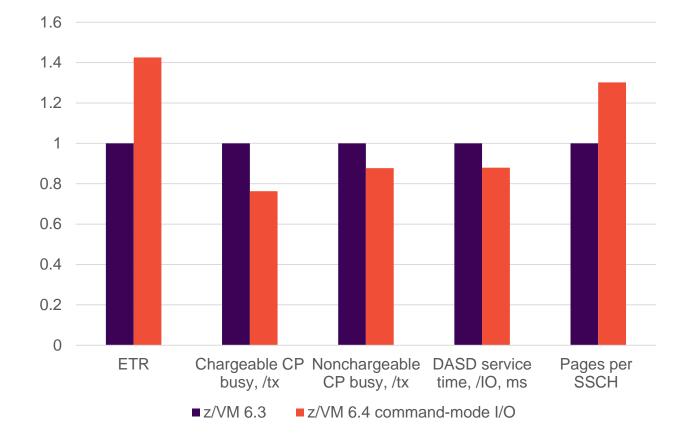
When you use CP SET MULTITHREADING to change the SMT level, you will see logical CPUs come and go.

Memory Scaling and the 2 TB Limit

- z/VM 6.4 raises the supported central storage limit to 2 TB
- To get there we needed to do some things
 - We changed the frame manager to make it more open to concurrency
 - Central storage is now divided into zones
 - There is a spin lock associated with each zone
 - For starting point, there is an affinity of logical CPUs to zones
 - Frame returns can queue instead of waiting for the zone's lock
 - Frame manager can take reclaimable frames from the global available list without waiting for demand scan to do it
 - We changed allocations from PTRM (Page Table Resource Manager) address spaces so they are more amenable to concurrency
- These changes will be most relevant for customers trying to grow beyond 1 TB central, especially with large numbers of logical processors in the LPAR

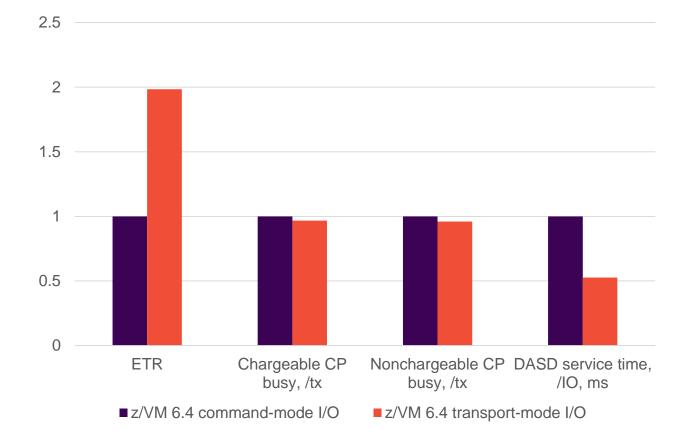
Memory Scaling: Effect of the Changes

- Workloads we used:
 - A stress workload that was specifically crafted to be extremely difficult for the frame manager almost no guest (SIE-2) content, high MP level, and very difficult page reference patterns
 - An Apache-web-serving workload that was much more like what a customer's paging-intensive workload might look like
- Findings:
 - The stress workload went from about 54 processors' worth of spin lock time, with 48 processors' worth in real storage locks, to about 8 processors' worth of spin lock time with almost none of it in real storage locks.
 - The Apache workload showed improved scaling beyond 1 TB of central: about 2% to 4% improvement in ETR, and about 2% to 3% improvement in ITR, compared to z/VM 6.3
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640mcr2t.html</u>

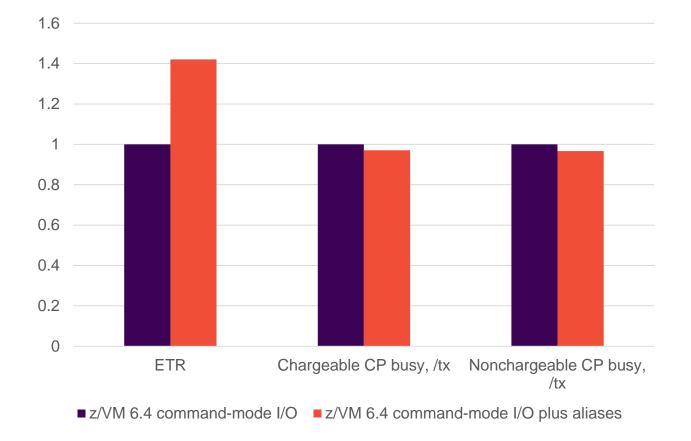


Paging Improvements

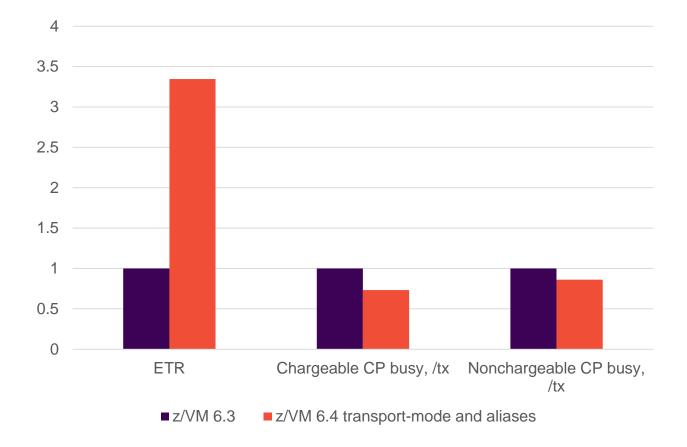
- General improvements were made to the paging subsystem
 - I/O payloads increased
 - Block paging efficiency increased
- The paging subsystem can now use zHPF (High Performance FICON, aka transport-mode I/O)
 - CP SET PAGING HPF {ON|OFF}
 - To use zHPF for paging, the FICON has to be FICON Express8 or later
- The paging subsystem can now use HyperPAV aliases
 - CP SET PAGING ALIAS {ON|OFF}
- The improvements were evaluated using a memory-thrashing workload based upon our internal tool called "Virtual Storage Exerciser" (VIRSTOR)
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640hpp.html</u>



Paging: Effect of General Improvements



Paging: Effect of zHPF I/O (SET PAGING HPF ON)



Paging: Effect of HyperPAV (SET PAGING ALIAS ON)

Paging: All z/VM 6.4 Improvements in Play

Paging: Should I Exploit HyperPAV Aliases?

