Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

zEnterprise Disclaimer
Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
Agenda

- IBM zEnterprise System
- zEnterprise Unified Resource Manager (zManager)
- Managing the Ensemble
 - Hypervisors and Servers
- Platform Management Requirements
- Service Policies
 - Integrating with z/OS WLM
- Monitoring and Reporting
The world’s fastest and most scalable system: IBM zEnterprise 196 (z196)

- Ideal for large scale data and transaction serving and mission critical applications
- Most efficient platform for Large-scale Linux® consolidation
- Leveraging a large portfolio of z/OS and Linux on System z applications
- Capable of massive scale up, over 50 Billion Instructions per Second (BIPS)

Unified management for a smarter system: zEnterprise Unified Resource Manager

- Unifies management of resources, extending IBM System z qualities of service end-to-end across workloads
- Provides platform, hardware and workload management

Scale out to a trillion instructions per second: IBM zEnterprise BladeCenter Extension (zBX)

- Selected IBM POWER7 blades and IBM System x Blades1 for tens of thousands of AIX and Linux applications
- High performance optimizers and appliances to accelerate time to insight and reduce cost
- Dedicated high performance private network
zEnterprise Unified Resource Manager

- Runs on HMC and Support Element
- Comprised of six management areas
 - Operational Controls (Operations)
 - Virtual Server Lifecycle Management (Virtual Servers)
 - Hypervisor Management (Hypervisors)
 - Energy Management (Energy)
 - Network Management (Network)
 - Workload Awareness and platform performance management (Performance)
- Two different suites
 - Manage Suite
 - Automate Suite - Optional
IBM Washington Systems Center

zManager – Hardware Management

Hypervisor Management
- Integrated deployment and configuration of hypervisors
- Hypervisors (except z/VM®) shipped and serviced as firmware.
- Management of ISO images.
- Creation of virtual networks.

Operational Controls
- Auto-discovery and configuration support for new resources.
- Cross platform hardware problem detection, reporting and call home.
- Physical hardware configuration, backup and restore.
- Delivery of system activity using new user.

Network Management
- Management of virtual networks including access control

Energy Management
- Monitoring and trend reporting of CPU energy efficiency.
- Ability to query maximum potential power.

Key
- Manage suite
- Automate suite
zManager – Platform Management

Hypervisor Management
- Manage and control communication between virtual server operating systems and the hypervisor.

Energy Management
- Static power savings

Workload Awareness and Platform Performance Management
- Wizard-driven management of resources in accordance with specified business service level objectives
- HMC provides a single consolidated and consistent view of resources
- Monitor resource use within the context of a business workload
- Define workloads and associated performance policies

Virtual Server Lifecycle Management
- Single view of virtualization across platforms.
- Ability to deploy multiple, cross-platform virtual servers within minutes
- Management of virtual networks including access control

Key
- Manage suite
- Automate suite
zManager Manage and Automate Suites

- Manage Suite is the default Suite with zManager

- The optional Automate Suite provides the necessary tools for platform performance monitoring
 - Allows definition of custom workloads by name
 - Differentiate between multiple workloads in an Ensemble by creating named workload definitions

- Performance Management
 - Management of CPU resource across virtual servers hosted in the same hypervisor instance to achieve workload performance policy objectives
 - Performance service-level policy definition and performance monitoring and resource optimization
 - Allow virtual CPU capacity to be adjusted across a hypervisor
Managing the Ensemble

- All zManager tasks are performed on either the HMC or Support Element
- One HMC manages the ensemble
 - Multiple HMCs can provide traditional management
 - Only the PRIMARY HMC can perform ensemble related management
- If web access is enabled on the primary HMC, any workstation can access the HMC with compatible web browser
Hypervisors and Servers

- Hypervisors are the virtualization layer that simulate underlying hardware
 - Allows instances, or logical entries, of a virtual server to run as if it had access to a full set of hardware

- zManager supports the following Hypervisors
 - PR/SM
 - z/VM
 - PowerVM

- Virtual Servers
 - Container for an operating system
 - z/OS is not a virtual server, it is the OS inside the virtual server
 - z/VM guest machines are the virtual servers, with Linux and z/OS the OSes inside those containers
Platform Management Requirements

- The following slides review the pieces of the puzzle needed to manage the resource in a zEnterprise ensemble
- ARM, GPMP, Workloads, and Performance Policies are reviewed
ARM – Application Response Measurement

- Allows measurement of end-to-end response time
 - Correlator assigned to classify work. Correlator is passed to secondary applications and other managed servers that process the application
 - Similar to Performance Blocks in z/OS Workload Manager

zManager uses information to determine

- The amount of time that each application or server used to process the transaction
- The name of the application or server that processed the transaction
- The end-to-end transaction flow as it moves from one application or server to the next

Movement of work request from one application OR server to another is considered a 'HOP'

- Data viewed from the HOPS Report

All applications and servers that will process a work request must be ARM enabled for end-to-end management and reporting
Basic ARM calls

- `arm_register_application`
- `arm_register_transaction`
- `arm_start_application`
- for (each transaction)
 - `arm_start_transaction`
 - `arm_bind_thread`
 - `arm_blocked`
 - Call downstream sub-transaction
 - `arm_unblocked`
 - `arm_unbind_thread`
 - `arm_stop_transaction`
- `arm_stop_application`
- `arm_destroy_application`
Workflow Example with ARM

Standards Based Application Instrumentation

- Application Environment Statistics
 - Topology
 - Work Request Correlators
 - State Information
 - Work Request Processing

- The Open Group ARM Standard V4.0
 - Process registration, deregistration
 - Work request classification, start, and stop
ARM Instrumented Middleware

- **Web Server support:**
 - WebSphere provided plugin
 - IHS/Apache
 - IIS
 - Domino
 - iPlanet

- **WebSphere Application Server**
 - WAS 6.0, WAS 7.0

- **DB2 Universal Database**
 - Including z/OS DB2
GPMP

- GPMP - Guest Platform Management Provider
 - Lightweight component of PPM that provides monitoring data
 - Link between operating system and zManager

- GPMP collects performance data for work running on a virtual server and passes it to zManager

- With ARM instrumented middleware support, GPMP provides metrics that allows detailed transaction topology as transaction hops through heterogeneous platforms in zEnterprise
 - ARM-instrumented middleware applications required
 - Middleware calls ARM APIs while servicing work requests
<table>
<thead>
<tr>
<th>GPMP</th>
</tr>
</thead>
</table>

- With z/OS V1R12, WLM can be set up to automatically start GPMP on all LPARs in an ensemble
 - If all z/OS Images are at z/OS V1R11 or earlier, GPMP must be started manually

- With ARM instrumented middleware support, GPMP provides metrics that allows detailed transaction topology as transaction hops through heterogeneous platforms in zEnterprise
Enable GPMP on z/OS

z/OS Service Support

- Guest Platform Management Provider ships with z/OS
- Supported on z/OS R12, R11, R10
- Following APARs are required to enable GPMP support
- With z/OS R12, WLM can be set up to start GPMP
 - R11 or earlier, GPMP must be started manually

<table>
<thead>
<tr>
<th>APAR(FMID)</th>
<th>APAR (FMID)</th>
<th>APAR (FMID)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA30928 (HBB7770)</td>
<td>OA30928 (HBB7760)</td>
<td>OA30928 (HBB7750)</td>
<td>z/OS WLM</td>
</tr>
<tr>
<td>OA31690 (HBB7770)</td>
<td>OA31690 (HBB7760)</td>
<td>OA31690 (HBB7750)</td>
<td>z/OS GPMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA33259 (HBB7750)</td>
<td>z/OS USS</td>
</tr>
<tr>
<td>OA32099 (HVT61C0)</td>
<td>OA32099 (HVT61B0)</td>
<td>OA32099 (HVT1A0)</td>
<td>Comm Server SNA</td>
</tr>
<tr>
<td>PM08334 (HIP61C0)</td>
<td>PM08334 (HIP61B0)</td>
<td>PM08334 (HIP61A0)</td>
<td>Comm Server IP</td>
</tr>
</tbody>
</table>
z/OS WLM Settings

Service definition was extracted. (IWMAM036)
z/OS WLM Settings

Guest Platform Management Provider (GPMP) Settings

Command ===>

Activate guest platform management provider: 2
 1. NO
 2. YES

Names of systems to be excluded:
Benefits of GPMP

- Guest Platform Management Provider (GPMP) is a lightweight component of PPM that provides additional monitoring data.

- Allows virtual server to be classified with additional attributes such as:
 - HostName
 - SystemName
 - OS Level etc.