- Have I configured extra paging volumes just to achieve paging I/O concurrency, or rather did I really need the space?
- Am I forced to use large (e.g., mod-27) paging volumes, so I really do need >1 I/O in flight to each paging volume concurrently?
- Does Perfkit FCX146 AUXLOG show evidence of queueing?

Does Perfkit FCX109 DEVICE CPOWNED show evidence of queueing? – (Note: on z/VM 6.3, paging I/O queueing does not show up in FCX108)

- Does Perfkit FCX109 DEVICE CPOWNED show elevated MLOAD values?
 - "Good" values here are around 1 msec
- Remember to inspect INTERIM reports or log-style reports to look for peaks that might otherwise go unnoticed
- Classic guidance on paging configuration still applies:
 - Use all the same model of volume (e.g., -9, -27)
 - Spread across chpids, across LCUs, across ranks within real controllers, and across real controllers

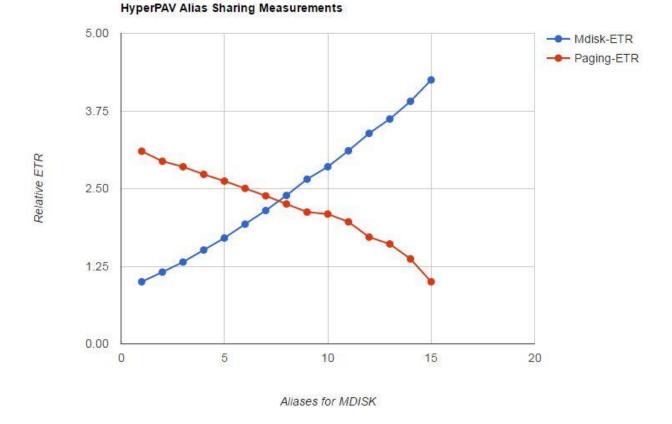
Paging: Alias Sharing Within an LCU

- During the design phase there was concern that within a given LCU, paging I/O's use of aliases could dominate the use of aliases, thereby preventing minidisk I/O from using aliases
- The CP SET CU command was changed to let the administrator specify relative shares for paging I/O and for minidisk I/O
 - Corresponding change to CU statement of system configuration file
- These relative shares work just like LPAR weights and z/VM relative shares
 - Entitlement, excess distribution, and so on

Suppose the LCU has 15 SYSTEM-attached HyperPAV aliases

Use	Share	Entitlement		
Paging I/O	100	15 * 100/300 = 5		
Minidisk I/O	200	15 * 200/300 = 10		

- Perfkit isn't ready yet, so for now use the HPALIAS package:
 - http://www.vm.ibm.com/download/packages/descript.cgi?HPALIAS


Paging: Alias Sharing Between Minidisk I/O and Paging I/O

Hybrid workload:

- a. A farm of guests protected by SET RESERVE, intensive on minidisk I/O
- b. A farm of guests running a pagefault-intensive storage exerciser
- c. All DASD in a single LCU

We ran 15 measurements.

We used CP SET CU to "steer" the power of the HyperPAV aliases from minidisk I/O to paging I/O.

Paging: Balancing Alias Use

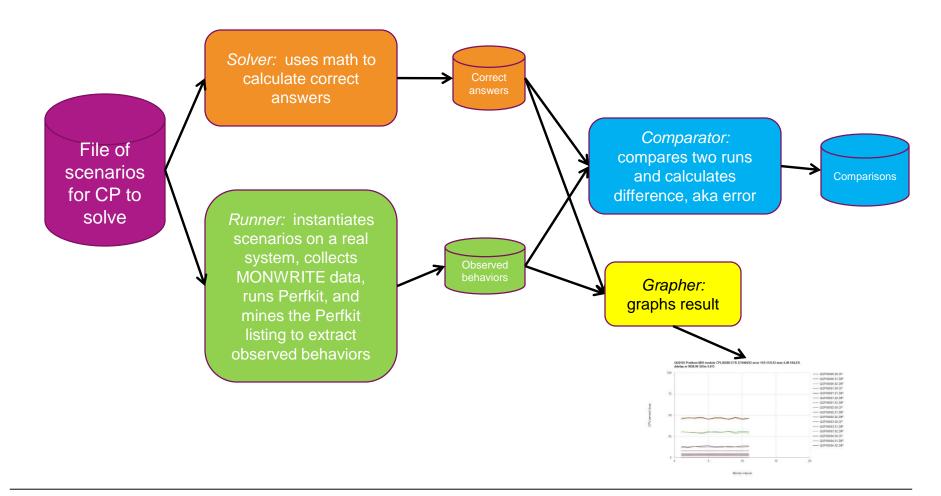
- FCX108 shows I/O queueing activity (sampled)
- The HPALIAS package shows alias shares, alias usage, and I/Os queued (continuously tracked)
- Only you know which of your application(s) might be suffering because of an alias imbalance

Perfkit FCX108 DEVICE excerpt:

• •	•			•	•	•	-	•	-	•	•	
< Device Descr>	Mdisk	Pa-	<-Rat	te/s->	<		Гime	(msec))	>	Req.	
Addr Type Label/ID	Links	ths	I/0	Avoid	Pend	Disc	Conn	Serv	Resp	CUWt	Qued	
>> All DASD <<			183	.0	.232	.003	.934	1.17	.826	.078	.34	
BE0E 3390-9 QRMD00	32	4	2149	.0	.229	.003	.193	.426	6.57	.000	13.2	minidisk
BEOF 3390-9 QRMD01	32	4	2142	.0	.230	.003	.194	.427	7.04	.000	14.2	minidisk
BE12 3390-9 ATP003	0	4	748	.0	.233	.003	1.06	1.30	1.30	.101	.00	paging
BE14 3390-9 ATP003	0	4	743	.0	.233	.002	1.07	1.30	1.30	.103	.00	paging
BE1F 3390-9 ATP000	0	4	742	.0	.233	.002	1.07	1.31	1.31	.102	.00	paging
BE1A 3390-9 ATP003	0	4	741	.0	.232	.001	1.08	1.31	1.31	.101	.00	paging