- With instrumented middleware support, GPMP provides metrics that allows detailed transaction topology as transaction hops through heterogeneous platforms in zEnterprise.
zManager Platform Workload

- In z/OS, workload is a collection of work to be managed, tracked, and reported as a unit. Can be one managed in one or multiple service classes.
- For zEnterprise, workload is a collection of logical constructs, i.e. virtual servers that perform a customer defined collective purpose.
- A workload represents business goals or functions:
 - Represents a way to group virtual servers to be managed.
- All virtual servers to be managed by zManager must run in the same ensemble:
 - Can be in different blades or nodes.
- Workload will have one or more Performance Policies:
 - Each Performance Policy will have one or more Service Classes.
- Requires Automate Suite.

![Diagram of Ensemble with Workloads and Policies]
Performance Policy

- A workload can have one or more performance policies to describe its business importance and objectives
 - Every new workload has at least the 'Default' performance policy
 - Additional policies may be defined as needed
- Define one or more virtual servers to a workload
- Each performance policy has service classes that set the priority of and classify the virtual servers
 - zManager uses the active performance policy and its service classes to determine how physical resources are applied to the virtual servers
Workload and Service Class
Importance and Goals

- Both Workloads and Service Classes will have importance levels
 - Workload Importance will determine importance of service classes in this workload relative to service classes in other workloads
 - Service Class Importance determines importance between other service classes in same workload

- Five Importance levels are possible
 - Highest, High, Medium, Low, Lowest

- Five Velocity Goals are possible
 - Fastest, Fast, Moderate, Slow, Slowest

- If applications are ARM enabled, name of zManager service class can be used to classify work to WLM in z/OS
 - Uses EWLM classification rules
 - Goals must be a response time goal (average or percentile)
 - Single period service classes only
 - If no EWLM classification rules apply, or ARM has not been enabled, work coming into z/OS will use standard classification rules (DDF, JES, etc.)
Defining Workload

- From HMC use New Workload Wizard
 - Simple step-by-step process that will walk through every step needed to set up the basics of a new workload, performance policy, and service class.

![New Workload - ATSENS1](image-url)
z/OS WLM Classification Example

- Done either through WLM ISPF application, or through z/OSMF
- From WLM Classification rules, edit EWLM rules
z/OS Classification Rules Cont.

- ESC is the only Qualifier Type
- Qualifier name is name of ensemble performance policy Service Class
 - Sub-rules needed for PPM Service Classes longer than eight characters

<table>
<thead>
<tr>
<th>Subsystem-Type</th>
<th>Xref</th>
<th>Notes</th>
<th>Options</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modify Rules for the Subsystem Type Scroll ==> CSR

Subsystem Type . : EWLM Fold qualifier names? N (Y or N)
Description . . . EWLM Rules for PPM

Action codes: A=After C=Copy M=Move I=Insert rule
 B=Before D=Delete row R=Repeat IS=Insert Sub-rule

<table>
<thead>
<tr>
<th>Action</th>
<th>Type</th>
<th>Name</th>
<th>Start</th>
<th>Service</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
<td>SrvClsFo</td>
<td>1</td>
<td></td>
<td>PPMDFLT</td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>rFastest</td>
<td>9</td>
<td></td>
<td>PPMDFLT</td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>Highest</td>
<td>17</td>
<td>PPMGHST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>SrvClsFo</td>
<td>1</td>
<td></td>
<td>PPMDFLT</td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>rFastest</td>
<td>9</td>
<td></td>
<td>PPMDFLT</td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>High</td>
<td>17</td>
<td>PPMHIGH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>Default</td>
<td>1</td>
<td>PPMDF2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td>ZMGRT1SC</td>
<td>1</td>
<td>PPMGRT1</td>
<td></td>
</tr>
</tbody>
</table>
Performance Measurement

- zManager will assign a PI for every service class
 - PI = 1.0 – Service Class Achieving Goal
 - PI > 1.0 – Service Class Missing Goal
 - PI < 1.0 – Service Class Overachieving Goal

- All zManager service classes are velocity based
 - Need to determine what velocity is getting desired response times for ensemble workloads
Platform Management - CPU

- zManager will distribute CPU resources where necessary based on the achievement of the goals in the active service policy

- CPU Management must be enabled
 - Default for z/VM and POWER hypervisors is disabled
 - When creating a virtual server, CPU management is enabled by default, but hypervisor must have it enabled as well

- POWER virtual servers need to be defined Shared processing mode
 - Set initial, minimum, and maximum processing units and processors
Monitoring Performance

- Currently 8 reports viewable from HMC to monitor performance of workloads and virtual servers
 - Workloads Report
 - Service Classes Report
 - Virtual Servers Report
 - Hypervisor Report
 - Resource Adjustment Report
 - Virtual Server Topology Report
 - View Statistics Report
 - HOPS Report
- Currently 36 hours of history is available
Reports Continued

- Reports can be filtered to show only specific workloads or servers as requested
- Historical data can be kept and reviewed as needed from HMC
- Alerts can also be set up if certain criteria are hit
 - Emails sent to those on specific notification list for each alert
- Report data can be downloaded to local workstation
 - Uses CSV format
 - Can only download data currently represented on screen
Report Examples
The Workload Details

<table>
<thead>
<tr>
<th>Name</th>
<th>Hypervisor</th>
<th>Type</th>
<th>Performance Policy</th>
<th>Performance Policy Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>rja IHS1</td>
<td>B.2.07</td>
<td>POWER</td>
<td>rja_wkld1</td>
<td>Activated</td>
</tr>
<tr>
<td>rja WAS1</td>
<td>B.2.08</td>
<td>POWER</td>
<td>rja_wkld1</td>
<td>Activated</td>
</tr>
<tr>
<td>T05P11</td>
<td>TSY5</td>
<td>PR/SM</td>
<td>rja_wkld1</td>
<td>Activated</td>
</tr>
</tbody>
</table>
The Workload Details

![Workload Details - rja_wkld](image)

Performance Policies

<table>
<thead>
<tr>
<th>Select Policy</th>
<th>Status</th>
<th>Business Importance</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rja_wkld1</td>
<td>Active</td>
<td>Highest</td>
<td>1</td>
<td>Workload Policy</td>
</tr>
<tr>
<td>Default</td>
<td></td>
<td>Medium</td>
<td>1</td>
<td>The default workload performance policy</td>
</tr>
</tbody>
</table>

Details for rja_wkld1

- **Activation status:** Active
- **Last activation requested date:** Dec 12, 2010 4:38:35 PM EST
- **Last activation completed date:** Dec 12, 2010 4:38:35 PM EST
- **Created date:** Dec 12, 2010 4:38:35 PM EST
- **Last modified date:** Dec 12, 2010 4:38:35 PM EST

Service Class

<table>
<thead>
<tr>
<th>Class</th>
<th>Performance Goal</th>
<th>Business Importance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rja_wkld1_sc</td>
<td>Velocity - Fastest</td>
<td>Highest</td>
<td>Service Class for wkld1</td>
</tr>
<tr>
<td>Default</td>
<td>Velocity - Moderate</td>
<td>Medium</td>
<td>The default workload performance policy service class.</td>
</tr>
</tbody>
</table>
The rja_wkld Workload Details

Workload Details - rja_wkld

- **Select Action**
 - New Based On
 - Details
 - Activate
 - Print View
 - View Revisions
 - Export Policy

Performance Policies

- **Status**: Active
- **Business Importance**: Highest
- **Revision**: 1
- **Description**: Workload Policy

- **Selected**: 1

- **Active**
 - **Date**: Dec 12, 2010 4:38:35 PM EST
 - **Last Activated by**: HWATSRA

- **Created date**
 - **Date**: Dec 12, 2010 4:38:35 PM EST
 - **Created by**: HWATSRA

- **Last modified date**
 - **Date**: Dec 12, 2010 4:38:35 PM EST
 - **Last modified by**: HWATSRA

Service Class

- **Class**: rja_wkld1_sc
- **Goal**: Velocity - Fastest
- **Business Importance**: Highest
- **Description**: Service Class for wkld1

- **Default**
 - **Goal**: Velocity - Moderate
 - **Business Importance**: Medium
 - **Description**: The default workload performance policy service class.
The Workload CPU Utilization Report

CPU Utilization Distribution for Workload nja_wkld

Number of Servers

0.0-10.0 10.0-20.0 20.0-30.0 30.0-40.0 40.0-50.0 50.0-60.0 60.0-70.0 70.0-80.0 80.0-90.0 90.0-100.0