HPALIAS tool excerpt:

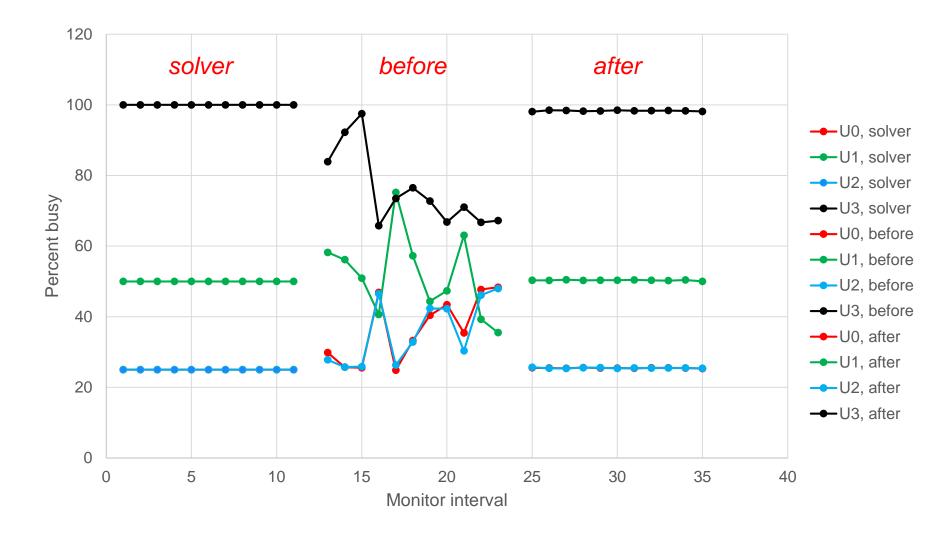
	- 22TD	P00 I	туре	_Share	_EntMnt_	_InUse	_Queued_
2016-09-01,22:02:18	0600	0	MDISK	20	2.00	2.37	27.18
2016-09-01,22:02:18	0600	0	PAGING	140	14.00	13.63	5.19
2016-09-01,22:03:18	0600	0	MDISK	20	2.00	2.29	27.26
2016-09-01,22:03:18	0600	0	PAGING	140	14.00	13.71	6.18
2016-09-01,22:04:18	0600	0	MDISK	20	2.00	2.32	27.21
2016-09-01,22:04:18	0600	0	PAGING	140	14.00	13.68	6.31
2016-09-01,22:05:18	0600	0	MDISK	20	2.00	3.99	25.30
2016-09-01,22:05:18	0600	0	PAGING	140	14.00	12.01	3.78
2016-09-01,22:02:18 2016-09-01,22:03:18 2016-09-01,22:03:18 2016-09-01,22:04:18 2016-09-01,22:04:18 2016-09-01,22:05:18	0600 0600 0600 0600 0600 0600	0 0 0 0 0	PAGING MDISK PAGING MDISK PAGING MDISK	140 20 140 20 140 20	14.00 2.00 14.00 2.00 14.00 2.00	13.63 2.29 13.71 2.32 13.68 3.99	5. 27. 6. 27. 6. 25.



CP Scheduler Improvements

- In VM65288 a customer reported CP did not enforce relative share settings
 - For example: four guests, equal relative share, all infinitely hungry, should get equal amounts of CPU time, but they did not
- IBM answered the APAR as FIN aka fixed-if-next
- While developing z/VM 6.4 we studied the behavior of the scheduler and made several repairs
- In the next few charts we'll show you some scenarios
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640srp.html</u>

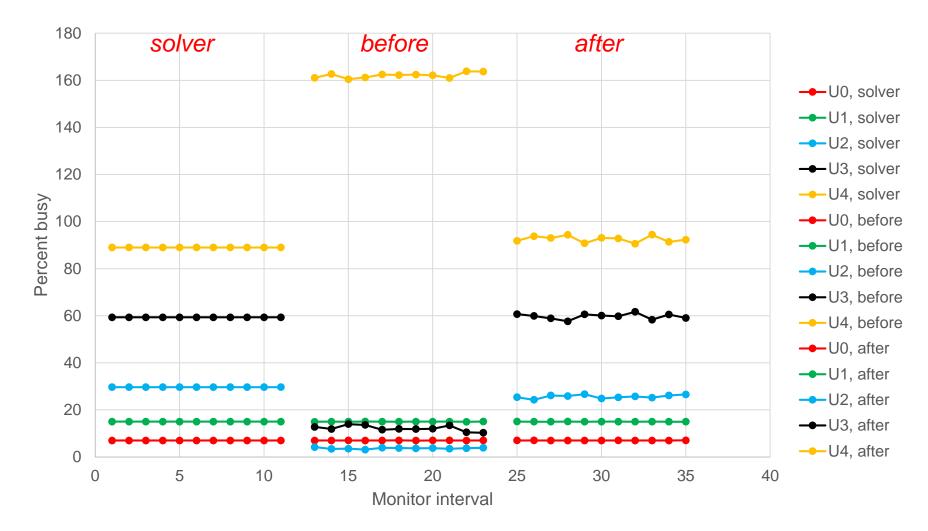
How One Tests This



Problem: Infinite Demand, Unequal Share

- LPAR has two logical processors, so it has 200% to give
- All four users want as much power as they can get
 - User 0 is relative 100
 - User 1 is relative 200
 - User 2 is relative 100
 - User 3 is relative 400
- Their utilizations should be in ratio 1:2:1:4
 - For a total of 200% this would be 25%, 50%, 25%, 100% (sum = 200%)
- Let's see what happened:
 - What the solver said
 - What happened before the fix
 - What happened after the fix

Infinite Demand, Unequal Share: Before and After


Problem: Distribution of Excess

- LPAR has two logical processors, so it has 200% to give
- Users 0 and 1 have relative 10000 but want almost nothing
- User 2 is relative 100 and wants all he can get
- User 3 is relative 200 and wants all he can get
- User 4 is relative 300 and wants all he can get
- CP should distribute User 0's and User 1's excess to Users 2, 3, and 4 in correct proportion

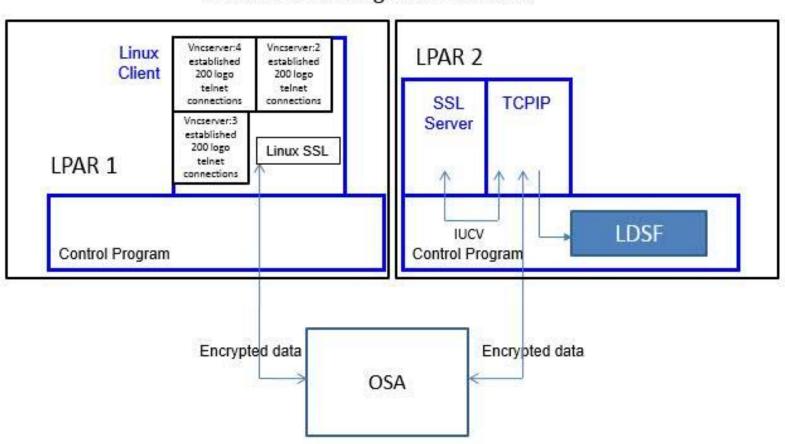
 Users 2, 3, and 4 each get their entitlement plus their share of the excess
- Let's see what happened:
 - What the solver said
 - What happened before the fix
 - What happened after the fix

Problem: Distribution of Excess

Changes to SSL

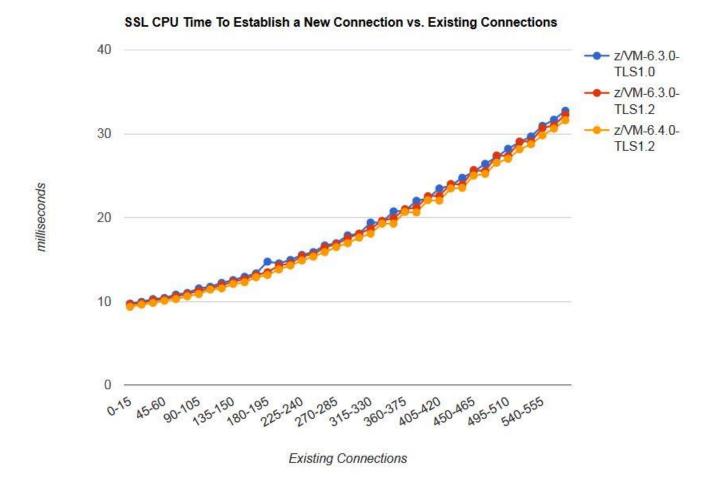
Which default settings changed?

z/VM	6.3	6.3 + APARs (1)	6.4
TLS	1.0	1.2	1.2
Cipher	RSA_AES_256	RSA_AES_256	RSA_AES_128_SHA256
System SSL	V1.13	V2.1	V2.2


Two scenarios studied:

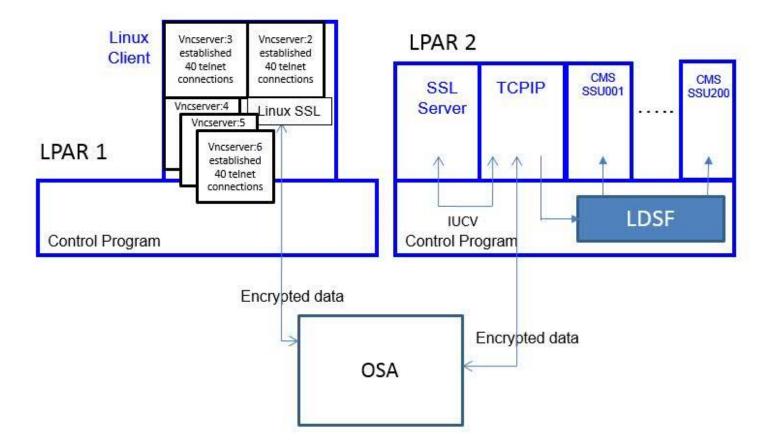
- 600 remote Linux Telnet connections established
- 200 remote Linux Telnet connections doing data transfer

(1) PI40702 to TCP/IP, VM65717 to CMS, and VM65718 to LE.


Changes to SSL: Establishing Telnet Connections

Secure Telnet Logo Connections

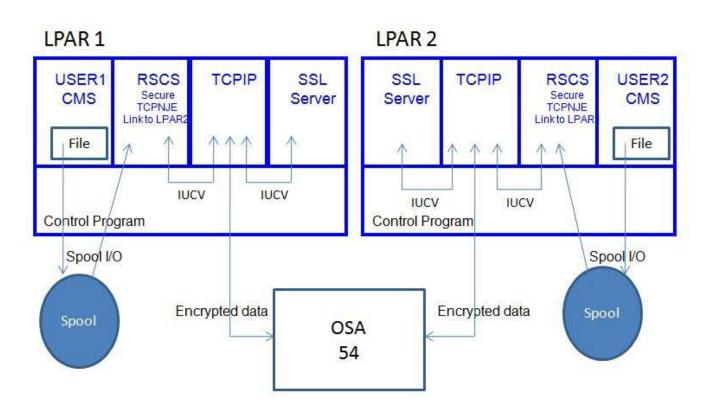
Changes to SSL: 600 Logo Connections Results



Ciphers used: TLS 1.0 was RSA_AES_256; TLS 1.2 was RSA_AES_128_SHA256.

Changes to SSL: Telnet Data Transfer

Secure Telnet Connections for Data Transfer



Changes to SSL: 200 Telnet Connections Doing Data Transfer

- With z/VM 6.3, results showed a 1.1% decrease in CPU/tx when changing the cipher from RSA_AES_256 to RSA_AES_128_SHA256
- With z/VM 6.4 and SSL V2.2, results showed a 13.6% increase in CPU/tx for the SSL server, compared to z/VM 6.3 and SSI V2.1. Most of the increase was observed within the SSL server. (emulation)
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640cip.html</u>

RSCS TCPNJE Encryption: What We Ran

Encryption of TCPNJE Connections

TCPNJE is the RSCS line driver that uses a TCP connection to move the data.