© 2011 IBM Corporation
The Virtual Servers Report
The Virtual Servers Report

<table>
<thead>
<tr>
<th>Server</th>
<th>Virtual Processors</th>
<th>Allocated Memory (MB)</th>
<th>Physical CPU Utilization (%)</th>
<th>Hypervisor CPU Delay (%)</th>
<th>Idle Time (%)</th>
<th>Other Time (%)</th>
<th>Service Class (PID)</th>
<th>OS Processes Total CPU Using Samples (%)</th>
<th>OS Processes Total CPU Delay Samples (%)</th>
<th>OS Processes Total I/O Delay Samples (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rja_IHS1</td>
<td>2</td>
<td>6,144</td>
<td>1.2</td>
<td>0.0</td>
<td></td>
<td></td>
<td>rja_kiit1_stc (1.00)</td>
<td>6.6</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>rja_WAS1</td>
<td>2</td>
<td>6,144</td>
<td>1.3</td>
<td>0.0</td>
<td></td>
<td></td>
<td>rja_kiit1_MS (1.00)</td>
<td>5.5</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>TOS11</td>
<td>2</td>
<td>4,086</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td>Default (0.00)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

CPU Utilization for Virtual Server rja_WAS1
Service Class Adjustment Report

![Service Class Resource Adjustments Report - SrvClSForFastest★Highest](image)

Report Interval: Starting 3/16/11 5:12:30 PM for 15 minutes (3/16/11 5:27:30 PM) Modify

Successful Adjustments:

<table>
<thead>
<tr>
<th>Receiver Virtual Servers</th>
<th>Receiver Workload</th>
<th>Receiver Service Class</th>
<th>Receiver Processing Units After (Before)</th>
<th>Donor Virtual Servers</th>
<th>Donor Workload</th>
<th>Donor Processing Units After (Before)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>0.42 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.98 (5.00)</td>
<td>Mar 16, 2011 5:13:12 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>0.59 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.62 (4.00)</td>
<td>Mar 16, 2011 5:14:42 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>0.74 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.66 (4.00)</td>
<td>Mar 16, 2011 5:16:13 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>0.80 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.50 (4.00)</td>
<td>Mar 16, 2011 5:17:43 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>1.06 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.34 (4.00)</td>
<td>Mar 16, 2011 5:19:12 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>1.19 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.21 (4.00)</td>
<td>Mar 16, 2011 5:21:13 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>1.35 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>4.05 (4.00)</td>
<td>Mar 16, 2011 5:22:43 PM EDT</td>
</tr>
<tr>
<td>rjava01</td>
<td>rjava_wild</td>
<td>SrvClSForFastest★</td>
<td>1.43 (4.00)</td>
<td>rjava02</td>
<td>Default</td>
<td>3.97 (4.00)</td>
<td>Mar 16, 2011 5:24:13 PM EDT</td>
</tr>
</tbody>
</table>

Failed Adjustments:

<table>
<thead>
<tr>
<th>Receiver Virtual Servers</th>
<th>Receiver Workload</th>
<th>Receiver Service Class</th>
<th>Failure Reason</th>
<th>Time</th>
</tr>
</thead>
</table>

Page 1 of 1

Total: 0 Filtered: 0 Displayed: 0

GMT/UTC: Thu 16:00
London: Thu 16:00
Washington, DC: Thu 12:00
Los Angeles: Thu 09:00
Done
Workload Topology

Diagram showing a network topology with nodes labeled rja_IHS1, rja_WAS1, and TOSP11, with arrows indicating the direction of data flow and numbers representing the amount of data transferred.
PPM HOPS Report

Details for rja_wkdd1_sc:
- **Workload:** rja_wkdd1
- **Performance goal:** Velocity-Fastest
- **Performance policy:** rja_wkdd1
- **Business Importance:** Highest
- **Performance:** Fastest