RSCS TCPNJE Encryption: What We Ran

• All measurements were completed on zEC12 with CPACF support

Case Number	Security	z/VM Level	SSL Version	TLS Protocol	Cipher (default)	Ratio, CPU/tx, incremental	Ratio, CPU/tx, since Case 1
case 1.	not secured	6.3 w/ VM65788	V2.1	na	na	1	1
case 2A.	secured	6.3 w/ VM65788	V2.1	1.0	RSA_AES_256	1.56	1.56
case 2B.	secured	6.3 w/ VM65788	V2.1	1.2	RSA_AES_128_SHA256	0.891	1.39
case 3.	secured	6.4	V2.2	1.2	RSA_AES_128_SHA256	1.105	1.54

- In table above, CPU/tx is summed over RSCS, TCP/IP, and the SSL server
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640nje.html</u>

APARs and Small Fixes

Performance-related APARs Against z/VM 6.3 Since 1Q15

- VM64587: VDISK pages not stolen aggressively enough
- VM64770: The read-in of guest PGMBKs at logoff was inefficient
- VM64890: A bad loop counter caused excessive CPU in MDC
- VM64941: Guest's view of storage key change bit sometimes wrong for IBR page
- VM65097: PGMBK prefetch not applicable when Diag x'10's are for single pages
- VM65101: IBR pages on GAL unnecessarily rewritten
- VM65189: Excess storage management work stacked on SYSTEMMP
- VM65199: Master CPU stuck doing SYSTEMMP work; some eligible CPUs not signalled to do SYSTEMMP work
- VM65420: Frames that should have been stolen from MDC were not being stolen
- VM65692: FII intercept bit set by mistake caused excess simulation overhead
- VM65709: MDC processing being done even though MDCinhibit flag was set
- VM65748: High Performance FICON features unavailable to guests

- VM65762: CP fails to deliver PCI thin interrupts to guests
- VM65794: MDC fails to work for RDEVs with device number > x'8000'
- VM65801: CP excessively redrives VSwitch uplink port
- VM65820: PGMBK reclaim exits without releasing lock, prohibiting further reclaim
- VM65824: SET MDC OFF for an RDEV inadvertently turned MDC back on
- VM65837: DASD recovery I/O queued at inopportune moment causes DASD I/O to stall
- VM65845: HyperSwap occurring at inopportune moment causes DASD I/O to stall
- VM65869: Excessive LOGOFF delay for QDIO-exploitive guests

These are all in z/VM 6.4.

Performance-related APARs Against z/VM 6.4

- VM65885 (1601): Perfkit needs deprecated HPF monitor fields
- VM65916: HiperSockets Guest LAN NIC lost initiative
- VM65992 (1701): HiperSockets performance issue on short busy
- VM65985 (1701): PRG004 or hang when MDC enabled for volumes used for z/OS guests
- VM66016: Abend during zHPF paging error recovery
- VM65644 (1701): SCSI monitor fields not filled
- VM65946: SECUSER output is slow
- VM65998 (1701): crypto polling too frequent
- VM65741 (1701): make all 3390-A eligible for MDC
- VM65886 (1601): CCW fast-trans incorrectly marked minidisk I/O as ineligible for HyperPAV aliases
- VM66026 : Monitor enhancements for HyperPAV and PAV aliases (went PE: also apply VM66036)

- VM65979: Removed unnecessary MDC purge done during HyperSwap
- VM65942: z14 support (includes new Monitor counters for priv ops by VCPU) (went PE: also apply VM66071)

Small Performance Fixes in z/VM 6.4

- Excessive SCSI retries: during IPL from a LUN, offline paths would cause delays. Fixed.
- Lock hierarchy violation: slowed down processing in VSwitch. Fixed.
- Storage leak in QUERY PROCESSORS: could slow the system if hit enough times. Fixed.
- Unnecessary VSwitch redrives: unnecessary redrives of bridge port or uplink port in some situations. Fixed.
- Unnecessary emergency replenishment: unnecessary frame table scans in some situations. The scans could hang the system. Fixed.
- Incorrect dispatcher settings for SMT: z/VM 1Q15 dispatcher accommodations made for SMT should have been in effect for only SMT-2. Fixed.
- Unnecessary calls to MDC steal: storage management was trying to steal frames from MDC even though it knew MDC had none. Fixed.

z/VM Performance Toolkit

z/VM Performance Toolkit: PTFs for z/VM 6.3 (1 of 4)

- VM65656: Perfkit has a CMS Pipelines input
 - Useful if you want to concatenate several MONWRITE files as a single Perfkit input
- VM65528: Support for Multi-VSwitch Link Aggregation
 - -New report: FCX317 GLONACT Global Networking Object Activity
 - -Changed reports
 - FCX155 MONDATA, counts new record
 - FCX185 IOCHANGE, changes for global VSwitch
 - FCX240 VSWITCH, same
 - FCX266 GVSWITCH, same
 - FCX267 EVSWITCH, same

- VM65699: New Function
 - -FCX215 FICON gets channel read and write speeds
 - FCX155 MONDATA now counts the events that happened after the last flight of samples
 - The whole family of wait-state reports (USTAT, etc.) has repaired headers
 - -Nod to SMT: "LPU" now changed to "Core" in many places
 - -FCX180 SYSCONF displays CEC tttt-mmm and MCI
 - -FCX179 SYSLOG computes user-exit %busy correctly

z/VM Performance Toolkit: PTFs for z/VM 6.3 (3 of 4)

- VM65698: z13 GA2 and z13s
 - -New reports for format-3 PCI functions:
 - FCX322 PCI Activity
 - FCX323 PCI Activity Log
 - -Changed reports for format-3 PCI functions:
 - FCX310 PCI Menu
 - FCX311 PCI Function Config

z/VM Performance Toolkit: PTFs for z/VM 6.3 (4 of 4)

- VM65697: CPU Pooling, LPAR Group Capping, and Prorated Core Time
 - –New reports:
 - FCX324 CPLMENU CPU Pooling Menu
 - FCX308 CPLCONF CPU Pooling Configuration
 - FCX309 CPLACT CPU Pooling Activity
 - -Changed reports:
 - FCX124 MENU Performance Data Selection Menu
 - FCX226 UCONF User Configuration (adds CPU Pool name)
 - FCX126 LPAR LPAR Activity (adds MT and group cap fields)
 - FCX202 LPAR LPAR Log (adds MT and group cap fields)
 - FCX306 LSHARACT LPAR Share Activity (adds group cap fields)

z/VM Performance Toolkit – z/VM 6.4

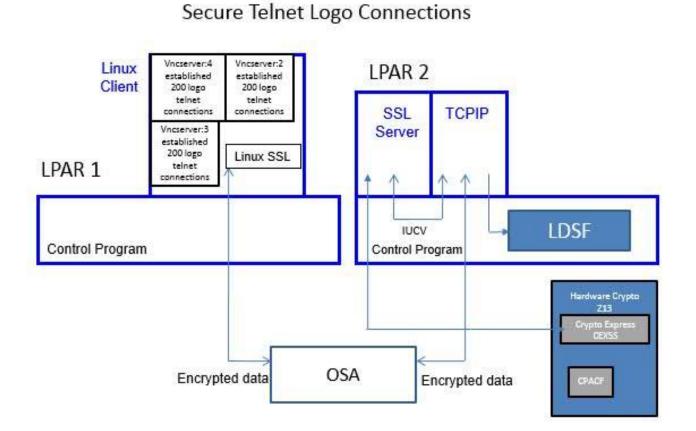
Perfkit now requires z/CMS

- -It no longer runs on plain CMS
- -It uses z/Architecture instructions
- -It is able to use memory above 2 GB

Changed reports:

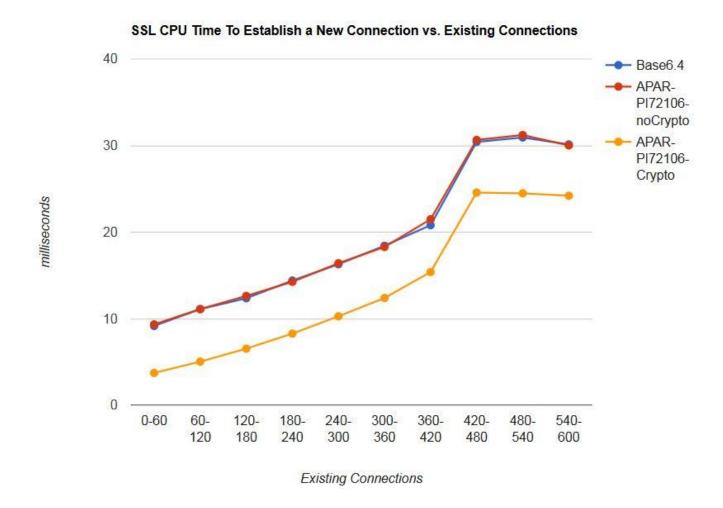
- -FCX124 MENU: choice 1 now goes to new CPUMENU
- –FCX265 LOCKLOG: not available for data from z/VM 6.4 or later (use new LOCKACT)
- New reports:
 - -FCX325 CPUMENU: shows a menu of CPU-related options
 - -FCX326 LOCKACT: spin lock activity report

z/VM 6.4 First Quarter 2017



z/VM 6.4 1Q17 SPE Stack: Regression Behavior

- Compared back to z/VM 6.4 GA on same hardware (z13), our suite experienced:
 - ETRR: mean (μ) 0.98, standard deviation (σ) 0.14
 - ITRR: μ 0.98, σ 0.14



CRYPTO APVIRT Support in TLS/SSL Server and LDAP/VM

APAR is PI72106 (z/VM 6.4) to TCP/IP and LDAP/VM.

CRYPTO APVIRT: CPU Time to Establish a New Connection

Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640cip.html</u>

Concurrent I/O Support for XIV

- Lets CP overlap I/Os to XIV EDEVs
 - Guests' I/Os
 - Its own I/Os
- APAR VM65929, PTF UM35080 for z/VM 6.4
- We evaluated this with a heavy-paging workload configured to page to XIV EDEVs
- Results for our workload:
 - 96% increase in ETR
 - 83% increase in pages/sec to EDEVs
 - Transfers/sec to each EDEV about doubled
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640xiv.html</u>

Dump Channel Program Improvements

- Changes structure of channel programs used for dumps
 - PSW restart dumps
 - SNAPDUMPs
- APAR VM65989, PTF UM35132 for z/VM 6.4
- We evaluated this using SNAPDUMPs of several different sized LPARs
- Results for our workload: dump rate improved 260%
- Read the article: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640500.html</u>

z/VM 6.4 Third Quarter 2017

z/VM 6.4 3Q17 SPE Stack: Regression Behavior

- Compared back to z/VM 6.4 1Q17 on same hardware (z13), our suite experienced:
 - ETRR: mean (μ) 1.02, standard deviation (σ) 0.52
 - ITRR: μ 1.02, σ 0.44

New Shared/Exclusive Spin Lock Manager

- We continue to look for ways to reduce the MP-effect penalty
- The scheduler lock is a kind of a lock called a "shared/exclusive lock"
 - Many processors can concurrently hold it "shared" no fair changing the protected data
 - OR, one processor can hold it "exclusive" I am changing the protected data
- We changed how we use cache lines:
 - Old manager: all acquirers hit a single line read/write
 - New manager: only the exclusive acquirers hit that line read/write
- Results:
 - A DayTrader-based workload with high scheduler lock content: ETRR 6.29, ITRR 5.00
 - A VIRSTOR-based workload with moderate scheduler lock content: ETRR 1.03, ITRR 1.44
 - Your results will depend highly upon:
 - How heavily your workload drives the scheduler lock, and
 - What fraction of that is demand for shared holds
- APAR is VM65988, PTF UM35214 for z/VM 6.4

z/VM 6.4 Fourth Quarter 2017

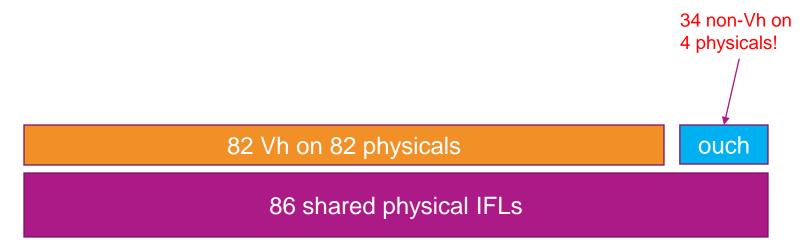
VM66063: High PR/SM LPAR Management Time