<table>
<thead>
<tr>
<th>Name</th>
<th>Hop Number</th>
<th>Group Name</th>
<th>Successful Transactions</th>
<th>Failed Transactions</th>
<th>Stopped Transactions</th>
<th>Inflight Transactions</th>
<th>Queue Time (s)</th>
<th>Execution Time (s)</th>
<th>Successful Average Response Time (s)</th>
<th>Inflight Average Response Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop 0</td>
<td>0</td>
<td>IBM_HTTP_Server</td>
<td>64,926</td>
<td>1</td>
<td>0</td>
<td>80</td>
<td>0.0000000</td>
<td>0.001529</td>
<td>0.057429</td>
<td>0.071</td>
</tr>
<tr>
<td>IBM Webserver Plugin</td>
<td>0</td>
<td>IBM_HTTP_Server</td>
<td>6,028</td>
<td>1</td>
<td>0</td>
<td>80</td>
<td>0.0000000</td>
<td>0.000247</td>
<td>0.060905</td>
<td>0.071</td>
</tr>
<tr>
<td>rja_l4h31</td>
<td>0</td>
<td>server1</td>
<td>58,897</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000000</td>
<td>0.001660</td>
<td>0.057073</td>
<td>0.000</td>
</tr>
<tr>
<td>WebSphere.APPLICATION_SERVER</td>
<td>0</td>
<td>server1</td>
<td>58,897</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000000</td>
<td>0.001660</td>
<td>0.057073</td>
<td>0.000</td>
</tr>
<tr>
<td>Hop 1</td>
<td>1</td>
<td>DSG9OH-L2</td>
<td>6,755,772</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>0.0000000</td>
<td>0.000326</td>
<td>0.000245</td>
<td>0.02</td>
</tr>
<tr>
<td>DDF</td>
<td>1</td>
<td>TOSP11</td>
<td>6,744,304</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000000</td>
<td>0.000326</td>
<td>0.000216</td>
<td>0.000</td>
</tr>
<tr>
<td>WebSphere.APPLICATION_SERVER</td>
<td>1</td>
<td>server1</td>
<td>11,468</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>0.0000000</td>
<td>0.000342</td>
<td>0.017473</td>
<td>0.02</td>
</tr>
<tr>
<td>rja_was1</td>
<td>1</td>
<td></td>
<td>11,468</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>0.0000000</td>
<td>0.000342</td>
<td>0.017473</td>
<td>0.02</td>
</tr>
<tr>
<td>Hop 2</td>
<td>2</td>
<td>DSG9OH-L2</td>
<td>653,000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0000000</td>
<td>0.000316</td>
<td>0.000158</td>
<td>0.000</td>
</tr>
<tr>
<td>DDF</td>
<td>2</td>
<td>TOSP11</td>
<td>653,000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0000000</td>
<td>0.000316</td>
<td>0.000158</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>653,000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0000000</td>
<td>0.000316</td>
<td>0.000158</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Page 1 of 1

Total: 13 Filtered: 13 Displayed: 13
Summary – PPM Components

- **HMC**
 - HMC is management server and console
 - Provides ensemble wide aggregation of performance data
 - UI for defining workloads, performance policy and reporting data
 - Pushes management directives to all the nodes of ensemble

- **Support Element (SE)**
 - Provides node (or CPC) level aggregation of performance data
 - Pushes management directives to all the hypervisors in the node.
Summary – PPM Components

- **Hypervisors**
 - Monitors goal defined in performance policy and performs dynamic resource mgmt to achieve performance goal where applicable
 - Collects virtual server statistics from hypervisor and guest platform management providers. Pushes aggregated metrics to SE

- **Virtual Servers**
 - Optional Guest Platform Management Provider software needs to be deployed in Virtual Server
 - Collects monitoring data from Operating system and ARM instrumented applications and pushes to hypervisors.
Platform Performance Management Structure

- Ensemble Performance Management (GUI/Console, Reporting, Workload & Policy Management)

- HMC
 - EPM

- SE
 - NPM

- Node Performance Mgmt (Policy Management, Data Collection and Aggregation)

- Hypervisor
 - HPM
 - Guest Platform Mgmt Provider (OS Monitoring)
 - Virtual Server
 - GPMP
 - Virtual Server
 - GPMP
 - Virtual Server
 - GPMP
 - Hypervisor Performance Mgmt (Monitoring, Resource Optimization)
Summary

- The Platform Performance Manager portion of zEnterprise Unified Resource Manager is a powerful set of tools and functions that allow users to manage the zEnterprise.

- Resources are directed to virtual servers based on the goals and importance levels of the workloads running.
 - ARM enablement and GPMP allow for end-to-end monitoring of application performance.

- z/OS Enablement allows for tight linkage between zManager goals and z/OS WLM Goals.

- Built in reports give unified, cross-server view.