1FCX3	02 Run 2017	7/06/26 16:24:06	PHYSLOG Real Core Utilization Log
From	2017/06/26	10:10:00	
то	2017/06/26	10:46:00	
For	2160 Secs	00:36:00	"This is a performance report"

<PhCore> Shrd Interval Total End Time Type Conf Ded Log. Weight %LgclC %Ovrhd LCoT/L %LPmgt %Total TypeT/L 1000 3240.9 244.65 1.075 1804.8 5290.4 1.632 86 0 95 >>Mean>> IFL 86 0 95 1000 3240.9 244.65 1.075 1804.8 5290.4 1.632 >>Mean>> >Sum 10:11:00 IFL 86 0 116 1000 4238.0 340.31 1.080 1714.0 6292.3 1.485 10:11:00 >Sum 86 0 116 1000 4238.0 340.31 1.080 1714.0 6292.3 1.485 10:12:00 IFL 86 0 115 1000 4164.1 343.12 1.082 1911.5 6418.7 1.541 10:12:00 >Sum 86 0 115 1000 4164.1 343.12 1.082 1911.5 6418.7 1.541

%LPmgt is time spent in PR/SM and not chargeable to the LPARs.

One contributing factor in this situation was found to be that the LPARs of the CPC were running with too many vertical-lows unparked.



VM66063: Too Many Vertical-Lows? What Does That Mean?

Suppose the CPC has 86 shared physical IFLs and these LPARs:

- 1. One LPAR with entitlement 688 and 6 Vh, 1 Vm, 5 VI
- 2. Two LPARs, each with entitlement 1978 and 19 Vh, 1 Vm, 4 VI
- 3. Two LPARs, each with entitlement 1978 and 19 Vh, 1 Vm, 8 VI

This makes 82 Vh and 34 non-Vh, like so:

If we could get rid of the unneeded VIs we could improve the situation.

VM66063: The Old Unparking Heuristic

- When Global Performance Data Control is ON,
- z/VM 6.4 unparks logical cores according to perceived capacity.
 - How many of my cores do I think PR/SM will power? Let's unpark that many.
 - Then spread the workload over all those unparked cores.
- This strategy can be a mistake in some situations:
 - Across the whole CPC, it results in unparking too many vertical-lows
 - Especially if the LPARs have lots of vertical-lows (e.g., entitlement 1900% with 26 logical cores)
- The excessive unparking of vertical-lows can cause:
 - Increased PR/SM LPAR management time (FCX302 PHYSLOG %LPmgt)
 - Increased logical core suspend time (FCX304 PRCLOG %Susp)
 - Increased nonchargeable CP time ("system time") (FCX304 PRCLOG Syst)
 - Increased CP use of Diag x'9C' (FCX239 PROCSUM Diag9C/sec)
 - Increased guest use of Diag x'9C' (FCX104 PRIVOP Diagnose X'9C')
- The solution is to introduce some new unparking heuristics that can help reduce the MP level by parking unneeded logical cores

VM66063: Now, Three Unparking Heuristics

Large:	Runs in all the logical cores it appears will be powered. (today's behavior) This can tend to unpark vertical-lows.
Medium:	Runs in the Vh and Vm cores plus only the needed-and-powered VI cores. This can tend to reduce the number of unparked vertical-lows.
Small:	Runs in only the needed-and-powered cores. This can tend to reduce the number of unparked cores.
Effect:	N(small) <= N(medium) <= N(large) <i>Medium</i> has potential to dispose of VIs and of some MP effect. <i>Small</i> has potential to dispose of VI, Vm, and Vh and of even more MP effect.

VM66063: Externals

(All of this applies only to running with GPD on)

```
To change the unparking model:

>--SET SRM UNPARKING--+--LARGE---+--><

+--MEDIUM--+

+--SMALL---+
```

```
To query which model is in effect:
>--QUERY SRM--+-----+--><
+UNPARKING-+
```

```
To shut off use of vertical-lows (this is mostly a safety switch):

>--SET SRM EXCESSUSE--+--HIGH---+-><

+--MEDIUM-+

+--LOW----+

+--NONE---+
```

There are corresponding statements for the z/VM system configuration file.

z/VM 6.4 First Quarter 2018

VM65993: Encrypted Paging


- Encryption of guest data by the Control Program as data is paged out to paging volumes owned by z/VM. Includes primary guest address space, data space, and VDISK space.
- Supported on the z14; Uses the Central Processor Assist for Cryptographic Functions (CPACF)
- Available Cipher Strength
 - Advanced Encryption Standard 128-bit (AES128), AES 192-bit (AES192) and AES 256-bit (AES256)
- Performance Key Findings
 - As cipher strength increased, total CPU used on encryption and decryption increased
 - CPU time used to encrypt a page increased
 - CPU time used to decrypt a page decreased
 - On average, decryption costs less than encryption
 - Despite the extra cost of encryption, the z14 with encrypted paging enabled performed better when compared back to a z13
 - The CPU cost of encrypted paging is a function of the paging rate rather than the size of the LPAR.
- Performance Report: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640EP.html</u>

VM65987: Pause-Reduced Garbage Collection for Java

- Pause time is the amount of time Java application threads are stopped during a garbage collection (GC) event.
 - Can impact response times and cause application failures.
- Java can now exploit the new Guarded Storage Facility (GSF) architecture for the z14.
 Java application threads can now run concurrently during most GC events.
- Requires IBM Java SR5 and Linux support (TBD)
- A Java Store Inventory and Point of Sale application was used to evaluate this feature
- Results
 - Response-time-constrained throughput increased 67%
 - Transactions that satisfy certain response-time-constrained SLAs
 - Avg. pause time for a GC event decreased from 221 ms to 32 ms
 - No difference in z/VM performance
- Performance Report: <u>http://www.vm.ibm.com/perf/reports/zvm/html/640jgc.html</u>

Summary

- z14 offers a good performance bump over the z13
- z/VM 6.4 offers good regression behavior compared to z/VM 6.3
- z/VM 6.4 offers improved performance and capacity compared to z/VM 6.3
 - The Control Program can now exploit a 2 TB LPAR
 - The Control Program can now exploit HyperPAV aliases for paging
 - The Control Program can now exploit High Performance FICON for paging
- z/VM 6.4 offers improved scheduler behavior compared to z/VM 6.3
 Relative shares are enforced more accurately than they were previously
- z/VM 6.4 offers increased cipher strength compared to z/VM 6.3
- z/VM 6.4 offers many small improvements compared to z/VM 6.3
- There are a number of new or changed z/VM Performance Toolkit screens

 Perfkit now requires a z/Architecture virtual machine and z/CMS
- There are a number of new or changed monitor records
- Visit us on the web at <u>http://www.vm.ibm.com/perf/reports/zvm/html/</u>

Send feedback to: Brian Wade, <u>bkw@us.ibm.com</u>

Also, visit our z/VM Performance Report: http://www.vm.ibm.com/perf/reports/zvm/html/

Appendix: Monitor Record Changes

z/VM 6.4 GA Monitor Record Changes, 1 of 4

D and R	Name	Long Name	N=new; C=changed; D=deleted
Domain 0, System			
D0 R1	MRSYTSYP	System data (per processor)	С
D0 R2	MRSYTPRP	Processor data (per processor)	С
D0 R4	MRSYTRSP	Real storage data (per processor)	С
D0 R5	MRSYTXSP	Expanded storage data (per processor)	D
D0 R14	MRSYTXSG	Minidisk cache data (global)	С
D0 R15	MRSYTCUG	Logical partition configuration	С
D0 R21	MRSYTSXG	System execution space (global)	С
D0 R23	MRSYTLCK	Formal spin lock data	С
Domain 1, Monitor			
D1 R4	MRMTRSYS	System configuration data	С
D1 R6	MRMTRDEV	Device configuration data	С
D1 R7	MRMTRMEM	Memory configuration data	С
D1 R16	MRMTRSCH	Scheduler settings	С
D1 R17	MRMTRXSG	Expanded storage data	D
D1 R19	MRMTRQDC	QDIO device configuration	С
D1 R20	MRMTRHPP	HyperPAV pool definition	С
D1 R31	MRMTRSRV	CP service configuration	Ν

z/VM 6.4 GA Monitor Record Changes, 2 of 4

D and R	Name	Long Name	N=new; C=changed; D=deleted
Domain 2, Scheduler			
D2 R4	MRSCLADL	Add user to dispatch list	С
D2 R5	MRSCLDDL	Drop user from dispatch list	С
D2 R6	MRSCLAEL	Add user to eligible list	С
D2 R7	MRSCLSRM	SET SRM changes	С
D2 R13	MRSCLALL	Add VMDBK to the limit list	С
D2 R14	MRSCLDLL	Drop VMDBK from the limit list	С
Domain 3, Storage			
D3 R1	MRSTORSG	Real storage management (global)	С
D3 R3	MRSTOSHR	Shared storage management (per NSS or DCSS)	С
D3 R4	MRSTOASP	Auxiliary storage management	С
D3 R8	MRSTOBPG	Block paging data	С
D3 R9	MRSTOXSG	Expanded storage data	D
D3 R10	MRSTOXSU	Expanded storage data (per user)	D
D3 R11	MRSTOASS	Auxiliary shared storage management	С
D3 R14	MRSTOASI	Address space information record	С
D3 R16	MRSTOSHD	NSS/DCSS/SSP removed from storage	С
Domain 4, User			
D4 R2	MRUSELOF	User logoff data	С
D4 R3	MRUSEACT	User activity data	С
D4 R9	MRUSEATE	User activity data at transaction end	C

z/VM 6.4 GA Monitor Record Changes, 3 of 4

D and R	Name	Long Name	N=new; C=changed; D=deleted
Domain 5, Processor			
D5 R1	MRPRCVON	VARY ON processor	С
D5 R2	MRPRCVOF	VARY OFF processor	С
D5 R11	MRPRCINS	Instruction counts (per processor)	С
D5 R18	MRPRCDHF	Dispatch vector high frequency data	С
D5 R20	MRPRCMFM	MT CPUMF counters	С
D5 R21	MRPRCSMT	SMT configuration change event	Ν
Domain 6, I/O, 1 of 2			
D6 R1	MRIODVON	VARY ON device	С
D6 R3	MRIODDEV	Device activity	С
D6 R4	MRIODCAD	Cache activity data	С
D6 R10	MRIODALS	Automated tape library statistics	С
D6 R22	MRIODVSF	Virtual switch failover	
D6 R23	MRIODVSR	Virtual switch recovery	С
D6 R25	MRIODQDA	QDIO device activation event	С
D6 R27	MRIODQDD	QDIO device deactivation event	С
D6 R28	MRIODHPP	HyperPAV pool activity	С

z/VM 6.4 GA Monitor Record Changes, 4 of 4

D and R	Name	Long Name	N=new; C=changed; D=deleted
Domain 6, I/O, 2 of 2			
D6 R30	MRIODLPT	LSS PAV transition	С
D6 R32	MRIODHPF	Indicates an HPF feature change	С
D6 R34	MRIODBPD	Virtual switch bridge port deactivation	С
D6 R40	MRIODPDS	Guest disables a PCI function	С
D6 R42	MRIODPAD	PCI function added to the system	С
D6 R45	MRIODPON	Real PCI function varied on	С
Domain 8, Virtual Network			
D8 R1	MRVNDSES	Virtual NIC session activity	С
D8 R2	MRVNDLSU	Virtual NIC guest link state – link up	С
D8 R3	MRVNDLSD	Virtual NIC guest link state – link down	С

End

© 2016, 2018 IBM Corporation